

ptg

The CSS
PocketGuide

Chris Casciano

Ginormous knowledge, pocket-sized.

ptg

The CSS Pocket Guide
Chris Casciano
Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2011 by Chris Casciano
Editor: Kim Wimpsett
Technical editors: Michael Bester and Kimberly Blessing
Production Editor: Myrna Vladic
Compositor: David Van Ness
Indexer: Ann Rogers
Cover Design: Peachpit Press
Interior Design: Peachpit Press
Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission
for reprints and excerpts, contact permissions@peachpit.com.
Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of the book, neither the author
nor Peachpit shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions con-
tained in this book or by the computer software and hardware products described in it.
Trademarks
Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affiliation with this book.
ISBN-13: 978-0-321-73227-9
ISBN-10: 0-321-73227-8
9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

www.peachpit.com

ptg

About the Author
Chris Casciano started building web sites professionally in 1997 when
web development meant working with tables and font tags, sticking to a
“web-safe” color palette, and worrying about load times for those using
dial-up modems. He is now working as freelance web developer, spend-
ing the last nine years in the trenches architecting and building web
sites for digital agencies and their clients. Throughout his career Chris
has explored ways to implement emerging technologies such as HTML5,
CSS3, and JavaScript in practical ways—balancing the bleeding edge with
the responsibilities of serving a diverse audience. His personal projects
and writing have inspired industry leaders with projects such as Daily
CSS Fun in 2002 serving as inspiration for the popular CSS Zen Garden.
Since 2003, Chris has been an advocate for adoption of web standards as
a member of the Web Standards Project.

His personal web site, Place Name Here (http://placenamehere.com),
which is now home to a blog covering both web development and his
other passion of digital photography, has been online since 1998.

http://placenamehere.com

ptg

Acknowledgments
I have to thank Clifford Colby, Bruce Hyslop, and Lenny Burdette for the
opportunity to write this book and their encouragement along the way.

I must also thank my editors. Kim Wimpsett at Peachpit Press deserves
credit for all her hard work including her endless battles like those with
square brackets and the words then/than. My friends and technical
editors Michael Bester and Kimberly Blessing were invaluable in helping
craft the pages of this book and kept me in line and on topic.

Thanks to my family, including Mom, Dad, Mari and Justin, Joanna and
Jared (and Lily), and Matt, for everything.

Finally, thanks to the people I’ve shared the Internet with over the past
15 years—whether through online communities from webdesign-l to
b3s or my co-workers and those in the NYC tech community. You shaped
my understanding of our industry and the technologies we use, and you
encouraged me to keep on keepin’ on throughout my career and my life.

ptg

Contents

Introduction xv
Who Should Read This Book . .. xvi

What You Will Learn xvi

What You Won’t Find in This Book . .. xvii

What You Need to Follow Along xvii

Resources xviii

Writing CSS xviii
Case Sensitivity xviii
Comments xix
Whitespace xix
Quoting and Escaping Quotes . .. xix
Tools xx

Chapter 1: CSS Basics . .. 1
What Is CSS? 2

What Are Styles Sheets? . .. 2
Anatomy of a Statement . .. 2
Cascading . .. 5
Inheritance . .. 7
Specified, Computed, Used, and Actual Values 8
Block, Inline, and Replaced Elements . .. 9
Web Standards and Specifications . .. 9
User Agents, Browsers, and Devices 12

ptg

The CSS Pocket Guidevi

Working with CSS . .. 13
Attaching Styles to HTML . .. 13
Coding Styles 15

Chapter 2: Web Browsers 21
Where Do Styles Come From? 22

Browser Style Sheets . .. 22
User Settings . .. 23
User Style Sheets . .. 23

Rendering Modes . .. 24
Standards Mode . .. 24
Almost Standards Mode 25
Quirks Mode . .. 25
Choosing Modes with a DOCTYPE Switch 25
X-UA-Compatible 26
Specific Mode Differences 27

Targeting Browsers . .. 27
Targeting with Selectors 28
Targeting with Syntax Hacks 28
Microsoft Conditional Comments . .. 29

IE and hasLayout 30

Browser Grading . .. 32
A-Grade Browsers . .. 33
B-Grade Browsers . .. 33
F-Grade Browsers . .. 34
X-Grade Browsers . .. 34
A+-Grade Browsers 34

CSS Support via JavaScript 34

ptg

 Contents vii

Chapter 3: Selectors 37
E (Type Selectors) . 38

* (Universal Selector) . 38

#id (ID Selector) . .. 38

.class (Class Selector) 39

Attribute Selectors 39
[att] . .. 39
[att=val] . .. 39
[att~=val] 40
[att|=val] 40
[att^=val] 40
[att$=val] 40
[att*=val] 40

Pseudo-class Selectors . .. 41
:link, :visited (Link Pseudo-classes) 41
:hover, :active, :focus (Action Pseudo-classes) 41
:target (Target Pseudo-class) 42
:enabled, :disabled, :checked (UI Pseudo-classes) 42
:lang() (Language Pseudo-class) 43
:root (Root Element Pseudo-class) 43
:nth-child(), :nth-last-child() (Nth Child Pseudo-classes) . . . 43
:first-child, :last-child (First and Last Child Pseudo-classes) . . 44
:nth-of-type(), :nth-last-of-type() (Nth of Type Pseudo-

classes) 45
:first-of-type, :last-of-type (First and Last of Type Pseudo-classes)
. .. 45
:only-child (Only Child Pseudo-class) . .. 45
:only-of-type (Only of Type Pseudo-class) . .. 46
:empty (Empty Pseudo-class) . .. 46
:not() (Negation Pseudo-class) . .. 46

ptg

The CSS Pocket Guideviii

Pseudo-element Selectors 46
::first-letter (First-Letter Pseudo-element) 47
::first-line (First-Line Pseudo-element) . .. 47
::before, ::after (Before and After Pseudo-elements) 47
::selection (Selection) 48

Combinators or Relational Selectors . .. 48
E F (Descendant Combinator) 48
E>F (Child Combinator) 49
E+F (Adjacent Sibling Combinator) . .. 49
E~F (General Sibling Combinator) . .. 49

Combining and Chaining Selectors . .. 50

Specificity 51

The !important Declaration . .. 53

Selector Strategies . .. 53
Browser Support for Selectors . 53
Grouping Selectors 54
Selector Speed . .. 54
Selector Readability . .. 55
Selector Reusability . .. 55

Chapter 4: Measurements, URLs, and Color Units 57
Measurements . .. 58

Pixels (px) . .. 58
Ems (em) . .. 58
Points (pt) . .. 59
Percentages (%) . 59
Other Units of Note 60

URLs 61

ptg

 Contents ix

Basic Colors . .. 62
#rrggbb or #rgb 62
rgb(r,g,b) . .. 62
hsl(h,s,l) . .. 63
Color Keywords 63

Color with Alpha Transparency . .. 64
rgba(r,g,b,a) . .. 65
hsla(h,s,l,a) . .. 65
transparent . 66

Creating and Maintaining Color Palettes . .. 67
Design . .. 67
Maintenance . .. 67

Chapter 5: The Box Model 69
Properties 71
width 71
height 71
margin 71
padding . .. 72
border-width . .. 73
overflow . .. 74

Min and Max Dimensions 74

Nesting Elements . .. 75

Using Negative Margins 78

Horizontal Centering Blocks . .. 80

An Alternative Box Model . .. 81
box-sizing . .. 81

ptg

The CSS Pocket Guidex

Chapter 6: Positioning and Floats . .. 83
The Document Flow 84

display . .. 84

Position . .. 85
static . .. 85
relative . .. 85
absolute 86
fixed . .. 88

Origins and Containing Blocks . .. 89

z-index . .. 92

visibility . .. 93

float . .. 93

clear . .. 97

Chapter 7: Page Layouts 101
Building Blocks of CSS Layouts 102

Creating Content Blocks 102
Floating into Margins 104
Creative Use of Backgrounds 105
Inline and Floated List Items . .. 109
Using Positioning to Escape Containers 110
Overlays, Tooltips, and Drop-Down Menus . .. 111

Multicolumn CSS Layouts . .. 113
A Two-Column Layout . .. 113
Two Columns with Right Sidebar 116
A Three-Column Layout . .. 117
Fixed-Sized, Flexible, and Mixed Columns 119
Designing with Constraints . .. 121

ptg

 Contents xi

Chapter 8: Backgrounds and Borders . .. 123
Backgrounds . .. 124

Multiple Background Images . .. 127
Strategies for Background Images 128
Background Image Sprites . .. 133

Border 135
Outline . .. 138
Faking Rounded Corners 139

Chapter 9: Typography and Web Fonts . .. 147
Font Basics . .. 148
font-family . 148
font-size . .. 149
font-weight . 152
font-variant . .. 152
font-style . .. 152
line-height . 153
font (Shorthand) . .. 153
vertical-align . .. 154

Additional Font Styling . .. 155
text-decoration . .. 155
text-transform . .. 156
word-spacing . .. 156
letter-spacing . .. 157
text-align . .. 157
white-space . 158
word-wrap . .. 158
text-indent . 158
text-shadow . 159

ptg

The CSS Pocket Guidexii

Specifying Typefaces . .. 161
System Fonts . .. 161
Font Embedding . .. 162
Custom Fonts via Text Replacement . .. 166

Chapter 10: Lists and Tables . 171
Lists 172
display: list-item . .. 172
list-style-type . .. 172
Generated Content . .. 175
Counters 177

Tables . .. 180
table-layout . .. 182
border-collapse . .. 182
border-spacing 184
empty-cells . 184
vertical-align 184
text-align . .. 184
Table display Values 184

Chapter 11: Forms and User Interface Elements 187
Working with Form Controls 189

Sizing . .. 189
Colors, Backgrounds, and Borders . .. 190
Text and Form Element Inheritance 192
States: Disabled, Required, and Invalid 193

Common Form Element Layouts 194
Label Stacked Above the Field 194
Basic Multicolumn Forms 195
Label Besides the Field 197

ptg

 Contents xiii

Exceptions for Radio Buttons and Check Boxes 197
Inputting Tabular Data 199
Conditional Fields 199
Placeholder Text 201

Making Buttons . .. 201
Background Images 202
CSS3: text-shadow, border-radius, and Gradients 202
Links As Buttons 202

Chapter 12: Media: Printing and Other Devices 205
Media Types 206

List of Media Types . .. 206
Specifying Media Types 207

Print Media . .. 210
page-break-before and page-break-after . .. 210
page-break-inside 210
The @page Rule 211
Print Considerations . .. 211
Hyperlinks and Generated Content 212

Mobile Media . .. 213
Mobile Considerations . .. 213

Media Queries . .. 214
Media Features . .. 215
Responsive Design 216
Browser Support . .. 217

Chapter 13: Resets and Frameworks 219
CSS Resets 220

Using Resets 220
Why Not Reset? . .. 221

ptg

The CSS Pocket Guidexiv

Cross-Browser CSS via JavaScript 222
Common Bridge Libraries 222
Why Not Use JavaScript? 224

CSS Frameworks . .. 225
Common CSS Frameworks . .. 226
Why Not Use a Framework? 227

Beyond Frameworks . .. 227
CSS Preprocessors 228

Chapter 14: The Not Too Distant Future of CSS 231
The box-shadow Property . 232
The background-size Property 235
Color Gradients 240
Border Images . .. 241
WAI-ARIA Roles 245
The calc() Function 246
Transformations and Rotations 247
Transitions . .. 253

Index 256

ptg

The styling of web documents has evolved a great deal from the early
days of the Web when font tags, tables, and HTML attributes scattered
everywhere were just what you had to do to make pages look good (or
get that animated GIF of a flame repeating across your whole page).

The CSS Pocket Guide will teach you the building blocks of styling docu-
ments with CSS, give you an arsenal of modern development techniques,
and help you navigate the ever-changing landscape of web browsers and
specifications, including CSS3.

Introduction

ptg

The CSS Pocket Guidexvi

Who Should Read This Book
Anyone designing or building web pages should understand CSS. This
book offers an overview of CSS and the building blocks of the language
to get you going and is geared toward novice and intermediate
developers.

Before reading this book, it is important to have some exposure to and
understand how to read and write HTML—the markup and content that
the CSS code in this book is used to style.

What You Will Learn
This book covers CSS including CSS 2.1 and parts of CSS3.

■ The beginning of the book covers the building blocks of CSS and how
to use those tools to create layouts with CSS.

■ The book then goes on to discuss how to use CSS to style the content
elements that are often placed into the parts of the layout grid you’ve
just learned to build.

■ The last part of the book dives deeper into specific topics such as
working with different types of media or creating form layouts.

Along the way, there is also discussion of current best practices in web
development and information on upcoming changes to CSS included in
CSS3 and beyond.

ptg

 Introduction xvii

What You Won’t Find in This Book
It is impossible to cover CSS in all its applications and in all the different
ways it can be encountered in one book written by one person. Although
the language is covered in detail and this book can serve as a great refer-
ence for those learning other aspects of web design and development, it
does not attempt to cover any of the following in detail:

■ It does not attempt to teach you what HTML is or how to write
good HTML.

■ It does not attempt to teach you anything about JavaScript or script-
ing things such as animations or Ajax. But it will make a useful refer-
ence for the CSS properties you will often manipulate with JavaScript.

■ It does not attempt to teach principles of good visual or interactive
design. It will, however, give you the tools to implement those designs.

■ It also it does not explicitly cover CSS as applied to documents other
than HTML (such as SVG).

What You Need to Follow Along
All you need is a text editor to write CSS code or review the example CSS
and HTML code, ideally one with syntax highlighting such as Notepad2
for Windows or TextWrangler for Mac OS X (both are free). You’ll also
need a web browser to view the results of any code you write. A visual,
or WYSIWYG, editor such as Dreamweaver can also be used, provided it
offers a “code” or “source” view.

The figures used to demonstrated CSS code throughout this button were
all generated with actual CSS code. These full code examples, including the
HTML5 documents, can be downloaded from http://www.peachpit.com/
csspocketguide so you can follow along, review the examples in different
browsers, or edit the examples and experiment with them.

http://www.peachpit.com/csspocketguide
http://www.peachpit.com/csspocketguide

ptg

The CSS Pocket Guidexviii

Resources
It goes without saying that a topic at the core of web development will
have a large number of great resources on the Web.

■ Check out the W3C’s CSS Working Groups Current Work index of the
CSS specifications. http://www.w3.org/Style/CSS/current-work

■ You can also refer to the detailed browser support charts and other
web development articles by Peter-Paul Koch at QuirksMode.org.
http://quirksmode.org/

■ The WaSP InterAct Curriculum project offers a full and ongoing curric-
ulum for learning and teaching web development and web design
including CSS. http://interact.webstandards.org/

■ The Mozilla Developer Center offers a complete reference of the
CSS language and is great for looking things up in a flash.
https://developer.mozilla.org/en/CSS_Reference

■ The Opera Developer Network offers articles, tutorials, and references
for all areas of web development, including a curriculum you can walk
through and teach yourself. http://dev.opera.com/

Writing CSS
Unlike a programming language such as JavaScript, there isn’t that much
to the syntax of CSS and the makeup of CSS rules. But the following
sections highlight some things you should know before jumping into the
complexities of what the simple syntax can do.

Case Sensitivity
CSS is case insensitive. For example, the color property is equivalent
to the COLOR property, and a px unit is the same as a PX or Px unit. By

http://www.w3.org/Style/CSS/current-work
http://quirksmode.org/
http://interact.webstandards.org/
https://developer.mozilla.org/en/CSS_Reference
http://dev.opera.com/

ptg

 Introduction xix

convention, properties and values are typically written using lowercase
characters, and that is the convention followed in this book.

Parts of the code not under the control of CSS such as file paths to style
sheet documents, images, element names, classes, and IDs may be case
sensitive and are defined at their source. For example, the file path on
one server may be case sensitive, but on another server or your local
machine it may not be. For markup, elements in HTML documents are
case insensitive; however, elements in XML-based documents are.

To avoid confusion or code bugs, it is best to match the case in your code
regardless of whether it will be enforced.

Comments
There is only one way to write a comment in CSS—beginning with the
two characters /* and ending with the same two characters reversed, */.
Any text, code, or whitespace between those two is ignored.

/* this is a comment */

Whitespace
In CSS, whitespace—including space characters, tabs, and line breaks—has
no meaning outside of its use as a descendent selector (Chapter 3) or as a
separator for multiple values in a single declaration. Outside of those two
cases, it is considered optional. It is up to you to use whitespace (or not) to
format your CSS to help with the organization and readability of your code.

Quoting and Escaping Quotes
The single quote (‘) and double quote (“) can be used interchangeably to
wrap string values in CSS (though if a string starts with one, it must end
with the same one).

The backslash (\) is the escape character in CSS. It can be used to escape
a quote mark that is part of a string (or another backslash that should

ptg

The CSS Pocket Guidexx

appear as part of the string). The backslash character can also be used to
include characters via their character codes.

For some string-like references, such as with a url() reference, it is also
allowable to leave off the quote marks around a string.

Keywords, such as color names, are not strings and must not be quoted.

Tools
Building web pages while wrangling browser bugs takes more than just
a text editor and a browser. The following are a few categories of tools
that are invaluable additions to your toolbox.

Validation Tools

Validation tools parse your HTML or CSS documents checking for
con formance with the designated specification in areas such as syntax
errors, missing or improperly nested HTML tags, unknown CSS proper-
ties, illegal values, or other coding problems. The W3C validation service
(http://jigsaw.w3.org/css-validator/) is one commonly used validator.

As a tool, the errors a validation service can uncover may help identify
where visual bugs you’re seeing in browsers could derive from. For exam-
ple, it is common that a missing closing tag may cause styles to bleed out
of the area you would have expected. But be careful and understand vali-
dation errors before reacting to them because some code that you want
to use, such as vendor extensions for experimental CSS3 implementa-
tions, may also be reported as an error based on the validator’s settings.

Web Inspectors

Web inspectors (or DOM inspectors) are tools that allow you to view the
document tree, CSS properties, and other information about a web page

http://jigsaw.w3.org/css-validator/

ptg

 Introduction xxi

as it appears in your browser, often with a click on the element itself.
These tools are invaluable when writing and debugging CSS code, provid-
ing real-time information about style properties and pointing out which
style rules contributed to the element’s appearance.

■ Internet Explorer: Starting with version 8, Internet Explorer includes
Developer Tools, a set of built-in tools including the ability to inspect
HTML elements and view CSS information. To launch the tools, press
F12 or select Tools > Developer Tools from the menu in IE. For older
versions of IE, including 6 and 7, Microsoft offers a downloadable
extension called the Internet Explorer Developer Toolbar.

■ Firefox: Among its other features, the Firebug extension for Firefox
(http://www.getfirebug.org/) allows for viewing and editing of the
document tree and style property cascade. Once installed, you can
open Firebug directly or by right-clicking an element in the page and
choosing Inspect Element.

■ Safari: Safari on OS X and Windows comes with a built-in set of devel-
oper tools including a web inspector. These tools are disabled by default,
but you can enable them from the Advanced panel inside Safari’s pref-
erences. Once enabled, you can open it from the Develop menu or by
right-clicking an element in the page and choosing Inspect Element.

■ Chrome: Chrome also ships with built-in developer tools with simi-
lar features to those already mentioned. To access the tools, select
View > Development > Developer Tools from the menu or right-click
an element in the page and choose Inspect Element.

■ Opera: Opera Dragonfly is another suite of tools for working with
web documents including viewing styling information. To activate
Dragonfly, select Tools > Advanced > Opera Dragonfly from the menu
in Opera, or right-click an element in the page and choose Inspect
Element.

http://www.getfirebug.org/

ptg

The CSS Pocket Guidexxii

Web Developer Toolbar

Chris Pederick created the Web Developer Toolbar extension
(http://chrispederick.com/work/web-developer/) for Firefox and Chrome
that provides some nifty features not found in standard web inspectors
such as the ability to add an overlay above the document that displays
the document structure or element attributes, resize your browser
window to certain dimensions for testing, or submit the document
directly to validation services.

(I take some pride in this tool as it is based on the toolbar I had writ-
ten for the now long defunct Mozilla Suite, the browser that predated
Firefox. That said, Chris deserves all the credit now because he has taken
it further and supported it with much more time and energy than I had.)

Yahoo! YSlow and Google Page Speed

Yahoo! YSlow (http://developer.yahoo.com/yslow/) is a Firefox add-on
geared toward analyzing and improving the performance of web sites
in areas such as caching, download sizes, and speeds, as well as reducing
the number of requests made to the server delivering the content and all
its types of assets.

Through YSlow and its companion suite of tool, you can learn about tools
to compress CSS documents; optimize server calls for CSS files, JavaScript
files, and images; and perform lots of other performance tricks not
covered directly in this book.

Google Page Speed (http://code.google.com/speed/page-speed/) is
another Firebug add-on in a similar vein as YSlow. It can identify which
CSS declarations are not being utilized by an HTML document and it can
point out which of your CSS selectors are written inefficiently and why.

http://chrispederick.com/work/web-developer/
http://developer.yahoo.com/yslow/
http://code.google.com/speed/page-speed/

ptg

There exists a trinity of standards-based web development technologies
that when used in concert can create exciting, vibrant, interactive web
sites out of what on their own are just a bunch of text files.

HTML provides the content and structure of the web page, JavaScript
supplies the interaction and document manipulation, and CSS provides
the presentation and flair.

CSS Basics

1

ptg

The CSS Pocket Guide2

What Is CSS?
CSS, short for Cascading Style Sheets, is a language for describing the
presentational properties of content elements in structured documents
such as HTML documents. Though this book will focus on styling HTML
content, you can also use CSS for other structured documents such as
those created with XML or SVG.

What Are Styles Sheets?
Style sheets provide a set of guidelines for styling a structured docu-
ment by defining rules for the appearance of different types of content
or different contexts that content can be found in. You may have already
encountered forms of style sheets or themes in typical office suites
or e-mail programs. It is common in presentation software such as
PowerPoint or Keynote to pick a theme to start with, where each slide
is automatically formatted with the same font sizes, colors, and layouts,
rather than starting with a blank slate and designing each slide individu-
ally and hoping for them to be consistent when you’re done.

As a browser or other user agent loads the HTML content for the docu-
ment, it also loads the style sheet information. From this style sheet
information, it then builds up the set of presentation rules for each
individual content item based on its element type, its state, and its loca-
tion in the document. It will ultimately render each element consistently
based on this accumulated set of rules.

Anatomy of a Statement
CSS-based style sheets consist of a list of statements. There are two types
of statements: rule sets (referred to as rules) and at-rules.

ptg

Chapter 1: CSS Basics 3

Rule Sets

A rule set consists of a selector followed by a declaration block contain-
ing declarations of style properties and their values, as explained in the
following list (see also Figure 1.1).

Figure 1.1
The parts of
a rule set.

4

2

1

3

5 6

1. Rule set: This is the entire definition of a CSS rule, including selector
and declaration block, containing individual declarations.

2. Selector: The selector includes everything up to the opening curly
brace. The selector describes the markup elements to which the
contents of declaration block apply. Individual selectors may share
a declaration block, with each selector separated with a comma (,).

3. Declaration block: The declaration block starts with the left curly brace
and ends with the right curly brace. Inside the block there are zero or
more declarations, each separated by a semicolon (;).

3. Declaration: Each declaration is a colon-separated property-value pair.

5. Property: The property is the CSS property that the declaration is
targeting.

6. Value: This is the value that will be applied to the declared property.
The syntax of the value depends on the property but can be things
such as keywords, a <length>, a <percentage>, or a mix of multiple,
space-separated types.

ptg

The CSS Pocket Guide4

Defining Values for Four-Sided Properties
Properties such as margin, padding, and border-width are used to
define values for all four sides of a block (whereas margin-right
defines the right margin alone). These properties, and those like
them, can take from one to four space-separated values that are
applied to the sides in the following manner:

■ If one value is listed (for example, 10px), that value is applied to all
four sides.

■ If two values are listed (for example, 10px 5%), the first value is
applied to the top and bottom, while the second is applied to the
right and left sides.

■ If three values are listed (for example, 10px 5% 20px), the first value
is applied to the top, the second to both the right and left sides,
and the last to the bottom.

■ If four values are listed (for example, 10px 5% 20px auto), the values
are applied clockwise starting from the top (top, right, bottom, left).

At-Rules

At-rules are statements that begin with the character for at (@), followed
by a rule type or identifier, and end with a semicolon. Unlike rule sets,
at-rules do not contain declarations directly but offer additional context
or commands for the processing of style sheet information. Here’s an
example:

/* include file additional.css */

@import “additional.css”

/* target specific media with contained rules */

ptg

Chapter 1: CSS Basics 5

@media print {

[...]

}

Cascading
The cascading in CSS is the process that is followed in order to determine
which declaration for a given property is applied to a given element in
the document. As you’ll soon learn, properties—color, for instance—can
be defined and redefined multiple times, so the browser must determine
which of those definitions to apply. The criteria for sorting through the
style sheets to determine which property declaration to use is threefold:
weight, specificity, and order of appearance.

The weight of the declaration is determined by the origin of the style
rule. Style rules can be found in one of three sources in descending order
of weight:

■ Author style sheets: These are the style sheets defined along with the
source HTML document by the author of the page visited.

■ User style sheets: User style sheets are CSS documents or other styling
preferences selected by the user of the browser.

■ User agent style sheets: Each user agent applies a default set of presen-
tation rules representing common behaviors for each HTML element
(links are highlighted, headings are larger, and so on).

note You can learn more about the sources of styling rules in Chapter 2.

The specificity of the declaration is determined by how precise the
selector used for the element is. A selector that states “any paragraph
element” (<p>) is less specific than a selector looking for “any paragraph
that occurs inside of a block quote” (<blockquote><p>).

ptg

The CSS Pocket Guide6

note Specificity is covered in detail in Chapter 3.

The order of appearance, or source order, of the declaration is deter-
mined by the order the rules are encountered in the set of documents in
a given source category where the later declaration replaces all earlier
declarations.

To calculate the winning declaration for a given property, first weight is
considered. If multiple declarations share the highest weight source, then
specificity is considered. Finally, if multiple declarations share the same,
greatest specificity, then order of appearance is used to pick the appropri-
ate declaration to apply.

Figure 1.2 shows the cascade of rules for a link in the footer of the
Apple.com home page as viewed in the Safari Web Inspector. Declarations
that appear crossed out have been trumped by other declarations of that
property higher in the cascading order.

Figure 1.2
The Safari
Web Inspector
displaying the
cascade.

ptg

Chapter 1: CSS Basics 7

Inheritance
The values for some properties, such as color and font-family, are
inherited by child elements of the element where the property was set. If
that property was not explicitly declared for the child element, it will use
the inherited value for display. In the case of color, if the <body> element
has been set to black, then paragraphs, list contents, block quotes, and
other children will also have a color value of black. Because links have a
different color defined in the user agent style sheet, they will not appear
as black but as the default blue color (or other set default link color).

Inherited values are passed along to child elements as their computed
value. For example, font-size is inherited; thus, the value passed to the
child elements would be the final, calculated value in pixels and not the
original units, which may have been ems, ens, points, or pixels. If the
inherited value were to be in ems instead, the size would then be recal-
culated for each child that inherited it.

<p style=”font-size: 10px”>

<strong style=”2em”>

Text

</p>

In the previous code example, the font-size for the element
is calculated to be 20px, and this is the value inherited by the
element. If the specified value of 2em was inherited and the size recal-
culated, the would have a font-sized value of 40px instead. I’ll
further explain computed values in the next section.

Other properties, such as width, height, and margin, are not inherited
and cannot be inherited. This means that although you may place a
height value on a <div> or <article> element of 400px, all of that <div>
or <article>’s children will continue to use the default value of height
(auto) unless their height is explicitly set.

ptg

The CSS Pocket Guide8

The CSS specification for each property lists whether that property can
inherit and whether it will inherit its parent’s value by default.

The Importance of Good HTML Roots
A foundation of strong structural and semantic markup is crucial
to making designing with CSS easy, readable, and maintainable.
Although every individual node in the document tree can be styled
explicitly, with the behavior of the cascade, specificity, and inheri-
tance, CSS was designed to take advantage of element context and
markup patterns. Poorly crafted markup doesn’t provide the con-
textual clues or “hooks” for styling that good markup practices like
the appropriate use of <div> or <section> elements, a varied level of
headings, and using paragraphs rather than line breaks do.

