

Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

ISBN: 978-1-26-045456-7
MHID: 1-26-045456-8

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-045455-
0, MHID: 1-26-045455-X.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol
after every occurrence of a trademarked name, we use names in an editorial fashion only, and to
the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums
and sales promotions or for use in corporate training programs. To contact a representative,
please visit the Contact Us page at www.mhprofessional.com.

All trademarks or copyrights mentioned herein are the possession of their respective owners and
McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, McGraw-Hill
Education, or others, McGraw-Hill Education does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results
obtained from the use of such information.

The views and opinions expressed in all portions of this publication belong solely to the author
and/or editor and do not necessarily state or reflect those of the Department of Defense or the
United States Government. References within this publication to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, do not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government.

Some glossary terms included in this book may be considered public information as designated
by The National Institute of Standards and Technology (NIST). NIST is an agency of the U.S.
Department of Commerce. Please visit www.nist.gov for more information.

TERMS OF USE

http://www.mhprofessional.com
http://www.nist.gov

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright
Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-
Hill Education’s prior consent. You may use the work for your own noncommercial and personal
use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
Education and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither
McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill Education has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

This book is dedicated to my children—Faith, Hope, Christian, and Charity. I love you with all
my heart, and I am so proud of the world-changing impact you’re making.

ABOUT THE AUTHOR

Matt Walker is currently working as a member of the Cyber Defense and Security Strategy
team with Perspecta. An IT security and education professional for more than 20 years, he has
served as the director of the Network Training Center and a curriculum lead/senior instructor for
Cisco Networking Academy on Ramstein AB, Germany, and as a network engineer for NASA’s
Secure Network Systems (NSS), designing and maintaining secured data, voice, and video
networking for the agency. Matt also worked as an instructor supervisor and senior instructor at
Dynetics, Inc., in Huntsville, Alabama, providing onsite certification-awarding classes for
(ISC)2, Cisco, and CompTIA, and after two years came right back to NASA as an IT security
manager for UNITeS, SAIC, at Marshall Space Flight Center. He has written and contributed to
numerous technical training books for NASA, Air Education and Training Command, and the
U.S. Air Force, as well as commercially, and he continues to train and write certification and
college-level IT and IA security courses.

About the Contributor
Hope Walker is an intelligence specialist with the U.S. Department of Defense. Prior to working
for the DoD, Hope worked on the security team at the University of Alabama in Huntsville
(UAH) while in school. Hope has four degrees from UAH, including Bachelor of Arts in
Philosophy, Bachelor of Arts in Political Science, Bachelor of Business Administration in
Information Assurance, and a Masters of Science in Cyber Security. Hope currently holds the
CompTIA Network+, the CompTIA Security+, the Certified Information Systems Security
Professional (CISSP), the Certified Ethical Hacker (CEH), and the Certified Information Security
Manager (CISM) certifications.

About the Technical Editor
Brad Horton currently works as an intelligence specialist with the U.S. Department of Defense.
Brad has worked as a security engineer, commercial security consultant, penetration tester, and
information systems researcher in both the private and public sectors. This has included work
with several defense contractors, including General Dynamics C4S, SAIC, and Dynetics, Inc.
Brad currently holds the Certified Information Systems Security Professional (CISSP), the
CISSP – Information Systems Security Management Professional (CISSP-ISSMP), the Certified
Ethical Hacker (CEH), and the Certified Information Systems Auditor (CISA) trade
certifications. Brad holds a bachelor’s degree in Commerce and Business Administration from
the University of Alabama, a master’s degree in Management of Information Systems from the
University of Alabama in Huntsville (UAH), and a graduate certificate in Information Assurance
from UAH. When not hacking, Brad can be found at home with his family or on a local golf
course.

The views and opinions expressed in all portions of this publication belong solely to the author
and/or editor and do not necessarily state or reflect those of the Department of Defense or the
United States Government. References within this publication to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, do not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government.

CONTENTS AT A GLANCE

Chapter 1 Getting Started: Essential Knowledge

Chapter 2 Reconnaissance: Information Gathering for the Ethical Hacker

Chapter 3 Scanning and Enumeration

Chapter 4 Sniffing and Evasion

Chapter 5 Attacking a System

Chapter 6 Web-Based Hacking: Servers and Applications

Chapter 7 Wireless Network Hacking

Chapter 8 Mobile Communications and the IoT

Chapter 9 Security in Cloud Computing

Chapter 10 Trojans and Other Attacks

Chapter 11 Cryptography 101

Chapter 12 Low Tech: Social Engineering and Physical Security

Chapter 13 The Pen Test: Putting It All Together

Appendix A Tool, Sites, and References

Appendix B About the Online Content

Glossary

Index

CONTENTS

Acknowledgments
Introduction

Chapter 1 Getting Started: Essential Knowledge
Security 101

Essentials
Security Basics

Introduction to Ethical Hacking
Hacking Terminology
The Ethical Hacker

Chapter Review
Questions
Answers

Chapter 2 Reconnaissance: Information Gathering for the Ethical Hacker
Footprinting

Passive Footprinting
Active Footprinting

Footprinting Methods and Tools
Search Engines
Website and E-mail Footprinting
DNS Footprinting
Network Footprinting
Other Tools

Chapter Review
Questions
Answers

Chapter 3 Scanning and Enumeration
Fundamentals

TCP/IP Networking
Subnetting

Scanning Methodology
Identifying Targets
Port Scanning
Evasion
Vulnerability Scanning

Enumeration
Windows System Basics
Enumeration Techniques

Chapter Review
Questions
Answers

Chapter 4 Sniffing and Evasion
Essentials

Network Knowledge for Sniffing
Active and Passive Sniffing

Sniffing Tools and Techniques
Techniques
Tools

Evasion
Devices Aligned Against You
Evasion Techniques

Chapter Review
Questions
Answers

Chapter 5 Attacking a System
Getting Started

Windows Security Architecture
Linux Security Architecture
Methodology

Hacking Steps
Authentication and Passwords
Privilege Escalation and Executing Applications
Hiding Files and Covering Tracks

Chapter Review
Questions
Answers

Chapter 6 Web-Based Hacking: Servers and Applications
Web Servers

Web Organizations
Attack Methodology
Web Server Architecture
Web Server Attacks

Attacking Web Applications
Application Attacks
Countermeasures

Chapter Review

Questions
Answers

Chapter 7 Wireless Network Hacking
Wireless Networking

Wireless Terminology, Architecture, and Standards
Wireless Hacking

Chapter Review
Questions
Answers

Chapter 8 Mobile Communications and the IoT
The Mobile World

Mobile Vulnerabilities and Risks
Mobile Platforms and Attacks

IoT
IoT Architecture
IoT Vulnerabilities and Attacks
IoT Hacking Methodology

Chapter Review
Questions
Answers

Chapter 9 Security in Cloud Computing
Cloud Computing
Cloud Security
Threats and Attacks
Chapter Review

Questions
Answers

Chapter 10 Trojans and Other Attacks
The “Malware” Attacks

Trojans
Viruses and Worms

Remaining Attacks
Denial of Service
Session Hijacking

Chapter Review
Questions
Answers

Chapter 11 Cryptography 101
Cryptography and Encryption Overview

Encryption Algorithms and Techniques

PKI, the Digital Certificate, and Digital Signatures
The PKI System
Digital Certificates
Digital Signatures

Encrypted Communication and Cryptography Attacks
Encrypted Communication
Cryptography Attacks

Chapter Review
Questions
Answers

Chapter 12 Low Tech: Social Engineering and Physical Security
Social Engineering

Human-Based Attacks
Computer-Based Attacks
Mobile-Based Attacks

Physical Security
Physical Security 101

Chapter Review
Questions
Answers

Chapter 13 The Pen Test: Putting It All Together
Methodology and Steps

The Security Assessments
Security Assessment Deliverables
Guidelines
More Terminology

Chapter Review
Questions
Answers

Appendix A Tool, Sites, and References
Vulnerability Research Sites
Footprinting Tools
Scanning and Enumeration Tools
System Hacking Tools
Cryptography and Encryption
Sniffing
Wireless
Mobile and IoT
Trojans and Malware
Web Attacks
Miscellaneous

Tools, Sites, and References Disclaimer
Appendix B About the Online Content

System Requirements
Your Total Seminars Training Hub Account
Single User License Terms and Conditions
TotalTester Online
Technical Support

Glossary

Index

ACKNOWLEDGMENTS

When I wrote the first edition of this book, one of the first people I gave a copy to was my mom.
She didn’t, and still doesn’t, have a clue what most of it means, but she was thrilled and kept
saying, “You’re an author…,” like I had cured a disease or saved a baby from a house fire. At
the time I felt weird about it, and I still do. Looking back on the opportunity I was given—almost
out of the blue—by Tim Green and McGraw-Hill Education, I just can’t believe the entire thing
came to pass. And I’m even more surprised I had anything to do with it.

Those who know me well understand what is meant when I say I’m just not capable of doing
this. I don’t have the patience for it, I’m not anywhere near the smartest guy in the room (and
right now the only others in this room with me are a plastic Batman, a zombie garden gnome,
and a Tiki doll), and my Southern brand of English doesn’t always represent the clearest medium
from which to provide knowledge and insight. Not to mention I have the attention span of a gnat.
It still amazes me it all worked then, and I’m floored we’re here again with yet another version.

I tried with all that was in me to provide something useful to you, dear reader and CEH
candidate, in previous versions of this book, and attempted to make this one even better. I’ve
learned a lot (like how having a static study book for an ever-changing certification leaves you
open to horrendous book review cruelty), and hope this one helps me learn even more. We’ve
put a lot of effort into tidying up loopholes and adding salient information from the ever-growing
supply EC-Council avails us with in this version. In cases of success, it was a team effort and
credit goes to those who helped me in spite of myself. There were many, many folks around me
who picked up the slack and corrected—both technically and grammatically—any writing I’d
screwed up. In cases where there was a misstep or misquote, or something was missed entirely,
these areas of failure are without question mine and mine alone. But somehow we all pulled it
off, and there are thanks to be had for that.

The McGraw-Hill Education team that works to get these editions out is beyond compare.
Seriously, these folks are super smart, exceptionally dedicated to their task, and fun to work
with. They deserve parades, 60 Minutes stories about their lives, and bronze statues of
themselves set somewhere for others to admire and aspire to. Amy Stonebraker Gray, Claire
Yee, Anupriya Tyagi, and Bart Reed, please know how humbled I am to have had the
opportunity to work with you, how appreciative I am of all your hard work, and how much I
admire and respect you. You guys rock.

A great note of thanks is due to my workmates at Perspecta. Having the opportunity to work
with this group of professionals is nothing short of a blessing, and I’m humbled before Almighty
God to be a part of it all. I can’t thank them enough for everything they do. For putting up with
me. For providing, every day, a reminder to me to get up and do my best—because anything less
than that and they’d all leave me in the dust. For laughing with me. Heck, for laughing at me.
For facing adversity with that “Come at me, bro” mentality I love on this job. For support—both
of each other as a team and to me explicitly during times I needed it. For doing work no one else
could during times no one else would. My prayer for this team is that you all know how much

you’re appreciated and how grateful I am to know and work with you, and that I hope God just
blesses the crap out of you and yours.

This book, and its previous editions, simply would not have been possible without our
technical editor, Brad Horton. I’ve known Brad since 2005, when we both served time in “the
vault” at Marshall Space Flight Center, and I am truly blessed to call him a friend. I’ve said it
before and I’ll state it again here: Brad is singularly, without doubt, the most talented technical
mind I have ever met in my life. He has great taste in bourbon (although not so much with
Scotch), roots for the right team, and smacks a golf ball straighter and truer than most guys I’ve
seen—on and off TV. He is a loving husband to his beautiful wife, a great father to his children, a
one-of-a-kind pen tester, and a fantastic team lead. He even plays the piano and other musical
instruments like a pro and, I hear, is a fantastic bowler. I hate him. ;-)

His insights as a pen test lead were laser sharp and provided great fodder for more discussion.
Want proof he’s one of the best? I’d be willing to bet none of you reading this book has ever
actually relished a full critique of your work. But I do. Brad’s edits are simultaneously witty,
humorous, and cutting to the core. If someone had bet me four or five years ago that I’d not only
enjoy reading critiques of my work but would be looking forward to them, I would be paying out
in spades today. You’re one of the absolute bests, my friend...for a government worker, anyway.
Roll Tide.

Thanks are due to my super smart, incredibly talented, and altogether awesome daughter,
Hope Walker, as well. After college, she took up IT security in all its facets and found her
talents, skills, and mindset fit in perfectly with—drumroll, please—penetration testing. She is
currently blowing the doors off everything she touches (if she’s on the team testing you, be
ready…) and has an incredibly bright future ahead of her. On several occasions throughout this
book I asked for her opinion, insight, and, in several sidebars throughout the book, outright
written material. She’s an exceptional technical mind, an extraordinarily gifted pen tester, and a
great communicator. And I get to call her daughter. What a blessing. Thank you, Hopey!

Lastly, there is no way this book could have been started, much less completed, without the
support of my lovely and talented wife, Angie. In addition to the unending encouragement
throughout the entire process, Angie is the greatest contributing editor I could have ever asked
for. Having someone as talented and intelligent as her sitting close by to run things past, or ask
for a review on, was priceless. Not to mention, she’s adorable. Her insights, help,
encouragement, and work while this project was ongoing sealed the deal. I can’t thank her
enough.

INTRODUCTION

Welcome, dear reader! I sincerely hope you’ve found your way here to this introduction happy,
healthy, and brimming with confidence—or, at the very least, curiosity. I can see you there,
standing in your bookstore flipping through the book or sitting in your living room clicking
through virtual pages at some online retailer. And you’re wondering whether you’ll buy it—
whether this is the book you need for your study guide. You probably have perused the outline,
checked the chapter titles—heck, you may have even read that great author bio they forced me to
write. And now you’ve found your way to this, the Introduction. Sure, this intro is supposed to
be designed to explain the ins and outs of the book—to lay out its beauty and crafty witticisms in
such a way that you just can’t resist buying it. But I’m also going to take a moment and explain
the realities of the situation and let you know what you’re really getting yourself into.

This isn’t a walk in the park. Certified Ethical Hacker (CEH) didn’t gain the reputation and
value it has by being easy to attain. It’s a challenging examination that tests more than just
simple memorization. Its worth has elevated it as one of the top certifications a technician can
attain, and it remains part of DoD 8570’s call for certification on DoD networks. In short, this
certification actually means something to employers because they know the effort it takes to
attain it. If you’re not willing to put in the effort, maybe you should pick up another line of study.

If you’re new to the career field or you’re curious and want to expand your knowledge, you
may be standing there, with the glow of innocent expectation on your face, reading this intro and
wondering whether this is the book for you. To help you decide, let’s take a virtual walk over to
our entrance sign and have a look. Come on, you’ve seen one before—it’s just like the one in
front of the roller coaster reading, “You must be this tall to enter the ride.” However, this one is
just a little different. Instead of your height, I’m interested in your knowledge, and I have a
question or two for you. Do you know the OSI reference model? What port does SMTP use by
default? How about telnet? What transport protocol (TCP or UDP) do they use and why? Can
you possibly run something else over those ports? What’s an RFC?

Why am I asking these questions? Well, my new virtual friend, I’m trying to save you some
agony. Just as you wouldn’t be allowed on a roller coaster that could potentially fling you off
into certain agony and/or death, I’m not going to stand by and let you waltz into something
you’re not ready for. If any of the questions I asked seem otherworldly to you, you need to spend
some time studying the mechanics and inner workings of networking before attempting this
certification. As brilliantly written as this little tome is, it is not—nor is any other book—a magic
bullet, and if you’re looking for something you can read one night and become Super-Hacker by
daybreak, you’re never going to find it.

Don’t get me wrong—go ahead and buy this book. You’ll want it later, and I could use the
sales numbers. All I’m saying is you need to learn the basics before stepping up to this plate. I
didn’t bother to drill down into the basics in this book because it would have been 20,000 pages
long and scared you off right there at the rack without you even picking it up. Instead, I want you
to go learn the “101” stuff first so you can be successful with this book. It won’t take long, and

it’s not rocket science. I was educated in the public school system of Alabama and didn’t know
what cable TV or VCR meant until I was nearly a teenager, and I figured it out—how tough can
it be for you? There is plenty in here for the beginner, though, trust me. I wrote it in the same
manner I learned it: simple, easy, and ideally fun. This stuff isn’t necessarily hard; you just need
the basics out of the way first. I think you’ll find, then, this book perfect for your goals.

For those of you who have already put your time in and know the basics, I think you’ll find
this book pleasantly surprising. You’re obviously aware by now that technology isn’t magic, nor
is it necessarily difficult or hard to comprehend—it’s just learning how something works so you
can use it to your advantage. I tried to attack ethical hacking in this manner, making things as
light as possible and laughing a little along the way. But please be forewarned: you cannot,
should not, and will not pass this exam by just reading this book. Any book that promises that is
lying to you. Without hands-on efforts, a lot of practice, and a whole lot of additional study, you
simply will not succeed. Combine this book with some hands-on practice, and I don’t think
you’ll have any trouble at all with the exam. Read it as a one-stop-shop to certification, though,
and you’ll be leaving the exam room wondering what happened to you.

There is, of course, one primary goal and focus of this book—to help you achieve the title of
Certified Ethical Hacker by passing the version 10 exam. I believe this book provides you with
everything you’ll need to pass the test. However, I’d like to think it has more to it than that. I
hope I also succeeded in another goal that’s just as important: helping you to actually become an
employed ethical hacker. No, there is no way someone can simply pick up a book and magically
become a seasoned IT security professional just by reading it, but I sincerely hope I’ve provided
enough real-world insight that you can safely rely on keeping this book around on your journey
out there in the real world.

How to Use This Book
Speaking of this book, it covers everything you’ll need to know for EC-Council’s Certified
Ethical Hacker examination as it stands right now. CEH topics expand seemingly by the day and
I’m certain you will see the latest hot topic referenced somewhere in your exam. Hence, we’ve
taken great pains throughout the entirety of this writing to remind you over and over again to do
your own research and keep up with current news.

However, based on information derived from the official courseware, discussions with pen
testers and security professionals actually working, and research of topics by your humble
author, we’re pretty confident we have everything locked down. Each chapter covers specific
objectives and details for the exam, as defined by EC-Council (ECC). We’ve done our best to
arrange them in a manner that makes sense, and I hope you see it the same way.

Each chapter has several components designed to effectively communicate the information
you’ll need for the exam:

• Exam Tips are exactly what they sound like. These are included to point out an area you
need to concentrate on for the exam. No, they are not explicit test answers. Yes, they will
help you focus your study.

• Sidebars are included in each chapter and are designed to point out information, tips, and
stories that will be helpful in your day-to-day responsibilities. Not to mention, they’re just
downright fun sometimes. Please note, though, that although these entries provide real-
world accounts of interesting pieces of information, they are sometimes used to reinforce

testable material. Don’t just discount them as simply “neat”—some of the circumstances
and tools described in these sidebars may prove the difference in correctly answering a
question or two on the exam.

• Specially called-out Notes are part of each chapter, too. These are interesting tidbits of
information that are relevant to the discussion and point out extra information. Just as
with the sidebars, don’t discount them.

The Examination
Before I get to anything else, let me be crystal clear: this book will help you pass your test. I’ve
spent a lot of reading and research time to ensure everything EC-Council has asked you to know
before taking the exam is covered in the book, and I think it’s covered pretty darn well.
However, I again feel the need to caution you: do not use this book as your sole source of study.
This advice goes for any book for any certification. You simply cannot expect to pick up a single
book and pass a certification exam. You need practice. You need hands-on experience, and you
need to practice some more. And anyone—any publisher, author, or friendly book sales clerk
partway through a long shift at the local store—who says otherwise is lying through their teeth.

Yes, I’m fully confident this book is a great place to start and a good way to guide your study.
Just don’t go into this exam with weird overconfidence because “I read the book so I’m good.”
The exam changes often, as it should, and new material pops up out of thin air as the days go by.
Avail yourself of everything you can get your hands on, and for goodness’ sake build a home lab
and start performing some (a lot of) hands-on practice with the tools. There is simply no
substitute for experience, and I promise you, come test time, you’ll be glad you put your time in.

Speaking of the test (officially titled CEH 312-50 as of this writing), it was designed to
provide skills-and-job-roles-based learning, standard-based training modules, and better industry
acceptance using state-of-the-art labs (in the official courseware and online). The exam consists
of 125 multiple-choice questions and lasts four hours. A passing score is, well, different for each
exam. See, EC-Council now implements a “cut score” for each of their questions; the questions
go through beta testing, and each is assigned a cut score to mark the level of difficulty. Should
your test include multiple hard questions, your passing “cut score” may be as low as 60 percent.
If you get the easier questions, you may have to score upward of 78 percent
(https://www.eccouncil.org/programs/certified-ethical-hacker-ceh/). Delivery is provided by
Pearson VUE and ECC.

These tidbits should help you:

• Be sure to pay close attention to the Exam Tips in the chapters. They are there for a
reason. And retake the exams—both the end-of-chapter exams and the electronic exams—
until you’re sick of them. They will help, trust me.

• You are allowed to mark, and skip, questions for later review. Go through the entire exam,
answering the ones you know beyond a shadow of a doubt. On the ones you’re not sure
about, choose an answer anyway and mark the question for further review (you don’t
want to fail the exam because you ran out of time and had a bunch of questions that didn’t
even have an answer chosen). At the end of each section, go back and look at the ones
you’ve marked. Change your answer only if you are absolutely, 100 percent sure about it.

• You will, with absolute certainty, see a couple of question types that will blow your mind.
One or two will come totally out of left field. I’ve taken the CEH exam six times—from

https://www.eccouncil.org/programs/certified-ethical-hacker-ceh/

version 5 to the current version 10 (which this book is written for)—and every single time
I’ve seen questions that seemed so far out of the loop I wasn’t sure I was taking the right
exam. When you see them, don’t panic. Use deductive reasoning and make your best
guess. Almost every single question on this exam can be whittled down to at least 50/50
odds on a guess. The other type of question you’ll see that makes you question reality are
those using horribly bad grammar in regard to the English language. Just remember this is
an international organization, and sometimes things don’t translate easily.

• On code questions on the exam (where code snippets are shown for you to answer
questions on), pay attention to port numbers. Even if you’re unsure about what generated
the log or code, you can usually spot the port numbers pretty quickly. This will definitely
help you on a question or two. Additionally, don’t neglect the plain text on the right side
of the code snippet. It can often show you what the answer is.

One more quick note, future ethical hacker: EC-Council now offers a hands-on examination
where you can prove your actual skills. It’s called CEH Practical, and it’s offered remotely as a
proctored test of your ability. From EC-Council’s site: “The CEH (Practical) is a 6 hours
practical exam built to exacting specifications by subject matter experts in the EH field.
Professionals that possess the CEH credential will be able to sit for an exam that will test their
limits in unearthing vulnerabilities across major operating systems, databases, and networks. To
those who meet and exceed the skills level set, they will earn the new industry required
certification—the CEH (Practical) certification. CEH (Practical) is available fully proctored,
online, with remote facilities globally. The combined benefit of a practical exam that is fully
proctored anywhere in the world will provide organizations with a skills-validated and trusted
credential when employing cybersecurity professionals. With its global availability,
organizations can now quickly train, test and deploy a cyber-ready workforce effectively.”

Objectives
In addition to test tips and how to get certified, one of the questions I get asked most often is,
“Hey, Matt, what’s on the test?” After noting the myriad reasons why I cannot and should not
provide exact test questions and answers (ethics and nondisclosure agreements and such), I
usually respond with, “Everything in this book. And a little more.” Now, thanks to Amy
Stonebraker Gray (McGraw-Hill Education’s acquisitions editor saddled with the unending joy
of working with me on this project) and her ceaseless but carefully calculated and brilliantly
executed plan to beat me into submission concerning her every whim and idea on the book, I can
just point everyone to this little section as an answer.

Now I know some of you are reading this and saying, “Wait a minute… This is supposed to
be an All-in-One study guide. What do you mean with the “And a little more” addition there? I
thought you covered everything in this book? And why did Amy have to beat you so much to get
it in here?” Let me explain.

First, I’m a quick learner, and the reviews and responses from the first versions of this book
lead me to an irrefutable truth: no static book ever written can cover everything EC-Council
decides to throw into their exam queue. A couple months after publication, EC-Council might
decide to insert questions regarding some inane attack from the past, or about something that just
happened (that is, Heartbleed-style vulnerability announcements). It’s just the nature of
certification exams: Some of it is just going to be new, no matter what training source you use.

And, yes, that includes their own official course material as well.
Second, and to the more interesting question of insight into editor–author relationships at

McGraw-Hill Education, Amy had to beat on me quite a bit because we disagreed on including
objective maps in this book. Amy rightly noted that an objective map helps candidates focus
their study as well as helps instructors create lesson plans and classroom schedules. My
argument centered on three things. First is the unavoidable fact that EC-Council’s objectives can
be unclearly worded, and oftentimes you can’t find what you’re supposed to know about them or
to what level that knowledge would be tested in their official courseware. Second, the objectives
themselves can only be found in EC-Council’s official courseware now (you can find a test
breakdown and such on their website, but not the objectives anymore) and copy/pasting from
that is a no-no. Third, EC-Council was supposed to be going away from versions altogether and
adopting the continuing professional education model that most other certification providers use.
Which means, dear reader, EC-Council may just up and change their objectives any time they
feel like it—without releasing another “version.”

So, a conundrum—which Amy solved for us because she’s just awesome that way. We
present to you, dear reader, with a courseware map for this book, comparing where you would
find EC-Council’s coverage in our little offering here. Additionally, EC-Council defines seven
domains for their current CEH certification (https://cert.eccouncil.org/images/doc/CEH-Exam-
Blueprint-v3.0.pdf). As noted earlier, the specific objectives (or rather, sub-objectives) covered
within each domain change rapidly, but the coverage on the exam broken down by percentages
may help you in your study. Please check the link before your exam to see if there have been any
changes.

https://cert.eccouncil.org/images/doc/CEH-Exam-Blueprint-v3.0.pdf

So there you have it, ladies and gentlemen. Hopefully this helps in preparing your
study/classroom and calms any fears that we may have left something out.

The Certification
So, you’ve studied, you’ve prepped, and you think you’re ready to become CEH certified.
Usually most folks looking for this certification believe their next step is simply to go take a test,
and for years (as is the case for most other certifications) that was the truth. However, times
change, and certification providers are always looking for a way to add more worth to their title.
EC-Council is no different, and it has changed things just a bit for candidates.

When you apply for the certification, there are a couple of things EC-Council asks for to

protect the integrity of the program. First is that prior to attending this course, you will be asked
to sign an agreement stating that you will not use your newly acquired skills for illegal or
malicious attacks and you will not use such tools in an attempt to compromise any computer
system, and to indemnify EC-Council with respect to the use or misuse of these tools, regardless
of intent. Second is some form of verification you’re qualified to be in this fraternity—that is,
that you’ve been working the job long enough to know what’s going on, or that you’ve
completed appropriate training (in the eyes of EC-Council anyway) to make up for that.

There are two ways for a candidate to attain CEH certification: with training or using only
self-study. The training option is pretty straightforward: you must attend an approved CEH
training class before attempting the exam. And they really, really, really want you to attend their
training class. Per the site (https://iclass.eccouncil.org/), training options include the following:

• Live, online, instructor-led These classes are offered by many affiliates EC-Council has
certified to provide the training. They offer the official courseware in one of two methods:
a standard classroom setting or via an “online-live” training class you can view from
anywhere. Both offerings have an ECC-certified instructor leading the way and as of this
writing costs $2,895 per seat.

• Client site EC-Council can also arrange for a class at your location, provided you’re
willing to pay for it, of course. Costs for that depend on your organization.

As for doing it on your own, a couple methods are available:

• iClass In this option, you pay for the official courseware and prerecorded offerings, along
with the labs used for the class. This allows you to work through the stuff on your own,
without an instructor. Cost as of this writing is $1,899.

• Self-study If you want to study on your own and don’t care about the class at all (that is,
you’ve been doing this for a while and don’t see the value of going to a class to have
someone teach you what you already know), you can simply buy the courseware for $870
and study on your own.

Once you attend training, you can register for and attempt the exam with no additional cost or
steps required. As a matter of fact, the cost for the exam is usually part of the course pricing. If
you attempt self-study, however, there are some additional requirements, detailed here, straight
from EC-Council:

In order to be considered for the EC-Council certification exam without attending official
training, a candidate must:

• Have at least two years of information security–related experience.
• Remit a nonrefundable eligibility application fee of $100.
• Submit a completed Exam Eligibility Application Form. (Applicant will need to go to

https://cert.eccouncil.org/exam-eligibility-form.html to fill in an online request for the
Eligibility Application Form. USA/Canada applicants can contact
applicationservices@eccouncil.org, and international applicants can contact
cehapp@eccouncil.org. EC-Council will contact applicant’s boss/supervisor/department
head, who has agreed to act as the applicant’s verifier in the application form, for
authentication purposes. If the application is approved, the applicant will be required to

https://iclass.eccouncil.org/
https://cert.eccouncil.org/exam-eligibility-form.html
mailto:applicationservices@eccouncil.org
mailto:cehapp@eccouncil.org

purchase a voucher from EC-Council directly. EC-Council will then send the candidate
the eligibility code and the voucher code, which the candidate can use to register and
schedule the test at any authorized Pearson VUE testing center globally. Please note that
Pearson VUE Registration will not entertain any requests without the eligibility code. If
the application is not approved, the application fee of $100 will not be refunded.)

And there you have it, dear reader. Sure, there are a couple of additional hoops to jump
through for CEH using self-study, but it’s the best option, cost-wise. From the perspective of
someone who has hired many employees in the security world, I honestly believe it may be the
better option all around: anyone can attend a class, but those who self-study need to have a
sponsor to verify they have the appropriate experience. It’s well worth the extra step, in my
humble opinion.

Finally, thank you for picking up this book. I’ve been blown away by the response to previous
versions, and humbled beyond words by all of it. I sincerely hope your exam goes well, and I
wish you the absolute best in your upcoming career. Here’s hoping I see you out there,
somewhere and sometime!

God bless.

CHAPTER 1
Getting Started: Essential Knowledge

In this chapter, you will
• Identify components of TCP/IP computer networking
• Understand basic elements of information security
• Understand incident management steps
• Identify fundamentals of security policies
• Identify essential terminology associated with ethical hacking
• Define ethical hacker and classifications of hackers
• Describe the five stages of ethical hacking
• Define the types of system attacks
• Identify laws, acts, and standards affecting IT security

Last year, my ISP point-of-presence router, comfortably nestled in the comm-closet-like area I’d
lovingly built just for such items of IT interest, decided it had had enough of serving the humans
and went rogue on me. It was subtle at first—a stream dropped here, a choppy communication
session there—but it quickly became clear Skynet wasn’t going to play nicely, and a scorched-
earth policy wasn’t off the table.

After battling with everything for a while and narrowing down the culprit, I called the handy
help desk line to get a new router ordered and delivered for me to install myself, or to get a
friendly in-home visit to take the old one and replace it. After answering the phone and taking a
couple basic, and perfectly reasonable, pieces of information, the friendly help desk employee
started asking me what I considered to be ridiculous questions: “Is your power on? Is your
computer connected via a cable or wireless? Is your wireless card activated, because sometimes
those things get turned off in airplane mode?” And so on. I played along nicely for a little while.
I mean, look, I get it: they have to ask those questions. But after 10 or 15 minutes of dealing with
it I lost patience and just told the guy what was wrong. He paused, thanked me, and continued
reading the scroll of questions no doubt rolling across his screen from the “Customer Says No
Internet” file.

I survived the gauntlet and finally got a new router ordered, which was delivered the very next
day at 8:30 in the morning. Everything finally worked out, but the whole experience came to
mind as I sat down to start the latest version of this book. I got to looking at the previous
chapters and thought to myself, “What were you thinking? Why were you telling them about
networking and the OSI model? You’re the help desk guy here.”

Why? Because I have to. I’ve promised to cover everything here, and although you shouldn’t
jump into study material for the exam without already knowing the basics, we’re all human and
some of us will. But don’t worry, dear reader: this edition has hopefully cut down some of the

basic networking goodies from past versions. I did have to include a fantastic explanation of the
OSI reference model, what PDUs are at what level, and why you should care, even though I’m
pretty sure you know this already. I’m going to do my best to keep it better focused for you and
your study. This chapter still includes some inanely boring and mundane information that is
probably as exciting as that laundry you have piled up waiting to go into the machine, but it has
to be said, and you’re the one to hear it. We’ll cover the many terms you’ll need to know,
including what an ethical hacker is supposed to be, and maybe even cover a couple things you
don’t know.

Security 101
If you’re going to start a journey toward an ethical hacking certification, it should follow that the
fundamental definitions and terminology involved with security should be right at the starting
line. We’re not going to cover everything involved in IT security here—it’s simply too large a
topic, we don’t have space, and you won’t be tested on every element anyway—but there is a
foundation of 101-level knowledge you should have before wading out of the shallow end. This
chapter covers the terms you’ll need to know to sound intelligent when discussing security
matters with other folks. And, perhaps just as importantly, we’ll cover some basics of TCP/IP
networking because, after all, if you don’t understand the language, how are you going to work
your way into the conversation?

Essentials
Before we can get into what a hacker is and how you become one in our romp through the
introductory topics here, there are a couple things I need to get out of the way. First, even though
I covered most of this in that Shakespearean introduction for the book, I want to talk a little bit
about this exam and what you need to know, and do, to pass it. Why repeat myself? Because
after reading reviews, comments, and e-mails from our first few outings, it has come to my
attention almost none of you actually read the introduction. I don’t blame you; I skip it too on
most certification study books, just going right for the meat. But there’s good stuff there you
really need to know before reading further, so I’ll do a quick rundown for you up front.

Second, we need to cover some security and network basics that will help you on your exam.
Some of this section is simply basic memorization, some of it makes perfect common sense, and
some of it is, or should be, just plain easy. You’re really supposed to know this already, and
you’ll see this stuff again and again throughout this book, but it’s truly bedrock stuff and I would
be remiss if I didn’t at least provide a jumping-off point.

The Exam
Are you sitting down? Is your heart healthy? I don’t want to distress you with this shocking
revelation I’m about to throw out, so if you need a moment, go pour a bourbon (another refrain
you’ll see referenced throughout this book) and get calm before you read further. Are you ready?
The CEH version 10 exam is difficult, and despite hours (days, weeks) of study and multiple
study sources, you may still come across a version of the exam that leaves you feeling like
you’ve been hit by a truck.

I know. A guy writing and selling a study book just told you it won’t be enough. Trust me

when I say it, though, I’m not kidding. Of course this will be a good study reference. Of course
you can learn something from it if you really want to. Of course I did everything I could to make
it as up to date and comprehensive as possible. But if you’re under the insane assumption this is
a magic ticket, that somehow written word from October 2018 is going to magically hit the
word-for-word reference on a specific test question in whatever timeframe/year you’re reading
this, I sincerely encourage you to find some professional help before the furniture starts talking
to you and the cat starts making sense. Those of you looking for exact test questions and rote
memorization to pass the exam will not find it in this publication, nor any other. For the rest of
you, those who want a little focused attention to prepare the right way for the exam and those
looking to learn what it really means to be an ethical hacker, let’s get going with your test basics.

NOTE I’ve been asked, a lot, what the difference is between version 9 and version 10, and the
answer is, really, not much. EC-Council (ECC) added a bunch of stuff they tossed together as
“IoT,” beefed up a little cloud computing, and threw a few new tools in for consideration.
Otherwise, networking is still networking, and the same stuff you studied for previous versions
will apply here.

First, if you’ve never taken a certification-level exam, I wouldn’t recommend this one as your
virgin experience. It’s tough enough without all the distractions and nerves involved in your first
walkthrough. When you do arrive for your exam, you usually check in with a friendly test
proctor or receptionist, sign a few things, and get funneled off to your testing room. Every time
I’ve gone it has been a smallish office or a closed-in cubicle, with a single monitor staring at you
ominously. You’ll click START and begin whizzing through questions one by one, clicking the
circle to select the best answer(s) or clicking and dragging definitions to the correct section. At
the end there’s a SUBMIT button, which you will click and then enter a break in the time-space
continuum—because the next 10 seconds will seem like the longest of your life. In fact, it’ll
seem like an eternity, where things have slowed down so much you can actually watch the
refresh rate on the monitor and notice the cycles of AC current flowing through the office lamps.
When the results page finally appears, it’s a moment of overwhelming relief or one of surreal
numbness.

If you pass, none of the study material matters and, frankly, you’ll almost immediately start
dumping the stored memory from your neurons. If you don’t pass, everything matters. You’ll
race to the car and start marking down everything you can remember so you can study better
next time. You’ll fly to social media and the Internet to discuss what went wrong and to lambast
anything you didn’t find useful in preparation. And you’ll almost certainly look for something,
someone to blame. Trust me, don’t do this.

Everything you do in preparation for this exam should be done to make you a better ethical
hacker, not to pass a test. If you prepare as if this is your job, if you take everything you can use
for study material and try to learn instead of memorize, you’ll be better off, pass or fail. And,
consequentially, I guarantee if you prepare this way your odds of passing any version of the test
that comes out go up astronomically.

The test itself? Well, there are some tips and tricks that can help. I highly recommend you go
back to the introduction and read the sections “The Examination” and “The Certification.”
They’ll help you. A lot. Here are some other tips that may help:

• Do not let real life trump EC-Council’s view of it. There will be several instances
somewhere along your study and eventual exam life where you will say, aloud, “That’s
not what happens in the real world! Anyone claiming that would be stuffed in a locker and
sprayed head to toe with shaving cream!” Trust me when I say this: real life and a
certification exam are not necessarily always directly proportional. On some of these
questions, you’ll need to study and learn what you need for the exam, knowing full well
it’s different in the real world. If you don’t know what I mean by this, ask someone who
has been doing this for a while if they think social engineering is passive.

• Go to the bathroom before you enter your test room. Even if you don’t have to. Because,
trust me, you do.

• Use time to your advantage. The exam now is split into sections, with a timeframe set up
for each one. You can work and review inside the section all you want, but once you pass
through it you can’t go back. And if you fly through a section, you don’t get more time on
the next one. Take your time and review appropriately.

• Make use of the paper and pencil/pen the friendly test proctor provides you. As soon as
you sit down, before you click START on the ominous test monitor display, start writing
down everything from your head onto the paper provided. I would recommend reviewing
just before you walk into the test center those sections of information you’re having the
most trouble remembering. When you get to your test room, write them down
immediately. That way, when you’re losing your mind a third of the way through the
exam and start panicking that you can’t remember what an XMAS scan returns on a
closed port, you’ll have a reference. And trust me, having it there makes it easier for you
to recall the information, even if you never look at it.

• Trust your instincts. When you do question review, unless you absolutely, positively,
beyond any shadow of a doubt know you initially marked the wrong answer, do not
change it.

• Take the questions at face value. I know many people who don’t do well on exams
because they’re trying to figure out what the test writer meant when putting the question
together. Don’t read into a question; just answer it and move on.

• Schedule your exam sooner than you think you’ll be ready for it. I say this because I know
people who say, “I’m going to study for six months and then I’ll be ready to take the
exam.” Six months pass and they’re still sitting there, studying and preparing. If you do
not put it on the calendar to make yourself prepare, you’ll never take it, because you’ll
never be ready.

Again, it’s my intention that everyone reading this book and using it as a valuable resource in
preparation for the exam will attain the certification, but I can’t guarantee you will. Because,
frankly, I don’t know you. I don’t know your work ethic, your attention to detail, or your ability
to effectively calm down to take a test and discern reality from a certification definition question.
All I can do is provide you with the information, wish you the best of luck, and turn you loose.
Now, on with the show.

The OSI Reference Model
Most of us would rather take a ballpeen hammer to our toenails than to hear about the OSI
reference model again. It’s taught up front in every networking class we all had to take in
college, so we’ve all heard it a thousand times over. That said, those of us who have been around
for a while and have taken a certification test or two also understand it usually results in a few
easy test answers—provided you understand what they’re asking for. I’m not going to bore you
with the same stuff you’ve heard or read a million times before since, as stated earlier, you’re
supposed to know this already. What I am going to do, though, is provide a quick rundown for
you to peruse, should you need to refresh your memory.

I thought long and hard about the best way to go over this topic again for our review, and
decided I’d ditch the same old boring method of talking this through. Instead, let’s look at the
10,000-foot overhead view of a communications session between two computers depicted in the
OSI reference model through the lens of building a network—specifically by trying to figure out
how you would build a network from the ground up. Step in the Wayback Machine with
Sherman, Mr. Peabody, and me, and let’s go back before networking was invented. How would
you do it?

NOTE Even something as simple as the OSI model can get really overcomplicated if you read
enough into it. For example’s sake, we’re looking at it in this text as it relates to TCP/IP. While
TCP/IP generally rules the networking world, there are other protocol stacks that do much the
same thing. The OSI model just helps us to talk about their networked connections.

First, looking at those two computers sitting there wanting to talk to one another, you might
consider the basics of what is right in front of your eyes: What will you use to connect your
computers together so they can transmit signals? In other words, what media would you use?
There are several options: copper cabling, glass tubes, even radio waves, among others. And
depending on which one of those you pick, you’re going to have to figure out how to use them to
transmit useable information. How will you get an electrical signal on the wire to mean
something to the computer on the other end? What part of a radio wave can you use to spell out a
word or a color? On top of all that, you’ll need to figure out connectors, interfaces, and how to
account for interference. And that’s just Layer 1 (the Physical layer), where everything is simply
bits—that is, 1’s and 0’s.

Layer 2 then helps answer the questions involved in growing your network. In figuring out
how you would build this whole thing, if you decide to allow more than two nodes to join, how
do you handle addressing? With only two systems, it’s no worry—everything sent is received by
the guy on the other end—but if you add three or more to the mix, you’re going to have to figure
out how to send the message with a unique address. And if your media is shared, how would you
guarantee everyone gets a chance to talk, and no one’s message jumbles up anyone else’s? The
Data Link layer (Layer 2) handles this using frames, which encapsulate all the data handed down
from the higher layers. Frames hold addresses that identify a machine inside a particular
network.

And what happens if you want to send a message out of your network? It’s one thing to set up
addressing so that each computer knows where all the other computers in the neighborhood
reside, but sooner or later you’re going to want to send a message to another neighborhood—
maybe even another city. And you certainly can’t expect each computer to know the address of
every computer in the whole world. This is where Layer 3 steps in, with the packet used to hold
network addresses and routing information. It works a lot like ZIP codes on an envelope. While
the street address (the physical address from Layer 2) is used to define the recipient inside the
physical network, the network address from Layer 3 tells routers along the way which
neighborhood (network) the message is intended for.

Other considerations then come into play, like reliable delivery and flow control. You
certainly wouldn’t want a message just blasting out without having any idea if it made it to the
recipient; then again, you may want to, depending on what the message is about. And you
definitely wouldn’t want to overwhelm the media’s ability to handle the messages you send, so
maybe you might not want to put the giant boulder of the message onto our media all at once,
when chopping it up into smaller, more manageable pieces makes more sense. The next layer,
Transport, handles this and more for you. In Layer 4, the segment handles reliable end-to-end
delivery of the message, along with error correction (through retransmission of missing
segments) and flow control.

At this point you’ve set the stage for success. There is media to carry a signal (and you’ve
figured how to encode that signal onto that media), addressing inside and outside your network is
handled, and you’ve taken care of things like flow control and reliability. Now it’s time to look
upward toward the machines themselves and make sure they know how to do what they need to
do. The next three layers (from the bottom up—Session, Presentation, and Application) handle
the data itself. The Session layer is more of a theoretical entity, with no real manipulation of the
data itself—its job is to open, maintain, and close a session. The Presentation layer is designed to
put a message into a format all systems can understand. For example, an e-mail crafted in
Microsoft Outlook may not necessarily be received by a machine running Outlook, so it must be
translated into something any receiver can comprehend—like pure ASCII code for delivery
across a network. The Application layer holds all the protocols that allow a user to access
information on and across a network. For example, FTP allows users to transport files across
networks, SMTP provides for e-mail traffic, and HTTP allows you to surf the Internet at work
while you’re supposed to be doing something else. These three layers make up the “data layers”
of the stack, and they map directly to the Application layer of the TCP/IP stack. In these three
layers, the protocol data unit (PDU) is referred to as data.

The layers, and examples of the protocols you’d find in them, are shown in Figure 1-1.

Figure 1-1 OSI reference model

EXAM TIP Your OSI knowledge on the test won’t be something as simple as a question of
what protocol data unit goes with which layer. Rather, you’ll be asked questions that knowledge
of the model will help with; knowing what happens at a given layer will assist you in
remembering what tool or protocol the question is asking about. Anagrams can help your
memory: “All People Seem To Need Daily Planning” will keep the layers straight, and “Do
Sergeants Pay For Beer” will match up the PDUs with the layers.

TCP/IP Overview
Keeping in mind you’re supposed to know this already, we’re not going to spend an inordinate
amount of time on this subject. That said, it’s vitally important to your success that the basics of
TCP/IP networking are as ingrained in your neurons as other important aspects of your life, like
maybe Mom’s birthday, the size and bag limit on redfish, the proper ratio of bourbon to anything
you mix it with, and the proper way to place toilet paper on the roller (pull paper down, never
up). This will be a quick preview, and we’ll revisit (and repeat) this in later chapters.

TCP/IP is a set of communications protocols that allows hosts on a network to talk to one
another. This suite of protocols is arranged in a layered stack, much like the OSI reference
model, with each layer performing a specific task. Figure 1-2 shows the TCP/IP stack.

Figure 1-2 TCP/IP stack

In keeping with the way this chapter started, let’s avoid a lot of the same stuff you’ve
probably heard a thousand times already and simply follow a message from one machine to
another through a TCP/IP network. This way, I hope to hit all the basics you need without boring
you to tears and causing you to skip the rest of this chapter altogether. Keep in mind there is a
whole lot of simultaneous goings-on in any session, so I may take a couple liberties to speed
things along.

Suppose, for example, user Joe wants to get ready for the season opener and decides to do a
little online shopping for his favorite University of Alabama football gear. Joe begins by opening
his browser and typing in a request for his favorite website. His computer now has a data request
from the browser that it looks at and determines cannot be answered internally—that is, not
locally to Joe’s system. Why? Because the browser wants a page that is not stored locally. So,
now searching for a network entity to answer the request, it chooses the protocol it knows the
answer for this request will come back on (in this case, port 80 for HTTP) and starts putting
together what will become a session—a bunch of segments sent back and forth to accomplish a
goal.

Since this is an Ethernet TCP/IP network, Joe’s computer talks to other systems using a
format of bits arranged in specific order. These collections of bits in a specific order are called
frames (Figure 1-3 shows a basic Ethernet frame), are built from the inside out, and rely on
information handed down from upper layers. In this example, the Application layer will “hand
down” an HTTP request (data) to the Transport layer. At this layer, Joe’s computer looks at the
HTTP request and (because it knows HTTP usually works this way) knows this needs to be a
connection-oriented session, with stellar reliability to ensure Joe gets everything he asks for
without losing anything. It calls on the Transmission Control Protocol (TCP) for that. TCP will
go out in a series of messages to set up a communications session with the end station, including

a three-step handshake to get things going. This handshake includes a Synchronize segment
(SYN), a Synchronize Acknowledgment segment (SYN/ACK), and an Acknowledgment
segment (ACK). The first of these—the SYN segment asking the other computer whether it’s
awake and wants to talk—gets handed down for addressing to the Internet layer.

Figure 1-3 An Ethernet frame

This layer needs to figure out what network the request will be answered from (after all,
there’s no guarantee it’ll be local—it could be anywhere in the world). It does its job by using
another protocol (DNS) to ask what IP address belongs to the URL Joe typed. When that answer
comes back, it builds a packet for delivery (which consists of the original data request, the TCP
header [SYN], and the IP packet information affixed just before it) and “hands down” the packet
to the Network Access layer for delivery.

EXAM TIP I know it’s not covered right here (we’re going to get to it later in Chapter 3), but
you really need to know subnetting. You’ll see anywhere from two to five questions per exam on
it. There are dozens and dozens of good resources on the Internet to help you on this—just search
for “learn subnetting” or something like that and practice.

Here, Joe’s computer needs to find an address on its local subnet to deliver the packet to
(because every computer is only concerned with, and capable of, sending a message to a machine
inside its own subnet). It knows its own physical address but has no idea what physical address

belongs to the system that will be answering. The IP address of this device is known—thanks to
DNS—but the local, physical address is not. To gain that, Joe’s computer employs yet another
protocol, ARP, to figure that out, and when that answer comes back (in this case, the gateway, or
local router port), the frame can then be built and sent out to the network (for you network
purists out there screaming that ARP isn’t needed for networks that the host already knows
should be sent to the default gateway, calm down—it’s just an introductory paragraph). This
process of asking for a local address to forward the frame to is repeated at every link in the
network chain: every time the frame is received by a router along the way, the router strips off
the frame header and trailer and rebuilds the frame based on new ARP answers for that network
chain. Finally, when the frame is received by the destination, the server will keep stripping off
and handing up bit, frame, packet, segment, and data PDUs, which should result—if everything
has worked right—in the return of a SYN/ACK message to get things going.

NOTE This introductory section covers only TCP. UDP—the connectionless, fire-and-forget
transport protocol—has its own segment structure (called a datagram) and purpose. There are
not as many steps with best-effort delivery, but you’ll find UDP just as important and valuable to
your knowledge base as TCP.

To see this in action, take a quick look at the frames at each link in the chain from Joe’s
computer to a server in Figure 1-4. Note that the frame is ripped off and replaced by a new one to
deliver the message within the new network; the source and destination MAC addresses will
change, but IPs never do.

Figure 1-4 Ethernet frames in transit

EXAM TIP Learn the three-way handshake, expressed as SYN, SYN/ACK, ACK. Know it.
Live it. Love it. You will get asked about this, in many ways and formats, several times on your
exam.

Although tons and tons of stuff has been left out—such as port and sequence numbers, which
will be of great importance to you later—this touches on all the basics for TCP/IP networking.
We’ll be covering it over and over again, and in more detail, throughout this book, so don’t panic
if it’s not all registering with you yet. Patience, Grasshopper—this is just an introduction,
remember?

One final thing I should add here before moving on, however, is the concept of network
security zones. The idea behind this is that you can divide your networks in such a way that you
have the opportunity to manage systems with specific security actions to help control inbound
and outbound traffic. You’ve probably heard of these before, but I’d be remiss if I didn’t add

them here. The five zones ECC defines are as follows:

• Internet Outside the boundary and uncontrolled. You don’t apply security policies to the
Internet. Governments try to all the time, but your organization can’t.

• Internet DMZ The acronym DMZ (for Demilitarized Zone) comes from the military and
refers to a section of land between two adversarial parties where there are no weapons or
fighting. The idea is you can see an adversary coming across the DMZ and have time to
work up a defense. In networking, the idea is the same: it’s a controlled buffer network
between you and the uncontrolled chaos of the Internet.

NOTE DMZs aren’t just between the Internet and a network; they can be anywhere an
organization decides they want or need a buffer—inside or outside various internets and
intranets. DMZ networks provide great opportunity for good security measures, but can also
sometimes become an Achilles’ heel when too much trust is put into their creation and
maintenance.

• Production Network Zone A very restricted zone that strictly controls direct access from
uncontrolled zones. The PNZ doesn’t hold users.

• Intranet Zone A controlled zone that has little-to-no heavy restrictions. This is not to say
everything is wide open on the Intranet Zone, but communication requires fewer strict
controls internally.

• Management Network Zone Usually an area you’d find rife with VLANs and maybe
controlled via IPSec and such. This is a highly secured zone with very strict policies.

Vulnerabilities
I struggled with just where, when, and how to add a discussion on vulnerabilities in this book
we’re putting together and finally landed on here as the best place. Why? Because this is
bedrock, 101-type information that many in security just assume you already know. I know it
seems easy enough, and you can find vast resources out there to help educate yourself quickly,
but it seems to me if nobody actually shows or tells you the hows and whys on something, how
can you be expected to just know it?

In our romp through “things you’re already supposed to know,” we need to spend a few
cursory moments on what, exactly, defines a vulnerability and a few basics on vulnerabilities in
particular. A vulnerability is simply a weakness that can be exploited by an attacker to perform
unauthorized actions within a computer or network system. Since our job as security
professionals is to keep our systems safe, and your job as a pen tester is to point out the
weaknesses in security design, it follows that we should all know vulnerability management well
and do our best at keeping vulnerabilities to a minimum.

So how does one know what vulnerabilities are out there and what dangers they might
provide? And is there a ranking system of sorts to determine which vulnerabilities are more

dangerous than others? Glad you asked. First, if you’re looking for lists of vulnerabilities and
resources on them, try a few of the following links to get you started (there are plenty others;
these are just a few of the ones available):

• Microsoft Vulnerability Research (technet.microsoft.com)
• Security Focus (www.securityfocus.com)
• Hackerstorm (www.hackerstorm.co.uk)
• Exploit Database (www.exploit-db.com)
• Security Magazine (www.securitymagazine.com)
• Trend Micro (www.trendmicro.com)
• Dark Reading (www.darkreading.com)

Next, if you’re looking for ways to quantify the danger or risk particular vulnerabilities have,
try the Common Vulnerability Scoring System (CVSS, https://www.first.org/cvss/), which is “a
published standard used by organizations worldwide” and “provides a way to capture the
principal characteristics of a vulnerability and produce a numerical score reflecting its severity.
The numerical score can then be translated into a qualitative representation (such as low,
medium, high, and critical) to help organizations properly assess and prioritize their vulnerability
management processes.” Want more? How about the National Vulnerability Database (NVD,
https://nvd.nist.gov/vuln-metrics/cvss), the “U.S. government repository of standards based
vulnerability management data represented using the Security Content Automation Protocol
(SCAP). This data enables automation of vulnerability management, security measurement, and
compliance.”

As a pen tester, you need to remain as up to date on active vulnerabilities as possible
(knowledge of new ones pop up all the time). ECC drops all vulnerabilities into a series of
categories, and they are for the most part self-explanatory:

• Misconfiguration A misconfiguration of the service or application settings.
• Default Installations Sometimes the installation of an application or service using default

locations and settings opens a vulnerability (sometimes discovered well after the release
of the application or service).

• Buffer Overflows Covered later in this book, buffer overflows are flaws in execution
allowing an attacker to take advantage of bad coding.

• Missing Patches (Unpatched Servers) Despite patching for a known security flaw being
available, many systems are not patched for a variety of reasons, leaving them vulnerable
to attack.

• Design Flaws These are flaws universal to all operating systems—things like encryption,
data validation, logic flaws, and so on.

• Operating System Flaws These are flaws in a specific OS (Windows versus Linux, and
so on).

• Application Flaws Flaws inherit to the application coding and function itself.
• Open Services Services that are not actively used on the system but remain open anyway

(usually due to negligence or ignorance) can be targets.
• Default Passwords Leaving a default password in place on a system is asking for trouble.

http://technet.microsoft.com
http://www.securityfocus.com
http://www.hackerstorm.co.uk
http://www.exploit-db.com
http://www.securitymagazine.com
http://www.trendmicro.com
http://www.darkreading.com
https://www.first.org/cvss/
https://nvd.nist.gov/vuln-metrics/cvss

Lastly, just because a vulnerability exists doesn’t necessarily mean your system is at huge
risk. For example, my computer sitting right here in my home office is vulnerable to bear attack:
there is, literally, no way it could survive a mauling by a grizzly bear. But what are the odds a
bear is gonna come through my front door and, maybe enraged by the red LED stripes across the
front and back, attack the system? And what are the odds that, even if the bear came into the
house, I wouldn’t blast it with my 357 Magnum sidearm, preventing the attack in the first place?

Sure it’s a ridiculous example, but it proves a point: vulnerabilities are always present on your
system, and your job as a security professional is to put as many security controls as realistically
possible in place to prevent their exploitation. Vulnerability and risk assessments are designed
specifically to look at potential vulnerabilities on your system versus the actual likelihood of
their exploitation. How hard would it be to exploit the vulnerability? Is it even possible for an
attacker given the security controls put into place? While we’re on that subject, what are those
security controls and how do they work in preventing access or exploitation? All of these are
questions auditors and security folks deal with on a daily basis. Start with a solid baseline of your
system, a full and complete inventory of what you have and what those systems are vulnerable
to, then plan and act accordingly.

NOTE Vulnerability management tools, as listed and defined by ECC, include but are not
limited to Nessus (www.tenable.com), Qualys (www.qualys.com), GFI Languard
(www.gfi.com), Nikto (https://cirt.net), OpenVAS (www.openvas.org), and Retina CS
(www.beyondtrust.com).

Security Basics
If there were a subtitle to this section, I would have called it “Ceaseless Definition Terms
Necessary for Only a Few Questions on the Exam.” There are tons of these, and I gave serious
thought to skipping them all and just leaving you to the glossary. However, because I’m in a
good mood and, you know, I promised my publisher I’d cover everything, I’ll give it a shot here.
And, at least for some of these, I’ll try to do so using contextual clues in a story.

Bob and Joe used to be friends in college, but had a falling out over doughnuts. Bob insisted
Krispy Kreme’s were better, but Joe was a Dunkin’ fan, and after much yelling and tossing of
fried dough they became mortal enemies. After graduation they went their separate ways
exploring opportunities as they presented themselves. Eventually Bob became Security Guy Bob,
in charge of security for Orca Pig (OP) Industries, Inc., while Joe made some bad choices and
went on to become Hacker Joe.

After starting, Bob noticed most decisions at OP were made in favor of usability over
functionality and security. He showed a Security, Functionality, and Usability triangle (see
Figure 1-5) to upper management, visually displaying that moving toward one of the three
lessened the other two, and security was sure to suffer long term. Management noted Bob’s
concerns and summarily dismissed them as irrational, as budgets were tight and business was
good.

http://www.tenable.com
http://www.qualys.com
http://www.gfi.com
https://cirt.net
http://www.openvas.org
http://www.beyondtrust.com

Figure 1-5 The Security, Functionality, and Usability triangle

One day a few weeks later, Hacker Joe woke up and decided he wanted to be naughty. He
went out searching for a target of hack value, so he wouldn’t waste time on something that didn’t
matter. In doing so, he found OP, Inc., and smiled when he saw Bob’s face on the company
directory. He searched and found a target, researching to see if it had any weaknesses, such as
software flaws or logic design errors. A particular vulnerability did show up on the target, so Joe
researched attack vectors and discovered—through his super-secret hacking background contacts
—an attack the developer of some software on the target apparently didn’t even know about
since they hadn’t released any kind of security patch or fix to address the problem. This zero-day
attack vector required a specific piece of exploit code he could inject through a hacking tactic he
thought would work. After obfuscating this payload and embedding it in an attack, he started.

After pulling off the successful exploit and owning the box, Joe explored what additional
access the machine could grant him. He discovered other targets and vulnerabilities, and
successfully configured access to all. His daisy-chaining of network access then gave him
options to set up several machines on multiple networks he could control remotely to execute
really whatever he wanted. These bots could be accessed any time he wanted, so Joe decided to
prep for more carnage. He also searched publicly available databases and social media for
personally identifiable information (PII) about Bob and then posted his findings. After this
doxing effort, Joe took a nap, dreaming about what embarrassment Bob would have rain down
on him the next day.

EXAM TIP Another fantastic bit of terminology from ECC-land you may see is “threat
modeling.” It’s exactly what it sounds like and consists of five sections: Identify Security
Objectives, Application Overview, Decompose Application, Identify Threats, and Identify
Vulnerabilities.

After discovering PII posts about himself, Bob worries that something is amiss, and wonders
if his old nemesis is back and on the attack. He does some digging and discovers Joe’s attack
from the previous evening, and immediately engages his incident response team (IRT) to
identify, analyze, prioritize, and resolve the incident. The team first reviews detection and

quickly analyzes the exploitation, in order to notify the appropriate stakeholders. The team then
works to contain the exploitation, eradicate residual back doors and such, and coordinate
recovery for any lost data or services. After following this incident management process, the
team provides post-incident reporting and lessons learned to management.

NOTE Here’s a great three-dollar term you might see on the exam: EISA. Enterprise
Information Security Architecture is a collection of requirements and processes that help
determine how an organization’s information systems are built and how they work.

Post-incident reporting suggested to leadership they focus more attention on security, and, in
one section of the report in particular, that they adopt the means to identify what risks are present
and quantify them on a measurement scale. This risk management approach would allow them to
come up with solutions to mitigate, eliminate, or accept the identified risks (see Figure 1-6 for a
sample risk analysis matrix).

Figure 1-6 Risk analysis matrix

EXAM TIP The risk management phases identified by EC-Council are Risk Identification,
Risk Assessment, Risk Treatment, Risk Tracking, and Risk Review. Each phase is fairly self-
explanatory, and you may see mention of them on your exam.

Identifying organizational assets, the threats to those assets, and their vulnerabilities would
allow the company to explore which countermeasures security personnel could put into place to

minimize risks as much as possible. These security controls would then greatly increase the
security posture of the systems.

NOTE Security controls can also be categorized as physical, technical, and administrative.
Physical controls include things such as guards, lights, and cameras. Technical controls include
things such as encryption, smartcards, and access control lists. Administrative controls include
the training, awareness, and policy efforts that are well intentioned, comprehensive, and well
thought out—and that most employees ignore. Hackers will combat physical and technical
controls to get to their end goal, but they don’t give a rip about your administrative password
policy—unless it’s actually followed.

Some of these controls were to be put into place to prevent errors or incidents from occurring
in the first place, some were to identify an incident had occurred or was in progress, and some
were designed for after the event to limit the extent of damage and aid swift recovery. These
preventative, detective, and corrective controls can work together to reduce Joe’s ability to
further his side of the great Doughnut Fallout.

EXAM TIP Know preventive, detective, and corrective measures. Examples of each include
authentication (preventative), alarm bells for unauthorized access to a physical location, alerts on
unauthorized access to resources, audits (detective), and backups and restore options (corrective).
You will definitely be asked about them, in one way or another.

This effort spurred a greater focus on overall preparation and security. Bob’s quick action
averted what could have been a total disaster, but everyone involved saw the need for better
planning and preparation. Bob and management kicked off an effort to identify the systems and
processes that were critical for operations. This business impact analysis (BIA) included
measurements of the maximum tolerable downtime (MTD), which provided a means to prioritize
the recovery of assets should the worst occur. Bob also branched out and created Orca Pig’s first
set of plans and procedures to follow in the event of a failure or a disaster—security related or
not—to get business services back up and running. His business continuity plan (BCP) included
a disaster recovery plan (DRP), addressing exactly what to do to recover any lost data or
services.

Bob also did some research his management should have, and discovered some additional
actions and groovy acronyms they should know and pay attention to. When putting numbers and
value to his systems and services, the ALE (annualized loss expectancy) turned out to be the
product of the ARO (annual rate of occurrence) and the SLE (single loss expectancy). For his
first effort, he looked at one system and determined its worth, including the cost for return to
service and any lost revenue during downtime, was $120,000. Bob made an educated guess on

the percentage of loss for this asset if a specific threat was actually realized and determined the
exposure factor (EF) turned out to be 25 percent. He multiplied this by the asset value and came
up with an SLE of $30,000 ($120,000 × 25%). He then figured out what he felt would be the
probability this would occur in any particular 12-month period. Given statistics he garnered from
similarly protected businesses, he thought it could occur once every five years, which gave him
an ARO of 0.2 (one occurrence / five years). By multiplying the estimate of a single loss versus
the number of times it was likely to occur in a year, Bob could generate the ALE for this asset at
$6000 ($30,000 × 0.2). Repeating this across Orca Pig’s assets turned out to provide valuable
information for planning, preparation, and budgeting.

EXAM TIP ALE = SLE × ARO. Know it. Trust me.

At the end of this effort week, Bob relaxed with a Maker’s Mark and an Arturo Fuente on his
back porch, smiling at all the good security work he’d done and enjoying the bonus his
leadership provided as a reward. Joe stewed in his apartment, angry that his work would now be
exponentially harder. But while Bob took the evening to rest on his laurels, Joe went back to
work, scratching and digging at OP’s defenses. “One day I’ll find a way in. Just wait and see. I
won’t stop. Ever.”

NOTE Oftentimes security folks tend to get caught up in the 101-level items and catch words
we all know. We make sure we investigate vulnerabilities, manage risks, and establish policies,
while we sometimes ignore the biggest issue we have right in front of us—the users. ECC calls
this out in User Behavior Analytics (UBA). UBA is a process of tracking user behaviors
themselves, and extrapolating those behaviors in light of malicious activity, attacks, and frauds.
There are behavior-based intrusion detection systems (IDSs) out there, but don’t overlook UBA
in your own security efforts.

Now, wasn’t that better than just reading definitions? Sure, there were a few leaps, and Bob
surely wouldn’t be the guy doing ALE measurements, but it was better than trying to explain all
that otherwise. Every italicized word in this section could possibly show up on your exam, and
now you can just remember this little story and you’ll be ready for almost anything. But although
this was fun, and I did consider continuing the story throughout the remainder of this book
(fiction is so much more entertaining), some of these topics need a little more than a passing
italics reference, so we’ll break here and go back to more “expected” writing.

CIA
Another bedrock in any security basics discussion is the holy trinity of IT security:

confidentiality, integrity, and availability (CIA). Whether you’re an ethical hacker or not, these
three items constitute the hallmarks of security we all strive for. You’ll need to be familiar with
two aspects of each term in order to achieve success as an ethical hacker as well as on the exam:
what the term itself means and which attacks are most commonly associated with it.

Confidentiality, addressing the secrecy and privacy of information, refers to the measures
taken both to prevent disclosure of information or data to unauthorized individuals or systems
and to ensure the proper disclosure of information to those who are authorized to receive it.
Confidentiality for the individual is a must, considering its loss could result in identity theft,
fraud, and loss of money. For a business or government agency, it could be even worse. The use
of passwords within some form of authentication is by far the most common measure taken to
ensure confidentiality, and attacks against passwords are, amazingly enough, the most common
confidentiality attacks.

For example, your logon to a network usually consists of a user ID and a password, which is
designed to ensure only you have access to that particular device or set of network resources. If
another person were to gain your user ID and password, they would have unauthorized access to
resources and could masquerade as you throughout their session. Although the user ID and
password combination is by far the most common method used to enforce confidentiality,
numerous other options are available, including biometrics and smartcards.

EXAM TIP Be careful with the terms confidentiality and authentication. Sometimes these two
are used interchangeably, and if you’re looking for only one, you may miss the question
altogether. For example, a MAC address spoof (using the MAC address of another machine) is
considered an authentication attack. Authentication is definitely a major portion of the
confidentiality segment of IT security.

The Stone Left Unturned
Security professionals deal with, and worry about, risk management a lot. We create and
maintain security plans, deal with endless audits, create and monitor ceaseless reporting to
government, and employ bunches of folks just to maintain “quality” as it applies to the
endless amounts of processes and procedures we have to document. Yet with all this effort,
there always seems to be something left out—some stone left unturned that a bad guy takes
advantage of.

Don’t take my word for it; just check the news and the statistics. Seemingly every day
there is a news story about a major data breach somewhere. OPM lost millions of PII records
to hackers. eBay had 145 million user accounts compromised. JPMorgan Chase had over 70
million home and business records compromised, and the list goes on and on. In 2015, per
Breach Level Index (http://breachlevelindex.com) statistics, over 3 billion data records—that
we know about—were stolen, and the vast majority were lost to a malicious outsider (not
accidental, state sponsored, or the always-concerning disgruntled employee malicious
insider).

All this leads to a couple questions. First, IT security professionals must be among the

http://breachlevelindex.com

most masochistic people on the planet. Why volunteer to do a job where you know,
somewhere along the line, you’re more than likely going to fail at it and, at the very least, be
yelled at over it? Second, if there are so many professionals doing so much work and breaches
still happen, is there something outside their control that leads to these failures? As it turns
out, the answer is “Not always, but oftentimes YES.”

Sure, there were third-party failures in home-grown web applications to blame, and of
course there were default passwords left on outside-facing machines. There were also several
legitimate attacks that occurred because somebody, somewhere didn’t take the right security
measure to protect data. But, at least for 2015, phish-ing and social engineering played a large
role in many cases, and zero-day attacks represented a huge segment of the attack vectors.
Can security employees be held accountable for users not paying attention to the endless array
of annual security training shoved down their throats advising them against clicking on e-mail
links? Should your security engineer be called onto the carpet because employees still, still,
just give their passwords to people on the phone or over e-mail when they’re asked for them?
And I’m not even going to touch zero day—if we could predict stuff like that, we’d all be
lottery winners.

Security folks can, and should, be held to account for ignoring due diligence in
implementing security on their networks. If a system gets compromised because we were lax
in providing proper monitoring and oversight, and it leads to corporate-wide issues, we should
be called to account. But can we ever uncover all those stones during our security efforts
across an organization? Even if some of those stones are based on human nature? I fear the
answer is no. Because some of them won’t budge.

Integrity refers to the methods and actions taken to protect the information from unauthorized
alteration or revision—whether the data is at rest or in transit. In other words, integrity measures
ensure the data sent from the sender arrives at the recipient with no alteration. For example,
imagine a buying agent sending an e-mail to a customer offering the price of $300. If an attacker
somehow has altered the e-mail and changed the offering price to $3000, the integrity measures
have failed, and the transaction will not occur as intended, if at all. Oftentimes, attacks on the
integrity of information are designed to cause embarrassment or legitimate damage to the target.

Integrity in information systems is often ensured through the use of a hash. A hash function is
a one-way mathematical algorithm (such as MD5 and SHA-1) that generates a specific, fixed-
length number (known as a hash value). When a user or system sends a message, a hash value is
also generated to send to the recipient. If even a single bit is changed during the transmission of
the message, instead of showing the same output, the hash function will calculate and display a
greatly different hash value on the recipient system. Depending on the way the controls within
the system are designed, this would result in either a retransmission of the message or a complete
shutdown of the session.

EXAM TIP Bit flipping is one form of an integrity attack. In bit flipping, the attacker isn’t
interested in learning the entirety of the plain-text message. Instead, bits are manipulated in the

cipher text itself to generate a predictable outcome in the plain text once it is decrypted.

Availability is probably the simplest, easiest-to-understand segment of the security triad, yet it
should not be overlooked. It refers to the communications systems and data being ready for use
when legitimate users need them. Many methods are used for availability, depending on whether
the discussion is about a system, a network resource, or the data itself, but they all attempt to
ensure one thing—when the system or data is needed, it can be accessed by the appropriate
personnel.

Attacks against availability almost always fall into the “denial-of-service” realm. Denial-of-
service (DoS) attacks are designed to prevent legitimate users from having access to a computer
resource or service and can take many forms. For example, attackers could attempt to use all
available bandwidth to the network resource, or they may actively attempt to destroy a user’s
authentication method. DoS attacks can also be much simpler than that—unplugging the power
cord is the easiest DoS in history!

NOTE Many in the security field add other terms to the security triad. I’ve seen several CEH
study guides refer to the term authenticity as one of the “four elements of security.” It’s not used
much outside the certification realm, however; the term is most often used to describe something
as “genuine.” For example, digital signatures can be used to guarantee the authenticity of the
person sending a message. Come test time, this may help.

Access Control Systems
While we’re on the subject of computer security, I think it may be helpful to step back and look
at how we all got here, and take a brief jog through some of the standards and terms that came
out of all of it. In the early days of computing and networking, it’s pretty safe to say security
wasn’t high on anyone’s to-do list. As a matter of fact, in most instances security wasn’t even an
afterthought, and unfortunately it wasn’t until things started getting out of hand that anyone
really started putting any effort into it. The sad truth about a lot of security is that it came out of a
reactionary stance, and very little thought was put into it as a proactive effort—until relatively
recently, anyway.

This is not to say nobody tried at all. As a matter of fact, in 1983 some smart guys at the U.S.
Department of Defense saw the future need for protection of information (government
information, that is) and worked with the NSA to create the National Computer Security Center
(NCSC). This group got together and created a variety of security manuals and steps, and
published them in a book series known as the “Rainbow Series.” The centerpiece of this effort
came out as the “Orange Book,” which held something known as the Trusted Computer System
Evaluation Criteria (TCSEC).

TCSEC was a United States government Department of Defense (DoD) standard, with a goal
to set basic requirements for testing the effectiveness of computer security controls built into a
computer system. The idea was simple: if your computer system (network) was going to handle
classified information, it needed to comply with basic security settings. TCSEC defined how to

assess whether these controls were in place, and how well they worked. The settings,
evaluations, and notices in the Orange Book (for their time) were well thought out and proved
their worth in the test of time, surviving all the way up to 2005. However, as anyone in security
can tell you, nothing lasts forever.

TCSEC eventually gave way to the Common Criteria for Information Technology Security
Evaluation (also known as Common Criteria, or CC). Common Criteria had actually been around
since 1999, and finally took precedence in 2005. It provided a way for vendors to make claims
about their in-place security by following a set standard of controls and testing methods,
resulting in something called an Evaluation Assurance Level (EAL). For example, a vendor
might create a tool, application, or computer system and desire to make a security declaration.
They would then follow the controls and testing procedures to have their system tested at the
EAL (Levels 1–7) they wished to have. Assuming the test was successful, the vendor could
claim “Successfully tested at EAL-4.”

Common Criteria is, basically, a testing standard designed to reduce or remove vulnerabilities
from a product before it is released. Besides EAL, three other terms are associated with this
effort you’ll need to remember:

• Target of evaluation (TOE) What is being tested
• Security target (ST) The documentation describing the TOE and security requirements
• Protection profile (PP) A set of security requirements specifically for the type of

product being tested

While there’s a whole lot more to it, suffice it to say CC was designed to provide an assurance
that the system is designed, implemented, and tested according to a specific security level. It’s
used as the basis for government certifications and is usually tested for U.S. government
agencies.

Lastly in our jaunt through terminology and history regarding security and testing, we have a
couple terms to deal with. One of these is the overall concept of access control itself. Access
control basically means restricting access to a resource in some selective manner. There are
numerous terms you can fling about in discussing this to make you sound really intelligent
(subject, initiator, authorization, and so on), but I’ll leave all that for the glossary. Here, we’ll
just talk about a couple of ways of implementing access control: mandatory and discretionary.

Mandatory access control (abbreviated to MAC) is a method of access control where security
policy is controlled by a security administrator: users can’t set access controls themselves. In
MAC, the operating system restricts the ability of an entity to access a resource (or to perform
some sort of task within the system). For example, an entity (such as a process) might attempt to
access or alter an object (such as files, TCP or UDP ports, and so on). When this occurs, a set of
security attributes (set by the policy administrator) is examined by an authorization rule. If the
appropriate attributes are in place, the action is allowed.

By contrast, discretionary access control (DAC) puts a lot of this power in the hands of the
users themselves. DAC allows users to set access controls on the resources they own or control.
Defined by the TCSEC as a means of “restricting access to objects based on the identity of
subjects and/or groups to which they belong,” the idea is controls are discretionary in the sense
that a subject with a certain access permission is capable of passing that permission (perhaps
indirectly) on to any other subject (unless restrained by mandatory access control). A couple of
examples of DAC include NTFS permissions in Windows machines and Unix’s use of users,

groups, and read-write-execute permissions.

EXAM TIP You won’t see many questions concerning Common Criteria or access control
mechanisms on your exam, but I can guarantee you’ll see at least a couple. Pay attention to the
four parts of Common Criteria (EAL, TOE, ST, and PP) and specific examples of access control.

Security Policies
When I saw EC-Council dedicating so much real estate in its writing to security policies, I
groaned in agony. Any real practitioner of security will tell you policy is a great thing, worthy of
all the time, effort, sweat, cursing, and mind-numbing days staring at a template, if only you
could get anyone to pay attention to it. Security policy (when done correctly) can and should be
the foundation of a good security function within your business. Unfortunately, it can also turn
into a horrendous amount of memorization and angst for certification test takers because it’s not
always clear.

A security policy can be defined as a document describing the security controls implemented
in a business to accomplish a goal. Perhaps an even better way of putting it would be to say the
security policy defines exactly what your business believes is the best way to secure its
resources. Different policies address a variety of issues, such as defining user behavior within
and outside the system, preventing unauthorized access or manipulation of resources, defining
user rights, preventing disclosure of sensitive information, and addressing legal liability for users
and partners. There are worlds of different security policy types, with some of the more common
ones identified here:

• Access Control Policy This identifies the resources that need protection and the rules in
place to control access to those resources.

• Information Security Policy This identifies to employees what company systems may be
used for, what they cannot be used for, and what the consequences are for breaking the
rules. Generally employees are required to sign a copy before accessing resources.
Versions of this policy are also known as an Acceptable Use Policy.

• Information Protection Policy This defines information sensitivity levels and who has
access to those levels. It also addresses how data is stored, transmitted, and destroyed.

• Password Policy This defines everything imaginable about passwords within the
organization, including length, complexity, maximum and minimum age, and reuse.

• E-mail Policy Sometimes also called the E-mail Security Policy, this addresses the proper
use of the company e-mail system.

• Information Audit Policy This defines the framework for auditing security within the
organization. When, where, how, how often, and sometimes even who conducts
information security audits are described here.

There are many other types of security policies, and we could go on and on, but you get the
idea. Most policies are fairly easy to understand simply based on the name. For example, it

shouldn’t be hard to determine that the Remote Access Policy identifies who can have remote
access to the system and how they go about getting that access. Other easy-to-recognize policies
include User Account, Firewall Management, Network Connection, and Special Access.

Lastly, and I wince in including this because I can hear you guys in the real world grumbling
already, but believe it or not, EC-Council also looks at policy through the prism of how tough it
is on users. A promiscuous policy is basically wide open, whereas a permissive policy blocks
only things that are known to be dangerous. The next step up is a prudent policy, which provides
maximum security but allows some potentially and known dangerous services because of
business needs. Finally, a paranoid policy locks everything down, not even allowing the user to
open so much as an Internet browser.

EXAM TIP In this discussion there are four other terms worth committing to memory.
Standards are mandatory rules used to achieve consistency. Baselines provide the minimum
security level necessary. Guidelines are flexible, recommended actions users are to take in the
event there is no standard to follow. And, finally, procedures are detailed step-by-step
instructions for accomplishing a task or goal.

Introduction to Ethical Hacking
Ask most people to define the term hacker, and they’ll instantly picture a darkened room, several
monitors ablaze with green text scrolling across the screen, and a shady character in the corner
furiously typing away on a keyboard in an effort to break or steal something. Unfortunately, a lot
of that is true, and a lot of people worldwide actively participate in these activities for that very
purpose. However, it’s important to realize there are differences between the good guys and the
bad guys in this realm. It’s the goal of this section to help define the two groups for you, as well
as provide some background on the basics.

Whether for noble or bad purposes, the art of hacking remains the same. Using a specialized
set of tools, techniques, knowledge, and skills to bypass computer security measures allows
someone to “hack” into a computer or network. The purpose behind their use of these tools and
techniques is really the only thing in question. Whereas some use these tools and techniques for
personal gain or profit, the good guys practice them in order to better defend their systems and,
in the process, provide insight on how to catch the bad guys.

Hacking Terminology
Like any other career field, hacking (ethical hacking) has its own lingo and a myriad of terms to
know. Hackers themselves, for instance, have various terms and classifications to fall into. For
example, you may already know that a script kiddie is a person uneducated in hacking techniques
who simply makes use of freely available (but oftentimes old and outdated) tools and techniques
on the Internet. And you probably already know that a phreaker is someone who manipulates
telecommunications systems in order to make free calls. But there may be a few terms you’re
unfamiliar with that this section may be able to help with. Maybe you simply need a reference

point for test study, or maybe this is all new to you; either way, perhaps there will be a nugget or
two here to help on the exam.

In an attempt to avoid a 100-page chapter of endless definitions and to attempt to assist you in
maintaining your sanity in studying for this exam, we’ll stick with the more pertinent
information you’ll need to remember, and I recommend you peruse the glossary at the end of this
book for more information. You’ll see these terms used throughout the book anyway, and most
of them are fairly easy to figure out on your own, but don’t discount the definitions you’ll find in
the glossary. Besides, I worked really hard on the glossary—it would be a shame if it went
unnoticed.

EXAM TIP Definition questions should be no-brainers on the exam. Learn the hacker types,
the stages of a hack, and other definitions in the chapter—don’t miss the easy ones.

Hacker Classifications: The Hats
You can categorize a hacker in countless ways, but the “hat” system seems to have stood the test
of time. I don’t know if that’s because hackers like Western movies or we’re all just fascinated
with cowboy fashion, but it’s definitely something you’ll see over and over again on your exam.
The hacking community in general can be categorized into three separate classifications: the
good, the bad, and the undecided. In the world of IT security, this designation is given as a hat
color and should be fairly easy for you to keep track of.

• White hats Considered the good guys, these are the ethical hackers, hired by a customer
for the specific goal of testing and improving security or for other defensive purposes.
White hats are well respected and don’t use their knowledge and skills without prior
consent. White hats are also known as security analysts.

• Black hats Considered the bad guys, these are the crackers, illegally using their skills for
either personal gain or malicious intent. They seek to steal (copy) or destroy data and to
deny access to resources and systems. Black hats do not ask for permission or consent.

• Gray hats The hardest group to categorize, these hackers are neither good nor bad.
Generally speaking, there are two subsets of gray hats—those who are simply curious
about hacking tools and techniques and those who feel like it’s their duty, with or without
customer permission, to demonstrate security flaws in systems. In either case, hacking
without a customer’s explicit permission and direction is usually a crime.

NOTE Lots of well-meaning hacker types have found employment in the security field by
hacking into a system and then informing the victim of the security flaws so that they can be
fixed. However, many more have found their way to prison attempting the same thing.

Regardless of your intentions, do not practice hacking techniques without approval. You may
think your hat is gray, but I guarantee the victim sees only black.

While we’re on the subject, another subset of this community uses its skills and talents to put
forward a cause or a political agenda. These people hack servers, deface websites, create viruses,
and generally wreak all sorts of havoc in cyberspace under the assumption that their actions will
force some societal change or shed light on something they feel to be a political injustice. It’s not
some new anomaly in human nature—people have been protesting things since the dawn of time
—it has just moved from picket signs and marches to bits and bytes. In general, regardless of the
intentions, acts of “hacktivism” are usually illegal in nature.

Another class of hacker borders on the insane. Some hackers are so driven, so intent on
completing their task, they are willing to risk everything to pull it off. Whereas we, as ethical
hackers, won’t touch anything until we’re given express consent to do so, these hackers are much
like hacktivists and feel that their reason for hacking outweighs any potential punishment. Even
willing to risk jail time for their activities, so-called suicide hackers are the truly scary monsters
in the closet. These guys work in a scorched-earth mentality and do not care about their own
safety or freedom, not to mention anyone else’s.

EXAM TIP ECC loves adding more definitions to the mix to confuse the issue. Here are a few
other ones to remember: script kiddie (unskilled, using other’s scripts and tools), cyberterrorist
(motivated by religious or political beliefs to create fear and large-scale systems disruption), and
state-sponsored hacker (employed by a government).

Attack Types
Another area for memorization in our stroll through this introduction concerns the various types
of attacks a hacker could attempt. Most of these are fairly easy to identify and seem, at times,
fairly silly to even categorize. After all, do you care what the attack type is called if it works for
you? For this exam, EC-Council broadly defines all these attack types in four categories:

• Operating system (OS) attacks Generally speaking, these attacks target the common
mistake many people make when installing operating systems—accepting and leaving all
the defaults. Administrator accounts with no passwords, all ports left open, and guest
accounts (the list could go on forever) are examples of settings the installer may forget
about. Additionally, operating systems are never released fully secure—they can’t be, if
you ever plan on releasing them within a timeframe of actual use—so the potential for an
old vulnerability in newly installed operating systems is always a plus for the ethical
hacker.

• Application-level attacks These are attacks on the actual programming code and software
logic of an application. Although most people are cognizant of securing their OS and
network, it’s amazing how often they discount the applications running on their OS and
network. Many applications on a network aren’t tested for vulnerabilities as part of their
creation and, as such, have many vulnerabilities built into them. Applications on a

network are a gold mine for most hackers.
• Shrink-wrap code attacks These attacks take advantage of the built-in code and scripts

most off-the-shelf applications come with. The old refrain “Why reinvent the wheel?” is
often used to describe this attack type. Why spend time writing code to attack something
when you can buy it already “shrink-wrapped”? These scripts and code pieces are
designed to make installation and administration easier but can lead to vulnerabilities if
not managed appropriately.

• Misconfiguration attacks These attacks take advantage of systems that are, on purpose or
by accident, not configured appropriately for security. Remember the triangle earlier and
the maxim “As security increases, ease of use and functionality decrease”? This type of
attack takes advantage of the administrator who simply wants to make things as easy as
possible for the users. Perhaps to do so, the admin will leave security settings at the
lowest possible level, enable every service, and open all firewall ports. It’s easier for the
users but creates another gold mine for the hacker.

EXAM TIP Infowar (as ECC loves to call it) is the use of offensive and defensive techniques
to create advantage over your adversary. Defining which actions are offensive vs. defensive in
nature should be self-explanatory, so if you’re asked, use common sense and reasoning. For
example, a banner on your system warning those attempting access that you’ll prosecute is
defensive in nature, acting as a deterrent.

Hacking Phases
Regardless of the intent of the attacker (remember there are good guys and bad guys), hacking
and attacking systems can sometimes be akin to a pilot and her plane. That’s right, I said “her.”
My daughter is a helicopter pilot for the U.S. Air Force, and because of this ultra-cool access, I
get to talk with pilots from time to time. I often hear them say, when describing a mission or
event they were on, that they just “felt” the plane or helicopter—that they just knew how it was
feeling and the best thing to do to accomplish the goal, sometimes without even thinking about it.

I was talking to my daughter a while back and asked her about this human–machine
relationship. She paused for a moment and told me that sure, it exists, and it’s uncanny to think
about why pilot A did action B in a split-second decision. However, she cautioned, all that
mystical stuff can never happen without all the up-front training, time, and procedures. Because
the pilots followed a procedure and took their time up front, the decision making and “feel” of
the machine gets to come to fruition.

Hacking phases, as identified by EC-Council, are a great way to think about an attack
structure for you, my hacking pilot trainee. I’m not saying you shouldn’t take advantage of
opportunities when they present themselves just because they’re out of order (if a machine
presents itself willingly and you refuse the attack, exclaiming, “But I haven’t reconned it yet!” I
may have to slap you myself), but in general following the plan will produce quality results.
Although there are many different terms for these phases and some of them run concurrently and
continuously throughout a test, EC-Council has defined the standard hack as having five phases,

shown in Figure 1-7. Whether the attacker is ethical or malicious, these five phases capture the
full breadth of the attack.

Figure 1-7 Phases of ethical hacking

EXAM TIP Keep the phases of hacking in mind throughout your study. You’ll most likely see
several questions asking you to identify not only what occurs in each step but which tools are
used in each one.

Reconnaissance is probably going to be the most difficult phase to understand for the exam,
mainly because many people confuse some of its steps as being part of the next phase (scanning
and enumeration). Reconnaissance is nothing more than the steps taken to gather evidence and
information on the targets you want to attack. It can be passive in nature or active. Passive
reconnaissance involves gathering information about your target without their knowledge,
whereas active reconnaissance uses tools and techniques that may or may not be discovered but
put your activities as a hacker at more risk of discovery. Another way of thinking about it is from
a network perspective: active is that which purposefully puts packets, or specific
communications, on a wire to your target, whereas passive does not.

For example, imagine your penetration test, also known as a pen test, has just started and you
know nothing about the company you are targeting. Passively, you may simply watch the outside
of the building for a couple of days to learn employee habits and see what physical security
measures are in place. Actively, you may simply walk up to the entrance or guard shack and try
to open the door (or gate). In either case, you’re learning valuable information, but with passive
reconnaissance you aren’t taking any action to signify to others that you’re watching. Examples
of actions that might be taken during this phase are social engineering, dumpster diving, and
network sniffing—all of which are addressed throughout the remainder of this exam study guide.

NOTE Every pen tester on the planet who’s been knee-deep in a dumpster with a guard’s
flashlight in their face knows that dumpster diving is about as passive an activity as participating
in a marathon. Just keep in mind that sometimes definitions and reality don’t match up. For your
exam, it’s passive. In real life, it’s a big risk, and you’ll probably get stinky.

In the second phase, scanning and enumeration, security professionals take the information
they gathered in recon and actively apply tools and techniques to gather more in-depth
information on the targets. This can be something as simple as running a ping sweep or a
network mapper to see what systems are on the network, or as complex as running a
vulnerability scanner to determine which ports may be open on a particular system. For example,
whereas recon may have shown the network to have 500 or so machines connected to a single
subnet inside a building, scanning and enumeration would tell you which ones are Windows
machines and which ones are running FTP.

The third phase, as they say, is where the magic happens. This is the phase most people
delightedly rub their hands together over, reveling in the glee they know they will receive from
bypassing a security control. In the gaining access phase, true attacks are leveled against the
targets enumerated in the second phase. These attacks can be as simple as accessing an open and
nonsecured wireless access point and then manipulating it for whatever purpose, or as complex
as writing and delivering a buffer overflow or SQL injection against a web application. The
attacks and techniques used in the phase will be discussed throughout the remainder of this study
guide.

In the fourth phase, maintaining access, hackers attempt to ensure they have a way back into
the machine or system they’ve already compromised. Back doors are left open by the attacker for
future use, especially if the system in question has been turned into a zombie (a machine used to
launch further attacks from) or if the system is used for further information gathering—for
example, a sniffer can be placed on a compromised machine to watch traffic on a specific subnet.
Access can be maintained through the use of Trojans, rootkits, or any number of other methods.

NOTE There’s an important distinction I’ve mentioned before and will mention over and over
again through this book: ECC and study materials for the CEH oftentimes have as much to do
with the real world and true hacking as nuclear fusion has to do with doughnut glaze. For
example, in the real world, pen testers and hackers only carry out scanning and enumeration
when the possibility of gaining useful intelligence is greater than the risk of detection or reaction
by the target. Sure, you need as much information as you can get up front, but if what you’re
doing winds up drawing unnecessary attention to yourself, the whole thing is pointless. Same
thing goes for privilege escalation: if you can get done what you want or need to without

bothering to escalate to root privilege, huzzah!

In the final phase, covering tracks, attackers attempt to conceal their success and avoid
detection by security professionals. Steps taken here consist of removing or altering log files,
hiding files with hidden attributes or directories, and even using tunneling protocols to
communicate with the system. If auditing is turned on and monitored, and often it is not, log files
are an indicator of attacks on a machine. Clearing the log file completely is just as big an
indicator to the security administrator watching the machine, so sometimes selective editing is
your best bet.

Another great method to use here is simply corrupting the log file itself—whereas a
completely empty log file screams an attack is in progress, files get corrupted all the time, and,
chances are, the administrator won’t bother trying to rebuild the log file. In either case, be really
careful when it comes to corrupting or deleting logs in the real world. As a pen tester you may be
bound by a “no harm” clause, which will prevent you from altering the log files at all. Not only
would that cause harm to the organization but it may also prevent them from discovering real
bad guys who may be attacking during your test. Good pen testers are truly defined in this phase,
and “do no harm” should be in the forefront of your mind when attempting this.

EXAM TIP An acronym you should definitely get acquainted with is SIEM (which stands for
security incident and event management). A SIEM helps to perform functions related to a
Security Operation Center (SOC), such as identifying, monitoring, recording, auditing, and
analyzing security incidents. While the term can be associated with an overall enterprise effort
(made up of people, applications, processes, and so on), in the real world oftentimes it is used to
refer to a specific application. Splunk, for example, is often referred to as a SIEM.

A couple of insights can, and should, be gained here. First, contrary to popular belief, pen
testers do not usually just randomly assault things hoping to find some overlooked vulnerability
to exploit. Instead, they follow a specific, organized method to thoroughly discover every aspect
of the system they’re targeting. Good ethical hackers performing pen tests ensure these steps are
very well documented, taking exceptional and detailed notes and keeping items such as
screenshots and log files for inclusion in the final report. Mr. Horton, our beloved technical
editor, put it this way: “Pen testers are thorough in their work for the customer. Hackers just
discover what is necessary to accomplish their goal.” Second, keep in mind that security
professionals performing a pen test do not normally repair or patch any security vulnerabilities
they find—it’s simply not their job to do so. The ethical hacker’s job is to discover security flaws
for the customer, not to fix them. Knowing how to blow up a bridge doesn’t make you a civil
engineer capable of building one, so while your friendly neighborhood CEH may be able to find
your problems, it in no way guarantees he or she could engineer a secure system.

NOTE A hacker who is after someone in particular may not bother sticking to a set method in
getting to what is wanted. Hackers in the real world will take advantage of the easiest, quickest,
simplest path to the end goal, and if that means attacking before enumerating, then so be it.

The Ethical Hacker
So, what makes someone an “ethical” hacker? Can such a thing even exist? Considering the art
of hacking computers and systems is, in and of itself, a covert action, most people might believe
the thought of engaging in a near-illegal activity to be significantly unethical. However, the
purpose and intention of the act have to be taken into account.

For comparison’s sake, law enforcement professionals routinely take part in unethical
behaviors and situations in order to better understand, and to catch, their criminal counterparts.
Police and FBI agents must learn the lingo, actions, and behaviors of drug cartels and organized
crime in order to infiltrate and bust the criminals, and doing so sometimes forces them to engage
in criminal acts themselves. Ethical hacking can be thought of in much the same way. To find
and fix the vulnerabilities and security holes in a computer system or network, you sometimes
have to think like a criminal and use the same tactics, tools, and processes they might employ.

In CEH parlance, and as defined by several other entities, there is a distinct difference
between a hacker and a cracker. An ethical hacker is someone who employs the same tools and
techniques a criminal might use, with the customer’s full support and approval, to help secure a
network or system. A cracker, also known as a malicious hacker, uses those skills, tools, and
techniques either for personal gain or destructive purposes or, in purely technical terms, to
achieve a goal outside the interest of the system owner. Ethical hackers are employed by
customers to improve security. Crackers either act on their own or, in some cases, act as hired
agents to destroy or damage government or corporate reputation.

One all-important specific identifying a hacker as ethical versus the bad-guy crackers needs to
be highlighted and repeated over and over again. Ethical hackers work within the confines of an
agreement made between themselves and a customer before any action is taken. This agreement
isn’t simply a smile, a conversation, and a handshake just before you flip open a laptop and start
hacking away. No, instead it is a carefully laid-out plan, meticulously arranged and documented
to protect both you (the ethical hacker) and the client.

In general, an ethical hacker will first meet with the client and sign a contract. The contract
defines not only the permission and authorization given to the security professional (sometimes
called a get-out-of-jail-free card) but also confidentiality and scope. No client would ever agree
to having an ethical hacker attempt to breach security without first ensuring the hacker will not
disclose any information found during the test. Usually, this concern results in the creation of a
nondisclosure agreement (NDA).

Additionally, clients almost always want the test to proceed to a certain point in the network
structure and no further: “You can try to get through the firewall, but do not touch the file servers
on the other side…because you may disturb my MP3 collection.” They may also want to restrict
what types of attacks you run. For example, the client may be perfectly okay with you attempting

a password hack against their systems but may not want you to test every DoS attack you know.
Oftentimes, however, even though you’re hired to test their security and you know what’s

really important in security and hacking circles, the most serious risks to a target are not allowed
to be tested because of the “criticality of the resource.” This, by the way, is often a function of
corporate trust between the pen tester and the organization and will shift over time; what’s a
critical resource in today’s test will become a focus of scrutiny and “Let’s see what happens”
next year. If the test designed to improve security actually blows up a server, it may not be a
winning scenario; however, sometimes the data that is actually at risk makes it important enough
to proceed. This really boils down to cool and focused minds during the security testing
negotiation.

Another common issue is that what is considered “too secure to test” actually turns out to be
the most vulnerable system. A pen tester interview with the client might go like this: “What
about that crusty Solaris box that runs all the back-end processing for payroll and hasn’t been
updated since 2002?” “Well, it’s really important and if it breaks, the organization dies. We have
compensating controls for stuff like that.” It’s like a sunshine law for cyber—no mold grows
where the pen test light shines.

NOTE A common term you’ll see referenced in your CEH study is tiger team, which is
nothing more than a group of people, gathered together by a business entity, working to address a
specific problem or goal. Ethical hackers are sometimes part of a tiger team, set up to thoroughly
test all facets of a security system. Whether you’re hired as part of the team or as an individual,
pay attention to the rules of engagement.

The Pen Test
Companies and government agencies ask for penetration tests for a variety of reasons.
Sometimes rules and regulations force the issue. For example, many medical facilities need to
maintain compliance with the Health Insurance Portability and Accountability Act (HIPAA) and
will hire ethical hackers to complete their accreditation. Sometimes the organization’s leadership
is simply security conscious and wants to know just how well existing security controls are
functioning. And sometimes it’s simply an effort to rebuild trust and reputation after a security
breach has already occurred. It’s one thing to tell customers you’ve fixed the security flaw that
allowed the theft of all those credit cards in the first place. It’s another thing altogether to show
the results of a penetration test against the new controls.

With regard to your exam and to your future as an ethical hacker, there are two processes
you’ll need to know: how to set up and perform a legal penetration test and how to proceed
through the actual hack. A penetration test is a clearly defined, full-scale test of the security
controls of a system or network in order to identify security risks and vulnerabilities and has
three major phases. Once the pen test is agreed upon, the ethical hacker begins the “assault”
using a variety of tools, methods, and techniques, but generally follows the same five stages of a
typical hack to conduct the test. For the CEH exam, you’ll need to be familiar with the three pen

test stages and the five stages of a typical hack.
A pen test has three main phases—preparation, assessment, and conclusion—and they are

fairly easy to define and understand. The preparation phase defines the time period during which
the actual contract is hammered out. The scope of the test, the types of attacks allowed, and the
individuals assigned to perform the activity are all agreed upon in this phase. The assessment
phase (sometimes also known as the security evaluation phase or the conduct phase) is exactly
what it sounds like—the actual assaults on the security controls are conducted during this time.
Lastly, the conclusion (or post-assessment) phase defines the time when final reports are
prepared for the customer, detailing the findings of the tests (including the types of tests
performed) and many times even providing recommendations to improve security.

In performing a pen test, an ethical hacker must attempt to reflect the criminal world as much
as possible. In other words, if the steps taken by the ethical hacker during the pen test don’t
adequately mirror what a “real” hacker would do, then the test is doomed to failure. For that
reason, most pen tests have individuals acting in various stages of knowledge about the target of
evaluation (TOE). These different types of tests are known by three names: black box, white box,
and gray box.

In black-box testing, the ethical hacker has absolutely no knowledge of the TOE. The testing
is designed to simulate an outside, unknown attacker, and it takes the most amount of time to
complete and, usually, is by far the most expensive option. For the ethical hacker, black-box
testing means a thorough romp through the five stages of an attack and removes any
preconceived notions of what to look for. The only true drawback to this type of test is it focuses
solely on the threat outside the organization and does not take into account any trusted users on
the inside.

NOTE An important “real world versus definition” distinction arises here: While the pure
definition of the term implies no knowledge, a black-box test is designed to mirror what an
external hacker has and knows about before starting an attack. Rest assured, the bad guys have
been researching things for a long time. They know something or they wouldn’t attack in the first
place. As a pen tester, you’d better be aware of the same things they are when setting up your
test.

White-box testing is the exact opposite of black-box testing. In this type, pen testers have full
knowledge of the network, system, and infrastructure they’re targeting. This, quite obviously,
makes the test much quicker, easier, and less expensive, and it is designed to simulate a
knowledgeable internal threat, such as a disgruntled network admin or other trusted user.

The last type, gray-box testing, is also known as partial knowledge testing. What makes this
different from black-box testing is the assumed level of elevated privileges the tester has.
Whereas black-box testing is generally done from the network administration level, gray-box
testing assumes only that the attacker is an insider. Because most attacks do originate from inside
a network, this type of testing is valuable and can demonstrate privilege escalation from a trusted
employee.

Laws and Standards
Finally, it would be impossible to call yourself an ethical anything if you didn’t understand the
guidelines, standards, and laws that govern your particular area of expertise. In our realm of IT
security (and in ethical hacking), there are tons of laws and standards you should be familiar
with, not only to do a good job, but to keep you out of trouble—and prison. We were lucky in
previous versions of the exam that these didn’t get hit very often, but now they’re back—and
with a vengeance.

I would love to promise I could provide you a comprehensive list of every law you’ll need to
know for your job, but if I did this book would be the size of an old encyclopedia and you’d
never buy it. There are tons of laws you need to be aware of for your job, such as FISMA,
Electronics Communications Privacy Act, PATRIOT Act, Privacy Act of 1974, Cyber
Intelligence Sharing and Protection Act (CISPA), Consumer Data Security and Notification Act,
Computer Security Act of 1987…the list really is almost endless. Since this isn’t a book to
prepare you for a state bar exam, I’m not going to get into defining all these. For the sake of
study, and keeping my page count down somewhat, we’ll just discuss a few you should
concentrate on for test purposes—mainly because they’re the ones ECC seems to be looking at
closely this go-round. When you get out in the real world, you’ll need to learn, and know, the
rest.

Sometimes You Have to Know Everything
A foundational principle in Western law and order is that ignorance of the law does not make
one free of it. In other words, if you break a law, you cannot use the excuse that you didn’t
know about the law in question. On its face this could seem somewhat unfair. I mean, how in
the world am I supposed to know EVERY law in EVERY state and EVERY setting? The flip
side of it, and the reason it’s a foundational principle, is simply if ignorance were a valid
excuse, any time someone was accused of a law they could simply claim ignorance and be set
free.

So how do we, as a civilized society with rule of law at our core (supposedly) find the
happy balance in this? I like the way USLegal.com puts it: “Ignorance of law means want of
knowledge of those laws which a person has a duty to know and which everyman is presumed
to know.” That last bit is the important part: you, as a citizen, have a duty to know the law of
the land as it relates to you and yours. Digging a little deeper into that thought, then,
ignorance can be either voluntary or involuntary. Voluntary is pretty simple to define: if you
could have reasonably acquired knowledge of the law but you claim you do not know of it,
you’re purposeful in your ignorance. Involuntary is the area in which there’s a little wiggle
room.

For example (again from USLegal.com), “...case law has recognized certain exceptions to
the doctrine. For example in Cheek v. United States, 498 U.S. 192, 200-201 (U.S. 1991) the
court observed that the proliferation of statutes and regulations has sometimes made it
difficult for the average citizen to know and comprehend the extent of the duties and
obligations imposed by the tax laws.” In short, Congress stated that the overly complex tax
law was more than the average citizen could be expected to know and understand and,
therefore, ignorance of certain areas of tax law has had sentencing/conviction largely reduced.

In criminal law, while ignorance may not clear a defendant of guilt, it can be a

http://USLegal.com
http://USLegal.com

consideration in sentencing—and this next part is very important here, particularly where the
law is unclear or the defendant sought advice from law enforcement or regulatory officials
who themselves were unaware of the law or advised against the law as written. The entirety of
the doctrine assumes the law in question has been properly promulgated—that is, published,
distributed, and made readily available to the public so that “everyman” can be reasonably
expected to know it. In other words, to quote the Decretum Gratiani (google it), “a secret law
is no law at all.”

So why am I talking about principles of law and order in a book supposedly about ethical
hacking? Because, dear reader, what we’re doing here can easily land you in a world of
trouble if you make yourself willfully ignorant of the laws as they pertain to networking, data,
and hacking. There’s more than ample legal precedent that any person taking part in activities
or employment outside what could be considered common for an average citizen must make
themselves aware of any and all applicable laws. For example, a person running the water
supply for a city, or a nuclear plant, or creating and maintaining bridges people drive over is
required to know the laws necessary to engage in those activities.

You’re an ethical hacker, meaning (among other things) your intent is to abide by written
law (and customer agreements). But your intent means squat in a court of law. Read up on the
laws mentioned here in this book. Then go search out updates to them. Then look for others.
After all, if you’re working for a company in Georgia, performing a pen test on a company in
Wyoming with offshore facilities, which law trumps the others and how are you supposed to
know?

While your company should provide some protection for you, and is obligated to assist you
in learning/knowing the laws you’ll be held to during any given employment exercise,
unfortunately the answer to that question, at least in the eyes of the law, is you better figure it
out yourself.

First up is the Health Insurance Portability and Accountability Act (HIPAA), developed by
the U.S. Department of Health and Human Services to address privacy standards with regard to
medical information. The law sets privacy standards to protect patient medical records and health
information, which, by design, are provided and shared to doctors, hospitals, and insurance
providers. HIPAA has five subsections that are fairly self-explanatory (Electronic Transaction
and Code Sets, Privacy Rule, Security Rule, National Identifier Requirements, and Enforcement)
and may show up on your exam.

Another important law for your study is the Sarbanes-Oxley (SOX) Act. SOX was created to
make corporate disclosures more accurate and reliable in order to protect the public and investors
from shady behavior. There are 11 titles within SOX that handle everything from what financials
should be reported and what should go in them, to protecting against auditor conflicts of interest
and enforcement for accountability.

NOTE One thing that may help you in setting up better security is OSSTMM—the Open
Source Security Testing Methodology Manual (if you really want to sound snooty, call it
“awstem”). It’s a peer-reviewed, formalized methodology of security testing and analysis that
can “provide actionable information to measurably improve your operational security.” It defines
three types of compliance for testing: legislative (government regulations), contractual (industry
or group requirements), and standards based (practices that must be followed in order to remain
a member of a group or organization).

When it comes to standards, again there are tons to know—maybe not necessarily for your
job, but because you’ll see them on this exam. ECC really wants you to pay attention to PCI-
DSS, COBIT, and ISO/IEC 27001:2013. The Payment Card Industry Data Security Standard
(PCI-DSS) is a security standard for organizations handling credit cards, ATM cards, and other
point-of-sales cards. The standards apply to all groups and organizations involved in the entirety
of the payment process—from card issuers, to merchants, to those storing and transmitting card
information—and consist of 12 requirements:

• Requirement 1: Install and maintain firewall configuration to protect data.
• Requirement 2: Remove vendor-supplied default passwords and other default security

features.
• Requirement 3: Protect stored data.
• Requirement 4: Encrypt transmission of cardholder data.
• Requirement 5: Install, use, and update AV (antivirus).
• Requirement 6: Develop secure systems and applications.
• Requirement 7: Use “need to know” as a guideline to restrict access to data.
• Requirement 8: Assign a unique ID to each stakeholder in the process (with computer

access).
• Requirement 9: Restrict any physical access to the data.
• Requirement 10: Monitor all access to data and network resources holding, transmitting,

or protecting it.
• Requirement 11: Test security procedures and systems regularly.
• Requirement 12: Create and maintain an information security policy.

Control Objects for Information and Related Technology (COBIT) is another security
standard you’ll probably see referenced. Created by the Information Systems Audit and Control
Association (ISACA) and the IT Governance Institute (ITGI), COBIT is (from ISACA’s own
website) “an IT governance framework and supporting toolset that allows managers to bridge the
gap between control requirements, technical issues and business risks. COBIT enables clear
policy development, good practice, and emphasizes regulatory compliance.” It does so in part by
categorizing control objectives into the following domains:

• Planning and organization
• Acquisition and implementation
• Delivery and support
• Monitoring and evaluation

Each domain contains specific control objectives. This standard helps security architects
figure out and plan minimum security requirements for their organizations.

Want more? I don’t either, so I’ll leave you with the last example ECC wants you to focus on:
the ISO/IEC 27001:2013. It provides requirements for creating, maintaining, and improving
organizational IS (Information Security) systems. The standard addresses issues such as ensuring
compliance with laws as well as formulating internal security requirements and objectives.

EXAM TIP Law is a funny thing, and there are semantic terms a-plenty regarding it. Be aware
of the differences between criminal law (a body of rules and statutes that defines conduct
prohibited by the government because it threatens and harms public safety and welfare and that
establishes punishment to be imposed for the commission of such acts), civil law (a body of rules
that delineates private rights and remedies as well as governs disputes between individuals in
such areas as contracts, property, and family law, distinct from criminal law), and so-called
common law (law based on societal customs and recognized and enforced by the judgments and
decrees of the courts). Anything you see question-wise on it should be easy enough to infer, but
thought you should look into it regardless.

Finally, keep in mind that Information Security laws are tricky things when it comes to
national borders. While it’s easy to enforce an American rule about planting seeds within the
physical borders of the United States, that law means nothing in China, Australia, or France.
When it comes to information and the Internet, though, things get trickier. The complexities of
laws in other countries simply cannot be deciphered—in this book or any other. You will have to
spend some time with your employer and your team to learn what you need before testing
anything.

Who’s to Blame?
Oftentimes in crime dramas we don’t get to see the full story. This is mainly because we’re all
focused on the one bad guy—the one person to blame for it all. But in the digital world, things
can get a little hairy in the blame game. For example, suppose Joe sends Bob something truly
terrible. Maybe they’re dealing in stolen materials or sending child porn to one another.
Obviously Joe and Bob are at fault and need to face some justice. But what about their ISPs?
What about those entities that make all that illegal back and forth even possible in the first
place? If Joe sends Bob child porn over AT&T’s network, for example, why is AT&T (or the
countless other ISPs and/or networks between the two) not liable for facilitating the
transaction? If Sally sends a piece of malware and takes out Jane’s network, would it have
occurred without countless networks between them? How and why are they not liable?

In general, and without turning this into a legal paper, the real answer is we don’t want
them to be. And that is a very good thing. For example, if Joe sends Bob printed photos in a
sealed overnight container, should the FedEx guy driving the truck be held liable if those
photos are illegal in nature? If Sally mails a bag of drugs to Jane, is the postal worker
delivering the package at fault? Of course not, and barring gross negligence, the same

protections and thought process should apply to networks.
ISPs are basically just dumb pipes we use to blast information to each other. The faster we

blast said information, the happier we all are. Don’t believe me? Go somewhere streaming
gets overcrowded and listen to how people rant about the latest cat video lagging on their
system. I’m not saying ISP’s can, or do, just bask in the sun regardless of the traffic they’re
carrying: most if not all take active measures to restrict and reduce illegal activity on the
networks, and they do hold some responsibility insofar as gross negligence is concerned. But
generally speaking, they are in the business of making sure data moves quickly from point A
to point B. And it’s safer that they stay as such.

In the Summer of 2015, the FCC classified Internet service providers as common carriers.
While heretofore defined as companies that transport goods or people for any person or
company (and bearing responsibility in part for any possible loss of the goods during
transport), the use here was different: ISPs transport data, not goods or people. In the original
sense, common carriers were responsible for loss or damage except for certain circumstances
—like an Act of God, fault or fraud on the part of the shipper, or defects in the goods
themselves. When it came to telecommunications, though, those stipulations didn’t apply in
the same way. Therefore, innumerable stipulations and laws established some cover for
providers: for example, the Communications Decency Act protected against third-party
content on grounds of libel or slander, and DMCA “safe harbors” provided more liability
protection in regards to copyright infringements. Not to mention all of it continues to tie into
net neutrality and the back and forth we’ve seen on that for the past decade.

So who should be held liable for malicious or illegal traffic? Sure a purposeful sender and
knowing recipient should be. But everyone else along the way? Not as clear to see—
especially when the cat video won’t load.

NOTE Don’t forget one very simple, obvious observation some people just don’t think about:
the Internet is global. The difference between hacking your target and hacking the government of
China could be a simple as accidentally typing the wrong number in an IP address. And while
most people believe traffic is malicious only if it targets your system specifically, many may see
it as malicious if it just transits your system.

Chapter Review
Tips that will help on your exam include:

• Do not let real life trump EC-Council’s view of it. Real life and the certification exam do
not necessarily always directly correspond.

• Use time to your advantage. The exam now is split into sections, with a timeframe set up
for each one. You can work and review inside the section all you want, but once you pass

through it, you can’t go back.
• Make use of the paper and pencil/pen the friendly test proctor provides you, and as soon

as you sit down, before you click START, start writing down everything you can
remember onto the paper provided.

• Trust your instincts. When you do question review, unless you absolutely, positively,
beyond any shadow of a doubt know you initially marked the wrong answer, do not
change it.

• Take the questions at face value. Don’t read into them; just answer them and move on.

The five zones ECC has defined are Internet (outside the boundary and uncontrolled), Internet
DMZ (a controlled, buffer network between you and the uncontrolled chaos of the Internet),
Production Network Zone (a very restricted zone that strictly controls direct access from
uncontrolled zones), Intranet Zone (controlled zone that has little to no heavy restrictions), and
Management Network Zone (highly secured zone with very strict policies).

To be a successful ethical hacker, you don’t need the knowledge of just tools and techniques
but also the background information that provides a secure foundation for your career. This all
begins with basic networking knowledge, including the seven layers of the OSI reference model
(Application, Presentation, Session, Transport, Network, Data Link, and Physical) and the four
layers of the TCP/IP stack (Application, Transport, Internet, and Network Access). Key points
include the protocol data unit (PDU) at each layer (which includes data, segment, packet, frame,
and bit), the makeup of an Ethernet frame, and the TCP three-way handshake (SYN, SYN/ACK,
ACK).

There are innumerable security concepts and terms essential to your success on the exam, and
they can’t possibly all be listed here. A few examples include the Security, Functionality, and
Usability triangle, hack value, vulnerability, zero-day attack, payload, exploit, daisy-chaining,
bots, doxing, and incident response team (IRT). Memorization is the only option for these terms.

Risk management includes identifying organizational assets, threats to those assets, and asset
vulnerabilities, allowing the company to explore which countermeasures security personnel
could put into place to minimize risks as much as possible. These security controls would then
greatly increase the security posture of the systems. Controls can be preventative, detective, or
corrective. A business impact analysis (BIA) is an effort to identify the systems and processes
that are critical for operations. This includes measurements of the maximum tolerable downtime
(MTD), which provides a means to prioritize the recovery of assets should the worst occur. A set
of plans and procedures to follow in the event of a failure or a disaster to get business services
back up and running is called the business continuity plan (BCP), which includes a disaster
recovery plan (DRP), addressing exactly what to do to recover any lost data or services.

The ALE (annualized loss expectancy) is the product of the ARO (annual rate of occurrence)
and the SLE (single loss expectancy). The exposure factor (EF) is used to generate the SLE (EF
× Value of Asset).

Another bedrock of security is the security triad of confidentiality, integrity, and availability.
Confidentiality, or addressing the secrecy and privacy of information, refers to the measures
taken to prevent the disclosure of information or data to unauthorized individuals or systems.
The use of passwords is by far the most common logical measure taken to ensure confidentiality,
and attacks against passwords are the most common confidentiality attacks. Integrity refers to the
methods and actions taken to protect the information from unauthorized alteration or revision—
whether the data is at rest or in transit. Integrity in information systems is often ensured through

the use of a hash (a one-way mathematical algorithm such as MD5 or SHA-1). Availability refers
to the communications systems and data being ready for use when legitimate users need it.
Denial-of-service (DoS) attacks are designed to prevent legitimate users from having access to a
computer resource or service and can take many forms.

Security policies represent the administrative function of security and attempt to describe the
security controls implemented in a business to accomplish a goal (defining exactly what your
business believes is the best way to secure its resources). There are many types of security
policies addressing a variety of specific issues within the organization. Some examples are
Information Security Policy, Password Policy, Information Protection Policy, Remote Access
Policy, and Firewall Management Policy.

Defining an ethical hacker, as opposed to a cracker (or malicious hacker), basically comes
down to the guidelines one works under—an ethical hacker works only with explicit consent and
approval from a customer. Ethical hackers are employed by customers to improve security.
Crackers either act on their own or, in some cases, are employed by malicious entities to destroy
or damage government or corporate reputation. In addition, some hackers who use their
knowledge to promote a political cause are referred to as hacktivists.

Hackers are generally classified into three separate groups. White hats are the ethical hackers
hired by a customer for the specific goal of testing and improving security or for other defensive
purposes. Black hats are the crackers illegally using their skills either for personal gain or for
malicious intent, and they do not ask for permission or consent. Gray hats are neither good nor
bad; they are simply curious about hacking tools and techniques or feel like it’s their duty, with
or without customer permission, to demonstrate security flaws in systems. In any case, hacking
without a customer’s explicit permission and direction is a crime. Other terms include suicide
and state-sponsored hackers, cyberterrorists, and script kiddies.

A penetration test, also known as a pen test, is a clearly defined, full-scale test of the security
controls of a system or network in order to identify security risks and vulnerabilities. The three
main phases in a pen test are preparation, assessment, and conclusion. The preparation phase
defines the time period when the actual contract is hammered out. The scope of the test, the types
of attacks allowed, and the individuals assigned to perform the activity are all agreed upon in this
phase. The assessment phase (sometimes also known as the security evaluation phase or the
conduct phase) is when the actual assaults on the security controls are conducted. The conclusion
(or post-assessment) phase defines the time when final reports are prepared for the customer,
detailing the findings of the test (including the types of tests performed) and many times even
providing recommendations to improve security.

The act of hacking consists of five main phases. Reconnaissance involves the steps taken to
gather evidence and information on the targets you want to attack. It can be passive in nature or
active. The scanning and enumeration phase takes the information gathered in recon and actively
applies tools and techniques to gather more in-depth information on the targets. In the gaining
access phase, true attacks are leveled against the targets enumerated in the second phase. In the
fourth phase, maintaining access, hackers attempt to ensure they have a way back into the
machine or system they’ve already compromised. Finally, in the final phase, covering tracks,
attackers attempt to conceal their success and avoid detection by security professionals.

Three types of tests are performed by ethical hackers. In black-box testing, the ethical hacker
has absolutely no knowledge of the target of evaluation (TOE). It’s designed to simulate an
outside, unknown attacker. In white-box testing, pen testers have full knowledge of the network,
system, and infrastructure they are testing, and it is designed to simulate a knowledgeable

internal threat, such as a disgruntled network admin or other trusted user. In gray-box testing, the
attacker has limited knowledge about the TOE. It is designed to simulate privilege escalation
from a trusted employee.

The guidelines, standards, and laws that govern ethical hacking are important. These include
FISMA, Electronics Communications Privacy Act, PATRIOT Act, Privacy Act of 1974, Cyber
Intelligence Sharing and Protection Act (CISPA), Consumer Data Security and Notification Act,
and Computer Security Act of 1987.

The Health Insurance Portability and Accountability Act (HIPAA) was developed by the U.S.
Department of Health and Human Services to address privacy standards with regard to medical
information. The law sets privacy standards to protect patient medical records and health
information, which, by design, are provided and shared to doctors, hospitals, and insurance
providers. HIPAA has five subsections that are fairly self-explanatory (Electronic Transaction
and Code Sets, Privacy Rule, Security Rule, National Identifier Requirements, and Enforcement)
and may show up on your exam.

The Sarbanes-Oxley (SOX) Act was created to make corporate disclosures more accurate and
reliable in order to protect the public and investors from shady behavior. There are 11 titles
within SOX that handle everything from what financials should be reported and what should go
in them, to protecting against auditor conflicts of interest and enforcement for accountability.

The Payment Card Industry Data Security Standard (PCI-DSS) is a security standard for
organizations handling credit cards, ATM cards, and other point-of-sales cards. The standards
apply to all groups and organizations involved in the entirety of the payment process—from card
issuers, to merchants, to those storing and transmitting card information—and consist of 12
requirements:

• Requirement 1: Install and maintain firewall configuration to protect data.
• Requirement 2: Remove vendor-supplied default passwords and other default security

features.
• Requirement 3: Protect stored data.
• Requirement 4: Encrypt transmission of cardholder data.
• Requirement 5: Install, use, and update AV (antivirus).
• Requirement 6: Develop secure systems and applications.
• Requirement 7: Use “need to know” as a guideline to restrict access to data.
• Requirement 8: Assign a unique ID to each stakeholder in the process (with computer

access).
• Requirement 9: Restrict any physical access to the data.
• Requirement 10: Monitor all access to data and network resources holding, transmitting,

or protecting it.
• Requirement 11: Test security procedures and systems regularly.
• Requirement 12: Create and maintain an information security policy.

Control Objects for Information and Related Technology (COBIT) was created by the
Information Systems Audit and Control Association (ISACA) and the IT Governance Institute
(ITGI). It categorizes control objectives into the following domains:

• Planning and organization

• Acquisition and implementation
• Delivery and support
• Monitoring and evaluation

Each domain contains specific control objectives. This standard helps security architects
figure out and plan minimum security requirements for their organizations.

Lastly, ISO/IEC 27001:2013 provides requirements for creating, maintaining, and improving
organizational IS (Information Security) systems. The standard addresses issues such as ensuring
compliance with laws as well as formulating internal security requirements and objectives.

Questions
1. Which of the following would be the best example of a deterrent control?

A. A log aggregation system
B. Hidden cameras onsite
C. A guard posted outside the door
D. Backup recovery systems

2. Enacted in 2002, this U.S. law requires every federal agency to implement information
security programs, including significant reporting on compliance and accreditation. Which
of the following is the best choice for this definition?
A. FISMA
B. HIPAA
C. NIST 800-53
D. OSSTMM

3. Brad has done some research and determined a certain set of systems on his network fail
once every ten years. The purchase price for each of these systems is $1200. Additionally,
Brad discovers the administrators on staff, who earn $50 an hour, estimate five hours to
replace a machine. Five employees, earning $25 an hour, depend on each system and will
be completely unproductive while it is down. If you were to ask Brad for an ALE on these
devices, what should he answer with?
A. $2075
B. $207.50
C. $120
D. $1200

4. An ethical hacker is hired to test the security of a business network. The CEH is given no
prior knowledge of the network and has a specific framework in which to work, defining
boundaries, nondisclosure agreements, and the completion date. Which of the following is
a true statement?
A. A white hat is attempting a black-box test.
B. A white hat is attempting a white-box test.
C. A black hat is attempting a black-box test.

D. A black hat is attempting a gray-box test.
5. When an attack by a hacker is politically motivated, the hacker is said to be participating

in which of the following?
A. Black-hat hacking
B. Gray-box attacks
C. Gray-hat attacks
D. Hacktivism

6. Two hackers attempt to crack a company’s network resource security. One is considered
an ethical hacker, whereas the other is not. What distinguishes the ethical hacker from the
“cracker”?
A. The cracker always attempts white-box testing.
B. The ethical hacker always attempts black-box testing.
C. The cracker posts results to the Internet.
D. The ethical hacker always obtains written permission before testing.

7. In which stage of an ethical hack would the attacker actively apply tools and techniques to
gather more in-depth information on the targets?
A. Active reconnaissance
B. Scanning and enumeration
C. Gaining access
D. Passive reconnaissance

8. Which type of attack is generally conducted as an inside attacker with elevated privileges
on the resources?
A. Gray box
B. White box
C. Black box
D. Active reconnaissance

9. Which of the following Common Criteria processes refers to the system or product being
tested?
A. ST
B. PP
C. EAL
D. TOE

10. Your company has a document that spells out exactly what employees are allowed to do
on their computer systems. It also defines what is prohibited and what consequences await
those who break the rules. A copy of this document is signed by all employees prior to
their network access. Which of the following best describes this policy?
A. Information Security Policy
B. Special Access Policy
C. Information Audit Policy

D. Network Connection Policy
11. Sally is a member of a pen test team newly hired to test a bank’s security. She begins

searching for IP addresses the bank may own by searching public records on the Internet.
She also looks up news articles and job postings to discover information that may be
valuable. In what phase of the pen test is Sally working?
A. Preparation
B. Assessment
C. Conclusion
D. Reconnaissance

12. Joe is a security engineer for a firm. His company downsizes, and Joe discovers he will be
laid off within a short amount of time. Joe plants viruses and sets about destroying data
and settings throughout the network, with no regard to being caught. Which type of hacker
is Joe considered to be?
A. Hacktivist
B. Suicide hacker
C. Black hat
D. Script kiddie

13. Elements of security include confidentiality, integrity, and availability. Which technique
provides for integrity?
A. Encryption
B. UPS
C. Hashing
D. Passwords

14. Which of the following best describes an effort to identify systems that are critical for
continuation of operation for the organization?
A. BCP
B. BIA
C. MTD
D. DRP

Answers
1. C. If you’re doing something as a deterrent, you’re trying to prevent an attack in the first

place. In this physical security deterrent control, a guard visible outside the door could
help prevent physical attacks.

2. A. FISMA has been around since 2002 and was updated in 2014. It gave certain
information security responsibilities to NIST, OMB, and other government agencies, and
declared the Department of Homeland Security (DHS) as the operational lead for budgets
and guidelines on security matters.

3. B. ALE = ARO × SLE. To determine ARO, divide the number of occurrences by the
number of years (1 occurrence / 10 years = 0.1). To determine SLE, add the purchase cost

(1200) plus the amount of time to replace (5 × 50 = 250) plus the amount of lost work (5
hours × 5 employees × 25 = 625). In this case, it all adds up to $2075. ALE = 0.1 × 2075,
or $207.50.

4. A. In this example, an ethical hacker was hired under a specific agreement, making him a
white hat. The test he was hired to perform is a no-knowledge attack, making it a black-
box test.

5. D. Hackers who use their skills and talents to forward a cause or a political agenda are
practicing hacktivism.

6. D. The ethical hacker always obtains written permission before testing and never performs
a test without it!

7. B. The second of the five phases of an ethical hack attempt, scanning and enumeration, is
the step where ethical hackers take the information they gathered in recon and actively
apply tools and techniques to gather more in-depth information on the targets.

8. B. A white-box attack is intended to simulate an internal attacker with elevated privileges,
such as a network administrator.

9. D. The target of evaluation (TOE) is the system or product being tested.
10. A. The Information Security Policy defines what is allowed and not allowed, and what the

consequences are for misbehavior in regard to resources on the corporate network.
Generally this is signed by employees prior to their account creation.

11. B. The assessment phase, which EC-Council also likes to interchangeably denote as the
“conduct” phase sometimes, is where all the activity takes place—including the passive
information gathering performed by Sally in this example.

12. B. A suicide hacker doesn’t care about being caught. Jail time and punishment mean
nothing to these guys. While sometimes they are tied to a political or religious group or
function, sometimes they’re just angry folks looking to make an entity pay for some
perceived wrongdoing.

13. C. A hash is a unique numerical string, created by a hashing algorithm on a given piece of
data, used to verify data integrity. Generally, hashes are used to verify the integrity of files
after download (comparison to the hash value on the site before download) and/or to store
password values. Hashes are created by a one-way algorithm.

14. B. The business impact analysis best matches this description. Although maximum
tolerable downtime is part of the process, and a continuity plan certainly addresses it, a
BIA is the actual process to identify those critical systems.

CHAPTER 2
Reconnaissance: Information Gathering for the
Ethical Hacker

In this chapter, you will
• Define active and passive footprinting
• Identify methods and procedures in information gathering
• Understand the use of social networking, search engines, and Google hacking in

information gathering
• Understand the use of whois, ARIN, and nslookup in information gathering
• Describe the DNS record types

I was watching a nature show on TV a couple nights back and saw a lion pride hunt from start to
finish. The actual end was totally awesome, if a bit gruesome, with a lot of neck biting and
suffocation, followed by bloody chewing. But the buildup to that attack was different altogether.
In a way, it was visually…boring. But if you watched closely, you could see the real work of the
attack was done before any energy was used at all.

For the first three quarters of the program, the cameras focused on lions just sitting there,
seemingly oblivious to the world around them. The herds of antelope, or whatever the heck they
were, saw the lions, but also went about their merry business of pulling up and chewing on grass.
Every so often the lions would look up at the herd, almost like they were counting sheep (or
antelope) in an effort to nap; then they’d go back to licking themselves and shooing away flies. A
couple times they’d get up and stroll aimlessly about, and the herd would react one way or
another. Late in the show, one camera angle across the field got a great shot of a lion turning
from its apathetic appearance to focusing both eyes toward the herd—and you could see what
was coming. When the pride finally went on the attack, it was quick, coordinated, and deadly.

What were these animals doing? In effect (and, yes, I know it’s a stretch here, but just go with
it) they were footprinting. They spent the time figuring out how the herd was moving, where the
old and young were, and the best way to split them off for easy pickings. If we want to be
successful in the virtual world we find ourselves in, then we’d better learn how to gather
information about targets before we even try to attack them. This chapter is all about the tools
and techniques to do that. And for those of you who relish the thought of spy-versus-spy and
espionage, you can still learn a whole lot through good-old legwork and observation, although
most of this is done through virtual means.

Footprinting

Gathering information about your intended target is more than just a beginning step in the overall
attack; it’s an essential skill you’ll need to perfect as an ethical hacker. I believe what most
people wonder about concerning this particular area of our career field comes down to two
questions: What kind of information am I looking for, and how do I go about getting it? Both are
excellent questions (if I do say so myself), and both will be answered in this section. As always,
we’ll cover a few basics in the way of the definitions, terms, and knowledge you’ll need before
we get into the hard stuff.

You were already introduced to the term reconnaissance in Chapter 1, so I won’t bore you
with the definition again here. I do think it’s important, though, that you understand there may be
a difference in definition between reconnaissance and footprinting, depending on which security
professional you’re talking to. For many, recon is more of an overall, overarching term for
gathering information on targets, whereas footprinting is more of an effort to map out, at a high
level, what the landscape looks like. They are interchangeable terms in CEH parlance, but if you
just remember that footprinting is part of reconnaissance, you’ll be fine.

During the footprinting stage, you’re looking for any information that might give you some
insight into the target—no matter how big or small. And it doesn’t necessarily need to be
technical in nature. Sure, things such as the high-level network architecture (what routers are
they using, and what servers have they purchased?), the applications and websites (are they
public-facing?), and the physical security measures (what type of entry control systems present
the first barrier, and what routines do the employees seem to be doing daily?) in place are great
to know, but you’ll probably be answering other questions first during this phase. Questions
concerning the critical business functions, the key intellectual property, the most sensitive
information this company holds may very well be the most important hills to climb in order to
recon your organization appropriately and diligently.

Of course, anything providing information on the employees themselves is always great to
have because the employees represent a gigantic target for you later in the test. Although some of
this data may be a little tricky to obtain, most of it is relatively easy to get and is right there in
front of you, if you just open your virtual eyes.

As far as footprinting terminology goes and getting your feet wet with EC-Council’s view of
it, most of it is fairly easy to remember. For example, while most footprinting is passive in
nature, takes advantage of freely available information, and is designed to be blind to your target,
sometimes an overly security-conscious target organization may catch on to your efforts. If you
prefer to stay in the virtual shadows (and because you’re reading this book, I can safely assume
that you do), your footprinting efforts may be designed in such a way as to obscure their source.
If you’re really sneaky, you may even take the next step and create ways to have your efforts
trace back to anyone and anywhere but you.

NOTE Giving the appearance that someone else has done something illegal is, in itself, a
crime. Even if it’s not criminal activity you’re blaming on someone else, the threat of prison
and/or a civil liability lawsuit should be reason enough to think twice about this.

Anonymous footprinting, where you try to obscure the source of all this information gathering,
may be a great way to work in the shadows, but pseudonymous footprinting is just downright
naughty, making someone else take the blame for your actions. How dare you!

EXAM TIP ECC describes four main focuses and benefits of footprinting for the ethical
hacker:

1. Know the security posture (footprinting helps make this clear).
2. Reduce the focus area (network range, number of targets, and so on).
3. Identify vulnerabilities (self-explanatory).
4. Draw a network map.

Footprinting, like everything else in hacking, usually follows a fairly organized path to
completion. You start with information you can gather from the “50,000-foot view”—using the
target’s website and web resources to collect other information on the target—and then move to
a more detailed view. The targets for gathering this type of information are numerous and can be
easy or relatively difficult to crack open. You may use search engines and public-facing websites
for general, easy-to-obtain information while simultaneously digging through DNS for detailed
network-level knowledge. All of it is part of footprinting, and it’s all valuable; just like an
investigation in a crime novel, no piece of evidence should be overlooked, no matter how small
or seemingly insignificant.

That said, it’s also important for you to remember what’s really important and what the end
goal is. Milan Kundera famously wrote in The Unbearable Lightness of Being, “Seeing is limited
by two borders: strong light, which blinds, and total darkness,” and it really applies here. In the
real world, the only thing more frustrating to a pen tester than no data is too much data. When
you’re on a pen test team and you have goals defined in advance, you’ll know what information
you want, and you’ll engage your activities to go get it. In other words, you won’t (or shouldn’t)
be gathering data just for the sake of collecting it; you should be focusing your efforts on the
good stuff.

There are two main methods for gaining the information you’re looking for. Because you’ll
definitely be asked about them repeatedly on the exam, I’m going to define active footprinting
versus passive footprinting here and then spend further time breaking them down throughout the
rest of this chapter. An active footprinting effort is one that requires the attacker to touch the
device, network, or resource, whereas passive footprinting refers to measures to collect
information from publicly accessible sources. For example, passive footprinting might be
perusing websites or looking up public records, whereas running a scan against an IP you find in
the network would be active footprinting. When it comes to the footprinting stage of hacking, the
vast majority of your activity will be passive in nature. As far as the exam is concerned, you’re
considered passively footprinting when you’re online, checking on websites, and looking up
DNS records, and you’re actively footprinting when you’re gathering social engineering
information by talking to employees.

NOTE Here’s a CEH testing conundrum offered by our astute technical editor: What about
websites designed to scan your target? There are plenty of sites out there that will scan a target
for you, and while it’s actively scanning your target, it’s not YOU actively scanning it.

Lastly, I need to add a final note here on footprinting and your exam, because it needs to be
said. Footprinting is of vital importance to your job, but for whatever reason ECC just doesn’t
focus a lot of attention on it in the exam. It’s actually somewhat disconcerting that this is such a
big part of the job yet just doesn’t get much of its due on the exam. Sure, you’ll see stuff about
footprinting on the exam, and you’ll definitely need to know it (we are, after all, writing an all-
inclusive book here), but it just doesn’t seem to be a big part of the exam. I’m not really sure
why. The good news is, most of this stuff is easy to remember anyway, so let’s get on with it.

Passive Footprinting
Before starting this section, I got to wondering about why passive footprinting seems so
confusing to most folks. During practice exams and whatnot in a class I recently sat through,
there were a few questions missed by most folks concerning passive footprinting. It may have to
do with the term passive (a quick “define passive” web search shows the term denotes inactivity,
nonparticipation, and a downright refusal to react in the face of aggression). Or it may have to do
with some folks just overthinking the question. I think it probably has more to do with people
dragging common sense and real-world experience into the exam room with them, which is
really difficult to let go of. In any case, let’s try to set the record straight by defining exactly what
passive footprinting is and, ideally, what it is not.

NOTE Every once in a while, EC-Council puts something in the CEH study materials that
seems contrary to real life. Many of us who have performed this sort of work know dang good
and well what can and cannot get you caught, and we bristle when someone tells us that, for
instance, dumpster diving is a passive activity. Therefore, do yourself a favor and just stick with
the terms and definitions for your exam. Afterward, you can join the rest of us in mocking it. For
now, memorize, trust, and go forth.

Passive footprinting as defined by EC-Council has nothing to do with a lack of effort and
even less to do with the manner in which you go about it (using a computer network or not). In
fact, in many ways it takes a lot more effort to be an effective passive footprinter than an active
one. Passive footprinting is all about the publicly accessible information you’re gathering and not
so much about how you’re going about getting it. Some methods include gathering of
competitive intelligence, using search engines, perusing social media sites, participating in the

ever-popular dumpster dive, gaining network ranges, and raiding DNS for information. As you
can see, some of these methods can definitely ring bells for anyone paying attention and don’t
seem very passive to common-sense-minded people anywhere, much less in our profession. But
you’re going to have to get over that feeling rising up in you about passive versus active
footprinting and just accept this for what it is—or be prepared to miss a few questions on the
exam.

Passive information gathering definitely contains the pursuit and acquisition of competitive
intelligence, and because it’s a direct objective within CEH and you’ll definitely see it on the
exam, we’re going to spend a little time defining it here. Competitive intelligence refers to the
information gathered by a business entity about its competitors’ customers, products, and
marketing. Most of this information is readily available and can be acquired through different
means. Not only is it legal for companies to pull and analyze this information, it’s expected
behavior. You’re simply not doing your job in the business world if you’re not keeping up with
what the competition is doing. Simultaneously, that same information is valuable to you as an
ethical hacker, and there are more than a few methods to gain competitive intelligence.

NOTE Ever heard of Attention Meter (www.attentionmeter.com)? It compares website traffic
from hosts of different sources and provides traffic data and graphs on it.

The company’s own website is a great place to start. Think about it: What do people want on
their company’s website? They want to provide as much information as possible to show
potential customers what they have and what they can offer. Sometimes, though, this information
becomes information overload. Just some of the open source information you can gather from
almost any company on its site includes company history, directory listings, current and future
plans, and technical information. Directory listings become useful in social engineering, and
you’d probably be surprised how much technical information businesses will keep on their sites.
Designed to put customers at ease, sometimes sites inadvertently give hackers a leg up by
providing details on the technical capabilities and makeup of their network.

Several websites make great sources for competitive intelligence. Information on company
origins and how it developed over the years can be found in places like the EDGAR Database
(www.sec.gov/edgar.shtml), Hoovers (www.hoovers.com), LexisNexis (www.lexisnexis.com),
and Business Wire (www.businesswire.com). If you’re interested in company plans and
financials, the following list provides some great resources:

• SEC Info (www.secinfo.com)
• Experian (www.experian.com)
• Market Watch (www.marketwatch.com)
• Wall Street Monitor (www.twst.com)
• Euromonitor (www.euromonitor.com)

http://www.attentionmeter.com
http://www.sec.gov/edgar.shtml
http://www.hoovers.com
http://www.lexisnexis.com
http://www.businesswire.com
http://www.secinfo.com
http://www.experian.com
http://www.marketwatch.com
http://www.twst.com
http://www.euromonitor.com

NOTE Other aspects that may be of interest in competitive intelligence include the company’s
online reputation (as well as the company’s efforts to control it) and the actual traffic statistics of
the company’s web traffic (www.alexa.com is a great resource for this). Also, check out
finance.google.com, which will show you company news releases on a timeline of its stock
performance—in effect, showing you when key milestones occurred.

Active Footprinting
When it comes to active footprinting, per EC-Council, we’re really talking about social
engineering, human interaction, and anything that requires the hacker to interact with the
organization. In short, whereas passive measures take advantage of publicly available
information that won’t (usually) ring any alarm bells, active footprinting involves exposing your
information gathering to discovery. For example, you can scrub through DNS usually without
anyone noticing a thing, but if you were to walk up to an employee and start asking them
questions about the organization’s infrastructure, somebody is going to notice. I have an entire
chapter dedicated to social engineering coming up (see Chapter 12), but will hit a few highlights
here.

NOTE Social engineering is often overlooked in a lot of pen testing cycles, but honestly it’s an
extremely effective footprinting method. Books like How to Win Friends and Influence People
and The Art of Conversation are fantastic social engineering resources. You’d be surprised how
much you can learn about a target by simply being nice, charming, and a good listener.

Social engineering has a variety of definitions, but it basically comes down to convincing
people to reveal sensitive information, sometimes without even realizing they’re doing it. There
are millions of methods for doing this, and it can sometimes get really confusing. From the
standpoint of active footprinting, the social engineering methods you should be concerned about
involve human interaction. If you’re calling an employee or meeting an employee face to face for
a conversation, you’re practicing active footprinting.

This may seem easy to understand, but it can get confusing in a hurry. For example, I just
finished telling you social media is a great way to uncover information passively, but surely
you’re aware you can use some of these social sites in an active manner. What if you openly use
Facebook connections to query for information? Or what if you tweet a question to someone?
Both of those examples could be considered active in nature, so be forewarned.

http://www.alexa.com
http://finance.google.com

EXAM TIP This is a huge point of confusion on the exam, so let’s clear it up here: in general,
social engineering is an active footprinting method (unless, of course, you’re talking about
dumpster diving, which is defined as passive). What EC-Council is really trying to say is, social
engineering efforts that involve interviewing (phone calls, face-to-face interactions, and social
media) are active, whereas those not involving interviewing aren’t. In short, just memorize
“dumpster diving = passive,” and you’ll be okay.

Footprinting Methods and Tools
In version 10 of the exam, ECC continues putting a lot of focus on the tools themselves and not
so much on the definitions and terms associated with them. This is really good news from one
standpoint—those definitions and terms can get ridiculous, and memorizing the difference
between one term and another doesn’t really don’t do much in the way of demonstrating your
ability as an actual ethical hacker. The bad news is, you have to know countless tools and
methods just in case you see a specific question on the exam. And, yes, there are plenty of tools
and techniques in footprinting for you to learn—both for your exam and your future in pen
testing.

Search Engines
Ever heard of a lovebug? No, I’m not talking about some painted-up VW from the 60’s; I’m
talking about the black bugs that stick together and fly around everywhere in the South at least
twice a year. They’re a plague on all that is good and noble on the planet, and this year, they’re
out in droves.

Yesterday somebody asked me if lovebugs serve a purpose—any purpose at all. If this had
been back in my youth, I would’ve had to shrug and admit I had no idea. If I really wanted to
know, my only recourse would be to go to the library and try to find it in a book (GASP! The
HORROR!). Yesterday, I simply pulled out my smartphone and did what everyone else does—I
googled it. Today, given five minutes and a browser, I sound like an entomologist, with a minor
in Lifestyles of the Lovebug.

NOTE You can google “lovebug lifestyles” yourself and discover the same useless facts I did.
While you’re at it, though, try the other search engines—Bing, Yahoo!, DuckDuckGo, Baidu.
Even AOL and Ask are still out there. It’s good practice for using these search engines to find
information on your target later in testing. Whether or not lovebugs serve a purpose at all, I’ll
leave to you, dear reader.

Pen testing and hacking are no different. Want to learn how to use a tool? Go to YouTube and
somebody has a video on it. Want to define the difference between BIA and MTD? Go to your
favorite search engine and type them in. Need a good study guide for CEH? Type it in and—
voilà—here you are.

Search engines can provide a treasure trove of information for footprinting and, if used
properly, won’t alert anyone you’re looking at them. Mapping and location-specific information,
including drive-by pictures of the company exterior and overhead shots, are so commonplace
now people don’t think of them as footprinting opportunities. However, Google Earth, Google
Maps, and Bing Maps can provide location information and, depending on when the pictures
were taken, can show potentially interesting intelligence. Even personal information—like
residential addresses and phone numbers of employees—are oftentimes easy enough to find
using sites such as Linkedin.com and Pipl.com.

A really cool tool along these same lines is Netcraft (www.netcraft.com). Fire it up and take a
look at all the goodies you can find. Restricted URLs, not intended for public disclosure, might
just show up and provide some juicy tidbits. If they’re really sloppy (or sometimes even if
they’re not), Netcraft output can show you the operating system (OS) on the box too.

NOTE Netcraft has a pretty cool toolbar add-on for Firefox and Chrome
(http://toolbar.netcraft.com/).

Another absolute goldmine of information on a potential target is job boards. Go to
CareerBuilder.com, Monster.com, Dice.com, or any of the multitude of others, and you can find
almost everything you’d want to know about the company’s technical infrastructure. For
example, a job listing that states “Candidate must be well versed in Windows Server 2012 R2,
Microsoft SQL Server 2016, and Veritas Backup services” isn’t representative of a network
infrastructure made up of Linux servers. The technical job listings flat-out tell you what’s on the
company’s network—and oftentimes what versions. Combine that with your astute knowledge of
vulnerabilities and attack vectors, and you’re well on your way to a successful pen test!

Footprinting Gone Wild
Suppose, for a moment, you’re actually on a pen test team and you’ve all done things the right
way. You hammered out an agreement beforehand, set your scope, agreed on what should be
exploited (or not), and got all your legal stuff taken care of and signed off by the right people.
You follow your team lead’s direction and accomplish the tasks set before you—this time just
some basic (dare I say, passive) reconnaissance. After a few steps and pokes here and there,
you run a webcrawler (like Black Widow, GSA Email Spider, NCollector Studio, or even
GNU Wget), hoping to get some contact information and employee data. At the end of the
day the team gets together to review findings and potential problems. Your team lead enters
the room angry and frustrated. It seems that some web application data was deleted in
response to an information grab. The team turns and looks at you: “What did I do?!”

http://Linkedin.com
http://Pipl.com
http://www.netcraft.com
http://toolbar.netcraft.com/
http://CareerBuilder.com
http://Monster.com
http://Dice.com

Most pen test agreements have some kind of clause built in to protect the team from just
such an occurrence. Can a web spider actually cause the deletion of information from very,
very poorly programmed web applications? Of course it can, and you—the hapless team
member—would have no idea about said terrible application until you ran a test (in this case,
a crawl) against it.

Could you be held accountable? Should you be held accountable? The answer is, maybe. If
you don’t ensure your pen test agreement is in order and if there’s nothing like

Due to the execution of toolsets, exploits, and techniques, the possibility exists for the
unintentional deletion or modification of sensitive data in the test environment, which
may include production-level systems...

in your agreement, followed by a statement absolving your team from unintentional problems,
then, yes—congratulations—you’re accountable.

Want another one you should think about? Try worrying about what actions your target
takes when they see you. If a network admin shuts everything down because he thinks they’re
under attack and that causes fill in the blank, are you at fault? You may be if you don’t have a
clause that reads something like the following:

The actions taken by the target in response to any detection of our activities are also
beyond our control…

What happens if a client decides they don’t want to accept that clause in the agreement?
Well, since there’s absolutely no way to guarantee even the calmest of pen test tools and
techniques won’t alter or even destroy data or systems, my advice would be to run. Just
because toolsets and techniques are designated passive in nature, and just because they aren’t
designed to exploit or cause harm, don’t believe you can just fire away and not worry about it.
And just as facts don’t care about feelings, tools don’t give a rip about your intent. Get your
agreement in order first, then let your tools out on Spring Break.

NOTE The Computer Fraud and Abuse Act (1986) makes conspiracy to commit hacking a
crime. Therefore, it’s important the ethical hacker get an ironclad agreement in place before even
attempting basic footprinting.

While we’re on the subject of using websites to uncover information, don’t neglect the
innumerable options available to you—all of which are free and perfectly legal. Social
networking sites can provide all sorts of information. Sites such as LinkedIn
(www.linkedin.com), where professionals build relationships with peers, can be a great place to
profile for attacks later. Facebook and Twitter are also great sources of information, especially
when the company has had layoffs or other personnel problems recently—disgruntled former

http://www.linkedin.com

employees are always good for some relevant company dirt. And, just for some real fun, check
out http://en.wikipedia.org/wiki/Robin_Sage to see just how powerful social networking can be
for determined hackers.

EXAM TIP You can also use alerting to help monitor your target. Google, Yahoo!, and
Twitter all offer services that provide up-to-date information that can be texted or e-mailed to
you when there is a change.

Google Hacking
A useful tactic in footprinting a target was popularized mainly in late 2004 by a guy named
Johnny Long, who was part of an IT security team at his job. While performing pen tests and
ethical hacking, he started paying attention to how the search strings worked in Google. The
search engine has always had additional operators designed to allow you to fine-tune your search
string. What Mr. Long did was simply apply that logic for a more nefarious purpose.

Suppose, for example, instead of just looking for a web page on boat repair or searching for
an image of a cartoon cat, you decided to tell the search engine, “Hey, do you think you can look
for any systems that are using Remote Desktop Web Connection?” Or how about, “Can you
please show me any MySQL history pages so I can try to lift a password or two?” Amazingly
enough, search engines can do just that for you, and more. The term this practice has become
known by is Google hacking.

