


Summary of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. Making a Start with CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Text Styling and Other Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Images and Other Design Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4. Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5. Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6. Forms and User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7. Cross-browser Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8. CSS Positioning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

9. CSS for Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409



THE CSS3
ANTHOLOGY
TAKE YOUR SITES TO NEW HEIGHTS

BY RACHEL ANDREW
4TH EDITION

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



The CSS3 Anthology: Take Your Sites to New Heights
by Rachel Andrew

Copyright © 2012 SitePoint Pty. Ltd.

Assistant Technical Editor: Diana MacDonaldProduct Manager: Simon Mackie

Indexer: Michele CombesTechnical Editor: Tom Museth

Cover Designer: Alex WalkerExpert Reviewer: Louis Lazaris

Editor: Kelly Steele

Latest Update: March 2012Printing History:

1st Ed. Nov. 2004, 2nd Ed. May 2007,

3rd Ed. July 2009, 4th Ed. March 2012

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means without the prior written permission of the publisher, except in the case

of brief quotations included in critical articles or reviews.

Notice of Liability
The authors and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9871530-2-9 (print)

ISBN 978-0-9871530-6-7 (ebook)

Printed and bound in the United States of America

iv



About Rachel Andrew

Rachel Andrew is a front- and back-end web developer who has written numerous books,

including the first three editions of The CSS Anthology. Her work in her company

edgeofmyseat.com (http://www.edgeofmyseat.com/) informs her writing, ensuring it remains

grounded in the real world of client projects, large and small.

About Louis Lazaris

Louis Lazaris is a freelance web designer and front-end developer based in Toronto, Canada

who has been involved in the web design industry since 2000. Louis has been working on

websites ever since the days when table layouts and one-pixel GIFs dominated the industry.

Over the past five years, he has come to embrace web standards while endeavoring to promote

best practices that help developers and their clients reach practical goals for their projects.

Louis writes regularly for a number of top web design blogs including his own site, Impressive

Webs (http://www.impressivewebs.com/).

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

v

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.edgeofmyseat.com/
http://www.impressivewebs.com/
http://www.sitepoint.com/


For Bethany.



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Who Should Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

What’s in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Where to Find Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

The SitePoint Newsletters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

The SitePoint Podcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Your Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Conventions Used in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Making a Start with CSS . . . . . . . . . . . . . . . 1

How do I define styles with CSS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CSS Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

What about older browsers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

How does the browser decide which styles to apply? . . . . . . . . . . . . . . . . 20

Will using a CSS framework make it easier to learn CSS? . . . . . . . . . . . . 22

A Decent Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Text Styling and Other Basics . . . . . . . 23

How do I set my text to display in a certain font? . . . . . . . . . . . . . . . . . . 24

Should I use pixels, points, ems, or another unit identifier to set font

sizes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

How do I remove underlines from my links? . . . . . . . . . . . . . . . . . . . . . . . 33

How do I create a link that changes color when the cursor moves over

it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

How do I display two different styles of link on one page? . . . . . . . . . . . 39



How do I style the first item in a list differently from the others? . . . . . 41

How do I add a background color to a heading? . . . . . . . . . . . . . . . . . . . 43

How do I style headings with underlines? . . . . . . . . . . . . . . . . . . . . . . . . . 44

How do I remove the large gap between an h1 element and the

following paragraph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

How do I highlight text on the page? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

How do I alter the line height (leading) of my text? . . . . . . . . . . . . . . . . 50

How do I justify text? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

How do I indent text? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

How do I center text? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

How do I change text to all capitals using CSS? . . . . . . . . . . . . . . . . . . . . 57

How do I create a drop-caps effect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

How do I add a drop shadow to my text? . . . . . . . . . . . . . . . . . . . . . . . . . 61

How do I change or remove the bullets on list items? . . . . . . . . . . . . . . . 63

How do I use an image for a list-item bullet? . . . . . . . . . . . . . . . . . . . . . . 65

How do I remove the indented left-hand margin from a list? . . . . . . . . 66

How do I display a list horizontally? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

How do I remove page margins? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

How can I remove browsers’ default padding and margins from all

elements? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

How do I use fonts other than those installed on most users’

computers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Working with Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 3 Images and Other Design
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

How do I add borders to images? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

How do I use CSS to remove the blue border around my navigation

images? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

How do I set a background for my page using CSS? . . . . . . . . . . . . . . . . 80

x



How do I control how my background image repeats? . . . . . . . . . . . . . . 83

How do I position my background image? . . . . . . . . . . . . . . . . . . . . . . . . 85

How do I fix my background image in place while the page is

scrolled? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Can I set a background image on any element? . . . . . . . . . . . . . . . . . . . . 90

How do I create a gradient background? . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Can I create a background image that scales with the browser

window? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

How do I add more than one background image to an element? . . . . . . 99

How do I make an element transparent so that the background shows

through? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

How can I add a drop shadow to an element? . . . . . . . . . . . . . . . . . . . . 108

How do I create rounded corners on an element? . . . . . . . . . . . . . . . . . 110

Can I rotate images without using image-editing software? . . . . . . . . 112

What should I be aware of in terms of accessibility when using

color? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

In the Picture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 4 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

How do I style a structural list as a navigation menu? . . . . . . . . . . . . . 120

How do I use CSS to create rollover navigation without images or

JavaScript? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Can I use CSS and lists to create a navigation system with

subnavigation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

How do I make a horizontal menu using lists and CSS? . . . . . . . . . . . . 133

How do I create tabbed navigation using CSS? . . . . . . . . . . . . . . . . . . . 138

My navigation is in an include, so how can I indicate which is the

selected tab? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

How do I put additional information in my navigation bar? . . . . . . . . 146

How can I visually indicate which links are external to my site? . . . . . 148

xi



How do I create rollover images in my navigation without using

JavaScript? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

How should I style a sitemap? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

How do I create a drop-down menu with CSS? . . . . . . . . . . . . . . . . . . . 165

Navigating Your Way to Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Chapter 5 Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

How do I lay out spreadsheet data using CSS? . . . . . . . . . . . . . . . . . . . . 176

How do I make my tabular data accessible? . . . . . . . . . . . . . . . . . . . . . . 177

How do I add a border to a table? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

How do I stop spaces appearing between the cells of my tables when

I’ve added borders using CSS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

How do I display spreadsheet data in an attractive and usable

way? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

How do I display table rows in alternating colors? . . . . . . . . . . . . . . . . . 191

How do I change a row's background color when the mouse hovers

over it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

How do I display table columns in alternating colors? . . . . . . . . . . . . . 197

How do I display a calendar using CSS? . . . . . . . . . . . . . . . . . . . . . . . . . . 200

How do I create a pricing table? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Tables Topped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Chapter 6 Forms and User Interfaces . . . . . . . . . . 223

How do I lay out a form with CSS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Can I change the look and feel of form elements with CSS? . . . . . . . . 230

How do I highlight a field when the user tabs into or clicks on it? . . . 233

What additional elements and attributes are part of the HTML5 forms

spec? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Can I style input elements based on their validity? . . . . . . . . . . . . . . . 242

How do I group related fields? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

xii

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



How do I create a form that reads like a sentence with inline

fields? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

What should I be aware of in terms of accessibility when creating

forms? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

You’ve Got Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Chapter 7 Cross-browser Techniques . . . . . . . . . . . 267

In which browsers should I test my sites? . . . . . . . . . . . . . . . . . . . . . . . . 268

Can I just ignore older browsers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

How can I add support for CSS3 selectors in older browsers? . . . . . . . . 274

Can I add CSS or JavaScript and have it served only to older versions

of IE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

How do I achieve rounded corners in browsers without support for

border-radius?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

How do I deal with the most common issues in IE6 and IE7? . . . . . . . . 284

How do I style HTML5 semantic elements that are unsupported in older

browsers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

How can I test in many browsers when I only have access to one

operating system? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Can I install multiple versions of Internet Explorer on Windows? . . . . 292

How should I go about testing on mobile browsers? . . . . . . . . . . . . . . . 293

What do I do if I hit a CSS issue I’m unable to fix? . . . . . . . . . . . . . . . . 294

The validator complains about my vendor-specific extensions, so how

do I validate CSS3? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

All Users Catered For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Chapter 8 CSS Positioning Basics . . . . . . . . . . . . . . . . 301

How do I decide when to use a class and when to use an ID? . . . . . . . 301

What are block-level and inline elements in CSS, and can I change

how these display? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

xiii



How do margins and padding work in CSS? . . . . . . . . . . . . . . . . . . . . . . 306

How do I wrap text around an image? . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

How do I stop the next item floating up once I’ve floated an

element? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

How do I set an item’s position on the page using CSS? . . . . . . . . . . . . 320

How do I center a layout on the page? . . . . . . . . . . . . . . . . . . . . . . . . . . 326

How do I create a thumbnail gallery? . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Positioned: Absolutely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Chapter 9 CSS for Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

How do I create a two-column layout? . . . . . . . . . . . . . . . . . . . . . . . . . . 338

How do I create a two-column layout with a footer? . . . . . . . . . . . . . . 347

How do I create a three-column layout? . . . . . . . . . . . . . . . . . . . . . . . . . 357

How do I create a fixed-width layout with a full-width header and

footer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

How do I create a design that works well on mobile devices? . . . . . . . 366

How do I create a print stylesheet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

How can I use responsive-design techniques when my site is

image-heavy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

What about older browsers and responsive design? . . . . . . . . . . . . . . . . 401

What is the future of CSS layouts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

A Design for Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

xiv



Preface
When SitePoint asked me to write the fourth edition of this book, I initially thought

it would take the same format of other editions—adding new techniques, removing

content that had become outdated, and updating solutions to a more modern ap-

proach. As I started to work through the table of contents, however, I realized that

the world of CSS had changed so much that a complete rewrite was needed.

Rather than being about cutting-edge or experimental CSS, this book demonstrates

the tips, tricks, and solutions that I use every day. We’ll thoroughly investigate the

world of CSS3, many of the features of which are supported by the major browsers,

and look at how to make these new techniques work in older browsers.

We’ll also walk through the use of CSS for layout purposes. While the tools that we

have for layout haven’t changed much in the last two years, the types of devices

that we need to design websites for have changed. Our sites are being viewed on

hardware ranging from smartphones to desktop screens. Responsive design aims to

tackle the challenge of designing a single site that provides a great experience for

all.

This anthology contains minimal theory; instead, I’ve concentrated on providing

solutions that will enable you to quickly get started with a technique or solve a

problem. The sections in each chapter can also act as starting points for your own

experimentation and creativity. Each one is framed as a specific issue or question,

accompanied by a detailed explanation to help you understand the solution and

point out any related challenges or alternate approaches.

This is a really exciting time for front-end development, and I hope that this book

helps you start to explore some of the features of CSS3, and find answers to CSS

problems that you might have.

Who Should Read This Book
This book is aimed at people who need to work with CSS: web designers and de-

velopers who’ve seen the cool CSS designs out there, but are short on the time to

wade through masses of theory and debate in order to create a site. Each problem



is solved with a working solution that can be implemented as it is or used as a

springboard to creativity.

As a whole, this book isn’t a tutorial. While Chapter 1 covers the very basics of CSS,

and the early chapters cover simpler techniques than those that follow, you’ll find

the examples easier to grasp if you have a basic grounding in CSS.

What’s in This Book
Chapter 1: Making a Start with CSS

This chapter is simply a quick CSS tutorial for anyone who needs to brush up

on the basics of CSS. If you’ve been using CSS in your own projects, you might

want to skip this chapter and refer to it on a needs basis, when you want to look

into basic concepts in more detail.

Chapter 2: Text Styling and Other Basics

This chapter covers techniques for styling and formatting text in your documents;

font sizing, colors, highlighting text, and the removal of extra whitespace around

page elements are explained as the chapter progresses. Even if you’re already

using CSS for text styling, you’ll find some useful tips here.

Chapter 3: Images and Other Design Elements

This chapter looks at the ways in which you can combine CSS and images to

create powerful visual effects, such as placing background images on elements,

applying gradients, making elements transparent, and positioning text with

images, among other topics.

Chapter 4: Navigation

Every site requires usable navigation, and this chapter explains how to achieve

it, CSS-style. We’ll investigate image-based navigation, tabbed navigation,

combining background images with CSS text to create attractive and accessible

menus, and using lists to structure navigation in an accessible way.

Chapter 5: Tabular Data

The use of tables for layout hasn’t been considered best practice for a long time.

Tables should be used for their real purpose: the display of tabular data, such

as that contained in a spreadsheet. This chapter will demonstrate techniques

for the application of tables to create attractive and usable tabular data displays.

xvi



Chapter 6: Forms and User Interfaces

Whether you’re a designer or a developer, it’s likely that you’ll spend a fair

amount of time creating forms for data entry. CSS provides incredible support

in this area; this chapter shows how we can build accessible, usable forms with

that extra design oomph. We’ll also take a look at some of the diverse HTML5

tools that are simplifying form configuration.

Chapter 7: Cross-browser Techniques

How can we make our CSS techniques work in older browsers or on alternative

devices such as smartphones? These questions form the main theme of this

chapter. We’ll also see how to troubleshoot CSS bugs—and where to go for

help—as well as looking at methods for integrating CSS3 selectors and HTML5

elements in older browsers.

Chapter 8: CSS Positioning Basics

Placing elements correctly on a web page can be tricky, but in this chapter we’ll

learn to master the art of positioning. Using floats effectively, nifty ways of

adding margins and padding, implementing text wrapping, and creating

thumbnail galleries—these are all great strategies for your CSS arsenal.

Chapter 9: CSS for Layout

In this chapter, we’ll explore a range of CSS layout techniques that can be

combined and extended upon to create numerous interesting page formations,

including different column configurations and print-ready stylesheets. We’ll

also delve into the emerging sphere of responsive design, looking at both text-

and image-heavy layouts that will render effectively and smoothly on a range

of devices or screen sizes.

Where to Find Help
The Book’s Website
Located at http://www.sitepoint.com/books/cssant4/, the website that supports this

book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note filenames above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

xvii

http://www.sitepoint.com/books/cssant4/


all the finished examples presented in this book. Simply click the Code Archive link

on the book’s website to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page1 on the book’s website will

provide the latest information about known typographical and code errors, as well

as offer necessary updates for new releases of browsers and related standards.

The SitePoint Forums
If you’d like to communicate with other designers about this book, you should join

SitePoint’s online community.2 The CSS & Page Layout forum,3 in particular, offers

an abundance of information above and beyond the solutions in this book, and a

lot of experienced web designers and developers hang out there. It’s a good way to

learn new tricks, have questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters such

as the SitePoint newsletter, PHPMaster, CloudSpring, RubySource, DesignFestival,

and BuildMobile. In them you’ll read about the latest news, product releases, trends,

tips, and techniques for all aspects of web development. Sign up to one or more of

these newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. They discuss the latest web industry topics,

present guest speakers, and interview some of the best minds in the industry. You

can catch up on the latest and previous podcasts4 or subscribe via iTunes.

1 http://www.sitepoint.com/books/cssant4/errata.php
2 http://www.sitepoint.com/forums/
3 http://www.sitepoint.com/launch/cssforum/
4 http://www.sitepoint.com/podcast/

xviii

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.sitepoint.com/books/cssant4/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/cssforum/
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/podcast/


Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have an

email support system set up to track your inquiries, and friendly support staff

members who can answer your questions. Suggestions for improvements, as well

as notices of any mistakes you may find, are especially welcome.

Acknowledgments
Firstly, I’d like to thank the SitePoint team for making a fourth edition of this book

possible. Despite us being spread across a range of time zones, the whole process

has been enjoyable and the comments from everyone have served to make this a

better book than it would otherwise be.

To those people who are really breaking new ground in the world of CSS, those

whose ideas are discussed throughout this book, and those who share their ideas

and creativity with the wider community, thank you.

Thanks to Drew, for accepting yet another book project into our personal and pro-

fessional lives, and for being part of so many discussions that have informed topics

covered in this book. Finally, thanks must go to my daughter Bethany, who is un-

derstanding of the time I spend working, and makes me laugh when I am tired. You

both make so many things possible; thank you.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Markup Samples
Any markup—be that HTML or CSS—will be displayed using a fixed-width font

like so:

<h1>A perfect summer's day</h1>
<p>It was a lovely day for a walk in the park. The birds 
were singing and the kids were all back at school.</p>

xix



If the markup forms part of the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
  background-color: #CCC;
  border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
  ⋮
  return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

xx



Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxi





Chapter1
Making a Start with CSS
A web page consists of markup—HTML or XHTML that describes the meaning of

the content on the page—and CSS (Cascading Style Sheets) that tell the browser

how the content should be displayed in browsers and other user agents that need

to display it. CSS tells the browser everything from the layout of the page to the

colors of your headings.

In this chapter, whose format differs to the rest of the book, I’ll explain the basics

of CSS syntax and how to apply CSS to your web pages. If you’re experienced with

CSS, feel free to skip this chapter and start with the solutions in Chapter 2.

This book is not a CSS tutorial; rather, it’s a collection of problems and solutions

to help you perform tasks in CSS. If you’re unsure as to the very basics of HTML

and CSS, I can recommend the SitePoint title Build Your Own Website the Right

Way Using HTML & CSS (third edition) by Ian Lloyd as a companion to this book.1

If you already have some understanding of HTML and CSS, however, this chapter

should serve as a refresher, and can be used as a reference as we work through the

solutions in the later chapters.

1 http://www.sitepoint.com/books/html3/

http://www.sitepoint.com/books/html3/
http://www.sitepoint.com/books/html3/


How do I define styles with CSS?
The basic purpose of CSS is to allow the designer to define style declarations—format-

ting details such as fonts, element sizes, and colors—and then apply those styles

to selected portions of HTML pages using selectors: references to an element or

group of elements to which the style is applied.

Let’s look at a basic example to see how this is done. Consider the following HTML

document:

<!DOCTYPE html> 
<html lang="en">
<head>
  <meta charset="utf-8" />
  <title>A Simple Page</title>
</head>
<body>
<h1>First Title</h1>

  <p>A paragraph of interesting content.</p>
<h2>Second Title</h2>

  <p>A paragraph of interesting content.</p>
<h2>Third title</h2>

  <p>A paragraph of interesting content.</p>
</body>
</html>

This document contains three boldfaced headings, which have been created using

h1 and h2 tags. Without CSS styling, the headings will be rendered using the

browser’s internal stylesheet; the h1 heading will be displayed in a large font size,

and the h2 headings will be smaller than the h1, but larger than paragraph text. The

document that uses these default styles will be readable, if a little plain. We can

use some simple CSS to change the look of these elements:

<!DOCTYPE html> 
<html lang="en">
<head>
  <meta charset="utf-8" />
  <title>A Simple Page</title>
  <style>
    h1, h2 {
      font-family: "Times New Roman", Times, serif;

The CSS3 Anthology2



      color: #3366cc;
    }
  </style>
</head>
<body>
  <h1>First Title</h1>
  <p>A paragraph of interesting content.</p>
  <h2>Second Title</h2>
  <p>A paragraph of interesting content.</p>
  <h2>Third title</h2>
  <p>A paragraph of interesting content.</p>
</body>
</html>

All the magic lies between the style tags in the head of the document, where we

specify that a light blue, sans-serif font should be applied to all h1 and h2 elements

on the page. Regarding the syntax, I’ll explain it in detail shortly. By changing the

style definition at the top of the page, it’s unnecessary to add to the markup itself;

it will affect all three headings, as well as any other headings that might be added

at a later date.

HTML or XHTML?

Throughout this book, the examples will be presented with HTML5 documents

using XML-style syntax, as this is my preference. All these examples, however,

will work in an XHTML or HTML4 document.

Inline Styles
The simplest method of adding CSS styles to your web pages is to use inline styles.

An inline style is applied to an HTML element via its style attribute, like this:

<p style="font-family: "Times New Roman", Times, serif; 
  color: #3366cc;">
  Amazingly few discotheques provide jukeboxes.
</p>

An inline style has no selector; the style declarations are applied to the parent ele-

ment. In the above example, this is the p tag.

3Making a Start with CSS



Inline styles have one major disadvantage: it’s impossible to reuse them. For example,

if we wanted to apply the style above to another p element, we’d have to type it out

again in that element’s style attribute. And if the style needed changing further

on, we’d have to find and edit every HTML tag where the style was copied. Addi-

tionally, because inline styles are located within the page’s markup, it makes the

code difficult to read and maintain.

Embedded Styles
Another approach for applying CSS styles to your web pages is to use the style

element, as in the first example we looked at. Using this method, you can declare

any number of CSS styles by placing them between the opening and closing style

tags, as follows:

<style>
  ⋮ CSS styles go in here… 
</style>

The style tags are placed inside the head element, and while it’s nice and simple,

the style tag has one major disadvantage: if you want to use a particular set of styles

throughout your site, you’ll have to repeat those style definitions within the style

element at the top of every one of your site’s pages.

A more sensible alternative is to place those definitions in a plain text file, then

link your documents to that file. This external file is referred to as an external

stylesheet.

External Stylesheets
An external stylesheet is a file (usually given a .css filename) that contains a website’s

CSS styles, keeping them separate from any one web page. Multiple pages can link

to the same .css file, and any changes you make to the style definitions in that file

will affect all the pages that link to it. This achieves the objective of creating site-

wide style definitions as mentioned previously.

To link a document to an external stylesheet (say, styles.css), we simply place a link

element within the document’s head element:

<link rel="stylesheet" href="styles.css" />

The CSS3 Anthology4

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Remember our original example in which three headings shared a single style rule?

Let’s save that rule to an external stylesheet with the filename styles.css, and link it

to the web page like so:

<!DOCTYPE html> 
<html lang="en">
<head>
  <meta charset="utf-8" />  
  <title>A Simple Page</title>
<link rel="stylesheet" href="styles.css" />

</head>
<body>
  <h1>First Title</h1>
  <p>A paragraph of interesting content.</p>
  <h2>Second Title</h2>
  <p>A paragraph of interesting content.</p>
  <h2>Third title</h2>
  <p>A paragraph of interesting content.</p>
</body>
</html>

The value of the rel attribute must be stylesheet. The href attribute indicates the

location and name of the stylesheet file.

Not Your Type

You’ll often see the link to the stylesheet written as: <link rel="stylesheet"

type="text/css" href="styles.css" />. We’ve omitted the type attribute

here because we’re using HTML5, which, along with browsers, has no requirement

for it.

The linked styles.css file contains the following style definition:

h1, h2 {
  font-family: "Times New Roman", Times, serif;
  color: #3366cc;
}

As with an image file, you can reuse this styles.css file in any page in which it’s

needed. It will save you from retyping the styles, as well as ensure that your headings

display consistently across the entire site.

5Making a Start with CSS



CSS Syntax
A stylesheet is a collection of style definitions. Every CSS style definition, or rule,

has two main components:

■ A list of one or more selectors, separated by commas, define the element or ele-

ments to which the style will be applied.

■ The declaration block, separated by curly braces {…}, specifies what the rule

actually does.

The declaration block contains one or more style declarations and each one sets the

value of a specific property. Multiple declarations are separated by a semicolon (;).

A property declaration is made up of the property name and a value, separated by

a colon (:). You can see all of these elements labeled in Figure 1.1.

Figure 1.1. The components of a CSS rule: a list of selectors and a declaration block

The solutions throughout the book focus mainly on the different properties and the

values they can take. Figure 1.1 also illustrates that a style rule can be written in a

single line. Some CSS authors prefer to indent their style rules to aid readability,

while others write their rules on one line to save space. The following shows the

same style rule written both ways:

h1, h2 {
  font-family: "Times New Roman", Times, serif;
  color: #3366cc;
}

h1, h2 {
  font-family: "Times New Roman", Times, serif; color: #3366cc;
}

The CSS3 Anthology6



The formatting makes no difference at all; it’s totally up to you how you write your

stylesheet.

What are CSS selectors and how do I use them?
A selector is what we use to target the particular bit of markup on the page that we

wish to style. These range from very simple (targeting a particular HTML element

by name) to complex (targeting an element when it’s in a certain position or state).

In the following example, h1 and h2 are the selectors, which means that the rule

should apply to all h1 and h2 elements:

h1, h2 {
  font-family: Times, "Times New Roman", serif;
  color: #3366CC;
}

We’ll be seeing examples of CSS selectors throughout the book, so you should

quickly become accustomed to the different types of selector and how they work.

Below are some examples of each of the main selector types, so these should be fa-

miliar when you encounter them later.

Type Selectors
The most basic form of selector is a type selector, which we’ve already seen. By

naming a particular HTML element, you can apply a style rule to every occurrence

of that element in the document. Type selectors are often used to set the basic styles

that appear throughout a website. For example, the following style rule might be

used to set the default h1 font for a website:

h1 {
  font-family: Tahoma, Verdana, Arial, Helvetica, sans-serif;
  font-size: 1.2em;
  color: #000000;
}

Here we’ve set the font, size, and color for all h1 elements in the document.

7Making a Start with CSS



Class Selectors
Assigning styles to elements is all well and good, but what happens if you want to

assign different styles to identical elements that occur in various places within your

document? This is where CSS classes come in.

Consider the following style, which colors all h2 headings blue in a document:

h2 {  
  color: #0000ff;
}

That’s great, but what would happen if you had a sidebar on your page with a blue

background? If the text in the sidebar were to display blue as well, it would be in-

visible. What you need to do is define a class for your sidebar text, then assign a

CSS style to that class.

First, edit your HTML to add a class to the heading:

<h2 class="sidebar">This text will be white, as specified by the
  CSS style definition below.</h2>

Now write the style for this class:

h2 {
  color: #0000ff;
}

.sidebar {
  color: #ffffff;
}

This second rule uses a class selector to indicate that the style should be applied

to any element with a class value of .sidebar. The period (.) at the beginning in-

dicates that we’re naming a class instead of an HTML element.

You can add a class to as many elements in your document as you need to.

The CSS3 Anthology8



ID Selectors
In contrast with class selectors, ID selectors are used to select one particular element,

rather than a group of elements. To use an ID selector, you first add an id attribute

to the element you wish to style. It’s important that the ID is unique within the

HTML document:

<p id="tagline">This paragraph is uniquely identified by the ID
 "tagline".</p>

To reference this element by its ID selector, we precede the ID with a hash (#). For

example, the following rule will make the preceding paragraph white:

#tagline {  
  color: #ffffff; 
}

Combinators
The next group of selectors we shall take a look at are combinators. The combinator

refers to a character added between two simple selectors to create a selector more

capable of targeting a precise part of the document.

Descendant Selectors
The descendant selector matches an element that descends from a specified element.

The combinator used in this selector is a whitespace character.

You might have an h2 element on your site that’s set to display as blue; however,

within the sidebar of the site are some h2 elements that you want to display white

in order to show up against a dark background. As we saw earlier, you could add

a class to all these headings, but it would be far neater to instead target them with

CSS. This is when the descendant selector is used.

Here’s the new selector:

.sidebar h2 {
  color: #ffffff;
}

9Making a Start with CSS



And here’s the updated HTML:

<div class="sidebar">
  <h2>A heading in white</h2>
  <h2>Another heading in white</h2>
</div>

As you can see, a descendant selector comprises a list of selectors (separated by

spaces) that match a page element (or group of elements) from the outside in. In

this case, because our page contains a div element with a class of sidebar, the

descendant selector .sidebar h2 refers to all h2 elements inside that div.

By using a descendant selector, there’s no need to access your HTML to add classes

directly to all elements; instead, use the main structural areas of the page—identified

by classes or IDs where required—and style elements within them.

Child Selectors
Unlike the descendant selector—which matches all elements that are descendants

of the parent element, including elements that are not direct descendants—the child

selector matches all elements that are the immediate children of a specified element.

The combinator used in this selector is the greater-than sign (>).

Consider the following markup:

<div class="sidebar">
  <p>This paragraph will be displayed in white.</p>
  <p>So will this one.</p>
  <div class="tagline">
    <p>If we use a descendant selector, this will be white too.
      But if we use a child selector, it will be blue.</p>
  </div>
</div>

In this example, the descendant selector we saw in the section called “Descendant

Selectors”, .sidebar p, would match all the paragraphs that are nested within the

div element with the class sidebar, as well as those inside the div with the class

tagline. But if, instead, you only wanted to style those paragraphs that were direct

descendants of the sidebar div, you’d use a child selector. A child selector uses

the > character to specify a direct descendant.

The CSS3 Anthology10



Here’s the new selector, which sets the text color to white for those paragraphs

directly inside the sidebar div (but not those within the tagline div):

p {  
  color: #0000FF;  
}

.sidebar>p {  
  color: #ffffff; 
}

Adjacent Selectors
An adjacent selector will only match an element if it’s adjacent to another specified

element. The combinator for this selector is the plus character (+).

Therefore, if we have HTML:

<h2>This is a title</h2>

<p>This paragraph will be displayed in white.</p>

<p>This paragraph will be displayed in black.</p>

And then use the following selector:

p {  
  color: #000000; 
}

h2+p {  
  color: #FFFFFF; 
}

Only the first paragraph will be displayed in white. The second p element is not

adjacent to an h2 element, so its text will be displayed in the black we’ve specified

for p elements in the first rule.

11Making a Start with CSS



Pseudo-class Selectors
A pseudo-class selector acts as if an element has a class applied according to the

state of that element. Pseudo-class selectors start with a colon and are usually added

immediately after a type selector with no additional whitespace.

My aim here is to familiarize you with the syntax of and terminology around these

selectors, so that as we meet them later, you’ll have an understanding of how they

work. As a result, I won’t demonstrate all the selectors in this chapter, but a full list

with explanations can be found online in the SitePoint CSS Reference.2

Links
Most of us first come across pseudo-class selectors when they’re applied to links.

A link has various states. It can be unvisited or visited, hovered over, or clicked.

We can use CSS to target each of these states:

a:link {
  color: #0000ff;
}

a:visited {
  color: #ff00ff;
}

a:hover {
  color: #00ccff;
}

a:active {
  color: #ff0000;
}

The first definition sets the color for the link state, which displays for links that

users have visited. If they have visited the link, the second rule is used. If they

hover over the link, the :hover definition is used, and when clicking or otherwise

activating the link, the :active definition is used. The :hover and :active pseudo-

class selectors are actually termed dynamic pseudo-classes, as they take effect only

2 http://reference.sitepoint.com/css/selectorref

The CSS3 Anthology12

http://reference.sitepoint.com/css/selectorref


when the user interacts with the element; something has to happen before they take

effect.

The order of these definitions in your document is important. The a:active defin-

ition needs to come last so that it overwrites the previous definitions. We’ll find

out why that’s the case later on in this chapter, when we discuss the cascade.

First Child
The first-child pseudo-class selector targets an element when it’s the first child

of a parent element. As with all these selectors, it’s far easier to understand when

you can see an example.

Within your document is a set of paragraphs. These are contained inside a div ele-

ment with a class of article. We can use CSS and a descendant selector to address

all these paragraphs, making them larger and bold:

.article p {
  font-size: 1.5em;
  font-weight: bold;
}

If you’d just like the first paragraph to display in a larger font size and bold—by

way of an introduction to the article—you can use first-child:

.article p:first-child {
  font-size: 1.5em;
  font-weight: bold;
} 

This CSS is only applied by the browser if the paragraph is the very first p element

inside an element with a class of article. So the first-child pseudo-class selector

is useful for adding nice design touches, such as making the first paragraph of some

text—or the first instance of a heading—slightly different.

Last Child
Just as we can use first-child to address the very first instance of an element inside

a container, we can use last-child to address the last instance. The following CSS

would add a bottom border to each list item in a list:

13Making a Start with CSS

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



.navigation li {
  border-bottom: 1px solid #999999;
}

To prevent the border displaying on the last item, you can use the following CSS:

.navigation li {
  border-bottom: 1px solid #999999;
}

.navigation li:last-child {
  border-bottom: none;
}

Nth Child
The nth-child pseudo-class selector lets you select multiple elements according

to their position in the document tree. The easiest way to see this in action is by

taking a common example of striping table rows to make them easier to read.

The following CSS declaration will give a table cell a background color only if it’s

in an odd row of the table:

tr:nth-child(odd) td {
  background-color: #f0e9c5;
}

In addition to odd and even keywords, you can use a multiplier expression:

tr:nth-child(2n+1) td {
  background-color: #f0e9c5;
}

We’ll be looking at nth-child in more depth later in the book, where I’ll explain

how to use these multipliers to target various parts of a data table.

Only Child
The only-child pseudo-class selector will select an element if it’s the only child

of its parent. For example, if I have in my markup the following two lists—the first

having three list items and the second having one:

The CSS3 Anthology14



<ul>
  <li>Item one</li>
  <li>Item two</li>
  <li>Item three</li>
</ul>

<ul>
  <li>A single item list - not really a list at all!</li>
</ul>

The CSS declaration below would only match the list item in the second list, as it

matches where the li is an only child of the parent ul:

li:only-child {
  list-style-type: none;
}

Pseudo-element Selectors
Pseudo-elements operate as if you’ve added new HTML markup into your page and

then styled that markup. In the CSS3 specification, pseudo-elements are denoted

with a double colon; for example, p::first-letter.

However, for pseudo-elements that existed in CSS2 (such as ::first-letter,

::first-line, ::before, and ::after), browser manufacturers are asked to maintain

support for the single colon syntax that these selectors used in the past. If you’re

utilizing the above selectors, at the time of writing a single colon has better browser

support, so I’d suggest employing this. The exception is ::selection, which was

added in the CSS3 specification.

First Letter
The first-letter pseudo-element selector acts as if you’ve wrapped a span around

the first letter of the content inside your parent element and are then styling it. For

example, if we used a span within the markup we might have:

<div class="wrapper">
  <p><span class="firstletter">T</span>his is some text within a div
    with a class of wrapper.</p>
</div> 

15Making a Start with CSS



And in the CSS:

.wrapper .firstletter {
  font-size: 200%;
  font-weight: bold;
}

Or we could remove the span from the markup and target the first letter in the same

way using the first-letter pseudo-element selector:

.wrapper:first-letter {
  font-size: 200%;
  font-weight: bold;
}

First Line
In the same way first-letter selects the first letter within a container, first-line

selects the first line:

.wrapper:first-line {
  font-size: 200%;
  font-weight: bold;
}

The first-line selector is far more flexible than actually wrapping the first-line

of text in a span and styling that. When wrapping content in a span, it’s not known

whether the length of the first line may change (due to the user’s text size, for ex-

ample, or a change in the text added by a content management system). The

first-line pseudo-class selector will always format the first line of text as displayed

in the browser.

Before
The before pseudo-element is used along with the content property to specify

where generated content should be rendered. Generated content is content that’s

rendered in your document from CSS. This can be useful for a variety of reasons,

which we’ll look at later in the book. For now, here’s the HTML for a simple example:

The CSS3 Anthology16



<div class="article">
  <p>Hello World!</p>
</div>

And the CSS:

.article:before {
  content: "Start here";
}

When viewed in a browser, this will render the words “Start here” just inside the

opening div element—that’s before the first p.

After
The after pseudo-element works in the same way as before, but it renders the

content at the end of the parent element; that’s just before the closing div in our

aforementioned HTML example:

.article:after {
  content: "End here";
}

Given the same markup used for the previous before example, the previous CSS

would render “End here” just before the closing div, after the closing p tag.

Attribute Selectors
Attribute selectors let you target an element based on an attribute. As an example

of an attribute on an HTML element, we can look at the a element, which creates a

link. Attributes on the following link are href and title:

<a href="http://google.com" title="Visit Google">Google</a>

With an attribute selector, we can check what the value of an attribute is, and show

CSS based on it. As a simple example, if we take a form input field, it has a type

attribute explaining what kind of field it is. Valid values for the type attribute include

text, radio, and checkbox. If we try and style a checkbox in the same way as a text

input field, we’ll end up with a very strange result, so we can use an attribute se-

17Making a Start with CSS



lector to create a definition only for input fields with a type of text. For example,

here is a form field:

<input type="text" name="name" id="fName" />

The CSS to target this field is as follows:

form input[type="text"] {
  background-color: #ffffff;
  color: #333333;
}

In Chapter 6, we’ll be looking at more examples of using attribute selectors.

What about older browsers?
You’re probably already aware that not all browsers are equal in their support of

CSS, and that’s before you take into consideration that some users may well have

old versions of browsers on their desktop. The examples in this book should all

work as described in the current versions of the main browsers; in fact, most will

work on previous versions of these browsers as well. Where a certain feature is

unavailable in older versions of, say, Internet Explorer, I’ll indicate this fact.

In Chapter 7, I’ll explain a number of ways to get older browsers up to speed with

the latest CSS, such as using JavaScript to add support for CSS3 selectors in older

versions of Internet Explorer. If you know that a project you’re working on will have

a large share of its users using old versions of IE, for example, it’s advisable to turn

to that chapter to plan your support strategy from the outset.

Vendor-specific Extensions
As you move through the solutions in the next few chapters, you’ll see examples

of one way that browsers are coping with the introduction of CSS3. The CSS3 spe-

cification is different from earlier specifications in that it is modular. The spec is

broken down into modules that can each reach completion—in W3C terms this is

known as a W3C Recommendation—at different times. The stages a module moves

through are as follows:

1. Working Draft: the module has been published for review by the community

The CSS3 Anthology18



2. Candidate Recommendation: implementation experience is gathered during this

phase

3. Proposed Recommendation: the module is sent to the W3C Advisory Committee

for final endorsement

4. W3C Recommendation: the module is now endorsed by the W3C and should be

widely adopted

While a module is moving through the various stages, browser manufacturers often

start implementing the module at Working Draft stage. This is good, because it helps

to provide implementation experience in terms of how the specification works when

used; however, it is possible that implementation details could change from the

initial proposal.

For example, if you had used a CSS3 property that subsequently changed, a site

built a year ago might suddenly look very odd indeed in a new browser that changed

the implementation to the new, correct way of doing it.

To avoid this issue, browser manufacturers often use a vendor prefix when doing

their early stage implementations to create a vendor-specific implementation of the

property. For example, we use border-radius to create rounded corners like so:

border-radius: 10px;

However, for rounded corners to work in earlier versions of Firefox and Safari, you’d

also need to add the vendor-prefixed versions:

-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;

Once the module is unlikely to change, the browsers start supporting the real

property alongside their own. Some browsers may never have a vendor-specific

version and just implement the one from the specification.

You’ll witness many examples of these prefixed properties throughout the book, so

you should soon become comfortable using them.

19Making a Start with CSS



How does the browser decide which styles
to apply?
So how does the browser understand our intentions? When more than one rule can

be applied to the same element, the browser uses the cascade to determine which

style properties to apply.

Understanding the cascade is important when dealing with CSS, because many CSS

development problems are due to styles being unintentionally applied to an element.

We’ve already presented examples in this chapter where we’ve written a general

style rule focused on paragraph elements, and then a more specific rule aimed at

one or more particular paragraphs. Both style rules target paragraphs, but the more

specific rule overrides the general rule in the case of matching paragraphs.

There are four factors that the browser uses to make the decision: weight, origin,

specificity, and source order.

The weight of a particular style declaration is determined by the use of the keyword

!important. When the keyword appears after a property value, that value can’t be

overridden by the same property in another style rule, except in very specific cir-

cumstances. Using !important in your stylesheets has a huge negative impact on

maintainability, and there’s often little call for it anyway. For these reasons it should

be avoided, which we’ll do in this book. If you’d like to know more, you can read

about it in the SitePoint CSS Reference.3

There are three possible stylesheet origins: the browser, the author, and the user.

In this book, we focus on what are called author stylesheets; that’s stylesheets

written by the web page creator—you! We’ve mentioned the browser internal

stylesheet that provides the default styles for all elements, but styles in author

stylesheets will always override styles in the browser default stylesheet. The only

other possible origin for stylesheets are user stylesheets—custom styles written by

the browser users—and even these are overridden by the author stylesheet except

in rare circumstances. Again, if you’d like to know more, the SitePoint CSS Reference

has a whole section on it.

3 http://reference.sitepoint.com/css/importantdeclarations

The CSS3 Anthology20

http://reference.sitepoint.com/css/importantdeclarations


The two parts of the cascade that will affect your daily CSS work the most are spe-

cificity and source order. The rule of specificity ensures that the style rule with the

most specific selector overrides any others with less-specific selectors.

To give you an example of how this works, consider this simple snippet of HTML

markup:

<div id="content">
 <p class="message">
   This is an important message.
 </p>
</div>

Now consider the following style rules that are to be applied to this HTML:

p { color: #000000; }
.message { color: #CCCCCC; }
p.message { color: #0000FF; }
#content p.message { color: #FF0000; }

These four selectors all match the paragraph element in the example HTML and set

the text color. What color will be applied to the paragraph? If you guessed #FF0000,

or red, you’d be right. The p type selector (any p element) has the lowest level of

specificity, with .message (any element with class message) coming next. The se-

lector p.message (any p element with class message) then has a higher level of

specificity. The highest is the selector #content p.message (any p element with

class message that is a child of the element with id content).

Longer selectors aren’t necessarily more specific. An ID selector, for example, will

always have a higher specificity than an element type or class selector. It becomes

trickier the more complex your selectors are, but you should find the examples in

this book simple enough. If you’d like to know the exact formula for measuring

specificity, once again the SitePoint CSS Reference has all the answers.4

If two or more style rules are still applicable to an element, the order in which the

rules appear—the source order—is used. The last rule to be declared is applied.

This is also true if you declare more than one style rule with the same selector; for

example, .message in your stylesheet. It will be the second instance of the rule that

4 http://reference.sitepoint.com/css/specificity

21Making a Start with CSS

http://reference.sitepoint.com/css/specificity


will be applied to the element. As we’ll see in later chapters, this behavior is very

useful.

Will using a CSS framework make it easier
to learn CSS?
Since I wrote the previous edition of this book, the use of CSS frameworks by de-

signers to speed up the development of their CSS has grown.

My take on these frameworks is that they can be very useful, but they’re no substitute

for learning CSS. Once you understand CSS and are used to writing it for your

projects, you may come up against workflow issues that are resolved by employing

some of the available tools and frameworks. If they solve a problem you have—great!

There is nothing inherently wrong with building on the work of other people.

However, if your problem is that you lack a good grasp of CSS, the use of any

framework is more likely to compound your confusion—adding another layer of

complexity that will only make it harder to come to grips with the basics.

A Decent Selection
This chapter has given you a taste of CSS and its usage at the basic level. We’ve

even touched on the sometimes confusing concept of the cascade. If you’re a newbie

to CSS but have an understanding of the concepts discussed in this chapter, you

should be able to start using the examples in this book.

The examples in the early chapters are simpler than those found later on, so if you’re

yet to work with CSS, you might want to begin with these. They will build on the

knowledge you gained in this chapter to start using and, I hope, enjoying CSS.

The CSS3 Anthology22

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter2
Text Styling and Other Basics
This chapter will explore the application of CSS for styling text. It will cover a lot

of CSS basics, as well as answer some of the more frequently asked questions about

these techniques. If you’re new to CSS, these examples will introduce a variety of

properties and their usages, and provide a solid foundation from which to start your

own experiments. For those already familiar with CSS, this chapter will serve as a

quick refresher for those moments when you’re struggling to remember how to

achieve a certain effect.

The examples I’ve provided here are well supported across a variety of browsers

and versions, though, as always, testing your code in different browsers is important.

While there may be small inconsistencies or a lack of support for these techniques

in older browsers, none of the solutions presented here should cause you any serious

problems. For more information on browser support, Chapter 7 is dedicated to the

subject.



How do I set my text to display in a
certain font?
The browser will display text in the default font used for that browser and operating

system. How do you change it to the one used in your design?

Solution
Specify the typeface that your text will adopt using the font-family property:

p {
  font-family: Verdana;
}

Discussion
As well as specific fonts, such as Verdana or Times, CSS allows the specification

of some more-generic family names:

■ serif
■ sans-serif
■ monospace
■ cursive
■ fantasy

When you specify fonts, it’s important to remember that users are unlikely to have

the same fonts installed that you have on your computer. If you define a font that

the user doesn’t have, your text will display according to their browsers’ default

fonts, regardless of what you’d prefer.

To avoid this eventuality, you can simply specify generic font names and let users’

systems decide which font to apply. For instance, if you want your document to

appear in a sans-serif font such as Arial, you could use the following style rule:

p {
  font-family: sans-serif;
}

The CSS3 Anthology24



Now, you will probably want more control than this over the way your site dis-

plays—and you can. It’s possible to specify both font names and generic fonts in

the same declaration block. Take, for example, the following style rule for the p

element:

p {
  font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
}

Here, we’ve specified that if Verdana is installed on the system, it should be used;

otherwise, the browser is instructed to see if Geneva is installed; failing that, the

computer will look for Arial, then Helvetica. If none of these fonts are available,

the browser will then use that system’s default sans-serif font.

If a font-family name contains spaces, it should be enclosed in quotation marks,

like so:

p {
  font-family: "Courier New", "Andale Mono", monospace;
}

The generic font-family names should always be without quotes and appear last in

the list. The list of fonts is often termed a “font stack,” which is a good term to

search on if you’re looking for information on fonts to use in this way.

Fonts that you can feel fairly confident using are:

Windows Arial, Lucida, Impact, Times New Roman, Courier New, Tahoma, Comic

Sans, Verdana, Georgia, Garamond

Mac Helvetica, Futura, Bodoni, Times, Palatino, Courier, Gill Sans, Geneva,

Baskerville, Andale Mono

This list reveals the reason why we chose the fonts we specified in our style rule.

We begin by specifying our first preference, a common Windows font (Verdana),

then list a similar Mac font (Geneva). Then we follow up with other fonts that would

be usable if neither of these fonts were available.

25Text Styling and Other Basics



There is a handy article on the SitePoint website that describes some common font

stacks, and these would be a good starting point if you are just beginning to explore

web typography.1

Should I use pixels, points, ems, or another
unit identifier to set font sizes?
You can size text in CSS using the font-size property, like so:

font-size: 12px;

Solution
We’ve used pixel sizing here, but the font-size property can take a variety of values.

Before you decide which to use, you should know the relative merits of each option.

Table 2.1 identifies the units that you can use to size fonts.

Table 2.1. Units of measurement for sizing fonts

Corresponding UnitsUnit Identifier

pointspt

picaspc

pixelspx

emsem

exesex

percentages%

Points and Picas
You should avoid using points and picas to style text for display on screen. The

point unit is an excellent way to set font sizes for print design, as the point meas-

urement was created for that purpose:

1 http://www.sitepoint.com/eight-definitive-font-stacks/

The CSS3 Anthology26

http://www.sitepoint.com/eight-definitive-font-stacks/
http://www.sitepoint.com/eight-definitive-font-stacks/


p {
  font-size: 10pt;
}

A point has a fixed size of 1/72nd of an inch, while a pica is one-sixth of an inch.

A printed document whose fonts are specified using these units will appear exactly

as you intended; after all, one-sixth of an inch is the same physical measurement

whether you’re printing on an A4 page or a billboard. However, computers are unable

to accurately predict the physical size at which elements will appear on the monitor,

so they guess—and guess badly—at the size of a point or pica, with results that vary

between platforms.

If you’re creating a print stylesheet (as we do in the section called “How do I create

a print stylesheet?” in Chapter 9) or a document that’s intended for print—rather

than on screen—viewing, points and picas are the units to use. However, as a gen-

eral rule of thumb we should avoid them when designing for the Web.

Pixels
Many designers like to set font sizes in pixel measurements:

p {
  font-size: 12px;
}

Using pixels makes it easy to achieve consistent text displays across various browsers

and platforms. However, pixel measurements ignore any preferences users may

have set in their own browsers; furthermore, in the case of Internet Explorer, font

sizes that the designer has dictated in pixels cannot to be resized by users. This

limitation presents a serious accessibility problem for users who need to make text

larger in order to read it clearly.

While pixel measurements may seem like the easiest option for setting font sizes,

they should be avoided if another method can be used. Even if you disregard the

text resizing issue, given that many users will use page zoom rather than resize the

text, using scalable font sizes will make your life far easier once you venture into

modern layout techniques (we’ll discuss these later in the book). If you’re creating

a document for print or creating a print stylesheet, you should avoid pixels entirely.

Pixels have no meaning in the world of print and, like the application of points to

27Text Styling and Other Basics



the on-screen environment, when print applications are provided with a pixel

measurement, they’ll simply try to guess the size at which the font should appear

on paper—with erratic results.

Ems
The em is a relative font measurement. The name em comes from the typographical

world, where it relates to the size of the capital letter M, usually the widest character

in a font. In CSS, 1em is seen to be equal to the user’s default font size, or the font

size of the parent element when it’s set to a value other than the default.

If you use ems (or any other relative unit) to set your font sizes, users will be able

to resize the text in old browsers. For example, IE6 users are unable to resize text

set in pixels, and have no other zoom control.

Em values can be set using decimal numbers. For example, to display text at a size

10% smaller than the user’s default (or the font size of its parent element), you could

use this rule:

p {
  font-size: 0.9em;
}

To display the text 10% larger than the default or inherited size, you’d use this rule:

p {
  font-size: 1.1em;
}

Exes
The ex is a relative unit measurement that corresponds to the height of the lowercase

letter x in the default font size. In theory, if you set the font size of some text to 1ex,

the uppercase letters will display at the height at which the lowercase letter x would

have appeared if the font size had been unspecified. Furthermore, the lowercase

letters will be sized relative to those uppercase letters.

Historically, browsers lacked support for the typographical features needed to de-

termine the precise size of an ex, making a rough guess for this measurement. For

this reason, exes are rarely used at the time of writing.

The CSS3 Anthology28



Percentages
As with ems and exes, font sizes that are set in percentages will honor users’ text

size settings and can be resized by users:

p {
  font-size: 100%;
}

Setting the size of a p element to 100% will display your text at users’ default font-

size settings (as will setting the font size to 1 em). Decreasing the percentage will

make the text smaller:

p {
  font-size: 90%;
}

Increasing the percentage will make the text larger:

p {
  font-size: 150%;
}

Sizing Fonts Using Keywords
As an alternative to using numerical values to set text sizes, you can use absolute

and relative keywords.