Specified, Computed, Used, and Actual Values
Values come in four flavors depending on where and how they are being
referenced. You’ve already encountered computed values and specified
values: the third is the actual value.

■ Specified values: These are the values as they were coded in the
CSS rules.

■ Computed values: These are the values for a property as they are
calculated after applying the cascade and inheritance but before the
document is processed or rendered. Units like ems are calculated and
turned into fixed values (pixels for most devices), paths to files are
made absolute, and inherited values are inherited.

■ Used values: After all the values are calculated and the document is
processed, the value of some other properties such as percentage or
auto-based widths that rely on the dimensions of a parent element

ptg

Chapter 1: CSS Basics 9

to be known are calculated into their fixed-width equivalents. When
these calculations are complete and the page is rendered, the result-
ing values are the used values. Though the naming is unfortunate, it is
these used values that are encountered when scripting CSS through the
getComputedStyle DOM API or viewing the computed tab in Firebug.

■ Actual values: After all the calculations are done and a browser has
processed the document, there are some occasions where the used
value cannot be rendered, so the browser must approximate the
used value, creating the actual value. This can occur when a fractional
pixel unit results from a calculation (50 percent of 99 pixels) or when
a low-color-depth, monochrome display isn’t capable of rendering the
exact color calculated.

Block, Inline, and Replaced Elements
There are three main types of element types in HTML documents
(a broad generalization) whose intended content types dictate their
behavior in CSS and presentation. There are elements that serve as
containers for other content (<div>, <p>), there are elements that differ-
entiate types of text content (<a>,), and there are elements
that refer to external content (, <object>).

Throughout this book the first type are block elements, the second type
inline elements, and the last inline replaced elements.

Web Standards and Specifications
The World Wide Web Consortium (W3C) along with other standards
bodies such as WHATWG and IETF produce standards and specification
documents for everything from CSS to the HTTP protocol that computers
on the Internet use to communicate. You can find the specifications for
CSS and HTML on the W3C web site at http://www.w3.org/.

http://www.w3.org/

ptg

The CSS Pocket Guide10

CSS2, CSS2.1, CSS3, Drafts, Recommendations, Ack!

We’re at a moment in time where the state of the CSS “standard,” while
active and exciting, can often be confusing. The W3C’s CSS Working
Group consists of representatives from browser vendors and other tech-
nical experts who are actively writing and maintaining the specifications.
At first look, there are a lot of specification documents, and they’re all at
different points in the process.

There are many states a specification moves through on its way to being
finalized, gathering comments and test implementations along the way:

■ Working Draft: A Working Draft (WD) is the earliest definition of the
specification. The document itself will often be loaded with notes,
questions, or incomplete references. Working Drafts are useful to see
what is ahead and for browser vendors to create test implementations.
There will be certainly be changes to the document and possibly to
individual property definitions in the future because no consensus on
the content of the document has yet been reached.

■ Last Call Working Draft: When issues, conflicts, and questions in the
Working Draft are resolved, there is a Last Call (LC) comment period
announced to solicit feedback on the draft.

■ Candidate Recommendation: After that Last Call period, a draft may
move onto a Candidate Recommendation (CR), and the working group
solicits test implementations from vendors to make sure what has
been proposed is workable.

■ Proposed Recommendation: To be a Proposed Recommendation (PR),
the specification is stable, and vendors have created interoperable
implementations.

■ Recommendation: The bill has become a law—or a finalized
Recommendation (R) as it were.

ptg

Chapter 1: CSS Basics 11

The process to make it to a Recommendation can be quite drawn out.
Although CSS3 is big on everyone’s mind, CSS 2.1 is just now ready to
become a Proposed Recommendation, so it is sometimes hard to nail
down by specification alone what is ready for you to spend time to learn
or to use on a site.

Here is where the various specifications are along that line and that you
can start using today:

■ CSS2: CSS2 became a Recommendation in 1998. As a specification, it
has been superseded by CSS2.1, though the term “CSS2” may be used
to refer to either.

■ CSS2.1: As this book is being written in the later part of 2010, the CSS2.1
specification is being readied for PR status. CSS2.1 made changes to
CSS2 by updating technical descriptions and removing properties to
better reflect implementation (or total lack of implementation) of the
previous Recommendation.

■ CSS3: With CSS3, the specification has been split into modules as a way
to control the complexity of any given piece of the large undertak-
ing as well as provide user agents a clear means to carve out which
areas they may not support due to technical device limitations. Some
modules are CRs with better support and implementations, and others
have yet to be written.

For the updated status of CSS2.1 and the various CSS3 modules, see
http://www.w3.org/Style/CSS/current-work. And with all these specifica-
tions, CSS3 modules in particular, refer not just to the specification status
but also to browser compatibility charts for implementation details on
the various properties you may want to use.

http://www.w3.org/Style/CSS/current-work

ptg

The CSS Pocket Guide12

HTML 4, XHTML, and HTML5

Which HTML specification (or draft specification) you choose to write
markup based on is entirely up to you (or your supervisors or clients).
Though HTML5 may offer some exciting new features such as additional
structural elements and web form components, they all are “standards”
and work equally well with CSS.

It is important, however, that you do pick and write to both the DOCTYPE
and codification of the standards and the semantic rules of the specifica-
tion. Though there are rules for handling markup errors in some specifi-
cations, invalid markup such as improperly nested elements or tags that
are never closed can often lead to unexpected styling consequences. In
a similar vein, poor markup semantics may muddy up your selectors and
make your CSS code difficult to follow.

User Agents, Browsers, and Devices
The most common piece of software that consumes and renders the
display of web pages and CSS is the web browser.

The term for the broad category of anything that can consume a web
document is a user agent. User agents include the typical web browser
but also tools such as screen-reading applications, feed readers, Google
and other search engine spiders, and other programmatic interfaces.

Devices are the hardware the user agents run on and often dictate what
features that user agent can support. A smartphone may have a smaller
screen than a desktop computer, a printer takes on the characteristics of
a printed page, and a Wii may display content on a standard-definition
television screen.

User agents on devices such as desktop browsers where the content is
displayed on one large canvas (or viewport) are classified as continuous

ptg

Chapter 1: CSS Basics 13

media, while printers, which output onto multiple fixed-sized parts, are
considered paged media.

Through most of this book you’ll be learning about CSS as it applies
to web browsers and continuous media on screen-based devices, with
a notable break in Chapter 12.

Working with CSS
Now that you know everything you ever wanted to know about the
definition of CSS and the specification process, you might need to know
how you get actual CSS code into your web pages and what CSS really
looks like.

Attaching Styles to HTML
Before you start writing CSS, you have to know where to put the code.
There are a few ways to define rules for your content, some based on
external files that can be shared between multiple HTML documents
on a site and some that are more specific to a page or even individual
elements.

HTML <link> element

You can use the HTML <link> element in the <head> of a document
to specify an external CSS document. This document does not contain
markup or script elements, only CSS code (rules and comments).

<head>

<link rel=”stylesheet” type=”text/css” src=”global.css”>

</head>

The type attribute defines which language is used in the style sheet. It
is required for HTML4 and XHTML, but it is optional in HTML5 (defaulting

ptg

The CSS Pocket Guide14

to text/css). The src attribute defines the location of the CSS document;
if it is a relative path, it is relative to the location of the referencing HTML
document.

HTML <style> element

You can use the HTML <style> element in the <head> of a document to
wrap CSS code to be applied to the document.

<head>

<style type=”text/css”>

[...]

</style>

</head>

The type attribute defines which language is used in the style sheet. It is
required for HTML4 and XHTML, but it is optional in HTML5 (defaulting to
text/css).

note HTML5 also defines a scope attribute that allows the <style> element
to be used inside a block of content, not just the head element.

@import Rule

You can use the @import rule at the top of any block of CSS code or CSS
document to define another CSS document to be included into the
current document or code block. The @import rule must precede all other
rules in the document (with the exception of the proposed @charset rule
from CSS3).

@import “imported.css”

ptg

Chapter 1: CSS Basics 15

HTML style Attribute

HTML content elements (those not associated with the document
<head>) have a style attribute that can be used to assign a semicolon-
separated list of CSS declarations to that specific element.

<p style=”color: pink”>A Pink Paragraph</p>

This attribute is an unwieldy method of styling an entire document but
can occasionally be useful on a project where it is important for style
information to be matched with the HTML content such as when sharing
HTML content across sites or defining one-off special cases for styling an
element.

JavaScript and the DOM

JavaScript can access style sheets and style properties via the Document
Object Model (DOM). JavaScript can be used to set styles via the style
object on an element or to read current styling information (used values)
via the getComputedStyle method.

You can also use JavaScript to read the contents of style sheets via the
document.styleSheets object, which is a useful technique for creating
bridge libraries to bring support for unsupported CSS properties or selec-
tors to older browsers (discussed in Chapter 13).

note Multiword CSS properties when accessed though JavaScript are camel
cased, rather than hyphenated. In other words, margin-left becomes

marginLeft.

Coding Styles
CSS does not rely on whitespace or indentation to parse the values, but
consistent use of whitespace can make code easier to follow—as can
thoughtful organization of the rules in a document and good use of CSS

ptg

The CSS Pocket Guide16

comments. There is no one right way to format and organize CSS code, but
this section will provide some place to start as you learn CSS and build
and test your code.

Code Locations

CSS has its greatest value when it’s shared across multiple documents
or entire sites rather than rewritten or copy and pasted from document
to document. As a result, it is common to break style rules into groups of
how they apply to your content:

■ Global styles: This includes style information that can be applied to the
entire site. These styles should be in one of the first linked external CSS
documents.

■ Section or page type styles: This includes style information that can be
applied to a subsection or alternate page type augmenting or chang-
ing the global styles. These styles can be in a separate external style
sheet linked after the global CSS document only from that type of
page, or included in the global CSS document with some class or id
used on an HTML element such as <body> to distinguish the page type.

■ Page or content-specific styles: This includes style information that is
shared among pages infrequently or not at all. If it is a small amount
of code, it can be placed in either the global or section CSS documents;
however, if more extensive, a third linked document may be used.

■ Unique documents: It may be that a page type on a site is truly unique
or that a document is intended to not be part of a site or set of other
documents. This is the case with the code used to generate the figures
throughout this book. In these cases, a style block can cut down the
number of external files that need managing or requests being made
to the server.

ptg

Chapter 1: CSS Basics 17

The implementation of this type of structure, if all those levels of granu-
larity are helpful, could look something like the following:

<head>

[...]

<link type=”text/css” href=”styles/global.css”>

<link type=”text/css” href=”styles/forums.css”>

<link type=”text/css” href=”styles/forum_help.css”>

[...]

</head>

Commenting and Code Documentation

Though individual CSS rules are quite easy to read and understand (“this
rule makes the body background white”), even the most basic web
sites will have a few hundred lines of CSS code. Since CSS has no inher-
ent structure to the code like HTML has its document tree, using CSS
comments to distinguish sections and structure of the document as well
as to keep notes on individual selectors or properties is important.

Start each document with some information on what the document
should contain and an inventory of its contents so it is easy to follow.

/**

 * Global Styles

 * yournewwebsite.com

 *

 * Contents:

 * 1. Basic HTML elements

 * 2. Layout Grid

 * 3. Header Content Styles

 * 4. Page Content Styles

 * 4a. Index Page Content (continues on next page)

ptg

The CSS Pocket Guide18

 * 4b. Article Page Content

 * 5. Footer Content Styles

 */

To distinguish sections of the document such as marking where the
layout grid is specified or where the styles for forms are located, use a
one- or two-line comment that catches the eye when you run through
the document.

/* ******* Footer Content Styles ******* */

To comment on a CSS rule, place a comment on the line before the rule.

/* make link big and colorful */

div.newsletterSignup a {

font-size: 2em;

color: pink;

}

To comment on an individual property or value, place a comment after
the declaration or on the line before it.

article {

min-width: 500px; /* wide enough for image content */

}

Arrangement of Selectors

Comments aren’t the only way to help make large amounts of CSS code
easier to read, scan, and maintain. Coding conventions for formatting the
appearance CSS rules and code organization of those rules are another
key aid.

Whitespace surrounding rules and the indentation (or not) of rules
and individual declarations should be consistent. There are two

ptg

Chapter 1: CSS Basics 19

main camps in the formatting for rules, and both have their pluses and
minuses.

Throughout this book I commonly have written rules with one declara-
tion per line and indented one tab from the left.

#footer form.newsletter input[type=text] {

width: 120px;

margin-bottom: 5px;

color: #666;

background: #ccc;

}

This makes it easy to scan and comment on individual declarations but
may make it more difficult to scan through groups of selectors as you
work on your code. Having an entire rule on one line may make scanning
and identifying groups of rules much easier though requires some hori-
zontal scanning to find individual properties or values.

#footer { [...] }

#footer form.login { [...] }

#footer form.login input[type=text] { [...] }

#footer form.newsletter { [...] }

#footer form.newsletter p { [...] }

#footer form.newsletter input[type=text] { [...] }

#footer form.newsletter input[type=submit] { [...] }

How you organize your rules is also important. The cascade’s reliance on
appearance order for selectors and specificity is a good starting point
for seeing how a document might be organized—with general and
generic rules first, followed by more specific rules for unique content
types or markup structures. But at some point your selectors will be
targeting more unique types of content and not matching the same

ptg

The CSS Pocket Guide20

content elements, so order isn’t important. Here it is good to keep code
pertaining to the same blocks or types of content together (all login form
content together and all footer content together, for example).

The suggested comment for opening a document earlier in this chapter
shares a good example of how one might organize the overall structure
of a site’s global CSS document.

/*

 * Contents:

 * 1. Basic HTML elements

 * 2. Layout Grid

 * 3. Header Content Styles

 * 4. Page Content Styles

 * 4a. Index Page Content

 * 4b. Article Page Content

 * 5. Footer Content Styles

 */

ptg

Web browsers and their openness to consume what the world serves
up are why we are able to design such rich sites that are easy to update
and alter. Browsers are the yin to the web server’s yang. But as a content
creator, the plethora of browsers can be a drag.

In this chapter, you will see some of the ways web browsers impact your
CSS code, learn how to embrace the different platforms and devices that
may view the pages you build, and see some frequent browser-related
quirks and common ways to deal with them.

Web Browsers

2

ptg

The CSS Pocket Guide22

Where Do Styles Come From?
Before any document-specific styles are applied to your pages, browsers
apply certain styles based on a combination of browser defaults, applica-
tion preferences, and advanced user customization.

Browser Style Sheets
Every browser ships with a default or base style sheet. From browser to
browser, these settings are common—headings are larger than the base
font size, links are underlined, lists have bullets, and some space appears
between individual paragraphs.

Browser vendors pick the styling based on a mix of accepted practices and
what will work best on their specific operating system and device. These
base style sheets act as the foundation for displaying all web pages.

Often, as in the case of lists and bullets, you may choose to not write
your own CSS and just go with the defaults. Or, you may want to alter
just one or two of these properties and let the rest be, such as changing
the margin and padding for list items but leaving the bullet style for list
items alone.

If you are the curious type, you can find all eight files that make up the
default style sheet for Firefox 3 via the internal URL resource://gre/res/.
Internet Explorer’s base style sheet isn’t as accessible, but Jon Neil has
tried to reverse engineer it, placing the results at http://www.iecss.com/.
One look at either, and you’re sure to be overwhelmed.

You can simply ignore many of these settings, but some such as margins
or padding make creating consistent presentations difficult. In Chapter 13,
I’ll cover using a “reset” to zero out some of these base style rules to
provide an even starting point to code against.

http://www.iecss.com/

ptg

Chapter 2: Web Browsers 23

User Settings
In addition to a browser’s baseline list of styles that it applies to HTML
elements, most browsers allow users to customize a few style properties
to make reading and interacting with web sites easier (Figure 2.1).

Figure 2.1
Preferences dialog
box in Opera 10.54
for OS X.

Through a browser’s preferences, users can often set whether their
browser supports images, the base font size and font family it uses,
and the behavior of certain features such as links.

User Style Sheets
Being able to control font sizes and colors is only the beginning. Many
browsers offer the ability to go beyond the preference dialog boxes and
allow a CSS file to be loaded and applied after the base browser style
sheets and before the styles dictated by the Web. This user style sheet
can contain any and all of the same rules that you might use to design
a web page.

Tools such as the Stylish Firefox extension (http://userstyles.org/) provide
users who don’t know CSS with sample style sheets and an easy way

http://userstyles.org/

ptg

The CSS Pocket Guide24

to load them for all sites they visit or to customize specific sites they
frequent.

Rendering Modes
The teams building web browsers have the unenviable position of need-
ing to support the way things have historically worked in their browsers
while at the same time fixing bugs and supporting new work by the
W3C. It may seem like web developers should abandon old and buggy
behavior in favor of progress, but the reality is that hundreds of thou-
sands of web sites may have been built, tested, and published with old
behaviors in mind.

As a compromise, browser vendors have come up with a way they can
be backward compatible while adhering to emerging web standards at
the same time. The solution is to support multiple rendering modes and
provide a way to switch between those modes at the document level via
the DOCTYPE declaration.

Standards Mode
Under Standards Mode, browser rendering engines behave according to
the letter of the standards. The CSS specifications are written to be back-
ward compatible, so pages built to today’s standards should not behave
differently under some new specification 10 years from now.

In other words, yet-unwritten standards will not change how color works
or how font-family designations are written even if they add features
such as font embedding or new color keywords. In extreme cases—such
as with the box model updates—a new property is created to designate
new behaviors should be followed, but the default behaviors should
match the old specifications.

ptg

Chapter 2: Web Browsers 25

note Throughout this book I’ll be discussing various properties and how
they behave according to the W3C and thus in Standards Mode.

Almost Standards Mode
Almost Standards Mode was developed as a compromise between
the stricter Standards Mode rendering and the implications of
being an inline element. Under Standards Mode, images had a space
underneath them just as text does—the space for text is reserved for
the descender of characters such as g and q. This caused images sliced
up and then recombined inside a table-based layout to suddenly not
match up as they were intended. Almost Standards Mode is identical
to Standards Mode with the sole exception that it closes up the space
underneath images.

Quirks Mode
Quirks Mode is a legacy rendering mode in some browsers that allows
the browser to behave like a previous version of that browser. Quirks
Mode, by definition, works differently in various web browsers and does
not fully follow any CSS specification. It is useful mainly for letting old
sites live on without the need for maintenance and for allowing code
built to work only in a specific browser to continue working.

tip Building new sites under Quirks Mode is difficult because of the
behavior differences between browsers and the different ways they

diverge from the CSS2 and CSS3 specifications. Stick with Standards Mode if
you’re building new sites, and forget that anything else exists.

Choosing Modes with a DOCTYPE Switch
At the time that browser vendors were implementing rendering modes,
the Web was largely a mess of invalid tag-soup HTML4, browser-targeted

ptg

The CSS Pocket Guide26

code, and “best viewed in . . .” graphics. Only a few developers were writ-
ing valid code, reading specifications, and using DOCTYPES like those
designating XHTML. This provided an opportunity to use the DOCTYPE
declaration (or lack thereof) to indicate the type of code being written
and therefore to switch between modes.

A missing or invalid DOCTYPE will put a browser into Quirks Mode, as will
the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01

➥ Transitional//EN”>

The following will put browsers into Standards Mode or Almost
Standards Mode:

<!DOCTYPE html>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

➥ “http://www.w3.org/TR/html4/strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0

➥ Transitional//EN”>

The Wikipedia article on Quirks Mode (http://en.wikipedia.org/wiki/
Quirks_mode) contains a more complete chart of behaviors.

X-UA-Compatible
Having just two modes is not enough for some, particularly those build-
ing closed or internal applications using web technologies. Microsoft has
shown concern that changes or fixes to the browser will break already
tested and deployed code in ways that DOCTYPE switching alone could
not satisfy. The X-UA-Compatible header, when set via an HTTP header or
<meta> tag, was introduced as a way to lock IE8 and beyond into behav-
ing like a specific older version of the browser. The following example
tells the browser that it should behave like IE8 in Standards Mode:

http://en.wikipedia.org/wiki/Quirks_mode
http://en.wikipedia.org/wiki/Quirks_mode

ptg

Chapter 2: Web Browsers 27

<meta http-equiv=”X-UA-Compatible” content=”IE=8” />

The next example tells the browser to emulate IE7 and use the DOCTYPE
derived mode:

<meta http-equiv=”X-UA-Compatible” content=”IE=EmulateIE7” >

More background and examples of values for X-UA-Compatible are
available from Microsoft (http://msdn.microsoft.com/en-us/library/
cc288325(VS.85).aspx).

Specific Mode Differences
If you want to know more (and aren’t content to just ignore that Quirks
Mode exists at all), Jukka Korpela has a very detailed list of differences
between Quirks Mode and Standards Mode in various browsers (http://
www.cs.tut.fi/~jkorpela/quirks-mode.html). Peter-Paul Koch charted many
of the differences in an easy-to-read table (http://www.quirksmode.org/
css/quirksmode.html).

Targeting Browsers
In a perfect world, there would be no need to send or hide specific styles
to specific browsers or find ways to accomplish something without CSS
that there are clearly defined properties for. In the real world, you can get
away with being almost perfect. Under Standards Mode rendering, send-
ing different style rules to different browsers is not the norm, but some
projects will require a small tweak here or there to pull a stray browser
back into line.

Here I show three common ways to approach browser targeting and why
they work. The first two are useful if you need to make minor changes,
and the last is useful if you are making more regular changes, particu-
larly if you have to develop for older versions of Internet Explorer.

http://www.cs.tut.fi/~jkorpela/quirks-mode.html
http://www.cs.tut.fi/~jkorpela/quirks-mode.html
http://www.quirksmode.org/css/quirksmode.html
http://www.quirksmode.org/css/quirksmode.html
http://msdn.microsoft.com/en-us/library/cc288325(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc288325(VS.85).aspx

ptg

The CSS Pocket Guide28

Targeting with Selectors
The rules that browsers use to parse CSS selectors dictate that unknown
syntaxes for selectors should cause the entire rule to be ignored. You can
use that, combined with recent selectors that were not implemented in
older browsers, to carefully craft rules for browsers. This can be one of the
cleanest ways to target different features toward different editions of
browsers or to offer fallback options for older browsers. You could write
the following two CSS declarations:

html body { background-color: red; }

html>body { background-color: blue; }

Browsers that support the child selector will display a red background on
the page, and those that do will display in blue.

Targeting with Syntax Hacks
Some browsers don’t quite follow the same parsing rules and handle
what would be considered an error or invalid syntax in a unique manner.
Over time, web developers have stumbled upon (or gone on quests
to find) these differences and used them as “hacks” in some form of
browser targeting.

In the following example, most browsers will ignore the unknown prop-
erty _height, but IE will instead ignore the _ character and consider it as
a “height,” giving you a way to send a different value to IE if needed.

div {

height: 200px;

_height: 300px;

}

ptg

Chapter 2: Web Browsers 29

If you want to target IE6 and older, you might use the * html hack, which
to most browsers will not apply to any elements because there is no
element above the root <html> tag, but IE got that wrong until version 7.

div.column {

width: 200px;

}

* html div.column {

width: 198px;

}

You can find a compendium of CSS hacks and their dangers on swik.net
(http://swik.net/CSS/CSS+Hacks).

The danger in using hacks of any nature is that it is impossible to control
how future browsers behave in the same circumstance. Will a future
Safari version parse your hack the same way but no longer need the
changed value you’re feeding it? You’re leveraging incomplete support for
specifications (or more directly, software bugs), and therefore you’re at
the mercy of what fixes developers make over time.

Microsoft Conditional Comments
If you find you need to give a good deal of specialized code to Internet
Explorer or that you don’t want to mix and maintain selectors or syntax
hacks, you can use conditional comments (http://en.wikipedia.org/wiki/
Conditional_comment). Using standard HTML comments (because non-IE
browsers will ignore anything inside of them) and a few extra characters
that tell IE to pay attention, you can feed IE or some specific version of IE
a link to a style sheet with extra rules.

<!--[if IE]>

<link type=”stylesheet” src=”/css/all_ie.css”>

<![endif]--> (continues on next page)

http://swik.net/CSS/CSS+Hacks
http://en.wikipedia.org/wiki/Conditional_comment
http://en.wikipedia.org/wiki/Conditional_comment

ptg

The CSS Pocket Guide30

<!--[if lt IE 8]>

<link type=”stylesheet” src=”/css/ie_lessthan_8.css”>

<![endif]-->

The downside to adding style rules in this manner is that you create two
or three places where code for the same item resides, making it easy
to forget to maintain each set of rules. A comment in the main CSS file
designating where there is additional code can be a useful way to keep
track of things:

#block { /* see also: @ie_lessthan_8.css */

...

}

The upside to conditional comments is that you have much greater
control and confidence over what versions of IE will see your code than
hacks can provide.

IE and hasLayout
In versions 6 and 7, Internet Explorer has an internal method of distin-
guishing when an element in the page needs some special layout
features such as positioning or sizing. Based on the application of certain
styles, such as height or positioning, Internet Explorer places an element
into a bucket that gets extra layout handling or one that doesn’t. This
internal flag is labeled hasLayout. The hasLayout flag was not meant
to be exposed to those of us building web sites, but the internal archi-
tecture that relies on this flag is also the source of a few common CSS
bugs. Figure 2.2 shows the indicator present on a <div> element in the
IE Developer Toolbar.

ptg

Chapter 2: Web Browsers 31

Figure 2.2 An element with hasLayout revealed via the Developer Toolbar in IE7.

Unfortunately, the distinction between an element that goes into the
bucket that gets the extra internal presentation logic and one that
doesn’t leads to one of the most commonly attributed problem in
Internet Explorer 6 and 7, called the Peekaboo bug.

The Peekaboo bug is so named because a block of content on a page may
disappear (or flash in and out) while scrolling a page if the block does
not have the hasLayout flag triggered. You can’t set the hasLayout flag
directly, but you can “force” it into the proper state by setting one of a
number of CSS properties for the element, including the following:

div.columnA {

height: 1%; /* trigger hasLayout by providing a dimension */

}

div.columnB {

zoom: 1; /* trigger hasLayout by using this nonstandard

 property */

}

ptg

The CSS Pocket Guide32

You can find an excellent discussion of hasLayout in “On having layout”
(http://www.satzansatz.de/cssd/onhavinglayout.html), and Microsoft
offers its own documentation on the property (http://msdn.microsoft.
com/en-us/library/bb250481(VS.85).aspx).

note IE8 still has the hasLayout property internally, though its effects on
layout behavior are mostly resolved.

Browser Grading
In the previous sections, I outlined a few methods commonly used
to work with web browsers, both old and new, to make sure they’re
handling your CSS properly and to target them when they don’t.

But creating all these different versions of code for different browsers,
testing them thoroughly, documenting them, and maintaining them over
time can be time-consuming and frustrating.

By creating a tiered support matrix of browsers, you can save time in
development and help communicate the technical requirements clearly
to your client, other developers on the project, the QA team testing
and approving your work, and those maintaining the site and handling
customer feedback.

The specific breakdown of which browsers are most important and
which browsers fit under other categories is a business decision that has
to be made on a case-by-case basis. Yahoo!’s “Graded Browser Support”
document (http://developer.yahoo.com/yui/articles/gbs/index.html) offers
a well-reasoned explanation of YUI’s grading methodology and results
(Figure 2.3) and is a common example I turn to when on a new project or
when educating others about the benefits of grading.

http://www.satzansatz.de/cssd/onhavinglayout.html
http://msdn.microsoft.com/en-us/library/bb250481(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb250481(VS.85).aspx
http://developer.yahoo.com/yui/articles/gbs/index.html

ptg

Chapter 2: Web Browsers 33

Figure 2.3
YUI A-grade
browser matrix.

This specific categorization works for the YUI developers but may not for
you. Therefore, the following is a rough outline of the designations I have
found to work for large commercial projects.

A-Grade Browsers
A-grade browsers represent the target platforms when deciding how to
implement a site and what CSS tools and other technologies you can
comfortably use. Browsers such as Firefox 3, Safari 4, and IE7 find their
way into this classification based on their capabilities or the size of their
user base.