Google hacking involves manipulating a search string with additional specific operators to
search for vulnerabilities. Table 2-1 describes advanced operators for Google hack search strings.

http://en.wikipedia.org/wiki/Robin_Sage

Table 2-1 Google Search String Operators

Innumerable websites are available to help you with Google hack strings. For example, from
the Google Hacking Database (a site operated by Mr. Johnny Long and Hackers for Charity,
www.hackersforcharity.org/ghdb/), try this string from wherever you are right now:

http://www.hackersforcharity.org/ghdb/

NOTE That filetype: operator in Table 2-1 offers loads of cool stuff. If you want a good list of
file types to try, check out https://support.google.com/webmasters/answer/35287?hl=en (a link
showing many file types). And don’t forget, source code and all sorts of craziness are indexable,
and thus often accessible, so don’t discount anything!

Basically we’re telling Google to go look for web pages that have TSWEB in the URL
(indicating a remote access connection page), and you want to see only those that are running the
default HTML page (default installs are common in a host of different areas and usually make
things a lot easier for an attacker). I think you may be surprised by the results—I even saw one
page where an admin had edited the text to include the logon information.

NOTE Google hacking is such a broad topic it’s impossible to cover all of it in one section of a
single book. This link, among others, provides a great list to work through:
http://it.toolbox.com/blogs/managing-infosec/google-hacking-master-list-28302. Take advantage
of any of the websites available and learn more as you go along. What you’ll need exam-wise is
to know the operators and how to use them.

As you can see, Google hacking can be used for a wide range of purposes. For example, you
can find free music downloads (pirating music is a no-no, by the way, so don’t do it) using the
following:

You can also discover open vulnerabilities on a network. For example, the following provides
any page holding the results of a vulnerability scan using Nessus (interesting to read, wouldn’t
you say?):

Combine these with the advanced operators, and you can really dig down into some
interesting stuff. Again, none of these search strings or “hacks” is illegal—you can search for
anything you want (assuming, of course, you’re not searching for illegal content, but don’t take
your legal advice from a certification study book). However, actually exploiting anything you
find without prior consent will definitely land you in hot water.

And if Google hacking weren’t easy enough, there are a variety of tools to make it even more
powerful. Tools such as SiteDigger (www.mcafee.com) use Google hack searches and other
methods to dig up information and vulnerabilities. Metagoofil (www.edge-security.com) uses
Google hacks and cache to find unbelievable amounts of information hidden in the meta tags of

https://support.google.com/webmasters/answer/35287?hl=en
http://it.toolbox.com/blogs/managing-infosec/google-hacking-master-list-28302
http://www.mcafee.com
http://www.edge-security.com

publicly available documents. Find the browser and search engine of your choice and look for
“Google hack tools.” You’ll find more than a few available for play.

Another note on Google hacking: it’s not as easy to pull off as it once was. Google, for
reasons I will avoid discussing here because it angers me to no end, has decided it needs to
police search results to prevent folks from using the search engine as it was intended to be used.
As you can see from Figure 2-1, and probably from your own Google hacking attempts in
learning this opportunity, Google will, from time to time, throw up a CAPTCHA if it believes
you’re a “bot” or trying to use the search engine for nefarious purposes. There are ways around
the annoyance that are well documented and accessible via Google searches, but it still doesn’t
take away the annoyance factor. With that in mind, while Google hacking is, well, part of
Google, don’t discount using other search engines in looking for your holy grail.

Figure 2-1 Google CAPTCHA

Geek Humor
I admit it, a lot of us in the technical realm of life don’t always seem to have the greatest of
social skills. In fact, finding a tech guy who can actually communicate with other human
beings in a professional or personal setting is like finding a four-leaf clover. But no one can
ever say geeks don’t have a decent sense of humor. Until recently, though, geek humor was
more of an inside baseball thing—something we knew about and shared among ourselves,
gazing down our noses at the teeming masses of users who had no idea what we were talking
about. But pop culture and Hollywood finally caught up with us.

In 2011, a guy named Ernest Cline wrote a fantastic book called Ready Player One. It’s a
fast-paced tale filled with glorious 80’s references, wonderful characters, and an original
story, and is easily one of my favorite escape fiction novels of all time. In it, a creator of a
wildly popular virtual reality world hid a prize inside his digital creation and, after his death,
made a huge game out of the search for his “Easter egg.”

It used to be that mentioning the term “Easter egg” made folks think about small tubs of

vinegar-water food coloring and kids running around fields gathering colored hard-boiled or
plastic eggs. But after the book’s release (and the subsequent blasphemous, substandard,
horrendous mockery that is the 2018 movie version of the book), most folks knew that an
Easter egg is something developers put in an application, website, or game just for giggles.
Outside of “gunters” hunting the egg down in a giant virtual world (using their wits and
intelligence in the book, or sheer blind luck in the terrible movie), most Easter eggs are
usually accessible by some weird combination of steps and clicks. Or sometimes it’s just part
of the way things work. For example, a long, long time ago Excel had an Easter egg that
showed computerized images of the busts of the developers.

Google has a ton of Easter eggs. For example, open Google and start typing Do a barrel
roll and press ENTER: the entire screen will (sometimes before you even finish typing) perform
a barrel roll. Another? Perform an image search and type atari breakout. The images will
display and then shrink and begin a pong game you can control with the mouse. Enter binary,
and the number of results displays in binary instead of decimal. And typing tilt actually tilts
the screen.

I could go on and on and write an entire section called “Fun with Google,” but you get the
point. Search, explore, and have some fun. There’s plenty of time to study, and who says you
can’t have fun while doing it? Besides, you may really want to know how many degrees of
separation Zach Galifianakis has from Kevin Bacon. Doing a search for Bacon number Zach
Galifianakis will let you know that the answer is 2.

NOTE More geek humor? Glad you asked. If you’ve ever been asked a ridiculous question by
someone and wanted to tell them to just use a search engine like everybody else, try Let Me
Google That For You. Suppose someone asks you “Who was the thirteenth president?” or
“What’s the atomic weight of hydrogen?” Instead of looking up the answer, go to
www.lmgtfy.com and type in the question. Send the person the link and, upon opening it, he or
she will see a page typing the question in a Google search window and clicking Google Search.
Sarcastic? Of course. Funny? No doubt. Worth it? Absolutely.

Lastly, Google also offers another neat option called “Advanced Search.” If you point your
browser to www.google.com/advanced_search, many of these strings we try so desperately to
remember are taken care of and laid out in a nice GUI format. The top portion of the Advanced
Search page prompts “Find pages with…” and provides options to choose from. Scroll down just
a tad, and the next section reads “Then narrow your results by…”, providing options such as
language, last updated, and where specific terms appear in or on the site. You can also click links
at the bottom to find pages “similar to, or link to, a URL,” among other helpful options. I
considered adding a picture of it here, but it’s more than a full page in the browser. The format is
easy enough, and I don’t think you’ll have a problem working your way around it.

http://www.lmgtfy.com
http://www.google.com/advanced_search

Website and E-mail Footprinting
Website and e-mail footprinting may require a little more effort and technical knowledge, but it’s
worth it (not to mention EC-Council has devoted two entire slide show sections to the material,
so you know it’s gonna be good). Analyzing a website from afar can show potentially interesting
information, such as software in use, OS, filenames, paths, and contact details. Using tools such
as Burp Suite, Firebug, and Website Informer allows you to grab headers and cookies, and learn
connection status, content type, and web server information. Heck, pulling the HTML code itself
can provide useful intel. You might be surprised what you can find in those “hidden” fields, and
some of the comments thrown about in the code may prove handy. A review of cookies might
even show you software or scripting methods in use. E-mail headers provide more information
than you might think, and are easy enough to grab and examine. And tracking e-mail? Hey, it’s
not only useful for information, it’s just downright fun.

Although it doesn’t seem all that passive, web mirroring is a great method for footprinting.
Copying a website directly to your system (“mirroring” it) can definitely help speed things along.
Having a local copy to play with lets you dive deeper into the structure and ask things like
“What’s this directory for over here?” and “I wonder if this site is vulnerable to fill-in-chosen-
vulnerability without alerting the target organization.” Tools for accomplishing this are many and
varied, and while the following list isn’t representative of every web mirroring tool out there, it’s
a good start:

• HTTrack (www.httrack.com)
• Black Widow (http://softbytelabs.com)
• WebRipper (www.calluna-software.com)
• Teleport Pro (www.tenmax.com)
• GNU Wget (www.gnu.org)
• Backstreet Browser (http://spadixbd.com)

Although it’s great to have a local, current copy of your target website to peruse, let’s not
forget that we can learn from history too. Information relevant to your efforts may have been
posted on a site at some point in the past but has since been updated or removed. EC-Council
absolutely loves this as an information-gathering source, and you are certain to see
www.archive.org and Google Cache queried somewhere on your exam. The Wayback Machine,
available at Archive.org (see Figure 2-2), keeps snapshots of sites from days gone by, allowing
you to go back in time to search for lost information; for example, if the company erroneously
had a phone list available for a long while but has since taken it down, you may be able to
retrieve it from a “way back” copy. These options provide insight into information your target
may have thought they’d safely gotten rid of—but as the old adage says, “once posted, always
available.”

http://www.httrack.com
http://softbytelabs.com
http://www.calluna-software.com
http://www.tenmax.com
http://www.gnu.org
http://spadixbd.com
http://www.archive.org
http://Archive.org

Figure 2-2 Archive.org’s Wayback Machine

EXAM TIP Website Watcher (http://aignes.com) can be used to check web pages for changes,
automatically notifying you when there’s an update.

And let’s not forget good old e-mail as a footprinting source here. E-mail communication can
provide us IP address and physical location information. Links visited by the recipient may also
be available, as well as browser and OS information. Heck, you can sometimes even see how
long they spend reading the e-mail.

Have you ever actually looked at an e-mail header? You can really get some extraordinary
detail out of it, and sometimes sending a bogus e-mail to the company and watching what comes
back can help you pinpoint a future attack vector (see Figure 2-3 for an example). If you want to
go a step further, you can try some of the many e-mail tracking tools. E-mail tracking
applications range from easy, built-in efforts on the part of your e-mail application provider
(such as a read receipt and the like within Microsoft Outlook) to external apps and efforts (from
places such as www.emailtrackerpro.com and www.mailtracking.com). Simply appending
“.mailtracking.com” to the end of an e-mail address, for example, can provide a host of
information about where the e-mail travels and how it gets there. Examples of tools for e-mail
tracking include GetNotify, ContactMonkey, Yesware, Read Notify, WhoReadMe, MSGTAG,
Trace Email, and Zendio.

http://Archive.org
http://aignes.com
http://www.emailtrackerpro.com
http://www.mailtracking.com
http://mailtracking.com

Figure 2-3 E-mail header

DNS Footprinting
I hate getting lost. Now, I’m not saying I’m always the calmest driver and that I don’t complain
(loudly) about circumstances and other drivers on the road, but I can honestly say nothing puts
me on edge like not knowing where I’m going while driving, especially when the directions
given to me don’t include the road names. I’m certain you know what I’m talking about—
directions that say, “Turn by the yellow sign next to the drugstore and then go down half a mile
and turn right onto the road beside the walrus-hide factory. You can’t miss it.” Inevitably I do
wind up missing it, and cursing ensues.

Thankfully, negotiating the Internet isn’t reliant on crazed directions. The road signs we have
in place to get to our favorite haunts are all part of the Domain Naming System (DNS), and they
make navigation easy. DNS, as you’re no doubt already aware, provides a name-to-IP-address
(and vice versa) mapping service, allowing us to type in a name for a resource as opposed to its
address. This also provides a wealth of footprinting information for the ethical hacker—so long
as you know how to use it.

NOTE Although DNS records are easy to obtain and generally designed to be freely available,
this passive footprinting can still get you in trouble. A computer manager named David Ritz was
successfully prosecuted in 2008 for querying a DNS server. It was truly a ridiculous ruling, but
the point remains that legality and right versus wrong seem always in the eye of the beholder—
so be careful.

DNS Basics
As we established in the introduction (you did read it, right?), there are certain things you’re just
expected to know before undertaking this certification and career field, and DNS is one of them.
So, no, I’m not going to spend pages covering DNS. But we do need to take at least a couple of
minutes to go over some basics—mainly because you’ll see this stuff on the CEH exam. The
simplest explanation of DNS I can think of follows.

DNS is made up of servers all over the world. Each server holds and manages the records for
its own little corner of the globe, known in the DNS world as a namespace. Each of these records
gives directions to or for a specific type of resource. Some records provide IP addresses for
individual systems within your network, whereas others provide addresses for your e-mail
servers. Some provide pointers to other DNS servers, which are designed to help people find
what they’re looking for.

NOTE Port numbers are always important in discussing anything network-wise. When it
comes to DNS, 53 is your number. Name lookups generally use UDP, whereas zone transfers use
TCP.

Big, huge servers might handle a namespace as big as the top-level domain “.com,” whereas
another server further down the line holds all the records for “mheducation.com.” The beauty of
this system is that each server only has to worry about the name records for its own portion of
the namespace and to know how to contact the server “above” it in the chain for the top-level
namespace the client is asking about. The entire system looks like an inverted tree, and you can
see how a request for a particular resource can easily be routed correctly to the appropriate
server. For example, in Figure 2-4, the server for anyname.com in the third level holds and
manages all the records for that namespace, so anyone looking for a resource (such as their
website) could ask that server for an address.

http://mheducation.com
http://anyname.com

Figure 2-4 DNS structure

The only downside to this system is that the record types held within your DNS system can
tell a hacker all she needs to know about your network layout. For example, do you think it
might be important for an attacker to know which server in the network holds and manages all
the DNS records? What about where the e-mail servers are? Heck, for that matter, wouldn’t it be
beneficial to gains hints on which systems may behold public-facing websites? All this may be
determined by examining the DNS record types, which I’ve so kindly listed in Table 2-2.

Table 2-2 DNS Record Types

EXAM TIP Know the DNS records well and be able to pick them out of a lineup. You will
definitely see a DNS zone transfer on your exam and will be asked to identify information about
the target from it.

These records are maintained and managed by the authoritative server for your namespace
(the SOA), which shares them with your other DNS servers (name servers) so your clients can
perform lookups and name resolutions. The process of replicating all these records is known as a
zone transfer. Considering the importance of the records kept here, it is obvious administrators
need to be careful about which IP addresses are actually allowed to perform a zone transfer—if

you allowed just any IP to ask for a zone transfer, you might as well post a network map on your
website to save everyone the trouble. Because of this, most administrators restrict the ability to
even ask for a zone transfer to a small list of name servers inside their network. Additionally,
some admins don’t even configure DNS at all and simply use IP addresses for their critical hosts.

NOTE When it comes to DNS, it’s important to remember there are two real servers in play
within your system. Name resolvers simply answer requests. Authoritative servers hold the
records for a namespace, given from an administrative source, and answer accordingly.

An additional note is relevant to the discussion here, even though we’re not in the attacks
portion of the book yet. Think for a moment about a DNS lookup for a resource on your
network: say, for instance, a person is trying to connect to your FTP server to upload some
important, sensitive data. The user types in ftp.anycomp.com and presses ENTER. The DNS
server closest to the user (defined in your TCP/IP properties) looks through its cache to see
whether it knows the address for ftp.anycomp.com. If it’s not there, the server works its way
through the DNS architecture to find the authoritative server for anycomp.com, which must have
the correct IP address. This response is returned to the client, and FTP-ing begins happily
enough.

Suppose, though, you are an attacker and you really want that sensitive data yourself. One
way to do it might be to change the cache on the local name server to point to a bogus server
instead of the real address for ftp.anycomp.com. Then the user, none the wiser, would connect
and upload the documents directly to your server. This process is known as DNS poisoning, and
one simple mitigation is to restrict the amount of time records can stay in cache before they’re
updated. There are loads of other ways to protect against this, which we’re not going to get into
here, but it does demonstrate the importance of protecting these records—and how valuable they
are to an attacker.

EXAM TIP DNS poisoning is of enough importance that an entire extension to DNS was
created, way back in 1999. The Domain Name System Security Extensions (DNSSEC) is a suite
of IETF specifications for securing certain kinds of information provided by DNS. Dan
Kaminsky made DNS vulnerabilities widely known back around 2010, and many service
providers are rolling this extension out to ensure that DNS results are cryptographically
protected.

The SOA record provides loads of information, from the hostname of the primary server in
the DNS namespace (zone) to the amount of time name servers should retain records in cache.
The record contains the following information (all default values are from Microsoft DNS server
settings):

http://ftp.anycomp.com
http://ftp.anycomp.com
http://anycomp.com
http://ftp.anycomp.com

• Source host Hostname of the primary DNS server for the zone (there should be an
associated NS record for this as well).

• Contact e-mail E-mail address of the person responsible for the zone file.
• Serial number Revision number of the zone file. This number increments each time the

zone file changes and is used by a secondary server to know when to update its copy (if
the SN is higher than that of the secondary, it’s time to update!).

• Refresh time The amount of time a secondary DNS server will wait before asking for
updates. The default value is 3600 seconds (1 hour).

• Retry time The amount of time a secondary server will wait to retry if the zone transfer
fails. The default value is 600 seconds.

• Expire time The maximum amount of time a secondary server will spend trying to
complete a zone transfer. The default value is 86,400 seconds (1 day).

• TTL The minimum “time to live” for all records in the zone. If not updated by a zone
transfer, the records will perish. The default value is 3600 seconds (1 hour).

Is That a Forest Behind Those Trees?
DNS is undoubtedly the magic running the machine. Without the ability to quickly and
efficiently translate a name to an IP address, the Internet might’ve bogged down long, long
ago. Sure, we might’ve used it for education and file transfers, but can anyone imagine the
Internet without www.insertnamehere.com? And it’s precisely because of that ease of use,
that ability to just type a name and click “go,” without really knowing exactly where you’re
headed, that sometimes causes heartache and headache for security personnel. Just imagine
the havoc inside an organization if a bad guy somehow got hold of the DNS servers and
started pointing people to places they’d never knowingly go. But if you think about how name
lookup really happens on a machine, you may not even need to get to the DNS system as a
whole to cause real problems.

In general, when you type a URL in a browser on a Windows machine, the system takes a
couple laps locally before checking DNS. First, the OS will check to see if the request is for
itself (that is, localhost or its own name). If not, it’ll then query the local HOSTS file. If the
name resolution isn’t found there, then it’ll go to DNS and query (in order) the local cache,
the primary (local) DNS server, and then anything it can find in the entirety of the DNS
system it can get to. If, again, no name is found, Windows will turn to NetBIOS, WINS, and
the LMHOSTS file.

See how this can become an issue? At each step, if a name resolution is found, the process
stops and the search ends. Therefore, if the real name resolution is in step four, but you can
find a way to interject a fake one in step 2, then why bother hacking DNS in an organization if
you can grab and replace a HOSTS file on the box? Try it yourself on your home system.
Navigate to C:\Windows\System32\Drivers\etc\ and open the HOSTS file in Notepad. Add an
entry like this:

Save, close everything; then, open a browser and try to open Google.com. The worst page on
the Internet appears instead. Why? Because once Windows found the name resolution, it
stopped looking: no need to bother DNS when the answer is right here in the HOSTS file.

http://www.insertnamehere.com
http://Google.com

See how this can get hairy and dangerous really quickly? If an attacker can simply add a
couple lines of text to the HOSTS file on the machine, he or she could redirect traffic without
the user ever having to touch DNS at all. But while we’re all aware (or should be anyway) of
the importance of protecting access to that particular file to prevent bad guys from using it,
have you ever considered using it for good purposes?

Why not update your HOSTS file to “blackhole” sites you know to be malicious? Why not
redirect access requests to sites your employees are not supposed to be visiting at work to a
friendly reminder site or a valid business site? See, your system is going to check the HOSTS
file before making any trips to resolve names in the first place, so whatever you put there is
law as far as a PC is concerned.

Pull up a search engine and look up “blocking unwanted connection with a hosts file.”
You’ll find countless HOSTS file versions to go to, and after carefully screening them
yourself, of course, you may find implementing them in your business or home saves you a
malware incident or two in the future. Or you could just continue having fun and send all
Google.com requests to a dancing hamster video. In any case, don’t ignore this simple
resource in an attempt to better your security. It’s easy, and it works.

P.S. Don’t forget to delete that entry we added earlier from your HOSTS file. Unless you
just like that page. Ugh.

I think, by now, it’s fairly evident why DNS footprinting is an important skill for you to
master. So, now that you know a little about the DNS structure and the records kept there (be
sure to review them well before your exam—you’ll thank me later), it’s important for us to take a
look at some of the tools available for your use as an ethical hacker. The following discussions
won’t cover every tool available—and you won’t be able to proclaim yourself an expert after
reading them—but you do need to know the basics for your exam, and we’ll make sure to hit
what we need.

In the dawn of networking time, when dinosaurs roamed outside the buildings and cars had a
choice between regular and unleaded gas, setting up DNS required not only a hierarchical design
but someone to manage it. Put simply, someone had to be in charge of registering who owned
what name and which address ranges went with it. For that matter, someone had to hand out the
addresses in the first place.

IP address management started with a happy little group known as the Internet Assigned
Numbers Authority (IANA), which finally gave way to the Internet Corporation for Assigned
Names and Numbers (ICANN). ICANN manages IP address allocation and a host of other
things. So, as companies and individuals get their IP addresses (ranges), they simultaneously
need to ensure the rest of the world can find them in DNS. This is done through one of any
number of domain name registrants worldwide (for example, www.networksolutions.com,
www.godaddy.com, and www.register.com). Along with those registrant businesses, the
following five regional Internet registries (RIRs) provide overall management of the public IP
address space within a given geographic region:

• American Registry for Internet Numbers (ARIN) Canada, many Caribbean and North
Atlantic islands, and the United States

• Asia-Pacific Network Information Center (APNIC) Asia and the Pacific

http://Google.com
http://www.networksolutions.com
http://www.godaddy.com
http://www.register.com

• Réseaux IP Européens (RIPE) NCC Europe, Middle East, and parts of Central
Asia/Northern Africa. (If you’re wondering, the name is in French.)

• Latin America and Caribbean Network Information Center (LACNIC) Latin
America and the Caribbean

• African Network Information Center (AfriNIC) Africa

Obviously, because these registries manage and control all the public IP space, they should
represent a wealth of information for you in footprinting. Gathering information from them is as
easy as visiting their sites (ARIN’s is www.arin.net) and inputting a domain name. You’ll get
information such as the network’s range, organization name, name server details, and origination
dates. Figure 2-5 shows a regional coverage map for all the registries.

Figure 2-5 Regional registry coverage map

You can also make use of a tool known as whois. Originally started in Unix, whois has
become ubiquitous in operating systems everywhere and has generated any number of websites
set up specifically for that purpose. It queries the registries and returns information, including
domain ownership, addresses, locations, and phone numbers.

To try it for yourself, use your favorite search engine and type in whois. You’ll get millions of
hits on everything from the use of the command line in Unix to websites performing the task for
you. For example, the second response on my search returned www.whois.sc—a site I’ve used
before. Open the site and type in mheducation.com (the site for McGraw-Hill Education, my
publisher). You’ll find all kinds of neat information at the top on the page—registrant org,
registrar, status, IP address, where it’s located, the server type hosting the site (Apache), date
created (and last time the record was updated), and how long they can keep the name without re-

http://www.arin.net
http://www.whois.sc
http://mheducation.com

upping (expires June 8 of 2019, better get on it guys), and even how many image files on the site
are missing alt tags (just one).

Scroll down, and the whois record itself is displayed. I’ve copied portions of it here for your
review. Notice the administrative, technical, and registrant contact information displayed and
how nicely McGraw-Hill ensured it was listed as a business name instead of an individual—way
to go, guys! Additionally, notice the three main DNS servers for the namespace listed at the
bottom, as well as that (ahem) notice on DNSSEC.

NOTE As of December 2010, the Truth in Caller ID Act (www.fcc.gov/guides/caller-id-and-
spoofing) stated a person who knowingly transmits misleading caller ID information can be hit
with a $10,000 fine per incident.

If you do a search or two on some local business domains, I’d bet large sums of cash you’ll
find individuals listed on many of them. And I’m sure a few of you are saying, “So what? What’s
the big deal in knowing the phone number to reach a particular individual?” Well, when you
combine that information with resources such as Spoofcard (www.spoofcard.com), you have a
ready-made attack set up. Imagine spoofing the phone number you just found as belonging to the
technical point of contact (POC) for the website and calling nearly anyone inside the
organization to ask for information. Caller ID is a great thing, but it can also lead to easy attacks
for a clever ethical hacker. Lots of whois outputs will give you all the phone numbers, e-mail
addresses, and other information you’ll need later in your attacks.

EXAM TIP You’re going to need to be familiar with whois output, paying particular attention
to registrant and administrative names, contact numbers for individuals, and the DNS server
names.

Another useful tool in the DNS footprinting toolset is an old standby, a command-line tool
people have used since the dawn of networking: nslookup. This is a command that’s part of
virtually every operating system in the world, and it provides a means to query DNS servers for
information. The syntax for the tool is fairly simple:

The command can be run as a single instance, providing information based on the options you
choose, or you can run it in interactive mode, where the command runs as a tool, awaiting input
from you.

For example, on a Microsoft Windows machine, if you simply type nslookup at the prompt,
you’ll see a display showing your default DNS server and its associated IP address. From there,
nslookup sits patiently, waiting for you to ask whatever you want (as an aside, this is known as
interactive mode). Typing a question mark shows all the options and switches you have
available. For example, the command

tells nslookup all you’re looking for are records on e-mail servers. Entering a domain name after
that will return the IP addresses of all the mail servers DNS knows about for that namespace.

The command nslookup can also provide for something known as a zone transfer. As stated

http://www.fcc.gov/guides/caller-id-and-spoofing
http://www.spoofcard.com

earlier, a zone transfer differs from a “normal” DNS request in that it pulls every record from the
DNS server instead of just the one, or one type, you’re looking for. To use nslookup to perform a
zone transfer, first make sure you’re connected to the SOA server for the zone and then try the
following steps:

1. Enter nslookup at the command line.
2. Type server <IPAddress>, using the IP address of the SOA. Press ENTER.
3. Type set type=any and press ENTER.
4. Type ls -d domainname.com, where domainname.com is the name of the zone, and then

press ENTER.

Either you’ll receive an error code, because the administrator has done her job correctly, or
you’ll receive a copy of the zone transfer, which looks something like this:

The areas in bold are of particular importance. In the SOA itself, 2013090800 is the serial
number, 86400 is the refresh interval, 900 is the retry time, 1209600 is the expiry time, and 3600
defines the TTL for the zone. If you remember our discussion on DNS poisoning earlier, it may
be helpful to know the longest a bad DNS cache can survive here is one hour (3600 seconds).
Also notice the MX record saying, “The server providing our e-mail is named
mailsrv.anycomp.com,” followed by an A record providing its IP address. That’s important
information for an attacker to know, wouldn’t you say?

TIP After finding the name servers for your target, type nslookup at the command prompt to
get into interactive mode and then change to your target’s name server (by typing server
servername). Performing DNS queries from a server inside the network might provide better
information than relying on your own server.

Another option for viewing this information is the dig command utility. Native to Unix
systems but available as a download for Windows systems (along with BIND 9), dig is used to
test a DNS query and report the results. The basic syntax for the command looks like

http://domainname.com
http://domainname.com
http://mailsrv.anycomp.com

where server is the name or IP of the DNS name server, name is the name of the resource you’re
looking for, and type is the type of record you want to pull.

You can add dozens of switches to the syntax to pull more explicit information. To see all the
switches available, use the following at the command line:

EXAM TIP You need to know nslookup syntax and output very well. Be sure you know how
to get into interactive mode with nslookup and how to look for specific information once there.
You’ll definitely see it on your exam.

Network Footprinting
Discovering and defining the network range can be another important footprinting step to
consider. Knowing where the target’s IP addresses start and stop greatly limits the time you’ll
need to spend figuring out specifics later—provided, of course, your target operates in their own
IP range. If your objective happens to run services in a cloud (and rest easy, dear reader, we have
another entire chapter dedicated to cloud upcoming), this may prove somewhat frustrating, but at
least you’ll know what you’re up against. One of the easiest ways to see what range the
organization owns or operates in—at least on a high level—is to make use of freely available
registry information.

For example, suppose you knew the IP address of a WWW server (easy enough to discover,
as you just learned in the previous sections). If you simply enter that IP address in www.arin.net,
the network range will be shown. As you can see in Figure 2-6, entering the IP address of
www.mheducation.com (54.164.59.97) gives us the entire network range. In this case, the
response displays a range owned and operated by Amazon services, indicating MH Education is
making use of Amazon’s cloud services. ARIN also provides a lot of other useful information as
well, including the administrative and technical point of contact (POC) for the IP range. In this
case, as you can see in Figure 2-7, the contacts displayed point us, again, to Amazon web
services POCs, letting us know MH Education is relying on Amazon’s security measures and
controls (in part) to protect their resources.

http://www.arin.net
http://www.mheducation.com

Figure 2-6 Network range from ARIN

Figure 2-7 POC information from ARIN

Another tool available for network mapping is traceroute (or tracert hostname on Windows

systems), which is a command-line tool that tracks a packet across the Internet and provides the
route path and transit times. It accomplishes this by using ICMP ECHO packets (UDP datagrams
in Linux versions) to report information on each “hop” (router) from the source to the
destination. The TTL on each packet increments by one after each hop is hit and returns,
ensuring the response comes back explicitly from that hop and returns its name and IP address.
Using this, an ethical hacker can build a picture of the network. For example, consider a
traceroute command output from my laptop here in Melbourne, Florida, to a local surf shop just
down the road (names and IPs were changed to protect the innocent):

A veritable cornucopia of information is displayed here. Notice, though, the entry in line 12,
showing timeouts instead of the information we’re used to seeing. This indicates, usually, a
firewall that does not respond to ICMP requests—useful information in its own right. Granted,
it’s sometimes just a router that ditches all ICMP requests, or even a properly configured Layer 3
switch, but it’s still interesting knowledge. To test this, a packet capture device will show the
packets as Type 11, Code 0 (TTL Expired) or as Type 3, Code 13 (Administratively Blocked).

NOTE Traceroute will often simply time out in modern networking because of filtering and
efforts to keep uninvited ICMP from crossing the network boundary.

All this information can easily be used to build a pretty comprehensive map of the network
between my house and the local surf shop down the road on A1A. As a matter of fact, many
tools can save you the time and trouble of writing down and building the map yourself. These
tools take the information from traceroute and build images, showing not only the IPs and their
layout but also the geographic locations where you can find them. McAfee’s Visual Trace
(NeoTrace to some) is one such example; others include Trout and VisualRoute. Other traceroute
tools include Magic NetTrace, Network Pinger, GEO Spider, and Ping Plotter. Most of these

tools have trial versions available for download. Take the plunge and try them—you’ll probably
be amazed at the locations where your favorite sites are actually housed!

EXAM TIP There can be significant differences in traceroute from a Windows machine to a
Linux box. Windows uses the command tracert, whereas Linux uses traceroute. Also keep in
mind that Windows is ICMP only, whereas Linux uses UDP (and can be made to use other
options). Lastly, be aware that a route to a target today may change tomorrow. Or later today. Or
in the next few seconds. Routes can be changed and played with by attackers like everything
else.

Other Tools
Attempting to cover every tool ever invented aimed at footprinting is a fool’s errand; there are
bajillions of tools out there, and we’d never get through them all. However, there are some more
common options here and there, and since those are the more likely ones to be on your exam
(and used in your day-to-day job), that’s where we should focus our attention. A few other tools
worth mentioning are covered here as well.

OSRFramework
If you haven’t heard of OSRFramework (https://github.com/i3visio/osrframework) yet, you
probably need to. Per the download site, OSRFramework is “… an open source research
framework in Python that helps you in the task of user profiling by making use of different
OSINT tools. The framework itself is designed reminiscent to the Metasploit framework. It also
has a web-based GUI which does the work for you if you like to work without the command
line.” In other words, it’s a set of libraries used to perform Open Source Intelligence (OSINT)
tasks, helping you gather more, and more accurate, data using multiple applications in one easy-
to-use package. What kind of data can you find? Things like user name, domain, phone number,
DNS lookups, information leaks research, deep web search, and much more.

Here are the applications currently (as of this writing) found in OSRFramework:

• usufy.py This tool verifies if a user name/profile exists in up to 306 different platforms.
• mailfy.py This tool checks if a user name (e-mail) has been registered in up to 22

different e-mail providers.
• searchfy.py This tool looks for profiles using full names and other info in seven

platforms. ECC words this differently by saying the tool queries the OSRFramework
platforms itself.

• domainfy.py This tool verifies the existence of a given domain (per the site, in up to
1567 different registries).

• phonefy.py This tool checks, oddly enough, for the existence of phone numbers. It can
be used to see if a phone number has been linked to spam practices.

• entify.py This tool looks for regular expressions.

https://github.com/i3visio/osrframework

NOTE A relatively new offering the “cool kids” are playing with now is Buscador
(https://inteltechniques.com/buscador). I haven’t seen it referenced in any courseware or other
study materials yet, but it’s worth your time to check out.

Other Tools
Web spiders are applications that crawl through a website, reporting information on what they
find. Most search engines rely on web spidering to provide the information they need in
responding to web searches. However, this benign use can be employed by a crafty ethical
hacker. As mentioned earlier, using a site such as https://news.netcraft.com can help you map out
internal web pages and other links you may not notice immediately—and even those the
company doesn’t realize are still available. One way web administrators can help to defend
against standard web crawlers is to use robots.txt files at the root of their site, but many sites
remain open to spidering.

Two other tools of note in any discussion on social engineering and general footprinting are
Maltego (which you can purchase) and Social Engineering Framework (SEF). Maltego
(https://www.paterva.com/web7/) is “an open source intelligence and forensics application”
designed explicitly to demonstrate social engineering (and other) weaknesses for your
environment. SEF (http://spl0it.org/projects/sef.html) has some great tools that can automate
things such as extracting e-mail addresses out of websites and general preparation for social
engineering. SEF also has ties into Metasploit payloads for easy phishing attacks.

NOTE Even though all the methods we’ve discussed so far are freely available publicly and
you’re not breaking any laws, I’m not encouraging you to footprint or gauge the security of any
local business or target. As an ethical hacker, you should get proper permission up front, as even
passively footprinting a business can lead to some hurt feelings and a lot of red tape. And any
misuse of potential PII (personally identifiable information) or other identifying material,
purposeful or not, may lead to problems for you and your team. Again, always remain ethical in
your work.

Compiling a complete list of information-gathering options in the footprinting stage is nearly
impossible. The fact is, there are opportunities everywhere for this kind of information gathering.
Don’t forget to include search engines in your efforts—you’d be surprised what you can find
through a search on the company name (or variants thereof). Other competitive intelligence tools
include Google Alerts, Yahoo! Site Explorer, SEO for Firefox, SpyFu, Quarkbase, and
DomainTools.com. The list goes on forever.

https://inteltechniques.com/buscador
https://news.netcraft.com
https://www.paterva.com/web7/
http://spl0it.org/projects/sef.html
http://DomainTools.com

Take some time to research these on your own. Heck, type footprinting tool into your
favorite search engine and check out what you find (I just did and got more than 250,000
results), or you can peruse the lists compiled in Appendix A at the back of this book. Gather
some information of your own on a target of your choosing, and see what kind of information
matrix you can build, organizing it however you think makes the most sense to you. Remember,
all these opportunities are typically legal (most of the time, anyway—never rely on a certification
study book for legal advice), and anyone can make use of them at any time, for nearly any
purpose. You have what you need for the exam already here—now go play and develop some
skill sets.

NOTE Hackers are very touchy folks when it comes to their favorite tools. Take our friendly
tech editor as an example. He went nearly apoplectic when I neglected to mention Shodan. “It’s
the hacker’s search engine!” Shodan is designed to help you find specific types of computers
(routers, servers, and so on) connected to the Internet. For example, try out this search string:
https://www.shodan.io/search?query=Server%3A+SQ-WEBCAM. You’re welcome.

Regardless of which methods you choose to employ, footprinting is probably the most
important phase of hacking you’ll need to master. Spending time in this step drastically increases
the odds of success later and is well worth the effort. Just maintain an organized approach and
document what you discover. And don’t be afraid to go off script—sometimes following the
steps laid out by the book isn’t the best option. Keep your eyes, ears, and mind open. You’ll be
surprised what you can find out.

Chapter Review
Vulnerability research, although not necessarily a footprinting effort per se, is an important part
of your job as an ethical hacker. Research should include looking for the latest exploit news, any
zero-day outbreaks in viruses and malware, and what recommendations are being made to deal
with them. Some tools available to help in this regard are the National Vulnerability Database
(https://nvd.nist.gov), Securitytracker (www.securitytracker.com), Hackerstorm Vulnerability
Database Tool (www.hackerstorm.com), and SecurityFocus (www.securityfocus.com).

Footprinting is defined as the process of gathering information on computer systems and
networks. It is the first step in information gathering and provides a high-level blueprint of the
target system or network. Footprinting follows a logical flow—investigating web resources and
competitive intelligence, mapping out network ranges, mining whois and DNS, and finishing up
with social engineering, e-mail tracking, and Google hacking.

Competitive intelligence refers to the information gathered by a business entity about its
competitors’ customers, products, and marketing. Most of this information is readily available
and is perfectly legal for you to pursue and acquire. Competitive intelligence tools include
Google Alerts, Yahoo! Site Explorer, SEO for Firefox, SpyFu, Quarkbase, and
DomainTools.com.

https://www.shodan.io/search?query=Server%3A+SQ-WEBCAM
https://nvd.nist.gov
http://www.securitytracker.com
http://www.hackerstorm.com
http://www.securityfocus.com
http://DomainTools.com

DNS provides ample opportunity for footprinting. DNS consists of servers all over the world,
with each server holding and managing records for its own namespace. DNS lookups generally
use UDP port 53, whereas zone transfers use TCP 53. Each of these records gives directions to or
for a specific type of resource. DNS records are as follows:

• SRV (Service) Defines the hostname and port number of servers providing specific
services, such as a Directory Services server.

• SOA (Start of Authority) Identifies the primary name server for the zone. The SOA
record contains the hostname of the server responsible for all DNS records within the
namespace, as well as the basic properties of the domain.

• PTR (Pointer) Maps an IP address to a hostname (providing for reverse DNS lookups).
• NS (Name Server) Defines the name servers within your namespace.
• MX (Mail Exchange) Identifies the e-mail servers within your domain.
• CNAME (Canonical Name) Provides for domain name aliases within your zone.
• A (Address) Maps an IP address to a hostname and is used most often for DNS lookups.

The SOA record provides information on source host (hostname of the SOA server), contact
e-mail (e-mail address of the person responsible for the zone file), serial number (revision
number of the zone file), refresh time (the number of seconds a secondary DNS server will wait
before asking for updates), retry time (the number of seconds a secondary server will wait to
retry if the zone transfer fails), expire time (the maximum number of seconds a secondary server
will spend trying to complete a zone transfer), and TTL (the minimum time to live for all records
in the zone).

DNS information for footprinting can also be garnered through the use of whois, which
originally started in Unix and has generated any number of websites set up specifically for its
purpose. It queries the registries and returns information, including domain ownership,
addresses, locations, and phone numbers. Well-known websites for DNS or whois footprinting
include www.geektools.com, www.dnsstuff.com, and www.samspade.com.

The nslookup command is part of virtually every operating system in the world and provides a
means to query DNS servers for information. The syntax for the tool is as follows:

The command can be run as a single instance, providing information based on the options you
choose, or you can run it in interactive mode, where the command runs as a tool, awaiting input
from you. The command can also provide for a zone transfer, using ls -d. A zone transfer differs
from a “normal” DNS request in that it pulls every record from the DNS server instead of just the
one, or one type, you’re looking for.

Native to Unix systems but available as a download for Windows systems (along with BIND
9), dig is another tool used to test a DNS query and report the results. The basic syntax for the
command is

where server is the name or IP of the DNS name server, name is the name of the resource you’re
looking for, and type is the type of record you want to pull.

http://www.geektools.com
http://www.dnsstuff.com
http://www.samspade.com

Determining the network range is another important footprinting task for the ethical hacker. If
you simply enter an IP address in www.arin.net, the network range will be shown. Additionally,
traceroute (or tracert hostname on Windows systems) is a command-line tool that tracks a packet
across the Internet and provides the route path and transit times. McAfee’s Visual Trace
(NeoTrace to some), Trout, and VisualRoute are all examples of applications that use this
information to build a visual map, showing geographical locations as well as technical data.

Don’t forget the use of the search engine in footprinting! Google hacking refers to
manipulating a search string with additional specific operators to search for vulnerabilities. Here
are some operators for Google hacking:

• filetype Syntax: filetype:type. This searches only for files of a specific type (DOC, XLS,
and so on).

• index of Syntax: index of /string. This displays pages with directory browsing enabled
and is generally used with another operator.

• intitle Syntax: intitle:string. This searches for pages that contain a string in the title. For
multiple string searches, use the allintitle operator (allintitle:login password, for example).

• inurl Syntax: inurl:string. This displays pages with a string in the URL. For multiple
string searches, use allinurl (allinurl:etc/passwd, for example).

• link Syntax: link:string. This displays linked pages based on a search term.
• site Syntax: site:domain_or_web_ page string. This displays pages for a specific website

or domain holding the search term.

Social engineering, e-mail tracking, and web spidering are also footprinting tools and
techniques. Social engineering involves low- to no-tech hacking, relying on human interaction to
gather information (phishing e-mails, phone calls, and so on). E-mail trackers are applications
used to track data on e-mail whereabouts and trails. Web spiders are used to crawl sites for
information but can be stopped by adding a robots.txt file to the root of the website.

Questions
1. Which of the following would be the best choice for footprinting restricted URLs and OS

information from a target?
A. www.archive.org
B. www.alexa.com
C. Netcraft
D. Yesware

2. Which of the following consists of a publicly available set of databases that contain
domain name registration contact information?
A. IETF
B. IANA
C. Whois
D. OSRF

3. Which of the following best describes the role that the U.S. Computer Security Incident

http://www.arin.net
http://www.archive.org
http://www.alexa.com

Response Team (CSIRT) provides?
A. Vulnerability measurement and assessments for the U.S. Department of Defense
B. A reliable and consistent point of contact for all incident response services for

associates of the Department of Homeland Security
C. Incident response services for all Internet providers
D. Pen test registration for public and private sector

4. An SOA record gathered from a zone transfer is shown here:

What is the name of the authoritative DNS server for the domain, and how often will
secondary servers check in for updates?

A. DNSRV1.anycomp.com, every 3600 seconds
B. DNSRV1.anycomp.com, every 600 seconds
C. DNSRV1.anycomp.com, every 4 seconds
D. postmaster.anycomp.com, every 600 seconds

5. A security peer is confused about a recent incident. An attacker successfully accessed a
machine in the organization and made off with some sensitive data. A full vulnerability
scan was run immediately following the theft, and nothing was discovered. Which of the
following best describes what may have happened?
A. The attacker took advantage of a zero-day vulnerability on the machine.
B. The attacker performed a full rebuild of the machine after he was done.
C. The attacker performed a denial-of-service attack.
D. Security measures on the device were completely disabled before the attack began.

6. Which footprinting tool or technique can be used to find the names and addresses of
employees or technical points of contact?
A. whois
B. nslookup
C. dig
D. traceroute

7. Which Google hack would display all pages that have the words SQL and Version in their
titles?
A. inurl:SQL inurl:version
B. allinurl:SQL version
C. intitle:SQL inurl:version
D. allintitle:SQL version

8. Which of the following are passive footprinting methods? (Choose all that apply.)

http://DNSRV1.anycomp.com
http://DNSRV1.anycomp.com
http://DNSRV1.anycomp.com
http://postmaster.anycomp.com

A. Checking DNS replies for network mapping purposes
B. Collecting information through publicly accessible sources
C. Performing a ping sweep against the network range
D. Sniffing network traffic through a network tap

9. Which OSRF application checks to see if a username has been registered in up to 22
different e-mail providers?
A. mailfy.py
B. usufy.py
C. entify.py
D. searchfy.py

10. You have an FTP service and an HTTP site on a single server. Which DNS record allows
you to alias both services to the same record (IP address)?
A. NS
B. SOA
C. CNAME
D. PTR

11. As a pen test team member, you begin searching for IP ranges owned by the target
organization and discover their network range. You also read job postings and news
articles and visit the organization’s website. Throughout the first week of the test, you also
observe when employees come to and leave work, and you rummage through the trash
outside the building for useful information. Which type of footprinting are you
accomplishing?
A. Active
B. Passive
C. Reconnaissance
D. None of the above

12. A pen tester is attempting to use nslookup and has the tool in interactive mode for the
search. Which command should be used to request the appropriate records?
A. request type=ns
B. transfer type=ns
C. locate type=ns
D. set type=ns

Answers
1. C. Netcraft is the best choice here. From the site: “Netcraft provides internet security

services including anti-fraud and anti-phishing services, application testing and PCI
scanning.”

2. C. Whois is a great resource to scour public information regarding your target.
Registration databases contain data points that may be useful, such as domain registration,

points of contacts, and IP ranges.
3. B. CSIRT provides incident response services for any user, company, agency, or

organization in partnership with the Department of Homeland Security.
4. A. The SOA record always starts by defining the authoritative server—in this case,

DNSRV1—followed by e-mail contact and a host of other entries. Refresh time defines the
interval in which secondary servers will check for updates—in this case, every 3600
seconds (1 hour).

5. A. A zero-day vulnerability is one that security personnel, vendors, and even vulnerability
scanners simply don’t know about yet. It’s more likely the attacker is using an attack
vector unknown to the security personnel than he somehow managed to turn off all
security measures without alerting anyone.

6. A. Whois provides information on the domain registration, including technical and
business POCs’ addresses and e-mails.

7. D. The Google search operator allintitle allows for the combination of strings in the title.
The operator inurl looks only in the URL of the site.

8. A, B. Passive footprinting is all about publicly accessible sources.
9. A. The tool mailfy.py checks if a user name (e-mail) has been registered in up to 22

different e-mail providers. The choices usufy.py (verifies if a user name/profile exists in
up to 306 different platforms), entify.py (looks for regular expressions), and searchfy.py
(looks for profiles using full names and other info in seven platforms) are incorrect.

10. C. CNAME records provide for aliases within the zone.
11. B. All the methods discussed are passive in nature, per EC-Council’s definition.
12. D. The syntax for the other commands listed is incorrect.

CHAPTER 3
Scanning and Enumeration

In this chapter, you will
• Understand EC-Council’s scanning methodology
• Describe scan types and the objectives of scanning
• Understand the use of various scanning and enumeration tools
• Describe TCP communication (three-way handshake and flag types)
• Understand basic subnetting
• Understand enumeration and enumeration techniques
• Describe vulnerability scanning concepts and actions
• Describe the steps involved in performing enumeration

Imagine this is a movie instead of a book, about a guy beginning a career in ethical hacking. At
some point, probably during the previews for Aquaman, someone’s cell phone will ring and we
all momentarily flash with unbridled rage before going back to the screen. The opening credits
roll, showing us that this is a story about a young man deciding to put his hacker training to use.
In the first scenes he’s researching vulnerabilities and keeping track of the latest news, checking
on websites, and playing with tools in his secret lab. Soon thereafter, he gets his first break and
signs a contract to test a client—a client holding a secret that could change the very fabric of
modern society.

Before we’re even halfway through the buttered popcorn, he has completed some footprinting
work and has tons of information on potential targets. Some of it seems harmless enough, while
some is so bizarre he’s not really sure what it even is. He leans in, looking at the multitude of
monitors all around him (while foreboding music leads us all to the edge of our seats). The
camera zooms in for a close-up, showing his eyes widening in wonder. The crescendo of music
hits as he says, “OK…so what do I do now?”

Welcome to scanning and enumeration, where you learn what to do with all those targets you
identified in the last chapter. You know how to footprint your client; now it’s time to learn how
to dig around what you found for relevant, salient information. As somewhat of an interesting
side note here (and a brief glimpse into the “real” world of pen testing versus exam study), it’s
important for you to consider which targets are worth scanning and which aren’t. If you know
some targets are easy, don’t risk discovery by scanning them. If you know an army of nerds are
arrayed against you, maybe social engineering is a better option. In any case, scanning can be
viewed as a necessary evil, but it needs to be approached with caution and respect.

When it comes to your CEH study, which is what all this is supposed to be about, you’ll need
to stick with the flow, move through the steps as designed, and pay attention to tools, scan types,
outputs, and the like. So, after footprinting, you’ll need to scan for basics—the equivalent of

knocking on all your neighbors’ doors to see who is home and what they look like, or maybe
checking out homes for sale to find out as much as you can before going inside them. This
ensures that when you find a machine up and about, you’ll get to know it really well by asking
some rather personal questions—but don’t worry, systems don’t get upset. We’ll go over all
you’ll need to know for the exam regarding scanning and enumeration and show you how to play
with some pretty fun tools along the way. And the movie? Well, until someone pays me to write
a script, it probably won’t happen. If it did happen, though, undoubtedly you’d get to the end and
somebody would say, “Yeah, but the book was better.”

Fundamentals
Our first step after footprinting a target is to get started with scanning. Before we dive into it, I
think it’s important to knock out a few basics first. While in the footprinting stage, we were
gathering freely available, “10,000-foot-view” information. With scanning, though, we’re talking
about a much more focused effort. Footprinting may have shown us the range of network
addresses the organization uses, but now scanning is going to tell us which of those addresses are
in use and ideally what’s using those addresses.

In short, scanning is the process of discovering systems on the network and taking a look at
what open ports and applications may be running. With footprinting, we wanted to know how
big the network was and some general information about its makeup. In scanning, we’ll go into
the network and start touching each device to find out more about it. But before we get to the
actual scanning, though, we really need to cover some basic TCP/IP networking knowledge.

TCP/IP Networking
We covered some networking basics earlier in this book, but if we’re going to talk scanning
intelligently, we’re going to need to dive just a bit deeper. As you’ll recall, when a recipient
system gets a frame, it checks the physical address to see who the message is intended for. If the
address is indeed correct, the recipient opens the frame, checks to make sure the frame is valid,
and then ditches the header and trailer, passing the remainder up to the Network layer. There, the
Layer 3 address is verified in the packet header, along with a few other items, and the header is
stripped off. The remaining PDU (protocol data unit), now called a segment, is passed to Layer 4.
At the Transport layer, a whole host of important stuff happens—end-to-end delivery, segment
order, reliability, and flow control are all Layer 4 functions—including a couple of salient issues
in the discussion here: TCP flags and port numbering.

NOTE Switched networks greatly reduce the number of frames you’ll receive that are not
addressed to your system.

Connectionless Communication
When two IP-enabled hosts communicate with each other, as you no doubt already know, two

methods of data transfer are available at the Transport layer: connectionless communication and
connection-oriented communication. Connectionless communication is fairly simple to
understand: the sender doesn’t care whether the recipient has the bandwidth (at the moment) to
accept the message, nor does the sender really seem to care whether the recipient gets the
message at all. Connectionless communication is “fire and forget.” In a much faster way of
sending datagrams, the sender can simply fire as many segments as it wants out to the world,
relying on other upper-layer protocols to handle any problems. This obviously comes with some
disadvantages as well (no error correction, retransmission, and so on).

NOTE For networking purists, TCP and UDP are not the only two Layer 4 protocols out there
that use IP as a network foundation. The others are not important to your exam, but I just thought
you might want to know.

At the Transport layer, connectionless communication is accomplished with UDP. UDP, as
you can tell from the datagram structure shown in Figure 3-1, is a low-overhead, simple, and fast
transport protocol. Generally speaking, the application protocols that use this transport method
are moving small amounts of data (sometimes just a single packet or two) and usually are
moving them inside a network structure (not across the Internet). Examples of protocols using
UDP are TFTP, DNS (for lookups), and DHCP.

Figure 3-1 UDP datagram structure

Connection-Oriented Communication
Connection-oriented communication using TCP, although it requires a lot more overhead and if
oftentimes a lot slower than connectionless communication, is a much more orderly form of data
exchange and makes a lot more sense for transporting large files or communicating across
network boundaries. Senders will reach out to recipients, before data is ever even sent, to find
out whether they’re available and whether they’d be willing to set up a data channel. Once the
data exchange begins, the two systems continue to talk with one another, making sure flow

control is accomplished, so the recipient isn’t overwhelmed and can find a nice way to ask for
retransmissions in case something gets lost along the way. How does all this get accomplished?
It’s through the use of header flags and something known as the three-way handshake. Figure 3-
2 shows the TCP segment structure.

Figure 3-2 TCP segment structure

Taking a look at Figure 3-2, you can see that six flags can be set in the TCP header.
Depending on what the segment is intended to do, some or all of these flags may be put into use.
The TCP header flags are as follows:

• SYN (Synchronize) This flag is set during initial communication establishment. It
indicates negotiation of parameters and sequence numbers.

• ACK (Acknowledgment) This flag is set as an acknowledgment to SYN flags. This flag
is set on all segments after the initial SYN flag.

• RST (Reset) This flag forces a termination of communications (in both directions).
• FIN (Finish) This flag signifies an ordered close to communications.
• PSH (Push) This flag forces the delivery of data without concern for any buffering. In

other words, the receiving device need not wait for the buffer to fill up before processing
the data.

• URG (Urgent) When this flag is set, it indicates the data inside is being sent out of band.
Cancelling a message mid-stream is one example.

To fully understand these flags and their usage, consider what is most often accomplished
during a normal TCP data exchange. First, a session must be established between the two
systems. To do this, the sender forwards a segment with the SYN flag set, indicating a desire to
synchronize a communications session. This segment also contains a sequence number—a
pseudorandom number that helps maintain the legitimacy and uniqueness of this session. As an
aside, the generation of these numbers isn’t necessarily all that random after all, and plenty of
attack examples point that out. For study purposes, though, just remember what the sequence
number is and what its purpose is.

EXAM TIP Know the TCP flags and the three-way handshake well. You’ll be asked questions
on what flags are set at different points in the process, what responses a system provides given a
particular flag receipt, and what the sequence numbers look like during a data exchange.

When the recipient gets this segment, it responds with the SYN and ACK flags set and
acknowledges the sequence number by incrementing it by one. Additionally, the return segment
contains a sequence number generated by the recipient. All this tells the sender, “Yes, I
acknowledge your request to communicate and will agree to synchronize with you. I see your
sequence number and acknowledge it by incrementing it. Please use my sequence number in
further communications with me so I can keep track of what we’re doing.” Figure 3-3 illustrates
the three-way handshake.

Figure 3-3 The three-way handshake

When this segment is received by the original sender, it generates one more segment to finish
off the synchronization. In this segment, the ACK flag is set, and the recipient’s own sequence
number is acknowledged. At the end of this three-way handshake, a communications channel is
opened, sequence numbers are established on both ends, and data transfer can begin.

NOTE Some packet-crafting tools available to you include Netscan (www.netscantools.com),
Ostinato (ostinato.org), WAN Killer (solarwinds.com), Packeth (packeth.sourceforge.net), and
LAN Forge FIRE (www.candelatech.com).

Knowing the TCP flags and the communications setup process, I think it’s fairly obvious how
a hacker (with a tool capable of crafting segments and manipulating flags) could manipulate,
disrupt, manufacture, and even hijack communications between two systems. Want to see for
yourself? Jump on the Internet and download and install Colasoft’s Packet Builder
(www.colasoft.com/download/products/download_packet_builder.php, shown in Figure 3-4).

http://www.netscantools.com
http://ostinato.org
http://solarwinds.com
http://packeth.sourceforge.net
http://www.candelatech.com
http://www.colasoft.com/download/products/download_packet_builder.php

Open it, click the Add button in the menu line, and pick a TCP packet. You can then maneuver
up and down the segment to change TCP flags and create all sorts of mischief.

Figure 3-4 Colasoft Packet Builder

EXAM TIP Hey—two tips in one for you here! First, Colasoft’s Packet Builder has three
views built in: Packet List (displays all constructed packets), Decode Editor (allows you to edit
packets), and Hex Editor (displays packet in hex for editing). Second, know that packet builders
like Colasoft’s can also be used to create fragmented packets to bypass IDS (and possibly
firewalls) in your target network.

We’ve spent some good time discussing the flags within a segment (keep repeating “SYN,
SYN/ACK, ACK” in your head), but there are at least a couple other fields of great importance
while we’re on the subject. The source and destination port fields in TCP or UDP
communication define the protocols that will be used to process the data. Better stated, they
actually define a channel on which to work, and that channel has been generally agreed upon by
default to support a specific protocol, but you get the point.

Port Numbering
Why the heck do we even need port numbers in networking? Well, consider a communications
process in its early stages. The recipient has verified the frame and packet that belongs to it and
knows it has a segment available for processing. But how does it know which Application layer
entity is supposed to process it? Maybe it’s an FTP datagram. Or maybe a Telnet request. Or
maybe even e-mail. Without something to identify which upper-layer protocol to hand this
information to, the system sits there like a government mid-level manager, paralyzed by
indecision.

NOTE Internet Assigned Numbers Authority (IANA) maintains something called the Service
Name and Transport Protocol Port Number Registry, which is the official list for all port number
reservations.

A port number, inside the Transport layer protocol header (TCP or UDP), identifies which
upper-layer protocol should receive the information contained within. Systems use port numbers
to identify to recipients what they’re trying to accomplish—that is, assuming the default ports are
still being used for their default purposes, but we’ll get to that later. The port numbers range
from 0 to 65,535 and are split into three different groups:

• Well-known ports 0–1023
• Registered ports 1024–49,151
• Dynamic ports 49,152–65,535

NOTE Ever wonder why port numbers go from 0 to 65,535? If you’ve ever taken a Cisco class
and learned any binary math, the answer is rather evident: the field in which you’ll find a port
number is 16 bits long, and having 16 bits gives you 65,536 different combinations, from 0 all
the way up to 65,535.

Of particular importance to you on the CEH exam are the well-known port numbers. No, you
don’t need to memorize all 1024 of them, but you do need to know many of them. The ports
listed in Table 3-1 are absolutes—you simply must memorize them or quit reading and studying
for your exam here.

Table 3-1 Important Port Numbers

EXAM TIP Occasionally you’ll get asked about weird ports and their use—like maybe 631.
Did you know that one was the default for the Internet Printing Protocol? How about 179?
Would you have guessed BGP? Or maybe 514? Did you pick syslog? The point is, there are
literally thousands of port numbers and associations. I can’t put them all in this chapter.
Therefore, do your best to memorize the common ones and use the process of elimination to
whittle down to the best answer.

Assuming you know which well-known port number is associated with which upper-layer
protocol, you can tell an awful lot about what a system is running just by knocking on the port
doors to see what is open. A system is said to be listening for a port when it has that port open.
For example, assume you have a server hosting a website and an FTP service. When the server
receives a message, it needs to know which application is going to handle the message. At the
same time, the client that made the request needs to open a port on which to hold the
conversation (anything above 1023 will work). Figure 3-5 demonstrates how this is
accomplished—the server keeps track of which application to use via the port number in the
destination port field of the header and answers to the source port number.

Figure 3-5 Port numbers in use

In reading this, you may be wondering just how those ports are behaving on your own
machine. The answer comes from the state the port is in. Suppose you have an application
running on your computer that is waiting for another computer to connect to it. Whatever port
number your application is set to use is said to be in a listening state. Once a remote system goes
through all the handshaking and checking to establish a session over that open port on your
machine, your port is said to be in an established state. In short, a listening port is one that is
waiting for a connection, while an established port is one that is connected to a remote computer.

EXAM TIP CurrPorts is a tool you’ll definitely want to play with when it comes to ports. It
displays a list of all currently opened TCP/IP and UDP ports on your local computer, including
information about the process that opened the port, the process name, full path, version
information, the time it was created, and the user who created it.

Ports can be in other states as well. For instance, remember that packets can be received out of
order and sometimes take a while to get in? Imagine your port sitting there in a listening state. A
remote system connects, and off you go—with the data exchange humming along. Eventually
either your system or the remote system will close the session. But what happens to any
outstanding packets that haven’t made their way yet? A port state of CLOSE_WAIT shows that
the remote side of your connection has closed the connection, whereas a TIME_WAIT state
indicates that your side has closed the connection. The connection is kept open for a little while
to allow any delayed packets to be matched to the connection and handled appropriately. If you’d

like to see this in action on your Windows machine, open a command prompt and use an old
standby: netstat. Typing netstat -an (see Figure 3-6) displays all connections and listening ports,
with addresses and port numbers in numerical form. If you have admin privileges on the box, use
netstat -b, and you can see the executable tied to the open port.

Figure 3-6 The command netstat

Subnetting
Want to know something neat? You won’t find subnetting mentioned anywhere in EC-Council’s
official courseware for the CEHv10 certification. So you may be asking, “Why do we even need
subnetting? What’s the point?” The answer, dear reader, is that depending on which version of
the exam you get, you will most likely be asked about it. Supposedly you know this already, so
this section will be a breeze (and I promise to keep it as short as possible); however, in keeping
with my promise to cover everything, we just have to get into it.

As I’m sure you’re already aware, your system has no idea about the rest of the world, and
frankly doesn’t care. As far as it is concerned, its responsibility is to pass messages it receives to
whatever application inside needs them, and to send messages only to systems inside its own

neighborhood (network)—in effect, only systems it can see and touch. It’s the job of someone
else in the neighborhood (the router) to get the messages delivered to outside, unknown systems.
And the only way that device has to identify which networks are local and which networks are
remote is the subnet mask. So what is a subnet mask? To answer that, let’s first talk about an
IPv4 address.

EXAM TIP IPv4 has three main address types—unicast (acted on by a single recipient),
multicast (acted on only by members of a specific group), and broadcast (acted on by everyone
in the network).

As you’re already aware (because you are supposed to know this already), IP addresses are
really 32 bits, each set to 1 or 0, separated into four octets by decimal points. Each one of these
addresses is made up of two sections—a network identifier and a host identifier. The bits making
up the network portion of the address are used much like the ZIP code on letters. Local post
offices (like routers) don’t care about who, individually, a message is addressed for; they only
care about which post office (network) to get the message to. For example, the friendly sorting
clerk here at my local post office doesn’t care that the letter I put in the box to mail is addressed
to Scarlett Johansson; he only cares about the ZIP code—and 90210 letters get tossed into the
“bound for the West Coast” bucket. Once my letter gets to the post office serving 90210
customers, the individual address will be looked at. It’s the same with IP addresses—something
inside that destination network will be responsible for getting it to the right host. It’s the router’s
job to figure out what the network address is for any given IP, and the subnet mask is the key.

A subnet mask is a binary pattern that is matched against any IP address to determine which
bits belong to the network side of the address, with the binary starting from left to right, turning
on all the 1’s until the mask is done. For example, if your subnet mask wants to identify the first
12 bits as the network identification bits, the mask will look like this:
11111111.11110000.00000000.00000000. Translate this to decimal and you get 255.240.0.0.
Were you to pair this with an IP address, it would appear something like 12.197.44.8,
255.240.0.0. Another common way of expressing this is to simply use a slash followed by the
number of network bits. Continuing our example, the same pair would appear as 12.197.44.8/12.

Here are some rules you’ll need to know about IP addresses and the bits that make them up:

• If all the bits in the host field are 1’s, the address is a broadcast (that is, anything sent to
that address will go to everything on that network).

• If all the bits in the host field are set to 0’s, that’s the network address.
• Any combination other than these two present the usable range of addresses in that

network.

Let’s take a look at an example. Say you have an address of 172.17.15.12, and your subnet
mask is 255.255.0.0. To see the network and host portions of the address, first convert the IP
address to binary, convert the subnet mask to binary, and stack the two, as shown here:

Every bit from left to right is considered part of the network ID until you hit a zero in the
subnet ID. This is all done in the flash of an eye by an XOR comparison (sometimes called an
XOR gate) in the router. An XOR compares two binary inputs and creates an output: if the two
inputs are the same, the output is 0; if they’re different, the output is 1. If you look at the subnet
underneath the address (in binary), it’s easy to see how the XOR creates the network ID, but for
most beginners (and not to complicate the issue further), it’s just as easy to draw the line and see
where the division happens:

So what this shows us is that the address 172.17.15.12 is part of a network addressed as
172.17.0.0, demonstrated by turning all the host bits to zero, as shown next:

The usable addresses within the 172.17.0.0 network can be found by changing the host bits.
The first bit available is the first address, and all bits turned on except the last one comprise the
last address (all bits turned on represent the broadcast address). This is displayed in the following
illustration:

EXAM TIP Broadcast addressing has two main types. Limited broadcast addresses are
delivered to every system inside the broadcast domain, and they use IP address 255.255.255.255
(destination MAC FF:FF:FF:FF:FF:FF). Routers ignore all limited broadcasts and do not even
open the packets on receipt. Directed broadcasts are sent to all devices on a subnet, and they use
the subnet’s broadcast address (for example, the direct broadcast address for 192.168.17.0/24
would be 192.168.17.255). Routers may actually take action on these packets, depending on
what’s involved.

This is easy enough when “the line” is drawn right on a decimal point. But what about when it
falls in the middle of an octet? For example, consider the address 192.168.17.39 with a subnet
mask of 255.255.255.224. The same process can be followed, but notice the line demarking the
network and host bits now falls in the middle of the last octet:

Although it looks difficult, if you follow the same process discussed earlier—bringing down
all the network bits and manipulating the host bits to show all zeros, all host bits off except the
first, all host bits on except the last, and all host bits on—you can show the network ID, first,
last, and broadcast addresses with ease:

One final thing you may be asked about involving subnetting is applying the mask to a host
and determining what network it’s on. For example, suppose you have an IP address of
192.168.17.52/28 and you need to find out what network it’s on. If you use the same principles
we just talked about—that is, translate the IP and mask into bits, stack them, draw your line, turn
all host bits to zero—you’ll get your answer. Another, quicker way is to simply look at the first
28 bits only and…voilà! See the following illustration for a little more clarity:

NOTE A fun differentiation you almost always see on tests is that between routing and routed
protocols. Basically a routed protocol is one that is actually being packaged up and moved
around. IPv4 and IPv6, for instance, are routed protocols. A routing protocol is the one that
decides the best way to get to the destination (for example, BGP, OSPF, or RIP).

Clear as mud, right? Trust me, don’t worry too much about it—we’re only talking a couple of
questions here and there. This is a skill you’ll need in the real world, and you’ll find tips and
tricks to help you out (for example, the network ID will always be some multiple of the decimal

value of the last bit of the mask). Check out Internet resources for subnetting tips and tricks and
use whatever feels best for you. Draw out a few using the procedures listed earlier—if you take it
out to bits, you’ll never get it wrong—and you’ll be fine. There is a whole lot more involved in
addressing and routing that we’re just not going to get into here because it’s not a concern on the
exam. You’ll be asked to identify a network ID, or figure out which address belongs to which
network, or something like that. And that’s what I’ve laid out here for you.

Scanning Methodology
As you’re probably aware by now, EC-Council is in love with methodology. Sure, in the real
world you may not follow the steps blindly in order, but I don’t think that’s the point of listing
something in a methodology format. A methodology—no matter how silly it may seem on a test
or when you’re sitting there performing a real pen test—ensures you don’t miss anything and
that all your bases are covered. In that regard, I guess it’s a lot like a preflight checklist, and this
is EC-Council’s version of making sure your scanning flight goes smoothly.

Just as the steps of the overall hacking process can blend into one another, though, keep in
mind these steps are simply guidelines and not hard-and-fast rules to follow. When you’re on the
job, situations and circumstances will occur that might force you to change the order of things.
Sometimes the process of completing one phase will seamlessly blend directly into another.
Don’t fret—just go with the flow and get your job done. EC-Council’s scanning methodology
phases include the following steps:

1. Check for live systems. Something as simple as a ping can provide this. This gives you a
list of what’s actually alive on your network subnet.

2. Check for open ports. Once you know which IP addresses are active, find what ports
they’re listening on.

3. Scan beyond IDS. Sometimes your scanning efforts need to be altered to avoid those
pesky intrusion detection systems.

4. Perform banner grabbing. Banner grabbing and OS fingerprinting will tell you what
operating system is on the machines and which services they are running.

5. Scan for vulnerabilities. Perform a more focused look at the vulnerabilities these
machines haven’t been patched for yet.

6. Draw network diagrams. A good network diagram will display all the logical and
physical pathways to targets you might like.

7. Prepare proxies. This obscures your efforts to keep you hidden.

This methodology has about as much to do with real life as I have to do with an Oscar
nomination, but it’s a memorization effort you have to do. ECC didn’t intend it as much a step-
by-step procedure as a checklist to make sure you get to everything you are supposed to during
this phase. Despite which order you proceed in, if you hit all the steps, you’re probably going to
be successful in your scanning efforts. We’ll delve more into each step later in this chapter, but
first we need to revisit some networking knowledge essential for successful scanning.

EXAM TIP Commit these scanning steps to memory and pay close attention to what actions
are performed in each—especially which tools might be used to perform those actions.

Identifying Targets
In the ECC scanning methodology, checking for live systems is the first step. The simplest and
easiest way to do this is to take advantage of a protocol that’s buried in the stack of every
TCP/IP-enabled device on the planet—Internet Control Message Protocol (ICMP). As I’m sure
you’re already aware, IP is what’s known as a connectionless, “fire-and-forget” protocol. It
creates a packet by taking data and appending a header, which holds bunches of information,
including the “From” and “To” addresses, and allows the sender to fire packets away without
regard, as quickly as the stack on the machine will allow. This is done by relying on other layer
protocols for transport, error correction, and so on.

However, some shortfalls needed to be addressed at the Network layer. IP itself has no error
messaging function, so ICMP was created to provide for it. It allows for error messaging at the
Network layer and presents the information to the sender in one of several ICMP types. Table 3-
2 lists some of the more relevant message type codes you’ll need to know for the exam. The
most common of these are Type 8 (Echo Request) and Type 0 (Echo Reply). An ICMP Type 8
packet received by a host tells the recipient, “Hey! I’m sending you a few packets. When you get
them, reply with the same number so I know you’re there.” The recipient will respond with an
ICMP Type 0, stating, “Sure, I’m alive. Here are the data packets you just sent me as proof !”

Table 3-2 Relevant ICMP Message Types

Because ICMP is built into each TCP/IP device and the associated responses provide detailed
information about the recipient host, it makes a good place to start when network scanning. For
example, consider an Echo Request (Type 8) sent to a host that returns a Type 3. The code could
tell us whether the host is down (Code 1), the network route is missing or corrupt in our local
route tables (Type 0), or a filtering device, such as a firewall, is preventing ICMP messages
altogether (Type 13).

NOTE The actual payload of a PING packet can range greatly in value amount. The request
for comment (RFC 792, https://tools.ietf.org/html/rfc792) that created and still governs ping
never got around to identifying what data is supposed to go into the payload, so it’s usually just
enough ASCII code to build the packet up to sufficient length. Knowing this, the payload of an
ICMP packet could wind up being the perfect covert channel for hackers to communicate with
each other, using the payload area to simply embed messages. Most people—even security types
—wouldn’t even bother with a ping packet or two crossing their paths, never knowing what
information was being funneled away right beneath their noses.

https://tools.ietf.org/html/rfc792

A few intrusion detection system (IDS) signatures do look for this. For example, a lot of ping
utilities designed to take advantage of this have default signatures that any decent IDS can pick
up on; in Nmap, a “0 byte field” can trigger it, for example. Windows and other operating
systems have specific defaults that are supposed to be found in the packet, and their alteration or
omission can also trigger a hit. But none of this changes the fact that it’s still a cool hack.

This process, called a ping, has been part of networking since its inception, and combining
pings to every address within a range is known as a ping sweep. A ping sweep is the easiest
method available to identify active machines on the network, and there are innumerable tools to
help you pull it off (Figure 3-7 shows Zenmap, Nmap’s GUI Windows version, pulling it off on
my little wireless network). Just keep in mind that this is not necessarily the only, or even best,
way to do it. Although ICMP is part of every TCP/IP stack, it’s not always enabled. In fact,
many administrators will disable ping responses on many network systems and devices and will
configure firewalls to block them. Lastly, if you add IPv6 to the mix it really muddies the waters.
Scanning in IPv6 is much more difficult and complex, and ping sweeps often don’t work at all in
most tools.

Figure 3-7 Using Nmap to perform a ping sweep

EXAM TIP ECC also calls out pinging of the network ID itself (that is, sending ICMP Echo
Request packets to the network IP address) as “ICMP Echo scanning.” Additionally, another
option for identifying machines (not necessarily live ones, but ones that were live at some time)
is called a “list scan”—basically just run a reverse DNS lookup on all IPs in the subnet.

Additionally, not only will a great many devices not respond to the ping, the actual ping
sweep itself can be noisy, and the systems may alert anyone and everyone as to what’s going on.
Network intrusion detection systems (NIDSs) and host-based IDS (HIDS) can easily and readily
pick up on a ping sweep from an external source if not carried out slowly and with some stealth.
With this in mind, be cautious and deliberate with your sweep—slow and random are your
friends here. Remember, hacking isn’t a race; it’s a test of will, patience, and preparation.

EXAM TIP Know ICMP well. Pay particular attention to Type 3 messages and the associated
codes, especially Code 13, which lets you know a poorly configured firewall is preventing the
delivery of ICMP packets.

Several applications are available to make the ping sweep as simple as possible for you to pull
off. Nmap is, of course, probably the most referenced scanning tool on the exam and in the real
world. Angry IP Scanner is another well-know tool; just be careful with it because a lot of
antivirus programs consider it a virus. Some other tools of note are SolarWinds Engineer
Toolset, Network Ping, OPUtils, SuperScan, Advanced IP Scanner, and a wacky little tool called
Pinkie.

NOTE When using ping to identify “live” hosts, keep in mind a nonresponse to ICMP does not
necessarily mean the host isn’t alive—it simply means it won’t respond to ICMP.

Do What You Can with What You Have
Suppose you were writing a book on CEH and included loads of encouragements to try the
stuff out firsthand—extolling students to download the tools and try them out for themselves.
Suppose you also had a daughter who followed in your footsteps as a pen tester (and was way,
way better at it than you ever were). Wouldn’t you ask her for input? Of course you would,
and so I did. I asked Hope about what she’d do in setting up a practice lab, particularly for
scanning, since it can get so hairy. She responded by explaining that sometimes you have to
make due right where you’re at, with what you have. Here’s what she had to say:

“In school, it can be hard to get away from theory and get practical, hands-on experience.
After inadvertently volunteering to help run a club on campus, part of my goals were to give
demonstrations and labs where other students could apply the theory they were learning. One
such demonstration was what a scan looks like while it is going on. Not such a hard activity to
set up for, except for a few limitations. First, the meetings were always on campus, and I
could not use the university’s network or devices for scanning. Second, I was a college
student and therefore broke, and there was no money from our club.

“The solution needed to be cheap yet effective so the demonstration would work. Family
and friends had a collection of old equipment they donated. There were old laptops running
Windows XP or Windows 7 and a wireless router to work with. Two laptops were reimaged,
one to run Ubuntu, the other with Windows 10, which was free at the time, and I downloaded
VirtualBox and a Kali image to the one decent laptop. For the demonstrations, the laptops
were connected to the wireless router, which was set up as a closed network, and the scanning
laptop was connected to the projector as well.

“When the environment was set up, I brought up two displays for the students to watch.
The first was Zenmap, where the scans would be launched. Second was Wireshark, where we
could watch the scans come through in real time. With the closed network, it was easy to see
anomalies come through without users on the network generating additional traffic. For
example, when a single workstation sent out ICMP packets to other hosts, including ones that
were not online, they could easily see what a ping sweep for host discovery looked like. Since
there were multiple operating systems on the network, we looked at the TTL of the packets
from the different hosts as a way of OS fingerprinting. Watching the scans in real time
showed the difference in timing between an aggressive scan and stealth scan. They could see
the increase in traffic between a SYN scan and TCP full connect with the full handshake.

“For many of the students, this was the first time they looked at network traffic during a
scan. We had looked at packet structures and learned the theory of how the protocols worked,
but very few had seen what network traffic of a scan looked like as it was happening. While
this closed environment is not really representative of what a scan would look like on a
production network, it is a starting point for many in understanding how scanning works so
they can pick anomalies out easier.”

So what do you have available? What can you throw together to make a lab work for you?
Maybe you won’t have to inadvertently join a club or lead a demonstration, but putting one
together to practice this stuff is something you really need to work on.

NOTE While it’s certainly possible to explicitly run a ping sweep using Nmap, did you know
it also pings systems before it initiates a port scan? Unless you turn off host discovery, Nmap is
going to ping sweep your range for you on virtually every port scan you attempt with it.

One last quick note on scanning for active machines before we move forward: Remember at
the opening of this section that I mentioned the scanning steps may bleed into one another?
Identifying active machines on the network using a ping sweep is not the only method available.
Sometimes it’s just as easy to combine the search for active machines with a port scan, especially
if you’re trying to be sneaky about it. Granted, this isn’t the steadfast “follow the methodology”
mindset of the exam, but it is reality. So, what is a port scan? Glad you asked.

NOTE If you want to be legitimately sneaky, tons of methods are available. Check out the
details for a fun option at https://www.aldeid.com/wiki/Tor/Usage/Nmap-scan-through-tor

Port Scanning
Imagine you’re a bad guy in a movie sizing up a neighborhood for a potential run of nighttime
thievery. You’ll probably do a little harmless driving around, checking out the perimeter and
seeing what’s between the neighborhood and the rest of the world. You’ll also pay attention to
which houses are “live,” with residents and stuff inside you may find valuable. But that gives
you only background information. It’s really valuable if you can figure out which doors are
locked, which windows are open, and which ones have alarms on them. Walk with me in the
virtual world, my movie-villain thief, and let’s go knock on some computer doors to see what’s
hiding there.

“How do we do it?” you may ask. The answer is, of course, by using several different
methods and with several different tools. We can’t possibly cover them all here, but we’ll
definitely spend some time on those you’ll see most often on your exam. Regardless, all port
scanners work by manipulating Transport layer protocol flags in order to identify active hosts
and scan their ports. And now that you know a little more about this process, let’s take a look at
the different types of port scans we have available to us.

Port Scan Types
A scan type will be defined by three things: what flags are set in the packets before delivery,
what responses you expect from ports, and how stealthily the scan works. As far as your exam is
concerned, count on being asked about each of these scan types at least once. Generally
speaking, there are seven generic scan types for port scanning:

• Full connect Also known as a TCP connect or full open scan, this runs through a full
connection (three-way handshake) on ports, tearing it down with an RST at the end. It is
the easiest to detect but it’s possibly the most reliable. Open ports will respond with a
SYN/ACK, and closed ports will respond with an RST.

• Stealth Also known as a half-open scan (and also as a SYN scan). Only SYN packets are
sent to ports (no completion of the three-way handshake ever takes place). Responses
from ports are the same as they are for a TCP connect scan. This technique is useful in
hiding your scanning efforts, possibly bypassing firewalls and monitoring efforts by
hiding as normal traffic (it simply doesn’t get noticed because there is no connection to
notice).

• Inverse TCP flag This scan uses the FIN, URG, or PSH flag (or, in one version, no flags
at all) to poke at system ports. If the port is open, there will be no response at all. If the
port is closed, an RST/ACK will be sent in response. You know, the inverse of everything
else.

https://www.aldeid.com/wiki/Tor/Usage/Nmap-scan-through-tor

NOTE Naming conventions for scans in ECC’s world can sometimes get kind of funny.
Versions of the inverse TCP flag scan used to be called the FIN scan or the NULL scan. Stealth
scans used to be known as SYN scans. Why do they change names? Your guess is as good as
mine!

• XMAS A Christmas scan is so named because all flags are turned on, so the packet is “lit
up” like a Christmas tree. Port responses are the same as with an inverse TCP scan.
XMAS scans do not work against Microsoft Windows machines due Microsoft’s TCP/IP
stack implementation (Microsoft TCP/IP is not RFC 793 compliant).

• ACK flag probe According to ECC, there are two versions of this scan, both of which
use the same method: the attacker sends the ACK flag and looks at the return header (TTL
or Window fields) to determine the port status. In the TTL version, if the TTL of the
returned RST packet is less than 64, the port is open. In the Window version, if the
WINDOW size on the RST packet has anything other than zero, the port is open.

EXAM TIP ACK flag probes can also be used to check filtering at the remote end. If an ACK
is sent and there is no response, this indicates a stateful firewall is between the attacker and the
host. If an RST comes back, there is not.

• IDLE This uses a spoofed IP address (an idle zombie system) to elicit port responses
during a scan. Designed for stealth, this scan uses a SYN flag and monitors responses as
with a SYN scan.

All of these scans should be easy enough to decipher given a cursory understanding of TCP
flags and what each one is for, with the possible exception of the IDLE scan. Sure, the IDLE
scan makes use of TCP flags (the SYN and ACK flags, in this case), but the way it’s all used is
brilliant (heck, it’s almost elegant) and provides the additional benefit of obfuscation. Because
the machine actually receiving the response from the targets is not your own, the source of the
scan is obscured. Confused? No worries—keep reading.

Every IP packet uses something called an IP identifier (IPID) to help with the pesky problem
of keeping track of fragmentation (IP packets can be only so big, so a single packet is sometimes
fragmented and needs to be put back together at the destination). Most systems simply increase
this IPID by one when they send a packet out. For example, the first packet of the day might
have an IPID of 31487, and the second 31488. If you understand this concept, can spoof an IP
address, and have a remote machine that’s not doing anything, this all makes perfect sense.

First, an attacker sets up or makes use of a machine that isn’t doing anything at all (sitting
IDLE). He next sends a packet (SYN/ACK) to this idle machine and makes note of the IPID in
response; the zombie machine isn’t expecting a SYN/ACK and will respond with an RST packet,

basically stating “Can we start over? I don’t really recognize this communications session.” With
the current IPID number in hand, he sends a packet with a spoofed IP (matching the lazy zombie
system) and the SYN flag set to the target. If the port is open, the target will happily respond to
the zombie with a SYN/ACK packet to complete the three-way handshake. The zombie machine
will respond to the target system with an RST packet, which of course increments the IPID by
one. All the attacker has to do now is send another SYN/ACK to the zombie and note the IPID.
If it increased by two, the idle system sent a packet and, therefore, the port is open. If it’s not
open, it will have increased by only one. If this seems clear as mud or you’re one of those “visual
learners,” check out Figure 3-8 for an example of an open port exchange, and see Figure 3-9 for
the closed port example.

Figure 3-8 IDLE scanning: port open

Figure 3-9 IDLE scanning: port closed

In addition to knowing how to read the responses from an IDLE scan, you’ll be asked
repeatedly on the exam about the other scan types and what response to expect from an open or
closed port. If you know the flags and what they do, this is easy. If not, Table 3-3 should be of
help in studying this.

Table 3-3 Network Scan Types

Lastly, there’s one more that may see the light of day on your exam, so we’ll cover it here just
in case. A UDP scan is exactly what it sounds like: send a datagram to the port and see what you
get in response. Because there is no handshake, if the port is open, you won’t receive a thing
back—if the port is closed, you’ll receive an ICMP port unreachable message.

NOTE UDP ports and communication are oftentimes employed by malware, such as spyware
programs and Trojans.

Nmap
So now that we know what the scan types are called, how do we pull them off? Why with a port
scanner, of course, and without a doubt, the most widely used scanning and enumeration tool on
the planet is Nmap. Nmap can perform many different types of scans (from simply identifying
active machines to port scanning and enumeration) and can also be configured to control the
speed at which a scan operates. In general, the slower the scan, the less likely you are to be
discovered. It comes in both a command-line version and a GUI version (now known as
Zenmap), works on multiple OS platforms, and can even scan over TCP and UDP. And the best
thing of all? It’s free.

The Nmap syntax is fairly straightforward:

The target for Nmap can be a single IP address, multiple individual IPs separated by spaces,
or an entire subnet range (using CIDR notation). For example, to scan a single IP, the command
might look like

whereas scanning multiple IPs would look like

and scanning an entire subnet would appear as

Starting Nmap without any of the options runs a “regular” scan and provides information for
you. But to get really sneaky and act like a true ethical hacker, you’ll need to learn the option
switches—and there are a bunch of them. The good news is, almost an endless assortment of
help is available for you on the Web. For example, the web page located at
https://svn.nmap.org/nmap/docs/nmap.usage.txt shows a screen pull of Nmap run without any
option switches or targets set at all, and a simple search for “Nmap switches” will provide tons of
sites with full-syntax command samples for you to mix around for your own needs. For a full and
complete rundown of every switch and option, visit Nmap’s man page, or check with the
originator’s documentation page at http://nmap.org/docs.html. Table 3-4 lists some of the more
relevant Nmap switches you’ll need to know.

Table 3-4 Nmap Switches

https://svn.nmap.org/nmap/docs/nmap.usage.txt
http://nmap.org/docs.html

NOTE Although your exam almost always points to slower being better, paranoid and sneaky
scans can take exceedingly long times to complete. If you get too carried away and run multiple
instances of Nmap at very fast (-T5) speeds, you’ll overwhelm your NIC and start getting some
really weird results. Another fun fact: not assigning a T value at all will default to -T3, “normal.”

As you can see, quite a few option switches are available for the command. The “s”
commands determine the type of scan to perform, the “P” commands set up ping sweep options,
and the “o” commands deal with output. The “T” commands deal with speed and stealth, with
the serial methods taking the longest amount of time. Parallel methods are much faster because
they run multiple scans simultaneously. Again, the slower you run scans, the less likely you are
to be discovered. The choice of which one to run is yours.

Combining option switches can produce specific output on any given target. For example’s
sake, suppose you wanted to run a SYN port scan on a target as quietly as possible. The syntax
would look something like this:

If you wanted an aggressive XMAS scan, perhaps the following might be to your liking:

The combinations are endless and provide worlds of opportunity for your port-scanning
efforts. You’ll need to know Nmap switches for the port scans very well, and how to compare
different variations. For example, you can certainly turn on each switch you want for each
feature, but using something like the -A switch enables OS detection, version detection, script
scanning, and traceroute automatically for you.

EXAM TIP It is impossible for me to stress enough how well you need to know Nmap. You
will be asked tricky questions on syntax, scan types, and responses you’d expect from open and
closed ports. The list goes on. Please do not rely solely on this writing, or any other, for your
study. Download the tool. Play with it. Use it. It may very well mean the difference between
passing and failing your exam.

Nmap handles all scan types we discussed in the previous section, using switches identified
earlier. In addition to those listed, Nmap offers a “Window” scan. It works much like the ACK
scan and provides information on open ports. Many more switches and options are available for
the tool. Again, although it’s a good bet to study the information presented here, you absolutely
need to download and play with the Nmap tool to be successful on the exam and in your career.

NOTE Port sweeping and enumeration on a machine is also known as fingerprinting, although
the term is normally associated with examining the OS itself. You can fingerprint operating
systems with several tools we’ve discussed already, along with others such as SolarWinds,
Netcraft, and HTTrack.

No Candy Here
One of the bad things about getting older is you lose out on the real fun of just being a kid.
Take Halloween, for example. It’s one of my favorite holidays of the year and, as I write this,
is right around the corner. I’ll be dressed as a pirate, like I do nearly every year, and I’ll have
a blast handing out candy to cutely adorned kids in the neighborhood. But candy for me? Nah
—I won’t be trick-or-treating. I imagine if an old guy went walking up to a house dressed as a
pirate demanding candy, he’s more likely to get shot than to receive a Charms Blow Pop (one
of my all-time favorites). Instead, I’ll have to sneak some sugar-coated goodness out of our
bowl when my wife isn’t looking and rely on memories of trick-or-treats past.

One thing I do remember about trick-or-treating as a kid was the areas Mom and Dad told
me not to go to. See, back in the 70’s there were all sorts of stories and horrid rumors about
bad stuff in the candy—evil people handing out chocolate bars with razor blades in them or
needles stuck in gum. For whatever reason, some neighborhoods and areas were considered
off limits to me and my group, lest we get a bag full of death candy instead of heavenly
nirvana. Personally, I think it was all a ruse cooked up by parents to allow them access to their
kid’s candy first—“Son, we just want to check all your candy for anything bad”—ensuring at
least some of the better chocolate got into Dad’s hands.

So, what does this have to do with ethical hacking? Other than the obvious tie-ins with
nerd-dom and costumed fun, it’s actually apropos to scanning and enumeration. When it
comes to these efforts, there are definitely areas you shouldn’t go knocking for candy. You
would most likely find some tasty virtual treats, but the tricks would be disastrous to your
continued freedom.

A scan of the 129.51.0.0 network? While close to my old home and right around the corner
from where I used to live, I’m pretty sure the friendly, military, network-monitoring folks at
Patrick AFB wouldn’t look too kindly on that. 129.63.0.0? Johnson Space Center would likely
not be happy to see you snooping around. 128.50.0.0? Don’t poke the Department of Defense
guys. They’re a nervous lot.

There are many, many other examples of IP address space you should just leave alone if
you’re at all concerned about staying out of prison, but I think you get the point. Try an
Internet browser search on “IP addresses you shouldn’t scan” for more examples when you’re
bored. If you do your footprinting homework, you should be able to avoid all these anyway.
But if you don’t, don’t be surprised to find your virtual trick-or-treating a truly scary event.

Knowing how to recognize and read Nmap output is just as important as learning the syntax
of the command. The GUI version of the tool, Zenmap, makes reading this output easy, but the
command-line output is just as simple. Additionally, the output is available via several methods.
The default is called interactive, and it is sent to standard output (text sent to the terminal).
Normal output displays less run-time information and fewer warnings because it is expected to
be analyzed after the scan completes rather than interactively. You can also send output as XML
(which can be parsed by graphical user interfaces or imported into databases) or in a “greppable”
format (for easy searching). Figure 3-10 shows a brief example. Ports are displayed in output as
open, closed, or filtered. Open is obvious, as is closed. Filtered means a firewall or router is
interfering with the scan.

Figure 3-10 Nmap output

NOTE NetScanTools Pro (https://www.netscantools.com/nstpromain.html) is another scan
tool you probably want to get to know. It holds four sets of tools in the suite: Active Discovery
and Diagnostic Tools (testing/locating devices on net), Passive Discovery Tools (monitor

https://www.netscantools.com/nstpromain.html

activities of devices and gather information), DNS Tools (self-explanatory), and Local Computer
and General Information tools (details about local system).

Hping
Although Nmap is the unquestioned leader of the port-scanning pack, plenty of other tools are
available that are just as adept. Hping (Hping2 or Hping3) is another powerful tool for both ping
sweeps and port scans, and is also a handy packet-crafting tool for TCP/IP. Hping works on
Windows and Linux versions and runs nearly any scan Nmap can put out. The only real
downside, for people like me who prefer pictures and clicking things, is that it’s still a command-
line-only tool. Just as with Nmap, Hping3 has specific syntax for what you’re trying to
accomplish, with tons of switches and options. For example, a simple ping sweep can be
accomplished by typing in hping3 -1 IPaddress. A full and complete breakdown of all switches
and syntax can be found on Hping’s man page, located www.hping.org/manpage.html. For study
purposes, Table 3-5 lists a few of the switches you are likely to see on the exam.

Table 3-5 Hping Switches

http://www.hping.org/manpage.html

EXAM TIP Know Hping3 syntax very well. Grab the tool and practice, especially using it for
ICMP requests, various scans, SYN floods, and specific uses (like discovering sequence numbers
and timestamps).

Other Scanning Tools
SuperScan, available as a free download (evaluation) from McAfee, is another easy-to-use GUI-
based program. It works well and offers several options from an intuitive front-end interface,
providing for ping sweeps and port scans against individual systems or entire subnets. Figure 3-
11 shows SuperScan’s interface.

Figure 3-11 SuperScan

Some other tools for accomplishing port scanning fun include Advanced Port Scanner,
MegaPing, Net Tools, and PRTG Network Monitor (be sure to check the tool list at the end of
this book for more). And, of course, we shouldn’t neglect mentioning scanning tools designed
for mobile use. IP Scanner (10base-t.com), Fing (www.fing.io), Hackode (play.google.com),

http://10base-t.com
http://www.fing.io
http://play.google.com

zANTi (www.zimperium.com), and PortDroid Network Analysis (play.google.com) are all
examples of tools designed for your mobile device, and all are worth your time in downloading
and learning.

Regardless of whether your choice is running Nmap on a Linux machine, harnessing
command-line option power like a pro, or using SuperScan’s simple GUI interface on a
Windows machine, the goal is the same. Port scanning identifies which ports are open and gives
you more information in building your attack vectors. Each scan type you attempt will react
differently and take different lengths of time to pull off (a UDP scan of Linux machines can take
a very long time, for instance), and you’ll definitely need to know the output to look for with
each one. However, the tools are all designed to achieve the same overall end.

Evasion
Want more fun in scanning? Try doing it without being caught. Whether you’re port scanning,
searching for wireless openings, or just wandering about looking for physical security clues,
stealth is always important. Hiding your activities from prying security-professional eyes is
something you’ll need to prepare for and master in each step of the hacking phases, and scanning
is no exception. Sometimes scanning can be interrupted by pesky firewalls or monitoring
devices, and you’ll be forced to disguise who you are and what you’re up to. Options for
accomplishing this include fragmenting packets, spoofing an IP address, source routing, and
proxies.

One of the most common (and possibly elegant) methods used to evade detection by an IDS is
fragmenting packets. The idea isn’t to change the scan itself—you can still run a full connect
scan, for instance—but to crack apart the packets before they’re sent so the IDS can’t recognize
them. If you split the TCP header into several packets, all the IDS sees is useless chatter.
Assuming you’re not flooding the network segment too fast with them, your scanning won’t
even be noticed. For example, an Nmap command like nmap -sS -A -f 172.17.15.12 might work
to fragment a SYN scan (while OS fingerprinting along the way).

EXAM TIP ECC really loves this active vs. passive thing. In enumeration, active OS
fingerprinting involves sending crafted, nonstandard packets to a remote host and analyzing the
replies. Passive OS fingerprinting involves sniffing packets without injecting any packets into
the network—examining things like Time-to-Live (TTL), window sizes, Don’t Fragment (DF)
flags, and Type of Service (ToS) fields from the capture.

Spoofing an IP address is exactly what it sounds like: the hacker uses a packet-crafting tool of
some sort to obscure the source IP address of packets sent from her machine. Many tools are
available for this—Hping, Scapy, and Komodia, for example. You can also find this
functionality built into a variety of other scanning tools. Ettercap and Cain, usually thought of
more for their sniffing capabilities, provide robust and powerful spoofing capabilities as well;
heck, even Nmap can spoof if you really want. Just be cautious in spoofing—sometimes you can
spoof so well the information you’re working so hard to obtain never finds its way back to you.

http://www.zimperium.com
http://play.google.com

EXAM TIP Remember, spoofing an IP address means any data coming back to the fake
address will not be seen by the attacker. For example, if you spoof an IP address and then
perform a TCP scan, the information won’t make its way back to you.

Source routing provides yet another means to disguise your identity on a network, assuming
you come across something designed circa 1995. It was originally designed to allow applications
to specify the route a packet takes to a destination, regardless of what the route tables between
the two systems say, but was deprecated long, long ago. Its main benefit used to be assisting
network managers in forcing traffic around areas of potential congestion. How was this useful to
a hacker? The attacker could use an IP address of another machine on the subnet and have all the
return traffic sent back, regardless of which routers are in transit. Protections against source-
routing attacks are prevalent and effective, not to mention most firewalls and routers detect and
block source-routed packets, so this just won’t work on modern networks. ECC loves it, though,
and it’s testable, so learn it.

NOTE Another evasion effort is known as IP Address Decoy. The basic idea is you obfuscate
the real source of the scan by hiding it among a whole bunch of decoy source addresses (making
it appear the decoys as well as the host are scanning). You can pull this off in Nmap a couple of
different ways. First, nmap -D RND:10 X.X.X.X generates a number of decoys and randomly
puts the real source IP between them. If you wanna get a little more manual in your effort, try
nmap -D decoyIP1,decoyIP2,decoyIP3,...,sourceIP,...[target]. This version lets you decide
how many decoys to generate and where the source IP address appears.

Finally, our last method of IDS evasion (at least so far as your exam is concerned) involves
employing proxies to hide behind. A proxy is nothing more than a system you set up to act as an
intermediary between you and your targets. In many instances, proxies are used by network
administrators to control traffic and provide additional security for internal users, or for things
like remotely accessing intranets. Hackers, though, can use that technology in reverse—sending
commands and requests to the proxy and letting the proxy relay them to the targets. So, for
evasion purposes, anyone monitoring the subnet sees the proxy trying all these actions, not the
hacker.

EXAM TIP It’s important to remember a proxy isn’t just a means for obfuscating source.
Proxies are used for a variety of things, so when those weird questions show up asking you what

the proxy is for, use contextual clues to help out.

Proxying can be done from a single location or spread across multiple proxies to further
disguise the original source. Hundreds of free, public proxies are available to sign up for, and a
simple Internet search will point you in the right direction. If you want to set up proxy chains,
where multiple proxies further hide your activities, you can use tools such as Proxy Switcher
(proxyswitcher.com), Proxy Workbench (proxyworkbench.com), ProxyChains
(http://proxychains.sourceforge.net/), SoftCab’s Proxy Chain Builder
(www.softcab.com/download.php), CyberGhost (cyberghostvpn.com), and Proxifier
(www.proxifier.com).

NOTE Want some geek humor? A long while back, some young folks hacked a system, found
all sorts of stuff, and started posting it everywhere. When they were contacted about the owners
going to the authorities, the response “I WENT THROUGH 7 PROXIES GOOD LUCK”
became etched in sarcastic nerd lingo. See, because it was a vague reference to the “proxseas.”
Get it? There are seven oceans…seven seas…proxSEAS?? Oh the lulz…

Another great method for anonymity on the Web is The Onion Routing (Tor). Tor basically
works by installing a small client on the machine, which then gets a list of other clients running
Tor from a directory server. The client then bounces Internet requests across random Tor clients
to the destination, with the destination end having very little means to trace the original request
back. Communication between Tor clients is encrypted, with only the last leg in the journey—
between the Tor “cloud” and the destination—sent unencrypted. One really important thing to
keep in mind, though, is that anyone can be a Tor endpoint, so signing up to voluntarily have
goodness-knows-what passing through your machine may not be in your best interests.
Additionally, Tor is highly targeted, and there are multiple lawsuits pending—so be careful.

NOTE You won’t be placed as an endpoint out of the gate—it’s something you have to choose
to do and is not even enabled by default—and you have to configure many tools to ride over Tor.

The Shadow Knows
ECC has put a very large emphasis on the mobile world of late, and rightly so. For almost
every area of concentration in their course, they make sure to mention tools and actions
specific to the mobile world, and evasion is no different. Just a few of the tools they mention
include proxydroid (github.com), Servers ultimate (www.icecoldapps.com), and NetShade

http://proxyswitcher.com
http://proxyworkbench.com
http://proxychains.sourceforge.net/
http://www.softcab.com/download.php
http://cyberghostvpn.com
http://www.proxifier.com
http://github.com
http://www.icecoldapps.com

(www.raynersw.com). Anonymizers include Orbot (guardianproject.info), Psiphon
(psiphon.ca), and OpenDoor (itunes.apple.com), among others. But one evasion tool listed in
particular caught my eye. Shadowsocks (shadowsocks.org) may be listed as a mobile
anonymizer/proxy, but, man, does it have a cool background story, and a much wider
application.

For all the problems you may or may not have in the United States, access to the wealth of
knowledge, entertainment, and, yes, pure naughtiness on the Internet is most likely not one of
them. We simply take for granted here in the US that if we type in an address, our browser
will display it, regardless whether or not it’s in the best interest of our governing bodies for us
to read it. We have near unbridled freedom to check out anything we want to; however, it’s
not that way in the rest of the world. China, for example, implements extensive restriction of
content from the Internet. Chinese citizens, in large measure, only get to see what the
government wants, when the government wants them to see it. The efforts to restrict informa-
tion flow has been dubbed the “Great Firewall.”

In 2012, after Chinese government crackdowns on VPNs subverting the Great Firewall, a
Chinese programmer named “clowwindy” created and released a new encrypted proxy project
named “Shadowsocks.” What made this one so different from other VPNs, and what led to its
rapid rise within the country to gain access to the free Internet, is the way in which it works.
Instead of relying on just a few large VPN service providers and popular Internet protocols,
Shadowsocks allows each user to create his own, unique proxy connection, creating an
encrypted con-nection between client and proxy server using the open source Internet
protocol SOCKS5. This implementation makes it near impossible for censors to distinguish
traffic downloading a music video or pulling up a stock ticker from traffic heading to sites the
Chinese government wants to censor.

So why is Shadowsocks listed as a “mobile” proxy/anonymizer? I literally have no idea,
but it doesn’t change the fact it has got a very cool backstory. Use your favorite search engine
and check it out yourself…assuming, of course, you’re still allowed to.

Finally, another ridiculously easy method for disguising your identity, at least for port 80
(HTTP) traffic, is to use an anonymizer. Anonymizers are services on the Internet that make use
of a web proxy to hide your identity. Thousands of anonymizers are available—simply do a
Google search and you’ll see what I mean. Be careful in your choice, though; some of them
aren’t necessarily safe, and their owners are set up specifically to steal information and plant
malware. Some anonymizers referenced by ECC are Guardster (guardster.com), Ultrasurf
(ultrasurf.us), Psiphon (psiphon.ca), and Tails (tails.boum.org). Tails isn’t an application, per se;
it’s an actual live OS you can run from a USB that anonymizes the source and leaves no trace on
the system you’re on. Neat!

NOTE Did you know Google puts a cookie on your system with a unique identifier that lets

http://www.raynersw.com
http://guardianproject.info
http://psiphon.ca
http://itunes.apple.com
http://shadowsocks.org
http://guardster.com
http://ultrasurf.us
http://psiphon.ca
http://tails.boum.org

them track your web activity? Want to get rid of it? Gzapper (www.dummysoftware.com) is
what you want, and you may see a reference to it on the exam too.

Vulnerability Scanning
Lastly, before we move on to the enumeration section of this chapter, I have to devote a little
time to vulnerability scanning. And, listen, before you start screaming at me that vulnerability
scanning requires a certain level of access and you’ll definitely trigger roughly a thousand alerts
that will notify everyone in the building you’re hacking right after spending half a chapter
talking about stealth, I know. I get it. It’s not my choice to put this here, but it’s where ECC says
it belongs. So we’ll cover it. And I’ll keep it short, I promise.

Vulnerability scanning is exactly what it sounds like—running a tool against a target to see
what vulnerabilities it may hold. This indicates to any rational mind the scanner itself must be
really good at keeping up to date with known vulnerabilities, and really good at not adversely
affecting the systems it’s pointed at. Fortunately, there are several vulnerability-scanning tools
about. Some are enterprise-level scanning beasts, with the capability to scan everything in your
enterprise and provide nice reports so you can track down SAs and beat them into submission
over missing patches. Retina CS (beyondtrust.com) is one example. Others are more targeted to
specific tasks, like Microsoft Baseline Security Analyzer (MBSA), which lives solely in the
Windows world but does a good job telling you what patches and such are missing on your
machine. And some…well, some just stink.

NOTE On various practice exams and study materials, I’ve seen reference to ECC digging
down into the weeds on exactly what is on which Nessus tab. Because this material is not
covered in the official courseware, we won’t spend page count going through the inner workings
of the scanner (although you can see a neat picture of the Nessus General Settings page in Figure
3-12). I wouldn’t lose too much sleep over it, as far as your study prep is concerned. But don’t
forget Tenable offers a free evaluation version. Download, install, and take a look at it yourself.

http://www.dummysoftware.com
http://beyondtrust.com

Figure 3-12 Nessus

The industry standard as far as vulnerability scanning goes has got to be Tenable’s Nessus
(tenable.com). Tenable has different product options to accomplish different things (Nessus
Professional can be loaded on your laptop for scanning, whereas Security Center is an enterprise-
level version), but you can still get a free evaluation of Nessus Professional for seven days.
Should you decide to purchase it, you’ll be out $2190. Every year. The following is from
Tenable’s site:

The industry’s most widely deployed vulnerability scanner. Nessus Professional features
high-speed asset discovery, configuration auditing, target profiling, malware detection,
sensitive data discovery, and vulnerability analysis. More than 450 templates are available
for compliance (e.g., FFIEC, HIPAA, NERC, PCI, more) and configuration (e.g., CERT,
CIS, COBIT/ITIL, DISA STIGs) auditing. Nessus supports non-credentialed, remote scans;
credentialed, local scans for deeper, granular analysis of assets; and offline auditing on a

http://tenable.com

network device’s configuration.

NOTE Nessus isn’t just a plain vulnerability scanner—it does bunches of other stuff. Per the
site, “Nessus scans for viruses, malware, backdoors, hosts communicating with botnet-infected
systems, known/unknown processes as well as web services linking to malicious content.”
Maybe that’s why it costs so much.

This is not to say Nessus is the only option out there—far from it. Other readily available and
popular scanners include GFI LanGuard, Qualys FreeScan, and OpenVAS. GFI LanGuard
(www.gfi.com) offers quality vulnerability and compliance scanning, as well as built-in patch
management. Qualys FreeScan (www.qualsys.com) is probably better known—and noted on
your exam as such—for testing websites and applications for OWASP top risks and malware.
OpenVAS (www.openvas.com) is probably the best out of the bunch, although you may not have
ever heard about it. OpenVAS is, for all intents and purposes, a free version of Nessus. It can
perform many of the same functions at (or even above) the same level of reliability and quality
for zero cost.

Enumeration
In its basic definition, to enumerate means to specify individually, to count off or name one by
one. Enumeration in the ethical hacking world is just that—listing the items we find within a
specific target. We create connections to a device, perform specific actions to ask specific
questions, and then use the results to identify potential attack vectors. If ports are doors and
windows and port scanning can be equated to knocking on them to see whether they are open,
enumerating is more akin to chatting with the neighbor at the door. When we enumerate a target,
we’re moving from passive information gathering to a much more active state. No longer
satisfied with just knowing which ports are open, we now want to find things like open shares
and any easy-to-grab user account information. We can use a variety of tools and techniques, and
a lot of it bleeds over from scanning. Before we get fully involved in enumerating, though, it’s
helpful to understand the security design of your target.

Windows System Basics
Hands down the most popular operating system in the world is Microsoft Windows. Everything
from old Windows 2000 to Windows 10 systems will constitute the vast majority of your targets
in the real world. Taking some time to learn some of the basics of its design and security features
will pay dividends in your enumeration future.

Obviously enumeration can and should be performed on every system you find in your target
network, regardless of operating system. However, because Windows machines will undoubtedly
make up the majority of your targets, you need to spend a little more time on them. As a family
of operating systems, Windows provides a wide range of targets, ranging from the ridiculously

http://www.gfi.com
http://www.qualsys.com
http://www.openvas.com

easy to fairly hardened machines. Windows XP and Windows Server 2000 machines are still
roaming around and present easy targets. Windows Server (now at 2019) and Windows 10 (not
to mention previous versions 7 and 8) up the ante quite a bit. Regardless of version, there are a
few things that remain constant despite the passage of time. Some of this you may already know,
and some of it you may not, but all of it is important to your future.

Everything in a Windows system runs within the context of an account. An account can be
that of a user, running in something called user mode, or the system account. The system account
is built into the OS as a local account and has widespread privileges on the local computer. In
addition, it acts as the computer itself on the network. Actions and applications running in user
mode are easy to detect and contain; however, anything running with system account privileges
is, obviously, concerning to security professionals.

NOTE Ever heard of the “security context” of a Microsoft account? Per Microsoft: “In a
Windows network, a security context defines a user identity and authentication information.
Applications (such as Microsoft Exchange Server or SQL Server) need a user security context to
provide security using Microsoft access control lists (ACLs) or other tools.”

This is not to say that there are only two means of security control when it comes to accounts
—quite the contrary, as I’m sure some of you were already running off to your MCSE books and
pointing out the difference between rights and permissions and their effect on accounts. User
rights are granted via an account’s membership within a group and determine which system tasks
an account is allowed to perform. Permissions are used to determine which resources an account
has access to. The method by which Windows keeps track of which account holds what rights
and permissions comes down to SIDs and RIDs.

Sometimes the Best Idea Is the Worst One
Imagine you work for the largest distributor of operating systems on the planet. You’re sitting
there one day reading the news and notice everyone around you is reading and sending things
on their mobile devices. The lightning bolt hits—wouldn’t it be great to have one interface
that is the same on whatever screen you’re looking at? Wouldn’t it be fantastic for mobile
users to seamlessly interact with their desktop computers, and vice versa, on one OS, to have
one interface that looks the same on both devices? Wouldn’t it be just totally awesome for
that to then show up everywhere? Just think of the market share! We’ll make billions!

I can’t blame Microsoft for trying with Windows 8. You have to admit, the idea sounded
great. Heck, it still sounds great. But sometimes great ideas just don’t work when
implemented in the real world (just look at how grossly mismanaged almost any government
program in existence is and tell me I’m wrong), and while I’m absolutely positive Microsoft
was convinced they were about to change the world, forcing a mobile-like interface onto a PC
desktop was a horrible idea. The idea of a single interface may have sounded great, but the
implementation—removing the Start button from an interface the vast majority of systems

users had seen since day one, and then leaving it to those users to try and figure out what the
heck “hot corners,” tiles, and charms were—was just horrible.

So did Windows 10 save Microsoft operating systems? Market share for desktop systems
shows Microsoft has dropped from a high of 88 percent in 2014 to 82.88 percent this year (as
of June 2018, per statista.com). The OS seems to run well, introduces a more friendly and
intuitive interface, and adds some additional security features. Although it has some weird,
unexplainable characteristics (Silverlight, a Microsoft-designed plug-in for developers isn’t
supported on Edge, Microsoft’s new, sexy Internet browser, for example), all in all it seems to
have been received well, and I don’t think Microsoft is going away anytime soon.

Of course, there’s no telling what the future holds. Maybe someone else will successfully
try the “one OS for all” tactic and we’ll all ditch Windows overnight. Maybe operating
systems themselves will be replaced by interactive robot faces and artificial intelligence. For
now, we’ll just place a copy of Windows 8 on the shelf in the Museum of Dumb Ideas. Hurry,
everyone gets a free Zune at the door.

A security identifier (SID) identifies user, group, and computer accounts and follows a
specific format. A resource identifier (RID) is a portion of the overall SID identifying a specific
user, computer, or domain. SIDs are composed of an S, followed by a revision number, an
authority value, a domain or computer indicator, and an RID. The RID portion of the identifier
starts at 500 for the administrator account. The next account on the system, Guest, is RID 501.
All users created for the system start at 1000 and increment from that point forward—even if
their user names are re-created later. For example’s sake, consider the following SID:

We know this is an administrator account because of the 500 at the end. An SID of S-1-5-22-
3984762567-8273651772-8976228637-1014 would be the account of the 15th person on the
system (the 1014 tells us that).

NOTE Linux uses a user ID (UID) and a group ID (GID) in much the same way as Windows
uses SIDs and RIDs. On a Linux machine, these can be found in the /etc/passwd file.

Another interesting facet of Windows security architecture you’ll need to know as basic
information involves passwords and accounts. As you know, a user ID and a password are typed
in by users attempting to log into Windows. These accounts are identified by their SIDs (and
associated RIDs), of course, but the passwords for them must be stored somewhere, too. In
Windows, that somewhere is C:\Windows\System 32\Config\SAM. The SAM database holds (in
encrypted format, of course) all the local passwords for accounts on the machine. For those
machines that are part of a domain, the passwords are stored and handled by the domain
controller. We’ll definitely get into cracking and using the SAM later.

http://statista.com

This section isn’t necessarily a discussion of enumeration steps in and of itself, but it does
cover some basics you’ll definitely need to know moving forward. It doesn’t do me any good to
teach you enumeration steps if you don’t really know what you’re looking for. And now that we
do have the basics down, let’s get to work.

EXAM TIP Examples of the Linux enumeration commands are finger (which provides
information on the user and host machine), rpcinfo and rpcclient (which provide information on
RPC in the environment), and showmount (which displays all the shared directories on the
machine).

Enumeration Techniques
Enumeration is all about figuring out what’s running on a machine. Remember all that time we
spent discussing the virtues of researching current vulnerabilities? Perhaps knowing what
operating system is in play on a server will help you determine which vulnerabilities may be
present, which makes that whole section a lot more interesting to you now, right? And don’t let
enumeration just come down to figuring out the OS either—there’s a lot more here to look at.

Banner Grabbing
Banner grabbing is actually listed as part of the scanning methodology, but dang it—it belongs
here in enumeration. After all, that’s what it does. It’s one of the easiest enumerating methods,
but it sure can have a big bang for the buck.

Basically the tactic involves sending an unsolicited request to an open port to see what, if any,
default message (banner) is returned. Depending on what version of the application is running on
the port, the returned banner (which could be an error message, HTTP header, or login message)
can indicate a potential vulnerability for the hacker to exploit. A common method of performing
banner grabbing is to use a simple tool already built into most operating systems, Telnet.

EXAM TIP ECC defines two different categories of banner grabbing—active and passive.
Active banner grabbing involves sending specially crafted packets to remote systems and
comparing responses to determine the OS. Passive banner grabbing involves reading error
messages, sniffing network traffic, or looking at page extensions. I’d love to tell you why, or
explain the reasoning behind this, but I can’t. Just go with the definitions and chalk this up as
something to know just for the exam.

As you know already, Telnet runs on port 23. Therefore, if you simply type telnet
<IPaddress>, you’ll send TCP packets to the recipient with the destination port set to 23.
However, you can also point it at any other port number explicitly to test for connectivity. If the

port is open, you’ll generate some form of banner response. For example, suppose you sent a
Telnet request to port 80 on a machine. The result may look something like this:

It’s just a harmless little error message, designed to show an administrator he may have made
a mistake, right? It just happens to also tell an ethical hacker there’s an old version of IIS on this
machine (IIS/5.0). Other ports can also provide interesting nuggets. For example, if you’re not
sure whether a machine is a mail server, try typing telnet <IPaddress> 25. If it is a mail server,
you’ll get an answer something like the following, which I received from a Microsoft Exchange
Server:

In addition to testing different ports, you can also use a variety of tools and techniques for
banner grabbing. One such tool is netcat (which we’ll visit again later in this book). Known as
the “Swiss Army knife of hacking tools,” netcat is a command-line networking utility that reads
and writes data across network connections using TCP/IP. It’s also a tunneling protocol, a
scanner, and an advanced hacking tool. To try banner grabbing with this little jewel, simply type
nc <IPaddress or FQDN> <port number>. Some sample netcat output for banner grabbing is
shown here:

As you can see, banner grabbing is a fairly valuable tool in gathering target information.
Telnet and netcat can both perform it, but numerous other tools are available. As a matter of fact,
most port scanners—including the ones we’ve covered already—are fully capable of banner
grabbing and using it in preparing their output.

NetBIOS Enumeration

An acronym for Network Basic Input/Output System, NetBIOS was developed in 1983 by Sytek,
Inc., for IBM PC networking. It has morphed and grown since then but largely still provides the
same three services on a network segment: name servicing, connectionless communication, and
some Session layer stuff. It is not a networking protocol but rather another one of the creations in
networking that was originally designed to make life easier for us. Part of the idea was to have
everything named so you could easily look up a computer or a user. And, as everything else that
was created to make life easier in networking, it can be corrupted to provide information to the
ethical hacker.

This browser service, part of Microsoft Windows operating systems, was designed to host
information about all the machines within the domain or TCP/IP network segment. A “master
browser” coordinates list information and allows systems and users to easily find each other.
Largely ignored by many in hacking networked resources—because there are multiple ways to
get this information—it’s still a valuable resource in gathering information and will definitely
show up on your exam!

NOTE There’s a ton of stuff involved in NetBIOS we’re not getting into here, such as browser
roles, browse order, implementation details on Windows networks, and so on, mainly because
none of that is tested. This is not to say it’s irrelevant to your future as an ethical hacker, though.
Do some reading on the subject, and learn how the roles work inside a network. When you put it
all together, it’ll open some really interesting avenues for your hacking efforts.

A NetBIOS name is a 16-character ASCII string used to identify network devices—15
characters define the name, and the 16th character is reserved for the service or name record
type. If you’d like to see it on your current Windows system, just use the built-in utility nbtstat.
Typing nbtstat on its own in a command line brings up a host of switches to use for information-
gathering purposes. Try nbtstat -n for your local table, nbtstat -A IPADDRESS for a remote
system’s table (using the lowercase a instead allows you to use the computer name instead of the
address), and nbtstat -c for the cache. For example, consider this output:

The “00” identifies the computer’s name and the workgroup it’s assigned to. The “20” tells us

file and print sharing is turned on. The “1E” tells us it participates in NetBIOS browser elections,
and the “1D” tells us this machine is currently the master browser for this little segment. And, for
fun, the remote MAC address is listed at the bottom. Granted, this isn’t world-beating stuff, but
it’s not bad for free, either. Table 3-6 summarizes the codes and types you’ll probably need to
remember.

Table 3-6 NetBIOS Codes and Types

EXAM TIP NetBIOS enumeration questions will generally be about three things:

• Identifying the code and type
• The fact NetBIOS name resolution doesn’t work at all on IPv6
• Which tools can be used to perform it

Don’t lose too much sleep over this, though—there won’t be more than a couple questions on
this subject.

Nbtstat isn’t the only tool available for NetBIOS enumeration. SuperScan (www.mcafee.com)
is not only a port scanner—it’s also a NetBIOS enumeration engine and a Windows host
enumeration engine, can produce great reporting, and also does a fine job of banner grabbing.
Hyena (www.systemtools.com) is another multipurpose tool to mention. It’s a GUI-based tool
that shows shares, user logon names, services, and other data that would be useful in securing
Microsoft systems. Some other tool options include Winfingerprint
(https://packetstormsecurity.com/files/38356/winfingerprint-0.6.2.zip.html), NetBIOS
Enumerator (nbtenum.sourceforge.net), and NSAuditor (nsauditor.com).

SNMP Enumeration
Another enumerating technique of note for your exam is exploiting Simple Network
Management Protocol (SNMP). SNMP was designed to manage IP-enabled devices across a
network. As a result, if it is in use on the subnet, you can find out loads of information with

http://www.mcafee.com
http://www.systemtools.com
https://packetstormsecurity.com/files/38356/winfingerprint-0.6.2.zip.html
http://nbtenum.sourceforge.net
http://nsauditor.com

properly formatted SNMP requests. Later versions of SNMP make this a little more difficult, but
plenty of systems are still using the protocol in version 1.

SNMP consists of a manager and agents, and it works much like a dispatch center. A central
management system set up on the network will make requests of SNMP agents on the devices.
These agents respond to the requests by going to a big virtual filing cabinet on each device called
the Management Information Base (MIB). The MIB holds information, and it’s arranged with
numeric identifiers (called object identifiers, or OIDs) from general information to the very
specific. The request points out exactly what information is requested from the MIB installed on
that device, and the agent responds with only what is asked for. MIB entries can identify what
the device is, what operating system is installed, and even usage statistics. In addition, some MIB
entries can be used to actually change configuration settings on a device. When the SNMP
management station asks a device for information, the packet is known as an SNMP GET
request. When it asks the agent to make a configuration change, the request is an SNMP SET
request.

NOTE There are two types of managed objects in SNMP—scalar and tabular. Scalar defines a
single object, whereas tabular defines multiple related objects that can be grouped together in
MIB tables.

SNMP uses a community string as a form of password. The read-only version of the
community string allows a requester to read virtually anything SNMP can drag out of the device,
whereas the read-write version is used to control access for the SNMP SET requests. Two major
downsides are involved in the use of both these community string passwords. First, the defaults,
which are all active on every SNMP-enabled device right out of the box, are ridiculously easy.
The read-only default community string is public, whereas the read-write string is private.
Assuming the network administrator left SNMP enabled and/or did not change the default
strings, enumerating with SNMP is a snap.

EXAM TIP Weirdly enough, ECC seems really concerned with protocol encryption,
authentication, and message integrity functions. You should know that NTPv3 and SMTPv3 both
provide these.

The second problem with the strings is that they are sent in clear text (at least in SNMPv1).
So, even if the administrators took the time to change the default community strings on all
devices (and chances are better than not they’ll miss a few here and there), all you’ll need to do
to grab the new strings is watch the traffic—you’ll eventually catch them flying across the wire.
However, keep in mind that versioning matters when it comes to SNMP. Because SNMP version
3 encrypts the community strings, enumeration is harder to pull off. Additionally, although

public and private are the default strings, some devices are configured to use other strings by
default. It might be worthwhile researching them before you begin your efforts.

Tools you can use to enumerate with SNMP are seemingly endless. Engineer’s Toolset
(solarwinds.com), SNMPScanner (secure-bytes.com), OpUtils 5 (www.manageengine.com), and
SNScan (mcafee.com) are all viable options.

Other Enumeration Options
The Lightweight Directory Access Protocol (LDAP) is designed to be queried, so it presents a
perfect enumeration option. LDAP sessions are started by a client on TCP port 389 connecting to
a Directory System Agent (DSA). The request queries the hierarchical/logical structure within
LDAP and returns an answer using Basic Encoding Rules (BER). So what can you get out of
LDAP using this? Oh, nothing important. Just things like valid user names, domain information,
addresses and telephone numbers, system data, and organizational structure, among other items.
Tools such as Softerra (ldapadministrator.com), JXplorer (jxplorer.com), Lex
(ldapexplorer.com), and LDAP Admin Tool (sourceforge.net) all work well and are fairly
intuitive and user friendly. Oh, and don’t forget the built-in Active Directory Explorer in
Windows systems (Microsoft’s proprietary-ish version of LDAP). It can make LDAP
information gathering quick and easy.

Other protocols of note for enumeration efforts include NTP and SMTP. Network Time
Protocol (running UDP on port 123) does exactly what the name implies—it sets the time across
your network. Querying the NTP server can give you information such as a list of systems
connected to the server (name and IP) and possibly IP addresses of internal systems (that is, if
the NTP box is in the DMZ and serves machines inside the network, information can be pulled
on the internal machines). Several tools for NTP enumeration are available, including NTP
Server Scanner (bytefusion.com) and AtomSync (atomsync.com), but you can also use Nmap
and Wireshark if you know what you’re looking for. Commands for NTP enumeration include
ntptrace, ntpdc, and ntpq.

We’ve already talked some about e-mail information gathering in previous sections, but a
little more info on Simple Mail Transfer Protocol (SMTP) is required here for your exam and for
enumeration. SMTP holds multiple commands (12), but three are commonly used and will
probably find their way on your exam—VRFY (validates user), EXPN (provides the actual
delivery addresses of mailing lists and aliases), and RCPT TO (defines recipients)—and servers
respond differently to these commands. Their responses can tell us which are valid and which are
invalid user names. An example of these responses in action can be seen in Figure 3-13.

http://solarwinds.com
http://secure-bytes.com
http://www.manageengine.com
http://mcafee.com
http://ldapadministrator.com
http://jxplorer.com
http://ldapexplorer.com
http://sourceforge.net
http://bytefusion.com
http://atomsync.com

Figure 3-13 SMTP commands

EXAM TIP Know SMTP commands (VRFY, EXPN, and RCPT TO) and how to use them in
Telnet well.

Chapter Review
Scanning is the process of discovering systems on the network and taking a look at what open
ports and applications may be running. EC-Council’s scanning methodology phases include the
following: check for live systems, check for open ports, scan beyond IDS, perform banner
grabbing, scan for vulnerabilities, draw network diagrams, and prepare proxies.

When two TCP/IP-enabled hosts communicate with each other, data transfer is either
connectionless or connection-oriented. Connectionless communication is “fire and forget,”
meaning the sender can simply fire as many segments as it wants out to the world, relying on
other upper-layer protocols to handle any problems. At the Transport layer, connectionless
communication is accomplished with UDP. Application protocols that make use of this transport

method are moving very small amounts of data and usually are moving them inside a network
structure (not across the Internet). Examples of protocols making use of UDP are TFTP, DNS,
and DHCP.

Connection-oriented communications using TCP are slower than connectionless but are a
much more orderly form of data exchange. Senders will reach out to recipients, before data is
ever even sent, to find out whether they’re available and whether they’d be willing to set up a
data channel. Once data exchange begins, the two systems continue to talk with one another. Six
flags can be set in the TCP header: URG (Urgent), ACK (Acknowledgment), PSH (Push), RST
(Reset), SYN (Synchronize), and FIN (Finish). A session must be established between two
systems for data exchange. This is accomplished via a three-way handshake, listed as “SYN,
SYN/ACK, ACK.”

The source and destination port fields in TCP or UDP communication define the protocols
that will be used to process the data. The port numbers range from 0 to 65,535 and are split into
three different groups: well-known (0–1023), registered (1024–49,151), and dynamic (49,152–
65,535). A system is said to be listening for a port when it has that port open. Typing netstat -an
displays all connections and listening ports, with addresses and port numbers in numerical form.

IPv4 has three main address types—unicast (acted on by a single recipient), multicast (acted
on only by members of a specific group), and broadcast (acted on by everyone in the network).
To determine which network an IP address belongs to, the address must be looked at as network
bits and host bits. A subnet mask is a binary pattern that is matched against any IP address to
determine which bits belong to the network side of the address. Rules involving IPv4 addresses
include the following:

• If all the bits in the host field are 1’s, the address is a broadcast (that is, anything sent to
that address will go to everything on that network).

• If all the bits in the host field are set to 0’s, that’s the network address.
• Any combination other than these two present the usable range of addresses in that

network.

To view the network and host portions of an address, first convert the IP address to binary,
convert the subnet mask to binary, and stack the two. Every bit from left to right is considered
part of the network ID until you hit a zero in the subnet ID. Next, you can manipulate the host
bits to show all zeros, set all the host bits off except the first, set all the host bits on except the
last, and set all the host bits on to show the network ID and the first, last, and broadcast
addresses, respectively.

A ping sweep is the easiest method for identifying active machines on the network. An ICMP
Echo Request (Type 8) message is sent to each address on the subnet. Those that are up (and not
filtering ICMP) reply with an ICMP Echo Reply (Type 0).

Port scanning is the method by which systems on a network are queried to see which ports
they are listening to. One of the more important port-scanning tools available is Nmap, which
can perform many different types of scans (from simply identifying active machines to port
scanning and enumeration) and can also be configured to control the speed at which the scan
operates. In general, the slower the scan, the less likely you are to be discovered and the more
reliable the results. Nmap comes in both a command-line version and a GUI version (known as
Zenmap) and works on multiple OS platforms. The Nmap syntax is simple:

Multiple scan options (or switches) are available, and combining them can produce several
scan options. The “s” commands determine the type of scan to perform, the “P” commands set
up ping sweep options, and the “o” commands deal with output. The “T” commands deal with
speed and stealth, with the serial methods taking the longest amount of time. Parallel methods
are much faster because they run multiple scans simultaneously.

There are several generic scan types for port scanning: full connect (also known as TCP
connect or full open scan), stealth (also known as a half-open scan and as a SYN scan), inverse
TCP flag, XMAS, ACK flag probe, and IDLE. Full (TCP connect) and stealth scans receive a
SYN/ACK on open ports and an RST on closed ports. XMAS and inverse TCP scans receive no
response on an open port and an RST on closed ports. Additionally, neither work on Windows
machines.

Hping (Hping2 or Hping3) is another powerful tool for both ping sweeps and port scans, and
is also a handy packet-crafting tool for TCP/IP. Hping works on Windows and Linux versions
and runs nearly any scan Nmap can put out. A full and complete breakdown of all switches and
syntax can be found on Hping’s man page (www.hping.org/manpage.html).

Hiding your activities from prying security-professional eyes can be done using fragmented
packets, IP address spoofing, source routing, and proxies. In fragmenting packets, the idea isn’t
to change the scan itself but to crack apart the packets before they’re sent so that the IDS can’t
recognize them. If you split the TCP header into several packets, all the IDS may see is useless
chatter. For example, an Nmap command like nmap -sS -A -f 172.17.15.12 might work to
fragment a SYN scan (while OS fingerprinting along the way).

Spoofing an IP address is exactly what it sounds like: you use a packet-crafting tool of some
sort to obscure the source IP address of packets sent from your machine. Many tools are
available for this—Hping, Scapy, and Komodia, for example. Spoofing an IP address means any
data coming back to the fake address will not be seen by the attacker. For example, if you spoof
an IP address and then perform a TCP scan, the information won’t make its way back to you.

Source routing was originally designed to allow applications to specify the route a packet
takes to a destination, regardless of what the route tables between the two systems say. The
attacker can use an IP address of another machine on the subnet and have all the return traffic
sent back, regardless of which routers are in transit. Protections against source-routing attacks are
prevalent and effective—not to mention most firewalls and routers detect and block source-
routed packets—so this may not be your best option.

A proxy is nothing more than a system you set up to act as an intermediary between you and
your targets. In many instances, proxies are used by network administrators to control traffic and
provide additional security for internal users, or for things like remotely accessing intranets.
Hackers, though, can use that technology in reverse—sending commands and requests to the
proxy and letting the proxy relay them to the targets. So, for evasion purposes, anyone
monitoring the subnet sees the proxy trying all these actions, not the hacker. It’s important to
remember a proxy isn’t just a means for obfuscating the source. Proxies are used for a variety of
things.

Proxying can be done from a single location or spread across multiple proxies to further
disguise the original source. If you want to set up proxy chains, where multiple proxies further
hide your activities, you can use tools such as Proxy Switcher, Proxy Workbench, ProxyChains,
SoftCab’s Proxy Chain Builder, and Proxifier.

http://www.hping.org/manpage.html

The Onion Routing (Tor) basically works by installing a small client on the machine, which
then gets a list of other clients running Tor from a directory server. The client then bounces
Internet requests across random Tor clients to the destination, with the destination end having
very little means to trace the original request back. Communication between Tor clients is
encrypted, with only the last leg in the journey—between the Tor “cloud” and the destination—
sent unencrypted.

Another method for disguising your identity, at least for port 80 (HTTP) traffic, is to use an
anonymizer. Anonymizers are services on the Internet that make use of a web proxy to hide your
identity. Some anonymizers referenced by ECC include Guardster (guardster.com), Ultrasurf
(ultrasurf.us), Psiphon (psiphon.ca), and Tails (tails.boum.org). Tails isn’t an application, per se;
it’s an actual live OS you can run from a USB that anonymizes the source and leaves no trace on
the system you’re on.

Vulnerability scanning involves running a tool against a target to see what vulnerabilities it
may hold. Scanners of note include Nessus, MBSA, Retina CS, GFI LanGuard, Qualys
FreeScan, and OpenVAS (www.openvas.com).

When we enumerate a target, we’re moving from passive information gathering to a much
more active state. No longer satisfied with just knowing which ports are open, we now want to
find things such as open shares and any easy-to-grab user account information.

Microsoft Windows machines—everything from old Windows 2000 to Windows 10 systems
—will constitute the vast majority of your targets in the real world, so it’s important to know
some security basics before enumerating them. User rights are granted via an account’s
membership within a group and determine which system tasks an account is allowed to perform.
Permissions are used to determine which resources an account has access to. The method by
which Windows keeps track of which account holds what rights and permissions comes down to
SIDs and RIDs. A security identifier (SID) identifies user, group, and computer accounts and
follows a specific format. A resource identifier (RID) is a portion of the overall SID, identifying
a specific user, computer, or domain.

SIDs are composed of an S, followed by a revision number, an authority value, a domain or
computer indicator, and a RID. The RID portion of the identifier starts at 500 for the
administrator account. The next account on the system, Guest, is RID 501. All users created for
the system start at 1000 and increment from that point forward—even if their user names are re-
created later.

Accounts are identified by their SID (and associated RID), of course, but the passwords for
them must be stored somewhere, too. In Windows, passwords are stored in C:\Windows\System
32\Config\SAM. The SAM database holds encrypted versions of all the local passwords for
accounts on the machine. For those machines that are part of a domain, the passwords are stored
and handled by the domain controller.

Linux systems use a user ID (UID) and a group ID (GID) in much the same way as Windows
uses SIDs and RIDs. On a Linux machine, these can be found in the /etc/passwd file.

Banner grabbing involves sending an unsolicited request to an open port to see what, if any,
default message (banner) is returned. Depending on what version of the application is running on
the port, the returned banner (which could be an error message, HTTP header, or login message)
can indicate a potential vulnerability for the hacker to exploit. ECC defines two different
categories of banner grabbing—active and passive. Active banner grabbing involves sending
specially crafted packets to remote systems and comparing responses to determine the OS.
Passive banner grabbing involves reading error messages, sniffing network traffic, or looking at

http://guardster.com
http://ultrasurf.us
http://psiphon.ca
http://tails.boum.org
http://www.openvas.com

page extensions.
A common method of performing banner grabbing is to use a simple tool already built into

most operating systems, Telnet. For example, if you simply type telnet <IPaddress>, you’ll
send TCP packets to the recipient with the destination port set to 23. However, you can also
point it at any other port number explicitly to test for connectivity. If the port is open, you’ll
generate some form of banner response.

NOTE For some wacky reason, Microsoft decided most people don’t really need Telnet, so
they disable it by default. Since, you know, you’re an adult and can do what you want, you can
use the telnet.exe executable whenever you feel like. If you want to turn it back on permanently,
go to Control Panel | Programs and Features and then select the Turn Windows Features On or
Off option to find the Telnet client service and turn it back on.

Another tool for banner grabbing (and other uses) is netcat. Known as the “Swiss Army knife
of hacking tools,” netcat is a command-line networking utility that reads and writes data across
network connections using TCP/IP. It’s also a tunneling protocol, a scanner, and an advanced
hacking tool. To try banner grabbing with this little jewel, simply type nc <IPaddress or
FQDN> <port number>.

NetBIOS, a browser service that’s part of Microsoft Windows operating systems, was
designed to host information about all the machines within the domain or TCP/IP network
segment. A NetBIOS name is a 16-character ASCII string used to identify network devices—15
characters are used to define the name while the 16th character is reserved for the service or
name record type. The built-in utility nbtstat can be used to provide NetBIOS information for
enumeration purposes. Within the nbtstat response, the code, type, and name can be used to
gather information. NetBIOS enumeration questions will generally be about three things:

• Identifying the code and type
• The fact NetBIOS name resolution doesn’t work at all on IPv6
• Which tools can be used to perform it

SNMP was designed to manage IP-enabled devices across a network. As a result, if it is in use
on the subnet, you can find out loads of information with properly formatted SNMP requests.
SNMP consists of a manager and agents, and it works much like a dispatch center. A central
management system set up on the network will make requests of SNMP agents on the devices.
These agents respond to the requests by going to a big virtual filing cabinet on each device called
the Management Information Base (MIB). The MIB holds information, and it’s arranged with
numeric identifiers (called object identifiers, or OIDs), from general information to the very
specific. The request points out exactly what information is requested from the MIB installed on
that device, and the agent responds with only what is asked for. MIB entries can identify what
the device is, what operating system is installed, and even usage statistics. In addition, some MIB
entries can be used to actually change configuration settings on a device. When the SNMP

management station asks a device for information, the packet is known as an SNMP GET
request. When it asks the agent to make a configuration change, the request is an SNMP SET
request.

There are two types of managed objects in SNMP—scalar and tabular. Scalar defines a single
object, whereas tabular defines multiple related objects that can be grouped together in MIB
tables.

SNMP uses a community string as a form of password. The read-only version of the
community string allows a requester to read virtually anything SNMP can drag out of the device,
whereas the read-write version is used to control access for the SNMP SET requests. Two major
downsides are involved in the use of both these community string passwords. First, the defaults,
which are all active on every SNMP-enabled device right out of the box, are ridiculously easy.
The read-only default community string is public, whereas the read-write string is private.
Assuming the network administrator left SNMP enabled and/or did not change the default
strings, enumerating with SNMP is a snap.

Lightweight Directory Access Protocol (LDAP) is designed to be queried, so it presents a
perfect enumeration option. LDAP sessions are started by a client on TCP port 389 connecting to
a Directory System Agent (DSA). The request queries the hierarchical/logical structure within
LDAP and returns an answer using Basic Encoding Rules (BER). You can pull valid user names,
domain information, addresses and telephone numbers, system data, and organizational structure
information this way. Tools include Softerra (ldapadministrator.com), JXplorer (jxplorer.com),
Lex (ldapexplorer.com), LDAP Admin Tool (sourceforge.net), and the built-in Active Directory
Explorer in Windows systems.

Network Time Protocol (running UDP on port 123) sets the time across your network, and
querying the NTP server can give you information such as a list of systems connected to the
server (name and IP) and possibly the IP addresses of internal systems (if the NTP box is in the
DMZ and serves machines inside the network, information can be pulled on the internal
machines). Several tools for NTP enumeration are available, including NTP Server Scanner
(bytefusion.com) and AtomSync (atomsync.com), but you can also use Nmap and Wireshark if
you know what you’re looking for. Commands for NTP enumeration include ntptrace, ntpdc, and
ntpq.

Simple Mail Transfer Protocol (SMTP) holds three commands helpful in enumeration—
VRFY (which validates user), EXPN (which provides the actual delivery addresses of mailing
lists and aliases), and RCPT TO (which defines recipients)—and servers respond differently to
these commands. Their responses can tell us which are valid and which are invalid user names.

Questions
1. A member of your team enters the following command:

Which of the following Nmap commands performs the same task?

A. nmap -A IPAddress
B. nmap -all IPAddress
C. nmap -Os IPAddress
D. nmap -aA IPAddress

http://ldapadministrator.com
http://jxplorer.com
http://ldapexplorer.com
http://sourceforge.net
http://bytefusion.com
http://atomsync.com

2. You want to perform banner grabbing against a machine (168.15.22.4) you suspect as
being a web server. Assuming you have the correct tools installed, which of the following
command-line entries will successfully perform a banner grab? (Choose all that apply.)
A. telnet 168.15.22.4 80
B. telnet 80 168.15.22.4
C. nc -v -n 168.15.22.4 80
D. nc -v -n 80 168.15.22.4

3. You’ve decided to begin scanning against a target organization but want to keep your
efforts as quiet as possible. Which IDS evasion technique splits the TCP header among
multiple packets?
A. Fragmenting
B. IP spoofing
C. Proxy scanning
D. Anonymizer

4. One of your team members is analyzing TTL fields and TCP window sizes in order to
fingerprint the OS of a target. Which of the following is most likely being attempted?
A. Online OS fingerprinting
B. Passive OS fingerprinting
C. Aggressive OS fingerprinting
D. Active OS fingerprinting

5. What flag or flags are sent in the segment during the second step of the TCP three-way
handshake?
A. SYN
B. ACK
C. SYN/ACK
D. ACK/FIN

6. You are port scanning a system and begin sending TCP packets with the ACK flag set.
Examining the return packets, you see a return packet for one port has the RST flag set and
the TTL is less than 64. Which of the following is true?
A. The response indicates an open port.
B. The response indicates a closed port.
C. The response indicates a Windows machine with a nonstandard TCP/IP stack.
D. ICMP is filtered on the machine.

7. An ethical hacker is ACK-scanning against a network segment he knows is sitting behind a
stateful firewall. If a scan packet receives no response, what does that indicate?
A. The port is filtered at the firewall.
B. The port is not filtered at the firewall.
C. The firewall allows the packet, but the device has the port closed.
D. It is impossible to determine any port status from this response.

8. Which flag forces a termination of communications in both directions?
A. RST
B. FIN
C. ACK
D. PSH

9. You are examining a host with an IP address of 52.93.24.42/20 and want to determine the
broadcast address for the subnet. Which of the following is the correct broadcast address
for the subnet?
A. 52.93.24.255
B. 52.93.0.255
C. 52.93.32.255
D. 52.93.31.255
E. 52.93.255.255

10. Which port number is used by default for syslog?
A. 21
B. 23
C. 69
D. 514

11. Which of the following commands would you use to quickly identify live targets on a
subnet? (Choose all that apply.)
A. nmap -A 172.17.24.17
B. nmap -O 172.17.24.0/24
C. nmap -sn 172.17.24.0/24
D. nmap -PI 172.17.24.0/24

12. You’re running an IDLE scan and send the first packet to the target machine. Next, the
SYN/ACK packet is sent to the zombie. The IPID on the return packet from the zombie is
36754. If the starting IPID was 36753, in what state is the port on the target machine?
A. Open
B. Closed
C. Unknown
D. None of the above

13. Which ICMP message type/code indicates the packet could not arrive at the recipient due
to exceeding its time to live?
A. Type 11
B. Type 3, Code 1
C. Type 0
D. Type 8

14. An ethical hacker is sending TCP packets to a machine with the SYN flag set. None of the

SYN/ACK responses on open ports is being answered. Which type of port scan is this?
A. Ping sweep
B. XMAS
C. Stealth
D. Full

15. Which of the following statements is true regarding port scanning?
A. Port scanning’s primary goal is to identify live targets on a network.
B. Port scanning is designed to overload the ports on a target in order to identify which

are open and which are closed.
C. Port scanning is designed as a method to view all traffic to and from a system.
D. Port scanning is used to identify potential vulnerabilities on a target system.

Answers
1. A. The -A switch turns on OS detection, version detection, script scanning, and traceroute,

just as the -O, -sV, -sC, and -traceroute switches do in conjunctions with each other.
2. A, C. Both Telnet and netcat, among others, can be used for banner grabbing. The correct

syntax for both has the port number last.
3. A. Fragmenting packets is a great way to evade an IDS, for any purpose. Sometimes

referred to as IP fragments, splitting a TCP header across multiple packets can serve to
keep you hidden while scanning.

4. B. Generally speaking, any activity noted in a question that does not explicitly state you
are crafting packets and injecting them toward a system indicates you are passively
observing traffic—in this case, most likely with a sniffed traffic log.

5. C. A three-way TCP handshake has the originator forward a SYN. The recipient, in step 2,
sends a SYN and an ACK. In step 3, the originator responds with an ACK. The steps are
referred to as SYN, SYN/ACK, ACK.

6. A. According to ECC, if the TTL of the returned RST packet is less than 64, the port is
open.

7. A. An ACK packet received by a stateful firewall will not be allowed to pass unless it was
“sourced” from inside the network. No response indicates the firewall filtered that port
packet and did not allow it passage.

8. A. The RST flag forces both sides of the communications channel to stop. A FIN flag
signifies an ordered close to the communications.

9. D. If you look at the address 52.93.24.42 in binary, it looks like this:
00110100.01011101.00011000.00101010. The subnet mask given, /20, tells us only the
first 20 bits count as the network ID (which cannot change if we are to stay in the same
subnet), and the remaining 12 bits belong to the host. Turning off all the host bits (after the
20th) gives us our network ID: 00110100.01011101.00010000.00000000 (52.93.16.0/20).
Turning on all the host bits gives us our broadcast address:
00110100.01011101.00011111.11111111 (52.93.31.255/20).

10. D. Syslog uses 514 by default. Even if you had no idea, the other answers provided are

very well-known default ports (FTP, Telnet, TFTP) that you can use to eliminate them as
possible answers.

11. C, D. Both the -sn and -PI switches will accomplish the task quickly and efficiently.
12. B. Since the IPID incremented by only one, this means the zombie hasn’t sent anything

since your original SYN/ACK to figure out the starting IPID. If the IPID had increased by
two, then the port would be open because the zombie would have responded to the target
machine’s SYN/ACK.

13. A. A Type 11 ICMP packet indicates the TTL for the packet has reached 0; therefore, it
must take the Carrousel (from the movie Logan’s Run) and disappear to a better place.

14. C. ECC defines what most of us used to call a half-open scan (although I suppose it would
actually make more sense mathematically to call it a two-third scan, since it’s a three-way
handshake and only two are used) a stealth scan. This is also known as a SYN scan.

15. D. Port scanning has a singular purpose—to knock on ports and see if they’re open
(listening). Does an open port necessarily mean something is wrong? No, but it does
represent a potential vulnerability you can exploit later.

CHAPTER 4
Sniffing and Evasion

In this chapter, you will
• Describe sniffing concepts, including active and passive sniffing and protocols

susceptible to sniffing
• Describe ethical hacking techniques for Layer 2 traffic
• Describe sniffing tools and understand their output
• Describe sniffing countermeasures
• Learn about intrusion detection system (IDS), firewall, and honeypot types, use, and

placement
• Describe signature analysis within Snort
• Describe IDS, firewall, and honeypot evasion techniques

I used to work in an office building just up the road from me. My office sat on the corner of two
hallways, which dead ended just outside with the door to the stairwell, about 5 feet beyond.
There was a large window right at the end of the hallway looking out over the giant parking lot,
with two big palm trees swaying in the eternal breeze just to the left. Oftentimes, people would
walk down to the end of the hallway and look out the window for a while, longing for freedom
during the middle of a harsh workday. And, oftentimes, they went down there to take or place
personal calls on their cell phones. I know I was educated in Alabama, but I just assumed
everyone knew sound travels.

These people talked to their girlfriends, boyfriends, and, on a couple of occasions, the “other
woman.” They called up banks and talked about their accounts or loans. They called businesses
they’ve applied to, trying to work out interview times and other issues. And all of this they did
without any knowledge that someone was listening to all their conversations. Thankfully, for all
these folks, I’m not an evil little guy. If I were, I would have been drawing from several bank
accounts. I could also have set up and run a very successful dating agency—or a source for
divorce proceedings.

In much the same way as this example, people have conversations over a network all the time,
without having any idea someone else could be listening in. In this chapter, we’re going to
discuss ways for you to sit in the cramped little corner office of the network wire, listening in on
what people are saying over your target subnet. We’ll also include a little discussion on efforts to
stop your network intrusion and, hopefully, steps you can take around them.

Essentials
Most people consider eavesdropping to be a little on the rude side. When it comes to your career

as a pen tester, though, you’re going to have to get over your societal norms and become an ace
at it—well, an ace at virtual eavesdropping anyway. Sniffing (often construed as wiretapping by
law enforcement types, something we’ll examine in detail later) is the art of capturing packets as
they pass on a wire, or over the airwaves, to review for interesting information. This information
could simply be addresses to go after or information on another target. It can also be as high
value as a password or other authentication code. Believe it or not, some applications send
passwords and such in the clear, making things a heck of a lot easier for you. A sniffer is the tool
you’ll use to accomplish this, and a host of different ones are available. Before I get into all that,
though, let’s get some basics out of the way.

Network Knowledge for Sniffing
Before getting into sniffing and sniffers per se, we’ll spend just a little more time discussing
communications basics and what they mean to sniffing. No, I’m not going to revisit the
networking basics stuff again, but we do need to review how network devices listen to the wire
(or other media used for your network) and how all these topics tie together. See, network
devices don’t just start babbling at each other like we humans do. They’re organized and
civilized in their efforts to communicate with each other. Believe it or not, your understanding of
this communications process is critical to your success in sniffing. If you don’t know how
addressing works and what the protocols are doing at each layer, your time spent looking at
sniffer output will be nothing more than time wasted.

The process of sniffing comes down to a few items of great importance: what state the
network interface card (NIC) is in, what access medium you are connected to, and what tool
you’re running. Because a sniffer is basically an application that looks at all frames passing on a
medium for your perusal, and because you already know the full communications process, I
would imagine it’s easy for you to understand why these three items are of utmost importance.

EXAM TIP You probably (should) know this already, but the IPv4 loopback address
(denoting the software loopback of your own machine) is 127.0.0.1, and the MAC address of
broadcast messages is FF:FF:FF:FF:FF:FF.

First, let’s consider your NIC. This little piece of electronic genius works by listening to a
medium (a wire most often, or the airwaves in the case of wireless) and looking for messages
that match its address (or an address it’s supposed to be looking at, such as a broadcast or
multicast message). This address, known as a MAC (Media Access Control), physical, or burned-
in address, is a unique identifier assigned to a network interface controller (NIC) for
communications at the Data Link layer of a network segment. It’s 48 bits long and is generally
displayed as 12 hex characters separated by colons. The first half of the MAC address is known
as the organizationally unique identifier (assigned to the NIC manufacturer) and the second half
provides a unique number to identify that particular card. This addressing ensures each NIC in
each device on a subnet has a specific, unique address.

NOTE Even though it’s considered a physical address, there are special instances where MAC
addresses don’t refer to a single, specific card. Broadcast and multicast messages inside a
network have their own MAC addresses as well. NICs on the subnet will look at these frames as
they arrive on the medium and open them just as they would frames with their own MAC
address.