Absolute-size Keywords

We can use any of seven absolute-size keywords to set text size in CSS:

■ xx-small

■ x-small

■ small

■ medium

■ large

■ x-large

■ xx-large

29Text Styling and Other Basics



These keywords are defined relative to each other, and browsers implement them

in different ways. Most browsers display medium at the same size as unstyled text,

with the other keywords resizing text to varying degrees, as indicated by their names.

These keyword measurements are considered absolute in that they don’t inherit

from any parent element. Yet, unlike the absolute values provided for height, such

as pixels and points, they do allow the text to be resized in the browser, and will

honor users’ browser settings. The main problem with using these keywords is

consistency between browsers—x-small-sized text may be perfectly readable in

one browser and minuscule in another. Due to this lack of control, you rarely see

these keywords in use.

Relative-size Keywords

Text sized using relative-size keywords—larger and smaller—takes its size from

the parent element in the same way that text sized with em and % does. Therefore,

if you set the size of your p element to small using absolute keywords and decide

that you want emphasized text to display comparatively larger, you could add the

following to the stylesheet:

chapter_02/relative.css

p {
  font-size: small;
}

em {
  font-size: larger;
}

The following markup would display as shown in Figure 2.1, because the text

between the <em> and </em> tags will display larger than its parent, the p element:

chapter_02/relative.html (excerpt)

<p>Garlic may be known for being a little bit <em>stinky</em>, but
  baked it is absolutely delicious and as long as you feed it to
  all of your guests no-one will complain about the smell! Once
  baked the garlic becomes creamy and sweet making an ideal spread
  to accompany cheese.</p>

The CSS3 Anthology30

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 2.1. The emphasized word within the paragraph

Discussion
When you’re deciding which method of text sizing to use, it’s best to select one that

allows all users to resize the text, as well as ensuring that the text complies with

the settings users have chosen within their browsers. Relative font sizing works

well as long as you’re careful about the way the elements inherit sizing. In order to

achieve even a basic level of accessibility, though, it’s important to enable users to

set fonts to a comfortable level.

Designing your layout with resizable text in mind also allows you to avoid another

issue. Sometimes designers assume that setting font sizes in pixels will allow them

to fix the heights of containers, or place text on top of fixed-height images. This

approach will work in Internet Explorer, which doesn’t resize text set in pixels; it

may, however, result in a complete mess of overflowing text in Firefox (versions

prior to 3, or version 3 with Zoom set to zoom text only), where the height of boxes

containing text is always unknown.

I tend to use a combination of ems (to set the base size) and percentages within the

document (percentages of that base size). This means that if the client decides they

want the site’s text to be larger or smaller, I can simply adjust the base size and all

other text stays in proportion to it.

31Text Styling and Other Basics



The Sky’s the Limit

When designing for the Web, it’s best to assume that you do not know the height

of anything; it will save you a lot of grief in the future. Text resizing, people adding

more text than expected via a content management system, or long words causing

odd line-wrapping can all blow apart a layout that counts on elements being a

fixed height.

Relative Sizing and Inheritance
When you use any kind of relative sizing, remember that the element will inherit

its starting size from its parent element, then adjust its size accordingly. Be careful,

though, when using a relative font size for the parent element as well; this can be-

come problematic in complex layouts where the parent element is less obvious.

Consider the following markup:

chapter_02/nesting.html (excerpt)

<div>
  <p>
    You'll <em>probably</em> be surprised when using 
    <a href="#">a relative <code>font-size</code></a> 
    and nested elements.
  </p>
</div>

Let’s say we wanted to set the font-size of the markup text to 130% of the default

size, and we made the mistake of setting it this way:

chapter_02/nesting.css

div, p, em, a, code {
  font-size: 130%;
}

The effect of this style rule is to make the font-size of the nested elements progress-

ively bigger; that’s 130% of the font-size of the parent element, which is already

130% of the font-size of its parent and so on, as demonstrated in Figure 2.2.

The CSS3 Anthology32



Figure 2.2. Relative font sizing

How do I remove underlines from my links?
The widely accepted default indicator that text on a web page links to another

document is that it is underlined and displays in a different color from the rest of

the text. However, there may be instances in which you want to remove that under-

line.

Solution
We use the text-decoration property to remove the underlines from link text. By

default, the browser will set the text-decoration property of all elements to under-

line. To remove the underline, simply set the text-decoration property for the

link to none:

text-decoration: none;

The CSS used to create the effect shown in Figure 2.3 is as follows:

chapter_02/textdecoration.css

a:link, a:visited {
  text-decoration: none;
}

33Text Styling and Other Basics



Figure 2.3. Removing underlines with text-decoration

Discussion
In addition to underline and none, there are other values for text-decoration that

you can try out:

■ overline

■ line-through

■ blink

It is possible to combine these values. For instance, should you wish to have an

underline and overline on a particular link—as illustrated in Figure 2.4—you’d

use this style rule:

chapter_02/textdecoration2.css

a:link, a:visited {
  text-decoration: underline overline;
}

The CSS3 Anthology34



Figure 2.4. Links with text-decoration underline and overline set

Avoid Applying Misleading Lines

You can use the text-decoration property to apply underlines to any text,

even if it’s standard unlinked text, but be wary of doing this. The underlining of

links is so widely accepted that users are inclined to think that any underlined

text is a link to another document.

When is removing underlines a bad idea?

Underlining links is a standard convention followed by all web browsers, and,

consequently, users expect to see links underlined. Removing the underline from

links that appear within large areas of text can make it very difficult for people

to realize that these words are, in fact, links, rather than just highlighted text. I’d

advise against removing the underlines from links within text. There are other

ways in which you can style links so that they look attractive, and removing the

underline is rarely, if ever, necessary.

Links that are used as part of a menu, or appear in some other situation in which

the text is quite obviously a link—for instance, where the text is styled with CSS

to resemble a graphical button—are a different story. If you wish, you can remove

the underline from these kinds of links, because it should be obvious from their

context what they are.

35Text Styling and Other Basics



How do I create a link that changes color
when the cursor moves over it?
There’s an attractive link effect that changes the color or otherwise alters a link’s

appearance when the cursor is moved across it. This effect can be applied to great

advantage on navigation menus created with CSS, but it can also be used on links

within regular paragraph text.

Solution
To create this effect, we need to style the :hover and :active dynamic pseudo-

classes of the anchor element differently from its other pseudo-classes.

Let’s look at an example. Here’s a typical style rule that applies the same declarations

to all of an anchor element’s pseudo-classes:

chapter_02/textdecoration3.css

a:link, a:visited, a:hover, a:active {
  text-decoration: underline;
  color: #6A5ACD;
  background-color: transparent;
}

When this stylesheet is applied, our links will display in the blue color #6A5ACD

with an underline, as shown in Figure 2.5.

The CSS3 Anthology36



Figure 2.5. The styled links

To style our :hover and :active pseudo-classes differently, we need to remove

them from the declaration with the other pseudo-classes and give them their own

separate declaration. In the CSS below, I decided to remove the underline on hover.

I’ve also set a background color and made the link’s text a darker color; Figure 2.6

shows how these styles display in a browser:

chapter_02/textdecoration4.css

a:link, a:visited {
  text-decoration: underline;
  color: #6A5ACD;
  background-color: transparent;
}

a:hover, a:active {
  text-decoration: underline overline;
  color: #191970;
  background-color: #C9C3ED;
}

As you’ve probably realized, you can style the anchor’s other pseudo-classes separ-

ately, too. In particular, you might like to apply a different style to links that users

have visited. To do so, you’d simply style the :visited pseudo-class separately.

37Text Styling and Other Basics



Figure 2.6. Moving the cursor over a link to which a hover style is applied

When styling pseudo-classes, take care that you leave the size or weight (or boldness)

of the text unchanged. Otherwise, you’ll find that your page appears to jiggle, as

the surrounding content has to move to make way for the larger text to display when

your cursor hovers over the link.

Ordering Pseudo-class Declarations
The anchor pseudo-classes should be declared in the following order: :link,

:visited, :hover, :active, or else you may find that they work differently to how

you intended. One way to remember this order is by using the mnemonic: LoVeHAte.

Fashion Police

You are limited in the styles you may apply to visited links.2 This is because of

the potential privacy implications of your browser knowing which links you have

visited. If visited styles do not appear to be showing in a particular browser, it

may be due to this issue.

2 http://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/

The CSS3 Anthology38

http://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/


How do I display two different styles of link
on one page?
The previous solution explained how to style the different selectors of the anchor

element, but what if you want to use different link styles within the same document?

Perhaps you want to display links without underlines in your navigation menu, yet

make sure that links within the body content are easily identifiable. Or maybe part

of your document has a dark background color, so you need to use a lighter colored

link style there.

Solution
To demonstrate how to create multiple styles for links displayed on one page, let’s

take an example in which we’ve already styled the regular links:

chapter_02/linktypes.css (excerpt)

a:link, a:visited {
  text-decoration: underline;
  color: #6A5ACD;
  background-color: transparent;
}

a:hover, a:active {
  text-decoration: underline overline;
  color: #191970;
  background-color: #C9C3ED;
}

These should be taken as the default link styles: they reflect the way links will

normally be styled within your documents. The first rule makes the link blue, so if

an area of our page has a blue background, the links that appear in that space will

be unreadable. We need to create a second set of styles for links in that area.

First, let’s create a class or an id for the element that will contain the differently

colored links. If the container is already styled with CSS, it may already have a

class or id that we can use. Suppose that our document contains the following

markup:

39Text Styling and Other Basics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



chapter_02/linktypes.html (excerpt)

<div class="boxout">
  <p>Visit our <a href="#store">online store</a>, for many of the 
    tools you need to kit out your kitchen.</p>
</div>

We need to create a style rule that affects any link appearing within an element

with the class boxout:

chapter_02/linktypes.css (excerpt)

.boxout {
  color: #FFFFFF;
  background-color: #6A5ACD;
  ⋮
}

.boxout a:link, .boxout a:visited {
  text-decoration: underline;
  color: #E4E2F6;
  background-color: transparent;
}

.boxout a:hover, .boxout a:active {
  background-color: #C9C3ED;
  color: #191970;
  text-decoration: none;
}

As you can see in Figure 2.7, this rule will display all links in the document as per

the first style except for those that appear within the div element with the class

boxout: these links will be displayed in the lighter color.

The CSS3 Anthology40



Figure 2.7. Using two link styles in one document

How do I style the first item in a list
differently from the others?
Frequently, designers find that they need to style the first of a set of items—be they

list items or a number of paragraphs within a container—distinct from the rest of

the set. One way to achieve this is to assign a class to the first item, and then style

that class uniquely from other items; however, there’s a more elegant way to create

this effect using the pseudo-class selector first-child.

Solution
Here’s a simple list of items marked up as an unordered list:

chapter_02/firstchild.html (excerpt)

<ul>
  <li>Brie</li>
  <li>Cheddar</li>

41Text Styling and Other Basics



  <li>Red Leicester</li>
  <li>Shropshire Blue</li>
</ul>

To change the color of the first item in the list without affecting its neighbors, we

can use the first-child selector. This allows us to target the first element within

the ul element, as shown in Figure 2.8:

chapter_02/firstchild.css

li:first-child {
  color: red;
}

Figure 2.8. Displaying the first list item in red text

Discussion
The first-child pseudo-class selector is well supported in browsers as it has ex-

isted since the CSS2.1 specification. The only browser you’re likely to be concerned

The CSS3 Anthology42



about without support is IE6. See Chapter 7 for suggestions as to how to manage

this lack of support.

How do I add a background color to
a heading?
CSS allows us to add a background color to any element, including a heading.

Solution
Below is a CSS rule created for all the level-one headings in a document:

chapter_02/headingcolor.css (excerpt)

h1 {
background-color: #ADD8E6;

  color: #256579;
  font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
  padding: 0.2em;
}

The result is shown in Figure 2.9.

43Text Styling and Other Basics



Figure 2.9. The heading with a background color

Make Way for Color

When you add a background to a heading, you may also want to adjust the padding

so that there’s space between the heading text and the edge of the colored area,

as I’ve done in the example.

How do I style headings with underlines?
Using CSS, there are two ways in which you can add an underline to your text.

Solution
The simplest way to add an underline is to use the text-decoration property that

we encountered earlier in the section called “How do I remove underlines from my

links?” This method will allow you to apply to text an underline that’s the same

color as the text itself, as this code and Figure 2.10, show:

The CSS3 Anthology44



chapter_02/headingunderline.css (excerpt)

h1 {
  font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
text-decoration: underline;

}

Figure 2.10. Using text-decoration to add an underline

You can also create an underline effect by adding a bottom border to the heading.

This solution, which produces the result shown in Figure 2.11, is more flexible in

that it allows you to separate the underline from the heading with the use of padding,

and you can change the color of the underline so that it differs from that of the text.

A heading with this effect is also less likely to be confused with underlined link

text than one whose underline is created using the text-decoration property.

Here’s the style rule you’ll need:

45Text Styling and Other Basics



chapter_02/headingunderline2.css

h1 {
  font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
  padding: 0.2em;
border-bottom: 1px solid #AAAAAA;

}

Figure 2.11. Creating an underline effect using a bottom border

How do I remove the large gap between an
h1 element and the following paragraph?
By default, browsers render a gap between all heading and paragraph elements. The

gap is produced by default top and bottom margins that browsers apply to these

elements. The margin on the heading shown in Figure 2.12 reflects the default value.

This gap can be removed using CSS.

The CSS3 Anthology46



Figure 2.12. The default heading and paragraph spacing in Safari

Solution
To remove all space between a heading and the paragraph that follows it, you must

remove the bottom margin from the heading as well as the top margin from the

paragraph. In modern browsers—including Internet Explorer 7 and above—we can

do this through CSS using an adjacent selector. To achieve the same effect in older

browsers, however, we need to revert to other techniques that are better supported.

Using an Adjacent Selector
An adjacent selector lets you target an element that follows another element, as long

as both share the same parent. In fact, you can use adjacent selectors to specify an

element that follows several other elements instead of just one. The element to

which the style is applied is always the last element in the chain. If you’re confused,

be assured that this concept will be clearer once we’ve seen it in action.

The following style rules remove the top margin from any paragraph that immediately

follows a level-one heading. Note that the top margin is actually removed from the

paragraph that follows the h1, rather than the level-one heading itself:

47Text Styling and Other Basics



chapter_02/headingnospace.css (excerpt)

h1 {
  font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
  margin-bottom: 0;
}

h1+p {
  margin-top: 0;
}

Figure 2.13 shows the display of the original page once this rule is applied.

Figure 2.13. Using an adjacent selector to change the heading display

As you can see, the first paragraph that follows the h1 no longer has a top margin;

all subsequent paragraphs, however, retain their top margins.

The CSS3 Anthology48



Discussion
The adjacent selector is supported in Internet Explorer 7 and above, and in all recent

versions of other browsers. See Chapter 7 for details of how to manage support for

IE6 if this is required.

How do I highlight text on the page?
A common feature on many websites is to highlight an important term on a page,

such as the search terms visitors have used to locate our web page through a search

engine. It’s easy to highlight text using CSS.

Solution
If you wrap the text to be highlighted with span tags and add a class attribute, you

can easily add a CSS rule for that class. For example, in the following paragraph,

we’ve wrapped a phrase in span tags that apply the class hilite:

chapter_02/hilite.html (excerpt)

<p>Garlic may be known for being a little bit <span class="hilite">
  stinky</span>, but baked it is absolutely delicious and as long as
  you feed it to all of your guests no-one will complain about the
  smell! Once baked the garlic becomes creamy and sweet making an
  ideal spread to accompany cheese.</p>

The style rule for the hilite class is shown below; the highlighted section will

display as seen in Figure 2.14:

chapter_02/hilite.css (excerpt)

.hilite {
  background-color: #FFFFCC;
  color: #B22222;
}

49Text Styling and Other Basics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 2.14. Highlighting text with a class

When It’s All Done for Show

You should only highlight text in this way if the effect is purely presentational,

and only relevant to those who can see the text in the browser. If the text needs

to be highlighted in order to convey its meaning, consider using em (for emphasis)

or strong instead, and then style the em or strong element. By using em or

strong, you affect the meaning of the document. In such cases where highlighting

is for looks only and no additional semantic elements are required, the technique

explained here is the best one to use.

How do I alter the line height (leading) of
my text?
One of the great advantages that CSS had over earlier web design methods like font

tags is that it gave you far more control over the way text looked on the page. In this

solution, we’ll alter the leading of the text in your document.

The CSS3 Anthology50



Solution
If the default spacing between the lines of text on your page looks a little narrow,

you can change it with the line-height property:

chapter_02/leading.css

p {
  font: 1em Verdana, Geneva, Arial, Helvetica, sans-serif;
line-height: 2.2;

}

The result is shown in Figure 2.15.

Figure 2.15. Adjusting the leading using line-height

Just take care not to overdo it by spacing the text out so much that it’s hard to read.

51Text Styling and Other Basics



For Good Measure

You’ll notice that we didn’t specify any unit of measurement in this example;

that’s because the value of 2.2 is a ratio. You can specify a value for line-height

using standard CSS units of measurement, such as ems or pixels, but doing so

breaks the link between the line height and the font size for child elements. For

instance, if this example contained a span that set a large font-size, the line

height would scale up proportionally and maintain the same ratio, because the

line-height of the paragraph was set to the numerical value 2.2. If, however,

the line-height was set to 2.2em or 220%, the span would inherit the actual

line height instead of the ratio, and the large font size would have no effect on

the line height of the span. Depending on the effect you’re going for, this may

actually be a desirable result.

How do I justify text?
When you justify text, you alter the spacing between the words so that both the left

and right margins are aligned. You can create this effect easily using CSS.

Solution
You can justify paragraph text with the help of the text-align property, like so:

chapter_02/justify.css

p {
text-align: justify;

  font: 1em Verdana, Geneva, Arial, Helvetica, sans-serif;
  line-height: 2.2;
}

The CSS3 Anthology52



Figure 2.16. Justified text

Discussion
The other values for text-align are:

■ right: aligns the text to the right of the container
■ left: aligns the text to the left of the container
■ center: centers the text in the container

The Language of text-align

The default value for text-align is left for languages that are read from left

to right (such as English and French) and right for languages that are read right

to left (Hebrew or Arabic). If no text-align value is set, the text will be displayed

depending on the text direction of the language the site is being viewed in. If your

site has to support bidirectional text flowed into the same templates, take care to

test text-align in both language directions.

53Text Styling and Other Basics



How do I indent text?
To indent text, we apply a rule to its container that sets a padding-left value, for

example:

chapter_02/indent.html (excerpt)

<p class="indent">Garlic may be known for being a little bit
  <span class="hilite">stinky</span>, but baked it is absolutely
  delicious and as long as you feed it to all of your guests no-one
  will complain about the smell! Once baked the garlic becomes
  creamy and sweet making an ideal spread to accompany cheese.</p>

Here’s the rule:

chapter_02/indent.css

.indent {
  padding-left: 1.5em;
}

You can see the indented paragraph in Figure 2.17.

Figure 2.17. The first paragraph has been indented

The CSS3 Anthology54



Discussion
You should avoid using the HTML tag blockquote to indent text unless the text is

actually a quote. This bad habit was a technique encouraged in the past by visual

editing environments such as Dreamweaver, which played on the fact that a browser’s

default stylesheet usually indents a blockquote. Some WYSIWYG (What You See

Is What You Get) editors used in content management systems also do this. If you’re

currently using an editor that employs blockquote tags to indent text, you should

resist the temptation to use it for this purpose; instead, set up a CSS rule to indent

the appropriate blocks as just shown.

The blockquote tag is designed to mark up a quote, and devices such as screen

readers used by visually impaired people will read this text in a way that helps

them understand that it’s a quote. Hence, using blockquote to indent regular para-

graphs will be very confusing for such users.

A One-liner
A related technique enables us to indent just the first line of each paragraph. Simply

apply the CSS property text-indent to the paragraph—or to a class that’s applied

to the paragraphs—that you wish to display in this way:

chapter_02/indent2.css

p {
  text-indent: 1.5em;
}

55Text Styling and Other Basics



Figure 2.18. The first line of each paragraph has been indented

How do I center text?
You can center text, or any other element, using the text-align property.

Solution
To center a paragraph using the text-align property, give it a value of center:

chapter_02/center.html (excerpt)

<p class="centered">Garlic may be known ...</p>

chapter_02/center.css

.centered {
  text-align: center;
}

The result of this rule can be seen in Figure 2.19.

The CSS3 Anthology56



Figure 2.19. The first paragraph has been centered

How do I change text to all capitals
using CSS?
Solution
You can change text to all capitals, and perform other transformations, by using the

text-transform property:

chapter_02/uppercase.html (excerpt)

<p class="transform">Garlic may be known for ...</p>

chapter_02/uppercase.css

.transform {
  text-transform: uppercase;
}

57Text Styling and Other Basics



Note the uppercase text in Figure 2.20.

Figure 2.20. The paragraph has been transformed to uppercase

Discussion
The text-transform property has other useful values. The value capitalize will

capitalize the first letter of each word, as illustrated in Figure 2.21. This is very

useful for transforming headings when text is being entered via a CMS. Users are

unlikely to remember to capitalize everything correctly, but with CSS you can ensure

that text will display neatly, regardless of what has been entered. You should be

aware, however, that words such as “a” and “the” will also be capitalized.

chapter_02/capitalize.css (excerpt)

.transform {
  text-transform: capitalize;
}

The CSS3 Anthology58



Figure 2.21. The first letter of each word has been capitalized

The other values that the text-transform property can take are:

■ lowercase

■ none

How do I create a drop-caps effect?
Making the first letter in a paragraph larger—a simple drop-capitals effect—is easily

achieved with CSS.

Solution
This can be achieved by using the first-letter pseudo-class selector:

chapter_02/dropcaps.html (excerpt)

<h1>Baked Garlic</h1>
<p>Garlic may be known for being a little bit <em>stinky</em>, but
  baked it is absolutely delicious and as long as you feed it to all

59Text Styling and Other Basics



  of your guests no-one will complain about the smell! Once baked
  the garlic becomes creamy and sweet making an ideal spread to
  accompany cheese.</p>

chapter_02/dropcaps.css

h1 + p:first-letter {
  font-size: 200%;
  font-weight: bold;
  float: left;
  width: 1em;
  line-height: 1;
}

Figure 2.22. The simple drop-capitals effect

Discussion
This is a basic example demonstrating the use of the pseudo-class selector first-

letter. I’ve also used an adjacent selector to only target the paragraph that comes

directly after an h1; without this, the first letter of every paragraph would have a

The CSS3 Anthology60



drop cap. Because browsers interpret line-height differently, the results can be a

little inconsistent, so you’ll need to experiment a little for a pleasing effect.

There is a useful article by James Edwards on the SitePoint website that discusses

creating a drop-caps effect in some detail.3

How do I add a drop shadow to my text?
A drop shadow can be used to add a tiny shadow, whether to gently highlight some

text, or allow a more dramatic shadow effect.

Solution
The text-shadow property lets you add shadows to text—from the subtle to the

completely crazy:

chapter_02/textshadow.html (excerpt)

<h1>Baked Garlic</h1>
<p>Garlic may be known for being a little bit <em>stinky</em>, but
  baked it is absolutely delicious and as long as you feed it to all
  of your guests no-one will complain about the smell! Once baked
  the garlic becomes creamy and sweet making an ideal spread to
  accompany cheese.</p>

chapter_02/textshadow.css

h1 {
  font-size: 250%;
  color: #256579;
  text-shadow: 3px 3px 3px #999;
}

3 http://www.sitepoint.com/a-simple-css-drop-cap/

61Text Styling and Other Basics

http://www.sitepoint.com/a-simple-css-drop-cap/


Figure 2.23. The drop shadow on a heading

Discussion
The syntax for the text-shadow property is straightforward:

text-shadow: 5px, 5px, 5px, #999;

The first value is the horizontal distance from the text; the second is the vertical

distance; the third is the blur radius or spread of the shadow; and the final value is

the color. The easiest way to see how text-shadow works is to create a large heading

—so you can easily see your changes—and then play around with the values. You

can also have a play around with text-shadow and many other CSS3 properties at

the online CSS3 Generator4.

Beyond a Shadow of Doubt

When adding shadows to text, make sure that your text is still legible. I find

text-shadow most useful when adding effects to form buttons and big headings,

but large quantities of body copy can be hard to read with a shadow applied.

Sadly, the text-shadow property is unsupported in Internet Explorer (including

4 http://css3generator.com/

The CSS3 Anthology62

http://css3generator.com/


version 9). We’ll discuss this further in Chapter 7, where we’ll cover ways of

dealing with it.

How do I change or remove the bullets on
list items?
Solution
You can change the style of bullets displayed on an unordered list by altering the

list-style-type property. First, here’s the markup for the list:

chapter_02/listtype.html (excerpt)

<ul>
  <li>Brie</li>
  <li>Cheddar</li>
  <li>Red Leicester</li>
  <li>Shropshire Blue</li>
</ul>

To display square bullets as in Figure 2.24, set the list-style-type property to

square:

chapter_02/listtype.css

ul {
  list-style-type: square;
}

63Text Styling and Other Basics



Figure 2.24. Square list bullets

Discussion
Some of the other values that the list-style-type property can take are disc,

circle, decimal-leading-zero, decimal, lower-roman, upper-roman, lower-alpha,

upper-alpha, and none.

You’ll find that some of these values have no support in certain browsers; those

browsers without support for a particular bullet type will display the default type

instead. You can see the different types, and check the support your browser has

for them, at the CSS Test Suite for list-style-type.5 Setting list-style-type to none

will remove bullets from the display, although the list will still be indented as if

the bullets were there, as Figure 2.25 shows:

ul {
  list-style-type: none;
}

5 http://meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm

The CSS3 Anthology64

http://meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm


Figure 2.25. No list bullets

How do I use an image for a list-item
bullet?
Solution
Create your image, then use the list-style-image property to set your bullets

rather than list-style-type. This property accepts a URL, which can incorporate

the path to your image file as a value:

chapter_02/listimage.css

ul {
  list-style-image: url(bullet.gif);
}

Figure 2.26 shows how this effect can be used to spruce up a list.

65Text Styling and Other Basics



Figure 2.26. Images used for list bullets

Setting Bullets on Individual List Items
The list-style-image property applies to the list item (li) elements in the list.

But if you apply list-style-image to the list as a whole (the ul or ol element),

each individual list item will inherit it. You do, however, have the option of setting

the property on individual list items by assigning a class or id to each, giving in-

dividual items their own unique bullet images.

If turning the bullet into an image is falling short of the desired result, your other

option would be to use a background image, which we’ll discuss in Chapter 3.

How do I remove the indented left-hand
margin from a list?
If you’ve set list-style-type to none, you may also wish to remove or decrease

the default left-hand margin that the browser sets on a list.

The CSS3 Anthology66



Solution
To remove the indentation entirely and have your list align left so that it lines up

with a preceding paragraph as shown in Figure 2.27, use a style rule similar to this:

chapter_02/listnomargin.css

ul {
  list-style-type: none;
  padding-left: 0;
  margin-left: 0;
}

Figure 2.27. Removing the list margin and bullets

Discussion
You can apply new indentation values to the list items if you wish. To indent the

content by a few pixels, try this:

67Text Styling and Other Basics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



chapter_02/listsmallmargin.css

ul {
  list-style-type: none;
  padding-left: 5px;
  margin-left: 0;
}

How do I display a list horizontally?
By default, list items display as block elements; therefore, each new item will display

on a new line. However, there may be times when some content on your page is,

structurally speaking, a list, even though you’d prefer to display it in a different

way—a collection of navigation links is a good example. How can you display these

list items horizontally?

Solution
You can set a list to display horizontally by altering the display property of the li

element to inline, like so:

chapter_02/listinline.html (excerpt)

<ul class="nav">
  <li><a href="#breakfast">Breakfast recipes</a></li>
  <li><a href="#lunch">Lunch recipes</a></li>
  <li><a href="#dinner">Dinner recipes</a></li>
</ul>

chapter_02/listinline.css

ul.nav li {
  display: inline;
}

The CSS3 Anthology68



Figure 2.28. The list displayed inline

How do I remove page margins?
The default styles of most browsers add margins or padding between the browser

chrome and the page content; this is so that text in an unstyled page ends before

the edge of the browser window. You’ll probably want to remove this gap or dictate

the size of it, rather than leave it up to the browser.

Solution
To remove all margin and padding around your content, use the following style

rules, which have been defined for the body element:

body {
  margin: 0;
  padding: 0;
}

The result is shown in Figure 2.29.

69Text Styling and Other Basics



Figure 2.29. The default page padding and margins have been removed

How can I remove browsers’ default padding
and margins from all elements?
The display that you see in a browser when you view an unstyled document is the

result of the browser’s internal stylesheet. Often, the differences that arise in the

way various browsers display an unstyled page occur because those browsers have

slightly different internal stylesheets.

Solution
One way to solve this problem is to remove the default margins and padding from

all elements before you create your styles. The following rule will set the padding

and margins on all elements to zero. It will have the effect of causing every element

on the page—paragraphs, headings, lists, and more—to display without leaving any

space between them, as Figure 2.30 demonstrates:

The CSS3 Anthology70



Figure 2.30. Removing padding and margins from all elements with the universal selector

chapter_02/zeropagemargin.css

* {
  margin: 0; 
  padding: 0
}

Discussion
This style rule uses the universal selector—also known as the asterisk or star (*)—to

remove the margins and padding from everything, a technique known as performing

a global whitespace reset. If you’re working on a particularly complex design, this

may be the best way to start.

Once you’ve done this, though, you’ll need to go back and add margins and padding

to every element you use. This is particularly important for some form elements,

which may be rendered unusable by this style rule.

For simpler designs, removing the whitespace from every element is usually overkill,

and simply generates more work; you’ll need to go back and add padding and

71Text Styling and Other Basics



margins to elements such as paragraphs, blockquotes, and lists. A viable alternative

is to remove the margins and padding from a select set of elements only. The follow-

ing style rule shows how this works, removing whitespace from heading and list

elements:

h1, h2, h3, h4, h5, h6, ul, ol {
  margin: 0;
  padding: 0;
}

There has been much discussion in the web development community over whether

CSS Resets are a good idea or not. Personally, I don’t use them, instead preferring

to perform a similar method to what we’ve just seen, depending on the project. If

you do find them helpful, I’d suggest looking at Eric Meyer’s CSS Reset6 as a solid

starting point.

How do I use fonts other than those
installed on most users’ computers?
When we discussed font-family at the beginning of this chapter, I mentioned that

you have to be careful about selecting fonts, as there are only a few fonts that you

can safely assume are on most users’ computers. However, CSS provides a way to

use other fonts, too, by loading a font file from the server.

Solution
In theory, we can import a new font using the font-face property:

@font-face {
  font-family: KaffeesatzBold;
  src: url(YanoneKaffeesatz-Bold.ttf);
}

h1 { 
  font-family: KaffeesatzBold, sans-serif; 
  font-weight: normal;
}

6 http://meyerweb.com/eric/tools/css/reset/

The CSS3 Anthology72

http://meyerweb.com/eric/tools/css/reset/


The @font-face rule declares the name of the font, then enables you to load in a

font file that’s on your server with the src property. You can then just use this font

in your font-family list as you would any other font.

Discussion
There are two issues with using @font-face currently. The first is that no single

font format is supported across all browsers and operating systems; therefore, im-

porting a font is a little more complicated than just loading in a single file as in the

preceding example.

The second issue is licensing. Many of the fonts that you might use in Photoshop

on your own computer aren’t licensed to be uploaded to a web server and served

in this way, as other users could download the font file itself—just as they can

download an image that you’re using on your website.

Browser Compatibility for Fonts You Can Upload to Your Server
If you do have a font that’s licensed for use on the Web, your main issue is generating

a package of fonts that will cover all browsers and operating systems. The simplest

way to do this is to use one of the sites that can generate you a set of font files; I like

to use Font Squirrel.7 In addition to having a library of fonts you may use on the

Web, the site has a @font-face generator that will create your set of fonts from one

that you upload. Upload your font, and you can then download a package of various

font types along with the CSS rules needed to include them in your site:

chapter_02/fontface.css (excerpt)

@font-face {
  font-family: 'YanoneKaffeesatzBold';
  src: url('yanonekaffeesatz-bold-webfont.eot');
  src: url('yanonekaffeesatz-bold-webfont.eot?#iefix') 
         format('embedded-opentype'),
       url('yanonekaffeesatz-bold-webfont.woff') format('woff'),
       url('yanonekaffeesatz-bold-webfont.ttf') format('truetype'),
       url('yanonekaffeesatz-bold-webfont.svg#YanoneKaffeesatzBold') 
         format('svg');

7 http://www.fontsquirrel.com/fontface/generator

73Text Styling and Other Basics

http://www.fontsquirrel.com/fontface/generator


  font-weight: normal;
  font-style: normal;
}

Add the rule to your CSS, and you can then use this font as normal. Make sure that

you remember to upload the font files when deploying your site.

Figure 2.31. Using a custom font package generated by Font Squirrel

If Your Font is not Licensed for Web Use
If your font is without a license for such use, you can either search sites such as

Font Squirrel for a similar font, or take up another option. There are a number of

services now available—some from the font foundries themselves—that offer served,

licensed fonts for use on websites, such as:

■ Typekit8

■ Fontdeck9

8 https://typekit.com/
9 http://fontdeck.com/

The CSS3 Anthology74

https://typekit.com/
http://fontdeck.com/


■ Web Fonts from Fonts.com10

These services host the fonts in a secure way; you sign up for an account, and can

then use the fonts on your website by loading them in from the remote server.

Typically, they have a tool that allows you to generate the code required for your

site. Each service works in a slightly different way, but getting up and running with

a font usually involves selecting it on the service and then pasting some code into

your site. You can then use the fonts as normal in your CSS.

Figure 2.32. My company site, edgeofmyseat.com, uses the Avenir font hosted by webfonts.fonts.com

Each service licenses different fonts, so generally you need to select a service based

on the font that you require. I think we’ll see greater provision of web font services

by the font foundries in the future, as designers will be selecting fonts for projects

based on the availability of the web font.

Working with Style
This chapter has covered the more common questions asked by those relatively new

to CSS—questions that relate to styling and manipulating text on the page. By

combining these techniques, you can create attractive effects that will degrade ap-

propriately for browsers unable to support certain aspects of CSS.

10 http://webfonts.fonts.com/

75Text Styling and Other Basics

http://webfonts.fonts.com/




Chapter3
Images and Other Design Elements
The Web is filled with sites featuring beautiful, rich graphic design that takes ad-

vantage of the power of CSS. In this chapter, we’ll look at how to use CSS and images

to create gorgeous effects. We’ll be using images more in subsequent chapters, but,

as with most of the solutions in this book, feel free to experiment to see what unique

effects you can create.

How do I add borders to images?
Photographic images, which might be used to illustrate an article or be displayed

in a photo album, look neat when they’re bordered with a thin line. However, it’s

a time-consuming process to open each image in a graphics program in order to add

borders, and if you ever need to change a given border’s color or thickness, you’ll

be required to go through the same arduous process all over again. Fortunately, CSS

makes this chore a whole lot easier.

Solution
Adding a border to an image is a simple procedure using CSS. To start, take the two

images displayed in Figure 3.1.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 3.1. Two feline images

The following rule will add a two-pixel black border to our images:

img {
  border-width: 2px;
  border-style: solid;
  border-color: #000000;
}

The rule could also be written in shortened form:

chapter_03/imageborders.css

img {
  border: 2px solid #000;
}

Figure 3.2 shows the effect this rule has on images.

The CSS3 Anthology78



Figure 3.2. Our two images now have borders

Now this is all well and good, but your layout probably contains other images to

which you don’t want to apply a permanent black border. The solution is to create

a CSS class for the border and apply it to selected images as required:

chapter_03/imageborders2.css

.imgborder {
  border: 2px solid #000;
}

chapter_03/imageborders2.html (excerpt)

<img src="widget1.jpg" alt="Widget the cat" class="imgborder" />

If you’re displaying a selection of images—such as a photograph album—on the

page, you could set borders on all the images within a particular container, such as

an unordered list that has a class applied:

chapter_03/imageborders3.css

.album img {
  border: 2px solid #000;
}

79Images and Other Design Elements



chapter_03/imageborders3.html (excerpt)

<ul class="album">
  <li><img src="widget1.jpg" alt="Widget the cat" /></li>
  <li><img src="widget2.jpg" alt="Widget shows his tongue" /></li>
</ul>

This approach will save you from having to add the class to each individual image

within the container.

How do I use CSS to remove the blue border
around my navigation images?
If you use images in your site’s navigation links, you may notice an ugly blue border

in some browsers, just like the underline on text-based links. So how do you remove

it using CSS?

Solution
Just as you can create a border, so you can remove one. Adding a rule with the

border property set to none will remove those borders:

chapter_03/bordernone.css (excerpt)

img {
  border: none;
}

How do I set a background for my page
using CSS?
CSS has properties that allow you to set a background color, or image, or both, on

your pages.

Solution
The following rules add a background color and background image to the body

element of the page. Then we give the div (which has a class of wrapper) a white

background color, but no background image:

The CSS3 Anthology80



chapter_03/background.css (excerpt)

body {
  background-color: #333;
  background-image: url(brushed_alu_dark.png);
  color: #fff;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
}

In Figure 3.3 you can see how this looks.

Figure 3.3. Using a background image and color

81Images and Other Design Elements



Discussion
The background-color property simply adds a color to the page or element to which

it’s applied. I’ve used background-color to set the body to a dark gray color (just

in case the image fails to load for some reason), and then set the wrapper div to

white. If there had been no background color of wrapper, the background image on

the body would have showed through.

The background-image property allows you to specify an image to be loaded and

displayed as a background image. In this case, we wanted to add it as a background

image for the whole page so we used it on the body tag. You can use background

images on most elements, as you’ll see in a later example in this chapter.

By default the background will tile. In this example, I downloaded the image

brushed_alu_dark.png, a small tile, from a site offering free patterns.1 The browser

repeats the tile to fill the available space in the element.

Figure 3.4. The background tile

1 http://subtlepatterns.com

The CSS3 Anthology82

http://subtlepatterns.com


How do I control how my background
image repeats?
Solution
To prevent the background from repeating at all, we’d use the keyword no-repeat:

background-repeat: no-repeat;

This means that the only background image we’d see would be a single square of

the tile in the top-left corner, as Figure 3.5 indicates.

Figure 3.5. The tile is set to no-repeat

If we wanted to only tile along the x axis, as shown in Figure 3.6, we could use the

following:

83Images and Other Design Elements



background-repeat: repeat-x;

Figure 3.6. The image tiles along the x axis

As you’ve probably realized by now, we can also tile it down the y axis with:

background-repeat: repeat-y;

The CSS3 Anthology84



Figure 3.7. The image tiles along the y axis

How do I position my background image?
By default, if you add a single, non-repeating background image to the page, it will

appear in the top-left corner of the viewport. If you’ve set the background to tile in

any direction, the first image will appear in this location and tile from that point.

However, it’s possible to display the image at other locations on the page.

Solution
We use the CSS property background-position to position background images:

chapter_03/backgroundposition.css

.box {
  height: 200px;
  width: 200px;
  border: 3px solid #333;
  background-image: url(gear.png);

85Images and Other Design Elements



  background-repeat: no-repeat;
  background-position: bottom right;
}

This rule displays a box with a gear image positioned to the bottom right of the box,

as shown in Figure 3.8.

Figure 3.8. The gear image is positioned to the bottom right of the container

Discussion
The background-position property can take as its value keywords, percentage

values, or values in units, such as pixels.

Keywords
In this example, we used keywords to specify that the background image should be

displayed at the bottom right of the content div:

background-position: bottom right;

The CSS3 Anthology86

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



You can use any of these keyword combinations:

■ top left

■ top center

■ top right

■ center left

■ center center

■ center right

■ bottom left

■ bottom center

■ bottom right

If you only specify one of the values, the other will default to center:

background-position: top;

This is the same as:

background-position: top center;

Percentage Values
To achieve a more accurate image placement, you can specify the values as percent-

ages. This approach is particularly useful in a layout where other page elements are

specified in percentages, so that they resize in accordance with the user’s screen

resolution and dimensions. This becomes particularly important when creating re-

sponsive designs, as we’ll see in later chapters of this book:

background-position: 30% 80%;

The first of the percentages refers to the background’s horizontal position; the second

dictates its vertical position. Percentages are taken from the top-left corner of the

display, with 0% 0% placing the top-left corner of the image against the top-left

corner of the browser window, and 100% 100% placing the bottom-right corner of

the image against the bottom-right corner of the window.

As with keywords, a default percentage value comes into play if you only specify

one value. That default is 50%. Take a look at the following declaration:

87Images and Other Design Elements



background-position: 30%;

This creates the same effect as:

background-position: 30% 50%;

Unit Values
You can set positioning values using any CSS unit, such as pixels or ems:

background-position: 20px 20px;

As with percentages, the first of the specified values dictates the horizontal position,

while the second dictates the vertical. But unlike percentages, the measurements

directly control the position of the top-left corner of the background image.

You can mix units with percentages and, if you only specify one value, the second

will default to 50%.

How do I fix my background image in place
while the page is scrolled?
You’ve probably seen sites on which the background image stays static while the

content scrolls over it. This effect is achieved using the background-attachment

property.

Solution
We can use the background-attachment property with a value of fixed. This will

fix the background so that it remains stationary while the content moves:

chapter_03/backgroundfixed.html (excerpt)

body {
  background-color: #fff;
  background-image: url(gold_scale.png);
  background-attachment: fixed;
  color: #000;
  margin: 0;
  padding: 0;

The CSS3 Anthology88



  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

This is illustrated in Figure 3.9, but to really see the effect in motion, I suggest you

load up the code example in a browser.

Figure 3.9. A fixed background image with the content scrolling over

Discussion
The value fixed for the background-attachment property is unsupported in Internet

Explorer 6. Fortunately it degrades nicely—the background image will just scroll

with the page.

In this solution, we’re using several CSS properties to add our image to the back-

ground, position it, and dictate how it behaves when the document is scrolled.

Alternatively, we could use a shorthand method to supply this information—the

CSS background property. This property allows you to declare background-color,

background-image, background-repeat, background-attachment, and

background-position in a single property declaration. Take, for example, this CSS

rule:

89Images and Other Design Elements



body {
  background-color: #fff;
  background-image: url(gold_scale.png);
  background-attachment: fixed;
  background-repeat: repeat-x;
  background-position: 0 0;
}

These declarations could be written more succinctly as follows:

body {
  background: #fff url(gold_scale.png) repeat-x fixed 0 0;
}

Can I set a background image on
any element?
So far in this chapter, we’ve looked at background images as used on the page body

element; however, background images can be used on most other elements as well.

Solution
Understanding how to use images as background images is important, as you’ll need

to do it a lot when designing for the Web.

Figure 3.10 uses a number of background images.

The CSS3 Anthology90



Figure 3.10. Background images applied to several elements

First, the wrapper div has a background image, which is a light version of the page

background. This repeats along the x and y axis to cover that area:

chapter_03/background2.css (excerpt)

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
  background-image: url(brushed_alu.png);
}

I’ve then added icons to both the list of ingredients and the heading of the Instruc-

tions section. For the list, we add the background image to the ul element:

91Images and Other Design Elements



chapter_03/background2.css (excerpt)

ul.ingredients {
  border-top: 1px solid #999;
  border-bottom: 1px solid #999;
  list-style: none;
  margin: 1em 0 1em 0;
  padding: 1em 0 1em 30px;
  background-image: url(ingredients.png);
  background-repeat: no-repeat;
  background-position: 0 1em;
}

As you can see, there’s a value of 1em to position the icon from the top of the con-

tainer. This means that it lines up nicely with the text, as the list has a top padding

of 1em applied as well. I’ve then added an icon to the h2 heading:

chapter_03/background2.css (excerpt)

h2.instructions {
  background-image: url(instructions.png);
  background-repeat: no-repeat;
  background-position: left center;
  padding-left: 30px;
}

For both icons, I’ve used a left padding of 30 pixels so that the list and heading text

are away from the edge of the container, and not overlapping the background image.

Finally, I’ve added an icon to the link at the bottom of the page in order to take the

visitor to more recipes:

chapter_03/background2.css (excerpt)

a.more:link, a.more:visited {
  display: block;
  padding: 0.3em 20px 0.3em 0;
  text-align: right;
  color: #666;
  font-weight: bold;
  background-image: url(arrow.png);
  background-position: right center;

The CSS3 Anthology92



  background-repeat: no-repeat;
  text-decoration: none;
}

Discussion
The use of background images is a core part of designing for the Web, but how do

you know whether an image should be a background image, or if it should be part

of the page as a regular image in HTML?

My rule of thumb is whether or not the image has any meaning to the rest of the

document. I’d embed a photo or diagram related to the content as a regular image

in the HTML document, and include the relevant alt text for users who are unable

to see the image. Images that are added as a background image don’t have alt text,

so they’ll be completely invisible to a screen reader user. Save background images

for purely aesthetic design elements that would be of no interest to a user just

reading the text of a page.

You might choose to omit or replace these background images when creating a

mobile version of the layout, which we will discuss later in Chapter 9. Having in-

cidental images as background images will make this task easier.

How do I create a gradient background?
It’s common to require a linear gradient as the background of an entire web page or

box or other element.

Solution
The CSS3 approach is to use the background-image property and specify a linear

gradient as the value of this property:

chapter_03/gradient.css (excerpt)

html {
  height: 100%;
}

body {
  height: 100%;

93Images and Other Design Elements



  background-attachment: fixed;
  background-color: #666;
background-image: -webkit-gradient(linear, 0% 0%, 0% 100%, 

    from(#000), to(#666));
  background-image: -webkit-linear-gradient(top, #000, #666);
  background-image: -moz-linear-gradient(top, #000, #666);
  background-image: -ms-linear-gradient(top, #000, #666);
  background-image: -o-linear-gradient(top, #000, #666);
  background-image: linear-gradient(top, #000, #666);
  color: #fff;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

This produces the effect shown in Figure 3.11.

Figure 3.11. A background linear gradient using CSS3

The CSS3 Anthology94



Discussion
The value that you should be using as per the CSS3 specification is simply:

background-image: linear-gradient(top, #000, #666);

From the solution, you can see that we need to repeat this line using the different

syntaxes expected by various browsers and the relevant vendor-specific extensions,

as discussed in Chapter 1.

This technique works in all modern browsers except Internet Explorer. I’ve included

it despite the lack of support in Internet Explorer because there is one environment

where you’re likely to find such gradients useful indeed: when you’re developing

for smartphones, tablets, or other mobile devices. Saving users of these devices from

downloading images with large file sizes and employing CSS instead is very handy.

It helps users avoid mobile limitations such as network latency, limited bandwith,

and expensive data plans. We’ll discuss this some more in Chapter 7.

So, what should you do if you need a gradient that works in Internet Explorer? My

suggestion is to use an image. Create a one-pixel-wide image that’s a gradient from

black to #333333, and save it as gradient.png. Then use the following CSS to repeat

the gradient image as a background along the x axis of the body element, creating

a gradient background:

chapter_03/gradient2.css (excerpt)

body {
  background-color: #666;
background-image: url(gradient.png);

  background-repeat: repeat-x;
  color: #fff;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

Remember to set your background color to the same one that the gradient ends with,

so that color continues even when the image stops.

95Images and Other Design Elements



Combining the Two Approaches
As described by Chris Coyier in his article “Speed Up with CSS Gradients,”2 it is

possible to combine the use of CSS gradients and a fallback image. Simply load the

image first, then add the gradients—essentially combining the two techniques just

outlined:

html {
  height: 100%;
}

body {
  height: 100%;
  background-attachment: fixed;
  background-color: #666;
background-image: url(gradient.png);

  background-repeat: repeat-x;
background-image: -webkit-gradient(linear, 0% 0%, 0% 100%, 

    from(#000), to(#666));
  background-image: -webkit-linear-gradient(top, #000, #666);
  background-image: -moz-linear-gradient(top, #000, #666);
  background-image: -ms-linear-gradient(top, #000, #666);
  background-image: -o-linear-gradient(top, #000, #666);
  background-image: linear-gradient(top, #000, #666);
  color: #fff;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

Because supporting browsers won’t load the fallback image, this enables browsers

that do support CSS3 gradients to avoid the overhead of downloading an image.

This will be particularly advantageous if you use many gradients in your site, and

you’ll also gain the added benefit of being able to set these values as a percentage,

as well as easily change the colors and settings.

2 http://css-tricks.com/5700-css3-gradients/

The CSS3 Anthology96

http://css-tricks.com/5700-css3-gradients/


This has been a simple introduction to gradients. To see how flexible CSS3 gradients

can be—as well as learn some ready-to-use rules to paste into your CSS—try the

Gradient Editor.3

A Final Tip on Gradients

Even if you decide that you need to create images for your gradients for better

browser support, understanding CSS gradients can be really helpful while you’re

designing the site. Instead of creating gradients in dedicated image-editing software,

saving a file, and then trying it out in the browser—simply change the values in

your stylesheet. You can then create the final gradient images and add them in,

saving you a whole lot of time!

Can I create a background image that
scales with the browser window?
A popular effect is to use a full-size image in the background of a website that scales

to the size of the browser window. How is this achieved?

Solution
To create scalable background images, you need to use the background-size property

with a value of cover:

chapter_03/backgroundscalable.css (excerpt)

html {
  background-image: url(ballet-background.jpg);
  background-repeat: no-repeat;
  background-position: center center;
  background-attachment: fixed;
  -webkit-background-size: cover;
  -moz-background-size: cover;
  -o-background-size: cover;
  background-size: cover;
  color: #fff;
  background-color: #000;
}

3 http://www.colorzilla.com/gradient-editor/

97Images and Other Design Elements

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.colorzilla.com/gradient-editor/


This will create the effect seen in Figure 3.12 and Figure 3.13, where the image still

fills the entire browser window, regardless of whether the window is small or large.