B-Grade Browsers
B-grade browsers may be older versions of common browsers or current
versions of browsers on uncommon operating systems or devices. These
browsers may, but are not expected to, be able to display some CSS2 or
CSS3 features or JavaScript tricks. However, the pages you build should
still be tested in these browsers to make sure they are fully functional,
they are accessible, your branding message comes across, and they don’t
appear to look “broken.”

ptg

The CSS Pocket Guide34

F-Grade Browsers
For the purposes of development, testing, and ongoing support, it may
be useful to explicitly state which browsers or configurations will not
be supported. Visitors with older browsers such as Netscape 6, Internet
Explorer 5, or older mobile devices are F-grade browsers that will just get
what they get and have to make due.

X-Grade Browsers
X-grade browsers are assumed to fall into the A-grade category but
because of a small share of your user base or similarities to browsers
already listed as A-grade, they aren’t on your radar or testing matrix.
Older point releases, Linux versions, or alternate UI browsers such
as Camino or Flock that use the same rendering engines as A-grade
 browsers fit in this category.

A+-Grade Browsers
It is increasingly useful to have an extra category called A+-grade brows-
ers defined to allow for some extra flair above and beyond the A-grade
category. New CSS3 features such as rounded corners, animations, or
transitions can be used to enhance the experience for some visitors while
not being central to the site’s design.

CSS Support via JavaScript
When you want to use the latest and greatest coding techniques on your
web site and when your business needs or your user base dictates that
you need an A- or B-grade level of support for a browser that otherwise
isn’t up to the task, it is common to use drop-in JavaScript libraries to
bridge support or implement alternative methods of achieving a similar

ptg

Chapter 2: Web Browsers 35

visual effect. This is a great way to ensure support for rounded corners
via border-radius (Chapter 8) or make sure all of your selectors are
understood.

I discuss specific examples of this type of script in Chapter 13.

A Practical Strategy
There are many factors that go into how a web page appears to a
visitor—so many that it can be overwhelming if you attempt to
understand and control them all. It is important to remember that
ultimately it is your visitor and not you who is in control of their
browsing experience. The only way to stay on budget, to stay on
time, and to stay sane is to figure out what is important to make
your site shine, then pick a method or methods to get you close to
your goal in the most possible scenarios, and finally get comfortable
with letting the rest go.

ptg

This page intentionally left blank

ptg

You use selectors to define the elements on a page that you want to
apply certain properties to. Elements in the document can be matched
based on the HTML tag used, based on class or ID attributes, based
on the relationship to other elements, or based on the current status
in the document. You can also combine simple selectors to form a chain
of conditions that must be met before the style rule is applied.

Selectors

3

ptg

The CSS Pocket Guide38

E (Type Selectors)
The type selector selects an element by its type.

h1 {} /* selects all h1 elements */

form {} /* selects all form elements */

* (Universal Selector)
The universal selector matches any element type in the document. It is
implied if there is a sequence of other simple selectors and no specific
type selector is present.

* {} /* selects all elements in a document */

.thumb {} / selects all elements with class thumb

[see Class Selector below] */

.thumb {} /* same as previous, * is implied */

#id (ID Selector)
The ID selector matches any element with the specified value as its ID
attribute.

#header {} /* selects the element with the ID of header */

#header {} / same as previous */

div#footer {} /* selects the div element with class footer */

ptg

Chapter 3: Selectors 39

.class (Class Selector)
The class selector matches elements with the specified class name. For
elements whose class attribute contains multiple space-separated
words, the class selector will select an element if any of those words
match the specified class name.

.help {} /* matches all elements with a class of help */

img.thumbnail {} /* matches image elements with class of

thumbnail */

Attribute Selectors
In addition to id and class attributes, any attribute can be used for
selection with via attribute selectors.

[att]
Selects elements with the attribute att, regardless of the attribute’s
value.

input[required] {} /* matches html5 input elements with the

required attribute */

[att=val]
Selects elements with the attribute att with the value equal to val.

a[rel=tag] {} /* matches anchors with the rel attribute equal

to tag */

ptg

The CSS Pocket Guide40

[att~=val]
Selects elements with the attribute att whose value includes the word
val in its space-delimited list of words. (Think multiple class names.)

a[rel~=friend] {} /* matches anchors with copyright as one

of many words in the rel attribute. For example, XFN’s

rel=”met friend”. */

[att|=val]
Selects elements with the attribute att whose value equals val or begins
with val followed by the separator -. This is intended to be used to
match the language subcode for the hreflang attribute.

[hreflang|=en] {} / matches all elements with hreflang en,

en-us, en-au, and en-gb */

[att^=val]
Selects elements with the attribute att whose value begins with val.
Added in CSS3.

a[href^=http] {} /* matches all links that begin with text

“http” */

[att$=val]
Selects elements with the attribute att whose value ends with val.
Added in CSS3.

a[href$=.pdf] {} /* matches all links to PDF files */

[att*=val]
Selects elements with the attribute att whose value contains the
substring val anywhere within it. Added in CSS3.

ptg

Chapter 3: Selectors 41

input[id*=phone] {} /* matches all input fields with phone as

part of the ID */

tip Although ID and class attributes can be selected via the attribute
selector, their more specialized selectors have been optimized by

browser vendors and should be used instead.

Pseudo-class Selectors
Pseudo-classes fall into two groups: dynamic pseudo-classes that repre-
sent a specific state the document or element is in (visited links) and
structural pseudo-classes that represent information about an element’s
position in the document tree (the first list item).

:link, :visited (Link Pseudo-classes)
Links in a document have two states. When unvisited as determined by
the browser and its document history, a link can be selected with the
:link pseudo-class, or when visited, it can be selected via :visited.

a:link { color: blue; }

a:visited { color: purple; }

:hover, :active, :focus (Action Pseudo-classes)
The three interaction states of hovering, actively being clicked or used,
and in focus can be independently styled using the :hover, :active, and
:focus pseudo-classes.

note The :hover pseudo-class for nonlink (<a>) elements is not supported
in IE6 or earlier but is supported on links as of IE4.

ptg

The CSS Pocket Guide42

The LoVe/HAte of Hyperlink LVHA
Links can be in multiple states at the same time, and all pseudo-
classes have identical specificity, so the order in which the link and
action pseudo-classes are defined is important. The last one that
applies at any given time will take precedence.

At the moment it is clicked, a previously visited link will match all
five of these pseudo-classes. If a:visited is the last selector of the
bunch, then those properties will be applied, and different properties
defined for the hover or active states will never be seen.

The mnemonic device LoVe/HAte is a useful way to remember the
proper order of selectors.

:target (Target Pseudo-class)
The target pseudo-class represents the element targeted by a named
anchor in a URI such as the top in http://example.com/index.html#top
(either by ID, or in the case of HTML4 a name attribute).

:enabled, :disabled, :checked (UI Pseudo-classes)
The :enabled, :disabled, and :checked pseudo-classes are used to
target form elements in various states. Any form element can be either
enabled or disabled, usually determined by the presence or lack of
a disabled HTML attribute. Check box and radio button elements can
also be :checked through user interaction or the checked attribute.

The CSS3 Basic User Interface specification has defined selectors for
the additional user interface states of :default, :valid, :invalid,
:required, :optional, :in-range, :out-of-range, :read-only, and
:read-write. These selectors allow for the styling of the various states
 available with HTML5 form elements.

http://example.com/index.html#top

ptg

Chapter 3: Selectors 43

:lang() (Language Pseudo-class)
The language pseudo-class allows for selection based on the language of
the text.

article:lang(en) {} /* selects an article element in English */

article:lang(es) {} /* selects an article element in Spanish */

note This is different from selection based on lang or hreflang via the attri-
bute selector because the language pseudo-class may be inherited

from a parent element or defined as part of the document headers.

:root (Root Element Pseudo-class)
The root element pseudo-class is a shortcut to select the root node of the
document. For HTML documents, this is always the html element.

:nth-child(), :nth-last-child() (Nth Child
Pseudo-classes)
These pseudo-class selectors match elements that appear at a specific
position in a list of elements containing that list item and all its sibling
elements. The position is defined via the pattern an+b where a and b
are integers.

The values odd and even are shortcuts to select every odd (or 2n+1) or
even (2n) item.

“Zebra striping” a list of items or successive rows of a table (Figure 3.1 on
the next page) can easily be accomplished via the nth-child pseudo-class
without the need for additional class names or other hooks in the docu-
ment markup.

tr { background-color: #FFF; color: #000; }

tr:nth-child(odd) { background-color: #AAA; }

ptg

The CSS Pocket Guide44

Figure 3.1
Zebra striping, or
applying back-
ground colors to
alternating table
rows.

:first-child, :last-child (First and Last Child
Pseudo-classes)
The first-child and last-child pseudo-class selectors represent the first
and last children elements of some parent element. They are equivalent
to :nth-child(1) and :nth-last-child(1), respectively.

These selectors can be extremely useful for the common design pattern
of using borders as a divider between a set of elements but not outside
them (Figure 3.2).

li { border-top: 1px solid red; } /* place a border above all

li elements */

li:first-child { border-top: none; } /* remove the border

from the top of the first item */

Figure 3.2
Border on the
first-child list
item is removed.

ptg

Chapter 3: Selectors 45

Alternately, this can also be done via :last-child:

li { border-bottom: 1px solid red; } /* place a border above

all li elements */

li:last-child { border-bottom: none; } /* remove the border

from the bottom of the last item */

:nth-of-type(), :nth-last-of-type() (Nth of Type
Pseudo-classes)
While nth-child() matches any element type, nth-of-type() and nth-
last-of-type() select every an+b element where the set of elements
is based on a collection of sibling elements that are only of the same
element type.

One application of the nth-of-type selector is to set alternating styles on
successive images found in a parent element regardless of what type of
content is between them.

:first-of-type, :last-of-type (First and Last of Type
Pseudo-classes)
Similarly to first-child and last child, there are the shortcuts
:first-of-type and :last-of-type, which represent :nth-of-type(1)
and :nth-last-of-type(1), respectively.

:only-child (Only Child Pseudo-class)
This pseudo-class selects elements that are the only child of their parent
element. Any element selected by :only-child matches both the
:first-child and :last-child selectors.

ptg

The CSS Pocket Guide46

:only-of-type (Only of Type Pseudo-class)
The only of type pseudo-class matches an element if it is the only
element of its type among its sibling elements. That is, it matches both
the :first-of-type and :last-of-type selectors.

:empty (Empty Pseudo-class)
The empty pseudo-class selects elements only when they contain no
child nodes. This includes text nodes and whitespace characters.

td:empty { background-color: rgb(80%,80%,80%); } /* shade any

empty table cells */

:not() (Negation Pseudo-class)
The negation pseudo-class allows you to select the case where elements
do not match the provided simple selector.

p:not(.note) {} /* paragraph elements without the class note */

input:not(:required) {} /* optional input fields */

td:not(:nth-child(odd)) {} /* not odd, or the equivalent of

:nth-child(even) */

Pseudo-element Selectors
Pseudo-elements are phantom elements that don’t appear in the
HTML document but instead represent a part of the document that the
browser overlays on the document structure to represent properties of
the layout. For example, because of differences in font sizes, line lengths,
and devices, you cannot wrap the text that will appear on the first line of
a paragraph of text in a tag with much accuracy. However, brows-
ers will place a phantom pseudo-element around just that first line of
text as if you did.

ptg

Chapter 3: Selectors 47

note CSS1 and CSS2 defined the first-letter, first-line, before, and after
pseudo-elements with a single colon (:). To better distinguish pseudo-

elements from pseudo-classes, the CSS3 spec has changed this to two colons (::).
For those four original pseudo-elements, browsers should support both syntaxes.
Other pseudo-elements can be written only with the double colon (::).

::first-letter (First-Letter Pseudo-element)
This pseudo-element selects the first letter of a block or block-like
element (table-cell, table-caption, inline-block, list-item). If block elements
are nested, the first letter of the text will be matched via both elements.

div::first-letter { font-weight: bold; }

p::first-letter { color: blue; }

[...]

<div><p>First paragraph.</p><p>Second paragraph.</p></div>

Given this example, the F in the word First will be selected by both rules
and be bold and blue, while the S in Second will just be blue.

tip A drop cap effect can be easily achieved by applying a left float and an
increased font size to the first letter of a block.

::first-line (First-Line Pseudo-element)
The first-line pseudo-element selects the first line of a block or block-like
element after the block has been formatted based on its context.
p::first-line { text-transform: uppercase; }

::before, ::after (Before and After Pseudo-elements)
The before and after pseudo-elements are used to select generated
content before or after an element. This content inherits properties from
the element to which it is attached. The following would place the text
NOTE: before any instance of p.note in the document.

ptg

The CSS Pocket Guide48

p.note::before {

content: “NOTE: “;

font-weight: bold;

}

Chapter 10 covers generated content and the content property in more
depth.

::selection (Selection)
The selection pseudo-element represents a virtual inline element that
wraps any text selected by a visitor. With any selection, you can set a
limited number of properties including the color and background color
of the text.

::selection { color: black; background-color: yellow; }

note The selection pseudo-element has been removed from the current
CSS3 Selectors Module Recommendation but is implemented in some

browsers as ::selection and in Firefox and other Gecko browsers as
::-moz-selection.

Combinators or Relational Selectors
The selectors described to this point select elements based on an
element type or the properties of an element. Combinators are used
to combine these simple selectors in ways that describe document
structure.

E F (Descendant Combinator)
Represented by whitespace, the descendant selector describes an
element (F) that is contained within another element (E). The number

ptg

Chapter 3: Selectors 49

of elements between the ancestor and descendant does not matter. As
a result, the following selector will match all elements inside the docu-
ment body:

body * {}

E>F (Child Combinator)
The child selector describes an element (F) that is the child (or direct
descendant) of another element (E).

ul > li { font-family: san-serif; }

ol > li { font-family: monospace; }

Here, list items that are direct children of an unordered list tag will be
in a sans-serif font, and those that are direct children of an ordered list
will be fixed-width.

E+F (Adjacent Sibling Combinator)
The adjacent sibling combinatory matches elements (F) that come
directly after other elements (E) and share the same parent element.

h1 + p { font-size: 1.2em }

This example will select all paragraphs that come directly after an <h1>
tag and apply an increased font size.

E~F (General Sibling Combinator)
With this selector, the element (F) is selected if it appears at some point
after its sibling element (E).

ptg

The CSS Pocket Guide50

Combining and Chaining Selectors
Using combinators, you can chain together the individual selectors
discussed earlier to create more complex selectors that can be used to
describe elements not just in the entire document but in specific parts of
the document or that match specific markup patterns. The following are
all examples of chaining simple selectors:

nav ul li:first-child {}

.vevent h2+* {}

ul ul ul ul>li {}

#page .hentry a.entry-title:link {}

div#main form#registration fieldset

➥ input[type=”text”]:invalid {}

Translating Selectors into Plain English
If it hasn’t yet become clear, selectors can be read from left to right
and described as traveling toward the top of the document tree.
The selector header ul>li selects “any list item elements that are
children of unordered list elements that are contained in a header
element.”

If you are ever unsure of what a selector does, the online tool
SelectOracle (http://gallery.theopalgroup.com/selectoracle/) trans-
lates CSS2 and CSS3 selectors into English (or Spanish) for you.

http://gallery.theopalgroup.com/selectoracle/

ptg

Chapter 3: Selectors 51

Specificity
If the only thing that governed which property gets applied to an
element is the order in which the selectors appear, working with CSS
would be a never-ending battle of copying and pasting and rearranging
code. Rules of specificity—how specific the description of the element
in the selector is written—are used to help determine which properties
will apply.

blockquote p { color: green; }

[...]

p { margin: 20px; color: black; }

In the previous code, all paragraph elements will have a 20-pixel margin
on each side; however, because the selector matching paragraphs
contained in blockquote elements is more specific, those will be the
desired color green, even though the rule is found before the simple
p selector.

Specificity is calculated by tallying grouping the simple selectors into
three buckets, then tallying each of those buckets (a-b-c), and finally
comparing the results to other competing rules. This is from the CSS3
Selectors Module (http://www.w3.org/TR/css3-selectors/#specificity):

A selector’s specificity is calculated as follows:

http://www.w3.org/TR/css3-selectors/#specificity

ptg

The CSS Pocket Guide52

Selectors inside the negation pseudo-class are counted like any

Concatenating the three numbers a-b-c (in a number system with
a large base) gives the specificity.

You might have gotten lost somewhere around “in a number system
with a large base,” and I wouldn’t blame you. Looking at a few examples
should clear things up:

#user { color: rgb(1,1,1); } /* a=1 b=0 c=0 */

#user:first-child { color: rgb(2,2,2); } /* a=1 b=1 c=0 */

div div+div div div+div div div div>div div div:first-child {

color: rgb(3,3,3);

} /* a=0 b=0 c=13 */

div.foo { color: rgb(4,4,4); } /* a=0 b=1 c=1 */

.foo .foo+.foo .foo+.foo .foo .foo .foo .foo>.foo .foo

➥ .foo:first-child {

color: rgb(5,5,5);

} /* a=0 b=12 c=1 */

.foo.bar { color: rgb(6,6,6); } /* a=0 b=2 c=0 */

[id=”user”] { color: rgb(7,7,7); } /* a=0 b=1 c=0 */

If all these selectors matched the same element in a complex HTML
document, the text in that element would be the color rgb(2,2,2).
Though some of the selectors, particularly the third and fourth, are
more verbose then others, the second is considered the one with the
greatest specificity.

The bit about concatenating the number in a non-decimal-based number
system is a reminder that when combining the results, you need to
compare them as buckets. For example, compare [1][1][0] vs. [0][12][1]
instead of 110 vs. 121.

ptg

Chapter 3: Selectors 53

note It may be counterintuitive, but the ID selector #user in the previous
example is more specific than selecting the same element using the

attribute selector [id=user].

The !important Declaration
There are occasions where neither the source order nor the specificity can
be changed, but you still need a way to trump the specificity calculations.
In these cases, you can use the !important declaration to lock down indi-
vidual properties.

blockquote p { color: green; }

[...]

p { color: black !important; }

Here specificity and source order are ignored, and the text will be black,
not green.

tip Most projects will never need to use the !important declaration. If
you find yourself putting it in your code to make something work,

instead take another look at what selectors you are using, source order, and
whether including certain CSS code on a page is necessary. The use cases for
this declaration typically arise when working with third-party code, content
management systems, or other situations where you do not have the ability
to rethink selectors.

Selector Strategies
There are an infinite number of ways you can write selectors, and there
are often dozens of ways a particular element in a document can be
selected. Well-written and easily maintainable CSS often comes down to
choosing selectors that are just verbose enough to offer the specificity
and distinctions you need to style the various elements of a site.

ptg

The CSS Pocket Guide54

Browser Support for Selectors
Browser support for the selectors described in this chapter is great in
some cases and just starting to get there for other cases. Selectors such
as type, ID, class, and links are supported everywhere. CSS2 and CSS3 selec-
tors such as attributes and some of the combinators such as + and > are
supported widely enough to be useful on many projects. Peter-Paul Koch
maintains some useful support charts for selectors in desktop browsers
(http://www.quirksmode.org/css/contents.html) and mobile browsers
(http://www.quirksmode.org/m/css.html).

Grouping Selectors
Different selectors can be separated by a comma and be assigned the
same properties. This will allow you to cut down on repeated use of the
same properties, keep your layouts more uniform, and make changes and
small tweaks easier.

p, blockquote, ul, li, dl {

padding: 0;

margin: 0 1em 1.5em;

}

This statement gives many block-level elements that may appear in the
content areas of your document the same whitespace.

Selector Speed
The greater the complexity of selectors, in the form of chaining multiple
nodes or using sibling combinators or attribute selectors, the harder
the rendering engine needs to work when parsing the document and
drawing the page. Speed that is measured in milliseconds may not seem
like a factor in the performance of a web site, but tallied over a large

http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/m/css.html

ptg

Chapter 3: Selectors 55

document, and in particular when JavaScript is used to alter the DOM
structure, the complexity and performance of selectors can be noticeable
when animating multiple items or doing other complex tasks.

tip If the document is using JavaScript to manipulate the DOM or
Ajax calls to add new content to the document after it loads, the

impact of complex selectors or changes far up the document tree may make
the speed of complex selectors more noticeable.

Selector Readability
Sometimes selectors or groups of selectors are chosen for their read-
ability and ease of scanning and visually chunking code in the style sheet
document. More verbose selectors can easily be read and matched to
elements in the HTML document structure. The following example takes
that to an extreme:

html body section article h1 {}

html body section article p {}

html body section article ul {}

html body section article ul.compact li {}

html body section#opener article h1 {}

html body sidebar form#newsletter fieldset label {}

Although it is clear how these selectors match to a given HTML DOM, the
selectors can be both slow and overly specific.

Selector Reusability
Keeping the pluses and minus of the other strategies in mind, it is often
useful to write complex selectors with an eye toward common markup
patterns and future reuse.

ptg

The CSS Pocket Guide56

Start with good defaults for your simple type selectors to form a baseline
that will make elements behave consistently regardless of where they
appear.

Then chunk more specific selectors by their location in the DOM or
what makes them unique, being just as verbose as you need to be to
describe and group the selectors and being specific enough to override
the defaults.

A selector such as div.header div form#quickSearch input[type=submit]
may be more specific than you need for the current site and cannot be
easily transferred to the next project you work on. Trimming the selector
to #quickSearch submit may still provide the specificity and readability
you need while being generic enough to reuse it.

#quickSearch label {}

#quickSearch input[type=text] {}

#quickSearch input[type=submit] {}

aside #quickSearch label {} /* adjust the properties for a

special case */

ptg

In the discussion of CSS syntax in Chapter 1, you saw that the second
part of each CSS declaration is a value. In this chapter, you’ll explore
some common units for defining sizes (<length> and <percentage>),
colors (<color>), and URLs (<url>) for defining these values.

Measurements, URLs,
and Color Units

4

ptg

The CSS Pocket Guide58

Measurements
Dimensions and other measurements, such as font-size, are not just
raw numbers but a number of some specified of units of measure. CSS
has quite a variety of measurement units; the most commonly used are
outlined in the following sections.

Pixels (px)
img.thumbnail { width: 150px; }

div { border-width: 3px; }

A pixel unit (<length>) is a fixed measurement based on the size of a
common pixel.

note Pixel units are not always a “pixel” or “dot” but are defined as
a relative length measurement based on the given display. High-

resolution media such as print will output 1px as multiple physical dots, and
high-resolution devices such as the 326-dpi iPhone 4 will render a px unit at
an appropriate size.

Ems (em)
h1 { font-size: 1.6em; } /* make h1 font larger than base */

blockquote { width: 20em; } /* keep block readable */

One em unit (<length>) is a relative unit that equates to the font size of
the element. When applied to the font-size property of an element, an
em unit is relative to the parent element’s font size. This behavior makes
it useful for keeping the font size for emphasis, headers, and other tags
relative to the base font sizing. It’s also useful when applied to dimen-
sions as a way to control readability and line lengths.

ptg

Chapter 4: Measurements, URLs, and Color Units 59

Points (pt)
body { font-size: 12pt; }

Points are an absolute length–based unit (<length>) equal to 1/72 of an
inch. Points can be useful when setting type sizes for print and similar
media where physical measurements may be stressed. On screen and
mobile media, points are approximated based on the resolution of the
display and the system settings, and working with px or em units can lead
to more consistent results.

Percentages (%)
.column1 { width: 30%; } /* 30% of the containing block

width */

p { line-height: 140%; } /* 140% of the font-size of the

element */

p.note { font-size: 90%; } /* 90% of the parent’s

font-size */

Percentage-based units (<percentage>) are relative to another measure-
ment. Percentages can be greater than 100 percent. Which measurement
the value relates to is defined on a case-by-case basis; the previous code
lines show some examples.

ptg

The CSS Pocket Guide60

Percentage Calculations and the Box Model
50% + 50% = 100%

30% + 30% + 40% = 100%

Correct?

Sometimes it isn’t. Because of rounding in the calculations involved
in finding the percentage of the measurement it relates to, there may
be an extra pixel or two to account for. Internet Explorer 6 is notori-
ous for calculations that result in extra pixels and, as a result, for col-
umns that don’t fit into a space you think they should.

You can find more about layouts and the box model in Chapter 5.

Other Units of Note
Points are considered an absolute length–based units: They correspond to
a physical measurement of 1/72 of an inch (approximated by the browser
and device). Other absolute units include in (inches), cm (centimeters),
mm (millimeters), and pc (picas, or 12pts).

Pixels and ems are relative length–based units: They are relative to some
other measurement. Like em, the ex unit is relative to the size of the font
(the ex-height or height of the character “x”). CSS3 has defined some
other interesting relative length units such as the following: rem (relative
to the font size of the root element) and vw and vh (relative to the view-
port width and height, respectively). These units are just starting to be
supported in previews of the next generation of browsers but are some-
thing to look forward to using.

ptg

Chapter 4: Measurements, URLs, and Color Units 61

URLs
The URL function (<url>) is used to designate the address of a resource
for use in a property such as background-image or list-style-image.
The path of the resource follows the same rules as other uniform
resource identifier (URI) usages like link href values in HTML. When using
external style sheet documents, relative paths relate to the document
the CSS rule is found in (the external CSS document) and not the source
HTML document.

body { background-image: url(../images/bg_body.png); }

body { background-image: url(/images/bg_body.png); }

body { background-image: url(http://example.com/images/

➥ bg_body.png); }

URIs can be quoted with single or double quotes or can be left unquoted.
For historical reasons dating back to IE for the Mac, single quotes are
sometimes avoided as a best practice.

data: URIs
The data: URI scheme uses encoded strings to represent file data
inline rather than as a path to an external file. This can be quite use-
ful for small resources such as iconography, list bullets, or font faces
because it cuts down the number of requests to the server or for
mobile applications.

data:[<mediatype>][;base64],<data>

You can find support for this URI scheme in CSS in Internet Explorer
8+, Firefox, Safari, and Opera. The source code for data: URIs can be
easily generated with “The data: URI kitchen” tool by Ian Hickson
(http://software.hixie.ch/utilities/cgi/data/data).

http://software.hixie.ch/utilities/cgi/data/data

ptg

The CSS Pocket Guide62

Basic Colors
The following color units (<color>) define several different ways to
designate solid colors and can be used for properties like text color,
background-color, and border-color.

#rrggbb or #rgb
In hexadecimal notation, colors are represented by three sets of hexadec-
imal values (base-16), with the first set representing the red (r) value, the
second representing the green (g) value, and the next representing the
blue (b) value based on how displays add light to create the colors you
see. A value of #000000 represents no light (black), #ffffff represents
the most light (white), and #ff0000 represents only red light (bright red).

body { background-color: #999; } /* middle gray */

#rgb is a shorthand for #rrggbb, which is available to use when the two
r characters match, the two g characters match, and the two b characters
match (#a3b is equivalent to #aa33bb).

rgb(r,g,b)

You can also define RGB colors using decimal notation (sometimes called
functional notation) along the same 256-step range (0 to 255) that the
hexadecimal values represented. Each value can also be defined as a
percentage of that 256-step range.

body { background-color: rgb(153,153,153); } /* middle

gray */

body { background-color: rgb(60%,60%,60%); } /* middle

gray */

ptg

Chapter 4: Measurements, URLs, and Color Units 63

note You cannot mix integers and percentages in the same color unit desig-
nation. White is rgb(255,255,255) or rgb(100%,100%,100%), but not

rgb(255,100%,255).

hsl(h,s,l)

The hue-saturation-lightness color scheme offers a way to look at the
color wheel that can be more intuitive when working with colors of a
similar hue or tonality. Hue (h) is a number from 0 to 360 representing
a radial position on the color wheel (0 or 360=red, 120=green, 240=blue).
Saturation (s) is a percentage value from 0 to 100 percent with values
closer to 0 percent approaching desaturated, or gray. Lightness (l) is
again a percentage value from 0 to 100 percent, where 0 percent is black
and 100 percent is white.

.error { border-color: hsl(0, 75%, 38%); } /* a muted red */

A chart of HSL colors in the CSS3 Color Module specification (http://
www.w3.org/TR/css3-color/#hsl-examples) illustrates how the three
scales work together to create colors.