If the NIC is on an electric wire (and for the rest of this example, let’s assume it is working in
a standard Ethernet network), it reacts when electricity charges the wire and then begins reading
the bits coming in. If the bits come in the form of a frame, it looks at the ones making up the
destination address. If that address matches its own MAC address, the broadcast address for the
subnet, or a multicast address it is aware of, the NIC will pull the frame from the wire and let the
operating system begin working on it. In short, your NIC (under the influence and control of
your operating system and its associated drivers) will see anything passing by but normally
won’t process any frame not addressed to it. You have to tell it to do so.

A sniffer needs your card to run in something called promiscuous mode. This simply means
that, regardless of address, if the frame is passing on the wire, the NIC will grab it and pull it in
for a look. Because NICs are designed to pay attention only to unicast messages addressed
appropriately, multicast messages, or broadcast messages, you need something that forces it to
behave for your sniffer. In other words, your NIC will “see” everything passing by on the wire,
but it only pulls in and examines things it recognizes as addressed to the host. If you wish for it
(more specifically, the driver for the NIC) to pull everything in for a look, you have to tell it to
do so. WinPcap is an example of a driver that allows the operating system to provide low-level
network access and is used by a lot of sniffers on Windows machine NICs.

EXAM TIP Regardless of OS, the NIC still has to be told to behave promiscuously. On
Windows, the de facto driver/library choice is WinPcap. On Linux, it’s libpcap.

This brings up the second interesting point mentioned earlier—what wire, or medium, you
have access to. Ethernet (because it’s the most common, it’s what we’ll discuss) runs with
multiple systems sharing a wire and negotiating time to talk based on Carrier Sense Multiple
Access/Collision Detection (CSMA/CD). In short, anyone can talk anytime they want, so long as
the wire is quiet. If two decide to talk at the same time, a collision occurs, they back off, and
everyone goes at it again. As long as your system is within the same collision domain, right out
of the box and without you changing a thing, your NIC will see every message intended for
anyone else in the domain. This doesn’t mean your NIC will act on these messages. Again, it will
only act on unicast messages addressed for the host and on broadcast/multicast messages for the
subnet. Your NIC usually only forwards the ones intended for you and ignores the rest. So, what
constitutes a collision domain? Is the whole world in a collision domain? See Figure 4-1.

Figure 4-1 Collision domains and sniffing

Collision domains are composed of all the machines sharing any given transport medium. In
other words, if we’re all connected to the same wire and we use electricity to talk to one another,
every time I send a message to one person on the wire, everyone gets shocked. Therefore, only
one of us can talk at a time—if two try it simultaneously, the voltage increases, and the messages
will get all garbled up. Because we’re all connected to the same wire, I don’t have to guess when
anyone else is sending a message; I’m getting shocked every time anyone sends anything. I don’t
read them all, because they’re not addressed for me, but I know they’re being sent.

Why all this talk about collision domains and who receives what from whom? Try thinking
about it this way: Suppose there are 10 people in an open room together, close enough to hear
every word each one of them says. Bob, a gregarious guy who loves humor, has a great joke and
decides he wants to share it with Jane. He says, “Hey Jane, want to hear a joke?” Jane says,
“Sure, go ahead.” Bob says “Two corn chips are out in the yard, but not playing with each other.
One chip says to the other, ‘I get the feeling you don’t like me, but I’d like to play. Can we taco
about it?’ The other chip says, ‘No. I’m nacho friend.’” Jane laughs, and so does Bill from the
other side of the room.

Who in the room heard Bob start a message? Everyone, of course. Who acted on it? Just Jane.
Why? Because everyone heard Jane’s name up front and knew the message was not for them, so
they ignored it—even though they could hear the whole thing. Jane opened up a line of
communication and listened while Bob told that ridiculous joke. Bill, who decided he’d listen to
everyone’s conversation, didn’t have to do a thing to enjoy the joke message, even though it
wasn’t intended for him. Got it now?

Armed with this knowledge, your sniffing options can be scrutinized appropriately. Suppose,

for example, you see systems connected to a hub. All systems connected to a hub share the same
collision domain; therefore, every system on the hub can hear the stupid jokes every other system
on the hub sends or receives. If the hub is taken out and replaced with a switch, however, things
change.

Switches split collision domains so that each system connected to the switch resides in its own
little collision domain—the switch will send frames down a wire for a given computer only if
they’re intended for the recipient. To continue our silly example, consider the same setup, but
this time everyone in the room is wearing soundproof headsets (like football coaches on the
sideline) with individual frequency channels. When Bob decides to tell his joke, he first tunes his
transmitter to Jane’s frequency and starts talking. Nobody else in the room hears the
conversation. The only way Bill will start laughing is if he has somehow tuned in to Bob’s or
Jane’s frequency, to silently sit back and listen to them.

This brings up a potential problem for the sniffing attacker. If you’re connected to a switch
and you receive only those messages intended for your own NIC, what good is it to sniff? This is
an excellent question and a good reminder that it’s important to know what you actually have
access to, media-wise. We’ll revisit this in just a moment when we start discussing active
sniffing.

Protocols Susceptible to Sniffing
Once you figure out how to start looking at all those packets you’re pulling in (and we’ll get to
that in a minute), you may start asking yourself which ones are more important than others. I
mean, there are tons of the things. Millions of them. Billions. Surely some of them are more
important than others, right? Well, this is where knowledge of how protocols work on a network
comes into play.

There are some important protocols in the upper layers for you to pay attention to as an ethical
hacker—mainly because of their simplicity. When you think about an Application layer protocol,
remember it normally relies on other protocols for almost everything else except its sole, primary
purpose. For example, consider Simple Mail Transport Protocol (SMTP). SMTP was designed to
do one thing: carry an e-mail message. It doesn’t know anything about IP addressing or
encryption, or how big the network pipe is; its only concern is packaging ASCII characters
together to be given to a recipient. Because it was written to carry nothing but ASCII, there is
virtually no security built into the protocol at all. In other words, everything sent via SMTP, with
no encryption added at another layer, is sent as clear text, meaning it can be easily read by
someone sniffing the wire. Now, SMTP is on version 3 (SMTPv3), so not all SMTP packets will
provide the detail you’re looking for, but I’m sure you catch the drift.

NOTE Ever heard of hardware protocol analyzers? They’re neat little boxes that do a whole lot
of data sniffing and analyzing for you, automatically. Companies such as Fluke, RADCOM, and
Keysight all make versions. Go check them out.

Are there other Application layer protocols to pay attention to? You bet your Manwich there

are. For example, although FTP requires a user ID and password to access the server (usually),
the information is passed in clear text over the wire. TFTP passes everything in clear text, and
you can pull keystrokes from a sniffed Telnet session (user name and password anyone?).
SNMPv1 and NNTP send their passwords and data over clear text, as does IMAP and POP3.
And HTTP? Don’t get me started, what with all the data that one sends in the clear. Several
Application layer protocols have information readily available to captured traffic—you just need
to learn where to look for it. Sometimes data owners will use an insecure application protocol to
transport information that should be kept secret. Sniffing the wire while these clear-text
messages go across will display all that for you.

NOTE This should probably go without saying, but the fact that protocols like the ones just
mentioned send passwords in the clear should be a big clue that, if at all possible, you should
avoid using them.

Protocols at the Transport and Network layers can also provide relevant data. TCP and UDP
work in the Transport layer and provide the port numbers that both sides of a data exchange are
using. TCP also adds sequence numbers, which will come into play later during session
hijacking. IP is the protocol working at the Network layer, and there is a load of information you
can glean just from the packets themselves (see Figure 4-2). An IP packet header contains, of
course, source and destination IP addresses. However, it also holds information such as the
quality of service for the packet (Type of Service field) and information on fragmentation of
packets along the way (Identification and Fragment Offset fields), which can prove useful in
crafting your own fragmented packets later.

Figure 4-2 IP packet header

ARP

We’ve spent a little time covering some base information you’ll need regarding Application,
Transport, and Network layer protocols, but the Data Link layer is going to be a huge area of
focus for the sniffing portion of your exam (not to mention your success in sniffing). Frames are
built in the Data Link layer, and that’s where all your local addressing happens. And how, pray
tell, do systems discover the local, physical (MAC) address of other machines they wish to
communicate with? By asking, of course, and they ask with a little protocol called ARP (Address
Resolution Protocol).

ARP’s entire purpose in life is to resolve IP addresses to machine (MAC) addresses. As noted
earlier, while each IP packet provides the network address (needed to route the packet across
different networks to its final destination), the frame must have a MAC address of a system
inside its own subnet to deliver the message. So as the frame is being built inside the sending
machine, the system sends an ARP_REQUEST to find out what MAC address inside the subnet
can process the message. Basically it asks the entire subnet, via a broadcasted message, “Does
anyone have a physical address for the IP address I have here in this packet? If so, please let me
know so I can build a frame and send it on.” If a machine on the local subnet has that exact IP, it
will respond with an ARP_REPLY directly to the sender, saying “Why yes, I’m the holder of
that IP address, and my MAC address is _macaddress_.” The frame can then be built and the
message sent.

NOTE The MAC address (a.k.a. physical address) that is burned onto a NIC is actually made
of two sections. The first half of the address, consisting of 3 bytes (24 bits), is known as the
organizationally unique identifier and is used to identify the card manufacturer. The second half
is a unique number burned in at manufacturing to ensure no two cards on any given subnet will
have the same address.

Sometimes, though, the message is not intended for someone in your network segment.
Maybe it’s a packet asking for a web page, or an e-mail being sent to a server somewhere up the
Net, or maybe even a packet intended to start another yelling contest on Facebook. In any case, if
the IP address of the packet being sent is not inside the same subnet, or is not already present in
some fashion in your route table (that is, there’s no specific route previously defined for the
address), the route table on your host already knows the packet should be sent to the default
gateway (also known as the “route of last resort,” and is generally speaking your local router
port). If it doesn’t happen to remember the default gateway’s MAC address, it’ll send out a quick
ARP request to pull it. Once the packet is properly configured and delivered to the default
gateway, the router will open it, look in the route table, and build a new frame for the next subnet
along the route path. As that frame is being built, it will again send another ARP request: “Does
anyone have a physical address for the IP address I have here in this packet? If so, please let me
know so I can build a frame and send it on.” This continues on each subnet until the packet finds
its true destination.

Want to know another interesting thing about ARP? The protocol retains a cache on machines
as it works—at least, in many implementations it does. This really makes a lot of sense when you

think about it—why continue to make ARP requests for machines you constantly talk to? To see
this in action, you can use the ping, arp, and netsh commands on your Windows machine. The
command arp -a will display your current ARP cache—you can see all the IP-to-MAC mappings
your system knows about. Next, enter either arp -d * or netsh interface ip delete arpcache. Try
arp -a again, and you’ll see your cache cleared. Refill it on the fly by pinging anything on your
network. For example, I pinged a laptop over in the corner with an address of 192.168.0.3. It
responded, and my ARP cache has a new entry (see Figure 4-3). Try it yourself on your network.

Figure 4-3 ARP cache

There are a couple of other relevant notes on ARP you should know. First, the protocol works
on a broadcast basis. In other words, requests (“Does anyone have the MAC for this IP
address?”) and replies (“I do. Here’s my physical address—please add it to your cache.”) are
broadcast to every machine on the network. Second, the cache is dynamic—that is, the
information in it doesn’t stay there forever, and when your system gets an updated ARP
message, it will overwrite the cache with the new information. Suppose, for example, Machine A
shuts down for a while and sends no further messages. Eventually, all system caches will delete
its entry, almost as if it never existed. Suppose also that Machine B changes its NIC and now has
a new MAC address. As soon as it sends its first ARP message, all systems on the network
receiving it will update their caches with this new MAC address.

EXAM TIP ARP, as well as the other protocols listed in this section, can be tested heavily.
Depending on your exam, you’ll be asked about it a lot. Know framing, MAC addressing, and
how ARP works. Trust me.

All of this is interesting information, but just how does it help a hacker? Well, if you put on
your logical thinking cap, you’ll quickly see how it could be a veritable gold mine for your
hacking efforts. A system on your subnet will build frames and send them out with physical
address entries based on its ARP cache. If you were to, somehow, change the ARP cache on
Machine A and alter the cached MAC address of Machine B to your system’s MAC, you would
receive all communication Machine A intended to send to Machine B. Suppose you went really
nuts and changed the ARP entry for the default gateway on all systems in your subnet to your
own machine. Now you’re getting all messages everyone was trying to send out of the local
network, often the Internet. Interested now?

Attackers can do this by sending something called a gratuitous ARP. It is a special packet that
updates the ARP cache of other systems before they even ask for it—in other words, before they
send an ARP_REQUEST. Its original intent when created was to allow updates for outdated
information, which helps with things like IP conflicts, clustering, and other legitimate issues. In
our world of hacking, though, it’s easy to see where that could be taken advantage of.

NOTE It is true that ARP is cached, but it’s also true that the cache is temporary. If an attacker
has persistent access, he can simply wait it out.

IPv6
Another discussion point of great importance in sniffing (and really all things hacking) is IP
version 6. As you’re no doubt aware, IPv6 is the “next generation” of Internet Protocol
addressing and offers a whole new world of interesting terms and knowledge to memorize for
your exam (and your job). Because you’re already an IPv4 expert and know all about the 32-bit
address, which is expressed in decimal and consists of four octets, we’ll focus a little attention on
IPv6 and some things you may not know.

IPv6 was originally engineered to mitigate the coming disaster of IPv4 address depletion
(which, of course, didn’t happen as quickly as everyone thought, thanks to network address
translation and private networking). It uses a 128-bit address instead of the 32-bit IPv4 version
and is represented as eight groups of four hexadecimal digits separated by colons (for example,
2002:0b58:8da3:0041:1000:4a2e:0730:7443). Methods of abbreviation, making this overly
complex-looking address a little more palatable, do exist, however. Leading zeroes from any
groups of hexadecimal digits can be removed, and consecutive sections of zeroes can be replaced
with a double colon (::). This is usually done to either all or none of the leading zeroes. For
example, the group 0054 can be converted to 54. See Figure 4-4 for an example of this address
truncation in use.

Figure 4-4 IPv6 address truncation

NOTE The double colon can be used only once in an address. Apparently using it more than
once confuses routers and renders the address useless. An RFC (5952) addresses this issue.

Despite the overly complex appearance of IPv6 addressing, the design actually reduces router
processing. The header takes up the first 320 bits and contains source and destination addresses,
traffic classification options, hop count, and extension types. Referred to as “Next Header,” this
extension field lets the recipient know how to interpret the data payload. In short, among other
things, it points to the upper-layer protocol carried in the payload. Figure 4-5 shows an IPv6
packet header.

Figure 4-5 IPv6 packet

EXAM TIP The IPv6 loopback address is 0000:0000:0000:0000:0000:0000:0000:0001 and
may be edited all the way down to ::1.

As with IPv4, which had unicast, multicast, and broadcast, IPv6 has its own address types and
scopes. Address types include unicast, multicast, and anycast, and the scopes for multicast and
unicast include link local, site local, and global. The good-old broadcast address in IPv4 (which
was sent to all hosts in a network segment) is no longer used. Instead, multicast functions along
with scope fulfill that necessity. Table 4-1 details address types and scopes.

Table 4-1 IPv6 Addresses and Scopes

Addressing in IPv6 isn’t too terribly difficult to understand, but scope adds a little flair to the
discussion. Unicast is just like IPv4 (addressed for one recipient) and so is multicast (addressed
for many), but anycast is an interesting addition. Anycast works just like multicast; however,
whereas multicast is intended to be received by a bunch of machines in a group, anycast is
designed to be received and opened only by the closest member of the group. The nearest
member is identified in terms of routing distance; a host two hops away is “closer” than one
three hops away. Another way of saying it might be, “Whereas multicast is used for one-to-many
communication, anycast is used for one-to-one-of-many communication.”

EXAM TIP In IPv6, the address block fe80::/10 has been reserved for link-local addressing.
The unique local address (the counterpart of IPv4 private addressing) is in the fc00::/7 block.
Prefixes for site local addresses will always be FEC0::/10.

The scope for multicast or anycast defines how far the address can go. A link-local scope
defines the boundary at the local segment, with only systems on your network segment getting
the message. Anything past the default gateway won’t because routers won’t forward the
packets. It’s kind of like the old 169.254.1–254.0 network range: it’s intended for private
addressing only. Site-local scope is much the same; however, it is defined via a site. A site in
IPv6 addressing can be a fairly confusing subject because the same rules apply as the link-local
scope (not forwarded by a router). But if you’re familiar with the private address ranges in IPv4
(10.0.0.0, 172.16–32.0.0, and 192.168.0.0), the site should make sense to you. Think of it this
way: link local can be used for private networking and autoconfiguration of addressing like your
out-of-the-box easy networking of the 169.254.0.0 network, and site local is more akin to setting
up your private networks using predefined ranges.

As far as IPv6 on your exam goes, again it depends on which pool your random roll of the
virtual dice pulls for you. Some exams won’t even mention it, whereas others will seem like it’s
one of the only topics that matter. Most IPv6-type questions are easy—as you can see from our
discussion, this is mostly rote memorization. You’re not going to be asked to divine network IDs
or anything like that; you’ll just be quizzed on general knowledge. It’s helpful to note, though,
that IPv6 makes traditional network scanning very, very difficult—in ECC parlance, it’s
“computationally less feasible”—due to the larger address space to scan. However, should an
attacker get a hold of a single machine inside a native IPv6 network, the “all hosts” link-local
multicast address will prove quite handy.

Wiretapping
Finally, our last entry in fundamental sniffing concepts has to do with our friends in law
enforcement and what they do in regard to sniffing. Lawful interception is the process of legally
intercepting communications between two (or more) parties for surveillance on
telecommunications, VoIP (Voice over IP), data, and multiservice networks. Thankfully, all of
those ridiculous definitions and terms to remember regarding this seem to have been ditched by

EC-Council, so the basics here are all you need.

NOTE Anyone else tired of the terms “active” and “passive”? Trust me, I’m sick of them, too.
I feel like Han Solo saying to Chewy, “It’s not my fault. It’s not my fault!” However, it’s really
not my fault. Wiretapping (monitoring a phone or Internet conversation) can be active or passive.
Active wiretapping involves interjecting something into the communication (traffic), for
whatever reason. Passive only monitors and records the data.

As an aside, but very relevant to this discussion because ECC has it in their official
courseware, were you aware that the NSA wiretaps a gigantic amount of foreign Internet traffic
that just happens to come through U.S. servers and routers? PRISM (Planning Tool for Resource
Integration, Synchronization, and Management) is the data tool used to collect said foreign
intelligence passing through Uncle Sam’s resources. I don’t know any more information on this
and I don’t want to know—just passing on that EC-Council knows this, too.

Can You Smell the Neurons?
Show of hands: How many of you have ever been at work or in a college class, sitting behind
a desk or in a cubicle, and had thoughts regarding your boss, company, professor, or school
that weren’t…nice? And how many of you are happy those thoughts are yours and yours
alone—that your boss or professor has no idea you’re thinking them? If we’re all being
honest, everyone has their hand raised. It’s human nature to question your superiors and,
apparently, to believe decisions made by others don’t hold as much value as your own
opinion. And it’s a huge blessing that nobody knows what’s going on inside our own heads.

I mean, honestly, do you really want everyone to know exactly what you’re thinking all the
time? For that matter, I’d bet you don’t want to know what everyone else is thinking either.
Pure, blunt honesty—what people really think—can sometimes be downright cruel, and in a
workplace could lead to your dismissal. Or worse.

Science fiction and horror writers have entertained us for years with tales of mutant mind
readers and brain-scanning technology that would make most of us shudder. But is it really
that far off? Could you “sniff” brainwaves?

Brain scanning and imaging processes have moved forward by leaps and bounds. A
positron emission tomography (PET) scan shows actual brain processes by using the sugar
glucose in the brain to illustrate where neurons are firing. Magnetic resonance imaging (MRI)
and electroencephalography (EEG) have been around for a long while and are used to show
brain activity during psychological states and map actual gray matter against spinal fluid.
Neuroimaging as a field is fascinating to read about, and discoveries to assist in treating
Alzheimer’s and other brain diseases seem only a small step forward each year. But each of
these, at least as far as I know, still requires you to visit a doctor’s office and lay out in a giant
tube, or have sensors stuck all over your head and body. As far as I knew, nobody could
remotely scan me and tell what I’m thinking.

And then, while googling sniffers, sniffing, and other topics of interest for this chapter (as
an aside, be sure to include “network” before “sniffing” in your search strings…yikes!), I
came across an article in Fortune magazine titled “Workplace Employee Brainwave
Monitoring Is Already a Real Thing” (http://fortune.com/2018/05/01/china-workers-
brainwave-monitors/). I immediately discounted it as yet another attention-grabbing
headline/tagline, but decided to read it just out of pure humor—which quickly, at least for me
anyway, turned to horror. Because it’s true.

At the South China Morning Post, employees wear lightweight, wireless sensors that fit
under caps or other safety equipment. The sensors then broadcast information about employee
brain activity to computers that can detect spikes in emotions like depression, anxiety, and
rage. The caps help in assigning tasks, and can even ensure employees are “encouraged to
take a day off if you’re under stress.” Chinese companies using the tech insist it helps reduce
stress and the risk of workplace injury for workers, and claim that the technology can boost
revenue. One power grid company estimates it increased revenue by 2 billion yuan ($315
million) over the past few years, and the technology is expanding globally (a UK firm uses it
on railways to supposedly prevent accidents and, in one weird instance, to help archers shoot
better).

Did you catch that? Broadcast. Your emotional state is broadcast to a computer so you can
be analyzed (controlled) by your monitoring overlords. I know it sounds like some weird,
dumb science fiction movie, but it’s true and it’s real. Some companies in China have been
using and refining this technology since 2014.

Are you comfortable with the idea your emotional state—and, maybe, your actual thought
patterns in the not-so-distant future—can be monitored remotely? Is the image of everyone in
the office plugged into Yivo’s tentacles, sharing thought and emotional state that far off?
Someone wandering around the office with a small satellite-dish-looking receiver looking for
thoughtcrime maybe doesn’t seem that much of a stretch anymore.

References to George Orwell’s book 1984 often produce scoffs and “that can’t happen here
—it’s pure fiction” responses. But maybe the Ministry of Truth doesn’t seem so far fetched
anymore. Maybe, we’re going too far.

At least, that’s what I think.

Active and Passive Sniffing
EC-Council breaks sniffing down into two main categories: passive and active. Passive sniffing
is exactly what it sounds like: plug in a sniffer and, without any other interaction needed on your
part, start pulling data packets to view at your leisure. Passive sniffing works only if your
machine’s NIC is part of the same collision domain as the targets you want to listen to—
something we beat to death in the previous section, remember? Because hubs do not split a
collision domain (hubs extend a collision domain), the hub is your dream network device from a
sniffing perspective. Anything plugged into a port on a hub receives every message sent by
anyone else plugged into it. Therefore, if you’re out and about looking to drop a sniffer onto a
network segment and you see your target uses hubs, try to contain your excitement because your
job just became much easier.

http://fortune.com/2018/05/01/china-workers-brainwave-monitors/

NOTE You’re probably as likely to see a hub in a target organization’s network as you are a
unicorn or a leprechaun. But passive sniffing is testable material, so you need to know it well.
Besides, if you can find Windows NT machines and LM hashing out on networks, you can
certainly get lucky and come across a hub or two. Additionally, even though passive is, well,
passive, there are occasions where someone has a misconfigured NIC on the subnet and you’ll
grab their stuff too!

Active sniffing requires some additional work on your part, either from a packet injection or
manipulation stance or from forcing network devices to play nicely with your efforts. Active
sniffing usually means the collision domain you are part of is segmented from those you want to
look in to, which probably means you’re attached to a switch. And if you’re connected to a
switch, sniffing requires some additional work. On the outside, a switch looks much like a hub:
it’s a box with a lot of blinky lights, ports for connecting machines on the front, and a power
cord in the back. Inside, though, it’s a lot different. If you take the lid off a hub, it would look
very much (virtually, anyway) like a single wire with attached wires running to each port. Shock
one port and everyone gets shocked since they’re all wired together. The inside of a switch looks
the same; however, each port’s wire is separated from the main line by a switch that gets closed
only when a message is received for that port. The problem with switches in sniffing is that
you’ll receive only those messages intended for your own port. One trick for active sniffing
purposes is to get the switch to close the port you are connected to each and every time it closes
the port you want to sniff.

Getting a switch to send a message to both the port it was addressed to and the port you’re
connected to for sniffing can be accomplished by configuring something called a span port. A
span port is one in which the switch configuration has been altered to send a copy of all frames
from one port, or a succession of ports, to another. In other words, you tell the switch, “Every
time you receive and send a frame to port 1 through 10, also send a copy to the span on port 25.”
Also called port mirroring, this isn’t necessarily a simple thing to do (you must have access to
the switch configuration to set it up), but it’s fairly common practice in network monitoring.

NOTE Not every switch on the planet has the capability to perform port spanning.
Additionally, most modern switches (for example, Cisco’s) don’t allow a port that is configured
to span as one that can transmit data. In other words, your span port can listen but cannot send
anything.

Sniffing Tools and Techniques

A lot of sniffing really boils down to which tool you decide to use. Tons of sniffers are available.
Some of them are passive sniffers, simply pulling in frames off the wire as they are received.
Others are active sniffers, with built-in features to trick switches into sending all traffic their
way. In the interest of time, page count, and your study (since this one will be on your exam),
we’ll discuss Wireshark. Ettercap, EtherPeek, and even Snort (better known as an IDS, though)
are also examples of sniffers.

Techniques
While it would be fun to find a network full of hubs, and an open port just sitting there waiting
for you to connect, the real world isn’t like that. Equipment is in highly secured cabinets, port
security is turned on, and hubs are nowhere to be seen except on someone’s USB so they have
enough ports available to charge their phone and use the USB cannon geek toy. So where do we
turn for help in manipulating devices and traffic to enhance our sniffing efforts? The following
techniques will help.

MAC Flooding
Suppose you don’t know how to reconfigure the switch OS to set up a span port, or you just
don’t have the access credentials to log in and try it. Are you out of luck? Not necessarily.
Another option you have is to so befuddle and confuse the switch that it simply goes bonkers and
sends all messages to all ports—and you can do this without ever touching the switch
configuration. To explain how this all works, come with me on a short journey into the mind of a
switch, and learn how the whole thing works with an overly simplistic, but accurate, account.

Imagine a switch comes right out of the box and gets plugged in and turned on. All these
cables are connected to it, and there are computers at the end of all these cables, each with its
own unique MAC address. All the switch knows is flooding or forwarding. If it receives a
message that’s supposed to go to everyone (that is, a broadcast or multicast frame), the decision
is easy, and it will flood that message to all ports. If the switch receives a unicast message (that
is, a message with a single MAC address for delivery), and it knows which port to send it to, it
will forward the frame to that single port. If it doesn’t know which port to send it to, it will flood
it to all, just to be sure.

Flooding all packets to every port will certainly get them where they’re going, but it’s not
very efficient, and the switch was built to split collision domains and improve efficiency.
Therefore, it has to learn who is on what port so it can deliver messages appropriately. To do so,
it waits patiently for messages to start coming in. The first frame arrives and it’s a doozy—a
broadcast message from a computer with a MAC address of “A” attached to port 1 is sending an
ARP message looking for the MAC address of another computer.

The switch opens up a little virtual book and writes “MAC A is on switchport 1—any
messages I see for MAC A can be sent directly to switchport 1.” It then sends the broadcast
message out to every available switchport, and patiently waits to see who replies. A computer on
switchport 2 answers with an ARP reply stating, “I have the IP address you’re looking for, and
my MAC address is B.” The switch smiles, and adds to its little virtual notebook, “MAC B is on
switchport 2—any messages I see for B can be sent directly to switchport 2.” This continues
until the little virtual book has an entry for every port, and the switch hums along, happily
delivering messages.

In our story here, the little virtual notebook is called the content addressable memory (CAM)

table. As you can imagine, since you know how ARP works now and you know how many
packets are delivered back and forth in any given second or so, the CAM table gets updated very
often. And if it’s empty, or full, everything is sent to all ports.

NOTE MAC flooding is big in the ECC CEH world, but in reality it’s not easy to do, will
probably destroy the switch before you get anything useful, doesn’t last long if you could pull it
off, and it will get you caught. Most modern switches protect against MAC floods but may still
be susceptible to MAC spoofing. Just so you know.

You can use this to your advantage in sniffing by figuring out a way to consistently and
constantly empty the CAM table, or by simply confusing the switch into thinking the address it’s
looking for is not available in the table, so it should just send it out to all ports—including the
one you’re sniffing on. This method, which doesn’t work on a lot of modern switches but is
questioned repeatedly and often on your exam, is known as MAC flooding. The idea is simple:
Send so many MAC addresses to the CAM table it can’t keep up, effectively turning it into a
hub. Because the CAM is finite in size, it fills up fairly quickly, and entries begin rolling off the
list. Etherflood and Macof are examples of tools you MAC flood with.

EXAM TIP In an utterly ridiculous semantic exercise, ECC defines some versions of MAC
flooding as “switch port stealing.” The idea is the same—flood the CAM with unsolicited ARPs.
But instead of attempting to fill the table, you’re only interested in updating the information
regarding a specific port, causing something called a “race condition,” where the switch keeps
flipping back and forth between the bad MAC and the real one.

ARP Poisoning
Another effective active sniffing technique is something called ARP poisoning (a.k.a. ARP
spoofing or gratuitous ARP). This refers to the process of maliciously changing an ARP cache on
a machine to inject faulty entries, and it’s not really that difficult to achieve. As stated earlier,
ARP is a broadcast protocol. So, if Machine A is sitting there minding its own business and a
broadcast comes across for Machine B that holds a different MAC address than what was already
in the table, Machine A will instantly, and gladly, update its ARP cache—without even asking
who sent the broadcast. To quote the characters from the movie Dude, Where’s My Car?,
“Sweet!”

NOTE Tons of tools are available for ARP poisoning; however, you have some big
considerations when using them. First, the ARP entries need updating frequently; to maintain
your “control,” you’ll need to always have your fake entry update before any real update comes
past. Second, remember ARP is a broadcast protocol, which means ARP poisoning attempts can
trigger alerts pretty quickly. And lastly, speed always wins here: if a machine ARPs and the
hacker gets there before the intended recipient does…

Because ARP works on a broadcast, the switch will merrily flood all ARP packets—sending
any ARP packet to all recipients. Be careful, though, because most modern switches have built-
in defenses for too many ARP broadcasts coming across the wire (for example, you can
configure Dynamic ARP Inspection using DHCP snooping inside Cisco’s IOS). Also,
administrators can put to use a wide variety of network monitoring tools, such as XArp
(www.chrismc.de), to watch for this, and some network administrators are smart enough to
manually add the default gateway MAC permanently (using the command arp -s) into the ARP
cache on each device. A couple of tools that make ARP flooding as easy as pressing a button are
Cain and Abel (www.oxid.it), WinArpAttacker, Ufasoft (ufasoft.com), and dsniff (a collection of
Linux tools holding a tool called ARPspoof).

DHCP Starvation
For some reason, EC-Council includes DHCP starvation (an attack whereby the malicious agent
attempts to exhaust all available addresses from the server) in the discussion with sniffing.
Although it’s more of a type of denial-of-service attack, don’t be surprised to see it pop up in a
sniffing question. Why does ECC include it in sniffing discussions? I don’t have a clue. All I do
know is you need to know how DHCP works and what the attack does.

When a network is set up, the administrator has two options. The first is manually configuring
(and keeping track of) IP addresses on each and every system in the network. While this does
have several advantages, static addressing comes with a lot of problems—like keeping track of
all those IPs, for example. Another solution, and one used on virtually every network on the
planet, is handing out and monitoring all these IPs automatically. Dynamic Host Configuration
Protocol (DHCP) is the protocol for the job.

NOTE The packets in DHCPv6 have different names from those of DHCPv4.
DHCPDISCOVER, DHCPOFFER, DHCPREQUEST, and DHCPACK are known as Solicit,
Advertise, Request (or Confirm/Renew), and Reply, respectively.

DHCP is actually fairly simple. A DHCP server (or more than one) on your network is

http://www.chrismc.de
http://www.oxid.it
http://ufasoft.com

configured with a pool of IP addresses. You tell it which ones it can hand out, which ones are
reserved for static systems already, how long systems can keep (or lease) the address, and assign
a few other settings, and then turn it loose. When a system comes on the network, it sends a
broadcast message known as a DHCPDISCOVER packet, asking if anyone knows where a
DHCP server is. The DHCP relay agent will respond with the server’s info and then send a
DHCPOFFER packet back to the system, letting it know the server is there and available. The
system then sends back a DHCPREQUEST packet, asking for an IP. In the final step, the server
responds with a DHCPACK message, providing the IP and other configuration information the
system needs (see Figure 4-6 for a, hopefully, clear visual of the process). An easy way to
remember it all is the acronym DORA—Discover, Offer, Request, and Acknowledge.

Figure 4-6 DHCP in action

So how does DHCP starvation work? First, the attacker sends unending, forged DHCP
requests to the server on the subnet. The server will attempt to fill each and every request, which
results in its available IP address pool running out quickly. Any legitimate system attempting to
access the subnet now cannot pull a new IP or renew its current lease. DHCP starvation attacks
can be carried out by tools such as Yersinia (https://tools.kali.org/vulnerability-analysis/yersinia)
and DHCPstarv (http://dhcpstarv.sourceforge.net/). Configuring DHCP snooping on your
network device is considered the proper mitigation against this attack.

EXAM TIP Another fun DHCP attack is known as using a “rogue DHCP server.” An attacker
sets up his own DHCP server on the network and starts handing out bad IP addresses to
legitimate systems connecting to the network. Whether in conjunction with the DHCP starvation
attack or not, this could allow an attacker to redirect communications sessions.

Spoofing
Finally, in our romp through traffic-misdirection efforts, we need to spend a little time on
spoofing. Whether IP, MAC, DNS, or otherwise, spoofing is simply pretending to be an address
you’re not. We’ve already mentioned spoofing in general before, so this concept shouldn’t be
anything new to you.

MAC spoofing (a.k.a. MAC duplication) is a simple process of figuring out the MAC address
of the system you wish to sniff traffic from and changing your MAC to match it. And just how

https://tools.kali.org/vulnerability-analysis/yersinia
http://dhcpstarv.sourceforge.net/

do you change the MAC on your system? Well, there are multiple methods, depending on the OS
you use, but they’re all fairly simple. In Windows 8, for instance, you can use the Advanced tab
on the NIC properties and just type in whatever you want, or you can go to the registry
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4d36e972-e325-11ce-
bfc1-08002be10318} and find the proper string to update for your NIC. If you’d rather use a tool
to do it all for you, SMAC (http://www.klcconsulting.net/smac/) is a good bet.

When a MAC address is spoofed, the switch winds up with multiple entries in the CAM table
for a given MAC address. Unless port security is turned on, the latest entry in the table is the one
that is used. Port security refers to a security feature on switches that allows an administrator to
manually assign MAC addresses to a specific port; if the machine connecting to the port does not
use that particular MAC, it isn’t allowed to connect. In truth, this type of implementation turns
out to be a bit of a pain for the network staff, so most people don’t use it that way. In most cases,
port security simply restricts the number of MAC addresses connected to a given port. Suppose
your Windows 7 machine runs six virtual machines (VMs) for testing, each with its own MAC.
As long as your port security allows for at least seven MACs on the port, you’re in good shape.
Anything less, the port will turn amber, SNMP messages will start firing, and you’ll be left out in
the cold—or have a network admin come pay you a visit.

NOTE In modern networks, most switch admins will configure ports to a specific number of
MAC addresses. If the port tries to resolve more than that number, it’ll die (or “amber out” in
nerd lingo) or, even worse for the hacker, stay on but notify the admin someone is up to no good.

For example, suppose “Good Machine,” with MAC address 0A-0B-0C-AA-BB-CC, is on port
2. The switch has learned any frame addressed for that MAC should go to port 2 and no other.
The attacker attaches “Bad Machine” to port 3 and wants to see all packets Good Machine is
receiving. The attacker uses an application such as Packet Generator (from SourceForge) to
create multiple frames with the source address of 0A-0B-0C-AA-BB-CC and sends them off (it
doesn’t really matter where). The switch will notice that the MAC address of Good Machine,
formerly on port 2, seems to have moved to port 3 and will update the CAM table accordingly.
So long as this is kept up, the attacker will start receiving all the frames originally intended for
Good Machine. Not a bad plan, huh?

Plenty of other spoofing opportunities are out there for the enterprising young ethical hacker.
Ever heard of IRDP spoofing? It’s a neat attack where the hacker sends spoofed ICMP Router
Discovery Protocol messages through the network, advertising whatever gateway he wants all
the system to start routing messages to. Fun! Another one is DNS poisoning—something
introduced way back in Chapter 2—and it can have much the same effect. And if everyone gets
their DNS information from a proxy, well that’s just all sorts of naughtiness. In short, spoofing
may not be the most technical attack in the world, but it sure can bring home the bacon for you.

Tools
Wireshark is probably the most popular sniffer available, mainly because it is free, it is stable,

http://www.klcconsulting.net/smac/

and it works really well. Previously known as Ethereal, Wireshark can capture packets from
wired or wireless networks and provides a fairly easy-to-use interface. The top portion of the
display is called the Packet List and shows all the captured packets. The middle portion, Packet
Detail, displays the sections within the frame and packet headers. The bottom portion displays
the actual hex entries in the highlighted section. Once you get used to them, you’ll be surprised
what you can find in the hex entries. For example, you can scroll through and pick up ASCII
characters from a Telnet login session. Wireshark also offers an almost innumerable array of
filters you can apply to any given sniffing session, and you can fine-tune your results to exactly
what you’re looking for. Additionally, the good folks who created it have provided a multitude
of sample captures for you to practice on—simply go to their site and download what you wish
to try out!

NOTE On some systems (I’m speaking specifically about Windows Vista and 8 here, but this
may apply to whichever OS you’re running if you have it “locked down”), you may need to set
the tool to run as administrator. Not doing so causes all kinds of headaches in trying to run in
promiscuous mode.

Following a TCP stream is a great way to discover passwords in the clear. For instance, I
downloaded one of the capture files from Wireshark (clicking Sample Captures in the Files
section, in the center of the window, gives you plenty to download and play with) regarding a
Telnet session. After opening the file, I sorted by protocol and selected the first Telnet packet I
could find. A right-click, followed by selecting Follow TCP Stream, gave me the entire session,
including the logon information, as shown in Figure 4-7.

Figure 4-7 Telnet session in Wireshark

Another great feature of Wireshark is its ability to filter a packet capture to your
specifications. A filter can be created by typing in the correct stream in the filter window, by
right-clicking a packet or protocol header and choosing Apply As Filter, or by clicking the
Expression button beside the filter screen and checking off what you’d like. In any case, the filter
will display only what you’ve chosen. For example, in Figure 4-8, only Telnet packets will be
displayed. In Figure 4-9, all packets with the source address 192.168.0.2 will be shown.

Figure 4-8 Telnet filter in Wireshark

Figure 4-9 IP source address filter

Filters are of great use when you set up a packet capture for a long period of time, and they
will show up in bunches on your exam. For example, the string ! (arp or icmp or dns) filters out
all the annoying ARP, ICMP, and DNS packets from your display. The http.request string
displays all the HTTP GET requests, while the tcp contains string argument displays all TCP
segments that contain the word “string.” The expression ip.addr==172.17.15.12 &&
tcp.port==23 will display all Telnet packets containing the IP 172.17.15.12, while the
expression ip.addr==172.17.15.12 or ip.addr==172.17.15.60 will show packets containing
either address. The combinations are endless.

EXAM TIP There are innumerable filter combinations in Wireshark. I simply could not
include them all in this book, nor could you possibly memorize them all. But make very sure you
are familiar with what the equal to, and, and or conjunctions mean. Equal to (==) means exactly
what it says—the packet will display if the argument appears in the packet. And (&&) means the
packet will display only if both arguments appear. Or (or) means the packet will display if either
argument appears.

During a capture, you can also click the Capture Filters selection from the Capture menu item
and choose a variety of predefined options. For example, No Broadcast and No Multicast is a
good one to use if you want to cut down on the number of packets you’ll have to comb through
(only packets addressed explicitly to a system on the subnet will be shown). There are endless
combinations of filters you can use. Take advantage of the sample captures provided by
Wireshark and play with the Expression Builder—it’s the only real way to learn.

NOTE Wireshark also has the ability to filter based on a decimal numbering system assigned
to TCP flags. The assigned flag decimal numbers are FIN = 1, SYN = 2, RST = 4, PSH = 8,
ACK = 16, and URG = 32. Adding these numbers together (for example, SYN + ACK = 18)
allows you to simplify a Wireshark filter. For example, tcp.flags == 0x2 looks for SYN packets,

tcp.flags == 0x16 looks for ACK packets, and tcp.flags == 0x18 looks for both.

Lastly, since Wireshark is the recognized standard in sniffing applications, and EC-Council
tests it heavily, it follows that you should know it very, very well. I toyed a lot with adding a
bunch of Wireshark exercises here but decided against reinventing the wheel. A quick visit to the
home page and a search for help and documentation reveals the good folks at Wireshark have
provided a ton of help for those seeking it (www.wireshark.org/docs/). Downloads, how-to
guides, and even videos detailing multiple network scenarios are all available. I highly
recommend you visit this page and run through the help videos. They are, in a word, awesome.

Another “old-school” tool you’ll definitely see in use on your pen tests, and probably on your
exam as well, is tcpdump. Although there is a more recent Windows version (WinDump),
tcpdump has been a Unix staple from way, way back, and many people just love the tool. There
are no bells and whistles—this is a command-line tool that simply prints out a description of the
contents of packets on a network interface that match a given filter (Boolean expression). Just
point tcpdump to an interface, tell it to grab all packets matching a Boolean expression you
create, and voilà! These packets can be dumped to the screen, if you really like Matrix-y
characters flying across the screen all the time, or you can dump them to a file for review later.

The syntax for this tool is fairly simple: tcpdump flag(s) interface. However, the sheer
number of flags and the Boolean combinations you can create can make for some pretty elegant
search strings. For a simple example, tcpdump -i eth1 puts the interface in listening mode,
capturing pretty much anything that comes across eth1. If you were to add the -w flag, you could
specify a file in which to save the data, for review later. If you get nuts with them, though, the
Boolean expressions show tcpdump’s power. The following command shows all data packets (no
SYN, FIN, or ACK-only) to and from port 80:

Take some time to review the tcpdump man page at www.tcpdump.org/tcpdump_man.html,
and you can see a variety of great examples, as well as good write-ups on each of the flags
available. But don’t worry too much—no one is going to expect you to write a 35,000-character
Boolean expression on the exam. You should, though, know basic flags for tcpdump—
particularly how to put the interface in listening mode (-i), how to write to a file (-w), and how to
use the tool.

EXAM TIP Another tool you may want to check out is tcptrace (www.tcptrace.org/). It is used
to analyze files produced by several packet-capture programs and can easily read from tcpdump,
WindDump, Wireshark, and EtherPeek.

Of course, you have plenty of other choices available in sniffers. Ettercap is a powerful sniffer
and man-in-the-middle suite of programs. It is available as a Windows tool but works much
better in its native Unix platform. Ettercap can be used as a passive sniffer, an active sniffer, and
an ARP poisoning tool. Other great sniffers include Capsa Network Analyzer, Snort (most often

http://www.wireshark.org/docs/
http://www.tcpdump.org/tcpdump_man.html
http://www.tcptrace.org/

discussed as an intrusion detection application), Sniff-O-Matic (https://sniff-o-
matic.soft112.com/), EtherPeek, WinDump, and WinSniffer.

NOTE tcpdump is a built-in utility for all Unix systems, so you have no worries there. But
Wireshark is considered by many organizations as a hacking tool, and Ettercap is always
considered a hacking tool. If you value your job, I highly suggest you don’t install these on your
work desktop without first checking to see if it’s okay.

Evasion
All this talk about sniffing and listening in on network conversations makes this whole sordid
business sound pretty easy. However, our adversaries (a very strong word, since we’re all on the
side of bettering security)—those guys who manage and administer the network and systems
we’re trying to gain access to—aren’t going to just sit by and let us take whatever we want
without a fight. They are doing everything in their power to make it as difficult as possible for
the aspiring ethical hacker, and that means taking advantage of a multitude of hardware and
software tools. As stated before, as an ethical hacker, you certainly won’t be expected to know
how to crack the latest and greatest network roadblock efforts; however, you are expected to (and
should) know what they are and what, if anything, you can do about them.

Devices Aligned Against You
Intrusion detection has come a long, long way in the past 15 years or so. What used to be a fringe
effort, tacked on to someone’s “real” job, now is a full-time career of its own. As the name
implies, intrusion detection is all about identifying intrusion attempts on your network.
Sometimes this is simply a passive effort—to notify others of what might be happening. Other
times it becomes much more active in nature, letting one punch back, so to speak, at the bad
guys. When it comes to ethical hacking, it’s useful to know how intrusion detection works and
what, if anything, you can do to get around it.

Intrusion detection systems (IDSs) are hardware and/or software devices that examine streams
of packets for unusual or malicious behavior. Sometimes this is done via a signature list, where
the IDS compares packets against a list of known traffic patterns that indicate an attack. When a
match is made, the alarm sounds. Other IDSs may be anomaly (or behavior) based, making
decisions on alerts based on learned behavior and “normal” patterns—anything out of the
ordinary for a normal day sounds the alarm.

EXAM TIP Ever heard of libwhisker (SourceForge.net)? It’s a full-featured Perl library used

https://sniff-o-matic.soft112.com/
http://SourceForge.net

for HTTP-related functions, including vulnerability scanning, exploitation, and, of course, IDS
evasion.

They both have benefits and drawbacks. A signature-based system is only as good as the
signature list itself; if you don’t keep it up to date, newer intrusion methods may go undetected.
A behavior-based system may be better at picking up the latest attacks because they would
definitely be out of the norm, but such systems are also known to drive administrators crazy with
false positives—that is, an alarm showing an intrusion has occurred when, in reality, the traffic is
fine and no intrusion attempt has occurred. Anomaly-based IDS is, by its nature, difficult
because most network administrators simply can’t know everything going on in their networks.

As an aside, although a false positive is easy enough to identify, you need to be familiar with
another term in regard to IDS (and your exam). A false negative occurs when the IDS reports a
particular stream of traffic is just fine, with no corresponding alarm or alert, when, in fact, an
intrusion attempt did occur. False negatives are considered far worse than false positives, for
obvious reasons. Unfortunately, many times these aren’t discerned until well after an attack has
occurred.

IDSs are also defined not only by what they use to make a decision but also where they are
located and their span of influence. A host-based IDS (also known as an HIDS) is usually a
software program that resides on the host itself. More often than not an HIDS is signature based,
although anomaly and heuristic engines get better and better every day, and its entire job is to
watch that one host. It looks for traffic or events that would indicate a problem for the host itself.
Some popular examples include Cybersafe, Tripwire, Norton Internet Security, and even
firewalls and other features built into the operating system.

NOTE Ever heard of HBSS? The Department of Defense (DoD) loves it (as does our friendly
tech editor). The Host Based Security System (HBSS) is a flexible commercial-off-the-shelf
(COTS) application that monitors, detects, and counters against known cyber-threats to DoD
Enterprise. The plan is to have HBSS on each host (server, desktop, and laptop) in the DoD—
which, of course, will protect them fully against attacks from people like our tech editor during a
penetration test.

On the other hand, a network-based IDS sits, oddly enough, on the network perimeter. Its job,
normally, is to watch traffic coming into, and leaving, the network. Whether signature or
anomaly based, an NIDS will sit outside or inside the firewall (either works so long as the NIDS
is placed where it can see all traffic) and will be configured to look for everything from port and
vulnerability scans to active hacking attempts and malicious traffic. A large network may even
employ multiple NIDSs at various locations in the network, for added security. An exterior NIDS
outside the firewall would watch the outside world, whereas one placed just inside the firewall
on the DMZ could watch your important server and file access. Dozens upon dozens of intrusion
detection system and software options are available for you; however, the one used more often
than any other, and the one you’ll see on your exam more often than not, is Snort.

Snort
By far the most widely deployed IDS in the world, Snort is an open source IDS that, per its
website, “combines the benefits of signature, protocol, and anomaly-based inspection.” It has
become the commonly acknowledged standard for IDS and is in use on networks ranging from
small businesses to U.S. government enterprise systems. It is a powerful sniffer, traffic-logging,
and protocol-analyzing tool that can detect buffer overflows, port scans, operating system
fingerprinting, and almost every conceivable external attack or probe you can imagine. Its rule
sets (signature files) are updated constantly, and support is easy to find.

Interview with the Hacker
Put down the sharp instruments and back away from the edge of the cliff—I’m not going to
recite Anne Rice novel quotes to you. I am going to pay her the “sincerest form of flattery” by
borrowing (stealing) the tagline from her book, though, and twisting it for my own use.

If you were to corner a pen tester, a good pen tester, and perform an interview on what they
think about hacking—specifically dealing with IDS evasion—you’d probably hear the same
couple of conclusions. I think we hit on them in this chapter already, but it’s always helpful to
see another perspective—to hear it laid out in a different way. To accomplish this, I chatted
with our tech editor during the review of this chapter and got some sound advice to pass along
(credit goes to Mr. Horton for these gems):

• The best nugget of wisdom we can give If a business is an attacker’s single target,
time is on the attacker’s side. There is so much noise on the Internet from random
scans, probes, and so on, that a determined attacker can just take weeks and hide in it.
As a pen tester, you rarely have that much time, and it is your greatest limitation. If
you’re expected to act as the bad guy and are given only seven days to perform, you
will be detected. The trade-off between threat fidelity and unlimited time is difficult to
balance.

• Where real hackers thrive Most true experts in the field don’t spend time trying to
avoid your signatures; they spend their time trying to make sure they blend in. The
nemesis of all IDS is encryption; your critical financial transaction sure looks like my
remote agent traffic when they’re both going through SSL. Although there are SSL
termination points and other things you can use, the bottom line is that encryption
makes IDS useless, barring some mechanism to decrypt before running it through.

• “Cover fire” works in the virtual world too If the attacker has a bunch of IP
addresses to sacrifice to the giant network blocker in the sky, some nikto and nmap T5
scans might just do the trick to obfuscate the real attack. This is straight-up cover fire
—and it works!

• There’s a difference between “someone” and “anyone” The tactics, techniques, and
procedures of an adversary targeting you are far different from those of an adversary
targeting someone. Determining whether your business is of interest to anyone versus
someone is critical to determining the resources you should invest into cyber
protection.

• IDS is not foolproof Much like a firewall, IDS is simply one tool in the arsenal to
defend against attacks. Encryption, stealth, and plain-old cover fire can all work to

your advantage as a pen tester.

Snort runs in three different modes. Sniffer mode is exactly what it sounds like and lets you
watch packets in real time as they come across your network tap. Packet Logger mode saves
packets to disk for review at a later time. Network Intrusion Detection System mode analyzes
network traffic against various rule sets you pick from, depending on your network’s situation.
NIDS mode can then perform a variety of actions based on what you’ve told it to do.

NOTE A network tap is any kind of connection that allows you to see all traffic passing by. It
can be as simple as a hub connected on the segment you’d like to watch or as complex as a
network appliance created specifically for the task. Just keep two points in mind: First, where
you place the tap determines exactly what, and how much, traffic you’ll be able to see. Second,
your tap should be capable of keeping up with the data flow (an old 486 running 10 Mbps half-
duplex connected to a fiber backbone running at 30 Mbps on a slow day will definitely see some
packet loss).

It’s not completely intuitive to set up and use, but it isn’t the hardest tool on the planet to
master either. That said, as much as I know you’d probably love to learn all the nuances and
command-line steps on how to set up and configure Snort completely, this book is about the
ethical hacker and not the network security manager. I’m charged with giving you the knowledge
you’ll need to pass the exam, so I’ll concentrate on the rules and the output. If you’re really
interested in all the configuration minutiae, I suggest grabbing the user manual as a start. It’s an
easy read and goes into a lot of things I simply don’t have the time or page count to do here.

The Snort “engine,” the application that actually watches the traffic, relies on rule sets an
administrator decides to turn on. For example, an administrator may want to be alerted on all
FTP, Telnet, and CGI attack attempts but could care less about denial-of-service attempts against
the network. The engine running on that network and the one running on the government
enterprise down the street that’s watching everything are the same. The rule sets selected and put
in place are what make the difference.

The Snort configuration file resides in /etc/snort on Unix/Linux and in c:\snort\etc\ on most
Windows installations. The configuration file is used to launch Snort and contains a list of which
rule sets to engage at startup. To start Snort, a command like the following might be used:

Basically this says, “Snort application, I’d like you to start logging to the directory c:\snort\log\.
I’d also like you to go ahead and start monitoring traffic using the rule sets I’ve defined in your
configuration file located in c:\snort\etc.”

The configuration file isn’t all that difficult to figure out either. It holds several variables that

need to be set to define your own network situation. For example, the variable HOME_NET
defines the subnet local to you. On my home network, I would define the variable in the file to
read as follows:

Other variables I could set are displayed in the overly simplified snort.conf file shown next. In
this instance, I want to watch out for SQL attacks, but because I’m not hosting any web servers, I
don’t want to waste time watching out for HTTP attacks.

NOTE Some network security administrators aren’t very concerned with what’s going on
inside their networks and don’t want to see any traffic at all from them in their Snort logs. If you
change the external variable to EXTERNAL_NET !$HOME_NET, Snort will ignore packets
generated by your home network that find their way back inside.

If I were hosting websites, I’d turn that function on in the config file by using the following
entry:

SMTP_SERVERS, SQL_SERVERS, and DNS_SERVERS are also entries I could add, for
obvious reasons. To include a particular rule set, simply add the following line:

Speaking of rule sets, there are loads of them. The rules for Snort can be downloaded from the
Snort site at any time in a giant .zip (.tar) file. The rules are updated constantly, so good
administrators will pull down fresh copies often. Because the rules are separate from the
configuration, all you have to do to update your signature files is to drop the new copy in the
directory holding the old copy. One quick overwrite (and usually a stop/start of services) is all
that’s needed. If you’re looking for some help in managing signature updates and such,
Oinkmaster (http://oinkmaster.sourceforge.net/about.shtml) is the standard for it.

http://oinkmaster.sourceforge.net/about.shtml

A rule itself is fairly simple. It must be single line and is composed of a header and options.
Each rule contains an action, a protocol, the rule format direction (which could be bi-directional),
a source address/port, a destination address/port, and message parameters. The Snort rule action
can be Alert (in a variety of configured methods, alert when the condition is met), Log (simply
make a note when the condition is met), or Pass (ignore the packet). For example, consider the
following rule:

This rule tells Snort, “If you happen to come across a packet from any address that is not my
home network, using any source port, intended for an address within my home network on port
31337, alert me with the message ‘BACKDOOR ATTEMPT-Backorifice.’” Other options you
can add to the message section include flags (indicating specific TCP flags to look for), content
(indicating a specific string in the packet’s data payload), and specialized handling features. For
example, consider this rule:

Here’s the meaning: “Please alert on any packet from an address not in my home network and
using any source port number, intended for any address that is within my home network on port
23, including the ASCII string ‘admin.’ Please write ‘Telnet attempt..admin access’ to the log.”
As you can see, although it looks complicated, it’s really not that hard to understand. And that’s
good news, because you’ll definitely get asked about rules on the CEH exam.

EXAM TIP You’ll need to be intimately familiar with the basics of Snort rule syntax, as well
as the raw output from the packet capture. Pay special attention in the output to port numbers;
most questions can be answered just by knowing what port numbers go with which protocol and
where to find them in the output. Also, always watch the directional arrows in test questions.

Lastly on Snort, you’ll also need to know how to read the output. GUI overlays are
ridiculously easy, so I’m not even going to bother here—you purchased this book, so I’m
relatively certain you can read already. Command-line output, though, requires a little snooping
around. A typical output is listed here (bold added for emphasis):

I know, it looks scary, but don’t fret—this is simple enough. The first portion of the line

indicates the date stamp at 11:23 on February 7. The next entry shows the source and destination
MAC addresses of the frame (in this case, the source is 0:10:2:AC:1D:C4 and the destination is
0:2:B3:5B:57:A6). The Ethernet frame type and length are next, followed by the source and
destination IPs, along with the associated port numbers. This frame, for example, was sent by
200.225.1.56, with source port 1244, destined for 129.156.22.15 on port 443 (can you say “SSL
connection attempt”?). The portion reading “******S*” indicates the SYN flag was set in this
packet, and the sequence and acknowledgment numbers follow. The payload is displayed in hex
digits below everything.

Do you need to remember all this for your exam? Of course you do. The good news is,
though, most of the time you can figure out what’s going on by knowing where to find the port
numbers and source/destination portions of the output. I bolded them in the preceding code
listing for emphasis. I guarantee you’ll see output like this on your exam, so be ready to answer
questions about it.

Firewall
While we’re on the subject of sniffing (and other attack) roadblocks, we can’t ignore the one
everyone has already heard of—the firewall. If you’ve watched a Hollywood movie having
anything whatsoever to do with technology, you’ve heard mention of firewalls. And, if you’re
like me, you cringe every time they bring it up. Script writers must believe that a firewall is some
kind of living, breathing entity that has the capability to automatically sense what the bad guys
are doing, and anything that makes it past the firewall is free and clear. A firewall isn’t the end-
all of security; it’s just one tool in the arsenal. Granted, it can be a powerful tool, but it’s just one
piece of the puzzle, not the whole thing.

A firewall is an appliance within a network that is designed to protect internal resources from
unauthorized external access. Firewalls work with a set of rules, explicitly stating what is allowed
to pass from one side of the firewall to the other. Additionally, most firewalls work with an
implicit deny principle, which means if there is not a rule defined to allow the packet to pass, it is
blocked—there is no need to create a rule to deny packets. For example, there may be a rule
saying port 80 is allowed to pass from external to internal, but if there is not a rule saying port
443 is allowed, SSL requests to internal resources will automatically be denied.

Another interesting point on most firewalls is that the list of rules that determine traffic
behavior is usually read in order, from top to bottom. As soon as a match is made, the decision
on whether to pass the packet is made. For example, an access control list (ACL) that starts out
with an entry of “allow ip any any” makes the firewall moot—every IP packet will be allowed to
pass because the match is made on the first entry. Most firewalls are configured with rule sets to
allow common traffic, such as port 80 if you’re hosting web servers and port 53 for DNS
lookups, and then rely on implicit deny to protect the rest of the network.

Many firewalls (just like routers) also implement network address translation (NAT) at the
border, and NAT can be implemented in many different ways. Basic NAT is a one-to-one
mapping, where each internal private IP address is mapped to a unique public address. As the
message leaves the network, the packet is changed to use the public IP, and when it is answered
and routed back through the Internet to the firewall (or external router), NAT matches it back to
the single corresponding internal address and sends it along its way. For example, a packet
leaving 172.16.1.72 would be changed to 200.57.8.212 for its journey across the Internet.
Although the rest of the world will see IP addresses in your public range, the true senders of the

data packets are internal and use an address from any of the private network classes
(192.168.0.0, 172.16–31.0.0, or 10.0.0.0).

In the real world, though, most organizations and individuals don’t implement a one-to-one
mapping; it’s simply too expensive. A more common method of NAT is NAT overload, better
known as port address translation. This method takes advantage of the port numbers (and other
items) unique to each web conversation to allow many internal addresses to use one external
address. Although we could start an entire conversation here on how this works and what to
watch for, I’m simply mentioning it so you won’t be caught off guard by it should you see it on
the exam.

NOTE If you didn’t already know about NAT, I’d bet dollars to doughnuts you’re a NAT
“overloader” already. If you don’t believe me, check your wireless router. How many devices do
you have connected to it? Each one has its own private IP address assigned (probably in the
192.168.1.1–254 range), which we all know can’t be routed to or from the Internet. And I’m
absolutely certain you did not purchase a public IP address range from your provider, right?
Open the configuration for your router and check the public-facing IP address. I’ll bet you’ll find
you’ve been NAT-ing like a pro all along.

Much like IDSs, the placement of firewalls is important. In general, a firewall is placed on the
edge of a network, with one port facing outward, at least one port facing inward, and another port
facing toward a DMZ (an area of the network set aside for servers and other resources that the
outside world would need access to). Some networks will apply additional firewalls throughout
the enterprise to segment for various reasons.

EXAM TIP There are a few definition terms of note for you. The screened subnet (a.k.a.
public zone) of your DMZ is connected to the Internet and hosts all the public-facing servers and
services your organization provides. These bastion hosts sit outside your internal firewall and are
designed to protect internal network resources from attack: they’re called bastions because they
can withstand Internet traffic attacks. The private zone holds all the internal hosts that, other than
responding to a request from inside that zone, no Internet host has any business dealing with.
Lastly, because your firewall has two or more interfaces, it is referred to as multi-homed.

Originally, firewalls were all packet-filtering firewalls. They basically looked at the headers
of packets coming through a port and decided whether to allow them based on the ACLs
configured. Although this does provide the ability to block specific protocols, the major
drawback with packet filtering alone is twofold: it is incapable of examining the packet’s
payload, and it has no means to identify the state of the packet. This gave rise to stateful
inspection firewalls, which gave the firewall the means to track the entire status of a connection.

For instance, if a packet arrives with the ACK flag set but the firewall has no record of the
original SYN packet, that would indicate a malicious attempt. ECC also calls these “stateful
multilayer inspection” firewalls, with the capability from the Network layer up to the Application
layer (although their focus is in Layers 3 and 4).

Two other firewall types of note include circuit-level gateway and application-level firewalls.
A circuit-level gateway firewall works at the Session layer and allows or prevents data streams—
it’s not necessarily concerned with each packet. An application-level firewall filters traffic much
like a proxy, allowing specific applications (services) in and out of the network based on its rule
set.

EXAM TIP HTTP tunneling is a firewall evasion technique you’ll probably see at least
mentioned on the exam. The short of it is, lots of things can be wrapped within an HTTP shell
(Microsoft Office has been doing this for years). And, because port 80 is almost never filtered by
a firewall, you can craft port 80 segments to carry payload for protocols the firewall may have
otherwise blocked. HTTP beacons and HTTP tunnels are the de facto standard implant
technology for hackers.

Evasion Techniques
Our brief exposure to IDSs here should give you pause as an ethical hacker; if these tools work
so well, how can we ever break in without being noticed? That’s a fair question, and the answer
on some networks is, “You probably can’t.” Again, we’re not looking to break into Fort Knox—
we’re looking for the easy target. If IDSs are set up correctly, located in the correct spot on the
network, have the latest up-to-date signatures files, and have been on long enough to identify
normal behavior, then, sure, your job is going to be tough. But just how many of those IDSs are
perfectly located and maintained? How many are run by security staff members who are maybe a
little on the complacent side? Think there may be some misconfigured ones out there or maybe
installations with outdated or corrupt signature files? Now we’re talking!

So, how do you get around these things? First, learn to slow down. Snort has a great signature
file for tracking port scan attempts, but you do have to set it on a timer. I interviewed a perimeter
security guy a little while back on this subject and asked him how long he thought, given enough
patience, it would take me to port-scan his entire network (he watches the perimeter of a huge
enterprise network of more than 10,000 hosts). He sighed and told me if I kept everything under
2 minutes a pop, I could have the whole thing done in a matter of a couple of days. Slow down,
scan smaller footprints, and take your time—it will eventually pay off.

NOTE Slower is not only the better choice for hiding your attacks, it’s really the preferred
choice nearly every time. Only the impatient and uneducated run for nmap’s -T5 switch as their

primary choice. The pros will slow things down with the -T1 switch and get better, more useful
results to browse through.

Another method for trying to get past the watchful eyes of the security folks is to flood the
network. The ethical hacker could set up some fake attacks, guaranteed to trigger a few alerts,
along with tons and tons of traffic. The sheer volume of alerts might be more than the staff can
deal with, and you may be able to slip by unnoticed.

Evasion through session splicing—a fancy term for fragmentation—is also a worthwhile
tactic. The idea here is to put payload into packets the IDS usually ignores. SYN segments, for
example, usually have nothing but padding in the data payload. Why not slide small fragments of
your own code in there to reassemble later? You can even try purposefully sending the segments
out of order or sending adjustments with the IP fragment field. The IDS might not pick up on
this. Again, patience and time pay off.

NOTE Another extremely common IDS evasion technique in the web world (because it works
against web and IDS filters well) is the use of Unicode characters. The idea is to use Unicode
characters (U+0020 = a space, U+0036 = the number 6, and U+0041 = a capital letter A) instead
of human-readable code to confuse the signature-based IDS. Sometimes this works and
sometimes it doesn’t—just keep in mind that many Unicode signature files are available to look
for this very thing.

Some tools you may get asked about or see along the way for IDS evasion are Nessus (also a
great vulnerability scanner), ADMmutate (able to create multiple scripts that won’t be easily
recognizable by signature files), NIDSbench (an older tool used for playing with fragment bits),
and Inundator (a flooding tool). IDS Informer is another great tool that can use captured network
traffic to craft, from start to finish, a test file to see what can make it through undetected.
Additionally, many packet-generating tools—such as Packet Generator and PackETH, shown in
Figures 4-10 and 4-11, respectively—can do the job nicely.

Figure 4-10 Packet Generator

Figure 4-11 PackETH

Firewall Evasion
Knowing what a firewall is, where and how it’s most likely to be used in the network, and how it
works (via ACLs and/or stateful inspection) is only part of the battle. What we really need to
know now is how we identify where the firewall is from the outside (in the middle of our
footprinting and attack) and how we can get around it once we find it. Identifying a firewall
location doesn’t require rocket-scientist brainpower, because no one really even bothers to hide
the presence of a firewall. As covered earlier, a simple traceroute can show you where the
firewall is (returning splats to let you know it has timed out). If you’re using your sniffer and can
look into the packets a little, an ICMP Type 3 Code 13 will show that the traffic is being stopped
(filtered) by a firewall (or router). An ICMP Type 3 Code 3 will tell you the client itself has the
port closed. A tool called Firewall Informer, and others like it, can help in figuring out where the
firewall is. Lastly, banner grabbing—which we covered in the previous chapter—also provides
an easy firewall-identification method.

Once you find the firewall (easy), it’s now time to find out ways to get through it or around it
(not so easy). Your first step is to peck away at the firewall in such a manner as to identify which
ports and protocols it is letting through and which ones it has blocked (filtered). This process of
“walking” through every port against a firewall to determine what is open is known as

firewalking. Tons of tools are available for this—from nmap and other footprinting tools, to a
tool called Firewalk (from PacketStorm). Whether you set up an nmap scan and document the
ports yourself or use a program that does it for you, the idea is the same: find a port the firewall
will allow through, and start your attack there. Just keep in mind this is generally a noisy attack,
and you will, most likely, get caught.

Of course, the best method available is to have a compromised machine on the inside initiate
all communication for you. Usually firewalls—stateful or packet filtering—don’t bother looking
at packets with internal source addresses leaving the network. So, for example, suppose you e-
mailed some code to a user and had them install it (go ahead, they will…trust me). The system
on the inside could then initiate all communications for your hacking efforts from the outside,
and you’ve found your ticket to ride.

NOTE Some other firewall-hacking tools you may run across include CovertTCP, ICMP
Shell, and 007 Shell. Remember, though, a compromised system inside the network is your best
bet.

When it comes to the actual applications you can use for the task, packet-crafting and packet-
generating tools are the ones you’ll most likely come across in your career for evading firewalls
and IDSs, although a couple of tools are specifically designed for the task. PackETH is a Linux
tool from SourceForge that’s designed to create Ethernet packets for “security testing.” Another
SourceForge product is Packet Generator, which allows you to create test runs of various packet
streams to demonstrate a particular sequence of packets. Netscan also provides a packet
generator in its tool conglomeration. All of these allow you to control the fields in frame and
packet headers and, in some cases, interject payload information to test the entirety of the
security platform. Not bad, huh?

Time to Dream, and Think About Security
Every once in a while, something so nerdy and groovy comes around, I just can’t stop smiling
and dreaming about it. Tech has come a long, long way in my lifetime—heck, I can remember
sitting in my eighth-grade classroom and scoffing at my teacher announcing the “video tape”
(whatever that was) would be in all our homes by the end of the year—and every once in a
while one of the leaps just captures me fully. When the cell phone came about, I really wanted
one of the 12-pound bag phones to tote around in my car. Imagine it—I could talk to my
girlfriend from my car! My dad told me it was one step closer to Star Trek, and we’d have
them so small they’d be stuck to our shirts like Captain Kirk.

Today’s tech is astounding, and at times it seems to me there’s nothing left for us to invent.
Then something comes around and I’m right back in high school, dying for my bag phone,
and thinking about Star Trek. This time around, it’s 3D printing.

I know you’ve seen and heard of it, but trust me, we’re only scratching the surface. The
following is from http://3dprinting.com/what-is-3d-printing/:

http://3dprinting.com/what-is-3d-printing/

3D printing or “additive manufacturing” is a process of making three dimensional solid
objects from a digital file. To prepare a digital file for printing, the 3D modeling software
“slices” the final model into hundreds or thousands of horizontal layers. When the sliced
file is uploaded in a 3D printer, the object can be created layer by layer. The 3D printer
reads every slice (or 2D image) and creates the object, blending each layer with hardly
any visible sign of the layers, with as a result the three dimensional object. The creation
of a 3D printed object is achieved using additive processes. In an additive process an
object is created by laying down successive layers of material until the entire object is
created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the
eventual object.

Did you notice that? A digital file. Suddenly the guy getting sucked into the video game
and digitized to save Tron’s world doesn’t sound so fantastical, does it? And what about the
future for this stuff? Sure we can envision printing our own furniture and clothes, but what
about engines? Cars? Planes? And what if we get a little more advanced with the materials we
can use to work in our “additive manufacturing”? Could we print our own food? Imagine, just
like in Star Trek, when you wake in the morning and want a cup of coffee, you just say
“coffee” and the little box on the wall prints it for you.

But consider the seedy side for a moment. Printers are gigantic security holes on our
networks today. Could 3D printers be the same? Could the super-secret industrial plans for
printing Company A’s game-changing widget be stolen? Or could a competitor alter them just
enough to where the widget doesn’t work? And if we can print food with them, what happens
when the Bride gets mad and decides to “Kill Bill”? Could she just hack in and add a little
arsenic to his sandwich print file? When security involves data and devices, it’s almost surreal
—when it involves lives, it’s something else altogether.

The promise of 3D printing is worth dreaming about, and we all need to dream every now
and again. Does it also come with nightmares? We’ll just have to see when we boldly go
where no one has gone before.

Honeypots
Our final network roadblock isn’t really designed to stop you at all. Quite to the contrary, this
one is designed to invite you in and make you comfortable. It provides you with a feeling of
peace and tranquility, consistently boosting your ego with little successes along the way—and,
like a long lost relative, encourages you to stay for a while.

A honeypot is a system set up as a decoy to entice attackers. The idea is to load it up with fake
goodies, with not-too-easy vulnerabilities a hacker may exploit. An attacker, desperately looking
for something to report as his success, would stumble upon your honeypot and spend all his time
and effort there, leaving your real network, and resources, alone. While it sounds like a great
idea, a honeypot isn’t without its own dangers.

Pooh’s Paradise
Winnie the Pooh, that huggable little fluff-filled iconic yellow bear popularized by Walt
Disney back in the 1960s, sure loved his honey. As much time as he spent with his face in real

pots of honey, I have to imagine his favorite network appliance would be of the same
namesake. And, I’m sure, he’d find his way to some of the honeypot projects spanning the
globe.

Honeypots aren’t just to distract hackers; they’re also great at tracking down all kinds of
information. Combine this knowledge with the absolute loathing worldwide of unsolicited e-
mail and those who forward spam, and it’s not too difficult to see how groups of people might
band their honeypots together in a coordinated effort to bring the spammers to a halt. Project
Honey Pot is one such effort.

Project Honey Pot (https://www.projecthoneypot.org/about_us.php) is a web-based
network of honeypots using embedded software on various websites to collect information on
spammers. The project collects IP addresses it catches harvesting e-mail addresses for spam
purposes. This information is shared among various law enforcement agencies to help combat
private spammers worldwide. The information collected is also used in research and
development of newer versions of the software to further improve the efforts of the group as a
whole. From their site, it is “the first and only distributed system for identifying spammers
and the spambots they use to scrape addresses from your website. Using the Project Honey
Pot system you can install addresses that are custom-tagged to the time and IP address of a
visitor to your site. If one of these addresses begins receiving e-mail we not only can tell that
the messages are spam, but also the exact moment when the address was harvested and the IP
address that gathered it.”

Another collaboration of effort is The Honeynet Project, founded in 1999. An
international, nonprofit (501c3) research organization dedicated to improving the security of
the Internet at no cost to the public, The Honeynet Project raises awareness of threats and
provides a “Know Your Enemy” series of papers. The project also provides security tools and
techniques to help defeat cyberthreats. It now includes multiple active chapters around the
world.

These collections, and others like them, demonstrate the good side of the Internet and
networking altogether. Many open source projects like these are put together by well-meaning
groups simply trying to make the world a better place. Pooh Bear, no doubt, would love them.

By design a honeypot will be hacked, so this brings up two very important points regarding it.
First, anything and everything on a honeypot system is not to be trusted. Anything that has that
many successful attacks against it could be riddled with loads of stuff you don’t even know about
yet. Don’t put information or resources on the honeypot that can prove useful to an attacker, and
don’t trust anything you pull off it. Granted, the information and resources have to look
legitimate; just make sure they’re not.

Second, the location of the honeypot is of utmost importance. You want this to be seen by the
outside world, so you could place it outside the firewall. However, is that really going to fool
anyone? Do you really believe a seasoned attacker is just going to accept the fact an
administrator protected everything on the network, by putting everything behind a firewall, but
just forgot this really important server on the outside? A better, more realistic placement is inside
the DMZ. A hacker will discover pretty quickly where the firewall is, and placing a hard-to-find
port backdoor to your honeypot is just the ticket to draw them in. Wherever the honeypot winds
up being located, it needs to be walled off to prevent it becoming a launching pad for further

https://www.projecthoneypot.org/about_us.php

attacks.

NOTE Remember when we were discussing vulnerability scans a little while ago? Nessus does
a good job, during a scan, of identifying where a honeypot is located. Another one of note is
Send-Safe Honeypot Hunter.

There are two types of honeypots. A high-interaction honeypot simulates all services and
applications and is designed to be completely compromised. Examples include Symantec, Decoy
Server, and Honeynets. A low-interaction honeypot simulates a limited number of services and
cannot be compromised completely (by design). Examples of these include Specter, Honeyd, and
KFSensor. Of course, in the real world almost no one has the time, interest, or concern for
installing and maintaining a honeypot. Most real hackers know they’re in one pretty quickly, and
the payoff (that is, getting anything substantially useful out of it) is oftentimes nothing. But it is
testable material, so learn what you must.

Chapter Review
Sniffing (also known as wiretapping by law enforcement) is the art of capturing packets as they
pass on a wire, or over the airwaves, to review for interesting information. The process of
sniffing comes down to a few items of great importance: what state the network interface card
(NIC) is in, what access medium you are connected to, and what tool you’re running.

A sniffer needs your card to run in promiscuous mode. This simply means that, regardless of
address, if the frame is passing on the wire, the NIC will grab it and pull it in for a look. Pcap is
needed for your card to effectively slip into promiscuous mode. On Windows, the de facto
driver/library choice is WinPcap. On Linux, it’s libpcap.

As long as your system is within the same collision domain, right out of the box and without
you changing a thing, your NIC will see every message intended for anyone else in the domain.
Collision domains are composed of all the machines sharing any given transport medium. All
systems connected to a hub share the same collision domain. Switches split collision domains so
that each system connected to the switch resides in its own little collision domain—the switch
will only send frames down a wire for a given computer only if they’re intended for the recipient.
If you’re connected to a switch, you receive only those messages intended for your own NIC.

There are some important protocols in the upper layers for you to pay attention to in sniffing.
Simple Mail Transport Protocol (SMTPv1) was designed to carry an e-mail message. Because it
was written to carry nothing but ASCII, everything sent via SMTP, with no encryption added at
another layer, is sent as clear text. FTP requires a user ID and password to access the server
(usually), but the information is passed in clear text over the wire. TFTP passes everything in
clear text, and you can pull keystrokes from a sniffed Telnet session. SNMPv1 and NNTP send
their passwords and data over clear text, as does IMAP and POP3.

ARP (Address Resolution Protocol) resolves IP addresses to machine (MAC) addresses. As a
frame is being built inside the sending machine, the system sends an ARP_REQUEST to find out

what MAC address inside the subnet can process the message. The machine on the local subnet
with the requested IP will respond with an ARP_REPLY. The protocol retains a cache on
machines as it works, and it works on a broadcast basis. The cache is dynamic—that is, the
information in it doesn’t stay there forever, and when your system gets an updated ARP
message, it will overwrite the cache with the new information. A gratuitous ARP is a special
packet that updates the ARP cache of other systems before they even ask for it—in other words,
before they send an ARP_REQUEST.

IPv6 uses a 128-bit address instead of the 32-bit IPv4 version, and it is represented as eight
groups of four hexadecimal digits separated by colons (for example,
2002:0b58:8da3:0041:1000:4a2e:0730:7443). Leading zeroes from any groups of hexadecimal
digits can be removed, and consecutive sections of zeroes can be replaced with a double colon
(::). The IPv6 “loopback” address is 0000:0000:0000:0000:0000:0000:0000:0001 and may be
edited all the way down to ::1.

IPv6 address types include unicast, multicast, and anycast, and the scope for multicast and
unicast includes link local, site local, and global. There is no equivalent in IPv6 to the broadcast
address of IPv4. Unicast is just like IPv4 (addressed for one recipient) and so is multicast
(addressed for many). Anycast works just like multicast; however, whereas multicast is intended
to be received by a bunch of machines in a group, anycast is designed to be received and opened
only by the closest member of the group. In IPv6, the address block fe80::/10 has been reserved
for link-local addressing. The unique local address (the counterpart of IPv4 private addressing) is
in the fc00:: /7 block. Prefixes for site-local addresses will always be “FEC0::/10.”

Lawful interception is the process of legally intercepting communications between two (or
more) parties for surveillance on telecommunications, VoIP (Voice over IP), data, and
multiservice networks. Wiretapping (monitoring a phone or Internet conversation) can be active
or passive. Active wiretapping involves interjecting something into the communication (traffic),
for whatever reason. Passive only monitors and records the data. PRISM (Planning Tool for
Resource Integration, Synchronization, and Management) is the data tool used to collect foreign
intelligence passing through U.S. network resources.

EC-Council breaks sniffing down into two main categories: passive and active. Passive
sniffing is exactly what it sounds like: plug in a sniffer and, without any other interaction needed
on your part, start pulling data packets to view at your leisure. Passive sniffing works only if
your machine’s NIC is part of the same collision domain as the targets you want to listen to (and
it’s configured to listen). Active sniffing requires some additional work on your part, either from
a packet injection or manipulation stance or from forcing network devices to play nicely with
your efforts. Active sniffing usually means the collision domain you are part of is segmented
from those you want to look in to (which means you’re probably attached to a switch), and you’ll
have to take proactive steps in order to sniff.

One trick for active sniffing purposes is to get a switch to close the port you are connected to
each and every time it closes the port you want to sniff. A span port (also called port mirroring)
is one in which the switch configuration has been altered to send a copy of all frames from one
port, or a succession of ports, to another.

Another option you have is to fill the content addressable memory (CAM) table, such that the
switch can’t keep up and floods all packets. This process is known as MAC flooding. Etherflood
and Macof are examples of tools you can MAC flood with. Switch port stealing refers to the
process of flooding the CAM with unsolicited ARPs regarding specific ports, thus creating a race
condition.

ARP poisoning is the process of maliciously changing an ARP cache on a machine to inject
faulty entries. Most modern switches have built-in defenses for too many ARP broadcasts
coming across the wire (for example, you can configure Dynamic ARP Inspection using DHCP
snooping inside Cisco’s IOS). Also, administrators can put to use a wide variety of network
monitoring tools, such as XArp, to watch for this, and some network administrators are smart
enough to manually add the default gateway MAC permanently (using the command arp -s) into
the ARP cache on each device. A couple of tools that make ARP flooding as easy as pressing a
button are Cain and Abel, WinArpAttacker, Ufasoft, and dsniff (a collection of Linux tools that
includes a tool called ARPspoof).

DHCP starvation is an attack whereby the malicious agent attempts to exhaust all available
addresses from the server. Packets in the DHCP exchange include DHCPDISCOVER, DHCP
OFFER, DHCPREQUEST, and DHCPACK. The packets in DHCPv6 have different names than
those of DHCPv4. DHCPDISCOVER, DHCPOFFER, DHCPREQUEST, and DHCPACK are
known as Solicit, Advertise, Request (or Confirm/Renew), and Reply, respectively. Tools such
as Yersinia and DHCPstarv can carry out DHCP starvation attacks, and configuring DHCP
snooping on your network device is considered the proper mitigation against this attack. Another
fun DHCP attack is using a rogue DHCP server. An attacker sets up his own DHCP server on the
network and starts handing out bad IP addresses to legitimate systems connecting to the network.
Whether in conjunction with the DHCP starvation attack or not, this could allow an attacker to
redirect communications sessions.

MAC spoofing (a.k.a. MAC duplication) is a simple process of figuring out the MAC address
of the system you wish to sniff traffic from and changing your MAC to match it. IRDP spoofing
is an attack where the hacker sends spoofed ICMP Router Discovery Protocol messages through
the network, advertising whatever gateway he wants all the system to start routing messages to.
DNS poisoning is much the same as ARP poisoning, just with DNS entries.

Wireshark is probably the most popular sniffer available, can capture packets from wired or
wireless networks, and provides a fairly easy-to-use interface. Wireshark also offers an almost
innumerable array of filters you can apply to any given sniffing session, and you can fine-tune
your results to exactly what you’re looking for. Filters are of great use when you set up a packet
capture for a long period of time, and they will show up in bunches on your exam. For example,
the string ! (arp or icmp or dns) filters out all the annoying ARP, ICMP, and DNS packets from
your display. The http.request string displays all the HTTP GET requests, while the tcp
contains string argument displays all TCP segments that contain the word “string.” The
expression ip.addr==172.17.15.12 && tcp.port==23 will display all Telnet packets containing
the IP 172.17.15.12, while the expression ip.addr==172.17.15.12 or ip.addr==172.17.15.60
will show packets containing either address. Make very sure you are familiar with what the equal
to, and, and or conjunctions mean. Equal to (==) means exactly what it says—the packet will
display if the argument appears in the packet. And (&&) means the packet will display only if
both arguments appear. Or (or) means the packet will display if either argument appears.

Intrusion detection systems (IDSs) are hardware and/or software devices that examine streams
of packets for unusual or malicious behavior. Sometimes this is done via a signature list, where
the IDS compares packets against a list of known traffic patterns that indicate an attack. When a
match is made, the alarm sounds. Other IDSs may be anomaly (or behavior) based, making
decisions on alerts based on learned behavior and “normal” patterns—anything out of the
ordinary for a normal day sounds the alarm. Libwhisker is a full-featured Perl library used for
HTTP-related functions, including vulnerability scanning, exploitation, and, of course, IDS

evasion.
A false positive occurs when a system alerts on traffic as being malicious when it is not. A

false negative occurs when the IDS reports a particular stream of traffic is just fine, with no
corresponding alarm or alert when, in fact, an intrusion attempt did occur. False negatives are
considered far worse than false positives, for obvious reasons. A host-based IDS (also known as
HIDS) is usually a software program that resides on the host itself. A network-based IDS sits on
the network perimeter.

Snort is an open source IDS that is a powerful sniffer as well as a traffic-logging, protocol-
analyzing tool that can detect buffer overflows, port scans, operating system fingerprinting, and
almost every conceivable external attack or probe you can imagine. Snort runs in three different
modes. Sniffer mode is exactly what it sounds like and lets you watch packets in real time as
they come across your network tap. Packet Logger mode saves packets to disk for review at a
later time. Network Intrusion Detection System mode analyzes network traffic against various
rule sets you pick from, depending on your network’s situation. NIDS mode can then perform a
variety of actions based on what you’ve told it to do.

The Snort configuration file resides in /etc/snort on Unix/Linux installations and in
c:\snort\etc\ on most Windows installations. The configuration file is used to launch Snort and
contains a list of which rule sets to engage at startup. To start Snort, use

Snort rules are simple. They must be a single line and are composed of a header and options.
Each rule contains an action, a protocol, the rule format direction (which could be bi-directional),
a source address/port, a destination address/port, and message parameters. A Snort rule action
can be Alert (in a variety of configured methods, alert when the condition is met), Log (simply
make a note when the condition is met), or Pass (ignore the packet). Be familiar with the basics
of Snort rule syntax, as well as the raw output from the packet capture. Pay special attention in
the output to port numbers; most questions can be answered just by knowing what port numbers
go with which protocol and where to find them in the output. Also, always watch the directional
arrows in test questions.

A firewall is an appliance within a network that is designed to protect internal resources from
unauthorized external access. Firewalls work with a set of rules, explicitly stating what is allowed
to pass from one side of the firewall to the other. Additionally, most firewalls work with an
implicit deny principle, which means if there is not a rule defined to allow the packet to pass, it is
blocked—there is no need to create a rule to deny packets. The screened subnet (a.k.a. public
zone) of your DMZ is connected to the Internet and hosts all the public-facing servers and
services your organization provides. These bastion hosts sit outside your internal firewall and are
designed to protect internal network resources from attack: they’re called bastions because they
can withstand Internet traffic attacks. The private zone holds all the internal hosts that no Internet
host has any business dealing with. Lastly, because your firewall has two or more interfaces, it is
referred to as multi-homed.

Originally, firewalls were all packet-filtering firewalls. They basically looked at the headers
of packets coming through a port and decided whether to allow them based on the ACLs
configured. Stateful inspection firewalls gave the firewall the means to track the entire status of a
connection. ECC also calls these stateful multilayer inspection firewalls, with the capability from
the Network layer up to the Application layer (although their focus is in Layers 3 and 4). Circuit-
level gateway firewalls work at the Session layer and allow or prevent data streams—they’re not

necessarily concerned with each packet. An application-level firewall filters traffic much like a
proxy—allowing specific applications (services) in and out of the network based on its rule set.

HTTP tunneling is a firewall-evasion technique. Evasion can also be carried out via session
splicing—a fancy term for fragmentation—where you put payload into packets the IDS usually
ignores.

A honeypot is a system set up as a decoy to entice attackers. There are two types of
honeypots. A high-interaction honeypot simulates all services and applications and is designed to
be completely compromised. Examples include Symantec, Decoy Server, and Honeynets. A low-
interaction honeypot simulates a limited number of services and cannot be compromised
completely (by design). Examples of these include Specter, Honeyd, and KFSensor.

Questions
1. Which of the following best describes a honeypot?

A. It is used to filter traffic from screened subnets.
B. It is used to gather information about potential network attackers.
C. It is used to analyze traffic for detection signatures.
D. Its primary function involves malware and virus protection.

2. Which of the following Wireshark filters would display all traffic sent from, or destined to,
systems on the 172.17.15.0/24 subnet? (Choose all that apply.)
A. ip.addr == 172.17.15.0/24
B. ip.src == 172.17.15.0/24 and ip.dst == 172.17.15.0/24
C. ip.src == 172.17.15.0/24 or ip.dst == 172.17.15.0/24
D. ip.src == 172.17.15.0/24 and ip.dst == 172.17.15.0/24

3. Which of the following best describes active sniffing? (Choose all that apply.)
A. Active sniffing is usually required when hubs are in place.
B. Active sniffing is usually required when switches are in place.
C. Active sniffing is harder to detect than passive sniffing.
D. Active sniffing is easier to detect than passive sniffing.

4. Your client tells you they know beyond a doubt an attacker is sending messages back and
forth from their network, yet the IDS doesn’t appear to be alerting on the traffic. Which of
the following is most likely true?
A. The attacker is sending messages over an SSL tunnel.
B. The attacker has corrupted ACLs on every router in the network.
C. The attacker has set up port security on network switches.
D. The attacker has configured a trunk port on a switch.

5. Which display filter for Wireshark shows all TCP packets containing the word facebook?
A. content==facebook
B. tcp contains facebook
C. display==facebook

D. tcp.all contains ==facebook
6. You are configuring rules for your Snort installation and want to have an alert message of

“Attempted FTP” on any FTP packet coming from an outside address intended for one of
your internal hosts. Which of the following rules are correct for this situation?
A. alert tcp $EXTERNAL_NET any -> $HOME_NET 23 (msg:"Attempted FTP")
B. alert tcp $EXTERNAL_NET any -> $HOME_NET 25 (msg:"Attempted FTP")
C. alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"Attempted FTP")
D. alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"Attempted FTP")

7. What occurs when an IDS does not properly identify a malicious packet entering the
network?
A. False negative
B. False positive
C. True negative
D. True positive

8. Machine A (with MAC address 00-01-02-AA-BB-CC) and Machine B (00-01-02-BB-CC-
DD) are on the same subnet. Machine C, with address 00-01-02-CC-DD-EE, is on a
different subnet. While the attacker is sniffing on the fully switched network, Machine B
sends a message to Machine C. If an attacker on Machine A wanted to receive a copy of
this message, which of the following circumstances would be necessary?
A. The ARP cache of the router would need to be poisoned, changing the entry for

Machine A to 00-01-02-CC-DD-EE.
B. The ARP cache of Machine B would need to be poisoned, changing the entry for the

default gateway to 00-01-02-AA-BB-CC.
C. The ARP cache of Machine C would need to be poisoned, changing the entry for the

default gateway to 00-01-02-AA-BB-CC.
D. The ARP cache of Machine A would need to be poisoned, changing the entry for

Machine C to 00-01-02-BB-CC-DD.
9. An IDS installed on the network perimeter sees a spike in traffic during off-duty hours and

begins logging and alerting. Which type of IDS is in place?
A. Stateful
B. Signature based
C. Anomaly based
D. Packet filtering

10. In what situation would you employ a proxy server? (Choose the best answer.)
A. You wish to share files inside the corporate network.
B. You want to allow outside customers into a corporate website.
C. You want to filter Internet traffic for internal systems.
D. You want to provide IP addresses to internal hosts.

11. An attacker has successfully connected a laptop to a switch port and turned on a sniffer.
The NIC is running in promiscuous mode, and the laptop is left alone for a few hours to

capture traffic. Which of the following statements are true? (Choose all that apply.)
A. The packet capture will provide the MAC addresses of other machines connected to

the switch.
B. The packet capture will provide only the MAC addresses of the laptop and the default

gateway.
C. The packet capture will display all traffic intended for the laptop.
D. The packet capture will display all traffic intended for the default gateway.

12. Which of the following are appropriate active sniffing techniques against a switched
network? (Choose all that apply.)
A. ARP poisoning
B. MAC flooding
C. SYN flooding
D. Birthday attack
A. Firewalking

13. A pen tester is configuring a Windows laptop for a test. In setting up Wireshark, what
driver and library are required to allow the NIC to work in promiscuous mode?
B. libpcap
C. winprom
D. winpcap
A. promsw

14. Which of the following works at Layer 5 of the OSI model?
B. Stateful firewall
C. Packet-filtering firewall
D. Circuit-level firewall
A. Application-level firewall

Answers
1. B. A honeypot is designed to draw attackers in so you can watch what they do, how they

do it, and where they do it from.
2. A, C. In Wireshark filter questions, always pay attention to the operators. While answer A

shows any packet with the correct IP in it, anywhere, the or operator in answer C shows
packets meeting both options.

3. B, D. If you’re on a hub, why bother with active sniffing techniques? You’re already
seeing everything. Also, active sniffing is much more likely to get you caught than simply
plugging in a wire and sitting back.

4. A. Encryption is the bane of an IDS’s existence. If traffic is encrypted, the IDS is blind as
a bat.

5. B. The appropriate Wireshark display filter is the following: tcp contains search-string
6. C. Snort rules follow the same syntax: action protocol src address src port -> dest address

port (options)
7. A. When traffic gets to the IDS, is examined, and is still let through even though it’s

malicious, a false negative has occurred. And a false negative is really, really bad.
8. B. ARP poisoning is done on the machine creating the frame—the sender. Changing the

default gateway entry on the sending machine results in all frames intended for an IP out
of the subnet being delivered to the attacker. Changing the ARP cache on the other
machine or the router is pointless.

9. C. IDSs can be signature or anomaly based. Anomaly-based systems build a baseline of
normal traffic patterns over time, and anything that appears outside of the baseline is
flagged.

10. C. There are a bunch of reasons for having a proxy. In this case, you’re using it to filter
traffic between internal hosts and the rest of the world. Generally speaking, proxies don’t
act as file servers, websites, or DHCP servers.

11. A, C. Switches filter or flood traffic based on the address. Broadcast traffic, such as ARP
requests and answers, is flooded to all ports. Unicast traffic, such as traffic intended for the
laptop itself or the default gateway, is sent only to the port on which the machine rests.

12. A, B. ARP poisoning can be used to trick a system into sending packets to your machine
instead of recipients (including the default gateway). MAC flooding is an older attack used
to fill a CAM table and make a switch behave like a hub.

13. C. WinPcap is the library used for Windows devices. Libpcap is used on Linux devices for
the same purpose.

14. C. I admit, this one is tricky. Yes, circuit-level firewalls work at Layer 5. Stateful firewalls
can be said to work at Layer 5, but they’re focused on Layers 3 and 4. Application works
at Layer 7.

CHAPTER 5
Attacking a System

In this chapter, you will
• Describe the CEH hacking methodology and system hacking steps
• Describe methods used to gain access to systems
• Describe methods used to escalate privileges
• Describe methods used to maintain access to systems
• Describe methods of evidence erasure
• Identify rootkit function and types
• Identify basics of Windows and Linux file structure, directories, and commands

Ever heard of noodling? It’s a really fun and exciting way to fish—if you’re borderline insane,
have no fear of losing a finger, hand, or (in some cases) your life, and feel that the best way to
even things up in the hunt is to actually get in the water with your prey. Noodling has been
around for a long time and involves catching catfish—sometimes giant, triple-digit-pound catfish
—with your bare hands.

The idea is pretty simple. The noodler slowly crawls along the riverbed close to the bank and
searches for holes. These holes can be up in the clay siding of the river, inside a hollow tree
trunk, or under rocks, and they are used by catfish during daylight hours to rest and prepare for
the evening hunt for food. Once the noodler finds a hole, he reaches his hand, arm, or (depending
on the depth of the hole) leg into the hole hoping that a fish hiding in the hole bites onto the
hand, arm, or leg so it can then be drug out of its hiding place. Of course, occasionally there’s
something else in the hole. Like a snake, alligator, beaver, turtle, or other animal capable of
lopping off a digit or two, but hey—what’s life without a few risks?

Sometimes the hole is so deep the noodle has to go completely underwater to battle his prey.
And sometimes it even leads to a giant underwater lair, with multiple escape routes for the
catfish. In this case, a team of noodlers is needed to cover up every exit hole from the catfish lair.
And, of course, to block the exit holes they don’t use rocks or pieced of board; instead, they cram
their hands, arms, legs, and every other body part into the openings. As the head noodler goes in
for the fish, it will ram into and bite everyone else while it’s looking for an escape route—
because, if nothing else, noodling is about sharing.

No, I’m not making this up. Noodlers catch dinner by having the fish bite onto their hands and
then dragging them out of their holes up to the boat, the stringer, and eventually the frying pan.
They seek out targets, slowly examine and map out every potential avenue in, and take risks to
bring home the prize. Occasionally, as just mentioned, they even use a team to get things done.
So, perhaps this may be a weird analogy to kick off your system hacking efforts, but after all this
time preparing, aren’t you ready to get in the water and get your hands dirty? Even if it means

you may get bit? Maybe we have more in common with noodlers than we thought.
This is the chapter where I start talking about actual system hacking. If you skipped ahead, go

back and check those riverbank holes I covered in the first few chapters. There’s muddy water up
ahead, and I don’t want any accidents.

Getting Started
Before getting started in actual attacks against the system, it’s pretty important that we take stock
of where we’re at. Better stated, we should take stock of where we should be before attacking a
device. We should, at this point, have already gone through footprinting, scanning, and
enumeration. We should already have a good high-level view of the entire landscape, including
the network range and all that competitive intelligence we talked about earlier. We should have
already assessed available targets, identified services and operating systems running on the
network, and figured out security flaws and vulnerabilities we might find interesting. In short, we
should be channeling Sun Tzu and knowing our enemies (in this case, our targets) better than
they know themselves.

If that’s all done, great—the attack phase will go relatively smoothly. If it’s not done, and not
done thoroughly, you’re wasting your time moving forward and should go back to the beginning.
Assuming you’ve paid attention and are following pen test principles with all this so far, let’s
cover a few things you should know about the operating systems you’ll be targeting and take a
look at the methodology for this whole thing.

Windows Security Architecture
Chapter 3 introduced enumeration and went through all the fun with RIDs and SIDs; however,
there’s a lot more to get to, and this is the best place to get to it. The good news is, ECC seems to
have cut way back on the OS architecture questions, so much of this is more for your edification
as a budding ethical hacker—and don’t worry, I’ll point out the items of interest for you.

To properly break down Windows security architecture—at least the remaining parts of it we
care about for our efforts here, anyway—it’s probably best we start by answering questions such
as “Where are passwords stored on the system?” and “How does Windows authenticate users?”
In answer to the first question, what would you say if I told you the passwords themselves aren’t
stored anywhere on the machine? After all, it’d be kind of stupid to just stick them somewhere
on a machine for anyone to grab and steal, right? Turns out that idea—storing passwords on a
machine so they can be used for authentication while simultaneously figuring out how to protect
them from theft—is what brought about the Security Accounts Manager (SAM) file.

NOTE SAM files are great, and accessing them on a standalone machine will produce wonders
for you. Just keep in mind that domain machines—systems that are part of a Microsoft Windows
AD network—have their user network passwords stored on a domain controller. Hey, I never
said this stuff would be easy.

Microsoft Windows stores authentication credentials in the SAM file, located in the
C:\windows\system32\config folder. Notice I avoided saying “passwords” because the purists
lose their collective minds and start yelling semantic arguments at the book when I do. It’s
actually more proper to say, “Microsoft Windows stores the hash value of passwords in the SAM
file.” We’ve got a whole chapter regarding cryptography and encryption upcoming, but for now
just know that a hash is a one-way mathematical algorithm that produces a unique output for a
given input. Since it’s one way (in other words, you cannot simply reverse the hash value to the
input it came from), storing the hash—and sending the hash across the wire for authentication—
is a pretty good idea.

NOTE You may recall from the book’s introduction that ECC sometimes takes liberties with
semantics and grammar. Want an example? I’ve seen reference in ECC study material to the
SAM database, and I didn’t want anyone to get confused. The SAM is a file, not a database. It
can be copied and stored elsewhere. It can be modified. It can’t be queried by SQL, nor is it a
cog in some Oracle wizardry. Active Directory works with passwords in a database, but not the
SAM.

The biggest cause of concern for this method of password storage—and with hashing in
general—is the complexity of the hash algorithm used. While you cannot reverse a hash, you can
certainly steal it and, given enough time to run through variations with a password-cracking tool,
figure out what the original input was. Some hash algorithms and methods are more secure than
others, and Microsoft started out with one that became a hacker’s dream.

Hashing passwords in Windows has a long history. Back in the days when people rewound
movies after watching them (those of you who remember the VHS-versus-Betamax debate are
nodding here at the reference), Windows 2000 and Windows NT–type machines used something
called LAN Manager, and then NT LAN Manager, to hash passwords. LM hashing would first
take the password and convert everything to uppercase. Then, if the password was less than 14
characters, it would add blank spaces to get it to 14. Then the new, all-uppercase, 14-character
password would be split into two 7-character strings. These strings would be hashed separately,
with both hashes then combined for the output.

NOTE LM authentication (DES) was used with Windows 95/98 machines. NTLM (DES and
MD4) was used with Windows NT machines until SP3. NTLM v2 (MD5) was used after that.
Kerberos came about with Windows 2000. All are still important to know and try because many
systems keep the authentication mechanisms around for backward-compatibility reasons.

Obviously, this makes things easier for a hacker. How so, you may be asking? Well, if a

password is seven characters or less (or uses only one or two character spaces in the second
portion), this significantly reduces the amount of time required to crack the rest of it—because
the LM hash value of seven blank characters will always be the same (AAD3B435B51404EE).
For example, consider a password of M@tt123. The entire LM hash might look like this when
we steal it: 9FAF6B755DC38E12AAD3B 435B51404EE. Because we know how the hash is
created, we can split it in half to work on each side separately: 9FAF6B755DC38E12 is the first
half, and AAD3B 435B51404EE is the second. The first half we put through a cracker and get to
work. The second, though, is easily recognizable as the hash value of seven blank characters!
This tells you the password is seven characters or less and greatly reduces the amount of time the
cracking software will need to break the password.

NOTE Steps an administrator can take to reduce the risk in regard to password theft and
cracking are fairly common sense. Never leave default passwords in place after installs, follow
naming rules with passwords (no personal names, pet names, birth dates, and so on), require
longer passwords, and change them often. Additionally, constantly and consistently check every
account with credentials higher than that of a normal user, and be careful with accounts that have
“permanent” passwords. If it’s not going to be changed, it better be one heck of a good password.
Lastly, remember that keeping an eye on event logs can be helpful in tracking down failed
attempts at password guessing.

Should you steal a SAM file and look at it, the results usually are pretty ugly (see Figure 5-1
for an example). There are a lot of characters and asterisks, and not much that seems to make any
sense. In Windows Vista and later, the LM hash will be shown blank (the “NO PASSWORD”
entries in the SAM file), and the NTLM hash will appear second.

Figure 5-1 SAM file

Of course, finding an easy-to-crack NTLM hash on your target system won’t necessarily be
easy. You’ll first have to steal it (and by “it” I mean the SAM file), usually via physical access
with a bootable CD or maybe even through a copy found on a backup tape. Even after it has been
obtained, though, the addition of salting (additional protection by adding random data as
additional input before being hashed, and something that’s largely outdated due to other security
measures) and the use of better methods for authentication (NTLMv2 and Kerberos, if you sniff

the hash value) make life for a password cracker pretty tough. Most administrators are wising up
and forcing users into longer passwords with shorter timeframes in which to keep them. Not to
mention, Windows has gotten much better at password security in the past decade or so. LM
authentication has six levels available (0 is the Windows XP default, and 2 is the Windows 2003
default), and Kerberos transports the passwords much more securely than previously. Remember,
though, you’re not hunting the healthy—you’re looking for the weak and overlooked.

NOTE If, during your testing, you happen to come across a domain controller in your target
Windows network, grab the Ntds.dit ESE database file (it’s located in
%SystemRoot%\NTDS\Ntds.dit or %SystemRoot%\System32\Ntds.dit). The NTDS.DIT file is
effectively the entire Active Directory in a file, and it contains all the good stuff. There are tools
out there to extract all the hashes from that file, and if you get it, you own everything.

Speaking of the healthy, we should spend some time talking about Windows default
authentication protocol/method, Kerberos. Kerberos makes use of both symmetric and
asymmetric encryption technologies to securely transmit passwords and keys across a network.
The entire process is made up of a Key Distribution Center (KDC), an Authentication Service
(AS), a Ticket Granting Service (TGS), and the Ticket Granting Ticket (TGT).

NOTE Where did the name Kerberos come from? Glad you asked. Some very geeky folks got
together in something called the Athena Project at the Massachusetts Institute of Technology
(MIT) and created a brand-new authentication mechanism. As geeks are wont to do, they decided
to name it something cool, and what’s cooler than a three-headed dog guarding the gates of
Hades? “Kerberos” it was, and nerds everywhere rejoiced.

A basic Kerberos exchange follows a few easy but secure steps. The client first asks the KDC
(which holds the AS and TGS) for a ticket, which will be used to authenticate throughout the
network. This request is in clear text. The server will respond with a secret key, which is hashed
by the password copy kept on the server (in Active Directory). This is known as the TGT. If the
client can decrypt the message (and it should since it knows the password), the TGT is sent back
to the server requesting a TGS service ticket. The server responds with the service ticket, and the
client is allowed to log on and access network resources. See Figure 5-2 for a display of this
exchange.

Figure 5-2 Kerberos in action

You’ll note that, once again, the password itself is never sent. Instead, a hash value of the
password, encrypted with a secret key known only by both parties and good only for that session,
is all that’s sent. This doesn’t mean the password is unbreakable; it just means it’s going to take a
lot of time and effort. KerbSniff and KerbCrack are options, but be prepared—it’s a long,
grueling process.

NOTE I feel compelled—not only because of my tech editor’s endless hounding on the subject
but also because of my own itchy security conscience—to point out here, one more time, that
password length should be your primary concern in securing your systems. The length of a
password is mathematically more important than the complexity of a password. Don’t fall victim
to the fallacy that what is difficult to remember is what must be difficult to guess; complexity
requirements are not a replacement for length. Math does not lie: Thisismypassphraseyouwhiner
is enormously more secure than rdg#23U~!k.

Willy Wonka’s Hack
SAM files are great and all, and if you crack those hashes before they change the password,
access to the local machine will certainly get you a launching pad for all sorts of other attacks
—not to mention anything stored locally. But what if you thought bigger? Suppose, for
example, I were to tell you about a ticket you could create—a ticket that would not only grant
you local access, but domain-level access for as long as you want as well.

The “golden ticket” is just that—a key to the kingdom. The idea is an attacker creates his
own Kerberos TGT that is presented to the TGS and, voilà, domain access. If done right, the
ticket grants domain admin rights for...well, for as long as you want. How does one
accomplish this grand feat? By gathering a little information and using a few cool tools.

It turns out that although Windows doesn’t store the actual password anywhere on its
system and tries really hard to restrict access to the local store of the hashes (SAM file), it
does store those hashes in memory while the user is logged on. This makes sense when you

think about it, because otherwise the user would have to log in every time he or she accessed
anything. The hashes are loaded into the Local Security Authority Subsystem (Lsass), which
runs as an executable (%System Root%\System32\Lsass.exe) and is responsible for a variety
of things, including user authentication. At any rate, those hashes are stored in a method that
allows them to be stolen (and reversed if you really want the password itself).

Armed with this knowledge, you can pull off a pass-the-hash attack. There’s a lot of
background technobabble involved, but in short the attacker never bothers cracking a
password—he just steals the hash and sends it instead. First up, you need to steal hashes from
users already connected to your target server. Next, using specific tools, you basically copy
and paste one of the hashes (preferably a hash from a user with administrative privileges) in
your local Lsass. Bingo! Afterward, Windows will happily begin providing the new
credentials you’ve stolen whenever you access the target. And best of all, you never have to
provide or even know the password.

The de facto standard tool (and a favorite of our beloved tech editor) for pulling off this
kind of attack is called mimikatz (https://github.com/gentilkiwi/mimikatz). Mimikatz allows
you to extract passwords in plain text, and per the website, it “steal hashes, PIN code and
Kerberos tickets from memory [and] can also perform pass-the-hash, pass-the-ticket or build
Golden tickets.” Metasploit has even included mimikatz as a meterpreter script, which allows
easy access to all features without uploading any additional files to the target host.

As for the golden ticket itself, the idea is astounding and, with a little bit of luck, relatively
easy to pull off. Assuming you have some sort of foothold in the target domain (owning a
single system, and so on), you need to obtain the domain name, a domain admin name, the
domain SID, and the Kerberos TGT hash from the domain controller. Using mimikatz (the
example I saw also made use of Cobalt Strike as well), these can be added together with the
golden_ticket_create command and—boom—your access is guaranteed. Even if the security
team changes all passwords and reboots all systems, you can again use mimikatz’s
kerberos_ticket_use command to elevate immediately to domain admin.

Sure, it’s a little more involved than opening a Wonka bar and battling Veruca Salt and
Augustus Gloop, but it’s ever so much sweeter.

The Registry
Finally, we can’t end this Windows basics discussion without at least touching on the heart of all
things Windows: the registry. The Windows registry is a collection of all the settings and
configurations that make the system run. Hierarchical in nature, this “database of configuration
databases” (as stated on more than a few Microsoft definitions of the registry) stores a variety of
configuration settings and options. In it, you can find settings for low-level operating system
components, applications running on the machine, drivers, the SAM file, and the user interface.

Two basic elements make up a registry setting: keys and values. A key can be thought of as a
location pointer (much like a folder in the regular file structure), and the value of that key defines
the setting. Keys are arranged in a hierarchy, with root keys at the top, leading downward to
more specific settings. The root-level keys in the registry are as follows:

• HKEY_LOCAL_MACHINE (HKLM) Contains information on hardware (processor
type, bus architecture, video, disk I/O, and so on) and software (operating system, drivers,

https://github.com/gentilkiwi/mimikatz

services, security, and installed applications).
• HKEY_CLASSES_ROOT (HKCR) Contains information on file associations and

Object Linking and Embedding (OLE) classes.
• HKEY_CURRENT_USER (HKCU) Contains profile information for the user currently

logged on. Information includes user-level preferences for the OS and applications.
• HKEY_USERS (HKU) Contains specific user configuration information for all currently

active users on the computer.
• HKEY_CURRENT_CONFIG (HKCC) Contains a pointer to

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\CurrentControlSet\Hardware
Profiles\Current, designed to make accessing and editing this profile information easier.

There are a dozen or so values that can be placed in a given key location. These values can be
a character string (REG_SZ), an “expandable” string value (REG_EXPAND_SZ), a binary value
(REG_BINARY), or a host of other goodies. Remaining entries of note to you include the
DWORD value (REG_DWORD—a 32-bit unsigned integer), the link value (REG_LINK—a
symbolic link to another key), and the multisize value (REG_MULTI_SZ—a multistring value).
For example, you can navigate to HKCU\Software\Microsoft\Notepad and look at the
lfFaceName value to see the default font type displayed in Notepad. Change the REG_SZ entry
to the font name of your choice (TIMES NEW ROMAN, ARIAL, and so on), and Notepad will
happily oblige the next time it opens. And if you’re annoyed by the consistent Windows Update
pop-ups, screens, and slowdowns, navigate to
HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\ and check out all you can adjust
there.

NOTE Strangely enough, the term registry hacking doesn’t engender visions of security breaks
in the minds of most folks. Rather, people think of registry hacking as simply cool things you
can do with your computer to make it run faster, look nerdier, or do weird stuff for fun and
amusement. Run a browser search for “Windows Registry hacks” and you’ll see what I mean.
Have fun, but be careful—the registry can bite.

Of course, these examples are just for fun, but obviously you can see how knowledge of the
registry and its use can help you out greatly in your pen test job. If you can get access to the
registry, you can set up all kinds of mischief on the device. Some of these keys even set up
applications and services to run at startup or to keep trying to start if the pesky user (or his
security tools) gets in the way. Some of the keys of great importance to you in particular (for
your exam and your job) include the following:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

NOTE Did you know Windows records the most recent commands executed by the current
user in the registry (HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU)?
The HKEY\USERSID\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDoc
entries can show you most recently accessed files. And how about which systems the user has
been talking to lately? Just check out
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComputerDescriptions. There are
bunches more of these little tidbits in the registry—do some searching and see what you can find.

Kicking the Hornet’s Nest
Really want to wind up geeks into a frenzy and see what nerd debate is all about? Search for a
gathering of geeks until you see at least one of them with a penguin or a picture of a red
fedora hat somewhere on their person, or a T-shirt or sticker that says “I do it DEBIAN-
TLY.” Walk up and say, “Yeah, Linux is great and all that, but with the ‘Windows as a
Service’ promise and improved security features, Windows 10 really is the best choice for
desktop computing.”

Linux zealots are a touchy bunch. If you listen to them, you’ll come to believe that Linux
—any Linux distribution—is foolproof. No viruses, no attacks, no need for any additional
security because, well, it’s Linux! While it is inarguable that fewer attacks and malware are
aimed at the Linux platform and (very importantly) Linux server versions and that associated
web hosting platforms are much easier to secure out of the box than Windows, it’s simply
fantasy to believe no one is trying attacks against Linux platforms (and succeeding), or that
Windows system use guarantees security failure.

The Linux vs. Windows debate can be compared to the question “Which knife should I
buy?” Well, if you’re looking for an everyday carry knife, you can’t go wrong with a small
folding knife with a dual serrated/straight edge. Looking to process game? A fixed blade with
a straight edge (not to mention a specific blade design) is probably better. Cutting steak?
Small, fixed blade and serrated is the way to go. In other words, the answer to both
comparisons is, “It depends.”

When it comes to intuitive, overall user friendliness, Windows is a clear-cut winner. It’s
the desktop choice for a vast majority of the market share due to that simple fact. You can
make an argument that Linux is an operating system that gets simpler the more you use and
understand it (while Windows can sometimes be the opposite), but in the real world of
desktop use it simply doesn’t fly for most users. And with the Windows 10 “Windows as a
Service” future, I don’t see that ending anytime soon.

When it comes to server use, though, most of the arguments flip in the direction of Linux.
Linux is generally thought to be more secure and easier to maintain, in part due to the amount
of people scanning it for flaws: a famous quote from Linus Torvalds states that “given enough
eyeballs, all bugs are shallow.” Performance is also seen as a plus in Linux servers, efficiently
making use of resources provided. Windows servers, on the other hand, have the unfortunate
tendency to gobble up resources and get bloaty and sluggish. While maintenance of Windows

servers can be somewhat automated and “easier,” the very effort of making it easier can add
to the resource drain. Not to mention the fact that Windows servers can very quickly feel
outdated if not properly maintained.

So who’s the winner? Of course the answer is, it depends. There isn’t one, because we’re
comparing apples to oranges (and all you Apple owners out there can now relax—I mentioned
it). Windows and Linux distributions seem to fit different needs for different people, and just
because some of us enjoy driving to work in a full-sized truck, we should recognize the fact
the small two-door mini-car coupe appears to do the same job. Maybe not as manly or cool,
but the same nonetheless.

Lastly, accessing and editing the registry is fairly simple (provided you have the right
permission and access) with a variety of tools and methods. There is always the built-in
command-line favorite, reg.exe, that can be used for viewing and editing. If you’re not seeking to
impress someone with your command-line brilliance or, like me, you just prefer the ease of a
GUI interface, you can stick with the regedit.exe or regedt32.exe application built into every
Windows system. Both open the registry in an easy-to-view folder layout, but regedt32 is the
preferred editor by Microsoft.

The MMC
Windows, by its nature, is an easy-to-use, intuitive (except maybe for Windows 8) operating
system allowing most users to just sit down and go to work. Occasionally, though, there are a
few tasks that administrative folks need to look at and take care of—especially in an enterprise
environment. Sure, there are GUI-based options for their use, but there are actually command-
line ones as well. This is not an MCSE book, nor is it intended to cover every single aspect of
Windows administrative tasks, so we’re only going to hit a couple of those areas to give you a
basic understanding of what you’ll need for your exam.

First on the list of new items to cover is the concept of Microsoft Management Consoles
(MMCs). MMCs have been around for a long while in Microsoft Windows and are basically
small GUI containers for specific tools. Each MMC holds an administrative tool for a given task,
added in the console as a “snap-in,” and is named for that task. For example, there is an MMC
named “Group Policy Editor” that, amazingly enough, allows an admin to edit the group policy.
Other MMCs include Computer Management, Event Viewer, and Services, along with many
more.

EXAM TIP There is so much more in Windows architecture for you to explore than can be put
in any single book. For example, were you aware of the route commands in Windows? Standard
users normally rely on external gateways to route stuff around, but you can direct Windows to
route traffic at the box itself. Typing route print will show your local route table. Typing route
ADD destination_network MASK subnet_mask gateway_ip metric_cost allows you to add an
entry to the route table and exert control over data routing locally.

Linux Security Architecture
Although the great majority of machines you’ll see on your pen tests (and covered on your exam)
are Windows boxes, Linux comes in more flavors than your local ice cream shop can come up
with and is largely available for free, so you’ll see it pop up all over the place. Additionally,
administrators seem to put a larger and larger percentage of their really important information
and services on Linux servers, so if you see one, it’s probably a gold mine. When it comes to
your exam, you won’t see many Linux questions at all—ECC seems much more “Windows
focused” of late. Additionally, you won’t necessarily see questions specifically addressing Linux
architecture; however, if you are familiar with Linux architecture, it will help out greatly in
figuring out what some questions are actually looking for.

Any discussion on an OS has to start with the basics, and you can’t get more basic than the
file system. The Linux file system isn’t that far removed from the NTFS layout you’re already
familiar with in Windows—it’s just a little different. Linux starts with a root directory just as
Windows does. The Windows root is (usually) C:\. The Linux root is just a slash (/). It also has
folders holding specific information for specific purposes, just like Windows. The basic file
structure for Linux is shown in Figure 5-3.

Figure 5-3 Linux file structure

NOTE Your nerd factoid for today comes courtesy of our tech editor. Do you know the origins
of the Windows standard root designator? Originally drives were numbered, and then swapped to
letters when Microsoft got involved. Because most early systems had no internal drive, they
booted from the first floppy drive (A:) and used a secondary drive (B:) for other things. When
the hard drive became cost efficient enough to put into systems, it largely eliminated, over time,
the need for the floppy drives. But the designator stuck, and C:\ still is the default.

Here’s a list of the important folders you’ll need to know:

• / A forward slash represents the root directory.
• /bin The bin directory holds numerous basic Linux commands (a lot like the

C:\Windows\System32 folder in Windows).
• /dev This folder contains the pointer locations to the various storage and input/output

systems you will need to mount if you want to use them, such as optical drives and
additional hard drives or partitions. Note that everything in Linux is a file.

• /etc The etc folder contains all the administration files and passwords. Both the password
and shadow files are found here.

• /home This folder holds the user home directories.
• /mnt This folder holds the access locations you’ve actually mounted.
• /sbin Another folder of great importance, the system binaries folder holds more

administrative commands and is the repository for most of the routines Linux runs
(known as daemons).

• /usr Amazingly enough, the usr folder holds almost all of the information, commands,
and files unique to the users.

When you log into the command line in a Linux environment, you will start in your assigned
directory and can move around simply by using the cd (change directory) command. You’ll need
to, of course, define the path you want to use, so it’s important to know where you are. Many
terminal sessions display the path just to the left; however, if you’re unsure, type pwd to see
where you are and navigate from there. You can find other basic Linux commands of note in
Table 5-1.

Table 5-1 Linux Commands

EXAM TIP Adding an ampersand (&) after a process name indicates that the process should
run in the background. If you wish for the process to remain after user logout (that is, stay
persistent) use the nohup command.

Security on files and folders is managed through your user account, your user’s group
membership, and three security options that can be assigned to each for any resource: read, write,
and execute. These security rights can be assigned only by the owner of the object. Typing the
command ls -l will display the current security settings for the contents of the directory you’re in,
which will appear like this:

The first column displays what the object is (the letter d indicates a folder, and blank indicates
a file) along with the assigned permissions, which are listed as rwxrwxrwx. The read, write, and
execute options are displayed for user, group, and all others, respectively. For example, the file
named file1 has read and write assigned for the user, read-only for the group, and read-only for

all others. The owner of the resources is also listed (user1) along with the assigned group (users).
These permissions are assigned via the chmod command and the use of the binary equivalent

for each rwx group: read is equivalent to 4, write is 2, and execute is 1. For example, the
following command would set the permissions for file1 to “r--rw-r--”:

Opening things up for everyone, giving all permissions to everyone, would look like this:

Obviously, knowing how to change permissions on a file or folder is an important little
nugget for an ethical hacker.

Another important Linux fundamental deals with users, groups, and the management of each.
Just as Windows has accounts created for specific purposes and with specific rights, Linux has
built-in accounts for the management of the system. The most important of these user accounts is
called root and is the administrative control of the system. All users and groups are organized via
a unique user ID (UID) and a group ID (GUID). Information for both can be found within the
/etc/passwd file. Running a cat command on the file displays lines that look like this:

Among other items in the file, you’ll find the users are listed. Root—the administrative “god”
account of the system and the one you’re trying to get to—is listed first, with its UID and GID
set to 0. User “matt” is the first user created on this system (UID and GID are set to 500), and
“user2” is the second (UID and GID set to 501). Immediately following the user name is the
password. Notice, in this case, the password is listed simply as “x,” indicating the use of
something called the shadow file.

Passwords in Linux can be stored in one of two places. The first you’ve already met—the
passwd file. If this is your chosen password storage location, all passwords will be displayed as a
hash—an easily accessible, crackable hash—to anyone who has read privileges to the file. If you
choose to use the shadow file, however, the passwords are stored and displayed encrypted (that
is, hashed and salted). Lastly, and of special note to you, a budding ethical hacker, the shadow
file is accessible only by root.

NOTE Finding a nonshadowed system in the real world is just about impossible. The passwd
file and the shadow file are covered here for purely academic purposes (in other words, you may
see them on the test) and not because you’ll get lucky out on the job. For the most part, every
“nix” system you run into will be shadowed—just so you’re aware.

Just as with Windows, pulling the passwords offline and working on them with a cracker is
your best bet for system “owning.” John the Ripper is one tool that works wonderfully well on
Linux shadow files. The passwords contained within are actually hashes that, usually, have a salt
assigned (also covered earlier). John will run through brute-force hashing and tackle the salts for
you. It may take a while, but John will get it eventually. One final note: Weirdly enough, John
barely gets a passing notice in the official CEH courseware. You’ll need to know it, of course,
but chances are better than not you won’t even be asked about it.

NOTE More than a few Linux distributions are made explicitly for hacking. These distros
normally have many hacking tools, such as John and Metasploit versions, built in. Backtrack,
Phlack, and Auditor are just a few examples.

This section wasn’t about making you a Linux expert; it was aimed at introducing you to the
bare-bones basics you’ll need to be successful on the exam, as well as for entering the career
field. As with everything else we’ve discussed thus far, practicing with a live system is your best
option. Download a few distributions and practice—you won’t regret it.

Methodology
I know, I get it, so stop yelling at the book—you’re sick of methodologies, lists, and steps. Trust
me, I’m sick of writing about them. However, they are essential to your exam and, yes, to your
future job as an ethical hacker. You wouldn’t get on a plane if you saw the mechanics and pilots
just toss away their preflight checklist, would you? Just as that checklist ensures problems are
noted and taken care of before you’re 30,000 feet in the air, all these ridiculous sounding steps
and phases ensure our hacking flight goes off without a hitch and makes sure we cover
everything that needs to be looked at. You may not like them, but if you’re concerned about
giving your customer—you know, the one paying you to pen-test their organization and the one
putting their full faith and trust in you—what they need out of a pen test, you’d better get
familiar with using them.

EXAM TIP ECC’s “System Hacking Goals” include Gaining Access, Escalating Privileges,
Executing Applications, Hiding Files, and Covering Tracks. While most questions on these steps
are pretty straight forward, just commit the list to memory and use best judgment on anything
truly weird.

Remember in Chapter 1 when we covered ethical hacking phases? I’ve already walked you
through the first phase (reconnaissance, a.k.a. footprinting) and spent a lot of time in the next two
(scanning and enumeration), so now it’s time to get into the meat of the list. Gaining access is the

next phase in the methodology and the next warm bath of terminology and memorization we’re
slipping into. Maintaining access and clearing tracks are the remaining steps, which we’ll get to
in this chapter and throughout the remainder of the book. If you were to examine these remaining
phases, EC-Council has broken them down even further for your amusement, enjoyment, and
edification.

NOTE In case you haven’t noticed, and that would be hard given I’ve said it roughly a million
times already, reality and what’s tested on your exam oftentimes don’t match up. Amazingly
enough, people who are new to the career field tend to do better on the exam than those who
have been in it for several years. That’s probably because the grizzled veterans keep trying to
introduce the real world into the equation, whereas entry-level folks just memorize this stuff and
move on. A system attack brings a whole host of things to mind for someone actually doing this
job, and reducing it to password attacks and privilege escalation just doesn’t seem to make sense.
If you’re going to pass this exam, however, you’ll need to just accept some things as they are, so
study and memorize accordingly.

In the gaining access phase, we’re supposed to take all that ammunition we gathered in the
previous steps and start blasting the target. In EC-Council’s view of the world, that means
cracking passwords and escalating privileges. Sure, there are tons of other attacks that can and
should be hurled at a machine (many of which we’ll cover later in this book), but in this
particular phase, CEH concentrates on getting those pesky passwords figured out and escalating
privilege once you do. So, don’t freak out if you’re flipping through this chapter thinking I’m
ignoring all other access attacks; I’m just following EC-Council’s structure and view of the
hacking world to help you in your study.

After privilege escalation, you leave the gaining access phase and move into maintaining
access. Here, the objective is to set up some things to ensure you can come back to this target
and play around later, and in ECC’s way of thinking that means executing applications and
hiding files. The idea is to execute a few applications that provide long-term access (which of
course bleeds you right into the maintaining access phase). Of course, doing all this leaves a
horrible mess laying around for anyone paying attention to notice and use to catch you in the act.
This then leads you nicely into the last phase—covering tracks.

This covering tracks phase is exactly what it sounds like: we’ve busted in, gotten control, and
set up a way back in for later access, but now it’s time to clean up the mess so the owner doesn’t
notice anything amiss. If we were breaking into a bank or a business, we’d probably sweep up all
the glass (if we broke anything), wipe down fingerprints from anything we touched, and put the
toilet seats back down if we had to go potty while we were inside (don’t look at me that way—
thieves have to go, too). System hacking is no different, except maybe there’s no toilet to worry
about. Cleaning up and wiping down simply means we take care of log files on the machine and
do our best to cover our tracks.

EXAM TIP A couple of random track-clearing/hiding notes for your amusement and study
include clearing logs from the meterpreter (launch a meterpreter shell in Metasploit, type clearev
on the command line, and logs of target start wiping), clear the Most Recently Used (MRU) list
in Windows (you can use registry key
HKEY_LOCAL_MACHINE\SOFTWARE\MICROFOT\WINDOWS\CURRENTVERSION\EXPLORER
for recent docs, and go through personalization settings to clear elsewhere), and appending a dot
(.) in front of files in Unix to hide them.

So, there you have it, wrapped up in a neat little bundle and illustrated (hopefully clearly) in
Figure 5-4. I know some of you are scratching your heads trying to figure out why I added hiding
files to the maintain access phase, when it seems to any rational person to belong in the clearing
tracks phase, but I have good reason for doing so: that’s how it’s covered in the official
courseware and class. So don’t blame me. And once we know what we’re supposed to do, we’re
ready to dive into how to do it. But first, we still have a little background knowledge to cover:
one, because it’s testable, and, two, because you really need to know this before moving forward.

Figure 5-4 System attack phases

Hacking Steps
The gaining access phase, by its own definition, requires you to grab authentication credentials
of some sort to gain access to the device. Since a password associated with a user name marks
the most prevalent authentication measure, it follows that password attacks should take up the
majority of our time here. Sure, there are other ways to affect the changes and gather the
information you’ll want on a pen test, but we’re trying to stick with the methodology here, and,
actually, it kind of makes sense. To put everything together in some sort of logical order, we’ll
first cover some basics regarding the lowly password itself and then discuss some of the attacks

we can carry out against it.

Authentication and Passwords
Authentication has always revolved around three things for the individual: something you are,
something you have, and something you know. The something you are measure regards using
biometrics to validate identity and grant access. Biometric measures can include fingerprints,
face scanning, voice recognition, iris scanning, and retina scanning. While biometrics seems like
a panacea for authentication efforts, there are issues in dealing with it. The great thing about
using biometrics to control access is it’s difficult to fake a biometric signature (such as a
fingerprint). The bad side, though, is a related concept: because the nature of biometrics is so
specific, it’s easy for the system to read an attempt as a false negative and deny legitimate access.

EXAM TIP If you use a single authentication type—for example, just something you know
(such as a password)—it’s referred to as one-factor authentication. Add another type—say, for
example, a token (something you have)—with the password, and now you have two-factor
authentication. All three together? You guessed it—three-factor authentication.

Most biometric systems are measured by two main factors. The first, false rejection rate
(FRR), is the percentage of time a biometric reader will deny access to a legitimate user. The
second, false acceptance rate (FAR), is the percentage of unauthorized access given by the
system. The two measurements are charted together, and where they intersect is known as the
crossover error rate (CER), which becomes a ranking measurement of biometric systems (the
lower the CER, the better the system).

NOTE Believe it or not, biometrics can also be measured by active vs. passive and its
invasiveness. Active means you’ve gotta touch it. Passive means you don’t. Invasiveness seems
to be largely a subjective measure. For example, supposedly a retina scan—requiring active
participation—is more invasive than an iris scan, which is considered passive in nature.

Another authentication measure includes something you have. This measure consists of a
token of some sort (like a swipe badge or an ATM card) for authentication. Usually this also
requires the user to use a PIN or password alongside it (making it two-factor authentication), but
there are tokens that act on their own as a plug-and-play authentication measure. This comes
with serious risks (if someone steals your token, they can access your resources), which is why a
token is almost always used with something else.

EXAM TIP Ever heard of a biometric passport? Also known as an e-passport, it’s a token you
carry with you that holds biometric information identifying you. Even though it sounds like a
two-factor measure, because it’s a single token, its use is considered just something you have.

Most security comes down to something you know, and that something is a password.
A password’s strength is usually determined by two major functions: length and complexity.

There’s an argument to be made whether either one is better than the other, but there’s no
argument (at least insofar as EC-Council and your exam are concerned) that both together—in
one long and complex password—is the best. Password types basically are defined by what’s in
them and can be made up of letters, numbers, special characters, or some combination of all.
Passwords containing all numbers (for example, 12345678) or all letters (for example,
AbcdEFGH) are less secure than those containing a combination of letters and numbers (for
example, 1234AbcD). If you put all three together (for example, C3h!sgr8), you have the best
you can get.

Complexity aside, the length of the password is perhaps even more important. Without a long,
overly complicated discussion, let’s just apply a little deductive reasoning here. If a password
cracker application has to guess only four characters, it’s going to take exponentially less time
than trying to guess five, six, or seven characters. Assuming you use nothing but alphabetic
characters, upper- and lowercase, every character you add to the password raises the possible
combinations by an exponent of 52. Therefore, the longer your password and the more possible
variables you have for each character in it, the longer it will take a password-cracking application
(or, in modern systems, a distributed system of machines cracking passwords) to decipher, and
the more secure you’ll be.

When it comes to passwords, just remember there’s no real magic solution in securing your
resources. If they’re overly long and complex, users will forget them, write them down
carelessly, and open themselves up to social engineering attacks on resets. If they’re too simple,
password crackers can have a field day in your environment. The best you can do is stick with
the tips provided here and try to walk that line between security and usability as best you can.

NOTE Want another great password tip? Watch out for “keyboard walks” in password
creation. A user who simply walks the keyboard (typing in straight lines up or down the
keyboard) could wind up with a long, complex password in keeping with all policies but would
be creating one every cracker will have in their password list. !qazXSW3edcVFR$ may look like
a good password, but walk it out on the keyboard and you’ll see why it’s not.

Lastly, another exceedingly important point involving passwords that is often overlooked by
security professionals is the existence of default passwords. Default passwords are put in place
by the manufacturer to allow the installing administrator to initially log in and set up the device

or service, and these are sometimes simply forgotten about after installation. Routers, switches,
wireless access points, database engines, and software packages all come installed with default
passwords, and any hacker worth her salt will try at least a few iterations as an easy way in.
Search engines are very helpful in this regard—just search for “default password lists” and you’ll
see what I mean. A few resources to get you going include http://cirt.net, http://default-
password.info, and http://open-sez.me.

Password Attacks
ECC defines four main attack types for password cracking: non-electronic, active online, passive
online, and offline. The non-electronic attack is so powerful and so productive I’m going to
devote an entire chapter to it later. Social engineering takes on many different forms and is by far
the best hacking method ever devised by humankind. When you’re trying to crack passwords, the
absolute best way to get one is just simply ask the user for it. Phrased the right way, when the
user believes you to be someone from the IT department or a security agent, asking users flat out
for their passwords will work more often than you’d think. Other productive methods include
shoulder surfing (looking over the user’s shoulder—or from across the room or around the
corner—to watch the keystrokes) and dumpster diving (combing through waste baskets and
dumpsters for written passwords). We’ll cover much more on social engineering later—just stay
tuned.

EXAM TIP Another term I’ve seen bandied about in study is a “rule-based attack.” It’s more
or less a dictionary/brute-force attack with better information. For example, if Pen Tester Joe
knows nothing about your passwords, he has to test everything. If he knows in advance, though,
your password lengths are between 8 and 12 characters, you don’t allow them to start with
numbers, and you only allow certain special characters, then he can greatly speed up his efforts.

The active online attack is carried out by directly communicating with the victim’s machine
and might possibly be the worst of the group from a terminology memorization aspect. Per ECC,
active online attacks include dictionary and brute-force attacks, hash injections, phishing,
Trojans, spyware, keyloggers, and password guessing. Many of these are easy enough to figure
out. For example, a hash injection attack occurs, amazingly enough, when you steal a hash and
inject it into a local session in hopes of accessing something. Password guessing is exactly what
it sounds like—the attacker begins simply trying passwords—and Trojans or spyware can be
installed on the system to steal passwords. It’s keyloggers and phishing here that make us all
want to bang our virtual heads against the wall.

Keylogging is the process of using a hardware device or software application to capture the
keystrokes a user types. With this method, it really doesn’t matter what authentication method
you’re using or whether you’re salting a hash; the keystrokes are captured as they are typed,
regardless of what they’re being typed for. If implemented correctly, it works with 100 percent
accuracy, is relatively easy to do, and requires almost no technical knowledge at all.

Keyloggers can be hardware devices—usually small devices connected between the keyboard
cable and the computer—or software applications installed and running in the background. In

http://cirt.net
http://default-password.info
http://open-sez.me

either case, keyloggers are an exceptionally powerful and productive method for scoring big hits
on your target. Most users have no means to even realize a software application is running in the
background, and most people rarely, if ever, look behind their computers to check for a hardware
device. When was the last time you checked yours?

EXAM TIP This should go without saying, but I’ll say it anyway: software keyloggers are
easier to spot with antivirus and other scanning options than hardware keyloggers, which
according to official courseware are almost impossible to detect.

So how does a hardware keylogger constitute an active online attack? I suppose the theory is
you are directly interacting with the device by manually attaching something to it. I know it’s a
stretch but, hey, I never said any of the exam side was reality, did I? And if you think that’s bad,
consider they include phishing in this as well.

Phishing is a social engineering attack whereby the attacker crafts an e-mail—usually with a
bogus link for the user to click—and sends it to folks inside the target organization. What does
this have to do with password cracking? I can honestly say, I’m not very sure, but ECC says it
belongs here, so note it for your exam. We’ll cover more about phishing later on.

Another attack called out specifically by EC-Council, since we’re on the subject of active
online attacks anyway, is the LLMNR/NBT-NS (Link-Local Multicast Name Resolution and
NetBIOS Name Service) attack. This one is yet another example of a good idea designed to
make our online lives easier and better being hijacked and used for devious purposes. The
original idea was simple: we should keep name resolution as local as possible and/or provide a
backup means for when DNS fails; therefore, DNS could use some help inside the subnet.
Microsoft thought this was a great idea and came up with a couple Windows components that
would act as alternate methods of host identification locally: LLMNR is based on the DNS
format and allows hosts on the same subnet/local link to perform name resolution for other hosts,
while NBT-NS identifies systems on a local network by their NetBIOS name.

How can this be leveraged, and what does it have to do with a password attack? Let’s say a
bad guy has the means to get on your subnet and he spoofs the authoritative source for name
resolution by simply responding to LLMNR or NBT-NS traffic. For example, say System A
sends a broadcast asking if anyone knows the resolution for a particular resource on
BRADFLSVR1. The attacker send a response saying, “Hey, yeah…that’s me. Just send all your
traffic intended for BRADFLSVR1 this way.” This effectively poisons System A’s service, and
now all traffic will flow to the attacker’s system. If the request requires identification and
authentication, the user name and NTLMv2 hash may then be sent to the attacker’s system,
which could then be collected through sniffers and other tools. After collection, the bad guy
takes the hashes offline and starts cracking.

Tools capable of pulling this one off include NBNSpoof
(www.mcgrewsecurity.com/tools/nbnspoof/), Pupy (https://github.com/n1nj4sec/pupy),
Metasploit (www.rapid7.com/db/modules/auxiliary/spoof/llmnr/llmnr_response), and Responder
(https://github.com/SpiderLabs/Responder.git). If you’re interested, mitigations for this attack
include disabling LLMNR and NetBIOS (in local computer security settings or via Group

http://www.mcgrewsecurity.com/tools/nbnspoof/
https://github.com/n1nj4sec/pupy
http://www.rapid7.com/db/modules/auxiliary/spoof/llmnr/llmnr_response
https://github.com/SpiderLabs/Responder.git

Policy) if they are not needed in your environment, and using host-based security software to
block LLMNR and NetBIOS traffic. This may or may not be tested on your exam, but it warrants
an explanation here to cover all bases. Figure 5-5 lays out the whole attack for you.

Figure 5-5 LLMNR attack

EXAM TIP Need additional info on LLMNR and NBT-NS? Glad you asked. LLMNR uses
UDP 5355, and NBT-NS uses UDP 137, by default. LLMNR makes use of a link-scope
multicast IP address (224.0.0.252 for IPv4 and FF02:0:0:0:0:0:1:3 for IPv6). Lastly, you can
monitor for this in your environment by checking HKLM\Software\Policies\Microsoft\Windows
NT\DNSClient for changes to the “EnableMulticast” DWORD value (“0” indicates LLMNR is
disabled), or by watching port traffic (5355 and 137).

Active online attacks oftentimes take much longer than passive attacks and also tend to be
much easier to detect. If you happen to have identified a dinosaur Windows NT or 2000 machine
on your target network, you can bang away at the IPC$ share and guess all you want. If you’re
facing Windows XP and Windows 7 machines, the old “administrator” C$ share is still usually
valid and, as always, you can’t lock out the true administrator account. You can try any variety
of scripts available to run through user names and passwords against this share; just keep in mind
it’s noisy and you’re bound to get noticed. Decent network and systems administrators will
change the local administrator account’s name to something else (such as admin, sysadmin, or
admin1), so don’t be surprised if you wind up locking out a few accounts while trying to get to
the real one.

NOTE Windows password recovery (or reset) tools include CHNTPW (Linux utility available
in several distributions), Stellar Phoenix (www.stellarinfo.com), Windows Password Recovery
Ultimate (www.tenorshare.com), ISeePassword (www.iseepassword.com), Windows Password
Recovery Tool (www.windowspasswordrecovery.com), Passware Kit (www.passware.com), and
PCUnlocker (www.pcunlocker.com).

And don’t forget the old “net” commands. Here are a few to remember from your
enumeration time:

• net view /domain:domainname Shows all systems in the domain name provided
• net view \\systemname Provides a list of open shares on the system named
• net use \\target\ipc$ "" /u: " Sets up a null session

Combined with tools such as the NetBIOS Auditing tool (NAT) and Legion, you can automate
the testing of user IDs and passwords.

EXAM TIP There are a couple of special switches with the net commands. Just typing net use
will show your list of connected shared resources. Typing net use Z: \\somename\fileshare will
mount the folder fileshare on the remote machine somename. If you add a /persistent:yes switch
to it, the mount will stay after a reboot. Change the switch to no and it won’t.

A passive online attack basically amounts to sniffing a wire in the hopes of either intercepting
a password in clear text or attempting a replay attack or a man-in-the-middle (MITM) attack. If a
password is sent in clear text, such as in a telnet session, the point is obvious. If it is sent hashed
or encrypted, you can compare the value to a dictionary list or try a password cracker on the
captured value. During the MITM attack, the hacker will attempt to re-send the authentication
request to the server for the client, effectively routing all traffic through the attacker’s machine.
In a replay attack, however, the entire authentication process is captured and replayed at a later
time—the client isn’t even part of the session.

Some passive online password hacking you’ve already done—just check back in Chapter 4,
during the sniffing discussion. Other types of passive online password hacking can be done using
specifically designed tools, such as the old-time favorite Cain and Abel (a Windows-based
sniffer/password cracker). Turn Cain on while you’re surfing around for a day and I bet you’ll be
surprised what it picks up. You can even set up Cain to sniff network traffic and then leave it
alone: come back the next day and all the clear-text passwords, along with any hashes, will be
stolen and ready for you.

And if you really want to see what a specific machine may be sending password-wise over the
wire, try ARP poisoning with Cain (the button that looks like a radiation warning). The machine

http://www.stellarinfo.com
http://www.tenorshare.com
http://www.iseepassword.com
http://www.windowspasswordrecovery.com
http://www.passware.com
http://www.pcunlocker.com

—or all of the machines if you spoof the default gateway MAC—will gladly send you
everything! You can then use Cain for some offline brute-force or dictionary attacks on the
password hashes you can’t read.

Basically, you monitor the victim’s traffic using a sniffer and packet-capture tool (Ferret), and
a file called Hamster.txt is created. After the victim has logged into a site or two, you fire up
Hamster as a proxy, and the cookies and authentication streams from the captured TXT file will
be displayed. You simply click through them until one works—it’s that easy (of course, both
machines must be on the same subnet). Installation of the tools can be a bit tricky, so be sure to
check the help pages on the download site.

A surprising majority of sites use this method of session identification and are just as easily
“hacked.” For those that don’t, a combination of URL variables, HTTP GETs, and other things
will frustrate your efforts and cause you to try other methods—if this is, indeed, your goal. In
practice, getting the session IDs from a website through XSS or other means can be tricky
(Internet Explorer, for example, has done a really good job of locking down access to session
cookies), but I believe this validates these discussions on physical security. If an attacker has
uninterrupted physical access to the machine, it’s only a matter of time before the system is
hacked, regardless of what security measures may already be in place. Internet Explorer plays
with cookies differently, so there’s some trickiness involved, but this is an easy way to sidejack.

A few other tools of note are Ettercap, ScoopLM, and KerbCrack. Ettercap we’ve mentioned
in previous chapters, but it warrants another few minutes of fame here. As with Cain, you can
ARP poison and sniff with Ettercap and steal just about anything the machine sends out. Ettercap
can also help against pesky SSL encryption (which prevents an easy password sniff). Because
Ettercap is customizable, you can set it up as an SSL proxy and simply park between your target
and any SSL site the victim is trying to visit. I watched this happen on my own banking account
in our lab where we worked. My co-worker simply put himself (virtually) between my system
and the SSL site, stole the session, and applied an Ettercap filter to pull out gzip compression,
and the encoded strings were there for the taking. The only indication anything was out of sorts
on the user’s side? A quick warning banner that the certificate needed looking at, which most
people will click past without even thinking about it.

Speaking of SSL and its password-protecting madness, you should also check out sslsniff
(www.thoughtcrime.org/software/sslsniff/). sslsniff was originally written to demonstrate and
exploit Internet Explorer’s vulnerability to a specific “basicConstraints” man-in-the-middle
attack but has proven useful for many other SSL hacks. (Microsoft has since fixed the original
vulnerability.) Per the website, it is designed to act as a man in the middle for “all SSL
connections on a LAN and dynamically generate certificates for the domains that are being
accessed on the fly. The new certificates are constructed in a certificate chain that is signed by
any certificate that you provide.” That’s pretty good news for the budding pen tester indeed.

ScoopLM has a built-in password cracker and specifically looks for Windows authentication
traffic on the wire to pull passwords from. KerbCrack also has a built-in sniffer and password
cracker, specifically looking for port 88 Kerberos traffic.

http://www.thoughtcrime.org/software/sslsniff/

NOTE In addition to the information here and all the notes and such accompanying this book,
don’t ignore the resources available to you on the Internet. Do a few searches for videos on
“sniffing passwords” and any, or all, of the tools mentioned. And don’t discount the websites
providing these tools—you can usually find forums with stories and help.

Offline attacks occur when the hacker steals a copy of the password file (remember our
discussion on the SAM file earlier?) and works the cracking efforts on a separate system. These
attacks may require some form of physical access to the machine (not as hard as you’d like to
believe in a lot of cases—trust me) where the attacker pulls the password file to removable media
and then sneaks off to crack passwords at his leisure, but the point is you steal the hashes and
take them somewhere else to bang on.

NOTE Beating your head against the wall to steal/crack passwords in Windows may be
pointless in the long run. Skip Duckwall and Chris Campbell’s presentation at Black Hat in 2012
on “passing the hash” (https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-
Slides.pdf) points out some serious failures in security regarding password hashes and system
privileges in Microsoft Windows.

Password cracking offline can be done in one of three main ways: dictionary attack, hybrid
attack, and brute-force attack. A dictionary attack is the easiest and by far the fastest attack
available. This attack uses a list of passwords in a text file, which is then hashed by the same
algorithm/process the original password was put through. The hashes are compared, and if a
match is found, the password is cracked. Technically speaking, dictionary attacks are supposed
to work only on words you’d find in a dictionary. They can work just as well on “complex”
passwords too; however, the word list you use must have the exact match in it. You can’t get
close; it must be exact. You can create your own dictionary file or simply download any of the
thousands available on the Internet.

A hybrid attack is a step above the dictionary attack. In the hybrid attack, the cracking tool is
smart enough to take words from a list and substitute numbers and symbols for alpha characters
—perhaps a zero for an O, an @ for an a. Hybrid attacks may also append numbers and symbols
to the end of dictionary file passwords. Bet you’ve never simply added a “1234” to the end of a
password before, huh? By doing so, you stand a better chance of cracking passwords in a
complex environment.

EXAM TIP ECC absolutely loves rainbow tables. A rainbow table is a huge compilation of
hashes of every password imaginable. This way, the attacker simply needs to compare a stolen
hash to a table and—ta-dah!—cracked. The amount of time it takes a cracker to work is
dramatically decreased by not having to generate all these hashes over and over again. In the real

https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-Slides.pdf

world, GPU systems can brute-force passwords in a manner of minutes or hours, so rainbow
tables aren’t really all that valuable. If you wish to make one, though, you can use tools such as
rtgen and Winrtgen.

The last type is called a brute-force attack, and it’s exactly what it sounds like. In a brute-
force attack, every conceivable combination of letters, numbers, and special characters is
compared against the hash to determine a match. Obviously, this is very time consuming,
chewing up a lot of computation cycles and making this the longest of the three methods.
However, it is your best option on complex passwords, and there is no arguing its effectiveness.
Given enough time, every password can be cracked using brute force. Granted, we could be
talking about years here—maybe even hundreds of years—but it’s always 100 percent effective
over time.

If you cut down the number of characters the cracker has to work with and reduce the number
of variations available, you can dramatically reduce that time span. For example, if you’re in a
network and you know the minimum password length is eight characters, then there’s no point in
having your cracker go through all the variations of seven characters or less. Additionally, if you
have a pretty good idea the user doesn’t like all special characters and prefers to stick with the
“Fab Four” (!, @, #, and $), there’s no sense in having your cracker try combinations that include
characters such as &, *, and (.

For example—and to stick with a tool we’ve already been talking about—Cain is fairly good
at cracking Windows passwords, given enough time and processing cycles. For this
demonstration, I created a local account on my system and gave it a (purposefully) short, four-
character password: P@s5. Firing up Cain, I clicked the Cracker menu choice, clicked the
LM&NTLM Hashes option on the left, and then clicked the big blue plus sign (+) at the top.
Once all my accounts and associated passwords were dumped (simulating a hacker who had
snuck in and taken them without my knowledge), I clicked my new user, cut down the number of
possible characters for Cain to try (instead of all alphanumeric and special characters, I cut it
down to ten, simply to speed up the process), and started the cracking. Forty-six minutes later,
almost on the button, the password was cracked.

EXAM TIP Another password cracker to file away in memory is THC Hydra. It’s capable of
cracking passwords from a variety of protocols using a dictionary attack.