Figure 3.12. The image in a small browser window …

Figure 3.13. … And in a large browser window

The CSS3 Anthology98



Discussion
This technique works in current browsers, including Internet Explorer 9. Browsers

failing to support the property will display the background image centered, but not

scaled down or up. Depending on your site and the image you choose, this can often

be quite acceptable. For a range of more complicated methods that achieve this effect

in earlier browsers, you could read Chris Coyier’s article on the subject on the CSS-

Tricks website.4

The biggest issue with scalable background images is the minimum size that it needs

to be in order to render well at large sizes. Take care with your image selection and

how you optimize the image so that your users avoid having to download a huge

file size.

How do I add more than one background
image to an element?
CSS2 only allowed for one background image to be applied to an element. In CSS3,

however, you can add multiple background images.

Solution
Using the shorthand background property that we discussed earlier, we can simply

add a list of background images and positioning information for the background

property (each image is separated by a comma):

.box {
  height: 200px;
  width: 200px;
  border: 3px solid #333;
background: url(gear.png) top right no-repeat,

  url(gear2.png) top left no-repeat,
  url(gear3.png) bottom left no-repeat,
  url(gear4.png) bottom right no-repeat;
}

This will display as in Figure 3.14, where each gear image is a background image.

4 http://css-tricks.com/3458-perfect-full-page-background-image/

99Images and Other Design Elements

http://css-tricks.com/3458-perfect-full-page-background-image/
http://css-tricks.com/3458-perfect-full-page-background-image/


Figure 3.14. The box has four unique background images applied

Discussion
As mentioned, multiple background images are now supported in all major browsers,

including Internet Explorer 9; however, be aware that in earlier browsers without

support for multiple backgrounds, the browser ignores the entire rule. We’ll discuss

ways that you might deal with this in Chapter 7.

It’s worth noting that the order of the images is important. The first image you declare

will display on top of the stack, with the last being at the bottom. We can see how

this works by adding a background texture to our box. If I add the background tile

as the first image, it displays tiled on top of the gear images, so we’re unable to see

them, as Figure 3.15 reveals:

.box {
  height: 200px;
  width: 200px;
  border: 3px solid #333;
  background: url(brushed_alu.png),
  url(gear.png) top right no-repeat,
  url(gear2.png) top left no-repeat,
  url(gear3.png) bottom left no-repeat,
  url(gear4.png) bottom right no-repeat;
}

The CSS3 Anthology100



Figure 3.15. The brushed_alu.png image is tiled over the top of the cog images

If we were to instead make it the last image listed, it displays underneath the gear

images as a background, as Figure 3.16 shows:

chapter_03/backgroundmultiple.css

.box {
  height: 200px;
  width: 200px;
  border: 3px solid #333;
  background: url(gear.png) top right no-repeat,
  url(gear2.png) top left no-repeat,
  url(gear3.png) bottom left no-repeat,
  url(gear4.png) bottom right no-repeat,
url(brushed_alu.png);

}

101Images and Other Design Elements



Figure 3.16. The background tile now displays underneath the cog images

How do I make an element transparent so
that the background shows through?
The use of opacity can add subtle effects to your design. Until fairly recently, this

was difficult to do across browsers and required the use of PNG images with an alpha

channel—a portion of data which represents transparency information on a per-

pixel basis; however, we now have ways to achieve opacity in our designs just using

CSS.

Solution
I’m going to demonstrate two possible ways to make an element transparent. The

first is to use the opacity property. This takes a value of between 0 and 1, where 0

is fully transparent and 1 is fully opaque:

The CSS3 Anthology102



chapter_03/opacity.css (excerpt)

h1 {
  width: 40%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
  font-size: 127.6%;
  background-color: #fff;
  color: #000;
opacity: 0.5;

}

.content {
  width: 60%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
  background-color: #fff;
  color: #000;
opacity: 0.5;

}

The effect of using this method can be seen in Figure 3.17.

Figure 3.17. The two boxes are made transparent using opacity

103Images and Other Design Elements



The second method is to use RGBA when specifying the background-color value

of the box. You may already be familiar with using RGB to set a color or background

color. For example, to make the background white we would use:

background-color: rgb(255,255,255);

RGBA adds a fourth value to the list—the A in RGBA stands for Alpha—and controls

opacity. We can use it to set the opacity level of the color, as shown in this example:

chapter_03/rgba.css (excerpt)

h1 {
  width: 40%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
  font-size: 127.6%;
background-color: rgba(255,255,255,0.5);

  color: #000;
}

.content {
  width: 60%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
background-color: rgba(255,255,255,0.5);

  color: #000;
}

The effect of the second method is shown in Figure 3.18.

The CSS3 Anthology104



Figure 3.18. Making the background color transparent using RGBA

Discussion
While both methods are quite simple, the main difference is that when you use

opacity, you make the entire box and all its content (the child elements of the element

you have set opacity on) transparent. When using RGBA, only the color that you’re

specifying is affected by the rule, so the text inside our box won’t inherit any

transparency. As an example, I’ve set the foreground and background color of the

heading to white in Figure 3.19. By using opacity, the text becomes transparent at

the same time, so the background remains hidden:

h1 {
  width: 40%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
  font-size: 127.6%;
  background-color: #fff;

105Images and Other Design Elements



  color: #fff;
opacity: 0.3;

}

Figure 3.19. Hiding white text on a white background with opacity

Alternatively, using RGBA makes the background transparent, as in Figure 3.20;

hence, the text appears from the background as it doesn’t inherit the opacity setting:

h1 {
  width: 40%;
  padding: 0.6em 0.6em 0.6em 2em;
  margin: 40px 0 0 0;
  font-size: 127.6%;
background-color: rgba(255,255,255,0.3);

  color: #fff;
}

The CSS3 Anthology106



Figure 3.20. By using RGBA on the background, the text stays opaque and so is visible

The opacity property and RGBA are supported in all modern browsers including

Internet Explorer 9. The opacity property will be ignored by older browsers that

have no support for it. If you use RGBA, you should also provide a fallback color

using RGB or hexadecimal values before the RGBA declaration. Browsers that don’t

understand RGBA will use the regular solid color and others will use RGBA, for

example:

background-color: rgb(255,255,255);
background-color: rgba(255,255,255,0.3);
color: #000;

HSLA Color
There’s a third method of using transparency when setting colors, and that’s HSLA

(Hue, Saturation, Lightness, and Alpha). HSLA works much like RGBA in that you

set a color and then a value for the Alpha channel to control transparency. It’s more

107Images and Other Design Elements



uncommon, although the syntax is rather nice. If you wish to use HSLA instead of

RGBA, there’s a useful article on CSS-Tricks that will fill you in on the details.5

Being Careful with Color Contrasts

Take care when using any kind of transparency that your content will still be

readable in browsers that use the solid color. It’s very easy to end up with color

contrasts that only work when the transparency is applied. We’ll discuss these

issues further in Chapter 7.

How can I add a drop shadow to an
element?
In the last chapter, we looked at the text-shadow property, which allows us to add

a shadow to some text. CSS3 also has a box-shadow property, which enables the

adding of shadows to almost any element without having to resort to images.

Solution
Use box-shadow to create a shadow on the main container of a layout:

chapter_03/boxshadow.css (excerpt)

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
  background-image: url(brushed_alu.png);
-webkit-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);

  -moz-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
}

You can see the box-shadow effect applied to the wrapper div in Figure 3.21:

5 http://css-tricks.com/6565-yay-for-hsla/

The CSS3 Anthology108

http://css-tricks.com/6565-yay-for-hsla/


Figure 3.21. The main wrapper has a box-shadow applied

Discussion
The use of box-shadowmakes adding shadows incredibly simple—far removed from

the pain of creating shadow images in image-editing software and adding them as

backgrounds. The official W3C syntax for box-shadow is:

box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);

The values are as follows, listed in the order shown above:

Horizontal offset value This can be a positive or negative value. If positive,

the shadow will be on the right side of the box; a

negative value positions it to the left.

109Images and Other Design Elements



Vertical offset value This can also be positive or negative, with positive

placing the shadow below the box and negative

above it.

Blur radius A low value here means the shadow will be

sharper, while a higher value makes it more

blurred. This value must be 0 or a positive value;

negative values aren’t allowed.

Spread Positive values cause the shadow shape to spread

in all directions, while negative values cause the

shadow to contract.

Color This may be RGBA, as used in this example, or hex.

You can also add a keyword of inset at the beginning of the list of values, which

will create an inner shadow:

box-shadow: inset 3px 3px 10px 8px rgba(0, 0, 0, 0.4);

Playing around with the values is the best way to get a feel for how box-shadow

works. I often use an online box-shadow generator at the CSS3 Generator site6 as it

creates the syntax for me, and I can play around with values to see what effect they’ll

have.

The box-shadow property is supported by all modern browsers, including Internet

Explorer 9, and will be ignored by earlier browsers without support.

How do I create rounded corners on
an element?
To create rounded corners on an element, such as the wrapper in Figure 3.22, use

the border-radius property:

6 http://css3generator.com/

The CSS3 Anthology110

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://css3generator.com/


chapter_03/borderradius.css (excerpt)

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
  background-image: url(brushed_alu.png);
  -webkit-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  -moz-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4); 
-webkit-border-radius: 10px;

  -moz-border-radius: 10px;
  border-radius: 10px;
}

Figure 3.22. The wrapper now has rounded corners

Discussion
In this example, I’ve used a border-radius value of 10px to create a nicely rounded

corner. You can use tiny values for a neat little edge, or substantial values to create

111Images and Other Design Elements



a more rounded-box look. It’s unnecessary to round all corners equally; for example,

to round only the top-right corner, you could use:

-moz-border-radius-topright: 10px;
-webkit-border-radius: 0 10px 0 0;
border-radius: 0 10px 0 0;

I kept the shadow from the previous example in place on my wrapper, and you can

see that after using border-radius, the shadow also curves round the corner. All

current major browsers support border-radius, including Internet Explorer 9. It

will be ignored by earlier browsers, which will simply display the square corners.

Can I rotate images without using
image-editing software?
Another exciting feature of CSS3 is CSS transforms. It enables you to manipulate

elements on the page using just CSS. In this solution, we’ll use the transform

property to gently rotate an image on the page.

Solution
I’ve included an image on my recipe page and given it a little drop shadow using

box-shadow, as shown in Figure 3.23.

I’d like to slightly rotate this image. If my recipes were coming out of a content

management system, I’d never expect people to open each image in image-editing

software and apply the correct angle to each one before uploading them, so I’ll use

CSS to apply the rotation.

The CSS3 Anthology112



Figure 3.23. The image casts a shadow on the page

.recipe img {
  float: right;
  width: 200px;
  margin: 0 0 1em 1em;
  -webkit-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -moz-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -webkit-transform: rotate(5deg);
  -moz-transform: rotate(5deg);  
  -o-transform: rotate(5deg);  
  -ms-transform: rotate(5deg);
  transform: rotate(5deg);
}

The image now displays as in Figure 3.24.

113Images and Other Design Elements



Figure 3.24. Our image is now rotated on the recipe page

Discussion
The transform property is one of the more fiddly properties added in the CSS

specification, but it can be used to great effect in your designs, so I’d encourage you

to play around with it. In addition to rotating, transform can be used to:

■ scale an element, making it larger or smaller than it really is
■ “translate” an element, which is moving it along the x and y axis
■ skew an element, which skews the image and makes it slant along the x and y

axis

These transformations really come into their own when applied as a user interacts

with the page; for example, causing an element to grow as the user mouses over it

using scale, or rotate. For more information on how to use transforms in your

work, I recommend the article “A Primer on CSS3 Transforms” on the SitePoint

website,7 written by Louis Lazaris, the expert reviewer of this book.

7 http://www.sitepoint.com/a-primer-on-css3-transforms/

The CSS3 Anthology114

http://www.sitepoint.com/a-primer-on-css3-transforms/
http://www.sitepoint.com/a-primer-on-css3-transforms/


It’s important to note that when using transforms the rest of the content will not

reflow to make room for the changed element. Therefore, when using rotate, you

need to ensure that your rotated image won’t obscure any text.

By using the vendor prefixes in the aforementioned example, you’ll find that

transforms are supported in all modern browsers and ignored in older browsers.

Here an older browser would simply show the image in its unrotated state.

What should I be aware of in terms of
accessibility when using color?
When using color and opacity in your designs, it’s vital to keep in mind that not all

users see color in the same way, or that some may use browsers or devices that don’t

support all the CSS that you’ve used, and so fail to load images and so on. By being

careful when creating your CSS, you’ll ensure that all users can read your content,

even if they’re unable to experience the full effect of the design.

Solution
This solution comprises a short checklist of what to think about when using color.

I’ve already mentioned many of them while describing other solutions in this chapter,

but it’s worth highlighting them again here in one place.

Set Background Colors When Using Background Images
If you’ve used a background image in your design underneath some text—such as

giving a background color to a column or box—make sure that you also add a

background color. That way, if the image fails to load, the color will ensure that the

text on top remains at a high enough contrast to be read.

If You Set a Foreground Color, You Need to Set a Background
Color, and Vice Versa
In the interests of readability, color settings should always be considered in tandem;

that is, the foreground and background colors should be chosen together so that

they contrast sufficiently. If you were to only set one color, say the background, and

a user’s default foreground color lacks contrast with your choice of color, it may

leave your text unreadable. For example, if the user has set their background color

to black and foreground to white, and you then set the main text color to black, the

115Images and Other Design Elements



text will seem to disappear! If you want users to be able to make their own choices

as to colors, you should leave all colors unset—but very few web designers would

feel able to do that!

Use Sensible Fallback Colors When Using RGBA as a Background
or Foreground Color
As mentioned when we discussed setting background transparency, you should

ensure that your fallback color will cause the text to be readable if the browser is

without support for RGBA.

Check Color Contrasts
Take care to check the contrast of text against background colors. For users with

any kind of visual impairment, a low contrast between the text and the background

can make the text very hard to read. You should also consider those users with

color blindness who may find certain combinations of foreground and background

colors difficult to distinguish. WCAG 2.0 Success Criterion 1.4.38 requires that, in

general, text and images of text should have a contrast ratio of at least 4.5:1. To help

you assess whether your chosen colors will pass this ratio, you can use the handy

Luminosity Contrast Ratio Analyzer9 written by Gez Lemon.

You can also test your pages using the Colorblind Web Page Filter.10 This simulates

the different types of color blindness, giving you an idea of how your design might

be seen by those who have some form of color blindness.

Backgrounds Should Only Be Decorative
It’s so easy to use background images in CSS that we can fall into the trap of using

them everywhere. It’s worth remembering, however, that anyone who is unable to

load images and/or CSS won’t know if the image exists at all if it is set as a back-

ground image. This is acceptable if the image is purely for visual display, but if it’s

important to the content, it’s more appropriate to put the image inline with descript-

ive alt text; that way, users who are unable to see the image understand it’s there

and what it represents.

8 http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast
9 http://juicystudio.com/services/luminositycontrastratio.php
10 http://colorfilter.wickline.org/

The CSS3 Anthology116

http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast
http://juicystudio.com/services/luminositycontrastratio.php
http://colorfilter.wickline.org/


In the Picture?
With the increase in support for CSS3, we have so many more tools at our disposal

than when I first started writing earlier editions of this book. Without resorting to

using images, we can apply subtle and beautiful effects to our web pages and user

interfaces such as rounded corners, gradients, shadows, and transforms. However,

with all this new power comes the responsibility of ensuring that our finishing

touches don’t render our information unusable to some users.

Enjoy playing with these different effects. If you’re yet to use CSS3, it can be an

enjoyable exercise to take an older design and see how many of the images can be

replaced by CSS. You’ll see many more examples of these design elements

throughout the book.

117Images and Other Design Elements





Chapter4
Navigation
Unless you limit yourself to one-page websites, you’ll need to incorporate navigation

into your design. In fact, navigation is among the most important parts of any web

design, and requires a great deal of thought if visitors are to move around your site

easily.

Making site navigation easy is one area in which CSS really comes into its own.

While you could use images for your navigation, this practice can have considerable

downsides. Navigation created from images means that it may be less accessible,

as the images can’t be resized easily to make the text larger. Zooming images of text

can also lead to hard-to-read text. In addition, if your site is built using a CMS, when

you want to add a new navigation item you’ll need to create a new image, which

may require the intervention of the designer. CSS allows you to create attractive

navigation that is, in reality, no more than text—text that can be marked up in such

a way as to ensure that it’s both accessible and understandable by all, and easy to

content-manage.

In this chapter, we’ll look at a variety of solutions for creating CSS-based navigation

and give you the skills to start creating your own navigation styles.



How do I style a structural list as a
navigation menu?
Navigation is essentially a list of places to visit on your site, so marking up navigation

menus as lists makes sense semantically and we can hook our CSS styles to the list

elements themselves. It’s important, however, to avoid having our navigation look

like a standard bulleted list as rendered by the browser’s internal stylesheet.

Solution
The simple navigation bar shown in Figure 4.1 is marked up as an unordered list

and then styled using CSS.

Figure 4.1. The list navigation

Here’s the markup:

chapter_04/listnav.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: List navigation</title>
  <link rel="stylesheet" href="listnav.css" />

The CSS3 Anthology120

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href="">Wine</a></li>
      <li><a href="">Fruit</a></li>
      <li><a href="">Spreads</a></li>
      <li><a href="">Biscuits</a></li>
    </ul>
  </div>
</body>
</html>

Here is the CSS used to transform this plain list into a standard-looking vertical

navigation bar:

chapter_04/listnav.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  width: 200px;
}

.nav li {
  border-left: 10px solid rgb(144,154,181);
  border-bottom: 1px solid rgb(144,154,181);
}

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(192,202,229);
  color: rgb(49,52,61);
  padding: 0.5em;
  display: block;
  text-decoration: none;
  border-left: 5px solid rgb(239,213,252);
}

Discussion
To produce navigation based on an unordered list, you first have to create your list,

placing each navigation link inside a li element:

121Navigation



chapter_04/listnav.html (excerpt)

<ul>
  <li><a href="">Wine</a></li>
  <li><a href="">Fruit</a></li>
  <li><a href="">Spreads</a></li>
  <li><a href="">Biscuits</a></li>
</ul>

You need to be able to identify this particular list, so either add a class or ID to the

opening ul as we’re doing here, or place the list inside another container:

chapter_04/listnav.html (excerpt)

<ul class="nav">
  <li><a href="">Wine</a></li>
  <li><a href="">Fruit</a></li>
  <li><a href="">Spreads</a></li>
  <li><a href="">Biscuits</a></li>
</ul>

As Figure 4.2 shows, this now looks like a regular list with the browser’s default

styles applied.

Figure 4.2. The list before styling with CSS

The CSS3 Anthology122



Our next job is to style the unordered list itself, removing list bullets, margins, and

padding, and giving the list itself a width as this will become the container for the

items within:

chapter_04/listnav.css (excerpt)

.nav {
  list-style-type: none;
  margin: 0;
  padding: 0;
  width: 200px;
}

Our list now displays as a list of text in the browser, with nothing to visually

identify it as a list, as seen in Figure 4.3.

Figure 4.3. Our list after removing bullets, margins, and padding

The next task is to add some CSS to the list items themselves. All I’m doing is adding

a chunky left border and thin bottom border. No padding is added to the elements

themselves here, so it all looks a bit squashed up as you can see in Figure 4.4:

123Navigation



chapter_04/listnav.css (excerpt)

.nav li {
  border-left: 10px solid rgb(144,154,181);
  border-bottom: 1px solid rgb(144,154,181);
}

Figure 4.4. After styling the li elements

Finally, we’ll add CSS to the links themselves. This is where our list really starts

to look like navigation:

chapter_04/listnav.css (excerpt)

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(192,202,229);
  color: rgb(49,52,61);
  padding: 0.5em;
  display: block;
  text-decoration: none;
  border-left: 5px solid rgb(239,213,252);
}

The CSS3 Anthology124



I have added a background-color and color using RGB color values in this case,

although you could also use hex. I’ve also added padding to the link itself and set

it to display: block.

This last tweak is important, because the link is an inline element and by default

doesn’t take up the full area of the li—so it’s not a nice easy target to click. To make

links display like block-level elements, we need to explicitly declare the value of

the display property to be block. We’ll discover more about this in later chapters;

for now, remember that if you want your link to take up the full area of its container,

it needs to be set to display: block.

We need to add the padding to the link, not the list item; if we added it to the list

item, the padding area would be unclickable—and we want to create an area where

it’s easy to click the link.

I’ve also set text-decoration to be none so as to remove the underline that browsers

apply to links, and given the link a left border, producing a double border effect as

the li already has a border.

You should now have a navigation bar as shown in Figure 4.1. You can play around

with this technique trying different colors and stylistic effects once you’ve mastered

the basic idea.

How do I use CSS to create rollover
navigation without images or JavaScript?
Site navigation often features a rollover effect: when a user holds the cursor over a

menu button, a new button image displays, creating a highlighting effect. We can

create this effect a number of ways, and we’ll look at more advanced variations later

in the chapter. Here, however, is a very simple method.

Solution
Using CSS to build your navigation makes the creation of attractive rollover effects

far simpler than it would be if you used images. The CSS rollover is created using

the :hover pseudo-class, which we met when discussing styling links in Chapter 2.

Let’s take the previous list-navigation example and add the following rule to create

a rollover effect:

125Navigation



chapter_04/listnav-hover.css (excerpt)

.nav li a:hover {
  background-color: rgb(144,154,181);
  color: rgb(255,255,255);
  border-left: 5px solid rgb(250,136,234);
}

Figure 4.5 shows the effect seen when the cursor is positioned over the first menu

item.

Figure 4.5. The menu showing the hover state

Discussion
Put simply, I’ve changed the color of three rules applied to the link: background

color, color of the text, and left border. This then creates a pleasing visual effect

when the link is hovered over.

Hover Gets Broad Support

In modern browsers, you can apply a :hover pseudo-class to any element you

like. Internet Explorer 6 and below only allow you to apply it to links.

The CSS3 Anthology126



Can I use CSS and lists to create a
navigation system with subnavigation?
So far we’ve only looked at one simple level of navigation. How do we include a

second level of navigation within a menu?

Solution
Lists remain a perfect tool to structure navigation that contains subnavigation, as

we can create a list within a list, and the two lists will be easy to understand when

marked up this way. This applies even for browsers without support for CSS, or

that read the contents of the navigation to a user.

To demonstrate multilevel navigation, we can edit the example used in Figure 4.5

and add a nested list:

chapter_04/listnav-nested.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: List navigation</title>
  <link rel="stylesheet" href="listnav-nested.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href="">Wine</a>

<ul>
          <li><a href="">Red</a></li>
          <li><a href="">White</a></li>
          <li><a href="">Ros&eacute;</a></li>
        </ul>
      </li>
      <li><a href="">Fruit</a></li>
      <li><a href="">Spreads</a></li>
      <li><a href="">Biscuits</a></li>
    </ul>
  </div>
</body>
</html>

127Navigation



chapter_04/listnav-nested.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  width: 200px;
}

.nav li {
  border-left: 10px solid rgb(144,154,181);
  border-bottom: 1px solid rgb(144,154,181);
}

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(192,202,229);
  color: rgb(49,52,61);
  padding: 0.5em;
  display: block;
  text-decoration: none;
  border-left: 5px solid rgb(239,213,252);
}

.nav li a:hover {
  background-color: rgb(144,154,181);
  color: rgb(255,255,255);
  border-left: 5px solid rgb(250,136,234);
}
.nav ul {
  list-style: none;

The CSS3 Anthology128



  margin: 0;
  padding: 0;
  border: 0;
}

.nav ul li {
  border: 0;
}

.nav ul li a:link, 

.nav ul li a:visited {
  background-color: rgb(237,241,252);
  color: rgb(49,52,61);
  padding: 0.5em 0.5em 0.5em 1em;
  display: block;
  text-decoration: none;
  border-left: 5px solid rgb(239,213,252);
}

.nav ul li a:hover {
  background-color: rgb(255,255,255);
  color: rgb(49,52,61);
  border-left: 5px solid rgb(250,136,234);
}

The result of this can be seen in Figure 4.6.

Figure 4.6. A list with subnavigation

129Navigation



Discussion
Nested lists are a perfect way to describe the navigation system that we’re working

with here. The first list contains the main sections of my site: food and drink that

goes nicely with cheese. The subsections of the wine section are then nested under-

neath the Wine list item. Even without any CSS styling, the structure of the site is

clear and intelligible, as you can see in Figure 4.7.

Figure 4.7. The navigation without any styling

The markup simply nests the sublist within the li element of the main list:

chapter_04/listnav-nested.html (excerpt)

<ul class="nav">
  <li><a href="">Wine</a>

<ul>
      <li><a href="">Red</a></li>
      <li><a href="">White</a></li>
      <li><a href="">Ros&eacute;</a></li>
    </ul>
  </li>
  <li><a href="">Fruit</a></li>

The CSS3 Anthology130

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



  <li><a href="">Spreads</a></li>
  <li><a href="">Biscuits</a></li>
</ul>

If we took our example from earlier and just added the nested list markup, we’d

end up with the example shown in Figure 4.8: our second list has inherited a lot of

the styling of the parent list, but looks a little strange. Due to this inheritance effect,

we need to overwrite values used in the first list when styling our nested list.

Figure 4.8. After adding the markup

First, I remove the bullets, margins, and padding from the nested list. Then I remove

the decorative left-hand border from the li. The list now displays as in Figure 4.9:

chapter_04/listnav-nested.css (excerpt)

.nav ul {
  list-style: none;
  margin: 0;
  padding: 0;
  border: 0;
}

131Navigation



.nav ul li {
  border: 0;
}

Figure 4.9. By adding a few rules, the list is pulled back into alignment

The nested links are now harder to distinguish from the top-level items, so I’ll style

the links within the nested list so that they’re distinct from the main section links:

chapter_04/listnav-nested.css (excerpt)

.nav ul li a:link, 

.nav ul li a:visited {
  background-color: rgb(237,241,252);
  color: rgb(49,52,61);
  padding: 0.5em 0.5em 0.5em 1em;
  display: block;
  text-decoration: none;
  border-left: 5px solid rgb(239,213,252);
}

.nav ul li a:hover {

The CSS3 Anthology132



  background-color: rgb(255,255,255);
  color: rgb(49,52,61);
  border-left: 5px solid rgb(250,136,234);
}

All I’ve done here is change the colors and padding on the links within our nested

li to create a pleasing effect; I also added some different rules for the hover state

of these subitems. Remember that here you’re overwriting the values set on links

for the external list, so you only need to set those you’ve changed.

How do I make a horizontal menu using
lists and CSS?
The examples so far in this chapter have dealt with vertical navigation, usually

found to the left or right of a site’s main content area; however, site navigation is

also commonly found as a horizontal menu close to the top of the document.

Solution
Figure 4.10 shows a horizontal navigation menu that’s created using a list.

Figure 4.10. Simple horizontal navigation

Here’s the HTML and CSS used to create this display:

133Navigation



chapter_04/horizontal.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Horizontal navigation</title>
  <link rel="stylesheet" href="horizontal.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href="">Wine</a></li>
      <li><a href="">Fruit</a></li>
      <li><a href="">Spreads</a></li>
      <li><a href="">Biscuits</a></li>
    </ul>
  </div>
</body>
</html>

chapter_04/horizontal.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
}

.nav li {
  float: left;
  min-width: 8em;
  margin-right: 0.5em;
  text-align: center;
}

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(255, 255, 255);
  color: rgb(85, 85, 102);
  display: block;
  padding: 0.2em;
  text-decoration: none;
  font-weight: bold;
  margin: 0 0 0.2em 0;

The CSS3 Anthology134



  -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px;
  -webkit-box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
  -moz-box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
  box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
}

.nav li a:hover {
  background-color: rgba(255, 255, 255, 0.8);
  color: rgb(43, 43, 77);
}

Discussion
This navigation starts out with an identical list to the one we used earlier to create

vertical navigation:

chapter_04/horizontal.html (excerpt)

<ul class="nav">
  <li><a href="">Wine</a></li>
  <li><a href="">Fruit</a></li>
  <li><a href="">Spreads</a></li>
  <li><a href="">Biscuits</a></li>
</ul>

I start by removing the list bullets, margins and padding:

chapter_04/horizontal.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
}

We now want our list items to display next to each other, rather than on separate

lines. There are two ways we can do this. We could set the display property of the

li to inline as we discussed in Chapter 2 ; however, to make the list items easier

to style, I’m going to use a different method that relies on the float property. We’ll

135Navigation



discuss float properly later in the book; for now, you can see how it floats items

alongside each other:

chapter_04/horizontal.css (excerpt)

.nav li {
  float: left;
  min-width: 8em;
  margin-right: 0.5em;
  text-align: center;
}

Our menu displays as in Figure 4.11 .

Figure 4.11. After floating the list items

With our list items in place, we just need to style the links. First, we can style these

items using CSS that will work even with very old browsers:

chapter_04/horizontal.css (excerpt)

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(255, 255, 255);
  color: rgb(85, 85, 102);
  display: block;
  padding: 0.2em;
  text-decoration: none;
  font-weight: bold;

The CSS3 Anthology136



  margin: 0 0 0.2em 0;
  ⋮
}

This gives us little block-like navigation items. I really want them to be rounded,

though, and have drop shadows, so to achieve this I use some CSS3 properties:

chapter_04/horizontal.css (excerpt)

.nav li a:link, 

.nav li a:visited {
  background-color: rgb(255, 255, 255);
  color: rgb(85, 85, 102);
  display: block;
  padding: 0.2em;
  text-decoration: none;
  font-weight: bold;
  margin: 0 0 0.2em 0;
 -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px;
  -webkit-box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
  -moz-box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
  box-shadow: 3px 3px 3px 3px rgba(43, 43, 77, 0.5);
}

It’s quite possible that a person is going to view the site using a browser lacking

support for these properties; however, the navigation looks fine without them—I’ve

added them as extra styling for those browsers with support. This practice is known

as progressive enhancement, and we’ll discuss this tactic for supporting older

browsers later in the book.

Finally, I’ve added a hover state, tweaking the alpha value of the background color

using RGBA. I could equally have just set a different color here:

chapter_04/horizontal.css (excerpt)

.nav li a:hover {
  background-color: rgba(255, 255, 255, 0.8);
  color: rgb(43, 43, 77);
}

137Navigation



If you’re creating boxes around each link—as I have here—remember that in order

to make more space between the text and the edge of its container, you’ll need to

add more left and right padding to the links. To create more space between the

navigation items, add left and right margins to the links.

How do I create tabbed navigation
using CSS?
Navigation that appears as tabs across the top of the page is popular. Many sites

create these tabs using images; however, this can make it less accessible, and it’s

also problematic if your navigation is created using a Content Management System,

as users of such a system are unable to add tabs or change the text in the tabs. The

good news is it’s possible to create a tab effect just using CSS.

Solution
The navigation in Figure 4.12 was created by styling a horizontal list with CSS.

Figure 4.12. CSS tabbed navigation

And here’s the markup for it:

The CSS3 Anthology138



chapter_04/tabs.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Horizontal navigation</title>
  <link rel="stylesheet" href="tabs.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href="">Wine</a></li>
      <li><a href="">Fruit</a></li>
      <li class="selected"><a href="">Spreads</a></li>
      <li><a href="">Biscuits</a></li>
    </ul>
    <div class="content">
      <h1>Spreads that go with cheese</h1>
    </div>
  </div>
</body>
</html>

chapter_04/tabs.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  float: left;
  width: 100%;
}

.nav li {
  float: left;
  min-width: 8em;
  text-align: center;
}

.nav li a:link, 

.nav li a:visited {
  background-color: rgba(255,255,255,0.4);
  color: rgb(0,0,0);
  text-decoration: none;

139Navigation

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



  display: block;
  padding: 0.75em;
  -moz-border-radius-topleft: 3px;
  -moz-border-radius-topright: 3px;
  -webkit-border-radius: 3px 3px 0px 0px;
  border-radius: 3px 3px 0px 0px;
  -webkit-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  -moz-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.5);
}

.nav li.selected a:link, 

.nav li.selected a:visited {
  background-color: rgb(255,255,255);
}

.nav li a:hover {
  background-color: rgba(255,255,255,0.8);
}

.content {
  clear: both;
  background-color: #fff;
  color: #000;
  padding: 1em;
}

h1 {
  font-size: 128.6%;
}

Discussion
This navigation started life in a similar way to the previous solution that created

horizontal navigation—marked up as a list. Imagine that we’re now on the main

page of one of our sections, so we want to have a tab highlighted to show where we

are. I’ve added a class of selected to one item:

chapter_04/tabs.html (excerpt)

<ul class="nav">
  <li><a href="">Wine</a></li>
  <li><a href="">Fruit</a></li>

The CSS3 Anthology140



  <li class="selected"><a href="">Spreads</a></li>
  <li><a href="">Biscuits</a></li>
</ul>

The first two CSS declarations put our list items into horizontal alignment:

chapter_04/tabs.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  float: left;
  width: 100%;
}

.nav li {
  float: left;
  min-width: 8em;
  text-align: center;
}

Now we can start to style the unselected tabs. I am using RGBA for the background

color; this creates a semitransparent effect, letting the background show through.

If you’re concerned about browsers that lack RGBA support, you could use a solid

color here instead:

chapter_04/tabs.css (excerpt)

.nav li a:link, 

.nav li a:visited {
  background-color: rgba(255,255,255,0.4);
  color: rgb(0,0,0);
  text-decoration: none;
  display: block;
  padding: 0.75em;
  -moz-border-radius-topleft: 3px;
  -moz-border-radius-topright: 3px;
  -webkit-border-radius: 3px 3px 0px 0px;
  border-radius: 3px 3px 0px 0px;
  -webkit-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  -moz-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);

141Navigation



  box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.5);
}

This gives us a set of tabs as shown in Figure 4.13. I’m using border-radius to

slightly curve the top corners of the tabs, box-shadow to create a shadow effect round

the sides and top, and text-shadow to enhance the text.

Figure 4.13. The tabs after styling the list items

I now want to make my selected tab look as if it joins onto the background color of

the content area. I do this using the following declaration which targets the li with

a class of selected. All it does is change the background color to white:

chapter_04/tabs.css (excerpt)

.nav li.selected a:link, 

.nav li.selected a:visited {
  background-color: rgb(255,255,255);
}

A final touch is to add a hover state to the tabs. Again, I’m just tweaking the opacity

using RGBA, but this could also be a solid color:

The CSS3 Anthology142



chapter_04/tabs.css (excerpt)

.nav li a:hover {
  background-color: rgba(255,255,255,0.8);
}

Embrace CSS3-enhanced Effects

With the use of CSS—and, in particular, the finishing touches offered by CSS3—we

can easily create attractive tab effects. But this hasn’t always been the case.

Previous versions of this book contained a solution that was based on the popular

“sliding doors” method of using images to create flexible tabs.1 This method uses

four background images to create the rounded-corner tab effect. If you need to

support ancient browsers with a full visual effect, or are tied to a look and feel

that’s very graphic-heavy, you may need to consider these older methods. For

most sites, I’d encourage you to make clever use of CSS3 to enhance a slightly

plainer view of the site for older browsers.

My navigation is in an include, so how can
I indicate which is the selected tab?
The last solution added a class to the selected menu item, but if your menu is stored

in a linked server-side file—say a PHP file pulled in with an include statement—this

may not be possible. How can you indicate which menu item is selected here?

Solution
Here’s a neat little trick for highlighting a menu tab. First, edit the HTML to add a

class to every menu tab; I usually use the section name. Add an ID to the body ele-

ment of the page that is the same as one of the classes:

chapter_04/selected.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />

1 http://www.alistapart.com/articles/slidingdoors/

143Navigation

http://www.alistapart.com/articles/slidingdoors/


  <title>Chapter 4: Horizontal navigation</title>
  <link rel="stylesheet" href="selected.css" />
</head>
<body id="spreads">
  <div class="wrapper">
    <ul class="nav">

<li class="wine"><a href="">Wine</a></li>
      <li class="fruit"><a href="">Fruit</a></li>
      <li class="spreads"><a href="">Spreads</a></li>
      <li class="biscuits"><a href="">Biscuits</a></li>
    </ul>
    <div class="content">
      <h1>Spreads that go with cheese</h1>
    </div>
  </div>
</body>
</html>

In the CSS, we can now target the li with a class only if it’s inside the body with

the same id:

chapter_04/selected.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  float: left;
  width: 100%;
}

.nav li {
  float: left;
  min-width: 8em;
  text-align: center;
}

.nav li a:link, 

.nav li a:visited {
  background-color: rgba(255,255,255,0.4);
  color: rgb(0,0,0);
  text-decoration: none;
  display: block;
  padding: 0.75em;

The CSS3 Anthology144



  -moz-border-radius-topleft: 3px;
  -moz-border-radius-topright: 3px;
  -webkit-border-radius: 3px 3px 0px 0px;
  border-radius: 3px 3px 0px 0px;
  -webkit-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  -moz-box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  box-shadow: 0px -3px 2px 0px rgba(0, 0, 0, 0.2);
  text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.5);
}
#spreads .nav li.spreads a:link, 
#spreads .nav li.spreads a:visited,
#fruit .nav li.fruit a:link, 
#fruit .nav li.fruit a:visited,
#wine .nav li.wine a:link, 
#wine .nav li.wine a:visited,
#biscuits .nav li.biscuits a:link, 
#biscuits .nav li.biscuits a:visited {
  background-color: rgb(255,255,255);
}

.nav li a:hover {
  background-color: rgba(255,255,255,0.8);
}

Discussion
If you switch the body element’s ID to any of the other ID names, you will see the

selected menu tab change. This works because when we use the following selector,

we’re saying, “target the link inside an li with a class of spreads, which is inside

an element with an ID of spreads”:

#spreads .nav li.spreads a:link

So a li with a class of wine fails to match, and a li with a class of spreads inside

the body with an id of wine also wouldn’t match. You then just need to output the

section name as an id on the body tag, which you may have access to in your page,

or be able to output via your CMS.

145Navigation



How do I put additional information in my
navigation bar?
A popular style of navigation is to have the title of the section plus some descriptive

text underneath. How should we create this using CSS?

Solution
Once again, we’re using a list structure for our navigation, but this time adding more

information to each link. This creates the navigation shown in Figure 4.14.

Figure 4.14. Horizontal navigation with extra text

In this example, the section titles are in the same a elements as their descriptions,

but also within strong elements set to display as blocks:

chapter_04/horizontal2.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Horizontal navigation</title>
  <link rel="stylesheet" href="horizontal2.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href=""><strong>Wine</strong>

The CSS3 Anthology146



      <small>Cheese &amp; wine parties - a classic!</small>
      </a></li>
      <li><a href=""><strong>Fruit</strong>
      <small>Grapes, apples - get your 5 a day while eating 
        cheese.</small>
      </a></li>
      <li><a href=""><strong>Spreads</strong>
      <small>Pickles, chutneys, roasted garlic and more.</small>
      </a></li>
      <li><a href=""><strong>Biscuits</strong>
      <small>Put your cheese onto Bath Ovals, digestives and water 
        biscuits.</small>
      </a></li>
    </ul>
  </div>
</body>
</html>

chapter_04/horizontal2.css (excerpt)

.nav {
   list-style: none;
   margin: 0;
   padding: 0;
}

.nav li {
  float: left;
  width: 130px;
  margin-right: 20px;
}

.nav li a:link strong,

.nav li a:visited strong {
  font-size: 157.1%;
  display: block;
  font-weight: normal;
  color: rgb(119,126,134);
  font-style: normal;
}

.nav li a:link, 

.nav li a:visited {
  text-decoration: none;
  color: rgb(93,78,72);

147Navigation



  font-style: italic;
}

.nav li a:hover, .nav li a:hover strong {
  color: rgb(0,0,0);
}

Discussion
This solution is simply an extension of the original horizontal navigation we created.

You can add any elements within your list items, and style them however you like.

How can I visually indicate which links are
external to my site?
It can be helpful to visitors if links that lead to another site are displayed differently

from links to pages on your own site. Adding a class to every link in order to be

able to select it, however, is far from practical.

Solution
If your internal links omit your site’s full domain, we can use attribute selectors to

target external links: icons are placed next to external links, but not internal links.

Figure 4.15. Displaying external links with an icon

The CSS3 Anthology148



chapter_04/external-links.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Showing external links</title>
  <link rel="stylesheet" href="external-links.css" />
</head>
<body>
  <div class="wrapper">
    <p>You can search for more delicious cheese recipes using 
      <a href="http://google.com">Google</a> or view more recipes on 
      <a href="/recipes">this site</a>.</p>
  </div>
</body>
</html>

We can use an attribute selector that looks for href attributes containing a value

starting with http: and add a background image:

chapter_04/external-links.css (excerpt)

a[href^="http:"] {
  padding-left: 20px;
  background-image: url(icon-link-external.png);
  background-repeat: no-repeat;
}

Now, any links on our page that start with http: (which should be external, as we

don’t link to pages on our own site this way) will display with the world icon.

Mind Your Protocols

This solution relies on your internal links not having the http:// in front of

them. If you’re using an editor or CMS that adds the full domain of your site to

internal links, this solution is unsuitable.

Discussion
The attribute selector is widely supported in modern browsers, although it will be

ignored in Internet Explorer 6. In browsers that lack support for this selector, the

149Navigation



link will just display as normal; thus, it’s a nice enhancement for browsers with

support while leaving the experience unchanged for those with older browsers.

Let’s take a closer look at that selector:

a[href ^="http:"]

We’re selecting the href attribute, and we want our selector to match when it finds

the text http: at the beginning of the attribute value. The ^= operator means “begins

with.” You could use a similar selector to match all email links; for example, a[href

^="mailto:"].

Another useful attribute selector is to target the file extension of a link. This means

that you can add a small icon to show that a document is a PDF or other document

type, depending on the extension. The selector a[href $=".pdf"] will match any

link that has a file extension of .pdf. The $= operator means “ends with,” so this

selector will match when an href attribute value ends with .pdf:

chapter_04/external-links2.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Using attribute selectors</title>
  <link rel="stylesheet" href="external-links2.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="links">
      <li><a href="http://google.com">Go somewhere else</a></li>
      <li><a href="/files/example.pdf">Download a PDF</a></li>
      <li><a href="mailto:info@example.com">Send an email</a></li>
    </ul>
  </div>
</body>
</html>

The CSS3 Anthology150



chapter_04/external-links2.css (excerpt)

a[href^="http:"] {
  padding-left: 20px;
  background-image: url(icon-link-external.png);
  background-repeat: no-repeat;
}

a[href^="mailto:"] {
  padding-left: 20px;
  background-image: url(icon-link-email.png);
  background-repeat: no-repeat;
}

a[href$=".pdf"] {
  padding-left: 20px;
  background-image: url(icon-pdf.png);
  background-repeat: no-repeat;
}

Figure 4.16 shows all three types in action.

Figure 4.16. Using the attribute selector to add icons to various types of links

151Navigation

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



How do I create rollover images in my
navigation without using JavaScript?
With the properties offered by CSS3, we can create many navigation effects without

using images at all; however, you’re likely to also want to work with images in your

navigation. Combining images and text gives you many opportunities to create at-

tractive and usable navigation.

Solution
This solution demonstrates how to use images in your navigation, including a

rollover effect without JavaScript, as seen in Figure 4.17.

Figure 4.17. An image rollover using CSS

chapter_04/rollover-image.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Image rollovers</title>
  <link rel="stylesheet" href="rollover-image.css" />
</head>
<body>

The CSS3 Anthology152



  <div class="wrapper">
    <ul class="intouch">
      <li class="twitter"><a href="">Twitter</a></li>
      <li class="rss"><a href="">RSS</a></li>
      <li class="email"><a href="">Email</a></li>
    </ul>
  </div>
</body>
</html>

chapter_04/rollover-image.css (excerpt)

.intouch {
  list-style: none;
  margin: 0;
  padding: 0;
}

.intouch li a:link, .intouch li a:visited {
  padding: 0.5em 0 0.5em 40px;
  display: block;
  font-weight: bold;
  background-repeat: no-repeat;
  background-image: url(sprite-roll.png);
  text-decoration: none;
  color: rgb(136,136,136);
}

.intouch li.twitter a:link, .intouch li.twitter a:visited {
  background-position: 0 6px;
}

.intouch li.rss a:link, .intouch li.rss a:visited {
  background-position: 0 -30px;
}

.intouch li.email a:link, .intouch li.email a:visited {
  background-position: 0 -60px;
}

.intouch li.twitter a:hover {
  background-position: 0 -90px;
  color: rgb(105,210,231);
}

153Navigation



.intouch li.rss a:hover {
  background-position: 0 -126px;
  color: rgb(243,134,48);
}

.intouch li.email a:hover {
  background-position: 0 -156px;
  color: rgb(56,55,54);
}

Discussion
This solution uses one single image file (sprite-roll.png, shown in Figure 4.18) that

combines all the inactive and hovered states of the image. We then use this file as

a background image, adjusting its location to show the default image for each link,

and then the hover image on hovering the link.

Figure 4.18. The sprite combining all the different icons

Combining images in this way is known as creating an image sprite, and it’s a highly

useful technique that helps to reduce load on your server by enabling one request

to be made for a file, rather than several requests for lots of small files.

The markup is just a list of links, where I’ve given each li a class to indicate the

type of link it is:

chapter_04/rollover-image.html (excerpt)

<ul class="intouch">
  <li class="twitter"><a href="">Twitter</a></li>
  <li class="rss"><a href="">RSS</a></li>
  <li class="email"><a href="">Email</a></li>
</ul>

The CSS3 Anthology154



I add some basic styles to the list and each list item, and then style the links, adding

the sprite as a background image set to no-repeat:

chapter_04/rollover-image.css (excerpt)

.intouch {
  list-style: none;
  margin: 0;
  padding: 0;
}

.intouch li a:link, .intouch li a:visited {
  padding: 0.5em 0 0.5em 40px;
  display: block;
  font-weight: bold;
  background-repeat: no-repeat;
  background-image: url(sprite-roll.png);
  text-decoration: none;
  color: rgb(136,136,136);
}

If you look at the list now in Figure 4.19, I can see the sprite showing the same image

for all items.

Figure 4.19. After adding the background image

155Navigation



We can now start to shift the background image into place to show the initial images

(the gray icon). The first link is almost correct; I just want to tweak the position of

the bird a little:

chapter_04/rollover-image.css (excerpt)

.intouch li.twitter a:link, .intouch li.twitter a:visited {
  background-position: 0 6px;
}

With the second link, I need to shift the background image until it shows the gray

RSS icon. I then do the same for the final mail icon:

chapter_04/rollover-image.css (excerpt)

.intouch li.rss a:link, .intouch li.rss a:visited {
  background-position: 0 -30px;
}

.intouch li.email a:link, .intouch li.email a:visited {
  background-position: 0 -60px;
}

Our gray icons are now in place, and I can add some CSS to pull the background

into position when each link is hovered over using exactly the same principle:

chapter_04/rollover-image.css (excerpt)

.intouch li.twitter a:hover {
  background-position: 0 -90px;
  color: rgb(105,210,231);
}

.intouch li.rss a:hover {
  background-position: 0 -126px;
  color: rgb(243,134,48);
}

.intouch li.email a:hover {
  background-position: 0 -156px;
  color: rgb(56,55,54);
}

The CSS3 Anthology156



This gives us a rollover image effect that combines a single background image and

text for an accessible, search-engine-friendly navigation bar.

Using Opacity for Rollover Effects
Before finishing this solution, I want to show you an alternate method of creating

a nice rollover effect using the opacity property.

The effect shown in Figure 4.20 is achieved with the same markup we’ve been using

and an image sprite, but this one only has three states in it. I have then used the

opacity property to make the image and text semitransparent.

Figure 4.20. Rollovers using opacity

On hover, I set opacity to 1—that’s fully opaque (not transparent at all), making a

simple rollover effect:

chapter_04/rollover-opacity.css (excerpt)

.intouch li a:link, .intouch li a:visited {
  padding: 0.5em 0 0.5em 40px;
  display: block;
  font-weight: bold;
  background-repeat: no-repeat;
  background-image: url(sprite.png);
  text-decoration: none;

157Navigation



}

.intouch li.twitter a:link, .intouch li.twitter a:visited {
  background-position: 0 6px;
  color: rgb(105,210,231);
  opacity: 0.5;
}

.intouch li.rss a:link, .intouch li.rss a:visited {
  background-position: 0 -30px;
  color: rgb(243,134,48);
  opacity: 0.5;
}

.intouch li.email a:link, .intouch li.email a:visited {
  background-position: 0 -60px;
  color: rgb(56,55,54);
  opacity: 0.5;
}

.intouch li.twitter a:hover,

.intouch li.rss a:hover,

.intouch li.email a:hover {
  opacity: 1;
}

How should I style a sitemap?
A sitemap is a helpful page on your website that lists all pages in the site. It can

help those who are unable to find what they’re looking for in the navigation, as well

as provide a quick way to see what’s available and go to it with one click.

Solution
A sitemap is really a list of all the destinations on your site, so it’s ideally marked

up as a set of nested lists. The first list is your main navigation, with the internal

navigation nested within each main navigation point. A list works even if your site

structure has many levels and should be easy to generate from a content management

system. Figure 4.21 displays the results of the following code:

The CSS3 Anthology158



chapter_04/sitemap.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Sitemaps</title>
  <link rel="stylesheet" href="sitemap.css" />
</head>
<body>
  <div class="wrapper">
    <ul class="sitemap">
      <li><a href="">Home</a></li>
      <li><a href="">About us</a>
        <ul>
          <li><a href="">Directors</a></li>
          <li><a href="">History</a></li>
        </ul>
      </li>
      <li><a href="">Products</a></li>
      <li><a href="">Ordering information</a>
        <ul>
          <li><a href="">Our shops</a>
            <ul>
              <li><a href="">London</a></li>
              <li><a href="">Newcastle</a></li>
            </ul>
          </li>
          <li><a href="">Other stockists</a></li>
        </ul>
      </li>
      <li><a href="">Contact Us</a></li>
    </ul>
  </div>
</body>
</html>

chapter_04/sitemap.css (excerpt)

.sitemap {
  list-style: none;
  margin: 0;
  padding: 0;
}

159Navigation



.sitemap > li {
  border: 2px solid rgba(153,178,183,0.2);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
}

.sitemap > li:hover {
  border: 2px solid rgba(153,178,183,1);
}

.sitemap > li > a:link, .sitemap > li > a:visited {
  background-color: rgba(153,178,183,0.1);
  color: rgb(0,0,0);
  text-decoration: none;
  display: block;
  padding: 0.75em;
}

.sitemap > li:hover > a:link, .sitemap > li:hover > a:visited {
  background-color: rgba(153,178,183,0.5);
}

.sitemap ul {
  margin: 1em 0 1em 0;
  padding: 0;
  list-style: none;
  line-height: 1.8;
}

.sitemap ul ul {
  margin: 0.5em 0 0.5em 0;
}

.sitemap ul a:link, .sitemap ul a:visited {
  padding: 0.75em;
  text-decoration: none;
  color: rgb(69,80,83);
}

.sitemap ul ul a:link:before, .sitemap ul ul a:visited:before {
  content: "> ";
}

The CSS3 Anthology160



Figure 4.21. A sitemap styled using CSS

Discussion
The sitemap starts life as a list for the main navigation elements with the submenus

nested inside—the same way the list with subnavigation discussed in the section

called “Can I use CSS and lists to create a navigation system with subnavigation?”

did. The difference with the sitemap is that all menus will display their subnaviga-

tion. If the sitemap becomes deeper (with further levels), you just continue nesting

in the same way, with subpages being a sublist of their parent page.