Color Keywords
The HTML 4 specification defined the following 16 color keywords and
their corresponding hex values: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.
Keywords are case insensitive and are not placed between quotes.

body { color: red; }

Several (131 to be exact) more commonly supported color keywords, such
as pink, plum, deepskyblue, and firebrick, originally defined in the SVG
specification, were added in CSS3, bringing the number of color keywords
to 147.

http://www.w3.org/TR/css3-color/#hsl-examples
http://www.w3.org/TR/css3-color/#hsl-examples

ptg

The CSS Pocket Guide64

Many Ways to Say the Same Thing
The following are all ways to set the same text color for a paragraph
element in your document:

p { color: #fff; }

p { color: #ffffff; }

p { color: rgb(255,255,255); }

p { color: rgb(100%,100%,100%); }

p { color: hsl(0,0%,100%); }

p { color: white; }

The notation you choose to work with can depend on many factors.
Your familiarity with the different color systems, which is the easiest
to transpose from your favorite graphics application uses, or how the
color palette for the site is designed all should impact this decision.
With hsl(), it can be easier to write transitions via JavaScript, but
watch for browser support issues since it’s also the newest method of
defining color.

Color with Alpha Transparency
CSS3 defines the ability to add a level of transparency to the otherwise
solid color designation. Applying alpha transparency to borders, text
colors, or backgrounds allows the color of the elements behind the
targeted element to bleed through or combine with what is behind it.
Figure 4.1 shows the use of a transparent background color to mute the
distractions created by a background image so that text can be readable.

The transparency in the color applies only to the parts of the element
that color applies to and does not affect the transparency of elements it
may contain or other objects like images. I discuss the opacity property,
which applies to the visibility of an entire element, in Chapter 6.

ptg

Chapter 4: Measurements, URLs, and Color Units 65

Figure 4.1
Using a transpar-
ent background
color to make
solid text more
readable against
a background
image.

rgba(r,g,b,a)

The r, g, and b values work on the same scale as their rgb() unit coun-
terparts discussed earlier in this chapter. The alpha (a) value is a decimal
number from 0 to 1, with 0 being completely transparent and 1 being
fully opaque.

section { background-color: rgba(0,200,0,0.1); } /* very

transparent green */

tip Color units with alpha values of 1 are equivalent to using the solid
color unit. Consider using that solid color unit instead because it may

be supported by more browsers.

hsla(h,s,l,a)

Like rgba(), hsla() is the same color as hsl() with an added designation
for alpha transparency. This unit is also a decimal number from 0 to 1.

a { background-color: rgba(0,0,0,0.9); } /* almost solid

black */

ptg

The CSS Pocket Guide66

transparent

The transparent color keyword represents a color value that is fully
transparent (and thus red channel or hue designations don’t matter).
You can think of it as a shorthand form for (and gets computed in
 browsers as) rgba(0,0,0,0).

rgba() and hsla() Colors with
Non-CSS3 Browsers

Colors units with alpha channels are supported in recent versions of
Safari, Firefox, Opera, and the upcoming IE9. Browsers that don’t sup-
port these units will skip them entirely because the rgba() or hsla()
notation is as foreign to them as madeupscheme() is. This means if
you defined an element’s background to be “blue but a little trans-
parent,” the browser will not fall back to “blue but not transparent”
and instead use whatever the previously defined or inherited color
may be. If you want the fallback to be “blue but not transparent,” you
can write the rule set as follows:

div {

background-color: rgb(0,0,255);

background-color: rgba(0,0,255,90%);

}

All browsers will read the first background-color declaration.
Browsers with rgba() support will then override that setting with
the second declaration, while others will ignore it as invalid syntax.

As a variation on this method, if your layout calls for transparent red
against white, resulting in a pink color, you might use that resulting
color in the first declaration instead of a deeper red.

ptg

Chapter 4: Measurements, URLs, and Color Units 67

Creating and Maintaining
Color Palettes
Defining a color palette for use in a web site and sticking to that set
of color values can be a useful tool for styling new elements on a site,
providing a consistent appearance throughout a site, and making it easy
to find color values when making site changes.

Design
Color theory is far outside the scope of this book and is something you
could study for years; however, here are a few tips for choosing the color
scheme for a web site:

■ Design applications such as Adobe Photoshop offer a detailed color
picker that can be switched between RGB, HSL, and other color
systems, making for easy translations into CSS units.

■ Adobe Kuler is a tool for creating, browsing, and bookmarking color
swatches from your browser or your desktop. You can make swatches
based on a color wheel or drawn from an uploaded image file
(http://kuler.adobe.com/).

Maintenance
Maintaining consistent color usage across a large amount of CSS code
can sometimes be difficult. Color units are defined in so many different
declarations across so many different elements that it is easy to keep the
shade of gray being used the same or know what color should be used
for links. Here are some hits for making the task easier:

■ Pick one color unit type, and stick with it so searching for a color when
it is time to change it is easier. Don’t use #ff0000, rgb(100%,0,0) and
the keyword red interchangeably.

http://kuler.adobe.com/

ptg

The CSS Pocket Guide68

■ Maintain a style guide that lists all the colors used on the site along
with the preferred unit value to represent them, and use only these
colors.

■ For complex or very large sites, consider using a CSS preprocessor like
those discussed in Chapter 13 that allow you to define placeholders for
color values and define a specific color value only once in your code.

ptg

The space a block-level element takes up in a layout is controlled by the
values of the height, width, margins, padding, and border properties. The
description of how these properties interact and how those calculations
are made is called the box model.

The Box Model

5

ptg

The CSS Pocket Guide70

In the standard box model (content-box), the padding, borders, and
margins of an element are added to the width and height of that
element to determine the space it occupies in the layout. Figure 5.1
displays a diagram of the box model as found in the CSS2.1 specification
(http://www.w3.org/TR/CSS21/box.html). The additive process where
width or height is not inclusive and thus the total size an element takes
up may feel counterintuitive to some, but this works well when nesting
elements or working with content such as images or video where you
don’t want to encroach on the content area.

Top

Margin edge

Margin (Transparent)TM

TB

TP

BP

BB

BM

Border

Padding

Content

Border edge

Padding edge

Content edge

Bottom

RightLeft LM TPLB RBLP RM

Figure 5.1 The standard box model. The T, R, B, and L abbreviations represent the top,
right, bottom, and left values of each property.

http://www.w3.org/TR/CSS21/box.html

ptg

Chapter 5: The Box Model 71

Properties
width

The width property defines the width of an element.

■ <length>: The width will be a fixed dimension.

■ <percentage>: The width will be a percentage of the containing
block’s width.

■ auto: The width will be calculated based on the available horizontal
space (default).

height

The height property sets the height of an element.

■ <length>: The height will be a fixed dimension.

■ <percentage>: The height will be a percentage of the containing
block’s specified height; this is the equivalent of auto if no containing
block height was specified.

■ auto: The height will be calculated to fit the available content (default).

margin

The margin property sets the four margins surrounding an element. Each
side may take one of the following property values:

■ <length>: The margins will be a fixed dimension.

■ <percentage>: The margins will be a percentage of the containing
block’s width (applies for margins in the vertical as well as horizontal
directions).

■ auto: For the left and right margins, auto is calculated to be the
length needed to reach the containing element’s sides; for the top
and bottom, it is calculated as 0.

ptg

The CSS Pocket Guide72

margin-top: 1px;

margin-right: 20%;

margin-bottom: 0;

margin-left: 40px;

margin: 2em; /* shorthand: all sides */

margin: 2em 0; /* shorthand: top & bottom; right & left */

margin: 2em 0 1em; /* shorthand: top; right & left; bottom */

margin: 2em 0 1em 10px; /* shorthand: top; right; bottom;

left */

When margins from two elements contact each other on a page, they
“collapse” into one another with the resulting effect that the margin
between each element is the size of the largest of the two margin
 properties. For example, if there is an <h2> with a bottom margin of
20 pixels followed by a paragraph with a top margin of 10 pixels, the
space between the two elements will be 20 pixels, not 30.

padding

The padding property sets the four padding dimensions between an
element’s content area and its border. Each side may take one of the
following values:

■ <length>: The length will be a fixed dimension.

■ <percentage>: The length will be a percentage of the containing
block’s width (applies for margins in the vertical as well as horizontal
directions).

padding-top: 1px;

padding-right: 20%;

padding-bottom: 0;

padding-left: 40px;

ptg

Chapter 5: The Box Model 73

padding: 2em; /* shorthand: all sides */

padding: 2em 0; /* shorthand: top & bottom; right & left */

padding: 2em 0 1em; /* shorthand: top; right & left; bottom */

padding: 2em 0 1em 10px; /* shorthand: top; right; bottom;

left */

border-width

The border-width property sets the size of an element’s border.

■ <length>: The border width will be a fixed dimension.

■ thin | medium | thick: The border width is designated by keywords
representing three border lengths of progressive thickness (not often
used because of the inconsistency in definition of actual dimensions).

The border-width property defines the width of the border on an
element. Like margin and padding, border-width is a shortcut for defin-
ing the four individual sides independently and can take one to four
values.

border-top-width: 2px;

border-right-width: 0;

border-bottom-width: 10px;

border-left-width: 1px;

border-width: 2px 0 10px 1px; /* shorthand: top; right;

bottom; left */

In Chapter 8, I discuss some of the visual options for borders in detail, but
only border-width impacts the dimensions of an element.

ptg

The CSS Pocket Guide74

overflow

The overflow property defines what is done if the content in a box is too
big for its defined space. The possible values for the overflow property
are as follows:

■ visible: Shows the content outside of the box (default)

■ hidden: Clips the content and hides what falls outside the dimensions
of the box

■ scroll: Clips the content and always draws scrollbars to allow for
access to additional content

■ auto: Clips the content and draws scrollbars only when they are needed

The overflow behavior for the width and the height of a box can be indi-
vidually set with the overflow-x and overflow-y properties.

note By default, Internet Explorer will not let the content flow out of the
box but instead expand the box to fit the content as if width or height

were min-width or min-height. This is partly why a short height is used in the
hasLayout fixes discussed in Chapter 2.

Min and Max Dimensions
When designing flexible layouts or taking multiple types of devices into
account, it can be useful to place restrictions on the size of elements. As
you will see in Chapter 7, these properties are most useful when paired
with width or height settings of auto or a different type of length unit.

article {

width: 100%; /* let element fit parent */

min-width: 200px; /* ensure content isn’t too narrow */

max-width: 900px /* ensure content isn’t too wide */

}

ptg

Chapter 5: The Box Model 75

■ min-width: The minimum width of an element

■ max-width: The maximum width of an element

■ min-height: The minimum height of an element

■ max-height: The maximum height of an element

Nesting Elements
When nesting HTML elements, the inner element’s box is drawn inside
the content area of the outer element. This results in an assortment of
ways you can combine the properties to achieve the same visual effect or
whitespace. As you nest elements, you compound the buildup of proper-
ties along the elements at the edge of these boxes.

To create the simple illustration shown in Figure 5.2 from the nested
elements <div><div></div></div>, you have a number of possibilities
as to how you split the 100-pixel gray area between the outer element
border area and the inner element’s content area. That 100 pixels can be
split however you’d like between the adjacent padding-margin-border
area. Depending on that choice, it may be possible to create the 50-pixel
inner white area with the inside border padding.

Figure 5.2
Content area
surrounded
by 50 pixels of
white and then
surrounded by
100 pixels of gray.

ptg

The CSS Pocket Guide76

Example 1:

div {

margin: 0;

padding: 50px;

border: 1px solid #999;

background: #ccc;

}

div div {

margin: 50px;

padding: 50px;

border: none;

background: #fff;

}

Example 2:

div {

margin: 0;

padding: 100px;

border: 1px solid #999;

background: #ccc;

}

div div {

margin: 0;

padding: 0;

border: 50px solid #fff;

background: #fff;

}

ptg

Chapter 5: The Box Model 77

Example 3:

div {

margin: 0;

padding: 75px;

border: 1px solid #999;

background: #ccc;

}

div div {

margin: 25px;

padding: 40px;

border: 10px solid #fff;

background: #fff;

}

Which element is best to style in a given situation can often be deter-
mined by evaluating the context and content needs. It will usually be
obvious which element to use because you’ll want to reserve one of
the other elements or properties for other things, or you know that
the style will be reused and should be applied to a container or other
reused element.

Gutters surrounding text and other content are often best created by
setting padding on the outer element. This will ensure the gutters are
set to a consistent size regardless of the content within the container.
It is more flexible and more easily maintained than the alternative of
setting the left and right margin or padding on any possible child of
that container.

In the next section, you’ll see how using the box properties of a unique
child element might be more practical.

ptg

The CSS Pocket Guide78

Using Negative Margins
Margins can be a negative length as well as positive. Negative margins
are an often overlooked but extremely useful device for manipulating the
space between elements or for escaping the confines of the content area
of a containing element.

The first example (Figure 5.3) overlaps two sibling elements by using a
negative top margin.

Figure 5.3
Negative top
margin causing
elements to
overlay.

header {

background: #999;

padding-bottom: 2em;

}

article {

border: 1px solid #999;

background: #fff;

margin: 1em 2em;

}

header+article {

margin-top: -1em;

}

[...]

<header>

ptg

Chapter 5: The Box Model 79

<h1>Header Content</h1>

<p>More Header Content</p>

</header>

<article>

<p>Some article content which will break into the header

above</p>

</article>

<article>

<p>Some content of another article which will follow as

normal</p>

</article>

In the second example (Figure 5.4), negative margins are used to bleed
into the gutter provided by a 50-pixel padding on the containing
element.

Figure 5.4
Negative
margins causing
element to
enter its parent’s
padding area.

div {

width: 400px;

padding: 0 50px;

} (continues on next page)

ptg

The CSS Pocket Guide80

div h1 {

margin-left: -50px;

background: #999;

}

div h2 {

margin: 0 -50px;

background: #CCC;

}

[...]

<div>

<h1>Header 1 will break the left gutter</h1>

<h2>Header 2 will break both gutters</h2>

<p>Paragraph will respect both gutters</p>

</div>

Horizontal Centering Blocks
There is a subtlety in the definition of the auto value for the left and
right margins that allows it to be used to center or right align blocks
inside their containing elements.

<div>

<p style="margin: 0 0 0 0;">margin: 0 0 0 0;</p>

</div>

<div>

<p style="margin: 0 auto 0 0;">margin: 0 auto 0 0;</p>

</div>

<div>

<p style="margin: 0 auto 0 auto;">margin: 0 auto 0 auto;

</p>

</div>

ptg

Chapter 5: The Box Model 81

<div>

<p style="margin: 0 0 0 auto;">margin: 0 0 0 auto;</p>

</div>

Take a container <div> that is 500 pixels wide, as shown in Figure 5.5. If
a 300-pixel wide <p> is inside that container, then you have 200 pixels of
room to spare. If both margins on the <p> are 0, then the paragraph will
be flush left. However, the definition of an auto margin value is that it
will fill the container. A right margin of auto and left of 0 will not particu-
larly change anything in the layout (the empty space is still on the right),
but having both right and left margins set to auto will cause the space to
be split between the two margins, and the <p> will appear centered just
as if you had done the calculations yourself and set the margins to 100
pixels each.

Figure 5.5
Auto margin
examples.

An Alternative Box Model
In some Quirks Mode scenarios or if set via the box-sizing property
introduced in CSS3, an element’s padding and border are drawn inside
the width and height, taking space away from the content area.

box-sizing

The box model used when calculating and placing borders and padding
areas can be set using the box-sizing property.

■ content-box: The width and height dimensions refer to the content
area with padding and borders drawn outside (default).

ptg

The CSS Pocket Guide82

■ border-box: The width and height dimensions contain the border and
padding as well as the content of the element, while an element’s
margins continue to fall outside of this area.

tip Although using box-sizing: border-box may sometimes seem
appealing (such as when mixing a percentage-based width and pixel-

based border), this box-sizing model may cause confusion and difficulty when
mixing with code written by others or working with a team of developers accus-
tomed to the standard content-box behavior.

ptg

Chapter 5 covered how block-level elements are given their shape and
size. Before jumping headfirst into creating multicolumn layouts with
these blocks, you need to learn how to position elements in your docu-
ments in relationship to the other items on a page.

Positioning and
Floats

6

ptg

The CSS Pocket Guide84

The Document Flow
Reading content in an HTML document, without any JavaScript or CSS
applied, is a top-down and left-to-right affair. Block elements take up the
entire width of the document and follow one after another with their
inline content flowing inside them. Margins and padding may alter the
look or spacing some, but they alone do not change the positioning of
the elements.

You have three ways to change the default positioning and interaction
between elements in the top-down blob of content: You can force an
element to behave like a different type of element, you can pull the item
out of the flow completely, or you can pull the item to the side of its
container and allow other items to wrap around it.

display
The display property is the key to the entire layout castle. I’ve already
covered block elements and inline elements, but you need a number of
other element types to define all the content that might display on a
web page, including the following:

■ inline: Creates one or more inline boxes, the familiar inline content

■ block: Creates a block box

■ inline-block: Creates a block box that behaves like an inline box,
similar to the image (replaced element) behavior

■ list-item: Creates a block box for the content and the list item
marker

■ table, table-row, table-caption: Creates three of the types of
elements needed to present a table (Chapter 10)

ptg

Chapter 6: Positioning and Floats 85

■ none: Removes the element from the presentation entirely, drawing no
box of any kind

Alternating elements between the trio of inline, block, and none is
sufficient for most design tasks, and as luck would have it, they are also
the most widely supported values.

Position
The positioning of an element is based on the length of the box offset
parameters: top, right, bottom, and left. Typically, top and left will be
used for positioning elements since the top-left corner of the item being
measured from—the beginning of a box—is easily understood in normal
document flows.

static

static is the default value where an element is rendered in the normal
flow and not uniquely positioned. The positioning parameters top, right,
bottom, and left do not apply.

relative

In relative positioning, an element’s position is calculated as normal, and
then the offset positioning is applied relative to this normal position.
Relative positioning does not take the element out of the normal flow,
which leaves a space behind in the element’s original position.

A relative positioned element with box offsets set to 0 (or undefined) will
appear in its normal position; however, it will create a new point of origin
for any of its child elements that may be positioned absolutely.

ptg

The CSS Pocket Guide86

absolute

Absolute positioning takes the element out of the normal document
flow—collapsing any space it may have otherwise used—and positions
it in relation to the origin point created by the last-positioned containing
block.

The code used for Figure 6.1 demonstrates how to use absolute position-
ing to place elements at the four corners of its containing element.

Figure 6.1
Elements placed
into four corners
with absolute
positioning.

div {

position: relative;

width: 150px;

border: 1px dotted #999;

}

div div {

position: absolute;

width: 25px;

height: 25px;

background-color: #ccc;

border: none;

text-align: center;

}

ptg

Chapter 6: Positioning and Floats 87

div .corner1 {

top: 0;

left: 0;

}

div .corner2 {

top: 0;

right: 0;

}

div .corner3 {

bottom: 0;

right: 0;

background-color: #999;

}

div .corner4 {

bottom: 0;

left: 0;

background-color: #999;

}

<div>

Here is some content before the four child div elements.

<div class="corner1">1</div>

<div class="corner2">2</div>

<div class="corner3">3</div>

<div class="corner4">4</div>

Here is some content after the four child div elements.

</div>

When content is pulled out of the normal document flow, the height of
the parent element shrinks. It is easy to run into cases where the parent
shrinks too much and the positioned element overflows its parent
container. You can force the space open with height, width, or padding

ptg

The CSS Pocket Guide88

on the parent element, as I have done in Figure 6.1. The document, being
the root container, will similarly shrink, and you could potentially over-
flow your document and its scrollable area.

If the containing element isn’t forced open—in this case by width on
the wide side and other content keeping it open in the vertical side—
then the parent container would collapse. If the content were shorter
and didn’t keep the box open enough, what you might see is shown
in Figure 6.2.

Figure 6.2
A container
element
shrinking to fit
only the content
in the normal
document flow.

Absolute positioning is the most used method of positioning an element
(besides the default value of static) and is frequently used in animation;
however, it isn’t used for many methods of creating layout grids because
it doesn’t hold that scrollable area open like other methods do.

fixed

Fixed positioning is based on the viewport and not the document. The
origin for fixed-positioned elements is the root node (<html>). The top-
left position of 0, 0 would be the top-left corner of the viewport, and
similarly the bottom-right position of 0, 0 is the bottom-right corner.

As the name implies, fixed-positioned elements do not scroll with the
rest of a document. Because window and viewport sizes typically vary
widely (unless you’re developing for a specific device or platform such
as the Apple iPhone), fixed positioning is most often used for small

ptg

Chapter 6: Positioning and Floats 89

elements such as toolbars or banners and not for laying out an overall
web page.

tip Fixed-positioned elements are widely supported in current browsers,
but if you find you need to support older browsers as well, then you

should use a bit of JavaScript code that will position the element absolutely and
monitor the use of the scrollbar to change the positioning of the element to
keep it in view. This solution can be a little jumpy, so it’s best to use position:
fixed where it is supported.

Origins and Containing Blocks
Containing blocks and the behavior of managing multiple possible
origins for measuring positioning from can be one of the more confusing,
but also more powerful, aspects of CSS.

The root element of the document is the initial containing block for
which absolute positioning is measured from. However, if any other
element is positioned—relatively, absolutely, or fixed in the viewport—
it becomes the new origin for its descendant elements. This behavior is
probably best illustrated with an example (Figure 6.3).

Figure 6.3 The position of the black #innerPositionedBox
is measured from its containing block.

ptg

The CSS Pocket Guide90

div {

border: 1px dotted #000;

padding: 20px;

}

#containingBlock {

position: relative;

}

#innerPositionedBox {

position: absolute;

top: 0;

left: 0;

background-color: #000;

}

[...]

<div id="containingBlock">

<div>

 <div>

 <div id="innerPositionedBox">

 </div>

 </div>

</div>

</div>

Regardless of how deeply the element #innerPositionedBox is
nested, the positioning for top and left is measured from the last
positioned ancestor, #containingBlock. If you didn’t change the CSS
code for this example but altered the markup structure slightly so
that one of the middle <div> elements is #containingBlock, then the
#innerPositionedBox element would instead use that element for its
origin (Figure 6.4).

ptg

Chapter 6: Positioning and Floats 91

Figure 6.4 The position of the black #innerPositionedBox
updated with a new containing block.

<div>

<div id="containingBlock">

 <div>

 <div id="innerPositionedBox">

 </div>

 </div>

</div>

</div>

Since you cannot escape this behavior and position an element with
respect to the root element once it has a different containing block
defined, it is important not to overuse positioning properties, thus need-
lessly creating new containing blocks. Sometimes this is inescapable, and
in those cases math can be your friend (either with paper and pencil or
in code via JavaScript)—you can calculate the position of the containing
block (and any of its containing blocks) and work your way back up to the
root element.

ptg

The CSS Pocket Guide92

z-index
The z-index property applies to any positioned box and can be used to
control the layering of boxes from back to front. The higher the integer
value, the “closer” to the viewer the element appears.

Think of this index as controlling the elements of a stage set in the
theater. The background elements are at the 0 position, the actors and
other elements may shuffle between 1 and 20, and the foreground set
pieces and the curtain are between 21 and 25 (though there is no limit
to this value). What happens if two elements in the same stack are at
an index of 11 (or 0 or auto)? This isn’t a problem unless each element’s
positioning properties cause them to overlap. In this case, the element
specified later in the document flow will appear on top.

This index, like positioning offsets, is relative to the containing block.
If one element has a z-index of 4 and another element has a z-index
of 3, none of the second element’s children can ever appear “above”
the content of the former element.

note Some plug-in content such as Adobe Flash can sometimes bleed
though HTML content positioned above it and given a higher z-index.

For Flash, in particular, there is a window mode parameter called wmode that
when set to opaque or transparent will allow content to appear above it in
the stack.

ptg

Chapter 6: Positioning and Floats 93

visibility
The visibility property determines whether an element renders and
can be seen. Unlike setting the display property to none, an element
with a visibility of hidden still affects layout and will take up space.
Unlike the opacity property, individual descendants of a hidden element
can be shown by setting their visibility to visible.

■ visible: The element is rendered.

■ hidden: The element is not rendered.

float
An element with a float value of left or right is taken out of the
normal flow of a document and shifted to one side of the containing box.
The content that follows it in the document wraps around the floated
element’s new position.

■ none: An element is not floated and behaves as normal.

■ left: An element is taken out of the normal flow and is shifted to the
left of where it was to otherwise appear, with content flowing around
it on the right side of the element.

■ right: An element is taken out of the normal flow and is shifted to the
left of where it was to otherwise appear, with content flowing around
it on the right side of the element.

Think of a small photo that is moved to the right and has text flowing
around it; you now have the basic idea of how an element (the photo)
behaves when floated (Figure 6.5 on the next page).

ptg

The CSS Pocket Guide94

Figure 6.5
Two small
elements floated
inside text
content.

Margins and padding set on a floated element behave as they would on
any box in the standard box model and can be used to create a gutter
around that element. However, floating has the effect of interrupting
the boxes of the wrapping elements leaving their padding, margins, or
borders drawn in their normal rectangle, as shown in Figure 6.6, rather
than moved or redrawn for each individual row of text. Note the way the
text touches the right edge of the floated image in this example.

Figure 6.6
Text wrapped
around a floated
element.

img {

float: left;

}

p {

border: 5px solid #666;

ptg

Chapter 6: Positioning and Floats 95

padding: 15px;

background: #ccc;

}

[...]

<p>Here is some text after a left floated image for

➥ illustration purposes. Lorem ipsum dolor sit amet,

➥ consectetur adipisicing elit.</p>

Adding a 20-pixel margin around the floated image would create a
gutter between the opposite side of the floated element and the content
wrapping around it (Figure 6.7). After doing this, it is also obvious how
the rectangular box drawn by the paragraph including its border and
background color are not “wrapping.” Only the content inside of those
blocks is wrapping.

Figure 6.7
A margin placed
on the floated
element to create
space between
it and the
content wrapped
around it.

img {

float: left;

margin: 20px;

}

If multiple elements are floated and would appear along the same edge,
then they are arranged horizontally with the earliest element in the

ptg

The CSS Pocket Guide96

source appearing closest to the containing block’s edge. If the combined
width of the floated elements becomes too wide for the containing
block’s content area, then the later floated elements will wrap. This
behaves a bit less like the normal flow of text from line to line and more
like how marbles of different sizes will settle as they are placed in a cup.
Elements of various sizes are left floated in Figure 6.8 and right floated in
Figure 6.9 to illustrate the wrapping and ordering behaviors.

Figure 6.8
Left-floated
blocks of various
sizes.

Figure 6.9
Right-floated
blocks of various
sizes.

ptg

Chapter 6: Positioning and Floats 97

tip Floated elements cannot appear before (vertically) elements that
come before them in the document, which is why box 4 does not

appear next to box 2 even if there were room for it.

With modern layout techniques, floated elements are used for much
more than small bits of content in elements and text wrapping. They
can be the basis for placing elements on opposite sides of the same
line, controlling a series of tabs, and even controlling multiple-column
layout grids.

note If an element is positioned with absolute positioning, that positioning
will take precedence over the behavior of float.

clear
Floating is often used instead of positioning or large margins because
the content-wrapping effects are desired, but the wrapping of a tall
floated element can often extend into later content in an undesirable
way. The clear property is used to insert a break when encountering a
new section of the layout or another unique record in a list or some other
reason for wanting to stop the wrapping effect.

■ none: The element does not clear any floats.

■ left: The element will be shifted down to sufficiently clear the bottom
edge of any previous left-floated elements.

■ right: The element will be shifted down to sufficiently clear the
bottom edge of any previous right-floated elements.

■ both: The element will be shifted down to clear and begin after all
floated elements.

ptg

The CSS Pocket Guide98

In Figure 6.10 you can see what happens when the floated element
from one list item bleeds into the following one; things really start to
go haywire.

Figure 6.10
The effect of
floated elements
extending past its
parent element
into the following
content.

li {

border: 1px solid #000;

}

img {

float: left;

margin-right: 0.5em;

}

[...]