Of course, multiple tools are available for password cracking. Cain, KerbCrack, and Legion
have already been mentioned. Another is John the Ripper—one of the more “famous” tools
available. John is a Linux tool that can crack Unix, Windows NT, and Kerberos passwords. You
can also download some add-ons that allow John to crack other passwords types (MySQL, for
instance). LC5, the next generation of the old L0phtcrack tool, does an excellent job on a variety
of passwords. Regardless of the tool, remember that dictionary attacks are fastest and that brute
force takes the longest.

NOTE While cracking passwords is all neat and fun, don’t forget a default password on a box
may very well be your ticket in. The person installing an app, service, or piece of hardware may
just might forget to change the default password assigned during install, leaving you a nice, easy
pathway in. Some resources for this include OpenSezMe (http://open-sez.me/), CIRT
(https://cirt.net), and several “defaultpassword” sites (defaultpassword.us, defaultpasswords.in,
and defaultpassword.com).

Privilege Escalation and Executing Applications
The only real problem with user IDs and password hacking is that, once you crack one, you’re
stuck with the privilege level of the user. Of course, if you can get done what you need without
bothering to escalate privileges, go for it. Sometimes, though, you just need more. If the user
account is not an administrator or doesn’t have access to interesting shares, then you may not be
much better off than you were before, and if you are so noisy in your attack that it garners too
much attention, it won’t do you much good anyway. In this section, we’ll go over some of the
basics on escalating your current privilege level to something a little more fun, as well as some
methods you can apply to keep your hacking efforts a little quieter.

Unfortunately, escalating the privilege of an account you’ve hacked isn’t an easy thing to do
—unless the system you’re on isn’t fully patched. Quite obviously, operating systems put in
various roadblocks to prevent you from doing so. However, as you’ve no doubt noticed,
operating systems aren’t released with 100 percent of all security holes plugged. Rather, it’s
quite the opposite, and security patches are released with frequency to address holes, bugs, and
flaws discovered “in the wild.” In just one week during the writing of this chapter alone,
Microsoft released 24 patches addressing a wide variety of issues—some of which involved the
escalation of privileges.

EXAM TIP There are two types of privilege escalation. Vertical privilege escalation occurs
when a lower-level user executes code at a higher privilege level than they should have access to.
Horizontal privilege escalation isn’t really escalation at all but rather simply executing code at
the same user level but from a location that should be protected from access.

Basically you have four real hopes for obtaining administrator (root) privileges on a machine.
The first is to crack the password of an administrator or root account, which should be your
primary aim (at least as far as the CEH exam is concerned) and makes the rest of this section
moot. The second is to take advantage of a vulnerability found in the OS, or in an application,
that will allow you access as a privileged user. If you were paying attention about the importance
of looking into vulnerability websites, this is where it pays off. In addition to running
vulnerability scanners (such as Nessus) to find holes, you should be well aware of what to

http://open-sez.me/
https://cirt.net
http://defaultpassword.us
http://defaultpasswords.in
http://defaultpassword.com

already look for before the scanner gets the results to you.

NOTE Cracking a password in the real world of penetration testing isn’t really the point at all.
Getting access to the data or services, or achieving whatever generic goal you have, is the point.
If this goal involves having administrative privileges, so be it. If not, don’t sit there hammering
away at an admin password because you believe it to be the Holy Grail. Get what you came for
and get out, as quickly and stealthily as you can.

For example, in December 2009, both Java and Adobe had some serious flaws in their
applications that allowed attackers to run code at a privileged level. This information spread
quickly and resulted in hacking and DoS attacks rising rather significantly until the fix actions
came out. Once again, it’s not something magic or overly technically complicated you’re
attempting to do here; you’re just taking advantage of unpatched security flaws in the system.
The goal is to run code—whatever code you choose—at whatever level is necessary to
accomplish your intent. Sometimes this means running at an administrative level regardless of
your current user level, which requires escalation and a little bit of noisiness, and sometimes it
doesn’t. Again, in the real world, don’t lose sight of the end goal in an effort to accomplish
something you read in a book.

EXAM TIP DLL hijacking can prove very useful in privilege escalation. Many Windows
applications don’t bother with a full path when loading external DLLs. If you can somehow
replace DLLs in the same application directory with your own malicious versions, you might be
in business. And if you’re on a Mac, nearly the same principle applies—except you’ll be dealing
with DYLIB hijacking instead.

The third method is to use a tool that will ideally provide you the access you’re looking for.
One such tool, Metasploit, is an entire hacking suite in one and a great exploit-testing tool (in
other words, it’s about a heck of a lot more than privilege escalation and will be discussed more
as this book continues). You basically enter the IP address and port number of the target you’re
aiming at, choose an exploit, and add a payload—Metasploit does the rest. The web front end is
probably easier to use (see Figure 5-6), but some purists will tell you it’s always command line
or nothing.

Figure 5-6 Metasploit’s main window

Metasploit has a free version and a pay-for version, known as Metasploit Pro. The framework
you can download for free works perfectly well, but the Pro version, although expensive, is
simply unbelievable. To say Metasploit is an important player in the pen testing/hacking realm is
akin to saying Mount Everest is “kind of” tall. It’s a powerful pen testing suite that warrants
more attention than I have room for in this book. Visit the website (www.metasploit.com) and
learn more about this opportunity for yourself. There are tons of help pages, communities, a blog
board, and more, to provide assistance. Trust me—you’ll need them.

NOTE Does a $5000 GUI front end for using Metasploit seem a little on the ridiculous side to
you? Same here. That’s why I’m recommending you check out Armitage
(http://fastandeasyhacking.com/). It’s a GUI front end for Metasploit that is, in a word, awesome.
And did I mention it’s free?

Finally, the last method available may actually seem like cheating to you because it’s so
ridiculously easy you might not have even thought about it. What if you just asked the current
user to run an application for you? Then you don’t need to bother with hacking and all that pesky
technology at all. This type of social engineering will be discussed in greater detail in Chapter 7,
but it’s undeniably productive. You can simply put executable code in an e-mail and ask the user
to click it—more often than not, they will! Craft a file to take advantage of a known Microsoft
Office macro on an unpatched system and send it to them; most of the time they’ll click and open
it! This is by far the easiest method available and probably will wind up being your most
effective technique over time.

Executing Applications
So, you’ve figured out how to gain access to the system and maybe even gotten a way to escalate
your privileges to that of administrator (root-level) status. Now what? Do you check that box and
move on to the next target, or is there something more? It would be fairly deflating to come this
far, touch the ring, and just leave, so I vote you stay and get some more work done.

Many times the act of escalating privileges requires you to execute an application or some
sort of code, so this whole thing may seem a bit silly. However, just as I’ve stressed regarding all

http://www.metasploit.com
http://fastandeasyhacking.com/

these methodologies and steps to this point, simply chalk this up to ensuring you get everything
covered before the plane takes off appropriately, and read on.

Speaking of silly, EC-Council refers to this step as “owning” a system. Apparently gaining
access to the machine and escalating your privileges to that of root level doesn’t mean anything
at all. But remotely executing applications on the target machine? Now you’re really hacking—
ethically, of course. The step of executing applications includes pretty much everything you can
think of, hacking-wise. Obviously it applies to “malicious” programming—starting things such
as keyloggers, spyware, back doors, and crackers—but the idea is the same regardless: once you
have access to the system, execute at or above your privilege level to accomplish what you need
to do.

I hesitate to add any more here, because oftentimes the application you’re executing is
designed to ensure your continued access to the machine (which is a separate step altogether), so
I’ll purposefully keep this section short. However, it is important to remember that the act of
gaining root privilege and access isn’t really as important as getting the machine to do your
bidding in the first place. New pen testers who come out of training oftentimes get caught up in
the step-by-step process, instead of concentrating on what they’re really there to do, and their
work suffers. As an ethical hacker, your goal is success—no matter how it comes. If the machine
is doing what you want it to do, who cares about your root privilege level (or lack thereof)?

One thing we can do to wrap up is talk about a couple tools that may assist in executing on a
remote machine and that you may see pop up on the exam. The tools in this phase are designed
to deliver and execute applications within a network to remote systems. The idea is for
administrators to have an easy way to deploy software and patches to machines under their
control and care. There are hundreds and hundreds of these tools designed to make life easier on
administrators that can be turned and used for dubious purposes. Examples of these include
RemoteExec (www.isdecisions.com), PDQ Deploy (www.adminarsenal.com), and Dameware
Remote Support (www.dameware.com). Regardless of the application, the idea is the same—
remotely execute code on a machine, or several machines, to get something accomplished.

Hiding Files and Covering Tracks
So, you’ve spent your time examining potential targets, mapping out open ports, scanning for
vulnerabilities, and prepping for an attack. After a few tries you successfully steal a password
and find yourself sitting on the machine, logged on and ready to go. Now that you’re there and
before you actually start executing anything, you need to be aware of all the attention that will be
focused on your actions. Is the security administrator on the ball? Do they actively monitor the
event logs on a regular basis? Is there a host-based intrusion detection system (HIDS) on the
machine? How can you get information from it quietly and unnoticed?

This is where the ethical hacker, the guy working a pen test to help a customer see security
flaws in their system, is at a huge disadvantage compared to his bad-guy counterpart in the real
world. Stealth in hacking truly comes down to patience. Spend enough time, move slowly
enough, and chances are better than not you’ll go unnoticed. Lose patience and try to upload
every groovy file you see on the machine, and you’ll quickly find yourself firewalled off and
trapped. The true bad guys out there have time on their hands and can take months to plan and
pull off an attack. The pen tester has, by design, a limited amount of time to pull it all off.

But don’t lose heart. There are a few ways you can still sneak around and hide where you’ve
been and what you’ve been up to. Some of it we’ve already talked about (such as evading

http://www.isdecisions.com
http://www.adminarsenal.com
http://www.dameware.com

network IDS by fragmenting packets and such), but there is also stealth to be had in hiding files
and covering your tracks on the system. And that’s what we’ll cover in this section.

While it’s definitely more in the realm of academics and book knowledge (which is sure to
bring a smile to my tech editor’s face), one way to hide files on Windows machines is through
the use of an alternate data stream (ADS) in the form of New Technology File System (NTFS)
file streaming. ADS is a feature of the Windows-native NTFS to ensure compatibility with Apple
file systems (called HFS), not to mention the ability for loads of back-end features built into the
OS and applications. ADS has been around ever since the Windows NT days and has held on all
the way through to current Windows releases. NTFS streaming still works on all Windows
versions, up through and including 10, believe it or not. No one in practice actually uses it,
because it’s easy to spot and triggers all sorts of blasting warnings, but you will need to know it
for your exam.

Rockwell TVs
Remember back when TV buying was simple? You could just walk into a store, look at the
screens, and pick the one that seemed best. Now there’s all sorts of wackiness to consider: 3D
technology, curved screens, 4K (unbelievable picture, by the way, and my next purchase)...the
features seem endless. And, of course, every TV nowadays needs to be “smart.” After all, we
should be able to stream Netflix, Amazon Prime, and Hulu without hooking up another box.

One such “smart” innovation is Samsung’s voice recognition feature. It’s actually pretty
neat—once it’s set up, you can just say what you want and the TV will do it. Want to mute the
TV volume quickly without searching for the perfect button on the remote? Just say “Mute
sound.” Can’t find the remote and want to change the channel real quick because insert-
family-member-here just walked into the room? “Channel up” will take care of you. And if
you’re bored and have seen every rerun that’s playing, just yell “Smart Hub” and tell it which
streaming service you want to start. Neat, huh? Well, except for one little thing.

See, for the TV to be ready to interpret what you say at any moment to a command to run,
it has to listen all the time—which means if someone, anyone (say, even a giant, faceless
corporation) wanted to listen in on your conversations, maybe even tape a few here and
there...well, it’s almost as good as planting a bug in the room, now isn’t it? According to
CNN, that’s exactly what’s going on (www.cnn.com/2015/02/11/opinion/schneier-samsung-
tv-listening/, http://money.cnn.com/2015/02/09/technology/security/samsung-smart-tv-
privacy/).

Per CNN’s reporting, it seems “what you say isn’t just processed by the television; it may
be forwarded over the Internet for remote processing. It’s literally Orwellian.” I’m sure we’re
all aware the cameras and microphones on our smartphones can (and have been) hacked for
all kinds of monitoring overlord practices (and if you’re not aware, you really need to read
more). As an example, maybe you’re aware Facebook has the ability to turn your
smartphone’s microphone on when you’re using the app. And I’m positive you’re all aware
Gmail and other communication applications listen to everything you write—which explains
why you’re seeing battery advertisements after e-mailing about all those controllers for your
video games.

But the concept of my TV listening to everything I say? Shouldn’t I have an expectation of
privacy in my own living room? Forget those private conversations that would embarrass any
of us if they were broadcast for the world, what if you said something in private that could be

http://www.cnn.com/2015/02/11/opinion/schneier-samsung-tv-listening/
http://money.cnn.com/2015/02/09/technology/security/samsung-smart-tv-privacy/

taken the wrong way? Maybe, say by law enforcement? Heck, any recording made of me
during an Alabama Crimson Tide game would probably include at least one snippet that
would get me put on some watch list somewhere.

Per CNN’s report, Samsung promises that the data was used for nothing more than tuning
efforts, and it was all erased immediately. While we’re all winking and saying “yeah sure,”
what’s really concerning is most of the other companies that are listening promise no such
thing and, in fact, save your data for a long time. Should you be concerned? Of course you
should. Then again, we’ve always been worried about new technology. In 1878, the New York
Times accused Thomas Edison of destroying communication between mankind because of his
“aerophone” allowing people to record voice. “This machine will eventually destroy all
confidence between man and man, and will render more dangerous than ever woman’s want
of confidence in woman.” It’s almost as if new technology is always scary.

New tech or no, the encroachment into privacy is an ever-growing concern. If not already,
your TV will soon be equipped with a camera—imagine the horrors that could record.
Rockwell sang in the 80s, “Sometimes I feel like somebody’s watching me.” I don’t feel like
it, I know.

NTFS file streaming allows you to hide virtually any file behind any other file, rendering it
invisible to directory searches. The file can be a text file, to remind you of steps to take when
you return to the target, or even an executable file you can run at your leisure later. The
procedure is simple. Suppose you want to put the executable badfile.exe in a plain-old readme.txt
file. First, move the contents of the badfile file into the text file with a command like this: c:\type
c:\badfile.exe > c:\readme.txt:badfile.exe. Then just put readme.txt wherever you’d like and
wait until time to put it into use. When ready to use the file, simply type start
readme.txt:badfile.exe. If you really want to get fancy, create a link to the bad file by typing
c:\mklink innocent.exe readme.txt:badfile.exe and you can just execute innocent.exe any time
you want.

NOTE It’s noteworthy to point out here that every forensics kit on Earth checks for ADS at
this point. Additionally, in modern versions of Windows, an executable that’s run inside a .txt
file, for instance, will show up in the Task Manager as part of the parent. EC-Council writes this
generically for the exam, and I’ve tried to stay true to that; however, sometimes reality and the
test collide so awkwardly I simply can’t stay silent about it.

If you’re a concerned security professional wondering how to protect against this insidious
built-in Windows “feature,” relax—all is not lost. Several applications, such as LNS and Sfind,
are created specifically to hunt down ADS. Additionally, Windows Vista introduced a groovy
little addition to the directory command (dir /r) that will display all file streams in the directory.
Lastly, copying files to and from a FAT partition blows away any residual file streams in the
directory.

NOTE Want another weird method to hide things, and in a location that hardly anyone thinks
to look at? How about the registry itself? Adding items to the registry is really easy, and there are
tons of places most people won’t even bother to go. It can be tricky if what you’re hiding is too
bulky or whatnot, but it does work!

Although it’s not 100 percent certain to work, because almost everyone knows to look for it,
we can’t neglect to bring up the attributes of the files themselves and how they can be used to
disguise their location. One of these attributes—hidden—does not display the file during file
searches or folder browsing (unless the administrator changes the view to force all hidden files to
show). In Windows, you can hide a file by right-clicking, choosing Properties, and checking the
Hidden Attribute check box. Of course, to satisfy you command-line junkies who hate the very
thought of using anything GUI, you can also do this by issuing the attrib command:

Another file-hiding technique we’ll hit on later in the book (when I start talking encryption
and cryptography) is steganography. Sure, we could discuss encryption as a hiding technique
here as well, but encrypting a file still leaves it visible; steganography hides it in plain sight. For
example, if you’ve gained access to a machine and you want to ferret out sensitive data files,
wouldn’t it be a great idea to hide them in JPG files of the basketball game and e-mail them to
your buddy? Anyone monitoring the line would see nothing but a friendly sports conversation.
Tools for hiding files of all sorts in regular image files or other files include ImageHide, Snow,
Mp3Stego, Blindside, S-tools, wbStego, and Stealth.

EXAM TIP Another term used in regard to steganography is semagram, and there are two
types. A visual semagram uses an everyday object to convey a message. Examples can include
doodling as well as the way items are laid out on a desk. A text semagram obscures a message in
text by using things such as font, size, type, or spacing.

In addition to hiding files for further manipulation/use on the machine, covering your tracks
while stomping around in someone else’s virtual play yard is also a cornerstone of success. The
first thing that normally comes to mind for any hacker is the ever-present event log, and when it
comes to Windows systems, there are a few details you should know up front. You’ll need to
comb over three main logs to cover your tracks—the application, system, and security logs.

The application log holds entries specifically related to the applications, and only entries
programmed by the developers get in. For example, if an application tries to access a file and the
file has been corrupted or moved, the developer may have an error logged to mark that. The
system log registers system events, such as drivers failing and startup/shutdown times. The

security log records the juicy stuff, such as login attempts, access and activities regarding
resources, and so on. To edit auditing (the security log won’t record a thing unless you tell it to),
you must have administrative privileges on the machine. Depending on what you’re trying to do
to the machine, one or all of these may need scrubbing. The security log, obviously, will be of
primary concern, but don’t neglect your tracks in the others.

Many times a new hacker will simply attempt to delete the log altogether. This, however, does
little to cover his tracks. As a matter of fact, it usually sends a giant blaring signal to anyone
monitoring log files that someone is messing around on the system. Why? Because anyone
monitoring an event log will tell you it is never empty. If they’re looking at it scrolling by the
day before your attack and then come back the next day and see only ten entries, someone is
going into panic mode.

A far better plan is to take your time (a familiar refrain is building around this, can’t you see?)
and be selective in your event log editing. Some people will automatically go for the jugular and
turn auditing off altogether, run their activities, and then turn it back on. Sure, their efforts won’t
be logged in the first place, but isn’t a giant hole in the log just as big an indicator as error events
themselves? Why not go in, first, and just edit what is actually being audited? If possible, turn off
auditing only on the things you’ll be hitting—items such as failed resource access, failed logins,
and so on. Then, visit the log and get rid of those items noting your presence and activities. And
don’t forget to get rid of the security event log showing where you edited the audit log.

NOTE Another tip for hiding tracks in regard to log files is to not even bother trying to hide
your efforts but rather simply corrupt the log file after you’re done. Files corrupt all the time,
and, often, a security manager may not even bother to try to rebuild a corrupted version—
assuming “stuff happens.” The answer in hacker-land is to always do what gives the highest
probability of success and non-detection, while minimizing effort and resources.

One last note on log files and, I promise, I’ll stop talking about them: Did you know security
administrators can move the default location of the log files? By default, everyone knows to look
in %systemroot%\System32\Config to find the logs; each will have an .evt extension. However,
updating the individual file entries in the appropriate registry key
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog) allows you to
place them wherever you’d like. If you’ve gained access to a system and the logs aren’t where
they’re supposed to be, you can bet you’re in for a tough day; the security admin may already
have eyes on you.

A few tools are available for taking care of event log issues. In Control Panel | Administrative
Tools | Local Security Policy, you can set up and change the audit policy for the system. The top-
level settings are found under Local Policies | Audit Policy. Other settings of note are found in
Advanced Audit Policy Configuration at the bottom of the listings under Security Settings. Other
tools of note include elsave, WinZapper, and Evidence Eliminator. Lastly, Auditpol (shown in
Figure 5-7) is a tool included in the old Windows NT Resource Kit that may be useful on older
systems. You can use it to disable event logs on other machines. The following should do the

trick:

Figure 5-7 Windows audit policy

Rootkits
Finally, no discussion on system hacking and maintaining stealth/access on the machine can be
complete without bringing up rootkits. Per ECC, a rootkit is a collection of software put in place
by an attacker that is designed to obscure system compromise. In practice, a rootkit is software
that replaces or substitutes administrator utilities and capabilities with modified versions that
obscure or hide malicious activity. In other words, if a system has a properly introduced rootkit
installed, the user and security monitors shouldn’t even know anything is wrong—at least until
it’s too late to do anything about it. Rootkits are designed to provide back doors for the attacker
to use later and include measures to remove and hide evidence of any activity.

There are, of course, as many rootkits names and types as you can conceivably come up with;
however, some are more notable for us because EC-Council references them for your
memorization. One such item is “Horsepill,” a Linux kernel rootkit inside “initrd” with three
main parts: klibc-horsepill.patch (creates a new, malicious, run-init), horsepill_setopt (moves
command-line arguments to the preceding), and hrsepill_infect (splats files). Another is
“Grayfish,” a Windows rootkit that injects code in the boot record, creating its own virtual file
system (VFS). Sirefef is also mentioned, but its definition lends more to malware on steroids: it’s
defined as a “multi-component family of malware.” Others you may see referenced include
Azazel, Avatar, Necurs, and ZeroAccess.

Per the CEH objectives, there are six types of rootkits:

• Hypervisor level These rootkits modify the boot sequence of a host system to load a
virtual machine as the host OS.

• Hardware (firmware) These rootkits hide in hardware devices or firmware.
• Boot loader level These rootkits replace the boot loader with one controlled by the

hacker.
• Application level As the name implies, these rootkits are directed to replace valid

application files with Trojan binaries. These kits work inside an application and can use
an assortment of means to change the application’s behavior, user rights level, and
actions.

• Kernel level These rootkits attack the boot sectors and kernel level of the operating
systems themselves, replacing kernel code with back-door code. These rootkits are by far
the most dangerous and are difficult to detect and remove.

• Library level These rootkits basically use system-level calls to hide their existence.

NOTE Rootkits are exponentially more complicated than your typical malware application and
reflect significant sophistication. If your company detects a customized rootkit and thinks it was
targeted, it’s time to get the FBI involved. And to really scare the wits out of you, check out what
a truly sophisticated rootkit can do: http://en.wikipedia.org/wiki/Blue_Pill_(software).

In the real world, rootkits are discussed much more in the context of the ring in which they
work. The term protection rings in computer science refers to concentric, hierarchical rings from
the kernel out to the applications, each with its own fault tolerance and security requirements.
The kernel is referred to as Ring 0, while drivers (Ring 1), libraries (Ring 2), and applications
(Ring 3, also known as user mode) make up the surrounding rings. Although you probably won’t
see them listed as such on your exam (yet, at least in the current version), it’s helpful to think of
kernel rootkits working at Ring 0, application rootkits at Ring 3, and so on.

EXAM TIP ECC provides a neat little section on “Steps for Detecting Rootkits.” By their own
admission, this results in a lot of false positives and does not detect all stealth software (in BIOS,
EEPROM, or hidden in data streams and such), but it’s worth noting in case you see it on your
exam. First, run the dir /s /b /ah command and the dir /s /b /a-h command in the potentially
infected operating system and save the results. Next, boot a clean CD version and run the same
commands for the same drive again. Last, use WinDiff (https://support.microsoft.com/en-
us/kb/159214) on both results to see any hidden malware.

So how do you detect rootkits and what can you do about them? Well, you can certainly run
integrity verifiers, and there are some heuristic, signature, and cross-view-based detection efforts
that can show you whether a rootkit is in place. But the big question is, once you know, what do
you do about it? While there are lots of things suggested, both in and out of official courseware,
the real answer as far as your exam is concerned is to just reload the system. Use quality, trusted
backups and reload. Unless it’s a BIOS rootkit. Or something on the firmware on your disk
controller. Then…well…all bets are off.

http://en.wikipedia.org/wiki/Blue_Pill_(software)
https://support.microsoft.com/en-us/kb/159214

Chapter Review
Microsoft Windows stores authentication credentials—hashes of passwords—in the SAM file,
located in the C:\windows\system32\config folder. The biggest cause of concern for this method
of password storage, and so on, is the complexity of the hash algorithm used. Windows 2000 and
Windows NT–type machines used something called LAN Manager, and then NT LAN Manager,
to hash passwords. LM hashing puts all passwords in 14 characters, split into two 7-character
groupings, and hashes both sides to make a full hash. If this process leaves the second seven-
character side empty (that is, the original password was seven characters or less), the second half
of the hash will always appear as AAD3B435B51404EE. In Windows Vista and later, the LM
hash will be shown blank (the “NO PASSWORD” entries in the SAM file), and the NTLM hash
will appear second.

Even after the password has been obtained, though, the addition of salting (additional
protection by adding random data as additional input before being hashed) and the use of better
methods for authentication (NTLMv2 and Kerberos, if you sniff the hash value) make life for a
password cracker pretty tough. Windows default authentication protocol/method is Kerberos.
Kerberos makes use of both symmetric and asymmetric encryption technologies to securely
transmit passwords and keys across a network. The entire process is made up of a Key
Distribution Center (KDC), an Authentication Service (AS), a Ticket Granting Service (TGS),
and the Ticket Granting Ticket (TGT).

A basic Kerberos exchange follows a few easy but secure steps. The client first asks the KDC
(which holds the AS and TGS) for a ticket, which will be used to authenticate throughout the
network. This request is in clear text. The server will respond with a secret key, which is hashed
by the password copy kept on the server (in Active Directory). This is known as the TGT. If the
client can decrypt the message (and it should since it knows the password), the TGT is sent back
to the server requesting a TGS service ticket. The server responds with the service ticket, and the
client is allowed to log on and access network resources. Once again, the password itself is never
sent. Instead, a hash value of the password, encrypted with a secret key known only by both
parties and good only for that session, is all that’s sent.

The Windows registry is a collection of all the settings and configurations that make the
system run. Hierarchical in nature, it stores a variety of configuration settings and options. In it,
you can find settings for low-level operating system components, applications running on the
machine, drivers, the SAM file, and the user interface. Two basic elements make up a registry
setting: keys and values. A key can be thought of as a location pointer (much like a folder in the
regular file structure), and the value of that key defines the setting. Keys are arranged in a
hierarchy, with root keys at the top, leading downward to more specific settings. The root-level
keys in the registry are HKEY_LOCAL_MACHINE (HKLM), HKEY_CLASSES_ROOT
(HKCR), HKEY_CURRENT_USER (HKCU), HKEY_USERS (HKU), and
HKEY_CURRENT_CONFIG (HKCC).

Key values can be a character string (REG_SZ), an “expandable” string value
(REG_EXPAND_SZ), a binary value (REG_BINARY), or a host of other goodies.
REG_DWORD is a 32-bit unsigned integer, REG_LINK is a symbolic link to another key, and
REG_MULTI_SZ is a multistring value.

Some of the keys of great importance to you in particular (for your exam and your job)
include the following:

• KEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

Linux starts with a root directory, just as Windows does. The Windows root is (usually) C:\.
The Linux root is just a slash (/). It also has folders holding specific information for specific
purposes, just like Windows. A list of the important folders you’ll need to know includes /bin,
/dev, /etc, /mnt, /sbin, and /usr. Important commands include cp, pwd, ifconfig, kill, adduser, ls,
ps, and chmod. Security on files and folders is managed through your user account, your user’s
group membership, and three security options that can be assigned to each for any resource: read,
write, and execute. These security rights can be assigned only by the owner of the object. Typing
the command ls -l will display the current security settings for the contents of the directory
you’re in. These permissions are assigned via the chmod command and the use of the binary
equivalent for each rwx group: read is equivalent to 4, write is 2, and execute is 1.

Passwords in Linux can be stored in one of two places—the passwd or shadow file. All
passwords are displayed openly as hashes to anyone who has read privileges to the passwd file.
In the shadow file, the passwords are stored and displayed encrypted, and shadow is accessible
only by root.

System attacks fall in the “gaining access” ethical hacking phase. The full methodology
includes reconnaissance, scanning, gaining access, maintaining access, and clearing tracks.
Gaining access includes cracking passwords and escalating privileges. After privilege escalation,
you leave the gaining access phase and move into maintaining access, which includes executing
applications and hiding files. The covering tracks phase includes taking care of log files on the
machine.

Authentication involves three main options: something you are, something you have, and
something you know. Some authentication measures use something you are—biometrics
(fingerprints and such)—to validate identity and grant access. Others use something you have,
such as a token of some sort (like a swipe badge or an ATM card), for authentication. But most
security comes down to something you know, and that something is a password.

Default passwords are in place by the manufacturer to allow the installing administrator to log
in initially and set up the device or service, and they are sometimes simply forgotten about after
installation. Routers, switches, wireless access points, database engines, and software packages
all come installed with default passwords.

ECC defines four main attack types for password cracking: non-electronic, active online,
passive online, and offline. The non-electronic attack involves social engineering practices, such
as shoulder surfing and dumpster diving. The active online attack is carried out by directly
communicating with the victim’s machine. Per ECC, active online attacks include dictionary and
brute-force attacks, hash injections, phishing, Trojans, spyware, keyloggers, and password
guessing. Active online attacks take a much longer time than passive attacks and are also much
easier to detect. A passive online attack basically amounts to sniffing a wire in the hopes of
either intercepting a password in clear text or attempting a replay attack or a man-in-the-middle
(MITM) attack. Offline attacks occur when the hacker steals a copy of the password file and
works the cracking efforts on a separate system.

Password cracking offline can be done in one of three main ways: dictionary attack, hybrid
attack, and brute-force attack. A dictionary attack is the easiest and by far the fastest attack

available, using a list of passwords in a text file, which is then hashed by the same
algorithm/process the original password was put through. A hybrid attack takes words from a list
and substitutes numbers and symbols for alphabetic characters—perhaps a zero for an O and an
@ for an a. Hybrid attacks may also append numbers and symbols to the end of dictionary file
passwords. A brute-force attack uses every conceivable combination of letters, numbers, and
special characters compared against the hash to determine a match. It is very time-consuming,
chewing up a lot of computation cycles, thus making this the longest of the three methods;
however, given enough time, every password can be cracked using brute force.

A rainbow table is a huge compilation of hashes of every password imaginable. The amount
of time it takes a cracker to work is dramatically decreased by not having to generate all these
hashes over and over again. While GPU systems virtually eliminate their need, if you wish to
make one, you can use tools like rtgen and Winrtgen.

There are two types of privilege escalation. Vertical privilege escalation occurs when a lower-
level user executes code at a higher privilege level than they should have access to. Horizontal
privilege escalation isn’t really escalation at all but rather simply executing code at the same user
level but from a location that should be protected from access. There are four real hopes for
obtaining administrator (root) privileges on a machine. The first is to crack the password of an
administrator or root account. The second is to take advantage of a vulnerability found in the OS,
or in an application, that will allow you access as a privileged user (DLL hijacking involves
replacing legitimate DLLs with malicious copies in the application root folder). The third method
is to use a tool that will ideally provide you the access you’re looking for (such as Metasploit).
The last method is to just ask the current user to run an application for you.

The step of executing applications includes pretty much everything you can think of, hacking-
wise. Obviously it applies to “malicious” programming—starting things such as keyloggers,
spyware, back doors, and crackers—but the idea is the same regardless: once you have access to
the system, execute at or above your privilege level to accomplish what you need to do.
Examples of remote execution tools include RemoteExec (www.isdecisions.com), PDQ Deploy
(www.adminarsenal.com), and Dameware Remote Support (www.dameware.com).

One way to hide files on Windows machines is through the use of an alternate data stream
(ADS) in the form of New Technology File System (NTFS) file streaming. ADS is a feature of
the Windows-native NTFS to ensure compatibility with Apple file systems (called HFS). NTFS
file streaming allows you to hide virtually any file behind any other file, rendering it invisible to
directory searches. Another file-hiding technique is steganography, which hides files in plain
sight, buried as part of an image, video, or other file. Tools for hiding files of all sorts in regular
image files or other files include ImageHide, Snow, Mp3Stego, Blindside, S-tools, wbStego, and
Stealth.

In addition to hiding files for further manipulation/use on the machine, covering your tracks
while stomping around in someone else’s virtual play yard is also a cornerstone of success. There
are three main logs in the Windows OS to look at when covering your tracks—the application,
system, and security logs. A few tools are available for taking care of event log issues. In Control
Panel | Administrative Tools | Local Security Policy, you can set up and change the audit policy
for the system. The top-level settings are found under Local Policies | Audit Policy. Other
settings of note are found in Advanced Audit Policy Configuration at the bottom of the listings
under Security Settings. Other tools of note include elsave, WinZapper, and Evidence
Eliminator. Lastly, Auditpol is a tool included in the old Windows NT Resource Kit that may be
useful on older systems. You can use it to disable event logs on other machines.

http://www.isdecisions.com
http://www.adminarsenal.com
http://www.dameware.com

A rootkit is a collection of software put in place by an attacker that is designed to obscure
system compromise. In other words, if a system has a properly introduced rootkit installed, the
user and security monitors won’t even know anything is wrong. Rootkits are designed to provide
back doors for the attacker to use later and include measures to remove and hide evidence of any
activity. Some of the rootkits ECC is very concerned you know about are Azazel, Avatar, Necurs
and ZeroAccess.

Per the CEH objectives, there are six types of rootkits: hypervisor level, hardware (firmware),
boot loader level, application level, kernel level, and library level. Rootkits can be detected
through a variety of tools and methods, but reloading from clean backups is the only real
recovery method.

Questions
1. Which of the following best defines steganography?

A. Steganography is used to hide information within existing files.
B. Steganography is used to create hash values of data files.
C. Steganography is used to encrypt data communications, allowing files to be passed

unseen.
D. Steganography is used to create multimedia communication files.

2. Which encryption standard is used by LM?
A. MD5
B. SHA-1
C. DES
D. SHA-2
E. 3DES

3. Which of the following would be considered a passive online password attack?
A. Guessing passwords against an IPC$ share
B. Sniffing subnet traffic to intercept a password
C. Running John the Ripper on a stolen copy of the SAM
D. Sending a specially crafted PDF to a user for that user to open

4. A user on Joe’s network does not need to remember a long password. Users on Joe’s
network log in using a token and a four-digit PIN. Which authentication measure best
describes this?
A. Multifactor authentication
B. Three-factor authentication
C. Two-factor authentication
D. Token authentication

5. Which of the following best defines a hybrid attack?
A. The attack uses a dictionary list, trying words from random locations in the file until

the password is cracked.

B. The attack tries random combinations of characters until the password is cracked.
C. The attack uses a dictionary list, substituting letters, numbers, and characters in the

words until the password is cracked.
D. The attack use rainbow tables, randomly attempting hash values throughout the list

until the password is cracked.
6. While pen-testing a client, you discover that LM hashing, with no salting, is still engaged

for backward compatibility on most systems. One stolen password hash reads
9FAF6B755DC38E12AAD3B435B51404EE. Is this user following good password
procedures?
A. Yes, the hash shows a 14-character, complex password.
B. No, the hash shows a 14-character password; however, it is not complex.
C. No, the hash reveals a 7-character-or-less password has been used.
D. It is impossible to determine simply by looking at the hash.

7. Where is the SAM file stored on a Windows 7 system?
A. /etc/
B. C:\Windows\System32\etc\
C. C:\Windows\System32\Config\
D. C:\Windows\System32\Drivers\Config

8. Examining a database server during routine maintenance, you discover an hour of time
missing from the log file, during what would otherwise be normal operating hours. Further
investigation reveals no user complaints on accessibility. Which of the following is the
most likely explanation?
A. The log file is simply corrupted.
B. The server was compromised by an attacker.
C. The server was rebooted.
D. No activity occurred during the hour time frame.

9. Which of the following can migrate the machine’s actual operating system into a virtual
machine?
A. Hypervisor-level rootkit
B. Kernel-level rootkit
C. Virtual rootkit
D. Library-level rootkit

10. After gaining access to a Windows machine, you see the last command executed on the
box looks like this:

Assuming the user had appropriate credentials, which of the following are true? (Choose
all that apply.)

A. In Windows Explorer, a folder will appear under the root directory named BankFiles.
B. In Windows Explorer, a drive will appear denoted as BankFiles (\\MATTBOX) (F:).

C. The mapped drive will remain mapped after a reboot.
D. The mapped drive will not remain mapped after a reboot.

11. An attacker has hidden badfile.exe in the readme.txt file. Which of the following is the
correct command to execute the file?
A. start readme.txt>badfile.exe
B. start readme.txt:badfile.exe
C. start badfile.exe > readme.txt
D. start badfile.exe | readme.txt

12. You see the following command in a Linux history file review:

Which of the following best describe the command result? (Choose two.)

A. The process “someproc” will stop when the user logs out.
B. The process “someproc” will continue to run when the user logs out.
C. The process “someproc” will run as a background task.
D. The process “someproc” will prompt the user when logging off.

Answers
1. A. Steganography is designed to place information in files where it will lay hidden until

needed. Information can be hidden in virtually any file, although image and video files are
traditionally associated with steganography.

2. C. LAN Manager (LM), an old and outdated authentication system, used DES, an old and
outdated means for hashing files (in this case, passwords).

3. B. Passive online attacks simply involve stealing passwords passed in clear text or copying
the entire password exchange in the hopes of pulling off a reply or man-in-the-middle
attack.

4. C. Because Joe’s users need something they have (a token) and something they know (the
PIN) this is considered two-factor authentication.

5. C. The hybrid attack takes any old dictionary list and juices it up a little. It will substitute
numbers for letters, inject a character or two, and run numerous hybrid versions of your
word list in an attempt to crack passwords.

6. C. LM hashes pad a password with blank spaces to reach 14 characters, split it into two 7-
character sections, and then hash both separately. Because the LM hash of seven blank
characters is always AAD3B435B51404EE, you can tell from the hash that the user has
used only seven or fewer characters in the password. Because CEH recommends that a
password be a minimum of eight characters, be complex, and expire after 30 days, the user
is not following good policy.

7. C. The SAM file is stored in the same folder on most Windows machines:
C:\Windows\System32\Config\.

8. B. It’s a database server during normal business hours and there’s nothing in the log?
Forget the fact a reboot would’ve showed up somewhere—none of the users complained

about it being down at all. No, we think this one is going to require some forensics work.
Call the IR team.

9. A. The hypervisor-level rootkit is defined by ECC as one that basically replaces your
physical OS with a virtual one.

10. B, C. “Net use” commands were the rage back in the day. This command connects to a
shared folder on MATTBOX. The shared folder is named BankFiles, and the mapping will
display as a drive (F:) on the local machine. The persistent:yes portion means it will
remain mapped forever, until you turn it off.

11. B. The command start readme.txt:badfile.exe says “Start the executable badfile.exe that
is hidden in the readme.txt file.” In other variants of this question, the bad guy could create
a link and execute it simply by typing the link name (for example, mklink innocent.exe
readme.txt:badfile.exe would create a link, and the bad file could be executed simply by
typing innocent).

12. A, C. The ampersand (&) after the command dictates that the process should run in the
background. Without anything indicating a persistent process (that is, adding nohup
before the process name), it will die when the user logs out.

CHAPTER 6
Web-Based Hacking: Servers and Applications

In this chapter, you will
• Identify features of common web server architecture
• Identify web application function and architecture points
• Describe web server and web application attacks
• Identify web server and application vulnerabilities
• Identify web application hacking tools

Have you ever seen the movie The Shawshank Redemption? If you haven’t and we were all in a
classroom together, I’d probably stop all proceedings and make the entire lot of you reading this
book go watch it because I’m entirely unsure any pen test team can function with members who
have not seen it. Not to mention, I do not want to be held at fault for turning you out as such; I’m
not even sure you should be allowed out in open society without seeing it. However, we’re not in
class, and you’re free to do whatever you want, so the best I can do for those of you who will not
go see the movie is to provide a wrap-up here. And to pray for you.

In the movie, a kind, honest, well-educated banker named Andy Dufresne is wrongly
convicted for the murder of his wife and sentenced to life in prison, to be served at the hellish
Shawshank State Prison. He spends two decades of his life there and through all the turmoil and
strife manages to form strong friendships, change lives, and stop evil in its tracks. He also
manages to escape the prison, leaving the evil warden and his money-laundering operation to
face the consequences of their actions. How Andy escaped the prison isn’t what the story is all
about, but it is apropos for our discussion here. How, you may ask? Glad to explain.

Andy’s friend, Ellis Redding, gives him a small rock hammer early on to work on chiseling
rock chess pieces. No guard could see the harm in it, so they just let him keep it. Over the next
two decades, Andy, working behind a big pin-up poster of Rita Hayworth, Marilyn Monroe, and,
lastly, Raquel Welch, painstakingly chisels a big hole through the solid concrete walls, allowing
access to his eventual escape route—a giant sewage pipe that leads out of the prison, far away to
a drainage ditch. See, Andy didn’t work on bribing guards or sneaking into the laundry truck or
climbing the walls at night and running as fast as possible toward freedom. No, Andy took the
route out of the prison that a lot of hackers take in gaining access into a target—something
everyone just trusted to do a job and that no one ever considered could be used in any other way.

I’m not saying you’re going to be covered in...well, you know...as a result of hacking a web
server. What I am saying, though, is that organizations that usually do a pretty good job of
securing passwords, gates, and other obvious security targets often overlook the huge, open,
public-facing front doors they have out there for use. And if you’re willing to get a little dirty,
they make a fine way back in. Sure, it’s a little messy at first, but when you break back in, that

poster of Andy’s sure looks nice hanging there on the wall.

Web Servers
Regardless what your potential target offers to the world—whether it’s an e-commerce site, a
suite of applications for employees and business partners to use, or just a means to inform the
public—that offering must reside on a server designed to provide things to the world. Web
servers are unique entities in the virtual world we play in. Think about it—we spend loads of
time and effort trying to hide everything else we own. We lock servers, routers, and switches
away in super-secure rooms and disguise entire network segments behind NAT and DMZs. Web
servers, though, are thrown to the proverbial wolves. We stick them right out front and open
access to them. Sure, we try our best to secure that access, but the point still remains: web
servers are open targets the entire world can see. And you can rest assured those open targets will
get a strong look from attackers.

Web Organizations
I promise this won’t take long, but we need to cover some web organizations you need to be
familiar with for both your efforts and your exam. It’s literally impossible for me to cover every
standards or engineering group, or every international consortium out there that has contributed
to making the Web what it is today. I’ll hit on a few I know you need to know about, and trust
you to read up on others you should know about.

For example, take IEFT (https://www.ietf.org/). The Internet Engineering Task Force can
probably best be described by the tag line on their home page: “The goal of the IETF is to make
the Internet work better.” IETF creates engineering documents to help make the Internet work
better from an engineering point of view. The IETF’s official documents are published free of
charge as Requests For Comments (RFCs). An RFC is used to set a variety of standards—
everything from the makeup of a UDP header to how routing protocols are supposed to work,
and almost anything else you can think of. Per the IETF regarding RFCs: “…this name (used
since 1969, before the IETF existed) expresses something important: the Internet is a constantly
changing technical system, and any document that we write today may need to be updated
tomorrow.” When you think IETF, think engineering, and engineering only—they’re not here to
police what the engineered solution is used for, just to provide the work to get the thing running.
“We try to avoid policy and business questions, as much as possible, to concentrate solely on the
engineering side of the house.” They recommend www.internetsociety.org/ as a place to go
worry about policy.

Another oldie but goodie is the World Wide Web Consortium (W3C). W3C
(https://www.w3.org) is an international community where “member organizations, a full-time
staff, and the public work together to develop Web standards.” Their stated mission is “to lead
the World Wide Web to its full potential by developing protocols and guidelines that ensure the
long-term growth of the Web.” For example, when incompatible versions of HTML are offered
by different vendors, causing inconsistency in how web pages are displayed, the consortium tries
to get all those vendors to implement a set of core principles and components that are chosen by
the consortium. W3C engages in education and outreach, develops software, and serves as an
open forum for discussion about the Web.

Want an organization more specific to security? Check out OWASP (https://www.owasp.org).

https://www.ietf.org/
http://www.internetsociety.org/
https://www.w3.org
https://www.owasp.org

The Open Web Application Security Project is a 501(c)(3) worldwide not-for-profit charitable
organization focused on improving the security of software. Their mission is to make software
security visible so that individuals and organizations worldwide can make informed decisions
about true software security risks. OWASP publishes reports, documents, and training efforts to
assist in web security.

For example, the OWASP Top 10 is “a powerful awareness document for web application
security. The OWASP Top 10 represents a broad consensus about what the most critical web
application security flaws are”
(https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project).

So what makes up the Top 10? Glad you asked. As of this writing, the current available list is
from 2017, and that list is the one referenced within the version 10 courseware. However, a
cursory check of that list versus what was on the site for the version 9 CEH exam shows there
have been some significant changes. Given how exams work (each test is random and the test
pool may have older questions to pull from for your specific examination), I’m going to list the
current Top 10, with a reference to where it was on last year’s list. I’ll also include last year’s
full list at the end, just for reference. Hopefully your exam will be specific on which is which,
but I can’t promise that. All I can do is give you what’s current and hope for the best (go to
https://www.owasp.org/index.php/Top_10-2017_Top_10 to view the list current as of this
writing). OK, here we go, quoted directly from the current list:

• A1 – Injection Flaws Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a command or query. The attacker’s
hostile data can trick the interpreter into executing unintended commands or accessing
data without proper authorization. (Position on previous/last year’s list: #1)

• A2 – Broken Authentication and Session Management Application functions related
to authentication and session management are often not implemented correctly, allowing
attackers to compromise passwords, keys, or session tokens, or to exploit other
implementation flaws to assume other users’ identities. (Position on previous/last year’s
list: #2)

• A3 – Sensitive Data Exposure Many web applications do not properly protect sensitive
data, such as credit cards, tax IDs, and authentication credentials. Attackers may steal or
modify such weakly protected data to conduct credit card fraud, identity theft, or other
crimes. Sensitive data deserves extra protection, such as encryption at rest or in transit, as
well as special precautions when exchanged with the browser. (Position on previous/last
year’s list: #6)

• A4 – XML External Entities (XXE) A new addition. Attackers can exploit vulnerable
XML processors if they can upload XML or include hostile content in an XML document,
exploiting vulnerable code, dependencies, or integrations. By default, many older XML
processors allow specification of an external entity, a URI that is dereferenced and
evaluated during XML processing. These flaws can be used to extract data, execute a
remote request from the server, scan internal systems, perform a denial-of-service attack,
as well as execute other attacks. (Position on previous/last year’s list: N/A, new entry for
2017 list)

• A5 – Broken Access Control A new addition. Exploitation of access control is a core
skill of attackers. Static Application Security Testing (SAST) and Dynamic Application
Security Testing (DAST) tools can detect the absence of access control but cannot verify

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10-2017_Top_10

if it is functional when it is present. Access control is detectable using manual means, or
possibly through automation for the absence of access controls in certain frameworks.
Access control weaknesses are common due to the lack of automated detection, and lack
of effective functional testing by application developers. Access control detection is not
typically amenable to automated static or dynamic testing. Manual testing is the best way
to detect missing or ineffective access control, including HTTP method (GET vs. PUT,
and so on), controller, direct object references, and so on. (Position on previous/last year’s
list: N/A, new entry for 2017 list)

• A6 – Security Misconfiguration Good security requires having a secure configuration
defined and deployed for the application, frameworks, application server, web server,
database server, and platform. Secure settings should be defined, implemented, and
maintained, as defaults are often insecure. Additionally, software should be kept up to
date. (Position on previous/last year’s list: #5)

• A7 – Cross-Site Scripting (XSS) XSS flaws occur whenever an application takes
untrusted data and sends it to a web browser without proper validation or escaping. XSS
allows attackers to execute scripts in the victim’s browser, which can hijack user sessions,
deface websites, or redirect the user to malicious sites. It’s notable that this dropped so
precipitously from the last list. It’s still a Top 10 issue, however, so don’t discount.
(Position on previous/last year’s list: #3)

• A8 – Insecure Deserialization A new addition. Interestingly, unlike other entries on the
list, this was included in the Top 10 based on an industry survey and not on quantifiable
data. Exploitation of deserialization is somewhat difficult, as off-the-shelf exploits rarely
work without changes or tweaks to the underlying exploit code. Some tools can discover
deserialization flaws, but human assistance is frequently needed to validate the problem. It
is expected that prevalence data for deserialization flaws will increase as tooling is
developed to help identify and address it. The impact of deserialization flaws cannot be
understated. These flaws can lead to remote code execution attacks, one of the most
serious attacks possible. (Position on previous/last year’s list: N/A, new entry for 2017
list)

• A9 – Using Components with Known Vulnerabilities Components such as libraries,
frameworks, and other software modules almost always run with full privileges. If a
vulnerable component is exploited, such an attack can facilitate serious data loss or server
takeover. Applications using components with known vulnerabilities may undermine
application defenses and enable a range of possible attacks and impacts. (Position on
previous/last year’s list: #9)

• A10 – Insufficient Logging and Monitoring A new addition. Like #8, this was also
included in the Top 10 based on an industry survey. Exploitation of insufficient logging
and monitoring is the bedrock of nearly every major incident. Attackers rely on the lack of
monitoring and timely response to achieve their goals without being detected. One
strategy for determining if sufficient monitoring is in place is to examine the logs
following penetration testing. The testers’ actions should be recorded sufficiently to
understand what damages they may have inflicted. Most successful attacks start with
vulnerability probing, and should be noted and acted upon at that stage. Allowing such
probes to continue can raise the likelihood of successful exploit to exponentially.
(Position on previous/last year’s list: N/A, new entry for 2017 list)

(The OWASP Top 10 is free to use. It is licensed under the Creative Commons Attribution-
ShareAlike 4.0 license.)

NOTE In an effort to cover everything (since this is, after all, an All-in-One guide), here’s the
previous version of the Top 10 list in its entirety for your perusal: A1 – Injection Flaws, A2 –
Broken Authentication and Session Management, A3 – Cross-Site Scripting (XSS), A4 –
Insecure Direct Object References, A5 – Security Misconfiguration, A6 – Sensitive Data
Exposure, A7 – Missing Function Level Access Control, A8 – Cross-Site Request Forgery
(CSRF), A9 – Using Components with Known Vulnerabilities, A10 – Unvalidated Redirects and
Forwards.

As a security professional, I don’t really know whether I should celebrate or be concerned as a
result of all this. On one hand, apparently we’ve all gotten better at fixing or preventing insecure
direct object reference, missing function-level access control, cross-site request forgery, and
unvalidated redirects, as these dropped off the list. On the other hand, much of the Top 10 has
stayed, and seemingly common-sense things made the list, such as not making use of
components you know are vulnerable (are you kidding me?!?) and ensuring you have proper
monitoring. In any case, this is a great resource to measure your web security by. Not the only
one, but a good one.

OWASP also provides a really cool option for security education. WebGoat
(https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project) is a deliberately
insecure web application maintained by OWASP that is designed to teach web application
security lessons. “The primary goal of the WebGoat project is simple: create a de-facto
interactive teaching environment for web application security. In the future, the project team
hopes to extend WebGoat into becoming a security benchmarking platform and a Java-based
Web site Honeypot.” You can install it on virtually any platform, it can interface with Java or
.NET just fine, and it contains dozens of “lessons” displaying security vulnerabilities you should
be aware of. It’s actually a great idea when you think about it: a box you know is there but don’t
know much about holds numerous potential security flaws, and you get to test your skillset
against it without endangering anything. Not bad for a goat…

I could go on and on with other organizations—they’re endless. ISECOM, Internet Society,
OpenSource.org, and a bazillion others are out there for your perusal. Most are trying to make
things better. Here’s hoping they succeed.

When We Meet the Enemy, Will It Be Us?
You’ve purchased this book, so I don’t have to tell you that interest in security, pen testing,
and ethical hacking is real and growing. And on the face of it, what we’re all doing about it is
a very good thing. Training an army of good guys to secure our systems makes all sorts of
sense, and if we don’t look at things the way our adversaries do, we’re not doing ourselves
any favors. After all, one of the most quoted lines in all of history regarding all this is, “If you

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://OpenSource.org

know the enemy and know yourself, you need not fear the result of a hundred battles. If you
know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you
know neither the enemy nor yourself, you will succumb in every battle.” (Sun Tzu, The Art of
War). But in some respects, isn’t there a downside to all this?

Consider malware authors, for instance. Back in the early days of Internet networking,
viruses weren’t nearly as sophisticated as they are today and just didn’t really matter to most
folks. A decade or so passed, and all that changed. But what was really interesting about the
whole thing was it seemed those who wrote the best viruses got hired by the antivirus
companies, and malware, to quote Ron Burgundy, “escalated quickly.” Was “rewarding”
terrible behavior a good thing or bad? Are systems better off today because AV companies
hired people who thought like bad guys (because they were), or did the entire advent of all
that force malware into loftier horizons (or deeper depths, depending on your perspective)?

I just did a search for “how to be a hacker.” Over 243 million results. “How to hack a Web
Server” returned almost 146 million. And “Scripts I can use to hack”? Almost 19 million.
YouTube videos on everything you can imagine, articles and whitepapers on techniques, and
tips that simplify things to the point my cat may be able to pull it off are available
everywhere. Training opportunities (many of which are terrible wastes of time and money,
despite well-known name providers) for “ethical” hacking abound. There are even wikis on
everything you can imagine, including a really inane one titled “12 steps to becoming a
hacker.” Really? That’s all it takes? Well, geez, why am I not hacking?

Are we creating the enemy? Are we making this stuff so available, so palatable that those
who wouldn’t otherwise join the fight on the dark side now see opportunity? Are we forcing
the evolution of hacking mentality and techniques to greater sophistication by our efforts to be
well informed and skilled in defense? Add to it all the monetization of “hacking” nowadays
(the days of this being a community wherein the technology and the exploitation of it was
purely an exercise in science, thinking, and tinkering are dead), and it gets even cloudier. I
think the reward/risk comparative here closes the argument for me, but I just can’t help
worrying about it. Will I, one day, face an enterprising young hacker who’d never considered
it before but read an interesting book on hacking and went on to learn all he could? Maybe.
But my guess, and hope, is that by that time the number of good guys will outweigh those on
the other side. If not, I suppose the mirror is where we’ll all look for blame.

Attack Methodology
When you consider the sheer number of methodology steps EC-Council throws out there, it’s
really a miracle anyone even bothers taking this exam. However, as I stated earlier, despite
whatever you may think of their lack of relevance in the day-to-day life and actions of real pen
testers and hackers, methodology steps from ECC are testable. Argue with me all you want, and
flail your arms around and scoff at how dumb they are until you feel satisfied everyone knows
you know they’re dumb. But if you ignore them, you’ll miss out on test questions. The choice is
yours.

EC-Council defines six different stages in web server attack methodology: information
gathering, web server footprinting, website mirroring, vulnerability scanning, session hijacking,
and web server password cracking. Thankfully, when it comes to web server attack
methodology, these aren’t so much phases to remember nor a step-by-step, foolproof method.

Instead, they are recommendations on what to cover in your efforts so you don’t overlook
something. I don’t believe you’ll be asked about them in order (in other words, “What represents
step 4 in the web server attack methodology?”). Instead, they’re just here as ECC’s attempt at a
good way to organize your thoughts and ensure something doesn’t get lost.

First off, you’ll start out with information gathering and footprinting. Web server information
gathering is done using things like Internet searches about the target (traffic statistics and such),
whois (we went over this little jewel back in Chapter 2), and reviewing the robots.txt file (a small
file, made to be accessible and readable, that tells web spiders which pages not to crawl for
indexing). Footprinting efforts in regard to web servers involve things like banner grabbing
(check our scintillating write up on this in Chapter 3), and the use of a few tools more specialized
for web server examinations. For example, Netcraft can provide some great high-level
information. HTTPRecon and ID Serve work really well in identifying, reliably, the web server
architecture and OS, and HTTPrint provides lots of really cool information.

Lastly, when it comes to footprinting and enumerating web servers, don’t discount that
wonderful little tool we covered back in Chapter 3—nmap. There are a bajillion different
methods in which to use nmap to scan and enumerate boxes, and web servers are no exception.
Here are a few nmap commands you may find useful (in the real world and for your exam):

• nmap --script http-trace -p80 localhost Detects a vulnerable server that uses the
TRACE method.

• nmap --script http-google-email <host> Lists e-mail accounts.
• nmap --script hostmap-* <host> Discovers virtual hosts on an IP address that you are

attempting to footprint. The * character is replaced by the name of the online dB you’re
attempting to query. For example, hostmap-IP2Hosts queries the dB at
www.ip2hosts.com.

• nmap --script http-enum -p80 <host> Enumerates common web applications.
• nmap -p80 --script http-robots.txt <host> Grabs the robots.txt file.

Again, I find myself compelled to advise you to grab the tools and test them out for yourself.
There are more nmap commands than we can possibly include here—these are just a few
primary ones to play with. Run nmap scans against everything you own. Set up a web server in
your lab and blast it with everything. It is, by far, the best way to learn.

NOTE A few other tools for web server footprinting you may wish to check out include Burp
Suite (https://portswigger.net/burp), SpiderFoot (www.spiderfoot.net), XProbe
(https://sourceforge.net), P0f (https://github.com), and Recon-ng (https://bitbucket.org).

Next in our methodology line is website mirroring, and it is exactly what it sounds like.
Wouldn’t it be so much easier on you if you had a copy of the website right there in your own
lab to examine? It’d save you all that pesky network traffic generation from your constant
banging on the “live” site and give you loads of time to examine structure and whatnot. While

http://www.ip2hosts.com
https://portswigger.net/burp
http://www.spiderfoot.net
https://sourceforge.net
https://github.com
https://bitbucket.org

it’s not necessarily the quietest thing in the world, nor is it always easy to obtain or always
complete, if it’s possible to grab a mirror image of the website, go for it. Tools for pulling this
off include, but are not limited to, Wget, BlackWidow, HTTrack, WebCopier Pro, Web Ripper,
and SurfOffline.

In your next step, if you have a means to get it running against the web server, a vulnerability
scanner will practically give you everything you need to gain access. Nessus is probably the most
common vulnerability scanner available, but it’s certainly not the only option. Nikto is a
vulnerability scanner more suited specifically for web servers. An open source tool, Nikto scans
for virtually everything you can think of, including file problems, script errors, and server
configuration errors. It can even be configured within Nessus to kick off a scan automatically
when a web server is discovered! Plug-ins and signatures are numerous and varied, and they
update automatically for you. The only drawback is that Nikto is a relatively noisy tool, much
like Nessus and virtually every other vulnerability scanner, so you won’t be running it stealthily.

In any case, if there is a way to pull it off, a good vulnerability scan against a web server is
about as close to a guarantee as anything we’ve talked about thus far. It won’t necessarily
discover any bad unknowns, but it will show you the bad knowns, and that’s all you can hope for
at this juncture. By their very design, websites are open to the world, and many—not all, but
many—will have something overlooked. Take your time and be patient; eventually your efforts
will pay off.

NOTE The last steps in web server methodology, session hijacking and password cracking, are
covered more extensively elsewhere in this book. Chapter 9 covers session hijacking in full, and
password cracking is covered in Chapter 5.

Web Server Architecture
At its most basic, a web server acts like any other server you already know about: it responds to
requests from clients and provides a file or service in answer. This can be for any number of
things in today’s world, but let’s just consider in this section the obvious exchange web servers
were created for (we can cover some of the other craziness later). A request first comes from a
client to open a TCP connection on (usually) port 80 or 443. After agreeing to the handshake on
the page request, the server waits for an HTTP GET request from the client. This request asks for
specific HTML code representing a website page. The server then looks through a storage area
and finds the code that matches the request and provides it to the client.

This all sounds simple enough, but there’s really a multitude of issues to think about just in
that exchange. How does the server validate what the client is asking for? Does the server
respond only to specific verbiage in the request, or can it get confused and respond with other
actions? Where are the actual files of HTML (and other) code stored, and how are the
permissions assigned to them? I could go on and on, but I think you can understand my point—
and to get to some of the answers to these questions, I believe it’s prudent we take some time and
examine the makeup of the more common web servers in the marketplace.

EXAM TIP One thing bandied about a bit on exam study guides I’ve seen is the trifecta of
web servers and where they should sit in the organization’s network. In short, web functions
generally have three sides: a web front end (a server facing the Internet), an application server
(internally, set up to do the work), and a database server (internally, for obvious purposes).
You’ll need to know the common-sense 10,000-foot view of all of it—where the servers should
sit and what they’re for.

When it comes to web servers, there are three major players on the block. According to web
surveys conducted by W3Techs (www.w3techs.com), most web servers on the Internet are
Apache (www.apache.org), making up 45.4 percent of the marketplace. Internet Information
Services (IIS) servers, Microsoft’s web server platform that ruled the namespace for decades, not
only fell in market share but continues its decline in popularity and finds itself in third place. So
who’s in second? Nginx (https://www.nginx.com/, and pronounced “engine-x,”) now makes up
39.8 percent of all web servers on the Internet and is growing quickly in popularity: as a matter
of fact, Nginx has increased in usage by 0.4 percent, while both Apache and IIS have dropped by
0.03 and 0.02 percent, respectively. Since its public release in 2004, Nginx has exploded in
growth and is now in use by such recognizable Internet residents as Netflix, Hulu, the Discovery
Channel, Dropbox, Pinterest, and a host of others.

Interestingly, ECC doesn’t even mention Nginx in the official courseware—instead choosing
to only mention Apache and IIS architecture. Matter of fact, looking around at every piece of
study material I can find, I don’t see anyone talking about it, and that concerns me. When we
completed the edition for version 9, I was convinced it was very possible—scratch that, very
probable—that by the time it found its way to print and you finished your study for the exam that
Nginx would have over 30 percent of the market share. Turns out I was right, and now, given
every piece of statistical evidence I can find, it’s highly probably that by time you actually take
your exam, Nginx will make up nearly half the web servers in the world—and you won’t even be
asked about it. In my humble opinion, that’s somewhat of a crime. I won’t spend a whole lot of
time talking about Nginx, but it is part of the present and will make up a majority of the future.
Despite its lack of coverage on your exam, you’ll need to learn Nginx basics to do your job.

Benchmarks prove Nginx edges out other lightweight web servers and proxies, and simply
blows the doors off others (Linux Journal didn’t trust the press and ran their own tests, largely
coming to the same conclusion). Per the Nginx site, Nginx is “a free, open-source, high-
performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server. Unlike
traditional servers, Nginx doesn’t rely on threads to handle requests. Instead it uses a much more
scalable event-driven (asynchronous) architecture. This architecture uses small, but more
importantly, predictable amounts of memory under load.” I guess it should come as no surprise
that a high-performance web server that requires only small resources to run and has proven
itself capable of running everything from small family sites to multinational clusters is a
challenger to Microsoft and IIS. But when you throw in the fact that it’s free, then it’s not only a
surprise—it’s to be expected. You won’t be tested on it anytime soon on the exam, but at the rate
this brand is growing, you can bet you will soon—or you should be.

http://www.w3techs.com
http://www.apache.org
https://www.nginx.com/

EXAM TIP Don’t get too concerned—you won’t be saddled with a lot of minutiae on the
exam concerning the architecture of various web servers. If your goal is pure test study, you can
breeze through much of this section. To help out, keep in mind a couple tips: First, Apache
configuration is almost always done as part of a module within special files (http.conf, for
instance, can be used to set server status), and the modules are appropriately named
(mod_negotiation, for instance). Second, almost everything questioned on IIS configuration is
going to come down to privileges, and IIS itself runs in the context of LOCAL_SYSTEM and
will spawn shells accordingly.

Market leader Apache is an open source, powerful, and fast web server that typically runs on
a Unix or Linux platform, although you can load and use it on a wide variety of operating
systems. By and large, Apache servers haven’t seemed to display as many, or as serious,
vulnerabilities as their Microsoft IIS peers, but this isn’t to say they are foolproof. Several critical
vulnerabilities on Apache servers have come to light in the past, making them as easy a target as
anything else.

NOTE The tier system is something you’ll need to be aware of in network design. N-tier
architecture (a.k.a. multitier architecture) distributes processes across multiple servers. Each
“tier” consists of a single role carried out by one (or more, or even a cluster of) computer
systems. Typically this is carried out in “three-tier architecture,” with a presentation tier, logic
tier, and data tier, but there are other implementations.

While we’re not diving so far down into this as to drown ourselves in details, you do need to
know a little about the basics of Apache design and architecture. Apache is built modularly, with
a core to hold all the “magic” and modules to perform a wide variety of functions. Additionally,
because of its open source nature, there is a huge library of publicly available add-ons to support
functions and services. If you’re really interested in seeing some of the modules and learning
about how they work, Apache provides a write-up and details at
http://httpd.apache.org/docs/current/mod/. Figure 6-1 shows a very brief, overly simplistic view
of the whole thing in practice (note the database does not have to be in the same OS container; in
fact, it really shouldn’t be).

http://httpd.apache.org/docs/current/mod/

Figure 6-1 Apache

IIS servers are easy-to-manage, Windows-based options for the web provider. Originally, IIS
was riddled with security concerns, and finding an IIS 5 or earlier server at your target is cause
for wild celebration on the pen test team. Heck, even the IIS 7.0 version, which Microsoft said
included “a new modular design that allows for a lessened attack surface and increased
performance,” caused many a hacker to start giggling uncontrollably. Later versions, though,
have done a much better job of tightening the security screws. Will IIS 10 answer the security
bell? Time will tell.

Whether it’s an Apache or an IIS server, misconfiguration of the settings is the most common
vulnerability that will be exploited. Areas of concern include error messaging, default passwords,
SSL certificates, scripts, remote administrative functions, configuration files, and services on the
machine. Settings such as properly configuring (restricting?) remote administration, eliminating
unnecessary services, and changing any default passwords or accounts are pretty obvious things,
but they’re so often overlooked it’s not even funny.

Others maybe aren’t as obvious, but should be concerning. What about error reporting? Sure,
it’s helpful to you to leave on debug logging or to set everything to verbose when you’re trying
to troubleshoot an issue, but isn’t that same information really useful to a bad guy? Are the SSL
certificates in place current? What about default passwords? Are the config files and scripts
properly protected and configured? Keep those configuration issues in mind when you start
scratching at the front door; they’re usually keys that can open a lock or two.

EXAM TIP The httpd.conf file on Apache servers controls aspects including who can view the
server status page (which just so happens to contain information on the server, hosts connected,

and requests being attended to). The php.ini file is one you want to look at for the verbose error
messaging setting.

Finally, in our discussion about web server architecture, I’d be remiss if I didn’t discuss the
protocol behind the scenes in almost everything web related: HTTP. Don’t worry, I’m not going
to send you running to the edge of the nearest cliff (or to the closest bourbon bottle—whatever
your poison) with HTTP-minutiae madness. After all, this is a book on CEH, not one designed to
make you a web designer. However, I do want to cover some of the basics that’ll help you in
your job and on the exam.

First, a shocking revelation: Hypertext Transfer Protocol was originally designed to transfer
hypertext (and hypertext, to borrow Wikipedia’s stellar definition, is “structured text that uses
logical links, a.k.a. hyperlinks, between nodes containing text”). In other words, HTTP was
designed as a request-response Application layer protocol where a client could request hypertext
from a server. This hypertext could be modified and set up in such a way as to provide resources
to the requesting user agent (UA)—for instance, a web browser.

For example, a client requests a particular resource using its Uniform Resource Identifier
(URI)—most commonly expressed for web requests in the form of a URL (Uniform Resource
Locator)—and a server responds to the HTTP request by providing the resource requested. In
practice, HTTP can be used for virtually anything anymore—with good or bad intent. It also
provides for (mostly) secure communication in its HTTPS version: HTTP over TLS, or HTTP
over SSL. Although I could go on and on about other features of HTTP, including some well-
known recent attacks against the secure version (see Chapter 11 for a discussion on Heartbleed
and POODLE), what we really need to get to for your exam is the particular markup of hypertext
most of us see every single day—HTML.

I think I’m safe in assuming that if you’re reading this book and consider yourself a candidate
for the CEH certification, you’re probably already aware of what HTML is. For the sake of
covering everything, HTML is simply a method to mark up hypertext so it will display
accordingly in a browser. In other words, HTML files consist of a bunch of tags that tell the
browser how to display the data inside. Tags such as , <table>, and <body> are probably
easily recognized by anyone. Others, such as <form>, <head>, <input type=___>, and so on,
may not be, but they sure hold some interesting details for the observant.

NOTE Although it’s not really tested on the exam (yet), take a little time to explore XML.
While HTML was designed specifically to display data, XML was created to transport and store
data. XML tags are, basically, whatever you want them to be.

This simplicity makes HTML easy to work with but also has its own issues. For example,
because tags start with the < character, it’s tough to put this character into the text of a page; as
soon as the browser sees it, it thinks everything past it is a tag, until it sees the close character, >.
To get around this, HTML entities were created. An HTML entity is a way of telling the browser
to display those characters it would otherwise look at as a tag or part of the programming itself.

There are tons of these entries, all of which you’ll see later and can use in your efforts to crawl
and confuse web servers, but the big ones are noted in Table 6-1 (including the nonbreaking
space, listed first).

Table 6-1 HTML Entities

So now that you know a little on HTML, let’s take a closer look at HTTP. Specifically, we
need to cover HTTP request methods. These are pretty straightforward and easy to understand,
but they will worm their way into your exam at some point, so we’ll cover the basics here. HTTP
works as a request-response protocol, and several request methods are available. HTTP request
methods include GET, HEAD, POST, PUT, DELETE, TRACE, and CONNECT. The W3C
provided a great rundown of these methods (https://www.w3.org/Protocols/rfc2616/rfc2616-
sec9.html), so why not stick with what the international community on web standards say about
them?

• The GET method means retrieve whatever information (in the form of an entity) is
identified by the Request-URI. In short, it basically requests data from a resource: “Please
send me the HTML for the web page located at _insert-URL-here_.” The problem with it
is designers—especially early on—used HTTP GET to send data as well, and when
sending data, the GET method adds the data to the URL. For example, if a GET was used
in answering a bill for a credit card, you might see the URL display like this:
http://www.example.com/checkout?7568.asp/credit1234567890123456 (the underlined
section showing the ridiculousness of using GET in this way).

• The HEAD method is identical to GET except that the server must not return a message-
body in the response. This method is often used for testing hypertext links for validity,
accessibility, and recent modification, as well as for requesting headers and metadata.

• The POST method is used to request that the origin server accept the entity enclosed in the
request as a new subordinate of the resource identified by the Request-URI in the
Request-Line. The actual function performed by the POST method is determined by the
server and is usually dependent on the Request-URI. In short, it’s a better method of
submitting data to a resource for processing. It can also be used to elicit a response, but its
primary purpose is to provide data for the server to work with. POST is generally
considered safer than GET because an admin can make it so it’s not stored in browser
history or in the server logs, and it doesn’t display returned data in the URL.

• The PUT method requests that the enclosed entity be stored under the supplied Request-

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.example.com/checkout?7568.asp/credit1234567890123456

URI. If the Request-URI refers to an already existing resource, the enclosed entity should
be considered as a modified version of the one residing on the origin server. If the
Request-URI does not point to an existing resource, and that URI is capable of being
defined as a new resource by the requesting user agent, the origin server can create the
resource with that URI.

• The DELETE method requests that the origin server delete the resource identified by the
Request-URI.

• The TRACE method is used to invoke a remote, Application layer loopback of the request
message. The final recipient of the request should reflect the message received back to the
client as the entity-body of a 200 (OK) response.

• The CONNECT method is reserved for use with a proxy that can dynamically switch to
being a tunnel (for example, SSL tunneling).

NOTE Both POST and GET are client-side ideas that can be manipulated with a web proxy.
While GET is visible in a browser, POST is equally visible within a good-old Wireshark capture.

Last thing on HTTP (I promise) is a quick rundown on HTTP response messages. Why?
Because you can glean information about your target based on what the protocol was designed to
send back to you given a specific circumstance. I’m not going to dedicate a lot of page space to
these because they’re barely mentioned on your exam, but they’re still very important.

The first digit of the Status-Code defines the class of response. The last two digits do not have
any categorization role, but more thoroughly define the response intent. There are five values for
the first digit:

• 1xx: Informational Request received, continuing process.
• 2xx: Success The action was successfully received, understood, and accepted.
• 3xx: Redirection Further action must be taken in order to complete the request.
• 4xx: Client Error The request contains bad syntax or cannot be fulfilled.
• 5xx: Server Error The server failed to fulfill an apparently valid request.

See what I mean? Could sending a URL requesting a resource and receiving a 5xx message
back help determine server issues? Maybe. A 4xx receipt? Better check my URL and see if it’s
right. A 3xx return? That might be very interesting…

EXAM TIP Need something else to worry about, security-wise? Don’t forget about third-party
scripts and apps. Many organizations make use of third-party scripts for functions such as
marketing, and so on, that can be exploited to gain access to the server’s data.

Web Server Attacks
So, we know a little about web server architecture and have a little background information on
the terminology, but the question remains, How do we hack them? It’s a good question, and one
we’ll tackle in this section. Many other attack vectors also apply to web servers—password
attacks, denial of service, man in the middle (sniffing), DNS poisoning (a.k.a. hijacking), and
phishing—but there are many more. Web server attacks are broad, multiple, and varied, and
we’ll hit the highlights here, both for your career and for your exam.

EXAM TIP DNS amplification is an attack manipulating recursive DNS to DoS a target. The
bad guy uses a botnet to amplify DNS answers to the target until it can’t do anything else.

Directory traversal is one form of attack that’s common and successful, at least on older
servers. To explore this attack, think about the web server architecture. When you get down to it,
it’s basically a big set of files in folders, just like any other server you have on your network. The
server software is designed to accept requests and answer by providing files from specific
locations on the server. It follows, then, that there are other folders on the server (maybe even
outside the website delivery world) that hold important commands and information.

For a broad example, suppose all of a website’s HTML files, images, and other items are
located in a single folder (FOLDER_A) off the root of the machine, while all the administrative
files for the server itself are located in a separate folder (FOLDER_B) off the root. Usually
HTML requests come to the web server software asking for a web page, and by default the server
goes to FOLDER_A to retrieve them. However, what if you could somehow send a request to the
web server software that instead says, “Server, I know you normally go to FOLDER_A for
HTML requests. But this time, would you please just jump up and over to FOLDER_B and
execute this command?” Figure 6-2 shows this in action.

Figure 6-2 Directory traversal

Welcome to directory traversal. In this attack, the hacker attempts to access restricted
directories and execute commands outside intended web server directories. Also known as the
dot-dot-slash attack, directory climbing, and backtracking, this attack basically sends HTTP
requests asking the server to drop back to the root directory and give access to other folders. An
example of just such a command might look like this:

The dot-dot-slashes are intended to take the shell back to the root and then to pull up the
password file. This may take a little trial and error, and it isn’t effective on servers that take steps
to protect input validation, but it’s definitely worth your time.

EXAM TIP ECC sometimes likes asking about parameter or URL tampering. In short, you
just manipulate parameters within the URL string in hopes of modifying data such as
permissions and elevation of privileges, prices and quantities of goods, and credentials. The trick
is to simply look at the URL and find parameters you can adjust and re-send.

A major problem with directory traversal is that it’s sometimes fairly noisy. Signature-based
IDSs have rules in place to look for dot-dot-slash strings and the like. One method for getting
around this is to use Unicode in the string to represent the dots and slashes. As you’re probably
already aware, several Unicode strings can be used to represent characters and codes. In general,
the %2e code can represent a dot, whereas %sf can represent a slash. Putting them together,

your Unicode string would look like this:

Additionally, don’t be afraid to mix up your Unicode in different variations; %2e%2e/ and
..%2f are examples.

EXAM TIP This dot-dot-slash attack is also known as a variant of Unicode or unvalidated
input attack. Unicode is a standard for ensuring consistent encoding and text representation and
can be accepted by servers for malicious purposes. Unvalidated input means the server has not
been configured to accept only specific input during an HTTP GET, so an attacker can craft the
request to ask for command prompts, to try administrative access passwords, and so on.

Another easy and simple attack vector involves manipulating the hidden field on the source
code of the page. See, back in the day, web developers simply trusted users wouldn’t bother
looking at the source code (assuming they were too stupid or apathetic), and they relied on poor
coding practices. The thought was that if the users didn’t see it displayed in their browsers, they
wouldn’t know it was there. To take advantage of this, developers used an HTML code attribute
called “hidden.” Despite the fact that it’s a well-known but unsecured method to transmit data,
especially on shopping sites, and it’s a generally accepted fact that the web page itself shouldn’t
be holding this information, the use of the hidden attribute for pricing and other options is still
pretty prevalent. To see how it works, check out the following code I took from a website I found
today:

Suppose I really wanted a surfboard but really didn’t want to pay $659.99 for it. I could
simply save the code from this page to my desktop (being sure to check for Unicode encoding if
prompted to), change the “price” value to something more reasonable (such as 9.99), save the
code, and then open it in a browser. The same web page would appear, and when I clicked the
Add To Cart button, the surfboard would be added to my cart, with a cost to me of $9.99.
Obviously, this amounts to theft, and you could get into a world of trouble trying this, so please
don’t be ridiculous and attempt this. The idea here isn’t to show you how to steal things; it’s to
show you how poor coding can cost a business. Not to mention, the hidden field can carry other
things too. For example, might the following line, which I found on another forum website
earlier, be of interest to you?

Another attack you should focus some study time on is dubbed “web cache poisoning.” A
web cache is a just storage space that sits between a web server and a client (like a web browser
or a mobile app). It waits for network requests to come in and saves copies of the responses.

Why? Because the entire idea of the cache is to speed up responses to future requests. If you ask
the server for something and then later I ask for the same thing, it’s faster to pull the cache
response for me than to re-create all the processing to answer the same question. In short, caches
speed up delivery, make web services appear more responsive, and theoretically at least, help
reduce network traffic. But can you see where that could be problematic from a security
perspective? Suppose an attacker clears the cache on a target, then replaces it with something he
wants in there. The cache response can then wreck all sorts of havoc among visitors to the server.

To successfully carry out the attack, a bad guy must first find vulnerable service code
(allowing him to fill the HTTP header field with multiple headers). He then forces the cache
server to flush its actual cache content and sends a specially crafted request designed to be stored
in cache. He then sends a second request, forcing the response to be the previously injected
content from earlier. And voilà—cache poisoning is exploited. Check out Figure 6-3 for an
overview of the whole thing.

Figure 6-3 Web cache poisoning

EXAM TIP One web attack tool you’ll need to become familiar with is WFETCH
(Microsoft.com). It allows you to craft HTTP requests to see raw request and response data, as
well as to pull off performance tests and other assessments.

Other web attacks covered by ECC are fairly self-explanatory. A misconfiguration attack
takes advantage of configuration items on the server not being configured correctly. A password
attack and SSH brute-force attack? Exactly what they sound like. Web defacement attacks are the
unique ones in the “obvious list of web attacks,” but only because of what ECC focuses on.

http://Microsoft.com

NOTE CSPP (connection string parameter pollution) is an injection attack that takes advantage
of web applications that communicate with databases by using semicolons to separate each
parameter. It has been around since 2010, but there’s not much written about it or attention paid
to it, for whatever reason. If carried out successfully, this attack can be used to steal user
identities and hijack web credentials.

A web defacement attack results in the page being…well, defaced: an attacker maliciously
alters the visual appearance of the page. Interestingly, ECC doesn’t bother to talk about how an
attacker would get in to do this, only the results of that pwning (pwning being a variant of the
“leetspeak” term pwn, pronounced pōwn, and meant to imply domination or humiliation of a
rival, or that a system has been owned). In short, if the hacker is dumb enough to change the
visual on the site, alerting everyone in the world that he got it, that’s considered defacement.

NOTE Defacement doesn’t always have to be about embarrassment or feeding an ego.
Sometimes defacement can be downright subtle, for whatever purpose, and sometimes it can be
designed to inflict real harm on a target. If, for example, you were to deface the website of a
candidate running for office and quietly alter wording to indicate a change in platform, it may not
be noticed for a long while. And by the time it is, the damage is done.

Finally, you can use a variety of tools to help in web server attacks—some of which we’ll hit
later in the chapter, many of which you just need to play with in order to learn. Brutus
(www.hoobie.net) is a decent choice to try brute-forcing web passwords over HTTP, and THC-
Hydra is a pretty fast network logon cracker. And don’t overlook the all-in-one attack
frameworks such as Metasploit; these can make short work of web servers.

The S in Sisyphus Is for “Security”
So, you know the story of King Sisyphus from Greek mythology, right? Actually, it’s
probably not fair to ask if you’ve heard the story, because there are bunches of them all
leading to the same end. Maybe it is more apropos to ask if you’re familiar with his
punishment, so let’s start there. See, King Sisyphus was a smart but deceitful man. In
numerous versions of the story in mythology he used these “gifts” to outsmart the gods,
ensnaring Hades in chains so that no one on Earth could die. I suppose he may have even
eventually gotten away with that; however, in addition to being smart and deceitful, he was
also arrogant and brash. After letting everyone know he felt his cleverness was greater than
that of Zeus, he was given a most unique punishment. King Sisyphus was doomed in eternity

http://www.hoobie.net

to roll a giant boulder up a mountain. However, as soon as the boulder got almost to the top, it
would magically roll away from him back down the mountainside, forcing him to start all
over. Hence, any pointless or never-ending activity came to be known as Sisyphean in nature.
And that’s why I’m convinced the first IT security engineer was his descendant.

A guy asked me a while back, “If I’m following good security principles, how is hacking
even possible?” He had taken care of all the crazy default passwords and settings on his
system. He had patched it thoroughly. He’d set up monitoring of both network traffic and file
integrity itself. He had done everything he could possibly think of security-wise, and he
smugly told me that hacking his box was impossible. I then shattered his naiveté by saying,
“Congratulations. You’re right. Today. Just remember that you will always have to be right
every other day, too—and I have to be right only once.”

Time is definitely on the side of the hacker because things consistently change in our
virtual world. New vulnerabilities and new ways around security features come out every
single day, and it’s—dare, I say—a Sisyphean task to continue monitoring for, and applying,
security fixes to systems. The only way we, on the security side, can win? Stop pushing the
boulder at all and just unplug everything. Until then, all we can do is get more of us pushing
that rock up the hill—and somebody to distract Zeus when we get to the top.

Metasploit (introduced in Chapter 5) will cover lots of options for you, including exploitation
of known vulnerabilities and attacking passwords over Telnet, SSH, and HTTP. A basic
Metasploit exploit module consists of five actions: select the exploit you want to use, configure
the various options within the exploit, select a target, select the payload (that is, what you want to
execute on the target machine), and then launch the exploit. Simply find a web server within
your target subnet, and fire away!

NOTE I’m not saying YouTube videos always show the best, or even proper, usage of any
tool, but there are innumerable videos showing Metasploit in action, and sometimes the best way
to learn is just watching someone use it. Speaking of free training, check out
https://www.offensive-security.com/metasploit-unleashed/ and give the free class/book a try. In
fact, type Learn Metasploit in your favorite browser and make use of what’s out there.

You won’t get asked a whole lot of in-depth questions on Metasploit, but you do have to
know the basics of using it and some of what makes the whole thing run. It’s called a framework
for a reason—it’s a toolkit that allows for exploit development and research. A high-level
overview of Metasploit architecture is shown in Figure 6-4. The framework base accepts inputs
from custom plug-ins, interfaces (how you interact with the framework), security tools, web
services, and modules (each with its own specific purpose). Under MODULES, for example,
EXPLOITS would hold the actual exploit itself (which you can play with, alter, configure, and
encapsulate as you see fit), while PAYLOADS combines the arbitrary code executed if the
exploit is successful. AUXILIARY is used to run one-off actions (like a scan), while NOPS is

https://www.offensive-security.com/metasploit-unleashed/

used mainly for buffer-overflow-type operations. REX, right there in the middle of the figure, is
the library for most tasks, such as handling sockets, protocols, and text transformations.

Figure 6-4 Metasploit

EXAM TIP Read up on Shellshock (a.k.a. Bashdoor). It’s not a web server attack per se, but
since many Internet-facing services and some web server deployments use Bash to process
certain requests, it’s worth mentioning here. Shellshock works by causing Bash to
unintentionally execute commands when the commands are concatenated (usually via CGI) to
the end of function definitions stored in the values of environment variables.

Attacking Web Applications
Web applications are another issue altogether, although many of the same attacks and lines of
reasoning will bleed over here from the web server side. As a matter of fact, a good three
quarters of the official courseware chapter devoted to web applications is a near rewrite of the
web server chapter. However, there is some good stuff here you’ll need to know and, as anyone
who’s been on a pen test team over the past few years or so will attest, you’ll probably see as
much success and as many results from your efforts against the web applications themselves than
anything else.

A web application, in terms of your CEH exam, fills an important gap between the website
front end and the actual database performing the work. Users interact with the website to affect
database or other dynamic content instances, but it’s the web app that’s actually performing the
magic. Web applications are increasingly becoming an attack vector of choice, due in large part
to their sheer numbers and the lack of standardization across the board. Many web apps are
created “in house” by the business and, as a result, usually have vulnerabilities built in because

of a lack of security oversight during their creation. This section is all about the attacks you
might see and use in hacking web applications. And don’t be surprised if there is bleed over
between web application and web server hacking—it’s all part of attaining the same goal.

Web applications are most often hacked because of inherent weaknesses built into the
program at inception. Developers might overlook known vulnerabilities, forget to patch security
flaws, or leave default passwords and accounts open for exploitation. A patient hacker can
scratch away at the application looking for these vulnerabilities, eventually finding a way in. It’s
obviously impossible to cover every single one of these vulnerabilities and the attacks that work
on them because each is dependent on the circumstances and the individual application. For now,
we’ll just concentrate efforts on a few and see where we get.

Identifying entry points is a good place to start. After all, if you can figure out where the
application is asking you for input, you’re already looking at a way in. To accomplish this, be
sure to examine cookies, headers, POST data, and encoding or encryption measures. And for
goodness sake, don’t ignore the obvious—the URL can tell you a lot (input parameters and such
are often displayed there). There are several tools that can help in identifying your entry points,
including WebScarab, HTTPrint, and Burp Suite.

Identifying function and technology on the server side helps greatly as well. You can
sometimes browse through URLs and get a good idea of server makeup, form, and function. For
example, consider the following URL:

https://anybiz.com/agents.aspx?
name=ex%50clients&isActive=0&inDate=20%2F11%2F2012&stopDate=20%2F05%2F2013&showBy=name

The platform is shown easily enough (aspx), and we can even see a couple column headers from
the back-end database (inDate, stopDate, and name). Error messages and session tokens can also
provide valuable information on server-side technology, if you’re paying attention. A really good
way to get this done is mirroring, which provides you with all the time you need on a local copy
to check things out. You won’t be able to get actual code, but it will give you time to figure out
the best way into the real site for future analysis.

NOTE Heard of Web 2.0 yet? No, it’s not another Internet speak for “exponentially intelligent
people,” nor does it refer to any technical specification update. It simply refers to a somewhat
different method of creating websites and applications: while 1.0 relies on static HTML, 2.0 uses
“dynamic” web pages. Because they’re dynamic in nature, 2.0 apps allow users to upload and
download to a site simultaneously, which provides much better infrastructure for social media
and other user participation efforts. Per ECC, because Web 2.0 apps provide for more dynamic
user participation, they also offer more attack surface.

Application Attacks
If you haven’t seen the official courseware for CEH study, it’s a nightmare. It’s delivered within
the “Aspen” learning systems in EC-Council, and is available in “downloadable” PDFs. The

https://anybiz.com/agents.aspx?name=ex%50clients&isActive=0&inDate=20%2F11%2F2012&stopDate=20%2F05%2F2013&showBy=name

PDF files are locked—you can’t select and copy anything to help improve your own study—and
the built-in protections prevent screen capture software from even giving you a shot at reviewing
things later. Add to it the fact that the site forces constant authentication challenges and, wow, it
can get frustrating. Each chapter in the guide is nothing but slides—the same slides used in
ECC’s official CEH class—covering everything ECC wants you to know as an ethical hacker.
The web supplication chapter within this insanity is gigantic. When you consider there is an
additional, separate chapter for injection attacks (SQL), with its own giant page count, you can
see that this can get out of hand pretty quickly.

Why am I boring you with this? Mainly as a warning: as I said way back in Chapter 1, this
information updates and changes a lot, so be prepared—you’re going to need to practice this
stuff as much as possible, and you’ll probably see one or two new items on your exam we may
not have even heard of as of this writing. We’ll do the best we can to cover everything we know
about today, and hope anything new popping up will be so evident you’ll come across it during
practice and your own research. Thankfully, we have a couple things going for us. First is, I
know what I’m doing (at least I think I do) and will get the relevant information out to you—not
to mention OWASP has tons of free stuff out on their site for us to review on given attacks.
Second is, most of this section is very similar to the information we covered on web server
attacks and security in the first half of this chapter. We’ll hit these in rapid fire format, so get
ready!

Injection Attacks Not Named SQL
One successful web application attack deals with injecting malicious commands into the input
string. The objective is much like that of the parameter-tampering methods discussed earlier in
this chapter: to pass exploit code to the server through poorly designed input validation in the
application. This can occur using a variety of different methods, including file injection (where
the attacker injects a pointer in the web form input to an exploit hosted on a remote site),
command injection (where the attacker injects commands into the form fields instead of the
expected test entry), and shell injection (where the attacker attempts to gain shell access using
Java or other functions).

LDAP injection is an attack that exploits applications that construct LDAP statements based
on user input. To be more specific, it exploits nonvalidated web input that passes LDAP queries.
In other words, if a web application takes whatever is entered into the form field and passes it
directly as an LDAP query, an attacker can inject code to do all kinds of things. You’d think this
kind of thing could never happen, but you’d be surprised just how lazy a lot of code guys are.

For example, suppose a web application allows managers to pull information about their
projects and employees by logging in, setting permissions, and providing answers to queries
based on those permissions. Manager Matt logs in every morning to check on his folks by
entering his username and password into two boxes on a form, and his login is parsed into an
LDAP query (to validate who he is). The LDAP query would look something like

which basically says, “Check to see whether the username Matt matches the password MyPwd!
If it’s valid, login is successful and off he goes.”

In an LDAP injection attack, the attacker changes what’s entered into the form field by adding
the characters)(&) after the username and then providing any password (see Figure 6-5). Because

the & symbol ends the query, only the first part—“check to see whether Matt is a valid user”—is
processed and, therefore, any password will work. The LDAP query looks like this in the attack:

Figure 6-5 LDAP injection

This basically says, “Check to see whether you have a user named Matt. If he’s there, cool—let’s
just let him do whatever he wants.” While there’s a lot of other things you can do with this, I
think the point is made: don’t discount something even this simple because you never know what
you’ll be able to find with it.

EXAM TIP SOAP injection is another related attack. Simple Object Access Protocol (SOAP)
is designed to exchange structured information in web services in computer networks and uses
XML to format information. You can inject malicious query strings (much like SQL injection, as
a matter of fact) that may allow you to bypass authentication and access databases behind the
scenes. SOAP is compatible with HTTP and SMTP, and messages are typically “one way” in
nature.

Buffer Overflow
A buffer overflow attack is one that should never be successful in modern technology but still
remains a great weapon in your arsenal because of poorly designed applications. To truly use this

attack, you’re probably going to have to become a good computer programmer, which I’m sure
just excites you to no end. The good news on this, though, is twofold. First, many Metasploit-like
tools make this much easier for you to attempt. Second, you only need to know the basic
mechanics of the attack for your CEH exam, and it’s barely mentioned anymore. In the real
world, the best hackers are usually exceptional programmers—it’s just a fact of life. As far as
your exam is concerned, you need know only a few things to succeed.

NOTE Some buffer overflow attacks are also referred to as smashing the stack. The name
came from a presentation that has become one of the founding documents of hacking, “Smashing
the Stack for Fun and Profit,” by Aleph One (for Phrack 49). The original write-up can be found
in numerous places with any Internet search engine and is worth a read.

The most basic definition of a buffer overflow is an attempt to write more data into an
application’s prebuilt buffer area in order to overwrite adjacent memory, execute code, or crash a
system (application). In short, you input more data than the buffer is allocated to hold. The result
can be anything from crashing the application or machine to altering the application’s data
pointers, allowing you to run different executable code. ECC used to have several categories and
memorization terms for you in regard to buffer overflows (like stack, heap, NOP sleds, and so
on), but the latest version doesn’t seem to care much about it at all.

In addition to good coding techniques, to avoid allowing the overflow in the first place,
sometimes developers can use “canaries” or “canary words.” The idea comes from the old
mining days, when canaries were kept in cages in various places in a mine. The canary was more
susceptible to poison air and would, therefore, act as a warning to the miners. In buffer overflow
and programming parlance, canary words are known values placed between the buffer and
control data. If a buffer overflow occurs, the canary word will be altered first, triggering a halt to
the system. Tools such as StackGuard make use of this for stack protection.

NOTE All of these are memory management attacks that take advantage of how operating
systems store information. While canary words are good for test purposes, address space layout
randomization (ASLR) and data execution prevention (DEP) are extremely common mechanisms
to fight most of these attacks.

XSS
The next web application/server attack is cross-site scripting (XSS). This can get a little
confusing, but the basics of this attack revolve around website design, dynamic content, and
invalidated input data. Usually when a web form pops up, the user inputs something, and then

some script dynamically changes the appearance or behavior of the website based on what has
been entered. XSS occurs when the bad guys take advantage of that scripting (JavaScript, for
instance) and have it perform something other than the intended response.

For example, suppose instead of entering what you’re supposed to enter in a form field, you
enter an actual script. The server then does what it’s supposed to—it processes the code sent
from an authorized user. Wham! The attacker just injected malicious script within a legitimate
request and…hack city.

EXAM TIP You’ll need to know what XSS is and what you can do with it. Also, be able to
recognize that a URL such as the following is an indicator of an XSS attempt:
http://IPADDRESS/";!--"<XSS>=&{()}. Instead of the URL passing to an existing page/element
internally, it passes to the script behind the forward slash.

XSS attempts pop up all over the place in several formats. One of the classic attacks of XSS
involves getting access to “document.cookie” and sending it to a remote host. Suppose, for
example, you used the following in a form field entry instead of providing your name:

Should the app be vulnerable to XSS, the Java script entered (converted to HTML entities where
appropriate—how fun!) will be run and you can obtain cookies from users accessing the page
later. Neat!

XSS can be used to perform all kinds of badness on a target server. Can you bring a target
down with a good old DoS attack? Why not? Can I send an XSS attack via e-mail? Of course!
How about having the injected script remain permanently on the target server (like in a database,
message forum, visitor log, or comment field)? Please—that one even has a name (stored XSS,
a.k.a. persistent or Type-I XSS). It can also be used to upload malicious code to users connected
to the server, to send pop-up messages to users, and to steal virtually anything. That PHP session
ID that identifies the user to the website stolen through an XSS? Well, the attacker has it now
and can masquerade as the user all day, plugged into a session.

NOTE The XSSed project (www.xssed.com), created in 2007, and is an excellent resource on
all things related to cross-site scripting vulnerabilities. Per the site, it is the largest online archive
of XSS vulnerable websites and was started to increase security and privacy on the web.
Professional and amateur webmasters and web developers are notified about any cross-site
scripting vulnerability affecting their online properties. May definitely be worth checking out!

http://www.xssed.com

XSS attacks can vary by application and by browser and can range from nuisance to severe
impact, depending on what the attacker chooses to do. Thankfully ECC doesn’t bog down the
exam with tons of scripting knowledge. XSS question will be somewhat general in nature,
although you will occasionally see a scenario-type question involving a diagram and a script
input.

Cross-Site Request Forgery (CSRF)
A cross-site request forgery (CSRF) is a fun attack that forces an end user to execute unwanted
actions on a web application in which they’re currently authenticated. OWASP has such a cool
explanation of this attack from their free documentation, so I thought we’d start there:

CSRF tricks the victim into submitting a malicious request. It inherits the identity and
privileges of the victim to perform an undesired function on the victim’s behalf. For most
sites, browser requests automatically include any credentials associated with the site, such as
the user’s session cookie, IP address, Windows domain credentials, and so forth. Therefore,
if the user is currently authenticated to the site, the site will have no way to distinguish
between the forged request sent by the victim and a legitimate request sent by the victim. If
the victim is a normal user, a successful CSRF attack can force the user to perform state
changing requests like transferring funds, changing their email address, and so forth. If the
victim is an administrative account, CSRF can compromise the entire web application.

EXAM TIP A session fixation attack is somewhat similar to CSRF. The attacker logs in to a
legitimate site and pulls a session ID, and then sends an e-mail with a link containing the fixed
session ID. When the user clicks it and logs in to the same legitimate site, the hacker can now log
in and run with the user’s credentials.

Imagine if you added a little social engineering to the mix. Just send a link via e-mail or chat,
and—boom!—you can now get the users of a web application into executing whatever actions
you choose. Check out Figure 6-6 for a visual of the whole thing in action.

Figure 6-6 CSRF

If you’re a security-minded person and are wondering what you can do about this, relax—the
answer is right here. CSRF attacks can be mitigated by configuring a web server to send random
challenge tokens. If every user request includes the challenge token, it becomes easy to spot
illegitimate requests not initiated by the user.

Cookies
A cookie is a small text-based file that is stored on your system for use by the web server the
next time you log in. It can contain information such as authentication details, site preferences,
shopping cart contents, and session details. Cookies are sent in the header of an HTTP response
from a web server and may or may not have an expiration date. The original intent was to
provide a continuous, stable web view for customers and to make things easier for return surfers.

The problem, of course, is that seemingly everything designed to make our technological life
easier can be co-opted for evil. Cookies can definitely prove valuable to the hacker, and a tool
such as the Cookie Editor add-on for Firefox opens up parameter-tampering opportunities.
Cookies themselves aren’t executable; they’re just text files, after all. However, they can be
manipulated to use as spyware (cookies can be used to track computer activity), change pricing
options, and even authenticate to a server. For example, an entry in a cookie reading
“ADMIN=no” can be changed to “ADMIN=yes,” thus providing administrative access to site
controls.

NOTE Ever heard of a CAPTCHA? Of course you have—you’ve filled in the little numbers
verifying you’re a real person before. Did you know those can be hijacked as well? CAPTCHAs
can manipulate all sorts of server-side nonsense when abused.

Passwords can sometimes also be stored in cookies, and although it’s a horrible practice, it’s
still fairly prevalent. Access to a target’s physical machine and the use of a tool to view the
cookies stored on it (such as Karen’s Cookie Viewer) might give you access to passwords the
user has for various websites. And, if they are like most people, it’s nearly a guarantee that the
password you just lifted is being reused on another site or account. Additionally, don’t be thrown
off by cookies with long, seemingly senseless text strings beside the user ID sections. On a few,
you may be able to run them through a Unicode (or Base64) decoder to reveal the user’s
password for that site.

SQL Injection
Because this is such an important topic in the world of hacking and web security, we need to set
some ground rules and expectations first. SQL injection is, by far, the most common and most
successful injection attack technique in the world. Remember OWASP’s Top 10? Injection was
at the top of the list, and SQL injection is at the top of that list. It pops up nearly everywhere—
the next big credit card theft story you read will, most likely, be because of a SQL injection
attack of some sort. And, of course, ECC dedicated an entire chapter of official courseware study
to the topic. All of which should lead you to believe, then, that mastering SQL is a skill you will
want to gain as a successful ethical hacker. And although that is true, it’s not what we’re going to
do here.

Becoming a SQL master is not what this book is about, nor do I have the space or time to
cover every facet of it—or even most of facets, for that matter. As a matter of fact, even ECC’s
coverage of the topic is largely…pedestrian in nature. There are lots of slides, words, samples,
and images to be sure, but most of it is repetitive for items covered elsewhere and barely grazes
the surface of what SQL is and how to use it.

My job here is twofold. Primarily it’s to help you pass the test, and secondarily it’s to assist
you in becoming a true ethical hacker. You’re going to get the basics here—both for your exam
and your career—but it’s going to be just enough to whet your appetite. If you really want to
become a seasoned master at this, study SQL and learn all you can about how it works. As I’ve
said repeatedly already, a single book simply can’t cover it all. You’ll be a better hacker, and a
better IT professional all around, by doing a little research on your own and practicing. Now, on
with the show.

Structured Query Language (SQL) is a computer language designed for managing data in a
relational database system. The relational database is simply a collection of tables (consisting of
rows, which hold individual fields containing data) tied together using some common field (key)
that you can update and query. Each table has a name given to it that is referenced when you
perform queries or updates. SQL comes into play when you are adding, deleting, moving,
updating, or viewing the data in those tables and fields. It’s not too overwhelmingly complicated
to do the simple stuff, but the SQL queries can, eventually, get pretty complex.

NOTE SQL encompasses three standard areas of data handling—definition (DDL),

manipulation (DML), and control (DCL). Most SQL injections are within the DML part of SQL.

For example, let’s consider the SELECT command. SELECT is used to choose the data you’d
like to perform an action on. The statement starts, amazingly enough, with the word SELECT,
followed by innumerable options and elements to define what you want to act upon and what that
action will be. For example, a command of

says, “Database, I’d like you to pull all records from the table named Orders.” Tweaked a little,
you can get more granular. For example,

will pull everything in the order ID, first name, and last name columns from the table named
Orders. When you start adding other command options such as WHERE (setting up a conditional
statement), LIKE (defining a condition where something is similar to a given variable), AND,
and OR (self-explanatory), you can get even crazier. For example,

will pull all orders made by some dude with the last name of Walker.
In addition to SELECT, there are a bunch of other options and commands of great interest to a

hacker. For example, can you—with no other SQL experience or knowledge—figure out what
the command DROP TABLE tablename does? Any of you who didn’t respond with “Delete the
table tablename from the database” should immediately start taking Ginkoba to improve your
cognitive and deductive skills. How about the commands INSERT and UPDATE? As you can
see, SQL isn’t rocket science. It is, though, powerful and commands a lot of respect. Researching
command language syntax for everything SQL can offer will pay off dividends in your career—
trust me on this.

So, you know a little about SQL databases, and have a basic understanding of how to craft
query commands, but the big question is, “So what? Why is this so important?” In answer, pause
for just a moment and consider where a database might reside in a web server/application arena
you’re trying to hack and what it’s there to do. The front end takes input from the user through
the web server and passes it through an application or form to the database to actually adjust the
data. And what, pray tell, is on this database? Maybe items such as credit card account numbers,
personally identifiable information, and account numbers and passwords don’t interest you, but I
promise you can find all of that and more in a web-serviced database.

NOTE Just so you know, the semicolon doesn’t necessarily have to be at the end of every
statement; however, some platforms freak out without it. Add it to be safe.

SQL injection occurs when the attacker injects SQL queries directly into the input form.

Properly constructed, the SQL command bypasses the intent of the front end and executes
directly on the SQL database. For example, consider Figure 6-7 and the sample SQL shown
there. The form is constructed to accept a user ID and password from the user. These entries are
placed into a SQL query that says, “Please compare the username given to the password in its
associated field. If this username matches this password, allow access.” What we injected
changed the original query to say, “You can compare whatever you’d like, but 1=1 is a true
statement, so allow access please.”

Figure 6-7 SQL injection

NOTE You can also try SQL injection up in the URL itself. For example, you can try to pass
authentication credentials by changing the URL to read something like this:
www.example.com/?login='OR1=1--.

Of course, knowing this isn’t any good to you if you can’t figure out whether the target site is
vulnerable to SQL injection in the first place. To find out, check your target for a web login
page, and instead of entering what’s asked at the web form, simply try a single quote (') and see
what kind of error message, if any, you receive. If that doesn’t work, try entering anything'or
1=1- and see what you get. If you receive an error message like the one shown in Figure 6-8,
you’re more than likely looking at a site vulnerable to SQL injection.

http://www.example.com/?login='OR1=1--

Figure 6-8 SQL error message

Most developers are familiar with this little SQL “test,” and lots of things have been done to
prevent its use. Many C++ and .NET applications now simply explode with errors when they are
sent a single quote (or some variant thereof) and other special characters, and this input never
even gets processed by the application. Another effort involves the so-called magic quotes in
Apache, which filters out (escape) the characters before the application ever sees them. Of
course, “fuzzing attack” tools such as Burp can make use of the error messaging to point out the
underlying potential vulnerabilities on the system.

NOTE Fuzz testing involves inputting bunches of random data into a target (a site, an
application, anything) to see what will happen. Designers work on code for data inputs they
expect a customer to input; however, whether intentionally or not, input data not even close to
what’s expected may be ingested. While we mention it here in terms of SQL injection, fuzzing is
used on tons of different stuff.

To see SQL in action, consider a website that has a “Forgot your password? Click here and
we’ll send it to you” message. After clicking the button, you get a pop-up window asking you to
insert your e-mail address. You type it in and press ENTER, and your password is e-mailed to your
account on file. Well, what if you send a SQL command in the form instead and ask the database
to create (INSERT) a new record in the user and password table just for you? The command

says to the database, “Database, you have a table there named cust. I think that probably stands
for customers. So if you would, please enter into the fields labeled Email, Password, Userid,
FirstName, and LastName these new values I’m supplying for you. Thank you, and hack ya
later.”

For that matter, if you’re at a site requiring login, why not just try bypassing the

authentication altogether? Try logging in using SQL statements. For example,

might be beneficial. You can also try the old standby

or some variation thereof, such as

or

In any case, you can find bunches of these types of SQL strings to try on the Internet. One
cautionary note, though: brute-forcing SQL this way isn’t the quietest means of gaining access. If
you’re banging away with 10,000 variations of a single open quote, you’re going to get noticed.

There are tons of SQL injection examples and just as many names given for the attacks. We
can’t cover them all here, but EC-Council was kind enough to split all of them into three main
categories for us:

• In-band SQL injection This is SQL injection where the attacker is using the same
communication channel to perform and retrieve the results of the attack. This is the most
commonly used type. Examples are Union Query attacks (the UNION command allows
you to join together SELECT queries; for example, SELECT fname,lname FROM users
WHERE id=$id UNION ALL SELECT socialsecuritynumber,1 FROM secretstuff;
combines a relatively harmless query with one that’s a little more…useful), error-based
(the objective is to purposely enter poorly constructed statements in an effort to get the
database to respond with table names and other information in its error messages),
tautology (an overly complex term used to describe the behavior of a database system
when deciding whether a statement is true; because user IDs and passwords are often
compared and the “true” measure allows access, if you trick the database by providing
something that is already true [1 does, indeed, equal 1], then you can sneak by), and end-
of-line/inline comments.

• Out-of-band SQL injection Contrary to in-band, this type of SQL injection uses
different communication channels for the attack and results. It’s also more difficult to pull
off.

• Blind/inferential This type occurs when the attacker knows the database is susceptible
to injection, but the error messages and screen returns don’t come back to the attacker (not
to mention results are oftentimes Boolean in return). Because there’s a lot of guesswork
and trial and error, this attack takes a long while to pull off.

EXAM TIP Another in-band attack is known as “piggybacking.” The idea is simple—just add

your malicious request on the back of a legitimate one. Also, as an aside, please keep in mind
that anything other than basic SQL will have some significant semantic differences, so always
Google the database version you’re trying.

As always, you can peck around with this stuff and learn it manually, or you can take
advantage of tools already created to make your job easier. Sqlmap and sqlninja are both
automated scanners designed to look specifically for injection vulnerabilities. Another one I’ve
seen in play is called Havij, which allows enumeration, code execution on the target, file system
manipulation, and other madness over SQL connections. SQLBrute is a tool that, amazingly
enough, allows you to blast through predefined SQL injection queries against a target. Others
include Pangolin, SQLExec, Absinthe, and BobCat.

NOTE Protection against SQL injection usually comes down to security-minded web and
database design in the first place. However, you can make use of tools and signatures to at least
monitor for attempts; for one example, you can check the Snort signatures for prebuilt SQL rules
and then block or monitor for attempts using the signatures.

HTTP Attack
Another neat little attack is called HTTP response splitting. The attack works by adding header
response data to an input field so that the server splits the response in a couple directions. If it
works, the attacker controls the content of the second header, which can be used for any number
of things—like redirecting the user to a malicious site the attacker runs. OWASP calls HTTP
response splitting “a means to an end, not an end in itself,” because the attack is designed to
allow other attacks (through the second header content) to work.

One final thought on web application testing is that it isn’t actually a hack at all, but it sure is
productive. A common method of security testing (hacking) a web application is to simply try
using it in a manner in which it wasn’t intended to be used. This isn’t applying some groovy
hacker tool or scripting code to inject through some James Bond type of ploy; it’s just trying
different things with an application—sometimes even by accident. As many a tester will say,
with a chuckle in his voice, “It’s not a hack; it’s a feature.”

Sometimes This Is Depressing
Oftentimes in writing, I get into a zone and just excitedly start pounding away on the
keyboard—excitedly looking up information on how something works or reading about a cool
new tool or option for us to use. But every once in a while, I start reading things and get really
bummed out over the seeming futility of my chosen profession. The raw numbers of what is
stacked against us are downright terrifying.

For example, did you know that according to Google’s own website security report there
was a 32 percent increase in the number of successful website attacks in 2016? A 32 percent

increase during a timeframe in which cyber security is at the forefront of the news and we’re
pumping out more security graduates and certified professionals than ever before. Even more
astounding than that is the fact that 61 percent of those web administrators had no idea the
attacks were successful. And according to a report from Imperva (a cyber security company),
half of all website visitors are bots and, of those, approximately 29 percent of all your
“visitors” are there to attack your site.

Want more? I found this little gem of a story in a ZDNET article I was reading today
(https://www.zdnet.com/article/your-website-is-under-constant-attack/): Honeynet, an
international non-profit security research organization, with help from students at Holberton
School, recently set up a honeypot to track security attacks on a cloud-based web server. The
box ran on a barebones Amazon Web Services (AWS) instance, with no services that would
(should) be useful to anybody else. It did not even have a domain name. Shortly after starting
the server, they started capturing network packets for a 24-hour period and then analyzed the
packet capture file. In a day, this unnamed, almost invisible web server was attacked more
than a quarter of a million times.

And that’s just the attackers intending to do you harm. A story from Wired.com
(https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/) will
just about bring you to tears. On a Friday afternoon in October 2016, the Internet slowed or
stopped for nearly the entire eastern United States. Dyn, a company providing a key part of
the Internet’s backbone, came under a DDoS assault the likes of which no one had ever seen
before: until then, a large DDoS attack was often considered to be 10 to 20 Gbps (gigabits per
second), while a follow-on Mirai attack against OVH hit a whopping 901 Gbps. And where
did it all come from? Who were the masterminds behind one of the world’s most sophisticated
DDoS attacks in history and what were they out to gain?

A 21-year-old Rutgers college student from suburban New Jersey and his two college-age
friends admitted their role in creating and launching “Mirai,” as the bot came to be known,
into the world. Why? To gain an advantage in the game Minecraft. Minecraft…

Think about all that for a minute. In 24 hours, a no-name, no-nothing VM in AWS was
attacked a quarter of a million times. Today, almost half your website visitors are bots
intending you ill will. And somewhere in your organization, statistically, at least one of your
systems has fallen prey to some form of attack that you’re probably completely in the dark
about. And kids using sites to DDoS opponents in video games (yes that’s real, you can
actually pay a site to DDoS some guy playing _insert-game-here_) can accidentally cripple
communications for millions of folks.

It’s enough to make you wonder how we can keep up.
But that’s the challenge, fellow security professionals. It’s our burden to bear. It’s the role

we play in making our world a better place. So during those long days of reviewing code, or
challenging ridiculous arguments in security evaluation and budget meetings, or staring at a
screen so long your eyes dry out, just remember what you’re here for. Because without
security folks at least attempting to stem the tide, we’d have all been washed away long ago.

Countermeasures
So, what’s left to do with all these attacks and such aimed at our (by design) public-facing
servers? While the attack vectors are always changing and this war will never end, there are a

https://www.zdnet.com/article/your-website-is-under-constant-attack/
http://Wired.com
https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/

few things that should be put into place to help. For example, placement of the servers is
extremely important. We discussed DMZs, zones, and firewalls earlier, and this is where that
information can be put into play. Don’t allow access into your internal network from the public,
and don’t put servers the public should be accessing in the internal network. Not only can
placement avoid attacks, but it can limit damage if your servers were to be exploited.

Keeping up with security patching is an absolute necessity. Unfortunately, even in the most
imposing of enterprise networks where you’d be certain somebody has their finger on the pulse
of patching, this just gets overlooked. Internal fighting over schedules, what patch might break
which application, and so on, wind up leaving servers vulnerable to attack. ECC would like to
plug MBSA (Microsoft Baseline Security Analyzer) as a good means to check for missing
patches on a Windows machine, but it’s certainly not the only one out there. Unfortunately from
a security perspective, discovering patches are missing isn’t an issue—getting them installed
often is.

Other mitigations seem like common sense. Turn off unnecessary services, ports, and
protocols. Remove outdated, unused accounts and properly configure default accounts that must
remain. Set up appropriate file and folder permissions, and disable directory listing as much as
possible. Ensure you have a means to detect attacks and to respond to them. The list goes on and
on. From a hacking perspective, it’s great that patching and other security measures are either
overlooked or flat out ignored. Remember, all you need is one opening, one crack, and your path
to success is laid out in front of you.

Chapter Review
Web organizations assist in a wide array of efforts to improve the Internet. IEFT
(https://www.ietf.org/, Internet Engineering Task Force) creates engineering documents to help
make the Internet work better from an engineering point of view. The IETF’s official documents
are published free of charge as RFCs (Requests For Comments). The World Wide Web
Consortium (W3C, https://www.w3.org) is an international community where “member
organizations, a full-time staff, and the public work together to develop Web standards.” W3C
engages in education and outreach, develops software, and serves as an open forum for
discussion about the Web.

OWASP (https://www.owasp.org, Open Web Application Security Project) is a 501(c)(3)
worldwide not-for-profit charitable organization focused on improving the security of software.
OWASP publishes reports, documents, and training efforts to assist in web security, including
the “Top 10” security issues facing web applications and servers, and WebGoat (a deliberately
insecure web application designed to teach web application security lessons). The current Top 10
list includes A1 – Injection Flaws, A2 – Broken Authentication and Session Management, A3 –
Sensitive Data Exposure, A4 – XML External Entities (XXE), A5 – Broken Access Control, A6
– Security Misconfiguration, A7 – Cross-Site Scripting (XSS), A8 – Insecure Deserialization, A9
– Using Components with Known Vulnerabilities, and A10 – Insufficient Logging and
Monitoring.

At its most basic, a web server acts like any other server you already know about; it responds
to requests from clients and provides a file or service in answer. Apache configuration is almost
always done as part of a module within special files (http.conf, for instance, can be used to set
server status), and the modules are appropriately named (mod_negotiation, for instance). Also,
almost everything questioned on IIS configuration is going to come down to privileges, and IIS

https://www.ietf.org/
https://www.w3.org
https://www.owasp.org

itself will spawn all shells as LOCAL_SYSTEM. Apache is built modularly, with a core to hold
all the “magic” and modules to perform a wide variety of functions. Additionally, because of its
open source nature, there is a huge library of publicly available add-ons to support functions and
services.

Whether it’s an Apache or an IIS server, misconfiguration of the settings is the most common
vulnerability that will be exploited. Areas of concern include error messaging, default passwords,
SSL certificates, scripts, remote administrative functions, configuration files, and services on the
machine. Settings such as properly configuring (restricting?) remote administration, eliminating
unnecessary services, and changing any default passwords or accounts are pretty obvious. The
httpd.conf file on Apache servers controls aspects including who can view the server status page
(which just so happens to contain information on the server, hosts connected, and requests being
attended to). The php.ini file is one you want to look at for verbose error messaging setting.

The tier system is something you’ll need to be aware of in network design. N-tier architecture
(a.k.a. multitier architecture) distributes processes across multiple servers. Each “tier” consists of
a single role carried out by one (or more, or even a cluster of) computer systems. Typically this is
carried out in “three-tier architecture,” with a presentation tier, logic tier, and data tier, but there
are other implementations.

An HTML entity is a way of telling the browser to display certain characters it would
otherwise look at as a tag or part of the programming itself. Examples include and <.
HTTP request methods include GET, HEAD, POST, PUT, DELETE, TRACE, and CONNECT.
Both POST and GET are client-side ideas that can be manipulated with a web proxy. While GET
is visible in a browser, POST is equally visible within a good-old Wireshark capture. An HTTP
HEAD requests headers and metadata. It works exactly like an HTTP GET, except it doesn’t
return any body information to display within your browser. An HTTP GET basically requests
data from a resource. However, HTTP GET can be used to send data as well, and when sending
data, the GET method adds the data to the URL.

A POST, on the other hand, is a much better method of submitting data to a resource for
processing. It can also be used to elicit a response, but its primary purpose is to provide data for
the server to work with. POST is generally considered safer than GET because it is not stored in
browser history or necessarily in the server logs, and it doesn’t display returned data in the URL.

There are many attack vectors regarding web servers: password attacks, denial of service, man
in the middle (sniffing), DNS poisoning (a.k.a. hijacking), and phishing. DNS amplification is an
attack manipulating recursive DNS to DoS a target. The bad guy uses a botnet to amplify DNS
answers to the target until it can’t do anything else.

Directory traversal is one form of attack that’s common and successful, at least on older
servers. In this attack, the hacker attempts to access restricted directories and execute commands
outside intended web server directories. Also known as the dot-dot-slash attack, directory
climbing, and backtracking, this attack basically sends HTTP requests asking the server to drop
back to the root directory and give access to other folders. This dot-dot-slash attack is also
known as a variant of Unicode or unvalidated input attack. Unicode is a standard for ensuring
consistent encoding and text representation and can be accepted by servers for malicious
purposes. Unvalidated input means the server has not been configured to accept only specific
input during an HTTP GET, so an attacker can craft the request to ask for command prompts, to
try administrative access passwords, and so on.

ECC sometimes likes asking about parameter or URL tampering. In short, this just involves
manipulating parameters within the URL string in hopes of modifying data, such as permissions

and elevation of privileges, prices and quantities of goods, and credentials. The trick is to simply
look at the URL and find parameters you can adjust and re-send.

Other web attacks covered by ECC are fairly self-explanatory. A misconfiguration attack
takes advantage of configuration items on the server not being configured correctly. A password
attack and an SSH brute-force attack? Exactly what they sound like. Web defacement results in
the page being…well, defaced: an attacker maliciously alters the visual appearance of the page.

Metasploit will cover lots of options for you, including exploitation of known vulnerabilities
and attacking passwords over Telnet, SSH, and HTTP. A basic Metasploit exploit module
consists of five actions: select the exploit you want to use, configure the various options within
the exploit, select a target, select the payload (that is, what you want to execute on the target
machine), and then launch the exploit. The framework base accepts inputs from custom plug-ins,
interfaces (how you interact with the framework), security tools, web services, and modules
(each with its own specific purpose).

Web 2.0 refers to a somewhat different method of creating websites and applications: while
1.0 relies on static HTML, 2.0 uses “dynamic” web pages. Because they’re dynamic in nature,
2.0 apps allow users to upload and download to a site simultaneously, which provides much
better infrastructure for social media and other user participation efforts. Per ECC, because Web
2.0 apps provide for more dynamic user participation, they also offer more attack surface.

One successful web application attack deals with injecting malicious commands into the input
string. The objective is much like that of the parameter-tampering methods discussed earlier in
this chapter: to pass exploit code to the server through poorly designed input validation in the
application. This can occur using a variety of different methods, including file injection (where
the attacker injects a pointer in the web form input to an exploit hosted on a remote site),
command injection (where the attacker injects commands into the form fields instead of the
expected test entry), and shell injection (where the attacker attempts to gain shell access using
Java or other functions).

LDAP injection is an attack that exploits applications that construct LDAP statements based
on user input. In an LDAP injection attack, the attacker changes what’s entered into the form
field by adding the characters)(&) after the username and then providing any password.

SOAP injection is another related attack. Simple Object Access Protocol (SOAP) is designed
to exchange structured information in web services in computer networks and uses XML to
format information. You can inject malicious query strings (much like SQL injection, as a matter
of fact) that may allow you to bypass authentication and access databases behind the scenes.
SOAP is compatible with HTTP and SMTP, and messages are typically one way in nature.

A buffer overflow attack, also known as smashing the stack, is an attempt to write more data
into an application’s prebuilt buffer area in order to overwrite adjacent memory, execute code, or
crash a system (application).

Cross-site scripting (XSS) involves injecting a script into a form field intended for something
else. One of the classic attacks of XSS involves getting access to “document .cookie” and
sending it to a remote host.

A cross-site request forgery (CSRF) is a fun attack that forces an end user to execute
unwanted actions on a web application on which they’re currently authenticated. CSRF tricks the
victim into submitting a malicious request. It inherits the identity and privileges of the victim to
perform an undesired function on the victim’s behalf. CSRF attacks can be mitigated by
configuring a web server to send random challenge tokens. If every user request includes the
challenge token, it becomes easy to spot illegitimate requests not initiated by the user.

A session fixation attack is somewhat similar to CSRF. The attacker logs in to a legitimate
site and pulls a session ID, and then sends an e-mail with a link containing the fixed session ID.
When the user clicks it and logs in to the same legitimate site, the hacker can now log in and run
with the user’s credentials.

A cookie is a small text-based file that is stored on your system for use by the web server the
next time you log in. It can contain information such as authentication details, site preferences,
shopping cart contents, and session details. Cookies are sent in the header of an HTTP response
from a web server and may or may not have an expiration date. The original intent was to
provide a continuous, stable web view for customers and to make things easier for return surfers.

SQL injection is, by far, the most common and most successful injection attack technique in
the world. Structured Query Language (SQL) is a computer language designed for managing
data in a relational database system. The relational database is simply a collection of tables
(consisting of rows, which hold individual fields containing data) tied together using some
common field (key) that you can update and query. Each table has a name given to it that is
referenced when you perform queries or updates. SQL comes into play when you are adding,
deleting, moving, updating, or viewing the data in those tables and fields.

SQL queries generally begin with the SELECT command. SELECT is used to choose the data
you’d like to perform an action on. In addition to SELECT, there are several additional options
and commands of great interest to a hacker. For example, DROP TABLE tablename will delete
the table tablename from the database. INSERT and UPDATE are also easy to understand.

SQL injection occurs when the attacker injects SQL queries directly into the input form.
Properly constructed, the SQL command bypasses the intent of the front end and executes
directly on the SQL database. To find out whether a site is susceptible to SQL injection, check
your target for a web login page, and instead of entering what’s asked for on the web form,
simply try a single quote (') and see what kind of error message, if any, you receive. If that
doesn’t work, try entering anything'or 1=1- and see what you get. The attack names and
definitions for SQL are union query, tautology, blind SQL injection, and error-based SQL
injection.

Another neat little attack is called HTTP response splitting. The attack works by adding
header response data to an input field so the server splits the response in a couple directions. If it
works, the attacker controls the content of the second header, which can be used for any number
of things—like redirecting the user to a malicious site the attacker runs.

A common method of security testing (hacking) a web application is to simply try using it in a
manner in which it wasn’t intended to be used.

Countermeasures for web server and application attacks include correct placement of the
servers and maintaining a strong patch management effort. Others include turning off
unnecessary services, ports, and protocols; removing outdated, unused accounts and properly
configuring default accounts that must remain; setting up appropriate file and folder permissions
and disabling directory listing as much as possible; and ensuring you have a means to detect
attacks and to respond to them.

Sqlmap, Havij, and sqlninja are all automated scanners designed to look specifically for
injection vulnerabilities. SQLBrute is a tool that allows you to blast through predefined SQL
injection queries against a target. Others tools include Pangolin, SQLExec, Absinthe, and
BobCat.

Questions
1. You are examining log files and notice several connection attempts to a hosted web server.

Many attempts appear as such:

What type of attack is in use?

A. SQL injection
B. Unicode parameter tampering
C. Directory traversal
D. Cross-site scripting

2. The accounting department of a business notices several orders that seem to have been
made erroneously. In researching the concern, you discover it appears the prices of items
on several web orders do not match the listed prices on the public site. You verify the web
server and the ordering database do not seem to have been compromised. Additionally, no
alerts have displayed in the Snort logs concerning a possible attack on the web application.
Which of the following might explain the attack in play?
A. The attacker has copied the source code to his machine and altered hidden fields to

modify the purchase price of the items.
B. The attacker has used SQL injection to update the database to reflect new prices for

the items.
C. The attacker has taken advantage of a server-side include that altered the price.
D. The attacker used Metasploit to take control of the web application.

3. A pen test team member uses the following entry at the command line:

Which of the following is true regarding the intent of the command?

A. The team member is attempting to see which HTTP methods are supported by
somesystem.com.

B. The team member is attempting XSS against somesystem.com.
C. The team member is attempting HTTP response splitting against somesystem.com.
D. The team member is attempting to site-mirror somesystem.com.

4. You are examining IDS logs and come across the following entry:

What can you infer from this log entry?

A. The attacker, using address 192.168.119.56, is attempting to connect to 64.118.55.64
using a DNS port.

B. The attacker, using address 64.118.55.64, is attempting a directory traversal attack.
C. The attacker is attempting a known SQL attack against 192.168.119.56.
D. The attacker is attempting a buffer overflow against 192.168.119.56.

http://somesystem.com
http://somesystem.com
http://somesystem.com
http://somesystem.com

5. Which of the following would be the best protection against XSS attacks?
A. Invest in top-of-the-line firewalls.
B. Perform vulnerability scans against your systems.
C. Configure input validation on your systems.
D. Have a pen test performed against your systems.

6. Which of the following is true regarding n-tier architecture?
A. Each tier must communicate openly with every other tier.
B. N-tier always consists of presentation, logic, and data tiers.
C. N-tier is usually implemented on one server.
D. N-tier allows each tier to be configured and modified independently.

7. Which character is the best choice to start a SQL injection attempt?
A. Colon
B. Semicolon
C. Double quote
D. Single quote

8. Which of the following is a true statement?
A. Configuring the web server to send random challenge tokens is the best mitigation for

XSS attacks.
B. Configuring the web server to send random challenge tokens is the best mitigation for

buffer overflow attacks.
C. Configuring the web server to send random challenge tokens is the best mitigation for

parameter manipulation attacks.
D. Configuring the web server to send random challenge tokens is the best mitigation for

CSRF attacks.
9. Which of the following is a true statement?

A. SOAP cannot bypass a firewall.
B. SOAP encrypts messages using HTTP methods.
C. SOAP is compatible with HTTP and SMTP.
D. SOAP messages are usually bidirectional.

10. An attacker inputs the following into the Search text box on an entry form:

The attacker then clicks the Search button and a pop-up appears stating, “It Worked.”
What can you infer from this?

A. The site is vulnerable to buffer overflow.
B. The site is vulnerable to SQL injection.
C. The site is vulnerable to parameter tampering.

D. The site is vulnerable to XSS.
11. SOAP is used to package and exchange information for web services. What does SOAP

use to format this information?
A. XML
B. HTML
C. HTTP
D. Unicode

12. A security administrator monitoring logs comes across a user login attempt that reads
UserJoe)(&). What can you infer from this username login attempt?
A. The attacker is attempting SQL injection.
B. The attacker is attempting LDAP injection.
C. The attacker is attempting SOAP injection.
D. The attacker is attempting directory traversal.

13. A security administrator sets the HttpOnly flag in cookies. Which of the following is he
most likely attempting to mitigate against?
A. CSRF
B. CSSP
C. XSS
D. Buffer overflow
E. SQL injection

14. Your organization is deploying a new web-based software package requiring application
and database support. The department has agreed on a three-server approach to make the
service accessible from the Internet. Of the following choices, which would be the best
option for server placement?
A. A web, application, and database server on the internal network only
B. A web, application, and database server facing the Internet
C. A web server facing the Internet, and application and database server on the internal

network
D. An application and database server facing the Internet, with a web server internal

Answers
1. C. This connection is attempting to traverse the directory from the Inetpub folders to a

command shell for the attacker. Instead of dot-dot-slash, Unicode is used in this example
to bypass potential IDS signatures.

2. A. In this case, because the logs and IDSs show no direct attack, it’s most likely the
attacker has copied the source code directly to his machine and altered the hidden “price”
fields on the order form. All other types of attack would have, in some form or fashion,
shown themselves easily.

3. A. The http-methods script tests a target to see what HTTP methods are supported (by

sending an HTTP OPTIONS request). Why would an attacker do this? If you know what
GET, POST and PUT do, then you know the answer to this question already.

4. D. The log file shows that the NOP sled signature is being used against 192.168.119.56.
There is no indication in the log file about SQL or directory traversal.

5. C. “Best” is always a tricky word. In this case, configuring server-side operations to
validate what’s being put in the input field is by far the best mitigation. Could vulnerability
scans and pen tests tell you something is wrong? Sure, but by themselves they don’t do
anything to protect you.

6. D. While usually implemented in three tiers, n-tier simply means you have three or more
independently monitored, managed, and maintained collection of servers, each providing a
specific service or tasking.

7. D. The single quote should begin SQL injection attempts, even though in many database
systems it’s not always an absolute.

8. D. The requests from the bad guy masquerading with your session ID through your
browser can be largely stopped by making sure each request has a challenge token—if the
server gets one without a token, it’s deemed bad and dropped.

9. C. SOAP is compatible with HTTP and SMTP, and usually the messages are “one way” in
nature.

10. D. This indicates a cross-site scripting vulnerability.
11. A. SOAP formats its information exchange in XML.
12. B. The)(&) indicates an LDAP injection attempt.
13. C. Of the answers provided, XSS is the only one that makes sense. This setting prevents

cookies from being accessible by a client-side script.
14. C. Of the choices provided and with no other data, C is the best option. You have to have

the web server available for clients to access, but your “back-end” processes should be
internal if at all possible.

CHAPTER 7
Wireless Network Hacking

In this chapter, you will
• Describe wireless network architecture and terminology
• Identify wireless network types and forms of authentication
• Describe wireless encryption algorithms
• Identify wireless hacking methods and tools

Part of my Capstone project for college was to interview a C-level manager. Being as I was in
the Air Force and stationed in Germany, that seemed a tall task for me, but I was successful in
convincing the staff that interviewing the communications commander would be sufficient. After
some back and forth in scheduling, I got an interview with the colonel and we had a great
conversation about where networking and data communications were going, the role security
would play in the future, and a host of other topics.

One thing in particular he said stuck with me through the years. We were discussing how
folks outside IT view networking and computing both inside and outside the military. He paused
for a moment and walked over to the wall. He flipped the light switch on and off and said, “This
is where networking is going…and where it needs to be.” He went on to explain that in his view,
networking would soon be no longer a luxury but a necessity, and people would look at it and
expect it to work much like electricity—just always there and ready, something so ubiquitous
and commonplace it’s taken for granted.

Of course he was dead-on correct, and probably more so than he even knew. If you’d been
there and told us that wireless networking would fit that bill, we would’ve both probably laughed
you out of the room. Today, though, wireless is that ever-present, always-on, taken-for-granted
service we all just expect to be on and ready. Want proof? Used to be if you invited someone
over to you house for more than an hour’s stay they’d comment on your home, talk about family,
friends, and football, and just enjoy some face-to-face time. Today, I’d bet within 30 minutes
someone in their party will ask, “Hey, man, what’s your Wi-Fi password?” And half the group
will be face down in a smartphone.

Back in the early 80s, wireless networking didn’t even exist, and the idea was nearly as far-
fetched as the still-cool Star Trek communicators we watched on reruns. Wireless hacking back
then was nothing more than crossing a signal or two, talking over someone (or listening in to
them) on a telephone, or playing with CB or scanner frequencies. Today, though, we’ve got
worlds of wireless to discover and play with. For example, I’d bet your network at home is still
chirping away, even if you’re not there to use it, right? Surely you didn’t shut it all down before
you left for the day….

Not to mention our devices are now more mobile than ever, and getting progressively

smaller...and smarter. Where once mobile security concerns centered on data-at-rest encryption
and pre-shared keys for wireless connectivity on the laptop, the smartphone is unquestionably the
ruler of the airwaves today. People are using smartphones more and more as their primary
networked interaction devices, and we need to focus our attention appropriately.

Wireless and mobile computing is here to stay, and what a benefit it is to the world. The
freedom and ease of use it offers are wonderful and, truly, are changing our society day by day.
However, along with that we have to use a little caution. If data is sent over the airwaves, it can
be received over the airwaves—by anyone (maybe not in clear text, and maybe not easily
discernable, but it can be received). Therefore, we need to explore the means of securing our data
and preventing accidental spillage. And that, Dear Reader, is what this chapter is all about.

Wireless Networking
Although it’s important to remember that any discussion on wireless should include all wireless
mediums (phones, keyboards, and so on), this section is going to focus primarily on wireless data
networking. I’m not saying you should forget the rest of the wireless world—far from it. In the
real world you’ll find as many, if not more, hacking opportunities outside the actual wireless
world network. What we do want to spend the vast majority of our time on, however, are those
that are testable issues. And, because EC-Council has defined the objectives this way, we will
follow suit.

Wireless Terminology, Architecture, and Standards
A wireless network is built with the same concerns as any other media you decide to use. You
have to figure out the physical makeup of the transmitter and receiver (NIC) and how they talk to
one another. There has to be some order imposed on how clients communicate to avoid collisions
and useless chatter. There also must be rules for authentication, data transfer, size of packets, and
so on. In the wireless data world, these are all defined with standards, known as the 802.11
series. Although you probably won’t get more than a couple of questions on your exam
referencing the standards, you still need to know what they are and basic details about them.
Table 7-1 summarize these standards.

Table 7-1 Wireless Standards

EXAM TIP A few other standards you may need to know include 802.15.1 (Bluetooth),
802.15.4 (Zigbee), and 802.16 (WiMAX). Bluetooth will be covered in greater detail in Chapter
8. Zigbee is a standard for low-power, low-data-rate, and close-proximity wireless ad hoc
networks. WiMAX was written for the global development of broadband wireless metropolitan
area networks; it provides speeds up to 40 Mbps and is moving toward gigabit speed.

One other note of interest when it comes to the standards we’re chatting about here is the
method wireless networks use to encode messages onto the media in use—the airwaves. In the
wired world, we can encode using various properties of the electrical signal itself (or, if using
fiber, the light wave); however, in wireless there’s nothing physical for the machine to “touch.”
Modulation—the practice of manipulating properties of a waveform—then becomes the
encoding method of choice. There are nearly endless methods of modulating a waveform to carry
a signal, but the two you’ll need to know in wireless are OFDM and DSSS (QAM is very new
and isn’t touched on your exam).

Both orthogonal frequency-division multiplexing (OFDM) and direct-sequence spread
spectrum (DSSS) use various pieces of a waveform to carry a signal, but they go about it in
different ways, and the best way I can think to explain it comes in the form of a discussion about
your cable television set. See, the cable plugged into the back of your TV is capable of carrying
several different frequencies of waveforms, and all of them are plowing into the back of your TV
right now. You watch one of these waveforms by tuning your TV specifically to that channel.

In this oversimplified case, the cable is split into various channels, with each one carrying a
specific waveform. OFDM works in this same manner, with several waveforms simultaneously
carrying messages back and forth. In other words, the transmission media is divided into a series
of frequency bands that don’t overlap each other, and each of them can then be used to carry a

separate signal. DSSS works differently by combining all the available waveforms into a single
purpose. The entire frequency bandwidth can be used at once for the delivery of a message. Both
technologies accomplish the same goal, just in different ways.

As for a basic wireless network setup, you’re probably already well aware of how it’s done.
There are two main modes a wireless network can operate in. The first is ad hoc, which is much
like the old point-to-point networks in the good old days. In ad hoc mode, your system connects
directly to another system, as if a cable were strung between the two. Generally speaking, you
shouldn’t see ad hoc networks appearing very often, but park yourself in any open arena (such as
an airport or bus station) and see how many pop up.

Infrastructure mode is the one most networks are set up as and the one you’ll most likely be
hacking. Whereas ad hoc connects each system one to another, infrastructure makes use of an
access point (AP) to funnel all wireless connections through. A wireless access point is set up to
connect with a link to the outside world (usually some kind of broadband router). This is an
important consideration when you think about it—wireless devices are usually on completely
different subnets than their wired cousins. If you remember our discussion on broadcast and
collision domains, you’ll see quickly why this is important to know up front.

Clients connect to the access point using wireless network interface cards (NICs); if the
access point is within range and the device understands what it takes to connect, it is allowed
access to the network. Wireless networks can consist of a single access point or multiple ones,
thus creating overlapping “cells” and allowing a user to roam freely without losing connectivity.
This is also an important consideration when we get to generating wireless packets later in this
chapter. The client needs to “associate” with an access point first and then “disassociate” when it
moves to the next one. This dropping and reconnecting will prove vital later, trust me.

We should probably pause here for a brief introduction to a couple of terms. Keep in mind
these may not necessarily be testable items as far as EC-Council is concerned, but I think they’re
important nonetheless. When you have a single access point, its “footprint” is called a basic
service area (BSA). Communication between this single AP and its clients is known as a basic
service set (BSS). Suppose, though, you want to extend the range of your network by adding
multiple access points. You’ll need to make sure the channels are set right, and after they’re set
up, you will have created an extended service set (ESS). As a client moves from one AP in your
subnet to another, so long as you’ve configured everything correctly, the client will disassociate
from one AP and (re)associate with another seamlessly. This movement across multiple APs
within a single ESS is known as roaming. Okay, enough vocabulary. It’s time to move on.

EXAM TIP BSSID is one definition term that will trip you up. The basic service set identifier
(BSSID) is actually the MAC address of the wireless access point that is at the center of your
BSS.

Another consideration to bring up here deals with the access points and the antennas they use.
It may seem like a weird (and crazy) thing to discuss physical security concerns with wireless
networks because by design they’re accessible from anywhere in the coverage area. However,
that’s exactly the point: many people don’t consider it, and it winds up costing them dearly. Most

standard APs use an omnidirectional antenna, which means the signal emanates from the antenna
in equal strength 360 degrees from the source. Well, it’s at least close to 360 degrees anyway,
since the farther away you get vertically from the signal, the exponentially worse the signal
reception gets. But if you were to, say, install your AP in the corner of a building, three-quarters
of your signal strength is lost to the parking lot. And the guy sitting out in the car hacking your
network will be very pleased by this.

EXAM TIP A spectrum analyzer can be used to verify wireless quality, detect rogue access
points, and detect various attacks against your network.

A better option may be to use a directional antenna, also sometimes known as a Yagi antenna.
Unidirectional antennas allow you to focus the signal in a specific direction, which greatly
increases signal strength and distance. The benefit is obvious in protecting against the guy in the
parking lot. However, keep in mind this signal is now greatly increased in strength and distance,
so you may find that the guy will simply drive from his corner parking spot close to the AP to the
other side of the building, where you’re blasting wireless out the windows. The point is, wireless
network design needs to take into account not only the type of antenna used but where it is
placed and what is set up to contain or corral the signal. The last thing you want is for some kid
with a Pringles can a block away tapping into your network. The so-called cantenna is very real
and can boost signals amazingly. Check out Figure 7-1 for some antenna examples.

Figure 7-1 Wireless antennas

NOTE A Yagi antenna is merely a type of directional antenna. However, its name is used for
certain directional antennas similar to how “Coke” is used a lot in the South to indicate soda in
general.

Other antennas you can use are dipole and parabolic grid. Dipole antennas have, quite
obviously, two signal “towers” and work omnidirectionally. Parabolic grid antennas are one type
of directional antenna and work a lot like satellite dishes. They can have phenomenal range (up
to 10 miles due to their power output) but aren’t in use much. Another directional antenna type is
the loop antenna, which looks like a circle. And, in case you were wondering, a Pringles can will
work as a directional antenna. Google it and you’ll see what I mean.

So, you’ve installed a wireless access point and created a network for clients to connect to. To
identify this network to clients who may be interested in joining, you’ll need to assign a service
set identifier (SSID). The SSID is not a password and provides no security at all for your
network. It is simply a text word (32 characters or less) that identifies your wireless network.

SSIDs are broadcast by default and are easily obtainable even if you try to turn off the broadcast
(in an effort dubbed “SSID cloaking”). The SSID is part of the header on every packet, so its
discovery by a determined attacker is a given, and securing it is virtually a moot point.

EXAM TIP If you see a question on wireless security, you can ignore any answer with SSID
in it. Remember that SSIDs do nothing for security, other than identify which network you’re on.
Encryption standards, such as WEP and WPA, and physical concerns, such as the placement of
APs and antennas used, are your security features.

Once the AP is up and a client comes wandering by, it’s time to authenticate so an IP address
can be pulled. Wireless authentication can happen in more than a few ways, from the simplistic
to the complicated, but for study purposes there are three main methods you should look at:
Open System Authentication, Shared Key Authentication, and Centralized Authentication (for
example, RADIUS). In Open System Authentication, a client can simply send an 802.11
authentication frame with the appropriate SSID to an AP and have it answer with a verification
frame. In Shared Key Authentication, the client would participate in a challenge/request scenario,
with the AP verifying a decrypted “key” for authentication. Both serve the purpose of proving
you belong to the network and are illustrated in Figure 7-2.

Figure 7-2 Wireless authentication methods

If you want to get really crazy, you can even tie the whole thing together with an

authentication server (RADIUS), forcing the client into an even more complicated authentication
scenario. The key here is to remember there is a difference between association and
authentication. Association is the action of a client connecting to an AP, whereas authentication
actually identifies the client before it can access anything on the network.

EXAM TIP The first time I read about “war chalking” (drawing symbols on walls and such to
indicate wireless network availability) years ago, I thought it was awesome. A neat geek-hobo
language. Now it’s quite outdated. According to ECC, supposedly someone’s still doing it,
somewhere, for some unknown reason. The symbols are, themselves, fairly easy to decipher:
parentheses back to back, as in)(, indicates an open network, but adding a key (showing it’s
locked), a dollar sign (pay-for-access), or a W (for WEP-enabled) changes the meaning.

Wireless Encryption
Lastly, after everything is set up and engineered appropriately, you’ll want to take some steps
toward security. This may seem like a laughable concept because the media is open and
accessible to anyone within range of the AP, but there are some alternatives available for
security. Some are better than others, but as the old saying goes, some security is better than
none at all.

There are a host of wireless encryption topics and definitions to cover. I briefly toyed with an
exhaustive romp through all of them but decided against it after thinking about what you really
need to know for the exam. Therefore, I’ll leave some of the “in-the-weeds” stuff for another
discussion, and many of the definitions to the glossary, and just stick with the big three here:
WEP, WPA, and WPA2.

WEP stands for Wired Equivalent Privacy and, in effect, doesn’t effectively encrypt anything.
Now I know you purists are jumping up and down screaming about WEP’s 40- to 232-bit keys,
yelling that RC4 is an encryption algorithm, and questioning whether a guy from Alabama
should even be writing a book at all. But trust me, it’s not what WEP was intended for. Yes,
“encryption” is part of the deal, but WEP was never intended to fully protect your data. It was
designed to give people using a wireless network the same level of protection someone surfing
over an Ethernet wired hub would expect: if I were on a hub, I wouldn’t expect that the guy in
the parking lot could read what I send and receive because he wouldn’t have physical access to
the wire.

NOTE There are a couple of neat notes about WEP to know. First is there are three WEP
“encryption” options. The 64-bit version uses a 40-bit key, the 128-bit version uses a 104-bit
key, and the 256-bit version uses a 232-bit key. And the second? WEP was basically created
without academic, cryptologic, or public review. Makes you wonder how it made it so far.

Now think about that for a moment—wired equivalent privacy. No minimally educated
security person walking upright and capable of picking glazed doughnuts over cake ones would
ever consider a hub secure. Granted, it’s harder than sitting out in the hallway with an antenna
and picking up signals without even entering the room, but does it really provide anything other
than a discouragement to casual browsers? Of course not, and so long as it’s implemented that
way, no one can be upset about it.

WEP uses something called an initialization vector (IV) and, per its definition, provides for
confidentiality and integrity. It calculates a 32-bit integrity check value (ICV) and appends it to
the end of the data payload and then provides a 24-bit IV, which is combined with a key to be
input into an RC4 algorithm. The “keystream” created by the algorithm is encrypted by an XOR
operation and combined with the ICV to produce “encrypted” data. Although this all sounds well
and good, it has one giant glaring flaw: it’s ridiculously easy to crack.

WEP’s initialization vectors are relatively small and, for the most part, get reused pretty
frequently. Additionally, they’re sent in clear text as part of the header. When you add this to the
fact that we all know the cipher used (RC4) and that it wasn’t ever really designed for more than
one-time usage, cracking becomes a matter of time and patience. An attacker simply needs to
generate enough packets in order to analyze the IVs and come up with the key used. This allows
him to decrypt the WEP shared key on the fly, in real time, and renders the encryption useless.

Does this mean WEP is entirely useless and should never be used? As far as your exam goes,
that answer may as well be yes, but how about in the real world? Is a WEP-protected connection
in a hotel better than the wired outlet provided to you in the room? That’s probably something
you need to think about. You may prefer the protection the WEP connection gives you over the
complete absence of anything on the wired connection. Not to mention, you don’t really know
what’s on the other end of that port. The point is that while WEP shouldn’t be considered a
secured network standard for your organization, and it will be roundly destroyed on the exam as
being worthless, there are still plenty of uses for it, and it may turn out to be the best choice for
specific situations in your adventures.

EXAM TIP Attackers can get APs to generate bunches of packets by sending disassociate
messages. These aren’t authenticated by any means, so the resulting barrage of “Please associate
with me” packets is more than enough for the attack. Another option would be to use ARP to
generate packets.

A better choice in encryption technology is Wi-Fi Protected Access (WPA) or WPA2. WPA
makes use of something called Temporal Key Integrity Protocol (TKIP), a 128-bit key, and the
client’s MAC address to accomplish much stronger encryption. The short of it is, WPA changes
the key out (hence the “temporal” part of the name) every 10,000 packets or so, instead of
sticking with one and reusing it, as WEP does. Additionally, the keys are transferred back and
forth during an Extensible Authentication Protocol (EAP) authentication session, which makes
use of a four-step handshake process to prove the client belongs to the AP, and vice versa.

WPA2 is much the same process; however, it was designed with the government and the
enterprise in mind. In something called WPA2 Enterprise, you can tie EAP or a RADIUS server

into the authentication side of WPA2, allowing you to make use of Kerberos tickets and other
offerings. But what if you just want to use it at home or on your small network and don’t want to
bother with all those additional, and costly, authentication measures? No worries, WPA2
Personal is your bag, baby. Much like other encryption offerings, you simply set up a pre-shared
key and give it only to those people you trust on your network.

A couple final notes on WPA2 include encryption and integrity. Whether Enterprise or
Personal, it uses AES for encryption, ensuring FIPS 140-2 compliance—not to mention AES is
just plain better. As for integrity, believe it or not, TKIP had some irregularities originally.
WPA2 addresses these by using something called the Cipher Block Chaining Message
Authentication Code Protocol (CCMP), which sounds really technical and awesome. What
CCMP really does is something everyone has been doing forever to ensure integrity—it simply
uses something to show the message hasn’t been altered during transit. The rest of us call them
hashes, but CCMP calls them message integrity codes (MICs), and the whole thing is done
through a process called cipher block chaining message authentication code (CBC-MAC).

Wireless Goes Gigabit
My wife and I were watching a movie the other night that was set in the early 80s. The
protagonist, a surly police officer who didn’t play by the rules (sound familiar?) was talking
to their “tech guy” who explained to him the blistering speeds he could expect out of coax
cable. I think one of the quotes was something akin to, “Can you imagine what you could do
with 10 MEGABYTES A SECOND?!??!”

The wired world went from Kilobit to Gigabit speed seemingly overnight, and wireless is
following the same path. It wasn’t that long ago that 1.5 to 11 megabits seemed like all the
bandwidth you’d need, and 54 megabits put you at the top of your game. Now with 802.11an
you’re rocking 1.3 Gbs between your smartphones, game consoles, and streaming video on
every screen in the house—but even that is strained now. But never fear, the FCC is here!