Take care to nest the list items properly. The submenu needs to go before the closing

li of the parent list. Without CSS, the sitemap displays as in Figure 4.22.

161Navigation



Figure 4.22. The unstyled list

I’m going to wrap each main section—that’s each top-level navigation point and its

subnavigation—with a border to help demonstrate it is a section of the site:

chapter_04/sitemap.css (excerpt)

.sitemap {
  list-style: none;
  margin: 0;
  padding: 0;
}

.sitemap > li {
  border: 2px solid rgba(153,178,183,0.2);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
}

The CSS3 Anthology162



.sitemap > li:hover {
  border: 2px solid rgba(153,178,183,1);
}

I’ve used the child selector here as I only want to target the li that is a direct child

of .sitemap; these will be the top-level navigation elements. This is indicated in

Figure 4.23. I’m using RGBA for the border so that I can tweak the alpha value on

hover of the list item; this will give a nice visual indication of the part of the map

the user is in.

Figure 4.23. Upon styling the main list items

Now I move on to the links that are within these top-level list items, making them

visually display as the main navigation item for that section:

163Navigation



chapter_04/sitemap.css (excerpt)

.sitemap > li > a:link, .sitemap > li > a:visited {
  background-color: rgba(153,178,183,0.1);
  color: rgb(0,0,0);
  text-decoration: none;
  display: block;
  padding: 0.75em;
}

.sitemap > li:hover > a:link, .sitemap > li:hover > a:visited {
  background-color: rgba(153,178,183,0.5);
}

Note that I’m targeting the links inside li:hover so that the state change happens

when any part of the li is hovered over, as in Figure 4.24.

Figure 4.24. After styling the links

We can now style the items inside the section—the sublists and links:

The CSS3 Anthology164



chapter_04/sitemap.css (excerpt)

.sitemap ul {
  margin: 1em 0 1em 0;
  padding: 0;
  list-style: none;
  line-height: 1.8;
}

.sitemap ul ul {
  margin: 0.5em 0 0.5em 0;
}

.sitemap ul a:link, .sitemap ul a:visited {
  padding: 0.75em;
  text-decoration: none;
  color: rgb(69,80,83);
}

.sitemap ul ul a:link:before, .sitemap ul ul a:visited:before {
  content: "> ";
}

This should all be quite familiar now if you’ve looked at the other examples in this

chapter. I’m using descendant selectors to style the internal list and sublists, and

adding a > character on the “sub-sub” lists using the pseudo-element :before and

generated content.

How do I create a drop-down menu
with CSS?
Drop-down menus have lost some of their popularity in recent years, but they can

be used to give quick access to parts of your site, so you might want to know how

to use them in a sensible way.

Solution
This solution creates a drop-down menu from a nested, horizontal list and uses a

jQuery plugin to enhance the CSS:

165Navigation



chapter_04/dropdown.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Dropdown navigation</title>
  <link rel="stylesheet" href="dropdown.css" />
  <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
➥jquery.min.js" type="text/javascript"></script>
  <script src="superfish.js" type="text/javascript"></script>
  <script>
    $(document).ready(function() { 
      $('ul.nav').superfish({
        delay:       1000,
        animation:   {opacity:'show',height:'show'},
        speed:       'fast',
        autoArrows:  false,
        dropShadows: false
      }); 
    }); 
  </script>
</head>
<body>
  <div class="wrapper">
    <ul class="nav">
      <li><a href="">Home</a></li>
      <li><a href="">About us</a>
        <ul>
          <li><a href="">Directors</a></li>
          <li><a href="">History</a></li>
        </ul>
      </li>
      <li><a href="">Products</a></li>
      <li><a href="">Ordering</a>
        <ul>
          <li><a href="">Our shops</a></li>
          <li><a href="">Other stockists</a></li>
        </ul>
      </li>
      <li><a href="">Contact Us</a></li>
    </ul>
  </div>
</body>
</html>

The CSS3 Anthology166



chapter_04/dropdown.css

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  font-size: 114.3%;
}

.nav > li {
  float: left;
  width: 130px;
  margin-right: 20px;
  position: relative;
}

.nav li a:link, .nav li a:visited {
  display: block;
  text-decoration: none;
  color: rgb(122,106,83);
}

.nav li:hover ul, .nav li.sfHover ul {
  margin-left: 0;
}

.nav li a:hover {
  color: rgb(153,178,183);
}

.nav ul {
  position: absolute;
  background-color: rgb(213,222,217);
  border: 5px solid rgb(153,178,183);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px;
  padding: 0.5em;
  margin: 0.5em 0 0 -9999px;
  -webkit-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  -moz-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2);
  box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  list-style: none;
  font-size: 85.7%;
  width: 8em;

167Navigation



  line-height: 1.8;
}

.nav ul li a:link, .nav ul li a:visited {
  color: rgb(0,0,0);
}

.nav ul li a:hover {
  color: rgb(122,106,83);
}

Figure 4.25 shows the result.

Figure 4.25. The completed menu system

Discussion
The original drop-down menus were knocked for being inaccessible and bloated.

They often required JavaScript to work, leaving you without any navigation at all

if you didn't have JavaScript enabled. Because of this, drop-down menus were

never popular with web designers.

More recently, web developers realized that the support of the :hover dynamic

pseudo-class on elements other than links would enable us to create CSS-only drop-

down menus without needing JavaScript at all. Solutions such as the now-famous

Suckerfish menus were developed using this technique.2

2 http://www.alistapart.com/articles/dropdowns

The CSS3 Anthology168

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.alistapart.com/articles/dropdowns


The problem with CSS-only menus is that they can be very difficult to use. While

there are no accessibility issues for screen-reader users in the way there were for

those using old JavaScript-inserted menus (because the markup is right there on

the page), the menus are generally inaccessible for those using a keyboard to navigate,

and can be fiddly to click on when using a mouse, as we’ll soon see. My advice is

to create your menus using CSS, but then use JavaScript to enhance their usability,

as I’ll show you here.

We start with a set of nested lists, as seen in Figure 4.26.

Figure 4.26. The unstyled nested lists

We can now use CSS to display this list as a horizontal menu:

chapter_04/dropdown.css (excerpt)

.nav {
  list-style: none;
  margin: 0;
  padding: 0;
  font-size: 114.3%;
}

169Navigation



.nav > li {
  float: left;
  width: 130px;
  margin-right: 20px;
  position: relative;
}

.nav li a:link, .nav li a:visited {
  display: block;
  text-decoration: none;
  color: rgb(122,106,83);
}

.nav li a:hover {
  color: rgb(153,178,183);
}

I’ve added a rule here to style the links as well. If you refresh the browser, you will

see that we have created a horizontal menu with the subnavigation displaying un-

derneath the main navigation points, as indicated in Figure 4.27.

Figure 4.27. After floating the main list items

Next, we want to style our drop-downs. The drop-down part is the nested ul. I’m

giving these a border and background color, and also having some fun with CSS3

properties, adding rounded corners and a box-shadow:

chapter_04/dropdown.css (excerpt)

.nav ul {
  position: absolute;
  background-color: rgb(213,222,217);

The CSS3 Anthology170



  border: 5px solid rgb(153,178,183);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px;
  padding: 0.5em;
  margin: 0.5em 0 0 0;
  -webkit-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  -moz-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2);
  box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  list-style: none;
  font-size: 85.7%;
  width: 8em;
  line-height: 1.8;
}

.nav ul li a:link, .nav ul li a:visited {
  color: rgb(0,0,0);
}

.nav ul li a:hover {
  color: rgb(122,106,83);
}

Refreshing the browser should give you the completed effect, with both menus

showing as you can see in Figure 4.28.

Figure 4.28. The styled menus

We hide the menus by setting the left margin on the menu ul to a large negative

value, throwing it off the side of the screen:

171Navigation



chapter_04/dropdown.css (excerpt)

.nav ul {
  position: absolute;
  background-color: rgb(213,222,217);
  border: 5px solid rgb(153,178,183);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px;
  padding: 0.5em;
margin: 0.5em 0 0 -9999px;

  -webkit-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  -moz-box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2);
  box-shadow: 2px 2px 2px 2px rgba(0,0,0,0.2));
  list-style: none;
  font-size: 85.7%;
  width: 8em;
  line-height: 1.8;
}

You could also set the menus to display: none to hide them. I’m using a negative

margin rather than display: none because screen readers that honor CSS may read

the display: none declaration and not give the user the opportunity to navigate to

the hidden items.

The menus will now disappear when the page is reloaded. To bring them back on

hover, add the following rule:

.nav li:hover ul {
  margin-left: 0;
}

When we hover over the li, the ul within that li will have its margin-left set to

0, bringing it back into view.

If you test this out, you’ll see that your drop-downs work; however, you’ll probably

also find that being able to click a link in the drop-down is tricky. Sometimes it will

disappear before you get onto it! The other issue is that if you try and tab to the

links using the keyboard, you’ll find that the browser does tab to the hidden

items—but because they’re offscreen, they’re invisible to the naked eye.

The CSS3 Anthology172



To deal with this issue, we can add some JavaScript. There are a number of methods

of doing this, but as an example, I’m going to use a jQuery plugin called Superfish.3

This plugin simply enhances the CSS menu you’ve already built.

Introducing jQuery

jQuery4 is a JavaScript library designed to make using JavaScript simpler and

more efficient. In addition to the basic library, there is a range of plugins that can

help you to achieve various tasks—such as drop-down menus.

To use a jQuery plugin, you need to include jQuery in your page and the plugin

itself. The jQuery link I’ve used in the following markup points to a version of

the library hosted on Google; you can, however, also download the latest version

of jQuery from the jQuery website.

The only change you need to make is to add an extra selector to the rule where you

set your margin on hover:

.nav li:hover ul, .nav li.sfHover ul {
  margin-left: 0;
}

Download Superfish, add the superfish.js file to your site, and then add the JavaScript

to the head of your document:

chapter_04/dropdown.html (excerpt)

<head>
  <meta charset="utf-8" />
  <title>Chapter 4: Dropdown navigation</title>
  <link rel="stylesheet" href="dropdown.css" />
  <script src="http://ajax.googleapis.com/ajax/libs/
➥jquery/1.7.1/jquery.min.js" type="text/javascript"></script>
  <script src="superfish.js" type="text/javascript"></script>
  <script>
    $(document).ready(function() { 
      $('ul.nav').superfish({ 
        delay:       1000,                             
        animation:   {opacity:'show',height:'show'}, 

3 http://users.tpg.com.au/j_birch/plugins/superfish/
4 http://jquery.com/

173Navigation

http://users.tpg.com.au/j_birch/plugins/superfish/
http://jquery.com/


        speed:       'fast',
        autoArrows:  false,
        dropShadows: false
      }); 
    }); 
  </script>
</head>

We’re including the latest jQuery and the Superfish plugin, with some configuration

settings for Superfish. There are lots of ways you can customize the plugin; details

are on the Superfish website.5

You should now find that your menus are much easier to use. Even better, when

you tab to a main item, the submenu displays and you can tab to the subitems as

shown in Figure 4.29. When assessing any plugin or script to create drop-down

menus, this is a basic test of whether you should use it.

Figure 4.29. Tabbing to the menu items

Navigating Your Way to Success
We’ve now looked at a whole range of navigation styles, while using many CSS

properties and techniques. As you can see, even the most complicated-looking menu

can be broken down into some fairly simple techniques. For navigation inspiration,

I’d recommend checking out the Navigation collection on the Pattern Tap website.6

With a solid knowledge of CSS and your own design skills, you should be able to

create navigation that’s both attractive and usable with CSS.

5 http://users.tpg.com.au/j_birch/plugins/superfish/#options
6 http://patterntap.com/tags/type/navigation

The CSS3 Anthology174

http://users.tpg.com.au/j_birch/plugins/superfish/#options
http://users.tpg.com.au/j_birch/plugins/superfish/#options
http://patterntap.com/tags/type/navigation


Chapter5
Tabular Data
You’ve probably heard the mantra “tables are for tabular data, not layout.” Originally

designed to display tabular data correctly in HTML documents, they were soon

misappropriated as a way to lay out web pages. Back then, understanding how to

create complex layouts using nested tables was a part of the standard skill set of

every web designer. Yet using tables in this way requires large amounts of markup,

making a website increasingly complex and difficult to maintain, as well as causing

pages to load slowly. This method also creates problems for users who are trying

to access content using screen readers or other text-only devices. Since then, the

Web Standards movement has pushed for the replacement of tabular layouts with

CSS, which is designed for the job and is, ultimately, far more flexible, as we’ll

discover in Chapter 9.

But, far from being evil, tables can (and should) still be used for their true pur-

pose—that of displaying tabular data. This chapter will illustrate some common,

correct uses of tables, incorporating elements and attributes that, though used infre-

quently, help to make your tables accessible. We’ll also look at how CSS can make

these tables more attractive and usable for those viewing them in a web browser.



How do I lay out spreadsheet data
using CSS?
The quick answer is, you don’t! Spreadsheet data is tabular by nature and, therefore,

should be displayed in an HTML table. However, we can still spruce up the display

of that data using CSS, as we’ll see later in this chapter. And we should still be

concerned about the accessibility of our tables, even when we’re using them to

display the right kind of content.

Discussion
Tabular data is information that’s displayed in a table, and which may be logically

arranged into columns and rows.

Your accounts, when stored in spreadsheet format, are a good example of tabular

data. If you needed to mark up the annual accounts of an organization for which

you were building a site, you might be given a spreadsheet that looked like Figure 5.1.

Figure 5.1. Displaying the accounts information in Excel

The CSS3 Anthology176



Obviously, this is tabular data. We see column and row headings to which the data

in each cell relates. Ideally, we’d display this data in a table, as shown in Figure 5.2,

complete with table headings to ensure that the data is structured logically.

Figure 5.2. The accounts information displayed as a table using HTML

How do I make my tabular data accessible?
The HTML table specification includes elements and attributes that go beyond the

basics required to achieve a certain look for tabular data. These extra parts of the

table can be used to ensure that its content is clear when it’s read out to visually

impaired users who are unable to see the layout for themselves. They’re also easy

to implement, though they’re often omitted by web developers. Take a look at this

example:

chapter_05/table.html (excerpt)

<table class="datatable">
  <caption>
    Yearly Income 2008 - 2011
  </caption>

177Tabular Data



  <tr>
    <th></th>
    <th scope="col">2008</th>
    <th scope="col">2009</th>
    <th scope="col">2010</th>
    <th scope="col">2011</th>
  </tr>
  <tr>
    <th scope="row">Grants</th>
    <td>11,980</td>
    <td>12,650</td>
    <td>9,700</td>
    <td>10,600</td>
  </tr>
  <tr>
    <th scope="row">Donations</th>
    <td>4,780</td>
    <td>4,989</td>
    <td>6,700</td>
    <td>6,590</td>
  </tr>
  <tr>
    <th scope="row">Investments</th>
    <td>8,000</td>
    <td>8,100</td>
    <td>8,760</td>
    <td>8,490</td>
  </tr>
  <tr>
    <th scope="row">Fundraising</th>
    <td>3,200</td>
    <td>3,120</td>
    <td>3,700</td>
    <td>4,210</td>
  </tr>
  <tr>
    <th scope="row">Sales</th>
    <td>28,400</td>
    <td>27,100</td>
    <td>27,950</td>
    <td>29,050</td>
  </tr>
  <tr>
    <th scope="row">Miscellaneous</th>
    <td>2,100</td>

The CSS3 Anthology178



    <td>1,900</td>
    <td>1,300</td>
    <td>1,760</td>
  </tr>
  <tr>
    <th scope="row">Total</th>
    <td>58,460</td>
    <td>57,859</td>
    <td>58,110</td>
    <td>60,700</td>
  </tr>
</table>

Discussion
This markup creates a table that uses elements and attributes to clearly explain the

contents of each cell. Let’s discuss the value that each of these elements and attrib-

utes adds.

The caption element

chapter_05/table.html (excerpt)

<caption>
  Yearly Income 2008 - 2011
</caption>

The caption element adds a caption to the table. By default, browsers generally

display the caption above the table; however, you can manually set the position of

the caption in relation to the table using the caption-side CSS property:

table {
  caption-side: bottom;
}

Why might you want to use a caption instead of just adding a heading or paragraph

text for display with the table? By using a caption, you can ensure that the text is

tied to the table, and that it’s recognized as the table’s caption; there’s no chance

that the screen reader could interpret it as a separate element. If you want your table

captions to display as paragraph text or level-three headings in a graphical browser,

179Tabular Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



no problem! You can create CSS rules for captions just as you would for any other

element.

The th element

<th scope="col">2011</th>

The th element identifies data that’s a row or column heading. The example markup

contains both row and column headings and, to ensure that this is clear, we use the

scope attribute of the th tag. The scope attribute shows whether a given heading is

applied to the column (col) or row (row).

Before you begin to style your tables to complement the look and feel of the site, it

is good practice to ensure the accessibility of those tables to users of devices such

as screen readers. Accessibility is one of those concerns that many developers brush

off, saying, “I’ll check it when I’m finished.” But if you leave accessibility checks

until the end of development, you may never actually deal with them; the problems

they identify may well require time-consuming fixes, particularly in complex ap-

plications. Once you make a habit of keeping accessibility in mind as you design,

you’ll find that it becomes second nature and adds very little to a project’s develop-

ment time.

CSS attributes make the styling of data tables simple and quick. For instance, when

I begin a new site on which I know I’ll have to use a lot of data tables, I create a

style rule with the class selector .datatable; this contains the basic styles that I

want to affect all data tables, and can easily be applied to the table tag of each. I

then create style rules for .datatable th (the heading cells), .datatable td (the

regular cells), and .datatable caption (the table captions).

From that point, adding a new table is easy. All the styles are there—I just need to

apply the datatable class. If I decide to change the styles after I’ve created all the

tables in my site, I simply edit my stylesheet.

How do I add a border to a table?
You can add borders to tables just as you can with other HTML elements. Borders

are particularly useful for tables, as they help to make the data understandable:

The CSS3 Anthology180



chapter_05/table.css (excerpt)

.datatable {
  border: 1px solid #338ba6;
}

This style rule will display a one-pixel, light-blue border around your table, as in

Figure 5.3.

Figure 5.3. Applying a border to the table element

You can also add borders to individual cells:

.datatable td, .datatable th {
  border: 1px solid #73c0d4;
}

This style rule renders a slightly lighter border around td and th table cells that

have a class of datatable, as Figure 5.4 shows.

181Tabular Data



Figure 5.4. Applying a border to th and td cells

Discussion
By experimenting with CSS borders on your tables, you can create many appealing

effects—even if the data contained within is dull! You can use differently colored

borders for table headings and table cells, and apply various thicknesses and styles

of border to table cells. You might even try out such tricks as using one shade for

top and left borders, and another for bottom and right borders, to create an indented

effect.

We can apply a range of values to the CSS border-style property. We’ve already

met solid, which displays a solid line as the border, and this is shown along with

the other available options in Figure 5.5.

The CSS3 Anthology182



Figure 5.5. Border styles all using a four-pixel red border

Here’s the markup that will produce the preceding range of border styles:

chapter_05/borderstyles.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
<title>Chapter 5: Border styles</title>
  <link rel="stylesheet" href="borderstyles.css" />
</head>
<body>
  <div class="wrapper">
  <div class="double">double</div>
  <div class="groove">groove</div>
  <div class="inset">inset</div>
  <div class="outset">outset</div>

183Tabular Data



  <div class="ridge">ridge</div>
  <div class="solid">solid</div>
  <div class="dashed">dashed</div>
  <div class="dotted">dotted</div>
  <div class="none">none</div>
</div>
</body>
</html>

chapter_05/borderstyles.html

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 1em/1.4 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.wrapper div {
  background-color: #ccc;
  padding: 0.5em;
  margin: 0 0 1em 0;
}

.double { 
  border: 4px double red 
}

.groove {
  border: 4px groove red;
}

.inset {
  border: 4px inset red;
}

.outset {
  border: 4px outset red;

The CSS3 Anthology184



}

.ridge {
  border: 4px ridge red;
}

.solid {
  border: 4px solid red;
}

.dashed{
  border: 4px dashed red;
}

.dotted {
  border: 4px dotted red;
}

.none {
  border: none;
}

How do I stop spaces appearing between
the cells of my tables when I’ve added
borders using CSS?
In the previous solution, after adding a border to the th and td elements, you can

see in Figure 5.4 that there are gaps between the borders applied to each cell. Simply

setting margin or padding to 0 won’t remove this space.

Solution
You can remove the spaces between the cells by setting the value of the

border-collapse property to collapse:

chapter_05/table.css

.datatable {
  border: 1px solid #338ba6;
border-collapse: collapse;

}

185Tabular Data



.datatable td, .datatable th {
  border: 1px solid #73c0d4;
}

Figure 5.6 shows the effect this has on the example seen in Figure 5.4.

Figure 5.6. Using border-collapse to remove spacing between cells

How do I display spreadsheet data in an
attractive and usable way?
The HTML table is the best way to structure spreadsheet data, even though its default

appearance is unattractive. Luckily, we can style the table using CSS, which keeps

markup to a minimum and allows us to control our data table’s appearance using

the stylesheet.

The CSS3 Anthology186



Solution
The data we saw displayed as an HTML table earlier in this chapter is an example

of spreadsheet data. That markup, which is shown unstyled in Figure 5.7, forms

the basis for the following example.

Figure 5.7. The unstyled table

Let’s apply the following stylesheet to that table:

chapter_05/spreadsheet.css (excerpt)

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {

187Tabular Data



  width: 80%;
  margin: 20px auto 40px auto;
}

.datatable {
  border: 1px solid #d6dde6;
  border-collapse: collapse; 
}

.datatable td {
  border: 1px solid #d6dde6;
  text-align: right;
  padding: 0.2em;
}

.datatable th {
  border: 1px solid #828282;
  background-color: #bcbcbc;
  font-weight: bold;
  text-align: left;
  padding: 0.2em;
}

.datatable caption {
  font-size: 116.7%;
  font-weight: bold;
  background-color: #b0c4de;
  color: #111;
  padding: 0.4em 0 0.3em 0;
  border: 1px solid #789ac6;
}

Discussion
In this solution, I aimed to display the table in a way that’s similar to the appearance

of a desktop spreadsheet.

First I styled the table as a whole, setting the borders to collapse:

The CSS3 Anthology188



chapter_05/spreadsheet.css (excerpt)

.datatable {
  border: 1px solid #d6dde6;
  border-collapse: collapse; 
}

As we’ve already seen, border displays a border around the outside of the table,

while border-collapse removes spaces between the table’s cells.

Next, I turned my attention to the table cells:

chapter_05/spreadsheet.css (excerpt)

.datatable td {
  border: 1px solid #d6dde6;
  text-align: right;
  padding: 0.2em;
}

Here, I added a border to the table cells and used text-align to right-align their

contents for that “spreadsheety” look. If you preview the document at this point,

you’ll see a border around each cell in the table (except the header cells), as shown

in Figure 5.8.

189Tabular Data



Figure 5.8. Styling the table and td elements

Next, I added a border to the th (heading) cells. I used a darker color for this border,

because I also added a background color to these cells to highlight that they’re

headings rather than regular cells:

chapter_05/spreadsheet.css (excerpt)

.datatable th {
  border: 1px solid #828282;
  background-color: #bcbcbc;
  font-weight: bold;
  text-align: left;
  padding: 0.2em;
}

To finish, I styled the caption to make it look visually part of the table, as shown

in Figure 5.9.

The CSS3 Anthology190

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 5.9. The finished table

How do I display table rows in alternating
colors?
It can be difficult to stay on a particular row as your eyes work across a large table

of data. Displaying table rows in alternating colors is a common way to help users

stay focused on the row they’re on.

Solution
Using the CSS3 nth-child selector, we can add a different style to every other row

without needing to add anything to the markup.

Here’s the table markup for our example:

chapter_05/alternate.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />

191Tabular Data



  <title>Chapter 5: highlighting alternate rows</title>
  <link rel="stylesheet" href="alternate.css" />
</head>
<body>
  <div class="wrapper">
    <table class="datatable">
      <caption>Student List</caption>
      <tr>
        <th scope="col">Student Name</th>
        <th scope="col">Date of Birth</th>
        <th scope="col">Class</th>
        <th scope="col">ID</th>
      </tr>
      <tr>
        <td>Joe Bloggs</td>
        <td>27/08/1997</td>
        <td>Mrs Jones</td>
        <td>12009</td>
      </tr>
      <tr>
        <td>William Smith</td>
        <td>20/07/1997</td>
        <td>Mrs Jones</td>
        <td>12010</td>
      </tr>
      <tr>
        <td>Jane Toad</td>
        <td>21/07/1997</td>
        <td>Mrs Jones</td>
        <td>12030</td>
      </tr>
      <tr>
        <td>Amanda Williams</td>
        <td>19/03/1997</td>
        <td>Mrs Edwards</td>
        <td>12021</td>
      </tr>
      <tr>
        <td>Kylie Jameson</td>
        <td>18/05/1997</td>
        <td>Mrs Jones</td>
        <td>12022</td>
      </tr>
      <tr>
        <td>Louise Smith</td>

The CSS3 Anthology192



        <td>17/07/1997</td>
        <td>Mrs Edwards</td>
        <td>12019</td>
      </tr>
      <tr>
        <td>James Jones</td>
        <td>04/04/1997</td>
        <td>Mrs Edwards</td>
        <td>12007</td>
      </tr>
    </table>
  </div>
</body>
</html>

And here’s the CSS to style it:

chapter_05/alternate.css

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.datatable {
  width: 100%;
  border: 1px solid #d6dde6;
  border-collapse: collapse;
}

.datatable td {
  border: 1px solid #d6dde6;
  padding: 0.3em;
}

.datatable th {

193Tabular Data



  border: 1px solid #828282;
  background-color: #bcbcbc;
  font-weight: bold;
  text-align: left;
  padding-left: 0.3em;
}

.datatable caption {
  font: bold 110% Arial, Helvetica, sans-serif;
  color: #33517a;
  text-align: left;
  padding: 0.4em 0 0.8em 0;
}

.datatable tr:nth-child(odd) {
  background-color: #dfe7f2;
  color: #000000;
}

The result can be seen in Figure 5.10.

Figure 5.10. Alternate table rows with nth-child

The CSS3 Anthology194



Discussion
The nth-child selector makes it very easy to target the odd and even rows in your

table using the keywords odd and even:

chapter_05/alternate.css (excerpt)

.datatable tr:nth-child(odd) {
  background-color: #dfe7f2;
  color: #000;
}

Prior to widespread support for this selector, we’d have to add a class to every

other row and then use the class to target the row:

.datatable tr.altrow {
  background-color: #dfe7f2;
  color: #000;
}

In Chapter 7, we will look at some other ways to deal with the lack of support for

selectors such as nth-child in older browsers.

How do I change a row's background color
when the mouse hovers over it?
One way to boost the readability of tabular data is to change the color of rows as

users move the cursor over them to highlight the row they’re reading. This can be

seen in Figure 5.11.

195Tabular Data



Figure 5.11. Highlighting a row

Solution
This can be a very simple solution; all you need to do is add the following rule to

your CSS:

chapter_05/hiliterow.css (excerpt)

.datatable tr:hover {
  background-color: #DFE7F2;
  color: #000;
}

Job done!

Discussion
When we discussed :hover on links, I mentioned that you can also use :hover on

other elements to create attractive effects; in addition, these serve to give the user

feedback as to what they’re interacting with.

This solution will work in all modern browsers including Internet Explorer 7—but

not in Internet Explorer 6. But as long as your tables are clear, the highlight feature

could be regarded as a “nice to have,” rather than a necessary tool.

The CSS3 Anthology196



How do I display table columns in
alternating colors?
While alternate row colors are a common feature of data tables, we see alternately

colored columns less frequently. However, they can be a helpful way to show

groupings of data.

Solution
If we use the col element to describe our table’s columns, we can employ CSS to

add a background to those columns. You can see the col elements I’ve added—one

for each column—in the following table markup:

chapter_05/columns.html (excerpt)

<table class="datatable">
  <col />
  <col />
  <col />
  <col />
  <tr>
    <th>Pool A</th>
    <th>Pool B</th>
    <th>Pool C</th>
    <th>Pool D</th>
  </tr>
  <tr>
    <td>England</td>
    <td>Australia</td>
    <td>New Zealand</td>
    <td>France</td>
  </tr>
  <tr>
    <td>South Africa</td>
    <td>Wales</td>
    <td>Scotland</td>
    <td>Ireland</td>
  </tr>
  <tr>
    <td>Samoa</td>
    <td>Fiji</td>
    <td>Italy</td>
    <td>Argentina</td>

197Tabular Data



  </tr>
  <tr>
    <td>USA</td>
    <td>Canada</td>
    <td>Romania</td>
    <td>Europe 3</td>
  </tr>
  <tr>
    <td>Repechage 2</td>
    <td>Asia</td>
    <td>Repechage 1</td>
    <td>Namibia</td>
  </tr>
</table>

We can add style rules for our col elements using nth-child as shown here; the

result is depicted in Figure 5.12:

Figure 5.12. Using nth-child to target the col element

Discussion
The col element provides us with further flexibility for styling a table’s columns,

thus making our table attractive and easier to understand. It’s also possible to nest

col elements within a colgroup element, which allows us to change the column’s

appearance by applying style rules to the parent colgroup element.

The CSS3 Anthology198



Here’s an example of nested col elements:

chapter_05/colgroups.html (excerpt)

<table class="datatable">
  <colgroup>
    <col />
    <col />
  </colgroup>
  <colgroup>
    <col />
    <col />
  </colgroup>
  <tr>
    <th>Pool A</th>
    <th>Pool B</th>
    <th>Pool C</th>
    <th>Pool D</th>
  </tr>

Here are the styles that are applied to the colgroup element rather than col:

chapter_05/colgroups.css (excerpt)

.datatable colgroup: nth-child(odd) {
  background-color: #80c9ff;
  color: #000;
}

.datatable colgroup: nth-child(even) {
  background-color: #bfe4ff;
  color: #000;
}

The result of this change is as shown in Figure 5.13.

199Tabular Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 5.13. Styling columns using colgroup

How do I display a calendar using CSS?
Calendars, such as the example from a desktop application in Figure 5.14, also in-

volve tabular data. The days of the week along the top of the calendar represent the

headings of the columns. As such, a calendar’s display constitutes the legitimate

use of a table, but you can keep markup to a minimum by using CSS to control the

look and feel.

The CSS3 Anthology200



Figure 5.14. A desktop calendar

Solution
Our solution uses an accessible, simple table that leverages CSS styles to create the

attractive calendar shown in Figure 5.15. Given its basic structure, it’s ideal for use

in a database-driven application in which the table is created via server-side code:

chapter_05/cal.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 5: calendar</title>
  <link rel="stylesheet" href="cal.css" />
</head>
<body>
  <div class="wrapper">
    <table class="clmonth">
      <caption>November 2011</caption>
      <tr>
        <th scope="col">Monday</th>
        <th scope="col">Tuesday</th>
        <th scope="col">Wednesday</th>

201Tabular Data



        <th scope="col">Thursday</th>
        <th scope="col">Friday</th>
        <th scope="col">Saturday</th>
        <th scope="col">Sunday</th>
      </tr>
      <tr>
        <td class="previous">31</td>
        <td class="active">1
          <ul>
            <li>New pupils' open day</li>
            <li>Year 8 theater trip</li>
          </ul>
        </td>
        <td>2</td>
        <td>3</td>
        <td>4</td>
        <td>5</td>
        <td>6</td>
      </tr>
      <tr>
        <td class="active">7
          <ul>
            <li>Year 7 English exam</li>
          </ul>
        </td>
        <td>8</td>
        <td>9</td>
        <td>10</td>
        <td>11</td>
        <td>12</td>
        <td>13</td>
      </tr>
      <tr>
        <td>14</td>
        <td>15</td>
        <td>16</td>
        <td class="active">17
          <ul>
            <li>Sports Day</li>
          </ul>
        </td>
        <td class="active">18
          <ul>
            <li>Year 7 parents' evening</li>
            <li>Prizegiving</li>

The CSS3 Anthology202



          </ul>
        </td>
        <td>19</td>
        <td>20</td>
      </tr>
      <tr>
        <td>21</td>
        <td>22</td>
        <td>23</td>
        <td class="active">24
          <ul>
            <li>Year 8 parents' evening</li>
          </ul>
        </td>
        <td>25</td>
        <td>26</td>
        <td>27</td>
      </tr>
      <tr>
        <td>28</td>
        <td>29</td>
        <td class="active">30
          <ul>
            <li>First night of school play</li>
        </ul>
        </td>
        <td class="next">1</td>
        <td class="next">2</td>
        <td class="next">3</td>
        <td class="next">4</td>
      </tr>
    </table>
  </div>
</body>
</html>

chapter_05/cal.css

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;

203Tabular Data



}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.clmonth {
  border-collapse: collapse;
  width: 100%;
}

.clmonth caption {
  text-align: left;
  font-weight: bold;
  font-size: 116.7%; 
  padding-bottom: 0.4em;
}

.clmonth th {
  border: 1px solid #aaa;
  border-bottom: none;
  padding: 0.2em 0.6em 0.2em 0.6em;
  background-color: #ccc;
  color: #3f3f3f;
  min-width: 8em;
}

.clmonth td {
  border: 1px solid #eaeaea;
  padding: 0.2em 0.6em 0.2em 0.6em;
  vertical-align: top;
}

.clmonth td.previous, .clmonth td.next {
  background-color: #f6f6f6;
  color: #c6c6c6;
}

.clmonth td.active {
  background-color: #b1cbe1;
  color: #2b5070;
  border: 2px solid #4682b4;
}

The CSS3 Anthology204



.clmonth ul {
  list-style-type: none;
  margin: 0;
  padding-left: 1em;
  padding-right: 0.6em;
}

.clmonth li {
  margin-bottom: 1em;
}

Figure 5.15. A calendar marked up as a table and styled with CSS

Discussion
This example starts out as a very simple table. It has a caption—the month we’re

working with—and I’ve marked up the days of the week as table headers using the

th element:

205Tabular Data



chapter_05/cal.html (excerpt)

<table class="clmonth">
  <caption>November 2011</caption>
  <tr>
    <th scope="col">Monday</th>
    <th scope="col">Tuesday</th>
    <th scope="col">Wednesday</th>
    <th scope="col">Thursday</th>
    <th scope="col">Friday</th>
    <th scope="col">Saturday</th>
    <th scope="col">Sunday</th>
 </tr>

The table has a class of clmonth. I’ve used a class rather than an ID because, in

some situations, you might want to display more than one month on the page. If

you then found that you needed to give the table an ID—perhaps to allow you to

show and hide the table using JavaScript—you could add an ID as well as the class.

The days are held within individual table cells, and the events for each day are

marked up as a list within the appropriate table cell.

In the following markup, you can see that I’ve added classes to two of the table cells.

The class previous is applied to cells containing days that fall within the preceding

month (we’ll use next later for days in the following month), while the class active

is applied to cells that contain event information, so that we may highlight them:

chapter_05/cal.html (excerpt)

<tr>
  <td class="previous">31</td>
  <td class="active">1
    <ul>
      <li>New pupils' open day</li>
      <li>Year 8 theater trip</li>
    </ul>
  </td>
  <td>2</td>
  <td>3</td>
  <td>4</td>
  <td>5</td>
  <td>6</td>
</tr>

The CSS3 Anthology206



The table, without CSS, displays as shown in Figure 5.16.

Figure 5.16. The table without CSS

Now that we have the structural markup in place, we can style the calendar. I set a

standard style for the body, including a base font size. Then I set a style for the class

clmonth for the borders to collapse, leaving no space between cells:

chapter_05/cal.css (excerpt)

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

207Tabular Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



.clmonth {
  border-collapse: collapse;
}

I styled the caption within the class clmonth, then created styles for the table

headers (th) and table cells (td):

chapter_05/cal.css (excerpt)

.clmonth caption {
  text-align: left;
  font-weight: bold;
  font-size: 116.7%; 
  padding-bottom: 0.4em;
}

.clmonth th {
  border: 1px solid #aaa;
  border-bottom: none;
  padding: 0.2em 0.6em 0.2em 0.6em;
  background-color: #ccc;
  color: #3f3f3f;
  min-width: 8em;
}

.clmonth td {
  border: 1px solid #eaeaea;
  padding: 0.2em 0.6em 0.2em 0.6em;
  vertical-align: top;
}

As you can see in Figure 5.17, our calendar is beginning to take shape.

The CSS3 Anthology208



Figure 5.17. After styling the calendar cells, it’s starting to look more like a desktop calendar

We can now style the list of events within each table cell, removing the bullet and

adding space between list items:

chapter_05/cal.css (excerpt)

.clmonth ul {
  list-style-type: none;
  margin: 0;
  padding-left: 1em;
  padding-right: 0.6em;
}

.clmonth li {
  margin-bottom: 1em;
}

Finally, we add styles for the previous and next classes, giving the effect of graying

out the days not part of the current month. We also style the active class, which

highlights those days on which events take place:

209Tabular Data



chapter_05/cal.css (excerpt)

.clmonth td.previous, .clmonth td.next {
  background-color: #f6f6f6;
  color: #c6c6c6;
}

.clmonth td.active {
  background-color: #b1cbe1;
  color: #2b5070;
  border: 2px solid #4682b4;
}

This is just one of many ways to create a calendar. Online calendars are commonly

used on blogs, where they have clickable days, and visitors can view entries made

that month. By removing the events from our HTML markup, representing the day

names with single letters—M for Monday, and so on—and making a few simple

changes to our CSS, we can create a simple mini calendar that’s suitable for this

purpose, like the one shown in Figure 5.18.

Figure 5.18. Creating a mini calendar

Here’s the HTML and CSS you’ll need to create this version of the calendar:

The CSS3 Anthology210



chapter_05/cal_mini.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 5: mini calendar</title>
  <link rel="stylesheet" href="cal_mini.css" />
</head>
<body>
  <div class="wrapper">
    <table class="clmonth">
      <caption>November 2011</caption>
      <tr>
        <th scope="col">M</th>
        <th scope="col">T</th>
        <th scope="col">W</th>
        <th scope="col">T</th>
        <th scope="col">F</th>
        <th scope="col">S</th>
        <th scope="col">S</th>
      </tr>
      <tr>
        <td class="previous">31</td>
        <td class="active">1</td>
        <td>2</td>
        <td>3</td>
        <td>4</td>
        <td>5</td>
        <td>6</td>
      </tr>
      <tr>
        <td class="active">7</td>
        <td>8</td>
        <td>9</td>
        <td>10</td>
        <td>11</td>
        <td>12</td>
        <td>13</td>
      </tr>
      <tr>
        <td>14</td>
        <td>15</td>
        <td>16</td>
        <td class="active">17</td>

211Tabular Data



        <td class="active">18</td>
        <td>19</td>
        <td>20</td>
      </tr>
      <tr>
        <td>21</td>
        <td>22</td>
        <td>23</td>
        <td class="active">24</td>
        <td>25</td>
        <td>26</td>
        <td>27</td>
      </tr>
      <tr>
        <td>28</td>
        <td>29</td>
        <td class="active">30</td>
        <td class="next">1</td>
        <td class="next">2</td>
        <td class="next">3</td>
        <td class="next">4</td>
      </tr>
    </table>
  </div>
</body>
</html>

chapter_05/cal_mini.css

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.clmonth {
  border-collapse: collapse;

The CSS3 Anthology212



}

.clmonth caption {
  text-align: left;
  font-weight: bold;
  font-size: 116.7%;
  padding-bottom: 0.4em;
}

.clmonth th {
  border: 1px solid #aaa;
  border-bottom: none;
  padding: 0.2em 0.4em 0.2em 0.4em;
  background-color: #ccc;
  color: #3f3f3f;
}

.clmonth td {
  border: 1px solid #eaeaea;
  padding: 0.2em 0.4em 0.2em 0.4em;
  vertical-align: top;
}

.clmonth td.previous, .clmonth td.next {
  background-color: #f6f6f6;
  color: #c6c6c6;
}

.clmonth td.active {
  background-color: #b1cbe1;
  color: #2b5070;
  border: 2px solid #4682b4;
}

How do I create a pricing table?
Pricing tables are a customary feature of websites offering a range of pricing plans.

We can have a look at a common example—a pricing table for a web-hosting com-

pany—to see how we can combine some of tricks we’ve covered in this chapter to

style a more complicated table.

213Tabular Data



Solution
The table in Figure 5.19 is created using the following markup and CSS:

Figure 5.19. A pricing table

chapter_05/pricing.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 5: pricing table example</title>
  <link rel="stylesheet" href="pricing.css" />
</head>
<body>
  <div class="wrapper">
    <table class="pricing">
      <col />
      <col />
      <col />
      <col />

The CSS3 Anthology214



      <col />
      <tr>
        <td></td>
        <th scope="col">Starter
        <span class="price">$5.99</span></th>
        <th scope="col">Pro 1
        <span class="price">$7.99</span></th>
        <th scope="col">Pro 2
        <span class="price">$11.99</span></th>
        <th scope="col">Reseller
        <span class="price">$19.99</span></th>
      </tr>
      <tr>
        <th scope="row">Disk Space</th>
        <td>4 GB</td>
        <td>6 GB</td>
        <td>8 GB</td>
        <td>12 GB</td>
      </tr>
      <tr>
        <th scope="row">Bandwidth (per month)</th>
        <td>25 GB</td>
        <td>50 GB</td>
        <td>75 GB</td>
        <td>100 GB</td>
      </tr>
      <tr>
        <th scope="row">Websites</th>
        <td>1</td>
        <td>1</td>
        <td>3</td>
        <td>10</td>
      </tr>
      <tr>
        <th scope="row">MySQL Databases</th>
        <td>5</td>
        <td>10</td>
        <td>20</td>
        <td>50</td>
      </tr>
      <tr>
        <th scope="row">Domains</th>
        <td>1</td>
        <td>unlimited</td>
        <td>unlimited</td>

215Tabular Data



        <td>unlimited</td>
      </tr>
    </table>
  </div>
</body>
</html>

chapter_05/pricing.css

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 1em/1.4 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

.pricing {
  border-collapse: collapse;
}

.pricing col {
  width: 7em;
}

.pricing col:first-child {
  width: auto;
}

.pricing td {
  color: rgb(51,51,51);
  border: 1px solid rgb(255,255,255);
  padding: 0.75em;
}

.pricing tr:nth-child(odd) {
  background-color: rgb(246,246,246);
}

The CSS3 Anthology216



.pricing tr:nth-child(odd):hover td {
  background-color: rgba(59,87,98,.2);
}

.pricing tr:nth-child(even) {
  background-color: rgba(246,246,246,.5);
}

.pricing tr:nth-child(even):hover td {
  background-color: rgba(91,124,121,.2);
}

.pricing tr:first-child, .pricing tr:first-child:hover td {
  background-color: transparent;
}

.pricing th[scope="col"] {
  background-color: rgb(59,87,98);
  color: rgb(255,255,255);
  border: 1px solid rgb(255,255,255);
  font-weight: normal;
  padding: 0.75em;
  -moz-border-radius-topleft: 10px;
  -moz-border-radius-topright: 10px;
  -moz-border-radius-bottomright: 0px;
  -moz-border-radius-bottomleft: 0px;
  -webkit-border-radius: 10px 10px 0px 0px;
  border-radius: 10px 10px 0px 0px;
  text-shadow: 1px 1px 3px #111111;
}

.pricing th[scope="col"]:nth-child(odd) {
  background-color: rgb(91,124,121);
}

.pricing th span.price {
  display: block;
  padding: 0.2em 0 0 0;
  font-size: 87.5%;
  font-weight: bold;
}

.pricing th[scope="row"] {
  background-color: rgb(232,232,232);
  color: rgb(0,0,0);

217Tabular Data



  border: 1px solid rgb(255,255,255);
  padding: 0.75em;
  font-weight: normal;
  text-align: left;
}

.pricing tr:nth-child(odd) th[scope="row"] {
  background-color: rgba(232,232,232,.5);
}

Discussion
This solution really pulls together much of what we’ve covered in this chapter. I

start out with my pricing information marked up as a table. The table has headers

(th elements) across the top and down the left-hand side; I’ve used the scope attribute

to explain which fields the headers are for, and this attribute becomes useful once

we start to add CSS.

In my CSS, the first task is set border-collapse to collapse, and then use the col

element to give my columns a width. After setting all the columns to 7em, I then

use first-child to target the very first column and set the width back to auto, al-

lowing the longer headers to take up more space:

chapter_05/pricing.css (excerpt)

.pricing {
  border-collapse: collapse;
}

.pricing col {
  width: 7em;
}

.pricing col:first-child {
  width: auto;
}

I next look at the td elements within my table—adding a color, border, and padding:

The CSS3 Anthology218



chapter_05/pricing.css (excerpt)

.pricing td {
  color: rgb(51,51,51);
  border: 1px solid rgb(255,255,255);
  padding: 0.75em;
}

I’ve yet to give my td elements a background color as I’m going to set this on the

rows using nth-child to create a striped table effect:

chapter_05/pricing.css (excerpt)

.pricing tr:nth-child(odd) {
  background-color: rgb(246,246,246);
}

.pricing tr:nth-child(even) {
  background-color: rgba(246,246,246,.5);
}

If we take a look at the table now, we can see this effect:

Figure 5.20. After styling columns, cells, and rows

219Tabular Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



I am now going to look at the headings for the columns. These can be targeted sep-

arately from the th elements down the left-hand side by using an attribute selector

and looking for scope="col". I’m styling my headings to look a bit like tabs by using

border-radius to round the top corners, and adding a text shadow to the text. Then

I use nth-child to select every other heading for a different background-color.

Finally, I style the span element within each heading that contains the pricing in-

formation:

chapter_05/pricing.css (excerpt)

.pricing th[scope="col"] {
  background-color: rgb(59,87,98);
  color: rgb(255,255,255);
  border: 1px solid rgb(255,255,255);
  font-weight: normal;
  padding: 0.75em;
  -moz-border-radius-topleft: 10px;
  -moz-border-radius-topright: 10px;
  -moz-border-radius-bottomright: 0px;
  -moz-border-radius-bottomleft: 0px;
  -webkit-border-radius: 10px 10px 0px 0px;
  border-radius: 10px 10px 0px 0px;
  text-shadow: 1px 1px 3px #111111;
}

.pricing th[scope="col"]:nth-child(odd) {
  background-color: rgb(91,124,121);
}

.pricing th span.price {
  display: block;
  padding: 0.2em 0 0 0;
  font-size: 87.5%;
  font-weight: bold;
}

I can now take a look at the headings down the left, selecting these with an attribute

selector and adding some style information. Again, I’m using nth-child to stripe

these heading rows:

The CSS3 Anthology220



chapter_05/pricing.css (excerpt)

.pricing th[scope="row"] {
  background-color: rgb(232,232,232);
  color: rgb(0,0,0);
  border: 1px solid rgb(255,255,255);
  padding: 0.75em;
  font-weight: normal;
  text-align: left;
}

.pricing tr:nth-child(odd) th[scope="row"] {
  background-color: rgba(232,232,232,.5);
}

Now for some final touches. On :hover of a table row, I change the rgba alpha value

of the td to give a visual indication of the rollover:

chapter_05/pricing.css (excerpt)

.pricing tr:nth-child(odd):hover td {
  background-color: rgba(59,87,98,.2);
}

.pricing tr:nth-child(even):hover td {
  background-color: rgba(91,124,121,.2);
}

A final rule removes the background color from the heading row, both on the tr

and on the td when hovered, so that no background color displays behind the tabs:

chapter_05/pricing.css (excerpt)

.pricing tr:first-child, .pricing tr:first-child:hover td {
  background-color: transparent;
}

The nice aspect about this solution is that I’ve had no need to add very much in the

way of classes or additional markup to be able to style it. I’ve used the correct

markup for a table, and then used that markup as a way to attach CSS to the table

to make it look appealing.

221Tabular Data



Tables Topped
In this chapter, we’ve discovered that tables are alive and well—when used for their

original purpose of displaying tabular data, that is! CSS gives you the ability to turn

data tables into really attractive interface items, without negatively impacting their

accessibility. So, please, embrace tables and use them to display tabular data—that’s

their job!

The CSS3 Anthology222



Chapter6
Forms and User Interfaces
Forms are an inescapable part of web design and development. We use them to

capture information from our users, to post information to message boards, to add

items to shopping carts, and to update our blogs—to name but a few.

CSS gives us plenty of options with which to style our forms; however, forms are

unlike the other HTML elements that we’ve encountered so far. Form elements—for

example, fields, buttons, and any other input element—are included as a “replaced

element” in the spec. Replaced elements are those whose appearance is defined by

an external source. In the case of form elements, this is the browser or operating

system UI. Due to this, user agents can provide interface controls that best suit the

environment they’re running in; for example, a browser on a phone may deal with

a select list in a different way from a desktop browser. This is helpful in terms of

usability, in that a user grows used to the control offered by the device they’re using;

however, it can be frustrating to web designers who feel they should have more

control over these interface elements.