<img src="images/1.png" width="67" height="67"

➥ alt="1" />

<p>Here is some text associated with the first list

➥ item</p>

<img src="images/2.png" width="67" height="67"

➥ alt="2" />

<p>Here is some text associated with the second list

item</p>

ptg

Chapter 6: Positioning and Floats 99

<img src="images/3.png" width="67" height="67"

➥ alt="3" />

<p>Here is some text associated with the third list

➥ item</p>

You can set the clear property to left or both on the element, as
shown in Figure 6.11, to make sure that for each new item nothing from
the previous item interferes.

Figure 6.11
clear:left
used to stop the
previous floats
before each new
item.

li {

border: 1px solid #000;

clear: left;

}

tip The CSS 2.1 Specification has some quite detailed and sometimes
 difficult-to-understand text explanations of the interaction

of floated elements, margins, padding, and clear. It also has a number of
easy-to-understand and useful illustrations (http://www.w3.org/TR/2009/
CR-CSS2-20090908/visuren.html#floats).

http://www.w3.org/TR/2009/CR-CSS2-20090908/visuren.html#floats
http://www.w3.org/TR/2009/CR-CSS2-20090908/visuren.html#floats

ptg

This page intentionally left blank

ptg

Page layout with HTML and CSS begins with establishing a layout grid
or set of columns to flow content into, but what you do with individual
content types or items once you get them into a column is just as
important.

Luckily, the techniques used for both page layouts and content layouts
are the same. Whether you’re working with elements of the content that
fall inside each column, content in the page header or footer, or reusable
widgets, content elements must be laid out in their own grid using the
same techniques that make up the larger page layout.

This chapter introduces the common techniques and building blocks
used for laying out HTML content in your pages.

Page Layouts

7

ptg

The CSS Pocket Guide102

Building Blocks of CSS Layouts
In Chapter 5, through the discussion of the box model and floats, you
were introduced to some of the building blocks used to create layouts
with CSS. They weren’t labeled as such, so what follows is a refresher and
a more complete list of building blocks at the core of working with CSS.

Content Is King
As powerful as CSS is, its only purpose is to describe presentation
for the underlying HTML content. Strong, semantically appropriate
markup is the foundation that allows CSS to work its magic.

Source order, or the order in which content is read when not styled, is
also an important consideration when considering which techniques
to use to style content. Some techniques may be easier to use to visu-
ally pull content from the middle of the document tree or from the
beginning or end of a section.

Creating Content Blocks
Chapter 6 introduced the position property and containing blocks.

When styling repeatable content items such as those found in product
listings or reusable user profile badges, it is often useful to manage these
items as discrete content blocks (or widgets), using position:relative
to create a distinct, self-referential space in which to work with the indi-
vidual components of the content item. This widget or block of markup
can be placed anywhere in a page and maintain its appearance. Figure 7.1
demonstrates this effect by creating a user badge in which the user’s
photo is positioned in relation to the containing block.

ptg

Chapter 7: Page Layouts 103

Figure 7.1
Establishing new
containing blocks
for individual
content items
and positioning
the profile icon.

.badge {

position: relative;

width: 155px;

padding: 5px 5px 5px 72px; /* create gutter */

font-size: 12px;

background: #eee;

}

.badge .photo {

position: absolute;

top: 5px; /* match padding on .badge */

left: 5px; /* match padding on .badge */

border: 1px solid rgb(94,94,94);

}

.badge ul {

padding-left: 0;

list-style: none;

}

[...]

<div class="badge vcard">

John Dough

<ul class="meta">

 Status: Offline (continues on next page)

ptg

The CSS Pocket Guide104

 Registered: 8/22/2010

Total Posts: 823742

Website:

➥ example.com

</div>

Floating into Margins
Juggling the gutters created by element margins and using the float
property is at the core of most CSS-based layouts. Although absolute
positioning of columns or content items (as was done with the profile
photo in the previous example) may seem like the most direct way of
placing content side by side, removing content from the document flow
or creating new containing blocks can have unwanted side effects.

Instead, floated elements can be moved into gutters created by wide
margins on column elements or other content. This layout technique is
the basis for the following code, which created Figure 7.2.

Figure 7.2
A small
content block is
positioning in the
gutter of a larger
element using
floats.

.container {

padding: 5px;

border: 1px solid black;

}

ptg

Chapter 7: Page Layouts 105

.main {

height: 200px;

margin-left: 110px;

border: 1px solid black;

}

.floated {

float: left;

height: 150px;

width: 98px;

border: 1px solid black;

}

[...]

<div class="container">

<div class="floated">

 .floated

</div>

<div class="main">

 .main

</div>

</div>

This is an extremely common technique when creating multicolumn
page layouts, as you’ll see in the next section.

Creative Use of Backgrounds
Background images can be more than just repeated background patterns,
textures, or fancy border substitutes (Chapter 8). Background images can
also be used to create visual structures or separation that doesn’t follow
the structure defined in the markup.

ptg

The CSS Pocket Guide106

Faux Columns

In the previous float example, you’ll notice that the height of the left
element is shorter than the right. If you were to place a background color
or image on this element, it wouldn’t extend past this element to cover
the entire left gutter or column. A background image on the containing
element will continue through the whole space, so use that opportunity
to apply a background image to provide the appearance of full-height
columns. The left column in Figure 7.3 is an example of this faux column
technique.

Figure 7.3
Background
image on the
container ele-
ment providing
the appearance
of a column that
extends past the
content.

.container {

padding: 5px;

border: 1px solid black;

background: url(images/bg_faux_columns.png) repeat-y left

➥ top;

}

.main {

height: 200px;

margin-left: 110px;

border: 1px solid black;

}

.floated {

float: left;

height: 150px;

ptg

Chapter 7: Page Layouts 107

width: 98px;

border: 1px solid black;

}

[...]

<div class="container">

<div class="floated">

 .floated

</div>

<div class="main">

 .main

</div>

</div>

Background images don’t have to be used for clean rectangular columns
either. Any parent element right up to the document body is a great hook
for applying diagonals, ribbons, waves, or some other graphical appear-
ance that flows between the “physical” boundaries blocks or columns of
a page.

Layering Background Images

It is often the case that background images don’t cleanly tile or they tile
for most of any given direction but then break or shift when interacting
with a content element. Imagine implementing a design that has some
background elements that repeat horizontally, different ones that repeat
vertically, some that don’t repeat at all, and one more that repeats in
both directions. An inefficient solution would be to make one 10,000 by
10,000 pixel graphic and hope a browser never gets bigger than that.

A more flexible and efficient solution is to deconstruct the background
into smaller pieces and then find the element that is best suited to which
to apply each background image. The example in Figure 7.4 (on the next
page) uses the html, body, and two other elements to overlay four sepa-
rate graphical pieces.

ptg

The CSS Pocket Guide108

Figure 7.4
A composite of
four separate
background
images working
in coordination.

html { /* #1 */

margin: 0; padding: 0;

background: #fff url(images/fourbg_html.png) repeat;

}

body { /* #2 */

margin: 0; padding: 0;

background: url(images/fourbg_body.png) repeat-x left top;

}

.container { /* #3 */

width: 400px;

height: 500px;

margin: 0 auto;

padding: 0;

background: url(images/fourbg_container.png) repeat-y left

➥ top;

}

.masthead { /* #4 */

height: 100px;

background: url(images/fourbg_masthead.png) no-repeat left

➥ top;

}

[...]

ptg

Chapter 7: Page Layouts 109

<html>

<body>

<div class="container">

<div class="masthead">

</div>

</div>

</body>

</html>

note CSS3 includes support for multiple background images on a single
element, which provides quite a few more options for layering images.

See Chapter 14.

Inline and Floated List Items
All types of content in a document can be described in lists. Quite often,
as is the case for many navigation bars, tabs, and image thumbnails,
these structural lists aren’t presented as a bulleted list but in a horizontal
format. The following code shows a basic example of text-based naviga-
tional elements with vertical separators (Figure 7.5).

Figure 7.5 A set of navigation-based list items floated into a horizontal format.

ul.nav {

height: 16px;

}

ul.nav li {

float: left;

height: 16px;

padding: 0 0.5em;

font-size: 12px; (continues on next page)

ptg

The CSS Pocket Guide110

list-style: none;

border-left: 2px solid black;

}

ul.nav li:first-child {

border-left: 0; /* remove border from outside item */

}

[...]

<ul class="nav">

First Page

Second Page

[...]

Using Positioning to Escape Containers
Though the goal of the relatively positioned content blocks described
earlier was to create a self-contained area from which to work from,
it can be useful to position the parts of those blocks to break out of
the four sides of that container. Negative margins were discussed in
Chapter 5, but here negative values for positioning are also useful, as
demonstrated in the following example (Figure 7.6).

Figure 7.6
Negatively
positioned
element breaking
its container.

ptg

Chapter 7: Page Layouts 111

article {

position: relative;

[...]

margin-left: 50px;

border: 1px solid black;

}

article time {

position: absolute;

top: 10px;

left: -50px;

[...]

background: url(images/flag.png) no-repeat right top;

}

[...]

<article>

<time>13th</time>

</article>

Overlays, Tooltips, and Drop-Down Menus
Tooltips, drop-down menus, and overlays can be coded in a similar fash-
ion as the example shown earlier in Figure 7.6. The difference with these
types of elements is that they typically start as hidden and then through
interaction change presentation.

Chapter 14 of The JavaScript Pocket Guide by Lenny Burdette (Peachpit,
2010) covers drop-down navigation in depth and includes the following
code, which changes the state of the positioned submenu list.

ptg

The CSS Pocket Guide112

#menu li ul {

position: absolute;

display: none;

left: 0;

}

[...]

#menu li:hover ul {

display: block;

}

Hiding Elements: display vs. visibility
Two ways hiding content can be accomplished are via the two
properties display:none and visibility:hidden. In the case of the
visibility property, the content continues to occupy the space in
the document flow that it would normally. For the display property,
since the element is no longer a block, inline, or other type, it is
removed from the document flow as if it didn’t exist. Unless hold-
ing that space open for laying out other elements or maintaining its
properties such as height and width is important for other feature
of the page (like in some JavaScript interactions), display is typi-
cally used.

ptg

Chapter 7: Page Layouts 113

Multicolumn CSS Layouts
You can use all the tools described in the “Building Blocks of CSS Layouts”
section of this chapter for creating the main layout grid for handling the
header, footer, and content areas of the page.

The most common approach, because of its flexibility with regard to
content lengths, source order, and markup structure, is to use some varia-
tion of the “float into margins” technique.

A Two-Column Layout
If you were to make the .main and .floated blocks earlier in the chapter
(Figure 7.3) wide enough, then you have a two-column layout. That isn’t
all there is to do, however, because that example has two important
points of failure:

■ If the sidebar column is taller than the main content area, it will
escape the bottom bounds of the container and force the wrapping
of the following content such as the footer.

■ The code provided requires the floated element to appear before
the main content area in the source HTML document, which may
be undesirable.

Both problems can be solved with minor changes, as the following exam-
ple demonstrates (Figure 7.7).

Figure 7.7
The results of
changes to the
earlier two-
column layout.

ptg

The CSS Pocket Guide114

.container {

width: 534px;

padding: 5px;

border: 1px solid black;

background: url(images/bg_faux_columns.png) repeat-y left

➥ top;

overflow: auto;

}

.main {

float: right;

height: 200px;

width: 420px;

margin-left: 0;

border: 1px solid black;

}

.sidebar { /* renamed for clarity */

float: left;

height: 220px;

width: 98px;

border: 1px solid black;

}

[...]

<div class="container">

<div class="main">

 .main

</div>

<div class="sidebar">

 .sidebar

</div>

</div>

ptg

Chapter 7: Page Layouts 115

Wrapping Floated Columns with
overflow:auto, overflow:hidden, or .clearfix

You’ve seen that when tall floated elements get pulled out of the doc-
ument flow, their containing element collapses to the height of the
remaining content (if there is any). This is often undesirable when
that container is intended to be a self-contained content item. There
are two ways to prevent this collapsing behavior. You can either hold
the container open by clearing the float with a nonfloating content
element at the end of the block or force it to grow to include all its
contents.

You can accomplish the first by adding additional markup such
as <br style=”clear:both”> right before the end of the container.
Littering documents with presentation markup should be avoided,
and so generated content is often used to emulate this clearing
behavior. Full explanations of this technique, often applied by
styling a utility class called clearfix, is described at Position is
Everything (http://www.positioniseverything.net/easyclearing.html).

A side effect of setting the overflow property on an element to auto
or hidden is that the element should encompass all of its content,
regardless of whether that content is floated. In the case of an auto
height on the container, it will spring back and expand to cover
even floated content. This more elegant solution to the float clear-
ing problem, as well as a number of other techniques, is covered in
a follow-up to the PIE article by Alex Walker on Sitepoint (http://
www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/).

http://www.positioniseverything.net/easyclearing.html
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/

ptg

The CSS Pocket Guide116

Two Columns with Right Sidebar
You’ve now seen examples of a two-column layout where the first or
second column appears on the left. Creating a sidebar on the right just
means putting these pieces together and getting the widths and spacing
settled. Don’t forget to swap the background image as well! The follow-
ing code shows changes from the code used in the Figure 7.7 example to
place the .sidebar element on the right:

.container {

width: 534px;

padding: 5px;

border: 1px solid black;

background: url(images/bg_faux_columns.png) repeat-y right

➥ top;

overflow: auto;

}

.main {

float: left;

height: 200px;

width: 420px;

margin-left: 0;

border: 1px solid black;

}

.sidebar {

float: right;

height: 220px;

width: 98px;

border: 1px solid black;

}

ptg

Chapter 7: Page Layouts 117

A Three-Column Layout
You can easily extend the previous two-column layout to incorporate
a margin wide enough to float two of the three columns into. However,
the size of the main column or the source order may dictate that a differ-
ent arrangement is needed. Here is some trickery with floating and
negative margins to get small left and right columns and allow the main
content area to be first in the document (Figure 7.8).

Figure 7.8
A three-column,
fixed-width
layout.

.container {

width: 534px;

padding: 5px;

border: 1px solid black;

background: none;

overflow: auto;

}

.main {

float: left;

height: 200px;

width: 318px; /* narrower to fit new element and gutter */

margin-left: 107px; /* make room for left column */

border: 1px solid black;

}

.left_sidebar { /* renamed, again, for clarity */

float: left; (continues on next page)

ptg

The CSS Pocket Guide118

height: 120px;

width: 98px;

margin-left: -426px; /* shift _past_ .main */

border: 1px solid black;

}

.right_sidebar {

float: right;

height: 180px;

width: 98px;

border: 1px solid black;

}

[...]

<div class="container">

<div class="main">

 .main

</div>

<div class="left_sidebar">

 .left_sidebar

</div>

<div class="right_sidebar">

 .right_sidebar

</div>

</div>

tip A variation of this arrangement and in-depth description can be found
in the A List Apart article “Multi-column Layouts Climb Out of the Box”

(http://www.alistapart.com/articles/multicolumnlayouts/) by Alan Pearce.

http://www.alistapart.com/articles/multicolumnlayouts/

ptg

Chapter 7: Page Layouts 119

Fixed-Sized, Flexible, and Mixed Columns
The previous layout examples were made with fixed-width columns in
a fixed-width container and as a result are called fixed-width layouts.

Flexible columns based on percentages are called liquid layouts because
they flow to fit the dimensions of the browser. Liquid two-column
layouts can be just as easily made as their fixed counterparts. Moving
to three columns can be a bit trickier, especially when source order
considerations dictate the negative margin “jumping” column. This is
because percentage margins are calculated relative to the width of the
element the margin is applied to, not the containing block’s width, so
unless the ratios of sizes of each column are simple, it may not be easy
to define what “a margin equal to the width of that other element” is.

Mixed-column-based layouts don’t have a fancy name, but they consist
of both fixed-dimension columns and percentage or autowidth columns.
Sometimes these or other complex arrangements are accomplished by
nesting sets of containers and columns. Figure 7.9 and the following code
illustrate a fixed-width right column and two additional columns that
grow to match the container width.

Figure 7.9
A mixed column
layout with two
flexible content
columns and
one fixed-width
sidebar.

.container {

width: auto;

padding: 5px 107px 5px 5px; /* room for right sidebar */

border: 1px solid black; (continues on next page)

ptg

The CSS Pocket Guide120

background: none;

overflow: auto;

}

.main_left {

float: left;

height: 200px;

width: 48%;

margin-right: 5px;

border: 1px solid black;

}

.main_center {

float: left;

height: 120px;

width: 48%;

border: 1px solid black;

}

.right_sidebar {

float: right;

height: 180px;

width: 100px;

border: 1px solid black;

margin-right: -102px;

}

[...]

<div class="container">

<div class="main_left">

 .main_left

</div>

<div class="main_center">

 .main_center

</div>

ptg

Chapter 7: Page Layouts 121

<div class="right_sidebar">

 .right_sidebar

</div>

</div>

You may be looking at that previous example and thinking that the math
doesn’t add up, and you’d be right—it doesn’t. When mixing percentage
measurements, you have to fudge the numbers just a little. A 50 percent
width plus another 50 percent width plus 4 pixels worth of borders plus
a 5-pixel margin is clearly greater than the 100 percent width that the
container has to spare. It is a better bet that 96 percent of that space
will leave 9 pixels to spare, which, in this case, will be true so long as the
container’s content width is at least 225 pixels (9 pixels / (100 percent
– 96 percent) * 100). If the content width is larger than 225 pixels, that
4 percent width will be larger than 9 pixels, but in many situations, those
few extra pixels are a fair trade-off for having a mixed layout.

Designing with Constraints
Flexible columns are often the best solution for a Web where every visi-
tor has a different screen size and browser size, but that doesn’t take
into account that the content often has a role to play as well. Content
columns that are too small may not fit images or video content, and
when they get too wide, the content may be difficult to read. Secondary
columns too may have constraints or optimal sizes. Mixed columns can
be the best solution.

You can use the min-width and max-width properties to cap the size of
otherwise liquid columns or column wrappers. In the following code, the
container used in the previous examples is allowed to grow to between
600 pixels and 1000 pixels and then is centered on the page if it goes
beyond the maximum width.

ptg

The CSS Pocket Guide122

.container {

width: auto;

min-width: 600px;

max-width: 1000px;

margin: 0 auto;

}

Chapter 12 covers media queries, which let you match browser or device
dimensions (or other properties) with different CSS code. This can be
yet another method of introducing a flexible, adaptive layout with
constraints.

ptg

Through the color and images of backgrounds and borders, a site’s owner
or creator can transform bland pages of text into designs that convey a
mood, aesthetic, and branding. That is asking a lot of just two seemingly
simple properties, but as you’ll see throughout this chapter, they’re very
flexible and powerful properties.

Backgrounds and
Borders

8

ptg

The CSS Pocket Guide124

Backgrounds
Backgrounds are an integral part of styling an HTML document. Solid
colors, patterns, tiles, gradients, unconventional borders, and nonrect-
angular shapes can all be achieved by applying the various background
properties to the right element.

background-color

The background-color property is applied throughout the content area
of the element and is drawn behind any background-image that is set.

■ <color>: The color of the background

■ transparent: No color fill for the background (default)

background-image

The background-image property is used to specify a background image
for an element.

■ <uri>: The path to the image file in the format url(path) or quoted
with single or double quotes such as url("path") and url('path').

■ none: No background image is used (default).

The <uri>, when a relative path, is calculated based on the location of
the document containing the given style rule and not the source HTML
document (unless they are one and the same). This way, you don’t have
to worry about paths working the same from the HTML documents
index.html and /blog/2010/07/27/post-title. It also makes it easier to
move the assets together onto a new server or content delivery network.

ptg

Chapter 8: Backgrounds and Borders 125

tip In most situations, it is suggested you set a background color even if it
will be covered by a background image. A slow or bad connection can

sometimes mean an image doesn’t load or content can become too large for the
area covered by a nontiling image. Choose a background color that is sampled
from the image or pattern used to maintain the desired readability and visual
contrast between the content and the background.

background-repeat

The tiling of background images is set with the background-repeat
property. The following keywords are the most commonly used values:

■ repeat: The image tiles in both directions (default).

■ repeat-x: The image tiles in the horizontal direction.

■ repeat-y: The image tiles in the vertical direction.

■ no-repeat: The image does not repeat.

background-attachment

The background-attachment property defines how a background posi-
tion is determined.

■ scroll: The background is fixed with respect to the specific element
and scrolls along with it in the document. (This is the default.)

■ fixed: The background is fixed with respect to the viewport and does
not scroll with the element; it appears only when that element is
“over” its position in the viewport.

background-position

The background-position property specifies the position of the back-
ground image (or the positioning of the first background-image tile when
repeating) given as a set of two values: horizontal and then vertical.

ptg

The CSS Pocket Guide126

■ <length>: A fixed length for the offset from the upper-left corner.

■ <percentage>: A percentage offset relative to the difference between
the size of the container’s content area and the size of the image;
width is relative to (width of container area minus the width of
background-image), resulting in a value of 50% being centered and
100% touching the right edge.

■ top: Equivalent of 0% for the vertical position.

■ right: Equivalent of 100% for the horizontal position.

■ bottom: Equivalent of 100% for the vertical position.

■ left: Equivalent of 0% for the horizontal position.

■ center: Equivalent to 50% for either position.

A background-position of 0% 0% is the default (the equivalent of left top).

note When defining the background-position property, it is best to use the
same unit type (<length>, <percentage>, <keyword>) for both the hori-

zontal and vertical values. Mixing unit types may yield unpredictable results.

The CSS3 specification adds the ability to use pairs of values where the
first of the pairing describes the edge measured and the second the
offset length or percentage from that edge. At the time of this writing,
however, no major browsers support the offset syntax.

background-position: right 50px bottom 10px; /* positioned

50px from right edge and 10px from bottom edge */

background (Shorthand)

The background shorthand property allows for assigning the indi-
vidual background properties (background-color, background-image,

ptg

Chapter 8: Backgrounds and Borders 127

background-repeat, background-attachment, background-position) in
the same place.

background: rgba(45,45,45,0.5); /* transparent dark gray

color */

background: #fff url(background.jpg) no-repeat; /* top left

aligned nonrepeating background image against white */

background: url(circle.png) repeat-y center center; /* image

placed in the center of the container then tiled

vertically up and down */

note Like other shorthand properties, when individual properties are left
out of the shorthand background property, they are set to their initial

values. Therefore, background: rgba(45,45,45,0.5) as in the first example in
the previous code would remove any previously defined background images.
Use background-color to set color while leaving other properties alone.

Multiple Background Images
CSS3 defines a way to apply multiple background images to a single
element. Supported by Firefox 3.6+, IE 9 Preview, Safari, and WebKit mobile,
it may not be ready for use on many projects but may be useful in some
situations such as targeting Apple devices. Multiple background images
are assigned with comma-separated values for the background-image
property (with the earliest image appearing closest to the user). After
doing so, the other background image–related properties take matching
comma-separated values or a single value applying to all images.

background-image: url(top.png), url(bottom.png),

➥ url(middle.png);

background-repeat: no-repeat, no-repeat, repeat-y;

background-position: center top, center bottom, center center;

The previous code would set up nonrepeating top and bottom images
with a tiled image the height of the element beneath them.

ptg

The CSS Pocket Guide128

Strategies for Background Images
Background images are the most powerful tools in the web designer’s
toolbox because they can be used in so many different ways. There is no
officially sanctioned correct way to use backgrounds, but with experi-
ence, you’ll notice a few patterns that emerge and common elements to
which you can hook backgrounds.

Backgrounds Bigger Than an Element

If you remember the days of using HTML tables for page layouts, you
certainly have sliced up your fair share of images into pieces that fit a
specific cell only to reassemble them later.

There is very little reason to slice an image for use in CSS. If it appears as
a cohesive graphical element in the source Photoshop document, then it
can most likely remain so in the HTML build if you find the right element
to which to attach it. A typical HTML document structure has a body,
a wrapper for the header, center columns or footer, various sections or
articles, and then finally the text. Find the element in that hierarchy that
is best suited to which to attach the background image.

Stretching the size of an element with excess padding just to make space
for an image is common practice when working with columns or link
icons. Overlapping elements with negative margins (Chapter 5) can be a
great way to get that background image attached to the header element
to bleed into the content of the page.

Custom Bullets and Iconography

Applying a custom bullet to list items can be done via the
list-style-image property (Chapter 10), but positioning is not
as flexible as with background-image. By turning off list bullets

ptg

Chapter 8: Backgrounds and Borders 129

entirely and extending the content area of the list item via padding-left,
you can make room to shove a new image into (Figure 8.1):

ul.big {

margin: 0;

padding: 0;

}

ul.big li {

font-size: 28px;

margin: 0 0 0.25em;

padding: 0 0 0 30px; /* image is 23x23, shift left to make

room */

background: url(images/big_bullet.png) no-repeat 0 6px;

}

[...]

<ul class="big">

big item one

another big item

see the big bullet

last item

Figure 8.1
Icons placed in
gutter created by
padding.

ptg

The CSS Pocket Guide130

The same method is applied for iconography like PDF icons next to links
that match the selector a.pdf or a[href~=.pdf] or warning signs before
any p.note.

Connecting Backgrounds

Elements such as section headers or tabbed boxes may have fancy
borders that “open up” into the content below like the tab on a folder.
Because the position of the tab on that folder varies, the opening in the
top of the content area needs to change. Here again you can use visual
tricks to make the elements backgrounds overlap. The following sample
(shown in Figure 8.2) uses borders, background colors, and relative posi-
tioning to shift the header into the content that follows and create the
appearance of a nonrectangular border:

h1 {

position: relative;

top: 3px; /* shift down the size of the border */

background: #fff;

margin: 0 0 0 20%;

padding-bottom: 3px; /* retain the space of the missing

 border */

border: 3px solid #999;

border-bottom: none;

}

h1+p {

background: #fff;

margin: 0;

padding: 1em;

border: 3px solid #999;

}

[...]

ptg

Chapter 8: Backgrounds and Borders 131

<h1>Heading</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,

➥ sed do eiusmod tempor incididunt ut labore et dolore magna

➥ aliqua. [...]</p>

Figure 8.2 Relative positioning on the heading element, which
causes it to appear over the border of the following paragraph.

Smart Tiling

Whenever using background images with elements that can become
quite long on one end or another, such as the height of a content column
or the width and height of the body element, there are two options for
covering the full length of that block: You can pick a design that can tile,
or you can make the image ridiculously big.

The ribbon pictured in the first part of Figure 8.3 (on the next page)
cannot be tiled horizontally as the background image on the <body>
element without repeating the dip at some point. Make the image 4000
pixels wide and continue the flat horizontal lines, and you may be confi-
dent no one will see the dip again; however, the file size and overhead
once the image is loaded will be large.

ptg

The CSS Pocket Guide132

Figure 8.3
Repeating
pattern with a
break, separated
into two parts.

Splitting the image into two pieces, one that tiles and one that sits above
and covers up the tiling portion, can solve the problem:

body {

margin: 0;

padding: 0;

background: #fff url(images/tiled_horizontal_bars.png)

➥ repeat-x center top;

}

header {

height: 100px;

width: 400px;

margin: 0 auto; /* center the block */

padding: 0;

background: #fff url(images/the_dip.png) no-repeat center top;

}

When working with the background of the document, you have an added
challenge that you don’t want to extend the content areas unnecessar-
ily and create scrollbars on the viewport. Don’t forget that in addition to
the <body> element, <html> can also be styled and used as another layer
before you have a need for wrapper elements or other artificial hooks.

ptg

Chapter 8: Backgrounds and Borders 133

Cleverness in Web Design
Web design is a craft grounded in the clever use of positioning, mar-
gins, padding, borders, and most importantly backgrounds to imple-
ment a design of a document or an entire site or application using a
very simple vocabulary. Even the table-based layouts of a decade ago
were based on the clever cheating of the available tools.

Note the first two column example in Chapter 7 where a background
image was used to create the visual appearance of columns even
though the image was attached to a single container. The HTML
DOM is littered with containers waiting for you to push, pull, and
attach images to, so take advantage of them.

Background Image Sprites
The performance impact of having many requests for many different
image files used as backgrounds and icons around a web site can be
quite large. This can be exaggerated if you have button or icons that have
multiple states or you are working with mobile devices where server
requests can chew up both bandwidth and battery life. Creating a sprite
(one image file that contains multiple graphical elements) and then
using background positioning to shift the image so that only the desired
section of the sprite is visible is a common way to trim down the over-
head of these requests.