The Federal Communications Commission has now proposed opening up new wireless
spectrum that will allow for Gigabit Wi-Fi. The proposal is to open up the 5925 to 7125 MHz
spectrum, commonly referred to as the 6 gigahertz band, and while not yet “public,” the
decision seems a bit of a foregone conclusion. Commissioner Jessica Rosenworcel recently
said, “It also offers an opportunity to introduce wider channels—channels that will be able to
take advantage of the new 802.11ax standard (a.k.a. Wi-Fi 6) and deliver speeds even faster
than 1 gigabit per second. In other words, this is how we develop next-generation Gigabit Wi-
Fi.”

Other wireless bands are also being looked at, and there seems to be a lot of discussion
about tying specific device types to specific bands (some products don’t need the same
bandwidth speeds as your teenage gamer), but the point is wireless is getting better, faster,
and more reliable every day. And that’s a really good thing. Because my refrigerator needs a
solid connection to order milk when I start running low regardless of how many devices I’m
streaming the latest Avengers movie over....

NOTE Do you know what happens when you set up extraordinary security measures for all
your network resources but then hire someone who doesn’t give a rip about any of it? Usually
that person does something stupid and puts everything you worked so hard to protect at risk. I’m
not saying setting up WPA2 on your home router is necessarily a bad thing to do, but if you give
your network key to all your daughter’s friends to put in their cell phones for their overnight
visit, aren’t you just asking for trouble?

So, there you have it. WEP, WPA, and WPA2 are your wireless encryption measures. WEP is
relatively easy to crack and according to your exam probably should never be used. However, on
your home network you may be okay—especially if you take other, common sense, (and dare I
say it) defense-in-depth measures to protect yourself. WPA and WPA2 are much better choices
from an overall security standpoint. The answer to the question “How do you crack WPA2?” is,
unfortunately, not very easily. In fact, if the password in use is long or particularly complex, it’s
improbable you can get it done in any reasonable timeframe at all since the key has absolutely
nothing to do with the password. It’s not completely impossible; it’s just really tough with AES.
The only real way to accomplish this is to use a tool that creates the crypto key based on the
password (which, of course, you don’t have). You must capture the authentication handshake
used in WPA2 and attempt to crack the pair master key (PMK) from inside (tools such as
Aircrack and KisMAC, a macOS tool, can help with this), but it’s just not that easy to do. A
comparison of WEP, WPA, and WPA2 is shown in Table 7-2.

Table 7-2 Wireless Encryption Comparison

Wireless Hacking
When it comes to hacking wireless networks, the truly great news is you may not have much of it
to do. Many networks have no security configured at all, and even those that do have security
enabled don’t have it configured correctly. According to studies recently published by the likes
of the International Telecommunications Union (ITU) and other equally impressive
organizations, more than half of all wireless networks don’t have any security configured at all,
and of the remainder, nearly half could be hacked within a matter of seconds. Granted, a large
number of those are home networks that do not represent much of a valued target for hackers;
however, the numbers for organization and business use are equally as eye-popping. If you think
that’s good news for hackers, the follow-up news is even more exciting: wireless communication
is expected to grow tenfold within the next few years. Gentlemen, and ladies, start your engines.

EXAM TIP Guess what? EC-Council has put the various threats facing wireless into five main
categories: Access Control Attacks, Integrity Attacks, Confidentiality Attacks, Availability
Attacks, and Authentication Attacks. I have no idea if they’ll put anything from this list on the
exam, but it looks…question worthy to me.

In versions past, ECC has spent a lot of time concentrating on finding wireless networks to
hack. Thankfully, at least on this one thing, they’ve recognized reality and pulled back the reins.
Spending a lot of time talking about finding wireless networks makes as much sense as talking
about how to find air. So we’re not talking about finding any wireless network—that’s too easy.
What we are hoping to cover here is how you can find the wireless network you’re looking for—
the one that’s going to get your team inside the target and provide you with access. The rest of
this is just good-to-know information.

NOTE A couple of easy ways to find wireless networks is to make use of a service such as
WIGLE (http://wigle.net) and to get a glimpse into someone’s smartphone. WIGLE users
register with the site and use NetStumbler in their cars, with an antenna and a GPS device, to
drive around and mark where wireless networks can be found. Smartphones generally retain
identifiers and connection details for networks their owners connect to.

First up in our discussion of wireless network discovery are the “war” options. No matter
which technique we’re talking about, the overall action is the same: an attacker travels around
with a Wi-Fi-enabled laptop looking for open wireless access points/networks. In war driving,
the attacker is in a car. War walking has the attacker on foot. War flying? I’m betting you could
guess it involves airplanes.

Another option in wireless network discovery is the use of a wide array of tools created for
that very purpose. In particular is the seemingly endless array of mobile-based tools available.
One such is WifiExplorer (nutsaboutnets.com). It collects info about nearby WAPs and displays
the data in five clear diagnostic views for your use. Others include WiFiFoFum
(play.google.com), OpenSignalMaps (opensignal.com), and WiFinder (play.google.com). Throw
a couple on your smartphone and check out what you can find on the wireless signals in your
house.

Before we cover the system-based tools you’ll see mentioned on your exam, it’s relevant at
this point to talk about the wireless adapter you’ll need for most of them to work. No matter how
great the tool is, if the wireless adapter can’t pull the frames out of the air in the correct manner,
all is lost. Some tools are built this way and work only with certain chipset adapters, which can
be frustrating at times.

The answer for many in wireless hacking is to invest in an AirPcap dongle
(www.cacetech.com)—a USB wireless adapter that offers several advantages as well as software

http://wigle.net
http://nutsaboutnets.com
http://play.google.com
http://opensignal.com
http://play.google.com
http://www.cacetech.com

support (see Figure 7-3). Sure, it’s expensive, but it’s worth it. In addition to capturing all data,
management, and control frames (wireless sniffing in Windows without something like this can
be maddening), it works seamlessly with Aircrack-ng and other sniffing/injection wireless
hacking applications. It also provides a useful software distribution that can be very helpful in
decrypting WEP and WPA frames. AirPcapReplay is included in this and offers the ability to
replay traffic from a captured file across the wireless network.

Figure 7-3 AirPcap USB

NOTE Want another reason to get a specially made card for wireless snooping? A big benefit
of many specially crafted cards is a rather significant boost in radio strength. Some are in the
750mW range, representing roughly three times the power you’d have with your “normal” card.
Also, many will have independent connectors for transmit and receive antennas, which makes
this all the more fun and effective.

Barring this, you may need to research and download new and different drivers for your
particular card. The madwifi project (http://madwifi-project.org) has some legacy drivers that
may help in certain situations, but you should also check Linux development websites
themselves (for drivers like ath5k and ath9k). At any rate, just keep in mind that, much like the
ability of wired adapters to use promiscuous mode for your sniffing efforts, discussed earlier in
this book, not all wireless adapters are created equal, and not all will work with your favorite
tool. Be sure to check the user guides and man pages for lists and tips on correctly configuring
your adapters for use.

NOTE Although people often expect any wireless card to do the trick, it simply won’t, and
frustration begins before they ever get to sniffing traffic, much less hacking. I have it on good
authority that, in addition to those mentioned, Ubiquiti cards (www.ubnt.com/) may be the top-
tier card in this realm.

I’ve already made mention of WIGLE (http://wigle.net) and how teams of miscreant hackers
have mapped out wireless network locations using GPS and a tool called NetStumbler (see
Figure 7-4). NetStumbler (www.netstumbler.com), the tool employed in this endeavor, can be
used for identifying poor coverage locations within an ESS, detecting interference causes, and

http://madwifi-project.org
http://www.ubnt.com/
http://wigle.net
http://www.netstumbler.com

finding any rogue access points in the network (we’ll talk about these later). It’s Windows based,
easy to use, and compatible with 802.11a, b, and g.

Figure 7-4 NetStumbler

Although it’s usually more of a wireless packet analyzer/sniffer, Kismet is another wireless
discovery option. It works on Linux-based systems and, unlike NetStumbler, works passively,
meaning it detects access points and clients without actually sending any packets. It can detect
access points that have not been configured (and would then be susceptible to the default out-of-
the-box admin password) and will determine which type of encryption you might be up against.
You might also see two other interesting notables about Kismet on your exam: First, it works by
“channel hopping,” to discover as many networks as possible. Second, it has the ability to sniff
packets and save them to a log file, readable by Wireshark or tcpdump.

Another great network discovery tool is NetSurveyor (see Figure 7-5). This free Windows-
based tool provides many of the same features as NetStumbler and Kismet. Additionally, it
supports almost all wireless adapters without any significant additional configuration, which is of
great benefit to hackers who can’t afford, or don’t have, an AirPcap card. NetSurveyor acts as a
great tool for troubleshooting and verifying proper installation of wireless networks. To try it,
simply download and install the tool and then run it. It will automatically find your wireless
adapter and begin scanning. Click through the different menu options and check out all the
information it finds without you needing to configure a thing!

Figure 7-5 NetSurveyor

NOTE Other options for network discovery include WeFi (www.wefi.com) and Skyhook
(www.skyhookwireless.com)—a cool GPS mapping wireless finder.

Attacks
First things first: wireless hacking does not need to be a complicated matter. Some simple attacks
can be carried out with a minimum of technical knowledge and ability. Sure, there are some
really groovy and, dare I say, elegant wireless hacks to be had, but don’t discount the easy ones.
They will probably pay as many dividends as the ones that take hours to set up.

For example, take the concept of a rogue access point. The idea here is to place an access
point of your own somewhere—heck, you can even put it outside in the bushes—and have
legitimate users connect to your network instead of the original. Just consider the possibilities! If
someone were to look at his wireless networks and connect to yours, because the signal strength
is better or yours is free whereas the others are not, he’s basically signing over control to you.
You could configure completely new DNS servers and have your AP configure them with the
DHCP address offering. That would then route users to fake websites you create, providing
opportunities to steal authentication information. Not to mention, you could funnel everything
through a packet capture.

Sometimes referred to as “evil twin” (assuming the SSID on the rogue box is set similar to the
legitimate one), an attack like this is incredibly easy to pull off. The only drawback is they’re
sometimes really easy to see, and you run a pretty substantial risk of discovery. You’ll just have
to watch out for true security-minded professionals because they’ll be on the lookout for rogue

http://www.wefi.com
http://www.skyhookwireless.com

APs on a continual basis and (should) have plenty of tools available to help them do the job.

NOTE Cisco is among the leaders in rogue access point detection technologies. Many of its
access points can be configured to look for other access points in the same area. If they find one,
they send SNMP or other messages back to administrators for action, if needed. The link here
provides more information, in case you’re interested:
www.cisco.com/en/US/tech/tk722/tk809/technologies_white_paper09186a0080722d8c.shtml.
(Credit goes to our tech editor, Mr. Brad Horton, for this addition.)

Another truly ridiculous attack is called the “ad hoc connection attack.” To be honest, it
shouldn’t ever be successful, but after years in the security management business, I’ve seen users
do some pretty wild things, so almost nothing surprises me anymore. An ad hoc connection
attack occurs when an attacker simply sits down with a laptop somewhere in your building and
advertises an ad hoc network from his laptop. Believe it or not, people will, eventually, connect
to it. Yes, I know it’s tantamount to walking up to a user with a crossover cable in hand and
asking, “Excuse me, would you please plug this in to your system’s NIC? The other end is in my
computer and I’d like easy access to you.” But what can you do?

EXAM TIP The use of rogue APs (evil twins) may also be referenced as a mis-association
attack. Additionally, faking a well-known hotspot on a rogue AP (for example, McDonald’s or
Starbucks free Wi-Fi spots) is referred to as a “honeyspot” attack.

Another attack on the relatively easy side of the spectrum is the denial-of-service effort. This
can be done in a couple of ways, neither of which is particularly difficult. First, you can use any
number of tools to craft and send de-authenticate (disassociate) packets to clients of an AP,
which will force them to drop their connections. Granted, they may try to immediately climb
back aboard, but there’s nothing stopping you from performing the same action again. Or you
can employ a rogue AP to have legitimate users connect, thereby removing their access to
legitimate networked resources (in ECC lingo, an unauthorized association).

The other easy DoS wireless attack is to jam the wireless signal altogether, using some type of
jamming device and, usually, a high-gain antenna/amplifier. All wireless devices are susceptible
to some form of jamming and/or interference—it’s simply a matter of placing enough signals out
in the airwaves that the NICs can’t keep up. Tons of jammer options are available (a quick
Google search on wireless jammers will show you over 3 million pages on the subject), ranging
from 802.11 networks to Bluetooth and other wireless networking technologies. No, the giant jar
of jam used in the movie Spaceballs won’t work, but anything generating enough signals in the
2.4 GHz range would definitely put a crimp in an 802.11b network.

http://www.cisco.com/en/US/tech/tk722/tk809/technologies_white_paper09186a0080722d8c.shtml

CAUTION Messing around with jammers is a really good way to find yourself in hot water
with the FCC, and could even result in jail time. If you’re not the military, police, a government
contractor, or a researcher, you stand a good chance of getting in some legal trouble if you
intentionally—or even unintentionally—do bad things with a jammer. As a matter of fact,
emitting any energy that could result in jamming is enough to run afoul of FCC regulations. The
FAA is also particularly nasty about it. The things you can build/buy on the Internet are plenty
enough to cause trouble.

A Cautionary Jamming Note
One of the goals for many illegitimate hackers is the plain old denial-of-service (DoS) attack.
Whether it’s a resource, machine, segment, or entire network, sometimes shutting down
communication is just as valuable to the bad guys as leaving it up and stealing things
(especially in the military world). In wired communications we have a variety of detection
and defense options set up to help prevent against DoS attacks, but have you given any
thought to the wireless world?

FCC rules and the Communication Act of 1934 make the marketing, selling, and/or using a
jammer a federal offense and can result in seriously nasty punishment. Check almost any
electronic device in your house right now: there will be an FCC warning saying that it will not
create interference and that it will accept all interference. However, that doesn’t mean you
can’t get a hold of these jammers. For example, online retailers like Jammers Store
(http://jammers.store/) offer small devices about the size of a cell phone that can effectively
shut down all Wi-Fi communication within a 20-meter radius. That may not sound like much,
but if you’ve ever seen what happens in a board room when communications go down, you’d
be nodding in agreement with me now that it’s something to be concerned about.

What if you increased the power output of that little device? Better yet, what if you have
four or five of them to disperse around particularly important networked areas in an
organization? Do you think that maybe causing a communications blackout for certain people
in an organization might have an impact on their mission? How about its effect on social
engineering opportunities? I can guarantee you if the fourth floor (or whatever floor your
specific company’s executives sit on) starts having communications problems, reverse social
engineering opportunities abound.

Even scarier, what if the objective weren’t a simple Wi-Fi network but, instead, an entire
4G network within a city? Don’t shake your head and discount it as black-helicopter
conspiracy theory—it could really happen. A recent study at Virginia Tech proposed that a
high-speed LTE network could be brought down across city blocks via a briefcase-sized
device costing around $650. Because the delivery of the LTE signal depends on a small
portion of the overall signal (the control instructions make up less than 1 percent), blocking
those instructions effectively destroys the entire signal. After all, if your phone can’t sync, it
can’t send or receive anything.

The good news in all of this is the availability of these types of devices is somewhat
limited. The bad news is, they’re not very well controlled or regulated, and money talks. If

http://jammers.store/

Lone Star comes after you with his technological jar of raspberry jam (anyone who has seen
the movie Spaceballs understands this reference quite well—and if you haven’t seen it, go
watch it now), there’s not a whole lot you can do about it.

NOTE Want another neat, useless tip that can wow your nerd friends at parties? Did you know
wireless products are marked with an FCC ID? And did you further know the FCC ID is made up
of three or five “grantee” character codes, assigned by the FCC, and the remaining characters
generally reflect the model number but can be anything of the vendor choosing? For example,
the FCC ID on this Linksys router right here is Q87-WRT1900AC. The grantee code is Q87, and
the remainder happens to be the model number. The more you know….

One defense wireless network administrators attempt to use is to enforce a MAC filter.
Basically it’s a list of MAC addresses that are allowed to associate to the AP; if your wireless
NIC’s address isn’t on the list, you’re denied access. The easy way around this is to monitor the
network to figure out which MAC addresses are in use on the AP and simply spoof one of them.
On a Unix/Linux machine, all you need do is log in as root, disable the interface, enter a new
MAC, and reenable the device:

Tons of tools are also available for MAC spoofing. A couple of the more easy-to-use ones are
SMAC and TMAC. Both allow you to change the MAC address with just a couple of clicks and,
once you’re done, to return things to normal with a click of the mouse.

Wireless Encryption Attacks
Cracking WEP is ridiculously easy and can be done with any number of tools. The idea revolves
around generating enough packets to effectively guess the encryption key. The weak
initialization vectors discussed already are the key—specifically, the fact that they’re reused and
sent in clear text. Regardless of the tool, the standard WEP attack follows the same basic series
of steps:

1. Start a compatible wireless adapter on your attack machine and ensure it can both inject
and sniff packets.

2. Start a sniffer to capture packets.
3. Use some method to force the creation of thousands and thousands of packets (generally

by using “de-auth” packets).
4. Analyze these captured packets (either in real time or on the side) with a cracking tool.

I thought about putting step-by-step examples of the process in here, using specific tools, but
it wouldn’t serve any point. Each situation is unique, and any steps using a specific tool I put in
here may not work for you at your location. This tends to lead to confusion and angst. The best
advice I can give you is set up a lab and practice yourself. Don’t have an extra wireless access
point to play with? Try hacking your own WAP (just make very sure you own it; otherwise,
unless you have permission to do so, leave it alone). If you get lost along the way or something
doesn’t seem to make sense, just check out any of the online videos you can find on WEP
cracking. There are bajillions of them out there.

WEP is easy to crack, and more than a few tools are available for doing so. The Aircrack-ng
suite of tools is probably one of the more “famous,” and it will definitely show up on your exam
somewhere. Aircrack-ng provides a sniffer, a wireless network detector, a password cracker, and
even a traffic analysis tool and can run on both Windows and Linux. If you really want to dig
into the toolset, Aircrack uses different techniques for cracking different encryption standards.
On WEP, for instance, it can use a dictionary technique or a variety of weirdly named
algorithmic processes called PTW, FMS, and the Korek technique.

EXAM TIP Aircrack may use a dictionary technique for cracking WPA and WPA2. The other
weird techniques are reserved for cracking WEP.

Cain and Abel will do the job easily, just sniffing packets and cracking as stated earlier,
although it may take a little longer than some other tools. KisMAC (a macOS application) can be
used to brute-force WEP or WPA passwords. Other tools include WEPAttack
(wepattack.sourceforge.com), WEPCrack (wepcrack.sourceforge.com), Portable Penetrator (a
mobile tool of all things; www.secpoint.com), and Elcomsoft’s Wireless Security Auditor tool.

EXAM TIP Cain and Abel relies on statistical measures and the PTW technique to break WEP
codes.

WPA and WPA2 are exponentially more difficult. Both rely on and use a pre-shared, user-
defined password alongside a constantly changed temporal key to provide protection. In WPA,
the process of cracking this is really, really hard and basically comes down to one thing: brute
force. Much like WEP, force a bunch of packets to be sent and store them, then run them through
an offline cracker (like Aircrack) to brute-force against those packets until you’re successful.

Another method of attack you’re almost guaranteed to see questioning on is the Key
Reinstallation Attack (a.k.a. KRACK). KRACK is basically a replay attack that takes advantage
of the way WPA2 works. In 2016 a couple of Belgian researchers discovered that by repeatedly
resetting and replaying a portion of traffic they could eventually learn the full key used to
encrypt all traffic.

See, WPA2 uses a four-way handshake to establish a nonce; a one-time-use shared secret for

http://wepattack.sourceforge.com
http://wepcrack.sourceforge.com
http://www.secpoint.com

the communication session. Since wireless isn’t as reliable as a wired connection and
occasionally you’ll have drop-offs and disconnections, and since the standard takes into account
these disconnections could occur during the handshake, WPA2 allows reconnection using the
same value for the third handshake. And because WPA2 doesn’t require a different key to be
used each time in this type of reconnection, an attacker can repeatedly re-send the third
handshake of another device’s session to manipulate or reset the WPA2 encryption key.

NOTE All this talk of encryption and keys and such is great, but it bears mentioning here that
it does not absolve you from creating a good password in the first place (something we’ve
already covered).

Each time this is reset it causes data to be encrypted using the same values. Therefore, blocks
with the same content can be seen and matched, and over time worked backward for keychain
clues. Since each repeated reset reveals more and more of the keychain, the attacker can
gradually match encrypted packets seen before and, over time, learn the full keychain used to
encrypt the traffic. Voilà!

Wireless Sniffing
Much about sniffing a wireless network is the same as sniffing its wired counterpart. The same
protocols and authentication standard weaknesses you looked for with Wireshark off that switch
port are just as weak and vulnerable on wireless. Authentication data, passwords, and other
information can be gleaned just from watching the air, and although you are certainly welcome
to use Wireshark, a couple of tools can help you get the job done.

Just a few of the tools specifically made for wireless sniffing include some we’ve already
talked about, such as NetStumbler and Kismet, and some that we haven’t seen yet, including
OmniPeek, AirMagnet WiFi Analyzer Pro, and WiFi Pilot. Assuming you have a wireless
adapter that is compatible and can watch things in promiscuous mode, OmniPeek is a fairly well-
known and respected wireless sniffer. In addition to the same type of traffic analysis you would
see in Wireshark, OmniPeek provides network activity status and monitoring in a nice dashboard
for up-to-the-minute viewing.

AirMagnet WiFi Analyzer, from Fluke Networks, is an incredibly powerful sniffer, traffic
analyzer, and all-around wireless network-auditing software suite. It can be used to resolve
performance problems and automatically detect security threats and vulnerabilities. Per the
company website (www.airmagnet.com/products/wifi_analyzer/), AirMagnet includes the “only
suite of active WLAN diagnostic tools, enabling network managers to easily test and diagnose
dozens of common wireless network performance issues including throughput issues,
connectivity issues, device conflicts and signal multipath problems.” And for you compliance
paperwork junkies out there, AirMagnet includes a compliance reporting engine that maps
network information to requirements for compliance with policy and industry regulations.

The point here isn’t to rehash everything we’ve already talked about regarding sniffing. What
you need to get out of this is the knowledge that sniffing is beneficial to wired and wireless

http://www.airmagnet.com/products/wifi_analyzer/

network attacks, and you need to be able to recognize the tools mentioned here. Again, I
recommend you go out and download these tools. Most, if not all, are either free or have a great
trial version for your use. Read the usage guides and determine your adapter compatibility; then
fire them up and see what you can capture. You won’t necessarily gain much, exam-wise, by
running them, but you will gain valuable experience for your “real” work.

Chapter Review
In the wireless world, the 802.11 series of standards is very important. 802.11a can attain speeds
up to 54 Mbps and uses the 5 GHz range. 802.11b has speeds of 11 Mbps at 2.4 GHz, and
802.11g is 54 Mbps at 2.4 GHz. 802.11n has speeds over 100 Mbps and uses a variety of ranges
in MIMO format between 2.4 GHz and 5 GHz. Two other standards of note are 802.11i (an
amendment to the original 802.11 series standard that specifies security mechanisms for use on
the WLAN) and 802.16 (global development of broadband wireless metropolitan area networks,
WiMAX). 802.11an and 802.11ax are next on the horizon.

Modulation—the practice of manipulating properties of a waveform—is the encoding method
of choice in wireless networks. Both orthogonal frequency-division multiplexing (OFDM) and
direct-sequence spread spectrum (DSSS) use various pieces of a waveform to carry a signal.
OFDM works with several waveforms, simultaneously carrying messages back and forth: the
transmission media is divided into a series of frequency bands that don’t overlap each other, and
each of them can then be used to carry a separate signal. DSSS works differently by combining
all the available waveforms into a single purpose; the entire frequency bandwidth can be used at
once for the delivery of a message.

In ad hoc mode, wireless systems connect directly to other systems, as if a cable were strung
between the two. Infrastructure mode uses an access point (AP) to funnel all wireless
connections through, and clients associate and authenticate to it. Wireless networks can consist
of a single access point or multiple ones, thus creating overlapping cells and allowing a user to
roam freely without losing connectivity. The client needs to associate with an access point first
and then disassociate when it moves to the next one.

When there is a single access point, its footprint is called a basic service area (BSA).
Communication between this single AP and its clients is known as a basic service set (BSS). If
you extend the range of your network by adding multiple access points, the setup is known as an
extended service set (ESS). As a client moves from one AP in your subnet to another, so long as
everything is configured correctly, it’ll disassociate from one AP and (re)associate with another
seamlessly. This movement across multiple APs within a single ESS is known as “roaming.”

Wireless network design needs to take into account not only the type of antenna used but
where it is placed and what is set up to contain or corral the signal. Physical installation of access
points is a major concern because you will want to avoid spillage of the signal and loss of power.
Most standard APs use an omnidirectional antenna, which means the signal emanates from the
antenna in equal strength 360 degrees from the source. Directional antennas allow you to focus
the signal in a specific direction, which greatly increases signal strength and distance. Other
antennas you can use are dipole and parabolic grid. Dipole antennas have, quite obviously, two
signal “towers” and work omnidirectionally. Parabolic grid antennas work a lot like satellite
dishes and can have phenomenal range (up to 10 miles) but aren’t in use much.

To identify a wireless network to clients who may be interested in joining, a service set
identifier (SSID) must be assigned. The SSID is not a password and provides no security at all

for your network. It is a text word (32 characters or less) that only distinguishes your wireless
network from others. SSIDs are broadcast by default and are easily obtainable even if you try to
turn off the broadcast (in an effort dubbed “SSID cloaking”). The SSID is part of the header on
every packet, so its discovery by a determined attacker is a given, and securing it is virtually a
moot point.

Wireless authentication can happen in more than a few ways, from the simplistic to the
complicated. There are three main methods: Open System Authentication, Shared Key
Authentication, and Centralized Authentication (for example, RADIUS). In Open System
Authentication, a client can simply send an 802.11 authentication frame with the appropriate
SSID to an AP and have it answer with a verification frame. In Shared Key Authentication, the
client would participate in a challenge/request scenario, with the AP verifying a decrypted “key”
for authentication. And you can even tie the whole thing together with an authentication server
(RADIUS), forcing the client into an even more complicated authentication scenario. Association
is the action of a client connecting to an AP, whereas authentication actually identifies the client
before it can access anything on the network.

WEP stands for Wired Equivalent Privacy and provides weak security for the wireless
network. Using 40-bit to 232-bit keys in an RC4 encryption algorithm, WEP’s primary weakness
lies in its reuse of initialization vectors (IVs)—an attacker can simply collect enough packets to
decode the WEP shared key. WEP was never intended to fully protect your data; it was designed
to give people using a wireless network the same level of protection that someone surfing over
an Ethernet wired hub would expect. WEP’s initialization vectors are relatively small and, for the
most part, get reused pretty frequently. Additionally, they’re sent in clear text as part of the
header. An attacker simply needs to generate enough packets in order to analyze the IVs and
come up with the key used.

A better choice in encryption technology is Wi-Fi Protected Access (WPA) or WPA2. WPA
makes use of Temporal Key Integrity Protocol (TKIP), a 128-bit key, and the client’s MAC
address to accomplish much stronger encryption. The short of it is, WPA changes the key out
(hence the “temporal” part of the name) every 10,000 packets or so, instead of sticking with one
and reusing it. Additionally, the keys are transferred back and forth during an Extensible
Authentication Protocol (EAP) authentication session, which makes use of a four-step handshake
process in proving the client belongs to the AP, and vice versa.

WPA2 is much the same process; however, it was designed with the government and the
enterprise in mind. In something called WPA2 Enterprise, you can tie EAP or a RADIUS server
into the authentication side of WPA2, allowing you to make use of Kerberos tickets and
additional offerings. WPA2 uses AES for encryption, ensuring FIPS 140-2 compliance. As for
integrity, WPA2 addresses this by using the Cipher Block Chaining Message Authentication
Code Protocol (CCMP), with message integrity codes (MICs), in a process called cipher block
chaining message authentication code (CBC-MAC).

An AirPcap dongle is a USB wireless adapter that offers several advantages as well as
software support. WIGLE (http://wigle.net) helps in identifying geographic locations of wireless
networks; teams of hackers have mapped out wireless network locations using GPS and a tool
called NetStumbler. NetStumbler (www.netstumbler.com) can be used for identifying poor
coverage locations within an ESS, detecting interference causes, and finding any rogue access
points in the network. It’s Windows based, easy to use, and compatible with 802.11a, b, and g.

Kismet is another wireless discovery option. It works on Linux-based systems and, unlike
NetStumbler, works passively, meaning it detects access points and clients without actually

http://wigle.net
http://www.netstumbler.com

sending any packets. It can detect access points that have not been configured (and would then
be susceptible to the default out-of-the-box admin password) and will determine which type of
encryption you might be up against. It works by “channel hopping” to discover as many
networks as possible and has the ability to sniff packets and save them to a log file, readable by
Wireshark or tcpdump.

Another great network discovery tool is NetSurveyor. This free Windows-based tool provides
many of the same features as NetStumbler and Kismet. Additionally, it supports almost all
wireless adapters without any significant additional configuration—which is of great benefit to
hackers who can’t afford, or don’t have, an AirPcap card. NetSurveyor acts as a great tool for
troubleshooting and verifying optimal installation of wireless networks. A few of the tools
specifically made for wireless sniffing include NetStumbler, Kismet, OmniPeek, AirMagnet
WiFi Analyzer Pro, and WiFi Pilot.

The rogue access point is an easy attack on a wireless network whereby an attacker sets up an
access point near legitimate APs and tricks users into associating and authenticating with it.
Sometimes referred to as an “evil twin,” an attack like this is easy to attempt. The use of rogue
APs (evil twins) may also be referenced as a “mis-association attack.” Additionally, faking a
well-known hotspot on a rogue AP (for example, McDonald’s or Starbucks free Wi-Fi spots) is
referred to as a “honeyspot attack.”

Denial-of-service efforts are also easy attacks to attempt. In addition to other attacks, you can
jam the wireless signal altogether, using some type of jamming device and, usually, a high-gain
antenna/amplifier. All wireless devices are susceptible to some form of jamming and/or
interference—it’s simply a matter of placing enough signal out in the airwaves that the NICs
can’t keep up.

Cracking WEP is ridiculously easy and can be done with any number of tools. The idea
revolves around generating enough packets to effectively guess the encryption key. The weak
initialization vectors we discussed already are the key; that is, they’re reused and sent in clear
text. Tools for cracking WEP include Cain and Abel and Aircrack (both use Korek, but Aircrack
is faster) as well as KisMAC, WEPCrack, and Elcomsoft’s Wireless Security Auditor tool.
KisMAC runs on macOS and can be used to brute-force WEP or WPA. On WEP, Aircrack can
use a dictionary technique, or a variety of weirdly named algorithmic processes called PTW,
FMS, and the Korek technique, while only dictionary can be used against WPA and WPA2.

Questions
1. A WPA2 wireless network is discovered during a pen test. Which of the following

methods is the best way to crack the network key?
A. Capture the WPA2 authentication traffic and crack the key.
B. Capture a large amount of initialization vectors and crack the key inside.
C. Use a sniffer to capture the SSID.
D. WPA2 cannot be cracked.

2. You are discussing wireless security with your client. He tells you he feels safe with his
network because he has turned off SSID broadcasting. Which of the following is a true
statement regarding his attempt at security?
A. Unauthorized users will not be able to associate because they must know the SSID in

order to connect.

B. Unauthorized users will not be able to connect because DHCP is tied to SSID
broadcast.

C. Unauthorized users will still be able to connect because nonbroadcast SSID puts the
AP in ad hoc mode.

D. Unauthorized users will still be able to connect because the SSID is still sent in all
packets, and a sniffer can easily discern the string.

3. You are discussing wireless security with your client. She tells you she feels safe with her
network as she has implemented MAC filtering on all access points, allowing only MAC
addresses from clients she personally configures in each list. You explain this step will not
prevent a determined attacker from connecting to his network. Which of the following
explains why the APs are still vulnerable?
A. WEP keys are easier to crack when MAC filtering is in place.
B. MAC addresses are dynamic and can be sent via DHCP.
C. An attacker could sniff an existing MAC address and spoof it.
D. An attacker could send a MAC flood, effectively turning the AP into a hub.

4. What information is required in order to attempt to crack a WEP AP? (Choose two.)
A. Network SSID
B. MAC address of the AP
C. IP address of the AP
D. Starting sequence number in the first initialization vector

5. Which of the following protects against man-in-the-middle attacks in WPA?
A. MIC
B. CCMP
C. EAP
D. AES

6. Which of the following is the best choice for detecting wireless LANs using the
802.11a/b/g/n WLAN standards on a Linux platform?
A. Kismet
B. Nessus
C. NetStumbler
D. Cain and Abel

7. A user calls with a problem. Her laptop uses the same hardware and software as many of
the other clients on the network, and she can see the wireless network, but cannot connect.
You run a sniffer, and results show the WAP is not responding to the association requests
being sent by the wireless client. Of the following choices, which is the most likely source
of the problem?
A. The wireless client does not use DHCP.
B. The wireless client is on the wrong wireless channel.
C. The WAP has MAC filtering engaged and does not recognize the MAC.

D. SSID Security is preventing the connection.
8. Which of the following provides for integrity in WPA2?

A. AES
B. CCMP
C. TKIP
D. RADIUS

9. Which of the following is a true statement?
A. Configuring a strong SSID is a vital step in securing your network.
B. An SSID should always be more than eight characters in length.
C. An SSID should never be a dictionary word or anything easily guessed.
D. SSIDs are important for identifying networks but do little to nothing for security.

10. Which wireless encryption technology makes use of temporal keys?
A. WAP
B. WPA
C. WEP
D. EAP

11. Which wireless technology uses RC4 for encryption?
A. WAP
B. WPA
C. WEP
D. WPA2
E. All of the above

Answers
1. A. WPA2 is a strong encryption method, but almost everything can be hacked, given

enough time. Capturing the password pairwise master key (PMK) during the handshake is
the best way to do it, and even then it’s virtually impossible if it’s a complicated password.

2. D. Turning off the broadcast of an SSID is a good step, but SSIDs do nothing in regard to
security. The SSID is included in every packet, regardless of whether it’s broadcast from
the AP.

3. C. MAC filtering is easily hacked by sniffing the network for a valid MAC and then
spoofing it, using any number of options available.

4. A, B. The MAC address of the AP and the SSID are required for attempting a WEP crack.
5. A. MIC provides integrity checking in WPA, verifying frames are authentic and have not

been tampered with. Part of how it accomplishes this is a sequence number—if any frames
arrive out of sequence, the whole session is dropped.

6. A. Kismet is your best option here, as the other tools simply don’t fit the bill.
7. C. There may be more to the story, but given everything we know, MAC filtering is

probably the culprit here. Given the same hardware and software setup, it’s unlikely it’s a
channel issue, and the other options make no sense at all.

8. B. Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (say
that three times fast) uses message integrity codes (MICs) for integrity purposes.

9. D. An SSID is used for nothing more than identifying the network. It is not designed as a
security measure.

10. B. WPA uses temporal keys, making it a much stronger encryption choice than WEP.
11. C. WEP uses RC4, which is part of the reason it’s so easily hacked and not considered a

secure option.

CHAPTER 8
Mobile Communications and the IoT

In this chapter, you will
• Describe mobile platform attacks
• Identify Mobile Device Management
• Identify mobile platforms vulnerabilities and attack vectors
• Identify IoT security threats and attacks
• List IoT security and hacking tools
• List IoT hacking methodology

I’m certain you’ve seen The Matrix series of movies. In short, the movies postulate that we’re
not actually alive, breathing and interacting with each other—we’re actually all just jacked into a
huge computer program simulating everything we perceive as real. There’s a big temptation here
for me to launch into perception versus reality, dimensional variations and destiny versus free
will, but this is a tech book, not a philosophy class, so I’ll avoid it. No, what I want to talk about
here is the real-life Matrix you may not even be aware you’re plugging into—the Internet of
Things and Internet Everywhere.

I tried to find a single definition of the Internet of Things, but none of them adequately fit the
bill for me, so I decided to take a different tack. No matter where you are, glance around for a
second and pick out the things you think are on, or should be on, your network. I’m sure you can
identify some objects pretty quickly. Just a couple years back you’d point out your cell phone
and your PC. Today, you may even point out other electronic devices that are obvious—your
TV, refrigerator, and maybe even your microwave. Also, there’s your car. But take a closer look.
Expand your imagination for a second.

Your toothbrush might have something to say. Maybe your kitchen counter could help with a
bunch of things, too. Your pantry sure has lots to say about what you need to buy—not to
mention that potato you’ve forgotten about rotting on the floor in the corner. The road and toll
booths have information, too. Light bulbs, plumbing systems—heck, maybe even your cat has
valuable information. The Internet of Things is, or soon will be, all of that.

It’s a great thing to think about, and the benefits to us all in that future dream are fantastic.
But it is a little scary when you think about it. Not only could all these things be accessed from
afar (just imagine trying to secure all this), but what happens when they all start talking to each
other without you even needing to be a part of the conversation? Suppose, for example, your
toilet and plumbing system notice some disturbing health indicators in your, uh, creations. What
if they just go ahead and schedule your appointments for you? Sound good? Well, what if that
information is used to demonstrate your unworthiness as an insurance policy holder, or to pass
laws making sure everyone eats at least two bowls of kale a day?

Or what if they’re hacked by a bad guy and you’re held ransom by your toilet? It’s all really
concerning if you consider how much harm all this access and technology can cause individuals
and organizations. I’m not ready to pull the plug and go off the grid just yet, but I’m wondering
just how invasive this can all get, and I’m concerned that by the time we figure out we don’t
want it, it will be too late. Not to mention I don’t want the cat talking to anyone. Ever.

This chapter is all about the mobile world and the Internet of Things. It’s brand new, longer
than most in this book, and packed with information. So climb into Neo’s chair there, jack into
the Matrix, and grab the red pill. I’ve got some things to show you…

The Mobile World
Forget the coming zombie apocalypse—we’re already there. If you’ve been outside anywhere in
the United States over the past couple of years, you can’t help but notice it just as I have: most
people are stumbling around, with vacant expressions on their faces, and only half-heartedly
engaging the world around them. Why? Because they spend most of their waking hours staring
down into a smartphone or tablet. And if you’re a parent reading this book and your teenagers
can make it through an entire meal without picking up a phone to text, take of picture of what
they’re eating, or post an update of their exciting life (“Johnny is eating spaghetti—FOR
BREAKFAST!”), you probably should be nominated for some sort of award.

But come on, admit it: you’re probably one of them, too. We’ve allowed mobile computing to
become so much a part of our lives, it’s here to stay. We chat over our mobile devices, play
games with them, do our banking over them, and use them for all sorts of business. According to
Google Analytics, from April of 2011 to January of 2017, smartphone ownership within the U.S.
population went from 34 percent to a whopping 77 percent of adults, and mobile digital usage
stats showed fully 70 percent of all online time was spent on mobile devices. The laptop may not
be dead as far as a target, but the mobile army is certainly closing in. Because of all this, EC-
Council focuses an entire chapter of its official courseware on mobile platforms, and I’ll do our
best to cover it all for you here.

NOTE Fun Facts: I just read in Google Analytics that 75 percent of people not only admit to
taking their smartphone to the bathroom with them, but using it while there (the phone, not the
toilet). Additionally, most of the shopping populace use their device while in the store to
compare and shop for the item online.

Mobile Vulnerabilities and Risks
Companies the world over are struggling with implementing policy to contain all this growth.
BYOD (Bring Your Own Device) offers some exciting opportunities in potential cost savings
and increased productivity, but at what risk? If Bob uses his own smartphone and keeps company
secrets on it, what happens if/when it gets stolen? Even if the smartphone (or tablet) in question
isn’t owned by the company, and even if it’s not allowed access to super-secret-squirrel areas, is

it possible Jane could store information on it that puts all that information at risk?
While digging through the dumpster for useful information is still a good idea for the ethical

hacker, a little focus on mobile may definitely be worth your while. A bunch of users possibly
storing sensitive organization information on devices that aren’t centrally controlled, have little
to no security built into them, and have multiple avenues of connectivity (wireless, Bluetooth,
and/or 3G/4G)? That sounds like a target-rich environment to me.

Attacking mobile platforms should be a part of any hacking endeavor and should definitely
become part of your arsenal. The bad news is, this will be tested, there’s a lot to remember, and,
as always, some of it is weird and off the rails. The good news is, despite ECC devoting an entire
chapter to the subject, a lot of this you already know—or should, assuming you don’t live under
a rock and can read. For example, were you aware there are multiple operating systems available
for mobile (GASP! You don’t say?!?), that Android and iOS devices can be rooted/jailbroken
(SHOCKING!), and that applications not specifically written by Google or Apple engineers can
be put on smartphones and tablets (SAY IT AIN’T SO!!)? In this convenience versus security
realm, I’ll cover what you need and, as always, try to dump the fluff.

When it comes to smartphones, there are three main avenues of attack—three surface points
to look at. First is the device itself, which offers tons of options. Everything from browser-based
attacks (like phishing) to attempts over SMS and attacks on the applications themselves belong
in this realm. And don’t forget rooting or jailbreaking the device itself (don’t worry—we’ll cover
more of that later in this chapter). Next are the network attacks, covering everything from DNS
cache poisoning to rogue access points and packet sniffing. These attacks should sound very
familiar, as we’ve covered them already and they work just as well here as they do against web
servers and wireless laptops. And, finally, data center or cloud attacks in the mobile world exist
just as they do everywhere else, so don’t think you can get away with not worrying about those
databases and such here either.

OWASP Top 10 Mobile Risks
Remember our discussion on OWASP back in Chapter 6? Back then we were talking web
servers and all things hacking related to it. But remember when I said they do bunches of other
stuff? Welcome to that stuff…

The Open Web Application Security Project (OWASP) has an arm dedicated specifically to
mobile security (https://www.owasp.org/index.php/OWASP_Mobile_Security_Project; see
Figure 8-1) and publishes a list of Top 10 mobile risks. Much like our previous discussion on
their other Top 10 list, we’ll go over each listed vulnerability and give you everything you need
to know. The current Top 10 (https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10)
includes the following vulnerabilities:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

Figure 8-1 OWASP Mobile Security Project

• M1 – Improper Platform Usage This category covers misuse of a platform feature or
failure to use platform security controls. It might include Android intents, platform
permissions, misuse of TouchID, the Keychain, or some other security control that is part
of the mobile operating system. There are several ways that mobile apps can experience
this risk.

• M2 – Insecure Data Storage This category combines a couple entries from the previous
list (2014) and covers insecure data storage and unintended data leakage. Threat agents
include an adversary who has attained a lost/stolen mobile device as well as malware (or
another repackaged app) acting on the adversary’s behalf that executes on the mobile
device.

• M3 – Insecure Communication This covers poor handshaking, incorrect SSL versions,
weak negotiation, clear-text communication of sensitive assets, and other insecure
communication channels or methods. For example, poor SSL setup can also facilitate
phishing and MITM attacks.

• M4 – Insecure Authentication This category captures notions of authenticating the end
user or bad session management. Examples include failing to identify the user at all when
it should be required, failure to maintain the user’s identity when it is required, and
weaknesses in session management.

• M5 – Insufficient Cryptography This category refers to instances where code applies
cryptography to a sensitive information asset; however, the cryptography is insufficient in
some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if
the app fails to use cryptography at all when it should, that probably belongs in M2. This
category is for issues where cryptography was attempted, but it wasn’t done correctly.

EXAM TIP If I were a sadistic test writer and I wanted to trip someone up regarding OWASP
Top 10 Mobile Risk categories, I’d probably mention something about a failed SSL
implementation and try to bait the applicants into choosing M5, thinking it’s about cryptography.
I might also query folks regarding their knowledge of the difference between authenticating and

authorizing. Just sayin’… In other words, be very careful about mixing up M5 and M3, or M6
and M4.

• M6 – Insecure Authorization This category captures any failures in authorization
(authorization decisions in the client side, forced browsing, and so on). It is distinct from
authentication issues (device enrolment, user identification, and so on). Remember,
authentication proves who you are, whereas authorization proves you have a right to
access a particular resource. For example, if the app grants anonymous access to some
resource or service when the use should have first been authenticated, then that is an
authentication failure, not an authorization failure. If the app does authenticate users but
puts no authorization protections on memory areas or other resources, that would fall
under M6.

• M7 – Client Code Quality This is a catchall for code-level implementation problems in
the mobile client that are distinct from server-side coding mistakes. This encapsulates
things like buffer overflows, format string vulnerabilities, and various other code-level
mistakes where the solution is to rewrite some code that’s running on the mobile device.

• M8 – Code Tampering This category covers binary patching, local resource
modification, method hooking, method swizzling, and dynamic memory modification.
Once the application is delivered to the mobile device, the code and data resources are
resident there. An attacker can either directly modify the code, change the contents of
memory dynamically, change or replace the system APIs that the application uses, or
modify the application’s data and resources.

• M9 – Reverse Engineering This category includes analysis of the final core binary to
determine its source code, libraries, algorithms, and other assets. Software such as IDA
Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the
inner workings of the application. This may be used to exploit other vulnerabilities in the
application, as well as revealing information about back-end servers, cryptographic
constants and ciphers, and intellectual property.

• M10 – Extraneous Functionality This is another catchall for something coders do all
the time: build in a backdoor. These are never intended to be released into a production
environment, but they usually pop up in the weirdest places. Examples include a
developer accidentally including a password as a comment in a hybrid app or disabling
two-factor authentication during testing and forgetting to turn it back on.

NOTE The current OWASP Mobile Risk list available is dated 2016, although by time this
book hits the shelves OWASP is rumored to have the next one ready to go. For your own
edification, keep an eye out for the new list release. It will most certainly find its way into your
exam soon after release. Additionally, be sure to check out the other information available on
OWASP’s mobile security page. As you can see in Figure 8-1, there’s a lot of information to
explore in those tabs.

Why Do Dogs Bark?
Ever see a notice, warning, study, or article and think, “Duh. Isn’t that obvious?” A few years
back I came across a government-funded study on why dogs bark. The U.S. government
actually paid a bunch of scientific minds to solve this riddle, befuddling man for eons and
preventing us from reaching our full potential, and here’s what they discovered: dogs bark
when something bugs them.

Really? I could’ve told you that for nothing.
A few minutes ago I read an article and I had the same feeling wash over me. In the article

(https://www.infosecurity-magazine.com/news/most-orgs-with-byod-enabled-lack/) a study
from a cloud access provider named Bitglass was referenced and—brace yourselves—it found
that BYOD is prevalent, but not secured. And because it was so ubiquitous and unsecured,
that creates a serious problem for company security professionals. Yup, you heard it here first
—a policy allowing everyone in your organization to bring their own devices to work and
connect/interact with your network puts the whole thing at risk.

Who knew?
The Bitglass 2018 BYOD report showed 85 percent of enterprises now allow data access

from personal devices for employees, partners, customers, and contractors, and, perhaps as a
shocking corollary nobody saw coming, more than half (51 percent) of those enterprises
reported a rise in mobile security threats and attacks. Unbelievable. Next you’ll be telling me
water takes the path of least resistance, the angle of the Earth on its axis plays a big role in the
temperature outside my office window throughout the year, and fried food is bad for me.

The section of the article that was concerning to me, though, was not what was obvious. Of
course allowing BYOD into your environment creates huge attack surfaces and results in
more attacks. Duh. What concerned me was the seeming indifference to what I see as a huge
security problem. In another section of the study (a survey of nearly 400 enterprise IT
professionals), it showed 43 percent of organizations are not able to determine whether the
personal devices that are accessing corporate data have actually downloaded malware, and
only 30 percent of firms are confident that they are properly defending against malware on
personal and mobile devices. Think about that for a second. Almost half the companies freely
admit they have no means to determine if any given smartphone connecting is infected with
malware, but a third of those same companies interviewed think they’ve got a handle on it.

Somehow, I doubt they do. And somehow I think the hacking community knows it, too…

Mobile Platforms and Attacks
When it comes to mobile platforms, there are two major players in the field—Android and iOS—
with Blackberry bringing up the rear (see Figure 8-2). Android was created by Google
specifically for mobile devices, and it contains an OS, middleware, and a suite of built-in
applications for the mobile user. It offers a framework that allows reuse and replacement of
components, media support for virtually everything you can imagine, a development
environment to beat the band, and really cool names for each release (like Ice Cream Sandwich,
Jelly Bean, Éclair, and Honeycomb). Head on over to www.android.com and you’ll find more
than you ever wanted to know about it.

https://www.infosecurity-magazine.com/news/most-orgs-with-byod-enabled-lack/
http://www.android.com

Figure 8-2 Mobile device operating systems

iOS, on the other hand, is Apple’s operating system for mobile devices—that is, the iPhone
and iPad (you will also find iOS on Apple TV and iPods). Apple made its mark in the desktop
world, targeting entertainment and education, and its mobile OS is no different. iOS was
designed from the get-go for mobile devices, using direct manipulation (touch gestures) to
interface with the OS. Built-in applications include everything from entertainment to an AI with
a woman’s voice that answers questions for you (Siri). A good review of everything on the
current release can be found at www.apple.com/ios/.

NOTE They’re not nearly as popular as they once were, and EC-Council basically dropped all
references to them in the official courseware, but Blackberry phones are still around. Newish
Blackberry phones have ditched their proprietary OS for Android, hence the change in the
official courseware, but just be aware they’re still floating about.

Whether Android or iOS, one thing you will get asked about is rooting or jailbreaking the
device. Both mean the same thing: perform some action that grants you administrative (root)
access to the device so you can do whatever you want with it, and there are hundreds of videos
on online “how-tos” on getting it done. Rooting—the name given to the process on an Android
device—is such a common, ubiquitous action it’s almost not thought of as technical anymore.
And there are multiple tools to help you in your Android rooting efforts. One such groovy tool is
KingoRoot (https://www.kingoapp.com), and it makes the whole process ridiculously easy with
or without a laptop or PC handy. Others are TunesGo (https://tunesgo.wondershare.com),
OneClickRoot (https://oneclickroot.com), and MTK Droid (https://androidmtk.com).

As far as jailbreaking an iOS device (which, just like rooting, invalidates every warranty you
can think of), some tools include evasi0n7, GeekSn0w, Pangu, Redsn0w, Absinthe, and Cydia.
There are three basic techniques and three different types, regardless which tool you want to try.
Techniques include untethered, semi-tethered, and tethered:

• Untethered jailbreaking The kernel will remain patched (that is, jailbroken) after
reboot, with or without a system connection.

• Semi-tethered jailbreaking A reboot no longer retains the patched kernel; however, the
software has already been added to the device. Therefore, if admin privileges are required,
the installed jailbreaking tool can be used.

• Tethered jailbreaking A reboot removes all jailbreaking patches, and the phone may

http://www.apple.com/ios/
https://www.kingoapp.com
https://tunesgo.wondershare.com
https://oneclickroot.com
https://androidmtk.com

get stuck in a perpetual loop on startup, requiring a system connection (USB) to repair.

And the three types of jailbreaking include Userland, iBoot, and BootROM:

• Userland exploit Found in the system itself, which is leveraged to gain root access,
modify the fstab, and patch the kernel. These types of exploits cannot be tethered because
nothing can cause a recovery mode loop, but they can be patched by Apple. This exploit
provides user-level access but not admin.

• iBoot exploit Found in one of the device’s bootloader, called iBoot (the other
bootloaders are called SecureROM and LLB). It uses a vulnerability in iBoot to turn
codesign off, and runs a program that gets everything done. iBoot exploits can be semi-
tethered, and they can be patched by Apple.

• BootROM exploit Allows access to the file system, iBoot, and custom boot logos, and is
found in the device’s first bootloader, SecureROM. This kind of exploit can be
untethered, but cannot be patched by Apple: it’s hardware, not software.

EXAM TIP Jailbreaks within official study material can be confusing. For example, EC-
Council states iOS devices cannot be secured against Userland exploits, but then immediately
turns around and says firmware updates can patch for them. The important thing to remember
here is Userland equates to OS level, and is the only one of the three that does not provide admin
access.

When it comes to mobile vulnerabilities, no matter the platform, it’s almost laughable to ask
about them. These are devices owned and operated mainly by users who can roam at will and can
install virtually anything at all on them at will, for any reason. Security concerns? You betcha.
Mobile platforms have gobs of vulnerable attack points warranting your attention, including
everything from server-side controls to client injection and more. (Refer back to the list of Top
10 mobile risks covered earlier.) A hacker can take advantage not only of data on the device but
also the camera and microphone—how neat would it be to listen in on or even watch a board
meeting, hmm?

NOTE An interesting philosophical-type discussion from our wise tech editor fits well here.
“To jailbreak is to free yourself from the tyranny and whims of a single company with a walled
garden. To root is to gain administrative privileges to your Android device.” In short, Android
knows you’re going to root it and considers it holistically different from iOS and jailbreaking.

Many of the vulnerabilities and attack vectors we talked about on everything else also apply
to mobile. Just as with web hosts, perhaps the most obvious attack vector comes from the apps

themselves. App stores may not have any vetting of apps at all when entering the marketplace
and are often used to distribute malicious code. From iPhones to Android devices, users
download and install applications for everything from working on documents to faking a Star
Wars lightsaber for impromptu interoffice Jedi battles (Obi-Wan’s is my personal favorite). Most
users don’t even think about it—they just click the link, install the app, and start playing—and
many don’t even bother to read or care about what the app is asking for, permissions-wise, on the
device. Got an app for hacking? You bet we do, and if it’s tied to a fun-looking application, all
the better.

How about social engineering, phishing, and (gulp!) physical security? Mobile users are as, if
not more so, susceptible to all of it as their desktop peers. There’s not really a community
standard mechanism for dealing with spam and phishing, and because mobile users are always
on, it works quite well as an attack vector. What about theft or loss of the devices themselves?
It’s one thing to black widow a website and peruse it on your own or to grab a SAM file and
spend time pounding away on it, but what if you could just steal the whole dang server? In effect,
that’s what’s going on with these things. In addition to any files or data the user has on the
phone, a smartphone has all the data, contacts, phone numbers, and e-mails you’d need to set up
social engineering attacks in the future.

EXAM TIP Android’s Device Administration API
(https://developer.android.com/guide/topics/admin/device-admin) provides system-level device
administration. You can use it to create “security-aware” apps that may prove useful within your
organization.

And speaking of attack vectors, as we’ve briefly mentioned earlier, I’m sure you’re aware of
BYOD—Bring Your Own Device—sweeping across organizations faster than hot doughnuts off
the Krispy Kreme rollers. BYOD allows companies to take advantage, for free, of all that
computing power we’re all walking around with in our hands. The problem with it is security
and control, and that problem is we don’t really have any. Sure, we’re trying some things here
and there and feel like we have some measure of control, but the reality of the situation from a
pen testing (or hacking) perspective is, it’s a good time to be alive.

Mobile Device Management (MDM) is an effort to add some control to enterprise mobile
devices. Much like Group Policy and such in the Microsoft Windows world, MDM helps in
pushing security policies, application deployment, and monitoring of mobile devices. Most
MDM solutions offer the same basic features: passcodes for device unlocking, remote locking,
remote wipe, root or jailbreak detection, policy enforcement, inventory, and
monitoring/reporting. Some solutions are XenMobile, IBM MaaS360, AirWatch, and
MobiControl.

https://developer.android.com/guide/topics/admin/device-admin

NOTE In prepping for this chapter, I read somewhere that BYOD/MDM success is only
effective when policies are established and supported. While there’s no doubting the truth of that
statement, I can’t count the number of times I’ve heard, “But we have a policy to prevent that!”
When you’re on the job, please remember—and please advise your clients—that the existence of
a policy is a necessary thing, but in and of itself means absolutely zero to a bad guy.

For Business Purposes
Believe me, it’s not just teenagers anymore. The popularity of mobile platform applications
for business use and the supposed productivity boost they’re capable of providing for
organizations has greatly increased the number of workplace mobile devices in use today. It’s
not surprising that organizations would want to look at mobile computing as a way to increase
productivity. What may be surprising to some of them, though, is what their users are actually
doing with those devices.

According to a recent study by Harvard Business Review, consumers of smartphones
spend only a fraction of their time either planning for, or accomplishing, work activities on
their smart devices. An incredible 77 percent of their time, though, is spent either shopping,
socializing, or in the pursuit of “me time” entertainment—whether they’re at work or not.
Want more? How about the fact the fastest-growing demographic in new Twitter accounts is
older than 55? Or that nearly half of all Facebook use is mobile platform only? Taken together
with the fact that many studies now show social media overtaking porn as the #1 Internet
activity, it’s a miracle we get anything done anymore.

The very devices and open business thought processes we’re putting into place to spur
productivity and increase output are, instead, giving people more time to play, interact, and
shop. This probably doesn’t come as much of a surprise to anyone who’s spent any time
monitoring network activity of business users in a large organization (some of what the guy in
the next cubicle is looking at during work hours would really amaze you), but it’s all
interesting and noteworthy to me, especially when you think about the lack of security
involved in all this playtime.

Want more? Consider the connectivity these devices provide for users. Most folks hate
security and turn off everything they can to make life easier for themselves, and that goes for Wi-
Fi connectivity on phones too. There are tons of open Wi-Fi spots all over the place that people
use with their smartphones and tablets, and sniffing these types of connections is ridiculously
easy. Throw in location awareness and spyware apps, and this all gets pretty scary pretty quickly.

Frightened yet? Heck, we’re not even done with the platform spectrum. Any real discussion
on wireless standards and architecture must at least mention 3G, 4G, and Bluetooth. 3G and 4G
refer to third- and fourth-generation mobile telecommunications, respectively, and offer
broadband-type speeds for data usage on mobile devices (cell phones and such). The actual
technology behind these transmission standards is tweaked from mobile carrier to mobile carrier,
so unlike a wireless NIC complying with 802.11g working with any manufacturer’s access point
with the same standard, one company’s devices may not work with another’s on 3G or 4G.

Bluetooth refers to a very open wireless technology for data exchange over a relatively short
range (10 meters or less). It was designed originally as a means to reduce cabling but has become

a veritable necessity for cell phones and other mobile devices. Part of what makes Bluetooth so
susceptible to hacking is the thing that makes it so ubiquitous—its ease of use. Bluetooth devices
are easy to connect one to another and can even be set to look for other devices for you
automatically. Bluetooth devices have two modes: a discovery mode and a pairing mode.
Discovery mode determines how the device reacts to inquiries from other devices looking to
connect, and it has three actions. The discoverable action obviously has the device answer to all
inquiries, limited discoverable restricts that action, and nondiscoverable tells the device to ignore
all inquiries.

Whereas discovery mode details how the device lets others know it’s available, pairing mode
details how the device will react when another Bluetooth system asks to pair with it. There are
basically only two versions: yes, I will pair with you, and no, I will not. Nonpairable rejects
every connection request, whereas pairable accepts all of them. Between discovery and pairing
modes, you can see how Bluetooth was designed to make connection easy.

So in addition to the, roughly, billion or so new smartphones that will be sold this year, a
growing populace (in and out of the business world) carrying, adjusting, manipulating, and
rooting these devices at will, and the ease with which data can be stored on them with little to no
oversight or security control, you have to be aware of short-reach wireless connectivity that may
offer virtual control over these devices. We also have virtually nowhere to hide with them, since
3G and 4G reach nearly everywhere. Sleep well tonight, security folks. Sleep well.

Mobile Attacks
Attacks on mobile devices abound. First and foremost, phishing attacks and social engineering
are merciless when it comes to mobile devices. I’m sure you’re all familiar with good-old SMS
(text) messaging, but have you ever thought about SMS phishing? While our users at least think
about whether or not they should click a link in e-mail, a text message is another thing
altogether. Almost every vendor from airlines to UPS packaging gives you an option to get your
updates via text, and the practice is growing quickly. How easy would it be to just send User Joe
a text message telling him, “You have a package coming. Click Here to track”? Definitely
something to think about.

The list of Trojans available is almost without end. Notable Android Trojans include Obad,
Fakedefender, TRAMP.A, and ZitMo. Spyware is really scary, and tools like Mobile Spy and
Spyera make it really easy to listen in on or even watch what the target is doing. And if that’s not
enough, the tools we use to manage our own devices can be used against us. Ever heard of
Google Voice? How about Remote Wipe from Google? One loose password and mobile device
hacking becomes a nightmare. How about tracking where I’m at all the time? Tools like
AndroidLost, Find My Phone, and Where’s My Droid were designed to help me find my lost
phone, but they (and many, many others) can be used to track where I happen to be at. Wouldn’t
it be helpful to know where folks are at during a social engineering visit to the site?

NOTE Stagefright (https://en.wikipedia.org/wiki/Stagefright_(bug)) is the name given to a

https://en.wikipedia.org/wiki/Stagefright_(bug)

bunch of software bugs affecting Android operating systems. In short, many of the fancier
options for making messages and media transfer more fun for your average teen have allowed
attackers to perform remote code execution and privilege escalation.

And how about using your mobile device as an attack platform? Tools like Network Spoofer
allow you to control how websites appear on a desktop/laptop. DroidSheep allows you to
perform sidejacking by listening to wireless packets and pulling session IDs. Nmap works great
on a mobile device, and sniffers are a dime a dozen. Heck, you can even install Kali Linux on the
thing and turn it into a full-featured hacking machine.

NOTE Ever heard of NetCut (www.arcai.com/netcut/)? I hadn’t either until reading for this
chapter, and freely admit to having never used it. However, it’s listed in official courseware
AND it sounds…nifty. Per the NetCut site, you can identify all systems on your current Wi-Fi,
identify which one you don’t like, and, with the click of a button, cut them off Wi-Fi. Neat.

Finally, we can’t finish any wireless attack section without visiting our friendly little
Bluetooth devices. After all, think about what Bluetooth is for: connecting devices, usually
mobile (phones), wirelessly over a short distance. And since we keep everything on our devices
(e-mail, calendar appointments, documents, and just about everything else you might find on a
business computer), it should seem fairly obvious, then, that hacking that signal could pay huge
dividends.

Bluetooth definitely falls into the wireless category and has just a few things you’ll need to
consider for your exam and for your career. Although hundreds of tools and options are available
for Bluetooth hacking, the good news is their coverage on the exam is fairly light, and most of it
comes in the form of identifying terms and definitions. The major Bluetooth attacks are listed
here:

• Bluesmacking A simple denial-of-service attack against the device.
• Bluejacking Consists of sending unsolicited messages to, and from, mobile devices.
• Bluesniffing An effort to discover Bluetooth-enabled devices—much like war driving in

wireless hacking.
• Bluebugging Successfully accessing a Bluetooth-enabled device and remotely using its

features.
• Bluesnarfing The actual theft of data from a mobile device due to an open connection—

such as remaining in discovery mode.
• Blueprinting Think of this as footprinting for Bluetooth: Blueprinting involves

collecting device information over Bluetooth.

http://www.arcai.com/netcut/

EXAM TIP BBProxy is a Blackberry-centric tool that’s useful in an attack called
blackjacking.

Although they’re not covered in depth on your exam, you should know some of the more
common Bluetooth tools available. Of course, your first action should be to find the Bluetooth
devices. BlueScanner (from SourceForge) does a great job of finding devices around you, but it
will also try to extract and display as much information as possible. BT Browser is another great,
and well-known, tool for finding and enumerating nearby devices. Bluesniff and btCrawler are
other options, providing nice GUI formats for your use. As far as attacks go, Blooover is a good
choice for Bluebugging, and PhoneSnoop is good for spyware on a Blackberry.

In a step up from that, you can start taking advantage of and hacking the devices nearby.
Super Bluetooth Hack is an all-in-one software package that allows you to do almost anything
you want to a device you’re lucky enough to connect to. If the device is a smartphone, you could
read all messages and contacts, change profiles, restart the device, and even make calls as if
they’re coming from the phone itself.

IoT
I suppose before discussing anything, and especially before discussing a topic so important EC-
Council created a whole new chapter in its official curriculum for it, we’d need to first define the
topic at hand. I looked up several definitions of the Internet of Things (IoT) and found more
variations on this definition than I thought imaginable. Want a try at it? Well, the best I can do is
an amalgamation of what I’ve read in several resources: the IoT is a collection of devices using
sensors, software, storage, and electronics to collect, analyze, store, and share data among
themselves or to a user. Sound far reaching and a little broad? It probably is, but the reason for
that is self-evident: the IoT is everywhere, and expanding by the minute.

Just look around you right now, wherever you are. Chances are there’s an IoT device nearby.
Your phone, watch, printer, vacuum, refrigerator, toothbrush (maybe), light bulbs, electrical
outlets, thermostat for your A/C unit, and your water heater are all probably right now, or will be
soon, collecting and sharing information. I even read somewhere there’s now Internet-enabled
underwear. And that’s just inside your house. Forget the cars on the road—that’s too obvious—
how about the road they’re driving on, the surveillance cameras, streetlights, traffic signals…it’s
literally endless and downright mind boggling. So forgive EC-Council, and me, if we can’t really
get a handle on it just yet. It’s literally too much to squeeze down into a short description.

NOTE A term associated with IoT is “wearables,” which refers to the endless array of smart
watches and other items worn by a user. I’ve even seen Internet-enabled earrings.

A couple definitions I saw in EC-Council reading and online I think may add a little clarity, at
least to where we’re heading here anyway. One is, the IoT refers to a network of devices with IP
addresses that have the capability of sensing, collecting, and sending data to each other—

basically a web of connected devices made possible by machine-to-machine communications,
large availability of storage, and internetworked communications. Another source listed IoT as
technologies extending Internet connectivity beyond “standard” devices, such as desktops,
laptops, smartphones, and tablets, to any range of traditionally non-network-enabled physical
devices and everyday objects. And I think that is the crux of the whole thing—we traditionally
have thought of certain, specific devices belonging on a network, and those specific devices
behaving accordingly. The IoT has taken that to a whole new level by making everything
internetworked.

So how does this all fit together? And how can we hope to defend it? Hopefully that’s what
the remainder of this chapter will help to answer.

IoT Architecture
Since IoT is, by nature, changing all the time and adding ever new and inventive ways to use
devices for data gathering—I can’t wait for Internet-enabled toenail clippers—trying to nail
down an architecture for the whole thing seems like a fool’s errand. I mean, we can certainly take
apart a specific network and look at each device enabled on it, but the entirety and breadth of
each and every one? Impossible. What we can do is look at some things that are common across
the board and try to categorize them for study as best we can. This isn’t, and will never be,
comprehensive in nature—as fast as the IoT is growing, I’m certain there will be new
information out before we even get to print—but we will follow EC-Council’s lead here and, for
the most part, I think you’ll find it pretty good.

How it all works comes down to three basic components—things using sensing technology,
IoT gateways, and the cloud (or put another way, data storage availability). A thing inside the
IoT is defined as any device implanted somewhere with the ability (and purpose) of
communicating on the network. Each embedded with some form of sensing technology, IoT
devices can communicate and interact over the Internet, and oftentimes can be remotely
monitored and controlled. In other words, sensors are embedded in the devices to measure and
forward data (for example, a medical device sensing a patient’s health statistics or the Nest
thermostat implanted in your A/C system, providing information and feedback on its use).

NOTE In one of the more prominent examples of “maybe we should slow this turnover of all
functions to the machines,” did you hear about the Nest failures recently
(https://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-
freeze.html)? Seems a software glitch inside Nest had all the thermostats shut off because they
couldn’t connect to the Internet.

Those things communicating with each other must have a couple items intact in order to
work. The first is some sort of operating system allowing all this data collection and analysis in
the first place. EC-Council nicely provides a quick list for your amusement and perusal:

• RIOT OS It can run on embedded systems, actuator boards, and sensors, uses energy

https://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html

efficiently, and has very small resource requirements.
• ARM mbed OS This is mostly used on wearables and other devices that are low-

powered.
• RealSense OS X Intel’s depth sensing version, this is mostly found in cameras and other

sensors.
• Nucleus RTOS This is primarily used in aerospace, medical, and industrial applications.
• Brillo An Android-based OS, this is generally found in thermostats.
• Contiki This is another OS made for low-power devices; however, it is found mostly in

street lighting and sound monitoring.
• Zephyr This is another option for low-power devices, and devices without many

resources.
• Ubuntu Core This is used in robots and drones, and is also known as “snappy.”
• Integrity RTOS This is primarily found in aerospace and medical, defense, industrial,

and automotive sectors.
• Apache Mynewt Devices using Bluetooth Low Energy Protocol make use of this.

And once devices have all that data prepared, they need a network of some sort to
communicate on. Mostly this is done over wireless communications in all its various forms and
generally follows one of four IoT communication models—device to device, device to gateway,
device to cloud, or back-end data sharing. All work exactly as their name suggests, with only a
couple of knowledge nuggets you can tuck away for test purposes. Device to device and device
to cloud are pretty straightforward, with the things communicating directly with each other or
shooting their data off directly to a cloud. Device to gateway adds a collective before sending to
a cloud, which can be used to offer some security controls. Finally, the one outlier, back-end data
sharing, is almost exactly like device to cloud; however, it adds the ability for third parties to
collect and use the data. Figure 8-3 displays device to gateway and back-end data sharing for
your comparison.

Figure 8-3 IoT communication models

Once a thing has sensed and collected data, it forwards to the next component, the IoT
gateway. This is designed to send collected data from devices to the user or to the third
component, data storage or cloud, for use later. The cloud stores and analyzes data, providing
information back for future queries. A fitness watch, for example, may provide you, the user,
immediate feedback and information on your workout while simultaneously storing details for
your comparison and review later.

EXAM TIP File this one away as a definition you’ll need to remember later: the Vehicle Ad
Hoc Network (VANET) is the communications network used by our vehicles. It refers to the
spontaneous creation of a wireless network for vehicle-to-vehicle (V2V) data exchange.

In addition to the basic components, EC-Council lists a few architecture layers inside IoT.
These aren’t tricky, they don’t require weird mental gymnastics to remember, and seem to make
a lot of common sense:

• Edge Technology Layer This layer consists of sensors, RFID tags, readers, and the
devices themselves.

• Access Gateway Layer First data handling takes place in this layer, with message
identification and routing occurring here.

• Internet Layer This is a crucial layer, as it serves as the main component to allow all
communication.

• Middleware Layer This layer sits between the application and hardware layers, and
handles data and device management, data analysis, and aggregation.

• Application Layer This layer is responsible for delivery of services and data to the user.

Regarding the architecture, just remember how quickly IoT is growing and evolving. I did a
search for IoT trends and found over 60 million pages of information to peruse. Keep your eye
out and read all you can on it. IEEE maintains a journal on all things IoT
(https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907), and ITU has a great
collection of news articles about current IoT efforts (https://www.itu.int/en/ITU-
T/ssc/resources/Pages/topic-001.aspx). In other words, make use of all these search engines we
have available and try to keep up. It’ll help, both on your exams in the future and your job.

IoT Vulnerabilities and Attacks
Remember OWASP? Well, guess what? They’re back again, this time helping us to identify
vulnerabilities and issues inside the IoT realm. The OWASP Top 10 for IoT
(https://www.owasp.org/index.php/Top_IoT_Vulnerabilities) is called out explicitly in the
official courseware and is listed here for you (you’re welcome):

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
https://www.itu.int/en/ITU-T/ssc/resources/Pages/topic-001.aspx
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities

NOTE As with other OWASP lists, don’t let yourself get all wrapped up in the dates. The
latest OWASP list on IoT is from 2014, and it’s the list EC-Council references, so just go with it.

• I1 – Insecure Web Interface An insecure web interface can be present when issues such
as account enumeration, lack of account lockout, and weak credentials are present.
Insecure web interfaces are prevalent, as the intent is to have these interfaces exposed
only on internal networks; however, threats from the internal users can be just as
significant as threats from external users. Issues with the web interface are easy to
discover when examining the interface manually, along with using automated testing tools
to identify other issues such as cross-site scripting.

• I2 – Insufficient Authentication/Authorization Authentication may not be sufficient
when weak passwords are used or are poorly protected. Insufficient
authentication/authorization is prevalent, as it is assumed that interfaces will only be
exposed to users on internal networks and not to external users on other networks.
Deficiencies are often found to be present across all interfaces. Many issues with
authentication/authorization are easy to discover when examining the interface manually
and can also be discovered via automated testing.

• I3 – Insecure Network Services Insecure network services may be susceptible to buffer
overflow attacks or attacks that create a denial-of-service condition, leaving the device
inaccessible to the user. Denial-of-service attacks against other users may also be
facilitated when insecure network services are available. Insecure network services can
often be detected by automated tools such as port scanners and fuzzers.

• I4 – Lack of Transport Encryption/Integrity Verification Lack of transport
encryption allows data to be viewed as it travels over local networks or the Internet. Lack
of transport encryption is prevalent on local networks, as it is easy to assume that local
network traffic will not be widely visible; however, in the case of a local wireless
network, misconfiguration of that wireless network can make traffic visible to anyone
within its range.

• I5 – Privacy Concerns Privacy concerns generated by the collection of personal data in
addition to the lack of proper protection of that data is prevalent. Privacy concerns are
easy to discover by simply reviewing the data that is being collected as the user sets up
and activates the device.

• I6 – Insecure Cloud Interface An insecure cloud interface is present when easy-to-
guess credentials are used or account enumeration is possible. Insecure cloud interfaces
are easy to discover by simply reviewing the connection to the cloud interface and
identifying if SSL is in use or by using the password reset mechanism to identify valid
accounts, which can lead to account enumeration.

• I7 – Insecure Mobile Interface An insecure mobile interface is present when easy-to-
guess credentials are used or account enumeration is possible. Insecure mobile interfaces
are easy to discover by simply reviewing the connection to the wireless networks and

identifying if SSL is in use or by using the password reset mechanism to identify valid
accounts, which can lead to account enumeration.

• I8 – Insufficient Security Configurability Insufficient security configurability is
present when users of the device have limited or no ability to alter its security controls.
Insufficient security configurability is apparent when the web interface of the device has
no options for creating granular user permissions or for forcing the use of strong
passwords, for example. Manual review of the web interface and its available options will
reveal these deficiencies.

• I9 – Insecure Software/Firmware The lack of ability for a device to be updated
presents a security weakness on its own. Devices should have the ability to be updated
when vulnerabilities are discovered, and software/firmware updates can be insecure when
the updated files themselves and the network connection they are delivered on are not
protected. Software/firmware can also be insecure if it contains hardcoded sensitive data
such as credentials.

• I10 – Poor Physical Security Physical security weaknesses are present when an attacker
can disassemble a device to easily access the storage medium and any data stored on it.
Weaknesses are also present when USB ports or other external ports can be used to access
the device using features intended for configuration or maintenance.

As with the mobile vulnerabilities mentioned previously, be sure to examine everything
OWASP has to offer on the project home page:

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Vulnerabilities

You’ll be able to keep up with the list as it updates and read up on any new developments that
may wriggle their way into your exam.

How Baby Monitors Brought Down the Internet
Sitting around talking about IoT horror stories, my lovely and talented daughter, Hope,
offered this gem:

“On October 21, 2016, millions of people unknowingly had their devices contribute to one
of the largest distributed denial-of-service (DDoS) attacks ever. Devices ranging from
security cameras, printers, routers, and even baby monitors infected with malware launched
an attack, later dubbed the Dyn attack. Lasting approximately 3.5 hours (2 hours and 20
minutes for the first wave and 1 hour and 10 minutes for the second wave), it disrupted
numerous large websites and online retailers.

Dyn provides DNS services to over 3500 online companies, including Netflix, Twitter, and
LinkedIn. During the attack, infected devices sent enormous amounts of fake DNS traffic
(TCP and UDP on port 53) to Dyn DNS servers. The attack was further compounded when
the recursive DNS traffic kept retrying before it could be mitigated. As a result, Dyn DNS
servers were overloaded with requests for name resolution from IoT devices and could no
longer answer requests by legitimate users. This means that unless users knew the IP
addresses for the websites they were going to, they were unlikely to reach them.

The network of infected devices perpetrating the attack was referred to as the Mirai botnet,
named after the Mirai malware that had infected the devices (https://dyn.com/blog/dyn-

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Vulnerabilities
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

analysis-summary-of-friday-october-21-attack/). Infected devices were activated, and together
millions of devices launched from homes of unsuspecting users. Mirai targeted IoT devices by
scanning the Internet to discover devices that could be unsecured. When a device was found,
the malware attempted default and weak passwords to gain access to the device. If these
attempts were successful, the malware dropped a payload and opened a backdoor on the
device (http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html). The
infected device could then be used to launch more attacks, either infecting more devices or
receiving instructions from a command and control.”

If you think that’s the end of it, think again. These types of stories are just the beginning,
and it’s up to security professionals like you to either prevent their occurrence or limit the
damage they can cause.

Get ready, because I think the toaster is eyeballing me…

Lastly in this section, we need to cover some of the attacks against IoT. For the most part,
virtually every attack we’ve discussed (or will discuss later) in this book can be leveraged
against IoT—or make use of IoT devices to work. For example, DDoS (distributed denial of
service) in IoT isn’t any different from any other DDoS against or using “normal” devices. In the
IoT world, though, you can leverage your toaster and all these other little data producers and
collectors to carry out outlandish DDoS attacks. In one version of this, noted as the Sybil attack
in EC-Council’s curriculum, multiple forged identities are used to create the illusion of traffic
congestion that affects everyone else in the local IoT network.

EXAM TIP EC-Council also notes HVAC attacks in IoT attacks. It’s pretty much exactly what
it sounds like—hack IoT devices in order to shut down air conditioning services.

A couple other attacks specifically called out are rolling code and BlueBorne. The code used
by your key fob to unlock (and in some cases) start your car is called a rolling (or hopping) code.
An attack can sniff for the first part of the code, jam the key fob, and sniff/copy the second part
on subsequent attempts, allowing the attacker to steal the code—and your car. One of the better
ways to pull this one off is to use hardware designed for a wide radio range spectrum, like the
HackRF One (https://greatscottgadgets.com). A BlueBorne attack is basically an amalgamation
of techniques and attacks against known, already existing Bluetooth vulnerabilities.

Ransomware, side channel, man in the middle (MITM), and so on all still apply here, as they
do everywhere else. And let’s not forget malware. Just like their wired cousins, IoT devices can
fall prey to malware. For example, Mirai malware purposefully looks for and interjects itself
onto IoT devices. After successful infiltration, it basically propagates and creates gigantic botnets
—with the primary purpose of DDoS attacks thereafter.

IoT Hacking Methodology
Lastly in this chapter, things just wouldn’t be right without a good old-fashioned CEH

http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://greatscottgadgets.com

methodology to commit to memory. I can’t really blame EC-Council for this—a methodology is
after all, and as previously mentioned, not necessarily a step-by-step, rote list to follow in order.
Rather, it’s a good means to ensure you cover all your bases and make sure the test moves
forward comprehensively. When it comes to this IoT hacking methodology, the steps will
probably look really familiar to you: information gathering, vulnerability scanning, launching
attacks, gaining access, and maintaining access.

The information gathering phase is exactly what it sounds like: call it reconnaissance and
footprinting for IoT devices. And just how would one pull this off? Glad you asked—ever heard
of Shodan?

Suppose you were sitting at home one night watching a cooking show and you saw a baker
talking about a sweet, delicious ganache. After a brief sip on your bourbon, you think to yourself,
“What the heck is a ganache? How does one make ganache? Where was ganache invented, by
whom, and why?” If you wanted all the answers to those questions, you’d get up, go to your
laptop, and open Google and start searching. Why? Because Google is a giant search engine
crawling nearly every website worldwide, and you know the answers to your questions are in
there somewhere.

Shodan (https://www.shodan.io/) is often referred to as the search engine for everything. See,
Google and other search engines index the Web, while Shodan indexes pretty much everything
else (see Figure 8-4). Want to find all webcams in a specific city? Shodan can help. Want to see
where the wind turbines are in your state and how they’re doing? Shodan again. How about
utilities, smart TVs, SCADA systems, medical devices, traffic lights, refrigerators, and the
aforementioned Internet-enabled underwear? I’ll take Shodan for $500, Alex. Shodan indexes
anything and everything imaginable that is or once was (and many times probably shouldn’t be)
plugged into the Internet.

Figure 8-4 Shodan

Shodan is to everything else what Google is to the Web. It’s incredibly powerful, super cool,
and fun to use—and can be exceptionally dangerous. Shodan can provide you loads of
information about all the devices you wish to look for, and can do so with the benefit of hiding
your identity while you’re searching. After all, Nmap can be incredibly noisy at times, but
Shodan may have crawled your targets weeks ago, and done so anonymously (for you anyway).

https://www.shodan.io/

NOTE Shodan requires a registration, but is free to use. It is highly recommended you take
great pains to obscure your identity as much as possible before signing up and using it. For
example, you might consider loading TOR on a USB, use that connection to create a fake e-mail
account, and register with that. And by all means, and we cannot stress this enough, if you are
planning on using Shodan for anything even vaguely illegal or malicious, save yourself (and us)
the bother and just step away, please.

EC-Council doesn’t go into Shodan use in the curriculum, but I highly recommend you check
it out anyway and learn some common filters (like city, hostname, geo, port, and net, for
starters): for example, apache city:"Huntsville" will show you all Apache servers Shodan
found in Huntsville, Alabama, and cisco net:"69.192.0.0/16" will show all the Cisco devices it
can find on the subnet hosting basspro.com (as an aside, this is just an example—please leave
BassPro alone; they’re awesome and you’ll get in bunches of trouble for ignoring me here).
There are also multiple built-in, common searches available—just click them and adjust as
needed. I’d bet cash money you’ll see it on future exam versions.

EXAM TIP Some of the other tools to assist in information gathering are Censys
(https://censys.io) and Thingful (www.thingful.net).

The second phase in IoT hacking methodology, vulnerability scanning, is exactly as it sounds
and reminds me of a cold data center floor on Marshall Space Flight Center, many, many years
ago. I was there with a couple of guys installing and configuring a vulnerability assessment suite.
I won’t go into the name of the vendor, to protect the innocent, but you’d recognize them. At any
rate, we were plugging along and I got to talking with the lead engineer from the vendor. We
discussed the how, when, where, and whys, until I asked him about scanning a network
appliance we had. He paused for a moment, turned away from the server rack with cables in
hand, and told me, “Matt, this thing will scan a microwave if you want it to.” At the time, we all
thought that was just hilarious. Imagine, scanning a microwave for vulnerabilities you could
exploit against the enterprise. How ridiculous.

Fast-forward a few years, and now I’m wondering if there’s going to be a Patch Tuesday for
my toilet. There are, in fact, several vulnerability scanners and assessment tools for IoT devices,
and more are coming every day. Even though I’d argue it’s not a vulnerability assessment tool,
EC-Council lists Nmap as an option. Beyond Trust offers a couple of tools for IoT scanning,
including RIoT Vulnerability Scanner (https://www.beyondtrust.com/resources/data-sheet/retina-
iot-riot-scanner/) and beSTORM (https://www.beyondsecurity.com/bestorm.html). Some other
tools are IoTsploit (https://iotsploit.com) and IoT Inspector (www.iot-inspector.com).

http://basspro.com
https://censys.io
http://www.thingful.net
https://www.beyondtrust.com/resources/data-sheet/retina-iot-riot-scanner/
https://www.beyondsecurity.com/bestorm.html
https://iotsploit.com
http://www.iot-inspector.com

Just How Lazy Can We Get?
I freely admit, this whole idea of the Internet of Things terrorizes me. Between this and the
seemingly nonstop rush into artificial intelligence, I find myself scream-ing (virtually, of
course) to everyone about the dangers it all poses. Some of that is because I’m a security guy
and, at heart, I’m suspicious and paranoid regarding…well…everything. But some of it is
because I’m prone to overreaction when I’m just so dang certain of my opinion. And knowing
this, I decided to add at least one sec-tion of this chapter with a little lightheartedness
concerning the whole thing.

I got to thinking, “If we can Internet-enable anything, what would be the dumb-est thing I
could think of to put on the Internet?” I had some ideas of my own, of course, but decided to
take it to the search engines and see what I could find. I quickly found I wasn’t the only one
wondering this.

At the IoT World 2017 conference, attendees were asked what they thought the most
useless IoT devices were (https://www.iotworldtoday.com/2018/02/19/funny-iot-devices-
worst-internet-things/). Their selections? An IoT wine bottle, Internet-enabled underwear
(see? I told you this was real), and IoT strollers that sense your walking stride and push your
baby along in front of you without any assistance.

Gizmodo listed a few useless items as well recently (https://gizmodo.com/15-idiotic-
internet-of-things-devices-nobody-asked-for-1794330999). Their sub-missions included a
Fitbit for your dog called a Trakz, a hairbrush embedded with a gyroscope and a microphone
(to monitor for correct hair brushing strokes and activity), and a set of flip-flops that don’t
measure steps or anything like that, but send you notifications of sales from stores you happen
to be flip-flopping by.

The Internet of Useless Things (www.internetofuselessthings.io/) has a few great entries as
well. The ThroneMaster puts advanced on-board analytics on your toilet and creates a game
out of #2, allowing you to compare and compete with your fam-ily or colleagues (why would
anyone want to?). The Intestinal Track 2.0 is a pill you swallow that lets you know when
you’re due for your next #2 (never knew I needed something else to tell me that). And the Fit
Spoon (I swear I’m not making any of these up) measures the speed you’re eating your cereal
and, if it’s gluttonously fast compared to the rest of the world, it open up holes in the spoon so
you’ll eat less. The list of these things goes on and on and, frankly, it’s hilarious. Give it a go
and search for the most ridiculous things you can think of. I’d bet they’re already out there, or
will be soon.

In the movie WALL-E, the little robot surviving on his own for eons eventually finds his
way onto a spaceship cruise line that has been endlessly circling the solar system. All humans
on board were gigantic, soft, inept beings with their every whim attended to by, well, IoT
devices and robots. I fear if we’re actually enabling our toilet paper rollers, hairbrushes,
toothbrushes, and underpants, we’re not that far away from it. Until then, though, take a
moment and laugh at the hilarity of it all.

https://www.iotworldtoday.com/2018/02/19/funny-iot-devices-worst-internet-things/
https://gizmodo.com/15-idiotic-internet-of-things-devices-nobody-asked-for-1794330999
http://www.internetofuselessthings.io/

NOTE Weirdly, to me anyway, since Nessus is generally considered the vulnerability scanner
for most professionals, Tenable’s IoT vulnerability efforts
(https://www.tenable.com/solutions/iot) aren’t even mentioned in the courseware. I suspect this
will be one of those corrections we’ll see in the very near future, so you may wish to familiarize
yourself with them before your exam.

The third phase in the methodology, launching attacks, is one we’ve covered a bit already in
this chapter. A few hacking tools not mentioned earlier include Firmalyzer
(https://firmalyzer.com, for performing active security assessments on IoT devices), KillerBee
(https://github.com), JTAGulator (www.grandideastudio.com), and Attify Zigbee Framework
(https://www.attify.com, providing a suite of tools for testing Zigbee devices). As the IoT
expands, so do the number, names, and frequency of attacks.

The last two phases, gaining access and then maintaining access, have been covered before,
and most everything in previous discussions applies here. One thing I did find very interesting, in
both the official courseware and in reading up on IoT, is that, believe it or not, Telnet is big in
the IoT world. That’s right—our old insecure friend Telnet is often leveraged in IoT devices and
provides a rather easy means to gain access. Once there, you can, of course, install backdoors
and malware, or force firmware updates to ensure you can maintain a presence.

EXAM TIP How about a sniffer specifically for IoT traffic? Sound like a dream? Well, wake
up and smell the coffee, because Foren6 (http://cetic.github.io/foren6/) “leverages passive sniffer
devices to reconstruct a visual and textual representation of network information to support real-
world Internet of Things applications where other means of debug (cabled or network-based
monitoring) are too costly or impractical.” Other sniffers include Z-Wave
(www.suphammer.com) and CloudShark (https://www.cloudshark.org).

And that, ladies and gentlemen, wraps up our short little foray into the IoT. It is, quite
literally, impossible for this or any book or study session to capture the entire breadth of the
IoT’s scope. I applaud EC-Council’s attempt, and actually found this information useful and
largely coherent and clear. I did my best here to shrink it down into digestible portions and
sincerely hope it helps you come exam time—and real-world work time. Once again, however, I
must implore you to do your own research. This technology is growing by leaps and bounds, and
the next exam-worthy attack tool discussion or terminology will be right around the corner.

Chapter Review
The Open Web Application Security Project (OWASP) has an arm dedicated specifically to

https://www.tenable.com/solutions/iot
https://firmalyzer.com
https://github.com
http://www.grandideastudio.com
https://www.attify.com
http://cetic.github.io/foren6/
http://www.suphammer.com
https://www.cloudshark.org

mobile security (https://www.owasp.org/index.php/OWASP_Mobile_Security_Project) and
publishes a Top 10 list of mobile risks. Here are the current top 10
(https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10): M1 – Improper Platform
Usage, M2 – Insecure Data Storage, M3 – Insecure Communication, M4 – Insecure
Authentication, M5 – Insufficient Cryptography, M6 – Insecure Authorization, M7 – Client
Code Quality, M8 – Code Tampering, M9 – Reverse Engineering, and M10 – Extraneous
Functionality.

When it comes to mobile platforms, there are two major players in the field—Android and
iOS. Android was created by Google specifically for mobile devices, and it contains an OS,
middleware, and a suite of built-in applications for the mobile user. iOS is Apple’s operating
system for mobile devices—that is, the iPhone and iPad (you will also find iOS on Apple TV and
iPods). Built-in applications include everything from entertainment to an AI with a woman’s
voice that answers questions for you (Siri). A good review of everything from Android and iOS
can be found at https://www.android.com/ and www.apple.com/ios/, respectively.

Whether Android or iOS, one thing you will get asked about is rooting or jailbreaking the
device. Both mean the same thing: perform some action that grants you administrative (root)
access to the device so you can do whatever you want with it. There are multiple tools to help
you in your Android rooting—the name given to the process on an Android device—efforts.
These include KingoRoot (https://www.kingoapp.com), TunesGo
(https://tunesgo.wondershare.com), OneClickRoot (https://oneclickroot.com), and MTK Droid
(https://androidmtk.com).

As far as jailbreaking an iOS device (which, just like rooting, invalidates every warranty you
can think of), tools include, but are not limited to, evasi0n7, GeekSn0w, Pangu, Redsn0w,
Absinthe, and Cydia. There are three basic techniques and three different types, regardless which
tool you want to try. Techniques include untethered (kernel will remain patched—that is,
jailbroken—after reboot, with or without a system connection), semi-tethered (reboot no longer
retains the patched kernel but the software has already been added to the device; therefore, if
admin privileges are required, the installed jailbreaking tool can be used), and tethered (reboot
removes all jailbreaking patches, and the phone may get stuck in a perpetual loop on startup,
requiring a system connection, such as USB, to repair). The three types of jailbreaking include
Userland (provides user-level access but not admin), iBoot, and BootROM (both provide admin-
level access).

Many of the vulnerabilities and attack vectors we talked about on everything else also apply
to mobile. Perhaps the most obvious attack vector comes from the apps themselves. Others
include social engineering, phishing, and physical security. Android’s Device Administration
API (https://developer.android.com/guide/topics/admin/device-admin) provides system-level
device administration that can be used to create “security-aware” apps that may prove useful
within an organization.

BYOD—Bring Your Own Device—allows users to bring their own smartphones and tablets
to the organization’s network. The problem with it is security and control. Mobile Device
Management (MDM), much like Group Policy and such in the Microsoft Windows world, is an
effort to add some control to enterprise mobile devices. MDM helps in pushing security policies,
application deployment, and monitoring of mobile devices. Most MDM solutions offer the same
basic features: passcodes for device unlocking, remote locking, remote wipe, root or jailbreak
detection, policy enforcement, inventory, and monitoring/reporting. Some of the solutions are
XenMobile, IBM MaaS360, AirWatch, and MobiControl.

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.android.com/
http://www.apple.com/ios/
https://www.kingoapp.com
https://tunesgo.wondershare.com
https://oneclickroot.com
https://androidmtk.com
https://developer.android.com/guide/topics/admin/device-admin

3G, 4G, and Bluetooth are other connectivity means to know. 3G and 4G refer to third- and
fourth-generation mobile telecommunications, respectively, and offer broadband-type speeds for
data usage on mobile devices (cell phones and such). Bluetooth refers to a very open wireless
technology for data exchange over a relatively short range (10 meters or less). Bluetooth devices
are easy to connect one to another and can even be set to look for other devices for you
automatically. Bluetooth devices have two modes: discovery mode and pairing mode. Discovery
mode determines how the device reacts to inquiries from other devices looking to connect, and it
has three actions. The discoverable action obviously has the device answer to all inquiries,
limited discoverable restricts that action, and nondiscoverable tells the device to ignore all
inquiries.

Whereas discovery mode details how the device lets others know it’s available, pairing mode
details how the device will react when another Bluetooth system asks to pair with it. There are
basically only two versions: yes, I will pair with you, and no, I will not. Nonpairable rejects
every connection request, whereas pairable accepts all of them.

Attacks on mobile devices abound. First and foremost, phishing attacks and social
engineering are merciless when it comes to mobile devices. SMS phishing leverages text
messaging to attack users and devices. The list of Trojans available is almost without end.
Notable Android Trojans include Obad, Fakedefender, TRAMP.A, and ZitMo. Spyware is really
scary, and tools like Mobile Spy and Spyera make it really easy to listen in on or even watch
what the target is doing. Tools like AndroidLost, Find My Phone, and Where’s My Droid were
designed to help users find lost phones, but they (and many, many others) can be used to track
where users happen to be at.

The mobile device can also be used as an attack platform. Tools like Network Spoofer allow
you to control how websites appear on a desktop/laptop. DroidSheep allows you to perform
sidejacking by listening to wireless packets and pulling session IDs. Nmap works great on a
mobile device, and sniffers are a dime a dozen. Heck, you can even install Kali Linux on the
thing and turn it into a full-featured hacking machine. NetCut (www.arcai.com/netcut/) claims to
be able to identify all systems on your current Wi-Fi, identify which one you don’t like, and,
with the click of a button, cut them off Wi-Fi.

The major Bluetooth attacks are Bluesmacking (denial-of-service attack against the device),
Bluejacking (sending unsolicited messages to, and from, mobile devices), Bluesniffing (effort to
discover Bluetooth-enabled devices—much like war driving in wireless hacking), Bluebugging
(accessing a Bluetooth-enabled device and remotely using its features), Bluesnarfing (theft of
data from a mobile device due to an open connection—such as remaining in discovery mode),
and Blueprinting (footprinting for Bluetooth).

The Internet of Things (IoT) can be defined as a collection of devices using sensors, software,
storage, and electronics to collect, analyze, store, and share data among themselves or to a user.
It refers to a network of devices with IP addresses that have the capability of sensing, collecting,
and sending data to each other—basically a web of connected devices made possible by
machine-to-machine communications, large availability of storage, and internetworked
communications. IoT technologies extend Internet connectivity beyond “standard” devices, such
as desktops, laptops, smartphones, and tablets, to any range of traditionally non-network-enabled
physical devices and everyday objects.

IoT architecture comes down to three basic components—things using sensing technology,
IoT gateways, and the cloud (or put another way, data storage availability). A thing inside the
IoT is defined as any device implanted somewhere with the ability (and purpose) of

http://www.arcai.com/netcut/

communicating on the network. Embedded with technology, IoT devices can communicate and
interact over the Internet, and oftentimes can be remotely monitored and controlled. Each of
these things has some form of sensing technology. In other words, sensors are embedded in the
device to measure and forward data.

IoT OS examples include RIOT OS, ARM mbed OS, RealSense OS X, Nucleus RTOS,
Brillo, Contiki, Zephyr, Ubuntu Core, Integrity RTOS, and Apache Mynewt. There are four IoT
communication models—device to device, device to gateway, device to cloud, and back-end data
sharing. All work exactly as their names suggest, with only a couple of knowledge nuggets you
can tuck away for test purposes. Device to gateway adds a collective before sending to cloud,
which can be used to offer some security controls, and back-end data sharing is almost exactly
like device to cloud; however, it adds the ability for third parties to collect and use the data.

Once a thing has sensed and collected data, it forwards that data to the next component, the
IoT gateway. This is designed to send collected data from devices to the user or to the third
component, data storage or cloud, for use later. The cloud stores and analyzes data, providing
information back for future queries. The Vehicle Ad Hoc Network (VANET) is the
communications network used by our vehicles. It refers to the spontaneous creation of a wireless
network for vehicle-to-vehicle (V2V) data exchange.

In addition to the basic components, EC-Council lists a few architecture layers inside IoT:
Edge Technology Layer, Access Gateway Layer, Internet Layer, Middleware Layer, and
Application Layer. IEEE maintains a journal of all things IoT
(https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907), and ITU has a great
collection of news articles about current IoT efforts (https://www.itu.int/en/ITU-
T/ssc/resources/Pages/topic-001.aspx).

Here is the OWASP Top 10 for IoT
(https://www.owasp.org/index.php/Top_IoT_Vulnerabilities):

• I1 – Insecure Web Interface An insecure web interface can be present when issues such
as account enumeration, lack of account lockout, and weak credentials are present.

• I2 – Insufficient Authentication/Authorization Authentication may not be sufficient
when weak passwords are used or are poorly protected.

• I3 – Insecure Network Services Insecure network services may be susceptible to buffer
overflow attacks or attacks that create a denial-of-service condition, leaving the device
inaccessible to the user.

• I4 – Lack of Transport Encryption/Integrity Verification Lack of transport
encryption allows data to be viewed as it travels over local networks or the Internet.

• I5 – Privacy Concerns Privacy concerns generated by the collection of personal data in
addition to the lack of proper protection of that data is prevalent.

• I6 – Insecure Cloud Interface An insecure cloud interface is present when easy-to-
guess credentials are used or account enumeration is possible.

• I7 – Insecure Mobile Interface An insecure mobile interface is present when easy-to-
guess credentials are used or account enumeration is possible.

• I8 – Insufficient Security Configurability Insufficient security configurability is
present when users of the device have limited or no ability to alter its security controls.

• I9 – Insecure Software/Firmware The lack of ability for a device to be updated
presents a security weakness on its own.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
https://www.itu.int/en/ITU-T/ssc/resources/Pages/topic-001.aspx
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities

• I10 – Poor Physical Security Physical security weaknesses are present when an attacker
can disassemble a device to easily access the storage medium and any data stored on that
medium.

All previous, and subsequent, attacks mentioned in this book probably have a role in the IoT
world as well. For example, DDoS (distributed denial of service) in IoT isn’t any different from
any other DDoS against or using “normal” devices. In one version of this, noted as the Sybil
attack in EC-Council’s curriculum, multiple forged identities are used to create the illusion of
traffic congestion that affects everyone else in the local IoT network. EC-Council also notes
HVAC attacks in IoT attacks. It’s pretty much exactly what it sounds like—hack IoT devices in
order to shut down air conditioning services.

A couple other attacks specifically called out are rolling code and BlueBorne. The code used
by your key fob to unlock (and in some cases) start your car is called a rolling (or hopping) code.
An attack can sniff for the first part of the code, jam the key fob, and sniff/copy the second part
on subsequent attempts, allowing the attacker to steal the code—and your car. A BlueBorne
attack is basically an amalgamation of techniques and attacks against known, already existing
Bluetooth vulnerabilities. One of the better ways to pull this one off is to use hardware
specifically designed for it, like the HackRF One (https://greatscottgadgets.com). Mirai malware
purposefully looks for and interjects itself onto IoT devices. After successful infiltration, it
basically propagates and creates gigantic botnets—with the primary purpose of DDoS attacks
thereafter.

The IoT hacking methodology phases are information gathering, vulnerability scanning,
launching attacks, gaining access, and maintaining access. Shodan (https://www.shodan.io/) is
often referred to as the search engine for everything and is a good start in information gathering.
Some other tools to assist in information gathering include Censys (https://censys.io) and
Thingful (www.thingful.net).

The second phase in IoT hacking methodology, vulnerability scanning, is exactly as it sounds.
There are several vulnerability scanners and assessment tools for IoT devices, and more are
coming every day. EC-Council lists Nmap as an option. Beyond Trust offer a couple of tools for
IoT scanning, including RIoT Vulnerability Scanner
(https://www.beyondtrust.com/resources/data-sheet/retina-iot-riot-scanner/) and beSTORM
(https://www.beyondsecurity.com/bestorm.html). Some other tools are IoTsploit
(https://iotsploit.com) and IoT Inspector (www.iot-inspector.com).

In the launching attacks phase, IoT hacking tools include Firmalyzer (https://firmalyzer.com,
for performing active security assessments on IoT devices), KillerBee (https://github.com),
JTAGulator (www.grandideastudio.com), and Attify Zigbee Framework
(https://www.attify.com, providing a suite of tools for testing Zigbee devices).

The last two phases are gaining access and then maintaining access. Telnet is often leveraged
in IoT devices and provides a rather easy means to gain access. Once there you can, of course,
install backdoors, malware, or force firmware updates to ensure you can maintain a presence.
Sniffers for IoT traffic include Foren6 (http://cetic.github.io/foren6/), Z-Wave
(www.suphammer.com), and CloudShark (https://www.cloudshark.org).

Questions
1. Which of the following is the best choice for performing a Bluebugging attack?

https://greatscottgadgets.com
https://www.shodan.io/
https://censys.io
http://www.thingful.net
https://www.beyondtrust.com/resources/data-sheet/retina-iot-riot-scanner/
https://www.beyondsecurity.com/bestorm.html
https://iotsploit.com
http://www.iot-inspector.com
https://firmalyzer.com
https://github.com
http://www.grandideastudio.com
https://www.attify.com
http://cetic.github.io/foren6/
http://www.suphammer.com
https://www.cloudshark.org

A. PhoneSnoop
B. BBProxy
C. btCrawler
D. Blooover

2. Operations promotes the use of mobile devices in the enterprise. Security disagrees, noting
multiple risks involved in adding mobile devices to the network. Which of the following
actions provides some protections against the risks security is concerned about?
A. Implement WPA.
B. Add MAC filtering to all WAPs.
C. Implement MDM.
D. Ensure all WAPs are from a single vendor.

3. You wish to gain administrative privileges over your Android device. Which of the
following tools is the best option for rooting the device?
A. Pangu
B. SuperOneClick
C. Cydia
D. evasi0n7

4. Which of the following jailbreaking techniques will leave the phone in a jailbroken state
even after a reboot?
A. Tethered
B. Untethered
C. Semi-tethered
D. Rooted

5. A mobile device communication session using SSL fails, and data is available for viewing
by an attacker. Which OWASP Top 10 Mobile Vulnerability category has been made
available for exploit?
A. M3 – Insecure Communication
B. M4 – Insufficient Authentication
C. M5 – Insufficient Cryptography
D. M10 – Extraneous Functionality

6. Which of the following is an iOS jailbreaking type that cannot be patched by Apple, as the
failure is within the hardware itself, and provides admin-level access after successful
completion?
A. iBoot
B. Userland
C. Untethered
D. BootROM

7. Which IoT communication model makes use of a component adding a collective before
sending data to the cloud, which adds a measure of security control to the application?

A. Device to device
B. Device to cloud
C. Device to gateway
D. Device to security

8. Which OWASP Top 10 IoT Vulnerability category deals with poorly protected
passwords?
A. I1 – Insecure Web Interface
B. I2 – Insufficient Authentication/Authorization
C. I8 – Insufficient Security Configurability
D. I9 – Insecure Software/Firmware

9. An attacker leverages a vulnerability within Bluetooth on an IoT device and successfully
shuts down the air conditioning to the data center floor. Which of the following best
describes the attack type used?
A. HVAC
B. BlueAir
C. Rolling code
D. BlueBorne

10. In which phase of the IoT hacking methodology would the Shodan search engine most
likely be used?
A. Vulnerability scanning
B. Information gathering
C. Launching attacks
D. Gaining access

11. Which of the following tools is the best choice for sniffing IoT traffic?
A. Firmalyzer
B. beSTORM
C. Foren6
D. Shodan

Answers
1. D. Blooover is designed for Bluebugging. BBProxy and PhoneSnoop are both Blackberry

tools, and btCrawler is a discovery option.
2. C. Mobile Device Management won’t mitigate all the risks associated with unending use

of mobile devices on your network—but at least it’s something.
3. B. SuperOneClick is designed for rooting Android. The others are jailbreaking iOS

options.
4. B. If untethered jailbreaking has been performed, the device is in a jailbroken state forever,

with or without connection to another device.

5. A. Even though SSL refers to cryptography in communications, almost every time you see
SSL or TLS, M3 is your answer.

6. D. BootROM deals with hardware and provides admin privileges. The remaining answers
either don’t provide admin access, have patch availability, or, in the case of untethered,
aren’t applicable.

7. C. The IoT gateway provides a collective area that allows for at least some measure of
security controls.

8. B. I2 – Insufficient Authentication is the clear answer here.
9. A. An HVAC IoT device attack is exactly what’s being described here. Rolling code isn’t

applicable, BlueBorne isn’t the best choice, and BlueAir doesn’t exist.
10. B. Shodan is, after all, a search engine. While it may be useful in other areas, it’s clearly

an information-gathering tool.
11. C. Foren6 is the only IoT traffic sniffer listed.

CHAPTER 9
Security in Cloud Computing

In this chapter, you will
• Identify cloud computing concepts
• Understand basic elements of cloud security
• Identify cloud security tools

If you haven’t seen the movie The Princess Bride, stop what you’re doing and go watch it right
now. Trust me, the two hours or so you’ll spend in this escape fiction will be more than
worthwhile for the innumerable pop culture references you’ll gain—not to mention the laughs
you’ll get along the way.

One particularly funny line from the movie comes from the repeated use of the word
inconceivable. Sicilian boss Vizzini (portrayed by Wallace Shawn) uses it over and over again,
for things that truly are…conceivable. Finally, in one scene he’s standing at the top of a cliff
with his two henchmen, watching the good guy climbing up a rope hanging over the edge.
Vizzini thinks he’s finally rid of the good guy and cuts the rope, hoping to see him splat at the
bottom. When he peers over and sees the guy has not fallen, but has caught a hold of a branch
and is dangling from the cliffside, he yells, “Inconceivable!” Swordsman Inigo Montoya, played
brilliantly by a young Mandy Patinkin, looks at him and says, “You keep using that word. I do
not think it means what you think it means.”

I’m unsure if there are statistics kept on memes, but the sheer number that have exploded
from this phrase has got to be close to the top. Do a quick image search for it and you’ll see what
I mean—but be forewarned, some of them are brutal. If you’re in an online conversation and
misuse a word or a phrase, I can almost guarantee you’ll hear (or see) Inigo Montoya’s phrase.

All of this serves to introduce our next, very short, but packed with good information, chapter
on cloud computing. Since the word cloud is about as fully understood by most people as nuclear
fusion or anything Ozzy Osbourne says, it’s naturally an area we should focus some attention on.
EC-Council devoted an entire new chapter to “Cloud Computing,” and we’ll do our best to get it
translated into common sense throughout the rest of the chapter. And nobody even think of
quoting Inigo back to ECC. I’m sure they know what both words mean. Maybe.

Cloud Computing
I have a couple friends who are really involved in cloud computing for a major enterprise
network, so I asked them, “What’s the biggest misconception surrounding cloud computing?”
Both, in one fashion or another, answered the same way: “Just which type and which model of
cloud computing are you asking about?” This really hit the nail on the head, since a lot of us

simply don’t have a clue what cloud computing really is. We think we know, because we’re
smart. And we’ve seen Visio diagrams for decades showing that groovy little cloud to signify a
network we have no insight into (like the Internet). Not to mention we’ve all uploaded music,
videos, and documents to “the cloud.” Ask most people to define cloud and that’s exactly what
pops into their head—an unknown group of network resources sitting somewhere that we can
send stuff to, pull stuff from, and play around in if we need to. And that’s sort of true—there’s
just a lot more to the story.

The entire idea behind cloud computing started almost as soon as the idea for the Internet was
birthed. A guy named J.C.R. Licklider, who was very prominent in the creation of ARPANET,
postulated the concept of “an intergalactic computer network,” storing data and providing
services to organizations and, eventually, individuals. He may have been off on scope just a bit
(maybe in 1960 the idea we’d be spread throughout the galaxy seemed plausible), but the
concept was dead-on. Others continued the thought process—with some even branching it out to
artificial intelligence–type ideas—alongside a brand new idea called virtualization (starting back
in the 1960s by companies like General Electric, Bell Labs, and IBM).

Virtualization was a neat concept springing from the mainframe line of thinking: let’s find a
way to run more than one operating system simultaneously on the same physical box. The 1990s
saw gobs of research and action on this, with several VM (virtual machine) companies crawling
out into the open to work on it and, in some cases, even offering virtualized private networking
services to customers.

With abundant virtualization opportunities, the concept of cloud computing exploded. There
are arguments over who the first real cloud computing provider was, and while it’s not very
important for your exam, a little history never hurt. Salesforce hit the scene in 1999, and
although it wasn’t really a cloud, it did offer a one-stop shop for applications via a web portal,
and thus broke the ice for the concept. In 2002, Amazon Web Services (AWS) opened for
business, providing cloud-based storage and data computation services. They continued
expansion of cloud services and have become one of the biggest cloud services provider on the
planet.

This is not to say AWS is the only or the best provider available. In many cases, they’re
nowhere near the top. HPE offers cloud services, as does AT&T, IBM, CenturyLink, Cisco,
Microsoft, and the list goes on and on. Which service provider is best for your needs? Well, you
need to know more about what type of cloud you’re looking for first.

NOTE The latest ramp up in cloud computing is probably the result of efforts in the Web 2.0
arena. Google and companies like it have created, marketed, and managed a variety of browser-
based applications. Google Apps (and others like it) are probably the future.

Squirreling
Long ago, my family adopted the word squirreling to denote someone who simply can’t make
up their mind, darting from idea to idea, action to action, like the squirrel in the road as a half-

ton of speeding death on wheels hurtles toward it. I came across an article today referencing
the new frontier on cloud computing and, frankly, squirreling was the first thing that came to
mind.

Over the past couple or so years, the race to cloud has been a sight to behold. AWS,
Microsoft Azure, and Google’s cloud services have all seen extraordinary growth. AWS alone
grew by 45 percent in 2017, and through the end of the third quarter of 2018 shows a 49
percent growth since then. Azure and Google both show similar growth, and the end seems
nowhere in sight. But for all its benefits and for all the racing toward it, can cloud handle
everything? Is it really the panacea for all?

Wired.com had a great story referencing something else to think about (see
https://www.wired.com/story/its-time-to-think-beyond-cloud-computing/). While data center
type work seems to be an almost no-brainer, what about our society’s move toward the
Internet of Things? For example, consider our vehicles and their ever-evolving march toward
“self-driving.” We already have sensors and computing in vehicles to help stop in the event a
collision obstacle is detected, or to keep you in the lane should you start to swerve. Is it really
that far into the future before we’ll get in and tell our cars where to take us?

When that happens, our self-driving cars will need to make decisions, and to make them
fast, based on data stored and processed…somewhere. For example, Toyota noted that the
amount of data flowing between vehicles and cloud computing services is estimated to reach
10 exabytes per month by 2025, and if that data is located somewhere that adds delay, things
could get seriously bad in a serious hurry. Even the slightest of delays in updating road or
weather conditions could mean longer travel times or, worse, errors in decisions that could be
dangerous. Therefore, those smart vehicles of the near future won’t have time to wait the 100
milliseconds or so it usually takes for information to travel each way to and from distant data
centers.

Enter “edge computing” networks and the future of data speed optimization. While not a
new idea, per se, the implementation is a bit different, and one that turns the logic of today’s
cloud inside out. One edge computing company, a New York City startup called Packet, has
data centers that look more like a classroom setup, with just a few server racks humming
along. But the company promises customers in major cities speedy access to raw computing
power, with average delays of just 10 to 15 milliseconds (an improvement of roughly a factor
of ten). Zachary Smith, CEO and cofounder of Packet, says, “It’s a foregone conclusion that
giant, centralized server farms that take up 19 city blocks of power are just not going to work
everywhere,” and he’s among those who believe that the solution for the future lies in seeding
the landscape with smaller server outposts—edge networks—that would widely distribute
processing power in order to speed its results to client devices, like those self-driving cars,
that can’t tolerate delay.

The major cloud providers have taken note. Microsoft now offers Azure IoT Edge service,
intended to push some cloud computing functions onto developers’ own devices. Barely a
month after that, Amazon Web Services opened up general access to something called “AWS
Greengrass,” which extends some cloud-style services to devices running on local networks.
All this leaves many customers who are used to handing the whole business off to a cloud
provider wondering what’s going on.

So follow along with me here… We all race to distribute computing power after learning
distributing that power is better than cramming everything into a huge mainframe. We then
evolve to moving all our data and applications back to a virtual mainframe, in the name of

http://Wired.com
https://www.wired.com/story/its-time-to-think-beyond-cloud-computing/

speed, performance, and cost. And now we evolve once again to needing access to that data
and applications faster than the cloud can provide it, so we come up with edge networks to
distribute the access again.

Be careful which way you dart, fellow squirrel. I have no idea where the car is going.

So just what is modern cloud computing? While a firm, absolute definition is hard to run
down, you could do worse than this one: cloud computing provides user and enterprise
subscribers on-demand delivery of various IT services as a metered service over a network.
Cloud computing offers everything from on-demand self-service, storage, and resource pooling
to elasticity, automation in management, and broad network access. To further define what
exactly it is, we need to consider the three major types of cloud computing—IaaS, PaaS, and
SaaS.

Infrastructure as a Service (IaaS) basically provides virtualized computing resources over the
Internet. A third-party provider hosts infrastructure components, applications, and services on
behalf of its subscribers, with a hypervisor (such as VMware, Oracle VirtualBox, Xen, or KVM)
running the virtual machines as guests. Collections of hypervisors within the cloud provider
exponentially increase the virtualized resources available and provide scalability of service to
subscribers. As a result, IaaS is a good choice not just for day-to-day infrastructure service, but
also for temporary or experimental workloads that may change unexpectedly. IaaS subscribers
typically pay on a per-use basis (within a certain timeframe, for instance, or sometimes by the
amount of virtual machine space used).

Platform as a Service (PaaS) is geared toward software development, as it provides a
development platform that allows subscribers to develop applications without building the
infrastructure it would normally take to develop and launch software. Hardware and software is
hosted by the provider on its own infrastructure so customers do not have to install or build
homegrown hardware and software for development work. PaaS doesn’t usually replace an
organization’s actual infrastructure—instead, it just offers key services the organization may not
have onsite.

EXAM TIP Cloud computing can be thought of as the ultimate in separation of duties. It
moves system services that would otherwise be hosted internally to an external provider. It also
separates the role of data owner from the role of data custodian.

Lastly, Software as a Service (SaaS) is probably the simplest and easiest to think about. SaaS
is simply a software distribution model—the provider offers on-demand applications to
subscribers over the Internet. And why would anyone do this? Well, remember that entire section
on web applications from the previous chapter, and all the headaches of patch management and
security your admins have to worry about? SaaS may be able to take that workload off your
plate. SaaS benefits include easier administration, automated patch management, compatibility,
and version control. For comparison purposes of all models, check out Figure 9-1.

Figure 9-1 Cloud security alliance models

Along with the types of cloud, there are four main deployment models: public, private,
community, and hybrid. A public cloud model is one where services are provided over a network
that is open for public use (like the Internet). Public cloud is generally used when security and
compliance requirements found in large organizations isn’t a major issue. A private cloud model
is, not surprisingly, private in nature. The cloud is operated solely for a single organization
(a.k.a. single-tenant environment) and is usually not a pay-as-you-go operation. Private clouds
are usually preferred by larger organizations, because the hardware is dedicated and security and
compliance requirements can be more easily met.

The last two models are a little bit different. A community cloud model is one where the
infrastructure is shared by several organizations, usually with the same policy and compliance
considerations. For example, multiple different state-level organizations may get together and
take advantage of a community cloud for services they require. The hybrid cloud model, last on
our list, is exactly what it sounds like—a composition of two or more cloud deployment models.

EXAM TIP You’ll probably see multiple questions comparing the cloud models and types.
You should definitely know and understand NIST architecture. Commit it to memory. You’ll
thank me for it later.

Lastly, and as always with these types of things, we need to spend just a little bit of time

talking about U.S. government rules and regulations regarding the cloud. In September of 2011,
faced with more and more government organizations looking to the cloud as a means to save
money, NIST (National Institutes of Standards and Technology) released Special Publication
500-292: NIST Cloud Computing Reference Architecture (www.nist.gov/customcf/get_pdf.cfm?
pub_id=909505) to provide a “fundamental reference point to describe an overall framework that
can be used government wide.” This publication defined five major roles within a cloud
architecture, shown in Figure 9-2:

Figure 9-2 NIST Cloud Computing Reference Architecture

• Cloud carrier The organization that has the responsibility of transferring the data, akin
to the power distributor for the electric grid. The cloud carrier is the intermediary for
connectivity and transport between subscriber and provider.

• Cloud consumer The individual or organization that acquires and uses cloud products
and services.

• Cloud provider The purveyor of products and services.
• Cloud broker Acts to manage use, performance, and delivery of cloud services, as well

as the relationships between providers and subscribers. The broker “acts as the
intermediate between consumer and provider and will help consumers through the
complexity of cloud service offerings and may also create value added cloud services as
well.”

• Cloud auditor Independent assessor of cloud service and security controls. The auditor
“provides a valuable inherent function for the government by conducting the independent
performance and security monitoring of cloud services.”

In addition to the NIST reference architecture, there are a few regulatory bodies and efforts
surrounding cloud computing. But what’s really very interesting about them is ECC doesn’t even

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

mention them in the official courseware. Not one regulatory effort—FedRAMP, PCI, FIPS—is
mentioned at all. Does this mean they’re not important, that we shouldn’t devote space to them,
or that you shouldn’t be aware of them? Heck no. It’s my opinion these will be part of the exam
sooner rather than later, so you should at least be able to identify them. ECC has a habit of
springing these things on you after the release of new material, so at a minimum be aware these
things exist.

FedRAMP is probably the most recognized and referenced regulatory effort regarding cloud
computing. Per FedRAMP’s site (www.fedramp.gov/), the Federal Risk and Authorization
Management Program (FedRAMP) “is a government-wide program that provides a standardized
approach to security assessment, authorization, and continuous monitoring for cloud products
and services.” This not only provides an auditable framework for ensuring basic security controls
for any government cloud effort, but FedRAMP also offers tips for security and configuration
(https://www.fedramp.gov/tips-cues/) and even has training available on the site
(https://www.fedramp.gov/training/).

NOTE Another regulatory compliance effort of note for you is PCI Data Security Standard
(PCI DSS) Cloud Special Interest Group’s Cloud Computing Guidelines
(https://www.pcisecuritystandards.org/pdfs/PCI_DSS_v2_Cloud_Guidelines.pdf).

Want more? How about the Cloud Security Alliance (CSA)? They’re the leading professional
organization devoted to promoting cloud security best practices and organizing cloud security
professionals. In addition to providing a certification on cloud security and offering an array of
cloud-centric training, they published a general cloud enterprise architecture model to help
professionals conceptualize the components of a successful cloud implementation. They also
publish gobs of documentation on everything from privacy concerns to security controls’ focus
and implementation (https://cloudsecurityalliance.org).

There’s more regarding cloud—lots more. I could’ve written an entire book on the subject,
but that’s not what I’m here for. You’ll need to know cloud basics, which we’ve covered, I think,
pretty well so far. There are some security aspects still left to talk about, though, so hang on.

Cloud Security
What may be one of the most confusing aspects of cloud computing security comes back to what
we started this chapter with—it’s hard to defend something when you don’t really know what
that something is. Instead of building hardware (like servers, network devices, and cabling) and
setting up a classic data center to fit your needs, you simply purchase services to handle the
resources, automation, and support to get the job done. The services purchased, though, run in a
data center somewhere, filled with servers, network devices, and cabling. The only real
difference is the physical devices belong to someone else—which all serves to bring up questions
regarding a very fuzzy line in security testing.

Let’s say you wish to test all your resources, data, and services to get an idea of your overall

http://www.fedramp.gov/
https://www.fedramp.gov/tips-cues/
https://www.fedramp.gov/training/
https://www.pcisecuritystandards.org/pdfs/PCI_DSS_v2_Cloud_Guidelines.pdf
https://cloudsecurityalliance.org

security because, well, you’re supposed to. Where does your testing start and end? I mean,
considering your entire system relies on Amazon (for example) to remain up and secure, can you
test all of Amazon? And what happens if your resources are comingled somewhere inside all that
cloud secret sauce? Can you really trust they’re on top of things, security wise? Should you? Can
you? Add to it the vast complexity involved in actually trying to pen test a cloud enterprise—
you’ll probably need an army of lawyers to set out ROE and scope and even then what you do in
testing Enterprise A may have adverse effects on Enterprise B—and as you can tell, security in
the cloud is…weird.

Storm Clouds
Oh, the cloud. Doesn’t it instantly bring to mind pictures of serenity, calm, and beauty? Look
at the little cherubs over there are handling the cabling for us. Oh, isn’t it so cute how they bat
down intrusion attempts at the barrier over there? Just adorable. But I got to thinking when I
started writing this chapter that there has to be a dark side. Maybe the cloud isn’t always
brightly lit and fluffy with little cherubs handling everything. Maybe it’s dark and harsh, with
thunder and lightning rumbling about. More, you know, like a horror show.

I did a Google search on “cloud horror stories” and came up with some fascinating articles.
Seems moving things to the cloud doesn’t suddenly make your world a better place where
security and protection isn’t a concern anymore. No, it’s filled with dark alleyways and
nefarious folks roaming around looking for the right lightning bolt to toss—or to grab hold of.

In a CIO.com article on this subject, author John Brandon noted some nightmare scenarios
a cloud service subscriber might want to think about. Suppose your provider just suddenly
decides they’re done paying bills and declares bankruptcy? Now you’re in a real pickle, with
your data and services locked away in the red tape of financial bureaucracy and a nightmare
world of lawyers and time you can ill-afford to use in getting things back up and running. And
it’s actually happened—a provider named Nirvanix did declare bankruptcy. But no worries—
they gave all subscribers 30 days to move all data out to new locales. No problem, right? I
mean, surely we can move our entire operation with no downtime or loss in 30 days. Right?

And speaking of being in a bad mood, what happens if you and your cloud provider just
don’t get along? Suppose, for instance, you decide you want to move service and data X from
your current provider to another, and your current provider decides they don’t want to assist
you with that. Is it possible they could make things difficult on you? Or suppose your
virtualized servers and data actually get hacked and destroyed and your provider simply
throws up their hands and says, “Not our fault—we don’t provide any disaster recovery
options for you. Should’ve paid attention when you signed the contract.” Providers are very
touchy when it comes to their internal workings, and if you’re on their bad side, things can go
south in a hurry.

And who can forget money in all this? You probably have financial and contracting
sections within the organization to keep this cloud provision paid for. So what happens when
they get into a dispute? If the provider thinks you haven’t paid but your contracting/finance
office thinks you have, what happens to the actual IT services? Does everyone let things keep
running smoothly while they work it out over beignets and coffee? Somehow I think not.

No, dear reader, the cloud isn’t always nice and fluffy. Sometimes there are things flying
around up here you need to be ready for. When you come up here to play, just remember, here
be dragons—and the stuff of nightmares.

http://CIO.com

So does that mean cloud security is different? In some aspects, yes. For instance, cloud
security is really talking about two sides of the same coin—you must be concerned with the
security of the provider as well as that of the subscriber, and both are responsible for it. And
what about additional target points introduced as a part of cloud? For example, using
virtualization introduces a hypervisor layer between physical hardware and subscribed servers.
Therefore, if you comprise the hypervisor, you compromise them all. Add to it that most cloud
providers simply will not allow subscribers the monitoring and access even approximating what
they’d have in a traditional architecture (I’ve personally heard the phrase “that’s part of the secret
sauce, so don’t worry about it” more times than I care to remember), and things can get really
hairy.

NOTE Not familiar with the Trusted Computing Model? Trusted computing basically refers to
an attempt to resolve computer security problems through hardware enhancements and
associated software modifications. The Trusted Computing Group (TCG) is made up of a bunch
of hardware and software providers who cooperate to come up with specific plans. Something
called Roots of Trust (RoT) is a set of functions within the Trusted Computing Model that are
always trusted by the computer’s operating system (OS).

However, in most aspects, the answer is definitely no. You’re still faced with the same issues
you have everywhere else: computing resources are public-facing or otherwise available, and bad
guys are trying to get into them. There are security policies to be hammered out and adhered to,
authentication methods to figure out, web application security concerns, intrusion detection
issues, malware prevention efforts, and the list goes on and on. In short, once again you must ask
yourself, “What are my vulnerabilities and threats, and what can I do to mitigate against them?”
Both CSA and ECC have a nice reference chart for security control layers, which you can see in
Figure 9-3.

Figure 9-3 Cloud control layers

As far as tools to assist you in cloud security, not surprisingly the list is long. Depending on
the model chosen and what you’re trying to get out of your cloud architecture (or keep in it),
tools can be as varied as your traditional data centers. A couple mentioned specifically by EC-
Council are CloudInspect and CloudPassage Halo. Core’s CloudInspect is “a tool that profits
from the Core Impact & Core Insight technologies to offer penetration-testing as a service from
Amazon Web Services for EC2 users” (www.coresecurity.com/corelabs-research/projects/core-
cloudinspect). It’s obviously designed for AWS cloud subscribers and runs as an automated, all-
in-one testing suite specifically for your cloud subscription. CloudPassage’s Halo “provides
instant visibility and continuous protection for servers in any combination of data centers, private
clouds and public clouds. The Halo platform is delivered as a service, so it deploys in minutes
and scales on-demand. Halo uses minimal system resources, so layered security can be deployed
where it counts, right at every workload—servers, instances and containers”
(https://www.cloudpassage.com/products/).

NOTE Amazon does allow for independent security testing
(https://aws.amazon.com/security/penetration-testing/), but they’re very strict in what you can
and can’t do. You know, exactly like the bad guys limit themselves when targeting someone…
</sarcasm>. You can poke your own boxes, but you can forget testing the servers that control
them, the authentication system allowing you into them, or the admins who oversee any of them.
While you can execute a technical pen test of your servers, data, and resources, you won’t be

http://www.coresecurity.com/corelabs-research/projects/core-cloudinspect
https://www.cloudpassage.com/products/
https://aws.amazon.com/security/penetration-testing/

able to execute many other aspects of a true pen test. And, as we all know, it’s oftentimes those
other areas of focus that can lead to real trouble.

Other cloud-specific tools and toolsets mentioned include Dell Cloud Manager, Qualys Cloud
Suite, Trend Micro’s Instant-On Cloud Security, and Panda Cloud Office Protection.

Threats and Attacks
Depending on who you talk to, there are various “top threats” to cloud computing. The Cloud
Security Alliance released a publication titled “The Dirty Dozen: 12 Top Cloud Security
Threats” (also referred to as “The Treacherous 12”). And EC-Council? They seem to believe it’s
important to list every single threat imaginable, and devote slide after slide to cloud computing
threats. The more salient ones are listed on everyone’s offering, though, so we’ll concentrate on
those.

In virtually every list you look at, data breach or loss is at the top. Data breach or loss, of
course, refers to the malicious theft, erasure, or modification of almost anything in the cloud you
can think of. Due to the nature of cloud computing, the sheer amount of data available makes this
a prime target—not to mention that data is sensitive in nature. You might think financial
information is the big target, but data breaches involving health information and intellectual
property may turn out to be more even more damaging to an organization (not just in fines and
lawsuits, but in brand damage and loss of business). It’s important to note that while cloud
providers deploy their own tools, methods, and controls to protect their overall environment, it’s
generally and ultimately up to the subscribers themselves to protect their own data in the cloud.
No matter what implementation of cloud, data breach threats apply to all models. On their site,
CSA recommends multifactor authentication and encryption as protection against data breaches.

NOTE Ever heard the term shadow IT? It sounded so awesome when I first heard it, I wanted
to go buy a box of it. But in reality it refers to IT systems and solutions that are developed to
handle an issue but aren’t necessarily taken through proper organizational approval chains. “Just
get the job done” works in many situations, but having this around—even in the cloud—can be a
recipe for disaster.

Abuse of cloud resources is another threat high on everyone’s list. If an attacker can create
anonymous access to cloud services, he could then leverage the tremendous resources to pull off
all sorts of things. Need to crack a password or encryption key and don’t have a 25-GPU cluster
at home? Why not use the cloud’s virtual servers to do it for you? An attacker may also leverage
resources to build rainbow tables, create and control botnets, and even host exploits and
malicious sites. Typically this threat isn’t necessarily a specific concern of cloud subscribers
(other than maybe some degradation of services or whatnot), but it’s a very valid concern for the
provider. The provider should perform active monitoring to detect any abuse instances as well as
have a means to protect/recover from them. Generally speaking, the abuse of cloud services

threat applies to the IaaS and PaaS models.

What Do You See in the Cloud?
Ever lay on your back in a field and watch for cloud animals? Of course you have. Everyone
has either heard or said “You can’t see that giant face in the cloud? THAT ONE, right
THERE!” at some point in their youth. While pareidolia (the psychological phenomenon in
which the mind responds to a stimulus, usually an image or a sound, by perceiving a familiar
pattern where none exists) is fairly common and something we all experience from time to
time, I wondered what cloud computing would look like from different viewpoints. So I asked
some folks to head out to the virtual field with me and look up.

Some immediately responded through the prism of their own work arena. Charlie Effland
(Perspecta U.S. Public Sector Federal Government Healthcare CISO) had a great first
response: “Great Dashboards of Compliance... I see half of my solution that makes sense to be
in ‘the Cloud’ providing better border protection, end point protection, data protection, etc.
The other half is on-prem as it should be, for not all makes sense in the cloud.” Angie Walker
(Security Operations Manager, NASCO) said, “I view cloud computing in terms of how we
use it. We host some applications in the cloud to allow managed support services access to
our SIEM, Email, EndPoint protection, mobile device management and Web Blocking
without providing the vendors access to our data center or corporate environment. Hosting our
e-mail in the cloud allows associates the ability to read and send e-mail without logging into
our corporate VPN so we no longer have a single point of failure for our primary method of
communication when we have corporate system outages, office closures, or service impacts to
our customers.”

My exceedingly talented pen testing superstar daughter Hope Walker offered thoughts as it
related to her recent university experience: “Most of the time cloud is discussed in security
literature as a potential risk to data security and ownership, which scares people off, but there
are some great benefits to using cloud services. In situations that are changing frequently,
such as at Universities, SaaS subscriptions can be changed frequently as needed and can make
services more accessible. For students in school, getting a free or cheap service provided to
them to do homework and projects is much cheaper than having to buy a suite of applications.
Reduction in cost can make education more accessible to students especially for expenses
outside of what is covered in grants and scholarships. Cloud storage is also a huge benefit.
Instead of e-mailing a product or transporting it on physical media, someone can simply log in
and get a copy or edit a project. Also, when the people editing are doing so from individual
accounts, tracking changes and attributing those changes to people can be done easily.
Frequent travel and changing locations makes it easier for students and small businesses to
access their data on the move. Many students do not have consistent access to campus
resources or the same computers as they go from school, to work, to home, and this is the
answer. Or at least one of them.”

Others offered broader opinions of cloud in general. I heard everything from “How else
would I get music?” to “I don’t really care where and how, just so long as it’s available.”
Opinions closer to our world here included “You mean the end of my career?” to “I don’t trust
someone else to have control over my data’s safeguards.” Greg Hoare (Perspecta, Cyber
Defense and Security Strategy) offered “A rose by any other name… a datacenter is a
datacenter no matter the ethereal name we give it.” Kris Lloyd (PMP/ITIL-F, Perspecta VDC

Security Project Manager, Enterprise Security Services) said, “Hmm, that’s a hard one. I
guess I’m waiting for someone to find the unknown massive hole in it. Personally it seems too
good to be true.” For what it’s worth, Kris, there’s a bunch of us in that particular boat.

The point of all this is, for as quickly as we all seem to be racing toward cloud, we don’t all
seem to have a very good grasp of just what, exactly, we’ll be facing there. There’s no
argument it offers tons of benefits, economically and use-wise. But do we really know what
we’re getting into here? Are we sure?

We better be, because that cloud that looks like a bad guy may actually be real…

Next on our list is insecure interfaces and APIs. Cloud services rely heavily on APIs and web
services to function and operate, and without them, functions like auto-scaling, authentication,
authorization, and sometimes the operations of cloud applications themselves will fail. Insecure
interfaces and APIs can circumvent user-defined policies and really mess around with input data
verification efforts. Both provider and subscriber should ensure strong security controls are in
place, such as strong encryption and authorization access to APIs and connectivity. This threat
applies to all models of cloud.

NOTE SOA (Service Oriented Architecture) is an API that makes it easier for application
components to cooperate and exchange information on systems connected over a network. It’s
designed to allow software components to deliver information directly to other components over
a network. For example, one company might develop an API that specifically provides access to
a database they host. Third-party developers could then create an application to make use of this
API, providing the data better for the customer.

Other threats mentioned that warrant inclusion in our discussion are insufficient due diligence
(for example, moving an application from one cloud environment to another and not knowing the
security differences between the two), shared technology issues (multitenant environments may
not provide proper isolation between systems and applications), and unknown risk profiles
(subscribers simply do not know exactly what security provisions are made in the background of
and by the provider). Many others, such as malicious insiders, inadequate design, and DDoS are
valid for both cloud services and traditional data centers.

NOTE Other attacks against the cloud can include many that apply in every other area, such as
a wrapping attack (where a SOAP message is intercepted and the data in the envelope is changed
and then sent/replayed) and cryptanalysis, which we will explore in Chapter 10 (same principles,

just applied to cloud computing).

Attacks against cloud computing are as varied and crazed as those against anything else.
Social engineering, for instance, is a good attack vector no matter what the environment—why
bother with technology-specific attacks when you can just ask people for credentials or get them
to click a link in an e-mail? SQL injection and cross-site scripting? Of course—they work just as
well when the apps and databases are hosted on somebody else’s servers. Other attacks that work
everywhere else are also apropos for cloud systems—DNS poisoning and session hijacking both
work just as well here as they would anywhere else.

A couple of interesting cloud-based ones are out there, though. Two that ECC mentions
explicitly are session riding and side channel attacks. Session riding is, in effect, simply CSRF
(cross-site request forgery) under a different name and deals with cloud services instead of
traditional data centers. A side channel attack, also known as a cross-guest VM breach, deals
with the virtualization itself. If an attacker can somehow gain control of an existing VM (or place
his own) on the same physical host as the target, he may be able to pull off lots of attacks.

EXAM TIP You may be wondering (possibly out loud, as I did) why an attacker who already
has access to the physical host would need to bother with the complication of adding another VM
in an effort to steal data from a target. If I had a good explanation for that, I’d provide it. For
your exam, though, just memorize the attacks and move on with your life.

Is there more to know about the cloud? Of course there is, and I could have expanded this
discussion to include a lot more information. However, the subject material is so vast, broad, and
varied, I didn’t think getting too far down in the weeds would be relevant at this point. Should
you decide to concentrate in the cloud arena, there are other certifications and study efforts you
should definitely check into. For most of us, the cloud is simply one more attack vector, one
more area of focus that provides its own interesting security and attack thoughts. This chapter
should give you what you need for the exam, which is what you bought this book for in the first
place. My suggestion, though, is to definitely keep your head in the cloud. A lot of computing is
headed there, so why not immerse yourself now?

Chapter Review
Virtualization (started back in the 1960s by companies like General Electric, Bell Labs, and
IBM) is a practice whereby the physical aspects of the hardware are virtually presented to
operating systems in a way that allows more than one virtual machine (with their own operating
systems) to run simultaneously on the same physical box. Cloud computing provides user and
enterprise subscribers on-demand delivery of various IT services as a metered service over a
network. Cloud computing offers everything from on-demand self-service, storage, and resource
pooling to elasticity, automation in management, and broad network access. To further define
what exactly it is, we need to consider the three major types of cloud computing—IaaS, PaaS,
and SaaS. Cloud computing can be thought of as the ultimate in separation of duties. It moves
system services that would otherwise be hosted internally to an external provider. It also

separates the role of data owner from the role of data custodian.
Infrastructure as a Service (IaaS) basically provides virtualized computing resources over the

Internet. A third-party provider hosts infrastructure components, applications, and services on
behalf of its subscribers, with a hypervisor (such as VMware, Oracle VirtualBox, Xen, or KVM)
running the virtual machines as guests. IaaS is a good choice not just for day-to-day
infrastructure service, but also for temporary or experimental workloads that may change
unexpectedly. IaaS subscribers typically pay on a per-use basis (within a certain timeframe, for
instance, or sometimes by the amount of virtual machine space used).

Platform as a Service (PaaS) is geared toward software development, as it provides a
development platform that allows subscribers to develop applications without building the
infrastructure it would normally take to develop and launch software. Hardware and software are
hosted by the provider on its own infrastructure so customers do not have to install or build
homegrown hardware and software for development work. PaaS doesn’t usually replace an
organization’s actual infrastructure; instead, it just offers key services the organization may not
have onsite.

Software as a Service (SaaS) is simply a software distribution model—the provider offers on-
demand applications to subscribers over the Internet. SaaS benefits include easier administration,
automated patch management, compatibility, and version control.

Along with the types of cloud, there are four main deployment models: public, private,
community, and hybrid. A public cloud model is one where services are provided over a network
that is open for public use (like the Internet). A private cloud model is, not surprisingly, private
in nature. The cloud is operated solely for a single organization (a.k.a. single-tenant
environment) and is usually not a pay-as-you-go operation. A community cloud model is one
where the infrastructure is shared by several organizations, usually with the same policy and
compliance considerations. A hybrid cloud model is exactly what it sounds like—a composition
of two or more cloud deployment models.

NIST (National Institutes of Standards and Technology) released Special Publication 500-
292: NIST Cloud Computing Reference Architecture to provide a “fundamental reference point
to describe an overall framework that can be used government wide.” This publication defined
five major roles within a cloud architecture: cloud carrier (the organization that has the
responsibility of transferring the data; that is, the intermediary for connectivity and transport
between subscriber and provider), cloud consumer (the individual or organization that acquires
and uses cloud products and services), cloud provider (the purveyor of products and services),
cloud broker (acts to manage use, performance, and delivery of cloud services, as well as the
relationships between providers and subscribers), and cloud auditor (an independent assessor of
cloud service and security controls).

FedRAMP is probably the most recognized and referenced regulatory effort regarding cloud
computing. The Federal Risk and Authorization Management Program (FedRAMP) is a
government-wide program that provides a standardized approach to security assessment,
authorization, and continuous monitoring for cloud products and services. FedRAMP not only
provides an auditable framework for ensuring basic security controls for any government cloud
effort, but also offers weekly tips for security and configuration and even has free training
available on the site. PCI Data Security Standard (PCI DSS) Cloud Special Interest Group’s
Cloud Computing Guidelines also provides notables assistance and information for the cloud.

The Cloud Security Alliance (CSA) is the leading professional organization devoted to
promoting cloud security best practices and organizing cloud security professionals. In addition

to providing a certification on cloud security and offering an array of cloud-centric training, they
published a general cloud enterprise architecture model to help professionals conceptualize the
components of a successful cloud implementation. They also publish documentation on
everything from privacy concerns to security controls, focus, and implementation.

Cloud security is really talking about two sides of the same coin—you must be concerned
with the security of the provider as well as that of the subscriber. Both the provider and
subscriber are responsible for security. Using virtualization introduces a hypervisor layer
between the physical hardware and subscribed servers. Therefore, if you comprise the
hypervisor, you compromise them all.

The Trusted Computing Model refers to an attempt to resolve computer security problems
through hardware enhancements and associated software modifications. The Trusted Computing
Group (TCG) is made up of a bunch of hardware and software providers who cooperate to come
up with specific plans. Roots of Trust (RoT) is a set of functions within the Trusted Computing
Model that are always trusted by the computer’s operating system (OS).

Tools to assist in cloud security include CloudInspect and CloudPassage Halo. Core’s
CloudInspect is “a tool that profits from the Core Impact & Core Insight technologies to offer
penetration-testing as a service from Amazon Web Services for EC2 users.” It’s designed for
AWS cloud subscribers and runs as an automated, all-in-one testing suite specifically for your
cloud subscription. CloudPassage’s Halo “provides instant visibility and continuous protection
for servers in any combination of data centers, private clouds and public clouds. The Halo
platform is delivered as a service, so it deploys in minutes and scales on-demand. Halo uses
minimal system resources, so layered security can be deployed where it counts, right at every
workload—servers, instances and containers.” Other cloud-specific tools and toolsets mentioned
include Dell Cloud Manager, Qualys Cloud Suite, Trend Micro’s Instant-On Cloud Security, and
Panda Cloud Office Protection.

Cloud Security Alliance released a publication titled “The Dirty Dozen: 12 Top Cloud
Security Threats” (also referred to as “The Treacherous 12”) and EC-Council has its own list of
top threats. Important ones to remember include:

• Data breach or loss The malicious theft, erasure, or modification of almost anything in
the cloud you can think of. While cloud providers deploy their own tools, methods, and
controls to protect their overall environment, it’s generally and ultimately up to the
subscribers themselves to protect their own data in the cloud. CSA recommends
multifactor authentication and encryption as protection against data breaches.

• Abuse of cloud resources If attackers can create anonymous access to cloud services,
they could then leverage the tremendous resources to do whatever they want. Typically
this threat isn’t necessarily a specific concern of cloud subscribers, but it’s a very valid
concern for the provider. The provider should perform active monitoring to detect any
abuse instances as well as have a means to protect/recover from them. Generally
speaking, threats of abuse of cloud services apply to the IaaS and PaaS models.

• Insecure interfaces and APIs Cloud services rely heavily on APIs and web services to
function and operate, and without them, functions like auto-scaling, authentication,
authorization, and sometimes the operations of cloud applications themselves will fail.
Insecure interfaces and APIs can circumvent user-defined policies and really mess around
with input data verification efforts. Both provider and subscriber should ensure strong
security controls are in place, such as strong encryption and authorization access to APIs

and connectivity. This threat applies to all models of cloud.

Other threats mentioned that warrant inclusion in our discussion are insufficient due diligence
(for example, moving an application from one cloud environment to another and not knowing the
security differences between the two), shared technology issues (multitenant environments may
not provide proper isolation between systems and applications), and unknown risk profiles
(subscribers simply do not know exactly what security provisions are made in the background of
and by the provider). Many others, such as malicious insiders, inadequate design, and DDoS are
valid for both cloud services and traditional data centers.

SOAP (Simple Object Access Protocol) is an API that makes it easier for application
components to cooperate and exchange information on systems connected over a network. A
wrapping attack occurs when a SOAP message is intercepted and the data in the envelope is
changed and then sent/replayed.

In addition to every other attack mentioned previously in this book, two that ECC mentions
explicitly are session riding and side channel attacks. Session riding is simply CSRF under a
different name and deals with cloud services instead of traditional data centers. Side channel
attacks, also known as a cross-guest VM breach, deal with the virtualization itself: if an attacker
can somehow gain control of an existing VM (or place his own) on the same physical host as the
target, he may be able to attempt a litany of attacks and efforts.

Questions
1. Implementing cloud computing provides many benefits. Which of the following is the best

choice of a security principle applicable to implementing cloud security?
A. Need to know
B. Least privilege
C. Job rotation
D. Separation of duties

2. Which of the following best represents SOA?
A. File server
B. An application containing both the user interface and the code allowing access to the

data
C. An API that allows different components to communicate
D. A single database accessed by multiple sources

3. Which cloud computing model is geared toward software development?
A. IaaS
B. PaaS
C. SaaS
D. Private

4. Amazon’s EC2 provides virtual machines that can be controlled through a service API.
Which of the following best defines this service?
A. IaaS

B. PaaS
C. SaaS
D. Public

5. Google Docs and Salesforce CRM are two examples of which cloud computing model?
A. IaaS
B. PaaS
C. SaaS
D. Public

6. Which of the following cloud computing attacks can be best described as a CSRF attack?
A. Session riding
B. Side channel
C. Cross-guest VM breach
D. Hypervisor attack

7. Which of the following best describes a wrapping attack?
A. CSRF-type attack against cloud computing resources.
B. An attack that involves leveraging a new or existing VM on a physical device against

another VM.
C. A SOAP message is intercepted, data in the envelope is changed, and then the data is

sent/replayed.
D. The virtual machine management system on the physical machine is corrupted or

administrative control is gained over it.
8. In the NIST Cloud Computing Reference Architecture, which of the following has the

responsibility of transmitting the data?
A. Cloud provider
B. Cloud carrier
C. Cloud broker
D. Cloud consumer

9. In the NIST Cloud Computing Reference Architecture, which component acts to manage
use, performance, and delivery of cloud services, as well as the relationships between
providers and subscribers?
A. Cloud provider
B. Cloud carrier
C. Cloud broker
D. Cloud consumer

10. In the NIST Cloud Computing Reference Architecture, which component acquires and
uses cloud products and services?
A. Cloud provider
B. Cloud carrier

C. Cloud broker
D. Cloud consumer

Answers
1. D. While implementing cloud computing doesn’t fully address separation of duties, of the

choices provided it’s the only one that makes sense. The cloud, by its nature, can separate
the data owner from the data custodian (the cloud provider assumes the role).

2. C. Service Oriented Architecture (SOA) is all about software components delivering
information to one another on a network, and this is the best available answer.

3. B. PaaS provides a development platform that allows subscribers to develop applications
without building the infrastructure it would normally take to develop and launch software.

4. A. Amazon’s EC2 provides resizable compute capacity in the cloud via VMs that can be
controlled via an API, thus fitting the definition of IaaS.

5. C. Software as a Service best describes this. SaaS is simply a software distribution model
—the provider offers on-demand applications to subscribers over the Internet.

6. A. Session riding is simply CSRF under a different name and deals with cloud services
instead of traditional data centers.

7. C. Wrapping attacks involve messing with SOAP messages and replaying them as
legitimate.

8. B. Akin to the power distributor for the electric grid, the carrier is the intermediary for
connectivity and transport between subscriber and provider.

9. C. Per SP 500-292, the broker “acts as the intermediate between consumer and provider
and will help consumers through the complexity of cloud service offerings and may also
create value added cloud services as well.”

10. D. The consumer is the subscriber, who engages a provider for services.

CHAPTER 10
Trojans and Other Attacks

In this chapter, you will
• Describe malware types and their purpose
• Identify malware deployment methods
• Describe the malware analysis process
• Identify malware countermeasures
• Describe DoS attacks and techniques
• Identify DoS detection and countermeasure action
• Describe session hijacking and sequence prediction

My early memories, forged in the stomping grounds of my childhood upbringing in LA (Lower
Alabama), most often revolve around fishing, hunting, camping, or blowing stuff up. Back then,
fireworks were a wee bit stronger than they are now, parental supervision wasn’t, and we were
encouraged to get out of the house to amuse ourselves and spare our mothers a little bit of sanity.
And while my cousins and I certainly went through our fair share of gunpowder, running around
my uncle’s property in Mount Vernon, Alabama, we found many other ways to bring about
destruction in our little neck of the woods. In one of these memories, my cousin wound up nearly
decimating an entire pond’s worth of fish with nothing but a bag and a shovel.

The day before going up to my uncle’s farm, I’d heard one of my dad’s friends talking about
walnuts and how dangerous they were. It turns out the hulls have loads of tannin and natural
herbicides in them, which can be lethal to plants growing around the watershed of any walnut
tree. It was definitely a cool and fun fact, but it didn’t do anything for me until I heard the last
little nugget of the conversation: “Just don’t ever throw them in your pond. They’ll displace all
the oxygen and kill all your fish.”