Since this book’s last edition, new form elements and attributes that are part of

HTML5 have become included in browsers, offering their own styling opportunities



and challenges. In this chapter, we’ll explore some of the ways we can create attract-

ive forms without compromising their usability across different devices.

How do I lay out a form with CSS?
While you may still sometimes see a form laid out using a table, it’s straightforward

to lay out your forms using CSS, as the following example shows.

Solution
The form layout in Figure 6.1 is created using the following markup and CSS:

chapter_06/form.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 6: Styling a form</title>
  <link rel="stylesheet" href="form.css" />
</head>
<body>
  <div class="wrapper">
    <form method="post" action="/contact" id="contact-form">
      <div>
        <label for="fName">Name</label>
        <input type="text" name="fName" id="fName" required=
          "required" />
      </div>
      <div>
        <label for="fEmail">Email address</label>
        <input type="text" name="fEmail" id="fEmail" />
      </div>
      <div>
        <label for="fQuestion">Question / Comments</label>
        <textarea name="fQuestion" id="fQuestion" rows="10" 
          cols="30"></textarea>
      </div>
      <div class="submit">
        <input type="submit" name="contact-submit" 
          id="contact-submit" value="Submit" />
      </div>
    </form>

The CSS3 Anthology224



  </div>
</body>
</html>

chapter_06/form.css

body {
  background-color: #fff;
  color: #111;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
}

form {
  width: 400px;
}

form div {
  float: left;
  width: 400px;
  padding: 0 0 0.75em 0;
}

form label {
  float: left;
  width: 120px;
}

form textarea, form input {
  float: right;
  width: 260px;
}

form input[type="submit"] {
  float: none;
  width: auto;
}

225Forms and User Interfaces



form div.submit {
  text-align: right;
}

Figure 6.1. A simple form laid out using CSS

Discussion
Our form consists of div elements containing a label and field pair. The label is

linked to the form field using the ID of the field:

chapter_06/form.html (excerpt)

<div>
  <label for="fName">Name</label>
  <input type="text" name="fName" id="fName" required="required" />
</div>

Without any CSS applied, the form will look as in Figure 6.2.

The CSS3 Anthology226



Figure 6.2. The unstyled form

First, I give the form a width and then float the label element left:

chapter_06/form.css (excerpt)

form {
  width: 400px;
}

form div {
  float: left;
  width: 400px;
  padding: 0 0 0.75em 0;
}

form label {
  float: left;
  width: 120px;
}

Immediately the form starts to look better, as you can see in Figure 6.3.

227Forms and User Interfaces



Figure 6.3. After styling the div and label elements

I now want to give my text input elements and textarea a width, which I can do

with the following rule:

form textarea, form input {
  float: right;
  width: 260px;
}

Unfortunately, this has an unwanted effect, as you can see in Figure 6.4.

The CSS changes the Submit button, because we’re targeting the input element and

the Submit button is also an input element with a type of submit.

The CSS3 Anthology228



Figure 6.4. The CSS affects the Submit button in addition to the test input element

To sort this out, we can use an attribute selector to address the Submit button and

overwrite the CSS used for input. I have also used the class applied to the div

surrounding the Submit button to right-align the button. This gives us our completed

form:

chapter_06/form.css (excerpt)

form input[type="submit"] {
  float: none;
  width: auto;
}

form div.submit {
  text-align: right;
}

Using the :not pseudo-class

Rather than overwriting the CSS using an attribute selector, we could also choose

to use the :not pseudo-class. The following code would target input elements

as long as they weren’t a type of submit:

229Forms and User Interfaces



form textarea, form input:not([type="submit"]) {
  float: right;
  width: 260px;
}

I chose to use the attribute selector method due to there being better browser

support.

Can I change the look and feel of form
elements with CSS?
In the previous example, we set widths on the form elements, but it’s possible to

style them in other ways, too.

Solution
Using the same markup as before, I’ve added some additional styling to my form

elements:

chapter_06/form2.css (excerpt)

form {
  width: 400px;
}

form div {
  float: left;
  width: 400px;
  padding: 0 0 0.75em 0;
}

form label {
  float: left;
  width: 120px;
}

form textarea, form input {
  float: right;
  width: 250px;
  border-top: 1px solid #999;
  border-right: 1px solid #ccc;
  border-bottom: 1px solid #cfcfcf;

The CSS3 Anthology230



  border-left: 1px solid #cfcfcf;
  -webkit-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  padding: 4px;
}

form input[type="submit"] {
  float: none;
  width: auto;
  padding: 0.25em;
  -webkit-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  font-size: 125%;
  -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px; 
}

form div.submit {
  text-align: right;
}

The new styles can be seen in Figure 6.5.

Figure 6.5. The form, now with added style

231Forms and User Interfaces



Discussion
I’ve used CSS to add a border to the input elements in my form. By using different

shades for the borders, I can create a beveled effect. I’ve added to this effect by using

box-shadow as an inset shadow; this creates the shadow inside the element rather

than outside:

chapter_06/form2.css (excerpt)

form textarea, form input {
  float: right;
  width: 250px;
  border-top: 1px solid #999;
  border-right: 1px solid #ccc;
  border-bottom: 1px solid #cfcfcf;
  border-left: 1px solid #cfcfcf;
  -webkit-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  padding: 4px;
}

For the submit button, I’ve used border-radius to round the corners, and added a

box-shadow, this time to fall outside the element.

The font size of the text inside this button has also been increased:

chapter_06/form2.css (excerpt)

form input[type="submit"] {
  float: none;
  width: auto;
  padding: 0.25em;
  -webkit-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  font-size: 125%;
  -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px; 
}

The CSS3 Anthology232

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



You can set many properties that affect the look and feel of form fields, but it will

depend on the browser and operating system as to what can actually be applied.

As replaced elements, form fields don’t have to take on the CSS provided by the

author. This means that you do need to test form elements very carefully across

browsers and devices. Personally, I feel that less is more when it comes to styling

forms, so I tend to leave the elements alone as much as I can. Instead, I concentrate

on providing good help text and error messaging to make the forms as usable as

possible.

How do I highlight a field when the user
tabs into or clicks on it?
It’s a nifty effect to highlight a field when it has focus and is ready to be typed in.

Solution
The effect we can see in Figure 6.6 is created by adding rules for the :focus dynamic

pseudo-class to our stylesheet. I’m using the same markup as used in the previous

example:

chapter_06/form-highlight.css (excerpt)

form {
  width: 400px;
}

form div {
  float: left;
  width: 400px;
  padding: 0 0 0.75em 0;
}

form label {
  float: left;
  width: 120px;
}

form textarea, form input {
  float: right;
  width: 250px;
  border-top: 1px solid #999;

233Forms and User Interfaces



  border-right: 1px solid #ccc;
  border-bottom: 1px solid #cfcfcf;
  border-left: 1px solid #cfcfcf;
  -webkit-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  padding: 4px;
}

form textarea:focus, form input:focus {
  background-color: #adb3c5;
}

form input[type="submit"] {
  float: none;
  width: auto;
  padding: 0.25em;
  -webkit-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  font-size: 125%;
  -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px; 
}

form input[type="submit"]:focus {
  background-color: #fbef8e;
}

form div.submit {
  text-align: right;
}

The CSS3 Anthology234



Figure 6.6. Highlighting a form field on focus

Discussion
We can simply use the :focus pseudo-class to target the field when it has focus,

meaning it is ready to be used; for example, entering text into a text field, making

a selection using a select box, or clicking a button. Some browsers may implement

something like this effect natively.

This gives the user a nice way to see where they are in the form. Such feedback may

be helpful when they’re working with a very long or complex form.

What additional elements and attributes
are part of the HTML5 forms spec?
We’ve so far looked at some fairly basic form elements. These elements have been

in the HTML specification for a long time without much changing about them.

HTML5 has brought with it some new form elements and attributes, and con-

sequently a much richer interface to form-based web applications.

235Forms and User Interfaces



Many of the new elements react poorly to attempts at styling them with CSS; they

rely heavily on the UI provided by the operating system or browser. The new attrib-

utes are interesting, though, for the front-end developer or designer as they offer

some additional aspects we can target using CSS.

Solution
A practical example of HTML5 in forms can be seen by making a small change to

our existing contact form markup: changing the email field from type="text" to

the HTML5 type—type="email", adding a placeholder attribute with some

placeholder text, and setting a required flag, indicating that the field is a required

field:

chapter_06/form-html5.html (excerpt)

<form method="post" action="/contact" id="contact-form">
  <div>
    <label for="fName">Name</label>
    <input type="text" name="fName" id="fName"
      required="required" />
  </div>

<div>
    <label for="fEmail">Email address</label>
    <input type="email" name="fEmail" id="fEmail" 
      required="required" 
      placeholder="name@example.com" />
  </div>

  <div>
    <label for="fQuestion">Question / Comments</label>
    <textarea name="fQuestion" id="fQuestion" rows="10" cols="30">
      </textarea>
  </div>

  <div class="submit">
    <input type="submit" name="contact-submit" id="contact-submit" 
      value="Submit" />
  </div>
</form>

The CSS3 Anthology236



You can see that the value of the placeholder attribute—name@example.com, an

example of a valid email address in Figure 6.7—is inside the form field on load of

the form. Otherwise, the form looks much the same.

Figure 6.7. The form after adding an input field with a type of email

In a supporting browser, however, if you try and submit the form without completing

the fields, or if you enter something other than an email address in the email field,

you’ll receive a validation error message, as shown in Figure 6.8 below. This all

happens through the browser with no JavaScript required.

237Forms and User Interfaces



Figure 6.8. Opera shows the validation messages when the form is submitted without completing it correctly

At the time of writing, Safari and IE9 does not support required, while Opera,

Chrome, and Firefox do. This situation is likely to change fairly quickly, though,

so you may find by the time you read this that all the mainstream browsers support

this feature.

Discussion
The new HTML5 elements and attributes offer a lot of potential to those of us who

develop web applications and need to use forms frequently. The prospect of being

able to do client-side validation simply by adding the relevant HTML element is

very appealing, and by using built-in browser handling for this validation, we use

a feature that users will be accustomed to—once there’s good browser support.

In our solution, we looked at the use of the required attribute to perform client-

side validation; however, these new built-in browser validation techniques should

never suffice alone for testing user input. It’s still essential you validate any input

from your form with server-side code, just as you would when using JavaScript

validation functions. Currently, bypassing the HTML5 required field just needs

the user to be using Internet Explorer 9, because it doesn’t support required and

so allows the user to submit the form.

The CSS3 Anthology238



The required attribute is ignored by browsers without support for it, so there’s no

harm in using it. You could even inspect the input field using JavaScript to see if

it’s required and, for browsers without support for HTML5 form validation, create

your own JavaScript validation.

Can we style the validation messages using CSS?
The question that may now be in your mind is whether we can style the messages

that appear, and the answer is: not in any standard way, although browser vendors

themselves may have their own pseudo-classes that you can apply CSS to. These

messages are generated by the operating system and browser, so they take on a default

style. This is good in some ways, as it enables people to become used to these

messages and how they look and act; however, it may be frustrating to designers

who find the alerts ugly—there’s certainly a difference between browsers. Figure 6.9

reveals the same form, this time in Firefox on OS X.

Figure 6.9. The form alerts in Firefox

239Forms and User Interfaces



Form Input Types
The type="email" used for the email field is one of the new values for the type

attribute brought to us by HTML5 forms. What’s good about these new input types

is that where browsers fail to recognize one, they just display a regular text input.

In the case of our email field, a browser without support for type="email" simply

treats this as type="text". While there’s no additional format validation, the data

is collected as normal and any error is caught by your server-side validation routine.

The email input type is quite well supported, however. The full list of input types

can be seen in Table 6.1.

Table 6.1. HTML5 form input type values

Input device / validationtype=""

takes on the look and feel of an operating system search elementsearch

is a text field input for telephone numbers (no syntax is enforced and

telephone numbers vary worldwide)

tel

is a text field input validating that the format is a URLurl

is a text field input validating that the format is an email addressemail

displays a date and time pickerdatetime

displays a date pickerdate

displays a date picker that allows selection of a month onlymonth

displays a date picker that allows selection of a week onlyweek

displays a time pickertime

displays a date and time pickerdatetime-local

displays a widget that allows you to increment a numbernumber

displays a range slider selectorrange

presents a color-picker widgetcolor

Support for these types is fairly patchy. Opera typically has the most advanced

support. Figure 6.10 and Figure 6.11 show Opera with the number, date, and color

values.

The CSS3 Anthology240



Figure 6.10. The date picker active

Figure 6.11. The color picker active

241Forms and User Interfaces



Can I style input elements based on
their validity?
Knowing that an element is required can obviously be useful, as we saw in the

previous solution, let alone knowing whether the element has an error or is valid.

Can we access these states using CSS?

Solution
The CSS3 Basic User Interface Module outlines several dynamic pseudo-classes

that we can use to detect the various states of a field as it’s interacted with by the

user:

chapter_06/form-validation.html (excerpt)

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 6: Form validation</title>
  <link rel="stylesheet" href="form-validation.css" />
</head>
<body>
  <div class="wrapper">
    <form method="post" action="/contact" id="contact-form">
      <div>
        <label for="fName">Name</label>
        <input type="text" name="fName" id="fName" 
          required="required" />
      </div>
      <div>
        <label for="fEmail">Email address</label>
        <input type="email" name="fEmail" id="fEmail" 
          required="required" placeholder="name@example.com" />
      </div>
      <div>
        <label for="fQuestion">Question / Comments</label>
        <textarea name="fQuestion" id="fQuestion" rows="10" 
          cols="30"></textarea>
      </div>
      <div class="submit">
        <input type="submit" name="contact-submit" 
          id="contact-submit" value="Submit" />

The CSS3 Anthology242



      </div>
    </form>
  </div>
</body>
</html>

chapter_06/form-validation.css (excerpt)

form {
  width: 400px;
}

form div {
  float: left;
  width: 400px;
  padding: 0 0 0.75em 0;
}

form label {
  float: left;
  width: 120px;
}

form textarea, form input {
  float: right;
  width: 250px;
  border-top: 1px solid #999;
  border-right: 1px solid #ccc;
  border-bottom: 1px solid #cfcfcf;
  border-left: 1px solid #cfcfcf;
  -webkit-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  padding: 4px;
}

input:focus:required:invalid {
  background-image: url(error.png);
  background-position: 98% center;
  background-repeat: no-repeat;
}

input:required:valid {
  background-image: url(accept.png);
  background-position: 98% center;

243Forms and User Interfaces



  background-repeat: no-repeat;
}

input[type="email"]:focus:required:invalid {
  background-image: url(email_error.png);
}

form input[type="submit"] {
  float: none;
  width: auto;
  padding: 0.25em;
  -webkit-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  font-size: 125%;
  -webkit-border-radius: 3px;
  -moz-border-radius: 3px;
  border-radius: 3px; 
}

form div.submit {
  text-align: right;
}

You can see the text input field containing invalid input styled in Figure 6.12, and

valid input styled in Figure 6.13.

The CSS3 Anthology244



Figure 6.12. The field is invalid or incomplete

Figure 6.13. The field is valid

245Forms and User Interfaces

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Discussion
We can style our fields using UI pseudo-classes in exactly the same way we use the

dynamic pseudo-class :hover to target the hover state of a link. The pseudo-classes

defined in the Basic User Interface Module are:

■ :default

■ :valid

■ :invalid

■ :in-range

■ :out-of-range

■ :required

■ :optional

■ :read-only

■ :read-write

In this solution, we’re looking at the valid and invalid pseudo-classes as they

apply to our form fields. The first field—fName—is valid if any text is entered in

the field:

chapter_06/form-validation.html (excerpt)

<div>
  <label for="fName">Name</label>
  <input type="text" name="fName" id="fName" required="required" />
</div>

The second field is only valid if a correctly formatted email address is entered into

the field:

<div>
  <label for="fEmail">Email address</label>
  <input type="email" name="fEmail" id="fEmail" required=
    "required" placeholder="name@example.com" /></div>

In the CSS, I start by creating rules for text fields that are set to required:

The CSS3 Anthology246



chapter_06/form-validation.css (excerpt)

input:focus:required:invalid {
  background-image: url(error.png);
  background-position: 98% center;
  background-repeat: no-repeat;
}

input:required:valid {
  background-image: url(accept.png);
  background-position: 98% center;
  background-repeat: no-repeat;
}

The first slightly long-winded selector selects input elements that are focused (the

user has tabbed or clicked into them), set to required, and invalid. This means that

the invalid icon won’t show when the user first arrives at the form—only once they

start completing an input.

The second targets any input element that’s required and valid. I’ve chosen not to

set these to only show on focus. This is because it’s comforting to see the confirma-

tion that your input is correct, so they’ll stay after the user clicks out of the field

once it’s completed it correctly. Next, I’m going to update the code to react differently

when a field has a type of email. I’ll use an attribute selector to target this field and

use a different icon:

input[type="email"]:focus:required:invalid {
  background-image: url(email_error.png);
}

So an invalid email field shows a little envelope with an error icon. Here you can

see how simple it is to stack up your selectors so that they target elements precisely.

Required Information

This nifty technique will enhance your forms for the users who can see the icons;

however, you should never rely on this or any other purely visual method to inform

users that a field is required. A user who relies on a screen reader will be unaware

that the icon is changing.

247Forms and User Interfaces



In time, I hope that screen readers will support the HTML5 required attribute

and relay that information to the user, but until they do we need to provide this

information ourselves. See the solution at the end of this chapter for details of

how we can make our forms accessible while also making them attractive.

How do I group related fields?
We can group form fields logically using a fieldset, and then style the fieldset

element to make the end result more attractive.

Solution
The form in Figure 6.14 comprises two fieldsets:

chapter_06/fieldsets.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 6: grouping data with fieldsets</title>
  <link rel="stylesheet" href="fieldsets.css" />
</head>
<body>
  <div class="wrapper">
    <form method="post" action="/contact" id="contact-form">
      <p class="help">Please complete the form to register.
        Required fields are indicated by a <em>*</em>.</p>
      <fieldset>
        <legend>Create an account</legend>
        <div>
          <label for="fName">Name <em>*</em></label>
          <input type="text" name="fName" id="fName" 
            required="required" />
        </div>
        <div>
          <label for="fEmail">Email address <em>*</em></label>
          <input type="email" name="fEmail" id="fEmail" 
            required="required" placeholder="name@example.com" />
        </div>
        <div>
          <label for="fPassword">Password <em>*</em></label>
          <input type="text" name="fPassword" id="fPassword" 
            required="required" />

The CSS3 Anthology248



        </div>
        <div>
          <label for="fPassword2">Confirm password <em>*</em>
            </label>
          <input type="text" name="fPassword2" id="fPassword2" 
            required="required" />
        </div>
      </fieldset>
      <fieldset>
        <legend>Your address</legend>
        <div>
          <label for="fAddress1">Address Line 1 <em>*</em>
            </label>
          <input type="text" name="fAddress1" id="fAddress1" 
            required="required" />
        </div>
        <div>
          <label for="fAddress2">Address Line 2</label>
          <input type="text" name="fAddress2" id="fAddress2" />
        </div>
        <div>
          <label for="fCity">Town / City <em>*</em></label>
          <input type="text" name="fCity" id="fCity" 
            required="required" />
        </div>
        <div>
          <label for="fPostalCode">Zip / Post Code <em>*</em>
            </label>
          <input type="text" name="fPostalCode" id="fPostalCode" 
            required="required" />
        </div>
      </fieldset>
      <div class="submit">
        <input type="submit" name="contact-submit" 
          id="contact-submit" value="Submit" />
      </div>
    </form>
  </div>
</body>
</html>

249Forms and User Interfaces



chapter_06/fieldsets.css (excerpt)

form {
  background-color: rgb(244,252,232);
  width: 500px;
  padding: 1em;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
}

fieldset {
  background-color: rgba(126,208,214,0.3);
  border: 3px solid rgb(255,255,255);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
}

fieldset:hover {
  background-color: rgba(126,208,214,0.5);
}

legend {
  font-size: 133%;
}

form div {
  float: left;
  width: 100%;
  padding: 0 0 0.75em 0;
  position: relative;
}

form p.help {
  font-style: italic;
  padding: 0 1em 1em 1em;
}

form p.help em {
  color: red;
}

form fieldset div:first-of-type {

The CSS3 Anthology250



  padding-top: 1em;
}

form label {
  float: left;
  width: 30%;
  font-size: 116.7%;
}

form div label em {
  position: absolute;
  color: red;
  right: 0;
}

form input {
  width: 65%;
  font-size: 133%;
  border: 0;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  padding: 0.25em;
}

div.submit {
  float: none;
  background-color: rgba(126,208,214,0.3);
  border: 3px solid rgb(255,255,255);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
  padding: 0.5em 0 0.5em 0;
  text-align: center;
}

form input[type="submit"] {
  width: auto;
  border: 3px solid rgb(126,208,214);
  background-color: rgba(78,150,137,0.5);
  color: rgb(255,255,255);
}

251Forms and User Interfaces



form input[type="submit"]:hover {
  background-color: rgb(78,150,137);
}

Figure 6.14. A finished form

Discussion
We start out with a marked-up form comprising two sections of information: basic

account information and address details. In Figure 6.15, you can see the form without

any CSS applied, and the two fieldsets clear—if a bit ugly—with a gray border.

The CSS3 Anthology252



Figure 6.15. The form without any CSS

I start by styling the form, giving it a background color and some rounded corners.

I’m also using padding to provide a bit of space between the edge of the form and

the fieldsets within it:

chapter_06/fieldsets.css (excerpt)

form {
  background-color: rgb(244,252,232);
  width: 500px;
  padding: 1em;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
}

Then I style the fieldsets by giving them a chunky rounded border. You can remove

the borders altogether, but I want to maintain the visual distinction between the

sections in my form. As an extra touch, I’m using :hover on the fieldset element

to change the alpha value of my RGBA color when the user moves their pointer to

that fieldset. After making these changes, my form now displays as in Figure 6.16:

253Forms and User Interfaces



chapter_06/fieldsets.css (excerpt)

fieldset {
  background-color: rgba(126,208,214,0.3);
  border: 3px solid rgb(255,255,255);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
}

fieldset:hover {
  background-color: rgba(126,208,214,0.5);
}

Figure 6.16. After styling the form and fieldset

The legend element is a label for the fieldset. I’m increasing the size of this to

make it more of a heading:

The CSS3 Anthology254



chapter_06/fieldsets.css (excerpt)

legend {
  font-size: 133%;
}

I can then style the div elements within the fieldsets—just as we have for the

other solutions in this chapter. The CSS3 selector first-of-type is being used to

add some extra padding to the top of the first div element:

chapter_06/fieldsets.css (excerpt)

form div {
  float: left;
  width: 100%;
  padding: 0 0 0.75em 0;
}

form fieldset div:first-of-type {
  padding-top: 1em;
}

Then I float my labels left and style the input elements:

chapter_06/fieldsets.css (excerpt)

form label {
  float: left;
  width: 30%;
  font-size: 116.7%;
}

form input {
  width: 65%;
  font-size: 133%;
  border: 0;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  padding: 0.25em;
}

255Forms and User Interfaces



Finally, I style the div wrapping the Submit button in a similar way to the fieldset

elements. I also align the contents of the div center so that the Submit button now

displays centrally.

As with the forms earlier in this chapter, I’m using an attribute selector to target the

Submit button and give it appropriate styles:

chapter_06/fieldsets.css (excerpt)

div.submit {
  float: none;
  background-color: rgba(126,208,214,0.3);
  border: 3px solid rgb(255,255,255);
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
  margin: 0 0 1em 0;
  padding: 0.5em 0 0.5em 0;
  text-align: center;
}

form input[type="submit"] {
  width: auto;
  border: 3px solid rgb(126,208,214);
  background-color: rgba(78,150,137,0.5);
  color: rgb(255,255,255);
}

form input[type="submit"]:hover {
  background-color: rgb(78,150,137);
}

In Figure 6.17, you can see that an asterisk is used to indicate required fields in the

form. This appears as part of the label element so that—in the case of a user using

a screen reader—the required status of the field will be read out, along with the label

for the field.

The CSS3 Anthology256



Figure 6.17. Our form is almost complete

For users with a regular web browser, however, I think the asterisk is better when

placed visually after the form field, so that they all line up. I can use a technique

described on Simply Accessible to achieve this.1

First, I need to add position: relative to the containing div (we will discuss

relative and absolute positioning fully in Chapter 8). This simply means that we

can now position content inside this div relative to it as a container:

1 http://simplyaccessible.com/article/required-form-fields/

257Forms and User Interfaces

http://simplyaccessible.com/article/required-form-fields/


chapter_06/fieldsets.css (excerpt)

form div {
  float: left;
  width: 100%;
  padding: 0 0 0.75em 0;
position: relative;

}

The asterisk is wrapped in an em element (for emphasis). I can use this and position

it absolute to the right-hand side of the containing div element:

chapter_06/fieldsets.css (excerpt)

form div label em {
  position: absolute;
  color: red;
  right: 0;
}

I then style the help text at the top of the form so that the asterisk character looks

the same there:

chapter_06/fieldsets.css (excerpt)

form p.help {
  font-style: italic;
  padding: 0 1em 1em 1em;
}

form p.help em {
  color: red;
}

This is a slightly more complex form, but it shows how we can use the semantic

form elements to create appealing designs using CSS.

The CSS3 Anthology258

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



How do I create a form that reads like a
sentence with inline fields?
Sometimes a short form can be displayed as if the user is filling in the words of a

sentence. You can currently see this effect on the UK BUPA website,2 where users

are asked to complete a few details in order to obtain a quote.

Figure 6.18. The form to add details for a BUPA quote

How can we create this style of form using CSS?

Solution
The below HTML and CSS creates the form seen in Figure 6.19:

chapter_06/form-inline.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 6: Styling a form</title>
  <link rel="stylesheet" href="form-inline.css" />
</head>
<body>

2 https://www.bupa.co.uk/individuals/health-insurance/quote/quote-process

259Forms and User Interfaces

https://www.bupa.co.uk/individuals/health-insurance/quote/quote-process


  <div class="wrapper">
    <h2>Subscribe</h2>
    <form method="post" action="/contact" id="contact-form">
      <p class="helptext">Hello! We need to take a few details to be 
        able to process your subscription. Please fill in the form 
        below - <strong>all fields are required</strong>.</p>
      <p>
        <label for="fName">My name is </label> 
        <input type="text" name="fName" id="fName" 
          required="required" /> 
        and 
        <label for="fEmail">my email address is</label>
        <input type="email" name="fEmail" id="fEmail" 
          required="required" placeholder="name@example.com" /> 
        <label for="fPaymentType">I would like to pay for my 
          subscription using</label>
        <select name="fPaymentType" id="fPaymentType" 
          required="required">
          <option value="">Please select</option>
          <option value="paypal">PayPal</option>
          <option value="creditcard">Credit Card</option>
        </select>.
      </p>
      <div class="submit"><input type="submit" name="contact-submit" 
        id="contact-submit" value="Submit" />
      </div>
    </form>
  </div>
</body>
</html>

chapter_06/form-inline.css (excerpt)

form {
  border: 3px solid #ccc;
  background-color: #fcfcfc;
  padding: 1em;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
}

form p {
  line-height: 2.5;
}

The CSS3 Anthology260



form p.helptext {
  line-height: 1.4;
  font-style: italic;
}

form input {
  border-top: 1px solid #999;
  border-right: 1px solid #ccc;
  border-bottom: 1px solid #cfcfcf;
  border-left: 1px solid #cfcfcf;
  -webkit-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  -moz-box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset -2px 1px 2px 2px rgba(0, 0, 0, 0.1); 
  padding: 4px;
}

input:focus:required:invalid {
  background-image: url(error.png);
  background-position: 98% center;
  background-repeat: no-repeat;
}

input:required:valid {
  background-image: url(accept.png);
  background-position: 98% center;
  background-repeat: no-repeat;
}

input[type="email"]:focus:required:invalid {
  background-image: url(email_error.png);
}

form input[type="submit"] {
  width: auto;
  border: 3px solid #ccc;
  background-color: #fff;
  color: #333;
  -webkit-border-radius: 5px;
  -moz-border-radius: 5px;
  border-radius: 5px; 
  font-weight: bold;
}

261Forms and User Interfaces



Figure 6.19. A form displayed as a paragraph with “fill in the blanks” fields

Discussion
Forms displayed in this way can seem more friendly than the alternative. In the

case of the health insurance company example, it does seem less imposing answering

a few questions asked as a sentence instead of a more formal-looking application.

In the form markup I’ve ensured that the label element is wrapped around text

that explains what’s required to complete the field. Therefore, each field has an

associated label:

chapter_06/form-inline.html (excerpt)

<label for="fName">My name is </label>
<input type="text" name="fName" id="fName" required="required" />

Without any CSS applied, our form displays as in Figure 6.20. As you can see, we’re

quite close to the end result; our CSS should simply make this form a little easier

to use and more attractive.

The CSS3 Anthology262



Figure 6.20. The form prior to adding CSS

I have then added some rules to the form itself—a border, background color, and

padding:

chapter_06/form-inline.css (excerpt)

form {
  border: 3px solid #ccc;
  background-color: #fcfcfc;
  padding: 1em;
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px; 
}

Then I adjust the line-height on the form paragraphs to space the lines out, making

more room for the fields.

I’d prefer the help text to be more compact, so I adjust that while also setting it to

italic:

chapter_06/form-inline.css (excerpt)

form p {
  line-height: 2.5;
}

263Forms and User Interfaces



form p.helptext {
  line-height: 1.4;
  font-style: italic;
}

The remaining CSS is simply to style the look of the form fields themselves, and

it’s similar to what was used earlier in the chapter.

What should I be aware of in terms of
accessibility when creating forms?
Throughout this chapter, I’ve mentioned many components that are vital when

creating accessible forms, because we do need to take special care to ensure our

user interfaces are accessible to all our users. In this solution, I want to highlight

the most important factors to consider, and I encourage you to keep these in mind

when creating your own form designs.

Solution
The first thing we can do to ensure our forms are accessible is to use the correct

markup. This helps those using screen-reading software make sense of our forms.

The label element, used in all our examples, links the text telling us what goes

into a field with the field itself. This is vital for the screen reader user, who’d other-

wise have no idea what should be put in any given field.

Labels are also helpful for users with a regular browser, as clicking the label will

focus the form field (or make a selection in the case of a checkbox or radio button).

This can make the experience of using a form less fiddly for a user who has trouble

clicking accurately, or for one using an inaccurate touch interface.

In longer forms, grouping related fields using a fieldset with an appropriate legend

element helps to ensure what needs to be inputted in this part of the form. The

visual grouping that can be achieved with CSS may also assist in breaking up the

form so that it’s easier to understand.

The CSS3 Anthology264



Required fields
We discussed required fields earlier in this chapter where we discovered that HTML5

offers a way to flag a field as being required. Ultimately, screen readers may well

catch up with this, and start to announce the required or optional status of a field.

But until we know that browser support is across the board for these attributes, we

need to add to our markup to ensure users know the field is required.

Using CSS alone to indicate that a field is required is insufficient, as screen reader

users aren’t supported. You should also avoid using color as the only way to indicate

a field element is required, as it can be problematic due to the incidence of color-

blindness among users.

In the solution in the section called “How do I group related fields?”, I opted to use

an asterisk to indicate that a field is required. I put this in the label element as,

knowing that the label will be read out as an instruction, this would most likely

ensure the required nature was indicated to a screen reader user. Then in the solution

in the section called “How do I create a form that reads like a sentence with inline

fields?”, I simply stated that all fields were required when introducing the form;

this is an option for short forms where all fields must be completed to submit the

form.

You could also consider adding the ARIA-required flag3 to the element as some

screen readers understand it:

<label for="fName">My name is </label> <input type="text" 
  name="fName" id="fName" required="required" 
aria-required="true" />

WAI-ARIA (Web Accessibility Initiative—Accessible Rich Internet

Applications)
ARIA is a specification developed by the W3C.4 It provides a method for User

Interface widgets in a web application to describe what they are, so that they’re

usable for assistive technology users. ARIA also deals with the issue of updating

3 http://www.alistapart.com/articles/aria-and-progressive-enhancement/
4 http://www.w3.org/TR/wai-aria/

265Forms and User Interfaces

http://www.alistapart.com/articles/aria-and-progressive-enhancement/
http://www.w3.org/TR/wai-aria/


content using AJAX, as this can be particularly problematic to users of assistive

technology. You can read a good Introduction to WAI-ARIA on Dev.Opera.5

In addition to ensuring that screen-reader users understand our forms, we should

also test forms carefully in a range of desktop and mobile browsers, especially where

we’ve added a lot of CSS. As mentioned at the start of the chapter, form elements’

status as replaced content means that they may not take on all of your CSS—and

you can easily end up with very different effects across browsers. Often the most

robust action to take is concentrate on the elements around the fields, rather than

go crazy with the fields themselves.

If you design in Photoshop or similar, you may find that dropping in standard UI

form elements when creating your designs helps you to remember that sometimes

these elements are outside your control, and see them as part of the design. A good

set of these elements can be found at Designers Toolbox.6

You’ve Got Form
In this chapter, we’ve looked at a variety of ways to style forms using CSS, from

simply changing the look of form elements to using CSS to lay forms out. We’ve

seen how CSS can greatly enhance the appearance and usability of forms. We have

also touched on the accessibility of forms for users of alternative devices, and we’ve

seen how, by being careful when marking forms up, you can make it easier for all

visitors to use your site or web application.

5 http://dev.opera.com/articles/view/introduction-to-wai-aria/
6 http://designerstoolbox.com/designresources/elements/

The CSS3 Anthology266

http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://designerstoolbox.com/designresources/elements/


Chapter7
Cross-browser Techniques
At the time of writing this current edition of The CSS Anthology, we’re in an exciting

period of web design and development. The latest versions of browsers have great

support for CSS, including much of CSS3. The majority of techniques shown so far

in this book will work in the most current versions of desktop browsers and most

mobile browsers. Browser manufacturers are working to faster release schedules

and implementing new parts of CSS3 far more swiftly than a few years ago, which

means that we can start experimenting with new features quicker.

With modern browsers, we’re dealing less frequently with browser bugs than we

were in the past. Our issues now tend to center on whether or not a browser supports

a certain feature. However, in the real world there are clients using older browsers

containing significant bugs, as well as a complete lack of support for CSS3. A

question we all need to ask is: how should we balance using CSS3 to create modern

web designs with supporting these older browsers?

This chapter outlines how to create a browser support policy for each site that you

work on, and demonstrates how to provide good experiences for users of older

browsers. We’ll also cover some testing tips, as well as details of some of the main



bugs that come with very old versions of Internet Explorer, so that if you come

across them, you’re able to fix them quickly.

In which browsers should I test my sites?
When I started working in web development, we talked about testing in “both

browsers”—that was Internet Explorer and Netscape. Today, we’re faced with a

large number of browsers and rendering engines.

Solution
The answer is to test your sites in as many browsers as you can. The types of

browsers that you’re able to install will depend on the operating systems to which

you have access. At the very least, you should test in Internet Explorer 6, 7, 8, and

9, as well as the latest versions of Firefox, Opera, Safari, and Chrome. Additionally,

even if you’re not providing a different experience for mobile users, it’s worth

checking how the site behaves on the iPhone, iPad, and other mobile devices,

making sure that everything is usable via a touch interface.

That’s not to say that the site should look identical in all of these browsers. The

experience for an IE6 user could be very different from an IE9 user—but you should

aim to have the content accessible and the site usable.

In the Engine Room

You may have come across the term browser rendering engine. If we conceive of

the browser as the complete software package, including the application interface

and features, the browser rendering engine is the part that interprets the HTML

and CSS, rendering the web pages for you to view and interact with. Some engines

are separate software products that are used by more than one browser. For ex-

ample, the Gecko engine developed by the Mozilla Foundation is used by Firefox,

as well as Camino and the last versions of Netscape Navigator, among others. The

WebKit engine powers Safari and Chrome, and was originally derived from the

KHTML engine that powers the Konqueror web browser on Linux. WebKit is also

particularly interesting as it is the rendering engine behind mobile Safari (used

on iPhones and iPads) and also browsers for Android and modern Blackberry

devices.

You may be thinking that if two browsers use the same rendering engine, you only

need to test in one. While true to a certain extent, there can still be differences,

The CSS3 Anthology268



especially across versions and operating systems. Some browsers, like Internet

Explorer and Opera, use their own internal engines.

Can I just ignore older browsers?
With the latest versions of browsers having good support for many of the interesting

CSS3 properties, and far fewer browser bugs than we have seen in the past, it is

tempting to consider dropping support completely for old versions of Internet Ex-

plorer. How do we decide which browsers to support, and what level of support to

provide them?

Solution
When starting work on a new site, you should first consider the kind of person who

will be using the site, as well as the likely browsers and devices that they’ll be using.

If you are redesigning a website, you’re in luck! There should be some existing in-

formation in the web statistics as to which browsers are being used.

Even if it is a brand new site, you should be able to draw some conclusions based

on the audience. For example, many really old Internet Explorer browsers (IE6 and

7) can be found in large companies in the UK who require it for legacy internal

products. If your site is aimed at these users, you may find that you need to provide

more support for these old browsers. If your site is aimed at young people, or is

particularly useful to people on the go, you might have more mobile devices than

average browsing the site.

You might also have other sites, for which you have access to statistics, that serve

a similar audience. There are also a number of sites that publish statistics, such as

StatCounter.1 It offers an analytics service, collating the data from all the sites that

run its service to provide some idea of browser and version trends.

By looking at the browsers and devices that your users most frequently employ, you

can put together a browser support policy for your site. This can outline the browsers

that you test in, and the level of support you offer in terms of the design.

1 http://gs.statcounter.com

269Cross-browser Techniques

http://gs.statcounter.com


Support Doesn’t Mean “Looks the Same”
When discussing the support of older browsers, it doesn’t mean we need to make

the design look or function in an identical way in all those browsers. If your site

happens to have a large number of people using old versions of Internet Explorer,

you may find that there’s pressure from your boss or client to try and make the

design consistent across the browsers; this generally translates to you needing to

simplify your design and avoid using newer techniques. However, for most sites

it’s appropriate to serve a simpler design to these older browsers. What’s important

is that the content is still accessible in a usable manner.

We can take as an example a layout created in Chapter 3. In Figure 7.1, we can see

it displayed in Safari on OS X.

Figure 7.1. The layout in Safari

It uses a number of CSS3 properties, highlighted in the CSS here:

chapter_07/example1.css

body {
  background-color: #333;
  background-image: url(brushed_alu_dark.png);

The CSS3 Anthology270



  color: #fff;
  margin: 0;
  padding: 0;
  font: 0.75em/1.3 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
  background-image: url(brushed_alu.png);
-webkit-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);

  -moz-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4); 
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px;
}

.recipe {
  padding: 1em;
}

.recipe img {
  float:right;
  width: 200px;
  margin: 0 0 1em 1em;
-webkit-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);

  -moz-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -webkit-transform: rotate(5deg);
  -moz-transform: rotate(5deg);  
  -o-transform: rotate(5deg);  
  -ms-transform: rotate(5deg);
  transform: rotate(5deg);
}

h1 {
  font-size: 150%;
}

h2 {
  font-size: 125%;

271Cross-browser Techniques



}

h2.instructions {
  background-image: url(instructions.png);
  background-repeat: no-repeat;
  background-position: left center;
  padding-left: 30px;
} 

ul.ingredients {
  clear:both;
  border-top: 1px solid #999;
  border-bottom: 1px solid #999;
  list-style: none;
  margin: 1em 0 1em 0;
  padding: 1em 0 1em 30px;
  background-image: url(ingredients.png);
  background-repeat: no-repeat;
  background-position: 0 1em;
}

a.more:link, a.more:visited {
  display: block;
  padding: 0.3em 20px 0.3em 0;
  text-align: right;
  color: #666;
  font-weight: bold;
  background-image: url(arrow.png);
  background-position: right center;
  background-repeat: no-repeat;
  text-decoration: none;
}

Internet Explorer 9 also supports the CSS properties that we’ve used. We can see

that the design in Internet Explorer 9, shown in Figure 7.2, looks as it does in Safari.

The CSS3 Anthology272

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 7.2. The same layout in Internet Explorer 9

Figure 7.3 shows the same layout in Internet Explorer 6.

Figure 7.3. The layout in Internet Explorer 6

Here we can see a few issues:

■ The rounded corners on the main content area are missing.
■ The shadow on the main content area is missing.
■ The shadow on the feature image is missing.
■ The transform does not rotate the main image.

273Cross-browser Techniques



Overall, the page content is perfectly accessible and looks good in all the browsers;

however, where the very old browsers are concerned, we do lose some of the finer

detail.

Discussion
This approach is a simple example of progressive enhancement. Essentially our

IE6 layout has all the basics in place. By using CSS, we’ve added detail that’s un-

supported in the older browsers, though those browsers still display a basic, readable

experience. This concept of progressive enhancement is crucial to robust front-end

development. You start simple for the browsers that have little support, and layer

in CSS properties, JavaScript, and other enhancements for the most capable browsers.

Everyone then has a decent experience, and those with newer, more capable devices

gain all the additional finesse of a modern user interface.

For very complex layouts that rely heavily on new CSS features and have very little

traffic from browsers such as IE6, you may wish to take this approach a step further

and serve a very simple stylesheet to IE6. Andy Clarke has popularized this ap-

proach,2 and his Universal IE6 Stylesheet is available on Google Code.3

My advice is not to ignore older browsers while we still see some traffic from them;

however, it’s appropriate with these problematic browsers to serve something dif-

ferent. Keep your content accessible, but there’s no need to try to replicate the

modern web experience for ten-year-old browsers.

How can I add support for CSS3 selectors
in older browsers?
CSS3 selectors are incredibly useful, as we’ve already seen in earlier chapters of

this book. If you’re relying on them in your design, though, it could look a little

strange in older browsers lacking support.

Solution
CSS3 selectors are one of the simplest aspects of CSS3 to create support for using

JavaScript. You can do so by writing JavaScript yourself, or by writing functions to

2 http://www.stuffandnonsense.co.uk/blog/about/universal_internet_explorer_6_css/
3 http://code.google.com/p/universal-ie6-css/

The CSS3 Anthology274

http://www.stuffandnonsense.co.uk/blog/about/universal_internet_explorer_6_css/
http://www.stuffandnonsense.co.uk/blog/about/universal_internet_explorer_6_css/
http://code.google.com/p/universal-ie6-css/


use with another library such as jQuery, or by including a JavaScript plugin that

automatically adds support for selectors.

We’ll take a look at an example from an earlier chapter where we learned how to

stripe alternate table rows using nth-child, as seen in Figure 7.4.

Figure 7.4. Striped table rows in Safari using nth-child

The CSS3 nth-child selector is used as follows:

.datatable tr:nth-child(odd) {
  background-color: #dfe7f2;
  color: #000000;
}

Internet Explorer 8 has no support for nth-child, so there are no striped rows, as

you can see in Figure 7.5.

275Cross-browser Techniques



Figure 7.5. Internet Explorer 8 sans the striped rows

One way to patch this is by using Selectivizr.4 This script provides CSS3 selector

support to Internet Explorer, and does so without you needing to make any other

changes to your CSS. A script that adds in support like this is sometimes referred

to as a polyfill.

What is a polyfill?

A polyfill, sometimes referred to as a shim, is a piece of code that provides support

for technology that you would expect the browser to provide itself.5 Here we’re

looking at CSS3 polyfills, though the same approach is also used to provide support

for HTML5 features.6

Selectivizr requires another JavaScript library to work. You can see on the website

which libraries it works with, but if you’re already using a library, it’s quite likely

to be included. As my page doesn’t already use a library, I’ve chosen to include

jQuery.

I add the jQuery include, and then download and link in Selectivizr:

4 http://selectivizr.com/
5 http://remysharp.com/2010/10/08/what-is-a-polyfill/
6 https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

The CSS3 Anthology276

http://selectivizr.com/
http://remysharp.com/2010/10/08/what-is-a-polyfill/
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills


chapter_07/selectors.html (excerpt)

<head>
  <meta charset="utf-8" />
  <title>Chapter 7: Selectivizr</title>
  <link rel="stylesheet" href="selectors.css" />
  <script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/
➥jquery.min.js"></script>
  <script type="text/javascript" src="selectivizr-min.js"></script>
</head>

If I reload my page in Internet Explorer, I can see the striped table rows as evident

in Figure 7.6.

Figure 7.6. The striped table rows in Internet Explorer 8 using Selectivizr

Discussion
Using Selectivizr is a great solution if you have a lot of CSS3 selectors in use;

however, you should take care that your pages are still comprehensible without it

being included just in case a user has an old version of IE and JavaScript disabled,

blocked, or failing to load for some reason.

277Cross-browser Techniques



If you only have one or two CSS3 selectors to patch, and would rather skip the in-

clusion of Selectivizr or its ilk, you could write your own JavaScript to plug this

particular hole. Again, I’m using jQuery as the library. One very nice benefit of

jQuery is that it uses CSS selectors to target elements. So if you know how to access

an element using CSS, you should find jQuery quite straightforward to use for these

patches.

I include jQuery, then write a simple little function that adds a class of odd to every

other table row. In reality, you’d probably include a JavaScript file here with a

number of functions in it:

chapter_07/selectors-jquery.html (excerpt)

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/
➥jquery.min.js"></script>
<script>
  $(document).ready(function(){
    $("tr:nth-child(odd)").addClass("odd");
  });
</script>

We now need to make a small change to our CSS: adding a selector that looks for a

class of odd alongside our nth-child selector:

chapter_07/selectors-jquery.css (excerpt)

.datatable tr:nth-child(odd), .datatable tr.odd {
  background-color: #dfe7f2;
  color: #000000;
}

This will cause the rows to be striped in older browsers as long as they support

JavaScript.

Whether you use Selectivizr or decide to write your own JavaScript is up to you.

As most of our projects use jQuery anyway, and we tend to have a JavaScript file

that deals with any UI requirements, I often create a fixSelectors function that

goes through and adds classes to enable support for CSS3 selectors. This does involve

a little more work than just including Selectivizr; however, it does mean that I’m

always aware of what the JavaScript is doing. For very rapid development, or when

you are prototyping layouts, scripts such as Selectivizr are very useful. Browsers

The CSS3 Anthology278



lacking support for these selectors are going to become far less commonly used,

making the employment of Selectivizr more compelling as there’s no need for addi-

tional CSS selectors. If the browsers eventually stop registering in the stats on your

site, you can simply remove the JavaScript include.

Can I add CSS or JavaScript and have it
served only to older versions of IE?
The previous solution used a script that polyfills support for older versions of Inter-

net Explorer. Is it possible to only serve this script to those browsers?

Solution
The Selectivizr polyfill is designed to provide CSS3 selector support in Internet

Explorer 6, 7, and 8, so there’s no reason to have WebKit or Gecko browsers down-

loading it. We can use conditional comments to serve this script to only certain

versions of IE:

chapter_07/selectors-conditional.html (excerpt)

<head>
  <meta charset="utf-8" />
  <title>Chapter 7: Selectivizr</title>
  <link rel="stylesheet" href="selectors.css" />
  <script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/
➥jquery.min.js"></script>

  <!--[if (gte IE 6)&(lte IE 8)]>
  <script type="text/javascript" src="selectivizr-min.js"></script>
  <![endif]-->
</head>

Discussion
Conditional comments were introduced by Internet Explorer as a proprietary

method of serving content to specific versions of Internet Explorer. They can be

used to include an additional stylesheet to fix problems in certain versions of IE,

or, as we’re doing in this example, to include polyfills that only target certain ver-

sions of IE.

279Cross-browser Techniques



In our example, we’re stating that if the browser is greater than or equal to IE6 AND

less than or equal to IE8, it should load the JavaScript. Non-IE browsers and Internet

Explorer 9 and above will ignore it.

Here are some further examples of useful conditional comments. This would include

ie6fixes.css if the browser is IE6:

<!--[if IE 6]>
<link rel="stylesheet" type="text/css" href="ie6fixes.css" />
<![endif]-->

This includes ie7fixes.css if the browser is equal to IE7:

<!--[if IE 7]>
<link rel="stylesheet" type="text/css" href="ie7fixes.css" />
<![endif]-->

This code will reveal a stylesheet to all versions of Internet Explorer less than or

equal to version 7. It’s useful if you have some layout fixes for both these old

browsers:

<!--[if lte IE 7]>
<link rel="stylesheet" type="text/css" href="iefixes.css" />
<![endif]-->

For further examples of conditional comments and a full guide to their use, see the

SitePoint CSS Reference page.7

How do I achieve rounded corners in
browsers without support for
border-radius?
As we saw in Figure 7.3, it’s often perfectly acceptable not to try to support CSS3

features in old browsers. Making your design fall back to square corners where

border-radius is unsupported can be a reasonable solution. But what if your client

or boss is insistent that the rounded corners work in older browsers?

7 http://reference.sitepoint.com/css/conditionalcomments

The CSS3 Anthology280

http://reference.sitepoint.com/css/conditionalcomments


Solution
One solution is to use a polyfill script that adds support for border-radius along

with other CSS3 properties. CSS3 PIE (Progressive Internet Explorer) is one such

script. We can take a look at how this works using our example page. In Internet

Explorer 8, our layout displays very much as it does in earlier versions of Internet

Explorer, with no rounded corners or drop shadows as in Figure 7.7.

Figure 7.7. Our page in Internet Explorer 8

Download CSS PIE and unzip the files. The file PIE.htc needs to be placed into your

site.