Take the four different tab “states” shown in
Figure 8.4 placed in the same graphic file.

Each section of the image graphic file can be
individually applied to a tab by repositioning the
file until the desired part of the image is aligned
(Figure 8.5 on the next page).

Figure 8.4
A typical sprite image.

ptg

The CSS Pocket Guide134

Figure 8.5 Applying a sprite-based background image.

.tabs .tab {

float: left;

width: 177px;

height: 26px;

margin: 0;

padding: 4px 0 0;

list-style: none;

text-align: center;

background: url(images/tabs.png) 0 -31px no-repeat;

}

.tabs .tab.active {

background-position: 0 -62px;

}

.tabs .tab.special {

background-position: 0 -93px;

}

.tabs .tab.disabled {

color: #ccc;

background-position: 0 0;

}

[...]

<ul class="tabs">

<li class="tab">tab one

<li class="tab active">tab two

<li class="tab special">tab three

<li class="tab disabled">tab four

ptg

Chapter 8: Backgrounds and Borders 135

tip Placing every image used on a complex site into the same sprite file
may create a management nightmare. Look to create sprites that

represent similar types of images and balance complexity with request and
performance overhead.

Border
In Chapter 5, border was introduced as the border on a block element
that is drawn between the padding and the margin of an element.
Borders are drawn in front of the element’s background, which has an
impact on the display of border styles with gaps (dashed) and with back-
ground positioning.

border-color

The border-color property takes one to four <color> values signify-
ing the colors for the border on each of a block’s four sides. Like with
margin and padding, when one color is provided, it applies to all sides.
With two, the first value applies to the top and bottom, and the second
applies to the right and left. With three, the first applies to the first
top; the second applies to the left and right; and the third applies
to the bottom. With four values, it applies to each side clockwise
from the top. border-color can be expanded to border-top-color,
border-right-color, border-bottom-color, and border-left-color.

border-style

The design of the border is set via one to four keywords assigned to the
border-style property.

■ none: No border drawn

■ dotted: A series of “round” dots; roundness varies by browser and
border width

ptg

The CSS Pocket Guide136

■ dashed: A series of dashes

■ solid: A solid line

■ double: Two solid lines separated by a space

■ groove: Looks like a groove has been carved by the border

■ ridge: Gives the look of a ridge coming out of the canvas

■ inset: Gives the appearance that the content was inset into the page

■ outset: Gives the appearance that the content was raised from
the page

For dotted, double, groove, ridge, inset, and outset, a small
border-width value may alter the desired appearance—you cannot
round a single pixel dot or find the room within two pixels to draw
the two lines and a gap of a double border.

Like border-color, border-style can be expanded into four
border-*-style properties.

border-width

The size of the border for each side. See Chapter 5.

border (Shorthand)

The border shorthand property accepts up to three values representing
border-width, border-style, and border-color.

Additional shorthand properties are available for the individual sides of a
block as border-top, border-right, border-bottom, and border-left.

fieldset {

border: 1px solid rgb(100,100,200); /* set all 4 borders */

ptg

Chapter 8: Backgrounds and Borders 137

border-bottom: 5px double rgb(100,100,200); /* change

bottom border only */

}

border-radius

border-radius was introduced in CSS3 to allow for rounded corners
by providing a radius for the roundness of each corner. Experimental
support is included in recent versions of Firefox and Safari by way of
vendor extensions and in Opera and the upcoming IE9 directly via the
border-radius property. To further complicate things, Firefox has a
slightly different order in addressing the individual corners of a block.

The shorthand property border-radius can be expanded (Figure 8.6 on
the next page), as shown here:

div {

width: 250px;

height: 150px;

border: 2px solid black;

-webkit-border-top-left-radius: 30px;

-webkit-border-top-right-radius: 6px;

-webkit-border-bottom-right-radius: 30px;

-webkit-border-bottom-left-radius: 6px;

-moz-border-radius-topleft: 30px;

-moz-border-radius-topright: 6px;

-moz-border-radius-bottomright: 30px;

-moz-border-radius-bottomleft: 6px;

border-top-left-radius: 30px;

border-top-right-radius: 6px;

border-bottom-right-radius: 30px;

border-bottom-left-radius: 6px;

}

ptg

The CSS Pocket Guide138

Figure 8.6
border-radius
set independently
on each corner.

tip Web-based tools such as http://borderradius.com/ provides an interac-
tive tool for setting the border dimensions and generating rules for

the various vendor extensions.

A rounded corner with border-radius does not require a border of any
dimension. Without a border, the background of the element will still be
rounded and cropped. When mixing border styles (Figure 8.7) and sizes,
browsers will do a best guess to smooth the transitions.

Figure 8.7
Example of mixed
border styles.

Outline
Outlines are a special visual property that behave similarly to borders
but take up no space in the layout. Outlines are used most often to show
focus on a link, active form field, or other element. They can also be

http://borderradius.com/

ptg

Chapter 8: Backgrounds and Borders 139

useful as a debugging tool—they will highlight an item without shifting
its position.

Outline properties are similar to border properties, with the exception
that they do not have separate definitions for each of the four sides.

outline-color

The color of the outline.

outline-style

Uses the same style keywords as border does, with the addition of the
keyword auto, which is mapped to a device default outline style (or
solid).

outline-width

The width of the outline.

outline (Shorthand)

The outline shorthand property accepts up to three values representing
outline-width, outline-style, and outline-color:

:focus {

outline: 3px auto blue;

}

Faking Rounded Corners
The border-radius property has growing support with every new
browser update, but sometimes design or branding elements are not
optional, and you have to find other ways to create the appearance
of rounded corners. Clever use of background images can be a way of
re-creating the rounded corner look.

ptg

The CSS Pocket Guide140

This section is not just about re-creating the effects of the border-radius
property, but it also demonstrates the use of many of the background
properties that are used earlier in the chapter.

Required Visual Elements vs. Optional
Embellishments

It can be hard to find a strategy for building a site that balances the
ease of applying CSS3 effects with the need to make a site look the
“same” across web browsers.

If you have the flexibility, break visual element into two groups—
those that are important for conveying a site’s branding, aesthetic,
or emotion, and those that would only reinforce that aesthetic. Then
pick your solution accordingly. Rounded corners on sidebars, headers,
callouts, and featured elements may be important enough to make
it necessary to have them work in the largest number of browsers.
Buttons, form elements, thumbnail images, and other content may
fall into that other bucket where it would be “nice” to have rounded
corners, but if they were squared off, it would be OK, too.

The same goes for other effects such as box shadows or color gradi-
ents (Chapter 14), which can be mimicked using background images.

Using a Background Image

With all these great new CSS3 properties being supported, it is easy to
over-think and over-engineer solutions to design problems. Particularly
when the design requires background images to already be used (so
there’s no additional bandwidth or maintenance hit), then it may just
make sense to create the rounded corner right in the graphic already
being used, as in Figure 8.8.

ptg

Chapter 8: Backgrounds and Borders 141

Figure 8.8
One background
used to simulate
rounded corners.

a.button {

display: block;

width: 150px;

height: 20px;

padding: 2px 8px;

text-align: center;

color: #fff;

background: #666 url(images/1_part_corner.png) no-repeat;

}

a.button:hover,

a.button:active {

color: #00f;

}

[...]

fixed size button

One Fixed Edge

If a block has one side that is a fixed length but one that expands or
contracts based on the space in the layout or the amount of content in
it, then rounding all four corners of that box can be faked with just two
separate background images, as shown in Figure 8.9 (on the next page).
Usually you can leverage the markup already in the document to attach
these two backgrounds to, but sometimes it may require adding a second
wrapper element or empty element at the beginning or end to offer
the “hook.”

ptg

The CSS Pocket Guide142

Figure 8.9
Two backgrounds
used to simulate
rounded corners.

div {

width: 236px;

padding: 8px;

background: #fff url(images/2_part_corner_bottom.png)

➥ no-repeat bottom;

}

h3 {

margin: -8px -8px 0; /* push back out to edge of

 container */

padding: 8px;

min-height: 19px;

background: url(images/2_part_corner_top.png) no-repeat

➥ top;

}

[...]

<div>

<h3>top of box</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing

➥ elit, sed do eiusmod tempor incididunt ut labore et dolore

➥ magna aliqua.</p>

</div>

This method is quite easy to implement and maintain, and the pattern of
having one fixed dimension occurs often in columns, sidebars, and rounded

ptg

Chapter 8: Backgrounds and Borders 143

buttons. There are two drawbacks: First the longer (bottom) image can be
required to be quite large if it needs cover an unknown amount of content,
and second the bottom image can bleed through the outside of the
corners of the top element if the outside of the corners is transparent.

note Why not use multiple background images on one element to do this?
The same older browsers that don’t support border-radius do not

support multiple background images.

Four Corners

In Chapter 6, while learning about absolute positioning, you saw an
example (refer to Figure 6.1) that took four small boxes and placed them
into each corner of their parent element. You can use this pattern to
create hooks to attach background images to, representing each of the
four corners. Though this method has more overhead than previous
methods and requires some added markup, the results are more flexible
than other solutions. Figure 8.10 combines the four positioned corners
with a background image sprite.

Figure 8.10
Four backgrounds
used to simulate
rounded corners.

div {

position: relative;

width: 20%;

padding: 8px;

background: #CCC;

} (continues on next page)

ptg

The CSS Pocket Guide144

.corner {

position: absolute;

padding: 0;

width: 14px;

height: 14px;

background-image: url(images/4_part_corner_sprite.png);

}

.ctl {

top: 0;

left: 0;

background-position: top left;

}

.ctr {

top: 0;

right: 0;

background-position: top right;

}

.cbr {

bottom: 0;

right: 0;

background-position: bottom right;

}

.cbl {

bottom: 0;

left: 0;

background-position: bottom left;

}

[...]

<div>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing

➥ elit, sed do eiusmod tempor incididunt ut labore et dolore

➥ magna aliqua.</p>

ptg

Chapter 8: Backgrounds and Borders 145

<div class="corner ctl"></div>

<div class="corner ctr"></div>

<div class="corner cbr"></div>

<div class="corner cbl"></div>

</div>

tip Using JavaScript to add these four corner elements into the HTML
DOM on the fly is a useful way to keep presentational elements out of

your markup and keep your code lean, especially if you are rounding multiple
different blocks on a page.

Drawing Pixels

Taking the positioning of empty elements to an extreme, you can create
1x1 boxes and meticulously re-create the pixels that draw the corners of
a containing block. This can allow for visual tricks such as anti-aliasing
and changing border radius without having to re-create background
image files, but it also makes for lots of code and markup overhead.

Like with the earlier four corners solution, you can use JavaScript to
create, plot, and position these extra elements, giving them proper
background-color. An example of this method is implemented in the
Curvy Corners JavaScript library (http://www.curvycorners.net/), which
uses the border-radius property in the CSS document to draw in the
rounded corner when loaded in a browser that doesn’t already support
border-radius.

Border and Background Enhancements

Beyond multiple background images and rounded corners, CSS3 has
a few other tricks in store that will quickly find their way into web devel-
opers’ toolboxes. Creating color gradients for background without the
use of images and creating borders with images are both covered in
Chapter 14.

http://www.curvycorners.net/

ptg

This page intentionally left blank

ptg

In times past, choosing type styling for a web site meant picking from
one of a handful of typefaces; setting a size, color, and a few other prop-
erties; and relinquishing the control that designers are used to when
designing for other media. CSS provides more control over font styling
and typesetting than many people realize, and in the last few years there
have been huge advancements in tools, services, and embeddable fonts
based on changes in CSS3.

This chapter explores how to choose the font used and discusses the
other properties that give you control over the appearance and the read-
ability of the text on the pages you build.

Typography and
Web Fonts

9

ptg

The CSS Pocket Guide148

Font Basics
The typeface used for rendering text and its particular characteristics
such as size and weight are defined using font and its related properties.

font-family

The font-family property accepts a comma-separated list of font family
names. The first value in the list that is installed on the device used to
read the page is the font that will be used to style the text.

h1 {

font-family: “Does Not Exist”, Arial, sans-serif;

}

In the previous code, the font name would be checked; if the font Does
Not Exist is not available, the next font Arial would be looked for, and so
on, until the generic family sans-serif was matched and used. In some
cases, font names vary a bit between Windows and Mac, so both names
would be listed, like so:

p {

font-family: “Palatino Linotype”, Palatino; /* Windows

Version, Mac Version */

}

Generic font-family keywords have been created to map to a browser-
or system-defined font family for the specified category of fonts. The
preference dialog boxes for each browser typically allow users to select
their preferred font family for some of these categories.

■ serif: A typeface style typically denoted by flourishes or flared ends
on each character; typically Times New Roman

ptg

Chapter 9: Typography and Web Fonts 149

■ sans-serif: A typeface design with plain or straight features;
typically Arial

■ cursive: A cursive or handwriting-like typeface

■ monospace: A fixed-width font, commonly used for displaying code or
other text where character width is important like ASCII art; typically
Courier or Courier New

■ fantasy: A highly stylized typeface

See “Specifying Typefaces” later in this chapter for common examples
and additional discussion of choosing and defining font families.

font-size

The font-size property controls the size of the text in the element and
may be defined as a fixed size or a size relative to the font size of the
parent element. Browsers set a default size based on settings in the user
preferences, commonly 16px.

■ <length>: A length measurement

■ <percentage>: A percentage value measured against the computed
value of the parent element’s font-size

■ xx-small | x-small | small | medium | large | x-large | xx-large: Fixed-
size values along a browser-defined scale

■ larger | smaller: A value relative to the parent element’s size; typi-
cally representing a step up or down the previous scale (xx-small
through xx-large)

Relative and percentage font sizes are based on their parent element’s
computed font size. The effect of this behavior may be compounded
when nesting elements. The following sample (Figure 9.1 on the next
page) demonstrates how font sizes are calculated for nested elements.

ptg

The CSS Pocket Guide150

body {

font-size: 96px;

}

li {

font-size: 0.5em;

}

[...]

<body>body: 96px

li: 0.5em = 48px

 li: 0.5em = 24px

 li: 0.5em = 12px

</body>

Figure 9.1
Repeated
calculation of
half the parent’s
font size.

ptg

Chapter 9: Typography and Web Fonts 151

If this compounded calculation of the font size is not the desired behav-
ior, it may be more useful to set the font size on some container element
and avoid setting it on list items, paragraphs, or inline elements that
may appear in various locations in the HTML document. For the previous
example, the following would ensure that all items in the outer container
element (ul) are half the body size and that this value is not reapplied for
nested lists:

body > ul {

font-size: 0.5em;

}

note Many screen-based fonts become difficult to read at small sizes where
there may not be enough pixels to distinguish the strokes of a charac-

ter. Be careful when using relative sizes that make the default font size smaller
because some users may have set their default font sizes to something smaller
than you’re expecting already. Some browsers allow users to set a minimum
font size to aid the readability of text to prevent it from becoming illegible.

Keeping It Relative
There is an eternal debate among web developers about whether it
is better (more accessible to those with poor eyesight) to use relative
font sizes on a page or whether it is OK to use a fixed-size unit like
pixels. Much of the anti-fixed-size argument is centered on the text-
zoom behavior of Internet Explorer 6 and older in which the browser
will not enlarge fixed-sized fonts.

Even if the base font size you choose is a fixed size (say 12 pixels), it
may be worthwhile to use relative units for any individual element-
specific or section-specific font size changes. Doing this allows for
changing the base font size while maintaining the scale and relative
sizes for headers, block quotes, footnotes, and so on, without the need
to edit each individual font-size property throughout the style sheet.

ptg

The CSS Pocket Guide152

font-weight

The font-weight property controls the weight, or thickness, of the char-
acters in a font.

■ normal | bold: Keywords representing normal weight type (default)
and bolded type

■ bolder | lighter: Sets a weight relative to the weight inherited from
the parent element

■ 100 to 900: A nine-step scale, in increments of 100, ranging from thin
(100) to black (900)

note Though a nine-step scale for font weights is defined, browsers typi-
cally display only two distinct steps—normal (400) and bold (700).

font-variant

Some typefaces are designed with several variant character sets, includ-
ing a set of small caps shapes. The font-variant allows selection of this
alternate set of characters.

■ normal: Selects the normal variant of a font face (default).

■ small-caps: Selects the small caps variant of a font face. If none exists,
small caps are simulated.

font-style

The style of the font is declared using the font-style property.

■ normal: Normal, upright, type (default).

■ italic: Italicized type.

■ oblique: Oblique type. If no oblique style is provided for a typeface,
italic may be used.

ptg

Chapter 9: Typography and Web Fonts 153

line-height

The line-height property defines the height of each line of text (line
box). Leading, or vertical spacing between each line, is created by specify-
ing a line-height that is larger than the content height (font-size).

■ normal: A reasonable default value specified by the browser;
commonly 1.2

■ <number>: A numeric multiplier applied to the font size to calculate the
line-height

■ <length>: A specific length value

■ <percentage>: A percentage of the element’s font-size

font (Shorthand)
The font shorthand property allows for assigning the indi-
vidual font properties (font-style, font-variant, font-weight,
font-size/line-height, font-family) in the same place. Note that
although most shorthand properties allow for individual property values
to be left out and assume the default or inherited value, at minimum
font-size and font-family must be declared. Also, the value of the
line-height property must be paired with the font-size value in the
format of font-size/line-height, such as 1.2em/1.4.

body { font: normal normal normal 20px/1.2em sans-serif; }

/* italic small-caps bold 80px/80px Georgia, serif; */

body>h1 { font: italic small-caps bold 4em/1 Georgia, serif; }

/* normal, normal, 400, 40px/47.3px, Arial, sans-serif */

body>h2 { font: normal 2em Arial, sans-serif; }

(continues on next page)

ptg

The CSS Pocket Guide154

/* normal, small-caps, 400, 15px/19px "Trebuchet MS", Verdana,

sans-serif */

body>h3 { font: small-caps 15px "Trebuchet MS", Verdana,

➥ sans-serif; }

/* oblique, normal, bold, 20px/24px monospace */

body>h5 { font: bold oblique 1em/1.2em monospace; }

vertical-align

The vertical-align property sets the alignment of text (or other inline
content) in relation to the line box controlled via line-height. Because
this property controls the positioning of an inline element in relation to
a line box and not a block element, it is not suitable for aligning block
elements in a layout grid. The default value of baseline creates an align-
ment where the bottom of the characters in each inline element on a
line all start at the same position. The following are commonly used
values for vertical-align (Figure 9.2):

■ baseline: Aligns the baseline of the box with the parent element’s
baseline

■ sub: Creates a subscript by lowering the baseline of the box

■ super: Creates a superscript by raising the baseline of the box

p {

font-size: 20px;

vertical-align: baseline;

color: #666;

background: #eee;

}

sup {

font-size: 1em;

vertical-align: super;

}

ptg

Chapter 9: Typography and Web Fonts 155

sub {

font-size: 1em;

vertical-align: sub;

}

span {

font-size: 0.6em;

}

[...]

<p>Baseline xyx ^{xyx Sup xyx} xyx

➥ Baseline xyx <sub>xyx Sub xyx

➥ </sub> xyx Baseline</p>

Figure 9.2 Line boxes and vertical alignment with original baseline in black and
baselines for sub and super in gray.

Additional Font Styling
There’s more to typography than simply specifying a typeface. CSS
provides a rich set of tools for adjusting and customizing the display
of text.

text-decoration

You can set underlines, strikethrough, or other text decorations (yes, even
blink) via the text-decoration property. These decorations are drawn
separately from borders and are applied only to text.

■ underline: Each line of text is underlined.

■ overline: Each line of text has a line drawn above it.

ptg

The CSS Pocket Guide156

■ line-through: Each line of text has a line drawn through it.

■ blink: The text blinks.

tip Years of conventions have established and reinforced that underlined
text signals that the text is a link. Links don’t have to be underlined

because they may appear as buttons or highlighted via color or background
color changes, but if text is underlined, someone will try to click it. I will never
say to never do something, but that being said, use text-decoration:
underline with extreme care.

text-transform

The text-transform property controls the capitalization of text. This can
be a useful property for reinforcing the formatting of navigation, buttons,
and headers.

■ capitalize: The first character of each word is forced to be uppercase.

■ uppercase: All characters are forced to be uppercase.

■ lowercase: All characters are forced to be lowercase.

■ none: No adjustment to the capitalization found in the source HTML
document is made (default).

word-spacing

You can adjust the default space between each word in a string of inline
text using word-spacing.

■ <length>: A fixed dimension used as an adjustment to the default
amount of space between words.

■ normal: No adjustment is made (equivalent to 0).

ptg

Chapter 9: Typography and Web Fonts 157

letter-spacing

The letter-spacing property controls the spacing of each character
in a word. Like word-spacing, the letter-spacing property defines an
adjustment to the default spacing for the font.

■ <length>: A fixed dimension used as an adjustment to the default
amount of space between letters.

■ normal: No adjustment is made (equivalent to 0).

text-align

Horizontal alignment of text inside a containing block is defined by the
text-align property.

■ left: The text is left aligned (default).

■ right: The text is right aligned.

■ center: The lines of text are centered.

■ justify: The lines of text are flush with both sides of the box, adjust-
ing the spacing in between words as needed.

tip Be careful when applying text-align: justify, particularly with
narrow columns. Typographic tools such as hyphenation, which help

maintain even character counts per line, are not available to browsers, and
they’re notoriously awful at calculating the spacing needed for justification.
This often results in lines with a few words and huge gaps between them.

ptg

The CSS Pocket Guide158

white-space

This property sets how the whitespace and newlines in an element are
calculated.

■ normal: Lines of text are wrapped to fill each successive line box with
text; sequences of whitespace (multiple space, tab, or newline charac-
ters) are collapsed (default).

■ pre: Text is considered to be preformatted in the source markup docu-
ment and whitespace, including newline characters, remains intact
(default for <pre> element).

■ nowrap: Whitespace is collapsed as normal, and all text is forced to the
same line.

word-wrap

In addition to setting the behavior for whitespace, with word-wrap you
can allow browsers to break lines in the middle of words to prevent long
strings of characters from overflowing a box.

■ break-word: Allows a browser to place a break within a word to
prevent a long word with no whitespace characters from overflow-
ing the box; words are broken by character, not syllables, and are not
hyphenated.

■ normal: Single words cannot be broken (default).

text-indent

The text-indent property defines an indentation for the first line of text
in a block.

■ <length>: A fixed measurement for the indentation

■ <percentage>: A percentage length relative to the width property of
the containing block

ptg

Chapter 9: Typography and Web Fonts 159

text-shadow
■ The text-shadow property introduced in CSS3 allows for one or more

<shadow> effects to be applied to the text of an element. This shadow
is drawn around the letters themselves, rather than around the outer
edges of the box like with box-shadow (Chapter 14).

■ none: No text shadow is applied.

■ <shadow>: A description of a single shadow is <color> <offset-x>
<offset-y> <blur-radius> or <offset-x> <offset-y> <blur-radius>
<color>, where <blur-radius> is optional and defaults to a length
of 0.

h2 {

text-shadow: rgba(0,0,0,0.5) 2px 2px 5px;

/* transparent black shadow shifted right 2 and down 2 with

a 5px blur */

}

You can create the appearance of embossed text by mixing light and
dark text-shadow effects, as is done in this multiple-shadow example:

h2 {

text-shadow: rgba(0,0,0,0.3) 0 -1px, rgba(255,255,255,0.3) 0

1px;

}

Multiple shadows on the same element are drawn front (first shadow
listed) to back (last shadow).

ptg

The CSS Pocket Guide160

Reviewing Content for Styling and Legibility
When building a site, it is useful to define a base set of styles for
common elements to ensure you start off on the right foot with a
readable and accessible design based on the chosen font faces, sizes,
and colors.

Early in the project timeline there often isn’t representative copy
written for different page types or content available that includes
common tags such as lists, lower-level headings, or text that wraps
in uncommon ways. All these elements are crucial to allow for
reviewing line-height, text-indent, or other properties that impact
whitespace, aesthetics, and readability. So, how do you code and test
the default baseline and ensure you’re starting with a readable site if
content isn’t written and if design comps often have short passages
of uniform text?

In 2006 I wrote a blog post outlining the use of a generic test file that
contained a wide variety of HTML elements that could be included
into the first page you build or could be used in a style guide or
inventory document (http://placenamehere.com/article/178/). I still
use this tag test document for most sites I work on and have placed
the code in a project on GitHub (http://github.com/placenamehere/
PNHTagTest).

Even earlier in the design process Typograph by Iain Lamb (http://
lamb.cc/typograph/) lets you interact with the style properties of
a sample passage of text and experiment with the relationships of
type sizes, line heights, whitespace, column widths, and the scale
of type.

Both types of tools allow for early adjustment and review of a site’s
styling and typographic choices and help create a great baseline
with which to build the rest of the site elements.

http://placenamehere.com/article/178/
http://github.com/placenamehere/PNHTagTest
http://github.com/placenamehere/PNHTagTest
http://lamb.cc/typograph/
http://lamb.cc/typograph/

ptg

Chapter 9: Typography and Web Fonts 161

Specifying Typefaces
The choice of font and the availability of font faces can be some of the
most challenging aspects of web design. There’s a reason that most sites
you’ll visit appear in Times New Roman, Verdana, or Arial, and that is
because there just aren’t that many quality fonts installed on enough
computers to be reliable options for web designers. Some of that has
changed over time, and in the following sections I’ve outlined a few ways
to select typefaces for use on the Web.

System Fonts
Operating systems such as Windows, Mac OS X, Linux, iOS, and Android
typically are bundled with a set of preinstalled fonts. Some extremely
common applications such as Microsoft Office install additional font files.
There are no truly ubiquitous fonts for the Web, because even the most
common fonts can be disabled or removed by the computer’s owner,
but these are some of the most commonly available fonts on desktop
browsers:

■ Serif typefaces: Times New Roman, Times, Georgia, Palatino Linotype
(Palatino on OS X)

■ Sans-serif typefaces: Verdana, Arial, Arial Narrow, Arial Black, Helvetica,
Impact, Trebuchet MS, Tahoma

■ Monospace typefaces: Courier New, Courier, Andale Mono, Lucida
Console

ptg

The CSS Pocket Guide162

To account for a font being unavailable, it is common to list a similar
typeface or two before specifying the generic font family, as these
 examples show:

font-family: “Palatino Linotype”, Palatino, “Times New Roman”,

➥ serif;

font-family: Tahoma, Arial, Helvetica, sans-serif;

font-family: Verdana, Geneva, sans-serif;

font-family: “Andale Mono”,“Courier New”, Courier, monospace;

You can find more detailed information on installed fonts in the 24ways
article “Increase Your Font Stacks With Font Matrix” by Richard Rutter
(http://24ways.org/2007/increase-your-font-stacks-with-font-matrix) and
on the Code and Style site (http://www.codestyle.org/css/font-family/
index.shtml).

Font Embedding
To break free of the short list of commonly installed set of “safe” fonts,
IE4 introduced font embedding in CSS via the @font-face rule. With its
standardization by the W3C and more recent adoption by other browser
vendors, font embedding is gaining traction, but it is not without the
issues that come with early adoption of any technology.

@font-face

The @font-face rule allows for defining a custom font family and linking
that family to a resource or resources where the font file data resides.
Two sets of values are set with this rule:

■ font-family: The family name for the custom font; used to refer to the
font-family property later in the style sheet

■ src: The font source URI and optional (but in practice, suggested) font
format

http://www.codestyle.org/css/font-family/index.shtml
http://www.codestyle.org/css/font-family/index.shtml
http://24ways.org/2007/increase-your-font-stacks-with-font-matrix

ptg

Chapter 9: Typography and Web Fonts 163

A basic embedded font declaration looks like this:

@font-face {

font-family: "Chris Script";

src: url(fonts/ChrisScript.ttf);

}

h1 {

font-family: "Chris Script", cursive;

}

If a browser did not support the @font-face rule (or could not find or did
not understand the particular format of the font), it would ignore the
first font name when it tried to follow the font-family rule for the <h1>
element and render the element using the browser-defined cursive font.