Armed with this knowledge, my cousin and I filled a big burlap sack full of walnut husks and
drug it out to one of the farm ponds to see whether it would work. We thought that simply
chucking it into the pond wouldn’t be very effective, and because sweet tea seemed to be better
(and steep faster) when the tea bags were moved around, we decided to cover as much of the
surface area of the pond as possible. So, we dunked the bag into the water and started dragging it
around the bank of the pond. While not a perfect circle, the pond wasn’t so big or weirdly shaped
that we couldn’t make it all the way around, and in about 10 minutes we’d made our first lap. We
left the bag in the water and sat down to watch what would happen. With a few minutes, we saw
the first fish come to the top of the water, lazily swimming about trying to gasp for oxygen. We
scooped him up and tossed him into the bucket. Then the second appeared. And a third. Then
suddenly, in a scene right out of a horror story, hundreds of fish just popped up to the surface all
at once.

We panicked. What had we done? This was supposed to result, if it worked at all, in a few
fish we could take home and maybe convince Uncle Donny to fry up for dinner. Instead, we had
farm pond genocide on our hands, and more fish than we knew what to do with. We pulled the
bag out of the water and flung it out into the woods and then grabbed up as many bodies as we
could carry and took them home. And before confessing to our parents what we’d done, we
cleaned all the fish and had them on ice, ready for cooking. We may have been innocent kids
caught in a weird situation, but we weren’t dumb—a fried fish meal prepared in advance could
make up for a lot of naughtiness.

So, what does all this have to do with our book on attacking systems? While dragging a bag
full of old walnuts through a pond isn’t the “normal” way to catch a mess of fish for a dinner, it
certainly works—sometimes surprisingly well. Just like the bag of walnuts, malware and other
attacks may be something you overlook as available options, but they can really work well for
your end goal. Never forget that you can often catch more than you expect by using tools and
circumstances in unexpected ways. A lot of the terms and issues we discuss here may not
necessarily seem like a hacker’s paradise, but I can promise you it’s all relevant. And we’ll cover
these terms and issues for two important reasons: you’ll be a better pen test member by taking
advantage of everything at your disposal, and it’s all on your test!

The “Malware” Attacks
Malware is generally defined as software designed to harm or secretly access a computer system
without the owner’s informed consent. And, more often than not, people in our profession think
of it as hostile, intrusive, annoying, and definitely something to be avoided. From the perspective
of a hacker, though, some of this may actually be usable, provided it’s done within the confines
of an agreed-upon contract in a pen test. Let me be absolutely clear here: I am not encouraging
you to write, promote, or forward viruses or malware of any kind. I’m simply providing you with
what you need to be successful on your exam.

I read somewhere that software is considered to be malware based on the perceived intent of
the creator rather than any particular features. That’s actually a good way to think of it from the
ethical hacking perspective. Whereas most people think of viruses, worms, and Trojans as a
means to spread destruction and as a huge inconvenience to computing life, to an ethical hacker
the Trojan might actually look like a good means to pull off a successful exploit or to retain
access to a machine—it’s simply one of many tools in the arsenal. Additionally, there are a ton
of “legitimate” applications, add-ons, toolbars, and the like that aren’t intended to be malware,
but they may as well be. For example, is “stealing” data for advertising purposes malware in
nature?

And what about intent as seen from the eye of an antivirus (AV) application? Netcat is
routinely flagged as malware, even though all it does is open and close ports. There are countless
tools and examples like that. Perhaps the best way to think of intent regarding malware is that
almost no tool is inherently evil—it’s the operator that makes it so. That said, there are some tool
types that are classified as malware from the get-go, and although we’ll avoid the in-depth
minutiae that’s sure to bore you into dropping this undertaking altogether and send you
screaming into another vocation—like maybe wedding planning or something similar—we will
spend a little time on the highlights of Trojans, viruses, worms, and the like.

NOTE Want a couple of ridiculous terms to add to your arsenal? Some states now define
malware as computer contaminant, which, until I researched the details for this chapter, I would
have assumed to be the crumbs in my keyboard. But the winner in today’s absurd semantics
game has to go to malvertising, which involves embedding malware into ad networks in an effort
to throw malware across many legitimate sites. Sigh…

Regardless of type, there needs to be a way to distribute the malware and get it installed on
machines. After all, surely no one purposefully clicks on something that says “Click here for the
latest malware infection on your machine! Guaranteed not to be noticed by your current AV
signatures! Hurry, this is a limited-time offer!” (Although sometimes it certainly seems that
people do.) No, malware creators need to resort to other means to distribute their work, and it’s
usually through innocent-appearing means.

Most malware is simply downloaded from the Internet with or without the user’s knowledge.
Sometimes legitimate sites get compromised, leading to infections on visiting systems. Other
times drive-by downloading infects the system, usually via some weird Java vulnerability
delivered through an ad stream or something like it. Peer-to-peer applications or web application
“features” are often hijacked to distribute malware, and an IRC channel is always a great way to
distribute malware.

The absolute easiest way you can get a target to install your malware, thereby providing you
with access to their machine, is to just ask them to do it for you. Send malware (usually a Trojan)
via e-mail, file sharing, or a browser and, more often than not, they’ll open it and happily install
whatever you want. Of course, the e-mail can’t say “Click this so I can infect and own your
system,” and your imbedded malware must be hidden enough so as not to trip any AV
signatures. So the question becomes, then, how do you make it look like a legitimate application?
Well, there are a couple of options available for you.

EXAM TIP Overt channels are legitimate communication channels used by programs across a
system or a network, whereas covert channels are used to transport data in unintended ways.

First, wrappers are programs that allow you to bind an executable of your choice (Trojan) to
an innocent file your target won’t mind opening. For example, you might use a program such as
EliteWrap to embed a backdoor application with a game file (.exe). Your target opens the latest
version of Elf Bowling and starts rolling strikes. Meanwhile, your backdoor is installing and sits
there waiting for your use later. Wrappers do have their own signatures and can definitely show
up on AV scans. If you’ve wrapped 20 items, you’d wind up with a single malware discovery in
your antivirus.

Assuming you’ve found a way to get User Joe to open files you send him, it’s another thing
altogether to bypass the antivirus system on his machine. After all, what good does it do to find a

hapless user clicking on everything you send him, only to have each attempt quashed by the
antivirus? Packers and crypters are two methods that can help with this. They are tools that alter
malware to hide it from signature-based antivirus.

Crypters are software tools that use a combination of encryption and code manipulation to
render malware undetectable to AV and other security-monitoring products (in Internet lingo, it’s
referred to as fud, for “fully undetectable”). Packers use compression to pack the malware
executable into a smaller size. While this does reduce the file size, it also serves to make the
malware harder to detect for some antivirus engines. Regardless of which type is used, both work
much like a ZIP file, except that the extraction occurs in memory and not on the disk. There are
several crypters out there, but be forewarned—delving into this stuff can take you to some really
dark places on the interwebs. ECC mentions a few in the courseware but, for many reasons,
doesn’t give links to download them—which is probably a good thing.

NOTE To the people creating malware in the real world, the cost paid to ensure their stuff
can’t be messed with or detected can be substantial—in the hundreds of thousands of dollars. It’s
done to keep their secret sauce from being stolen, detected, and reversed engineered, analyzed,
and permanently thwarted. It’s as important as the malicious part itself.

And finally, let’s not forget about the exploit kits. There are tons of platforms from which you
can deliver exploits and payloads, and many are used primarily to deploy Trojans on target
systems. Some examples include Infinity, Bleeding Life, Crimepack, and Blackhole Exploit Kit.

Trojans
A Trojan is software that appears to perform a desirable function for the user prior to running or
installing it but instead performs a function, usually without the user’s knowledge, that steals
information or otherwise harms the system (or data). To hackers—ethical or not—a Trojan is a
method to gain, and maintain, access on a target machine.

The idea of a Trojan is pretty simple. First, send an innocent-looking file to your target,
inviting them to open it. They open it and, unaware to what’s going on, merrily install software
that makes your job easier. This software might be designed to steal specific types of information
to send back, act as a keylogger, or perform 1000 other equally devious tasks. Some of them can
even provide remote control–type access to a hacker any time he feels like it. For us ethical
hackers, the ultimate goal is to provide something we can go back to later—a means to maintain
our access. Although a backdoor isn’t a Trojan, and a Trojan isn’t a backdoor, they’re tied
together in this discussion and on your exam: the Trojan is the means of delivery, and the
backdoor provides the open access.

There are innumerable Trojans, and uses for them, in the computing world today. In CEH
parlance, they’ve been categorized into different groups, each fairly easy to understand without
much comment or explanation on my part. For example, I’m fairly certain you could understand
that a Trojan that changes the title bar of an Excel spreadsheet to read “YOU’VE BEEN
HACKED!” would fall into the defacement Trojan category, as opposed to the proxy server

Trojan, which allows an attacker to use the target system as a proxy. Others include botnet
Trojans (like Tor-based Chewbacca and Skynet), remote access Trojans (like RAT, MoSucker,
Optix Pro, and Blackhole), and e-banking Trojans (like Zeus and Spyeye).

NOTE Covert Channel Tunneling Trojan (CCTT) is one form of remote access Trojan that
uses a variety of exploitation techniques to create data transfer channels in previously authorized
data streams. It’s designed to provide an external shell from within the internal environment.

A command shell Trojan is intended to provide a backdoor to the system that you connect to
via command-line access. An example of this called out by EC-Council is Netcat—and although
all the purists out there are screaming “NETCAT IS NOT A TROJAN!” just bear with me for a
minute. It’s talked about in this section for a reason (mainly because ECC talks about it here),
and it can be used to illustrate the point. Going back to our discussion on intent, Netcat is as
much of a Trojan as I am a professional basketball player, but it does provide a means to open
and close listening ports—in effect providing a method to backdoor your way into a system. In
and of itself, that (opening and closing ports) doesn’t seem malicious at all—but add malicious
intent to it, and…

Known as the “Swiss Army knife” of TCP/IP hacking, Netcat provides all sorts of control
over a remote shell on a target (see Figure 10-1). For example, to establish command-line access
to the machine, type nc -e IPaddress Port#. Tired of Telnet? Just type the -t option. And for the
main point of this section (backdoor access to a machine), when installed and executed on a
remote machine, Netcat opens a listening port of your choice. From your attack machine, you
connect using the open port—and voilà! For example’s sake, typing nc -l -p 5555 opens port
5555 in a listening state on the target machine. You can then type nc IPaddress -p 5555 and
connect to the target machine—a raw “Telnet-like” connection. And, just for fun, do you think
the following command might provide something interesting (assuming we’re connecting to a
Linux box)?

Figure 10-1 Netcat help

NOTE Netcat can be used for outbound or inbound connections, over TCP or UDP, to or from
any port on the machine. It offers DNS forwarding, port mapping and forwarding, and proxying.
You can even use it as a port scanner if you’re really in a bind.

And finally in our discussion of Trojans, we have to include port number comparisons
through both real-world, normal discussion and ECC-world “this will probably be on your exam”
lenses as well. Default port numbers used by specific Trojans most definitely fall into the realm
of “not real world,” but will no doubt appear on your exam. Some of the more common port
numbers used by various Trojans are shown in Table 10-1, and for test purposes you should
definitely know them. To be completely honest, though, these won’t be of value to you in the
real world—a real hacker simply won’t bother with protocols you’re going to be watching for.
For example, port 21 may be the default for an FTP server, but several known Trojans make use
of it for illicit purposes. And port 80, for HTTP traffic? Please—don’t get me started. To quote
our beloved tech editor here, “Any malware that doesn’t use SSL over 443, DNS over 53, or
some other easy-to-hide mechanism was likely written by 14-year-olds who hate their parents or
in some country still using a 486DX (yes, that DX, with the math co-processor) to code.”

Table 10-1 Trojan Port Numbers

You’ll definitely see some of these on your exam, but in actual practice a hacker is not going
to just blast forward with a sign reading “I’m here to hack you.” Nor will he use some
ridiculously named thing like “Whack a Mole.” In fact, if you’re chasing something down on
these default numbers in the real world, somebody has done something wrong, or you’re being
set up.

So, whether you’re lazily checking for default port numbers or legitimately concerned about
what is actually being used on your system, how would you spot port usage? By looking for it, of

course. Several programs are available to you to keep an eye on the port numbers you have in
use on your system. An old standby built into your Windows system command line is netstat.
Entering the command netstat -an will show you all the connections and listening ports in
numerical form, as shown in Figure 10-2.

Figure 10-2 netstat

NOTE The Neverquest Trojan targets banking websites. It’s designed to steal credentials and
sensitive information and to set up Virtual Network Computing (VNC) remote access to target
systems.

Netstat will show all connections in one of several states—everything from SYN_SEND
(indicating active open) to CLOSED (the server has received an ACK from the client and closed

the connection). In Figure 10-2, you can see several port numbers in a listening state—waiting
for something to come along and ask for them to open. Another useful netstat command is
netstat -b. This displays all active connections and the processes or applications that are using
them, which is pretty valuable information in ferreting out spyware and malware.

Also, port-scanning tools can make this easier for you. Fport is a free tool from McAfee that
reports all open TCP/IP and UDP ports and maps them to the owning applications. Per the
McAfee site, “This is the same information you would see using the ‘netstat -an’ command, but
it also maps those ports to running processes with the PID, process name, and path.” What’s
Running, TCPView, and IceSword are also nice port-monitoring tools you can download and try.

NOTE Process Explorer is a free tool from Microsoft (formerly from SysInternals) that comes
highly recommended. It can tell you almost anything you’d want to know about a running
process. Another free Microsoft offering formerly from SysInternals is AutoRuns. It is without
question one of the better tools for figuring out what runs at startup on your system.

If you’re on a Windows machine, you’ll also want to keep an eye on the registry, drivers, and
services being used, as well as your startup routines. When it comes to the registry, you can try
to monitor it manually, but I bet within a day you’d be reduced to a blubbering fool curled into
the fetal position in the corner. It’s far easier to use monitoring tools designed for just that
purpose. Some of the options are SysAnalyzer, Tiny Watcher, Active Registry Monitor, and
Regshot. Additionally, many antivirus and malware scanners will watch out for registry errors.
Malwarebytes will display all questionable registry settings it finds on a scan, for example.

EXAM TIP Windows will automatically run everything located in Run, RunServices,
RunOnce, and RunServicesOnce, and you’ll find that most questions on the exam are centered
around or show you settings from HKEY_LOCAL_MACHINE.

Services and processes you don’t recognize or that seem to be acting out of sorts can be
indicators of Trojan activity on a machine. Aside from old, reliable Task Manager, processes and
services can be monitored using gobs of different tools. Just a few mentioned for your perusal
are Windows Service Manager, Service Manager Plus, and Smart Utility. And don’t forget to
check the startup routines, where most of these will be present; it won’t do you much good to
identify a bad service or process and kill it, only to have it pop up again at the next start. On a
Windows machine, a simple msconfig command will open a configuration window showing you
all sorts of startup (and other) settings you can work with (see Figure 10-3).

Figure 10-3 msconfig

Lastly, I think the EC-Council folks would probably revoke my CEH certification if I
neglected to mention Tripwire and SIGVERIF here. See, verifying the integrity of critical files is
considered one of those bedrock-type actions you need to take in protecting against/detecting
Trojans. Tripwire has been mentioned before in this book and bears repeating here. It is a well-
respected integrity verifier that can act as an HIDS in protection against Trojans. SIGVERIF is
built into Windows machines to help verify the integrity of critical files on the system.

NOTE The log file for SIGVERIF is called sigverif.txt and can be found in the
c:\windows\system32 folder. The log is, by default, overwritten each time the tool is run. Third-
party drivers that are not signed are displayed as “Not Signed” and indicate a good spot to begin
your search.

Viruses and Worms
The good news regarding viruses and worms is there’s not a whole lot here for you to remember
for your exam, and what you do need to know are simple definitions and a few new, newsworthy
attacks. There’s just simply not a lot on the exam regarding malware as a whole, so we’ll try to
keep it short, sweet, and right to the point.

A virus is a self-replicating program that reproduces its code by attaching copies into other
executable codes. In other words, viruses create copies of themselves in other programs, then
activate on some sort of trigger event (such as a specific user task, a particular time, or an event
of some sort). They usually get installed on a system via file attachments, user clicks on
embedded e-mails, or the installation of pirated software, and while some are nothing more than
just annoyances, many cause substantial harm to the system and, if you’re crazy enough to pay
for it, financial loss to the system owner.

NOTE A really audacious method for getting viruses onto a system is known as virus hoax or
fake antivirus. The process involves letting a target know about a terrible virus running rampant
through the world and then providing them an antivirus program (or signature file) to protect
themselves with. Don’t laugh. It works.

Assuming your system does get infected, other than your AV going bananas and alerting that
something crazy has happened, just how would you know your system has actually been
infected? Well, obvious things like much slower response time, computer and browser freezes,
and repeated, continual hard drive accesses should be indicators. Others may not be as
immediately obvious—for example, drive letters might change and files and folders may
disappear or become inaccessible. In any event, recovery may be as simple as a minor cleaning
effort using software designed to clean the infection, or a major undertaking including reloads
from known good backups.

There are multiple virus types listed in the official courseware, and it’s impossible to
determine exactly which you’ll see on your exam. However, one in particular gets a lot of page
time in the official courseware, and study groups online, and so warrants some extra attention
here: ransomware. According to US-CERT (https://www.us-cert.gov/Ransomware), ransomware
is a type of malicious software designed to deny access to a computer system or data until a
ransom is paid, and typically spreads through phishing e-mails or by unknowing visits to an
infected website. In other words, ransomware locks you out of your own system resources and
demands an online payment of some sort in order to release them back to you. While usually the
payment is smaller than the cost it would take to remove the malware and recover anything lost,
sometimes it’s enormous, and paying off the bad guys simply brings about more online terror.

Ransomware as a term seemingly came out of nowhere over the past couple years and is now
a dominating focus of attention and conversation in the security world. Unfortunately, it’s
ubiquitous and there’s little doubt you’ll see it somewhere, sometime in your travels. As a matter
of fact, I’m betting most of you reading this have at least a cursory knowledge of possibly the
most famous, and most “effective,” ransomware attack in history—WannaCry.

On May 12, 2017, at approximately 07:44 UTC, a system in Asia was the first to fall victim to
the WannaCry ransomware. Within 24 hours, it had spread to over 230,000 machines in 150
countries by taking advantage of an unpatched SMB exploit known as “Eternal Blue.” In Eternal
Blue, Microsoft’s implementation of SMBv1 mishandled specially crafted targets, which allowed
remote attackers to execute code on the machine. Interestingly enough, the Eternal Blue exploit

https://www.us-cert.gov/Ransomware

was, by all accounts, discovered by the NSA and released to Microsoft for patch creation in early
March of the same year. Microsoft did indeed create the patch and made it available in April, but
many organizations—for reasons involving everything from timing issues, patch management
policies (the patch was not marked as “critical”), testing and evaluations, and, yes, even lazy
security implementation—did not have it in place to prevent the exploit.

Should Make Us All Want to Cry
WannaCry was an attack with worldwide implications and devastation that should never have
been allowed to succeed. The attack combined a known and highly pub-licized exploit (which
was automated to be a worm) and ransomware that would encrypt files and demand bitcoin as
payment for the encryption keys. Despite the fact the exploit was well known and a patch was
readily available for system admin-istrators, WannaCry still managed to be the most
successful ransomware variant on record. And what’s really hard to believe is it was poised to
have a much more devastating effect, if it were not for a researcher who stumbled into a
mitigation that stopped the propagation and execution of the malware.

Upon initial infection, WannaCry would execute two components—one that would attempt
to exploit a known SMB vulnerability and one that had the ransom-ware. The dropper would
attempt to call out to domains and, if successful (that is, if the domain it reached out to was
valid), would stop. Assuming a domain was not reached, it would then change registry keys,
create services, and encrypt files (chang-ing their extensions to .WNCRY). The encrypted
files would be inaccessible to the users, and the change to the registry keys would display a
message indicating what the ransom was to get the key to decrypt the files. Meanwhile, the
service that was created was used to spread via SMB to other vulnerable systems the
computer could access (it scanned from an infected computer for connections and systems
that were still vulnerable to this exploit, and when one was discovered, the weaponized
exploit would run and gain remote code execution on the next machine).

A few days after the initial outbreak, a British security researcher (Marcus Hutchins, a.k.a.
“MalwareTech”) looked at the domain name the malware would query for, and he discovered
two important facts. First, the name was hardcoded into the exploit itself, and, second, the
domain itself was unregistered. He quickly regis-tered the domain and set up a sinkhole
server, which effectively stopped WannaCry from completing full execution of the
ransomware and spreading. Unbeknownst to him, he had stopped the worm in its tracks—so
much so that those researching the malware could not execute it as well.

So, in effect, we were witness to a well-known exploit being weaponized against a bunch
of machines that failed to implement a patch created to address it. And on top of that, the fix
action to pause it in place was stumbled upon by a researcher who himself would later be
arrested in Las Vegas on ten federal charges related to hacking and malware dispersal
(accused of creating and selling the Kronos malware variant in 2014, among other charges, he
is currently awaiting trail as of this writing). It’s enough to make you wanna cry.
By the way, if you’re curious to see how at least parts of this attack worked, both an nmap
script and a Metasploit module exist. On a system you own or one you have approval to scan
and attack, the nmap script “smb-vuln-ms17-010” will scan to see if it is vulnerable (also
meaning the appropriate patches have not been applied). If you are able to use active exploits
on the test network or machine, you can use Metasploit module MS17-010
(modules/auxiliary/scanner/smb/smb_ms17_010) for remote code execution on machines that

are unpatched.
—Hope Walker

EXAM TIP The ransomware “family” includes examples such as Cryptorbit, CryptoLocker,
CryptoDefense, and police-themed. A couple specific ransomware variants of note include
Locky (spread via spam e-mail with a malicious Microsoft Word document titled “invoice J-
########.doc attached) and Petya (a close cousin of WannaCry that spread using the Windows
Management Instrumentation command line).

Other virus types are listed here for your memorization:

• Boot sector virus Also known as a system virus, this virus type actually moves the boot
sector to another location on the hard drive, forcing the virus code to be executed first.
These viruses are almost impossible to get rid of once you get infected. You can re-create
the boot record—old-school fdisk or mbr could do the trick for you—but it’s not
necessarily a walk in the park. As a side note, Petya (another bit of nasty ransomware that
made itself newsworthy by using the Eternal Blue exploit like WannaCry) overwrote the
Master Boot Record (MBR) until payment was received.

• Shell virus Working just like the boot sector virus, this virus type wraps itself around an
application’s code, inserting its own code before the application’s. Every time the
application is run, the virus code is run first.

• Cluster virus This virus type modifies directory table entries so that user or system
processes are pointed to the virus code itself instead of the application or action intended.
A single copy of the virus “infects” everything by launching when any application is
initiated.

• Multipartite virus Attempts to infect both files and the boot sector at the same time.
This generally refers to a virus with multiple infection vectors. This link describes one
such DOS-type virus: www.f-secure.com/v-descs/neuroqui.shtml. It was multipartite,
polymorphic, retroviral, boot sector, and generally a pretty wild bit of code.

• Macro virus Probably one of the most common malware types you’ll see in today’s
world, this is usually written with Visual Basic for Applications (VBA). This virus type
infects template files created by Microsoft Office, normally Word and Excel. The Melissa
virus was a prime example of this.

• Polymorphic code virus This virus mutates its code using a built-in polymorphic
engine. This type of virus is difficult to find and remove because its signature constantly
changes. No part of the virus stays the same from infection to infection.

• Encryption virus Shockingly, this type of virus uses encryption to hide the code from
antivirus scanners.

• Metamorphic virus This virus type rewrites itself every time it infects a new file.

http://www.f-secure.com/v-descs/neuroqui.shtml

• Stealth virus Also known as a “tunneling virus,” this one attempts to evade antivirus
(AV) applications by intercepting the AV’s requests to the operating system (OS) and
returning them to itself instead of the OS. The virus then alters the requests and sends
them back to AV as uninfected, making the virus now appear “clean.”

• Cavity virus Cavity viruses overwrite portions of host files so as not to increase the
actual size of the file. This is done using the null content sections of the file and leaves the
file’s actual functionality intact.

• Sparse infector virus This virus type only infects occasionally. For example, maybe the
virus only fires every tenth time a specific application is run.

• File extension virus This virus type changes the file extensions of files to take
advantage of most people having file extension view turned off. For example,
readme.txt.vbs might appear as readme.txt with extensions turned off.

NOTE Want to make your own virus, for whatever reason? Some options for you are Sonic
Bat, PoisonVirus Maker, Sam’s Virus Generator, and JPS Virus Maker.

Another malware definition you’ll need to know is the worm. A worm is a self-replicating
malware computer program that uses a computer network to send copies of itself to other
systems without human intervention. Usually it doesn’t alter files, but it resides in active memory
and duplicates itself, eating up resources and wreaking havoc along the way. The most common
use for a worm in the hacking world is the creation of botnets, which we’ve already discussed.
This army of robot systems can then be used to accomplish all sorts of bad things.

When it comes to worms and your exam, in earlier versions of the exam EC-Council wanted
you not only to know and understand what a worm does but also to identify specific famous
named worms based on a variety of characteristics. For example, the Conficker worm disabled
services, denied access to administrator shared drives, locked users out of directories, and
restricted access to security-related sites. Symptoms included an “Open folder to view files—
Publisher not specified” message in the AutoPlay dialog box (the original, and legitimate,
Windows option reads “Open folder to view files using Windows Explorer.”)

In the latest version of the official courseware, however, it doesn’t appear they care much
about it at all. In fact, the only one making an appearance is something called “Ghost Eye
Worm,” which really isn’t much of a worm at all. It’s a hacking tool that uses random messaging
on Facebook and other sites to perform a host of malicious efforts. I’m not positive they’ll ignore
worms altogether, so I decided to list these for your perusal, should you happen to see a random
question about one of them:

• Code Red Named after the soft drink the eEye Digital guys were drinking when they
discovered it, Code Red exploited indexing software on IIS servers in 2001. The worm
used a buffer overflow and defaced hundreds of thousands of servers.

• Darlloz Known as the worm for “the Internet of Things,” darlloz is a Linux-based worm
that targets running ARM, MIPS, and PowerPC architectures—which are usually routers,

set-top boxes, and security cameras.
• Slammer Also known as SQL Slammer, this was a denial-of-service worm attacking

buffer overflow weaknesses in Microsoft SQL Services. Also called Sapphire, SQL_HEL,
and Helkern, it spread quickly using UDP, and its small size (the entire worm could fit
inside a single packet) allowed it to bypass many sensors.

• Nimda This worm’s name comes from the word admin spelled backward. Nimda was a
successful file infection virus that modified and touched nearly all web content on a
machine. It spread so quickly it became the most widespread worm in history within
about 22 minutes of its first sighting. Nimda spread through e-mail, open network shares,
and websites, and it also took advantage of backdoors left on machines infected by the
Code Red worm.

• Bug Bear Propagating over open network shares and e-mail, Bug Bear terminated AV
applications and set up a backdoor for later use. It also contained keylogging capabilities.

• Pretty Park Pretty Park spread via e-mail (attempting a send every 30 minutes) and took
advantage of IRC to propagate stolen passwords and the like. Running the worm
executable often displayed the 3D Pipe screensaver on Windows machines.

A Nuclear Worm
If I were to tell everyone to stop what they were doing, close their eyes, and describe to me
what the creator of a worm or virus looks like, I bet the responses would be pretty easy to
predict. Most people view the creators of these things with contempt, even anger, and almost
always picture them as some pimply-faced, angry adolescent bent on making a name for
himself. The truth, though, is usually far from an angry individual pounding away on a
keyboard. In fact, one of the most famous and most damaging worms in the history of the
Internet was created by the U.S. government. At least it allegedly was because everything I’m
about to write actually happened, but no one has ever come out and acknowledged it
officially.

In 2006, the U.S. government, working with Israeli allies, decided to pursue a
“cyberdisruption” campaign aimed at crippling Iran’s nuclear facilities. The idea was simple:
map out a plant’s functions, create a target vector by using this information, and start random,
untraceable attacks to cripple the infrastructure the plant relied on. The worm, probably
introduced via an unsuspecting plant employee and a USB stick, did precisely that and
targeted centrifuges inside Iranian plants, making them spin too quickly or too slowly. Within
a week or so, it successfully shut down roughly one-fifth of the centrifuges the nuclear plant
relied on to function and set the Iranian nuclear program back significantly. It then morphed
and moved on to other attack vectors, mimicking mechanical failures, falsifying live status
reporting, and frustrating efforts to bring the entire plant, and system, back to functionality.

The problem was, the dirty little bug didn’t stay where it was supposed to stay. Apparently
an engineer at the Natanz plant took an infected machine home and connected it to the
Internet. Stuxnet, as it came to be known, was now replicating across the Internet, and its code
was exposed for public investigation. While this act marked the beginnings of the spread,
USB drives turned out to be one of the most, if not the most, critical methods early on in
spreading Stuxnet as far as it went. Later variants, created when hackers got hold of the code
and went crazy with it, used many other methods to spread.

So, how did it escape the specific area the creators intended it to stay in? That, my friends,
has been a point of debate ever since it went public. Many security companies have taken
apart the code and examined it to figure out who made the programming error that resulted in
it leaping to the public domain. To my knowledge, no one has ever been able to determine
who made the mistake. A couple of things can be noted for certain, however. Stuxnet code is
still being morphed, updated, and reprogrammed for present and future attacks. And some of
those attacks are, and will no doubt be, against the very governments responsible for creating
it.

Finally, the last topics we’re required to cover here are malware analysis, countermeasures,
and mitigation. Analysis may be something your particular organization makes a habit of, but
outside antivirus companies and the like, I’m not sure this is something valid for your day-to-day
work. That said, ECC wants you to know about it, so here goes.

The first step in analyzing malware is to make sure you have a good test bed. Using a virtual
machine with the NIC in host-only mode and no open shares is a good start. Next, analyze the
malware on that isolated VM while it’s in a static state. Tools such as binText and UPX can help
in examining the binary itself as well as the compression and packaging technique. Next, fire up
the malware and check out the processes in use (with Process Monitor and Process Explorer, for
example). Review network traffic using NetResident, TCPview, or maybe even Wireshark.
Lastly, check to see what files are added, changed, or deleted, what processes continue to spawn,
and any changes to the registry. Tools that can help you with malware analysis include, but are
not limited to, IDA Pro (www.hex-rays.com), VirusTotal (www.virustotal.com), Anubis
(Anubis.iseclab.org), and Threat Analyzer (www.threattracksecurity.com).

And just how are you supposed to protect against viruses and worms? Well, first off, you
should probably know what’s running on and being used by your system. Trojans take advantage
of unused ports, so if you’re looking at your system and see something using a weird port, that
would probably be a good indication you may be infected. Use tools such as TCPView and
CurrPorts (not to mention netstat) to see what ports are in use, and by what. Check out which
processes are in use with Process Monitor and Process Explorer, and keep an eye on any registry
changes with Regscanner or any of a number of registry-scanning tools. Lastly, keep an eye on
system files and folders with tools such as SIGVERIF and Tripwire.

For study purposes, a good antivirus program is also a must, and keeping it up to date is key
(the system is only as good as your signature files, and if you’re asleep at the wheel in keeping
them updated, you’re opening yourself up to infection). In the real world, most of us have a
blind, seething hatred of AV programs. Malware moves quickly in the modern world, and most
of it runs and is kept in memory versus on the disk. Signature-based AV simply can’t keep up,
and heuristic AV simply isn’t much better. In fact, I think you could make a strong argument in
an enterprise network that the false sense of security created by the mere existence of desktop
antivirus makes the system less secure. I can’t tell you the number of times during our incident
response process a victim has said, “Well, yes, of course, but don’t you have antivirus installed
on this machine to protect me?” Feel free to load one up if it makes you feel better, but in
addition to frustrating your attempts at loading and playing with genuine security tools, you’re
likely just wasting time.

Another good option, at least as far as ECC is concerned, is the sheepdip computer. A

http://www.hex-rays.com
http://www.virustotal.com
http://Anubis.iseclab.org
http://www.threattracksecurity.com

sheepdip system is set up to check physical media, device drivers, and other files for malware
before it is introduced to the network. Typically, this computer is used for nothing else and is
isolated from the other computers, meaning it is not connected to the network at all. Sheepdip
computers are usually configured with a couple of different AV programs, port monitors, registry
monitors, and file integrity verifiers.

NOTE It’s time for a little insight and vocabulary lesson in the real world versus your exam.
Terms such as netizen (a.k.a. cybercitizen: a person actively involved in online communities) and
technorati (a blog search engine and an old, old term of endearment for aging techno-geeks) may
be referenced on your exam, but are hilariously outdated and unused in the real world. And while
groovy discussions about “podcasting on a Web 2.0 site while creating mashups of tweets” are
probably still fine, to borrow a line from the great American cinematic classic Office Space
regarding using the term sheepdip in the real world: “I believe you’d get your ass kicked saying
something like that, man.”

Remaining Attacks
Have you ever been on a really long road trip? You know the ones I’m talking about, right?
When you leave, you’re really excited, and the miles just seem to pass along happily. Then,
somewhere along the way, things change. The excitement dies down, and before you know it, the
miles become a burden instead of a joy. Everything seems like it takes forever, and the road
becomes the enemy, with each road sign mocking your progress instead of marking it. Then, just
as things are near their worst, you see the sign with your destination listed on it. It might read
200 miles, it might read 500, but instantly your spirits are lifted.

Have you noticed that at that point you start driving faster? Do you know why? Because you
can see the end from there. Once the destination is within reach, once you can see that proverbial
light at the end of the tunnel, your natural instinct is to sprint. There’s no need for bathroom
breaks—no need to stop and look at the world’s largest ball of twine—because you are so close
to the end you just want to get there and rest. It’s perfectly natural, and it’s the way our minds
work.

Well, dear reader, we both find ourselves at an interesting juncture here. You and I have been
on a long journey so far. It started out exciting, and there was a lot to look at and pass the time
with. Now we’re getting close to the end (you’ve no doubt looked at the table of contents and
know where we are), and you’re tired of reading. Heck, I’m tired of writing, and the temptation
for both of us is to sprint—to blast through the rest and just finish, for goodness’ sake. Trust me,
though, we’ve got just two big topics to get through here. I’ll keep them short and to the point,
but I’ll need to know you’re willing to do your part and stick with me. Come on, we’re almost
there.

NOTE Arctic safety briefings will tell you many people who were found frozen to death were
found on the edge of visual contact with a destination that could provide safety. The theory goes
that people were so distressed from hypothermia that the sight of safety caused them to either
collapse or stop to rest for a moment, resulting in an inability to go further. That’s not a testable
item, but it fits with the allegory here. As an aside, many were found without coats. It turns out
severe hypothermia is known to make you feel warm before you freeze. And you thought this
book would be boring.

Denial of Service
We’ve already defined a denial-of-service attack and a distributed denial-of-service attack, but
this section is here to go into a little more detail (namely because there are CEH objectives yet to
cover on the subject, and ECC has devoted an entire chapter to DoS). For example, you may or
may not be aware that a DoS is generally thought of as a last-resort attack. This isn’t always true
—there are plenty of examples where DoS was the whole point. In some cases, the attacker just
wants to embarrass the target or maybe prevent the spread of information. But, sometimes, when
a hacker is tired of trying to break through your defenses, she may simply resort to “blowing it
up” out of frustration.

Obviously, this is completely different for the ethical hacker. We’re not going to perform DoS
attacks purposely, unless our client wants or allows us to do so. Sure, there may be some
unintended DoS symptoms against a particular system or subnet, but we’re generally not going
after DoS as an end result. As an aside, you’ll need to make sure your client understands the risks
involved with testing; sometimes knocking on doors causes the security system to lock them all,
and you don’t want your client coming back at you unaware this could have happened.

The standard DoS attack seeks to accomplish nothing more than taking down a system or
simply denying access to it by authorized users. From this standpoint, the DoS might prove
useful to an ethical hacker. For example, what if you removed the security personnel’s rights to
watch the network? This could allow you a few minutes to hack at will, without worry of getting
caught (until they notice they have no rights, of course, which won’t take long).

NOTE DDoS is one of the primary reasons many are headed toward the cloud computing
route. DDoS Matt’s Bait Shop and Computer Networking Store? Not a problem. DDoS Amazon
or Google? Now we’re talking.

The distributed denial-of-service (DDoS) attack, obviously, comes not from one system but
many, and they’re usually part of a botnet. The botnet is a network of zombie computers the

hacker can use to start a distributed attack from (examples of botnet software/Trojans are Shark
and Poison Ivy). These systems can sit idly by, doing other work for, literally, months before
being called into action. That action may be as simple as sending a ping or performing some
other task relevant to the attack at hand. For study purposes, the preferred communications
channel used to signal the bots is IRC or Internet Chat Query (ICQ). In the real world, it’s just as
likely (perhaps even more so) to see HTTP or HTTPS employed.

EXAM TIP Another way of saying “botnet” may be the distributed reflection denial-of-
service (DRDoS) attack, also known as a spoof attack. It uses multiple intermediary machines to
pull off the denial of service, by having the secondary machines send the attack at the behest of
the attacker. The attacker remains hidden because the attacks appear to originate from those
secondary machines.

DoS and DDoS attacks are as numerous and varied as the items in the buffet lines in Las
Vegas. They can range from the simple to the fairly complex, and can require one system or
many to pull off. For a simple example, just try someone’s login credentials incorrectly three
times in a row on a government network. Bingo! You’ve successfully DoS’d their account. Other
relatively simple methods could be sending corrupt SMB messages on Windows machines to
“blue screen” the device. Or maybe you simply “arp” the machine to death, leaving it too
confused to actually send a message anywhere. The methods are innumerable.

ECC lists four basic categories of DoS/DDoS, and several examples of DoS/DDoS attacks:

• Fragmentation attacks These attacks take advantage of the system’s ability (or lack
thereof) to reconstruct fragmented packets.

• Volumetric attacks Also known as bandwidth attacks, these consume all available
bandwidth for the system or service.

• Application attacks These attacks consume the resources necessary for the application to
run, effectively making it unavailable to others.

EXAM TIP Application attacks deal with DoS attacks against the application itself. Should
you find yourself looking at a question and see “application-level attack” as one of the answers
alongside application attack, note the difference (in CEH parlance) is the exploitation of weak
code in the application itself. In other words, you can DoS an application in a bunch of ways, but
if the attack is targeting a specific bit of weak code, EC-Council may call it an application-level
attack.

• TCP state-exhaustion attacks These attacks go after load balancers, firewalls, and
application servers by attempting to consume their connection state tables.

• SYN attack The hacker will send thousands upon thousands of SYN packets to the

machine with a false source IP address. The machine will attempt to respond with a
SYN/ACK but will be unsuccessful (because the address is false). Eventually, all the
machine’s resources are engaged, and it becomes a giant paperweight.

• SYN flood In this attack, the hacker sends thousands of SYN packets to the target but
never responds to any of the return SYN/ACK packets. Because there is a certain amount
of time the target must wait to receive an answer to the SYN/ACK, it will eventually bog
down and run out of available connections.

• ICMP flood Here, the attacker sends ICMP Echo packets to the target with a spoofed
(fake) source address. The target continues to respond to an address that doesn’t exist and
eventually reaches a limit of packets per second sent.

• Smurf The attacker sends a large number of pings to the broadcast address of the subnet,
with the source IP spoofed to that of the target. The entire subnet will then begin sending
ping responses to the target, exhausting the resources there. A fraggle attack is similar but
uses UDP for the same purpose.

• Ping of death In the ping of death, an attacker fragments an ICMP message to send to a
target. When the fragments are reassembled, the resultant ICMP packet is larger than the
maximum size and crashes the system. (Note that this isn’t a valid attack with modern
systems, but is still a definition you may need to know.)

• Teardrop In a teardrop attack, a large number of garbled IP fragments with overlapping,
oversized payloads are sent to the target machine. On older operating systems (such as
Windows 3.1x, Windows 95, and Windows NT operating systems), this takes advantage
of weaknesses in the fragment reassembly functionality of their TCP/IP stack, causing the
system to crash or reboot.

• Peer to peer In this attack, clients of a peer-to-peer file-sharing hub are disconnected
and directed to connect with the target system.

• Permanent Phlashing refers to a DoS attack that causes permanent damage to a system.
Usually this includes damage to the hardware and can also be known as bricking a
system.

NOTE A LAND attack sends a SYN packet to the target with the source IP spoofed to the
same as the target IP. If vulnerable, the target will loop endlessly and crash the OS.

More than a few tools are dedicated to performing DoS on systems. Low Orbit Ion Cannon
(LOIC) is a simple-to-use DDoS tool that floods a target with TCP, UDP, or HTTP requests (see
Figure 10-4). Originally written open source to attack various Scientology websites, the tool has
many people voluntarily joining a botnet to support all sorts of attacks. As recently as 2011,
LOIC (a DDoS tool originally created and used by Anonymous) was used in a coordinated attack
against Sony’s PlayStation network, and the tool has a track record of other successful hits: the
Recording Industry Association of America, PayPal, MasterCard, and several other companies
have all fallen victim to LOIC.

Figure 10-4 LOIC

Other tools include Trinity, Tribe Flood Network, and R-U-Dead-Yet. Trinity is a Linux-
based DDoS tool much like LOIC. Tribe Flood Network is much the same, using voluntary
botnet systems to launch massive flood attacks on targets. R-U-Dead-Yet (known by its acronym
RUDY) performs DoS with HTTP POST via long-form field submissions. We could go on here,
but I think you get the point. Do a quick Google search for “DoS Tool” or “DDoS Tool”—you’ll
find more than you need to know.

NOTE Another really groovy DoS tool worth mentioning here (even though I don’t think it’s
part of your exam) is Slowloris. Slowloris is a TCP DoS tool that basically ties up open sockets
and causes services to hang. It’s useful against web servers and doesn’t consume large amounts
of bandwidth (https://www.incapsula.com/ddos/attack-glossary/slowloris.html).

Finally, when it comes to countermeasures against DoS attacks, you’ve probably heard all this
before, so we don’t need to spend a large amount of time on the subject. Actions such as
disabling unnecessary services, using a good firewall policy, and keeping security patches and
upgrades up to date are pretty standard fare. Additionally, the use of a good NIDS can help
against attacks from across the network. Strong, security-conscious code should be an absolute

https://www.incapsula.com/ddos/attack-glossary/slowloris.html

for your applications, and the use of tools such as Skydance can help detect and prevent DoS
attacks. You might also look into network ingress filtering as well as some network auditing
tools to help along the way.

NOTE The real answer to a true DDoS is the involvement of your ISP up channel. It will be
next to impossible for you, at an endpoint locale, to keep up with attacks from a sophisticated
global (or even geographically close) botnet. The ISP may wind up blocking a lot of legitimate
traffic, too, but it may be all you can do until the storm passes.

Session Hijacking
Unlike DoS attacks, session hijacking attempts aren’t trying to break anything or shut off access
necessarily. The idea is fairly simple: the attacker waits for a session to begin and, after all the
pesky authentication gets done, jumps in to steal the session for himself. This differs a little from
the spoofing attacks we’ve talked about to this point. In spoofing, you’re pretending to be
someone else’s address with the intent of sniffing their traffic while they work. Hijacking refers
to the active attempt to steal the entire session from the client: the server isn’t even aware of
what happened, and the client simply connects again in a different session.

Ignoring the Obvious
I was having dinner once at a friend’s house who was insistent on letting me know how secure
his home was. The security system was in place, with all the right bells, whistles, and motion
detectors appropriately arrayed throughout the house. His selection of firearms, placed
strategically to provide easy access for him but not his children, was impressive. And his bolt
locks on the front door? Some of the most imposing lock mechanisms I’d ever seen.
Searching for a compliment, he asked what I thought about his (as he put it) “secured home.”
I responded I thought he’d done a good job, but no home or business was totally thief-proof.
He challenged me to point out how I could rob him. So I did.

I’d take a little time to case the house, where I’d learn quickly that his alarm box is located
in the garage and was basically made of plastic. I’d definitely choose a time when no one was
home, not only removing the firearms as a defense mechanism but to avoid being caught.
Entry would be simple enough because I could just wait to capture the garage opener code
(easier than it sounds). Once in the garage, I could pop the alarm box cover off, unscrew the
telephone and power connectors inside the box, and—I’m in. And if I wanted to be really
sneaky, I’d take what I wanted and then put the alarm phone and power back together on my
way out. The point is, there’s almost always something that is missed. Professionals who
spend their whole lives working security overlook things—that’s how bad guys continue to
get away with the goods—so it’s to be expected the rest of us will occasionally miss stuff.

When it comes to our line of work here, security folks sometimes overlook the obvious in
denial-of-service attacks headed their way. And we’re not talking little Mom-and-Pop

organizations either. PayPal fell victim to a DoS at the hands of the Internet group
Anonymous, who took offense to PayPal shutting off donation plugs to WikiLeaks. Yahoo!
has seen repeated attacks against its servers, and The New York Times fell victim to a variety
of attacks (DDoS being one of them). And it’s not just websites that are under attack.
Government systems around the world, in almost every country, are under attack on a regular
basis. Hacktivists make use of these efforts all the time as well: The Syrian Electronic Army
is a group of computer hackers aligned with Syrian President Bashar al-Assad that has used
DDoS attacks to target the websites of media organizations critical of the Syrian regime.

The lesson here? DDoS attacks are not only still relevant, they’re prevalent in our world.
Google and Arbor Networks even put up a groovy digital map so you can watch DDoS
attacks across the world, in live action:

www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=16048&view=map

So, prepare yourself. And move your alarm box inside.

From a high-level view, TCP session hijacking sounds relatively easy. First, the hacker tracks
the session, watching the sequence numbers and the flow of packet headers. Next, the hacker
“desynchronizes” the connection by sending a TCP RST or FIN to the client, causing it to close
its side of the session. Lastly (at the same time), using the information gathered during the first
step, the hacker begins sending packets to the server with the predicted (guessed) session ID,
which is generated by an algorithm using the sequence numbers. If the hacker gets it right, he has
taken over the session because the server thinks it’s the original client’s next packet in the series.
The following more completely describes the session hijack steps (per EC-Council):

1. Sniff the traffic between the client and the server.
2. Monitor the traffic and predict the sequence numbering.
3. Desynchronize the session with the client.
4. Predict the session token and take over the session.
5. Inject packets to the target server.

NOTE Session hijacking can be done via brute force, calculation, or stealing. Additionally,
you can always send a preconfigured session ID to the target; when the target clicks to open it,
simply wait for authentication and jump in.

TCP session hijacking is possible because of the way TCP works. As a session-oriented
protocol, it provides unique numbers to each packet, which allows the receiving machine to
reassemble them in the correct, original order, even if they are received out of order. The
synchronized packets we’ve talked about throughout the book set up these sequence numbers

http://www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=16048&view=map

(SNs). With more than 4 billion combinations available, the idea is to have the process begin as
randomly as possible. However, it is statistically possible to repeat sequence numbers and, even
easier, to guess what the next one in line will be.

NOTE It is fair to note that sequence attacks are exceptionally rare in cases where you’re not
in the middle. A definitive paper on the subject, despite its age, can be found at
http://lcamtuf.coredump.cx/newtcp/. It provides images of sequence numbers from various
operating system implementations and gives an idea of how statistically successful (or
unsuccessful) you’ll be in messing with them.

So, just for clarity’s sake, let’s go back to the earlier discussion on TCP packets flying
through the ether. The initial sequence number (ISN) is sent by the initiator of the session in the
first step (SYN). This is acknowledged in the second handshake (SYN/ACK) by incrementing
that ISN by one, and another ISN is generated by the recipient. This second number is
acknowledged by the initiator in the third step (ACK), and from there on out communication can
occur. The window size field will tell the recipient how much he can send before expecting a
return acknowledgment. Combine all of them together and, over time, you can watch the whole
thing in action. For example, consider Figure 10-5. It’s worth mentioning these types of attacks
are considered very rare in the real world: outside of a very rare MITM attack, you’re as likely to
see this (and ping of death) as you are to see a flying peacock.

Figure 10-5 TCP communication

http://lcamtuf.coredump.cx/newtcp/

NOTE There are also windowing attacks for TCP that shrink the data size window.

After the handshake, for every data payload transmitted, the sequence number is incremented.
In the first two steps of the three-way handshake, the ISNs are exchanged (in this case, 100 and
500) and then are incremented based on the delivery of data. In our example here, Computer A
sends 3 bytes with an initial sequence number of 102, so each packet sequence number will
increment accordingly—102, 103, and 104, respectively. The receiver then sends an
acknowledgment of 105 because that is the next byte it expects to receive in the next packet.

It seems easy enough, but once you add the window size and take into account that the
numbers aren’t simple (like the 100 and 500 in our example), it can get hairy pretty quickly. The
window size, you may recall, tells the sender how many outstanding bytes it can have on the
network without expecting a response. The idea is to improve performance by allowing more
than one byte at a time before requiring the “Hey, I got it” acknowledgment. This sometimes
complicates things because the sender may cut back within the window size based on what’s
going on network-wise and what it’s trying to send.

EXAM TIP You’ll need to remember that the sequence numbers increment on
acknowledgment. Additionally, you’ll almost certainly get asked a scenario version of sequence
numbering (if I were writing the test, I’d give you one). You’ll need to know, given an
acknowledgment number and a window size, what sequence number would be acceptable to the
system. For example, an acknowledgment of 105 with a window size of 200 means you could
expect sequence numbering from 105 through 305.

Thankfully, a multitude of tools are available to assist in session hijacking. We’ve mentioned
Ettercap before—a packet sniffer on steroids—but not in the context of actively hijacking
sessions. It’s an excellent man-in-the-middle tool and can be run from a variety of platforms
(although it is Linux native). Hunt and T-sight are probably the two best-known session
hijacking tools. Hunt can sniff, hijack, and reset connections at will, whereas T-sight
(commercially available) can easily hijack sessions as well as monitor additional network
connections. Some other tools are Zaproxy and Paros (both known more as a proxy), Burp Suite,
Juggernaut (a well-known Linux-based tool), Hamster, and Ferret.

NOTE You’ve heard of session hijacking and man-in-the-middle, but what about man-in-the-

browser? An MIB attack occurs when the hacker sends a Trojan to intercept browser calls. The
Trojan basically sits between the browser and libraries, allowing a hacker to watch, and interact
within, a browser session. Cobalt Strike creator Raphael Mudge (a.k.a. Mudge) added this feature
a couple years back (https://www.cobaltstrike.com/help-browser-pivoting). If you have his
Beacon (the name of his implant) on a box, you can “browser pivot” such that all of the target’s
active sessions become your own. All of them. It effectively sets up a local proxy port so you can
point your browser to it, and it directs all of your requests through the beacon on the target
machine. Now you’re browsing in your own browser as them, without them even knowing it.

Countermeasures for session hijacking are, again, usually commonsense issues. For one thing,
using unpredictable session IDs in the first place protects against hijacking (remember this one).
Other options include limiting incoming connections, minimizing remote access, and
regenerating the session key after authentication is complete. Lastly, a really good choice is to
use encryption to protect the channel. We’ll cover IPSec more when we get around to
cryptography, but a small refresher here (or introduction, if you know nothing about it) is a great
idea—mainly because this is where ECC covers it, and its encryption and authentication is
considered good prevention against session hijacking.

IPSec is used to secure IP communication by providing encryption and authentication services
to each packet, and it has several architectural components you’ll need to know. First, IPSec
works in two modes. In transport mode, the payload and ESP trailer are encrypted; however, the
IP header of the original packet is not. Transport can be used in network address translation
(NAT) because the original packet is still routed in exactly the same manner as it would have
been without IPSec. Tunnel mode, however, encrypts the whole thing, encapsulating the entire
original packet in a new IPSec shell. This makes it incompatible with NAT. The rest of IPSec
architecture includes the following protocols:

• Authentication Header AH is a protocol within IPSec that guarantees the integrity and
authentication of the IP packet sender.

• Encapsulating Security Payload ESP is a protocol that also provides origin authenticity
and integrity, but it can take care of confidentiality (through encryption) too. ESP does not
provide integrity and authentication for the entire IP packet in transport mode, but in
tunnel mode protection is provided to the entire IP packet.

• Internet Key Exchange IKE is the protocol that produces the keys for the encryption
process.

• Oakley A protocol that uses Diffie-Hellman to create master and session keys.
• Internet Security Association Key Management Protocol Software that facilitates

encrypted communication between two endpoints.

If it’s possible to put into action in your environment (and it’s actually pretty easy to set up),
IPSec is a good choice as a countermeasure. Not the only one, but a good one. I would say user
education is key. Oftentimes an uneducated user won’t think twice about clicking past the
security certificate warning, or reconnecting after being suddenly shut down, and education can
help with one or two instances here and there—but don’t rely on it.

Spectre and Meltdown

https://www.cobaltstrike.com/help-browser-pivoting

Vulnerabilities and attacks are so commonplace, most of them simply come and go with
nothing more than an assigned CVE number or a brief mention during the weekly security
briefing. But every so often something comes along that is so far reaching, that causes so
much havoc, it not only gets its own name, but an icon. In June of 2017, Google researchers
advised Intel of a significant vulnerability in most, if not all, of their processors. As it turned
out, the flaw wasn’t only in Intel processors—Apple, AMD, ARM, Samsung, and Qualcomm
all were affected—but it was much more than just a common concern.

Intel (and other) manufacturers have relentlessly pursued means and methods to improve
optimization and performance, and one trek taken was with something called “speculative
processing.” And it’s exactly what it sounds like—the processor predicts (guesses) what the
next execution will be in order to speed everything up. For example, if an application includes
multiple conditional statements, the processor will start executing and concluding all possible
outputs before the app asks for them.

So how does this help an attacker? Well, Google researchers figured out you can force the
processor to speculatively execute a read before bounds checking is performed, which allows
reading of out-of-bound memory locations and can force the processor to go to places it
wasn’t supposed to. For example, a bad guy could request access to a memory location not
allowed while simultaneously sending requests to conditionally read an allowed memory
location. The processor will use speculative execution before executing the request, so while
it will note the first is not allowed or is invalid, speculative execution will have run it anyway
and the results from both will remain in cache memory.

Spectre and Meltdown were both attacks that took advantage of speculative processing (in
slightly different ways), and while you needed some level of access already in place to take
advantage of it, the pure numbers of affected, vulnerable systems made these attacks
extremely concerning and kept a lot of security folks awake for many a night. Malware
systems did not, and still don’t, do a good job of alerting on the attacks, and even if you do
fall victim to one, there’s almost no evidence it even occurred. Patches, updates, and fix
actions do exist, but as we’ve seen with other exploits, that doesn’t necessarily mean systems
are protected.

Name and an icon? I’d prefer to forget them.

Chapter Review
Malware is generally defined as software designed to harm or secretly access a computer system
without the owner’s informed consent. Some states also define malware as computer
contaminant. Malvertising involves embedding malware into ad networks in an effort to throw
malware across many legitimate sites. Other definition terms of note include overt channels
(legitimate communication channels used by programs across a system or a network) and covert
channels (used to transport data in unintended ways).

Most malware is simply downloaded from the Internet with or without the user’s knowledge.
Sometimes legitimate sites get compromised, leading to infections on visiting systems. Other
times drive-by downloading infects the system, usually via some weird Java vulnerability
delivered through an ad stream or something like it. Peer-to-peer applications or web application
“features” are often hijacked to distribute malware, and an IRC channel is always a great way to

distribute malware. Sending malware (usually a Trojan) via e-mail, file sharing, or a browser is
also a good distribution method.

Wrappers are programs that allow you to bind an executable of your choice (Trojan) to an
innocent file your target won’t mind opening. EliteWrap is an example. Crypters are software
tools that use a combination of encryption, obfuscation, and code manipulation to render
malware as undetectable to AV and other security-monitoring products. Exploit kit examples
include Infinity, Bleeding Life, Crimepack, and Blackhole Exploit Kit.

A Trojan is software that appears to perform a desirable function for the user prior to running
or installing it but instead performs a function, usually without the user’s knowledge, that steals
information or otherwise harms the system (or data). Although a backdoor isn’t a Trojan, and a
Trojan isn’t a backdoor, they’re tied together in this discussion and on your exam: the Trojan is
the means of delivery, and the backdoor provides the open access.

Trojan types include defacement Trojans, proxy server Trojans, botnet Trojans (Tor-based
Chewbacca and Skynet), remote access Trojans (RAT, MoSucker, Optix Pro, and Blackhole),
and e-banking Trojans (Zeus and Spyeye). Covert Channel Tunneling Trojan (CCTT) is one
form of remote access Trojan that uses a variety of exploitation techniques to create data transfer
channels in previously authorized data streams. It’s designed to provide an external shell from
within the internal environment.

A command shell Trojan is intended to provide a backdoor to the system that you connect to
via command-line access. Netcat is known as the “Swiss Army knife” of TCP/IP hacking and
provides all sorts of control over a remote shell on a target. Netcat can be used for outbound or
inbound connections, over TCP or UDP, to or from any port on the machine. It offers DNS
forwarding, port mapping and forwarding, and proxying. You can even use it as a port scanner if
you’re really in a bind.

Port numbers in use by Trojans should be memorized for your exam:

Netstat will show all connections in one of several states—everything from SYN_SEND
(indicating active open) to CLOSED (the server has received an ACK from the client and closed
the connection). Fport is a free tool from McAfee that reports all open TCP/IP and UDP ports
and maps them to the owning applications. Process Explorer is a free tool from Microsoft
(formerly from SysInternals) that can tell you almost anything you’d want to know about a
running process. Some of the options for monitoring the registry are SysAnalyzer, Tiny Watcher,

Active Registry Monitor, and Regshot.
Windows will automatically run everything located in Run, RunServices, RunOnce, and

RunServicesOnce, and you’ll find that most questions on the exam are centered around or show
you settings from HKEY_LOCAL_MACHINE.

A virus is a self-replicating program that reproduces its code by attaching copies into other
executable codes. In other words, viruses create copies of themselves in other programs, then
activate on some sort of trigger event (such as a specific user task, a particular time, or an event
of some sort). One method for getting viruses onto a system is known as a virus hoax or fake
antivirus. The process involves letting a target know about a terrible virus running rampant
through the world, then providing them an antivirus program (or signature file) to protect
themselves with.

Here are the virus types for exam memorization:

• Ransomware This malware locks you out of your own system resources and demands
an online payment of some sort in order to release them back to you. The ransomware
“family” includes examples such as Cryptorbit, CryptoLocker, CryptoDefense, and
police-themed. Specific versions to know include WannaCry and Petya.

• Boot sector virus Also known as a system virus, this virus type actually moves the boot
sector to another location on the hard drive, forcing the virus code to be executed first.

• Shell virus Working just like the boot sector virus, this virus type wraps itself around an
application’s code, inserting its own code before the application’s. Every time the
application is run, the virus code is run first.

• Cluster virus This virus modifies directory table entries so that user or system processes
are pointed to the virus code itself instead of the application or action intended.

• Multipartite virus Attempts to infect both files and the boot sector at the same time.
This generally refers to a virus with multiple infection vectors.

• Macro virus Usually written with Visual Basic for Applications (VBA), this virus type
infects template files created by Microsoft Office, normally Word and Excel.

• Polymorphic code virus This virus type mutates its code using a built-in polymorphic
engine. These viruses are difficult to find and remove because their signatures constantly
change. No part of the virus stays the same from infection to infection.

• Encryption virus Shockingly, these viruses use encryption to hide the code from
antivirus scanners.

• Metamorphic virus This virus type rewrites itself every time it infects a new file.
• Stealth virus Also known as a “tunneling virus,” this one attempts to evade antivirus

(AV) applications by intercepting the AV’s requests to the operating system (OS) and
returning them to itself instead of OS.

• Cavity virus Cavity viruses overwrite portions of host files so as not to increase the
actual size of the file. This is done using the null content sections of the file and leaves the
file’s actual functionality intact.

• Sparse infector virus This virus type only infects occasionally.
• File extension virus These viruses change the file extensions of files to take advantage

of most people having file extension view turned off.

A worm is a self-replicating malware computer program that uses a computer network to send
copies of itself to other systems without human intervention. Usually it doesn’t alter files, but it
resides in active memory and duplicates itself, eating up resources and wreaking havoc along the
way. The most common use for a worm in the hacking world is the creation of botnets. “Ghost
Eye Worm” is a hacking tool that uses random messaging on Facebook and other sites to
perform malicious actions. Other worms include the following:

• Code Red Exploited indexing software on IIS servers in 2001.
• Darlloz The worm for the “Internet of Things,” darlloz is a Linux-based worm that

targets running ARM, MIPS, and PowerPC architectures.
• Slammer Also known as SQL Slammer, this was a denial-of-service worm attacking

buffer overflow weaknesses in Microsoft SQL Services.
• Nimda A successful file infection virus that modified and touched nearly all web content

on a machine.
• Bug Bear Propagating over open network shares and e-mail, Bug Bear terminated AV

applications and set up a backdoor for later use.
• Pretty Park Pretty Park spread via e-mail (attempting a send every 30 minutes) and took

advantage of IRC to propagate stolen passwords and the like.

Tools like binText and UPX can help in malware analysis. Others that can help are IDA Pro
(www.hex-rays.com), VirusTotal (www.virustotal.com), Anubis (Anubis.iseclab.org), and
Threat Analyzer (www.threattracksecurity.com).

The standard DoS attack seeks to accomplish nothing more than taking down a resource or
denying access to it by authorized users. The distributed denial-of-service (DDoS) attack comes
not from one system but many, and they’re usually part of a botnet. The botnet is a network of
zombie computers the hacker can use to start a distributed attack from (examples of botnet
software/Trojans are Shark and Poison Ivy). For study purposes, the preferred communications
channel used to signal the bots is IRC or Internet Chat Query (ICQ). Another way of saying
“botnet” may be the distributed reflection denial of service (DRDoS) attack, also known as a
spoof attack. It uses multiple intermediary machines to pull off the denial of service, by having
the secondary machine send the attack at the behest of the attacker. The attacker remains hidden
because the attack appears to originate from the secondary machine.

ECC lists four basic categories of Dos/DDoS as well as several examples of DoS/DDoS
attacks. The categories are as follows:

• Fragmentation attacks These attacks take advantage of the system’s ability (or lack
thereof) to reconstruct fragmented packets.

• Volumetric attacks Also known as bandwidth attacks, these consume all available
bandwidth for the system or service.

• Application attacks These attacks consume resources necessary for the application to
run, effectively making it unavailable to others.

• TCP state-exhaustion attacks These attacks go after load balancers, firewalls, and
application servers by attempting to consume their connection state tables.

Here’s a short list of attacks, with all the salient information you’ll need:

http://www.hex-rays.com
http://www.virustotal.com
http://Anubis.iseclab.org
http://www.threattracksecurity.com

• SYN attack The hacker will send thousands upon thousands of SYN packets to the
machine with a false source IP address. The machine will attempt to respond with a
SYN/ACK but will be unsuccessful (because the address is false). Eventually, all the
machine’s resources are engaged, and it becomes a giant paperweight.

• SYN flood In this attack, the hacker sends thousands of SYN packets to the target but
never responds to any of the return SYN/ACK packets. Because there is a certain amount
of time the target must wait to receive an answer to the SYN/ACK, it will eventually bog
down and run out of available connections.

• ICMP flood Here, the attacker sends ICMP Echo packets to the target with a spoofed
(fake) source address. The target continues to respond to an address that doesn’t exist and
eventually reaches a limit of packets per second sent.

• Smurf The attacker sends a large number of pings to the broadcast address of the subnet,
with the source IP spoofed to that of the target. The entire subnet will then begin sending
ping responses to the target, exhausting the resources there. A fraggle attack is similar but
uses UDP for the same purpose.

• Ping of death (This isn’t a valid attack with modern systems, but is still a definition you
may need to know.) In the ping of death, an attacker fragments an ICMP message to send
to a target. When the fragments are reassembled, the resultant ICMP packet is larger than
the maximum size and crashes the system.

• Teardrop In a teardrop attack, a large number of garbled IP fragments with overlapping,
oversized payloads are sent to the target machine. On older operating systems (such as
Windows 3.1x, Windows 95, and Windows NT operating systems), this takes advantage
of weaknesses in the fragment reassembly functionality of their TCP/IP stack, causing the
system to crash or reboot.

• Peer to peer In this attack, clients of a peer-to-peer file-sharing hub are disconnected
and directed to connect with the target system.

• Permanent Phlashing refers to a DoS attack that causes permanent damage to a system.
Usually this includes damage to the hardware and can also be known as bricking a
system.

The real answer to a true DDoS is the involvement of your ISP up channel. It will be next to
impossible for you, at an endpoint locale, to keep up with attacks from a sophisticated global, or
even geographically close, botnet. The ISP may wind up blocking a lot of legitimate traffic too,
but it may be all you can do until the storm passes.

In session hijacking, an attacker waits for a session to begin and, after all the pesky
authentication gets done, jumps in to steal the session for himself. The server isn’t even aware of
what happened, and the client simply connects again in a different session. The following more
completely describes the session hijack steps (per EC-Council):

1. Sniff the traffic between the client and the server.
2. Monitor the traffic and predict the sequence numbering.
3. Desynchronize the session with the client.
4. Predict the session token and take over the session.
5. Inject packets to the target server.

You’ll need to remember that the sequence numbers increment on acknowledgment.
Additionally, you’ll almost certainly get asked a scenario version of sequence numbering. You’ll
need to know, given an acknowledgment number and a window size, what sequence number
would be acceptable to the system. For example, an acknowledgment of 105 with a window size
of 200 means you could expect sequence numbering from 105 through 305.

IPSec is used to secure IP communication by providing encryption and authentication services
to each packet, and it has several architectural components you’ll need to know. First, IPSec
works in two modes. In transport mode, the payload and ESP trailer are encrypted; however, the
IP header of the original packet is not. Transport can be used in network address translation
(NAT) because the original packet is still routed in exactly the same manner as it would have
been without IPSec. Tunnel mode, however, encrypts the whole thing, encapsulating the entire
original packet in a new IPSec shell. This makes it incompatible with NAT. The rest of IPSec
architecture includes the following protocols:

• Authentication Header AH is a protocol within IPSec that guarantees the integrity and
authentication of the IP packet sender.

• Encapsulating Security Payload ESP is a protocol that also provides origin authenticity
and integrity, but it can take care of confidentiality (through encryption) too. ESP does not
provide integrity and authentication for the entire IP packet in transport mode, but in
tunnel mode protection is provided to the entire IP packet.

• Internet Key Exchange IKE is the protocol that produces the keys for the encryption
process.

• Oakley A protocol that uses Diffie-Hellman to create master and session keys.
• Internet Security Association Key Management Protocol Software that facilitates

encrypted communication between two endpoints.

Questions
1. Which of the following doesn’t define a method of transmitting data that violates a

security policy?
A. Backdoor channel
B. Session hijacking
C. Covert channel
D. Overt channel

2. Which virus type is only executed when a specific condition is met?
A. Sparse infector
B. Multipartite
C. Metamorphic
D. Cavity

3. Which of the following propagates without human interaction?
A. Trojan
B. Worm

C. Virus
D. MITM

4. Which of the following don’t use ICMP in the attack? (Choose two.)
A. SYN flood
B. Ping of death
C. Smurf
D. Peer to peer

5. Which of the following is not a recommended step in recovering from a malware
infection?
A. Delete system restore points.
B. Back up the hard drive.
C. Remove the system from the network.
D. Reinstall from original media.

6. Which of the following is a recommendation to protect against session hijacking? (Choose
two.)
A. Use only nonroutable protocols.
B. Use unpredictable sequence numbers.
C. Use a file verification application, such as Tripwire.
D. Use a good password policy.
E. Implement IPSec throughout the environment.

7. Which of the following attacks an already-authenticated connection?
A. Smurf
B. Denial of service
C. Session hijacking
D. Phishing

8. How does Tripwire (and programs like it) help against Trojan attacks?
A. Tripwire is an AV application that quarantines and removes malware immediately.
B. Tripwire is an AV application that quarantines and removes malware after a scan.
C. Tripwire is a file-integrity-checking application that rejects malware packets intended

for the kernel.
D. Tripwire is a file-integrity-checking application that notifies you when a system file

has been altered, potentially indicating malware.
9. Which of the following DoS categories consumes all available bandwidth for the system or

service?
A. Fragmentation attacks
B. Volumetric attacks
C. Application attacks
D. TCP state-exhaustion attacks

10. During a TCP data exchange, the client has offered a sequence number of 100, and the
server has offered 500. During acknowledgments, the packet shows 101 and 501,
respectively, as the agreed-upon sequence numbers. With a window size of 5, which
sequence numbers would the server willingly accept as part of this session?
A. 102 through 104
B. 102 through 501
C. 102 through 502
D. Anything above 501

11. Which of the following is the proper syntax on Windows systems for spawning a
command shell on port 56 using Netcat?
A. nc -r 56 -c cmd.exe
B. nc -p 56 -o cmd.exe
C. nc -L 56 -t -e cmd.exe
D. nc -port 56 -s -o cmd.exe

12. Which of the following best describes a DRDoS?
A. Multiple intermediary machines send the attack at the behest of the attacker.
B. The attacker sends thousands upon thousands of SYN packets to the machine with a

false source IP address.
C. The attacker sends thousands of SYN packets to the target but never responds to any

of the return SYN/ACK packets.
D. The attack involves sending a large number of garbled IP fragments with overlapping,

oversized payloads to the target machine.
13. Which of the following best describes a teardrop attack?

A. The attacker sends a packet with the same source and destination address.
B. The attacker sends several overlapping, extremely large IP fragments.
C. The attacker sends UDP Echo packets with a spoofed address.
D. The attacker uses ICMP broadcast to DoS targets.

Answers
1. D. Overt channels are legitimate, and used legitimately. Everything else listed would be in

violation of a security policy.
2. A. Sparse infector viruses only fire when a specific condition is met. For example, maybe

the fifth time Calculator is run, whammo!—virus execution.
3. B. Much like Skynet from the Terminator movies, worms do not need us.
4. A, D. A SYN flood doesn’t use ICMP at all, nor does a peer-to-peer attack.
5. B. Backing up a hard drive that’s already infected makes as much sense as putting ketchup

on a doughnut. The malicious files are on the drive, so backing it up does nothing but
ensure you’ll reinfect something later on.

6. B, E. Unpredictable sequence numbers make session hijacking nearly impossible, and

implementing IPSec—which provides encryption and authentication services—is also
probably a good idea.

7. C. Session hijacking takes advantage of connections already in place and already
authenticated.

8. D. Tripwire is one of the better-known file integrity verifiers, and it can help prevent
Trojans by notifying you immediately when an important file is altered.

9. B. Volumetric attacks consume all available bandwidth for the system or service.
10. A. Starting with the acknowledged sequence number of 101, the server will accept packets

between 102 and 106 before sending an acknowledgment.
11. C. This is the correct syntax for using Netcat to leave a command shell open on port 56.
12. A. The distributed reflection denial-of-service (DRDoS) attack is, for all intents and

purposes, a botnet. Secondary systems carry out the attacks so the attacker remains hidden.
13. B. In a teardrop attack, the reassembly of fragments takes down the target.

CHAPTER 11
Cryptography 101

In this chapter, you will
• Describe cryptography and encryption techniques
• Define cryptographic algorithms
• Describe public and private key generation concepts
• Describe digital signature components and usage
• Describe cryptanalysis and code-breaking tools and methodologies
• List cryptography attacks

Around 180 BC, the Greek philosopher and historian Polybius was busy putting together some
revolutionary re-thinking of government. He postulated on such ideas as the separation of powers
and a government meant to serve the people instead of rule over them. If this sounds familiar, it
should: his work became part of the foundation for later philosophers and writers (including
Montesquieu), not to mention the U.S. Constitution.

Considering, though, the times he lived in, not to mention his family circumstances and
upbringing, it’s fairly easy to see where Polybius might have wanted a little secrecy in his
writing. His father was a Greek politician and an open opponent of Roman control of Macedonia.
This eventually led to his arrest and imprisonment, and Polybius was deported to Rome. There,
Polybius was employed as a tutor. He eventually met and befriended a Roman military leader
and began chronicling the events he witnessed (these works would become known as The
Histories, detailing the Roman rise to power from 264 to 146 BC).

During all this historical writing, though, he couldn’t shake his father’s voice and continued
writing about the separation of government powers and the abuses of dictatorial rule. In an effort
to keep this part of his writing secret, he came up with what has become known as the Polybius
square. The idea was simple. First, create a checkerboard with numbers running across the top
and along the left side. Next, populate the interior with the letters of the alphabet. Then, when
writing, a letter would become its coordinates on the grid; for example, A might be written as 11,
while B would be 12.

Was it an unbeatable cypher system that kept everything safe? Was it even the first recorded
effort at encrypting messages so that no one but the recipient could read them? No, it was
neither. It did, however, mark one of the historic turning points in cryptography and led to
worlds of other inventions and uses (including steganography). From cavemen working out a
succession of knocks and beats to the secure e-mail I just sent my boss a few minutes ago, we’ve
been trying to keep things secret since the dawn of time. And, since the dawn of time, we’ve
been trying to figure out what the other guy was saying—trying to “crack his code.” The
implementation and study of this particular little fascination of the human psyche—securing
communication between two or more parties—is known as cryptography. For you budding
ethical hackers reading this book, the skill you’re looking to master, though, is cryptanalysis,
which is the study and methods used to crack encrypted communications.

Cryptography and Encryption Overview
I debated long and hard over just how much history to put into this discussion on cryptography
but finally came to the conclusion I shouldn’t put in any, even though it’s really cool and
interesting (c’mon, admit it, the opening to this chapter entertained and enthralled you, didn’t
it?). I mean, you’re probably not concerned with how the ancient Romans tried to secure their
communications or who the first purveyors of steganography—hiding messages inside an image
—were (toss-up between the Greeks and the Egyptians, depending on your source). What you
are, and should be, concerned with is what cryptography actually is and why you should know
anything about it. Excellent thoughts. Let’s discuss.

Cryptography is the science or study of protecting information, whether in transit or at rest, by
using techniques to render the information unusable to anyone who does not possess the means
to decrypt it. The overall process is fairly simple: take plain-text data (something you can read),
apply a cryptographic method, and turn it into cipher text (something you can’t read)—so long as
there is some provision to allow you to bring the cipher text back to plain text. What is not so
simple is the actual process of encrypting and decrypting.

Cryptanalysis is the study and methods used to crack the communications we just talked
about, and there are three main methods of effort to discuss. First, you can attack encrypted
communication in a linear fashion—that is, take blocks of known text and compare them to
blocks of the encrypted text, line by line, from front to back. Linear cryptanalysis works best on
block ciphers (something we’re going to cover a little later on) and was developed by Mitsuru
Matsui in 1993. As encryption techniques evolved, so did cryptanalysis, and differential
cryptanalysis came about. This one is applicable to symmetric key algorithms and basically
compares differences in inputs to how each one affects the outcome. Integral cryptanalysis, the

last of our three methods, borrows from differential in that the input versus output comparison
remains; however, integral runs multiple computations of the same block size input.

Now, will knowing the approach used for a specific cryptanalysis effort make you a better pen
tester? Who knows—maybe some of you reading this will go into that line of work and this will
be insanely helpful as a starter. For the rest of us, it’s good info to know, but not really a life-
changing experience. So sit back and relax as the rest of this chapter is dedicated to exploring
some of the mathematical procedures, known as encryption algorithms or ciphers, used to
encrypt and decrypt data.

NOTE Don’t be confused by the term plain text. Yes, it can be used to define text data in
ASCII format. However, within the confines of cryptography, plain text refers to anything that is
not encrypted—whether text or not.

It’s also important to understand what functions cryptography can provide. In Chapter 1, we
discussed the hallowed trinity of security—confidentiality, integrity, and availability. When it
comes to cryptography, confidentiality is the one that most often is brought up. Encrypting data
helps to provide confidentiality of the data because only those with the “key” can see it.
However, some other encryption algorithms and techniques also provide for integrity (hashes
that ensure the message hasn’t been changed) as well as a new term we have yet to discuss here:
nonrepudiation, which is the means by which a recipient can ensure the identity of the sender
and neither party can deny having sent or received the message. Our discussion of public key
infrastructure (PKI) later will definitely touch on this. This chapter is all about defining what
cryptography methods are available so that you know what you’re up against as an ethical
hacker.

Encryption Algorithms and Techniques
Cryptographic systems can be as simple as substituting one character for another (the old Caesar
Cipher simply replaced characters in a string: B for A, C for B, and so on) or as complex as
applying mathematical formulas to change the content entirely. Modern-day systems use
encryption algorithms and separate keys to accomplish the task. In its simplest definition, an
algorithm is a step-by-step method of solving a problem. The problem, when it comes to the
application of cryptography, is how do you render something unreadable and then provide a
means to recover it? Encryption algorithms were created for just such a purpose.

NOTE Encryption of bits takes, generally, one of two different forms: substitution or
transposition. Substitution is exactly what it sounds like—bits are simply replaced by other bits.

Transposition doesn’t replace bits at all; it changes their order altogether.

Encryption algorithms—mathematical formulas used to encrypt and decrypt data—are highly
specialized and, sometimes, very complex. These algorithms are also known as ciphers. The
good news for you as a CEH candidate is you don’t need to learn the minutiae of how these
algorithms actually accomplish their task. You will need to learn, however, how they are
classified and some basic information about each one. For example, a good place to start might
be the understanding that modern-day systems use encryption algorithms that are dependent on a
separate key, meaning that without the key, the algorithm itself should be useless in trying to
decode the data. There are two main methods by which these keys can be used and shared:
symmetric and asymmetric. Before we get to that, though, let’s discuss how ciphers work.

All encryption algorithms on the planet have basically two methods they can use to encrypt
data, and if you think about how they work, the names make perfect sense. In the first method,
bits of data are encrypted as a continuous stream. In other words, readable bits in their regular
pattern are fed into the cipher and are encrypted one at a time, usually by an XOR operation
(exclusive-or). Known as stream ciphers, these work at a very high rate of speed.

In the other method, data bits are split up into blocks and fed into the cipher. Each block of
data (commonly 64 bits at a time) is then encrypted with the key and algorithm. These ciphers,
known as block ciphers, use methods such as substitution and transposition in their algorithms
and are considered simpler, and slower, than stream ciphers.

NOTE Want to learn a little more about all this cryptography stuff? Why not give CrypTool
(https://www.cryptool.org/en/) a shot? It’s free, it’s online, and it has multiple offshoots to
satisfy almost all your cryptographic curiosity.

In addition to the types of ciphers, another topic you need to commit to memory applies to the
nuts and bolts. XOR operations are at the core of a lot of computing. An XOR operation requires
two inputs. In the case of encryption algorithms, this would be the data bits and the key bits.
Each bit is fed into the operation—one from the data, the next from the key—and then XOR
makes a determination. If the bits match, the output is a 0; if they don’t, it’s a 1 (see the
following XOR table).

For example, suppose you had a stream of data bits that read 10110011 and a key that started
11011010. If you did an XOR on these bits, you’d get 01101001. The first two bits (1 from data

https://www.cryptool.org/en/

and 1 from the key) are the same, so the output is a zero (0). The second two bits (0 from data
and 1 from the key) are different, outputting a one (1). Continue that process through, and you’ll
see the result.

In regard to cryptography and pure XOR ciphers, keep in mind that key length is of utmost
importance. If the key chosen is actually smaller than the data, the cipher will be vulnerable to
frequency attacks. In other words, because the key will be used repeatedly in the process, its very
frequency makes guessing it (or using some other cryptanalytic technique) easier.

EXAM TIP There is a lot to remember in this chapter, so this tip may be helpful as a quick
memorization effort. The way modern ciphers work can be discussed in two main categories:
ciphers based on the type of key used and ones based on the type of input data. Key types include
private (one key does it all) and public (different keys for encrypting and decrypting), while the
type of input data refers to block (fixed-sized blocks encrypted) versus stream (continuous feed
of data is encrypted as it arrives).

Symmetric Encryption
Also known as single key or shared key, symmetric encryption simply means one key is used
both to encrypt and to decrypt the data. So long as both the sender and the receiver know/have
the secret key, communication can be encrypted between the two. In keeping with the old
acronym K.I.S.S. (Keep It Simple, Stupid), the simplicity of symmetric encryption is its greatest
asset. As you can imagine, this makes things easy and fast. Bulk encryption needs? Symmetric
algorithms and techniques are your best bet.

But symmetric key encryption isn’t all roses and chocolate; there are some significant
drawbacks and weaknesses. For starters, key distribution and management in this type of system
are difficult. How do you safely share the secret key? If you send it over the network, someone
can steal it. Additionally, because everyone has to have a specific key from each partner they
want to communicate with, the sheer number of keys needed presents a problem.

Suppose you had two people you wanted to safely communicate with. This creates three
different lines of communication that must be secured; therefore, you’d need three keys. If you
add another person to the mix, there are now six lines of communication, requiring six different
keys; see Figure 11-1. As you can imagine, this number jumps up exponentially the larger your
network becomes. The formula for calculating how many key pairs you will need is

Figure 11-1 Key distribution in symmetric encryption systems

N (N – 1) / 2

where N is the number of nodes in the network.
Here are some examples of symmetric algorithms:

• DES A block cipher that uses a 56-bit key (with 8 bits reserved for parity). Because of
the small key size, this encryption standard became quickly outdated and is not considered
a very secure encryption algorithm.

• 3DES A block cipher that uses a 168-bit key. 3DES (called triple DES) can use up to
three keys in a multiple-encryption method. It’s much more effective than DES but is
much slower.

• AES (Advanced Encryption Standard) A block cipher that uses a key length of 128,
192, or 256 bits, and effectively replaces DES. It’s much faster than DES or 3DES.

• IDEA (International Data Encryption Algorithm) A block cipher that uses a 128-bit
key and was also designed to replace DES. Originally used in Pretty Good Privacy (PGP)
2.0, IDEA was patented and used mainly in Europe.

• Twofish A block cipher that uses a key size up to 256 bits.
• Blowfish A fast block cipher, largely replaced by AES, using a 64-bit block size and a

key from 32 to 448 bits. Blowfish is considered public domain.
• RC (Rivest Cipher) Encompasses several versions, from RC2 through RC6. A block

cipher that uses a variable key length up to 2040 bits. RC6, the latest version, uses 128-bit
blocks and 4-bit working registers, whereas RC5 uses variable block sizes (32, 64, or 128)
and 2-bit working registers.

And there you have it—symmetric encryption is considered fast and strong but poses some
significant weaknesses. It’s a great choice for bulk encryption because of its speed, but key
distribution is an issue because the delivery of the key for the secured channel must be done
offline. Additionally, scalability is a concern because the larger the network gets, the number of
keys that must be generated increases greatly.

Lastly, symmetric encryption does a great job with confidentiality but does nothing to provide
for another important security measure—nonrepudiation. As stated earlier, nonrepudiation is the
method by which we can prove the sender’s identity, as well as prevent either party from
denying they took part in the data exchange. These weaknesses led to the creation and
implementation of the second means of encryption—asymmetric.

Asymmetric Encryption
Asymmetric encryption came about mainly because of the problem inherent in using a single key
to encrypt and decrypt messages—just how do you share the key efficiently and easily without
compromising the security? The answer was, of course, to simply use two keys. In this key-pair
system, both are generated together, with one key used to encrypt a message and the other to
decrypt it. The encryption key, also known as the public key, could be sent anywhere, to anyone.
The decryption key, known as the private key, is kept secured on the system.

For example, suppose two people want to secure communications across the Internet between
themselves. Using symmetric encryption, they’d need to develop some offline method to
exchange the single key used for all encryption/decryption (and agree on changing it fairly
often). With asymmetric encryption, they both generate a key pair. User A sends his public key
to User B, and User B sends his public key to User A. Neither is concerned if anyone on the
Internet steals this key because it can be used only to encrypt messages, not to decrypt them.
This way, data can be encrypted by a key and sent without concern because the only method to
decrypt it is the use of the private key belonging to that pair.

EXAM TIP Asymmetric encryption comes down to this: what one key encrypts, the other key
decrypts. It’s important to remember the public key is the one used for encryption, whereas the
private key is used for decryption. Either can be used for encryption or decryption within the pair
(as you’ll see later in this chapter), but in general remember public = encrypt, private = decrypt.

In addition to addressing the concerns over key distribution and management, as well as
scalability, asymmetric encryption addresses the nonrepudiation problem. For example, consider
the following scenario: There are three people on a network—Bob, Susan, and Badguy—using
asymmetric encryption. Susan wants to send an encrypted message to Bob and asks for a copy of
his public key. Bob sees this request, and so does Badguy. Both send her a public key that says
“Bob’s Public Key.” Susan is now confused because she does not know which key is the real
one. So, how can they prove to each other exactly who they are? How can Bob send a public key
to Susan and have her, with some semblance of certainty, know it’s actually from him?

NOTE It’s important to note that although signing a message with the private key is the act

required for providing a digital signature and, in effect, confidentiality and nonrepudiation, this is
valid only if the keys are good in the first place. This is where key management and the
certificate authority process comes into play—without their control over the entire scenario, none
of this is worthwhile.

The answer, of course, is for Bob to send a message from his system encrypted with his
private key. Susan can then attempt to decrypt the message using both public keys. The one that
works must be Bob’s actual public key because it’s the only key in the world that could open a
message encrypted with his private key. Susan, now happy with the knowledge she has the
correct key, merrily encrypts the message and sends it on. Bob receives it, decrypts it with his
private key, and reads the message. Meanwhile, Badguy weeps in a corner, cursing the
cleverness of the asymmetric system. This scenario, along with a couple of other interesting
nuggets and participants, illustrates the public key infrastructure framework we’ll be discussing
later in this chapter.

NOTE Simple public key infrastructure (PKI) systems are easy enough to understand, but if
you’ve ever signed an e-mail with a key that doesn’t match your actual sending address, things
can get crazy. Assuming your PKI is a little more elegant, you can associate disparate keys (with
different addresses) to an individual. However, things can get really out of hand really quickly.
Can you really trust that signature?

Here are some examples of asymmetric algorithms:

• Diffie-Hellman Developed for use as a key exchange protocol, Diffie-Hellman is used in
Secure Sockets Layer (SSL) and IPSec encryption. It can be vulnerable to man-in-the-
middle attacks, however, if the use of digital signatures is waived.

• Elliptic Curve Cryptosystem (ECC) This uses points on an elliptical curve, in
conjunction with logarithmic problems, for encryption and signatures. It uses less
processing power than other methods, making it a good choice for mobile devices.

• El Gamal Not based on prime number factoring, this method uses the solving of discrete
logarithm problems for encryption and digital signatures.

• RSA This is an algorithm that achieves strong encryption through the use of two large
prime numbers. Factoring these numbers creates key sizes up to 4096 bits. RSA can be
used for encryption and digital signatures and is the modern de facto standard.

Asymmetric encryption provides some significant strengths in comparison to its symmetric
brethren. Asymmetric encryption can provide both confidentiality and nonrepudiation, and it
solves the problems of key distribution and scalability. In fact, the only real downside to
asymmetric—its weaknesses that you’ll be asked about on the exam—is its performance
(asymmetric is slower than symmetric, especially on bulk encryption) and processing power
(because it usually requires a much longer key length, it’s suitable for smaller amounts of data).

Hash Algorithms
Last in our discussion of algorithms are the hashing algorithms, which really don’t encrypt
anything at all. A hashing algorithm is a one-way mathematical function that takes an input and
typically produces a fixed-length string (usually a number), or hash, based on the arrangement of
the data bits in the input. Its sole purpose in life is to provide a means to verify the integrity of a
piece of data; change a single bit in the arrangement of the original data, and you’ll get a
different response.

What’s in a Chain of Blocks?
If you’re like me, naturally wary of virtually anything new, and extremely conservative with
your finances and corresponding investment strategies, the advent of bitcoin sounded a bit
like the old snake oil salesman at the carnival—just a little too good to be true, thank you very
much. And certainly bitcoin has seen its fair share of controversy. It seems the currency of
choice for many criminally minded folks, and if you’re hit by ransomware, chances are you’ll
be asked for ransom in bitcoin. Not to mention the innumerable recent federal investigations
into bitcoin variants as “pyramid schemes.”

However, it wasn’t all bad. In addition to the benefits of “mining” your own digital
currency, and decentralizing currency overall (the concept of decentralizing authority and
power of any kind appeals greatly to a whole bunch of us), the advent of the blockchain to
track it all may turn out to be one of the greatest inventions/discoveries of this century. But,
again, if you’re like me, you simply didn’t pay attention enough to blockchain as a whole, and
are now sitting around wondering just what the heck it is that everyone is talking about? Well,
fret not, dear reader, because the explanation—at least the basics, anyway—is easier to
understand than you might’ve guessed.

Blockchain is defined as suite of distributed ledger technologies to track anything of value:
in effect, it’s a series of related transactions stored chronologically as blocks in a shared
ledger. Each block of transactions in the ledger has a start and stop time (10 minutes in the
bitcoin world), and stands as its own record. Therefore, if you wish to change the data in one
block, you must first copy it, change the data, and then append it to the end of the chain—
making traceback on changes to the data as a whole easy to discover. So what prevents
someone from simply hacking in, grabbing a block, and changing it to whatever they want as
the last record in the chain? Well, that’s where blockchain gets really interesting…

The ledger for a given blockchain is “seen” by bunches of authorized computers,
distributed all over the place. All systems in the network can see the ledger all at once, and all
know the transactions that are flowing into and out of the current block being filled at any
given time. When it’s time to close the current block, all the systems in the network start
working on a cryptographic puzzle—a giant, really difficult math problem. When a system—
we’ll call this computer Bender—solves the puzzle, it says, “Hey, it’s me, Bender. You know,
the loveable robot from Futurama? Yeah, I’m great. And I’m done, losers. I’m now going to
close out this block with this list of transactions right here, and add it to the chain. Compare
your computing cycles to mine and shut down, chumps.”

Every other system in the network immediately becomes suspicious. They then stop
everything and set about verifying two things. First, they verify Bender got the answer to the
math problem correct, and, second, they verify that the list of transactions Bender wants to put

in that block matches the list of transactions they themselves know about. As soon as more
than half the systems in the network agree both of those are correct, Bender is allowed to
close the block and add it to the chain. The next block then “opens,” new transactions begin,
and the whole scenario kicks off anew.

The benefits to this are, or at least should be, self-explanatory. Transparency with both the
transactions themselves and with the ledger mean the end consumer can actually trust the data
without having to go through a centralized authority. The implications for this use in things
like medical records, land titles, and finances, for just a few examples, are enormous. As an
aside, if you’d like to see some of this in action, in real time, there are several blockchain
viewing sites out there. Blockchain.info has tons of stuff available, and there are countless
YouTube videos and articles for your perusal as well.

Will blockchain show up on your exam? Will blockchain take over the world? Will
Futurama make yet another comeback on national television? Who really knows. Maybe I’ll
ask Professor Farnsworth to pull out the What-If machine and take a gander. I’ll let you know
what we see…

EXAM TIP The “one-way” portion of the hash definition is important. Although a hash does a
great job of providing for integrity checks, it’s not designed to be an encryption method. There
isn’t a way for a hash to be reverse-engineered.

For example’s sake, suppose you have a small application you’ve developed and you’re
getting ready to send it off. You’re concerned that it may get corrupted during transport and want
to ensure the contents arrive exactly as you’ve created them. To protect it, you run the contents
of the app through a hash, producing an output that reads something like this:
EF1278AC6655BBDA93425FFBD28A6EA3. After e-mailing the link to download your app,
you provide the hash for verification. Anyone who downloads the app can run it through the
same hash program, and if the two values match, the app was downloaded successfully. If even a
single bit was corrupted during transfer, the hash value would be wildly different.

Here are some examples of hash algorithms:

• MD5 (Message Digest algorithm) This produces a 128-bit hash value output, expressed
as a 32-digit hexadecimal number. Created by Ronald Rivest, MD5 was originally
popular for ensuring file integrity. However, serious flaws in the algorithm and the
advancement of other hashes have resulted in this hash being rendered obsolete (U.S.
CERT, August 2010). Despite its past, MD5 is still used for file verification on downloads
and, in many cases, to store passwords.

• SHA-1 Developed by the NSA, SHA-1 produces a 160-bit value output and was required
by law for use in U.S. government applications. In late 2005, however, serious flaws
became apparent, and the U.S. government began recommending the replacement of
SHA-1 with SHA-2 after the year 2010 (see FIPS PUB 180-1).

http://Blockchain.info

• SHA-2 This hash algorithm actually holds four separate hash functions that produce
outputs of 224, 256, 384, and 512 bits. Although it was designed as a replacement for
SHA-1, SHA-2 is still not as widely used.

• SHA-3 This hash algorithm uses something called “sponge construction,” where data is
“absorbed” into the sponge (by XOR-ing the initial bits of the state) and then “squeezed”
out (output blocks are read and alternated with state transformations).

EXAM TIP Another fun hash to remember? RIPEMD-# (RACE Integrity Primitives
Evaluation Message Digest, where the # indicates the bit length). For example, RIPEMD-160
computes a 160-bit hash, RIPEMD-256 does 256 bits, and so on. It works through 80 stages,
executing five blocks 16 times each. And then it does it again, finishing with something called
modulo 32 addition (a math function used in cryptography).

A note of caution here: hashing algorithms are not impervious to hacking attempts, as is
evidenced by the fact that they become outdated (cracked) and need replacing. The attack or
effort used against hashing algorithms is known as a collision or a collision attack. Basically, a
collision occurs when two or more files create the same output, which is not supposed to happen.
When a hacker can create a second file that produces the same hash value output as the original,
he may be able to pass off the fake file as the original, causing goodness knows what kinds of
problems. Collisions, no matter which hash we’re discussing, are always a possibility. By
definition, there are only so many combinations the hash can create given an input (MD5, for
example, will generate only 2^128 possible combinations). Therefore, given the computation
speed of modern computing systems, it isn’t infeasible to assume you could re-create one. Matter
of fact, you can even download tools to do it for you (www.bishopfox.com/resources/tools/other-
free-tools/md4md5-collision-code/).

EXAM TIP You should know about the DUHK attack. “Don’t Use Hard-coded Keys”
(https://duhkattack.com/) refers to a vulnerability that allows attackers access to keys in certain
VPN (virtual private network) implementations. It affects devices using the ANSI X9.31 random
number generator (RNG) in conjunction with a hard-coded seed key.

For instance, one of the more common uses for a hash algorithm involves passwords. The
original password is hashed; then the hash value is sent to the server (or whatever resource will
be doing the authentication), where it is stored. When the user logs in, the password is hashed
with the same algorithm and key; if the two match, then the user is allowed access. Suppose a
hacker were to gain a copy of this hashed password and begin applying a collision attack to the
value; that is, she compares data inputs and the hash values they present until the hashes match.
Once the match is found, access is granted, and the hacker now holds the user’s credentials.
Granted, this can be defined as a brute-force attack (and when we get to password attacks later,

http://www.bishopfox.com/resources/tools/other-free-tools/md4md5-collision-code/
https://duhkattack.com/

you’ll see this), but it is included here to demonstrate the whole idea—given a hash value for an
input, you can duplicate it over time using the same hash and applying it to different inputs.

Sure, this type of attack takes a lot of time, but it’s not unheard of. As a matter of fact, many
of your predecessors in the hacking field have attempted to speed things up for you by creating
rainbow tables for just such a use. Because hackers must lead boring lives and have loads of time
on their hands, lots of unscrupulous people sat down and started running every word, phrase, and
compilation of characters they could think of into a hash algorithm. The results were stored in
the rainbow table for use later. Therefore, instead of having to use all those computational cycles
to hash your password guesses on your machine, you can simply compare the hashed file to the
rainbow table. See? Isn’t that easy?

NOTE In modern systems, rainbow table use may be effectively dead
(http://blog.ircmaxell.com/2011/08/rainbow-table-is-dead.html). True, there’s still a lot of
debate, and many swear by them, but brute forcing using GPU-based systems has its advantages.

To protect against collision attacks and the use of rainbow tables, you can also use something
called a salt (no, not the sodium chloride on your table in the cute little dispenser). This salt is
much more virtual. A salt is a collection of random bits that are used as a key in addition to the
hashing algorithm. Because the bits, and length, are random, a good salt makes a collision attack
difficult to pull off. Considering that every time a bit is added to the salt it adds a power of 2 to
the complexity of the number of computation involved to derive the outcome, you can see why
it’s a necessity in protecting password files.

NOTE Ever wonder why it’s called a salt? While it’s a point of some debate among some
nerds, it probably originated from the practice of salting wells and mines throughout U.S.
history. During the colonial period, salt was a valuable resource, and boiling huge vats of salt
water was the primary collection method. Pouring a little salt into a well could then potentially
greatly increase the value of a well. “Salting” a dead mine with a few gold flakes had the same
effect.

Big Brother Gets Bold
If you’ve ever used a U.S. government system for any length of time, you’ve undoubtedly
seen the big warning banner right at login. You know, the one that tells you everything you do
should be for government work only, that certain activities are not allowed, and (the big one
for our discussion) that you should have absolutely no expectation of privacy (in other words,

http://blog.ircmaxell.com/2011/08/rainbow-table-is-dead.html

everything you do is monitored and tracked). I guess most of us would expect that when using
a government or business system—it’s their network and resources, after all, so of course they
would want to protect them. But what if you’re using your own computer, on your home
network, for your own purposes? Does the government have a right to see everything you
send and receive?

It seems the answer to that question depends a lot of what you do for a living. Most of us
cry foul and scream about our right to privacy, which is a valid point. Some of us, though,
charged with the safety and security of the public, point out that it’s difficult to combat
terrorism and foul play when the bad guys are allowed to keep secrets. And Big Brother (the
all-powerful, ever-watching government George Orwell warned us all about in 1984) not only
thinks your expectation of privacy is silly, it is actively pursuing your encryption keys to
ensure its eyes are always open.

Here’s a fun acronym for you: GAK. No, it’s not just the green slimy stuff from
Nickelodeon; it actually means government access to keys. Also referred to as key escrow, it’s
similar to the idea of wiretapping (a law enforcement agency can get court approval to listen
to your phone calls). The concept is simple: software companies provide their encryption keys
(or at least enough of the key that the remainder can be cracked) to the government, and the
government promises to play nicely with them and use them only when it really needs to (that
is, when a court issues a warrant).

Remember Edward Snowden—the famous ex-CIA and NSA employee who provided
thousands of classified documents to the press, exposing what he felt were horrific invasion of
privacy issues and abuses by the U.S. government. In response, the U.S. government
pressured the e-mail service provider Lavabit to provide encryption key copies used to secure
web, instant message, and e-mail traffic as part of its investigation. They refused and chose to
shut down as a company rather than comply with the order, but that was GAK in action for
everyone to see.

I’ll leave it to you, dear reader, to form your own opinions about how far government
tentacles should be allowed to spread and where the line of personal privacy becomes a
hindrance to public safety. For example, the Australian Parliament recently passed the
Assistance and Access Act, unopposed and unamended
(https://www.eff.org/deeplinks/2018/12/new-fight-online-privacy-and-security-australia-falls-
what-happens-next). The act basically states the government has the right to compel tech
companies and developers to reengineer anything protected by cryptography in order for the
government to use it (for spying purposes). Therefore, if Company A builds in a backdoor to
comply with Australia’s laws, who’s to say that same backdoor wouldn’t be made accessible
in a different country via a court order?

People far smarter than me have framed this debate on both sides and know worlds more
about it than I could ever dream. But I’m a paranoid guy by nature, so I’ll caution you to
remember one thing: Big Brother is watching—and can probably see more than you think.

https://www.eff.org/deeplinks/2018/12/new-fight-online-privacy-and-security-australia-falls-what-happens-next

EXAM TIP When it comes to questions on the exam regarding hashes, remember two things.
First, they’re used for integrity (any deviation in the hash value, no matter how small, indicates
the original file has been corrupted). Second, even though hashes are one-way functions, a
sufficient collision attack may break older versions (such as MD5).

Lastly on hashes, there are a bajillion different tools out there you can use to create and view
them (and yes, bajillion is a real word). A few of note include HashCalc (www.slavasoft.com),
MD5 Calculator (www.bullzip.com), and HashMyFiles (www.nirsoft.com). You can even get
tools on your mobile device (like Hash Droid, from play.google.com) for your hashing needs on
the go. Because who doesn’t want to calculate some hash values while Instagramming or
Snapchatting?

Steganography
While not an encryption algorithm in and of itself, steganography is a great way to send
messages back and forth without others even realizing it. Steganography is the practice of
concealing a message inside another medium (such as another file or an image) in such a way
that only the sender and recipient even know of its existence, let alone the manner in which to
decipher it. Think about it: in every other method we’ve talked about so far, anyone monitoring
the wire knows you’re trying to communicate secretly—they can see the cipher text and know
something is up. With steganography, you’re simply sending a picture of the kids fishing.
Anyone watching the wire sees a cute picture and a lot of smiles, never knowing they’re looking
at a message saying, for instance, “People who eavesdrop are losers.”

Steganography can be as simple as hiding the message in the text of a written correspondence
or as complex as changing bits within a huge media file to carry a message. For example, you
could let the recipient know that each letter starting a paragraph is relevant. Or you could simply
write in code, using names of famous landmarks to indicate a message. In another example, and
probably closer to what most people associate steganography with, if you had an image file, you
could simply change the least meaningful bit in every byte to represent data—anyone looking at
it would hardly notice the difference in the slight change of color or loss of sharpness.

EXAM TIP How can you tell if a file is a stego-file? For text, character positions are key (look
for text patterns, unusual blank spaces, and language anomalies). Image files will be larger in
size, and may show some weird color palette “faults.” Audio and video files require some
statistical analysis and specific tools.

In image steganography, there are three main techniques, the first of which was just
mentioned: least significant bit insertion. Another method is masking and filtering, which is
usually accomplished on grayscale images. Masking hides the data in much the same way as a
watermark on a document; however, it’s accomplished by modifying the luminescence of image
parts. Lastly, algorithmic transformation allows steganographers to hide data in the mathematical
functions used in image compression. In any case, the image appears normal, except its file size
is much bigger. To a casual observation, it might be nearly impossible to tell the image is

http://www.slavasoft.com
http://www.bullzip.com
http://www.nirsoft.com
http://play.google.com

carrying a hidden message. In a video or sound file, it may even be less noticeable.
If hiding messages in a single image file works, surely hiding messages in a giant video file

will as well. Tools like OmniHide Pro and Masker do a good job of sticking messages into the
video stream smoothly and easily. Audio steganography is just as effective, taking advantage of
frequencies the human ear can’t pick up—not to mention hiding data in a variety of other
methods, like phase encoding and tone insertion. DeepSound and MP3Stego are both tools that
can assist with this.

Before you get all excited, though, and go running out to put secret messages in your cell
phone pics from last Friday night’s party, you need to know that a variety of tools and methods
are in place to look for, and prevent, steganographic file usage. Although there are legitimate
uses for it—digital watermarks (used by some companies to identify their applications) come to
mind—most antivirus programs and spyware tools actively look for steganography. There are
more “steg” or “stego” tools available than we could possibly cover here in this book, and they
can be downloaded from a variety of locations (just be careful!). A few examples include
QuickStego (quickcrypto.com), gifshuffle and SNOW (darkside.com.au), Steganography Studio
(stegstudio.sourceforge.net), and OpenStego (www.openstego.info).

PKI, the Digital Certificate, and Digital Signatures
So, we’ve spent some time discussing encryption algorithms and techniques as well as covering
the theory behind it all. But what about the practical implementation? Just how does it all come
together?

Well, there are a couple of things to consider in an overall encryption scheme. First is the
protection of the data itself—the encryption. This is done with the key set—one for encrypting,
one for decrypting. This may be a little bit of review here, but it’s critical to realize the
importance of key generation in an asymmetric encryption scheme. As we’ve already covered,
two keys are generated for each party within the encryption scheme, and the keys are generated
as a pair. The first key, used for encrypting message, is known as the public key. The second
key, used for decrypting messages, is known as the private key. Public keys are shared; private
keys are not.

No pun intended here, I promise, but the key to a successful encryption system is the
infrastructure in place to create and manage the encryption keys. Imagine a system with loose
controls over the creation and distribution of keys—it would be near anarchy! Users wouldn’t
know which key was which, older keys could be used to encrypt and decrypt messages even
though the user was gone, and the storage of key copies would be a nightmare. In a classic (and
the most common) asymmetric encryption scheme, a public key and a private key, at a minimum,
have to be created, managed, distributed, stored, and, finally, revoked.

Second, keep in mind that there’s more to it than just encrypting and decrypting messages—
there’s the whole problem of nonrepudiation to address. After all, if you’re not sure which public
key actually belongs to the user Bill, what’s the point of having an encryption scheme in the first
place? You may wind up using the wrong key and encrypting a message for Bill that the bad guy
can read with impunity—and Bill can’t even open! There are multiple providers of encryption
frameworks to accomplish this task, and most follow a basic template known as public key
infrastructure (PKI).

http://quickcrypto.com
http://darkside.com.au
http://stegstudio.sourceforge.net
http://www.openstego.info

The PKI System
A friend of mine once told me that the classic PKI infrastructure is an example of “beautifully
complex simplicity.” PKI is basically a structure designed to verify and authenticate the identity
of individuals within the enterprise taking part in a data exchange. It consists of hardware,
software, and policies that create, manage, store, distribute, and revoke keys and digital
certificates (which we’ll cover in a minute). A simplified picture of the whole thing in action is
shown in Figure 11-2, but be forewarned: not all PKI systems are identical. Some things are
common among all PKI systems (for example, the initial request for keys and certs is done in
person), but there’s lots of room for differences.

Figure 11-2 The PKI system

For one, the CA may be internal to begin with, and there could be any number of subordinate
CAs—also known as registration authorities (RAs)—to handle things internally (as a matter of
fact, most root CAs are removed from network access to protect the integrity of the system). In
many systems, the public and private key pair—along with the certificate—are put on a token
(like the Common Access Card [CAC] in the DoD), which is required going forward when the
user wishes to authenticate. Additionally, certificates for applications and services are handled
completely different. The whole thing can get confusing if you try to get it all at once. Just take it
one step at a time and hopefully I’ll answer everything along the way.

The system starts at the top, with a (usually) neutral party known as the certificate authority
(CA). The CA acts as a third party to the organization, much like a public notary; when it signs
something as valid, you can trust, with relative assuredness, that it is. Its job is to create and issue
digital certificates that can be used to verify identity. The CA also keeps track of all the
certificates within the system (using a certificate management system) and maintains a certificate
revocation list (CRL), used to track which certificates have problems and which have been
revoked.

NOTE In many PKI systems, an outside entity known as a validation authority (VA) is used to
validate certificates—usually done via Online Certificate Status Protocol (OCSP).

The way the system works is fairly simple. Because the CA provides the certificate and key
(public), the user can be certain the public key actually belongs to the intended recipient; after
all, the CA is vouching for it. It also simplifies distribution of keys. A user doesn’t have to go to
every user in the organization to get their individual keys; he can just go to the CA.

For a really simple example, consider user Jack, who just joined an organization without a full
PKI system. Jack needs a key pair to encrypt and decrypt messages. He also needs a place to get
the public keys for the other users on the network. With no controlling figure in place, he would
simply create his own set of keys and distribute them in any way he saw fit. Other users on the
network would have no real way of verifying his identity, other than, basically, to take his word
for it. Additionally, Jack would have to go to each user in the enterprise to get their public key.

User Bob, on the other hand, joins an organization using a PKI structure with a local person
acting as the CA. Bob goes to his security officer (the CA) and applies for encryption keys. The
local security guy first verifies Bob is actually Bob (driver’s license, and so on) and then asks
how long Bob needs the encryption keys and for what purpose. Once he’s satisfied, the CA
creates the user ID in the PKI system, generating a key pair for encryption and a digital
certificate for Bob to use. Bob can now send his certificate around, and others in the organization
can trust it because the CA verifies it. Additionally, anyone wanting to send a message to Bob
goes to the CA to get a legitimate copy of Bob’s public key. It’s much cleaner, much smoother,
and much more secure. As an aside, and definitely worth pointing out here, the act of the CA
creating the key is important, but the fact that the CA signs it digitally is what validates the entire
system. Therefore, protection of your CA is of utmost importance.

NOTE Want more to worry about with the CA? Just imagine what could happen if an attacker
manages to add a root CA for their own certificates into your browser. Once that’s done, your
browser will automatically trust certificates with that signature. It’s not real common, but the
browser tends to accept certificates signed by a trusted root. Root CAs are very important, and
many people just assume that all the ones on their happy little Windows box are valid.

And finally, another term associated with PKI, especially when the topic is CAs, is trust
model. This describes how entities within an enterprise deal with keys, signatures, and
certificates, and there are three basic models. In the first, called web of trust, multiple entities
sign certificates for one another. In other words, users within this system trust each other based
on certificates they receive from other users on the same system.

EXAM TIP A certificate authority can be set up to trust a CA in a completely different PKI
through something called cross-certification. This allows both PKI CAs to validate certificates
generated from either side.

The other two systems rely on a more structured setup. A single-authority system has a CA at
the top that creates and issues certificates. Users trust each other based on the CA. The
hierarchical trust system also has a CA at the top (which is known as the root CA) but makes use
of one or more registration authorities (subordinate CAs) underneath it to issue and manage
certificates. This system is the most secure because users can track the certificate back to the root
to ensure authenticity without a single point of failure.

Digital Certificates
I know this may seem out of order, since I’ve mentioned the word certificate multiple times
already, but it’s nearly impossible to discuss PKI without mentioning certificates, and vice versa.
As you can probably tell so far, a digital certificate isn’t really involved with encryption at all. It
is, instead, a measure by which entities on a network can provide identification. A digital
certificate is an electronic file that is used to verify a user’s identity, providing nonrepudiation
throughout the system.

The certificate itself, in the PKI framework, follows a standard used worldwide. The X.509
standard, part of a much bigger series of standards set up for directory services and such, defines
what should and should not be in a digital certificate. Because of the standard, any system
complying with X.509 can exchange and use digital certificates to establish authenticity.

The contents of a digital certificate are listed here:

• Version This identifies the certificate format. Over time, the actual format of the

certificate has changed slightly, allowing for different entries. The most common version
in use is 1.

• Serial Number Fairly self-explanatory, the serial number is used to uniquely identify the
certificate.

• Subject This is whoever or whatever is being identified by the certificate.
• Algorithm ID (or Signature Algorithm) This shows the algorithm that was used to

create the digital signature.
• Issuer This shows the entity that verifies the authenticity of the certificate. The issuer is

the one who creates the certificates.
• Valid From and Valid To These fields show the dates the certificate is good through.
• Key Usage This shows for what purpose the certificate was created.
• Subject’s Public Key A copy of the subject’s public key is included in the digital

certificate, for obvious purposes.
• Optional fields These fields include Issuer Unique Identifier, Subject Alternative Name,

and Extensions.

To see them in action, try the steps listed here to look at a digital certificate (this one’s
actually from Mozilla). Any site using digital certificates will work; this one is simply used as an
example:

1. Open Firefox and go to https://support.mozilla.org/en-US/kb/secure-website-certificate
(the site displayed gives a great rundown on digital certificates). Click the lock icon in the
top-left corner and then click the right arrow beside Connection.

2. At the bottom of the next screen, click the More Information button.

https://support.mozilla.org/en-US/kb/secure-website-certificate

3. When the page information appears, as shown in the following illustration, click View
Certificate.

4. The digital certificate’s General tab displays the certificate, as shown in the following
illustration. The Details tab can show even more information.

EXAM TIP Know what is in the digital certificate and what each field does. It’s especially
important to remember the public key is sent with the certificate.

So, how does the digital certificate work within the system? For example’s sake, let’s go back
to user Bob. He applied for his digital certificate through the CA and anxiously awaits an answer.
The cert arrives, and Bob notices two things: First, the certificate itself is signed. Second, the CA
provided a copy of its own public key. He asks his security person what this all means.

Bob learns this method is used to deliver the certificate to the individual safely and securely
and also provides a means for Bob to be absolutely certain the certificate came from the CA and
not from some outside bad guy. How so? The certificate was signed by the CA before he sent it
using the CA’s private key. Because the only key in existence that could possibly decrypt it is

the CA’s own public key, which is readily available to anyone, Bob can rest assured he has a
valid certificate. Bob can now use his certificate, containing information about him that others
can verify with the CA, to prove his identity.

NOTE Speaking of root CAs, Microsoft Windows (and other operating systems) have certain
companies and organizations they think are trustworthy, and they add these root CAs
automagically for you. Which could be a rather terrifying thought if you were a paranoid guy
like me. I mean, if a bad guy somehow dupes and/or compromises one of those root
companies… It has happened before (https://www.csoonline.com/article/2623707/hacking/the-
real-security-issue-behind-the-comodo-hack.html) and could cause the whole thing to collapse.

Finally, when it comes to certificates, you should also know the difference between signed
certs and self-signed certs. Generally speaking, every certificate is signed by something, but the
difference between these two comes down to who signed it and who validates it. As we’ve
covered already, certificates can be used for tons of things, and each one is generated for a
specific purpose. Suppose you have an application or service completely internal to your
organization, and you want to provide authentication services via certificates. A self-signed
certificate—one created internally and never intended to be used in any other situation or
circumstance—would likely be your best choice. In most enterprise-level networks, you’re
bound to find self-signed certificates all over the place. They save money and complexity—since
there’s no need to involve an external verification authority—and are relatively easy to put into
place. Managing self-signed certs can sometimes be hard, and any external access to them is a
definite no-no, but internal use is generally nodded at.

NOTE In the interest of covering everything, note that EC-Council seems to center on a self-
signed certificate being signed by the same entity whose identity it certifies (that is, signed using
the entity’s own private key). In practice, internal CAs can be (and are) created to handle self-
signed certs inside the network.

Signed certificates generally indicate a CA is involved and the signature validating the
identity of the entity is confirmed via an external source—in some instances, a validation
authority (VA). Signed certificates, as opposed to self-signed certificates, can be trusted:
assuming the CA chain is validated and not corrupted, it’s good everywhere. Obviously,
anything accessible to (or using) external connectivity will require a signed certificate.

Digital Signatures

https://www.csoonline.com/article/2623707/hacking/the-real-security-issue-behind-the-comodo-hack.html

Speaking of signed and self-signed, let’s take a few minutes to discuss the definition and
description of the digital signature. The only real reason this is ever a confusing topic is because
instructors spend a lot of time drilling into students’ heads that the public key is for encryption
and that the private key is for decryption. In general, this is a true statement (and I’m willing to
bet you’ll see it on your exam that way). However, remember that the keys are created in pairs—
what one key does, the other undoes. If you encrypt something with the public key, the private
key is the only one that can decrypt it. But that works in reverse, too; if you encrypt something
with your private key, your public key is the only thing that can decrypt it.

Keeping this in mind, the digital signature is an easy thing to understand. A digital signature
is nothing more than an algorithmic output that is designed to ensure the authenticity (and
integrity) of the sender—basically a hash algorithm. The way it works is simple:

1. Bob creates a text message to send to Joe.
2. Bob runs his message through a hash and generates an outcome.
3. Bob then encrypts the outcome of that hash with his private key and sends the message,

along with the encrypted hash, to Joe.
4. Joe receives the message and attempts to decrypt the hash with Bob’s public key. If it

works, he knows the message came from Bob because the only thing Bob’s public key
could ever decrypt is something that was encrypted using his private key in the first place.
Since Bob is the only one with that private key—voilà!

NOTE FIPS 186-2 specifies that something called the Digital Signature Algorithm (DSA) be
used in the generation and verification of digital signatures. DSA is a Federal Information
Processing Standard that was proposed by the National Institute of Standards and Technology
(NIST) in August 1991 for use in its Digital Signature Standard (DSS).

When it comes to PKI, asymmetric encryption, digital certificates, and digital signatures,
remembering a few important facts will solve a lot of headaches for you. Keys are generated in
pairs, and what one does, the other undoes. In general, the public key (shared with everyone) is
used for encryption, and the private key (kept only by the owner) is used for decryption.
Although the private key is created to decrypt messages sent to the owner, it is also used to prove
authenticity through the digital signature (encrypting with the private key allows recipients to
decrypt with the readily available public key). Key generation, distribution, and revocation are
best handled within a framework, often referred to as PKI (public key infrastructure). PKI also
allows for the creation and dissemination of digital certificates, which are used to prove the
identity of an entity on the network and follow a standard (X.509).

Encrypted Communication and Cryptography Attacks
Okay, cryptography warriors, we’re almost to the finish line. Hang with me—we have just a
couple more things to get out of the way. They’re important, and you will be tested on them, so

don’t ditch it all just yet. Thus far you’ve learned a little bit about what cryptography is and what
encryption algorithms can do for you. In this section, we cover a few final pieces of the CEH
cryptography exam objective: how people communicate securely with one another using various
encryption techniques, and what attacks allow the ethical hacker to disrupt or steal that
communication. But before we get there, let’s take just a second to cover something really
important—data at rest.

Data at rest (DAR) is a term being bandied about quite a bit lately in the IT security world,
and it’s probably one of the most misunderstood terms by senior management types. I say it’s
misunderstood because data “at rest” means different things to different people. In general terms,
“at rest” means the data is not being accessed, and to many people that means everything on the
drive not currently being modified or loaded into memory. For example, a folder stored out on a
server that’s just sitting there would be at rest because “nobody is using it.” But in reality there’s
more to the definition. The true meaning of data at rest is data that is in a stored state and not
currently accessible. For example, data on a laptop when the laptop is powered off is in a resting
state, and data on a backup drive sitting off the system/network is at rest, but data in a powered-
on, networked, accessible server’s folder is not—whether it’s currently being used or not right
now is immaterial.

DAR vendors are tasked with a simple objective: protect the data on mobile devices from loss
or theft while it is in a resting state. Usually this entails full disk encryption (FDE), where pre-
boot authentication (usually an account and password) is necessary to “unlock” the drive before
the system can even boot up—once it’s up and running, protection of the data falls to other
measures. The idea is if a bad guy steals your laptop or mobile device, the data on the drive is
protected. FDE can be software or hardware based, and it can use network-based authentication
(Active Directory, for example) and/or local authentication sources (a local account or locally
cached from a network source). Software-based FDE can even provide central management,
making key management and recovery actions much easier. More than a few products and
applications are available for doing this. Microsoft provides BitLocker on all operating system
releases for exactly this purpose. McAfee has a full disk encryption offering called Endpoint
Encryption, with administrative dashboards and controls. Symantec Drive Encryption and
Gilisoft Full Disk Encryption are other options.

NOTE Another benefit to FDE is protection against the old boot-n-root attack. A bootable
USB you can plug in to, boot off of, and then wreak havoc on the desktop system? Pfft—not
only is the data protected, but the OS is, too.

Am I saying that files and folders on active systems don’t require encryption protection? No,
not at all—I’m simply pointing out that DAR protection is designed for a very specific purpose.
Laptops and mobile devices should have full disk encryption because they are taken offsite and
have the potential to be stolen. An HP Proliant DL80 on your data floor? Probably not, unless
one of your admins takes it out of the cabinet, unhooks everything, and carries it home in the
evening. And if they’re doing that, you have some serious physical security issues to deal with.

Let’s Go to the Source
Most of the time acronyms are just annoying to me. If I don’t know what the letters in the
acronym mean, I’ll Google it and then add it to my repertoire of nerd lingo. Some, though, I
not only know but hate viscerally, and DAR is one of them. Every time I see it my blood
pressure rises, I start a facial tic I wasn’t even aware I had, and I lose my inner monologue (a
pop culture tip to Austin Powers fans).

I was talking about this section of the book with my lovely and talented wife on our walk
today and was expressing my rage at not being able to convince upper management types (at a
previous position) of its true definition when she said, “No, Matt, that’s not right. SAN
storage is data at rest.” Tic, tic, tic, tic…

After our walk, we came back and, as we often do when we both think we’re right, went to
the source—in this case NIST. Two main sources were viewed: NIST SP 800-111
(http://csrc.nist.gov/publications/nistpubs/800-111/SP800-111.pdf) and NIST SP 800-53
(http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-
errata_05-01-2010.pdf). As an aside, I had to go find a link for 800-53v4 myself because my
wife was viewing a local copy on our home computer. When I asked her for the link and she
said it was a local copy, I enquired why she had one stored locally, just sitting there. She
responded, “Everyone should have a copy of NIST SP 800-53 on hand, why don’t you?”

I love that woman.
In any case, what we found out is…we’re both right. NIST SP 800-53 Con-trol SC-28

doesn’t actually define SAN or any other accessible network location as data at rest in the
control itself, but does define desktops, laptops, mobile devices, and storage devices as data-
at-rest locales—making me right. However, the control enhancement, SC-28 (1), does allow
for system owners to include SAN and other locales in their data-at-rest control set. It’s not
required in the actual control for “high” security systems, but sometimes the enhancements
are written to allow sys-tem owners some flexibility. In other words, organizations can define
what is DAR and what isn’t, to determine where they’re at risk and to apply security controls
appropriately—all of which made her right.

Interestingly, NIST doesn’t even say you must encrypt these controls—it just says they
must provide for confidentiality. Generally that involves some form of encryp-tion, but I’m
sure somebody somewhere could argue some physical security controls and others could be
used as data-at-rest protection. What’s really important here is the level of flexibility involved
in all of this. Just keep in mind when you’re discuss-ing this kind of stuff, there’s often more
than one right answer—especially if you’re debating with my wife.

For the data on those servers that require additional confidentiality protection, of course
encrypt the files or folder, or even the drives themselves, with a tool designed to help you with
that specific security need. NIST gets into a lot of virtual disk and volume encryption, but I’m
not sure that’s all that valuable here. Instead, you should understand the difference between
encrypting an entire disk with a pre-boot authenticating system (which changes the MBR) and
individual volume, folder, and file encryption. For one tool example, Microsoft builds
Encrypting File Systems (EFS) into its operating systems now for files, folders, and drives
needing encryption. Others range from free products (such as VeraCrypt, AxCrypt, and GNU

http://csrc.nist.gov/publications/nistpubs/800-111/SP800-111.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-errata_05-01-2010.pdf

Privacy Guard) to using PKI within the system (such as Entrust products). The point is, full disk
encryption may sound like a great idea in the boardroom, but once the drive is unlocked, the data
inside is not protected.

Encrypted Communication
It’s one thing to protect your data at rest, but it’s another thing altogether to figure out how to
transport it securely and safely. Encryption algorithms—both symmetric and asymmetric—were
designed to help us do both, mainly because when all this (networking and the Internet) was
being built, no one even thought security would be an issue.

Want proof? Name some application layer protocols in your head and think about how they
work. SMTP? Great protocol, used to move e-mail back and forth. Secure? Heck no—it’s all in
plain text. What about Telnet and SNMP? Same thing, and maybe even worse (SNMP can do
bad, bad things in the wrong hands). FTP? Please, don’t even begin to tell me that’s secure.

So, how can we communicate securely with one another? There are plenty of options, and I’m
sure we could spend an entire book talking about them—but we’re not. The list provided here
obviously isn’t all-inclusive, but it does cover the major communications avenues and the major
topics about them you’ll need a familiarity with for your exam:

• Secure Shell (SSH) SSH is, basically, a secured version of Telnet. SSH uses TCP port
22, by default, and relies on public key cryptography for its encryption. Originally
designed for remote sessions into Unix machines for command execution, it can be used
as a tunneling protocol. SSH2 is the successor to SSH. It’s more secure, efficient, and
portable, and it includes a built-in encrypted version of FTP (SFTP).

• Secure Sockets Layer (SSL) This encrypts data at the transport layer, and above, for
secure communication across the Internet. It uses RSA encryption and digital certificates
and can be used with a wide variety of upper-layer protocols. SSL uses a six-step process
for securing a channel, as shown in Figure 11-3. It is being largely replaced by Transport
Layer Security (TLS).

Figure 11-3 SSL connection steps

• Transport Layer Security (TLS) Using an RSA algorithm of 1024 and 2048 bits, TLS
is the successor to SSL. The handshake portion (TLS Handshake Protocol) allows both
the client and the server to authenticate to each other, and TLS Record Protocol provides
the secured communication channel.

• Internet Protocol Security (IPSec) This is a network layer tunneling protocol that can
be used in two modes: tunnel (entire IP packet encrypted) and transport (data payload
encrypted). IPSec is capable of carrying nearly any application. The Authentication
Header (AH) protocol verifies an IP packet’s integrity and determines the validity of its
source: it provides authentication and integrity, but not confidentiality. Encapsulating
Security Payload (ESP) encrypts each packet (in transport mode, the data is encrypted but
the headers are not encrypted; in tunnel mode, the entire packet, including the headers, is
encrypted).

• PGP Pretty Good Privacy was created way back in 1991 and is used for signing,
compression, and encrypting and decrypting e-mails, files, directories, and even whole
disk partitions, mainly in an effort to increase the security of e-mail communications. PGP
follows the OpenPGP standard (RFC 4880) for encrypting and decrypting data. PGP is
known as a hybrid cryptosystem, because it uses features of conventional and public key
cryptography.

NOTE When e-mail is the topic, I’d be remiss in not mentioning S/MIME
(Secure/Multipurpose Internet Mail Extensions). It was originally developed by RSA Data
Security, Inc., and is a standard for public key encryption and signing of MIME data. The
primary difference between PGP and S/MIME is that PGP can be used to encrypt not only e-mail
messages but also files and entire drives.

Even though these are thought of as “secure” methods of communication, don’t get too
comfortable in using them—there’s always room to worry. For example, it seems 2014 was a
very bad year for SSL communications, as two very nasty exploits, Heartbleed and POODLE,
apparently came out of nowhere. They caused veritable heart attacks and seemingly endless
activity among security practitioners; not so coincidentally, they will show up on your exam
multiple times. Let’s take a look at each.

In late March of 2014, Google’s security team was completing some testing of OpenSSL and
discovered something really terrible. Once they confirmed what they thought they’d found,
Google notified OpenSSL on April 1, 2014 and, six days later, the public was notified of what
Forbes cybersecurity columnist Joseph Steinberg said in his article “Massive Internet Security
Vulnerability—Here’s What You Need To Do” was “the worst vulnerability found (at least in
terms of its potential impact) since commercial traffic began to flow on the Internet.”

Heartbleed exploits a small feature in OpenSSL that turned out to present a very big problem.
OpenSSL uses a heartbeat during an open session to verify that data was received correctly, and
it does this by “echoing” data back to the other system. Basically, one system tells the other “I
received what you sent and it’s all good. Go ahead and send more.” In Heartbleed, an attacker
sends a single byte of data while telling the server it sent 64Kb of data. The server will then send
back 64Kb of data—64Kb of random data from its memory.

EXAM TIP You can use the nmap command nmap -d --script ssl-heartbleed --script-args
vulns.showall -sV [host] to search for the vulnerability: the return will say "State: NOT
VULNERABLE” if you’re good to go.

And what might be in this memory? The sky’s the limit—user names and passwords, private
keys (which are exceptionally troubling because future communication could be decrypted),
cookies, and a host of other nifty bits of information are all in play. This would be concerning
enough if the attack itself weren’t so easy to pull off. Take a peak at the following code listing
showing the use of the Metasploit auxiliary module openssl_heartbleed. Obviously, a few lines
have been redacted to save some space, but it should be easy enough to see the module load, see
some parameters set, initiate it by typing exploit, and return the 64Kb of memory the server
provides (the bolded text, for obvious reasons):

Heartbleed caused major headaches and worry all over the world. Applications and
organizations that were affected included multiple VMware products, Yahoo!, FileMaker, Cisco
routers, HP server applications, SourceForge, and GitHub. And the problems weren’t just on the
commercial side: government agencies everywhere shut down online services while fix actions
were put in place. And it’s not over. Per AVG’s Virus Labs, up to 1.5 percent of websites
worldwide are still vulnerable, and there is no telling how many certificates have not been
updated/changed since the fix action (which may leave them vulnerable if private keys were
stolen previously). Add to it “reverse Heartbleed” (where servers are able to perform the exact
same thing in reverse, stealing data from clients) to compound the issue, and things are still very
hairy.

EXAM TIP Another attack you may see referenced (now or in the near future) is FREAK.
Factoring Attack on RSA-EXPORT Keys (FREAK) is a man-in-the-middle attack that forces a
downgrade of an RSA key to a weaker length. The attacker forces the use of a weaker encryption
key length, enabling successful brute-force attacks.

As if Heartbleed weren’t enough, POODLE (Padding Oracle On Downgraded Legacy
Encryption) was (again) discovered by Google’s security team and announced to the public on

October 14, 2014. This time it was a case of backward compatibility being a problem. The
Transport Layer Security (TLS) protocol had largely replaced SSL for secure communication on
the Internet, but many browsers would still revert to SSL 3.0 when a TLS connection was
unavailable. They did this because many TLS clients performed a handshake effort, designed to
degrade service until something acceptable was found. For example, the browser might offer
TLS 1.2 first and, if it fails, retry and offer 1.0. Supposing a hacker could jump in the connection
between client and server, he could interfere with these handshakes, making them all fail—which
results in the client dropping to SSL 3.0.

NOTE Many of us who lean toward the conspiratorial side question the timing of these
releases. Supposedly Google and Codenomicon discovered Heartbleed independently but both
notified OpenSSL on the same date—April 1st. Six days later, the rest of us found out about it.
Did companies like Yahoo!, Google, and Microsoft have a chance to fix Heartbleed on their
applications before the rest of the world got to hear about it? Makes you wonder, doesn't it?
Especially since the paper announcing POODLE was released on October 14th, but the date on
the release paper read September.

So what’s the big deal? Well, it seems SSL 3.0 uses RC4, and that opens up a whole world of
issues. SSL 3.0 has a design flaw that allows the padding data at the end of a block cipher to be
changed so that the encryption cipher becomes less secure each time it is passed. Defined as
“RC4 biases” in OpenSSL’s paper on the subject (https://www.openssl.org/~bodo/ssl-
poodle.pdf), if the same secret—let’s say a password—is sent over several sessions, more and
more information about it will leak. Eventually, the connection may as well be plain text (per the
same source, an attacker need only make 256 SSL 3.0 requests to reveal 1 byte of encrypted
messages), and the attacker sitting in the middle can see everything.

Mitigation for POODLE is straightforward: just don’t use SSL 3.0 at all. Completely
disabling SSL 3.0 on the client and server sides means the “degradation dance” can’t ever take
things down to SSL 3.0. Of course, in a recurring vein that frustrates and angers security
professionals while simultaneously filling hackers with glee and joy, there are old clients and
servers that just don’t support TLS 1.0 and above. [Insert sigh here.] Therefore, you can
implement TLS_FALLBACK_SCSV (a fake cipher suite advertised in the Client Hello message,
which starts the SSL/TLS handshake) to hopefully prevent the attack.

NOTE Google's Chrome browser and Google servers already support
TLS_FALLBACK_SCSV, with SSL 3.0 being removed completely. Fallback to SSL 3.0 was
disabled in Chrome 39 (November 2014), and SSL 3.0 was disabled by default in Chrome 40
(January 2015). Mozilla disabled SSL 3.0 in Firefox 34 and ESR 31.3 (December 2014) and

https://www.openssl.org/~bodo/ssl-poodle.pdf

added TLS_FALLBACK_SCSV in Firefox 35.

Another mitigation is to implement something called “anti-POODLE record splitting.” In
short, this splits records into several parts, ensuring none of them can be attacked. However,
although this may frustrate the exploit’s ability to gather data, it also may cause compatibility
issues due to problems in server-side implementations.

EXAM TIP Know Heartbleed and POODLE very, very well. Open SSL versions 1.0.1 and
1.0.1f are vulnerable to Heartbleed, and its CVE notation is CVE-2014-0160. Be prepared for
scenario-based questions involving SSL that will reference this attack—I guarantee you’ll see
them. POODLE (a.k.a. PoodleBleed, per EC-Council, CVE-2014-3566) will also appear in
questions throughout your exam.

The last one we’re going to visit before calling it a day is a doozy, and even though it hasn’t
made its way into the official courseware (and by extension your exam) as I write this, I
guarantee it will soon. And I’d much rather give you more than you need now than to hear about
me leaving something out later. As we’ve covered before, modern client/server communications
use TLS, and SSL has been outdated. SSL 3.0, of course, had all sorts of problems and was
disabled everywhere (other than in backward-compatibility-specific situations). But SSLv2?
That’s another story altogether.

It seems during all this hoopla, SSLv2 was…well...forgotten. Sure there were a few servers
out there that still provided support for it, but for the most part that support didn’t seem to matter
to anyone. No up-to-date clients actually used SSLv2, so even though SSLv2 was known to be
badly insecure, merely supporting it wasn’t seen as a security problem. Right? If there’s no client
looking for it, then what difference does it make if it’s there?

Pause for uproarious hacking laughter here, as we all contemplate something any first-year
security student in Hardening of Systems 101 will state as an obvious step: turn off everything
you’re not using.

The DROWN (Decrypting RSA with Obsolete and Weakened eNcryption) attack, per the
website DrownAttack.com, is a “serious vulnerability that affects HTTPS and other services that
rely on SSL and TLS (essential cryptographic protocols for Internet security). DROWN allows
attackers to break the encryption and read or steal sensitive communications, including
passwords, credit card numbers, trade secrets, and financial data.” When the CVE was released
in 2016, up to 33 percent of Internet HTTPS servers tested were vulnerable to the attack.

Mitigation for DROWN is much like that for POODLE—turn off support for the offending
encryption (in this case, SSLv2). Additionally, “server operators need to ensure that their private
keys are not used anywhere with server software that allows SSLv2 connections. This includes
web servers, SMTP servers, IMAP and POP servers, and any other software that supports
SSL/TLS.”

http://DrownAttack.com

NOTE Remember way back in the beginning of this book I mentioned the balancing act
between security and usability? There is no better example than the mitigations discussed here.
Should you eliminate all backward compatibility in the name of security, you’ll definitely ward
off the occasional (and probably rare) attack, but you’ll inevitably be faced with lots of “I can’t
get there because of security” complaints. Weigh your options carefully.

Cryptography Attacks
For the ethical hacker, all this information has been great to know and is important, but it’s not
enough just to know what types of encryption are available. What we need to know, what we’re
really interested in, is how to crack that encryption so we can read the information being passed.
A variety of methods and tools are available, and a list of the relevant ones are provided here for
your amusement and memorization:

• Known plain-text attack In this attack, the hacker has both plain-text and corresponding
cipher-text messages—the more, the better. The plain-text copies are scanned for
repeatable sequences, which are then compared to the cipher-text versions. Over time, and
with effort, this can be used to decipher the key.

• Chosen plain-text attack In a chosen plain-text attack, the attacker encrypts multiple
plain-text copies himself in order to gain the key.

• Adaptive chosen plain-text attack The EC-Council definition for this is mind-
numbingly obtuse: “the attacker makes a series of interactive queries, choosing
subsequent plaintexts based on the information from the previous encryptions.” What this
really means is the attacker sends bunches of cipher texts to be decrypted and then uses
the results of the decryptions to select different, closely related cipher texts. The idea is to
gradually glean more and more information about the full target cipher text or about the
key itself.

• Cipher-text-only attack In this attack, the hacker gains copies of several messages
encrypted in the same way (with the same algorithm). Statistical analysis can then be used
to reveal, eventually, repeating code, which can be used to decode messages later.

• Replay attack This is most often performed within the context of a man-in-the-middle
attack. The hacker repeats a portion of a cryptographic exchange in hopes of fooling the
system into setting up a communications channel. The attacker doesn’t really have to
know the actual data (such as the password) being exchanged; he just has to get the timing
right in copying and then replaying the bit stream. Session tokens can be used in the
communications process to combat this attack.

• Chosen cipher attack In this attack, the bad guy (or good guy, depending on your
viewpoint) chooses a particular cipher-text message and attempts to discern the key
through comparative analysis with multiple keys and a plain-text version. RSA is
particularly vulnerable to this attack.

EXAM TIP A side-channel attack isn’t like the other traditional attacks mentioned. It is a
physical attack that monitors environmental factors (like power consumption, timing, and delay)
on the cryptosystem itself.

Along with these attacks, a couple of other terms are worth discussing here. Man-in-the-
middle is another attack usually listed by many security professionals and study guides
(depending on the test version you get, it may even be listed as such). Just keep in mind that this
term simply means the attacker has positioned himself between the two communicating entities.
Once there, he can launch a variety of attacks (interference, fake keys, replay, and so on).
Additionally, the term brute-force attack is apropos to discuss in this context. Brute force refers
to an attempt to try every possible combination against a target until successful. Although this
can certainly be applied to cracking encryption schemes—and most commonly is defined that
way—it doesn’t belong solely in this realm (for example, it’s entirely proper to say that using
500 people to test all the doors at once is a brute-force attack, as is sending an open request to
every known port on a single machine).

NOTE An inference attack may not be what you think it is. Inference actually means you can
derive information from the cipher text without actually decoding it. For example, if you are
monitoring the encrypted line a shipping company uses and the traffic suddenly increases, you
could assume the company is getting ready for a big delivery.

What’s more, a variety of other encryption-type attack applications are waiting in the wings.
Some applications, such as Carnivore and Magic Lantern (more of a keylogger than an actual
attack application), were created by the U.S. government for law enforcement use in cracking
codes. Some, such as L0phtcrack (used mainly on Microsoft Windows against SAM password
files) and John the Ripper (a Unix/Linux tool for the same purpose), are aimed specifically at
cracking password hashes. Others might be aimed at a specific type or form of encryption (for
example, PGPcrack is designed to go after PGP-encrypted systems). A few more worth
mentioning include CrypTool (www.cryptool.org), Cryptobench (www.addario.com), and Jipher
(www.cipher.org.uk).

Regardless of the attack chosen or the application used to try it, it’s important to remember
that, even though the attack may be successful, attempts to crack encryption take a long time.
The stronger the encryption method and the longer the key used in the algorithm, the longer the
attack will take to be successful. Additionally, it’s not an acceptable security practice to assign a
key and never change it. No matter how long and complex the key, given a sufficient amount of
time a brute-force attack will crack it. However, that amount of time can be from a couple of
minutes for keys shorter than 40 bits to 50 or so years for keys longer than 64 bits. Obviously,
then, if you combine a long key with a commitment to changing it within a reasonable time

http://www.cryptool.org
http://www.addario.com
http://www.cipher.org.uk

period, you can be relatively sure the encryption is “uncrackable.” Per the U.S. government, an
algorithm using at least a 256-bit key cannot be cracked (see AES).

NOTE A truism of hacking really applies here: hackers are generally about the “low-hanging
fruit.” The mathematics involved in cracking encryption usually make it not worthwhile.

Chapter Review
Cryptography is the science or study of protecting information, whether in transit or at rest, by
using techniques to render the information unusable to anyone who does not possess the means
to decrypt it. Plain-text data (something you can read) is turned into cipher-text data (something
you can’t read) by the application of some form of encryption. Encrypting data provides
confidentiality because only those with the “key” can see it. Integrity can also be provided by
hashing algorithms. Nonrepudiation is the means by which a recipient can ensure the identity of
the sender and that neither party can deny having sent or received the message.

Encryption algorithms—mathematical formulas used to encrypt and decrypt data—are highly
specialized and complex. There are two methods in which the algorithms actually work, and
there are two methods by which keys can be used and shared. In stream ciphers, bits of data are
encrypted as a continuous stream. In other words, readable bits in their regular pattern are fed
into the cipher and are encrypted one at a time. These work at a high rate of speed. Block ciphers
combine data bits into blocks and feed them into the cipher. Each block of data, usually 64 bits at
a time, is then encrypted with the key and algorithm. These ciphers are considered simpler, and
slower, than stream ciphers.

Symmetric encryption, also known as single key or shared key, simply means one key is used
both to encrypt and to decrypt the data. It is considered fast and strong but poses some significant
weaknesses. It’s a great choice for bulk encryption because of its speed, but key distribution is an
issue because the delivery of the key for the secured channel must be done offline. Additionally,
scalability is a concern because as the network gets larger, the number of keys that must be
generated goes up exponentially. DES, 3DES, Advanced Encryption Standard (AES),
International Data Encryption Algorithm (IDEA), Twofish, and Rivest Cipher (RC) are
examples.

Asymmetric encryption comes down to this: what the one key encrypts, the other key
decrypts. It’s important to remember the public key is the one used for encryption, whereas the
private key is used for decryption. Either can be used for encryption or decryption within the
pair, but in general remember public = encrypt, private = decrypt. Asymmetric encryption can
provide both confidentiality and nonrepudiation and solves the problems of key distribution and
scalability. The weaknesses include its performance (asymmetric is slower than symmetric,
especially on bulk encryption) and processing power (asymmetric usually requires a much longer
key length, so it’s suitable for smaller amounts of data). Diffie-Hellman, Elliptic Curve
Cryptosystem (ECC), El Gamal, and RSA are examples.

A hashing algorithm is a one-way mathematical function that takes an input and produces a

single number (integer) based on the arrangement of the data bits in the input. It provides a
means to verify the integrity of a piece of data—change a single bit in the arrangement of the
original data, and you’ll get a different response. The attack or effort used against a hashing
algorithm is known as a collision or a collision attack. A collision occurs when two or more files
create the same output, which is not supposed to happen. To protect against collision attacks and
the use of rainbow tables, you can also use a salt, which is a collection of random bits used as a
key in addition to the hashing algorithm. MD5, SHA-1, SHA-2, and SHA-3 are examples of hash
algorithms.

Steganography is the practice of concealing a message inside a text, image, audio, or video
file in such a way that only the sender and recipient even know of its existence, let alone the
manner in which to decipher it. Indications of steganography include character positions (in text
files, look for text patterns, unusual blank spaces, and language anomalies) and large file sizes
and color palette faults in image files. Audio and video files require some statistical analysis and
specific tools.

In image steganography, there are three main techniques: least significant bit insertion,
masking and filtering, and algorithmic transformation. Masking hides the data in much the same
way as a watermark on a document; however, it’s accomplished by modifying the luminescence
of image parts. Algorithmic transformation allows steganographers to hide data in the
mathematical functions used in image compression. Tools like OmniHide Pro and Masker do a
good job of sticking messages into the video stream smoothly and easily. DeepSound and
MP3Stego are both tools for audio steganography. Other tools include QuickStego
(quickcrypto.com), gifshuffle and SNOW (darkside.com.au), Steganography Studio
(stegstudio.sourceforge.net), and OpenStego (www.openstego.info).

PKI is a structure designed to verify and authenticate the identity of individuals within the
enterprise taking part in a data exchange. It can consist of hardware, software, and policies that
create, manage, store, distribute, and revoke keys and digital certificates. The system starts at the
top, with a (usually) neutral party known as the certificate authority (CA) that creates and issues
digital certificates. The CA also keeps track of all the certificates within the system and
maintains a certificate revocation list (CRL), used to track which certificates have problems and
which have been revoked. The CA may be internal to begin with, and there could be any number
of subordinate CAs—known as registration authorities (RAs)—to handle things internally (most
root CAs are removed from network access to protect the integrity of the system). In many PKI
systems, an outside entity known as a validation authority (VA) is used to validate certificates—
usually done via Online Certificate Status Protocol (OCSP). A certificate authority can be set up
to trust a CA in a completely different PKI through something called cross-certification. This
allows both PKI CAs to validate certificates generated from either side.

CAs work in a trust model. This describes how entities within an enterprise deal with keys,
signatures, and certificates, and there are three basic models. In the web of trust, multiple entities
sign certificates for one another. In other words, users within this system trust each other based
on certificates they receive from other users on the same system. A single authority system has a
CA at the top that creates and issues certificates. Users trust each other based on the CA. The
hierarchical trust system also has a CA at the top (which is known as the root CA) but makes use
of one or more registration authorities (subordinate CAs) underneath it to issue and manage
certificates. This system is the most secure because users can track the certificate back to the root
to ensure authenticity without a single point of failure.

A digital certificate is an electronic file that is used to verify a user’s identity, providing

http://quickcrypto.com
http://darkside.com.au
http://stegstudio.sourceforge.net
http://www.openstego.info

nonrepudiation throughout the system. The certificate typically follows the X.509 standard,
which defines what should and should not be in a digital certificate. Version, Serial Number,
Subject, Algorithm ID (or Signature Algorithm), Issuer, Valid From and Valid To, Key Usage,
Subject’s Public Key, and Optional are all fields within a digital certificate.

A self-signed certificate is one created and signed by the entity internally and never intended
to be used in any other situation or circumstance. Signed certificates generally indicate a CA is
involved and the signature validating the identity of the entity is confirmed via an external source
—in some instances a validation authority (VA). Signed certificates, as opposed to self-signed
certificates, can be trusted: assuming the CA chain is validated and not corrupted, it’s good
everywhere.

A digital signature is nothing more than an algorithmic output that is designed to ensure the
authenticity (and integrity) of the sender. FIPS 186-2 specifies that the Digital Signature
Algorithm (DSA) be used in the generation and verification of digital signatures. DSA is a
Federal Information Processing Standard that was proposed by the National Institute of
Standards and Technology (NIST) in August 1991 for use in their Digital Signature Standard
(DSS). The steps in the use of a digital signature include the hashing of the message, with the
result of the hash being encrypted by the sender’s private key. The recipient then decrypts the
hash result using the sender’s public key, verifying the sender’s identity.

Data at rest (DAR) is data that is in a stored state and not currently accessible. Protection of
data on mobile devices from loss or theft while it is in a resting state usually entails full disk
encryption (FDE), where pre-boot authentication (usually an account and password) is necessary
to “unlock” the drive before the system can even boot up. FDE can be software or hardware
based, and can use network-based authentication (Active Directory, for example) and/or local
authentication sources (a local account or locally cached from a network source). Software-based
FDE can even provide central management, making key management and recovery actions much
easier.

Tools helpful in encrypting files and folders for other protective services include Microsoft
Encrypted File Systems (EFS), VeraCrypt, AxCrypt, and GNU Privacy Guard. The point is, full
disk encryption may sound like a great idea in the boardroom, but once the drive is unlocked, the
data inside is not protected.

Encrypted communication methods include the following:

• Secure Shell (SSH) A secured version of Telnet, using TCP port 22, by default, and
relying on public key cryptography for its encryption.

• Secure Sockets Layer (SSL) Encrypts data at the transport layer and above, for secure
communication across the Internet. It uses RSA encryption and digital certificates and can
be used with a wide variety of upper-layer protocols. SSL uses a six-step process for
securing a channel.

• Transport Layer Security (TLS) Uses an RSA algorithm of 1024 and 2048 bits; TLS is
the successor to SSL.

• Internet Protocol Security (IPSec) Network layer tunneling protocol that can be used
in two modes: tunnel (entire IP packet encrypted) and transport (data payload encrypted).

• PGP (Pretty Good Privacy) Used for signing, compression, and encrypting and
decrypting e-mails, files, directories, and even whole disk partitions, mainly in an effort to
increase the security of e-mail communications.

Heartbleed and POODLE were successful attacks against secure communications. Heartbleed
exploits the heartbeat feature in OpenSSL, which tricks the server into sending 64Kb of data
from its memory. You can use the nmap command nmap -d --script ssl-heartbleed --script-
args vulns.showall -sV [host] to search for the vulnerability: the return will say “State: NOT
VULNERABLE” if you’re good to go. The Metasploit auxiliary module openssl_heartbleed can
be used to exploit this. Open SSL versions 1.0.1 and 1.0.1f are vulnerable, and the CVE notation
is CVE-2014-0160.

POODLE (Padding Oracle On Downgraded Legacy Encryption) took advantage of backward-
compatibility features in TLS clients, allowing sessions to drop back to the vulnerable SSL 3.0,
which has a design flaw that allows the padding data at the end of a block cipher to be changed
so that the encryption cipher becomes less secure each time it is passed. Defined as “RC4
biases,” if the same secret is sent over several sessions, more and more information about it will
leak. Mitigation for POODLE is to not use SSL 3.0 at all. You can implement
TLS_FALLBACK_SCSV (a fake cipher suite advertised in the Client Hello message, which
starts the SSL/TLS handshake) on areas that must remain backward compatible. Another
mitigation is to implement something called “anti-POODLE record splitting.” In short, this splits
records into several parts, ensuring none of them can be attacked. However, although this may
frustrate the exploit’s ability to gather data, it also may cause compatibility issues due to
problems in server-side implementations.