In any rule set that contains rounded corners or drop shadows, add the behavior as

shown in our code. The path to PIE.htc needs to be relative to the page rather than

the CSS file, so I would suggest that in a live site you make it a path from root; for

example, behavior: url(/path/to/PIE.htc);:

281Cross-browser Techniques



chapter_07/pie.css (excerpt)

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto;
  background-color: #fff;
  color: #333;
  background-image: url(brushed_alu.png);
  -webkit-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  -moz-box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 10px 8px rgba(0, 0, 0, 0.4); 
  -webkit-border-radius: 10px;
  -moz-border-radius: 10px;
  border-radius: 10px;
behavior: url(PIE.htc);

}

.recipe img {
  float:right;
  width: 200px;
  margin: 0 0 1em 1em;
  -webkit-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -moz-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -webkit-transform: rotate(5deg);
  -moz-transform: rotate(5deg);  
  -o-transform: rotate(5deg);  
  -ms-transform: rotate(5deg);
  transform: rotate(5deg);
behavior: url(PIE.htc);

}

If you now view your page in Internet Explorer 6, 7, or 8, you should find that

rounded corners and drop shadows are working. Although not quite as slick as the

pure CSS implementation, it does work, as you can see in Figure 7.8.

The CSS3 Anthology282



Figure 7.8. Internet Explorer 8 after adding PIE

Discussion
PIE is added to your site using a proprietary Internet Explorer property: the behavior

property. This property enables you to attach a script to your CSS. The script is in

a .htc file (HTML component). Other browsers will ignore this property, and only

Internet Explorer will attempt to run your .htc files.

Similar scripts are available that attempt to support other unsupported features

such as CSS3 transforms. It’s worth mentioning that whenever you use one of these

scripts, you should carefully test all the target browsers, as it’s possible that problems

will be introduced by their inclusion.

An alternative solution would be to avoid using CSS3 at all and return to older

methods of using images to achieve this effect. Depending on the number of older

browser users and the particular effect you require, this may sometimes be necessary.

What’s great about using a polyfill like PIE is that at the point in time when these

older browser users cease to visit your site, you can simply remove the behavior.

Otherwise, if you add extra markup and images to create the layout without using

283Cross-browser Techniques



CSS3, this weight is then downloaded by all users, and you’d need to rebuild the

site in the future to take advantage of CSS3.

How do I deal with the most common issues
in IE6 and IE7?
The most troublesome browsers that you’re likely to come across today are Internet

Explorer 6 and 7. They’re particularly troublesome because they have significant

rendering bugs. Other older browsers that you might come across, including Internet

Explorer 8, tend to have issues that stem from a lack of support for some CSS. As

we’ve seen, a lack of support is often a manageable problem, as you can decide

whether to allow that browser to show a simpler rendering of the site, or attempt

to use polyfills to patch in support. Browser bugs, however, can cause perfectly

valid markup and CSS to display in very strange ways, and even supporting IE6

and 7 at a basic level could cause you to run into some of these.

Solution
I’d advise you to avoid worrying too much about these old browsers while developing

your site unless you’re in the unfortunate position of having a large number of users

on such browsers (a situation that is becoming less common each month). Develop

in an up-to-date browser, validate your markup and CSS, and get everything working

as you want it for modern browsers first. I believe strongly that you should refrain

from cluttering your markup with fixes for very old browsers, and continually

checking and trying to fix issues as you go tends to lead to that temptation.

There will probably be some problems in IE6 when you first look at your layout.

These might be small predicaments such as incorrect padding between page ele-

ments, or larger issues such as huge sections of your page disappearing or displaying

in an odd place. There’s no need to panic! Most IE6 issues can be easily resolved

by specifying some different style rules for this particular browser.

The same goes for IE7, although I find there are fewer layout problems to fix in this

browser.

The CSS3 Anthology284



Adding Browser-specific Stylesheets Using Conditional Comments
At this point, I’d suggest that you place an additional stylesheet—as described in

the previous section—using conditional comments to target IE6, 7, or both. You add

this stylesheet to your document head (after the existing stylesheets in your HTML)

so that any rules you place in your IE6- and IE7-specific stylesheet will overwrite

the same rules in the main stylesheet.

Fixing Internet Explorer Problems
You can now work through any problems that you can see in IE6 and 7 in a meth-

odical way, applying fixes in your alternate stylesheet, safe in the knowledge they’ll

only ever be applied by the browsers that need them. The following tips solve most

of the issues that we see in IE6. For IE7, I usually find that there’s no need for all

the rules used for IE6, but some are still required. It’s rare that I find a brand new

issue in IE7 that I’ve yet to see in IE6, and the fixes are generally the same.

Checking Your doctype
Make sure that you’re using a correct doctype as the first line in your markup; for

most new sites, this will be the HTML5 doctype as used in all the examples in this

book. If you need to use HTML4 or XHTML, make sure you use a full Strict or

Transitional doctype, including the URL. Omitting a doctype or using an incorrect

doctype may cause your layout to display in quirks mode in some browsers.8 This

implements an old, incorrect box model used in very early browsers—best avoided

in modern sites. If you want to know more about this, see the article at Activating

Browser Modes with Doctype.9

Fixing the Lack of min-height Support in IE6
Internet Explorer 6 has no support for min-height (the minimum height an element

should take), but it incorrectly interprets height as min-height. So, even though

height is used to specify a fixed height in other browsers, Internet Explorer 6 takes

it to mean the minimum height; therefore a block element will expand taller than

its specified height if need be.

8 Many modern browsers have two rendering modes. Quirks mode renders documents according to the

buggy implementations of older browsers such as Internet Explorer 6. Standards or compliance mode

renders documents as per the W3C specifications, or as close to them as they can.
9 http://hsivonen.iki.fi/doctype/

285Cross-browser Techniques

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://hsivonen.iki.fi/doctype/
http://hsivonen.iki.fi/doctype/


To work around this issue, we simply use the height property in our IE6-specific

stylesheet wherever we’ve used min-height in our main stylesheet.

Triggering the hasLayout Property
IE6 and 7 have a mysterious scripting property called hasLayout that’s an internal

component of the rendering engine, and the source of many seemingly bizarre ren-

dering bugs. When an element is responsible for sizing and arranging its contents,

it’s said to have a layout. If an element is without a layout, it relies on its parent or

an ancestor element to take care of its size and position. When an element has no

layout, there’s the potential for weird stuff to happen—like content disappearing

and the layout behaving erratically. Some elements, like table cells, automatically

have a layout; however, div elements do not. Specifying some CSS properties, such

as setting float to left or right, also cause an element to gain a layout. In making

an element gain a layout, most of these problems disappear. The trick is to find a

CSS property that gives an element a layout without having a detrimental effect on

your overall design.

In IE6, I find the simplest way to trigger a layout on an element is to give it a height

value of 1%. As I just mentioned, IE6 treats height as min-height, so a height of

1% actually renders as a minimum height of 1%—so this is perfectly safe to apply

and the box will still be sized to suit its contents. Obviously you need to do this in

your IE6-specific stylesheet that’s included with conditional comments.

IE7, by contrast, supports the height property correctly, so we’re unable to use it

as we might with IE6. However, setting the min-height property to any value—even

to 0—in IE7 causes the element to gain a layout. This is a safe approach because

the default value for min-height is 0 anyway.

It isn’t always apparent which element is going to need the layout trigger applied,

but if you work methodically, you may well find the one that causes everything to

jump into shape. I usually work from the innermost container out, so if I have a div

nested inside two more divs, I add the height to the inner div and refresh to see

if it made a difference. Otherwise, I remove it and try the next div, and so on.

Adding Position: Relative to Elements
If gaining a layout fails to work, setting position to relative on an element will

sometimes fix a problem. Keep in mind that setting position to relative on an

The CSS3 Anthology286



element will mean all its child elements will now use that element for a positioning

context. Otherwise this should be safe to do.

And If All Else Fails
The above tips should fix the worst problems, but you may still be left with slight

alignment, margin, or padding issues. At this point remind yourself that what you’re

dealing with are old, buggy browsers, so you should feel quite at liberty in your IE6-

and IE7-specific stylesheets to manipulate elements by adjusting the margin, padding,

or positioning until it does work. This will have no effect on any other browser if

you’ve used conditional comments, so no harm is done. It’s to be hoped there’s little

to do, because it will need to be redone if the layout ever changes. Sometimes, with

a very complex layout, you do need to just hammer bits into place!

How do I style HTML5 semantic elements
that are unsupported in older browsers?
HTML5 brings us new elements for marking up sections of our pages; however,

these cause problems in older browsers that prohibit CSS from being applied to

them.

Solution
Internet Explorer below version 9 won’t recognize the new HTML5 elements, and

will not apply CSS to elements that it fails to recognize. If you want to use these

elements, you can add the HTML5 shiv10 to your document as demonstrated in this

boilerplate document from HTML5 Doctor:11

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>HTML 5 complete</title>
  <!--[ lte IE 8]>
  <script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">
    </script>
  <![endif]-->

10 See http://ejohn.org/blog/html5-shiv/ for an explanation of this tool.
11 http://html5doctor.com/html-5-boilerplates/

287Cross-browser Techniques

http://html5doctor.com/html-5-boilerplates/


<style>
  article, aside, details, figcaption, figure, footer, header,
  hgroup, menu, nav, section { display: block; }
</style>
</head>
<body>
  <p>Hello World</p>
</body>
</html>

In this document, you can also see that the HTML5 structural elements have been

set to display: block. This would normally happen inside your stylesheet for the

page. We’ll be covering the display property in Chapter 9 more thoroughly; but by

setting these elements to display: block, we’re able to apply CSS to them much

as we would a div element on our page.

Discussion
The new HTML5 semantic elements offer far better ways of marking up sections of

your pages than simply using a div element. If navigation is marked up using the

nav element, a device could indicate to the user where the navigation was on the

page; knowing where the header and footer of a document is offers potential in

terms of being able to parse and extract content for reuse.

If you decide to take advantage of these elements, you need to be aware that any

CSS used to style them won’t be applied by Internet Explorer 8 and below. The

HTML5 shiv JavaScript will enable these elements to be styled; however, you are

then building in a reliance on JavaScript for users of those browsers.

Depending on the traffic to your site, you can decide whether using these semantic

elements and thus requiring JavaScript is acceptable. The alternative is to continue

using the div element to mark up areas on your page (perhaps adding a class or ID

using the HTML5 semantic element name) until such time as the nonsupporting

browsers are enough of an acceptable minority for you to feel happy about switching.

The decisions you make are likely to be different for each site depending on the site

and audience.

The CSS3 Anthology288



How can I test in many browsers when I
only have access to one operating system?
If you are a Windows, Mac, or Linux user with access to only one operating system,

testing across all the browsers can be a bit of a struggle. How does the web developer

without access to a full test suite deal with cross-browser testing?

Solution
There are now far fewer serious browser bugs in commonly used CSS, but new issues

mean that we can’t afford to test in just one modern browser before launching a site.

We need to check that our content is readable in older browsers when using CSS3,

and we’re likely to find that fonts (especially custom fonts imported using @font-

face) render differently across operating systems.

Some browsers are available across all operating systems; Firefox, Chrome, and

Opera, for example, can be installed on Windows, OS X, and Linux. There is a

version of Safari, the default browser on OS X, for Windows. As Chrome is based

on WebKit—the same rendering engine as Safari—there are many similarities across

these two browsers; however, it’s unwise to assume that if it works in one it will

work in the other (such as the support of CSS3, for example). They are, after all, on

different release cycles.

Virtual Machines on OS X
If you use a Mac running OS X, you’re probably in the most fortunate position. You

can natively test any Mac-specific browsers, and by installing virtualization software

such as VMware Fusion,12 Parallels,13 or the free VirtualBox,14 you can install

Windows and Linux operating systems in a virtual machine and then install

whichever browsers you like; you can even have multiple virtual machines with

different versions of browsers and operating systems installed. Windows and Linux

users can install virtual machines to test browsers for Windows and Linux. There

are attempts to get OS X working either in a virtual machine or on non-Apple

12 http://www.vmware.com/products/fusion/overview.html
13 http://www.parallels.com/au/products/desktop/
14 https://www.virtualbox.org/

289Cross-browser Techniques

http://www.vmware.com/products/fusion/overview.html
http://www.parallels.com/au/products/desktop/
https://www.virtualbox.org/


hardware, creating a “Hackintosh”;15 however, this is unsupported by Apple and

less than straightforward to set up.

Browser “Snapshot” Tools
If you simply want to check a layout, there are a number of sites that offer you the

ability to take a screen capture of your site across multiple browsers. Examples of

these are Adobe BrowserLab and Browsershots, the latter of which can be seen in

Figure 7.9. These can be useful for a quick overview of how your site renders. They’re

particularly handy if you’re checking what a certain font looks like across different

operating systems and browsers; however, their limitation is that you just get a

picture of your site. You’re unable to test whether any JavaScript is working properly,

or whether a bug in some browser has made your form fields impossible to focus.

Figure 7.9. Browsershots enables us to view a screenshot of our site in a wide range of browsers

A better option than third-party browser-screen-capture tools, although one that’s

likely to cost some money, is third-party-hosted browser-testing services such as

15 http://www.windows7hacker.com/index.php/2011/09/how-to-install-fully-functional-mac-os-x-lion-

virtual-machine-inside-windows-7/

The CSS3 Anthology290

http://www.windows7hacker.com/index.php/2011/09/how-to-install-fully-functional-mac-os-x-lion-virtual-machine-inside-windows-7/


BrowserStack, seen in Figure 7.10. BrowserStack allows you to test your sites on a

range of browsers and operating systems via the Web. You can load up your site in

your browser of choice, and even set up a tunnel (accessing your local files on

BrowserStack’s remote browser) in order to view files that are on your computer

(rather than needing to set up a live development site).

Figure 7.10. Viewing the SitePoint website in Internet Explorer 9 via BrowserStack

It Stacks Up

Remote testing tools such as BrowserStack are very useful, even if you have a

decent test suite. If a site user is experiencing a problem in a particular browser

that you don’t have installed—such as an older version of Firefox—you can quickly

go to BrowserStack and load up your site in the exact browser, rather than having

to work out how to access an old version of a browser you already run.

291Cross-browser Techniques



Can I install multiple versions of Internet
Explorer on Windows?
As already discussed in this chapter, older versions are very different from the most

recent version of Internet Explorer, and they’re particularly problematic; however,

it’s only possible to run one version of Internet Explorer on a Windows machine at

a time. So what’s the best way to test multiple Internet Explorer browser versions?

Solution
In my experience, the best way to test Internet Explorer is to use a proper version

of Internet Explorer in a virtual machine. The free virtualization software, Virtual-

Box,16 is very capable when used for this purpose.

You do need a reasonable amount of disk space and memory to run virtual ma-

chines—especially if you have several open at once. If this is a problem for you,

Utilu IE Collection17 may be helpful; it installs a collection of standalone versions

of Internet Explorer. I would suggest doing this inside a virtual machine even if you

are a Windows user, to avoid creating any issues with your primary Internet Explorer

browser.

Discussion
There are simpler solutions for Internet Explorer testing. Internet Explorer itself, in

recent versions, has a method for rendering pages as if it’s an earlier version. In In-

ternet Explorer 9 Developer Tools, you can switch browser mode and view a page

as if using the earlier browser. While this works reasonably well, in some cases

what you see in browser mode through IE9 is different to the real browser, and

browser mode itself may well have its own quirks not present in the original browser.

So it might be good for a quick look during development, but I’d always suggest

doing proper testing in the real browser.

There are also multiple IE testing tools such as IETester;18 however, in my experience

these are unreliable. In particular, conditional comments are often ignored (so a

stylesheet or script file targeted solely at this browser may be bypassed). I’ve spent

16 https://www.virtualbox.org/
17 http://utilu.com/IECollection/
18 http://www.my-debugbar.com/wiki/IETester/HomePage

The CSS3 Anthology292

https://www.virtualbox.org/
https://www.virtualbox.org/
http://utilu.com/IECollection/
http://www.my-debugbar.com/wiki/IETester/HomePage


many a frustrating hour trying to work out why a client was seeing something dif-

ferent to us in IE6, only to discover they were running IETester to test the site and

not a real IE6 browser! Therefore, I cannot advise using these tools. For an excellent

write-up of Internet Explorer testing, including many of the tools I’ve mentioned

in this section and much more, read “Reliable Cross-browser Testing” on Smashing

Magazine.19

How should I go about testing on mobile
browsers?
All smartphones have capable browsers, and are increasingly used for viewing

websites. In addition, we’re seeing a rise in the number of tablets, such as the iPad,

in use. So considering that most of us tend to own just the one phone, how can we

test across devices?

Solution
There are two issues when it comes to testing on mobile devices. One is that they

have smaller screen sizes than their desktop counterparts; the second is that the

experience of using a mobile touchscreen device is different from using a desktop

computer with a keyboard and mouse. So your testing needs to cover “does it look

okay?” and “is it usable?”

The browsers used by mobile devices tend to be fairly up to date. The iPhone and

iPad use mobile Safari, which uses Webkit as its rendering engine—the same engine

behind the default Android browser, and the browser used in newer Blackberry

devices. In addition, there are mobile versions of Opera and Firefox. Windows

phone uses a mobile browser based on the rendering engine in Internet Explorer 9.

Due to these up-to-date browsers, you can often be more confident using CSS3 for

phones than on the desktop. The rendering is generally the same as desktop versions

of these rendering engines—albeit at a small screen size, and in Chapter 9 we’ll be

discussing how you might support those smaller screens in particular. For current

information on mobile browsers and devices, I’d suggest visiting the mobile section

of QuirksMode.org20 run by Peter-Paul Koch and Mobile HTML521 by Maximiliano

19 http://smashingmagazine.com/2011/09/02/reliable-cross-browser-testing
20 http://www.quirksmode.org/mobile/
21 http://mobilehtml5.org/

293Cross-browser Techniques

http://smashingmagazine.com/2011/09/02/reliable-cross-browser-testing
http://smashingmagazine.com/2011/09/02/reliable-cross-browser-testing
http://www.quirksmode.org/mobile/
http://www.quirksmode.org/mobile/
http://mobilehtml5.org/


Firtman, where a large amount of information on mobile devices and browsers is

being collated.

There are services that let you view how the site might display on a small device;

for example, Screenfly.22 There are also options for taking a screen capture on mobile

devices—just as with the desktop services I described earlier in the chapter.

BrowserCam23 is one such service that covers desktop and mobile, and gives access

to a wide range of different devices. Then there are some services that give remote

access to a variety of devices—for example, Perfecto Mobile24—although these are

quite expensive.

Given that the rendering engines of mobile browsers are similar to desktop rendering

engines, and that the browsers tend to be up to date, you generally won’t hit too

many problems in terms of layout for modern mobile phones. Where you do need

to test more thoroughly is in terms of the actual experience of using your site with

a touchscreen device, especially if you are using drop-down menus or any other

interactions that might become fiddly on a touchscreen.

If possible, I’d recommend that you have access to a couple of devices: a higher-end

device such as an iPhone or Android phone with a larger screen and reasonable

specs, and a cheaper device. I have a tiny Android phone that I use for this purpose;

it’s the kind of phone that, in the UK, you get free on inexpensive phone plans, so

it’s the sort of device that many people might be using. You can then test the exper-

ience for users of high-end phones and lower spec phones, making sure that

everything is usable. At the very least, you should be checking your site on one-

touch devices at this point in time.

What do I do if I hit a CSS issue I’m unable
to fix?
We all find ourselves in situations where our CSS will just not work. Though you’ve

tried every solution you can think of, the margins on an element continue to be

twice the size you expect, or content is pushing a page wide. Before the bug drives

you mad, take a deep breath and relax. There is a solution!

22 http://quirktools.com/screenfly/
23 http://www.browsercam.com/
24 http://www.perfectomobile.com/

The CSS3 Anthology294

http://quirktools.com/screenfly/
http://www.browsercam.com/
http://www.perfectomobile.com/


Solution
This is a solution that helps you find the solution.

Take a Break
Once we’re frustrated with battling a problem, applying any kind of rational process

for finding a solution is difficult at best. So take a break. Go for a walk, tidy your

desk, or do some housework. If you’re at work with your boss looking over your

shoulder (and so unable to make it to the coffee machine in peace), work on another

task: answer some mail or tidy up some content. Do anything to take your mind off

the problem for a while.

Validate Your Stylesheet and Document
If you’ve yet to do so, your next step should be to validate the CSS and the markup

(although you may come across some validation problems regarding CSS3; see the

section called “The validator complains about my vendor-specific extensions, so

how do I validate CSS3?” for details). Errors in your CSS or markup may well cause

problems and, even if your problem is actually caused by another issue, they often

make it more difficult to find a solution.

Double-check that the Properties You’re Using Are Supported in
the Browser You’re Testing
It’s very easy to forget at which point a CSS3 property made it into a particular

browser. If, for example, you’re using first-child to remove a margin on the first

element, this will fail to work in Internet Explorer 6, and you’ll need to patch this

with a JavaScript polyfill, use some alternate CSS, or live with the difference in

spacing. The website When can I use …25 is an excellent resource for checking

which browsers support which properties.

Isolate the Problem
Can you make your issue occur in isolation from the rest of your document? CSS

problems often display only when a certain group of conditions is met, so finding

out exactly where the problem occurs may help you work out how it can be fixed.

Try to reproduce the problem in a document separate from the rest of your layout.

25 caniuse.com

295Cross-browser Techniques

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

caniuse.com


If you are using JavaScript polyfills, does the issue go away if you remove the

JavaScript? You may have encountered a bug in a third-party polyfill script, in

which case the script’s support would be the best place to start asking questions.

Search the Web
If your issue is with a very old browser, in particular Internet Explorer 6 and 7, it’s

highly likely to be a problem that’s been previously experienced. Bugs with the IE6

and 7 rendering engine are very well documented. Searching the Web should turn

up plenty of sites with details of these issues; and don’t worry if the websites look

out of date—the browsers are too!

There are far fewer actual CSS rendering bugs with the newer browsers; the most

likely issues for those will be in the lack of support for properties you’re using.

Google can also help you find answers to problems, as it’s fairly rare to come up

against completely new issues.

Ask for Help
If you’re yet to find a solution as you’ve moved through the aforementioned steps,

ask for help. Even the most experienced developers hit problems that they’re unable

to see past. Sometimes, just talking through the issue with a bunch of people with

fresh eyes can help you resolve the problem, or come up with new ideas to test—even

if no one has an immediate solution.

If you have a reasonable number of front-end developer followers on Twitter, simply

posting an example of the issue may well prompt a user familiar with the issue to

come to your aid. There are also various forums and lists where help can be found,

such as the SitePoint forums26 or Stack Overflow.27

When you post to a website, forum, or mailing list, remember these rules of thumb:

■ Search the site or list archives, just in case your question is common enough to

be asked at least once a day.

■ Make sure that your CSS and HTML validates; otherwise, the answer you’ll re-

ceive is most likely to be “Go and validate your document and see if that helps.”

26 http://www.sitepoint.com/forums/forum.php
27 http://stackoverflow.com/

The CSS3 Anthology296

http://www.sitepoint.com/forums/forum.php
http://stackoverflow.com/


■ Upload an example to a location to which you can link from your forum post.

If you manage to reproduce the problem outside a complex layout,28 so much

the better—this will make it easier for others to work out what’s going on. If you

can recreate your problem in a tool like jsFiddle,29 better still. This will allow

other people to play around with the issue and see if they can solve it for you.

■ Explain the solutions you’ve tried so far. This saves the recipients of your message

from pursuing those same dead-ends, and shows that you’ve attempted to fix

the problem yourself before asking for help.

■ Give your message a descriptive subject line. People are more likely to read a

post entitled “Double height margin in Internet Explorer 8” than one that screams,

“HELP!” Descriptive titles also make the list archives more useful, as people can

see at a glance the post topics in a thread.

■ Be polite and to the point.

■ Be patient while you wait for answers. If you fail to receive a reply after a day

or so and it’s a busy list, it’s usually acceptable to post again with the word

“REPOST” in the subject line. Posts can be overlooked in particularly large

boards, and this is a polite way to remind users that you’ve yet to receive any

assistance with your problem.

■ When you receive answers, try implementing the poster’s suggestions. Avoid

becoming upset or angry if the recommendations fail to work, or you feel that

the poster is asking you to try very basic measures. I’ve seen threads go on for

many posts as different posters weigh in to help a user solve a problem, continu-

ing the discussion until a solution is found. Give people a chance to help!

■ If you find a solution, or you have no success and decide instead to change your

design to avoid the problem, post to the thread to explain what worked and what

failed. This shows good manners towards those who helped you, and will also

aid anyone who searches the archive for information on the same problem. It’s

very frustrating to search an archive and find several possible solutions to a

problem, but be unsure which (if any) were successful!

28 http://css-tricks.com/reduced-test-cases/
29 http://jsfiddle.net/

297Cross-browser Techniques

http://css-tricks.com/reduced-test-cases/
http://jsfiddle.net/


The validator complains about my
vendor-specific extensions, so how do I
validate CSS3?
When trying out the examples in this book, or using the techniques in your own

work, you may find that the validator displays warnings due to proprietary exten-

sions used in your CSS.

Solution
Vendor-specific extensions, starting with -moz, -webkit, and so on, are not part of

the CSS3 specification, so they’ll be unrecognized by the validator and throw a

warning or error. The syntax of beginning an extension to CSS with a “-” is correct,

however, so the validator does understand about the existence of these extensions.

Therefore, you can use the additional options fields at the W3C Markup Validator

to hide these messages.

At the CSS Validator,30 seen in Figure 7.11, open the More Options area and make

sure that under Profile you have selected CSS level 3. You can then select No warnings

and set the Vendor Extensions notification to show up as Warnings. This will allow

you to validate your CSS for the important errors. I’d advise you to also check the

warnings as well, but it can be hard to start looking for problems if you’re swamped

with hundreds of messages about the legitimate use of prefixed properties.

30 http://jigsaw.w3.org/css-validator/

The CSS3 Anthology298

http://jigsaw.w3.org/css-validator/


Figure 7.11. Setting options on the CSS Validator

Discussion
Another point to note with regards to the Validator is that when you first validate

your page, don’t panic if you see lots and lots of error messages. Deal with the first

one, then validate again. Often the messages cascade from that one problem, so

fixing it will also “fix” further errors. Fix each issue, then validate, and see what

you’re left with.

All Users Catered For
This chapter has aimed to shed some light on the thorny subject of browser testing.

It can’t be a complete guide—and the browsers and devices that we deal with are

changing on a very regular basis. My best advice is to test often, in as many browsers

and devices as you can get your hands on.

In the last few years we’ve seen browsers move to a more consistent rendering of

CSS 2.1, and other than dealing with old browsers, the modern web developer has

far fewer browser bugs to fight with. Nowadays, we need to keep up with which

browsers support which parts of CSS3 and HTML5, and there are also the issues of

299Cross-browser Techniques



designing sites that work for touch interfaces! That said, we are now in a far better

situation with our browsers than we’ve ever been.

With regard to mobile browsers and touch interfaces, there’s a lot of information

already on the Web about how best to design for smartphones and tablets. It’s an

area in which many people are working to make the browsing experience better for

designers and users interacting with our sites.

The CSS3 Anthology300



Chapter8
CSS Positioning Basics
In this chapter, we will look in further depth at some of the vital concepts when

positioning page elements using CSS. If you’re reading this book chapter by chapter,

you’ll already have come across some of these concepts used in the examples. Here

we’ll take a proper look at them, and see how they can be used in combination to

layout our pages and components.

How do I decide when to use a class and
when to use an ID?
At first glance, classes and IDs seem to be used in much the same way: you can assign

CSS properties to both classes and IDs, and apply them to change the way HTML

elements look. But in which circumstances are classes and IDs best applied?

Solution
The most important rule where classes and IDs are concerned is that an ID must be

only used once in a document, as it uniquely identifies the element to which it’s

applied. Once you’ve assigned an ID to an element, you cannot use that ID again

within that document.



Classes, on the other hand, may be used as many times as you like within the same

document. If there’s a feature on a page that you wish to repeat, a class is the ideal

choice. Even if you don’t wish to repeat the element on the page, if there’s a chance

you might use it again in the future, use a class.

You can apply both a class and an ID to any given element. For example, you might

be required to add an ID to an unordered list, so that some JavaScript you’re using

can target it. If you were to create CSS for the ID, you would only be able to use that

once within the page. However, you could instead add a class to the element as

well as the ID and write CSS for the class selector, making it possible to reuse the

CSS multiple times in the page.

What are block-level and inline elements
in CSS, and can I change how these display?
In CSS, most elements are categorized as block or inline, and this affects the default

way they behave in browsers. This default display method can be changed using

the display property.

Solution
In Figure 8.1, we can see some HTML elements, each describing their default display

(block or inline) with an example of what happens if we change the display property

on that element.

The CSS3 Anthology302



Figure 8.1. Changing the default display property of elements

In this example, six elements are used to demonstrate display properties. The first

div is block by default, with the second and third divs specifically set to inline.

The fourth element is a p containing a link which is inline by default, and the fifth

element is a p containing a link set to block. The final element is a p containing a

link set to inline-block:

chapter_08/inline-block.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: Inline and block-level elements</title>
  <link rel="stylesheet" href="inline-block.css" />
</head>
<body>
  <div class="wrapper">
    <div class="one">A div is a block-level element. This div has
      padding of 1em and a margin of 1em. It is taking up the full
      width of the containing element (.wrapper).</div>
    <br /><br />
    <div class="two">This div is displaying as an inline element.
      </div>
    <div class="two">This div is also displaying as an inline

303CSS Positioning Basics



      element.</div>
    <br /><br />
    <p>This paragraph contains a <a href=
➥"http://www.sitepoint.com/">link</a> that displays as an inline
      element. This is the default for links.</p>
    <p>This paragraph contains a <a class="block" href=
➥"http://www.sitepoint.com/">link</a> that is set to display as
      block-level using CSS.</p>
    <p>This paragraph contains a <a class="inline-block" href=
➥"http://www.sitepoint.com/">link</a> that displays as an inline
      block element. This means that I can give it a width.</p>
  </div>
</body>
</html>

chapter_08/inline-block.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

p {
  margin: 0;
  padding: 1em 0 1em 0;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto; 
}

.one {
  background-color: #ccc;
  color: #000;
  border: 2px solid #aaa;
  padding: 1em;
  margin: 1em;
}

.two {

The CSS3 Anthology304



  background-color: #ccc;
  color: #000;
  border: 2px solid #aaa;
  padding: 1em;
  display: inline;
}

a {
  background-color: #ccc;
  color: #fff;
  text-decoration: none;
  padding: 1em;
}

a.block {
  display: block;
  margin: 1em;
  padding: 1em;
}

a.inline-block {
  display: inline-block;
  margin: 1em;
  padding: 1em;
  width: 200px;
}

Discussion
Understanding the display property is important because it explains why certain

CSS rules will appear to work on one element and not on another. Knowing

whether an item is set to inline or block (and that you can change this) also means

that you’re aware of when it’s necessary to set widths or other properties on an

element, and when you can simply let it take up the room it requires.

Inline Elements
An element set to display inline will only take up the space it needs. In our previous

example, the default display of the a element is to remain inline with the text. It

won’t force a line break and the background color is simply behind the element it-

self—it does not extend out further than this. In addition, inline elements:

■ ignore top and bottom margins if applied

305CSS Positioning Basics



■ disregard height and width properties
■ can be affected by the vertical-align property

An inline element will become block-level if you set the display property to block,

or if you float the element. Floated elements automatically become block-level and

so height, width, and all margins will start to take effect.

Block-level Elements
Block-level elements will force a line break and drop to the next line in your docu-

ment (unless a float is in effect above the element—see the section called “How do

I stop the next item floating up once I’ve floated an element?” on float and clear

for more information). They expand to fill the parent element unless a width has

been given to them. In addition, block-level elements:

■ respect all margin and padding properties
■ expand in height to fit everything they contain; therefore, a div will expand to

contain any amount of text and images as long as the text and images are not

positioned or floated, as we’ll see later in this chapter
■ are not affected by vertical-align

Inline-block Elements
While discussing block and inline elements, it’s worth noting another value for the

display property: inline-block. If you set an element to display: inline-block,

it will behave like a block-level element in terms of respecting all margins, padding,

height, and width; however, it will not force a line break. Note that inline-block

has no support in Internet Explorer 6 and 7.

How do margins and padding work in CSS?
What’s the difference between the margin and padding properties, and how do they

affect elements?

Solution
The margin properties add space to the outside of an element. You can set margins

individually:

The CSS3 Anthology306

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



margin-top: 1em;
margin-right: 2em;
margin-bottom: 0.5em;
margin-left: 3em;

You can also set margins using a shorthand property:

margin: 1em 2em 0.5em 3em;

If all the margins are to be equal, simply use a rule like this:

margin: 1em;

This rule applies a 1em margin to all sides of the element.

Figure 8.2 shows what a block-level element—a paragraph—looks like when we

add margins to it.

Figure 8.2. What happens when we add a margin to a paragraph element

The code for this page is as follows:

307CSS Positioning Basics



chapter_08/margin.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: Inline and block-level elements</title>
  <link rel="stylesheet" href="inline-block.css" />
</head>
<body>
  <div class="wrapper">
    <div class="one">A div is a block-level element. This div has 
      padding of 1em and a margin of 1em. It is taking up the full 
      width of the containing element (.wrapper).</div>
    <div class="two">This div is displaying as an inline element.
      </div>
    <div class="two">This div is also displaying as an inline 
      element.</div>
    <p>This paragraph contains a <a href=
➥"http://www.sitepoint.com/"> link</a> that displays as an inline 
      element. This is the default for links.</p>
    <p>This paragraph contains a <a class="block" href=
➥"http://www.sitepoint.com/">link</a> that is set to display as
      block-level using CSS.</p>
    <p>This paragraph contains a <a class="inline-block" href=
➥"http://www.sitepoint.com/">link</a> that displays as an 
      inline-block element. This means that I can give it a width.
      </p>
  </div>
</body>
</html>

chapter_08/margin.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;

The CSS3 Anthology308



  margin: 20px auto 40px auto; 
}

p {
  border: 2px solid #aaa;
  background-color: #eee;
}

p.margintest {
  margin: 2em;
}

The padding properties add space inside the element, between its borders and its

content. You can set padding individually for the top, right, bottom, and left sides

of an element:

padding-top: 1em;
padding-right: 1.5em;
padding-bottom: 0.5em;
padding-left: 2em;

You can also apply padding using this shorthand property:

padding: 1em 1.5em 0.5em 2em;

As with margins, if the padding is to be equal all the way around an element, you

can simply use a rule like this:

padding: 1em;

Figure 8.3, which results from the following code, shows what a block looks like

with padding applied. Compare it to Figure 8.2 to see the differences between

margins and padding.

309CSS Positioning Basics



Figure 8.3. Applying padding using CSS

To see the same page use padding instead of margin, try this:

chapter_08/padding.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: Padding</title>
  <link rel="stylesheet" href="padding.css" />
</head>
<body>
  <div class="wrapper">
    <p>This paragraph should be displayed in the default style of
      the browser with a background color and border in order that 
      we can see where it starts and finishes.</p>
    <p>This is another paragraph that has the default browser 
      styles so we can see how the spacing between the paragraphs
      displays when no margin or padding has been applied.</p>
    <p class="paddingtest">This paragraph has 2em of padding applied
      using CSS. The padding creates additional space on the inside
      of the element.</p>

The CSS3 Anthology310



  </div>
</body>
</html>

chapter_08/padding.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto; 
}

p {
  border: 2px solid #aaa;
  background-color: #eee;
}

p.paddingtest {
  padding: 2em;
}

Discussion
The above solution demonstrates the basics of margins and padding. As we’ve seen,

the margin properties create space between the element to which they’re applied

and the surrounding elements, while padding creates space inside the element to

which it’s applied. This is part of the CSS box model and is illustrated in Figure 8.4.

(The markup for this box model is in the code archive as boxmodel.html and

boxmodel.css.)

311CSS Positioning Basics



Figure 8.4. Reducing the width of an inner element’s area

In our example, the containing element has a width set to 500 pixels. The inner div

has no width set, and as we learned in the previous section, block-level elements

expand in width to fill their container. The padding and margins set on the inner

element pushes the content in, while the outer element remains a fixed size.

Contrast this with a similar example in Figure 8.5 with no inner element. (The

markup for this box model has been included in the code archive as boxmodel2.html

and boxmodel2.css.)

The CSS3 Anthology312



Figure 8.5. A single div with margins and padding applied

If you’re applying margins and padding to a fixed-width element, they’ll be added

to the specified width to produce the total width for that element. So, if your element

has a width of 500 pixels, and you add 20 pixels’ worth of padding on all sides,

you’ll make the element take up 540 pixels of total width (500 pixels wide plus 20

pixels on each side). Add 20 pixels of margin to that, and the element will occupy

a width of 580 pixels (a visible width of 540 pixels with 20 pixels of spacing on

either side). If you have a very precise layout, remember to calculate your element

sizes carefully, including any added margins and padding.

It’s All Collapsing!

You may notice strange behavior where two elements have margins and you would

expect both margins to take effect, but you seem to end up with only one margin.

As margins are essentially invisible, this can be really confusing! The culprit is

margin collapsing, and this is part of the CSS specification.

Essentially, if you have two margins adjacent to each other, or “touching” due to

there being a parent-child relationship between the elements, they’ll collapse,

with only the largest margin honored. You can read an in-depth discussion of

margin collapsing, complete with examples, in the SitePoint CSS Reference.1

1 http://reference.sitepoint.com/css/collapsingmargins

313CSS Positioning Basics

http://reference.sitepoint.com/css/collapsingmargins


How do I wrap text around an image?
If you add an image and then a paragraph of text to a page, the text will display after

the image, as seen in Figure 8.6. How do we use CSS to wrap the image with the

text?

Figure 8.6. Text wrapping is the best solution when there’s too much whitespace

Solution
We use the CSS float property to float an image left or right. This enables the text

to flow around it, as you can see in Figure 8.7.

The CSS3 Anthology314



Figure 8.7. The page after text has been flowed around the image

The code to float the garlic image right is as follows:

chapter_08/float.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: Float</title>
  <link rel="stylesheet" href="float.css" />
</head>
<body>
  <div class="wrapper">
    <div class="recipe">
      <h1>Baked Garlic</h1>

315CSS Positioning Basics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



      <img src="garlic.jpg" alt="Garlic" height="134" width="200" />
      <p>Garlic may be known for being a little bit stinky, but
        baked it is absolutely delicious and as long as you feed it 
        to all of your guests no-one will complain about the smell! 
        Once baked the garlic becomes creamy and sweet making an 
        ideal spread to accompany cheese.</p>
      <p>To make your own baked garlic, you will need:</p>
      <ul class="ingredients">
        <li>Whole heads of garlic</li>
        <li>Salt</li>
        <li>Olive Oil</li>
        <li>Foil</li>
      </ul>

      <h2 class="instructions">Instructions</h2>
      <ol>
        <li>Cut the tops and bottoms off the garlic heads with a
          sharp knife, keeping the head intact, then snip the tops 
          of the cloves so you can see the garlic inside.</li>
        <li>In a large ovenproof dish use foil to make a 'nest' 
          large enough to hold all of your garlic. If you are doing 
          a lot of garlic you could put them into several nests.
          </li>
        <li>Add a few tablespoons of water to the nest then add the
          garlic heads.</li>
        <li>Pour over a tablespoon of olive oil per garlic, season
          with salt and tightly wrap up the top of the foil nest to 
          seal in the garlic.</li>
        <li>Bake for 30 minutes at 200C, open the nest and baste the
          garlic in the juices, then cover and bake for another 
          30 minutes.</li>
        <li>Enjoy!</li>
      </ol>
    </div>
  </div>
</body>
</html>

chapter_08/float.css (excerpt)

.recipe img {
float: right;

  width: 200px;
  …
  -webkit-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);

The CSS3 Anthology316



  -moz-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
}

Discussion
The float property floats the image against the edge of the block-level element that

contains it. Other block-level elements will ignore the floated element and render

as if it’s absent. Inline elements such as content, however, will make space for the

floated element, which is why we can use float to wrap our text around an image.

As we can clearly see in Figure 8.7, the text collides against the side of the image.

If we add a border to that image, the text will bump against the side of the border.

To create space between our image and the text, we need to add a margin to the

image. Since the image is aligned against the left-hand margin, we only need to add

right and bottom margins to move the text slightly away from the image:

chapter_08/float.css (excerpt)

.recipe img {
  float: right;
  width: 200px;
margin: 0 0 1em 1em;

  -webkit-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  -moz-box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
  box-shadow: 3px 3px 5px 3px rgba(0, 0, 0, 0.4);
}

Figure 8.8 shows the resulting display, with the extra space around the floated image.

317CSS Positioning Basics



Figure 8.8. Adding a margin to the floated image

You can float elements right or left, and float is currently one of the main building

blocks of CSS layout, so we’ll be working with it a lot in Chapter 9.

How do I stop the next item floating up
once I’ve floated an element?
You may have spotted in the previous float examples that the border on the ingredi-

ents section runs underneath the floated image. How can we make this element

begin after the floated image has finished?

The CSS3 Anthology318



Solution
We can use the clear property to clear block-level elements so that they only render

once the floated element is complete. Take a look at Figure 8.9.

Figure 8.9. Our page is much neater after clearing the ingredients list

We can make room for the ingredients list by using these styles:

chapter_08/float-clear.css (excerpt)

ul.ingredients {
clear: both;

  border-top: 1px solid #999;
  border-bottom: 1px solid #999;
  list-style: none;
  margin: 1em 0 1em 0;

319CSS Positioning Basics



  padding: 1em 0 1em 30px;
  background-image: url(ingredients.png);
  background-repeat: no-repeat;
  background-position: 0 1em;
}

Discussion
The float property changes the way other elements respond to the floated element,

causing other block-level elements to ignore it altogether. So the border on the top

of the ingredients list was correctly taking the full width of the container, as if there

were no floated image. The floated image essentially sits on top of any block-level

elements, whereas space is made for it by inline elements. We’ll see a lot more of

this behavior in the next chapter.

The clear property tells the block-level elements below any floated images that

they should clear those floated elements; that is, only start once the floats have

finished. The clear property can take the following values:

■ left: clear only items floated left
■ right: clear only items floated right
■ none: clear nothing
■ both: clear items floated left and right

How do I set an item’s position on the page
using CSS?
We can use CSS to position elements using absolute positioning.

Solution
If you set the value of the position property to absolute, you can position your

element top, left, bottom, and right. This positioning will happen in relation to the

viewport unless you’ve given absolute or relative positioning to a parent element

of the element that you’re trying to position. This is easier to understand with a

series of examples.

The image shown in Figure 8.10 has two boxes that are positioned using absolute

positioning, from the top-left and bottom-right of the viewport.

The CSS3 Anthology320



Figure 8.10. An example of absolute positioning

The code and CSS for this document is as follows:

chapter_08/position.html (excerpt)

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: CSS Positioning</title>
  <link rel="stylesheet" href="position.css" />
</head>
<body>
  <div class="wrapper">
    …
    <div class="box1">
      <p>This is Box 1. It is positioned using absolute positioning.
        </p>
      <p>The box has a width of 300 pixels plus 20 pixels of padding
        and is positioned 10 pixels from the top and 10 pixels from 
        the left of the viewport.</p>
    </div>

321CSS Positioning Basics



    <div class="box2">
      <p>This is Box 2. It is positioned using absolute positioning.
        </p>
      <p>The box has a width of 300 pixels plus 20 pixels of padding
        and is positioned 10 pixels from the bottom and 10 pixels 
        from the right of the viewport.</p>
    </div>
  </div>
</body>
</html>

chapter_08/position.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto; 
  position: relative;
}

.box1 {
  width: 300px;
  padding: 20px;
  border: 5px solid rgb(130,108,84);
  background-color: rgb(244,234,199);
position: absolute;

  top: 10px;
  left: 10px;
}

.box2 {
  width: 300px;
  padding: 20px;
  border: 5px solid rgb(216,174,158);
  background-color: rgb(250,230,232);
position: absolute;

The CSS3 Anthology322



  bottom: 10px;
  right: 10px;
}

Note that if we resize to make the window smaller, the second box will overlap the

first as in Figure 8.11. The boxes are completely independent of each other and

everything else on the page.

Figure 8.11. When the browser is resized, the boxes overlap

The markup for the boxes is inside another div with a class of wrapper. If we add

some text inside this wrapper, we can see that the boxes completely ignore the new

content and sit on top of it.

You can also see in Figure 8.12 that the boxes overlap the edges of wrapper; they’re

positioning themselves from the edge of the viewport, and not respecting their

containing element anymore. Here we can say that absolutely positioned elements

are “removed from the document flow.” 

323CSS Positioning Basics



Figure 8.12. The boxes sit on top of any other content

A common rookie error of those who are just beginning to use CSS is to think that

they can simply position everything on the page using position absolute. This

might work in their own browsers, but in another browser with a larger default text-

size set, or if more content is added, everything starts to overlap!

Discussion
We’ve seen how it’s possible to position items from the edge of the viewport, but

this is unlikely to be very useful. What can be useful (when done carefully) is the

ability to position items within a container.

If, in our previous example, we wanted our positioned elements to respect the parent

wrapper div, we could do so by setting .wrapper to position: relative as follows:

The CSS3 Anthology324

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



.wrapper {
  width: 80%;
  margin: 20px auto 40px auto; 
position: relative;

}

In Figure 8.13, you can see what happens. The boxes now take their position from

the height and width of the wrapper and position themselves 10 pixels from the

top-left and bottom-right of the wrapper. So box2 is now below the bottom of the

viewport with our browser window at this size, rather than sticking to the viewport

as it did before.

Figure 8.13. The boxes are now positioned inside the .wrapper div

The wrapper becomes the new “positioning context”  for the absolutely positioned

elements and this behavior is important to remember. If you position anything ab-

solutely, it will take its position from the next parent element that has position:

relative or position: absolute set. If it does not find anything, it will take its

position from the viewport.

325CSS Positioning Basics



Relative Positioning

Setting position: relative as in our example will have no effect on the

wrapper other than to cause it to become a positioning context for the items inside

it. If you set top, left, bottom, or right values on an element that is set to po-

sition: relative, the item will shift from its original position by those pixels.

This can be useful to shift an item a small distance from the position it ends up

in by way of the document flow, but it can cause elements to overlap.

How do I center a layout on the page?
A common page layout has the main content area of the page as a fixed or flexible

width box centered in the browser window. How do we achieve this centering?

Solution
Figure 8.14 shows a centered box. It’s done by setting the left and right margins on

the div with a class of wrapper to a value of auto.

Figure 8.14. Centering a box

The stylesheet looks like this:

The CSS3 Anthology326



chapter_08/centering.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 600px;
  padding: 40px;
margin: 20px auto 40px auto;

  border: 5px solid rgb(126,111,113);
}

Discussion
This technique allows you to center a box easily. When we set the left and right

margins to auto, we’re asking the browser to calculate equal values for each margin,

thereby centering the box.

How do I create a thumbnail gallery?
This solution brings together several of the techniques we’ve looked at in this chapter

by creating a neat gallery listing of thumbnail images.

Solution
The thumbnail listing can be seen in Figure 8.15.

327CSS Positioning Basics



Figure 8.15. Our thumbnail gallery

The gallery is created using the following markup:

chapter_08/gallery.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 8: Gallery</title>
  <link rel="stylesheet" href="gallery.css" />
</head>
<body>
<div class="wrapper">
  <ul class="gallery">
    <li><img src="widget1.jpg" alt="Widget the cat" />
      <span>Widget the cat</span></li>
    <li><img src="widget2.jpg" alt="This is my tongue" />
      <span>This is my tongue</span></li>
    <li><img src="widget3.jpg" alt="Widget the cat is looking very
      serious today" />
      <span>Widget the cat is looking very serious today</span></li>
    <li><img src="widget4.jpg" alt="Widget and his very favorite
      person" />
      <span>Widget and his very favorite person</span></li>
    <li><img src="widget5.jpg" alt="Widget explores" />
      <span>Widget explores</span></li>

The CSS3 Anthology328



    <li><img src="widget6.jpg" alt="Widget is sleeping" />
      <span>Widget is sleeping</span></li>
  </ul>
</div>
</body>
</html>

chapter_08/gallery.css

body {
  background-color: #fff;
  color: #000;
  margin: 0;
  padding: 0;
  font: 0.75em/1.5 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

.wrapper {
  width: 80%;
  margin: 20px auto 40px auto; 
}

ul.gallery {
  margin: 0;
  padding: 0;
  list-style: none;
}

ul.gallery li {
  display: inline-block;
  width: 240px;
  margin: 0 20px 20px 0;
  border: 1px solid #000;
  position: relative;
  -webkit-box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3);
  -moz-box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3);
  box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3);
}

ul.gallery img {
  display: block;
}

ul.gallery span {

329CSS Positioning Basics



  position: absolute;
  bottom: 0;
  left: 0;
  background-color: rgba(0,0,0,0.7);
  color: rgb(255,255,255);
  width: 220px;
  padding: 10px;
}

ul.gallery span {
  margin-left: -9999px;
}

ul.gallery li:hover span {
  margin-left: 0;
}

The final effect for the gallery is shown in Figure 8.16—when a user hovers over

an image, a styled caption will appear.

Figure 8.16. Hovering over an image brings up a caption

Discussion
The gallery items have been marked up as an unordered list of images. Without any

CSS at all, this would display as in Figure 8.17.

The CSS3 Anthology330



Figure 8.17. The gallery before adding any CSS

The first task is to remove the margins, padding, and bullets that the browser applies

by default to lists. If you’re using a reset stylesheet (refer to the section called “How

can I remove browsers’ default padding and margins from all elements?” in

Chapter 2), you might have already removed these for all lists, so you could skip

this step.

Next we need to deal with the list items and make them display next to each other.

I’m doing this by setting their display property to inline-block. You may remember

331CSS Positioning Basics



when we discussed block and inline elements earlier in this chapter that inline-

block makes an item act like a block element, but not drop onto a new line. We can

use this to our advantage here:

ul.gallery li {
display: inline-block;

  width: 240px;
  margin: 0 20px 20px 0;
  border: 1px solid #000;
}

After adding this, we can see that our gallery starts to display as in Figure 8.18.

Figure 8.18. The gallery after setting list items to display: inline-block

You might have seen techniques to address this problem that use float. I find that

display: inline-block is often a better solution for this purpose. I can demonstrate

why by removing display: inline-block and adding float: left:

ul.gallery li {
float: left;

  width: 240px;

The CSS3 Anthology332



  margin: 0 20px 20px 0;
  border: 1px solid #000;
}

In Figure 8.18, you can see that the third image has a large caption and so is taller

than the other boxes. I’ve reduced the size of the browser window shown in Fig-

ure 8.19 to better show the issue as the images flow into two columns. As you can

see, the different heights of the boxes cause the items to display untidily. If we were

to use inline-block instead, this issue would disappear.