A font that may appear on the system can be searched for by font name
using one or more local() values before the url(). This prevents the
need to download a copy of a font that might be installed on some
computers, but it’s not ubiquitous enough to be relied on or considered
safe for use without embedding.

@font-face {

font-family: "Vera Sans Mono";

src: local("Bitstream Vera Sans Mono"),

 url(fonts/BSVSM.ttf);

}

h2 {

font-family: "Vera Sans Mono", "Courier New", cursive;

}

If the family name specified in the @font-face rule exists already either
by a previous rule or because it is on the user’s system, the new defini-
tion will take its place.

ptg

The CSS Pocket Guide164

Font Formats

Like the HTML5 video wars (http://diveintohtml5.org/video.html), those
attempting to implement embeddable web fonts have to untangle a
mess of file format support among the various browsers. And like the
video format landscape, browser vendors have chosen to support differ-
ent font formats because of a mix of licensing and protection issues, plat-
form norms, and legacy behavior. Possible formats include the following:

■ “truetype”: TrueType fonts (TTF); supported in Safari 3.1+, Chrome 4+,
Firefox 3.5+, Opera 10+

■ “opentype”: OpenType fonts (OTF); supported in Safari 3.1+, Chrome 4+,
Firefox 3.5+, Opera 10+

■ “embedded-opentype”: Embedded Open Type (EOT) embeddable fonts;
supported in IE 4+

■ “svg”: SVG-based font definition; supported in Opera 10+, Mobile
Safari

■ “woff”: Web Open Font Format embeddable fonts (WOFF); supported
in Firefox 3.6+, IE 9+

From IE4 to IE8, Microsoft supported only the proprietary EOT format out
of concern that embedding TTF or OTF fonts required the raw font files to
be posted to a web server for the world to download and because doing
so would break the licensing agreements covering most fonts. The WOFF
was established in 2010 as a standard format for embeddable fonts that
addresses the piracy issues.

Until WOFF is widely supported, to embed custom fonts in IE and the rest
of the browsers, you must provide the font in at least two formats and
define them similar to the following example.

http://diveintohtml5.org/video.html

ptg

Chapter 9: Typography and Web Fonts 165

@font-face {

font-family: "Vera Sans Mono";

src: url(fonts/BSVSM.eot);

src: local("Bitstream Vera Sans Mono"),

 url(fonts/BSVSM.ttf) format("truetype");

}

For further discussion of offering multiple font format options, see Paul
Irish’s article “Bulletproof @font-face syntax” (http://paulirish.com/2009/
bulletproof-font-face-implementation-syntax/).

Creating Embeddable Fonts

So, where do you get all these different font formats if all you have is a
TrueType or OpenType font?

The Font Squirrel @font-face Generator (http://www.fontsquirrel.com/
fontface/generator) takes any uploaded font and converts it into all the
formats mentioned earlier as well as offers sample CSS embedding code.
Microsoft released the Web Embedding Fonts Tool (WEFT), a Windows
utility to create EOT files, and there are WOFF generators being worked
on, but since Font Squirrel provides that format as well, individual tools
aren’t necessary.

Font Licensing and Foundries

Even under the protection provided by the EOT or WOFF format, by
distributing a web font, you may be breaking the licensing terms set by
the foundry that designed and sold that font. When starting with a fresh
design, it may be smarter to start with typefaces whose licensing options
are known. Finding good-quality fonts with options for web embedding
is getting easier by the day (as I write this, I’m looking forward to the

http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax/
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax/

ptg

The CSS Pocket Guide166

new Fonts.com offerings), with these services among those starting to
offer great fonts and tools to legally embed their fonts:

■ Typekit: A subscription-based commercial service that works with
popular foundries to license and host some of the most popular fonts.
http://typekit.com/

■ FontSpring: Offers commercial @font-face-friendly licensing options
for the fonts it sells. http://www.fontspring.com/

■ Font Squirrel: More than just a font file generator, the Font Squirrel site
also houses a curated collection of free fonts licensed for use on the
Web. http://www.fontsquirrel.com/fontface

■ Google Font Directory: In conjunction with offering an embeddable API
and tool that wraps the @font-face declarations as well as providing
caching of fonts on its CDN, Google has collected a set of open source
fonts, free to use. https://code.google.com/apis/webfonts/

■ WebFonts.info Directory: As part of a broader wiki devoted to web
typography, this is a list of embeddable typefaces and foundries that
support embedding. http://www.webfonts.info/

Custom Fonts via Text Replacement
Designers can use certain techniques besides relying on system fonts
or embedding font files to achieve the look of a custom font. These
 techniques have pluses and minuses—balancing maintainability, select-
ability, accessibility, and appearance. They also don’t have some of the
licensing issues of embedded fonts since font files aren’t being shared.
Type set inside an image file and placed in the document using an img
tag is one way to go, but HTML content cannot be changed via a style
sheet if a different font is chosen, and the image remains with the HTML
source when it appears in other contexts such as RSS feeds.

http://typekit.com/
http://www.fontspring.com/
http://www.fontsquirrel.com/fontface
https://code.google.com/apis/webfonts/
http://www.webfonts.info/

ptg

Chapter 9: Typography and Web Fonts 167

The font-embedding techniques in the previous section are the new kids
on the block and aren’t free from implementation issues such as browser
support or font licensing, so these older and tested techniques are useful
to have in your arsenal.

As with text set directly into an tag, these techniques can be
useful in small doses such as for article headings or navigation elements,
but replacing large blocks of type on the fly provides a good deal of over-
head or maintenance problems.

Image Replacement

Rather than use an image tag to display non-HTML-based text, with
image replacement, you can use that same image file as a CSS-based
background on a more conventional HTML element. After sizing and
 positioning the background image, the foreground text must be hidden
from the user by shifting its position, changing its display value, or doing
some similar trick. In the following example (Figure 9.3 on the next
page), headers are presented with the Bitstream Vera Sans font with
some embossed effects that cannot be accomplished with CSS- and
HTML-based type:

h2 {

display: block;

height: 25px;

background-image: url(images/sprite_imagereplace.png);

background-repeat: no-repeat;

text-indent: -9999px; /* shift HTML text out of view */

}

#hdrHome {

width: 80px;

background-position: 0 0;

} (continues on next page)

ptg

The CSS Pocket Guide168

#hdrBlog {

width: 63px;

background-position: -88px 0;

}

#hdrPortfolio {

width: 107px;

background-position: -158px 0;

}

#hdrAbout {

width: 83px;

background-position: -272px 0;

}

[...]

<h2 id="hdrHome">Home</h2>

<h2 id="hdrBlog">Blog</h2>

<h2 id="hdrPortfolio">Portfolio</h2>

<h2 id="hdrAbout">About</h2>

Figure 9.3
Image
replacement for
headings.

Image replacement is a handy tool if used sparingly and for text that
will not change often. The technique’s major drawback is that it is fairly
inflexible and requires images (or an image sprite as in the previous
example) to be generated for each piece of text being replaced or edited.

ptg

Chapter 9: Typography and Web Fonts 169

Dave Shea has written a good overview and comparison of some
of the code behind various image replacement techniques (http://
mezzoblue.com/tests/revised-image-replacement/).

Flash Replacement with sIFR

The sIFR project (http://www.mikeindustries.com/blog/sifr) uses a Flash
object to replace the existing text content and redraw it on the fly in
the desired typeface. sIFR uses a two-step process where the browser
renders the HTML content based on the styles set in CSS, and then,
through JavaScript, a Flash object is created to replace the HTML content.
Information on the element its content and its styling are passed to
the Flash object, making the system more adaptive when compared to
simple image replacement.

The major upside over the image replacement is in the maintenance.
A set of images doesn’t need to be created each time content is changed,
allowing easier use for content such as blog post titles. The major down-
side is that it does require both JavaScript and Adobe Flash Player (with
a fallback to the original styled HTML content).

JavaScript Replacement with Cufón

The Cufón project (http://wiki.github.com/sorccu/cufon/) is a toolkit
that was built as an alternative to the Flash plug-in sIFR. It replaces
the HTML-based type with a non-plug-in-based canvas or VML content
instead based on the visitor’s browser.

Like sIFR, this requires turning the font into a new format (here, an
SVG-based font) and then using a JavaScript-based tool to read in the
HTML page as it loads and replace the designated elements with a new
rendering component.

http://mezzoblue.com/tests/revised-image-replacement/
http://mezzoblue.com/tests/revised-image-replacement/
http://www.mikeindustries.com/blog/sifr
http://wiki.github.com/sorccu/cufon/

ptg

This page intentionally left blank

ptg

All content types fit into one of two display types—inline and block.
Almost. It may be obvious after thinking about it that tables with their
columns, rows, headers, and spanning can’t quite be modeled by arrang-
ing a series of block elements, but lists with numbering or bullets also
need some special tools.

Lists and Tables

10

ptg

The CSS Pocket Guide172

Lists
HTML list elements (and) are simple block elements. Individual
list items (), too, are sized and positioned with the same box model,
with dimensions, padding, margins, and borders behaving as expected.
However, each item needs some extra parts to get the markers both
 positioned properly and designated or incremented properly.

display: list-item
The default display value for a list item is list-item, allowing for the
rendering of the box containing the list item marker in addition to the
normal block behavior for the list item content.

list-style-type

You set the type of marker for a list item via the list-style-type
property. You can use a plethora of keywords as types; they account for
everything from the static bullet commonly used for unordered lists to
numeric and alphanumeric values for different languages and counting
systems. The following are some of the more commonly used types for
English-language sites:

■ disc | circle | square: Common glyphs; all items in the list will show
the same glyph (unless changed explicitly).

■ decimal | decimal-leading-zero: Decimal numbers starting with
1 or 01, respectively.

■ lower-roman | upper-roman: Lowercase and uppercase roman numerals.

■ lower-latin | upper-latin: Lowercase and uppercase ASCII letters
starting with a or A.

■ none: No marker of any kind is rendered.

ptg

Chapter 10: Lists and Tables 173

tip When setting the list-style-type property, don’t forget to account
for the behavior of nested lists. By default, browsers set different types

so that bullets or numbering types change based on nesting helping readability.
Set different types for the selector ul, the selector ul ul, and the selector ul ul ul.

list-style-image

The list-style-image property takes a <uri> for an image that
when specified replaces the generated list marker defined by the
list-style-type property.

list-style-position

The list-style-position property defines where in relation to the
list item’s box the list marker is positioned. Typically a marker will be
positioned outside the content area of the item out into the left gutter;
however, it can also be positioned inside of the list item, behaving as an
inline element at the beginning of the item would.

■ outside: The list marker acts an inline element positioned outside the
box generated by the item’s contents (default).

■ inside: The list marker is positioned inside the list item’s box.

Figure 10.1 demonstrates the two possible list-style-position values.

Figure 10.1
Three list items
with markers
positioned
outside, with
the latter three
positioned inside.

ptg

The CSS Pocket Guide174

Backgrounds as list-style-image
A nonrepeating, properly positioned background image on a list
item is a common method to give control over precise positioning of
list marker images. The following code will achieve this behavior by
combining the pattern of using padding to make space for a back-
ground image, as shown a few times in Chapter 7, with turning off
the default list marker with list-style-type: none.

ul {

margin-left: 0;

padding-left: 0;

}

li {

margin-left: 0;

padding-left: 20px;

list-style-type: none;

background: url(fancydot.png) no-repeat 4px 4px;

}

list-style (Shorthand)

The list-style shorthand property allows for assigning the indi-
vidual list properties (list-style-type, list-style-position,
list-style-image) in the same place.

li { list-style: none; }

The previous code demonstrates a simple method of disabling markers
and shaves a few characters off setting the list-style-type property
directly.

ptg

Chapter 10: Lists and Tables 175

::marker Pseudo-element

CSS3 added a handy pseudo-element to access the list marker, both
defining and providing a way to change the styles and positioning of the
marker that isn’t available through shifting or padding on the list item
or wrapping the content of a list item in another element, allowing inde-
pendent control of properties such as color and font-size:

list content

Unfortunately, at the time of this writing, there isn’t a browser that
supports ::marker. Combined with counters and generated content,
which are discussed in the next section, this will be a powerful way to
generate custom markers for content.

Generated Content
As is the case with list markers, it can sometimes be desirable to display
content that doesn’t come from the HTML document. Generated content
is defined with the content property and then added to the document as
the content of the pseudo-elements ::before and ::after (and, eventu-
ally, ::marker).

content

The content property allows for a number of different types of content
that may be added to the selected pseudo-element, including the
following:

■ <string>: Text content for inserting into the element

■ <url>: A URI of an image

■ none: No content is defined

ptg

The CSS Pocket Guide176

::before and ::after

The pseudo-elements ::before and ::after represent placeholders for
content before and after an element’s existing content.

a.help::after {

content: "(?)";

color: red;

background: yellow;

}

a.next::after {

content: url(images/right_arrow.png);

}

[...]

<p>Here is some text that contains a link to the <a class=

➥ "help" href="http://example.com/help.html">help page

➥ and a link to the <a class="next" href="http://example.com/

➥ next.html">next page</p>

The previous code adds an arrow image after any link to a “next” document
and then a question mark after any “help” link, as shown in Figure 10.2.
These two hints, or similar additions using the content property, are
examples of where presentational hints introduced through design would
be different from content that would normally be in the HTML source.

Figure 10.2 Example of generated content added after links with different
class attributes.

note The generated content is added to the content of the selected elements.
They are styled as though they are content in the original HTML tag, and

for links the added content is clickable, just like the rest of the link text is.

ptg

Chapter 10: Lists and Tables 177

Counters
CSS counters provide the ability to create and use a count of elements of
a selected type in a document. Though it would be most useful to aid in
customizing item markers, counters aren’t limited to lists and can help
with document outline style presentations or other embellishments.

counter-increment

The previous specifies that the counter with a provided text label
(<identifier>) should be incremented when the element defined
by the selector is encountered in the document.

■ <identifier>: The counter to be incremented by 1
■ <identifier> <integer>: The counter to be incremented and a value

(positive or negative) for each step

counter()

Inside the content property, the current value of a given counter can be
accessed with the counter() function:

■ counter(<indentifier>): Returns the value of the specified counter

■ counter(<identifier> <list-style-type>): Returns the value of the
specified counter formatted to fit the provided list-style-type value
(decimal, upper-roman, and so on)

counter-reset
■ <identifier>: Resets the specified counter to 0

■ <identifier> <integer>: Resets the specified counter to some
integer value

ptg

The CSS Pocket Guide178

The following code was used to generate Figure 10.3 and demon-
strates three presentation options that cannot be accomplished with
list-style-type in current browsers.

■ The list item marker presentation of a number followed by a dot was
customized to be a number followed by a colon.

■ The text containing the counter can be independently styled from the
item content in browsers without ::marker support.

■ A marker and counter was added to each h4 element.

h4 { /* increment one counter at each h4 */

counter-increment: heading;

}

h4::before {

content: counter(heading, lower-roman) ": ";

color: #aaa;

}

ol li { /* start a second counter for list items */

list-style-type: none;

counter-increment: item;

}

ol li::before {

content: counter(item) ": ";

color: #aaa;

}

ol { /* reset second counter for each new list */

counter-reset: item;

}

[...]

<h4>Heading</h4>

<h4>Heading</h4>

ptg

Chapter 10: Lists and Tables 179

list item

list item

 list item

 list item

 list item

list item

<h4>Heading</h4>

list item

list item

<h4>Heading</h4>

Figure 10.3
Demonstration
of counters used
for generated
content.

ptg

The CSS Pocket Guide180

Tables
Using tables for creating a layout grid is an outdated web design practice
that has generated a lot bad press for the HTML table element. Even if
that practice has gone the way of the dodo in most modern web devel-
opment, tables for tabular data are just as important as ever. The layout
of a table—with its grid of cells, myriad of borders, and the ability for
cells to span rows or columns—calls for some special formatting proper-
ties not used for other elements.

The layout model for the table element calls for margins and borders on
the outside of the element to behave the same as other blocks and width
to be calculated similarly, but it incorporates a few additional proper-
ties to control the spacing and display of the containing cells and their
padding, spacing, and borders. The following code generates the table
shown in Figure 10.4:

table {

background: #ccc;

border: 5px dotted #000;

border-spacing: 10px;

}

td {

width: 20px;

line-height: 20px;

padding: 10px;

background: #fff;

border: 2px solid #000;

}

td[rowspan="2"] {

border: 10px solid #666;

}

ptg

Chapter 10: Lists and Tables 181

tr {

border-top: 10px solid #aaa;

}

[...]

<table>

<tr>

<td> </td> <td> </td> <td> </td>

</tr>

<tr>

<td rowspan="2"> </td> <td colspan="2"> </td>

</tr>

<tr>

 <td> </td> <td> </td>

</tr>

<tr>

<td> </td> <td> </td> <td> </td>

</tr>

</table>

Figure 10.4
A table’s
layout with
border-collapse
set to separate.

border (table)

padding

line-height

border-spacing

border (td)

width width padding

ptg

The CSS Pocket Guide182

table-layout

To maintain the integrity of the grid of cells, the content contained in
each cell has traditionally had some impact on the height of rows and
width of columns in a table, with the browser free to make adjust-
ments to provided dimensions. Even when a cell width is provided,
a large amount of text or a large image may make the cell larger. The
table-layout property allows for changing the method browsers use
to size and render a table.

■ auto: The width of the table and table cells is established and adjusted
as the content of each cell in the table is rendered, with the dimen-
sions provided by the CSS properties and adjusted for size or amount
of content (default).

■ fixed: The width of the table and the table cells do not rely on the
content but is determined only by the width of the table and columns,
allowing a browser to start rendering the table immediately.

For small tables of data, table-layout:auto may be fine, allowing
column widths to flex a bit to account for an unexpectedly large number.
For much larger tables where you’d want the content to start displaying
immediately or for cases where the integrity and uniformity of the cell
grid is important, you should use fixed.

border-collapse
■ separate: The borders of individual table cells are drawn as distinct

features and separated by some border padding. No other parts of
a table have borders (default).

■ collapse: The borders of the table and all parts of a table share the
same border on each side.

ptg

Chapter 10: Lists and Tables 183

A few behaviors of separated borders can be seen in Figure 10.4 that
make them behave similar to the traditional HTML table rendering:

■ In the column on the left, the cells with the narrow border have been
adjusted to fit the display of the element with the larger border.

■ The border declared on the tr element is ignored.

■ The table’s background is drawn in the spaces between the cell borders.

Figure 10.5 is an example of the previous table with border-collapse
set to collapse and demonstrates the following changes that take place
under the collapsing border model that make the table behave more simi-
larly to a typical spreadsheet found in Excel, Numbers, or other software:

■ One border is drawn between each cell, rather than a distinct border
around each cell.

■ Borders may be applied to any of the parts of a table including thead,
tbody, and tr elements.

■ When elements with different border-width, border-style, or
border-color properties touch, they aren’t both drawn; instead,
one of the styles is chosen by the browser.

■ The border-spacing property is ignored.

Figure 10.5
A table’s
layout with
border-collapse
set to collapse.

border (table)

border (tr)

border (td)

ptg

The CSS Pocket Guide184

border-spacing

The border-spacing property provides the padding between borders of
table cells and takes two <length> values, first for the horizontal spac-
ing and second for vertical spacing. If only one <length> is provided, it
applies to both sides.

empty-cells

In the separated borders model, cells without content (or cells set to
visibility: hidden) can have their borders and background styling
rendered or ignored.

■ show: Displays the borders and background of an empty cell (default)

■ hide: Hides the borders and background of an empty cell

vertical-align

Unlike block-level elements, the contents of cells can be vertically posi-
tioned inside of the cell.

■ top: The content of the cell is top aligned.

■ bottom: The content of the cell is bottom aligned.

■ middle: The content of the cell is centered in the cell (default).

text-align

The text-align property behaves normally when applied to table cells
(see Chapter 9).

Table display Values
Like the display values of block, inline, and others covered in
Chapter 6, non-table-related HTML elements may take on the layout

ptg

Chapter 10: Lists and Tables 185

behavior of the various parts of a table. The three basic parts of a table’s
display are the table, a row, and a cell.

■ table: A block-level element that generates the outer structure of
a table

■ table-row: A row containing cells

■ table-cell: An element that represents a table cell

To account for the cases where an element’s display property is set to
a table-related value but does not have the parent elements that typically
make up a complete table structure (table, table row, and table cell), the
missing elements may be created virtually. What follows is a sample of
the CSS2.1 rules for creating these anonymous boxes:

If the parent P of a “table-cell” box T is not a “table-row,” a box
corresponding to a “table-row” will be generated between P and T.
This box will span all consecutive “table-cell” sibling boxes of T.

Beyond these core three values, there are display values for all the various
pieces of a table such as table body, caption, and column groups. The fol-
lowing code illustrates the various table-related values and their context:

table { display: table; }

tr { display: table-row; }

thead { display: table-header-group; }

tbody { display: table-row-group; }

tfoot { display: table-footer-group; }

col { display: table-column; }

colgroup { display: table-column-group; }

td, th { display: table-cell; }

caption { display: table-caption; }

ptg

This page intentionally left blank

ptg

Designing and styling forms and getting constant results across browsers
and platforms can be the most difficult part of web development.

Most of this difficulty arises because of the nature of form elements.
They’re built to solicit input from the user of the site, and how that input
gets there can be quite different from device to device.

Different operating systems have different native form control behavior
and appearance, and browser vendors have tried to keep the display of
interface elements in line with those standards. As a result, a user will
typically see familiar inputs even if they use multiple browsers on one
device, but if they change devices or operating systems, the interface

Forms and User
Interface Elements

11

ptg

The CSS Pocket Guide188

elements will change. Even in the same browser, the appearances may
differ between Windows, Mac OS X, Linux, and mobile devices. Figure 11.1
shows the difference in appearance of a select elements on three differ-
ent devices.

Figure 11.1 Interaction with select element in Safari/Apple iPhone iOS4, Safari/Apple
iPad iOS3, and IE 8/Windows XP (from left to right).

You can find additional examples of CSS applied to form elements in
different browsers and operating systems at Christopher Schmitt’s
meticulously collected and indexed collection of screenshots at http://
www.WebFormElements.com.

Something else that can be unique to form layouts is the need to juggle
the myriad of positioning and placement and states of the elements of
the form. Large fields, small fields, sets of fields, labels, and help or error
messages all need to be placed so that it is clear to the visitor what is
being requested from them. The grid that works for a standard-length
text input along with its label may not work for a collection of radio
buttons or a combination of inputs such as parts of a phone number or
city and state.

http://www.WebFormElements.com
http://www.WebFormElements.com

ptg

Chapter 11: Forms and User Interface Elements 189

Working with Form Controls
As different as they can be from platform to platform, form elements on
the major desktop browsers tend to share the basic properties; sizing,
fonts, colors, and backgrounds all can be set as they would on any other
HTML element. Because some form controls are more complex than your
average block of text, how those properties are applied can be a bit pecu-
liar. There’s no hard and fast rule covering where a border is drawn or
what parts of the select widget handle a color applied to it.

tip Safari will draw native form controls (the bubbly look on OS X) even
when some styles are defined. Set a border on the element to force

it out of the native mode and into one that takes other styles such as color
or backgrounds.

Sizing
Form elements, like images, are inline replaced elements. For styling
purposes, it is best to think of them as rectangular boxes even when
they’re “round” radio buttons or made of multiple parts like file input
fields. When setting the height and width of a form element, you’re
setting the dimensions on the outer box. What the field inside that box
does to fill the space is out of your hands.

Although elements such as textareas and buttons fill the entire rect-
angular box, check boxes, radio buttons (Figure 11.2 on the next page),
and file input fields reserve the specified space in the layout but scale
in varied ways to fill that space (or not really fill it, as shown in some of
these examples).

ptg

The CSS Pocket Guide190

Figure 11.2 Radio buttons in Safari 5.0.1/OS X, Firefox 3.6.8/OS X,
Firefox 3.0.1.5/Windows, IE 8/Windows, and Opera 10.6.1/Windows
(from left to right) with a 100-pixel width, 100-pixel height, 1-pixel
red border, and 10-pixel padding.

To further complicate things, textareas, text inputs, and similar elements
aren’t quite like the other elements since they follow the content-box
box sizing model, whereas other elements use the border-box model.
Setting the box-model property to border-box helps regain some consis-
tency in sizing between text inputs and selects and buttons, with the
drawback of making them behave less like the labels or paragraphs that
surround the fields.

form input[type="text"],

form input[type="password"],

form input[type="file"],

form textarea {

-ms-box-sizing: border-box;

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

Colors, Backgrounds, and Borders
Like sizing, colors apply as you’d expect them to for text in elements such
as submit buttons, textareas, and password fields. On the other hand, the
behavior of radio buttons, check boxes, and select options will vary based
on the browser and platform, so consider the color to be just a sugges-
tion, not a rule.

ptg

Chapter 11: Forms and User Interface Elements 191

This goes for the other properties as well. Where would you apply a back-
ground color to a radio button—inside the circle or outside and behind
the circle in the rest of the box? Is the line between the text space and
the little handle of a select element a border? How many backgrounds
and borders are there in a file input field that is often represented as
something that looks like a text input plus a button? What about all
those new input types like sliders in HTML5?

These are the questions that give browser developers (and in turn web
developers) migraines.

For the most consistent appearance, you should probably avoid borders
and background colors and avoid background images for radio buttons
and check boxes. (Figure 11.2 showed examples of browser differences.)
On the other hand, you can do interesting things with borders, back-
ground colors, and background images for the other field types. In the
next example, a background image on a text input is used to create the
feeling of depth (Figure 11.3). I’ve added background color change when
the element is in focus for a highlight.

input[type="text"] {

padding: 4px;

width: 100px;

border: 1px solid #000;

background: #fff url(images/inner_shadow.png) no-repeat

➥ left top;

}

input[type="text"]:focus {

background-color: #fff335;

}

Figure 11.3
A text input with
a background
image.

ptg

The CSS Pocket Guide192

Fake It Until Browsers Make It
Clever developers have come up with a whole slew of tricks to get
around the lack of styling flexibility with forms in browsers. They
get around some of the cross-platform styling quirks inherent in
form fields by disabling borders and using fancy background images
or using visibility and z-index tricks, and they get around form
styling limitations in browsers by creating complex JavaScript-based
interactions. Some methods leave the original input fields intact, but
others use JavaScript to replace the standard form input controls and
instead use a series of click or other events to control the appearance
of nonform fields, storing the resulting values in hidden fields.

Here are a few examples of using CSS and JavaScript to work around
form styling limitations:

■ Replacing the varied looks of file inputs (see the example at
http://www.quirksmode.org/dom/inputfile.html).

■ Using backgrounds for highly styled radio buttons and check
boxes (see the example at http://www.thecssninja.com/css/
custom-inputs-using-css).

■ Implementing new HTML5 input types using custom JavaScript-
based widgets such as sliders, date pickers, color pickers, and other
types that are part of HTML5 if the visitor’s browser doesn’t sup-
port them (discussed at http://diveintohtml5.org/forms.html).

Text and Form Element Inheritance
Stemming from the desire to present native and consistent controls to
users, CSS properties that are normally inherited from parent elements
to child elements such as font settings and color are not inherited by
form elements. Therefore, styling for form elements has to be done by

http://www.quirksmode.org/dom/inputfile.html
http://www.thecssninja.com/css/custom-inputs-using-css
http://www.thecssninja.com/css/custom-inputs-using-css
http://diveintohtml5.org/forms.html

ptg

Chapter 11: Forms and User Interface Elements 193

selecting the input field directly. The following code will set the same
text color for all the text and form elements:

body, input, select, fieldset {

color: #666;

}

Though not supported in IE7 or earlier, this is a great use case for the
inherit value to explicitly tell form elements to inherit certain proper-
ties from their parents.

input, select, fieldset {

color: inherit;

}

States: Disabled, Required, and Invalid
Chapter 3 introduced the :disabled, :checked, :required, :valid, and
:invalid pseudo-class selectors. The browser support for these selectors
might put them in the unreliable category—particularly since forms are
so important to some web apps or marketing programs and thus tend
to strive for more cross-browser consistency. These selectors also apply
only to form elements and not to other parts of the form presentation
like labels that often need to reflect the same state. To get around this
limitation, it can be useful to create classes that mimic the effect of the
pseudo-class selectors.

label.required {

font-weight: bold;

}

p.errorDetails,

label.invalid,

input.invalid, (continues on next page)

ptg

The CSS Pocket Guide194

input:invalid {

color: red;

}

input[type=”submit”].disabled,

input[type=”submit”]:disabled {

background: #aaa;

color: #fff;

}

JavaScript or server-side form validation can apply these class names to
help present the proper state of the elements.