Cipher attacks fall into a few categories and types. Known plain-text attacks, cipher-text-only
attacks, and replay attacks are examples. Man-in-the-middle is usually listed as a type of attack
by many security professionals and study guides (depending on the test version you get, it may
even be listed as such). Just keep in mind that a man-in-the-middle situation simply means the
attacker has positioned himself between the two communicating entities. Brute force refers to an
attempt to try every possible combination against a target until successful.

Questions
1. Which of the following attacks acts as a man in the middle, exploiting fallback

mechanisms in TLS clients?
A. POODLE
B. Heartbleed
C. FREAK
D. DROWN

2. RC4 is a simple, fast encryption cipher. Which of the following is not true regarding RC4?
A. RC4 can be used for web encryption.
B. RC4 uses block encryption.
C. RC4 is a symmetric encryption cipher.
D. RC4 can be used for file encryption.

3. An organization has decided upon AES with a 256-bit key to secure data exchange. What
is the primary consideration for this?
A. AES is slow.
B. The key size makes data exchange bulky and complex.

C. It uses a shared key for encryption.
D. AES is a weak cypher.

4. Joe and Bob are both ethical hackers and have gained access to a folder. Joe has several
encrypted files from the folder, and Bob has found one of them unencrypted. Which of the
following is the best attack vector for them to follow?
A. Cipher text only
B. Known plain text
C. Chosen cipher text
D. Replay

5. You are reviewing security plans and policies, and you wish to provide protection to
organization laptops. Which effort listed protects system folders, files, and MBR until
valid credentials are provided at pre-boot?
A. Cloud computing
B. SSL/TLS
C. Full disk encryption
D. AES

6. Which of the following is used to distribute a public key within the PKI system, verifying
the user’s identity to the recipient?
A. Digital signature
B. Hash value
C. Private key
D. Digital certificate

7. A hacker feeds plain-text files into a hash, eventually finding two or more that create the
same fixed-value hash result. This anomaly is known as what?
A. Collision
B. Chosen plain text
C. Hash value compromise
D. Known plain text

8. An attacker uses a Metasploit auxiliary exploit to send a series of small messages to a
server at regular intervals. The server responds with 64Kb of data from its memory. Which
of the following best describes the attack being used?
A. POODLE
B. Heartbleed
C. FREAK
D. DROWN

9. Which of the following statements is true regarding encryption algorithms?
A. Symmetric algorithms are slower, are good for bulk encryption, and have no

scalability problems.
B. Symmetric algorithms are faster, are good for bulk encryption, and have no scalability

problems.
C. Symmetric algorithms are faster, are good for bulk encryption, but have scalability

problems.
D. Symmetric algorithms are faster but have scalability problems and are not suited for

bulk encryption.
10. Within a PKI system, Julia encrypts a message for Heidi and sends it. Heidi receives the

message and decrypts the message using what?
A. Julia’s public key
B. Julia’s private key
C. Heidi’s public key
D. Heidi’s private key

11. Which of the following is a symmetric encryption method that transforms a fixed-length
amount of plain text into an encrypted version of the same length?
A. Stream
B. Block
C. Bit
D. Hash

12. Which symmetric algorithm uses variable block sizes (from 32 to 128 bits)?
A. DES
B. 3DES
C. RC
D. MD5

13. Which hash algorithm produces a 160-bit output value?
A. SHA-1
B. SHA-2
C. Diffie-Hellmann
D. MD5

14. Two different organizations have their own public key infrastructure up and running.
When the two companies merged, security personnel wanted both PKIs to validate
certificates from each other. What must the CAs for both companies establish to
accomplish this?
A. Key exchange portal
B. Key revocation portal
C. Cross-site exchange
D. Cross-certification

15. Within a PKI, which of the following verifies the applicant?
A. Registration authority
B. User authority

C. Revocation authority
D. Primary authority

16. Which of the following is a software application used to asymmetrically encrypt and
digitally sign e-mail?
A. PGP
B. SSL
C. PPTP
D. HTTPS

Answers
1. A. In a POODLE attack, the man in the middle interrupts all handshake attempts by TLS

clients, forcing a degradation to a vulnerable SSL version.
2. B. RC4 is a simple, fast, symmetric stream cipher. It can be used for almost everything you

can imagine an encryption cipher could be used for (you can even find it in WEP).
3. C. AES is a symmetric algorithm, which means that the same key is used for encryption

and decryption. The organization will have to find a secured means to transmit the key to
both parties before any data exchange.

4. B. In a known plain-text attack, the hacker has both plain-text and cipher-text messages;
the plain-text copies are scanned for repeatable sequences, which are then compared to the
cipher-text versions. Over time, and with effort, this can be used to decipher the key.

5. C. FDE is the appropriate control for data-at-rest protection. Pre-boot Authentication
provides protection against loss or theft.

6. D. A digital certificate contains, among other things, the sender’s public key, and it can be
used to identify the sender.

7. A. When two or more plain-text entries create the same fixed-value hash result, a collision
has occurred.

8. B. Heartbleed takes advantage of the data-echoing acknowledgement heartbeat in SSL.
OpenSSL version 1.0.1 through version 1.0.1f are vulnerable to this attack.

9. C. Symmetric algorithms are fast, are good for bulk encryption, but have scalability
problems.

10. D. Heidi’s public key is used to encrypt the message. Her private key is used to decrypt it.
11. B. Block encryption takes a fixed-length block of plain text and converts it to an encrypted

block of the same length.
12. C. Rivest Cipher (RC) uses variable block sizes (from 32 to 128 bits).
13. A. SHA-1 produces a 160-bit output value.
14. D. When PKIs need to talk to one another and trust certificates from either side, the CAs

need to set up a mutual trust known as cross-certification.
15. A. A registration authority (RA) validates an applicant into the system, making sure they

are real, valid, and allowed to use the system.
16. A. Pretty Good Privacy (PGP) is used for signing, compression, and encrypting and

decrypting e-mails, files, directories, and even whole disk partitions, mainly in an effort to
increase the security of e-mail communications.

CHAPTER 12
Low Tech: Social Engineering and Physical
Security

In this chapter, you will
• Define social engineering
• Describe different types of social engineering techniques and attacks
• Describe identity theft
• List social engineering countermeasures
• Describe physical security measures

As the story goes, a large truck was barreling down a highway one day carrying equipment
needed to complete a major public safety project. The deadline was tight, and the project would
be doomed to failure if the parts were delayed for too long. As it journeyed down the road, the
truck came to a tunnel and was forced to a stop—the overhead clearance was just inches too
short, not allowing the truck to pass through, and there was no way around the tunnel.
Immediately calls were made to try to solve this problem.

Committees of engineers were quickly formed and solutions drawn up, with no idea too
outlandish and no expense spared. Tiger teams of geologists were summoned to gauge the
structural integrity of the aging tunnel in preparation for blasting the roof higher for the truck to
pass. The U.S. Air Force was consulted on the possibility of airlifting the entire truck over the
mountain via helicopter. And, while all this was going on, hundreds gathered at the blocked
entrance to the tunnel, everyone postulating their own theory.

A little girl wandered out of the crowd and walked up to the lead engineer, who was standing
beside the truck scratching his head and wondering what to do. She asked, “Why is the truck
blocking the road?” The man answered, “Because it’s just too tall to get through the tunnel.” She
then asked, “And why are all these people here looking at it?” The man calmly answered, “Well,
we’re all trying to figure out how to get it through to the other side without blowing up the
mountain.” The little girl looked at the truck, gazed up at the man, and said, “Can’t you just let
some air out of the tires and roll it through?”

Sometimes we try to overcomplicate things, especially in this technology-charged career field
we’re in. We look for answers that make us feel more intelligent, to make us appear smarter to
our peers. We seem to want the complicated way—to have to learn some vicious code listing that
takes six servers churning away in our basement to break past our target’s defenses. We look for
the tough way to break in when it’s sometimes just as easy as asking someone for a key. Want to
be a successful ethical hacker? Learn to take pride in, and master, the simple things. Sometimes
the easy answer isn’t just one way to do it—it’s the best way. This chapter is all about the

nontechnical things you may not even think about as a “hacker.” Checking the simple stuff first,
targeting the human element and the physical attributes of a system, is not only a good idea, it’s
critical to your overall success.

When it comes to your exam, social engineering and physical security aren’t covered heavily.
In fact, outside of phishing, many of you won’t see much of this at all on your exam. That does
not mean it’s not important—in my humble opinion, social engineering is as important as many
of the technical efforts you’ll use on your job. I’m not saying you’ll always be able to talk your
way into a hardened facility or gather connectivity credentials just by smiling and talking nicely,
but I am saying it’s a very important part of successful hacking and pen testing. And isn’t that
what this is all supposed to be about anyway?

Social Engineering
Every major study on technical vulnerabilities and hacking will say the same two things. First,
the users themselves are the weakest security link. Whether on purpose or by mistake, users, and
their actions, represent a giant security hole that simply can’t ever be completely plugged.
Second, an inside attacker poses the most serious threat to overall security. Although most
people agree with both statements, they rarely take them in tandem to consider the most powerful
—and scariest—flaw in security: What if the inside attacker isn’t even aware she is one?
Welcome to the nightmare that is social engineering.

Show of hands, class: How many of you have held the door open for someone racing up
behind you, with his arms filled with bags? How many of you have slowed down to let someone
out in traffic, allowed the guy with one item in line to cut in front of you, or carried something
upstairs for the elderly lady in your building? I, of course, can’t see the hands raised, but I bet
most of you have performed these, or similar, acts on more than one occasion. This is because
most of you see yourselves as good, solid, trustworthy people, and given the opportunity, most of
us will come through to help our fellow man or woman in times of need.

For the most part, people naturally trust one another—especially when authority of some sort
is injected into the mix—and they will generally perform good deeds for one another. It’s part of
what some might say is human nature, however that may be defined. It’s what separates us from
the animal kingdom, and the knowledge that most people are good at heart is one of the things
that makes life a joy for a lot of folks. Unfortunately, it also represents a glaring weakness in
security that attackers gleefully, and successfully, take advantage of.

Social engineering is the art of manipulating a person, or a group of people, into providing
information or a service they otherwise would never have given. Social engineers prey on
people’s natural desire to help one another, their tendency to listen to authority, and their trust of
offices and entities. For example, I bet the overwhelming majority of users will say, if asked
directly, that they would never share their password with anyone. However, I bet out of that
same group a pretty decent percentage of them will gladly hand over their password—or provide
an easy means of getting it—if they’re asked nicely by someone posing as a help desk employee
or network administrator. I’ve seen it too many times to doubt it. Put that request in an official-
looking e-mail, and the success rate can go up even higher.

EXAM TIP I doubt this will appear on the exam, but in the interest of covering everything,
you should know that EC-Council defines four phases of successful social engineering:

1. Research (dumpster dive, visit websites, tour the company, and so on).
2. Select the victim (identify frustrated employee or other promising targets).
3. Develop a relationship.
4. Exploit the relationship (collect sensitive information).

Social engineering is a nontechnical method of attacking systems, which means it’s not
limited to people with technical know-how. Whereas “technically minded” people might attack
firewalls, servers, and desktops, social engineers attack the help desk, the receptionist, and the
problem user down the hall everyone is tired of working with. It’s simple, easy, effective, and
darn near impossible to contain. And I’d bet dollars to doughnuts the social engineer will often
get just as far down the road in successful penetration testing in the same amount of time as the
“technical” folks.

And why do these attacks work? Well, EC-Council defines five main reasons and four factors
that allow them to happen. The following are all reasons people fall victim to social engineering
attacks:

• Human nature (trusting in others)
• Ignorance of social engineering efforts
• Fear (of consequences of not providing requested information)
• Greed (promised gain for providing the requested information)
• A sense of moral obligation

As for the factors that allow these attacks to succeed, insufficient training, unregulated
information (or physical) access, complex organizational structure, and lack of security policies
all play roles. Regardless, you’re probably more interested in the “how” of social engineering
opposed to the “why it works,” so let’s take a look at how these attacks are actually carried out.

Human-Based Attacks
All social engineering attacks fall into one of three categories: human based, computer based, or
mobile based. Human-based social engineering uses interaction in conversation or other
circumstances between people to gather useful information. This can be as blatant as simply
asking someone for their password or as elegantly wicked as getting the target to call you with
the information—after a carefully crafted setup, of course. The art of human interaction for
information gathering has many faces, and there are innumerable attack vectors to consider. We
won’t, because this book is probably already too long, and most of them ECC doesn’t care about,
so we’ll just stick to what’s on your exam.

Dumpster diving is what it sounds like—a dive into a trash can of some sort to look for useful
information. However, the truth of real-world dumpster diving is a horrible thing to witness or be

a part of. Dumpster diving is the traditional name given to what some people affectionately call
“TRASHINT,” or trash intelligence. Sure, rifling through the dumpsters, paper-recycling bins,
and office trash cans can provide a wealth of information (like written-down passwords, sensitive
documents, access lists, PII, and so on), but you’re just as likely to find hypodermic needles,
rotten food, and generally the vilest things you can imagine. Oh, and here’s a free tip for you—
make sure you do this outside. Pulling trash typically requires a large area, where the overall
smell of what you retrieve won’t infect the building in which you’re operating. Air freshener,
thick gloves, a mask, and a strong stomach are mandatory. To put this mildly, Internet tough
guys are often no match for the downright nastiness of dumpster diving, and if you must resort to
it, good luck. Dumpster diving isn’t as much “en vogue” as it used to be (after all, paperless
environments and the advent of smartphones and hand-held devices eliminated most of the
goodies left lying around), but in specific situations it may still prove valuable. Although
technically a physical security issue, dumpster diving is covered as a social engineering topic per
EC-Council.

NOTE Sometimes the condition in which you find dumpster material can be an indicator of
potentially important information. Rifling through tons of paperwork found in a dumpster, but
lots of it is strip-shredded? It’s likely the documents were shredded for a reason.

Probably the most common form of social engineering, impersonation is the name given to a
huge swath of attack vectors. Basically the social engineer pretends to be someone or something
he or she is not, and that someone or something—like, say, an employee, a valid user, a
repairman, an executive, a help desk person, an IT security expert…heck, even an FBI agent—is
someone or something the target either respects, fears, or trusts. Pretending to be someone you’re
not can result in physical access to restricted areas (providing further opportunities for attacks),
not to mention any sensitive information (including credentials) your target feels you have a need
and right to know. Pretending to be a person of authority introduces intimidation and fear into
the mix, which sometimes works well on “lower-level” employees, convincing them to assist in
gaining access to a system or, really, anything you want. Just keep in mind the familiar refrain
we’ve kept throughout this book and be careful—you might think pretending to be an FBI agent
will get a password out of someone, but you need to be aware the FBI will not find that
humorous at all. Impersonation of law enforcement, military officers, or government employees
is a federal crime, and sometimes impersonating another company can get you in hot water. So,
again, be careful.

Of course, as an attacker, if you’re going to impersonate someone, why not impersonate a
tech support person? Calling a user as a technical support person and warning him of an attack
on his account almost always results in good information.

Tech support professionals are trained to be helpful to customers—it’s their goal to solve
problems and get users back online as quickly as possible. Knowing this, an attacker can call up
posing as a user and request a password reset. The help desk person, believing they’re helping a
stranded customer, unwittingly resets a password to something the attacker knows, thus granting

him access the easy way. Another version of this attack is known as authority support.

EXAM TIP Using a phone during a social engineering effort is known as “vishing” (short for
voice phishing). No, I don’t make this stuff up.

Shoulder surfing and eavesdropping are other valuable human-based social engineering
methods. Assuming you already have physical access, it’s amazing how much information you
can gather just by keeping your eyes open. An attacker taking part in shoulder surfing simply
looks over the shoulder of a user and watches them log in, access sensitive data, or provide
valuable steps in authentication. Believe it or not, shoulder surfing can also be done “long
distance,” using vision-enhancing devices such as telescopes and binoculars. And don’t discount
eavesdropping as a valuable social engineering effort. While standing around waiting for an
opportunity, an attacker may be able to discern valuable information by simply overhearing
conversations. You’d be amazed what people talk about openly when they feel they’re in a safe
space.

Tailgating is something you probably already know about, but piggybacking is a rather
ridiculous definition term associated with it you’ll need to remember, even though many of us
use the terms interchangeably. Believe it or not, there is a semantic difference between them on
the exam—sometimes. Tailgating occurs when an attacker has a fake badge and simply follows
an authorized person through the opened security door. Piggybacking is a little different in that
the attacker doesn’t have a badge but asks for someone to let her in anyway. She may say she’s
left her badge on her desk or at home. In either case, an authorized user holds the door open for
her even though she has no badge visible.

EXAM TIP If you see an exam question listing both tailgating and piggybacking, the
difference between the two comes down to the presence of a fake ID badge (tailgaters have them,
piggybackers don’t). On questions where they both do not appear as answers, the two are used
interchangeably. No, I don’t know why.

Another access card attack that’s worth mentioning here may not be on your exam, but it
should be (and probably will at some point in the near future). Suppose you’re minding your own
business, wandering around to get some air on a nice, sunny afternoon at work. A guy with a
backpack accidentally bumps into you and, after several “I’m sorry—didn’t see you man!”
apologies, he wanders off. Once back in his happy little abode he duplicates the RFID signal
from your access card and—voilà—your physical security access card is now his.

RFID identity theft (sometimes called RFID skimming) is usually discussed regarding credit
cards, but assuming the bad guy has the proper equipment (easy enough to obtain) and a
willingness to ignore the FCC, it’s a huge concern regarding your favorite proximity/security
card. Again, this isn’t in the official study material that I can find, so I’m not sure there is a

specific name given to the attack by ECC, but the principle is something you need to be aware of
—both as a security professional looking to protect assets and as an ethical hacker looking to get
into a building.

Another really devious social engineering impersonation attack involves getting the target to
call you with the information, known as reverse social engineering. The attacker will pose as
some form of authority or technical support and set up a scenario whereby the user feels he must
dial in for support. And, like seemingly everything involved in this certification exam, specific
steps are taken in the attack—advertisement, sabotage, and support. First, the attacker advertises
or markets his position as “technical support” of some kind. In the second step, the attacker
performs some sort of sabotage, whether a sophisticated DoS attack or simply pulling cables. In
any case, the damage is such that the user feels they need to call technical support, which leads to
the third step: the attacker attempts to “help” by asking for login credentials, thus completing the
third step and gaining access to the system.

NOTE This actually points out a general truth in the pen testing world: inside-to-outside
communication is always more trusted than outside-to-inside communication. Having someone
internal call you, instead of the other way around, is akin to starting a drive on the opponent’s
one-yard line; you’ve got a much greater chance of success this way.

For example, suppose a social engineer has sent an e-mail to a group of users warning them of
“network issues tomorrow” and has provided a phone number for the “help desk” if they are
affected. The next day, the attacker performs a simple DoS on the machine, and the user dials up,
complaining of a problem. The attacker then simply says, “Certainly I can help you—just give
me your ID and password, and we’ll get you on your way.”

Regardless of the “human-based” attack you choose, remember that presentation is
everything. The “halo effect” is a well-known and well-studied phenomenon of human nature,
whereby a single trait influences the perception of other traits. If, for example, a person is
attractive, studies show that people will assume they are more intelligent and will also be more
apt to provide them with assistance. Humor, great personality, and a “smile while you talk” voice
can take you far in social engineering. Remember, people want to help and assist you (most of us
are hardwired that way), especially if you’re pleasant.

EXAM TIP EC-Council wants you to know that potential targets for social engineering are
known as “Rebecca” or “Jessica.” When you’re communicating with other attackers, the terms
can provide information on whom to target—for example, “Rebecca, the receptionist, was very
pleasant and easy to work with.”

Social Engineering in the Real World
I talk to a lot of folks in putting together material for this effort, and try to find experts in each
area to give insight, opinion, and, far more valuable to me anyway, real-world examples of the
topic at hand. One I talked to in particular throughout this writing was my lovely and talented
daughter, Hope Walker. On the subject of social engineering, she lit up like a Christmas tree. I
asked her to just write about it. So she did:

“If you ever want to see social engineering in practice any day of the week, one of the best
places to go is a mall. Although many times it is not labeled as social engineering, the
concepts salespeople are taught are often the same concepts covered in social engineering
material. The overall goal is the same for both areas: convince someone to do something they
would not normally do. Whether that is spending $600 on cosmetics when they only came in
for mascara, or getting someone to give you the password to a system you should not have
access to, the methods for getting there are often the same.

“First, just portray confidence in yourself and what you are telling the other person. If you
ask a salesperson about a product and they hum and haw, look around and shrug, they are
unlikely to get the sale. On the flip side, many people have encountered a salesperson who has
been extremely confident, and they later find out that everything they were told is inaccurate.
However, the salesperson was so convincing they actually believed that buying the upgrade
package was worth it on the new car. Likewise, an attacker carrying official paperwork and
confidently telling you that there is a problem with your computer they need to fix appeals to
the same portion of our human nature: while we naturally trust people, we are more likely to
do so if that person presents themselves as credible.

“Think about your own experience. At almost every retail encounter, you will have
someone approach you with a smile. Now, there are some exceptionally happy people
working in retail, but more often than not, they are not actually ecstatic to see you. Having a
nice and genuine (looking) smile in person and on the phone tends to make people more
comfortable and the salesperson seem trustworthy. While it may seem odd to point out that
someone would need to have a smile while talking on the phone, people can often tell if
you’re smiling on the other end. Learning how to talk to people on the phone to portray the
same characteristics that you would like to portray in person is a common exercise in social
engineering. At Defcon, many of the exercises and demonstrations in the social engineering
village are people having phone conversations as a way of social engineering. There is even a
Twitch streamer whose channel focuses on calling scammers’ phone numbers and convincing
them to stay on the phone longer than they normally would with a noncompliant victim.

“Another common method that is taught and discussed is to establish a relationship with
people. A cold approach to a target you do not know anything about is one of the most
difficult situations in which to start a conversation, much less a relationship. Initiating small
talk is one way to start a conversation, but talking about the weather is not going to get the
target to feel like they have a relationship with you, the attacker. One of the methods taught in
retail is to pick out something you can observe about the person and begin discussing that
topic. For example, if someone is wearing a baseball cap with a team logo, start talking to
them about the team, or if you know nothing about the team, something as simple as ‘Are you
excited for this season?’ can start a personal conversation. Sometimes the topic is not as
obvious to pick out, so you might go with something like ‘I like your watch; where did you
get it?’, ‘Your shoes look great; how comfortable are they?’, or even ‘I see that picture of X

on your wall. Are you into X?’ One cautionary note on this: if you happen to hit on a topic the
person is extremely interested in, it can establish the relationship quickly, but it can also end
up dragging on a conversation that is difficult to break away from so that you can get to the
topic you actually want to discuss.

“Agreeableness is another area that is taught to people in retail that can benefit social
engineering. At the end of the interaction, the goal for salespeople and social engineers is for
everyone to leave happy. Being agreeable can help this when you are trying to get someone to
do something they would not normally do, such as pay more for a product than they want or
give you access to a restricted part of the building. Deferring responsibility is one way this
can be achieved. Blaming a manager for not budging on the price or an unpopular policy for
why you have to crawl behind a computer to do an inspection can defer responsibility so the
target does not leave upset after their interaction with you. They are then less likely to bring it
up later, such as telling a friend about a bad customer service experience or alerting security
about the pushy inspector who was messing around with their computer.”

I’d never thought about social engineering within the context of retail, but Hope was
absolutely spot on. Next time you’re at a store or a car dealership, pay attention to customer
interactions through the lens of a social engineer. There’s a lot to learn.

Finally, this portion of our chapter can’t be complete without a quick discussion on what EC-
Council has determined to be the single biggest threat to your security—the insider attack. I
mean, after all, they’re already inside your defenses. You trust them and have provided them
with the access, credentials, information, and resources to do their job. If one of them goes rogue
or decides for whatever reason they want to inflict damage, there’s not a whole lot you can do
about it. What if they decide to spy for the competition, to bring home a little extra money from
time to time? And if that’s not bad enough, suppose you add anger, frustration, and disrespect to
the situation. Might an angry, disgruntled employee go the extra step beyond self-gratification
and just try to burn the whole thing down? You better believe they will.

Disgruntled employees get that way for a variety of reasons. Maybe they’re just angry at the
organization itself because of some policy, action, or political involvement. Maybe they’re angry
at a real or perceived slight—sometimes it’s seeing someone else take credit for their work, and
sometimes it’s as simple as not hearing “thank you for doing a good job” enough. And
sometimes they’re just mad at the people they work with on a day-to-day basis—whether they’re
peers or supervisors. Interpersonal relationships in the office place are oftentimes the razor’s
edge. A disgruntled employee—someone who is angry at the circumstances and situations
surrounding his duties, the organization itself, or even the people he works with—has the
potential to do some serious harm to the bottom line.

EXAM TIP There are a variety of semantic twists with insider names to create a “type” of
insider threat for you to memorize. However, they’re all fairly self explanatory. For instance, a
negligent insider is probably the one choosing lax security and the easiest path, while a
professional insider is one specifically looking to exploit his insight for personal gain. Just use

common sense if a new “type” pops up.

And there’s more to it than just the obvious. While you may instantly be picturing an angry
employee “hacking” his way around inside the network to exact revenge on the company,
suppose the “attack” isn’t technical in nature at all. Suppose the employee just takes the
knowledge and secrets in his head and provides them to the competition over lunch at
Applebee’s? For added fun, also consider that the disgruntled employee doesn’t even need to still
be employed at your organization to cause problems. A recently fired angry employee potentially
holds a lot of secrets and information that can harm the organization, and he won’t need to be
asked nicely to provide it. It’s enough to make you toss your papers in the air and take off for the
woods. Certainly you can enforce security policies and pursue legal action as a deterrent, and
you can practice separation of duties, least privilege, and controlled access all you want, but at
some point you must trust the individuals who work in the organization. Your best efforts may
be in vetting the employees in the first place, ensuring you do your absolute best to provide
everything needed for them to succeed at work, and making sure you have really good disaster
recovery and continuity of operations procedures in place.

NOTE EC-Council’s official courseware once recommended The Italian Job, Catch Me If You
Can, and Matchstick Men as educational movies on social engineering. While I won’t necessarily
argue with their choices, the entire time I was writing about disgruntled employees I was
thinking about Milton and his red stapler from Office Space (he didn’t socially engineer
anything, but he sure did show what a motivated disgruntled employee can do). And as far as
movies go, Ferris Bueller’s Day Off is almost entirely dedicated to social engineering, even if it
was just about a high school kid.

Finally, in this disgruntled employee/internal user discussion, there’s one other horrifying idea
to consider. We’ve discussed before in this book how a hacker always has the advantage of time,
so what happens if an attacker is really dedicated to the task and just applies for a job in your
organization? We’ve said multiple times and all along that your insider risks far outweigh those
from external; the insider is already trusted, so a lot of your defenses won’t come into play. And
if that’s the case, what’s to stop a dedicated hacker from applying for a job and working a couple
of months to set things up?

Just how hard could it be to generate a good resume and find a working position in the
company? I know from experience how difficult it is sometimes to find truly talented employees
in the IT sector, and it’s nothing for an HR department to see an IT resume with multiple, short-
term job listings on it. Hiring managers, over time, can even get desperate to find the right person
for a given need, and it’s a gold mine for a smart hacker. The prospect of a bad guy simply
walking in to the organization with a badge and access I gave him is frightening to me, and it
should concern you and your organization as well. Just remember that hackers aren’t the pimply
faced teenage kids sitting in a dark room anymore. They’re highly intelligent, outgoing folks,
and they oftentimes have one heck of a good resume.

Computer-Based Attacks
Prepare for a shock: computer-based attacks are those attacks carried out with the use of a…
computer. ECC lists several of these attack types, although there are probably more we could
find if we really thought about it. Attacks include specially crafted pop-up windows, hoax e-
mails, chain letters, instant messaging, spam, and phishing. Add social networking to the mix,
and things can get crazy in a hurry. A quick jaunt around Facebook, Twitter, and LinkedIn can
provide all the information an attacker needs to profile, and eventually attack, a target. Lastly,
although it may be little more involved, why not just spoof an entire website or set up a rogue
wireless access point? These may be on the fuzzy edge of social engineering, but they are a gold
mine for hackers.

Social networking has provided one of the best means for people to communicate with one
another and to build relationships to help further personal and professional goals. Unfortunately,
this also provides hackers with plenty of information on which to build an attack profile. For
example, consider a basic Facebook profile: date of birth, address, education information,
employment background, and relationships with other people are all laid out for the picking.
LinkedIn provides that and more—showing exactly what specialties and skills the person holds,
as well as peers they know and work with.

Information such as date of birth seems like legitimate information to mine from social media,
but is the rest of that fluff really all that important? Should we really spend time reading others’
Facebook walls? I mean, seriously, what can you do with all those arguments, posted videos of
cats, and selfies? Well, consider the following as a small, oversimplified, but very easy to pull
off social media attack structure: Suppose you’re a bad guy (or an ethical hacker hired to portray
one) and want to gain access to Oinking Pig Computing (a company I just made up, because the
little pig toy I have on my desk is begging to be a part of this book). You spend a little time
researching OPC and find this employee name Julie Nocab, who is active on Facebook a lot.
Julie posts about everything—where she goes, who she hangs out with, pictures of the food she
eats, and what projects at work really stink. By reading through these posts, you discover she
works for a guy named Bob Krop. You also discover she loves red wine, kayaking, and hanging
out with her friends, including somebody named Joe Egasuas, who also works in her department.

You crack your virtual fingers and start thinking about what you can do with this information.
You could craft an e-mail to Julie from Bob, asking her about one of the projects she was
working on and telling her to open this Excel spreadsheet attachment to update the status. You
might also send her a message from Joe about one of their favorite hangouts, alerting her that it
was going to close. All she needs to do is click the website link to read the story. Pretty simple
example, but you get the drift. The filler for these types of messages comes from the stuff people
share on social media without even thinking about it, and a little specific personalization goes a
long way toward getting someone to open your message and unwittingly install your access.

NOTE Abraham Lincoln once said, “No man has a good enough memory to be a successful
liar.” This applies in the social engineering world as well. The more lies you tell, the more you’ll
have to make true. If you pose as someone’s friend, they’re far more likely to recognize

something unusual—even an odd e-mail address. If you lie about what company you’re coming
from, then you have to be prepared to make that company exist if asked. The whole backstopping
process is one where simplicity is often the best approach. To end on a quote, I think Mark
Twain put it best: “If you tell the truth, you don’t have to remember anything.”

Speaking of the e-mail examples we just talked about, probably the simplest and most
common method of computer-based social engineering is known as phishing. A phishing attack
involves crafting an e-mail that appears legitimate but in fact contains links to fake websites or to
download malicious content. The e-mail can appear to come from a bank, credit card company,
utility company, or any number of legitimate business interests a person might work with. The
links contained within the e-mail lead the user to a fake web form in which the information
entered is saved for the hacker’s use.

NOTE Attackers who craft phishing e-mails are like any other community—there are those
who are really good at it and those who are really, really bad. If the quality of the bait being used
to deceive you is really good (for example, using real project names, real personnel involved, and
referenced insider information), not only is it coming from one of the better attackers, but you’re
also probably being targeted specifically. If your e-mail is full of misspellings and concerned
more with personal areas of your life than your project, you’re probably looking at a poor
phisher who’s just looking to add bots to his army.

Phishing e-mails can be very deceiving, and even a seasoned user can fall prey to them.
Although some phishing e-mails can be prevented with good perimeter e-mail filters, it’s
impossible to prevent them all. The best way to defend against phishing is to educate users on
methods to spot a bad e-mail and hope for the best. Figure 12-1 shows an actual e-mail I received
a long while ago. Although a pretty good effort, it still screamed “Don’t call them!” to me. Note
the implied urgency, with all the official-looking logos all over the place—after all, it just has to
be real because nobody could cut and paste logos into an e-mail…could they?

Figure 12-1 Phishing example

The following list contains items that may indicate a phishing e-mail—items that can be
checked to verify legitimacy:

• Beware unknown, unexpected, or suspicious originators As a general rule, if you
don’t know the person or entity sending the e-mail, it should probably raise your antenna.
Even if the e-mail is from someone you know but the content seems out of place or
unsolicited, it’s still something to be cautious about. In the case of Figure 12-1, not only
was this an unsolicited e-mail from a known business, but the address in the “From” line
was cap1fraud@prodigy.net—a far cry from the real Capital One and a big indicator this
was destined for the trash bin. Ensure the originator is actually the originator you expect:
cap1fraud@capital-one=fraud.com looks really official, but it’s just as fraudulent as a
plug nickel.

• Be aware of who the e-mail is addressed to We’re all cautioned to watch where an e-
mail’s from, but an indicator of phishing can also be the “To” line itself, along with the
opening e-mail greeting. Companies just don’t send messages out to all users asking for
information. They’ll generally address you, personally, in the greeting instead of
providing a blanket description: “Dear Mr. Walker” vs. “Dear Member.” This isn’t
necessarily an “a-ha!” moment, but if you receive an e-mail from a legitimate business
that doesn’t address you by name, you may want to show caution. Besides, it’s just rude.

• Verify phone numbers Just because an official-looking 800 number is provided does
not mean it is legitimate. There are hundreds of sites on the Internet to validate the 800
number provided. Be safe, check it out, and know the friendly person on the other end

http://cap1fraud@prodigy.net
mailto:cap1fraud@capital-one=fraud.com

actually works for the company you’re doing business with. And as a quick note for the
real world: professional attackers will always have someone manning a fake 800 number
to answer whatever phish they’re trying (they’re also usually the supervisor of someone
who might have physically broken in).

• Beware bad spelling or grammar Granted, a lot of us can’t spell very well, and I’m
sure e-mails you receive from your friends and family have had some “creative” grammar
in them. However, e-mails from MasterCard, Visa, and American Express aren’t going to
have misspelled words in them, and they will almost never use verbs out of tense. Note in
Figure 12-1 that the second instance of the word activity is misspelled.

NOTE Here’s a great real-world phishing example that is common and successful: adding “–
benefits” to the end of a company name. An e-mail coming from “YourCompany-Benefits.com”
is almost always at least opened by those inside YourCompany. And why wouldn’t it be? It
looks legitimate and is something most in the corporate world see on a regular basis. Time this
appropriately (like, say, during open enrollments for company benefits), and you’ve got a
winner.

• Always check links Many phishing e-mails point to bogus sites. Simply changing a letter
or two in the link, adding or removing a letter, changing the letter o to a zero, or changing
a letter l to the number 1 completely changes the DNS lookup for the click. For example,
www.capitalone.com will take you to Capital One’s website for your online banking and
credit cards. However, www.capita1one.com will take you to a fake website that looks a
lot like it but won’t do anything other than give your user ID and password to the bad
guys. Additionally, even if the text reads www.capitalone.com, hovering the mouse
pointer over it will show where the link really intends to send you.

EXAM TIP You’ll probably see the Fake AV pop-up at some point on your exam. There are a
variety of different versions, but most are easy to pick out. Fake AV (a.k.a. Rogue Security)
allows an attacker potential access to personally identifiable information such as billing address
and credit card details. Be sure to verify any link in an e-mail or other notification regarding
Fake AV or Rogue Security.

Another version of this attack is still phishing—in other words, it involves the use of fake e-
mails to elicit a response—but the objective base makes it different. While a phishing attack
usually involves a mass-mailing of a crafted e-mail in hopes of snagging some unsuspecting
reader, spear phishing is a targeted attack against an individual or a small group of individuals
within an organization. Spear phishing usually is a result of a little reconnaissance work that has
churned up some useful information. For example, an attacker may discover the names and

http://YourCompany-Benefits.com
http://www.capitalone.com
http://www.capita1one.com
http://www.capitalone.com

contact info for all the executives within an organization and may decide a specifically crafted e-
mail could be created just for this group and sent to them specifically. In a cute little semantic
spin-off, if the group targeted consists of mainly high-level targets within the organization, the
effort is referred to as whaling.

But don’t forget that spear phishing can be used against a single target as well. Suppose, for
example, you discovered the contact information for a shipping and receiving clerk inside the
organization. Perhaps crafting an e-mail to look like a bill of lading or something similar might
be worthwhile?

EXAM TIP EC-Council also references two variants inside the umbrella of phishing. First is
something called pharming—the use of malicious code of some sort that redirects a user’s web
traffic. This is known as “phishing without a lure.” The second is called spimming, and it
involves spam messages over instant messaging.

And one final note on spear phishing: perhaps not so surprisingly, spear phishing is very
effective—even more so than regular phishing. The reasoning for this comes down to your
audience: if the audience is smaller and has a specific interest or set of duties in common, it
makes it easier for the attacker to craft an e-mail they’d be interested in reading. In fact, because
it is so successful, spear phishing is the number-one social engineering attack in today’s world,
with too many government organizations and business entities falling prey to list here.

EXAM TIP Although nothing is foolproof, a couple of options can assist in protecting against
phishing. The Netcraft Toolbar and the PhishTank Toolbar can help in identifying risky sites and
phishing behavior. A sign-in seal is an e-mail protection method that uses a secret message or
image that can be referenced on any official communication with the site. This sign-in seal is
kept locally on your computer, so the theory is no one can copy or spoof it.

Although phishing is probably the most prevalent computer-based attack you’ll see, there are
plenty of others. Many attackers make use of code to create pop-up windows users will
unknowingly click, as shown in Figure 12-2. These pop-ups take the user to malicious websites
where all sorts of badness is downloaded to their machines, or users are prompted for credentials
at a realistic-looking web front. A common method of implementation is the prevalence of fake
antivirus (AV) programs taking advantage of outdated Java installations on systems. Usually
hidden in ad streams on legitimate sites, a Java applet is downloaded that, in effect, takes over
the entire system, preventing the user from starting any new executables. All that said, modern
browsers have developed a near hatred for Java due to all this nonsense, so it’s getting harder and
harder to pull off these attacks.

Figure 12-2 Fake AV pop-up

NOTE Many companies employ training regarding phishing, but occasionally even that can
get out of hand. The semi-malicious file you embedded to train folks not to click links? Nothing
to really worry about until User Joe forwards it out of the environment and it spreads to 40 other
businesses…

Another successful computer-based social engineering attack involves the use of chat or
messenger channels. Attackers not only use chat channels to find out personal information to
employ in future attacks, but they make use of the channels to spread malicious code and install
software. In fact, Internet Relay Chat (IRC) is one of the primary ways zombies (computers that
have been compromised by malicious code and are part of a “botnet”) are manipulated by their
malicious code masters.

And, finally, we couldn’t have a discussion on social engineering attacks without at least a
cursory mention of how to prevent them. Setting up multiple layers of defense, including change-
management procedures and strong authentication measures, is a good start, and promoting
policies and procedures is also a good idea. Other physical and technical controls can also be set
up, but the only real defense against social engineering is user education. Training users—
especially those in technical-support positions—on how to recognize and prevent social
engineering is the best countermeasure available.

In the real world, though, defense against a very skilled social engineer may be nearly
impossible. Social engineering preys on the very things that make us human, and a successful
attack really comes down to the right person for the right situation. Male, female, old, young,
sexy, ugly, muscular, or thin, it all matters, and it matters differently in different situations. The
true social engineering master can figure out what they need to be in a matter of seconds, and
before you know it, the attacker who is a pure alpha male in real life turns into a floor-staring
introvert in order to achieve the goal. Recognizing what is needed—what role to play, what
people in the room will respond to, and so on—is the hard part and is what separates the very

successful from the also-rans.

“That’ll Never Happen to Me”
Identity theft is a real, nonstop, ever-present threat in our information age, and no one—not
even you, my highly educated and security-minded dear reader—is immune. It’s amazing to
me that every time someone hears a story about identity theft or scams, they always have the
same reaction regarding the victim: “Those poor uneducated buffoons, how could they fall for
something that obvious?” But if this were a Jeopardy episode and the preceding title was
revealed for the Daily Double, I’d hit my buzzer and respond with “What’s something every
victim of identity theft says before they become a victim?”

Since the first edition of this book, I’ve been revisiting statistics and sources, and identity
theft is no exception. When I pulled up statistics on ID theft, I had some expectations, based
on recent history and such. I thought I’d see declines in overall numbers and maybe some
definitive indicators of those most vulnerable. After all, we’re smarter now, right? There are
ads, TV shows, and movies talking about ID theft. Heck, there are multiple companies who do
nothing but ID theft prevention and recovery. So of course it’ll be better now. Right? Man,
was I wrong.

According to the U.S. Department of Justice (www.bjs.gov/index.cfm?
ty=pbdetail&iid=5410), statistics on ID theft show it’s still not just the naive among us falling
victim, it’s everyone, and it’s happening more now than it used to. Approximately 17.6
million Americans have their identities used fraudulently each year (up from 15 million in
previous year), with each reported instance averaging approximately $1343 in losses. And just
which groups fall victim most often? How about where you live? Gender? Marital status?
Race? Preference between Xbox and PS4? Proclivity to eat fish fried (as God intended) versus
grilled?

It seems to have nothing to do with sex or age, Xbox versus PlayStation, and grilled fish
eaters, sadly, weren’t called out in the study. Men and women were statistically equally likely
to be victimized, although more women seem to fall victim to ID theft than men. As for age
group, it turns out that’s not a definitive indicator either. Fewer than 1 percent of 16- and 17-
year-olds experienced ID theft, and just 1 percent of 18- to 24-year-olds were targeted. Every
other age group is a statistical dead heat, with 50- to 64-year-olds taking the slight lead
(mainly due to medical record theft).

The only statistical differences in groups come down to race, income, and, surprisingly,
where you live. Whites were almost three times more likely to be victimized than any other
race, and income levels of $75,000 and above blow away lower-income brackets when it
comes to ID theft. Interestingly, it’s not the income or race that seems to be the catch in these
groups (ID thieves don’t necessarily have any idea what income level the target is at), but
more the use of income. High-income earners, surprisingly enough, tend to spend more, and
they use their credit cards and IDs much more frequently than other groups. This provides
more of a target-rich environment for the bad guys, so not surprisingly higher-income groups
tend to fall victim more frequently. As for where you live, Florida, Georgia, California,
Michigan, and Nevada were by far the worst ID theft states to live in, while residents of North
Dakota, South Dakota, Hawaii, Maine, and Iowa report much fewer ID theft activities.

In any case, it’s worth noting that statistics can be misleading. It may well be that higher
income levels simply report ID theft at a higher rate because of the hope of criminal

http://www.bjs.gov/index.cfm?ty=pbdetail&iid=5410

prosecution and reclamation of loses; somebody stealing $20 isn’t as likely to get you as
outraged as someone stealing $20,000. And geography may have more to do with population
numbers than any real threat to your identity. ID theft occurs across all designators, however
you try to categorize people, and the methods to pull it off are easy and oftentimes silent. Any
attacker can rifle through the trash to find telephone or utility bills and use them at certain
DMV offices to garner a new driver’s license in another’s name, and the educated 40-year-old
computer-literate man wouldn’t even know it was going on.

What’s truly concerning in all the ID theft statistics is this sobering note: the overwhelming
majority of ID theft victims did not even know they were being victimized and only discovered
the ID theft when the criminal’s activity caused a roadblock in their life—a credit card was
declined, or they discovered a bad credit rating while trying to buy a car or a home. If the
attacker is smart, by doing things such as paying the minimum on credit cards opened in the
victim’s name to keep things running, it could take months and sometimes even years to even
know the extent of the damage. It’s rare that the victim can point to any specific instance
where their ID was stolen, so it’s very difficult to pinpoint the vulnerable access points for ID
theft.

So what’s the answer to all this? How do you prevent ID theft when oftentimes you don’t
even know it’s going on? There really isn’t one way to mitigate against ID theft; there are
several. You can take steps to prevent ID theft by shredding your documents, signing up for
various protection services, keeping watch over your credit, and visiting the FTC’s site on ID
theft (a list of the top, most recent scams can be found here:
https://www.consumer.ftc.gov/scam-alerts). Stay vigilant with your records and keep an eye
out for anything weird. Much like many medical conditions, catching it early is key.

Mobile-Based Attacks
Generally speaking, I despise made-up memorization terms solely for exam purposes, and I used
to look at this section in the same way. But recently my thoughts on the matter have changed,
since mobile computing, and subsequently mobile attacks, have become so ubiquitous in our
lives. Don’t get me wrong—I’m still no fan of memorization terms—but there’s no ignoring the
fact that social engineering not only can work on mobile devices, but one could argue it’s
becoming one of the primary attack vectors for it. For example, consider the “fool-proof” two-
factor authentication measures banks and other sites use now—log in on the PC, then have a
code texted to you to complete the process. With most of our security eyeballs trained on desktop
security, doesn’t the mobile side of it become the logical target?

For example, consider ZitMo (ZeuS-in-the-Mobile), a piece of malware that turned up on
Android phones all over the place. Attackers knew two-factor authentication was taking place, so
ZitMo was designed to capture the phone itself, ensuring the one-time passwords also belonged
to the bad guys. The target would log on to their bank account and see a message telling them to
download an application on their phone in order to receive security messages. Thinking they
were installing security, victims instead were installing a means for the attacker to have access to
their user credentials (sending the second authentication factor to both victim and attacker via
text).

Other malware types activated an SMS message from the victim’s phone that was sent to
request premium services. The attacker would then delete any return SMS messages

https://www.consumer.ftc.gov/scam-alerts

acknowledging the charges, ensuring the victim would have no idea this was going on until a
giant cell phone bill arrived in the mail. Change that just a tad to send messages to everyone in
the user’s contact list and cha-ching—now the attacker has several phones unknowingly
installing and charging to his services.

Mobile social engineering attacks are those that take advantage of mobile devices—in
particular, their applications and services—in order to carry out their end goal. Whereas phishing
and pop-ups fall under computer-based attacks, mobile-based attacks show up as an app or SMS
issue. EC-Council defines four categories of mobile-based social engineering attacks:

• Publishing malicious apps An attacker creates an app that looks like, acts like, and is
named similarly to a legitimate application.

• Repackaging legitimate apps An attacker takes a legitimate app from an app store and
modifies it to contain malware, posting it on a third-party app store for download. For
example, this once happened with a version of Angry Birds.

• Fake security applications This one actually starts with a victimized PC: the attacker
infects a PC with malware and then uploads a malicious app to an app store. Once the user
logs in, a malware pop-up advises them to download bank security software to their
phone. The user complies, thus infecting their mobile device.

• SMS An attacker sends SMS text messages crafted to appear as legitimate security
notifications, with a phone number provided. The user unwittingly calls the number and
provides sensitive data in response. Per EC-Council, this is known as “smishing.”

EXAM TIP You’ll most likely only see a couple of questions dealing with mobile social
engineering attacks. Just remember, during your exam, if the attack deals with a mobile
application or an SMS text, it’s mobile based.

I know you’re thinking that this was a very short section and, surely, I must have left
something out. While I could go on and on with mobile attack stories and malware examples
from Internet searches, I’ve scoured the ECC official courseware and, I promise you, this is all
you need for mobile social engineering. As often repeated throughout this book, you need to
keep abreast of this topic as each day goes by. Research mobile vulnerabilities and threats just as
you would desktop and network ones, and give mobile security the care and concern it deserves.

Physical Security
Physical security is perhaps one of the most overlooked areas in an overall security program. For
the most part, all the NIDS, HIDS, firewalls, honeypots, and security policies you put into place
are pointless if you give an attacker physical access to the machines. And you can kiss your job
goodbye if that access reaches into the network closet, where the routers and switches sit.

From a penetration test perspective, it’s no joyride either. Generally speaking, physical
security penetration is much more of a “high-risk” activity for the penetration tester than many of
the virtual methods we’re discussing. Think about it: if you’re sitting in a basement somewhere

firing binary bullets at a target, it’s much harder for them to actually figure out where you are,
much less to lay hands on you. Pass through a held-open door and wander around the campus
without a badge, and someone, eventually, will catch you. And sometimes that someone is
carrying a gun—and pointing it at you. I’ve even heard of a certain tech-editing pen test lead
who has literally had the dogs called out on him. When strong IT security measures are in place,
though, determined testers will move to the physical attacks to accomplish the goal.

And one final note on physical security as a whole, before we dive into what you’ll need for
your exam: as a practical matter, and probably one we can argue from the perspective of
Maslow’s Hierarchy of Needs, physical security penetration is often seen as far more personal
than cyber-penetration. For example, a bad guy can tell Company X that he has remotely taken
their plans and owns their servers, and the company will react with, “Ah, that’s too bad. We’ll
have to address that.” But if he calls and says he broke into the office at night, sat in the CEO’s
chair, and installed a keylogger on the machine, you’ll often see an apoplectic meltdown.
Hacking is far more about people than it is technology, and that’s never truer than when using
physical methods to enable cyber activities.

Physical Security 101
Physical security includes the plans, procedures, and steps taken to protect your assets from
deliberate or accidental events that could cause damage or loss. Normally people in our particular
subset of IT tend to think of locks and gates in physical security, but it also encompasses a whole
lot more. You can’t simply install good locks on your doors and ensure the wiring closet is
sealed off to claim victory in physical security; you’re also called to think about those events and
circumstances that may not be so obvious. These physical circumstances you need to protect
against can be natural, such as earthquakes and floods, or man-made, ranging from vandalism
and theft to outright terrorism. The entire physical security system needs to take it all into
account and provide measures to reduce or eliminate the risks involved.

Furthermore, physical security measures come down to three major components: physical,
technical, and operational. Physical measures include all the things you can touch, taste, smell,
or get shocked by. Concerned about someone accidentally (or purposefully) ramming their
vehicle through the front door? You may want to consider installing bollards across the front to
prevent attackers from taking advantage of the actual layout of the building and
parking/driveways. Other examples of physical controls include lighting, locks, fences, and
guards with Tasers or accompanied by angry German Shepherds. Technical measures are a little
more complicated. These are measures taken with technology in mind to protect explicitly at the
physical level. For example, authentication and permissions may not come across as physical
measures, but if you think about them within the context of smartcards and biometrics, it’s easy
to see how they should become technical measures for physical security. Operational measures
are the policies and procedures you set up to enforce a security-minded operation. For example,
background checks on employees, risk assessments on devices, and policies regarding key
management and storage would all be considered operational measures.

EXAM TIP Know the three major categories of physical security measures and be able to

identify examples of each.

To get you thinking about a physical security system and the measures you’ll need to take to
implement it, it’s probably helpful to start from the inside out and draw up ideas along the way.
For example, apply the thought process to this virtual room we’re standing in. Look over there at
the server room, and the wiring closet just outside. Aren’t there any number of physical measures
we’ll need to control for both? You bet there are.

Power concerns, the temperature of the room, static electricity, and the air quality itself are
just a few examples of things to think about. Dust can be a killer, believe me, and humidity is
really important, considering static electricity can be absolutely deadly to systems. Anti-static
mats and wrist straps should be something to implement if there are folks working on the
systems—along with humidity-control systems and grounding, they’ll help in combatting static
electricity. Along that line of thinking, maybe the ducts carrying air in and out need special
attention. Positive pressure (increasing air pressure inside the room so that it’s greater than that
outside the room) might mess up a few hairstyles, but will greatly reduce the number of
contaminants allowed in. And while we’re on the subject, what about the power to all this? Do
we have backup generators for all these systems? Is our air conditioning unit susceptible?
Someone knocking out our AC system could affect an easy denial of service on our entire
network, couldn’t they? What if they attack and trip the water sensors for the cooling systems
under the raised floor in our computer lab?

How about some technical measures to consider? Did we have to use a PIN and a proximity
badge to even get into the room? What about the authentication of the server and network
devices themselves? If we allow remote access to them, what kind of authentication measures are
in place? Are passwords used appropriately? Is there virtual separation—that is, a DMZ they
reside in—to protect against unauthorized access? Granted, these aren’t physical measures by
their own means (authentication might cut the mustard, but location on a subnet sure doesn’t),
but they’re included here simply to continue the thought process of examining the physical room.

Continuing our example here, let’s move around the room together and look at other physical
security concerns. What about the entryway itself? Is the door locked? If so, what is needed to
gain access to the room? Perhaps a key? If so, what kind of key and how hard is it to replicate?
In demonstrating a new physical security measure to consider—an operational one, this time—
who controls the keys, where are they located, and how are they managed? And what if we’re
using an RFID access card that processes all sorts of magic on the back side—like auto-
unlocking doors and such? Are we doing anything to protect against that being skimmed and
used against us? We’ve already covered enough information to employ at least two government
bureaucrats and we’re not even outside the room yet. You can see here, though, how the three
categories work together within an overall system.

NOTE You’ll often hear that security is “everyone’s responsibility.” Although this is
undoubtedly true, some people hold the responsibility a little more tightly than others. The
physical security officer (if one is employed), information security employees, and the CIO are

all accountable for the system’s security.

Another term you’ll need to be aware of is access controls. Access controls are physical
measures designed to prevent access to controlled areas. They include biometric controls,
identification/entry cards, door locks, and mantraps. Each of these is interesting in its own right.

Biometrics includes the measures taken for authentication that come from the “something you
are” concept. We’ve hit on these before, and I won’t belabor the point much here, but I just want
to restate the basics in regard to physical security. Biometrics can include fingerprint readers,
face scanners, retina scanners, and voice recognition (see Figure 12-3). The great thing behind
using biometrics to control access—whether physically or virtually—is that it’s difficult to fake a
biometric signature (such as a fingerprint). The bad side, though, is a related concept: because
the nature of biometrics is so specific, it’s easy for the system to read false negatives and reject a
legitimate user’s access request.

Figure 12-3 Biometrics

Death of the Password?
I’m probably safe in saying that almost everyone reading this book hates passwords. If you’re
like me, you have dozens of them, and on occasion you either forget one or lose it, prompting
a day’s worth of work ensuring everything is safely changed and backed up. Passwords just
don’t work; they create a false sense of security and seemingly cause more aggravation than a
sense of peace. A recent study showed that the 1000 most common passwords found are used
on more than 91 percent of all systems tested (www.passwordrandom.com/most-popular-
passwords). Want to know something even more disturbing? Almost 70 percent of those
studied use the same password on multiple sites.

Biometrics was supposed to be a new dawn in authentication, freeing us from password
insanity. The idea of “something you are” sounded fantastic, right up until the costs involved
made it prohibitive to use in day-to-day operation. Not to men-tion, the technology just isn’t
reliable enough for the average guy to use on his home PC. For example, I have a nice little
fingerprint scanner right here on my laptop that I never use because it was entirely unreliable

http://www.passwordrandom.com/most-popular-passwords

and unpredictable. So, where do we turn for the one true weapon that will kill off the
password? If “something I know” and “something I am” won’t work, what’s left?

One possible answer for password death may come in the form of “something you have,”
and one getting a lot of buzz lately has a really weird-sounding name. The Yubikey
(www.yubico.com) is a basic two-factor authentication token that works right over a standard
USB port. The idea is brilliant—every time it’s used, it generates a one-time password that
renders previously used passwords useless. So long as the user has the token and knows their
own access code, every login is fresh and secure; however, it doesn’t necessarily answer all
the ills. What happens if the token is stolen or lost? What happens if the user forgets their
code to access the key? Even worse, what if the user logs in and then leaves the token in the
machine?

We could go on and on, but the point is made: we’re still stuck with passwords. Biometrics
and tokens are making headway, but we’re still a long way off. The idea of one-time
passwords isn’t new and is making new strides, but it’s not time to start celebrating the
password’s death just yet. Between accessing the system itself and then figuring out how to
pass authentication credentials to the multiple and varied resources we try to access on a daily
basis, the death of the password may indeed be greatly exaggerated.

When it comes to measuring the effectiveness of a biometric authentication system, the FRR,
FAR, and CER are key areas of importance. False rejection rate (FRR) is the percentage of time
a biometric reader will deny access to a legitimate user. The percentage of time that an
unauthorized user is granted access by the system, known as false acceptance rate (FAR), is the
second major factor. These are usually graphed on a chart, and the intercepting mark, known as
crossover error rate (CER), becomes a ranking method to determine how well the system
functions overall. For example, if one fingerprint scanner had a CER of 4 and a second one had a
CER of 2, the second scanner would be a better, more accurate solution.

From the “something you have” authentication factor, identification and entry cards can be
anything from a simple photo ID to smartcards and magnetic swipe cards. Also, tokens can be
used to provide access remotely. Smartcards have a chip inside that can hold tons of information,
including identification certificates from a PKI system, to identify the user. Additionally, they
may also have RFID features to “broadcast” portions of the information for “near swipe” readers.
Tokens generally ensure at least a two-factor authentication method because you need the token
itself and a PIN you memorize to go along with it.

NOTE Here’s something to think about. If a user changes passwords every 30 days, they will
generate a new hash for Windows authentication, but if the biometric signature never changes,
neither will the hash. What about smartcard and PIN? I bet most users won’t bother to change
their PIN annually, much less every 30 days. Whether it’s passwords, smartcards, tokens, or
biometric signatures, they’re all just authentication mechanisms creating a hash. After that...well,

http://www.yubico.com

they don’t do anything.

The mantrap, designed as a pure physical access control, provides additional control and
screening at the door or access hallway to the controlled area. In the mantrap, two doors are used
to create a small space to hold a person until appropriate authentication has occurred. The user
enters through the first door, which must shut and lock before the second door can be cleared.
Once inside the enclosed room, which normally has clear walls, the user must authenticate
through some means—biometric, token with PIN, password, and so on—to open the second door
(Figure 12-4 shows one example from Hirsch Electronics). If authentication fails, the person is
trapped in the holding area until security can arrive and come to a conclusion.

Figure 12-4 Mantrap

Usually mantraps are monitored with video surveillance or guards, and from experience I can
tell you they can be quite intimidating. If you’re claustrophobic at all, there’s a certain amount of
palpable terror when the first door hisses shut behind you, and a mistyped PIN, failed fingerprint
recognition, or—in the case of the last one I was trapped in—a bad ID card chip will really get
your heart hammering. Add in a guard or two aiming a gun in your direction, and the ambiance
jumps to an entirely new level of terror.

A few final thoughts on setting up a physical security program are warranted here. The first is
a concept I believe anyone who has opened a book on security in the past 20 years is already
familiar with—layered defense. The “defense in depth” or “layered security” thought process
involves not relying on any single method of defense but, rather, stacking several layers between
the asset and the attacker. In the physical security realm, these are fairly easy to see: if your data
and servers are inside a building, stack layers to prevent the bad guys from getting in. Guards at
an exterior gate checking badges and a swipe card entry for the front door are two protections in
place before the bad guys are even in the building. Providing access control at each door with a
swipe card, or biometric measures, adds an additional layer. Once an attacker is inside the room,
technical controls can be used to prevent local logon. In short, layer your physical security
defenses just as you would your virtual ones—you may get some angry users along the way,

huffing and puffing about all they have to do just to get to work, but it’ll pay off in the long run.
Another thought to consider, as mentioned earlier, is that physical security should also be

concerned with those things you can’t really do much to prevent. No matter what protections and
defenses are in place, an F5 tornado doesn’t need an access card to get past the gate. Hurricanes,
floods, fires, and earthquakes are all natural events that could bring your system to its knees.
Protection against these types of events usually comes down to good planning and operational
controls. You can certainly construct a strong building and install fire-suppression systems;
however, they’re not going to prevent anything. In the event something catastrophic does
happen, you’ll be better off with solid disaster-recovery and contingency plans.

From a hacker’s perspective, the steps taken to defend against natural disasters aren’t
necessarily anything that will prevent or enhance a penetration test, but they are helpful to know.
For example, a fire-suppression system turning on or off isn’t necessarily going to assist in your
attack. However, knowing the systems are backed up daily and offline storage is at a poorly
secured warehouse across town could become useful. And if the fire alarm system results in
everyone leaving the building for an extended period of time, well...

Finally, there’s one more thought we should cover (more for your real-world career than for
your exam) that applies whether we’re discussing physical security or trying to educate a client
manager on prevention of social engineering. There are few truisms in life, but one is absolute:
hackers do not care that your company has a policy. Many a pen tester has stood there listening
to the client say, “That scenario simply won’t (or shouldn’t or couldn’t) happen because we have
a policy against it.” Two minutes later, after a server with a six-character password left on a
utility account has been hacked, it is evident the policy requiring ten-character passwords didn’t
scare off the attacker at all, and the client is left to wonder what happened to the policy. Policies
are great, and they should be in place. Just don’t count on them to actually prevent anything on
their own. After all, the attacker doesn’t work for you and couldn’t care less what you think.

Physical Security Hacks
Believe it or not, hacking is not restricted to computers, networking, and the virtual world—
there are physical security hacks you can learn, too. For example, most ele-vators have an
express mode that lets you override the selections of all the previous passengers, allowing you
to go straight to the floor you’re going to. By pressing the Door Close button and the button
for your destination floor at the same time, you’ll rocket right to your floor while all the other
passengers wonder what happened.

Others are more practical for the ethical hacker. Ever hear of the bump key, for instance? A
specially crafted bump key will work for all locks of the same type by providing a split
second of time to turn the cylinder. See, when the proper key is inserted into the lock, all of
the key pins and driver pins align along the “shear line,” allowing the cylinder to turn. When a
lock is “bumped,” a slight impact forces all of the driver pins in the lock, which keeps the key
pins in place. This separation only lasts a split second, but if you keep a slight force applied,
the cylinder will turn dur-ing the short separation time of the key and driver pins, and the lock
can be opened.

Other examples are easy to find. Some Master-brand locks can be picked using a simple
bobby pin and an electronic flosser, believe it or not. Combination locks can be easily picked
by looking for “sticking points” (apply a little pressure and turn the dial slowly—you’ll find
them) and mapping them out on charts you can find on the Internet. Heck, last I heard free

lock pick kits were being given away at Defcon, so there may not even be a lot of research
necessary on lock picking anymore.

What about physical security hacks in the organizational target? Maybe you can consider
raised floors and drop ceilings as an attack vector. If the walls between rooms aren’t properly
sealed (that is, they don’t go all the way to the ceiling and floor), you can bypass all security
in the building by just by crawling a little. And don’t overlook the beauty of an open lobby
manned by a busy or distracted recep-tionist. Many times you can just walk right in.

I could go on and on here, but you get the point. Sadly, many organizations do not, and
they overlook physical security in their overall protection schemes. As a matter of fact, it
seems even standards organizations and certification providers are falling into this trap.
(ISC)2 proved this out by recently taking physical security from its place of honor, with its
own domain in the CISSP material, and downgrading it to just a portion of another domain.
Personally, I think organizations, security professionals, and, yes, pen testers who ignore or
belittle its place in security are doomed to failure. Whichever side you’re on, it’s in your best
interest to give physi-cal security its proper place.

Chapter Review
Social engineering is the art of manipulating a person, or a group of people, into providing
information or a service they otherwise would never have given. Social engineers prey on
people’s natural desire to help one another, their tendency to listen to authority, and their trust of
offices and entities. ECC defines four phases of successful social engineering:

1. Research (dumpster dive, visit websites, tour the company, and so on).
2. Select the victim (identify frustrated employee or other promising targets).
3. Develop a relationship.
4. Exploit the relationship (collect sensitive information).

Social engineering is a nontechnical method of attacking systems, which means it’s not
limited to people with technical know-how. EC-Council defines five main reasons and four
factors that allow social engineering to happen. Human nature (to trust others), ignorance of
social engineering efforts, fear (of consequences of not providing the requested information),
greed (promised gain for providing requested information), and a sense of moral obligation are
all reasons people fall victim to social engineering attacks. As for the factors that allow these
attacks to succeed, insufficient training, unregulated information (or physical) access, complex
organizational structure, and lack of security policies all play roles.

All social engineering attacks fall into one of three categories: human based, computer based,
or mobile based. Human-based social engineering uses interaction in conversation or other
circumstances between people to gather useful information.

Dumpster diving is digging through the trash for useful information. Although technically a
physical security issue, dumpster diving is covered as a social engineering topic per EC-Council.
Impersonation is a name given to a huge swath of attack vectors. Basically the social engineer
pretends to be someone or something he or she is not, and that someone or something—like, say,
an employee, a valid user, a repairman, an executive, a help desk person, or an IT security expert

—is someone or something the target either respects, fears, or trusts. Pretending to be someone
you’re not can result in physical access to restricted areas (providing further opportunities for
attacks), not to mention any sensitive information (including the credentials) your target feels
you have a need and right to know. Using a phone during a social engineering effort is known as
“vishing.”

Shoulder surfing and eavesdropping are other valuable human-based social engineering
methods. An attacker taking part in shoulder surfing simply looks over the shoulder of a user and
watches them log in, access sensitive data, or provide valuable steps in authentication. This can
also be done “long distance,” using vision-enhancing devices like telescopes and binoculars.

Tailgating occurs when an attacker has a fake badge and simply follows an authorized person
through the opened security door. Piggybacking is a little different in that the attacker doesn’t
have a badge but asks for someone to let her in anyway. If you see an exam question listing both
tailgating and piggybacking, the difference between the two comes down to the presence of a
fake ID badge (tailgaters have them, piggybackers don’t). On questions where they both do not
appear as answers, the two are used interchangeably.

Reverse social engineering is when the attacker poses as some form of authority or technical
support and sets up a scenario whereby the user feels he must dial in for support. Potential targets
for social engineering are referred to as “Rebecca” or “Jessica.” When you’re communicating
with other attackers, the terms can provide information on whom to target—for example,
“Rebecca, the receptionist, was very pleasant and easy to work with.” Disgruntled employees
and insider attacks present the greatest risk to an organization.

Computer-based attacks are those attacks carried out with the use of a computer. Attacks
include specially crafted pop-up windows, hoax e-mails, chain letters, instant messaging, spam,
and phishing. Social networking and spoofing sites or access points also belong in the mix.

Most likely the simplest and most common method of computer-based social engineering is
known as phishing. A phishing attack involves crafting an e-mail that appears legitimate but in
fact contains links to fake websites or to download malicious content. Another version of this
attack is known as spear phishing. Whereas a phishing attack usually involves a mass-mailing of
a crafted e-mail in hopes of snagging some unsuspecting reader, spear phishing is a targeted
attack against an individual or a small group of individuals within an organization. Spear
phishing usually is a result of a little reconnaissance work that has churned up some useful
information. Options that can help mitigate against phishing include the Netcraft Toolbar and the
PhishTank Toolbar.

Setting up multiple layers of defense, including change-management procedures and strong
authentication measures, is a good start in social engineering mitigation. Other physical and
technical controls can also be set up, but the only real defense against social engineering is user
education.

Mobile social engineering attacks are those that take advantage of mobile devices—that is,
applications or services in mobile devices—in order to carry out their end goal. ZitMo (ZeuS-in-
the-Mobile) is a piece of malware for Android phones that exploits an already-owned PC to take
control of a phone in order to steal credentials and two-factor codes. EC-Council defines four
categories of mobile-based social engineering attacks: publishing malicious apps, repackaging
legitimate apps, fake security applications, and SMS (per EC-Council, this is known as
“smishing”).

Physical security is perhaps one of the most overlooked areas in an overall security program.
Physical security includes the plans, procedures, and steps taken to protect your assets from

deliberate or accidental events that could cause damage or loss. Physical security measures come
down to three major components: physical, technical, and operational. Physical measures include
all the things you can touch, taste, smell, or get shocked by. Technical measures are measures
taken with technology in mind to protect explicitly at the physical level. Operational measures
are the policies and procedures you set up to enforce a security-minded operation. Access
controls are physical measures designed to prevent access to controlled areas. They include
biometric controls, identification/entry cards, door locks, and mantraps. FRR, FAR, and CER are
important biometric measurements. False rejection rate (FRR) is the percentage of time a
biometric reader will deny access to a legitimate user. The percentage of time that an
unauthorized user is granted access by the system, known as false acceptance rate (FAR), is the
second major factor. These are usually graphed on a chart, and the intercepting mark, known as
crossover error rate (CER), becomes a ranking method to determine how well the system
functions overall.

The mantrap, designed as a pure physical access control, provides additional control and
screening at the door or access hallway to the controlled area. In the mantrap, two doors are used
to create a small space to hold a person until appropriate authentication has occurred. The user
enters through the first door, which must shut and lock before the second door can be cleared.
Once inside the enclosed room, which normally has clear walls, the user must authenticate
through some means—biometric, token with PIN, password, and so on—to open the second
door.

Questions
1. An attacker creates a fake ID badge and waits next to an entry door to a secured facility.

An authorized user swipes a key card and opens the door. The attacker follows the user
inside. Which social engineering attack is in play here?
A. Piggybacking
B. Tailgating
C. Phishing
D. Shoulder surfing

2. An attacker has physical access to a building and wants to attain access credentials to the
network using nontechnical means. Which of the following social engineering attacks is
the best option?
A. Tailgating
B. Piggybacking
C. Shoulder surfing
D. Sniffing

3. Bob decides to employ social engineering during part of his pen test. He sends an
unsolicited e-mail to several users on the network advising them of potential network
problems and provides a phone number to call. Later that day, Bob performs a DoS on a
network segment and then receives phone calls from users asking for assistance. Which
social engineering practice is in play here?
A. Phishing

B. Impersonation
C. Technical support
D. Reverse social engineering

4. Phishing, pop-ups, and IRC channel use are all examples of which type of social
engineering attack?
A. Human based
B. Computer based
C. Technical
D. Physical

5. An attacker performs a whois search against a target organization and discovers the
technical point of contact (POC) and site ownership e-mail addresses. He then crafts an e-
mail to the owner from the technical POC, with instructions to click a link to see web
statistics for the site. Instead, the link goes to a fake site where credentials are stolen.
Which attack has taken place?
A. Phishing
B. Man in the middle
C. Spear phishing
D. Human based

6. Which threat presents the highest risk to a target network or resource?
A. Script kiddies
B. Phishing
C. A disgruntled employee
D. A white-hat attacker

7. Which of the following is not a method used to control or mitigate against static electricity
in a computer room?
A. Positive pressure
B. Proper electrical grounding
C. Anti-static wrist straps
D. A humidity control system

8. Phishing e-mail attacks have caused severe harm to a company. The security office decides
to provide training to all users in phishing prevention. Which of the following are true
statements regarding identification of phishing attempts? (Choose all that apply.)
A. Ensure e-mail is from a trusted, legitimate e-mail address source.
B. Verify spelling and grammar is correct.
C. Verify all links before clicking them.
D. Ensure the last line includes a known salutation and copyright entry (if required).

9. Lighting, locks, fences, and guards are all examples of __________ measures within
physical security.
A. physical

B. technical
C. operational
D. exterior

10. A man receives a text message on his phone purporting to be from Technical Services.
The text advises of a security breach and provides a web link and phone number to follow
up on. When the man calls the number, he turns over sensitive information. Which social
engineering attack was this?
A. Phishing
B. Vishing
C. Smishing
D. Man in the middle

11. Background checks on employees, risk assessments on devices, and policies regarding key
management and storage are examples of __________ measures within physical security.
A. physical
B. technical
C. operational
D. None of the above

12. Your organization installs mantraps in the entranceway. Which of the following attacks is
it attempting to protect against?
A. Shoulder surfing
B. Tailgating
C. Dumpster diving
D. Eavesdropping

Answers
1. B. In tailgating, the attacker holds a fake entry badge of some sort and follows an

authorized user inside.
2. C. Because he is already inside (thus rendering tailgating and piggybacking pointless), the

attacker could employ shoulder surfing to gain the access credentials of a user.
3. D. Reverse social engineering occurs when the attacker uses marketing, sabotage, and

support to gain access credentials and other information.
4. B. Computer-based social engineering attacks include any measures using computers and

technology.
5. C. Spear phishing occurs when the e-mail is being sent to a specific audience, even if that

audience is one person. In this example, the attacker used recon information to craft an e-
mail designed to be more realistic to the intended victim and therefore more successful.

6. C. Everyone recognizes insider threats as the worst type of threat, and a disgruntled
employee on the inside is the single biggest threat for security professionals to plan for and
deal with.

7. A. Positive pressure will do wonderful things to keep dust and other contaminants out of
the room, but on its own it does nothing against static electricity.

8. A, B, C. Phishing e-mails can be spotted by who they are from, who they are addressed to,
spelling and grammar errors, and unknown or malicious embedded links.

9. A. Physical security controls fall into three categories: physical, technical, and operational.
Physical measures include lighting, fences, and guards.

10. C. The term smishing refers to the use of text messages to socially engineer mobile device
users. By definition it is a mobile-based social engineering attack. As an aside, it also
sounds like something a five-year-old would say about killing a bug.

11. C. Operational measures are the policies and procedures you set up to enforce a security-
minded operation.

12. B. Mantraps are specifically designed to prevent tailgating.

CHAPTER 13
The Pen Test: Putting It All Together

In this chapter, you will
• Describe penetration testing, security assessments, and risk management
• Define automatic and manual testing
• List the pen test methodology and deliverables

I’m not sure I’ve mentioned this before, but did you guys know I worked in a body shop for most
of my teenage years? It was an awesome experience taking in cars that had been involved in an
accident or subjected to the horrors of rust and the elements, and returning them back as brand-
new, shiny, beautiful works of art. My boss, Rob, was an awesome guy to work for and taught
me more about cars and bodywork than I ever even knew existed. I learned tons about
automotive bodywork, chemistry, air quality, and paint.

The process for these cars, regardless of what had happened to them, was roughly the same.
After Rob had prepared an estimate and the owner agreed for us to do the work, we’d wash
everything down as best we could (grease, oil, and other contaminants don’t mix well with paint)
and then move the car into the shop. Next, we’d take everything off the car we could possibly
take off—bumpers, chrome, decals, mirrors…everything—around the area being worked on (if it
was a full paint job, it all came off). Precautions were taken to protect areas that weren’t being
worked on or that couldn’t (shouldn’t) be touched. We then moved to my favorite part—the
rough work on the body. Sandblasting, welding, pounding, and shaping metal with big hammers
and hydraulic machinery—all of it so manly, I’m sitting here grunting like Tim “The Tool Man”
Taylor in fond memory.

All this would be followed by mid work: things like Bondo application (in very small
quantities and only where appropriate), sanding, and prepping. This work was delicate in nature
because it had to be perfect before any paint was applied. A small dip in the sanding wouldn’t
seem to be an issue until gloss paint over it made it appear to be a valley of despair and shoddy
workmanship later, and a missed scratch—even in an area we weren’t focused on—would look
ghastly with paint sprayed over it. After this, we sprayed a solid coat of primer and wet sanded it
down to perfection. A drying session and a blowout of the entire paint room (to remove all dirt,
dust, and debris) followed, with a final wipe down (for oils and such) and inspection before the
paint was applied.

Finally, when the painting was done and cured, all the stuff we took off had to be put back on,
and the car would get detailed. But, just before this, Rob would make a final inspection. He
covered every square inch of the car, much like a detective at a crime scene, looking for anything
we’d missed—anything that wasn’t absolutely perfect. When I was learning the trade, he’d stop
and point out flaws, explaining to me exactly what we’d missed and how we’d fix it. And it
always surprised me how, after all that attention to detail and process beforehand, there were

always a few things I missed and a few things I could’ve gotten better.
And so, dear reader, you find yourself looking at the nearly finished virtual body job we’ve

been working on thus far. We’ve done pretty good work, I think, and have a great product here to
be proud of. But if we take a few minutes and look back at everything, maybe we can find a few
things we left out, or maybe some things that just need a bit more explanation to make it all fall
into place. Hopefully nothing is really bad, because I’d hate for you to hear Rob yelling about
shoddy craftsmanship.

We’ve covered everything that should be relevant for your upcoming exam, a few things that
might make you a better ethical hacker, and even some stuff you might’ve found just plain cool.
I hope what’s covered here results in your employment as an ethical hacker, where you’ll be
doing good work for the betterment of your society. Sure, that may sound corny to some of you,
but I truly believe it. And I know that if you believe your profession is making the world a better
place, the pride you have in it will result in you becoming better and better at it each and every
day. Before too long, you’ll look back on this little book like one of those English 101 books
from college and wonder at how far you’ve come. So, let’s take just a few paragraphs here and
look back via a discussion on the penetration test. The pen test is where you’ll put into practice
what you’ve read in a book and what you’ve learned on your own through practice and
experience. I promise this won’t take long; it’s a short chapter, and I’m pretty sure you deserve a
break.

Methodology and Steps
Much has been made so far in this book about following steps and taking a logical approach to
hacking. I can honestly say that most of that is purely for your exam—for your “book
knowledge,” if you will. Hackers will take advantage of any opportunity as it presents itself, and
they’ll always look for the easy way in. Why bother running through all the steps of a hacking
attack on a machine that’s either too secured to allow a breach (easily and within a decent
timeframe) or doesn’t present a pot of gold at the end of the attack rainbow? I think too many
people have the idea that ethical hacking/pen testing is a cookie-cutter, one-size-fits-all
operation. In reality, each situation, and each client, is different. What works for one client may
not work for another, and tests and deliverables that make one client happy might result in a
lawsuit from another.

However, all that said, methodology isn’t all bad, especially when you’re first starting out. A
methodology, when not held too rigidly in a book-smart, absolutely annoying, college-graduate
“I KNOW EVERYTHING” manner, can give you a good guide and serve as a reminder to cover
everything. Heck, EC-Council isn’t even alone in suggesting one—SANS recommends much the
same methodology (https://www.sans.org/reading-room/whitepapers/auditing/conducting-
penetration-test-organization-67). The idea is to make sure you cover everything—which is
exactly what we’re going to do here. Buckle up, and let’s ride.

The Security Assessments
Every organization on the planet that has any concern whatsoever for the security of its resources
must perform various security assessments, and some don’t have a choice, if they need to comply
with FISMA or other various government standards (see Figure 13-1). In CEH parlance, a
security assessment is any test that is performed in order to assess the level of security on a

https://www.sans.org/reading-room/whitepapers/auditing/conducting-penetration-test-organization-67

network or system. The security assessment can belong to one of three categories: a security
audit, a vulnerability assessment, or a penetration test.

Figure 13-1 NIST and FISMA logos

A security audit is policy and procedure focused. It tests whether the organization is following
specific standards and policies they have in place. After all, what good is having the policy if no
one in the organization knows about it or follows what it says? A vulnerability assessment scans
and tests a system or network for existing vulnerabilities but does not intentionally exploit any of
them. This vulnerability assessment is designed to uncover potential security holes in the system
and report them to the client for their action. This assessment does not fix or patch
vulnerabilities, nor does it exploit them—it simply points them out for the client’s benefit.

NOTE It’s a good idea to keep in mind the difficulty of the “find but don’t test” theory of
vulnerability assessments. For instance, say you believe there might be a SQL injection
vulnerability in a website. But to determine whether it’s vulnerable, you have to attempt to insert
SQL—which is pen testing. Often, the only way to verify the existence of a vulnerability must be
to test for it.

A penetration test, on the other hand, not only looks for vulnerabilities in the system but
actively seeks to exploit them. The idea is to show the potential consequences of a hacker
breaking in through unpatched vulnerabilities. Pen tests are carried out by highly skilled
individuals pursuant to an agreement signed before testing begins, and it’s paramount you
understand that concept. Nothing happens before you have a signed, sealed agreement in place.
Nothing. This agreement should spell out the limitations, constraints, and liabilities between the
organization and the penetration test team, and is designed to maximize the effectiveness of the
test itself while minimizing operational impact.

Although most people automatically think of this as a “get out of jail free” card, it’s much
more than that. You’ll need to cover everything you can think of and a lot of things you haven’t.
For example, you might agree up front that no denial-of-service attacks are to be performed

during the test, but what happens if your port scanner accidentally brings down a server? Will
you be liable for damages? In many cases, a separate indemnity form releasing you from
financial liability is also necessary.

NOTE While we’re talking about indemnity forms and such, keep in mind that in the world of
cloud computing, what you believe to be under your control and authority simply might not be.

Defining the project scope will help to determine whether the test is a comprehensive
examination of the organization’s security posture or a targeted test of a single subnet/system.
You may also find a need to outsource various efforts and services. In that case, your service
level agreements (SLAs) need to be iron-clad in defining your responsibility in regard to your
consultant’s actions. In the event of something catastrophic or some serious, unplanned
disruption of services, the SLA spells out who is responsible for taking action to correct the
situation. And don’t forget the nondisclosure terms: most clients don’t want their dirty laundry
aired and are taking a large risk in agreeing to the test in the first place.

If you’d like to see a few examples of pen test agreement paperwork, just do some Google
searching. SANS has some great information available, and many pen test providers have basics
about their agreements available. Keep in mind you won’t find any single agreement that
addresses everything—you’ll have to figure that out on your own. Just be sure to do everything
up front, before you start testing.

Here, Take the Bash Door
Some vulnerabilities are just run-of-the-mill things you expect. For instance, I fully expect
Adobe, Java, and <insert Microsoft product here> vulnerabilities on a recurring basis. Not
necessarily because there’s anything bad with any of them—they’re just used a lot, and by a
lot of people. Therefore, it makes sense that bad guys would spend their time banging away at
them. But occasionally one comes along that merits special attention, and Shellshock
definitely fits the bill—not only because it’s unique, but because you’ll definitely see it
referenced on your exam somewhere.

Shellshock (a.k.a. Bashdoor, Bash Bug, and CVE-2014-6271) is a security vulnerability
discovered in September of 2014 that affected the Unix Bash shell found in most versions of
Linux and Unix operating systems, including Mac OS X. The Bash shell acts as a command
language interpreter, allowing users to type commands into a text-based window for the
operating system to run. The problem began because Bash could also be used to run
commands passed to it by applications, and if a command is entered to set an environment
variable (a dynamic, named value affecting the way a process is run), then an attacker could
tack on malicious code that would run when the variable was received.

Symantec has a pretty good write-up on Shellshock
(www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-
vulnerability) showing a quick and easy-to-understand example. Suppose, for example, the

http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability

following command (BADTHING and GOODTHING are used for clarity) was entered into a
vulnerable Bash:

The first section is a command to set an environmental variable before the Bash execution.
The second portion (echo BADTHING') shows the tacked-on arbitrary command an attacker
can inject before the bash command begins. In this case, it’s a simple echo command, but
obviously it could be far, far worse. Attackers could dump password files, upload malware, or
enact any number of other disruptive actions (not to mention, once inside, they could pivot to
attack other systems).

In addition to web servers, some Linux-based routers with a CGI-enabled web interface
were vulnerable to a CGI version of the exploit. (Imagine the havoc sending bad commands to
a router could cause for an organization.) E-mail servers and even DHCP servers and clients
were shown to have attack vectors exploiting this. Mac OS X desktop systems were also
potentially vulnerable, assuming an attacker had valid credentials on an SSH session. Why a
hacker who already had credentials to a system would bother is beyond me, but hey, I just
report—you decide.

Within days of discovery, multiple design flaws were examined and several related
vulnerabilities were discovered (CVE-2014-6277, CVE-2014-6278, CVE-2014-7169, CVE-
2014-7186, and CVE-2014-7187). Thankfully, the initial discovery and all follow-ups were
remediated by patches released almost immediately.

Speaking of pen tests overall, there are basically two types of penetration tests defined by EC-
Council: external and internal. An external assessment analyzes publicly available information
and conducts network scanning, enumeration, and testing from the network perimeter, usually
from the Internet. An internal assessment, as you might imagine, is performed from within the
organization, from various network access points. Obviously, both could be part of one overall
assessment, but you get the idea.

We’ve covered black-box, white-box, and gray-box testing already, so I won’t beat you over
the head with these again. However, just to recap, black-box testing occurs when the attacker has
no prior knowledge of the infrastructure at all. This testing takes the longest to accomplish and
simulates a true outside hacker. White-box testing simulates an internal user who has complete
knowledge of the company’s infrastructure. Gray-box testing provides limited information on the
infrastructure. Sometimes gray-box testing is born out of a black-box test that determines more
knowledge is needed.

NOTE Pen testing can also be defined by what your customer knows. Announced testing
means the IT security staff is made aware of what testing you’re providing and when it will
occur. Unannounced testing occurs without the knowledge of the IT security staff and is known

only by the management staff who organized and ordered the assessment. It is also the only way
to truly know where the enterprise stands during operations. Additionally, unannounced testing
should always come with detailed processes that are coordinated with a trusted agent. It is
normally very bad to have a company’s entire IT department tasked with stopping an incident
that is really just an authorized pen test.

While we’re on the subject of colors, EC-Council wants you to know your test team has a
specific color designation, depending on which side of the fence you’re working on during a war
game. While you’re probably already aware of the “capture the flag” type contests you’ve no
doubt seen at Black Hat, Defcon, SANS, or any other security event, there is a simulation that’s a
step above that. Suppose you wanted the full experience—not only to see what the bad guys
attacking you are doing but also how a security team responds. The military does it all the time,
simulating an attacking force and having another group defend. In the virtual world, the same
thing can be played out.

In this war game scenario, the two colors taking sides are red and blue. If you’re on a team
simulating an attacking force, you’re considered to be red. The red team is the offense-minded
group, simulating the bad guys in the world, actively attacking and exploiting everything they
can find in your environment. In a traditional war game scenario, the red team is attacking black-
box style, given little to no information to start things off. The blue team, on the other hand, is
defensive in nature. They’re not out attacking things—rather, they’re focused on shoring up
defenses and making things safe. Unlike the red teams, since blue teams are responsible for
defense against the bad guys, they usually operate with full knowledge of the internal
environment.

EXAM TIP I know. I get it. Your pen test group is a red team whether they are participating in
a war game or just doing a pen test, and red team and red teaming have somewhat different
connotations in the real world. For your exam, though, remember red = attack and no knowledge,
blue = defense and white-box knowledge.

Finally, in this (pardon the monochromatic corollary here) black-and-white color-coded pen
test teaming world, there are shades of gray. Or, in this case, shades of purple. The so-called
purple team (terminology gaining wild popularity in the real world but may not be on your exam,
yet) is dedicated to fulfilling both worlds. While a red team would perform an adversarial
assessment and a blue team would be purely in a defensive posture, a purple team might perform
a “cooperative vulnerability and penetration assessment” involving both sides in an effort to not
only attack and identify issues, but to repair and advise along the way. The goal is to assist
defenders and to do so with whatever information is available; in other words, the difference
between “blue” and “red” in this scenario is in the cooperative versus adversarial nature: red is
there to be the bad guys—to do what they would do, to look for the impacts they would want to
have, and to test the defenses/responses—whereas blue is there to help.

Pen Tests Gone Wild

One of the recurring themes in this book has been the clear delineation between the bad guy
hackers of the world and us, the ethical hackers. While the bad guys will attack anything and
everything whenever they feel like it, for whatever reason they deem appropriate, ethical
hackers don’t do any testing (attacking) without permis-sion. Ever. And we spend lots and
lots of time ironing out approval documentation and agreements so that everything is covered
and everyone involved knows exactly how far, and how long, an attack test will run. But even
with all this time spent making sure everything is in a nice tidy bundle before we begin,
problems can still occur. And sometimes they’re just funny—at least in review, anyway.

Take the case of a pen test gone wild in Tulsa, Oklahoma, back in 2012. It seems the IT
staff for the city arranged for a pen test and went through all the planning and documenting
necessary to get things started. They scheduled times, knew who was and was not going to be
involved, drew up scope agreements, and took care of the endless minutiae involved in setting
things up. Meetings were held, agreements were signed, lawyers were paid, and finally it was
time to proceed with the test.

A funny thing occurred, though, soon after testing began. It seems the firm the city hired
used a method in its testing the city wasn’t aware of or prepared for, and, as a result, the CIO
decided the city was under attack. Servers were turned off, IT personnel were scrambling to
and fro, and more than $25,000 was spent on additional security consulting services during
the test event. And it wasn’t until after nearly 90,000 notification letters were sent to
individuals warning them about the potential loss of personal data that city officials began
asking the question, “Hey, weren’t we supposed to be going through a pen test? Maybe that’s
what all this is about…” You can read about it yourself at www.esecurityplanet.com/network-
security/city-of-tulsa-cyber-attack-was-penetration-test-not-hack.html.

Virtually every organization that has ever performed a pen test has stories like this. Maybe
they’re not so grand in scale or as hilarious in nature, but they’re just as unplanned and just as
crazy. Pen testers have been accused of data theft, fraud, and even arrested for performing
duties they thought were within the scope of their agreement. Some of the tales are really
funny, and some border on heartbreaking, but they all reinforce the point: agreement in scope
and good communication before the test are imperative. Pen testing, by its nature, can cause
heartache, jealously, and downright panic in personnel watching the wires. So, be careful, and
make sure your preparation work is as important as your testing.

Testing can also be further broken down according to the means by which it is accomplished.
Automated testing is a point-and-shoot effort with an all-inclusive toolset such as Core Impact.
This could be viewed as a means to save time and money by the client’s management, but it
simply cannot touch a test performed by security professionals. Automated tools can provide a
lot of genuinely good information but are also susceptible to false positives and false negatives,
and they don’t necessarily care what your agreed-upon scope says is your stopping point. A short
list of some automated tools is presented here:

• Codenomicon This is a toolkit for automated penetration testing that, according to the
provider, eliminates unnecessary ad hoc manual testing: “The required expertise is built
into the tools, making efficient penetration testing available for all.” Codenomicon’s
penetration testing toolkit utilizes a unique “fuzz testing” technique that learns the tested
system automatically. This is designed to help penetration testers enter new domains, such

http://www.esecurityplanet.com/network-security/city-of-tulsa-cyber-attack-was-penetration-test-not-hack.html

as VoIP assessment, or to start testing industrial automation solutions and wireless
technologies.

• Core Impact Pro Probably the best-known all-inclusive automated testing framework,
Core Impact Pro “takes security testing to the next level by safely replicating a broad
range of threats to the organization’s sensitive data and mission-critical infrastructure—
providing extensive visibility into the cause, effect and prevention of data breaches” (per
the company’s site). Core Impact, shown in Figure 13-2, tests everything from web
applications and individual systems to network devices and wireless (a vulnerability
management function is found in the company’s Core Insight product). You can find
multiple videos online showing this tool in action, or you can simply visit Core Security’s
website and see what the company has cooked up for you
(www.coresecurity.com/resources/videos). You might also want to visit your bank before
looking into this tool—at $35K for a single annual license, it’s a pricey endeavor.

Figure 13-2 Core Impact

• Metasploit Mentioned several times already in this book, Metasploit
(www.metasploit.com) is a framework for developing and executing exploit code against
a remote target machine (the pay-for version is called Metasploit Pro and offers much
more functionality). Metasploit offers a module called Autopwn that can automate the
exploitation phase of a penetration test (after opening the console, type msf> use
auxiliary/server/browser_autopwn). Autopwn can attempt to fingerprint a target

http://www.coresecurity.com/resources/videos
http://www.metasploit.com

browser and follow up with every exploit it believes will work against it. Although this is
simple and easy, it can be quite noisy and can even crash the target’s browser, system, or
services. The Rapid7 community has tons of assistance and videos on this (one example is
found at https://community.rapid7.com/community/metasploit/blog/2015/07/15/the-new-
metasploit-browser-autopwn-strikes-faster-and-smarter--part-1).

• CANVAS From Immunity Security (https://www.immunityinc.com/products/canvas/),
CANVAS “makes available hundreds of exploits, an automated exploitation system, and a
comprehensive, reliable exploit development framework to penetration testers and
security professionals” (per the company’s website). Additionally, the company claims
CANVAS’s Reference Implementation (CRI) is “the industry’s first open platform for
IDS and IPS testing.”

Manual testing is still, in my humble opinion, the best choice for a true security assessment. It
requires good planning, design, and scheduling, and it provides the best benefit to the client.
Although automated testing definitely has a role in the overall security game, many times it’s the
ingenuity, drive, and creativeness of the hacker that results in a true test of the security
safeguards.

NOTE Cost is always an important factor for an organization in deciding upon a pen test. But
as Forbes magazine points out, you do get what you pay for
(www.forbes.com/sites/ericbasu/2013/10/13/what-is-a-penetration-test-and-why-would-i-need-
one-for-my-company/). The real-world threat counts the most, or should, when determining
between a comprehensive test and a lightweight one. If you skimp up front but fall victim to an
attack later, the cost savings won’t do much to save reputation, pride, or in some cases a job.

As for the actual test, EC-Council and many others have divided the actions taken into three
main phases. In the pre-attack phase, you’ll be performing all the reconnaissance and data-
gathering efforts we discussed earlier in this book. Competitive intelligence, identifying network
ranges, checking network filters for open ports, and so on, are all carried out here. Also, running
whois, DNS enumeration, finding the network IP address range, and Nmap network scanning all
occur here. Other tasks you might consider include, but aren’t limited to, testing proxy servers,
checking for default firewall or other network-filtering device installations or configurations, and
looking at any remote login allowances.

In the attack phase, you’ll be attempting to penetrate the network perimeter, acquire your
targets, execute attacks, and elevate privileges. Getting past the perimeter might take into
account things such as verifying ACLs by crafting packets and checking to see whether you can
use any covert tunnels inside the organization. On the web side, you’ll be trying XSS, buffer
overflows, and SQL injections. After acquiring specific targets, you’ll move into password
cracking and privilege escalation, using a variety of methods we’ve covered here. Finally, once
you’ve gained access, it’s time to execute your attack code.

Finally, the post-attack phase consists of two major steps. First, there’s an awful lot of

https://community.rapid7.com/community/metasploit/blog/2015/07/15/the-new-metasploit-browser-autopwn-strikes-faster-and-smarter--part-1
https://www.immunityinc.com/products/canvas/
http://www.forbes.com/sites/ericbasu/2013/10/13/what-is-a-penetration-test-and-why-would-i-need-one-for-my-company/

cleanup to be done. Anything that has been uploaded to the organization’s systems in the way of
files or folders needs to be removed. Additionally, any tools, malware, backdoors, or other attack
software loaded on client systems need to be taken off. And don’t forget the registry—any
changes made there need to be reset to the original settings. The idea is to return everything to
the pre-test state. Remember, not only are you not supposed to fix anything you find, but you’re
also not supposed to create more vulnerabilities for the client to deal with.

And the second step in the post-attack phase? Well, that deals with the deliverables, which
we’ll discuss in the next section. Before we do, though, we need to cover a couple other aspects
of pen testing you may not have thought of. Remembering these steps and guidelines are great,
but you may also be required to apply them, and some common sense, in a scenario on your
exam. For example, it’s easy to remember you certainly wouldn’t do anything before you get an
agreement and scope in place, but you might need to think about what you’d want to do or say
before beginning the attack. If you’re asked to test for weak passwords, should you tell every
user about it beforehand so they have a chance to fix their own before you test? Probably not.
What about if you cause the IDS to go bonkers and alert? Should you stop your test and inform
them? Probably so (continuing to test may interfere with defending against an actual attack), but
it really depends on how far your agreement allows you to go.

And what happens if you find something during a test that shouldn’t be there? When do you
contact the authorities, and do you do so with or without consent of the target organization? For
example, suppose you are performing a pen test on a company’s environment and you discover a
repository of pirated music and videos. Is it your job to report that? What if it’s social security
numbers and PII in a location that’s not protected? How about illegal copies of software? In all
of these scenarios, the answer is definitely no. Even though pirated music, movies, and software
are illegal, you have no means to determine their source, nor any means at your disposal to
determine if they were acquired illegally.

What if what you find, though, does indicate a crime? For example, what if you discover child
porn on a machine, or an e-mail actively selling PII and credit card information? In both cases
there seems to be no doubt a crime has occurred: U.S. federal law prohibits the possession of
child pornography, and obtaining and using PII in a way that involves fraud or deception is also
prohibited by law. However, each situation is unique, and your team should have procedures in
place to deal with it—procedures spelled out specifically by the agreement addressing suspected
criminal findings.

NOTE There’s an important point here for you on anything illegal you might stumble across:
do not copy any of it to your own devices under any circumstances. In the case of child porn,
possession itself is a crime. Again, this job puts you in strange places, and you had better have a
process defined to handle everything from pirated software to porn to illegal activity.

Failure to report a crime can oftentimes be considered a crime itself, but if you decide to play
Inspector Clouseau and wind up reporting something on your own, you’re opening yourself to a
world of hurt. Suppose you find something you think is criminal in nature and report it, only to

see a court say it’s nothing and throw it out. Now the company will sue you for loss, and you can
be charged with a variety of offenses. The best answer is to remember you’re not an officer of
the law and it’s not your job to do their work for them. Follow what your team guidance is
(somewhere along the line there should be follow-up to ensure appropriate law enforcement is
involved) and stay within your agreements.

What’s Artificial About Intelligence?
Artificial intelligence (AI) has long been the stuff of science fiction. But the sentient robots
warning Will Robinson of danger or assisting Captain Piccard in going where no man has
gone before don’t seem all that far off anymore. We have versions of AI everywhere—from
Siri in our iPhone to the intelligent braking and driving systems in our cars. Heck, we even
have toilets now that can keep track of our health and make recommendations to our
refrigerators on what to add to shopping lists. But in our ceaseless quest to make life better for
human beings on this planet, are we—to borrow a phrase from Yeats—slouching towards
Gomorrah? Are we laying the groundwork for our own demise? I mean, has anyone seen The
Terminator? Doesn’t everyone know what happens when Skynet becomes self-aware?

U.S. defense expert Jay Tuck defined AI recently as “software that writes itself,” and in
many ways he’s right. For example, did you hear about Facebook’s foray into the AI world?
They wound up unplugging the system because the two “robots” began speaking to each other
in a new language. Basically they determined English was too slow for them and they had a
better way. It took some time for their human masters to figure out it wasn’t gibberish they
were sending to one another—but a new means of communication they developed on their
own.

In a separate case (www.digitaljournal.com/tech-and-science/technology/a-step-closer-to-
skynet-ai-invents-a-language-humans-can-t-read/article/498142), Google attempted to
improve its Translate service by adding a neural network, which did indeed make the system
capable of translating much more efficiently, including between language pairs that it hadn’t
been explicitly taught. As the success rate of the network both surprised Google’s team and
was celebrated wildly, quietly in the background there was a bit of a cause for alarm. Google
researchers discovered that while everyone was celebrating the success, the AI had silently
written its own language that’s tailored specifically to the task of translating sentences.

Look, I could go on and on about this—the stories out there are endless, and endlessly
fascinating stuff (at least to me)—but I sincerely have to wonder, where’s it all headed?
Shouldn’t we be concerned about all this? I mean, AI might one day become a better pen
tester than all of us combined and put us out of a job, but what happens when it begins to
believe all vulnerabilities must be exploited? Or starts shutting off things it determines as
suspicious for whatever reason?

Don’t think that can happen? Don’t be naïve—it already is happening all around us. A
recent story on recognition software surrounded a group of researchers who simply couldn’t
understand why the AI software kept saying this one dog was a wolf. After ceaseless
reprogrammings and back-and-forths, it was discovered the software had remembered wolves
like/live in snow, and because the image had snow in it, the decision was made. Wrongly.

I’m not saying we should shut down research and go back to the 80s in our computing
ability; I’m just wondering aloud what we should do in security to…well…secure ourselves
from what I think anyone with functioning neurons can see could become a huge problem. I

http://www.digitaljournal.com/tech-and-science/technology/a-step-closer-to-skynet-ai-invents-a-language-humans-can-t-read/article/498142

brought this topic up a while back over dinner and drinks. After some lighthearted back-and-
forth, one of the guys looked off into the distance and said, thoughtfully, “I read somewhere
that we already have human beings that think like machines. They’re called sociopaths.”

Recent statistical data says as many as 1 in every 500 people could be fully sociopathic,
surviving (hiding?) due to therapy, drugs, or good old-fashioned intelligence and the ability to
keep themselves out of the limelight. Would we be able to recognize a sociopathic AI? I don’t
know about you, but the thought I’d even have to start looking for one terrifies me.

Security Assessment Deliverables
I know you’re probably going to hate hearing this, but I have to be truthful with you—just
because you’re an ethical hacker performing security assessments for major clients doesn’t mean
you’re off the hook paperwork-wise. The pen test you were hired to do was designed with one
objective in mind: to provide the client with information they need to make their network safer
and more secure. Therefore, it follows that the client will expect something in the form of a
deliverable in order to take some action—something that will require you to practice your
organizational, typing, and presentation skills. As our beloved tech editor is fond of saying,
“Nobody gives a hoot how good you are at hacking. The only things customers care about are the
findings, the impacts, and the analysis in the report or out-brief. A crappy team with a great
report will be seen by customers as better than a great team with a crappy report.”
Fundamentally, you are your report whether you like it or not, so if you thought you were
getting into a paperwork-free, no-time-behind-the-desk job, my apologies.

Typically your test will begin with some form of an in-brief to the management. This should
provide an introduction of the team members and an overview of the original agreement. You’ll
need to point out which tests will be performed, which team members will be performing
specific tasks, the timeline for your test, and so on. Points of contact, phone numbers, and other
information—including, possibly, the “bat phone” number, to be called in the event of an
emergency requiring all testing to stop—should all be presented to the client before testing
begins. This is a thorough review of all expectations, for both the test team and the client—
nobody leaves until everyone is in agreement and up to date.

NOTE Some clients and tests will require interim briefings on the progress of the team. These
might be daily wrap-ups the team leader can provide via secured e-mail or may be full-blown
presentations with all team members present.

After the test is complete, a comprehensive report is due to the customer. Each test and client
is different, but here are some of the basics that are part of every report:

• An executive summary of the organization’s overall security posture. (If you are testing
under the auspices of FISMA, DIACAP, RMF, HIPAA, or some other standard, this

summary will be tailored to the standard.)
• The names of all participants and the dates of all tests.
• A list of findings, usually presented in order of highest risk.
• An analysis of each finding and recommended mitigation steps (if available).
• Log files and other evidence from your toolset. This evidence should include tons of

screenshots, because that’s what customers seem to want.

For an example of a standard pen test report template, see
www.vulnerabilityassessment.co.uk/report%20template.html.

NOTE Many of the tools we’ve covered in this book have at least some form of reporting
capability. Oftentimes these can, and should, be included with your end-test deliverables.

Guidelines
Seems like everything in networking and communications births some kind of standard and an
organization to promote it. Pen testing methodology is really a different animal altogether, since
by its very nature it’s not a prime candidate for in-depth standardization. But what about security
testing and implementation in general? Absolutely. And that’s where the Open Source Security
Testing Methodology Manual (OSSTMM) comes into play.

I know, I know—I can hear you screaming across the plains that Open Source doesn’t
indicate a standard, per se. But just hang in there with me, because I’m going somewhere with
this, and it’s something you’ll see referenced at least once on your exam. OSSTMM (pronounced
“awestem” per the developers) was created by the Institute for Security and Open Methodologies
(ISECOM, www.isecom.org) in 2001. It was started by a group of researchers from various
fields as an effort to improve how security was tested.

OSSTMM is a peer-reviewed manual of security testing and analysis that results in fact-based
actions that can be taken by an organization to improve security. Downloadable as a single
(although massive) PDF file, OSSTMM tests legislative, contractual, and standards-based
compliance. Because of the nature of security and its ever-changing discoveries and needs, it’s
continually under development, so keeping up to date with the latest findings is a bonus. Joining
the ISECOM-NEWS list allows you to learn about releases, updates, findings, and all sorts of
goodies from the friendly research staff. Heck, they even have a Facebook page, if you’re so
inclined.

Again, this isn’t a pen-test-based security testing standard necessarily, but it does, per the
website, “provide a methodology for a thorough security test, known as an OSSTMM audit.”
You won’t find EC-Council’s steps clearly defined here, as you will on your exam, but it does
provide a pretty thorough look at a security test from beginning to end. If your organization is
starting from scratch, this isn’t a bad place to start preparing and reading.

And don’t start thinking this is the only one—a simple Internet search for “pen test
methodology” will show that’s not even close to true. Vulnerability Assessment.co.uk

http://www.vulnerabilityassessment.co.uk/report%20template.html
http://www.isecom.org

(www.vulnerabilityassessment.co.uk/Penetration%20Test.html) has been promoting a pen test
walkthrough methodology for years. SANS (www.sans.org/reading-
room/whitepapers/auditing/conducting-penetration-test-organization-67) has tons of reading
material on the subject and promotes their own version. And don’t forget more specialized
options: Open Web Application Security Project (OWASP) provides security information,
including vulnerabilities and fixes, on web servers and applications for free
(https://www.owasp.org/index.php/Main_Page).

More Terminology
Before you start yelling at the pages that this section seems out of place here, save your breath—
I hate terminology, too, and I’m as sick of it as you are. As you’re more than aware by now, EC-
Council has some interesting terminology for you to learn along the way. Some of it is useful,
but most of it is just for memorization purposes for your exam—which you can immediately
dump out of your neurons as soon as your test is over. This section, covering the players inside
and outside an organization, is no exception, and I hesitated to even include it in this edition of
the book.

You’re already familiar with the disgruntled employee, white hats, black hats, and the
difference between an ethical hacker and a cracker. What you haven’t seen yet is the crazed,
additional terminology categorizing the folks inside and outside the organization that EC-
Council has cooked up for you. The good news is, as of today as I sit here writing this, I have not
seen any of these terms in more than a passing reference in official courseware or practice
exams. The bad news is, they were a big part of versions 7 and 8 of the exam, so I have no real
idea if ECC will keep them in or not. In the interest of covering everything, though, I have to
include them.

EC-Council describes four different categories of insider threats, based on the level of access
the employee has: pure insider, insider associate, insider affiliate, and outside affiliate. The pure
insider is the easiest to understand because it’s exactly what it sounds like: an employee with all
the rights and access associated with being employed by the company. Typically, pure insiders
already have access to the facility, with a badge of some sort, and a logon to get access to the
network. One of the biggest problems from a security perspective with pure insiders isn’t that
they exist—after all, your company really does need people to get the work done—it’s that their
privileges are often assigned at a higher level than are actually required to get their work done.

EXAM TIP Want to get really crazy? Did you know pure insiders can be further categorized
by their privileges? The term elevated pure insider refers to an employee that has admin-level
privileges to network resources, like a system administrator or such.

Next up in our romp through crazed terminology is the insider associate. This refers to
someone with limited authorized access, such as a contractor, guard, or cleaning services person.
These folks aren’t employees of the company, and they certainly do not need or have full access,
but they have physical access to the facility to work. While they’re not allowed network access,
the fact they’re already in the building is a concern for the security professional trying to cover

http://www.vulnerabilityassessment.co.uk/Penetration%20Test.html
http://www.sans.org/reading-room/whitepapers/auditing/conducting-penetration-test-organization-67
https://www.owasp.org/index.php/Main_Page

all bases. Not only are the physical records sometimes accessible, not to mention the plethora of
dumpster-diving material, but physical access to a system usually guarantees a hacker, given
enough time, can access what she needs.

The third category defined is the insider affiliate, which is more than likely to give you fits
with memorization. An inside affiliate is a spouse, friend, or client of an employee who uses the
employee’s credentials to gain access. The key to this isn’t the person carrying out the attack so
much as it is the credentials used to do it. For example, employee Joe’s wife, Mary, isn’t an
employee; however, if she’s using Joe’s credentials, for all intents and purposes she is an insider.
To the network, physical access restriction areas, and any computer she grabs hold of, Mary
appears to be Joe, the trusted insider.

EXAM TIP If I were a betting man, I’d be laying down money that you’ll be asked more
about the insider affiliate than any of the others. Just remember the credentials are what matter.
All official credentials belong to the pure insiders, but when used by a person known to the
employee, you’re now dealing with an affiliate.

And finally, the last category is one that should be easy to memorize. The outside affiliate is
someone who is outside the organization, unknown and untrusted, who uses an open access
channel to gain access to an organization’s resources. For example, remember during our chapter
on wireless how we spent so much time talking about where you place your wireless access
points? If you place one in an easily accessible area and don’t secure it properly, an outside
affiliate can gain unauthorized access to your networks and resources. Just remember, if it’s an
employee or someone who knows the employee, it’s an insider—if it’s not, it’s an outsider.

And so, dear reader, we’ve reached the end of your testable material. I promised I’d keep this
chapter short and to the point, and I believe I have. A lot of the information in this chapter is a
review of items we’ve already discussed, but it’s important to know for both your exam and your
real-world exploits. I sincerely hope I’ve answered most of your questions and eliminated some
of the fear you may have had in tackling this undertaking.

Best of luck to you on both your exam and your future career. Practice what we’ve talked
about here—download and install the tools and try exploits against machines or VMs you have
available in your home lab. And don’t forget to stay ethical! Everything in this book is intended
to help you pass your upcoming exam and become a valued pen test member, not to teach you to
be a hacker. Stay the course and you’ll be fine.

Chapter Review
Security assessments can be one of two types: a security audit (vulnerability assessment) or a
penetration test. The security audit scans and tests a system or network for existing
vulnerabilities but does not intentionally exploit any of them. This assessment is designed to
uncover potential security holes in the system and report them to the client for their action. It
does not fix or patch vulnerabilities, nor does it exploit them. It only points them out for the
client’s benefit.

A penetration test actively seeks to exploit vulnerabilities encountered on target systems or
networks. This shows the potential consequences of a hacker breaking in through unpatched
vulnerabilities. Penetration tests are carried out by highly skilled individuals according to an
agreement signed before testing begins. This agreement spells out the limitations, constraints,
and liabilities between the organization and the penetration test team.

Penetration tests consist of two types of assessment: external and internal. An external
assessment analyzes publicly available information and conducts network scanning,
enumeration, and testing from the network perimeter—usually from the Internet. An internal
assessment is performed from within the organization, from various network access points.

Black-box testing occurs when the attacker has no prior knowledge of the infrastructure at all
(your scope is defined, and you’ll be provided the minimal amount of information required). This
testing takes the longest to accomplish and simulates a true outside hacker. White-box testing
simulates an internal user who has complete knowledge of the company’s infrastructure. Gray-
box testing provides limited information on the infrastructure. Sometimes gray-box testing is
born out of a black-box test that determines more knowledge is needed.

Testing can also be further broken down according to the way it is accomplished. Automated
testing uses an all-inclusive toolset. Automated tools can provide plenty of information and many
legitimate results for a lesser price than manual testing with a full test team. However, they are
also susceptible to false positives and false negatives and don’t always stop where they’re
supposed to (software can’t read your agreement contract). Manual testing is the best choice for
security assessment. It requires good planning, design, and scheduling, and it provides the best
benefit to the client. Manual testing is accomplished by a pen test team, following the explicit
guidelines laid out before the assessment.

There are three main phases to a pen test. In the pre-attack phase, reconnaissance and data-
gathering efforts are accomplished. Gathering competitive intelligence, identifying network
ranges, checking network filters for open ports, and so on, are all carried out in this phase.
Running whois, DNS enumeration, finding the network IP address range, and network scanning
are all examples of tasks in this phase.

Attempting to penetrate the network perimeter, acquire targets, execute attacks, and elevate
privileges are steps taken in the attack phase. Verifying ACLs by crafting packets, checking to
see whether you can use any covert tunnels inside the organization, and using XSS, buffer
overflows, and SQL injections are all examples of tasks performed in this phase. After acquiring
specific targets, you’ll move into password cracking and privilege escalation, using a variety of
methods. Finally, once you’ve gained access, it’s time to execute your attack code.

The post-attack phase consists of two major steps. The first step involves cleaning up your
testing efforts. Anything that has been uploaded to the organization’s systems in the way of files
or folders needs to be removed. Any tools, malware, backdoors, or other attack software loaded
on the client’s systems need to be taken off. Any registry changes you’ve made need to be reset
to their original settings. The goal of this phase is to return everything to the pre-test state.

The second step involves writing the pen test report, due after all testing is complete. The pen
test report should contain the following items:

• An executive summary of the organization’s overall security posture. (If you’re testing
under the auspices of FISMA, DIACAP, HIPAA, or some other standard, this will be
tailored to the standard.)

• The names of all participants and the dates of all tests.

• A list of findings, usually presented in order of highest risk.
• An analysis of each finding and the recommended mitigation steps (if available).
• Log files and other evidence from your toolset.

Questions
1. A security staff is preparing for a security audit and wants to know if additional security

training for the end user would be beneficial. Which of the following methods would be
the best option for testing the effectiveness of user training in the environment?
A. Vulnerability scanning
B. Application code reviews
C. Sniffing
D. Social engineering

2. What marks the major difference between a hacker and an ethical hacker (pen test team
member)?
A. Nothing.
B. Ethical hackers never exploit vulnerabilities; they only point out their existence.
C. The tools they use.
D. The predefined scope and agreement made with the system owner.

3. Which of the following best describes a blue team?
A. Security team members defending a network
B. Security team members attacking a network
C. Security team members with full knowledge of the internal network
D. A performance group at Universal Studios in Orlando

4. In which phase of a penetration test is scanning performed?
A. Pre-attack
B. Attack
C. Post-attack
D. Reconnaissance

5. Which type of security assessment notifies the customer of vulnerabilities but does not
actively or intentionally exploit them?
A. Vulnerability assessment
B. Scanning assessment
C. Penetration test
D. None of the above

6. Which of the following would be a good choice for an automated penetration test?
(Choose all that apply.)
A. Nmap
B. Netcat

C. Core Impact
D. CANVAS

7. Which of the following tests is generally faster and costs less but is susceptible to more
false reporting and contract violation?
A. Internal
B. External
C. Manual
D. Automatic

8. Joe is part of a penetration test team and is starting a test. The client has provided him a
system on one of their subnets but did not provide any authentication information, network
diagrams, or other notable data concerning the systems. Which type of test is Joe
performing?
A. External, white box
B. External, black box
C. Internal, white box
D. Internal, black box

9. In which of the following would you find in a final report from a full penetration test?
(Choose all that apply.)
A. Executive summary
B. A list of findings from the test
C. The names of all the participants
D. A list of vulnerabilities patched or otherwise mitigated by the team

10. Which security assessment is designed to check policies and procedures within an
organization?
A. Security audit
B. Vulnerability assessment
C. Pen test
D. None of the above

11. Which of the following best describes a red team?
A. Security team members defending a network
B. Security team members attacking a network
C. Security team members with full knowledge of the internal network
D. Security team members dedicated to policy audit review

Answers
1. D. Social engineering is designed to test the human element in the organization. Of the

answers provided, it is the only real option.
2. D. Pen tests always begin with an agreement with the customer that identifies the scope

and activities. An ethical hacker will never proceed without written authorization.
3. A. Blue teams are defense-oriented. They concentrate on preventing and mitigating attacks

and efforts of the red team/bad guys.
4. A. All reconnaissance efforts occur in the pre-attack phase.
5. A. Vulnerability assessments (a.k.a. security audits) seek to discover open vulnerabilities

on the client’s systems but do not actively or intentionally exploit any of them.
6. C, D. Core Impact and CANVAS are both automated, all-in-one test tool suites capable of

performing a test for a client. Other tools may be used in conjunction with them to spot
vulnerabilities, including Nessus, Retina, SAINT, and Sara.

7. D. Automatic testing involves the use of a tool suite and generally runs faster than an all-
inclusive manual test. However, it is susceptible to false negatives and false positives and
can oftentimes overrun the scope boundary.

8. D. Joe is on a system internal to the network and has no knowledge of the target’s
network. Therefore, he is performing an internal, black-box test.

9. A, B, C. The final report for a pen test includes an executive summary, a list of the
findings (usually in order of highest risk), the names of all participants, analysis of
findings, mitigation recommendations, and any logs or other relevant files.

10. A. A security audit is used to verify security policies and procedures in place.
11. B. Red teams are on offense. They are employed to go on the attack, simulating the bad

guys out in the world trying to exploit anything they can find.

APPENDIX A
Tool, Sites, and References

Greetings, dear reader, and welcome to the best appendix you’ve ever read—or at least the most
useful for your CEH exam anyway. This appendix is filled with tools and websites that will help
you become a better ethical hacker. Keep in mind I’m not providing a recommendation for, an
approval of, or a security guarantee on any website or link you’ll find here. Neither I nor my
beloved publisher can be held liable for anything listed here. For example, URLs change, pages
become outdated with time, tools become obsolete when new versions are released, and so on.
Not to mention, as I clearly pointed out in the text, you need to be careful with some of this stuff:
your antivirus system will no doubt explode with activity simply by visiting some of these sites. I
highly recommend you create a virtual machine or use a standby system to download to and test
tools from.

These websites and tools are listed here because they will help you in your study efforts for
the exam and further your professional development. I purposely did not provide tools because it
is important that you learn how to find and install what you’re looking for. You’re entering the
big leagues now, so you simply need to know how it’s really done.

NOTE If you’re trying a link and it doesn’t seem to work, make sure you give both http://AND
https:// a try. Also, don’t be bashful about giving your favorite search engine a go.

Vulnerability Research Sites
• CodeRed Center www.eccouncil.org
• Exploit Database www.exploit-db.com
• HackerStorm hackerstorm.co.uk
• Help Net Security www.net-security.org
• MSVR http://technet.microsoft.com
• National Vulnerability Database http://nvd.nist.gov
• SC Media www.scmagazine.com
• Secunia www.secunia.com

http://www.eccouncil.org
http://www.exploit-db.com
http://hackerstorm.co.uk
http://www.net-security.org
http://technet.microsoft.com
http://nvd.nist.gov
http://www.scmagazine.com
http://www.secunia.com

• SecuriTeam www.securiteam.com
• SecurityFocus www.securityfocus.com
• Security Magazine www.securitymagazine.com
• SecurityTracker www.securitytracker.com

Footprinting Tools

People Search Tools
• 411 www.411.com
• AnyWho www.anywho.com
• Intelius www.intelius.com
• PeekYou www.peekyou.com
• People Search Now www.peoplesearchnow.com
• Veromi www.veromi.net
• ZabaSearch www.zabasearch.com
• ZoomInfo http://zoominfo.com

Competitive Intelligence
• Euromonitor www.euromonitor.com
• Experian www.experian.com
• MarketWatch www.marketwatch.com
• The Search Monitor www.thesearchmonitor.com
• SEC Info www.secinfo.com
• Wall Street Transcript www.twst.com

Tracking Online Reputation
• Alexa www.alexa.com
• BrandsEye www.brandseye.com
• Rankur https://rankur.com
• ReputationDefender www.reputation.com
• Social Mention www.socialmention.com

Website Research/Web Updates Tools
• Archive www.archive.org
• ChangeDetection www.changedetection.com
• Check4Change http://addons.mozilla.com
• InfoMinder www.infominder.com
• iWebTool www.iwebtool.com

http://www.securiteam.com
http://www.securityfocus.com
http://www.securitymagazine.com
http://www.securitytracker.com
http://www.411.com
http://www.anywho.com
http://www.intelius.com
http://www.peekyou.com
http://www.peoplesearchnow.com
http://www.veromi.net
http://www.zabasearch.com
http://zoominfo.com
http://www.euromonitor.com
http://www.experian.com
http://www.marketwatch.com
http://www.thesearchmonitor.com
http://www.secinfo.com
http://www.twst.com
http://www.alexa.com
http://www.brandseye.com
https://rankur.com
http://www.reputation.com
http://www.socialmention.com
http://www.archive.org
http://www.changedetection.com
http://addons.mozilla.com
http://www.infominder.com
http://www.iwebtool.com

• Netcraft http://news.netcraft.com
• Websnitcher http://websnitcher.com

DNS and Whois Tools
• Active Whois www.johnru.com
• ARIN http://whois.arin.net/ui/
• Better Whois www.betterwhois.com
• DNS-Digger http://dnsdigger.com
• DNSstuff www.dnsstuff.com
• Domain Dossier http://centralops.net
• DomainTools www.domaintools.com
• Mobile DNS Sniffer www.dnssniffer.com
• Network Solutions www.networksolutions.com
• Nslookup
• SmartWhois www.tamos.com/download/main/
• SpyFu www.spyfu.com
• UltraTools Mobile www.ultratools.com

Geo-Location Tools
• Bing Maps bing.com/maps
• GeoIP2 www.maxmind.com
• GeoIP Lookup www.ultratools.com
• Google Maps maps.google.com
• IPLocation iplocation.net
• IP Location Finder tools.keycdn.com
• WikiMapia www.wikimapia.org
• Yahoo! Maps https://maps.yahoo.com/b/

Traceroute Tools and Links
• Path Analyzer Pro www.pathanalyzer.com
• PingPlotter https://www.pingplotter.com
• Visual IP Trace www.visualiptrace.com
• VisualRoute Trace www.visualware.com

Website Mirroring Tools and Sites
• BlackWidow http://softbytelabs.com
• Hooeey Webprint www.hooeeywebprint.com.s3-website-us-east-1.amazonaws.com/
• HTTrack www.httrack.com
• NCollector Studio www.calluna-software.com

http://news.netcraft.com
http://websnitcher.com
http://www.johnru.com
http://whois.arin.net/ui/
http://www.betterwhois.com
http://dnsdigger.com
http://www.dnsstuff.com
http://centralops.net
http://www.domaintools.com
http://www.dnssniffer.com
http://www.networksolutions.com
http://www.tamos.com/download/main/
http://www.spyfu.com
http://www.ultratools.com
http://bing.com/maps
http://www.maxmind.com
http://www.ultratools.com
http://maps.google.com
http://iplocation.net
http://tools.keycdn.com
http://www.wikimapia.org
https://maps.yahoo.com/b/
http://www.pathanalyzer.com
https://www.pingplotter.com
http://www.visualiptrace.com
http://www.visualware.com
http://softbytelabs.com
http://www.hooeeywebprint.com.s3-website-us-east-1.amazonaws.com/
http://www.httrack.com
http://www.calluna-software.com

• Reamweaver http://reamweaver.com
• Teleport Pro www.tenmax.com/teleport/pro/home.htm
• Wget www.gnu.org

Operating System Help
• Censys https://censys.io
• Netcraft http://netcraft.com
• Shodan www.shodan.io

Metadata Extraction
• Buzzstream tools.buzzstream.com
• ExifTool http://owl.phy.queensu.ca/~phil/exiftool/
• ExtractMeta www.extractmetadata.com
• FOCA www.elevenpaths.com

E-mail Tracking
• ContactMonkey https://contactmonkey.com
• DidTheyReadIt www.didtheyreadit.com
• eMailTrackerPro www.emailtrackerpro.com
• GetNotify www.getnotify.com
• PoliteMail www.politemail.com
• ReadNotify www.readnotify.com
• Zendio www.zendio.com

Google Hacking
• Google Hack Honeypot http://ghh.sourceforge.net
• Google Hacking Database www.hackersforcharity.org/ghdb/
• Google Hacking Master List http://it.toolbox.com/blogs/managing-infosec/google-

hacking-master-list-28302
• Google Hacks http://code.google.com/p/googlehacks/
• Gooscan www.darknet.org.uk
• Metagoofil www.edge-security.com

Scanning and Enumeration Tools

Ping Sweep
• Angry IP Scanner www.angryip.org
• Colasoft Ping http://colasoft.com

http://reamweaver.com
http://www.tenmax.com/teleport/pro/home.htm
http://www.gnu.org
https://censys.io
http://netcraft.com
http://www.shodan.io
http://tools.buzzstream.com
http://owl.phy.queensu.ca/~phil/exiftool/
http://www.extractmetadata.com
http://www.elevenpaths.com
https://contactmonkey.com
http://www.didtheyreadit.com
http://www.emailtrackerpro.com
http://www.getnotify.com
http://www.politemail.com
http://www.readnotify.com
http://www.zendio.com
http://ghh.sourceforge.net
http://www.hackersforcharity.org/ghdb/
http://it.toolbox.com/blogs/managing-infosec/google-hacking-master-list-28302
http://code.google.com/p/googlehacks/
http://www.darknet.org.uk
http://www.edge-security.com
http://www.angryip.org
http://colasoft.com

• Friendly Pinger www.kilievich.com
• MegaPing www.magnetosoft.com
• Nmap http://nmap.org
• Ping Scanner Pro www.digilextechnologies.com
• Pinkie www.ipuptime.net
• SolarWinds www.solarwinds.com
• Ultra Ping Pro (Multiple download sites)

Scanning Tools
• CurrPorts www.nirsoft.net
• Fing (mobile) https://www.fing.io/
• Hping www.hping.org
• Infiltrator www.infiltration-systems.com
• IPEye http://ntsecurity.nu
• IP Network Scanner (mobile) http://10base-t.com
• IP Tools www.ks-soft.net
• LAN Surveyor www.solarwinds.com
• MegaPing www.magnetosoft.com
• Netcat http://netcat.sourceforge.net
• NetScanTools Pro www.netscantools.com
• Network Discovery (mobile) http://rorist.github.io
• Nmap (Zenmap) http://nmap.org/
• NScan http://nscan.hypermart.net/
• Pamn IP Scanner (mobile) http://pips.wjholden.com
• PortDroid (mobile) www.stealthcopter.com
• PRTG Net Monitor www.paessler.com
• SuperScan www.mcafee.com/us/downloads/free-tools/superscan.aspx
• THC-Amap www.thc.org
• Umit Network Scanner (mobile) www.umitproject.org

Banner Grabbing
• ID Serve www.grc.com
• Netcraft http://netcraft.com
• Telnet
• Xprobe https://sourceforge.net/projects/xprobe/

Vulnerability Scanning
• Acunetix www.acunetix.com
• Core Impact www.coresecurity.com

http://www.kilievich.com
http://www.magnetosoft.com
http://nmap.org
http://www.digilextechnologies.com
http://www.ipuptime.net
http://www.solarwinds.com
http://www.nirsoft.net
https://www.fing.io/
http://www.hping.org
http://www.infiltration-systems.com
http://ntsecurity.nu
http://10base-t.com
http://www.ks-soft.net
http://www.solarwinds.com
http://www.magnetosoft.com
http://netcat.sourceforge.net
http://www.netscantools.com
http://rorist.github.io
http://nmap.org/
http://nscan.hypermart.net/
http://pips.wjholden.com
http://www.stealthcopter.com
http://www.paessler.com
http://www.mcafee.com/us/downloads/free-tools/superscan.aspx
http://www.thc.org
http://www.umitproject.org
http://www.grc.com
http://netcraft.com
https://sourceforge.net/projects/xprobe/
http://www.acunetix.com
http://www.coresecurity.com

• GFI LanGuard www.gfi.com
• MBSA http://technet.microsoft.com
• Nessus www.tenable.com
• Nikto http://cirt.net/nikto2
• OpenVAS www.openvas.org
• Qualys FreeScan www.qualys.com
• Retina http://eeye.com
• Retina for Mobile www.beyondtrust.com
• SAINT http://saintcorporation.com
• SecurityMetrics (mobile) www.securitymetrics.com
• WebInspect https://software.microfocus.com/en-us/products/webinspect-dynamic-

analysis-dast/overview
• Wikto www.sensepost.com

Network Mapping
• HP Network Node Manager www8.hp.com
• IPsonar www.lumeta.com
• LANState www.10-strike.com
• NetMapper www.opnet.com
• NetMaster (mobile) www.nutecapps.com
• Network SAK (mobile) http://foobang.weebly.com
• Network Topology Mapper www.solarwinds.com
• Network View www.networkview.com
• OpManager www.manageengine.com
• Scany (mobile) http://happymagenta.com

Proxy, Anonymizer, and Tunneling
• Anonymizer http://anonymizer.com
• Anonymouse http://anonymouse.org/
• Bitvise www.bitvise.com
• CyberGhost VPN www.cyberghostvpn.com
• G-Zapper www.dummysoftware.com
• HTTP Tunnel www.http-tunnel.com
• NetShade (mobile) www.raynersw.com
• Proxifier www.proxifier.com
• Proxy Browser for Android (mobile) https://play.google.com
• ProxyChains http://proxychains.sourceforge.net/
• ProxyDroid (mobile) https://github.com
• Proxy Switcher www.proxyswitcher.com

http://www.gfi.com
http://technet.microsoft.com
http://www.tenable.com
http://cirt.net/nikto2
http://www.openvas.org
http://www.qualys.com
http://eeye.com
http://www.beyondtrust.com
http://saintcorporation.com
http://www.securitymetrics.com
https://software.microfocus.com/en-us/products/webinspect-dynamic-analysis-dast/overview
http://www.sensepost.com
http://www8.hp.com
http://www.lumeta.com
http://www.10-strike.com
http://www.opnet.com
http://www.nutecapps.com
http://foobang.weebly.com
http://www.solarwinds.com
http://www.networkview.com
http://www.manageengine.com
http://happymagenta.com
http://anonymizer.com
http://anonymouse.org/
http://www.bitvise.com
http://www.cyberghostvpn.com
http://www.dummysoftware.com
http://www.http-tunnel.com
http://www.raynersw.com
http://www.proxifier.com
https://play.google.com
http://proxychains.sourceforge.net/
https://github.com
http://www.proxyswitcher.com

• Proxy Workbench proxyworkbench.com
• Psiphon http://psiphon.ca
• Super Network Tunnel www.networktunnel.net
• Tor https://www.torproject.org/

Enumeration
• Hyena www.systemtools.com
• IP Network Browser www.solarwinds.com
• LDAP Admin www.ldapsoft.com
• Ldp.exe www.microsoft.com
• LEX www.ldapexplorer.com
• NetBIOS Enumerator http://nbtenum.sourceforge.net
• Nsauditor www.nsauditor.com
• P0f http://lcamtuf.coredump.cx/p0f.shtml
• PSTools http://technet.microsoft.com
• User2Sid/Sid2User http://windowsecurity.com
• WinFingerprint www.winfingerprint.com
• Xprobe www.sys-security.com/index.php?page=xprobe

SNMP Enumeration
• OpUtils www.manageengine.com
• SNMP Informant www.snmp-informant.com
• SNMP Scanner www.secure-bytes.com
• SNMPUtil www.wtcs.org
• SolarWinds www.solarwinds.com

LDAP Enumeration
• Active Directory Explorer http://technet.microsoft.com
• JXplorer www.jxplorer.org
• LDAP Search http://securityxploded.com
• LEX www.ldapexplorer.com
• Softerra www.ldapadministrator.com

NTP Enumeration
• Atom Sync www.atomsync.com
• LAN Time Analyzer www.bytefusion.com
• NTP Server Scanner www.bytefusion.com
• NTP Time Server Monitor www.meinbergglobal.com

http://proxyworkbench.com
http://psiphon.ca
http://www.networktunnel.net
https://www.torproject.org/
http://www.systemtools.com
http://www.solarwinds.com
http://www.ldapsoft.com
http://www.microsoft.com
http://www.ldapexplorer.com
http://nbtenum.sourceforge.net
http://www.nsauditor.com
http://lcamtuf.coredump.cx/p0f.shtml
http://technet.microsoft.com
http://windowsecurity.com
http://www.winfingerprint.com
http://www.sys-security.com/index.php?page=xprobe
http://www.manageengine.com
http://www.snmp-informant.com
http://www.secure-bytes.com
http://www.wtcs.org
http://www.solarwinds.com
http://technet.microsoft.com
http://www.jxplorer.org
http://securityxploded.com
http://www.ldapexplorer.com
http://www.ldapadministrator.com
http://www.atomsync.com
http://www.bytefusion.com
http://www.bytefusion.com
http://www.meinbergglobal.com

Registry Tools
• Active Registry Monitor www.devicelock.com
• All-seeing-Eye www.fortego.com
• Comodo Cloud Scanner www.comodo.com
• Power Tools www.macecraft.com
• Reg Organizer www.chemtable.com
• RegScanner www.nirsoft.net

Windows Service Monitoring Tools
• Nagios www.nagios.com
• Process Hacker http://processhacker.sourceforge.net
• SMART www.thewindowsclub.com
• SrvMan http://tools.sysprogs.org

File/Folder Integrity Checkers
• ACSV www.irnis.net
• FastSum www.fastsum.com
• FileVerifier www.programmingunlimited.net
• OSSEC https://ossec.github.io/
• Verisys www.ionx.co.uk
• WinMD5 www.blisstonia.com

System Hacking Tools

Default Password Search Links
• securityoverride.org
• www.routerpasswords.com
• w3dt.net
• cirt.net
• default-password.info
• defaultpassword.us
• www.passwordsdatabase.com

Password Hacking Tools
• Aircrack www.aircrack-ng.org/
• Brutus www.hoobie.net/brutus/
• Cain www.oxid.it
• CloudCracker www.cloudcracker.com

http://www.devicelock.com
http://www.fortego.com
http://www.comodo.com
http://www.macecraft.com
http://www.chemtable.com
http://www.nirsoft.net
http://www.nagios.com
http://processhacker.sourceforge.net
http://www.thewindowsclub.com
http://tools.sysprogs.org
http://www.irnis.net
http://www.fastsum.com
http://www.programmingunlimited.net
https://ossec.github.io/
http://www.ionx.co.uk
http://www.blisstonia.com
http://securityoverride.org
http://www.routerpasswords.com
http://w3dt.net
http://cirt.net
http://default-password.info
http://defaultpassword.us
http://www.passwordsdatabase.com
http://www.aircrack-ng.org/
http://www.hoobie.net/brutus/
http://www.oxid.it
http://www.cloudcracker.com

• ElcomSoft www.elcomsoft.com/
• FlexiSpy (mobile) www.flexispy.com
• John the Ripper www.openwall.com
• LastBit http://lastbit.com/
• LCP www.lcpsoft.com
• KerbCrack http://ntsecurity.nu
• Ophcrack http://ophcrack.sourceforge.net
• Rainbow crack www.antsight.com/zsl/rainbowcrack/
• THC-Hydra www.thc.org/thc-hydra/
• Windows Password Recovery www.windowspasswordsrecovery.com

DoS/DDos
• AnDOSid http://andosid.android.informer.com
• BanglaDos http://sourceforge.net
• Dereil/HOIC http://sourceforge.net
• DoS HTTP http://socketsoft.net
• HULK www.sectorix.com
• LOIC http://sourceforge.net
• Tor’s Hammer http://packetstormsecurity.com

Sniffing
• Ace www.effetech.com
• Ettercap www.ettercap-project.org/ettercap/#
• KerbSniff http://ntsecurity.nu
• Wireshark www.wireshark.org/

Keyloggers and Screen Capture
• Actual Keylogger www.actualkeylogger.com
• Actual Spy www.actualspy.com
• All In One Keylogger www.relytec.com
• Amac www.amackeylogger.com
• Desktop Spy www.spyarsenal.com
• Ghost www.keylogger.net
• Handy Keylogger www.handy-keylogger.com
• Hidden Recorder www.oleansoft.com
• IcyScreen www.16software.com
• KeyProwler www.keyprowler.com
• Ultimate Keylogger www.ultimatekeylogger.com
• USB Grabber http://digitaldream.persiangig.com

http://www.elcomsoft.com/
http://www.flexispy.com
http://www.openwall.com
http://lastbit.com/
http://www.lcpsoft.com
http://ntsecurity.nu
http://ophcrack.sourceforge.net
http://www.antsight.com/zsl/rainbowcrack/
http://www.thc.org/thc-hydra/
http://www.windowspasswordsrecovery.com
http://andosid.android.informer.com
http://sourceforge.net
http://sourceforge.net
http://socketsoft.net
http://www.sectorix.com
http://sourceforge.net
http://packetstormsecurity.com
http://www.effetech.com
http://www.ettercap-project.org/ettercap/
http://ntsecurity.nu
http://www.wireshark.org/
http://www.actualkeylogger.com
http://www.actualspy.com
http://www.relytec.com
http://www.amackeylogger.com
http://www.spyarsenal.com
http://www.keylogger.net
http://www.handy-keylogger.com
http://www.oleansoft.com
http://www.16software.com
http://www.keyprowler.com
http://www.ultimatekeylogger.com
http://digitaldream.persiangig.com

Privilege Escalation
• Password Recovery www.windowspasswordrecovery.com
• Password Recovery Boot Disk www.rixler.com
• Password Reset www.reset-windows-password.net
• System Recovery www.elcomsoft.com

Executing Applications
• Dameware www.dameware.com
• PDQ Deploy www.adminarsenal.com
• RemoteExec www.isdecisions.com

Spyware
• Activity Monitor www.softactivity.com
• Desktop Spy www.spyarsenal.com
• eBlaster www.spectorsoft.com
• EmailObserver www.softsecurity.com
• Kahlown Screen Spy www.lesoftrejion.com
• LANVisor www.lanvisor.com
• NetVisor www.netvizor.net
• OsMonitor www.os-monitor.com
• Power Spy www.ematrixsoft.com
• Remote Desktop Spy www.global-spy-software.com
• Spector Pro www.spectorsoft.com
• SpyTech www.spytech-web.com
• SSPro www.tucows.com/preview/403921
• USB spy www.everstrike.com

Mobile Spyware
• Easy GPS www.easygps.com
• GPS TrackMaker Professional www.trackmaker.com
• John the Ripper www.openwall.com
• Mobile Spy www.mobile-spy.com
• MobiStealth Cell Phone Spy www.mobistealth.com
• Modem Spy www.modemspy.com
• mSpy www.mspy.com
• Spy Phone Gold https://spyera.com
• Trackstick www.trackstick.com

http://www.windowspasswordrecovery.com
http://www.rixler.com
http://www.reset-windows-password.net
http://www.elcomsoft.com
http://www.dameware.com
http://www.adminarsenal.com
http://www.isdecisions.com
http://www.softactivity.com
http://www.spyarsenal.com
http://www.spectorsoft.com
http://www.softsecurity.com
http://www.lesoftrejion.com
http://www.lanvisor.com
http://www.netvizor.net
http://www.os-monitor.com
http://www.ematrixsoft.com
http://www.global-spy-software.com
http://www.spectorsoft.com
http://www.spytech-web.com
http://www.tucows.com/preview/403921
http://www.everstrike.com
http://www.easygps.com
http://www.trackmaker.com
http://www.openwall.com
http://www.mobile-spy.com
http://www.mobistealth.com
http://www.modemspy.com
http://www.mspy.com
https://spyera.com
http://www.trackstick.com

Covering Tracks
• Auditpol www.microsoft.com
• CCleaner www.piriform.com
• ELSave www.ibt.ku.dk
• EraserPro www.acesoft.net
• Evidence Eliminator www.evidence-eliminator.com
• MRU-Blaster www.brightfort.com
• WindowWasher www.webroot.com
• WinZapper www.ntsecurity.nu

Packet Crafting/Spoofing
• Hping2 www.hping.org/
• Komodia www.komodia.com
• NetscanTools Pro www.netscantools.com
• Ostinato https//ostinato.org
• Packet generator http://sourceforge.net
• PackEth http://sourceforge.net
• WireEdit wireedit.com

Session Hijacking
• Burp Suite http://portswigger.net
• Ettercap http://ettercap.sourceforge.net
• Firesheep http://codebutler.github.com/firesheep
• Hamster/Ferret http://erratasec.blogspot.com/2009/03/hamster-20-and-ferret-20.html
• Hunt http://packetstormsecurity.com
• Paros Proxy www.parosproxy.org

Clearing Tracks
• BleachBit http://bleachbit.sourceforge.net
• CCleaner www.piriform.org
• MRU-Blaster www.brightfort.com
• Window Washer www.eusing.com
• Wipe http://privacyroot.com

Cryptography and Encryption

Encryption Tools
• AxCrypt www.axantum.com/axcrypt/

http://www.microsoft.com
http://www.piriform.com
http://www.ibt.ku.dk
http://www.acesoft.net
http://www.evidence-eliminator.com
http://www.brightfort.com
http://www.webroot.com
http://www.ntsecurity.nu
http://www.hping.org/
http://www.komodia.com
http://www.netscantools.com
http://https//ostinato.org
http://sourceforge.net
http://sourceforge.net
http://wireedit.com
http://portswigger.net
http://ettercap.sourceforge.net
http://codebutler.github.com/firesheep
http://erratasec.blogspot.com/2009/03/hamster-20-and-ferret-20.html
http://packetstormsecurity.com
http://www.parosproxy.org
http://bleachbit.sourceforge.net
http://www.piriform.org
http://www.brightfort.com
http://www.eusing.com
http://privacyroot.com
http://www.axantum.com/axcrypt/

• BitLocker http://microsoft.com
• DriveCrypt www.securstar.com
• GNU Privacy Guard https://www.gnupg.org/
• VeraCrypt https://veracrypt.codeplex.com/

Hash Tools
• HashCalc http://nirsoft.net
• McAfee Hash Calculator www.mcafee.com/us/downloads/free-tools/hash-

calculator.aspx
• MD5 Hash www.digitalvolcano.co.uk/content/md5-hash
• Quick Hash http://sourceforge.net/projects/quickhash/

Steganography
• AudioStega www.mathworks.com
• DeepSound http://jpinsoft.net
• EzStego www.stego.com
• gifShuffle www.darkside.com.au
• ImageHide www.dancemammal.com
• Invisible Secrets www.invisiblesecrets.com/
• JPHIDE http://nixbit.com
• Masker www.softpuls.com
• Merge Streams www.ntkernel.com
• MP3Stegz http://sourceforge.net
• OfficeXML www.irongeek.com
• OmniHidePro http://omnihide.com
• OpenStego http://openstego.sourceforge.net/
• OurSecret www.securekit.net
• QuickStego www.quickcrypto.com
• SpamMimic www.spammimic.com
• Spy Pix (mobile) www.juicybitssoftware.com
• Stegais (mobile) http://stegais.com
• StegHide http://steghide.sourceforge.net
• Stego Master (mobile) https://play.google.com
• StegParty www.fasterlight.com
• S Tools http://spychecker.com
• wbStego http://wbstego.wbailer.com/
• XPTools www.xptools.net

Stego Detection

http://microsoft.com
http://www.securstar.com
https://www.gnupg.org/
https://veracrypt.codeplex.com/
http://nirsoft.net
http://www.mcafee.com/us/downloads/free-tools/hash-calculator.aspx
http://www.digitalvolcano.co.uk/content/md5-hash
http://sourceforge.net/projects/quickhash/
http://www.mathworks.com
http://jpinsoft.net
http://www.stego.com
http://www.darkside.com.au
http://www.dancemammal.com
http://www.invisiblesecrets.com/
http://nixbit.com
http://www.softpuls.com
http://www.ntkernel.com
http://sourceforge.net
http://www.irongeek.com
http://omnihide.com
http://openstego.sourceforge.net/
http://www.securekit.net
http://www.quickcrypto.com
http://www.spammimic.com
http://www.juicybitssoftware.com
http://stegais.com
http://steghide.sourceforge.net
https://play.google.com
http://www.fasterlight.com
http://spychecker.com
http://wbstego.wbailer.com/
http://www.xptools.net

• Gargoyle Investigator (stego detection) www.wetstonetech.com
• StegAlyzerSS www.sarc-wv.com
• StegDetect https://github.com/abeluck/stegdetect
• StegSpy www.spy-hunter.com

Cryptanalysis
• Cryptanalysis http://cryptanalysisto.sourceforge.net
• Cryptobench http://addario.org
• EverCrack http://evercrack.sourceforge.net

Sniffing

Packet Capture
• CACE www.cacetech.com
• Capsa www.colasoft.com
• dsniff http://monkey.org
• EtherApe http://etherape.sourceforge.net
• NetWitness www.netwitness.com
• OmniPeek www.wildpackets.com
• tcpdump http://tcpdump.org
• Windump www.winpcap.org
• Wireshark http://wireshark.org

Wireless
• Kismet www.kismetwireless.net
• NetStumbler www.netstumbler.com/downloads/

MAC Flooding/Spoofing
• Macof https://monkey.org
• SMAC www.klcconsulting.net

ARP Poisoning
• Cain www.oxid.it
• UfaSoft http://ufasoft.com
• WinARP Attacker www.xfocus.net

Wireless

http://www.wetstonetech.com
http://www.sarc-wv.com
https://github.com/abeluck/stegdetect
http://www.spy-hunter.com
http://cryptanalysisto.sourceforge.net
http://addario.org
http://evercrack.sourceforge.net
http://www.cacetech.com
http://www.colasoft.com
http://monkey.org
http://etherape.sourceforge.net
http://www.netwitness.com
http://www.wildpackets.com
http://tcpdump.org
http://www.winpcap.org
http://wireshark.org
http://www.kismetwireless.net
http://www.netstumbler.com/downloads/
https://monkey.org
http://www.klcconsulting.net
http://www.oxid.it
http://ufasoft.com
http://www.xfocus.net

Discovery
• inSSIDer www.metageek.net
• iStumbler www.istumbler.net
• Kismet www.kismetwireless.net
• NetStumbler www.netstumbler.com/downloads/
• NetSurveyor www.performancewifi.net
• Vistumbler www.vistumbler.net
• WirelessMon www.passmark.com

Attack and Analysis
• Aircrack www.Aircrack-ng.org
• AirMagnet WiFi Analyzer http://airmagnet.com
• Airodump http://Wirelessdefence.org/Contents/Aircrack_airodump.htm
• AirPcap www.cacetech.com
• AirSnort http://airsnort.shmoo.com/
• MadWifi http://madwifi-project.org
• WiGLE http://wigle.net

Packet Sniffing
• Capsa www.colasoft.com
• CommView www.tamos.com
• Cascade Pilot www.riverbed.com
• Omnipeek www.wildpackets.com

WEP/WPA Cracking
• Aircrack www.aircrack-ng.org/
• coWPAtty www.wirelessdefence.org
• KisMAC http://kismac-ng.org/
• WepAttack www.wepattack.sourceforge.net
• WepCrack www.wepcrack.sourceforge.net
• Wireless Security Auditor www.elcomsoft.com

Bluetooth
• BH Bluejack http://croozeus.com
• BlueScanner www.arubanetworks.com
• Bluesnarfer www.airdemon.net
• BT Audit http://trifinite.org
• BTBrowser http://wireless.klings.org

http://www.metageek.net
http://www.istumbler.net
http://www.kismetwireless.net
http://www.netstumbler.com/downloads/
http://www.performancewifi.net
http://www.vistumbler.net
http://www.passmark.com
http://www.Aircrack-ng.org
http://airmagnet.com
http://Wirelessdefence.org/Contents/Aircrack_airodump.htm
http://www.cacetech.com
http://airsnort.shmoo.com/
http://madwifi-project.org
http://wigle.net
http://www.colasoft.com
http://www.tamos.com
http://www.riverbed.com
http://www.wildpackets.com
http://www.aircrack-ng.org/
http://www.wirelessdefence.org
http://kismac-ng.org/
http://www.wepattack.sourceforge.net
http://www.wepcrack.sourceforge.net
http://www.elcomsoft.com
http://croozeus.com
http://www.arubanetworks.com
http://www.airdemon.net
http://trifinite.org
http://wireless.klings.org

• BTScanner www.pentest.co.uk
• CIHwBT http://sourceforge.net
• Phonesnoop www.blackberryrc.com

Mobile and IoT

Mobile Attacks
• Backtrack Simulator https://play.google.com
• Bluediving http://bluediving.sourceforge.net
• BlueScanner http://sourceforge.net
• BT Browser www.bluejackingtools.com
• Super BlueTooth Hack www.brothersoft.com
• WiHack https://wihack.com

Mobile Application Testing
• BlueBorne Scanner www.armis.com
• Eternal Blue Scanner ebvscanner.firebaseapp.com
• Hackode www.ravikumarpubey.com
• Shellshock www.zimperium.com
• threatScan https://free.kaspersky.com
• X-Ray https://duo.com/labs

Mobile Scanning
• cSploit www.csploit.org
• FaceNiff www.effecthacking.com
• fing www.fing.io
• Hackode play.google.com
• IP Scanner 10base-t.com

Mobile Wireless Discovery
• Net Signal Info www.kaibits-software.com
• OpenSignal Maps http://opensignal.com
• WiFiFoFum www.wififofum.net
• WiFi Manager http://kmansoft.com

Mobile Device Tracking
• Find My Phone http://findmyphone.mangobird.com
• GadgetTrak www.gadgettrak.com

http://www.pentest.co.uk
http://sourceforge.net
http://www.blackberryrc.com
https://play.google.com
http://bluediving.sourceforge.net
http://sourceforge.net
http://www.bluejackingtools.com
http://www.brothersoft.com
https://wihack.com
http://www.armis.com
http://ebvscanner.firebaseapp.com
http://www.ravikumarpubey.com
http://www.zimperium.com
https://free.kaspersky.com
https://duo.com/labs
http://www.csploit.org
http://www.effecthacking.com
http://www.fing.io
http://play.google.com
http://10base-t.com
http://www.kaibits-software.com
http://opensignal.com
http://www.wififofum.net
http://kmansoft.com
http://findmyphone.mangobird.com
http://www.gadgettrak.com

• iHound www.ihoundsoftware.com
• Where’s My Droid http://wheresmydroid.com

Mobile Device Proxy
• CyberGhost VPN https://www.cyberghostvpn.com
• NetShade www.raynersw.com
• Servers Ultimate www.icecoldapps.com
• Shadowsocks https://shadowsocks.org

Rooting/Jailbreaking
• Absinthe http://greenpois0n.com
• Cydia http://cydia.saurik.com
• Evasi0n7 http://evasi0n.com
• Geeksn0w http://geeksn0w.it
• Kingo https://www.kingoapp.com/
• One Click Root https://www.oneclickroot.com/
• Pangu http://en.pangu.io
• Redsn0w http://redsn0w.info
• Superboot (Multiple download sites)
• SuperOneClick http://superoneclick-download.soft112.com/

MDM
• MaaS360 www.maas360.com
• MobiControl www.sati.net
• SAP Afaria www.sybase.com
• XenMobile www.citrix.com

IoT Tools
• Attify Zigbee Framework www.attify.com
• AWS IoT Defender aws.amazon.com
• beSTORM Vulnerability Scanner www.beyondsecurity.com
• Censys (search engine) censys.io
• ChipWhisperer newae.com
• CloudShark www.cloudshark.org
• darktarce www.darktarce.com
• DigiCert IoT Security www.digicert.com
• Firmalyzer firmalyzer.com
• Foren6 (IoT Sniffing) cetic.github.io
• Google Cloud Iot cloud.google.com

http://www.ihoundsoftware.com
http://wheresmydroid.com
https://www.cyberghostvpn.com
http://www.raynersw.com
http://www.icecoldapps.com
https://shadowsocks.org
http://greenpois0n.com
http://cydia.saurik.com
http://evasi0n.com
http://geeksn0w.it
https://www.kingoapp.com/
https://www.oneclickroot.com/
http://en.pangu.io
http://redsn0w.info
http://superoneclick-download.soft112.com/
http://www.maas360.com
http://www.sati.net
http://www.sybase.com
http://www.citrix.com
http://www.attify.com
http://aws.amazon.com
http://www.beyondsecurity.com
http://censys.io
http://newae.com
http://www.cloudshark.org
http://www.darktarce.com
http://www.digicert.com
http://firmalyzer.com
http://cetic.github.io
http://cloud.google.com

• IoT Security Platform www.pwnieexpress.com
• IoTsploit iotsploit.com
• JTAGulator grandideastudio.com
• KillerBee github.com
• MultiPing (info gathering) www.pingman.com
• RIoT Vulnerability Scanner www.beyondtrust.com
• SeaCAT security www.tekalabs.com
• SecBee github.com
• Symantec IoT Security www.symantec.com
• Thingful (search engine) www.thingful.net
• Ubertooth github.com
• Z-Wave Sniffer www.suphammer.net

Trojans and Malware

Anti-Malware (Anti-Spyware and Antivirus)
• Ad-Aware www.lavasoft.com
• Avast www.avast.com
• AVG free.avg.com
• BitDefender www.bitdefender.com
• HackAlert www.armorize.com
• Kapersky www.kapersky.com
• MacScan http://macscan.securemac.com
• Malwarebytes www.malwarebytes.com
• McAfee www.mcafee.com
• Panda www.pandasecurity.com
• Spybot Search and Destroy www.safer-networking.org
• SpyHunter www.enigmasoftware.com
• SUPERAntiSpyware www.superantispyware.com
• Symantec www.symantec.com

Crypters and Packers
• EliteWrap https://packetstormsecurity.com/files/14593/elitewrap.zip.html
• Crypter www.crypter.com
• Aegis www.aegiscrypter.com
• AIO FUD (Multiple download sites)
• Galaxy Crypter (Multiple download sites)
• Heaven Crypter (Multiple download sites)

http://www.pwnieexpress.com
http://iotsploit.com
http://grandideastudio.com
http://github.com
http://www.pingman.com
http://www.beyondtrust.com
http://www.tekalabs.com
http://github.com
http://www.symantec.com
http://www.thingful.net
http://github.com
http://www.suphammer.net
http://www.lavasoft.com
http://www.avast.com
http://free.avg.com
http://www.bitdefender.com
http://www.armorize.com
http://www.kapersky.com
http://macscan.securemac.com
http://www.malwarebytes.com
http://www.mcafee.com
http://www.pandasecurity.com
http://www.safer-networking.org
http://www.enigmasoftware.com
http://www.superantispyware.com
http://www.symantec.com
https://packetstormsecurity.com/files/14593/elitewrap.zip.html
http://www.crypter.com
http://www.aegiscrypter.com

• Hidden Sight Crypter http://securecybergroup.in
• SwayzCryptor (Multiple download sites)

Monitoring Tools
• CurrPorts www.nirsoft.net
• Driver Detective www.driveshq.com
• Fport www.mcafee.com/us/downloads/free-tools/fport.aspx
• HiJackThis http://free.antivirus.com
• ProcessHacker http://processhacker.sourceforge.net
• Regshot http://sourceforge.net/projects/regshot
• SysAnalyzer http://labs.idefense.com/software/malcode.php
• SvrMan http://tools.sysprogs.org
• What’s Running www.whatsrunning.net

Attack Tools
• Nemesis http://nemesis.sourceforge.net
• Netcat http://netcat.sourceforge.net

Web Attacks

Attack Tools
• Black Widow http://softbytelabs.com
• cURL http://curl.haxx.se
• Httprecon www.computec.ch
• ID Serve www.grc.com
• InstantSource www.blazingtools.com
• Metasploit www.metasploit.com
• NetBrute www.rawlogic.com
• Netsparker www.mavitunasecurity.com
• Nstalker http://nstalker.com
• SoapUI www.soapui.org
• WatcherWeb www.casaba.com
• WebInspect www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast
• WebScarab http://owasp.org
• WebSleuth http://sandsprite.com
• Wfetch www.microsoft.com
• XMLSpy www.altova.com

http://securecybergroup.in
http://www.nirsoft.net
http://www.driveshq.com
http://www.mcafee.com/us/downloads/free-tools/fport.aspx
http://free.antivirus.com
http://processhacker.sourceforge.net
http://sourceforge.net/projects/regshot
http://labs.idefense.com/software/malcode.php
http://tools.sysprogs.org
http://www.whatsrunning.net
http://nemesis.sourceforge.net
http://netcat.sourceforge.net
http://softbytelabs.com
http://curl.haxx.se
http://www.computec.ch
http://www.grc.com
http://www.blazingtools.com
http://www.metasploit.com
http://www.rawlogic.com
http://www.mavitunasecurity.com
http://nstalker.com
http://www.soapui.org
http://www.casaba.com
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast
http://owasp.org
http://sandsprite.com
http://www.microsoft.com
http://www.altova.com

SQL Injection
• BSQL Hacker http://labs.portcullis.co.uk
• Marathon http://marathontool.codeplex.com
• SQL Brute http://gdssecurity.com
• SQLGET http://darknet.org.uk
• SQL Injection Brute http://code.google.com
• SQLNinja http://sqlninja.sourceforge.net

Miscellaneous

Cloud Security
• Alert Logic www.alertlogic.com
• CloudPassage Halo https://www.cloudpassage.com/
• Core CloudInspect http://coreinspection.com/
• Panda Cloud Office Protection www.cloudantivirus.com
• Symantec O3 www.symantec.com
• Trend Micro Instant-On www.trendmicro.com

Cloud Services Testing
• BlazeMeter blazemeter.com/
• LoadStorm loadstorm.com
• SOASTA www.soasta.com
• Zephyr www.getzephyr.com

IDS
• Snort www.snort.org

Evasion Tools
• ADMmutate www.ktwo.ca
• IDS Informer www.net-security.org
• Inundator http://inundator.sourceforge.net
• NIDSbench http://packetstormsecurity.org/UNIX/IDS/nidsbench/
• Tcp-over-dns http://analogbit.com/software/tcp-over-dns

Pen Test Suites
• Armitage www.fastandeasyhacking.com
• CANVAS http://immunitysec.com

http://labs.portcullis.co.uk
http://marathontool.codeplex.com
http://gdssecurity.com
http://darknet.org.uk
http://code.google.com
http://sqlninja.sourceforge.net
http://www.alertlogic.com
https://www.cloudpassage.com/
http://coreinspection.com/
http://www.cloudantivirus.com
http://www.symantec.com
http://www.trendmicro.com
http://blazemeter.com/
http://loadstorm.com
http://www.soasta.com
http://www.getzephyr.com
http://www.snort.org
http://www.ktwo.ca
http://www.net-security.org
http://inundator.sourceforge.net
http://packetstormsecurity.org/UNIX/IDS/nidsbench/
http://analogbit.com/software/tcp-over-dns
http://www.fastandeasyhacking.com
http://immunitysec.com

• Cobalt Strike www.cobaltstrike.com
• Codenomicon https://www.synopsys.com
• Core Impact www.coresecurity.com
• Metasploit www.metasploit.org

VPN/FW Scanner
• IKE-Scan http://sectools.org/tool/ike-scan/

Social Engineering
• Social Engineer Toolkit www.trustedsec.com

Extras
• Core Impact Demo https://coresecurity.webex.com/
• Sysinternals https://docs.microsoft.com/en-us/sysinternals/
• Tripwire www.tripwire.com/

Linux Distributions
• BackTrack www.remote-exploit.org/index.php/BackTrack
• Distrowatch http://distrowatch.com

Tools, Sites, and References Disclaimer
All URLs listed in this appendix were current and live at the time of writing. McGraw-Hill
Education makes no warranty as to the availability of these World Wide Web or Internet pages.
McGraw-Hill Education has not reviewed or approved the accuracy of the contents of these
pages and specifically disclaims any warranties of merchantability or fitness for a particular
purpose.

http://www.cobaltstrike.com
https://www.synopsys.com
http://www.coresecurity.com
http://www.metasploit.org
http://sectools.org/tool/ike-scan/
http://www.trustedsec.com
https://coresecurity.webex.com/
https://docs.microsoft.com/en-us/sysinternals/
http://www.tripwire.com/
http://www.remote-exploit.org/index.php/BackTrack
http://distrowatch.com

APPENDIX B
About the Online Content

This book comes complete with TotalTester Online customizable practice exam software
containing 300 practice exam questions.