Figure 8.19. The same display using the float method

A good reason to use float would be when you need to accommodate browsers

without support for inline-block, such as Internet Explorer 6 and 7. A way around

this problem would be to use inline-block for supporting browsers, and in a

stylesheet included with conditional comments use the float method to support

these older browsers. If you’re using float, you’ll also want to ensure that items have

the same height, if possible, to avoid the problem just shown.

A drop shadow completes the look of the list items. Next, I want to set the caption

to display on top of the images.

Now we’re going to use absolute positioning to move the captions to the bottom of

the boxes. First, set position: relative on the list items. This makes the list item

the positioning context for each caption:

333CSS Positioning Basics



ul.gallery li {
  display: inline-block;
  width: 240px;
  margin: 0 20px 20px 0;
  border: 1px solid #000;
  position: relative;
  -webkit-box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3);
  -moz-box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3);
  box-shadow: 1px 2px 5px 2px rgba(0, 0, 0, 0.3); 
}

We can then position the caption to the bottom-left and style it. I’m using rgba to

make it semitransparent:

ul.gallery div {
position: absolute;

  bottom: 0;
  left: 0;
  background-color: rgba(0,0,0,0.7);
  color: rgb(255,255,255);
  width: 220px;
  padding: 10px;
}

You can see the result in Figure 8.20.

Figure 8.20. The gallery with styled captions

The CSS3 Anthology334



As a final touch, I’m only showing my captions when users hovers their mouse

cursor over an image. To do this without JavaScript, I can simply set a large left

margin on each caption:

ul.gallery div {
  margin-left: -9999px;
}

On the hover state of the li element, I set the margin back to 0, which makes the

caption appear:

ul.gallery li:hover div {
  margin-left: 0;
}

Positioned: Absolutely
This chapter has introduced some of the necessary concepts to grasp in order to use

CSS to lay out entire pages and components of pages. We finished with a small ex-

ample of how we can pull these techniques together to complete a layout element.

Even the most complex of CSS layouts use the same few techniques. A solid under-

standing of them will help you to break down any CSS task and work out the best

way to build it. We’ll see some further examples of this in the next chapter.

335CSS Positioning Basics





Chapter9
CSS for Layout
While writing the fourth edition of this book, it’s apparent how practical and usable

CSS has become since the previous edition. In just under two years, we’ve gone

from CSS3 being an attractive but hard-to-implement concept, to being able to put

much of what it offers into practice. We now have improved ways to create many

design effects, from shadows to rounded corners. We’re able to precisely target

elements in our pages with CSS3 selectors, and can eliminate clutter to our markup

when styling page elements.

When using CSS for layout purposes, however, there’s been less progress. Our basic

tools are those we discussed in Chapter 8: floating, positioning, and clearing elements

to create layout. This chapter will show you how to use those building blocks in

practical ways.

One area that has rapidly evolved recently is in providing support for smartphones,

tablets, and other mobile devices—in a myriad of screen sizes—to access the Web.

We’ll spend much of this chapter exploring the area of responsive design, and how

we can use traditional layout techniques to create designs that display neatly across

a range of devices. Modern web design simply must heed the rising popularity of

mobile browsing.



How do I create a two-column layout?
If you’re new to using CSS for layout purposes, the first trick you might want to

know is how to organize your content into two columns, as in Figure 9.1.

Figure 9.1. A simple two-column layout

Solution
The markup and CSS that follows will create a simple fixed-width layout using

positioning to control how the columns display in a browser:

chapter_09/2col-positioning.html

<!DOCTYPE html>
<html>
<head>

The CSS3 Anthology338



  <meta charset="utf-8" />
  <title>Chapter 9: 2 Column Layout - positioning</title>
  <link rel="stylesheet" href="2col-positioning.css" />
</head>
<body>
  <div class="wrapper">
    <div class="header">
      <h1>Recipe <span>for</span> Success</h1>
    </div>
    <div class="main">
      <div class="article">
        <h1>Baked Garlic</h1>

        <p>Garlic may be known for being a little bit stinky, but
          baked it is absolutely delicious and as long as you feed 
          it to all of your guests no-one will complain about the 
          smell! Once baked the garlic becomes creamy and sweet 
          making an ideal spread to accompany cheese.</p>
        <p>To make your own baked garlic, you will need:</p>

        <ul class="ingredients">
          <li>Whole heads of garlic</li>
          <li>Salt</li>
          <li>Olive Oil</li>
          <li>Foil</li>
        </ul>

        <h2>Instructions</h2>

        <ol>
          <li>Cut the tops and bottoms off the garlic heads with a
            sharp knife, keeping the head intact, then snip the 
            tops of the cloves so you can see the garlic inside.
            </li>
          <li>In a large ovenproof dish use foil to make a 'nest' 
            large enough to hold all of your garlic. If you are 
            doing a lot of garlic you could put them into several 
            nests.</li>
          <li>Add a few tablespoons of water to the nest then add 
            the garlic heads.</li>
          <li>Pour over a tablespoon of olive oil per garlic, 
            season with salt and tightly wrap up the top of the 
            foil nest to seal in the garlic.</li>
          <li>Bake for 30 minutes at 200C, open the nest and baste
            the garlic in the juices, then cover and bake for 

339CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



            another 30 minutes.</li>
          <li>Enjoy!</li>
        </ol>
      </div>

      <div class="aside">
        <h2>More from this site</h2>
        <ul class="nav">
          <li><a href="">More garlic recipes</a></li>
          <li><a href="">The Recipe for Success index</a></li>
          <li><a href="">Cookery School</a></li>
        </ul>

        <div class="box">
          <h3>Did you know?</h3>
          <p>Lorem ipsum dolor sit amet, consectetur adipiscing 
            elit. Pellentesque lacinia ligula eu risus egestas ut 
            laoreet ipsum aliquet. Aenean laoreet, metus ut dapibus 
            auctor, dui arcu pretium elit, bibendum ornare urna diam 
            sed lacus. Suspendisse potenti. Cras tincidunt erat a 
            enim mattis pretium ut non orci.</p>
        </div>

        <div class="box">
          <h3>Submit your recipes</h3>
          <p>Lorem ipsum dolor sit amet, consectetur adipiscing
            elit. Pellentesque lacinia ligula eu risus egestas ut 
            laoreet ipsum aliquet. Aenean laoreet, metus ut dapibus 
            auctor, dui arcu pretium elit, bibendum ornare urna diam 
            sed lacus. </p>
          <p><a href="">Send it to us here!</a></p>
        </div>
      </div>
    </div>
  </div>
</body>
</html>

chapter_09/2col-positioning.css

body {
  background-color: rgb(255,255,255);
  color: rgb(59,67,68);
  margin: 0;
  padding: 0;

The CSS3 Anthology340



  font: 1em/1.4 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

h1, h2, h3 {
  margin: 0;
  padding: 0 0 1em 0;
  text-shadow: 1px 1px 2px rgba(0,0,0,0.3);
}

ul, ol, p {
  margin:0;
  padding: 0 0 1em 0;
}

h1 {
  font-size: 137.5%;
  color: rgb(241,47,93);
}

h2 {
  font-size: 125%;
  color: rgb(241,47,93);
}

h3 {
  font-size: 100%;
}

a:link, a:visited {
  color: rgba(241,47,93,0.8);
}

a:hover {
  color: rgb(241,47,93);
  text-decoration: none;
}

.nav {
  list-style-type: none;
  padding: 0;
}

.nav a:link, .nav a:visited {

341CSS for Layout



  text-decoration: none;
  display: block;
  border-top: 1px solid rgb(232,243,248);
  padding: 0.5em 0 0.5em 0;
  color: rgb(66,148,182);
}

.nav a:hover {
  background-color: rgba(232,243,248,0.3);
}

.box {
  border-top: 1px solid rgb(219,230,236);
  padding: 1em 0 1em 0;
}

.wrapper {
  width: 940px;
  margin: 0 auto 0 auto;
}

.header {
  text-align: right;
  padding: 40px 0 0 0;
  border-bottom: 8px solid rgb(59,67,68);
  margin-bottom: 40px;
}

.header h1 {
  font-size: 187.5%;
  border-bottom: 1px solid rgb(59,67,68);
  margin-bottom: 2px;
  padding-bottom: 10px;
  color: rgb(59,67,68);
}

.header h1 span {
  font-style: italic;
  color: rgb(241,47,93);
}

.main {
  position: relative;
}

The CSS3 Anthology342



.article {
  position: absolute;
  top: 0;
  left: 0;
  width: 540px;
}

.aside {
  width: 300px;
  position: absolute;
  top: 0;
  right: 0;
}

Discussion
Our design starts out, as always, as a marked-up HTML document. We then add

some CSS to style the text in the document. After doing so, the page displays in a

linear fashion as in Figure 9.2.

Figure 9.2. Adding CSS to style the document text

343CSS for Layout



Our first task is to fix the width of the layout area and center it within the browser

viewport:

chapter_09/2col-positioning.css (excerpt)

.wrapper {
  width: 940px;
  margin: 0 auto 0 auto;
}

The layout is now centered, as seen in Figure 9.3.

Figure 9.3. A fixed-width, centered layout

We can now have a look at the header, where the CSS is very simple. We just align

the text right and then add padding to the header and the h1 within it, along with

The CSS3 Anthology344



some simple rules to style the text. The CSS follows, and you can see the result in

Figure 9.4:

chapter_09/2col-positioning.css (excerpt)

.header {
  text-align: right;
  padding: 40px 0 0 0;
  border-bottom: 8px solid rgb(59,67,68);
  margin-bottom: 40px;
}

.header h1 {
  font-size: 187.5%;
  border-bottom: 1px solid rgb(59,67,68);
  margin-bottom: 2px;
  padding-bottom: 10px;
  color: rgb(59,67,68);
}

Figure 9.4. The header after adding CSS

345CSS for Layout



To arrange the two columns using absolute positioning, I first need to create a pos-

itioning context for them. If I use position: absolute, they’ll position themselves

against the viewport; I actually want to place them within the main area of my

document, below the header.

My markup has a div that wraps both columns; it has a class of main. I set posi-

tion: relative on the div so that it creates a positioning context—the container

for my two columns:

chapter_09/2col-positioning.css (excerpt)

.main {
  position: relative;
}

Now I simply position my two columns within this container. I set article and

aside to position: absolute. Then I position article top and left within this

container, and aside top and right:

chapter_09/2col-positioning.css (excerpt)

.article {
  position: absolute;
  top: 0;
  left: 0;
  width: 540px;
}

.aside {
  width: 300px;
  position: absolute;
  top: 0;
  right: 0;
}

Our simple two-column layout is complete. This technique can be used anywhere

in a layout—from major columns of content to small elements within a container.

We’ll discover some weaknesses with positioning in the next section, but you should

still find it useful in some contexts.

The CSS3 Anthology346



How do I create a two-column layout with
a footer?
Our simple positioned layout has a weakness, and we can discover what it is by

adding a footer to the layout. As our items are positioned, they’re removed from the

document flow, so the footer acts as if they’re not there at all, displaying across the

content rather than below the two columns. You can see this rather unpleasant effect

in Figure 9.5.

Figure 9.5. We have a footer—just not where we’d like it

347CSS for Layout



Solution
To allow for a footer that will sit below the columns, we need a different approach

to our layout. One of the more popular and cross-browser-friendly approaches is to

use floats. Figure 9.6 shows how floats can be used to position two columns.

Figure 9.6. A two-column layout using floats, with our footer at the bottom

The markup we’ll use is more or less the same as in the section called “How do I

create a two-column layout?” The containing div main is unnecessary, so there’s no

need to create a new positioning context when using floats, and we’ve added the

footer div within the wrapper:

The CSS3 Anthology348



chapter_09/2col-float.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 9: 2 Column Layout - floats</title>
  <link rel="stylesheet" href="2col-float.css" />
</head>
<body>
  <div class="wrapper">
    <div class="header">
      <h1>Recipe <span>for</span> Success</h1>
    </div>

    <div class="article">
      <h1>Baked Garlic</h1>

      <p>Garlic may be known for being a little bit stinky, but
        baked it is absolutely delicious and as long as you feed 
        it to all of your guests no-one will complain about the 
        smell! Once baked the garlic becomes creamy and sweet 
        making an ideal spread to accompany cheese.</p>
      <p>To make your own baked garlic, you will need:</p>

      <ul class="ingredients">
        <li>Whole heads of garlic</li>
        <li>Salt</li>
        <li>Olive Oil</li>
        <li>Foil</li>
      </ul>

      <h2>Instructions</h2>

      <ol>
        <li>Cut the tops and bottoms off the garlic heads with a
          sharp knife, keeping the head intact, then snip the tops 
          of the cloves so you can see the garlic inside.</li>
        <li>In a large ovenproof dish use foil to make a 'nest'
          large enough to hold all of your garlic. If you are doing 
          a lot of garlic you could put them into several nests.
          </li>
        <li>Add a few tablespoons of water to the nest then add the 
          garlic heads.</li>
        <li>Pour over a tablespoon of olive oil per garlic, season 

349CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



          with salt and tightly wrap up the top of the foil nest to 
          seal in the garlic.</li>
        <li>Bake for 30 minutes at 200C, open the nest and baste the 
          garlic in the juices, then cover and bake for another 
          30 minutes.</li>
        <li>Enjoy!</li>
      </ol>

    </div>

    <div class="aside">
      <h2>More from this site</h2>
      <ul class="nav">
        <li><a href="">More garlic recipes</a></li>
        <li><a href="">The Recipe for Success index</a></li>
        <li><a href="">Cookery School</a></li>
      </ul>
      <div class="box">
        <h3>Did you know?</h3>
        <p>Lorem ipsum dolor sit amet, consectetur adipiscing
          elit. Pellentesque lacinia ligula eu risus egestas ut 
          laoreet ipsum aliquet. Aenean laoreet, metus ut dapibus 
          auctor, dui arcu pretium elit, bibendum ornare urna diam 
          sed lacus. Suspendisse potenti. Cras tincidunt erat a 
          enim mattis pretium ut non orci.</p>
      </div>

      <div class="box">
        <h3>Submit your recipes</h3>
        <p>Lorem ipsum dolor sit amet, consectetur adipiscing 
          elit. Pellentesque lacinia ligula eu risus egestas ut 
          laoreet ipsum aliquet. Aenean laoreet, metus ut dapibus 
          auctor, dui arcu pretium elit, bibendum ornare urna diam 
          sed lacus. </p>
        <p><a href="">Send it to us here!</a></p>
      </div>
    </div>
    <div class="footer cf">
      <p class="copy">Copyright &copy; Recipe for Success 2012</p>

      <div class="vcard">
        <h3>Contact Us</h3>
        <p class="fn org">Recipe for Success</p>
        <div class="adr">
          <div class="street-address">1 The Avenue</div>

The CSS3 Anthology350



          <div class="Locality">Mytown</div>
          <div class="postal-code">SR4 4TT</div>
          <div class="country-name">United Kingdom</div>
          <div><a class="email" href="mailto:test@example.com">
            test@example.com</a></div>
          <div class="tel value">+44&nbsp;(0)&nbsp;1234 56789</div>
        </div>
      </div>
    </div>
  </div>
</body>
</html>

chapter_09/2col-float.css (excerpt)

.article {
  float: left;
  width: 540px;
}

.aside {
  width: 300px;
  float: right;
}

.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  padding: 20px;
  overflow:auto;
}

.footer .copy {
  float: left;
  width: 520px;
}

.footer .vcard {
  float: right;
  width: 280px;
}

351CSS for Layout



.footer a:link, .footer a:visited {
  color: rgb(255,255,255);
}

Discussion
While the float property takes elements out of the normal document flow and

changes the way they relate to other elements, it also enables them to be cleared.

So an element—the footer in this instance—can be set to clear: both and then

display below the floated elements.

To display our columns using float rather than position simply involves removing

the position, top, left, and right properties; instead, we use float set to left

and right, respectively:

chapter_09/2col-float.css (excerpt)

.article {
  float: left;
  width: 540px;
}

.aside {
  width: 300px;
  float: right;
}

We can then set the clear property on our footer:

chapter_09/2col-float.css (excerpt)

.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  padding: 20px;
}

We’re going to use float again on elements within our footer, and this will give us

a chance to look at some of the potential issues you might encounter when using

float and clear.

The CSS3 Anthology352



I’ve set a background color and some padding on my footer, which now displays

as in Figure 9.7.

Figure 9.7. The page once the footer element has been styled

I want my copyright content to display in the left column, matching the article

div above it, and the contact information to display in the right column, lining up

underneath the aside div. Once again, we float these left and right—the width of

each being 10 pixels narrower than the columns above to account for the padding

on the footer:

chapter_09/2col-float.css (excerpt)

.footer .copy {
  float: left;
  width: 520px;
}

.footer .vcard {
  float: right;
  width: 280px;
}

Now try refreshing the browser: most of the footer has disappeared! What on earth

has happened?

353CSS for Layout



If you highlight the text as in Figure 9.8, you can see that the footer element is still

there. What’s happened is that the background color of the footer has collapsed to

the same height as the padding on the top and bottom of the footer div: ten pixels.

The copyright statement and contact text have their color set to white, so they

disappear against the white page background.

Figure 9.8. The amazing disappearing footer

The reason why the footer background has disappeared is that the two columns of

content have been taken out of the normal flow using float. The solution is to set

a clear below these two columns—just as the footer itself clears the main two

columns on the page.

Clearing Inside Containers
You are now encountering one of the most-discussed and troubling issues of layout

using floats: how to self-clear a page element.

There’s no markup below our two footer columns to which we can add a clear

property. A very basic solution would be to add a bit of redundant markup in the

form of a div with a class of clear:

<div class="footer">
  <p class="copy">Copyright &copy; Recipe for Success 2012</p>
    <div class="vcard">
      <h3>Contact Us</h3>

The CSS3 Anthology354



      <p class="fn org">Recipe for Success</p>
      <div class="adr">
        <div class="street-address">1 The Avenue</div>
        <div class="Locality">Mytown</div>
        <div class="postal-code">SR4 4TT</div>
        <div class="country-name">United Kingdom</div>
        <div><a class="email" href="mailto:test@example.com">
          test@example.com</a></div>
        <div class="tel value">+44&nbsp;(0)&nbsp;1234 56789</div>
      </div>
    </div>

<div class="clear"></div>
</div>

Now set the class .clear to clear: both:

.clear {
  clear: both;
}

This will clear the footer; however, it’s a relatively inelegant approach! I’m going

to show you some other solutions, all of which are valid ways to clear floats.

Knowing a few methods is handy, as floats can trigger odd layout bugs (especially

in older versions of Internet Explorer). Having a few tricks up your sleeve means if

one technique is giving you problems, you can try another.

Floating the Outer Container

If you float an element or elements within a wrapping element that is itself floated,

that wrapping element will then safely contain the inner floated elements, and all

your floated elements will display according to plan. So, in our example, if we float

.footer left, it will contain our inner, floated elements, and the footer will display

in full:

.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  padding: 20px;
float: left;

  width: 900px;
}

355CSS for Layout



The main problem with floating a containing element in this manner is that, when

floating an element, you need to give it an explicit width, and this may not always

be preferable or possible. Even in situations where it is, declaring widths on internal

elements of your pages makes them less flexible if they’re used elsewhere across

your site (for instance, the width may be incorrect for the dimensions of another

page). You also need to calculate margins and padding carefully. In our example,

we’d need to set a width of 900 pixels, taking into account the 20 pixels on each

side of the footer.

Setting overflow: auto or overflow: hidden

Another trick that will cause a wrapper to neatly contain floated elements is to set

overflow: auto or overflow: hidden on the container. Watch out for any content

that might extend beyond the container (for example, a long URL that does not

wrap), as it will either generate a scrollbar if the overflow is set to auto, or will fail

to show if the overflow is set to hidden:

.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  padding: 20px;
overflow: auto;

}

Those warnings aside, this is a very simple technique that you can use in many

situations.

Clearfix Hack

Another technique you may come across is known as the clearfix hack. I tend to

avoid using it in my work, though, as the previous two methods suffice in most

situations. There are a few versions of the clearfix hack, but they use generated

content to add markup that clears the container. The example we’ve used in this

case is explained on Nicolas Gallagher’s site:1

1 http://nicolasgallagher.com/micro-clearfix-hack/

The CSS3 Anthology356

http://nicolasgallagher.com/micro-clearfix-hack/


chapter_09/2col-float.css (excerpt)

/* For modern browsers */
.cf:before,
.cf:after {
    content:"";
    display: table;
}

.cf:after {
    clear: both;
}

/* For IE 6/7 (trigger hasLayout) */
.cf {
    zoom:1;
}

In our layout, we’d add the class cf to the footer, like this:

chapter_09/2col-float.html (excerpt)

<div class="footer cf">

The float would then self-clear.

How do I create a three-column layout?
We’ve explored a basic two-column page set-up, but how easy is it to add a third

column to our fixed-width layout, perhaps to add some subnavigation?

Solution
Adding a third column to take care of subnavigation is actually quite simple. We

can just add our subnavigation element structure to the existing markup, float it

left, and then adjust our other columns to give it some space. The markup and CSS

follow, and the result can be seen in Figure 9.9:

chapter_09/3col-float.html (excerpt)

<!DOCTYPE html>
<html>
<head>

357CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



  <meta charset="utf-8" />
  <title>Chapter 9: 3 Column Layout - floats</title>
  <link rel="stylesheet" href="3col-float.css" />
</head>
<body>
  <div class="wrapper">
    <div class="header">
      <h1>Recipe <span>for</span> Success</h1>
    </div> 

<div class="subnav">
      <h2>Recipes for...</h2>
      <ul class="nav">
        <li><a href="">Breakfast</a></li>
        <li><a href="">Lunch</a></li>
        <li><a href="">Dinner</a></li>
        <li><a href="">Entertaining</a></li>
        <li><a href="">Cakes &amp; Biscuits</a></li>
        <li><a href="">Bread</a></li>
        <li><a href="">Gluten Free</a></li>
      </ul>
    </div>

    <div class="article">
      <h1>Baked Garlic</h1>
      <p> 
      ⋮ 
      </p>
    </div>
    <div class="aside">
      ⋮
    </div>
    <div class="footer">
      <p>
      ⋮
      </p>
  
    </div>

</div>

</body>
</html>

The CSS3 Anthology358



chapter_09/3col-float.css (excerpt)

.subnav {
  width: 220px;
  float: left;
  margin-right: 20px;
}

.article {
  float: left;
width: 440px;

}

.aside {
width: 220px;

  float: right;
}

Figure 9.9. A three-column layout with subnavigation

359CSS for Layout



Discussion
When you add an extra column to your layout, you need to ensure that all your

width calculations are correct. In our two-column layout, we could just float our

.article and .aside elements left and right; because the total width of the two

combined was less than the 940-pixel total width of the wrapper, a natural gap was

left between them.

With a three-column layout, we float both .subnav and .article left. If there was

no right-hand margin on .subnav, there would be no space between the two elements,

but adding a 20-pixel right margin to .subnav creates a gutter between them, ensuring

the text in each column does not abut.

How do I create a fixed-width layout with
a full-width header and footer?
The layout that we have been working on so far is completely contained within a

940-pixel wrapper. This means that the dark-gray header and footer bars stop at 940

pixels wide. A common site design structure involves a fixed central content area

that allows the background color on some or all of the containers to bleed out to

the edges of the viewport, as seen in Figure 9.10. So how is this achieved?

Solution
We need to make a few changes to our markup to enable a wide footer:

chapter_09/3col-wide-footer.html (excerpt)

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <title>Chapter 9: 3 Column Layout - floats, wide footer</title>
  <link rel="stylesheet" href="3col-wide-footer.css" />
</head>
<body>
  <div class="header">

<div class="inner">
      <div class="wrapper">
        <h1>Recipe <span>for</span> Success</h1>

The CSS3 Anthology360



</div>
    </div>
  </div>

<div class="wrapper">
      <div class="subnav">
        <h2>Recipes for...</h2>
        ⋮
      </div>
      <div class="article">
        <h1>Baked Garlic</h1>
      </div>
      <div class="aside">
        <h2>More from this site</h2>
        ⋮
      </div>
    </div>
    <div class="footer">

<div class="wrapper">
      <p class="copy">Copyright &copy; Recipe for Success 2012</p>
      <div class="vcard">
      ⋮
      </div>
    </div>
  </div>

</body>
</html>

chapter_09/3col-wide-footer.css (excerpt)

/* remove the bottom border from the h1 and add to the new .inner */

.header h1 {
  font-size: 187.5%;
  padding-bottom: 10px;
  color: rgb(59,67,68);
}
.header .inner {
  border-bottom: 1px solid rgb(59,67,68);
  margin-bottom: 2px;
}

/* remove the left and right padding on footer and add back to
  internal columns */

361CSS for Layout



.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  overflow: auto;
padding: 20px 0 20px 0;

}

.footer .copy {
  float: left;
width: 220px;

}

.footer .vcard {
  float: right;
width: 220px;

}

Figure 9.10. The fixed-width, centered layout with full-width header and footer bars

The CSS3 Anthology362



Discussion
To create this effect, we simply reuse our wrapper div. This is the element that

creates our centered layout. The CSS applied to it looks as follows:

chapter_09/3col-wide-footer.css (excerpt)

.wrapper {
  width: 940px;
  margin: 0 auto 0 auto;
}

In our earlier layouts, the wrapper div was wrapped around the entire layout. To

create the full-width header and footer effect, we need to reuse this wrapper div

inside the header and footer, in addition to wrapping the main content with it.

First, remove the wrapper from the markup completely. This will cause the columns

to spread out across the full width of the viewport, as in Figure 9.11.

Figure 9.11. Removing the wrapper causes the columns to widen

363CSS for Layout



We then put the wrapper back in after the closing header div end tag, so that it

starts to wrap content from before the subnav div, and close it above the start of the

footer div. This will pull the main content back into place on the page, leaving

the header and footer spread out full width, as shown in Figure 9.12.

Figure 9.12. Wrapping the main content, with the header and footer spread out

Now use the wrapper class again to wrap divs around the contents of the header

and footer, adding them directly after the opening header and footer div tags, and

closing them before the corresponding end tags. This will bring the contents of the

header and footer back into the centered position, while allowing the footer back-

ground and the bottom border on the header to remain full width, as in Figure 9.13.

The CSS3 Anthology364



Figure 9.13. Header and footer contents have a background, and bottom border remains full width

We need to do a little bit of tidying up, removing the left and right padding on the

footer and adding it back to the internal columns of content (on their width values).

We want these columns to line up with the columns above them, as was shown

earlier in Figure 9.10:

chapter_09/3col-wide-footer.css (excerpt)

/* remove the bottom border from the h1 and add to the new .inner */

.header h1 {
  font-size: 187.5%;
  padding-bottom: 10px;
  color: rgb(59,67,68);
}
.header .inner {
  border-bottom: 1px solid rgb(59,67,68);
  margin-bottom: 2px;
}

/* remove the left and right padding on footer and add back to

365CSS for Layout



  internal columns */

.footer {
  clear: both;
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  overflow: auto;
padding: 20px 0 20px 0;

}

.footer .copy {
  float: left;
width: 220px;

}

.footer .vcard {
  float: right;
width: 220px;

}

In addition, because the thin border on the header was applied to the h1 nested inside

it, that border is now contained within our wrapper div and won’t run full width.

To fix this, we can add an extra div with a class of inner just outside the header

wrapper, and apply the border values to that in the stylesheet.

How do I create a design that works well
on mobile devices?
Fixed-width layouts work well for desktop and are fairly easy to implement. We

can calculate our widths in units of measurement that are easy to understand, work

out our gutter widths, and achieve a pleasing design aesthetic. Increasingly, though,

people aren’t viewing the sites that we design on a desktop browser; instead, they’re

viewing content on smartphones or tablets, and these devices have a range of screen

sizes and viewing formats.

Up until recently, the big debate was whether you should use a fixed-width lay-

out—like the one we’ve been building in this chapter—or a liquid layout. A liquid

layout stretches out to fit the browser window, and uses percentages for column

measurements. Liquid layouts worked well when most people were using a fairly

limited range of screen resolutions. Not so long ago, you’d mostly be dealing with

The CSS3 Anthology366



resolutions between 800 by 600 pixels to 1,600 by 1,200 pixels. Creating a design

that would look reasonable if stretched to 1,600 pixels but still worked at 800 was

possible, although it did require compromise.

The problem with liquid layouts becomes obvious at large screen resolutions with

the browser maximized: lines become very long and text hard to read. These layouts

also struggle when viewed on mobile devices, as the columns then become tiny,

often with a single word on each line.

Many website owners, developers, and designers have attempted to remedy this

issue by maintaining completely separate, independent mobile sites. The problem

with this technique is that modern mobile devices are very flexible when it comes

to web page display, and users don’t necessarily want to view a bare-bones, pared-

down version of a site. They want to see all of the content, but want it displayed in

a way that makes it easy to read on their device.

Solution
The best solution to supporting a wide range of devices with differing viewport

widths is to use responsive design. Responsive design is quite a broad topic, but in

a nutshell it involves flexible design methods that respond to a user’s behavior and

preferences when viewing websites. We’re going to learn how to transform your

fixed-width layout into a mobile-first responsive design.

There are no changes to the markup of the wide footer example in the section called

“How do I create a fixed-width layout with a full-width header and footer?” apart

from some stylesheet links, which we’ll explore shortly; however, changes need to

be made to the CSS. You can see the results of our responsive layouts in various

browser sizes in Figure 9.14, Figure 9.15, and Figure 9.16. The rules for laying out

text remain the same as our previous example:

chapter_09/3col-responsive.css (excerpt)

.wrapper {
  width: 90%;
  margin: 0 auto 0 auto;
}

@media only screen and (min-width: 768px) {
  .subnav {

367CSS for Layout



    width: 31.42857%; /* 220/700 */
    float: left;
  }

  .article {
    float: right;
    width: 65.71428%; /* 460/700 */
  }

  .aside {
    width: 100%; 
    clear: both;
  }

  .footer .copy {
    float: left;
    width: 31.42857%; /* 220/700 */
  }

  .footer .vcard {
    float: right;
    width: 31.42857%; /* 220/700 */
  }
}

@media only screen and (min-width: 992px) {
  .wrapper {
    max-width: 1180px;
  }

  .subnav {
    width: 23.404255%; /* 220/940 */
    margin-right: 2.1276596%; /* 20/940 */
  }

  .article {
    float: left;
    width: 46.808511%; /* 440/940 */
  }

  .aside {
    width: 23.404255%; /* 220/940 */
    float: right;
    clear: none; /* to counteract the clearing of the previous
      breakpoint */

The CSS3 Anthology368



  }

  .footer .copy {
    width: 23.404255%; /* 220/940 */
  }

  .footer .vcard {
    width: 23.404255%; /* 220/940 */
  }
}

Figure 9.14. The layout as seen on a small device such as a smartphone

369CSS for Layout



Figure 9.15. The layout as it would display on a tablet or midsized screen

The CSS3 Anthology370



Figure 9.16. A regular desktop layout

Discussion
The majority of our stylesheet remains the same as in the section called “How do I

create a fixed-width layout with a full-width header and footer?”; we want to display

all our text styling in the top part of the document to all users, whether they’re using

a smartphone, a tablet, or a desktop browser.

We change the rule for .wrapper, removing the fixed 940-pixel width and replacing

it with a value of 90%:

chapter_09/3col-responsive.css (excerpt)

.wrapper {
  width: 90%;
  margin: 0 auto 0 auto;
}

Our layout will now display as in Figure 9.17.

371CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 9.17. The default style for all devices

We now need to create our set of media queries, which you can see in our stylesheet.

Media queries are part of the CSS3 specification and enable us to target devices by

certain properties, such as their screen width. You can use media queries within a

stylesheet as we have here, or in your HTML document, as we will do in a later

example.

For this simple site, we’re going to target three width-related breakpoints. First,

we’ll have a default stylesheet that will be used by all devices. Then we’ll use a

media query to check if the browser window is wider than 768 pixels. If it is, we’ll

arrange the content into two columns. Finally, we’re also going to check for desktop

widths by looking for screens wider than 992 pixels, in which the layout will display

over three columns. The media queries we’ll need are as follows:

@media only screen and (min-width: 768px) {
  /* css for 768 pixel width devices and wider goes here */
}

@media only screen and (min-width: 992px) {
  /* css for 992 pixel width devices and wider goes here */
}

The CSS3 Anthology372



Inside the section for min-width: 768px, we need to add code that will arrange our

site into two columns. As we have a three-column layout—consisting of our subnav,

article, and aside—we’re going to drop the aside div below the other two columns

at this width.

We need to be able to calculate the new widths of our columns, but as we’ve set the

width of .wrapper to a percentage (90%), we’re unsure what its exact width will

be at this point. The actual viewport could be anywhere from 768 pixels to 991

pixels, and with the width of the wrapper set to 90%, that makes its potential exact

width anywhere between 691 pixels and 892 pixels. This means we can’t use pixels

to size our individual columns; we need to calculate percentages.

First, we decide on an arbitrary width for .wrapper at this breakpoint that’s between

these two values; let’s go with 700 pixels. The calculation that we need to remember

is this: target / container = percentage.

So, our wrapper is 700 pixels wide and our .subnav is 220 pixels wide. We also

want to leave a 20-pixel gutter between .subnav and .article; therefore, .article

will be 460 pixels wide if we float these columns left and right respectively. We

calculate the percentage width of .subnav as follows: 220/700 = 31.42857%.

We then calculate .article: 460/700 = 65.71428%. We can now enter these values

as the column widths into our CSS. We also need to set our .aside to a width of

100%, and give it a rule of clear: both so that it drops underneath these first two

columns:

chapter_09/3col-responsive.css (excerpt)

@media only screen and (min-width: 768px) {
  .subnav {
    width: 31.42857%; /* 220/700 */
    float: left;
  }

  .article {
    float: right;
    width: 65.71428%; /* 460/700 */
  }

  .aside {
    width: 100%;

373CSS for Layout



    clear: both;
  }
}

Okay, let’s test it. Load the site in your browser, and pull your window down to a

narrow view, so that the content displays as one column. Now stretch it out wider

to see it rearrange itself into two columns. Your first fluid grid!

To tidy up this screen width, we can use the same width calculations to arrange

the two chunks of footer content into two columns as we have had in previous ex-

amples. Our final media query for min-width: 768px is as follows:

chapter_09/3col-responsive.css (excerpt)

@media only screen and (min-width: 768px) {
  .subnav {
    width: 31.42857%; /* 220/700 */
    float: left;
  }

  .article {
    float: right;
    width: 65.71428%; /* 460/700 */
  }

  .aside {
    width: 100%; 
    clear: both;
  }

.footer .copy {
    float: left;
    width: 31.42857%; /* 220/700 */
  }

  .footer .vcard {
    float: right;
    width: 31.42857%; /* 220/700 */
  }
}

The CSS3 Anthology374



Now let’s create the three-column version, which will provide desktop-browser

users with the same experience they had when they viewed the fixed-width version

of our site.

Our completed min-width: 992px section follows. It should be fairly familiar to

you from the previous width calculations, with a couple of exceptions:

chapter_09/3col-responsive.css (excerpt)

@media only screen and (min-width: 992px) {
  .wrapper {
    max-width: 1180px;
  }

  .subnav {
    width: 23.404255%; /* 220/940 */
    margin-right: 2.1276596%; /* 20/940 */
  }

  .article {
    float: left;
    width: 46.808511%; /* 440/940 */
  }

  .aside {
    width: 23.404255%; /* 220/940 */
    float: right;
    clear: none; /* to counteract the clearing of the previous
      breakpoint */
  }

  .footer .copy {
    width: 23.404255%; /* 220/940 */
  }

  .footer .vcard {
    width: 23.404255%; /* 220/940 */
  }
}

Our first task is to set .wrapper to have a maximum width of 1,180 pixels. What

this does is stop the layout from being any wider than 1,180 pixels, so that users

avoid the problem of content being laid out too widely to be readable.

375CSS for Layout



Let’s set our target container at 940 pixels wide in this version, and then use that

to calculate our percentages. This time round, of course, we have three columns to

calculate widths for.

With the first two columns both floated left, we need to add a margin-right to

.subnav to stop .article colliding against it. We calculate the 20-pixel margin in

exactly the same way as we calculate the column widths: 20 / 940 = 2.1276596%.

The final addition to this media query is to our .aside. In our previous media query,

we gave it a rule of clear: both. Here, though, we need to unset this rule so that

the other two columns aren’t cleared, and the .aside floats up into its place on the

far right of the layout.

Adding Some Device-specific Fixes
There are a couple of lines you will want to add to your HTML document if you’re

creating a responsive design. The first is a meta tag:

<meta name="viewport" content="width=device-width, 
  target-densitydpi=160dpi, initial-scale=1.0" />

This meta tag means that mobile browsers will set the width of the browser viewport

equal to the width of the device. If you’ve browsed the Web using a mobile device,

you’ll have noticed that your first view of a website is usually zoomed out. In the

case of our earlier fixed-width, three-column layout, the first view you would be

presented with on a smartphone is all three columns on the page; you’d need to

zoom in to read the content you wanted to isolate.

As we’ve gone to the effort of creating a customized smartphone version of our

layout, we want mobile browsers to display it zoomed in, and this meta tag will

ensure this happens.

The second line we want to add to our HTML is a link—just above the closing body

tag at the bottom of the page—to a JavaScript file:

<script src="ios-orientationchange-fix.js"></script>

I have included the file in the code archive, or you can download it from GitHub.2

2 https://github.com/scottjehl/iOS-Orientationchange-Fix

The CSS3 Anthology376

https://github.com/scottjehl/iOS-Orientationchange-Fix


This file fixes an orientation problem (at the time of writing),3 where iOS devices

may display a layout incorrectly when a user switches from landscape to portrait.

At some point, Apple will no doubt fix this bug, and it will eventually only be an

issue for older iOS devices still in circulation; hence, check that this is still a require-

ment when implementing your layouts.

Enquiries May Be Ignored

Versions of Internet Explorer earlier than IE9 offer no support for media queries,

so they’ll ignore all media query declarations within your CSS, thus serving only

the mobile version of the site. See the section called “What about older browsers

and responsive design?” for some suggestions as to how to accommodate visitors

using these browsers.

So, that’s it—we’ve created a simple responsive layout. Despite this being a basic

project, the principles we’ve investigated remain the same for more complex respons-

ive layouts, and we’ll have a look at a slightly different example in the section called

“How can I use responsive-design techniques when my site is image-heavy?”

How do I create a print stylesheet?
While we are ensuring that users on a range of mobile or desktop devices have a

rewarding experience viewing our site, there’s another group we should consider:

those who wish to print content displayed on our site.

Solution
Fortunately, we can create a print-specific stylesheet for our site, as illustrated in

Figure 9.18. We’ll also need to add a link tag in the head of our HTML document

that points to this standalone stylesheet:

chapter_09/3col-responsive.html (excerpt)

<link rel="stylesheet" href="3col-responsive.css" media="screen" />
 ⋮
<link rel="stylesheet" href="3col-responsive-print.css" 
  media="print" />

3 http://filamentgroup.com/lab/a_fix_for_the_ios_orientationchange_zoom_bug/

377CSS for Layout

http://filamentgroup.com/lab/a_fix_for_the_ios_orientationchange_zoom_bug/


chapter_09/3col-responsive-print.css

body {
  background-color: rgb(255,255,255);
  color: rgb(0,0,0);
  padding: 20px;
  font: 1em/1.4 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
}

h1, h2, h3 {
  margin: 0;
  padding: 0 0 1em 0;
}

p {
  margin:0;
  padding: 0 0 1em 0;
}

ul, ol {
  margin:0;
  padding: 0 0 1em 1em;
}

h1 {
  font-size: 137.5%;
}

h2 {
  font-size: 125%;
}

h3 {
  font-size: 100%;
}

a:link, a:visited {
  color: rgb(0,0,0);
}

.header {
  text-align: right;
  padding: 20px 0 0 0;

The CSS3 Anthology378



  border-bottom: 8px solid rgb(0,0,0);
  margin-bottom: 40px;
}

.header h1 {
  font-size: 187.5%;
  padding-bottom: 10px;
}

.header .inner {
  border-bottom: 1px solid rgb(0,0,0);
  margin-bottom: 2px;
}

.header h1 span {
  font-style: italic;
}

.footer {
  border-top: 1px solid rgb(0,0,0);
  padding: 20px 0 20px 0;
  overflow: auto;
}

.wrapper {
  width: 90%;
  margin: 0 auto 0 auto;
}

.subnav {
  display: none;
}

.aside {
  display: none;
}

.footer .vcard {
  display: none;
}

379CSS for Layout



Figure 9.18. Our layout in a print preview

The CSS3 Anthology380



Discussion
Our example site is a recipe site, so it’s highly likely that people will want to print

out the recipes to refer to them in the kitchen. We can customize a separate print

stylesheet to ensure that users only print out the recipe itself, and not the navigation

area or other elements on the site that are unnecessary for their purpose.

The first action is to set the media attribute on the link to our original stylesheet

to screen. The means that the main stylesheet (3col-responsive.css) will only be used

when the site is displayed onscreen. We then add a second link tag pointing to our

print-specific stylesheet; this has a media attribute of print. Browsers will use this

stylesheet to render the document ready to be printed out.

We can now set some basic CSS for the print-view text. Our first task is to go through

the stylesheet and set any element on the page that we don’t want users to print to

display: none:

chapter_09/3col-responsive-print.css (excerpt)

.subnav {
  display: none;
}

.aside {
  display: none;
}

.footer .vcard {
  display: none;
}

We can then go and tweak other styles to suit a printed copy of our web page; for

instance, eliminating the color and text-shadow properties on our h1s, h2s, and

h3s, and deleting our a:hover selector altogether. We’ll test in our browser’s print

preview facility until we’re happy with the result.

Think of the Ink

When creating a print stylesheet, think about how the content to be printed will

be used. The Automobile Association (AA) website in the UK allows you to print

out driving directions, for example, and the print stylesheet for the site prints out

381CSS for Layout



map directions using a large font size, which is useful when you’re trying to nav-

igate while driving. Many browsers won’t print out background colors and images,

so make sure everything remains legible.

Furthermore, unless you’re creating a multicolumn layout for print, either avoid

setting widths on containers or set them to 100%; that way the content will fit the

page nicely, whatever size the paper is used for printing.

If your content has a lot of inline links, you can use generated content to display

a URL after its corresponding link in the printed document by adding the following

CSS:

a:link:after {
  content: “ (“ attr(href) “) “;
}

Finally, be considerate of your user’s ink supply: set large images to display:

none and hide advertising banners.

How can I use responsive-design techniques
when my site is image-heavy?
Our responsive layout has behaved nicely, but so far it’s only comprised text—an

unlikely scenario for most modern websites. How can we use images in responsive

design without them breaking out of their bounding boxes?

Solution
The design shown in Figure 9.19, Figure 9.20, Figure 9.21, Figure 9.22, and Fig-

ure 9.23 is a photography portfolio design containing a number of images. It also

complies to a strict grid layout, no matter what screen width you view it at. Here’s

our foundation HTML markup, followed by a series of specific stylesheets applying

to each grid layout:

chapter_09/responsive.html

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />

The CSS3 Anthology382

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



  <title>Chapter 9: Responsive images</title>

  <meta name="viewport" content="width=device-width,
    target-densitydpi=160dpi, initial-scale=1.0" />

  <link rel="stylesheet" href="responsive-basic.css" />
  <link rel="stylesheet" media="only screen and (min-width: 460px)" 
    href="responsive-410.css" />
  <link rel="stylesheet" media="only screen and (min-width: 768px)" 
    href="responsive-700.css" />
  <link rel="stylesheet" media="only screen and (min-width: 992px)" 
    href="responsive-940.css" />
  <link rel="stylesheet" media="only screen and (min-width: 1280px)"
    href="responsive-1180.css" />

  <!--[if (lt IE 9) & (!IEMobile)]>
    <script src="selectivizr-min.js"></script>
    <link rel="stylesheet" href="responsive-ie-old.css" />
  <![endif]-->

</head>
<body>
  <div class="header">
    <div class="wrapper">
      <h1>My Portfolio</h1>

      <ul class="nav">
        <li><a href="">About</a></li>
        <li><a href="">Photos</a></li>
        <li><a href="">Contact</a></li>
      </ul>
    </div>
  </div>

  <div class="wrapper">
    <div class="feature">
      <img src="gallery/main.jpg" alt="path from the coast to
        Dunstanburgh Castle, Northumberland" />
      <div class="caption">Dunstanburgh Castle, Northumberland</div>
    </div>

    <div class="intro">
      <h2>A trip to Northumberland</h2>
      <p>The photos in this gallery were taken on a recent trip to
        Northumberland in the North East of the United Kingdom.</p>

383CSS for Layout



      <p>The North-East coast is my favourite place in the world.
        It can get very cold and windy but you are rewarded for 
        braving the elements by an amazing coastline, castles and 
        the opportunity to see puffins and terns on the Farne 
        Islands.</p>
    </div>

    <div class="gallery">
      <ul>
        <li><img src="gallery/one.jpg" alt="Dunstanburgh Castle"
          width="280" />
          <span class="caption">Dunstanburgh Castle</span>
        </li>
        <li><img src="gallery/two.jpg" alt="Dunstanburgh Castle"
          width="280" />
          <span class="caption">Dunstanburgh Castle</span>
        </li>
        <li><img src="gallery/three.jpg" alt="Lindisfarne Abbey
          ruins" width="280" />
          <span class="caption">Lindisfarne Abbey ruins</span>
        </li>
        <li><img src="gallery/four.jpg" alt="Dunstanburgh Castle"
          width="280" />
          <span class="caption">Dunstanburgh Castle</span>
        </li>
        <li><img src="gallery/five.jpg" alt="Lindisfarne Abbey
          ruins" width="280" />
          <span class="caption">Lindisfarne Abbey ruins</span>
        </li>
        <li><img src="gallery/six.jpg" alt="Lindisfarne Abbey ruins"
          width="280" />
          <span class="caption">Lindisfarne Abbey ruins</span>
        </li>
        <li><img src="gallery/seven.jpg" alt="Lily" width="280" />
          <span class="caption">Lily</span>
        </li>
        <li><img src="gallery/eight.jpg" alt="Lily" width="280" />
          <span class="caption">Lily</span>
        </li>
        <li><img src="gallery/nine.jpg" alt="Glasshouses"
          width="280" />
          <span class="caption">Glasshouses</span>
        </li>
        <li><img src="gallery/ten.jpg" alt="Beach at Craster"
          width="280" />

The CSS3 Anthology384



          <span class="caption">Beach at Craster</span>
        </li>
      </ul>
    </div>
  </div>

  <div class="footer">
    <div class="wrapper">
      <p>All photos &copy; Rachel Andrew | Find me on 
        <a href="http://www.flickr.com/photos/rachelandrew/">
        Flickr</a></p>
    </div>
  </div>

  <script src="ios-orientationchange-fix.js"></script>
</body>
</html>

chapter_09/responsive-basic.css

body {
  margin: 0;
  padding: 0;
  font: 1em/1.4 "Lucida Grande", "Lucida Sans Unicode", 
    "Lucida Sans", Verdana, Tahoma, sans-serif;
  background-color: rgb(255,255,255);
  color: rgb(59,67,68);
}

.wrapper {
  width: 90%;
  margin: 0 auto 0 auto;
}

img {
  max-width: 100%;
  display: block;
}

h1,h2,h3 {
  margin: 0;
  padding: 0;
}

h2 {

385CSS for Layout



  font-size: 125%;
  padding: 0 0 1em 0;
}

p {
  margin: 0;
  padding: 0 0 1em 0;
}

ul {
  margin: 0;
  padding: 0;
}

a:link, a:visited {
  color: rgb(122,106,83);
}

.header {
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  border-bottom: 1px solid rgb(0,0,0);
  margin-bottom: 1em;
}

.header .wrapper {
  position: relative;
}

.header h1 {
  display: inline-block;
  padding: 1em 0 0.3em 0;
  font-size: 125%;
  font-weight: normal;
  text-shadow: 1px 1px 2px rgba(0,0,0,0.7);
}

.header .nav  {
  padding-bottom: 1em;
}

.header .nav li {
  display: inline;
  font-size: 125%;
  color: rgb(255,255,255);

The CSS3 Anthology386



  padding: 0 0.5em 0 0;
  text-shadow: 1px 1px 2px rgba(0,0,0,0.7);
}

.header .nav a:link, .header .nav a:visited {
  text-decoration: none;
  color: rgb(255,255,255);
}

.feature  {
  background-color: rgb(59,67,68);
  color: rgb(255,255,255);
  margin: 0 0 1em 0;
}

.caption {
  padding: 0.3em;
  font-size: 87.5%;
  text-shadow: 1px 1px 2px rgba(0,0,0,0.7);
}

.gallery ul {
  list-style-type: none;
  margin: 0 0 1em 0;
  padding: 0;
}

.footer {
  border-top: 1px solid rgb(59,67,68);
  font-size: 87.5%;
  padding: 1em 0 1em 0;
}

387CSS for Layout



Figure 9.19. The mobile layout uses just the responsive-basic.css stylesheet

chapter_09/responsive-410.css (excerpt)

.gallery {
  overflow: hidden;
  clear: both;
}

.gallery li {
  float: left;
  width: 48.78048%;
  margin: 0 0 2.43902% 2.43902%;
}

.gallery li:nth-child(2n+1) {
  margin-left: 0;
}

The CSS3 Anthology388



Figure 9.20. A slightly wider display arranges the images into a two-column grid

chapter_09/responsive-700.css (excerpt)

.header .nav {
  position: absolute;
  top: 20px;
  right: 0;
  list-style-type: none;
}

.header h1 {
  padding: 20px 0 20px 0;
  font-size: 175%;

389CSS for Layout



}

.header .nav li {
  font-size: 175%;
}

.gallery li:nth-child(n) {
  width: 31.42857%;
  margin: 0 0 2.85714% 2.85714%;
}

.gallery li:nth-child(3n+1) {
  margin-left: 0;
}

Figure 9.21. On a tablet we see the images across three columns

The CSS3 Anthology390



chapter_09/responsive-940.css (excerpt)

.gallery {
  overflow: hidden;
  clear: both;
}

.gallery li:nth-child(n) {
  width: 23.40425%;
  margin: 0 0 2.12765% 2.12765%;
}

.gallery li:nth-child(4n+1) {
  margin-left: 0;
}

Figure 9.22. The small desktop view shows images across four columns

391CSS for Layout



chapter_09/responsive-1180.css (excerpt)

.wrapper {
  max-width: 1180px;
}

.feature {
  float: left;
  width: 79.66101%;
}

.intro {
  float: right;
  width: 18.64406%;
}

.gallery li:nth-child(n) {
  width: 18.64406%;
  margin: 0 0 1.69491% 1.69491%;
}

.gallery li:nth-child(5n+1) {
  margin-left: 0;
}

The CSS3 Anthology392



Figure 9.23. On a very wide screen, we move the introductory text next to the large image

Discussion
If you look at this design in a browser, you’ll discover that not only does the grid

scale between width breakpoints, the images do as well. To facilitate this, we need

to add a very simple rule in our CSS:

chapter_09/responsive-basic.css (excerpt)

img {
max-width: 100%;

}

When we set this rule, all images’ maximum widths will be, at most, equal to the

width of the image itself; they’ll display smaller as their containers shrink when

the browser is resized.

393CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



We can see this behavior by looking at the large feature image, main.jpg. We use the

same image on all screen sizes, but it scales right down to neatly fit our mobile

layout, or up to its full size on a desktop layout.

Size Matters

If you’re thinking that it’s not ideal having mobile users download images with

large footprints, you’d be right. At the time of writing, however, this problem

doesn’t have an easy solution. Responsive design is a new field, and serving re-

sponsive images at appropriate sizes for various viewport dimensions is something

that is being discussed at length within the web community. Searching for the

phrase “responsive images” should bring up the latest thinking on the issue, and

there are helpful tools4 and articles5 popping up on the Web all the time.

If you are just using a single image, optimize the image as much as possible, and

make sure it is no larger than it needs to be for the largest width it will display

at. Don’t let the fact that you are using responsive images make you avoid resizing

and optimizing your images before uploading them to your site!

Now we can look at the rest of our layout.

As with our recipe website, we’ll use a mobile-first strategy, but this time we’re

going to employ separate stylesheets. Mobile-first means that we only load the

stylesheets that the device being used can actually utilize. Our responsive-basic.css

stylesheet is the file that we expect all devices to download and use, so it contains

all our basic formatting. It’s linked into our HTML document with a regular link

element:

<link rel="stylesheet" href="responsive-basic.css" />

With this stylesheet in play, our image gallery will display in a linear fashion, one

image below another.

Next, let’s add a stylesheet that will be used by a browser viewport wider than or

equal to 460 pixels:

4 http://adaptive-images.com/
5 http://www.cloudfour.com/responsive-imgs-part-2/

The CSS3 Anthology394

http://adaptive-images.com/
http://www.cloudfour.com/responsive-imgs-part-2/


<link rel="stylesheet" media="only screen and (min-width: 460px)"
  href="responsive-410.css" />

The media attribute used here is just like the media query we used within our CSS

for the recipe website. In this stylesheet, we’re using a grid that is 410 pixels wide

with six columns of 60 pixels, each with a ten-pixel gutter. The dimensions of this

grid will help us work out the calculations for the percentage widths we need:

gutter = 10px | 2.43902%
1 = 60px | 14.63414%
2 = 130px | 31.70731%
3 = 200px | 48.78048%
4 = 270px | 65.85365%
5 = 340px | 82.92682%
6 = 410px | 100%

In this stylesheet, we’ll set .gallery to overflow: hidden so that it contains the

floated elements inside. We can then float our gallery list items left, and give each

a percentage width of 48.78048%. We obtain this value from the three-column width

calculation.

Spacing Issues

In Chapter 8, we looked at a gallery example that used display: inline-block

for layout purposes. Ideally, we would use that here, but inline-block preserves

whitespace and creates gaps between elements, unfortunately. Counteracting this

can be problematic; spacing can be inconsistent between browsers, so where the

calculations are vital (as in this layout), I’ve reverted to using floats.

If you can remove all the whitespace between the li elements—for example, if

you’re generating your content from a server-side script and can ensure the script

outputs no whitespace—you would be safe to replace the float here with inline-

block.

As you’ll discover, CSS development tends to involve a range of compromises,

and it pays to have a few tricks up your sleeve when deciding what works best in

each circumstance.

We also add a left and bottom margin of 2.43902%, the calculation we arrived at in

evaluating gutters of 10 pixels:

395CSS for Layout



chapter_09/responsive-410.css (excerpt)

.gallery {
  overflow: hidden;
  clear: both;
}

.gallery li {
  float: left;
  width: 48.78048%;
  margin: 0 0 2.43902% 2.43902%;
}

Finally, we need to remove the left-hand margin on the first and every other li using

the nth-child selector:

chapter_09/responsive-410.css (excerpt)

.gallery li:nth-child(2n+1) {
  margin-left: 0;
}

This creates the layout shown in Figure 9.20.

We can now move on to our tablet layout. We’ll link to this stylesheet once again

using a media query:

<link rel="stylesheet" media="only screen and (min-width: 768px)"
  href="responsive-700.css" />

This stylesheet is working from a width of 700 pixels; that’s nine columns of 60

pixels, with gutters in between that are 20 pixels wide. Here are our calculations:

gutter = 20px | 2.85714%
1 = 60px | 8.57142%
2 = 140px | 20%
3 = 220px | 31.42857%
4 = 300px | 42.85714%
5 = 380px | 54.28571%
6 = 460px | 65.71428%
7 = 540px | 77.14285%
8 = 620px | 88.57142%
9 = 700px | 100%

The CSS3 Anthology396



The stylesheet that we need to use follows. At this breakpoint, we have enough

room in the header to move the navigation menu onto the same line as the h1 element

(My Portfolio), as well as increase the size of this text:

chapter_09/responsive-700.css (excerpt)

.header .nav {
  position: absolute;
  top: 20px;
  right: 0;
  list-style-type: none;
}

.header h1 {
  padding: 20px 0 20px 0;
  font-size: 175%;
}

.header .nav li {
  font-size: 175%;
}

We then recalculate our column widths so that we end up with three images on

each row of the grid, each being three columns in width:

.gallery li {
  width: 31.42857%;
  margin: 0 0 2.85714% 2.85714%;
}

Finally, we need to change the .gallery li selector so that the first and every third

list item thereafter (:nth-child(3n+1)) has no left margin. However, in addition

to implementing its own rules, this stylesheet will also inherit the CSS rules from

the stylesheet before it; in particular, responsive-410.css. Here we removed the left

margin on the first and every second list item thereafter. This isn’t what we want

in our new stylesheet and corresponding screen size; we need to update the

margin-left property for our .gallery li:nth-child(2n+1) selector with our

new gutter width:

397CSS for Layout



.gallery li:nth-child(2n+1) {
  margin-left: 2.85714%;
}

.gallery li:nth-child(3n+1) {
  margin-left: 0;
}

Of course, we could refine this markup by writing a rule for all .gallery lis as

well as our :nth-child(2n+1) items using :nth-child(n):

chapter_09/responsive-700.css (excerpt)

.gallery li:nth-child(n) {
  width: 31.42857%;  
  margin-left: 2.85714%;
}

.gallery li:nth-child(3n+1) {
  margin-left: 0;
}

Now all items will have a correct column width, but because we have placed our

:nth-child(3n+1) selector at the end, specificity determines that each first, fourth,

seventh (etc) item will have its margin-left value overridden with a value of 0.

Keep Checking Your Stylesheets

As you move up through layouts of different widths, check whether you need to

update anything done in an earlier stylesheet.

Now let’s deal with our desktop layouts, inserting another link into our HTML

document’s head:

<link rel="stylesheet" media="only screen and (min-width: 992px)"
  href="responsive-940.css" />

This layout still uses an overall 940-pixel width grid of 12 columns of 60 pixels

each, separated by 20-pixel gutters:

The CSS3 Anthology398



gutter = 20px | 2.12765%
1 = 60px | 6.38297%
2 = 140px | 14.89361%
3 = 220px | 23.40425%
4 = 300px | 31.91489%
5 = 380px | 40.42553%
6 = 460px | 48.93617%
7 = 540px | 57.4468%
8 = 620px | 65.95744%
9 = 700px | 74.46808%
10 = 780px | 82.97872%
11 = 860px | 91.48936%
12 = 940px | 100%

We display four images to each row, and thus add a margin-left: 0 value to our

first item and every fourth thereafter (:nth-child(4n+1)). As we did in our

responsive-700.css stylesheet, we need to remember to update :nth-child selectors

from previous stylesheets to our recalculated gutter widths:

chapter_09/responsive-940.css (excerpt)

.gallery li:nth-child(n) {
  width: 23.40425%;
  margin: 0 0 2.12765% 2.12765%;
}

.gallery li:nth-child(4n+1) {
  margin-left: 0;
}

Nearly there! Last of all, we can add the link to our wide desktop stylesheet:

<link rel="stylesheet" media="only screen and (min-width: 1280px)"
  href="responsive-1180.css" />

To prevent our layout from becoming too wide, we set .wrapper to a maximum

width of 1180 pixels:

399CSS for Layout



chapter_09/responsive-1180.css (excerpt)

.wrapper {
  max-width: 1180px;
}

We can also calculate our grid from that width: 15 columns, 60 pixels wide, with

20-pixel gutters:

gutter = 20px | 1.69491%
1 = 60px | 5.08474%
2 = 140px | 11.8644%
3 = 220px | 18.64406%
4 = 300px | 25.42372%
5 = 380px | 32.20338%
6 = 460px | 38.98305%
7 = 540px | 45.76271%
8 = 620px | 52.54237%
9 = 700px | 59.32203%
10 = 780px | 66.10169%
11 = 860px | 72.88135%
12 = 940px | 79.66101%
13 = 1020 | 86.44067%
14 = 1100 | 93.22033%
15 = 1180 | 100%

We can capitalize on the space afforded to us by this screen width by changing the

layout of the feature and intro divs, floating the first element left and the second

right. Let’s have feature take up 12 columns, and intro three columns:

chapter_09/responsive-1180.css (excerpt)

.feature {
  float: left;
  width: 79.66101%;
}

.intro {
  float: right;
  width: 18.64406%;
}

The CSS3 Anthology400



Now we can recalculate the widths of our list items and the margins on the first

and every fifth element thereafter. Our gallery images each take up three columns,

and this means that the image in the feature div will line up with the first four

images in the gallery below it—with intro sitting in a column that lines up with

the fifth image below it:

chapter_09/responsive-1180.css (excerpt)

.gallery li:nth-child(n) {
  width: 18.64406%;
  margin: 0 0 1.69491% 1.69491%;
}

.gallery li:nth-child(5n+1) {
  margin-left: 0;
}

That’s it! You have a responsive, image-heavy layout that complies with a strict

grid.

When creating these layouts, I tend to calculate my column widths and gutters just

as we did at the start of each stylesheet here. It certainly pays to insert the calcula-

tions in a block comment at the start of your stylesheet. There are also a number of

grid frameworks available that use this same basic technique, which you may find

useful.

What about older browsers and responsive
design?
It’s impossible to discuss responsive design without considering older browser

support. In the section called “How do I create a design that works well on mobile

devices?”, we added a JavaScript file to provide a fix for a bug in iOS devices, but

what can we use to accommodate older browsers that don’t deal so well with

modern responsive design techniques?

Solution
As already mentioned, Internet Explorer below IE9 doesn’t support media queries.

If a user is viewing our previous example sites in Internet Explorer 6, 7, or 8, they’ll

be presented with the view rendered by our basic, mobile-specific stylesheet. These

401CSS for Layout



browsers will completely ignore the media queries we inserted into our CSS, as

well as the separate stylesheets we created and linked to in our HTML document.

There are two possible solutions to this issue. The first is to use a JavaScript polyfill

called Respond.js that causes these older browsers to load the CSS rules within the

media queries. A polyfill is simply a piece of code or plugin that takes care of

functionality you’d expect a browser to perform natively.

You can download the Respond.js project from GitHub.6 Remember to read the at-

tached notes to ensure that your stylesheets can be parsed by the script.

The second solution is what I tend to do in production, and that is not to try to serve

media queries to old versions of Internet Explorer at all. Instead, I add a separate

stylesheet (or stylesheets) that sets Internet Explorer to display the site at a fixed

width as in the CSS below. The result can be seen in Figure 9.24:

chapter_09/responsive.html (excerpt)

<!--[if (lt IE 9) & (!IEMobile)]>
  <link rel="stylesheet" href="responsive-ie-old.css" />
<![endif]-->

chapter_09/responsive-ie-old.css

.wrapper {
  width: 940px;
}

.header .nav {
  position: absolute;
  top: 20px;
  right: 0;
  list-style-type: none;
}

.header h1 {
  padding: 20px 0 20px 0;
  font-size: 175%;
}

6 https://github.com/scottjehl/Respond

The CSS3 Anthology402

https://github.com/scottjehl/Respond


.header .nav li {
  font-size: 175%;
}

.feature img {
  width: 940px;
}

.gallery {
  overflow: hidden;
  clear: both;
  width: 960px;
  margin-left: -20px;
}

.gallery li {
  float: left;
  width: 220px;
  margin: 0 0 20px 20px;
}

.gallery li img {
  display: block;
  height: 220px;
  width: 220px;
}

403CSS for Layout

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Figure 9.24. Our fixed-width layout in Internet Explorer 8

Discussion
The CSS for this solution should look fairly straightforward. Remember that Internet

Explorer versions lower than IE9 receive no positioning information from your

media query-linked stylesheets, so you need to add all the rules that you want ap-

plied in your IE-only stylesheet.

Here, we’ve fixed the width of .wrapper to 940 pixels, and then set the widths of

other elements in pixels too—just as we would have done had we been creating a

fixed-width layout from the outset.

Another issue we can take care of in this stylesheet is to compensate for Internet

Explorer not supporting the nth-child selector prior to IE9. Instead of using nth-

child to remove the left margin on list elements as they wrap around each row with

the browser’s resizing, we can use an old trick: setting a negative left margin on

The CSS3 Anthology404



.gallery, and then ignoring the extra left margin on each .gallery li. These left

margins will be counteracted by the negative margin set on the gallery itself:

chapter_09/responsive-ie-old.css (excerpt)

.gallery {
  overflow: hidden;
  clear: both;
  width: 960px;
  margin-left: -20px;
}

.gallery li {
  float: left;
  width: 220px;
  margin: 0 0 20px 20px;
}

We’ve also set widths and heights on images, as there’s no need for them to respond

to changing column widths anymore. If you go back as far as IE6, you’ll find that

max-width has no support, so the images will display at their largest size.

If you’re going to polyfill Internet Explorer’s lack of support for media queries, you’d

do well to read Ethan Marcotte’s article on fluid images,7 which includes some tips

for working with old versions of IE.

Leave IE till Last

I usually create my old-IE stylesheet right at the end of development. That way,

I can just copy in the rules that are needed from the other stylesheets, rather than

having to constantly remember adding them throughout the development process.

Whether you try to polyfill media queries or just serve older browsers a fixed-width

stylesheet is up to you. As always, check what browsers visitors to your site are

using and formulate a browser support policy based on that.

7 http://unstoppablerobotninja.com/entry/fluid-images/

405CSS for Layout

http://unstoppablerobotninja.com/entry/fluid-images/


What is the future of CSS layouts?
At the beginning of this chapter, I mentioned that there have been fewer practical,

usable advances for CSS layouts than we’ve seen in other parts of the specification.

However, this is about to change, and I hope that by the time a fifth edition of this

book comes out, we’ll have the browser support to really take advantage of these

new features.

So, just as a quick glance into the future, and to give you some extras to play with

in your own time to keep your skills up to date, let’s have a look at the tools we

hope to be able to use soon.

CSS3 Grid Layout
The CSS3 Grid Layout is currently a W3C Working Draft8 and at the time of writing

is implemented only in Internet Explorer 10 Developer Preview, with an –ms prefix.

What’s exciting about Grid Layout is that it will enable the sort of control you have

when laying a site out using tables, but is not tied to source-ordered content—that

is, placing your most important content at the beginning of your HTML document.

This would be incredibly useful for responsive design.

Currently, when creating a complex responsive design we have to think very carefully

about the order of the HTML source. We want it to be able to collapse to one column

in a usable way if necessary, but still enable us to float the columns into the right

position for multicolumn layouts.

There’s an alternate proposal for Grid Layout in the CSS Template Layout Module.9

This is also currently in Working Draft, but with no browser implementation at

present.

Flexible Box Layout Module
Also in Working Draft is the Flexible Box Layout Module,10 another potentially

useful module when working with responsive designs.

8 http://www.w3.org/TR/css3-grid-layout/
9 http://www.w3.org/TR/css3-layout/
10 http://www.w3.org/TR/2009/WD-css3-flexbox-20090723/

The CSS3 Anthology406

http://www.w3.org/TR/css3-grid-layout/
http://www.w3.org/TR/css3-layout/
http://www.w3.org/TR/2009/WD-css3-flexbox-20090723/


Currently, we have no good way of vertically centering elements, or placing a set

of elements inside a box and using CSS to say “spread these items out evenly.”

These are problems that the Flexible Box Layout Module should solve. Where Grid

Layout should solve our full-page layout problems, flexible boxes will solve many

of the small issues we have with components in our layouts.

Support is reasonably good for flexible boxes; it’s included in IE10 Preview, and

Firefox and Chrome have implemented it in recent releases. There’s also a polyfill

called flexie.js,11 which provides cross-browser support for the module, and the

developers of flexie.js have created a Flexbox Playground12 for you to experiment

inside, as seen in Figure 9.25.

Figure 9.25. The Flexbox Playground

CSS Multicolumn Layout Module
Another module with reasonable cross-browser support is CSS3 Multicolumn Layout

Module.13 This module is at Candidate Recommendation stage, the next stage up

from Working Draft. With the exception of Internet Explorer, it’s implemented in

11 http://flexiejs.com
12 http://flexiejs.com/playground/
13 http://www.w3.org/TR/css3-multicol/

407CSS for Layout

http://flexiejs.com
http://flexiejs.com/playground/
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/


current browsers, and is also part of IE10 Developer Preview, so we can assume it

will make it into Internet Explorer 10.

Multicolumn layouts will enable us to create newspaper-style columns of equal

measurements by adding a column-count property to the containing element:

.article { 
  column-count: 3; 
}

There are also properties for controlling the width of columns, setting points where

you want content to break, and balancing columns so that they all end up the same

length.

Once Internet Explorer 10 is released—which will mean that all current browsers

provide support for much that’s included in the above modules—I expect that we’ll

see more and more examples of developers using these new CSS layout properties.

The future of CSS layouts is very exciting, and these modules mean that we’ll have

to make far fewer compromises when designing and developing CSS layouts than

we do at present.

A Design for Life
In this chapter, we’ve seen how to use the fundamental building blocks of CSS

layout to create responsive designs for all web users, regardless of what device

they’re using. More complex designs use the same techniques to structure the dif-

ferent components of a layout. When you come to tackle any design, try to break it

down into its component parts—the main layout structure and the elements inside

—and then approach their positioning in the simplest way possible.

You’ll sometimes need to make compromises to deal with the thorny issues of

browser support, but as we’ve seen, CSS for layout is improving all the time.

Browsers now support the older tools of our trade more consistently—such as floats

and positioning—with support arriving for new and exciting CSS3 modules.

This is an exciting time to be a web designer or developer! Whether you’re reading

this book as a newcomer to CSS, or as an old hand refreshing your skills, I hope

you continue to experiment and build on the tips and tricks we’ve studied together.

The CSS3 Anthology408



Index

Symbols
# (hash), 9

* (asterisk), 71, 256–258, 265

+ (plus sign), 11

. (period), 8

: (colon), 12, 15

:: (double colon), 15

> (greater-than), 10

{}, 6

A
absolute positioning, 320–324

absolute-size keywords, 29–30

accessibility issues

AJAX, 266

color, 115–116

forms, 247–248, 264–266

tables, 177–180

active pseudo-class, 36–37

adjacent selector, 11, 47–49

after pseudo-element, 17

AJAX, 266

ARIA (Accessible Rich Internet Applica-

tions), 265

asterisk (*), 71, 256–258, 265

attribute selectors, 17–18, 148–151

ayouts

image-heavy, 382–401

B
background color

accessibility issues, 115–116

in headings, 43–44

in headings, 43–44

on page, 80–82

removing, 221

background gradients, 93–97

background images

adding, 80–82

content images vs, 93, 116

for elements, 90–93, 99–102

fixing position, 88–90

as gradients, 95

multiple, 99–102

order of, 100–102

positioning, 85–88

scaling to window size, 97–99

tiling, 82, 83–85

background property, 89–90, 99

background-attachment property, 88–90

background-color property, 82

background-image property, 82, 93–95

background-position property, 85–88

background-repeat property, 83–85

Basic User Interface Module (BUI), 242, 

266

before pseudo-element, 16–17

behavior property, 283

beveled effect, 232

blink effect, 34

block-level elements, 302–305, 306, 319

blockquote element, 55

border property, 80, 189

border-collapse property, 185–186

border-radius property, 110–112, 142, 

280–282

borders

image, 77–80



on input elements, 232

list item, 137

navigation images, 80

table, 180, 181, 182

on text, 45–46

border-style property, 182, 183

box-shadow property, 108–110, 142, 

232, 281–283

browser rendering engines, 268

browser testing

about, 268–269

mobile devices, 293–294

multiple IE versions, 292–293

multiple OS's, 289–291

BrowserCam, 294

BrowserLab, 290

browsers

CSS3 support, 18–19, 295

(see also specific properties, e.g.

border-radius)

on mobile devices, 293

progressive enhancement, 137, 274

quirks mode, 285

tabs support, 143

targeting code to, 292

version-specific code, 279–280

browsers, older

(see also Internet Explorer)

HTML5 elements, 287–288

relevance of, 269–274

responsive design issues, 401–405

rounded corners, 280–282

selector support, 274–279

shadow effects, 281–283

stylesheets for, 274, 279–280, 285

targeting code to, 279–280

Browsershots, 290

BrowserStack, 291

browser-testing services, 290–291

BUI (Basic User Interface Module), 242, 

266

bullets

changing, 63–65

images as, 65–66

removing, 65, 67, 123

C
calendars

about, 200, 201

basic, 201–207

mini, 210–213

styling, 205, 207–210

caption element, 179–180

captions

image, 330, 333–335

table, 179–180

the cascade, 20–22

centering

layouts, 326–327, 344

text, 56–57

child selectors, 10–11

Clarke, Andy, 274

class attribute, 8, 301–302

class selectors, 8

clear property, 319–320

clearfix hack, 356–357

colgroup element, 198–199, 200

colon (:), 12, 15

color

accessibility issues, 115–116

contrast, 116

heading background, 43–44, 221

page background, 80–82

page background, 80–82

410



transparent (see transparency)

color picker, 240, 241

Colorblind Web Page Filter, 116

colorblindness, 116

columns

footers with, 347–354

Multicolumn Layout, 407–408

three, 357–360

two, 338–346

combinators, 9

comments, conditional, 279–280, 285, 

292

content

generated, 16

replaced, 223, 233, 266

content property, 16

contrast ratio, 116

corners, rounding, 110–112, 280–282

Coyier, Chris, 96, 99

cross-browser testing (see browser test-

ing)

CSS frameworks, 22

CSS Validator, 298–299

CSS2 syntax, 15

CSS3

browser support, 18–19

selectors (see selectors)

vendor prefixes, 19, 298–299

CSS3 Generator, 62

CSS3 Grid Layout, 406

CSS3 modules, 18–19

CSS3 Template Layout, 406

D
date input type, 240

date pickers, 240, 241

datetime-local input type, 240

declaration block, 6

default pseudo-class, 246

descendant selectors, 9–10

display property, 125, 135, 288, 302–

305, 331–333

doctype declarations, 285

double colon (::), 15

drop-caps effect, 59–61

drop-down menus

CSS only, 165–174

hiding, 171–172

jQuery, 173–174

drop-shadow effect, 61–63, 108–110, 

281–283

E
Edwards, James, 61

elements

block-level, 302–305, 306, 319

changing margins, 70–72

drop-shadow effect, 108–110

hasLayout property, 286

inline, 302–306

rounding corners, 110–112, 280–282

selecting (see selectors)

transforming, 112–115, 283

transparent (see transparency)

em (element), 50

em (size unit), 28

email input type, 236, 237, 240, 247

embedded styles, 4

ex (size unit), 28

external stylesheets (see stylesheets)

F
field labels, 226–228, 262, 264

411



fieldset element, 248–258, 264

Firefox, container size, 31

first-child selector, 13, 41–43, 218

first-letter selector, 15–16, 59–61

first-line selector, 16

Firtman, Maximiliano, 293

Flexible Box Layout, 406–407

float property

about, 135, 136, 320

block-level effect, 306

footers, 347–354

images, 314, 315, 316–318, 332–333

nesting, 355–356

floats, clearing

clear property, 318–320

clearfix hack, 356–357

empty markup method, 354–355

floating outer container, 355–356

overflow property, 356

focus pseudo-class, 235

font size

absolute, 29–30

cross-browser consistency, 27–28

keywords, 29–31

line spacing, 52

measures of (see font units)

for print output, 26–27

relative, 28–29, 30–31, 32–33

Font Squirrel, 73, 74

font stack, 25

font units

ems, 28

exes, 28

identifiers, 26

line spacing, 52

percentages, 29

pixels, 27–28

points vs picas, 26–27

font-face rule, 72–73

font-family property, 24

fonts

cross-browser issues, 289

generating custom package, 73–74

licensing, 73, 74–75

loading custom, 72–75

preferred, 25

sizing (see font size; font units)

specifying, 24–26

font-size property, 26

footers

floating, 347–354

full-width, 360–366

form elements, 223, 230–233

forms

accessibility issues, 247–248, 264–266

grouping fields, 248–258, 264

highlighting fields, 233–235

HTML5, 235–241

inline fields, 259–264

labeling fields, 226–228, 262, 264

laying out, 224–230

setting field width, 227

styling fields, 233

validating fields, 237–239

forums, support, 296–297

frameworks, CSS, 22

G
Gallagher, Nicolas, 356

generated content, 16

Gradient Editor, 97

gradients, linear, 93–97

greater-than (>), 10

Grid Layout, 406

412

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



H
Hackintosh, 290

hanging indents, 55–56

hash (#), 9

hasLayout property, 286

headers

full-width, 360–366

table, 180

headings

background color, 43–44

margins, 46–49

underlining, 44–46

height property, 285–286

highlighting

form fields, 233–235

text, 49–50

hover pseudo-class

drop-down menus, 168

highlighting rows, 195–196

for image captions, 330, 333–335

rollover effect, 125–126

styling links, 36–37

HSLA Color, 107–108

.htc files, 283

HTML component (.htc) files, 283

HTML, vs XHTML, 3

HTML4 doctype, 285

HTML5

doctype, 285

forms, 235–241

older browsers, 287–288

HTML5 Doctor, 287

HTML5 shiv, 287, 288

I
id attribute, 9, 301–302

ID selectors, 9

IE (Internet Explorer) (see Internet Ex-

plorer)

IETester, 292

image sprites, 154, 155

images

adding borders, 77–80

background (see background images)

background vs content, 93, 116

clearing float, 318–320

floating, 314–318, 332–333

gradient, 95

hover captioning, 330, 333–335

removing borders, 80

responsive design and, 382–401

rotating, 112–115

setting max-width, 393

sizing for mobile devices, 394

thumbnail galleries, 327–335

inheritance, font size, 32–33

inline elements, 302–306

inline fields, 259–264

inline styles, 3–4

inline-block elements, 303, 306, 331–

333, 395

input element

adding border, 232

setting width, 228

styling by validity, 242–248

input types

color picker, 240

date/time, 240

email, 236, 237, 240, 247

list of, 240–241

number, 240

range slider, 240

search, 240

413



submit, 228–229

telephone number, 240

text, 236

URL, 240

validating, 237–239

in-range pseudo-class, 246

Internet Explorer

attribute selectors, 149

background-attachment property, 89

box-shadow property, 281–283

first-child selector, 43

gradients, 95

hasLayout property, 286

hover highlighting, 196

IE6 stylesheet, 274

IE6 vs IE9, 272–274

IE6/7 issues, 284–287

media queries, 377, 401–402

min-height property, 285–286

multicolumn layout, 407

required attribute, 238

resizing text in, 27, 28, 31

selector support, 276, 277

testing tools, 292–293

text-shadow property, 62

Internet Explorer 9 Developer Tools, 292

invalid pseudo-class, 246

J
JavaScript

HTML5 shiv, 288

orientation fix, 376–377

Respond.js polyfill, 402

Selectivizr plugin, 276–277

for selector support, 274–279

testing (jsFiddle), 297

jQuery

about, 173

drop-down menus, 173–174

with Selectivizr, 276–279

jsFiddle, 297

K
Koch, Peter-Paul, 293

L
label element, 227, 228, 262, 264

labels, for fields, 226–228, 262, 264

large keyword, 29

larger keyword, 30

last-child selector, 13–14

layout, presence/absence of, 286

layouts

centering, 326–327, 344

Flexible Box, 406–407

forms, 224–230

Grid, 406

headers/footers, 360–366

image-heavy, 388, 389, 390, 391, 393

mobile devices (see mobile devices)

Multicolumn, 407–408

older browsers, 401–405

responsive (see responsive design)

tables as, 175

Template, 406

three-column, 357–360

two-column, 338–346

two-column with footer, 347–354

leading, 50–52

legend element, 254

line spacing, 50–52

linear gradients, 93–97

414



line-height property, 51–52

line-through, 34

link selectors, 12–13, 38

links

changing appearance, 36–38, 125–126

displaying as block, 125

external, 148–151

internal, 149

multiple styles, 39–41

privacy issues, 38

removing underlines, 33–35

underlining, 35

liquid layouts, 366–367

lists

as sitemaps, 158–165

changing margins, 66–68

displaying horizontally, 68–69, 133–

138

displaying inline, 135

highlighting selected tab, 143–145

as navigation, 120–125

removing bullets, 67, 123

styling bullets, 63–65

styling first item, 41–43

as submenus, 127–133

as tab navigation, 138–143

using image as bullet, 65–66

list-style-image property, 65–66

list-style-type property, 63–65, 67

Luminosity Contrast Ratio Analyzer, 116

M
margin properties, 306–307

margins

collapsing, 313

element, 70–72

on floated items, 317, 318

heading, 46–49

list, 66–68

padding vs., 311–313

page, 69–70

setting, 306–309

max-width property, 393

media attribute, 381

media queries

about, 372

checking screen width, 396

Internet Explorer, 377, 401–402

medium keyword, 29

menus, drop-down

CSS, 165–172

hiding, 171–172

Superfish, 173–174

min-height property, 285–286

mobile devices

fixed-width layouts, 366

image sizing, 394

image-heavy layouts, 382–401

liquid layouts, 366–367

media queries, 372, 377, 396

orientation fix, 376–377

responsive design layouts, 367–377

testing on, 293–294

viewport meta, 376

Mobile HTML5, 293

modules, CSS3, 18–19

month input type, 240

Multicolumn Layout, 407–408

N
navigation

about, 119

adding descriptive text, 146–148

boxing items, 137

415



drop-down menus, 165–172

highlighting selected tab, 143–145

horizontal menus, 133–138

lists as, 120–125

rollover, 125–126, 152–158

submenus, 127–133

tabbed, 138–143

not pseudo-class, 229

nth-child selector

about, 14

alternate columns, 198

alternate rows, 191, 194, 195, 275

odd/even, 220–221

with formula, 398

number input type, 240

O
only-child selector, 14–15

opacity property, 102–103, 105–106, 

107, 157–158

optional pseudo-class, 246

orientation fix (iOS devices), 376–377

out-of-range pseudo-class, 246

overflow property, 356

overline, 34, 35

P
padding properties, 309–311

padding, margins vs., 311–313

padding-left, 54

Parallels, 289

Perfecto Mobile, 294

period (.), 8

Photoshop, 266

picas, 26–27

PIE (Progressive Internet Explorer) poly-

fill, 281–284

pixels, 27–28

placeholder attribute, 236–237

plus sign (+), 11

points, 26–27

polyfills

about, 276

PIE, 281–284

Respond.js, 402

Selectivizr, 276–277

version-specific for IE, 279

position property, 286, 320–326

positioning

absolute, 320–324

class vs ID, 301–302

relative, 286, 324–326

positioning context, 325, 326

prefixed properties, 19

pricing tables, 213–221

print output, 26–27, 377–382

privacy issues, visited links, 38

progressive enhancement, 137, 274

Progressive Internet Explorer (PIE) poly-

fill, 281–284

properties, prefixed, 19

pseudo-class selectors

about, 12

active, 36–37

default, 246

first-child, 13, 41–43, 218

focus, 235

for form fields, 246

hover (see hover pseudo-class)

in-range, 246

invalid, 246

last-child, 13–14

416



for links, 12–13, 38

not, 229

nth-child (see nth-child selector)

only-child, 14–15

optional, 246

out-of-range, 246

read-only, 246

read-write, 246

required, 246–248, 256–258, 265

valid, 246

visited, 37

pseudo-element selectors

about, 15

after, 17

before, 16–17

CSS2 syntax, 15

first-letter, 15–16, 59–61

first-line, 16

Q
quirks mode, 285

QuirksMode.org, 293

R
range sliders, 240

read-only pseudo-class, 246

read-write pseudo-class, 246

rel attribute, 4–5

relative positioning, 286, 324–326

relative-size keywords, 30–31

rendering engines, 268, 294

replaced content, 223, 233, 266

required attribute, 236–239

required pseudo-class, 246–248, 256–

258, 265

Respond.js polyfill, 402

responsive design

image issues, 382–401

older browsers, 401–405

viewport widths, 367–377

RGBA, 104–105, 106–107, 116, 141, 221

rollover effect

with CSS, 125–126, 152–158

with opacity, 157–158

with RGBA, 221

rounding corners, 110–112, 280–282

rule syntax, 6–7

S
Safari, 238, 270–272

scope attribute, 218

screen capture tools, 290

Screenfly, 294

search input type, 240

Selectivizr, 276–277

selectors

about, 6, 7

adjacent, 11, 47–49

after, 17

attribute, 17–18, 148–151

before, 16–17

child, 10–11

class, 8

descendant, 9–10

first-child, 13, 41–43, 218

first-letter, 15–16, 59–61

first-line, 16

ID, 9

last-child, 13–14

for links, 12–13, 38

nth-child (see nth-child selector)

in older browsers, 274–279

only-child, 14–15

417



pseudo-class, 12

pseudo-element, 15

type, 7

universal, 71

shadow effects

box, 108–110, 142, 232

in Internet Explorer, 281–283

text, 61–63, 142

shiv, 287, 288

site statistics, 269

sitemaps, 158–165

sliding doors method, 143

small keyword, 29

smaller keyword, 30

smartphone testing, 293–294

space (as separator), 10

src property, 73

statistics, site, 269

strike-through, 34

strong element, 50

style attribute, 3

style declarations, 2

style definitions, 6–7

style element, 3, 4

styles

about, 2–3

embedded, 4

external (see stylesheets)

inline, 3–4

order of application, 20–22, 38

stylesheets

browser-specific, 274, 279–280, 285, 

292

device-specific, 372, 394

linking to, 4–5

printer-friendly, 377–382

screen-width-specific, 396

syntax, 6–7

validating, 295, 298–299

submenus, 127–133

Submit button, 228–229

Superfish plugin, 173–174

support resources, 296–297

T
tabbed navigation

basic, 138–143

highlighting selected tab, 143–145

tables

accessibility issues, 177–180

adding borders, 180, 181, 182, 186

alternate column highlighting, 197–

200

alternate row highlighting, 191–195, 

275, 278–279

basic display, 176–177

border spacing, 185–186

captions, 179–180

headers, 180

highlighting on hover, 195–196

as layout method, 175

pricing, 213–221

usability styling, 186–191

tel input type, 240

Template Layout, 406

testing (see browser testing)

text

adding borders, 45–46

blinking, 34

bolding, 50

centering, 56–57

changing case, 57–59

drop-caps, 59–61

drop-shadow, 61–63

418



hanging indent, 55–56

highlighting, 49–50

indenting, 54–56

italicizing, 50

justifying, 52–53

line spacing, 50–52

overlining, 34

resizing, 27, 28, 29, 30, 31–32

strike-through, 34

wrapping around images, 314–318

text direction, 53

text size (see font size)

text wrapping, 314–318

text-align property, 52–53, 56–57

text-decoration property, 33–35, 44–46

text-indent property, 55–56

text-shadow property, 61–63, 142

text-transform property, 57–59

th element, 180

thumbnail galleries, 327–335

tiling, 82, 83–85

time input type, 240

time pickers, 240

transform property, 112–115, 283

transparency

HSLA method, 107–108

opacity property, 102–103, 105–106, 

157–158

RGBA method, 104–105, 106–107, 

116, 141

Twitter, 296

type attribute, 5

type selectors, 7

U
underlining

headings, 44–46

links, 33–35

Universal IE6 Stylesheet, 274

universal selector, 71

url input type, 240

Utilu IE Collection, 292

V
valid pseudo-class, 246

validation

client-side vs server-side, 238

form field, 237–239

markup, 295

stylesheet, 295, 298–299

styling based on, 242–248

validation messages, 239

vendor prefixes, 19, 298–299

viewport meta, 376

virtual machines, 289, 292

VirtualBox, 289, 292

visited pseudo-class, 37

VMware Fusion, 289

W
W3C Markup Validator, 298

WAI-ARIA (Web Accessibility Initiative

- Accessible Rich Internet Applica-

tions), 265

WebKit engine, 289

week input type, 240

When can I use... site, 295

X
XHTML doctype, 285

XHTML, vs HTML, 3

x-large keyword, 29

x-small keyword, 29

419

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



xx-large keyword, 29

xx-small keyword, 29

420



Congratulations on Finishing the Book

http://www.sitepoint.com/quiz-cssant

Take the Quiz Here: 

Are you ready to scale 
the heights of CSS?

Test yourself with our online 
quiz.  With questions based on 
the content in the book, only 
true CSS warriors can achieve 
a perfect score. 

quiz.indd   1 1/03/12   3:09 PM



Hey ...

sitepoint.com/friends

Save over 40% with this link:

Password: friends

Link:

Thanks for buying this book. We really 
appreciate your support!

We’d like to think that you’re 
now a “Friend of SitePoint,” 
and so would like to invite 
you to our special “Friends of 
SitePoint” page. 

Here you can SAVE up to 43% 
on a range of other super-cool 
SitePoint products.

gallery-replace-generic.indd   2 1/03/12   5:13 PM



SITEPOINT BOOKS

     Advocate best practice techniques

     Lead you through practical examples

     Provide working code for your website

     Make learning easy and fun

WEB DESIGN 
PRINT ISBN: 978-0-9871530-2-9

  7-6-0351789-0-879 :NBSI KOOBE

ABOUT RACHEL ANDREW  
Rachel Andrew is a leader in the web standards community, 
with more than ten years’ experience as a web developer. 
Her writing is informed by the work of her company, 
edgeofmyseat.com, ensuring it remains grounded in the 
real world of client projects, large and small.

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95 CAD $39.95

THE MOST COMPLETE CSS 
QUESTION-AND-ANSWER COLLECTION 

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

The CSS3 Anthology: Take Your Sites to New Heights is a 
compilation of answers, how-to’s, and examples for all your CSS 
questions. Complete with ready-to-use downloadable code 
examples, the fourth edition of this bestselling book has been 
completely revised and updated to cover the latest techniques and 
technologies, including CSS3 and HTML5.

What’s covered?

  Responsive design: Smart layouts for all devices

  Stylish layouts: With tabular data, text styling, and CSS positioning

  Seamless navigation: Pretty rollovers and menus without JavaScript

  Cross-browser techniques

  Usable forms: Design forms that work, and look good too

WHAT’S INSIDE

Complex layouts
Easily construct advanced layouts 
using CSS3.

Responsive design 
Speedily create smart layouts that work 
on desktops and mobile devices.

Cross-browser compatibility
Effortlessly troubleshoot compatibility 
issues for older browsers.

And much more …D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>


	Front Cover
	Summary of Contents
	The CSS3 Anthology
	Biographies
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Conventions Used in This Book
	Markup Samples
	Tips, Notes, and Warnings


	Making a Start with CSS
	How do I define styles with CSS?
	Inline Styles
	Embedded Styles
	External Stylesheets

	CSS Syntax
	What are CSS selectors and how do I use them?
	Type Selectors
	Class Selectors
	ID Selectors
	Combinators
	Descendant Selectors
	Child Selectors
	Adjacent Selectors

	Pseudo-class Selectors
	Links
	First Child
	Last Child
	Nth Child
	Only Child

	Pseudo-element Selectors
	First Letter
	First Line
	Before
	After

	Attribute Selectors

	What about older browsers?
	Vendor-specific Extensions

	How does the browser decide which styles to apply?
	Will using a CSS framework make it easier to learn CSS?
	A Decent Selection

	Text Styling and Other Basics
	How do I set my text to display in a certain font?
	Solution
	Discussion

	Should I use pixels, points, ems, or another unit identifier to set font sizes?
	Solution
	Points and Picas
	Pixels
	Ems
	Exes
	Percentages
	Sizing Fonts Using Keywords
	Absolute-size Keywords
	Relative-size Keywords


	Discussion
	Relative Sizing and Inheritance

	How do I remove underlines from my links?
	Solution
	Discussion

	How do I create a link that changes color when the cursor moves over it?
	Solution
	Ordering Pseudo-class Declarations

	How do I display two different styles of link on one page?
	Solution

	How do I style the first item in a list differently from the others?
	Solution
	Discussion

	How do I add a background color to a heading?
	Solution

	How do I style headings with underlines?
	Solution

	How do I remove the large gap between an h1 element and the following paragraph?
	Solution
	Using an Adjacent Selector

	Discussion

	How do I highlight text on the page?
	Solution

	How do I alter the line height (leading) of my text?
	Solution

	How do I justify text?
	Solution
	Discussion

	How do I indent text?
	Discussion
	A One-liner


	How do I center text?
	Solution

	How do I change text to all capitals using CSS?
	Solution
	Discussion

	How do I create a drop-caps effect?
	Solution
	Discussion

	How do I add a drop shadow to my text?
	Solution
	Discussion

	How do I change or remove the bullets on list items?
	Solution
	Discussion

	How do I use an image for a list-item bullet?
	Solution
	Setting Bullets on Individual List Items


	How do I remove the indented left-hand margin from a list?
	Solution
	Discussion

	How do I display a list horizontally?
	Solution

	How do I remove page margins?
	Solution

	How can I remove browsers’ default padding and margins from all elements?
	Solution
	Discussion

	How do I use fonts other than those installed on most users’ computers?
	Solution
	Discussion
	Browser Compatibility for Fonts You Can Upload to Your Server
	If Your Font is not Licensed for Web Use


	Working with Style

	Images and Other Design Elements
	How do I add borders to images?
	Solution

	How do I use CSS to remove the blue border around my navigation images?
	Solution

	How do I set a background for my page using CSS?
	Solution
	Discussion

	How do I control how my background image repeats?
	Solution

	How do I position my background image?
	Solution
	Discussion
	Keywords
	Percentage Values
	Unit Values


	How do I fix my background image in place while the page is scrolled?
	Solution
	Discussion

	Can I set a background image on any element?
	Solution
	Discussion

	How do I create a gradient background?
	Solution
	Discussion
	Combining the Two Approaches

	Can I create a background image that scales with the browser window?
	Solution
	Discussion

	How do I add more than one background image to an element?
	Solution
	Discussion

	How do I make an element transparent so that the background shows through?
	Solution
	Discussion
	HSLA Color


	How can I add a drop shadow to an element?
	Solution
	Discussion

	How do I create rounded corners on an element?
	Discussion

	Can I rotate images without using image-editing software?
	Solution
	Discussion

	What should I be aware of in terms of accessibility when using color?
	Solution
	Set Background Colors When Using Background Images
	If You Set a Foreground Color, You Need to Set a Background Color, and Vice Versa
	Use Sensible Fallback Colors When Using RGBA as a Background or Foreground Color
	Check Color Contrasts
	Backgrounds Should Only Be Decorative


	In the Picture?

	Navigation
	How do I style a structural list as a navigation menu?
	Solution
	Discussion

	How do I use CSS to create rollover navigation without images or JavaScript?
	Solution
	Discussion

	Can I use CSS and lists to create a navigation system with subnavigation?
	Solution
	Discussion

	How do I make a horizontal menu using lists and CSS?
	Solution
	Discussion

	How do I create tabbed navigation using CSS?
	Solution
	Discussion

	My navigation is in an include, so how can I indicate which is the selected tab?
	Solution
	Discussion

	How do I put additional information in my navigation bar?
	Solution
	Discussion

	How can I visually indicate which links are external to my site?
	Solution
	Discussion

	How do I create rollover images in my navigation without using JavaScript?
	Solution
	Discussion
	Using Opacity for Rollover Effects


	How should I style a sitemap?
	Solution
	Discussion

	How do I create a drop-down menu with CSS?
	Solution
	Discussion

	Navigating Your Way to Success

	Tabular Data
	How do I lay out spreadsheet data using CSS?
	Discussion

	How do I make my tabular data accessible?
	Discussion
	The caption element
	The th element


	How do I add a border to a table?
	Discussion

	How do I stop spaces appearing between the cells of my tables when I’ve added borders using CSS?
	Solution

	How do I display spreadsheet data in an attractive and usable way?
	Solution
	Discussion

	How do I display table rows in alternating colors?
	Solution
	Discussion

	How do I change a row's background color when the mouse hovers over it?
	Solution
	Discussion

	How do I display table columns in alternating colors?
	Solution
	Discussion

	How do I display a calendar using CSS?
	Solution
	Discussion

	How do I create a pricing table?
	Solution
	Discussion

	Tables Topped

	Forms and User Interfaces
	How do I lay out a form with CSS?
	Solution
	Discussion

	Can I change the look and feel of form elements with CSS?
	Solution
	Discussion

	How do I highlight a field when the user tabs into or clicks on it?
	Solution
	Discussion

	What additional elements and attributes are part of the HTML5 forms spec?
	Solution
	Discussion
	Can we style the validation messages using CSS?
	Form Input Types


	Can I style input elements based on their validity?
	Solution
	Discussion

	How do I group related fields?
	Solution
	Discussion

	How do I create a form that reads like a sentence with inline fields?
	Solution
	Discussion

	What should I be aware of in terms of accessibility when creating forms?
	Solution
	Required fields


	You’ve Got Form

	Cross-browser Techniques
	In which browsers should I test my sites?
	Solution

	Can I just ignore older browsers?
	Solution
	Support Doesn’t Mean “Looks the Same”

	Discussion

	How can I add support for CSS3 selectors in older browsers?
	Solution
	Discussion

	Can I add CSS or JavaScript and have it served only to older versions of IE?
	Solution
	Discussion

	How do I achieve rounded corners in browsers without support for border-radius?
	Solution
	Discussion

	How do I deal with the most common issues in IE6 and IE7?
	Solution
	Adding Browser-specific Stylesheets Using Conditional Comments
	Fixing Internet Explorer Problems
	Checking Your doctype
	Fixing the Lack of min-height Support in IE6
	Triggering the hasLayout Property
	Adding Position: Relative to Elements
	And If All Else Fails


	How do I style HTML5 semantic elements that are unsupported in older browsers?
	Solution
	Discussion

	How can I test in many browsers when I only have access to one operating system?
	Solution
	Virtual Machines on OS X
	Browser “Snapshot” Tools


	Can I install multiple versions of Internet Explorer on Windows?
	Solution
	Discussion

	How should I go about testing on mobile browsers?
	Solution

	What do I do if I hit a CSS issue I’m unable to fix?
	Solution
	Take a Break
	Validate Your Stylesheet and Document
	Double-check that the Properties You’re Using Are Supported in the Browser You’re Testing
	Isolate the Problem
	Search the Web
	Ask for Help


	The validator complains about my vendor-specific extensions, so how do I validate CSS3?
	Solution
	Discussion

	All Users Catered For

	CSS Positioning Basics
	How do I decide when to use a class and when to use an ID?
	Solution

	What are block-level and inline elements in CSS, and can I change how these display?
	Solution
	Discussion
	Inline Elements
	Block-level Elements
	Inline-block Elements


	How do margins and padding work in CSS?
	Solution
	Discussion

	How do I wrap text around an image?
	Solution
	Discussion

	How do I stop the next item floating up once I’ve floated an element?
	Solution
	Discussion

	How do I set an item’s position on the page using CSS?
	Solution
	Discussion

	How do I center a layout on the page?
	Solution
	Discussion

	How do I create a thumbnail gallery?
	Solution
	Discussion

	Positioned: Absolutely

	CSS for Layout
	How do I create a two-column layout?
	Solution
	Discussion

	How do I create a two-column layout with a footer?
	Solution
	Discussion
	Clearing Inside Containers
	Floating the Outer Container
	Setting overflow: auto or overflow: hidden
	Clearfix Hack



	How do I create a three-column layout?
	Solution
	Discussion

	How do I create a fixed-width layout with a full-width header and footer?
	Solution
	Discussion

	How do I create a design that works well on mobile devices?
	Solution
	Discussion
	Adding Some Device-specific Fixes


	How do I create a print stylesheet?
	Solution
	Discussion

	How can I use responsive-design techniques when my site is image-heavy?
	Solution
	Discussion

	What about older browsers and responsive design?
	Solution
	Discussion

	What is the future of CSS layouts?
	CSS3 Grid Layout
	Flexible Box Layout Module
	CSS Multicolumn Layout Module

	A Design for Life

	Index
	CSS Quiz
	Friends of SitePoint
	Back Cover