System Requirements
The current and previous major versions of the following desktop browsers are recommended
and supported: Chrome, Microsoft Edge, Firefox, and Safari. These browsers update frequently,
and sometimes an update may cause compatibility issues with the TotalTester Online or other
content hosted on the Training Hub. If you run into a problem using one of these browsers,
please try using another until the problem is resolved.

Your Total Seminars Training Hub Account
To get access to the online content you will need to create an account on the Total Seminars
Training Hub. Registration is free, and you will be able to track all your online content using
your account. You may also opt in if you wish to receive marketing information from McGraw-
Hill Education or Total Seminars, but this is not required for you to gain access to the online
content.

Privacy Notice
McGraw-Hill Education values your privacy. Please be sure to read the Privacy Notice available
during registration to see how the information you have provided will be used. You may view
our Corporate Customer Privacy Policy by visiting the McGraw-Hill Education Privacy Center.
Visit the mheducation.com site and click Privacy at the bottom of the page.

Single User License Terms and Conditions
Online access to the digital content included with this book is governed by the McGraw-Hill
Education License Agreement outlined next. By using this digital content you agree to the terms
of that license.

Access To register and activate your Total Seminars Training Hub account, simply follow these
easy steps.

1. Go to hub.totalsem.com/mheclaim.

http://hub.totalsem.com/mheclaim

2. To Register and create a new Training Hub account, enter your e-mail address, name, and
password. No further personal information (such as credit card number) is required to
create an account.

NOTE If you already have a Total Seminars Training Hub account, select Log in and enter
your e-mail and password. Otherwise, follow the remaining steps.

3. Enter your Product Key: f46v-25sm-hk4s
4. Click to accept the user license terms.
5. Click Register and Claim to create your account. You will be taken to the Training Hub

and have access to the content for this book.

Duration of License Access to your online content through the Total Seminars Training Hub
will expire one year from the date the publisher declares the book out of print.

Your purchase of this McGraw-Hill Education product, including its access code, through a
retail store is subject to the refund policy of that store.

The Content is a copyrighted work of McGraw-Hill Education, and McGraw-Hill Education
reserves all rights in and to the Content. The Work is © 2019 by McGraw-Hill Education, LLC.

Restrictions on Transfer The user is receiving only a limited right to use the Content for the
user’s own internal and personal use, dependent on purchase and continued ownership of this
book. The user may not reproduce, forward, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish, or sublicense the Content or in any way
commingle the Content with other third-party content without McGraw-Hill Education’s
consent.

Limited Warranty The McGraw-Hill Education Content is provided on an “as is” basis.
Neither McGraw-Hill Education nor its licensors make any guarantees or warranties of any kind,
either express or implied, including, but not limited to, implied warranties of merchantability or
fitness for a particular purpose or use as to any McGraw-Hill Education Content or the
information therein or any warranties as to the accuracy, completeness, correctness, or results to
be obtained from, accessing or using the McGraw-Hill Education content, or any material
referenced in such content or any information entered into licensee’s product by users or other
persons and/or any material available on or that can be accessed through the licensee’s product
(including via any hyperlink or otherwise) or as to non-infringement of third-party rights. Any
warranties of any kind, whether express or implied, are disclaimed. Any material or data
obtained through use of the McGraw-Hill Education content is at your own discretion and risk
and user understands that it will be solely responsible for any resulting damage to its computer
system or loss of data.

Neither McGraw-Hill Education nor its licensors shall be liable to any subscriber or to any
user or anyone else for any inaccuracy, delay, interruption in service, error or omission,

regardless of cause, or for any damage resulting therefrom.
In no event will McGraw-Hill Education or its licensors be liable for any indirect, special or

consequential damages, including but not limited to lost time, lost money, lost profits or good
will, whether in contract, tort, strict liability or otherwise, and whether or not such damages are
foreseen or unforeseen with respect to any use of the McGraw-Hill Education content.

TotalTester Online
TotalTester Online provides you with a simulation of the CEH v10 exam. Exams can be taken in
Practice Mode or Exam Mode. Practice Mode provides an assistance window with hints,
references to the book, explanations of the correct and incorrect answers, and the option to check
your answer as you take the test. Exam Mode provides a simulation of the actual exam. The
number of questions, the types of questions, and the time allowed are intended to be an accurate
representation of the exam environment. The option to customize your quiz allows you to create
custom exams from selected domains or chapters, and you can further customize the number of
questions and time allowed.

To take a test, follow the instructions provided in the previous section to register and activate
your Total Seminars Training Hub account. When you register you will be taken to the Total
Seminars Training Hub. From the Training Hub Home page, select CEH All-in-One Exam
Guide (CEH v10) TotalTester from the Study drop-down menu at the top of the page, or from
the Your Topics list on the Home page. You can then select the option to customize your quiz
and begin testing yourself in Practice Mode or Exam Mode. All exams provide an overall grade
and a grade broken down by domain.

Technical Support
For questions regarding the Total Tester software or operation of the Training Hub, visit
www.totalsem.com or e-mail support@totalsem.com.

For questions regarding book content, e-mail hep_customer-service@mheducation.com.
For customers outside the United States, e-mail international_cs@mheducation.com.

GLOSSARY

802.11 Wireless LAN standards created by IEEE. 802.11a runs at up to 54 Mbps at 5 GHz,
802.11b runs at up to 11 Mbps at 2.4 GHz, 802.11g runs at up to 54 Mbps at 2.4 GHz, and
802.11n can run upward of 150 Mbps.

802.11i A wireless LAN security standard developed by IEEE. Requires Temporal Key
Integrity Protocol (TKIP) and Advanced Encryption Standard (AES).

acceptable use policy (AUP) Policy stating what users of a system can and cannot do with the
organization’s assets.

access control list (ACL) A method of defining what rights and permissions an entity has to a
given resource. In networking, access control lists are commonly associated with firewall and
router traffic-filtering rules.

access creep Occurs when authorized users accumulate excess privileges on a system because
of moving from one position to another; allowances accidentally remain with the account from
position to position.

access point (AP) A wireless LAN device that acts as a central point for all wireless traffic.
The AP is connected to both the wireless LAN and the wired LAN, providing wireless clients
access to network resources.

accountability The ability to trace actions performed on a system to a specific user or system
entity.

acknowledgment (ACK) A TCP flag notifying an originating station that the preceding packet
(or packets) has been received.

active attack An attack that is direct in nature—usually where the attacker injects something
into, or otherwise alters, the network or system target.

Active Directory (AD) The directory service created by Microsoft for use on its networks. It
provides a variety of network services using Lightweight Directory Access Protocol (LDAP),
Kerberos-based authentication, and single sign-on for user access to network-based resources.

active fingerprinting Injecting traffic into the network to identify the operating system of a
device.

ad hoc mode A mode of operation in a wireless LAN in which clients send data directly to one
another without utilizing a wireless access point (WAP), much like a point-to-point wired
connection.

Address Resolution Protocol (ARP) A protocol used to map a known IP address to a physical
(MAC) address. It is defined in RFC 826. The ARP table is a list of IP addresses and
corresponding MAC addresses stored on a local computer.

adware Software that has advertisements embedded within it. It generally displays ads in the
form of pop-ups.

algorithm A step-by-step method of solving a problem. In computing security, an algorithm is
a set of mathematical rules (logic) for the process of encryption and decryption.

annualized loss expectancy (ALE) A measurement of the cost of an asset’s value to the
organization and the monetary loss that can be expected for an asset due to risk over a one-year
period. ALE is the product of the annual rate of occurrence (ARO) and the single loss
expectancy (SLE). It is mathematically expressed as ALE = ARO × SLE.

annualized rate of occurrence (ARO) An estimate of the number of times during a year a
particular asset would be lost or experience downtime.

anonymizer A device or service designed to obfuscate traffic between a client and the Internet.
It is generally used to make activity on the Internet as untraceable as possible.

antivirus (AV) software An application that monitors a computer or network to identify, and
prevent, malware. AV is usually signature-based and can take multiple actions on defined
malware files/activity.

Application layer Layer 7 of the OSI reference model. The Application layer provides services
to applications to allow them access to the network. Protocols such as FTP and SMTP reside
here.

application-level attacks Attacks on the actual programming code of an application.

archive A collection of historical records or the place where they are kept. In computing, an
archive generally refers to backup copies of logs and/or data.

assessment Activities to determine the extent to which a security control is implemented
correctly, operating as intended, and producing the desired outcome with respect to meeting the
security requirements for the system.

asset Any item of value or worth to an organization, whether physical or virtual.

asymmetric Literally, “not balanced or the same.” In computing, asymmetric refers to a
difference in networking speeds upstream to downstream. In cryptography, it’s the use of more
than one key for encryption/authentication purposes.

asymmetric algorithm In computer security, an algorithm that uses separate keys for
encryption and decryption.

asynchronous 1. The lack of clocking (imposed time ordering) on a bit stream. 2. An industry

term referring to an implant or malware that does not require active interaction from the attacker.

asynchronous transmission The transmission of digital signals without precise clocking or
synchronization.

audit Independent review and examination of records and activities to assess the adequacy of
system controls, to ensure compliance with established policies and operational procedures, and
to recommend necessary changes.

audit data Chronological record of system activities to enable the reconstruction and
examination of the sequence of events and changes in an event.

audit trail A record showing which user has accessed a given resource and what operations the
user performed during a given period.

auditing The process of recording activity on a system for monitoring and later review.

authentication The process of determining whether a network entity (user or service) is
legitimate—usually accomplished through a user ID and password. Authentication measures are
categorized by something you know (user ID and password), something you have (smart card or
token), or something you are (biometrics).

authentication, authorization, and accounting (AAA) Authentication confirms the identity of
the user or device. Authorization determines the privileges (rights) of the user or device.
Accounting records the access attempts, both successful and unsuccessful.

authentication header (AH) An Internet Protocol Security (IPSec) header used to verify that
the contents of a packet have not been modified while the packet was in transit.

authenticity Sometimes included as a security element, authenticity refers to the characteristic
of data that ensures it is genuine.

authorization The conveying of official access or legal power to a person or entity.

availability The condition of a resource being ready for use and accessible by authorized users.

backdoor A hidden capability in a system or program for bypassing normal computer
authentication systems. A backdoor can be purposeful or the result of malware or other attack.

banner grabbing An enumeration technique used to provide information about a computer
system; generally used for operating system identification (also known as fingerprinting).

baseline A point of reference used to mark an initial state in order to manage change.

bastion host A computer placed outside a firewall to provide public services to other Internet
sites and hardened to resist external attacks.

biometrics A measurable, physical characteristic used to recognize the identity, or to verify the
claimed identity, of an applicant. Facial images, fingerprints, and handwriting samples are all

examples of biometrics.

bit flipping A cryptographic attack where bits are manipulated in the cipher text to generate a
predictable outcome in the plain text once it is decrypted.

black hat An attacker who breaks into computer systems with malicious intent, without the
owner’s knowledge or permission.

black-box testing In penetration testing, a method of testing the security of a system or subnet
without any previous knowledge of the device or network. It is designed to simulate an attack by
an outside intruder (usually from the Internet).

block cipher A symmetric key cryptographic algorithm that transforms a block of information
at a time using a cryptographic key. For a block cipher algorithm, the length of the input block is
the same as the length of the output block.

Blowfish A symmetric, block-cipher data-encryption standard that uses a variable-length key
that can range from 32 bits to 448 bits.

BlueBorne attack An amalgamation of techniques and attacks against known, already existing
Bluetooth vulnerabilities.

Bluejacking Sending unsolicited messages over Bluetooth to Bluetooth-enabled devices such
as mobile phones, tablets, and laptop computers.

Bluesnarfing Unauthorized access to information such as calendars, contact lists, e-mails, and
text messages on a wireless device through a Bluetooth connection.

Bluetooth A proprietary, open, wireless technology used for transferring data from fixed and
mobile devices over short distances.

boot sector virus A virus that plants itself in a system’s boot sector and infects the master boot
record.

brute-force password attack A method of password cracking whereby all possible options are
systematically enumerated until a match is found. These attacks try every password (or
authentication option), one after another, until successful. Brute-force attacks take a long time to
work and are easily detectable.

buffer A portion of memory used to temporarily store output or input data.

buffer overflow A condition that occurs when more data is written to a buffer than it has space
to store, which results in data corruption or other system errors. This is usually because of
insufficient bounds checking, a bug, or improper configuration in the program code.

bug A software or hardware defect that often results in system vulnerabilities.

business continuity plan (BCP) A set of plans and procedures to follow in the event of a

failure or a disaster—security related or not—to get business services back up and running.
BCPs include a disaster recovery plan (DRP) that addresses exactly what to do to recover any
lost data or services.

business impact analysis (BIA) An organizedprocess to gauge the potential effects of an
interruption to critical business operations as a result of a disaster, accident, or emergency.

cache A storage buffer that transparently stores data so future requests for the same data can be
served faster.

CAM table Content addressable memory table. A CAM table holds all the MAC-address-to-
port mappings on a switch.

certificate An electronic file used to verify a user’s identity, providing nonrepudiation
throughout the system. It is also known as a digital certificate. It is also a set of data that
uniquely identifies an entity. Certificates contain the entity’s public key, serial number, version,
subject, algorithm type, issuer, valid dates, and key usage details.

certificate authority (CA) A trusted entity that issues and revokes public key certificates. In a
network, a CA is a trusted entity that issues, manages, and revokes security credentials and
public keys for message encryption and/or authentication. Within a public key infrastructure
(PKI), the CA works with registration authorities (RAs) to verify information provided by the
requestor of a digital certificate.

Challenge Handshake Authentication Protocol (CHAP) An authentication method on point-
to-point links, using a three-way handshake and a mutually agreed-upon key.

CIA triad Confidentiality, integrity, and availability. These are the three fundamental aspects
of security.

cipher text Text or data in its encrypted form; the result of plain text being input into a
cryptographic algorithm.

client A computer process that requests a service from another computer and accepts the
server’s responses.

cloning A cell phone attack in which the serial number from one cell phone is copied to another
in an effort to copy the cell phone.

CNAME record A Canonical Name record within DNS, used to provide an alias for a domain
name.

cold site A backup facility with the electrical and physical components of a computer facility,
but with no computer equipment in place. The site is ready to receive the necessary replacement
computer equipment in the event the user has to move from his main computing location to an
alternate site.

collision In regard to hash algorithms, a collision occurs when two or more distinct inputs

produce the same output.

collision domain A domain composed of all the systems sharing any given physical transport
media. Systems within a collision domain may collide with each other during the transmission of
data. Collisions can be managed by CSMA/CD (collision detection) or CSMA/CA (collision
avoidance).

Common Internet File System/Server Message Block An Application layer protocol used
primarily by Microsoft Windows to provide shared access to printers, files, and serial ports. It
also provides an authenticated interprocess communication mechanism.

community cloud A cloud model where the infrastructure is shared by several organizations,
usually with the same policy and compliance considerations.

community string A string used for authentication in SNMP. The public community string is
used for read-only searches, whereas the private community string is used for read-write.
Community strings are transmitted in clear text in SNMPv1. SNMPv3 provides encryption for
the strings as well as other improvements and options.

competitive intelligence Freely and readily available information on an organization that can
be gathered by a business entity about its competitor’s customers, products, and marketing. It can
be used by an attacker to build useful information for further attacks.

Computer Emergency Response Team (CERT) Name given to expert groups that handle
computer security incidents.

computer-based attack A social engineering attack using computer resources such as e-mail
and IRC.

confidentiality A security objective that ensures a resource can be accessed only by authorized
users. This is also the security principle that stipulates sensitive information is not disclosed to
unauthorized individuals, entities, or processes.

console port Physical socket provided on routers and switches for cable connections between a
computer and the router/switch. This connection enables the computer to configure, query, and
troubleshoot the router/switch by use of a terminal emulator and a command-line interface.

contingency plan Management policies and procedures designed to maintain or restore
business operations, including computer operations, possibly at an alternate location, in the event
of an emergency, system failure, or disaster.

cookie A text file stored within a browser by a web server that maintains information about the
connection. Cookies are used to store information to maintain a unique but consistent surfing
experience but can also contain authentication parameters. Cookies can be encrypted and can
have defined expiration dates.

copyright A set of exclusive rights granted by the law of a jurisdiction to the author or creator
of an original work, including the right to copy, distribute, and adapt the work.

corrective controls Controls internal to a system designed to resolve vulnerabilities and errors
soon after they arise.

countermeasures Actions, devices, procedures, techniques, or other measures intended to
reduce the vulnerability of an information system.

covert channel A communications channel that is being used for a purpose it was not intended
for, usually to transfer information secretly.

cracker A cyberattacker who acts without permission from, and gives no prior notice to, the
resource owner. This is also known as a malicious hacker.

crossover error rate (CER) A comparison metric for different biometric devices and
technologies, the CER is the point at which the false acceptance rate (FAR) equals the false
rejection rate (FRR). As an identification device becomes more sensitive or accurate, its FAR
decreases while its FRR increases. The CER is the point at which these two rates are equal, or
cross over.

cross-site scripting (XSS) An attack whereby the hacker injects code into an otherwise
legitimate web page, which is then clicked by other users or is exploited via Java or some other
script method. The embedded code within the link is submitted as part of the client’s web request
and can execute on the user’s computer.

crypter A software tool that uses a combination of encryption and code manipulation to render
malware undetectable to AV and other security-monitoring products.

cryptographic key A value used to control cryptographic operations, such as decryption,
encryption, signature generation, and signature verification.

cryptography The science or study of protecting information, whether in transit or at rest, by
using techniques to render the information unusable to anyone who does not possess the means
to decrypt it.

daemon A background process found in Unix, Linux, Solaris, and other Unix-based operating
systems.

daisy chaining A method of external testing whereby several systems or resources are used
together to make an attack.

Data Encryption Standard (DES) An outdated symmetric cipher encryption algorithm,
previously approved by the U.S. government and used by business and civilian government
agencies. DES is no longer considered secure because of the ease with which the entire keyspace
can be attempted using modern computing, thus making cracking the encryption easy.

Data Link layer Layer 2 of the OSI reference model. This layer provides reliable transit of data
across a physical link. The Data Link layer is concerned with physical addressing, network
topology, access to the network medium, error detection, sequential delivery of frames, and flow
control. The Data Link layer is composed of two sublayers: the MAC and the LLC.

database An organized collection of data.

decryption The process of transforming cipher text into plain text through the use of a
cryptographic algorithm.

defense in depth An information assurance strategy in which multiple layers of defense are
placed throughout an information technology system.

demilitarized zone (DMZ) A partially protected zone on a network, not exposed to the full
fury of the Internet but not fully behind the firewall. This technique is typically used on parts of
the network that must remain open to the public (such as a web server) but must also access
trusted resources (such as a database). The point is to allow the inside firewall component,
guarding the trusted resources, to make certain assumptions about the impossibility of outsiders
forging DMZ addresses.

denial of service (DoS) An attack with the goal of preventing authorized users from accessing
services and preventing the normal operation of computers and networks.

detective controls Controls to detect anomalies or undesirable events occurring on a system.

digital certificate Also known as a public key certificate, a digital certificate is an electronic
file that is used to verify a user’s identity, providing nonrepudiation throughout the system.
Certificates contain the entity’s public key, serial number, version, subject, algorithm type,
issuer, valid dates, and key usage details.

digital signature The result of using a private key to encrypt a hash value for identification
purposes within a PKI system. The signature can be decoded by the originator’s public key,
verifying his identity and providing nonrepudiation. A valid digital signature gives a recipient
verification the message was created by a known sender.

digital watermarking The process of embedding information into a digital signal in a way that
makes it difficult to remove.

directory traversal attack Also known as the dot-dot-slash attack. Using directory traversal,
the attacker attempts to access restricted directories and execute commands outside intended web
server directories by using the URL to redirect to an unintended folder location.

disaster recovery plan (DRP) A documented set of procedures to recover business
infrastructures in the event of a disaster.

discretionary access control (DAC) The basis of this kind of security is that an individual
user, or program operating on the user’s behalf, is allowed to specify explicitly the types of
access other users (or programs executing on their behalf) may have to information under the
user’s control.

distributed DoS (DDoS) A denial-of-service technique that uses numerous hosts to perform the
attack.

DNS enumeration The process of using easily accessible DNS records to map a target
network’s internal hosts.

domain name A unique hostname that is used to identify resources on the Internet. Domain
names start with a root (.) and then add a top level (.com, .gov, or .mil, for example) and a given
namespace.

Domain Name System (DNS) A network system of servers that translates numeric Internet
Protocol (IP) addresses into human-friendly, hierarchical Internet addresses, and vice versa.

Domain Name System (DNS) cache poisoning An attack technique that tricks your DNS
server into believing it has received authentic information when, in reality, it has been provided
fraudulent data. DNS cache poisoning affects user traffic by sending it to erroneous or malicious
endpoints instead of its intended destination.

Domain Name System (DNS) lookup The process of a system providing a fully qualified
domain name (FQDN) to a local name server, for resolution to its corresponding IP address.

doxing The process of searching for and publishing private information about a target (usually
an individual) on the Internet, typically with malicious intent.

droppers Malware designed to install some sort of virus, backdoor, and so on, on a target
system.

due care A term representing the responsibility managers and their organizations have to
provide information security to ensure the type of control, the cost of control, and the
deployment of control are appropriate for the system being managed.

due diligence Steps taken to identify and limit risks to an acceptable or reasonable level of
exposure.

dumpster diving A physical security attack where the attacker sifts through garbage and
recycle bins for information that may be useful on current and future attacks.

eavesdropping The act of secretly listening to the private conversations of others without their
consent. This can also be done over telephone lines (wiretapping), e-mail, instant messaging, and
other methods of communication considered private.

ECHO reply A type 0 ICMP message used to reply to ECHO requests. It is used with ping to
verify Network layer connectivity between hosts.

EDGAR database A system used by the Securities and Exchange Commission (SEC) for
companies and businesses to transmit required filings and information. The EDGAR database
performs automated collection, validation, indexing, acceptance, and forwarding of submissions
by companies and others who are required by law to file forms with the U.S. Securities and
Exchange Commission. The database is freely available to the public via the Internet and is a
potential source of information for hackers.

Electronic Code Book (ECB) A mode of operation for a block cipher, with the characteristic
that each possible block of plain text has a defined corresponding cipher-text value, and vice
versa.

electronic serial number Created by the U.S. Federal Communications Commission to
uniquely identify mobile devices; often represented as an 11-digit decimal number or 8-digit
hexadecimal number.

encapsulation The process of attaching a particular protocol header and trailer to a unit of data
before transmission on the network. It occurs at Layer 2 of the OSI reference model.

encryption Conversion of plain text to cipher text through the use of a cryptographic algorithm.

end user licensing agreement (EULA) A software license agreement; a contract between the
“licensor” and purchaser establishing the right to use the software.

Enterprise Information Security Architecture (EISA) A collection of requirements and
processes that help determine how an organization’s information systems are built and how they
work.

enumeration In penetration testing, enumeration is the act of querying a device or network
segment thoroughly and systematically for information.

Ethernet Baseband LAN specification developed by Xerox Corporation, Intel, and Digital
Equipment Corporation. This is one of the least expensive, most widely deployed networking
standards; it uses the CSMA/CD method of media access control.

ethical hacker A computer security expert who performs security audits and penetration tests
against systems or network segments, with the owner’s full knowledge and permission, in an
effort to increase security.

event Any network incident that prompts some kind of log entry or other notification.

exploit Software code, a portion of data, or a sequence of commands intended to take
advantage of a bug or vulnerability in order to cause unintended or unanticipated behavior to
occur on computer software or hardware.

exposure factor The subjective, potential percentage of loss to a specific asset if a specific
threat is realized. The exposure factor (EF) is a subjective value the person assessing risk must
define.

Extensible Authentication Protocol (EAP) Originally an extension of PPP, EAP is a protocol
for authentication used within wireless networks. It works with multiple authentication measures.

false acceptance rate (FAR) The rate at which a biometric system will incorrectly identify an
unauthorized individual and allow them access (see false negative).

false negative A situation in which an IDS does not trigger on an event that was an intrusion

attempt. False negatives are considered more dangerous than false positives.

false positive A situation in which an IDS or other sensor triggers on an event as an intrusion
attempt, when it was actually legitimate traffic.

false rejection rate (FRR) The rate at which a biometric system will incorrectly reject an
access attempt by an authorized user.

Fast Ethernet An Ethernet networking system transmitting data at 100 million bits per second
(Mbps), ten times the speed of an earlier Ethernet standard. Derived from the Ethernet 802.3
standard, it is also known as 100BaseT.

Fiber Distributed Data Interface (FDDI) LAN standard, defined by ANSI X3T9.5,
specifying a 100-Mbps token-passing network using fiber-optic cable and a dual-ring
architecture for redundancy, with transmission distances of up to 2 kilometers.

File Allocation Table (FAT) A computer file system architecture used in Windows, OS/2, and
most memory cards.

File Transfer Protocol (FTP) An Application layer protocol, using TCP, for transporting files
across an Internet connection. FTP transmits in clear text.

filter A set of rules defined to screen network packets based on source address, destination
address, or protocol. These rules determine whether the packet will be forwarded or discarded.

Finger An early network application that provides information on users currently logged on to
a machine.

firewalking The process of systematically testing each port on a firewall to map rules and
determine accessible ports.

firewall Software or hardware components that restrict access between a protected network and
the Internet, or between other sets of networks, to block unwanted use or attacks.

flood Traffic-passing technique used by bridges and switches in which traffic received on an
interface is sent out all interfaces on the device except the interface on which the information
was originally received. Traffic on a switch is flooded when it is broadcast in nature (intended
for a broadcast address, as with ARP or other protocols) or if the switch does not have an entry in
the CAM table for the destination MAC.

footprinting All measures and techniques taken to gather information about an intended target.
Footprinting can be passive or active.

forwarding The process of sending a packet or frame toward the destination. In a switch,
messages are forwarded only to the port to which they are addressed.

fragmentation Process of breaking a packet into smaller units when it is being transmitted over
a network medium that’s unable to support a transmission unit the original size of the packet.

FreeBSD A free and popular version of the Unix operating system.

fully qualified domain name (FQDN) A fully qualified domain name consists of a host and
domain name, including a top-level domain such as .com, .net, .mil, .edu, and so on.

gap analysis A tool that helps a company compare its actual performance with its potential
performance.

gateway A device that provides access between two or more networks. Gateways are typically
used to connect dissimilar networks.

GET A command used in HTTP and FTP to retrieve a file from a server.

Government Access to Keys (GAK) An attempt through key disclosure laws to have software
companies provide copies of all keys to the government, which will be used only when a warrant
is provided during law enforcement efforts.

gray hat A skilled hacker who straddles the line between white hat (hacking only with
permission and within guidelines) and black hat (malicious hacking for personal gain). Gray hats
sometime perform illegal acts to exploit technology with the intent of achieving better security.

gray-box testing A penetration test in which the ethical hacker has limited knowledge of the
intended target(s). Designed to simulate an internal but non-system-administrator-level attack.

hack value The idea a hacker holds about the perceived worth or interest in attacking a target.

hacktivism The act or actions of a hacker to put forward a cause or a political agenda, to affect
some societal change, or to shed light on something he feels to be a political injustice. These
activities are usually illegal in nature.

halo effect A well-known and well-studied phenomenon of human nature, whereby a single
trait influences the perception of other traits.

hardware keystroke logger A hardware device used to log keystrokes covertly. Hardware
keystroke loggers are dangerous because they cannot be detected through regular software/anti-
malware scanning.

hash A unique numerical string, created by a hashing algorithm on a given piece of data, used
to verify data integrity. Generally hashes are used to verify the integrity of files after download
(comparison to the hash value on the site before download) and/or to store password values.

hashing algorithm A one-way mathematical function that generates a fixed-length numerical
string (hash) from a given data input. MD5 and SHA-1 are hashing algorithms.

heuristic scanning Method used by antivirus software to detect new, unknown viruses that
have not yet been identified; based on a piece-by-piece examination of a program, heuristic
scanning looks for a sequence or sequences of instructions that differentiate the virus from
“normal” programs.

HIDS Host-based IDS. An IDS that resides on the host, protecting against file and folder
manipulation and other host-based attacks and actions.

Hierarchical File System (HFS) A file system used by macOS.

honeynet A network deployed as a trap to detect, deflect, or deter unauthorized use of
information systems.

honeypot A host designed to collect data on suspicious activity.

hot site A fully operational off-site data-processing facility equipped with hardware and system
software to be used in the event of a disaster.

HTTP tunneling A firewall-evasion technique whereby packets are wrapped in HTTP, as a
covert channel to the target.

human-based social engineering Using conversation or some other interaction between people
to gather useful information.

hybrid attack An attack that combines a brute-force attack with a dictionary attack.

hybrid cloud A cloud model that is a composite of two or more cloud deployment models
(public, private, or community).

Hypertext Transfer Protocol (HTTP) A communications protocol used for browsing the
Internet.

Hypertext Transfer Protocol Secure (HTTPS) A hybrid of the HTTP and SSL/TLS protocols
that provides encrypted communication and secure identification of a web server.

IaaS Infrastructure as a Service. A cloud computing type providing virtualized computing
resources over the Internet.

identity theft A form of fraud in which someone pretends to be someone else by assuming that
person’s identity, typically in order to access resources or obtain credit and other benefits in that
person’s name.

impersonation A social engineering effort in which the attacker pretends to be an employee, a
valid user, or even an executive to elicit information or access.

inference attack An attack in which the hacker can derive information from the cipher text
without actually decoding it. Sensitive information can be considered compromised if an
adversary can infer its real value with a high level of confidence.

information technology (IT) asset criticality The level of importance assigned to an IT asset.

information technology (IT) asset valuation The monetary value assigned to an IT asset.

information technology (IT) infrastructure The combination of all IT assets, resources,

components, and systems.

information technology (IT) security architecture and framework A document describing
information security guidelines, policies, procedures, and standards.

Information Technology Security Evaluation Criteria (ITSEC) A structured set of criteria
for evaluating computer security within products and systems produced by European countries; it
has been largely replaced by the Common Criteria.

infrastructure mode A wireless networking mode where all clients connect to the wireless
network through a central access point.

initial sequence number (ISN) A number assigned during TCP startup sessions that tracks
how much information has been moved. This number is used by hackers when hijacking
sessions.

insider affiliate A spouse, friend, or client of an employee who uses the employee’s credentials
to gain physical or logical access to organizational resources.

insider associate A person with limited authorized access to the organization; contractors,
guards, and cleaning services are all examples.

Institute of Electrical and Electronics Engineers (IEEE) An organization composed of
engineers, scientists, and students who issue standards related to electrical, electronic, and
computer engineering.

integrity The security property that data is not modified in an unauthorized and undetected
manner. Also, this is the principle of taking measures to ensure that data received is in the same
condition and state as when it was originally transmitted.

Interior Gateway Protocol (IGP) An Internet routing protocol used to exchange routing
information within an autonomous system.

International Organization for Standardization (ISO) An international organization
composed of national standards bodies from more than 75 countries. ISO developed the OSI
reference model.

Internet Assigned Number Authority (IANA) The organization that governs the Internet’s
top-level domains, IP address allocation, and port number assignments.

Internet Control Message Protocol (ICMP) A protocol used to pass control and error
messages between nodes on the Internet.

Internet of Things (IoT) The collection of devices using sensors, software, storage, and
electronics to collect, analyze, store, and share data among themselves or to a user, with or
without human intervention or action.

Internet Protocol (IP) A protocol for transporting data packets across a packet-switched

internetwork (such as the Internet). IP is a routed protocol.

Internet Protocol Security (IPSec) architecture A suite of protocols used for securing
Internet Protocol (IP) communications by authenticating and encrypting each IP packet of a
communication session. This suite includes protocols for establishing mutual authentication
between agents at session establishment and for negotiating the cryptographic keys to be used
throughout the session.

Internet service provider (ISP) A business, government agency, or educational institution that
provides access to the Internet.

intranet A self-contained network with a limited number of participants who extend limited
trust to one another in order to accomplish an agreed-upon goal.

intrusion detection system (IDS) A security tool designed to protect a system or network
against attacks by comparing traffic patterns against a list of both known attack signatures and
general characteristics of how attacks may be carried out. Threats are rated and reported.

intrusion prevention system (IPS) A security tool designed to protect a system or network
against attacks by comparing traffic patterns against a list of both known attack signatures and
general characteristics of how attacks may be carried out. Threats are rated and protective
measures taken to prevent the more significant threats.

IoT Gateway A device designed to send collected data from IoT devices to the user or to data
storage (the cloud) for use later.

iris scanner A biometric device that uses pattern-recognition techniques based on images of the
irises of an individual’s eyes.

ISO 17799 A standard that provides best-practice recommendations on information security
management for use by those responsible for initiating, implementing, or maintaining
Information Security Management Systems (ISMS). Information security is defined within the
standard in the context of the CIA triad.

Kerberos A widely used authentication protocol developed at the Massachusetts Institute of
Technology (MIT). Kerberos authentication uses tickets, a ticket granting service, and a key
distribution center.

key exchange protocol A method in cryptography by which cryptographic keys are exchanged
between users, thus allowing use of a cryptographic algorithm (for example, the Diffie-Hellman
key exchange).

keylogger A software application or hardware device that captures user keystrokes.

last in first out (LIFO) A programming principle whereby the last piece of data added to the
stack is the first piece of data taken off.

Level I assessment An evaluation consisting of a document review, interviews, and

demonstrations. No hands-on testing is performed.

Level II assessment An evaluation consisting of a document review, interviews, and
demonstrations, as well as vulnerability scans and hands-on testing.

Level III assessment An evaluation in which testers attempt to penetrate the network.

Lightweight Directory Access Protocol (LDAP) An industry-standard protocol used for
accessing and managing information within a directory service; an application protocol for
querying and modifying data using directory services running over TCP/IP.

limitation of liability and remedies A legal limit on the amount of financial liability and
remedies the organization is responsible for taking on.

local area network (LAN) A computer network confined to a relatively small area, such as a
single building or campus.

logic bomb A piece of code intentionally inserted into a software system that will perform a
malicious function when specified conditions are met at some future point.

MAC filtering A method of permitting only MAC addresses in a preapproved list of network
access. Addresses not matching are blocked.

macro virus A virus written in a macro language and usually embedded in document or
spreadsheet files.

malicious code Software or firmware intended to perform an unauthorized process that will
have an adverse impact on the confidentiality, integrity, or availability of an information system.
A virus, worm, Trojan horse, or other code-based entity that infects a host.

malware A program or piece of code inserted into a system, usually covertly, with the intent of
compromising the confidentiality, integrity, or availability of the victim’s data, applications, or
operating system. Malware consists of viruses, worms, and other malicious code.

mandatory access control (MAC) A means of restricting access to system resources based on
the sensitivity (as represented by a label) of the information contained in the system resource and
the formal authorization (that is, clearance) of users to access information of such sensitivity.

man-in-the-middle attack An attack where the hacker positions himself between the client and
the server to intercept (and sometimes alter) data traveling between the two.

mantrap A small space having two sets of interlocking doors; the first set of doors must close
before the second set opens. Typically authentication is required for each door, often using
different factors. For example, a smartcard may open the first door, and a personal identification
number entered on a number pad opens the second.

master boot record infector A virus designed to infect the master boot record.

maximum tolerable downtime (MTD) A measurement of the potential cost due to a particular
asset being unavailable, used as a means to prioritize the recovery of assets should the worst
occur.

MD5 A hashing algorithm that results in a 128-bit output.

Media Access Control (MAC) A sublayer of Layer 2 of the OSI model, the Data Link layer. It
provides addressing and channel access control mechanisms that enable several terminals or
network nodes to communicate within a multipoint network.

methodology A documented process for a procedure designed to be consistent, repeatable, and
accountable.

minimum acceptable level of risk An organization’s threshold for the seven areas of
information security responsibility. This level is established based on the objectives for
maintaining the confidentiality, integrity, and availability of the organization’s IT assets and
infrastructure and will determine the resources expended for information security.

multipartite virus A computer virus that infects and spreads in multiple ways.

Multipurpose Internet Mail Extensions (MIME) An extensible mechanism for e-mail. A
variety of MIME types exist for sending content such as audio, binary, or video using the Simple
Mail Transfer Protocol (SMTP).

National Security Agency (NSA) INFOSEC Assessment Methodology (IAM) A systematic
process for the assessment of security vulnerabilities.

NetBSD A free, open source version of the Berkeley Software Distribution of Unix, often used
in embedded systems.

NetBus A software program for remotely controlling a Microsoft Windows computer system
over a network. Generally it is considered malware.

network access server A device providing temporary, on-demand, point-to-point network
access to users.

Network Address Translation (NAT) A technology where you advertise one IP address
externally and data packets are rerouted to the appropriate IP address inside your network by a
device providing translation services. In this way, IP addresses of machines on your internal
network are hidden from external users.

Network Basic Input/Output System (NetBIOS) An API that provides services related to the
OSI model’s Session layer, allowing applications on separate computers to communicate over a
LAN.

network interface card (NIC) An adapter that provides the physical connection to send and
receive data between the computer and the network media.

network operations center (NOC) One or more locations from which control is exercised over
a computer, television broadcast, or telecommunications network.

network tap Any kind of connection that allows you to see all traffic passing by. Generally
used in reference to a network-based IDS (NIDS) to monitor all traffic.

Nmap An open source scanning utility used to discover hosts and services on a network.

node A device on a network.

nonrepudiation The means by which a recipient of a message can ensure the identity of the
sender and that neither party can deny having sent or received the message. The most common
method is through digital certificates.

NOP A command that instructs the system processor to do nothing. Many overflow attacks
involve stringing several NOP operations together (known as a NOP sled).

nslookup A network administration command-line tool available for many operating systems
for querying the Domain Name System (DNS) to obtain domain name or IP address mappings or
any other specific DNS record.

NT LAN Manager (NTLM) The default network authentication suite of protocols for
Windows NT 4.0—retained in later versions for backward compatibility. NTLM is considered
insecure and was replaced by NTLMv2.

null session An anonymous connection to an administrative share (IPC$) on a Windows
machine. Null sessions allow for enumeration of Windows machines, among other attacks.

open source Describes practices in production and development that promote access to the end
product’s source materials.

Open Source Security Testing Methodology Manual (OSSTMM) A peer-reviewed,
formalized methodology of security testing and analysis.

Open System Interconnection (OSI) reference model A network architecture framework
developed by ISO that describes the communications process between two systems across the
Internet in seven distinct layers.

OpenBSD A Unix-like computer operating system descending from the BSD. OpenBSD
includes a number of security features absent or optional in other operating systems.

operating system attack An attack that exploits the common mistake many people make when
installing operating systems—that is, accepting and leaving all the defaults.

out-of-band signaling Transmission using channels or frequencies outside those normally used
for data transfer; often used for error reporting.

outsider associate A untrusted outsider using open, or illicitly gained, access to an

organization’s resources.

overt channel A communications path, such as the Internet, authorized for data transmission
within a computer system or network.

PaaS Platform as a Service. A cloud computing type geared toward software development,
providing a platform that allows subscribers to develop applications without building the
infrastructure it would normally take to develop and launch software.

packer A crypter that uses compression to pack malware executables into smaller sizes to avoid
detection.

packet A unit of information formatted according to specific protocols, generally regarded as
being used in OSI Layer 3, that allows precise transmittal of data from one network node to
another. Also called a datagram or data packet, a packet contains a header (container) and a
payload (contents). Any IP message larger than 1500 bytes will be fragmented into packets for
transmission.

packet filtering Controlling access to a network by analyzing the headers of incoming and
outgoing packets and letting them pass or discarding them based on rule sets created by a
network administrator. A packet filter allows or denies packets based on destination, source,
and/or port.

Packet Internet Groper (ping) A utility that sends an ICMP Echo message to determine
whether a specific IP address is accessible; if the message receives a reply, the address is
reachable.

parameter tampering An attack where the hacker manipulates parameters within the URL
string in hopes of modifying data.

passive attack An attack against an authentication protocol in which the attacker intercepts
data in transit along the network between the claimant and verifier but does not alter the data (in
other words, eavesdropping).

Password Authentication Protocol (PAP) A simple PPP authentication mechanism in which
the user name and password are transmitted in clear text to prove identity. PAP compares the
user name and password to a table listing authorized users.

patch A piece of software, provided by the vendor, intended to update or fix known, discovered
problems in a computer program or its supporting data.

pattern matching The act of checking some sequence of tokens for the presence of the
constituents of some pattern.

payload The contents of a packet. A system attack requires the attacker to deliver a malicious
payload that is acted upon and executed by the system.

Payment Card Industry Data Security Standard (PCI-DSS) A security standard for

organizations handling credit cards, ATM, and other point-of-sales cards. The standards apply to
all groups and organizations involved in the entirety of the payment process—from card issuers
to merchants to those storing and transmitting card information—and consist of 12 requirements.

penetration testing A method of evaluating the security of a computer system or network by
simulating an attack from a malicious source.

personal identification number (PIN) A secret, typically consisting of only decimal digits,
that a claimant memorizes and uses to authenticate his identity.

phishing The use of deceptive computer-based means to trick individuals into disclosing
sensitive personal information—usually via a carefully crafted e-mail message.

physical security Security measures, such as a locked door, perimeter fence, or security guard,
to prevent or deter physical access to a facility, resource, or information stored on physical
media.

piggybacking When an authorized person allows (intentionally or unintentionally) someone to
pass through a secure door, despite the intruder not having a badge.

ping sweep The process of pinging each address within a subnet to map potential targets. Ping
sweeps are unreliable and easily detectable but very fast.

polymorphic virus Malicious code that uses a polymorphic engine to mutate while keeping the
original algorithm intact; the code changes itself each time it runs, but the function of the code
will not change.

Point-to-Point Protocol (PPP) Provides router-to-router or host-to-network connections over
asynchronous and synchronous circuits.

Point-to-Point Tunneling Protocol (PPTP) A VPN tunneling protocol with encryption. PPTP
connects two nodes in a VPN by using one TCP port for negotiation and authentication and one
IP protocol for data transfer.

Port Address Translation (PAT) A NAT method in which multiple internal hosts, using
private IP addressing, can be mapped through a single public IP address using the session IDs
and port numbers. An internal global IP address can support in excess of 65,000 concurrent TCP
and UDP connections.

port knocking Another term for firewalking—the method of externally testing ports on a
firewall by generating a connection attempt on each port, one by one.

port redirection The process of directing a protocol from one port to another.

port scanning The process of using an application to remotely identify open ports on a system
(for example, whether systems allow connections through those ports).

POST An HTTP command to transmit text to a web server for processing. This is the opposite

of an HTTP GET.

Post Office Protocol 3 (POP3) An Application layer protocol used by local e-mail clients to
retrieve e-mail from a remote server over a TCP/IP connection.

Presentation layer Layer 6 of the OSI reference model. The Presentation layer ensures
information sent by the Application layer of the sending system will be readable by the
Application layer of the receiving system.

Pretty Good Privacy (PGP) A data encryption/decryption program often used for e-mail and
file storage.

private cloud A cloud model operated solely for a single organization (a.k.a. single-tenant
environment) and is usually not pay-as-you-go.

private key The secret portion of an asymmetric key pair typically used to decrypt or digitally
sign data. The private key is never shared and is always used for decryption, with one notable
exception: the private key is used to encrypt the digital signature.

private network address A nonroutable IP address range intended for use only within the
confines of a single organization, falling within the predefined range of 10.0.0.0, 172.16–31.0.0,
or 192.168.0.0.

promiscuous mode A configuration of a network card that makes the card pass all traffic it
receives to the central processing unit rather than just frames addressed to it—a feature normally
used for packet sniffing and bridged networking for hardware virtualization. Windows machines
use WinPcap for this; Linux uses libcap.

protocol A formal set of rules describing data transmission, especially across a network. A
protocol determines the type of error checking, the data compression method, how the sending
device will indicate completion, how the receiving device will indicate the message was
received, and so on.

protocol stack A set of related communications protocols operating together as a group to
address communication at some or all of the seven layers of the OSI reference model.

proxy server A device set up to send a response on behalf of an end node to the requesting
host. Proxies are generally used to obfuscate the host from the Internet.

public cloud A cloud model where services are provided over a network that is open for public
use (such as the Internet).

public key The public portion of an asymmetric key pair typically used to encrypt data or
verify signatures. Public keys are shared and are used to encrypt messages.

public key infrastructure (PKI) A set of hardware, software, people, policies, and procedures
needed to create, manage, distribute, use, store, and revoke digital certificates.

pure insider An employee with all the rights and access associated with being employed by the
company.

purple team A single team of security professionals who perform cooperative vulnerability and
penetration assessments (CVPA).

qualitative analysis A nonnumerical, subjective risk evaluation. This is used with qualitative
assessment (an evaluation of risk that results in ratings of none, low, medium, or high for the
probability).

quality of service (QoS) A defined measure of service within a network system—
administrators may assign a higher QoS to one host, segment, or type of traffic.

quantitative risk assessment Calculations of two components of risk (R): the magnitude of the
potential loss (L), and the probability (P) that the loss will occur.

queue A backlog of packets stored in buffers and waiting to be forwarded over an interface.

RAID (Redundant Array of Independent Disks) Formerly Redundant Array of Inexpensive
Disks, RAID is a technology that provides increased storage functions and reliability through
redundancy. This is achieved by combining multiple disk drive components into a logical unit,
where data is distributed across the drives in one of several ways, called RAID levels.

reconnaissance The steps taken to gather evidence and information on the targets you want to
attack.

remote access Access by information systems (or users) communicating from outside the
information system security perimeter.

remote procedure call (RPC) A protocol that allows a client computer to request services
from a server and the server to return the results.

replay attack An attack where the hacker repeats a portion of a cryptographic exchange in
hopes of fooling the system into setting up a communications channel.

request for comments (RFC) A series of documents and notes on standards used or proposed
for use on the Internet; each is identified by a number.

reverse lookup; reverse DNS lookup Used to find the domain name associated with an IP
address; the opposite of a DNS lookup.

reverse social engineering A social engineering attack that manipulates the victim into calling
the attacker for help.

RID Resource identifier. This is the last portion of the SID that identifies the user to the system
in Windows. An RID of 500 identifies the administrator account.

Rijndael An encryption standard designed by Joan Daemen and Vincent Rijmen. This was

chosen by a NIST contest to be the Advanced Encryption Standard (AES).

ring topology A networking configuration where all nodes are connected in a circle with no
terminated ends on the cable.

risk The potential for damage to or loss of an IT asset.

risk acceptance An informed decision to accept the potential for damage to or loss of an IT
asset.

risk assessment An evaluation conducted to determine the potential for damage to or loss of an
IT asset.

risk avoidance A decision to reduce the potential for damage to or loss of an IT asset by taking
some type of action.

risk transference Shifting responsibility from one party to another—for example, through
purchasing an insurance policy.

rogue access point A wireless access point that either has been installed on a secure company
network without explicit authorization from a local network administrator or has been created to
allow a hacker to conduct a man-in-the-middle attack.

role-based access control An approach to restricting system access to authorized users in
which roles are created for various job functions. The permissions to perform certain operations
are assigned to specific roles. Members of staff (or other system users) are assigned particular
roles, and through those role assignments they acquire the permissions to perform particular
system functions.

rolling code The code used by a key fob to unlock (and, in some cases, start) a car is called a
rolling (or hopping) code. Stealing this code and reusing it is referred to as a rolling code attack.

rootkit A set of tools (applications or code) that enables administrator-level access to a
computer or computer network and is designed to obscure the fact that the system has been
compromised. Rootkits are dangerous malware entities that provide administrator control of
machines to attackers and are difficult to detect and remove.

roots of trust (RoT) A set of functions within the trusted computing module that are always
trusted by the computer’s operating system (OS).

route 1. The path a packet travels to reach the intended destination. Each individual device
along the path traveled is called a hop. 2. Information contained on a device containing
instructions for reaching other nodes on the network. This information can be entered
dynamically or statically.

routed protocol A protocol defining packets that are able to be routed by a router.

router A device that receives and sends data packets between two or more networks; the packet

headers and a forwarding table provide the router with the information necessary for deciding
which interface to use to forward packets.

Routing Information Protocol (RIP) A distance-vector routing protocol that employs the hop
count as a routing metric. The “hold down time,” used to define how long a route is held in
memory, is 180 seconds. RIP prevents routing loops by implementing a limit on the number of
hops allowed in a path from the source to a destination. The maximum number of hops allowed
for RIP is 15. This hop limit, however, also limits the size of networks that RIP can support. A
hop count of 16 is considered an infinite distance and is used to deprecate inaccessible,
inoperable, or otherwise undesirable routes in the selection process.

Routing Protocol A standard developed to enable routers to exchange messages containing
information about routes to reach subnets in the network.

rule-based access control A set of rules defined by a system administrator that indicates
whether access is allowed or denied to resource objects.

RxBoot A limited-function version of the Internetworking Operating System (IOS), held in
read-only memory in some earlier models of Cisco devices, capable of performing several
seldom-needed low-level functions such as loading a new IOS into Flash memory to recover
Flash if corrupted or deleted.

SaaS Software as a Service. A type of cloud computing used as a software distribution model.

SAM The Security Accounts Manager file in Windows stores all the password hashes for the
system.

Sarbanes-Oxley Act (SOX) SOX was created to make corporate disclosures more accurate and
reliable in order to protect the public and investors from shady behavior. There are 11 titles
within SOX.

scope creep The change or growth of a project’s scope.

script kiddie A derogatory term used to describe an attacker, usually new to the field, who uses
simple, easy-to-follow scripts or programs developed by others to attack computer systems and
networks and deface websites.

secure channel A means of exchanging information from one entity to another using a process
that does not provide an attacker the opportunity to reorder, delete, insert, or read information.

Secure Multipurpose Mail Extension (S/MIME) A standard for encrypting and
authenticating MIME data; used primarily for Internet e-mail.

Secure Sockets Layer (SSL) A protocol that uses a private key to encrypt data before
transmitting confidential documents over the Internet; widely used on e-commerce, banking, and
other sites requiring privacy.

security breach or security incident The exploitation of a security vulnerability.

security bulletins An announcement, typically from a software vendor, of a known security
vulnerability in a program; often the bulletin contains instructions for the application of a
software patch.

security by obscurity A principle in security engineering that attempts to use anonymity and
secrecy (of design, implementation, and so on) to provide security; the footprint of the
organization, entity, network, or system is kept as small as possible to avoid interest by hackers.
The danger is that a system relying on security by obscurity may have theoretical or actual
security vulnerabilities, but its owners or designers believe the flaws are not known.

security controls Safeguards or countermeasures to avoid, counteract, or minimize security
risks.

security defect An unknown deficiency in software or some other product that results in a
security vulnerability being identified.

security incident response team (SIRT) A group of experts that handles computer security
incidents.

security kernel The central part of a computer or communications system hardware, firmware,
and software that implements the basic security procedures for controlling access to system
resources.

segment A section or subset of the network. Often a router or other routing device provides the
endpoint of the segment.

separation of duties The concept of having more than one person required to complete a task.

Serial Line Internet Protocol (SLIP) A protocol for exchanging packets over a serial line.

Service Oriented Architecture (SOA) An API that makes it easier for application components
to cooperate and exchange information on systems connected over a network: it’s designed to
allow software components to deliver information directly to other components over a network.

service set identifier (SSID) A value assigned to uniquely identify a single wide area network
(WAN) in wireless LANs. SSIDs are broadcast by default and are sent in the header of every
packet. SSIDs provide no encryption or security.

service level agreements (SLAs) A part of a service contract where the level of service is
formally defined; may be required as part of the initial pen test agreements.

session hijacking An attack in which a hacker steps between two ends of an already established
communication session and uses specialized tools to guess sequence numbers to take over the
channel.

session splicing A method used to prevent IDS detection by dividing the request into multiple
parts that are sent in different packets.

sheepdip A stand-alone computer, kept off the network, that is used for scanning potentially
malicious media or software.

shoulder surfing Looking over an authorized user’s shoulder in order to steal information
(such as authentication information).

shrink-wrap code attacks Attacks that take advantage of the built-in code and scripts most off-
the-shelf applications come with.

SID Security identifier. The method by which Windows identifies user, group, and computer
accounts for rights and permissions.

sidejacking A hacking method for stealing the cookies used during a session build and
replaying them for unauthorized connection purposes.

signature scanning A method for detecting malicious code on a computer where the files are
compared to signatures of known viruses stored in a database.

sign-in seal An e-mail protection method using a secret message or image that can be
referenced on any official communication with the site; if an e-mail is received without the
image or message, the recipient knows it is not legitimate.

Simple Mail Transfer Protocol (SMTP) An Application layer protocol for sending electronic
mail between servers.

Simple Network Management Protocol (SNMP) An Application layer protocol for managing
devices on an IP network.

Simple Object Access Protocol (SOAP) Used for exchanging structured information, such as
XML-based messages, in the implementation of web services.

single loss expectancy (SLE) The monetary value expected from the occurrence of a risk on an
asset. It is mathematically expressed as

single loss expectancy (SLE) = asset value (AV) × exposure factor (EF)

where EF is represented in the impact of the risk over the asset, or percentage of asset lost. As an
example, if the AV is reduced by two-thirds, the exposure factor value is 0.66. If the asset is
completely lost, the EF is 1.0. The result is a monetary value in the same unit as the SLE is
expressed.

site survey An inspection of a place where a company or individual proposes to work, to gather
the necessary information for a design or risk assessment.

smartcard A card with a built-in microprocessor and memory used for identification or
financial transactions. The card transfers data to and from a central computer when inserted into
a reader.

smishing An attack using text messaging, where a user is tricked into downloading malware
onto his cellular phone or other mobile device.

Smurf attack A denial-of-service attack where the attacker sends a ping to the network’s
broadcast address from the spoofed IP address of the target. All systems in the subnet then
respond to the spoofed address, eventually flooding the device.

sniffer Computer software or hardware that can intercept and log traffic passing over a digital
network.

SOA record Start of Authority record. This record identifies the primary name server for the
zone. The SOA record contains the hostname of the server responsible for all DNS records
within the namespace, as well as the basic properties of the domain.

social engineering A nontechnical method of hacking. Social engineering is the art of
manipulating people, whether in person (human based) or via computing methods (computer
based), into providing sensitive information.

source routing A network traffic management technique designed to allow applications to
specify the route a packet will take to a destination, regardless of what the route tables between
the two systems say.

spam An electronic version of junk mail. Unsolicited commercial e-mail sent to numerous
recipients.

spoofing A method of falsely identifying the source of data packets; often used by hackers to
make it difficult to trace where an attack originated.

spyware A type of malware that covertly collects information about a user.

stateful packet filtering A method of network traffic filtering that monitors the entire
communications process, including the originator of the session and from which direction it
started.

steganography The art and science of creating a covert message or image within another
message, image, audio, or video file.

stream cipher A symmetric key cipher where plain-text bits are combined with a
pseudorandom cipher bit stream (keystream), typically by an exclusive-or (XOR) operation. In a
stream cipher, the plain-text digits are encrypted one at a time, and the transformation of
successive digits varies during the encryption.

suicide hacker A hacker who aims to bring down critical infrastructure for a “cause” and does
not worry about the penalties associated with his actions.

sybil attack An IoT DoS attack using multiple forged identities to create the illusion of traffic
congestion, which affects everyone else in the local IoT network.

symmetric algorithm A class of algorithms for cryptography that use the same cryptographic
key for both decryption and encryption.

symmetric encryption A type of encryption where the same key is used to encrypt and decrypt
the message.

SYN attack A type of denial-of-service attack where a hacker sends thousands of SYN packets
to the target with spoofed IP addresses.

SYN flood attack A type of attack used to deny service to legitimate users of a network
resource by intentionally overloading the network with illegitimate TCP connection requests.
SYN packets are sent repeatedly to the target, but the corresponding SYN/ACK responses are
ignored.

syslog A protocol used for sending and receiving log information for nodes on a network.

TACACS Terminal Access Controller Access-Control System. A remote authentication
protocol that is used to communicate with an authentication server commonly used in Unix
networks.

target of engagement (TOE) The software product or system that is the subject of an
evaluation.

telnet A protocol used in networking to provide bidirectional, interactive, text-oriented
communication facility using a virtual terminal connection. Commands entered locally are
executed on the remote system.

Temporal Key Integrity Protocol (TKIP) A security protocol used in IEEE 802.11i to replace
WEP without the requirement to replace legacy hardware.

third party A person or entity indirectly involved in a relationship between two principals.

threat Any circumstance or event with the potential to adversely impact organizational
operations, organizational assets, or individuals through an information system via unauthorized
access, destruction, disclosure, modification of information, and/or denial of service.

three-way (TCP) handshake A three-step process computers execute to negotiate a connection
with one another. The three steps are SYN, SYN/ACK, and ACK.

tiger team A group of people, gathered together by a business entity, working to address a
specific problem or goal.

time bomb A program designed to execute at a specific time to release malicious code onto the
computer system or network.

time to live (TTL) A limit on the amount of time or number of iterations or transmissions in
computer and network technology a packet can experience before it will be discarded.

timestamping Recording the time, normally in a log file, when an event happens or when
information is created or modified.

Tini A small Trojan program that listens on port 777.

traceroute A utility that traces a packet from your computer to an Internet host, showing how
many hops the packet takes to reach the host and how long the packet requires to complete the
hop.

Transmission Control Protocol (TCP) A connection-oriented, Layer 4 protocol for
transporting data over network segments. TCP is considered reliable because it guarantees
delivery and the proper reordering of transmitted packets. This protocol is used for most long-
haul traffic on the Internet.

Transport Layer Security (TLS) A standard for encrypting e-mail, web pages, and other
stream-oriented information transmitted over the Internet.

trapdoor function A function that is easy to compute in one direction yet believed to be
difficult to compute in the opposite direction (finding its inverse) without special information,
called the trapdoor. This function is widely used in cryptography.

Trojan horse A non-self-replicating program that appears to have a useful purpose but in
reality has a different, malicious purpose.

trusted computer base (TCB) The set of all hardware, firmware, and/or software components
critical to IT security. Bugs or vulnerabilities occurring inside the TCB might jeopardize the
security properties of the entire system.

Trusted Computer System Evaluation Criteria (TCSEC) A U.S. Department of Defense
(DoD) standard that sets basic requirements for assessing the effectiveness of computer security
controls built into a computer system.

tumbling The act of using numerous electronic serial numbers on a cell phone until a valid
number is located.

tunnel A point-to-point connection between two endpoints created to exchange data. Typically
a tunnel is either an encrypted connection or a connection using a protocol in a method for which
it was not designed. An encrypted connection forms a point-to-point connection between sites in
which only the sender and the receiver of the data see it in a clear state.

tunneling Transmitting one protocol encapsulated inside another protocol.

tunneling virus A self-replicating malicious program that attempts installation beneath
antivirus software by directly intercepting the interrupt handlers of the operating system to evade
detection.

Unicode An international encoding standard, working within multiple languages and scripts,
that represents each letter, digit, or symbol with a unique numeric value that applies across

different platforms.

Uniform Resource Locator (URL) A string that represents the location of a web resource—
most often a website.

User Datagram Protocol (UDP) A connectionless, Layer 4 transport protocol. UDP is faster
than TCP but offers no reliability. A best effort is made to deliver the data, but no checks and
verifications are performed to guarantee delivery. Therefore, UDP is termed a connectionless
protocol. UDP is simpler to implement and is used where a small amount of packet loss is
acceptable, such as for streaming video and audio.

Vehicle Ad Hoc Network (VANET) The communications network used by IoT-enabled
vehicles; refers to the spontaneous creation of a wireless network for vehicle-to-vehicle (V2V)
data exchange.

Videocipher II Satellite Encryption System The brand name of analog scrambling and de-
scrambling equipment for cable and satellite television, invented primarily to keep consumer
television receive-only (TVRO) satellite equipment from receiving TV programming except on a
subscription basis.

virtual local area network (VLAN) Devices, connected to one or more switches, grouped
logically into a single broadcast domain. Administrators can divide the devices connected to the
switches into multiple VLANs without requiring separate physical switches.

virtual private network (VPN) A technology that establishes a tunnel to create a private,
dedicated, leased-line network over the Internet. The data is encrypted so it’s readable only by
the sender and receiver. Companies commonly use VPNs to allow employees to connect securely
to the company network from remote locations.

virtualization A practice whereby the physical aspects of the hardware are virtually presented
to operating systems in a way that allows one or more virtual machines (with their own operating
systems) to run simultaneously on the same physical box.

virus A malicious computer program with self-replication capabilities that attaches to another
file and moves with the host from one computer to another.

virus hoax An e-mail message that warns users of a nonexistent virus and encourages them to
pass on the message to other users.

vishing Social engineering attacks using a phone.

vulnerability Weakness in an information system, system security procedures, internal
controls, or implementation that could be exploited or triggered by a threat source.

vulnerability assessment Formal description and evaluation of the vulnerabilities in an
information system.

vulnerability management The cyclical practice of identifying, classifying, remediating, and

mitigating vulnerabilities.

vulnerability scanning Sending packets or requests to another system to gain information to be
used to identify weaknesses and protect the system from attacks.

war chalking Drawing symbols in public places to alert others to an open Wi-Fi network. War
chalking can include the SSIDs, administrative passwords to APs, and other information.

war dialing The act of dialing all numbers within an organization to discover open modems.

war driving The act of searching for Wi-Fi wireless networks by a person in a moving vehicle,
using a portable device.

warm site An environmentally conditioned workspace partially equipped with IT and
telecommunications equipment to support relocated IT operations in the event of a significant
disruption.

web spider A program designed to browse websites in an automated, methodical manner.
Sometimes these programs are used to harvest information from websites, such as e-mail
addresses.

white-box testing A pen testing method where the attacker knows all information about the
internal network. It is designed to simulate an attack by a disgruntled systems administrator or
similar level.

Whois A query and response protocol widely used for querying databases that store the
registered users or assignees of an Internet resource, such as a domain name, an IP address, or an
autonomous system.

wide area network (WAN) Two or more LANs connected by a high-speed line across a large
geographical area.

Wi-Fi A term trademarked by the Wi-Fi Alliance, used to define a standard for devices to use
to connect to a wireless network.

Wi-Fi Protected Access (WPA) Provides data encryption for IEEE 802.11 wireless networks
so data can be decrypted only by the intended recipients.

Wired Equivalent Privacy (WEP) A security protocol for wireless local area networks
defined in the 802.11b standard; intended to provide the same level of security as a wired LAN.
WEP is not considered strong security, although it does authenticate clients to access points,
encrypt information transmitted between clients and access points, and check the integrity of
each packet exchanged.

wiretapping The monitoring of telephone or Internet conversations, typically by covert means.

worm A self-replicating, self-propagating, self-contained program that uses networking
mechanisms to spread itself.

wrapper Software used to bind a Trojan and a legitimate program together so the Trojan will
be installed when the legitimate program is executed.

XOR operation A mathematical operation requiring two binary inputs: if the inputs match, the
output is a 0; otherwise, it is a 1.

Zenmap A Windows-based GUI version of Nmap.

zero subnet In a classful IPv4 subnet, this is the network number with all binary 0s in the
subnet part of the number. When written in decimal, the zero subnet has the same number as the
classful network number.

zero-day attack An attack carried out on a system or application before the vendor becomes
aware and before a patch or fix action is available to correct the underlying vulnerability.

zombie A computer system that performs tasks dictated by an attacker from a remote location.
Zombies may be active or idle, and owners of the systems generally do not know their systems
are compromised.

zone transfer A type of DNS transfer where all records from an SOA are transmitted to the
requestor. Zone transfers have two options: full (opcode AXFR) and incremental (IXFR).

INDEX

Please note that index links point to page beginnings from the print edition. Locations are
approximate in e-readers, and you may need to page down one or more times after clicking a
link to get to the indexed material.

3D printing, 170–171
3DES encryption, 389
3G standard, 307
4G standard, 286, 307
802.11 standards, 272–273

A
Absinthe, 259
access

covering tracks, 29
gaining, 28, 197–198
government access to keys, 396–397
maintaining, 29

access card attacks, 429
access control lists (ACLs), 118, 165, 166
Access Control Policy, 23
access control systems, 21–22
access controls, 21–22, 230, 445–448
access points (APs)

Cisco, 285
considerations, 274
detecting, 283
multiple, 274
open, 281
rogue, 274, 283, 284–285
wireless, 274, 278, 281, 284–285

ACK (acknowledgment), 9, 10
ACK flag, 86, 87, 102
ACK scans, 102
acknowledgment. See ACK
ACLs (access control lists), 118, 165, 166
Active Directory Explorer, 124

active footprinting, 49, 52
active sniffing, 150–153
ad hoc connection attack, 285
ad hoc networks, 273, 274
adaptive chosen plain-text attack, 415
Address Resolution Protocol. See ARP
address space layout randomization (ASLR), 251
administrative controls, 16
administrators

changing account name, 204
enforcing password restrictions, 187
network monitoring, 160–161, 162
patches/software deployment, 211
privileges, 209–210
zone transfers, 71

ADMmutate tool, 168
ADS (alternate data stream), 212–214
Advanced Encryption Standard (AES), 279, 280, 390
AES (Advanced Encryption Standard), 279, 280, 390
African Network Information Center (AfriNIC), 68
AfriNIC (African Network Information Center), 68
AH (authentication header), 373, 410
air quality, 444
Aircrack, 280, 288
AirMagnet WiFi Analyzer, 289
AirPcap card, 283
AirPcap dongle, 282
ALE (annualized loss expectancy), 17
alexa.com, 51
algorithms, 387
alternate data stream (ADS), 212–214
Amazon, 336, 338
Amazon Web Services. See AWS
“ambering out,” 155
American Registry for Internet Numbers (ARIN), 68, 72, 73
American Standard Code for Information Interchange (ASCII), 6–7
Android phones. See also mobile devices

applications, 300, 303, 305, 306
Device Administration API, 305
rooting, 303, 305
Stagefright bugs, 308
ZitMo malware, 442

Angry IP Scanner, 99–101

annual rate of occurrence (ARO), 17
annualized loss expectancy (ALE), 17
anonymizers, 114–115
anonymous footprinting, 49
Anonymous hackers, 369–370
antennas, wireless, 274–276
antivirus. See AV
anycast, 146, 147
Apache servers, 235, 236–237
APIs (application program interfaces), 305, 341
APNIC (Asia-Pacific Network Information Center), 68
Apple HFS file system, 212
Apple iOS, 303–304, 305. See also mobile devices
Apple TV, 303
application flaws, 13
Application layer, 6–7, 141–142
application level rootkits, 217
application logs, 215
application program interfaces (APIs), 305, 341
application servers, 235
application-level attacks

buffer overflows, 251–253
cookies, 252, 253–254
cross-site scripting, 251–253
described, 26, 366, 367
executable code, 210–211
LDAP injection attacks, 249–250
mobile platform, 441–443
SQL injection, 254–259
web applications, 247–261

application-level rootkits, 217
applications

attacks on. See application-level attacks
executing, 210–211
fake security apps, 442
malicious, 442
mobile devices, 300, 303, 305, 306
repackaging, 442
security, 229–231

APs. See access points
ARIN (American Registry for Internet Numbers), 68, 72, 73
Armitage, 210
ARO (annual rate of occurrence), 17

ARP (Address Resolution Protocol), 10, 142–145, 278
ARP cache, 143–145
ARP entries, 144–145
ARP poisoning, 152–153, 205
ARP requests, 143, 144–145
ARP spoofing, 152–153
ARPspoof tool, 153
AS (authentication service), 187
ASCII (American Standard Code for Information Interchange), 6–7
Asia-Pacific Network Information Center (APNIC), 68
ASLR (address space layout randomization), 251
assets, 16, 443
association, 276
asymmetric encryption, 391–392
AtomSync, 124
attacks. See also specific attacks

access card attacks, 429
on applications. See application-level attacks
authentication, 18
Bluetooth, 308–309
brute-force, 207–208, 416, 417
categories, 26–27
cipher-based, 416
collision, 395
cross-guest VM breach, 342
cross-site scripting, 251–253
cryptography, 415–417
DDoS, 260, 365–368, 370
DNS, 64–66, 70, 71
DoS, 20, 285, 286, 365–369
evil twin, 284–285
fraggle, 367
honeypots and, 171–173
injection, 229, 249–250
interference, 416
IoT devices, 298, 313–316
malware. See malware attacks
man-in-the-browser, 372
man-in-the-middle, 205, 416
misconfiguration, 26
mobile devices, 299, 302, 303–309
mobile platform, 281, 441–443
on operating system, 26

password. See password cracking
phishing. See phishing
plain-text, 415
replay, 416
session hijacking, 369–374
session riding, 342
shrink-wrap code, 26
side-channel, 342, 416
Smurf, 367
social engineering. See social engineering
source-routing, 112
stealth, 211–212, 216
SYN, 367
system. See system attacks
teardrop, 367
Trojan. See Trojans
viruses, 357–361, 363
web applications, 247–261
web servers, 233–235, 241–247
wireless. See wireless hacking
worms, 357–361
wrapping, 342

Attention Meter, 51
Auditpol tool, 216
authentication, 199–208

badges, 200
biometric, 199–200
vs. confidentiality, 18
DES, 185
described, 276
IoT devices, 314
Kerberos, 185, 187–189
LM, 187
mobile computing, 300
NTLM, 185, 187
one-factor, 200
overview, 199–200
pre-boot, 408
three-factor, 200
two-factor, 200
web servers, 229
wireless networks, 276–277

authentication attacks, 18

authentication header (AH), 373, 410
authentication service (AS), 187
authenticity, 20
authoritative servers, 64
authority support social engineering, 429
authorization, 301, 314, 335
AutoRuns, 356–357
AV (antivirus) programs. See also virus entries

fake AVprograms, 358, 437, 438–439
importance of, 363–364
malware attacks and, 350–352

AV signatures, 351
availability, 20
AWS (Amazon Web Services), 72, 330, 331, 332
AWS Greengrass, 332
Azure, 331

B
baby monitors, 315–316
backdoors. See also Trojans

leaving open, 29
mobile computing, 301
Trojans and, 352–357
worms and, 362

backtracking, 242
backups, 16, 203
badges, 200
bandwidth, 366
banner grabbing, 96, 120–121, 168
baselines, 23
Bash, 247
Bashdoor, 247
Basic Encoding Rules (BER), 124
basic service area (BSA), 274
basic service set (BSS), 274
basic service set identifier (BSSID), 274
bastion hosts, 166
BBProxy, 309
BCP (business continuity plan), 17
BER (Basic Encoding Rules), 124
beSTORM, 318
Beyond Trust tools, 318

BIA (business impact analysis), 17
“big brother,” 396–397
binText tool, 363
biometric authentication, 199–200
biometric identifiers, 445–447
biometric passports, 200
biometrics, 445–447
BIOS rootkit, 217, 218
bit flipping, 20
bitcoin, 393
BitLocker, 408
bits

encrypted, 387–390
frames, 8
salt, 396
subnetting and, 92–96

black hats, 25
Black Widow tool, 234
Blackberry phones, 303, 309. See also mobile devices
black-box testing, 32
Blackhole Exploit Kit, 352
blackjacking, 309
Bleeding Life, 352
blind/inferential injection, 259
block ciphers, 387, 388, 389–390
blockchain, 393–394
Bloover, 309
Blowfish encryption, 390
Blueborne attack, 316
Bluebugging, 309
Bluejacking, 309
Blueprinting, 309
BlueScanner, 309
Bluesmacking, 309
Bluesnarfing, 309
Bluesniffing, 309
Bluetooth

attacks, 308–309
devices, 307, 308–309
hacking, 308–309
standard, 272
technology, 307
tools, 309

boot loader level rootkits, 217
boot sector viruses, 360
boot-n-root attack, 408
BootROM exploit, 304
botnets, 15, 260–261, 366, 439
Brandon, John, 336
“bricking,” 367
Bring Your Own Device (BYOD), 299, 302, 305–306
broadcast, 146, 147
broadcast addressing, 94
broadcast messages, 138, 139
brute-force attacks, 207–208, 416, 417
Brutus tool, 245
BSA (basic service area), 274
BSS (basic service set), 274
BSSID (basic service set identifier), 274
BT Browser, 309
btCrawler, 309
buffer overflows, 13, 251–253
Bug Bear worm, 361
bump key, 449
Burp Suite, 234
Buscador, 76
business continuity plan (BCP), 17
business impact analysis (BIA), 17
Business Wire, 51
BYOD (Bring Your Own Device), 299, 302, 305–306

C
CA (certificate authority), 391, 400–402, 405–406
CAC (Common Access Card), 400
cache

ARP, 143–145
DNS, 65, 66, 67, 71
Google Cache, 61
web cache poisoning, 244

Cain and Abel tool
ARP flooding, 153
MAC address spoofing, 153
sniffing passwords, 205, 207, 288
WEP attacks, 288

caller ID, 70

CAM (content addressable memory) table, 152
canaries, 251
canary words, 251
cantennas, 275
CAPTCHAs, 254
Carrier Sense Multiple Access/Collision Detection (CSMA/CD), 139–141
cars. See vehicles
cavity viruses, 361
CBC-MAC (cipher block chaining message authentication code), 279
CC (Common Criteria), 21–22
CCMP (Cipher Block Chaining Message Authentication Code Protocol), 279
CCTT (Covert Channel Tunneling Trojan), 353
CEH (Certified Ethical Hacker) certification, 3, 29
cell phones. See smartphones
Censys tool, 318
Centralized Authentication, 276
CER (crossover error rate), 200, 446–447
certificate authority (CA), 391, 400–402, 405–406
certificate revocation list (CRL), 400
certification tests, 29
certification-level exams, 3–5
Certified Ethical Hacker (CEH) certification, 3, 29
chat channels, 439
chosen-cipher attacks, 415, 416
chosen-plain text attacks, 415
Christmas scan, 102, 105, 106
Chrome browser, 414
CIA (Confidentiality, Integrity, and Availability), 18–20
cipher block chaining message authentication code (CBC-MAC), 279
Cipher Block Chaining Message Authentication Code Protocol (CCMP), 279
cipher text, 386
cipher types, 387–388
ciphers, 388, 389
cipher-text-only attacks, 416
Cisco, 285
clients, 272, 274, 276, 277
Cline, Ernest, 59
cloud auditors, 335
cloud brokers, 334
cloud carriers, 334
cloud computing, 329–348

architecture, 334–335
attacks/threats, 339–342

community clouds, 333
data breach/loss, 339
horror stories, 336–337
hybrid clouds, 333
IoT and, 314
overview, 330–332
public vs. private clouds, 333
regulatory efforts, 335
roles in, 334–335
security, 335–339
tools, 338–339

Cloud Computing Guidelines, 335
cloud consumers, 334
cloud, defined, 329, 330
cloud models, 333–334
cloud providers, 331–332, 334
Cloud Security Alliance (CSA), 335
cloud services, 72, 341
CloudInspect, 338
CloudPassage Halo, 338
Cloudshark, 320
cluster viruses, 360
COBIT (Control Objects for Information and Related Technology), 35, 36
Code Red worm, 361
code/coding, 13, 243, 301
Codenomicon, 413
collision attacks, 395, 397
collision domains, 139–141, 150
collisions, 139–141, 395
command injection, 249
command shell Trojan, 353
Common Access Card (CAC), 400
Common Criteria (CC), 21–22
Common Vulnerability Scoring System (CVSS), 12
Communication Act of 1934, 286
Communications Decency Act, 37–38
community cloud model, 333
community strings, 124
companies

competitive intelligence, 51–52, 76–77
financial information, 52

compliance, 35
computer contaminant, 351

Computer Fraud and Abuse Act, 55
computer-based social engineering, 434–441
Conficker worm, 361
confidentiality, 18, 387, 409
Confidentiality, Integrity, and Availability (CIA), 18–20
CONNECT method, 240
connection string parameter pollution (CSPP), 245
connectionless communication, 85
connection-oriented communication, 84–88
content addressable memory (CAM) table, 152
Control Objects for Information and Related Technology (COBIT), 35, 36
cookies, 60, 115, 205, 252, 253–254
copyrights, 37–38
corrective controls, 16
Covert Channel Tunneling Trojan (CCTT), 353
covert channels, 351
crackers, 25, 30
cracking passwords. See password cracking
Crimepack, 352
criminal activity, 49
CRL (certificate revocation list), 400
cross-certification, 402
cross-guest VM breach, 342
crossover error rate (CER), 200, 446–447
cross-site request forgery (CSRF), 253
cross-site scripting (XSS), 230
cryptanalysis, 386–387
crypters, 352
Cryptobench, 417
cryptographic systems, 387
cryptography, 385–424. See also encryption

algorithms/techniques, 387–399
defined, 386
digital certificates, 402–406
digital signatures, 391, 406–407
encrypted communication, 407–415
history, 385–387
mobile devices, 300
overview, 386–399
PKI system, 399–407

cryptography attacks, 415–417
CrypTool, 388, 417
CSA (Cloud Security Alliance), 335

CSMA/CD (Carrier Sense Multiple Access/Collision Detection), 139–141
CSPP (connection string parameter pollution), 245
CSRF (cross-site request forgery), 253
Currports tool, 90
CVSS (Common Vulnerability Scoring System), 12
cyberterrorists, 26

D
DAC (discretionary access control), 22
daisy-chaining networks, 15
DameWare Remote Support, 211
DAR (data at rest), 408, 409
Dark Reading, 12
Darlloz worm, 362
DAST (Dynamic Application Security Testing), 230
data. See also information

availability, 20
backups, 16, 203
considerations, 6–7
described, 7
disclosure, 18
encrypted. See encryption
handling of, 23
at rest, 408, 409
sensitive, 65, 229
storage, 300, 312
transfer/exchange, 85–87

data at rest (DAR), 408, 409
data breach/loss, 339
Data Encryption Standard. See DES
data execution prevention (DEP), 251
data layers, 7
Data Link layer, 6, 7, 138, 142
database servers, 235
databases, 189, 254–259
datagrams, 10, 85
DDoS attacks, 260, 365–368, 370
Decrypting RSA with Obsolete and Weakened eNcryption (DROWN), 415
decryption, 278, 282, 386, 388–392. See also encryption
decryption keys. See private keys
default vulnerabilities, 13
defense in depth, 280, 448

DELETE method, 240
demilitarized zone (DMZ), 11, 166
denial-of-service attacks (DoS), 20, 285, 286, 365–369
DEP (data execution prevention), 251
Department of Defense (DoD), 21, 22, 160
DES (Data Encryption Standard), 389
DES authentication, 185
deserialization flaws, 230
design flaws, 13
detective controls, 16
DHCP (Dynamic Host Configuration Protocol), 153–154
DHCP starvation, 153–154
dictionary attacks, 206–207
Diffie-Hellman algorithm, 373, 392
dig command, 72
digital certificates, 402–406
Digital Signature Algorithm (DSA), 407
digital signatures, 391, 406–407
digital watermarks, 398
dipole antenna, 275
directional antenna, 275, 276
Directory System Agent (DSA), 124
directory traversal, 241–243
direct-sequence spread spectrum (DSSS), 273
disaster recovery, 17
disaster recovery plan (DRP), 17
disasters, 17, 448
discovery, 281–284
discretionary access control (DAC), 22
disgruntled employees, 55, 432–434
distributed reflection denial-of-service (DRDoS) attack, 366
distributed-denial-of-service attacks. See DDoS attacks
DLL hijacking, 209
DMZ (demilitarized zone), 11, 166
DNS (Domain Naming System)

basics, 63–72
cache, 63–66, 69, 71
considerations, 9, 10
for footprinting, 62–72
tools for, 62–72

DNS amplification, 241
DNS attacks, 64–66, 70, 71
DNS lookups, 64–65, 66

DNS namespace, 63–66, 69, 71
DNS poisoning, 65, 66, 71, 155
DNS records, 50, 62, 63, 65
DNS servers, 62–72, 284
DNS zone transfers, 63, 71
DNSSEC (Domain Name System Security Extensions), 66, 69
dnsstuff.com, 78
DoD (Department of Defense), 21, 22, 160
domain controller, 187
Domain Name System Security Extensions (DNSSEC), 66, 69
domain names, 68
Domain Naming System. See DNS
DoS (denial-of-service attacks), 20, 285, 286, 365–369
dot-dot-slash attack, 241–243
doxing, 15
DRDoS (distributed reflection denial-of-service) attack, 366
drivers, 282
DROWN (Decrypting RSA with Obsolete and Weakened eNcryption), 415
DRP (disaster recovery plan), 17
DSA (Digital Signature Algorithm), 407
DSA (Directory System Agent), 124
dsniff tool, 153
DSSS (direct-sequence spread spectrum), 273
DUHK attack, 395
dumpster diving, 50, 51, 52, 201, 428
dust, 444
DYLIB hijacking, 209
Dyn, 260
Dyn attack, 315–316
Dynamic Application Security Testing (DAST), 230
Dynamic Host Configuration Protocol. See DHCP
dynamic web pages, 248

E
EAL (Evaluation Assurance Level), 21
EAP (Extensible Authentication Protocol), 278
Easter eggs, 59
eavesdropping, 137, 138. See also sniffing
ECC (Elliptic Curve Cryptosystem), 392
EC-Council (ECC), 4, 22, 23, 48, 231, 236
EDGAR Database, 51
edge computing networks, 331

http://dnsstuff.com

EF (exposure factor), 17
Effland, Charlie, 340
EFS (Encrypted File Systems), 410
EISA (Enterprise Information Security Architecture), 15
El Gamal algorithm, 392
EliteWrap, 351
Elliptic Curve Cryptosystem (ECC), 392
e-mail

contact, 66
executable code in, 210
footprinting, 60, 61–62
phishing, 202, 435–438, 439
S/MIME and, 411
tracking tools, 61

e-mail headers, 61, 62
e-mail policy, 23
e-mail servers, 71
employees

disgruntled, 55, 432–434
privilege escalation and, 33
security policies, 23
social engineering and, 427–434

Encapsulating Security Payload (ESP), 373, 410
encrypted communication, 407–417
Encrypted File Systems (EFS), 410
encryption. See also cryptography

3DES, 389
AES, 390
algorithms, 387–398
asymmetric, 391–392
Blowfish, 390
cipher types, 387–388
data at rest, 408, 409
data while communicating, 407–417
decryption, 278, 282, 386, 388–392
DES, 389
digital certificates, 402–406
digital signatures, 406–407
Endpoint Encryption, 408
hash algorithms, 392–398
IDEA, 390
IoT devices, 314
key, 387–392

laptops, 408
mobile devices, 408
overview, 386–399
PKI system, 402
RC, 390
shared key, 389–390
single key, 389, 391
steganography, 398–399
symmetric, 389–390
techniques, 387–399
tools for, 396
Twofish, 390
wireless networks, 277–280, 287–289

encryption keys. See public keys
encryption viruses, 360
Endpoint Encryption, 408
Enterprise Information Security Architecture (EISA), 15
enumeration, 117–125

banner grabbing, 120–121
considerations, 117–125
described, 117
examples of, 28
Linux systems, 119
NetBIOS, 121–123
other options, 124–125
SNMP, 123–124
techniques, 120–125
Windows systems, 117–119

e-passports, 200
escalation of privileges, 29, 33, 208–210
ESP (Encapsulating Security Payload), 373, 410
ESS (extended service set), 274
Ethernet frames, 8–11
ethical hackers, 18, 25, 30–38
ethical hacking, 24–38. See also hacking

attack types, 26–27
classifications, 24–26
considerations, 108
hacking phases, 27–30
laws/standards, 33–38
overview, 24
terminology, 15, 24–30
white hats, 25

Ettercap sniffer, 159, 205–206, 372
Euromonitor, 51
Evaluation Assurance Level (EAL), 21
evasion, 159–173

firewalls, 165–167
intrusion detection systems. See IDS
overview, 159
via fragmentation, 168

event logs, 215, 216
evil twin attack, 284–285
exam, 3–5
exam tips, 4–5
exclusive-or. See XOR
Experian, 51
Exploit Database, 12
exploit kits, 352
exploits, 15
exposure factor (EF), 17
extended service set (ESS), 274
Extensible Authentication Protocol (EAP), 278
Extensible Markup Language (XML), 108, 239
External Blue exploit, 358, 360

F
FAA (Federal Aviation Administration), 286
Facebook, 52, 55, 434
Factoring Attack on RSA-EXPORT Keys (FREAK), 413
false acceptance rate (FAR), 200, 446
false negatives, 160
false positives, 160
false rejection rate (FRR), 200, 446
FAR (false acceptance rate), 200, 446
FCC (Federal Communications Commission), 279, 286, 287
FCC ID, 287
FDE (full disk encryption), 408
Federal Aviation Administration (FAA), 286
Federal Communications Commission (FCC), 279, 286, 287
Federal Risk and Authorization Management Program (FedRAMP), 335
FedRAMP (Federal Risk and Authorization Management Program), 335
file extension viruses, 361
file injection, 249
file streaming, 212–213, 214

file system, 193, 212–213, 410
File Transfer Protocol (FTP), 141, 410
files

activity, 211–216
hiding, 211–214
hosts, 67
HTML, 239
log. See log files
SAM, 184–187, 188
shadow, 194, 195–196
signature, 363–364
steganographic, 398–399
verifying integrity of, 356–357

filters, 157–158
FIN flag, 86
FIN scans, 102
finger tool, 119
fingerprinting, 96, 107
Firewalk tool, 170
firewalking, 168–170
Firewall Informer, 168
firewalls

application-level, 167
banner grabbing and, 168
bastion hosts, 166
circuit-level, 167
evasion, 168–169
hacking tools, 168–170
implicit deny principle, 165
multi-homed, 166
overview, 165–167
packet-filtering, 166–167
rules, 165

Firmalyzer, 320
firmware, 217, 218, 315
firmware rootkits, 217
flow control, 6
footprinting, 48–77

active, 49, 52
anonymous, 49
benefits of, 49
considerations, 48, 50, 54–55
DNS, 62–72

dumpster diving, 428
e-mail, 60, 61–62
methods/tools, 53–77
network, 72–75
overview, 48–50
passive, 49, 50–52
pseudonymous, 49
vs. reconnaissance, 48
vs. scanning, 84
search engines, 53–60
social engineering and, 51, 52
web mirroring, 60
web servers, 233–234
web spiders, 54, 76
website, 60–61

Fport tool, 356
fraggle attacks, 367
fragmentation, 103, 111, 168
fragmentation attacks, 366
fragmented packets, 111–112, 366
frames, 6, 10, 84
FREAK (Factoring Attack on RSA-EXPORT Keys), 413
FreeScan, 116–117
FRR (false rejection rate), 200, 446
FTP (File Transfer Protocol), 141, 410
fud (fully undetectable), 352
full connect scan, 101, 105
full disk encryption (FDE), 408
full open scan, 101
functionality, 14
fuzz testing, 257

G
GAK (government access to keys), 397
GET method, 240
GFI Languard, 14
Ghost Eye Worm, 361
GIDs (group IDs), 119
Gigabit Wi-Fi, 279
Gilisoft Full Disk Encryption, 408
Gizmodo, 319
Google

Chrome browser, 414
cookies, 115
growth of, 331
Heartbleed exploit, 412, 413
IoT hacking and, 317
OpenSSL and, 412

Google Cache, 61
Google CAPTCHA, 58
Google hacking, 55–60
Google search queries, 59–60
Google servers, 414
government access to keys (GAK), 397
GPS devices, 283, 284
gray hats, 25
gray-box testing, 33
Grayfish rootkit, 217
the Great Firewall, 114
group IDs (GIDs), 119
Guardster, 115
guidelines, 23
Gzapper, 115

H
hack value, 14
hackers. See also pen testers

Anonymous, 369–370
black hats, 25
classifications, 24–26
considerations, 29, 30
crackers, 25, 30
described, 24
ethical. See ethical hackers
favorite tools, 77
good vs. bad, 30
gray hats, 25
honeypots, 171–173
IDS evasion, 161
interview with, 161–162
malicious, 30
vs. pen testers, 29
script kiddies, 24, 26
state-sponsored, 26

suicide hackers, 25
tips on, 161–162
white hats, 25

Hackerstorm, 12
hacking, 199–218. See also pen testing

Bluetooth, 308–309
Computer Fraud and Abuse Act, 55
considerations, 24, 25
covering tracks, 29
covering/clearing tracks, 198, 199, 215–216
ethical. See ethical hacking
gaining access, 28, 197–198
good vs. bad, 24, 25
Google hacking, 55–60
IoT devices, 317–320
learning about, 232–233
Linux. See Linux systems
maintaining access, 29, 197, 198, 199
mobile devices, 299, 302, 307–309
vs. pen testing, 53
phases of, 27–30, 197–199
privilege escalation, 29, 33, 208–210
reconnaissance. See reconnaissance
system. See system attacks
terminology, 15, 24–30
web-based. See web-based hacking
Windows. See Windows systems
wireless. See wireless hacking

HackRF. See vehicles
hacktivists/hacktivism, 25, 370
half-open scan, 102
halo effect, 430
hardware protocol analyzers, 141
hardware rootkits, 217
hash algorithms, 392–398
hash functions, 20
hash injection attacks, 202
hash values, 20, 185, 186, 187
hashes, 20, 447
hashing passwords, 185–189
Havij scanner, 259
HBSS (Host Based Security System), 160
HEAD method, 240

headers, 60
Health Insurance Portability and Accountability Act (HIPAA), 35
heap overflow, 251
Heartbleed exploit, 411, 412–413, 414
HFS file system, 212
hidden field, 243–244
HIDS (host-based IDS), 98–99, 160
hierarchical trust system, 402
hijacking, 369
hijacking sessions, 369–374
HIPAA (Health Insurance Portability and Accountability Act), 35
Hoare, Greg, 341
Honeynet, 260
honeypots, 171–173, 232, 260
honeyspot attacks, 285
Hoovers, 51
Horsepill rootkit, 217
Host Based Security System (HBSS), 160
host ID, 92, 93
host-based IDS (HIDS), 98–99, 160
hosts file, 67
hotspots, 285
Hping, 109, 110
HTML code, 60, 235, 239, 243
HTML entities, 239, 252
HTML files, 239
HTTP (Hypertext Transfer Protocol), 142, 238–241
HTTP attacks, 259
HTTP beacons, 167
HTTP requests, 9, 238–240, 242, 244
HTTP response messages, 241
HTTP response splitting, 259
HTTP shell, 167
HTTP tunneling, 167
HTTPRecon, 233
HTTPrint, 233
HTTPS servers, 415
hubs, 141, 150, 151, 278
human-based social engineering, 427–434
humidity, 444
Hunt tool, 372
Hutchins, Marcus, 359
HVAC attacks, 316

hybrid cloud model, 333
Hyena, 123
hyperlinks, 238
hypertext, 238
Hypertext Transfer Protocol. See HTTP
hypervisor level rootkits, 217
hypervisors, 332, 337

I
IaaS (Infrastructure as a Service), 332
IANA (Internet Assigned Number Authority), 68, 89
iBoot exploit, 304
ICANN (Internet Corporation for Assigned Names and Numbers), 68
ICMP (Internet Control Message Protocol), 97–98, 99
ICMP Echo scanning, 98
ICMP floods, 367
ICMP message types, 97–98
ICMP packets, 98, 99, 100, 367
ICMP requests, 74, 75
ICQ (Internet Chat Query), 366
ICV (integrity check value), 278
ID badges, 429
ID Serve, 233
IDA Pro, 363
IDEA (International Data Encryption Algorithm), 390
identity theft, 429–430, 440–441
IDLE scan, 102, 103–104
IDSInformer tool, 168
IDSs (intrusion detection systems), 159–168

anomaly-based, 160
behavior-based, 17, 160
considerations, 160–161
evasion issues, 96, 161
evasion techniques, 167–173
host-based, 98–99, 160
network-based, 98–99, 160–161, 162
overview, 159–161
signature-based, 160
Snort, 161–165
Unicode characters and, 168

IEFT (Internet Engineering Task Force), 228
IIS (Internet Information Services) servers, 235–236, 237, 238

IKE (Internet Key Exchange), 373
IMAP, 142
impersonation, 428–429
implicit deny principle, 165
in-band SQL injection, 258
incident management, 15
incident response team (IRT), 15
Infinity, 352
information. See data
Information Audit Policy, 23
information gathering

company websites, 51–52
competitive intelligence, 51–52, 76–77
dumpster diving, 428
job boards, 54
shredded documents, 428
social networking sites, 52, 55
web-based hacking, 233–234

Information Protection Policy, 23
Information Security Policy, 23
Information Systems Audit and Control Association (ISACA), 36
information technology. See IT
infowar, 27
Infrastructure as a Service (IaaS), 332
infrastructure mode, 274
initial sequence number (ISN), 371
initialization vector (IV), 278
injection attacks, 229, 245, 249–250
insider threats, 432–434
installation vulnerabilities, 13
integrity, 20, 314
integrity check value (ICV), 278
interference attacks, 416
International Data Encryption Algorithm (IDEA), 390
International Telecommunications Union (ITU), 280, 313
Internet Assigned Number Authority (IANA), 68, 89
Internet Chat Query (ICQ), 366
Internet Control Message Protocol. See ICMP
Internet Corporation for Assigned Names and Numbers (ICANN), 68
Internet DMZ zone, 11
Internet Engineering Task Force (IEFT), 228
Internet Information Services (IIS) servers, 235–236, 237, 238
Internet Key Exchange (IKE), 373

Internet of Things. See IoT
The Internet of Useless Things, 319
Internet Protocol. See IP
Internet Protocol Security (IPSec), 410
Internet Relay Chat. See IRC
Internet Security Association Key Management Protocol, 373
Internet service providers (ISPs), 37, 369
Internet zone, 10
intranet zone, 12
intrusion detection systems. See IDSs
inverse TCP flag, 102
iOS, 303–304, 305. See also mobile devices
IoT (Internet of Things), 309–320

architecture, 310–313
authorization/authentication, 314
communication models, 312
considerations, 310, 311, 313, 319
data storage, 312
encryption, 314
hacking methodology, 317–320
HVAC attacks, 316
insecure communication, 314
overview, 297–298, 309–310
privacy issues, 314
security issues, 313–316
software/firmware issues, 315
vehicles, 312, 316
vulnerabilities/attacks, 298, 313–316
vulnerability scanning, 318–320

IoT devices, 316–320
attacks on, 298, 313–316
baby monitors, 315–316
hacking, 317–320
overview, 309–310
requirements for, 311–312
thermostats, 311
vulnerabilities, 298, 313–316

IoT gateway, 312
IoT networks, 310, 314, 316
IP (Internet Protocol), 142
IP Address Decoy, 112
IP addresses

broadcast, 92

described, 92
directed broadcast, 94
DNS and, 9, 10, 68
fragmented, 103
limited broadcast, 94
multicast, 92
network range, 72–73
rules, 93
spoofing, 103, 112
unicast, 92

IP communication, 373
IP identifier (IPID), 103
IP packet header, 142
IP packets, 9–10, 103
IP version 4. See IPv4
IP version 6 (IPv6), 145–147
iPhones. See also mobile devices

applications, 300, 303, 305, 306
iOS, 303–304, 305. See also mobile devices
jailbreaking, 303–304, 305

IPID (IP identifier), 103
iPods, 303
IPSec (Internet Protocol Security), 373, 410
IPSec shell, 373
IPv4 (IP version 4), 145–147
IPv4 address depletion, 145
IPv4 addresses, 92
IPv4 loopback address, 138
IPv6 (IP version 6), 143–145
Iran nuclear worm, 362–363
IRC (Internet Relay Chat), 362, 366, 439
IRC channel, 351
IRDP spoofing, 155
IRT (incident response team), 15
ISACA (Information Systems Audit and Control Association), 36
ISN (initial sequence number), 371
ISO/IEC, 35
ISPs (Internet service providers), 37, 369
IT Governance Institute (ITGI), 36
ITGI (IT Governance Institute), 36
ITU (International Telecommunications Union), 280, 313
IV (initialization vector), 278

J
jailbreaking, 303–304, 305
jamming devices, 285–287
Java, 438–439
JavaScript, 252
job boards, 54
John the Ripper, 197, 208
JTAGulator, 320
JXplorer, 124

K
Kaminsky, Dan, 66
KDC (key distribution center), 187
KerbCrack, 206
Kerberos authentication, 185, 187–189
kernel-level rootkits, 217
key distribution, 389, 390, 392

network, 276–280
key distribution center (KDC), 187
key encryption, 387–392
key escrow, 397
key generation, 399
key pairs, 389, 391, 400
Key Reinstallation Attack (KRACK), 288–289
key sets, 399
keyboard walks, 201
keyloggers, 202
keylogging, 202
keys

government access to, 396–397
length, 389, 390, 392, 413
private. See private keys
public. See public keys
registry, 189–190
shared, 276–277
symmetric encryption, 389–390
temporal, 288
WEP, 277, 278
WPA2, 288–289

keystream, 278
KicMAC, 280
KillerBee, 320

KisMAC, 288
Kismet, 283, 289
KRACK (Key Reinstallation Attack), 288–289

L
L0phtcrack tool, 208
LACNIC (Latin America and Caribbean Network Information Center), 68
LAND attack, 367
laptop computers, 408
Latin America and Caribbean Network Information Center (LACNIC), 68
lawful interception, 148
laws/standards, 33–38
LC5 tool, 208
LDAP (Lightweight Directory Access Protocol), 124
LDAP Admin Tool, 124
LDAP injection attacks, 249–250
Legion tool, 204
LexisNexis, 51
libpcap, 139
library-level rootkits, 217
libwhisker, 160
Licklider, J.C.R., 330
Lightweight Directory Access Protocol. See LDAP
LinkedIn, 53, 55, 434
Linux root, 193
Linux servers, 193
Linux systems

basic commands, 195
enumeration, 119
file structure, 193–194
file system, 193
hacking, 195–197
navigating, 195
passwords, 194, 195, 196–197
security, 193–197
users/groups, 119
vs. Windows systems, 191–192

list scans, 98
“live” systems, 96
LLMNR attacks, 203, 204
Lloyd, Kris, 341
LM authentication, 187

LM hashing, 186
locks, 443, 445, 447, 449
Locky, 360
log files

application logs, 215
considerations, 29, 215
corrupting, 29, 215
covering/clearing tracks, 198, 199, 215–216
deleting, 29
event logs, 215, 216
location of, 215–216
monitoring, 215
security logs, 215
SIGVERIF, 357
system logs, 215

logging/log files
web-based hacking, 231

LOIC (Low Orbit Ion Cannon), 367–368
Long, Johnny, 55–57
loop antenna, 276
lovebugs, 53
Low Orbit Ion Cannon (LOIC), 367–368
“low-hanging fruit,” 417
LTE networks, 286

M
MAC (mandatory access control), 22
MAC (Media Access Control), 138
MAC addresses

ARP and, 142–143, 143–144
broadcast messages, 138, 139
considerations, 10
filtering, 287
flooding, 151–152
multicast messages, 139
spoofing, 152, 154–155, 287
WPA and, 278

MAC duplication, 155
MAC filtering, 287
macro viruses, 360
madwifi project, 282
malicious applications, 442

malicious hackers, 30
Maltego tool, 76
malvertising, 351
malware, 350, 363
malware attacks, 350–364

overview, 350–351
Trojans, 352–357
viruses, 357–361
worms, 357–361

malware authors, 232–233
Malwarebytes, 356
Management Information Base. See MIB
management network zone, 12
mandatory access control (MAC), 22
man-in-the-browser (MIB) attacks, 372
man-in-the-middle (MITM) attacks, 205, 416
mantraps, 447–448
Market Watch, 51
masking, 398
The Matrix, 297
maximum tolerable downtime (MTD), 17
MBSA (Microsoft Baseline Security Analyzer), 115, 261
MD4 algorithm, 185
MD5 algorithm, 185, 394
MDM (Mobile Device Management), 306
Media Access Control. See MAC
Melissa virus, 360
Meltdown attacks, 373–374
memorization, 441
message integrity codes (MICs), 279
messenger channels, 439
Metagoofil, 58
metamorphic viruses, 360
Metasploit, 203, 209–210, 246–247
methodologies, 96
MIB (Management Information Base), 123
MIB (man-in-the-browser) attacks, 372
MIB entries, 123
Microsoft Baseline Security Analyzer (MBSA), 115, 261
Microsoft Management Consoles (MMCs), 192–193
Microsoft Vulnerability Research, 12
Microsoft Windows. See Windows systems
MICs (message integrity codes), 279

Mirai botnet, 260, 315–316
mirroring websites, 234, 248
mis-association attack, 285
misconfiguration attacks, 26, 245
misconfiguration vulnerabilities, 13
MITM (man-in-the-middle) attacks, 205, 416
MMCs (Microsoft Management Consoles), 192–193
mobile computing, 298–309

attacks, 299, 302, 303–309
authentication, 300
authorization, 301
backdoors, 301
code-level issues, 301
considerations, 272, 298
data storage, 300
insecure communication, 300, 314
overview, 298
OWASP top 10 risks, 299–302
platform issues/problems, 300
platforms, 303–307
rooting/jailbreaking, 303–304, 305
software bugs, 308

Mobile Device Management (MDM), 306
mobile devices

applications, 300, 303, 305, 306
as attack platform, 308
attacks on, 299, 302, 303–309
Bluetooth, 307, 308–309
BYOD, 299, 302, 305–306
cryptography, 300
data storage, 300
encryption, 408
operating systems, 303–307
phishing, 307–308
smartphones. See smartphones
Trojans, 308
vulnerabilities/risks, 299–305
Wi-Fi connections, 307, 308

mobile platform
application-based attacks, 442
smartphones. See smartphones
social engineering attacks, 441–443

mobile platform attacks, 441–443

modulation, 273
msconfig tool, 356, 357
MTD (maximum tolerable downtime), 17
Mudge, Raphael, 372
multicast, 146
multicast messages, 139
multipartite viruses, 360
multitier architecture, 237

N
name lookups, 66
name resolvers, 64
name servers, 63–66, 68, 72
namespace, 63–66, 69, 71
NAT (NetBIOS Auditing tool), 204
NAT (network address translation), 166, 373
National Computer Security Center (NCSC), 21
National Institutes of Standards and Technology. See NIST
National Vulnerability Database (NVD), 12–13
NBNSpoof, 203
NBT-NS, 203
nbtstat command, 122–123
NCSC (National Computer Security Center), 21
NDA (nondisclosure agreement), 31
NeoTrace tool, 74
Nessus, 13, 115–116, 234, 320
Nest thermostat, 311
net commands, 204
NetBIOS Auditing tool (NAT), 204
NetBIOS enumeration, 121–123
NetBIOS traffic, 203
netcat tool, 121, 350, 353–354
Netcraft, 53–54, 233
Netcraft Toolbar, 438
NetCut, 308
netizens, 364
Netscan, 86
NetScanTools Pro, 108
netstat tool, 91, 355–356
NetStumbler, 281, 283
NetSurveyor, 283–284, 289
network address translation (NAT), 166, 373

Network Basic Input/Output System. See NetBIOS
network diagrams, 96
network ID, 92, 93, 95, 96, 98
network interface cards (NICs), 138–139, 141, 274
network intrusion detection systems. See NIDSs
Network layer, 7, 142
network tap, 162
Network Time Protocol, 124
networks

ad hoc, 273, 274, 285
basics, 2, 5–14
daisy-chaining, 15
edge computing, 331
footprinting, 72–75
IoT, 310, 314, 316
LTE, 286
monitoring, 160–161, 162
range, 72–73
security zones, 10–12
switched, 84
TCP/IP, 5, 7–12, 84–88
VANET, 312
wireless. See wireless networks

Neverquest Trojan, 353
New Technology File System. See NTFS
New York Times, 370
NgineX servers, 236
NICs (network interface cards), 138–139, 141, 274
NIDSbench tool, 168
NIDSs (network intrusion detection systems), 98–99, 160–162, 368
Nikto scanner, 234
Nimda worm, 361
Nirvanix, 336
NIST (National Institute of Standards and Technology), 334, 409
NIST reference architecture, 334–335
nmap command, 234, 412
Nmap switches, 105–106, 107, 124
Nmap tool, 98, 99, 101, 104–109, 318
nonce, 289
nondisclosure agreement (NDA), 31
non-electronic password attacks, 201
nonrepudiation, 387, 391, 399
noodling, 183–184

NOP sled, 251
NSAuditor, 123
nslookup command, 70–72
NT LAN Manager. See NTLM
NTFS (New Technology File System), 212–213
NTFS file streaming, 212–213
n-tier architecture, 237
NTLM authentication, 185, 187
NTLM hash, 186
NTP server, 124
NTPv3, 124
nuclear worm, 362–363
NULL scan, 102
NVD (National Vulnerability Database), 12–13

O
Oakley protocol, 373
object identifiers (OIDs), 123
OCSP (Online Certificate Status Protocol), 400
OFDM (orthogonal frequency-division multiplexing), 273
OIDs (object identifiers), 123
omnidirectional antenna, 274
OmniPeek sniffer, 289
one-factor authentication, 200
Online Certificate Status Protocol (OCSP), 400
open services, 13
Open Source Intelligence (OSINT), 75
Open Source Security Testing Methodology Manual (OSSTMM), 35
Open System Authentication, 276
Open System Interconnection (OSI) Reference Model, 5–7
Open Web Application Security Project. See OWASP
OpenPGP standard, 411
OpenSignalMaps, 281
OpenSSL, 412, 413
OpenVAS, 14, 117
OpUtils 5, 124
Orange Book, 21
organizational unique identifier, 138, 143
orthogonal frequency-division multiplexing (OFDM), 273
Orwell, George, 149, 397
OS (operating system)

attacks, 26

baseline, 13
default installation, 13
design flaws, 13
fingerprinting, 96
misconfiguration, 13

OSI (Open System Interconnection) Reference Model, 5–7
OSINT (Open Source Intelligence), 75
OSRFramework, 75–76
OSSTMM (Open Source Security Testing Methodology Manual), 35
Ostinato tool, 86
out-of-band SQL injection, 259
overt channels, 351
OWASP (Open Web Application Security Project), 229, 299–302, 313–315

P
PaaS (Platform as a Service), 332
packers, 352
Packet, 331
packet capture, 156–158
packet generating tools, 168
Packet Generator, 168, 169, 170
packet header, 84
Packet Internet Groper. See ping
PacketBuilder, 86–87
packet-filtering firewalls, 166–167
PackETH, 86, 168, 169, 170
packets

considerations, 9
fragmented, 111–112, 366
ICMP, 98, 99, 100, 367
identifying targets, 97–100
IP, 9–10, 103
PING, 98
routing, 112
SYN, 367
SYN/ACK, 367
TCP, 371

Padding Oracle On Downgraded Legacy Encryption (POODLE), 411, 413–414
pair master key (PMK), 280
parabolic grid antenna, 275
parameter tampering, 242
paranoid policy, 23

pareidolia, 340
partial knowledge testing, 33
passive footprinting, 49, 50–52
passive sniffing, 150, 151, 159
pass-the-hash attack, 189
password cracking, 201–208

active online attacks, 202–204
brute-force attacks, 207–208, 417
Cain and Abel tool, 153, 205, 207, 288
cracking WEP, 287–289
cracking WPA, 287–289
dictionary attacks, 206–207
Ettercap, 205–206
hybrid attacks, 207
John the Ripper, 197, 208
keylogging, 202
non-electronic attacks, 201
offline attacks, 206–207
passive online attacks, 205–206
rainbow tables, 207, 396
resources, 208
rule-based attacks, 202
shoulder surfing, 201, 429
web servers, 245
Windows systems, 184–189, 203, 207

password guessing, 202
Password Policy, 23
passwords, 199–204

attacks. See password cracking
changing, 447
community string, 124
complexity, 188, 201
considerations, 141–142, 200, 448–449
cracking. See password cracking
death of, 446
default, 13, 26, 201, 208
forgotten, 257–258
hash values, 185–187
hashed, 185–189, 395–396
keyboard walks, 201
length, 188, 201
Linux systems, 194, 195, 196–197
obtaining by asking for, 427

sniffing, 141–142, 201–208
stored in cookies, 254
strength, 200
tips for, 186
Windows systems, 184–189, 204, 207

patches, 13, 211, 261
payload, 15
Payment Card Industry Data Security Standard (PCI-DSS), 35, 335
PayPal, 369
PCI-DSS (Payment Card Industry Data Security Standard), 35, 335
PDQ Deploy, 211
PDU (protocol data unit), 7, 84
peer to peer attacks, 367
pen testers, 28, 29, 30, 31, 32, 161. See also hackers
pen testing. See also hacking

assessment, 32
black-box testing, 32
conclusion, 32
considerations, 30, 31–32
gray-box testing, 33
vs. hacking, 53
“no harm” clause, 29
overview, 31–33
pen test phases, 32
physical security and, 443
preparation phase, 32
reconnaissance, 28
target of evaluation, 32
types of, 32–33
vulnerabilities, 13–14
white-box testing, 33

penetration testing. See pen testing
permanent attacks, 367
permissive policy, 23
personal identification numbers (PINs), 447
personally identifiable information (PII), 15, 76
Petya, 360
PGPcrack, 417
pharming, 438
Phish Tank Toolbar, 438
phishing

e-mail, 202, 435–438, 439
mobile devices, 307–308

obtaining passwords via, 202
phlashing, 367
PhoneSnoop, 309
phreakers, 24
physical controls, 16
Physical layer, 6, 7
physical security, 443–449

access controls, 445–448
basics, 443–449
biometric identifiers, 445–447
bump key, 449
considerations, 16, 28, 443
described, 443
hacks, 449
IoT devices, 315
locks, 443, 445, 447, 449
mantraps, 447–448
operational measures, 444
pen testing and, 443
physical measures, 444
technical measures, 444

piggybacking, 259, 429
PII (personally identifiable information), 15, 76
ping, 98, 99, 367
ping of death, 367
PING packets, 98
ping sweeps, 98–99, 100, 101
PINs (personal identification numbers), 447
PKI (public key infrastructure), 392, 399–407
PKI system, 399–407
plain text, 386, 387
plain-text attacks, 415
Planning Tool for Resource Integration, Synchronization, and Management (PRISM), 148
Platform as a Service (PaaS), 332
PMK (pair master key), 280
PNZ (production network zone), 11
POC (point of contact), 70–73
point of contact (POC), 70–73
policies, security, 22–23
Polybius, 385
polymorphic viruses, 360
POODLE (Padding Oracle On Downgraded Legacy Encryption), 411, 413–414
POP3 (Post Office Protocol 3), 142

pop-up windows, 437, 438–439
port address translation, 166
port numbers, 63, 88–91, 354–355
port sweeping, 107
Portable Penetrator, 288
ports

closed, 104
dynamic, 89
important port numbers, 89
listening for, 90
mirroring, 150
open, 96
registered, 89
scanning, 101–111
security, 151, 155
span, 150
states, 90–91
TCP/IP, 356
UDP, 356
well-known, 89, 90

POST method, 240
Post Office Protocol 3 (POP3), 142
power issues, 444
Presentation layer, 6, 7
Pretty Good Privacy (PGP), 411
Pretty Park worm, 361
preventive controls, 16
PRISM (Planning Tool for Resource Integration, Synchronization, and Management), 148
privacy issues

health information, 35
IoT, 314
laws/standards, 33
Samsung smart TV, 212–213
U.S. government, 396–397

private cloud model, 333
private keys

asymmetric encryption, 391–392
considerations, 399, 412, 413
described, 399
digital signatures and, 406–407
PKI and, 399–401, 407

private zone, 166
privileges

administrator, 209–210
escalation of, 29, 33, 208–210
root, 209–210

procedures, 23
Process Explorer, 356
processors, 230, 374
production network zone (PNZ), 11
promiscuous mode, 139
promiscuous policy, 23
protection rings, 217
protocol data unit (PDU), 7, 84
proxies, 96, 113
proxy chains, 113
prudent policy, 23
pseudonymous footprinting, 49
pseudorandom number, 86
PSH flag, 86
Psiphon, 115
public cloud model, 333
public key infrastructure. See PKI
public keys

asymmetric algorithms, 392
asymmetric encryption, 391–392
considerations, 399–400, 402
described, 399
digital signatures and, 406–407
PKI and, 399–402, 407

public zone, 166
PUT method, 240
“pwning,” 245

Q
QoS (quality of service), 142
quality of service (QoS), 142
Qualys, 14

R
RADIUS servers, 276, 279
rainbow tables, 207, 396
ransomware, 358–360
RAs (registration authorities), 400, 402
RC (Rivest Cipher), 390

RC4, 414
RC4 algorithm, 278
Ready Player One, 59
reconnaissance, 47–82

described, 28
vs. footprinting, 48
passive footprinting, 50–52
search engines, 53–60

regedit.exe, 192
regedt32.exe, 192
regional Internet registries (RIRs), 68
registration authorities (RAs), 400, 402
registry, 189–192, 214
registry hacking, 190–192
registry information, 72
regulatory efforts, 335
Remote Exec, 211
replay attacks, 205, 416
Requests For Comments (RFCs), 228
Réseaux IP Européens (RIPE) NCC, 68
resource identifiers (RIDs), 118, 119
Responder, 203
Retina CS, 14, 115
reverse engineering, 301
reverse social engineering, 430
RFCs (Requests For Comments), 228
RFID features, 447
RFID identify theft, 429–430
RFID skimming, 429–430
RIDs (resource identifiers), 118, 119
RIoT Vulnerability Scanner, 318
RIPE (Réseaux IP Européens) NCC, 68
RIPEMD-160 hash, 395
RIRs (regional Internet registries), 68
risk. See also vulnerabilities

assessment, 13
considerations, 25, 28, 31
management, 15–16
quantifying dangers of, 12–13

risk analysis matrix, 15–16
Ritz, David, 62
Rivest Cipher (RC), 390
Rivest, Ronald, 394

roaming, 274
robots.txt file, 233, 234
rogue access points, 274, 283, 284–285
Rogue Security, 437
rolling code attack, 316
root CAs, 402, 406
root privileges, 209–210
rooting, 303, 305
rootkits, 216–218
Rosenworcel, Jessica, 279
routers, 1–2, 10
rpcclient tool, 119
rpcinfo tool, 119
RSA algorithm, 392, 410
RST flag, 86
R-U-Dead-Yet (RUDY), 368
RUDY (R-U-Dead-Yet), 368
rule-based attacks, 202

S
SaaS (Software as a Service), 333
Salesforce, 330
salt, 186, 396
SAM database, 119
SAM (Security Accounts Manager) file, 184–187, 188
Sarbanes-Oxley (SOX) Act, 35
scalar objects, 123
scanning, 84–117

considerations, 99–101
described, 84
evasion, 111–115
examples of, 28
vs. footprinting, 84
fundamentals, 96–117
identifying targets, 97–101
naming conventions, 102
other tools, 109–111
port, 101–111
stealth attacks, 211–212, 216
tools for, 101–111, 309
ZenMap, 98

scanning methodology, 96–117

SCAP (Security Content Automation Protocol), 13
Scientology website attacks, 367
ScoopLM, 205, 206
screened subnet, 166
script kiddies, 24, 26
search engines, 53–60

footprinting and, 53–60
Google hacking, 55–60
listed, 53
mapping/location tools, 53
overview, 53
Shodan, 77, 317–318

SEC Info, 51
Secure Shell (SSH), 410
Secure Sockets Layer. See SSL
Secure/Multipurpose Internet Mail Extensions (S/MIME), 411
security

applications, 229–231
auditing, 23
basics, 14–23
cloud, 335–339
considerations, 415
fundamentals, 2–23
laws/standards, 33–38
Linux systems, 193–197
mobile. See mobile computing
patches, 13, 211, 261
physical. See physical security
port, 151, 155
Windows systems, 184–193
wireless networks, 276–280

Security Accounts Manager. See SAM
security analysts, 25
Security Center, 115–116
Security Content Automation Protocol (SCAP), 13
security context, 118
security controls, 13, 16, 31–32
Security Focus, 12
Security, Functionality, and Usability triangle, 14, 26
security identifiers (SIDs), 118, 119
security incident and event management (SIEM), 29
security logs, 215
Security Magazine, 12

Security Operation Center (SOC), 29
security policies, 22–23
security zones, 10–12
SEF (Social Engineering Framework), 76
segments, 6, 84
semagrams, 214
sequence attacks, 370–371
sequence numbers (SNs), 370–371
serial number, zone file, 66
servers

Apache, 235, 236–237
application, 235
authoritative, 64
DNS, 62–72, 284
e-mail, 71
Google, 414
HTTPS, 415
IIS, 235–236, 237, 238
Linux, 193
name, 63–66, 68, 72
name resolvers, 64
NgineX, 236
NTP, 124
RADIUS, 276, 279
sinkhole, 359
SOA, 71
unpatched, 13
web. See web servers

Service Oriented Architecture. See SOA
service set identifier (SSID), 276
session fixation attack, 253
session hijacking, 369–374
session IDs, 253
Session layer, 6, 7
session management, 229
session riding, 342
session splicing, 168
SHA-1 algorithm, 394, 395
SHA-2 algorithm, 394, 395
SHA-3 algorithm, 395
shadow files, 194, 195–196
shadow IT, 339
Shadowsocks, 114

Shared Key Authentication, 276
sheepdip system, 364
shell injection, 249
shell viruses, 360
ShellShock, 247
Shodan, 77, 317–318
shoulder surfing, 201, 429
shredders, 428
shrink-wrap code attacks, 26
side-channel attacks, 342, 416
SIDs (security identifiers), 118, 119
SIEM (security incident and event management), 29
signature files, 363–364
signature list, 159
sign-in seal, 438
SIGVERIF log file, 357
SIGVERIF tool, 356, 357
Simple Mail Transfer Protocol (SMTP), 124, 125, 141
Simple Network Management Protocol. See SNMP
Simple Object Access Protocol (SOAP), 250
single authority system, 402
single loss expectancy (SLE), 17
sinkhole server, 359
Sirefef rootkit, 217
Sisyphean activities, 245–246
Sisyphus, King, 245–246
SiteDigger tool, 57
Skyhook tool, 284
Slammer worm, 361
SLE (single loss expectancy), 17
Slowloris tool, 368
SMAC tool, 287
smart watches, 310, 312
smartcards, 447
smartphones. See also mobile devices

Android. See Android phones
attack methodologies, 299
Blackberry phones, 303, 309
considerations, 298
iPhone. See iPhones
vulnerabilities/risks, 299, 307
wireless hacking and, 272, 281

“smashing the stack,” 251–253

SMB exploit, 358–359, 360
SMB vulnerability, 359
S/MIME (Secure/Multipurpose Internet Mail Extensions), 411
Smith, Zachary, 331
SMS messages, 442
SMS phishing, 307–308
SMTP (Simple Mail Transfer Protocol), 124, 125, 141
SMTP commands, 125
Smurf attacks, 367
sniffers

Cain and Abel tool, 153, 205, 288
Ettercap, 159, 205–206, 372
IoT traffic, 320
promiscuous mode, 139
tcpdump tool, 158–159
Wireshark, 156–159

sniffing, 138–159
active, 150–153
ARP poisoning, 152–153
basics, 138–151
collision domains, 139–141, 150
described, 138
firewalls, 165–167
IPv6 and, 143–145
MAC flooding, 151–152
network devices and, 138–141
network interface cards and, 138–139
passive, 150, 151, 159
passwords, 141–142, 201–208
protocols, 141–147
techniques, 151–155
tools, 156–159
viewing ARP entries, 144–145
wireless, 289–290
wiretapping, 148–149

SNMP (Simple Network Management Protocol), 123–124, 141–142
SNMP enumeration, 123–124
SNMPScanner, 124
Snort IDS, 161–165
Snowden, Edward, 397
SNs (sequence numbers), 370–371
SNScan, 124
SOA (Service Oriented Architecture), 341

SOA records, 66
SOA server, 71
SOAP (Simple Object Access Protocol), 250
SOAP injection, 250
SOC (Security Operation Center), 29
social engineering, 426–443

authority support, 429
computer-based attacks, 434–441
defined, 426
described, 52
disgruntled employees, 55, 432–434
dumpster diving, 201, 428
as footprinting tool, 51, 52
“halo effect,” 430
human-based attacks, 427–434
identity theft, 429–430, 440–441
impersonation, 428–429
insider threats, 432–434
mobile devices, 307–308
mobile-based attacks, 441–443
obtaining passwords, 201, 426–427
overview, 426–427
phases of, 427
phishing e-mail/attacks, 435–438, 439
piggybacking, 429
preventing, 439–441
real world, 431–432
reverse, 430
shoulder surfing, 201, 429
social networking and, 434
tailgating, 429
technical support, 428–429, 430
training users on, 439
whaling, 438
why it works, 427

Social Engineering Framework (SEF), 76
social networking, 434
social networking sites, 52, 55
social skills, 58–59
SOCKS5 protocol, 114
Softerra, 124
Software as a Service (SaaS), 333
Sony PlayStation network attacks, 368

source host, 66
source routing, 112
SOX (Sarbanes-Oxley) Act, 35
span ports, 150
sparse infector viruses, 361
spear phishing, 438
Spectre attacks, 373–374
spectrum analyzer, 274
spiders, 54, 76
spimming, 438
spoof attacks, 366
Spoofcard, 70
spoofing

considerations, 70
IP addresses, 112
IRDP, 155
MAC addresses, 152, 154–155, 287
overview, 154

spyware, 202
SQL (Structured Query Language), 255–256
SQL injection, 254–259
SQL Slammer worm, 361
SQLBrute, 259
sqlmap scanner, 259
sqlninja scanner, 259
“squirreling,” 331–332
SSH (Secure Shell), 410
SSID (service set identifier), 276
SSID cloaking, 276
SSL (Secure Sockets Layer), 205–206, 410, 411, 414, 415
SSL sites, 205–206
sslsniff tool, 206
SSLv2, 414–415
stack, 251
StackGuard, 251
Stagefright bugs, 308
standards, 21, 23, 33–36
Start of Authority record. See SOA
state-sponsored hackers, 26
Static Application Security Testing (SAST), 230
static electricity, 444
stealth attacks, 211–212, 216
stealth scan, 102, 105

stealth viruses, 361
steganography, 214, 386, 398–399
Steinberg, Joseph, 412
stream ciphers, 386, 388
Structured Query Language. See SQL
Stuxnet code, 362–363
subnet mask, 92
subnetting, 92–96
substitution, 387
suicide hackers, 25
Super Bluetooth Hack, 309
SuperScan, 109, 111, 123
switch port stealing, 152
switched networks, 84
switches, 141, 150, 151, 152, 155
Sybil attack, 316
Symantec Drive Encryption, 408
symmetric encryption, 389–390
SYN (Synchronize segment), 9
SYN attacks, 367
SYN flag, 86, 87, 102
SYN floods, 367
SYN packets, 367
SYN scan, 102
SYN segments, 168
SYN/ SYN/ACK, ACK handshake, 10
SYN/ACK packets, 367
SYN/ACK segment, 9, 10
Synchronize segment. See SYN
Syrian Electronic Army, 370
system administrators. See administrators
system attacks, 183–225. See also attacks

checking for live systems, 96
considerations, 198
covering/clearing tracks, 29, 198, 199, 215–216
enumeration. See enumeration
executing applications, 210–211
gaining access, 28, 197–198
getting started, 184–199
maintaining access, 29, 197, 198, 199
methodology, 197–199
password cracking, 201–208
phases, 27–30, 197–199

privilege escalation, 29, 33, 208–210
reconnaissance. See reconnaissance
scanning. See scanning
stealth attacks, 211–212, 216

system logs, 215
system viruses, 360
systems

“bricking,” 367
causing permanent damage to, 367
“live,” 96

T
tabular objects, 123
tailgating, 429
Tails OS, 115
target of evaluation (TOE), 32
Task Manager, 356
TCG (Trusted Computing Group), 337
TCP (Transmission Control Protocol), 10, 85, 142
TCP communication, 370–372
TCP connect scan, 101, 105
TCP flags, 86–88, 102
TCP packets, 371
TCP segment structure, 86
TCP session hacking, 370–371
TCP state-exhaustion attacks, 367
TCP streams, 156
tcpdump tool, 158–159
TCP/IP networks, 5, 7–12, 84–88
TCP/IP ports, 356
TCP/IP stack, 7, 8
tcptrace tool, 159
TCSEC (Trusted Computer System Evaluation Criteria), 21–22
teardrop attacks, 367
technical controls, 16
technical support social engineering, 428–429, 430
technorati, 364
Telnet, 120–121, 156–157, 320
temperature, 444
Temporal Key Integrity Protocol (TKIP), 278, 279
terminology, 15, 24–30
TGS (ticket granting service), 187, 188

TGT (ticket granting ticket), 187, 188
THC Hydra, 208, 245
The Onion Routing (TOR), 113
thermostats, 311
Thingful tool, 318
Threat Analyzer, 363
threat modeling, 15
threats, 16
three-factor authentication, 200
three-way handshake, 10, 86, 87, 372
ticket granting service (TGS), 187, 188
ticket granting ticket (TGT), 187, 188
tiger team, 31
time to live (TTL), 66
TKIP (Temporal Key Integrity Protocol), 278, 279
TLS (Transport Layer Security), 410, 413, 415
TMAC tool, 287
TOE (target of evaluation), 32
tokens, 446, 447
Toolset, 124
TOR (The Onion Routing), 113
TRACE method, 240
traceroute tools, 72–75, 168
tracert tool, 72–75
Transmission Control Protocol. See TCP
Transport layer, 6, 7, 142
Transport Layer Security (TLS), 410, 413, 415
transport mode, 373–374
transposition, 387
trash intelligence, 428
Trend Micro, 12
Tribe Flood Network, 368
Trinity tool, 368
Tripwire, 356–357
Trojans, 352–357

vs. backdoors, 352
command shell, 353
considerations, 202, 353–354, 363
countermeasures, 356–357
described, 352
EliteWrap, 351
mobile devices, 308
monitoring services/processes, 356

port numbers, 354–355
tools for, 355–357
types of, 353–355
Windows systems, 356–357

trust model, 402
trust systems, 402
Trusted Computer System Evaluation Criteria (TCSEC), 21–22
trusted computing, 337
Trusted Computing Group (TCG), 337
Truth in Caller ID Act, 70
T-sight tool, 372
TTL (time to live), 66
tunnel mode, 373
tunneling viruses, 361
Twitter, 55, 306, 434
two-factor authentication, 200
Twofish encryption, 390

U
UBA (User Behavior Analytics), 17
Ubiquiti cards, 282
Ubuntu, 100
UDP (User Datagram Protocol), 10, 85, 142
UDP ports, 104, 356
UDP scan, 104
Ufasoft, 153
UIDs (user IDs), 119
unicast, 146, 147, 151
Unicode, 168, 243
unidirectional antenna, 275
Uniform Resource Identifier (URI), 238
Uniform Resource Locator. See URL
UPX tool, 363
URG flag, 86
URI (Uniform Resource Identifier), 238
URL (Uniform Resource Locator), 238, 248, 252
URL tampering, 242
U.S. Government, 362, 394, 396–397, 417
usability, 14, 415
USB, bootable, 408
USB wireless adapter, 282
User Behavior Analytics (UBA), 17

User Datagram Protocol. See UDP
user IDs (UIDs), 119
Userland exploit, 304

V
V2V (vehicle-to-vehicle) data exchange, 312
VA (validation authority), 400, 406
validation authority (VA), 400, 406
VANET (Vehicle Ad Hoc Network), 312
Vehicle Ad Hoc Network (VANET), 312
vehicles, 312, 316, 331
vehicle-to-vehicle (V2V) data exchange, 312
virtual machines (VMs), 330, 332
VirtualBox, 100
virtualization, 330
virus hoax, 358
virus making software, 361
viruses, 357–361, 363. See also AV
VirusTotal, 363
Visual Trace tool, 74
VMs (virtual machines), 330, 332
voice recognition, 212
volumetric attacks, 366
vulnerabilities

categories of, 13
considerations, 13
insider threats, 432–434
IoT, 298, 313–316
mobile devices, 299–305
overview, 12–14
quantifying danger/risk of, 12–13
resources/tools, 12–14
scanning for, 96
web applications, 229–232
web servers, 229–232, 238–241

vulnerability scanning, 115–117
IoT, 318–320
overview, 115
tools for, 115–116, 128
web servers, 233–235

W

W3C (World Wide Web Consortium), 228–229
W3Techs, 235
Walker, Angie, 340
Walker, Hope, 340, 431–432
Wall Street Monitor, 51
WAN Killer, 86
WannaCry attack, 358–359, 360
war chalking, 276
war driving, 281
war walking, 281
watches, smart, 310, 312
waveforms, 273
Wayback Machine, 61
“wearables,” 310
Web 2.0, 248, 330
web applications

architecture, 248
attack surface, 248
attacks on, 247–261
considerations, 248
entry points, 248
injection attacks, 229, 249–250
risks/vulnerabilities, 229–232
server-side issues, 248, 254
SQL injection, 254–259
testing, 259
types of attacks, 249–259

web cache poisoning, 244
web defacement attacks, 245
web front end servers, 235
web mirroring, 60
web of trust, 402
web organizations, 228–233
web servers, 228–247. See also servers

Apache, 235, 236–237
architecture, 235–241
attack methodology, 233–235
attacks on, 233–235, 241–247
directory traversal, 241–243
footprinting, 233–234
parameter tampering, 242
password cracking, 245
protecting, 261

risks/vulnerabilities, 229–232, 238–241
types of attacks, 241–247
types of servers, 235

web spiders, 54, 76, 233
web-based hacking, 227–269

web applications, 247–261
web servers, 233–235, 241–247

webcrawlers, 54
WebGoat project, 231–232
website footprinting, 60–61
Website Watcher, 61
websites

company, 51–52
competitive intelligence on, 51–52, 76–77
cookies, 60, 205, 253–254
defacement attacks, 245
dynamic web pages, 248
fake, 284
increase in attacks, 260
mirroring, 60, 234, 248
scanning targets, 50
traffic statistics, 51
Wayback Machine, 61

WeFi tool, 284
WEP (Wired Equivalent Privacy), 277–278, 280
WEP attacks, 287–289
WEP cracking, 287–289
WEP keys, 277, 278
WEPAttack, 288
WEPCrack, 288
WFETCH tool, 244
whaling, 438
white hats, 25
white-box testing, 33
whois tools, 68–70
Wi-Fi connections, 307, 308
WiFi Explorer, 281
Wi-Fi hotspots, 285, 307
WiFi Pilot, 289
Wi-Fi Protected Access. See WPA
WiFiFoFum, 281
WiFinder, 281
WIGLE service, 281, 283

WikiLeaks, 370
WiMAX standard (802.16), 272
WINARPAttacker, 153
Windows 8, 118, 119
Windows 10, 118
Windows root, 193
Windows Server, 117
Windows Service Manager, 356
Windows systems

alternate data stream, 212–214
enumeration, 117–119
hashing passwords, 185–189
vs. Linux systems, 191–192
MMC, 192–193
NTFS file streaming, 212–213
password cracking, 184–189, 207
password recovery tools, 204
registry, 189–192, 214
route tables, 193
security, 184–193
Trojans, 356–357
verifying integrity of, 357–358

Windows XP, 117
WinDump sniffer, 158
Winfingerprint, 123
WinPcap, 139
Wired Equivalent Privacy. See WEP
wireless access points, 274, 278, 281, 284–285
wireless adapters, 282
wireless antennas, 274–276
wireless cards, 282
wireless hacking, 280–290

discovery, 281–284
encryption attacks, 287–289
IoT, 313
MAC spoofing, 287
overview, 271–272
smartphones, 272, 281
sniffing, 289–290
WEP attacks, 287–289

wireless jammers, 285–287
wireless networks, 271–295

802.11 standards, 272–273

access points, 274, 278, 281, 284–285
ad hoc, 273, 274, 285
antennas, 274–276
architecture, 272–277
authentication, 276–277
basic setup, 273–274
basics, 272–277
Bluetooth, 272
considerations, 272
encryption, 277–280, 287–289
finding/discovery, 281–284
Gigabit Wi-Fi, 279
hacking. See wireless hacking
identifying, 276, 281–284
infrastructure mode, 274
modes, 273–274
security, 276–280
service set identifiers, 276
standards, 272–273
WEP. See WEP
WPA, 278–280, 288–289
WPA2, 278–280, 288–289

wireless NICs, 274
Wireless Security Auditor tool, 288
wireless sniffing, 289–290
wireless standards, 272–273
Wireshark sniffer, 100, 124, 156–159, 289
wiretapping, 138, 148–149
World Wide Web Consortium (W3C), 228–229
worms, 357, 361–363
WPA (Wi-Fi Protected Access), 278–280, 288–289
WPA2 Enterprise, 278–279, 280
WPA2 Personal, 279
WPA2 standard, 278–280, 288–289
wrappers, 351
wrapping attacks, 342

X
X.509 standard, 402
XMAS scan, 102, 105, 106
XML (Extensible Markup Language), 108, 239
XML External Entities (XXE), 230

XML processors, 230
XOR ciphers, 389
XOR comparison, 93
XOR (exclusive-or) operation, 278, 388–389
XSS (cross-site scripting), 230, 251–253
XXE (XML External Entities), 230

Y
Yagi antenna, 275
Yahoo!, 370
YouTube, 53, 246
Yubikey token, 446

Z
Zenmap, 98, 100, 105, 108
zero-day attack vector, 15
ZeuS-in-the-Mobile (ZitMo), 442
Zigbee Framework, 320
Zigbee standard (802.16), 272
ZitMo (ZeuS-in-the-Mobile), 442
zombies, 29, 439
zone file, 66
zone transfers, 63, 66, 71
zones, security, 10–12
Z-Wave, 320

	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Getting Started: Essential Knowledge
	Security 101
	Essentials
	Security Basics

	Introduction to Ethical Hacking
	Hacking Terminology
	The Ethical Hacker

	Chapter Review
	Questions
	Answers

	Chapter 2 Reconnaissance: Information Gathering for the Ethical Hacker
	Footprinting
	Passive Footprinting
	Active Footprinting

	Footprinting Methods and Tools
	Search Engines
	Website and E-mail Footprinting
	DNS Footprinting
	Network Footprinting
	Other Tools

	Chapter Review
	Questions
	Answers

	Chapter 3 Scanning and Enumeration
	Fundamentals
	TCP/IP Networking
	Subnetting

	Scanning Methodology
	Identifying Targets
	Port Scanning
	Evasion
	Vulnerability Scanning

	Enumeration
	Windows System Basics
	Enumeration Techniques

	Chapter Review
	Questions
	Answers

	Chapter 4 Sniffing and Evasion
	Essentials
	Network Knowledge for Sniffing
	Active and Passive Sniffing

	Sniffing Tools and Techniques
	Techniques
	Tools

	Evasion
	Devices Aligned Against You
	Evasion Techniques

	Chapter Review
	Questions
	Answers

	Chapter 5 Attacking a System
	Getting Started
	Windows Security Architecture
	Linux Security Architecture
	Methodology

	Hacking Steps
	Authentication and Passwords
	Privilege Escalation and Executing Applications
	Hiding Files and Covering Tracks

	Chapter Review
	Questions
	Answers

	Chapter 6 Web-Based Hacking: Servers and Applications
	Web Servers
	Web Organizations
	Attack Methodology
	Web Server Architecture
	Web Server Attacks

	Attacking Web Applications
	Application Attacks
	Countermeasures

	Chapter Review
	Questions
	Answers

	Chapter 7 Wireless Network Hacking
	Wireless Networking
	Wireless Terminology, Architecture, and Standards
	Wireless Hacking

	Chapter Review
	Questions
	Answers

	Chapter 8 Mobile Communications and the IoT
	The Mobile World
	Mobile Vulnerabilities and Risks
	Mobile Platforms and Attacks

	IoT
	IoT Architecture
	IoT Vulnerabilities and Attacks
	IoT Hacking Methodology

	Chapter Review
	Questions
	Answers

	Chapter 9 Security in Cloud Computing
	Cloud Computing
	Cloud Security
	Threats and Attacks
	Chapter Review
	Questions
	Answers

	Chapter 10 Trojans and Other Attacks
	The “Malware” Attacks
	Trojans
	Viruses and Worms

	Remaining Attacks
	Denial of Service
	Session Hijacking

	Chapter Review
	Questions
	Answers

	Chapter 11 Cryptography 101
	Cryptography and Encryption Overview
	Encryption Algorithms and Techniques

	PKI, the Digital Certificate, and Digital Signatures
	The PKI System
	Digital Certificates
	Digital Signatures

	Encrypted Communication and Cryptography Attacks
	Encrypted Communication
	Cryptography Attacks

	Chapter Review
	Questions
	Answers

	Chapter 12 Low Tech: Social Engineering and Physical Security
	Social Engineering
	Human-Based Attacks
	Computer-Based Attacks
	Mobile-Based Attacks

	Physical Security
	Physical Security 101

	Chapter Review
	Questions
	Answers

	Chapter 13 The Pen Test: Putting It All Together
	Methodology and Steps
	The Security Assessments
	Security Assessment Deliverables
	Guidelines
	More Terminology

	Chapter Review
	Questions
	Answers

	Appendix A Tool, Sites, and References
	Vulnerability Research Sites
	Footprinting Tools
	Scanning and Enumeration Tools
	System Hacking Tools
	Cryptography and Encryption
	Sniffing
	Wireless
	Mobile and IoT
	Trojans and Malware
	Web Attacks
	Miscellaneous
	Tools, Sites, and References Disclaimer

	Appendix B About the Online Content
	System Requirements
	Your Total Seminars Training Hub Account
	Single User License Terms and Conditions
	TotalTester Online
	Technical Support

	Glossary
	Index