Common Form Element Layouts
By default, labels and forms are inline elements. This is a useful baseline,
but creating a form presentation with a clean grid requires some changes
to those default behaviors and sometimes a little extra markup or careful
use of fieldset elements.

Label Stacked Above the Field
Creating a layout where the label is on a line above the form field is as
easy as setting the label to display as a block element would (Figure 11.4):

label {

display: block;

margin-top: 1em;

}

[...]

<fieldset>

<legend>Your Info</legend>

<label for="fname">First Name:</label>

ptg

Chapter 11: Forms and User Interface Elements 195

<input type="text" name="fname" id="fname">

<label for="lname">Last Name:</label>

<input type="text" name="lname" id="lname">

<label for="phone1">Phone Number:</label>

<input type="text" name="phone1" id="phone1" size="3">

<input type="text" name="phone2" id="phone2" size="3">

<input type="text" name="phone3" id="phone3" size="4">

</fieldset>

Figure 11.4
Form presenta-
tion with labels
above form
elements.

Basic Multicolumn Forms
In the previous example, the fields read from the top down. To change
the order of elements so they appear from left to right, you can make
a small alteration to the styles and markup to give you boxes for
elements that float beside each other (Figure 11.5 on the next page):

label {

display: block;

margin-top: 1em;

}

div.field {

float: left;

width: 50%;

}

[...] (continues on next page)

ptg

The CSS Pocket Guide196

<fieldset>

<legend>Your Info</legend>

<div class="field">

<label for="fname">First Name:</label>

<input type="text" name="fname" id="fname">

</div>

<div class="field">

<label for="lname">Last Name:</label>

<input type="text" name="lname" id="lname">

</div>

<div class="field">

<label for="phone1">Phone Number:</label>

<input type="text" name="phone1" id="phone1" size="3">

<input type="text" name="phone2" id="phone2" size="3">

<input type="text" name="phone3" id="phone3" size="4">

</div>

</fieldset>

Figure 11.5
A two-column
form layout.

note Although including the input field element inside the label tag is
valid HTML and doing so might allow for easier styling in this scenario,

this is considered a bad practice because of accessibility concerns.

ptg

Chapter 11: Forms and User Interface Elements 197

Label Besides the Field
Using the same markup as the previous example and the following
CSS, you can have a grid where labels are on the left of the input field
(Figure 11.6):

label {

float: left;

clear: left;

width: 150px;

margin: 0 10px 0 0;

padding: 0;

text-align: right;

}

input {

margin: 0 0 1em 0;

}

Figure 11.6
Labels to left of
form elements.

Exceptions for Radio Buttons and Check Boxes
In the example of the previous label, the form element labels for radio
button sets would appear quite awkward with one little small element
per line. In the label besides the field example, it may be desirable to
have all options on a single line. Or sometimes a check box is associated
with a long passage of text such as a legal disclaimer.

ptg

The CSS Pocket Guide198

The following code builds on the previous examples and demonstrates
two possible ways to deal with these exceptions (Figure 11.7):

label,

span.label {

float: left;

clear: left;

width: 150px;

min-height: 1em; /* keep empty span open */

margin: 0 10px 0 0;

padding: 0;

text-align: right;

}

[...]

p label,

input[type="radio"]+label { /* reverse baseline label style */

float: none;

width: auto;

margin: 0;

}

[...]

<fieldset>

<legend>Questionnaire</legend>

<div class="field">

<input type="radio" name="chooseOption"

➥ id="chooseOption[1]" value="1">

<label for="chooseOption[1]">Option One</label>

<input type="radio" name="chooseOption"

➥ id="chooseOption[2]" value="2">

<label for="chooseOption[2]">Option Two</label>

ptg

Chapter 11: Forms and User Interface Elements 199

</div>

<p>

<input type="checkbox" name="agree" id="agree">

<label for="agree">Do you agree to this site's Terms of

➥ Service?</label>

</p>

</fieldset>

Figure 11.7
Labels for radio
buttons and
check boxes.

Inputting Tabular Data
Though using HTML tables for layout is outdated, taboo, and semanti-
cally incorrect, there are arrangements of forms that mimic a table. After
all, where is the form data headed most often but a database table or
series of tables? So if you have a series of inputs for multiple records
at one time or some similar scenario where you can have a one-to-one
relationship of data items to cells, marking up the elements as a series
of table cells and headers can be semantically appropriate.

Conditional Fields
Sets of conditional fields—if one option is chosen to display or enable
other options—typically have states managed by JavaScript, but each
state is defined via classes such as the disabled class used in the next
code block. The script would move the disabled class around as the form
elements are changed.

fieldset.disabled {

display: none; (continues on next page)

ptg

The CSS Pocket Guide200

}

[...]

<form action="#" method="get">

<div>

<label for="chooseOption[1]">Option One:</label>

<input type="radio" name="chooseOption"

➥ id="chooseOption[1]" value="1">

<fieldset class="extra disabled">

<label for="option1extra">Extra Info for Option One

➥ </label>

<textarea name="option1extra" id="option1extra"></textarea>

</fieldset>

</div>

<div>

<label for="chooseOption[2]">Option Two:</label>

<input type="radio" name="chooseOption"

➥ id="chooseOption[2]" value="2" checked="checked">

<fieldset class="extra">

<label for="option2extra">Extra Info for Option Two

➥ </label>

<input type="text" name="option2extra" id="option2extra">

</fieldset>

</div>

</form>

Using a combination of CSS3 selectors, you can achieve similar effects
without JavaScript. Using the same markup as the previous example, the
CSS would look like this:

fieldset.extra {

display: none;

}

ptg

Chapter 11: Forms and User Interface Elements 201

input[type="radio"]:checked+fieldset.extra {

display: block;

}

Placeholder Text
A fairly common convention with text inputs is to place a small hint into
the field. Doing this with the value attribute of the element can be prob-
lematic (causing the submission of the hint text or other oddities), so
HTML5 introduces the placeholder attribute. To accomplish this without
either attribute, you can create a second label element using JavaScript
and position it with CSS over the text input field (as deconstructed in
Figure 11.8).

Figure 11.8
Deconstructing a
label covering the
input area of a
text field.

Making Buttons
Getting users to interact with a site and share their information is the
primary purpose of any form, and for web apps or web-based promo-
tions, clicking the submit button may be the entire reason for the site’s
existence. As such, submit buttons scream to be styled in ways that draw
the user to them. There are 101 different methods to enhance buttons;
this section offers a quick overview of the parts behind them.

A key hurdle to easy, flexible button styling is that buttons are just
one HTML element, and there is only so much that can be done to one
element. You can’t manufacture extra hooks for styling like you saw in
the rounded corner examples and elsewhere in this book, so you’re stuck

ptg

The CSS Pocket Guide202

with what is there (though perhaps you could wrap the button in some-
thing or use generated content in interesting ways).

Background Images
Background images can do a lot for a button: add depth, add the look of
ready to press and depressed states, and create many other effects that
a mix of color and border alone cannot do.

Submit button sizes are typically flexible to allow for a wide range of text
lengths or font sizes. A fixed-size button paired with a single nonrepeat-
ing background image can lead to text escaping the boundaries of the
graphic. With controlled button labels or a large enough button style
providing leeway for these cases, the fixed width and height is possible.
Otherwise, stick with repeatable patterns and borders used to mark the
sides of the element.

CSS3: text-shadow, border-radius, and Gradients
The text-shadow property described in Chapter 9 is a useful way to
enhance button text styling. Background images are nice, but they
come with some noted inflexibility. The border-radius property, when
combined with color gradients (Chapter 14), can make creating flexible
and good-looking buttons quite simple.

The CSS Tricks Button Maker (http://css-tricks.com/examples/
ButtonMaker/) is a little demo app that lets you adjust all these
 properties visually and then shows you the CSS code behind it.

Links As Buttons
Links are often interchangeable with submit buttons in a site’s design.
The call to action may sometimes be associated with a form but often
not. Choose a class to use for links that should be styled similarly to

http://css-tricks.com/examples/ButtonMaker/
http://css-tricks.com/examples/ButtonMaker/

ptg

Chapter 11: Forms and User Interface Elements 203

button actions, and style both together in your code. And while you’re
at it, don’t forget the different states for each or the other types of
button elements (the button element as well as the button input type).
Figure 11.9 (on the next page) shows three different clickable HTML
elements styled similarly.

input[type="submit"],

button,

a.button:link, a.button:visited {

font: 12px/16px Arial, sans-serif; /* for input */

padding: 2px 0.5em;

color: #333;

background-color: #aaa;

border: 2px inset #aaa;

text-decoration: none; /* for link */

}

a.button:link, a.button:visited { /* fix some apparent box

model differences */

padding-top: 3px;

padding-bottom: 3px;

}

input[type="submit"]:hover, input[type="submit"]:focus,

button:hover, button:focus,

a.button:hover, a.button:active {

color: #000;

background-color: #999;

}

input[type="submit"]:disabled,

button:disabled,

a.button.disabled { (continues on next page)

ptg

The CSS Pocket Guide204

color: #fff;

background-color: #ccc;

border-color: #ccc;

border-style: solid;

cursor: default;

}

[...]

<input type="submit" value="input">

link

<button>button</button>

<input type="submit" value="input disabled"

disabled="disabled">

link

➥ disabled

<button disabled="disabled">button</button>

Figure 11.9
Links, input
buttons, and
button elements
styled similarly.

ptg

CSS is more than a language for describing the presentation of pages
viewed on desktop browsers (in this chapter referred to as screen
media). By specifying a media type associated with a style block, linked
style sheet, or group of rules, you can target other media such as print,
mobile devices, and screen readers.

Media: Printing and
Other Devices

12

ptg

The CSS Pocket Guide206

Media Types
User agents are categorized by their features, or the features of the
device they’re running on, into one of several media types. In some cases,
such as a desktop browser with a print preview feature, the user agent
can support multiple media types; however, only one type will be active
at any given time.

List of Media Types
■ all: Intended for all devices

■ braille: Intended for Braille tactile feedback devices

■ embossed: Intended for paged Braille printers

■ handheld: Intended for small-screen handheld devices

■ print: Intended for paged, printed media (or print preview)

■ projection: Intended for projected media

■ screen: Intended for viewing on desktop and laptop screens

■ speech: Intended for screen readers

■ tty: Intended for teletypewriters, terminals, or other devices with
a fixed-character grid

■ tv: Intended for television-based devices with lower resolution
and limited scrollability compared to screen devices

■ Media queries: Intended for a selection of media via expressions that
describe the features of the device introduced in CSS3

In practice, your typical web project will have styles targeting the media
types all, screen, print, and often handheld, while the other types will
be left to manage with the styling defined in the all type or will be left
to the default appearance.

ptg

Chapter 12: Media: Printing and Other Devices 207

You may find the other types useful in niche projects. For example, if
you’re designing slides for distribution on the Web after your presenta-
tion, then you may have a presentation specifically targeting projected
media (which is triggered in Opera’s full-screen mode). For more on this
idea, as well as information on Opera’s support of the projection media
type, read Till Halbach’s article “Creating Presentations/Slideshows with
HTML & CSS” at http://dev.opera.com/articles/view/html-css-slideshows/.

Specifying Media Types
You can specify the media type associated with a block of CSS rules in
three ways: through the media attribute on the HTML <style> or <link>
element, as a parameter for the @import rule, or as a parameter on the
@media rule.

media HTML Attribute

The HTML <link> element and the <style> element have a media attri-
bute that accepts a comma-separated list of media types. The source file
linked to or the code in that <style> block will be ignored if the device
used to visit the page is of a type not listed as one of the values. In the
case of the <link> element, this means that the linked file may not be
downloaded, saving bandwidth.

<html>

<head>

<!-- stylesheets for all media -->

<link rel=”stylesheet” type=”text/css” src=”global1.css”>

<link rel=”stylesheet” type=”text/css” media=”all”

➥ src=”global2.css”>

<style type=”text/css”>[...]</style>

<style type=”text/css” media=”all”>[...]</style>

(continues on next page)

http://dev.opera.com/articles/view/html-css-slideshows/

ptg

The CSS Pocket Guide208

<!-- stylesheets for print only -->

<link rel=”stylesheet” type=”text/css” media=”print”

➥ src=”print.css>

<style type=”text/css” media=”print”>[...]</style>

<!-- stylesheets for mobiles and projectors -->

<link rel=”stylesheet” tyle=”text/css”

media=”handheld, projection” src=”compact.css”>

<style type=”text/css” media=”handheld, projection”>[...]

➥ </style>

[...]

@import Rule

Like the designation of media types for link elements, external CSS files
included via the @import rule can be restricted to specific media types.

<style type=”text/css”>

/* stylesheets for all media */

@import url(“global1.css”);

@import url(“global2.css”) all;

/* stylesheets for print only */

@import url(“print.css”) print;

/* stylesheets for mobiles and projectors */

@import url(“compact.css”) handheld, projection;

</style>

@media Rule

The @media rule is used to specify that a subset of rules in a block of CSS
code should apply only to the supplied media types. As with the media
attribute of the <style> element, any code where @media rules are found

ptg

Chapter 12: Media: Printing and Other Devices 209

has already been downloaded. This rule is most useful for targeting
devices with small amounts of CSS.

/* style rules for all media */

@media all {

body {

 body: #ddd;

 color: #666;

}

}

/* style rules for print only */

@media print {

body {

 body: #fff;

 color: #000;

}

}

/* style rules for handheld and projection only */

@media handheld, projection {

body {

 body: #000;

 color: #fff;

}

}

Although you can have an @import rule inside a linked style sheet or an
@media rule inside either type of linked style sheet document, it is not
legal to nest an @media rule inside another @media rule. If you were to
define a media type with @media or @import inside an already restricted
block of code, the new media type would further restrict the targeted
media list.

ptg

The CSS Pocket Guide210

Print Media
The printed page, while having many similarities to the screen, differs in
many ways as well, most notably that the contents of a document are
split across multiple fixed-sized pages rather than one single continuous
viewport. The properties listed in this section help control the presenta-
tion of each of those pages by offering guidelines about where those
page breaks occur within the document’s content.

page-break-before and page-break-after
These two properties define whether a page break should occur before
or after a given piece of content, which is most useful when applied to
articles, headers, tables, or other “blocks” of content.

■ auto: The user-agent determines the most appropriate places for
a page break (default).

■ always: This tells the user agent to always break before (or after)
the selected element.

■ avoid: This tells the user agent to attempt to avoid breaks before
(or after) the selected element.

page-break-inside

The page-break-inside property allows for the restriction of page
breaks inside a given element’s content.

■ auto: The user agent determines when it is appropriate to place a page
break inside an element’s content (default).

■ avoid: This tells the user agent to avoid page breaks within the
element’s content.

For all the page break properties, the page breaks may be unavoidable,
for example when a single element is larger than a single page. The

ptg

Chapter 12: Media: Printing and Other Devices 211

value avoid will cause browsers to attempt not to generate a page break,
however, and as the name avoid implies, it is just an attempt and not
an absolute rule.

Browser support for the page break properties is quite mixed, and
some browsers have more complete support for individual values than
others. You can find a good breakdown and notes on support for the
page break–related properties at the Sitepoint CSS Reference (http://
reference.sitepoint.com/css/pagedmedia) or at the Mozilla Developer
Center (https://developer.mozilla.org/en/CSS_Reference).

The @page Rule
The @page rule exists as a way of setting properties of the page such as
margins or orientation. At the time of this writing, the features of @page
from CSS2 and CSS3 are quite poorly supported (Opera being the one
shining star), so it isn’t worth presenting the properties in detail.

Print Considerations
The presentation, width, color schemes, navigational elements, and other
design features of many web pages may be appropriate for the screen,
but not as much when printed. If someone is printing out an article,
recipe, or event information from your web site, the last thing they are
looking for is half the first page taken up by navigation and advertis-
ing and an extra page at the end taken up with nothing but the footer
content and repeated navigation links.

To prepare pages for print, a few types of styles are often changed to
provide the best printed experience (and not waste your visitor’s paper
or ink).

■ Hide the sidebar, navigation, or other site “meta” elements that are
presented on the screen to help when interacting with the site on
the screen. Branding elements, logos, and legal information are still

http://reference.sitepoint.com/css/pagedmedia
http://reference.sitepoint.com/css/pagedmedia
https://developer.mozilla.org/en/CSS_Reference

ptg

The CSS Pocket Guide212

important and typically carry through to the print version. Still, be
liberal with your use of display:none.

■ Adjust font sizes, line heights, and other typographic properties to
maximize legibility at a typical printed page size.

■ Contrast is different in print than on the Web, and backgrounds can
make for difficult-to-read pages covered in ink. Hide background
images, change background colors to white, and change text colors
to the darker shades or even black for the best printing and reading
experience.

note Many browsers will drop background images or similar styles when
printing, either by default or by user-selected settings without you

explicitly changing them.

The Print Preview option from your favorite browser will display with any
style sheet targeting the print media type and is a great way to test your
changes to the print presentation without wasting reams of paper.

Hyperlinks and Generated Content
Printed HTML documents do not display information that may be valu-
able to the user to have in that printed form. The destination of hyper-
links is one of the pieces of information lost if only viewing the text.
Generated content can be used to display the contents of the href attri-
bute beside the link text.

@media print {

a:link::after,

a:visited::after {

content: “ (“ attr(href) “) “;

 color: #666;

 font-style: italic;

ptg

Chapter 12: Media: Printing and Other Devices 213

}

}

You also might want to consider printing the following: contents of
title attributes, contents of tabbed boxes, and other content that is
initially rendered with display:none and meant to be revealed based
on user interaction.

Mobile Media
Handheld and mobile devices typically have small physical screens
(even as they have increasingly higher resolutions). They also have
slightly different interaction models such as touchscreens or heavily
keyboard- or tab-based movement.

Mobile Considerations
The smaller screen and slower connection typical of handheld devices are
key factors in mobile web development and may drive a “less is more”
approach to these devices.

■ The slower connection speed and cost of transferring data on some
mobile plans can make it desirable to rely more on the default browser
style sheet than you would in a screen context.

■ The touch interface on many smartphones and tablets may drive
the need for links and buttons to appear larger, and the spacing
between items should be clear to avoid fumbling fingers pressing
the wrong item.

■ Feature phones, unlike smartphones, offer a limited subset of CSS and
a limited layout capability or canvas size. Display and navigation on
these devices can also be very linear (left to right, top to bottom), so
the positioning and complex element layouts may be ignored.

ptg

The CSS Pocket Guide214

Though some smartphones have wonderful browsers and deal well
navigating conventional web sites, targeting handheld devices with
CSS changes alone may not always lead to the best experience for folks
because often the types of content or the tasks that mobile visitors are
looking for on your site are different from the desktop browser version.
Thus, having a separate mobile web site may sometimes be a better
option than just feeding the same HTML content with a different set of
styles to these visitors.

Media Queries
New in CSS3, media queries add a syntax for describing the characteris-
tics and features of the device being used to view a page, allowing for
more precise control or better targeting of those features that might
be why you provide one set of styles over another. The following code
demonstrates how to target a handheld device in landscape orientation
(wider than it is tall):

@media handheld and (orientation:landscape) {

[...]

}

The following links to an external CSS file only if the browser (view-
port) width is a color device that’s wider than 600 pixels, regardless of
media type:

<link type=”text/css” media=”color and (min-width: 600px)”

➥ src=”default.css”>

As shown in the previous examples, you can combine media features into
a more complex description using the and keyword. You can use the not

ptg

Chapter 12: Media: Printing and Other Devices 215

keyword to negate a media description (or media type) such as in the
following example of targeting any nonscreen media type:

<link type=”text/css” media=”not screen” src=”alternate.css”>

The only keyword does not logically impact the result of the media query
expression; however, it creates a value for the media attribute so that
browsers that do not support media queries cannot parse into a common
media type they support and thus can be used to hide styles from these
browsers.

Media Features
The following is a list of media features for which you can specify in a
media query expression.

Since the chances that you will have declared the precise viewport width,
measured to the pixel (or ems or other <length> unit), is quite slim, you
can specify the width feature as a min-width or max-width. This holds
true of the other features where specified.

■ width: The width of the viewport or page box; accepts min- and
max- prefixes.

■ height: The height of the viewport or page box; accepts min- and
max- prefixes.

■ device-width: The full width of the device screen or printed page;
accepts min- and max- prefixes.

■ device-height: The full height of the device screen or printed page;
accepts min- and max- prefixes.

■ orientation: Matches the keyword landscape when the width is
greater than the height; portrait when the height is greater than
the width.

ptg

The CSS Pocket Guide216

■ aspect-ratio: The aspect ratio of the viewport as described by
width/height; accepts min- and max- prefixes.

■ device-aspect-ratio: The aspect ratio of the device as described by
device-width/device-height; accepts min- and max- prefixes.

■ color: The number of bits of color; 0 for noncolor devices; accepts
min- and max- prefixes.

■ color-index: The number of individual colors supported by the device;
0 for noncolor devices; accepts min- and max- prefixes.

■ monochrome: The number of bits used to describe the monochrome
shades available; 0 for nonmonochrome devices; accepts min- and
max- prefixes.

■ resolution: The resolution of the output device measured in dpi (dots
per inch) or dpcm (dots per centimeter); accepts min- and max- prefixes.

■ scan: The scan type for television media types; values are progressive
and interlace.

■ grid: A grid device is a device such as a TTY terminal or a feature
phone that has a single fixed-font display.

Responsive Design
In Chapter 7 you learned about building fixed and flexible layout grids
as well as setting limits on flexible layouts by using the min-width and
max-width properties. You can use these techniques to make adaptive
layouts that find a compromise between the best presentation and read-
ability of the content and the visitor’s browser dimensions.

But what if you could adapt the layout from the standard two-column
layout into a one-column layout for narrower browsers or bring the
footer up into a third column for the insanely wide screens? Or what if
you could adjust the size of header type or swap background images

ptg

Chapter 12: Media: Printing and Other Devices 217

so the design feels more proportional to the “page” as presented, while
body copy remains at a standard, readable size?

This adaptation of presentation has been dubbed responsive design. It
takes the standard mechanics of flexible grids, relative sizing of fonts,
and other content elements and uses media queries to change the posi-
tioning of content, the sizing of elements, or the overall layout grid to
respond to the viewport the device is giving you to work with.

For an in-depth review of media queries and how you can use them to
design pages that adapt not just to media but also to other browser
scenarios, see Ethan Marcotte’s article “Responsive Web Design”
(http://www.alistapart.com/articles/responsive-web-design/).

Browser Support
Media queries are currently supported in Safari 3+, Firefox 3.5+, Opera 7+,
Internet Explorer 9+, mobile WebKit, and Opera Mobile. Therefore, there
is wide support for them, except for IE 6 through IE 8’s large chunk of the
desktop market.

It isn’t so bad, though, because the support (or lack thereof) can be taken
into consideration as just another device criteria in many instances. For
mobile development, you’re most likely putting handheld device types into
two or three buckets already—first specifying the most devices and then
breaking smartphones by screen size or orientation. The following example
shows a baseline style sheet going to all handhelds and then using media
queries with more specific style sheets for those more capable devices:

<link type=”text/css” media=”handheld” src=”basic.css”>

<link type=”text/css” media=”handheld and portrait and color”

➥ src=”enhanced_portrait.css”>

<link type=”text/css” media=”handheld and landscape and color”

➥ src=”enhanced_landscape.css”>

http://www.alistapart.com/articles/responsive-web-design/

ptg

The CSS Pocket Guide218

You can take the same approach for sites meant for the desktop. Code
the base style sheet with the appropriate baseline layout grid, font sizes,
and other measurements and serve it to all screen media using the
media type declaration. Then use media queries to provide enhance-
ments to those base styles and make a richer or cleaner experience
around the edge cases using responsive design patterns.

<style type=”text/css” media=”screen”>

/* standard 960px, fixed width two column definition */

[...]

@media (max-width:959px) {

/* make layout a single column */

[...]

}

@media (min-width:1200px) {

/* make layout three columns */

/* enlarge the font sizes */

[...]

}

[...]

</style>

ptg

In the previous chapters, the focus was on understanding the build-
ing blocks and elements that make up the language of Cascading Style
Sheets. In Chapter 7, we used those elements to create some commonly
used layout and grid structures.

But often, the task of building a web site does not start with rebuilding
all elements from scratch; instead, it often starts with reusing elements
by drawing from a library of code you’ve previously written or open
source code for libraries or elements that you can use.

Resets and
Frameworks

13

ptg

The CSS Pocket Guide220

CSS Resets
In the Chapter 2 discussion of browser- and user-created style sheets, you
saw how the default styling for common elements such as paragraphs,
links, and forms can be different from each other. Building a site on this
inconstant foundation can make cross-browser consistency a more diffi-
cult task than it already is.

A CSS reset creates a common baseline to work from and zeros out some
or all aspects of browser default styling. For example, it is common for
browsers to have padding set on the <body> element so that plain HTML
content has a little room to breathe. However, it may be easier to style
a site if you are instead starting exactly the top-left corner. Font sizes,
padding, margin, table properties, and form elements are all typical
candidates for being “reset.”

Using Resets
It is common to include a reset file so it is the first CSS code that the
browser encounters. This is done by inserting its contents into the begin-
ning of the main style sheet for the web site, by referencing it directly
using a <link> element before your global style sheet, or by using an
@import statement at the beginning of the main style sheet file, similar
to the following:

@import url(reset.css);

There isn’t much to a reset, but a few solid examples have evolved over
the years. They’re written to normalize inconsistencies between the
default setting of various browser or trimming down default rules when
they’re too overbearing (as in the case of form elements). Whichever one
you use, look it over before you use it on a project to make sure it isn’t
doing anything you don’t want (such as setting colors or font sizes).

ptg

Chapter 13: Resets and Frameworks 221

Eric Meyer’s Reset

Eric Meyer’s Reset (http://meyerweb.com/eric/tools/css/reset/index.html)
is widely used and can be found at the core of many larger projects
including some of the frameworks discussed later in this chapter.

YUI Library CSS Reset

The YUI Library CSS Reset (http://developer.yahoo.com/yui/3/cssreset/)
is similar but handles a few properties differently, including applying
foreground and background colors. It is available to link to directly from
Yahoo!’s servers, which can help with download speed and caching.

HTML5 Reset

The HTML5 Reset from Richard Clark (http://html5doctor.com/html-5-reset
-stylesheet/) builds on the Eric Meyer’s Reset and makes some modifica-
tions to sync with new or deprecated elements in the HTML5 specification.

Why Not Reset?
There are two strong arguments against resetting.

Resets can be a blunt instrument. A rule such as * { margin: 0; padding:
0; } may have undesirable effects on form elements. On the flip side,
explicitly picking a list of elements may mean some elements (old
deprecated elements such as <center> or new HTML elements such as
<article>) slip through the cracks.

Not resetting in the first place means not having to re-create common
styles like those for emphasis, list indentation, and bullets that were
already set by the browser. Also, edge cases or little-used HTML elements
(<dl>, <cite>, <legend>) and markup patterns (in a <blockquote>)
must be tested to make sure that content added to the site later is prop-
erly styled.

http://meyerweb.com/eric/tools/css/reset/index.html
http://developer.yahoo.com/yui/3/cssreset/
http://html5doctor.com/html-5-reset-stylesheet/
http://html5doctor.com/html-5-reset-stylesheet/

ptg

The CSS Pocket Guide222

The type of content appearing on the site will weigh heavily on the
appropriateness of a reset. A text-heavy site such as a blog may want
to leave more of the browser styling intact, while an application or
e-commerce site that relies on smaller content elements may want to be
more controlled. Ultimately, the choice to zero out styles at the begin-
ning of a project’s code is one of taste and how you prefer to work rather
than one of purely technical merit.

Cross-Browser CSS via JavaScript
You can use a CSS reset to create an even starting point for styling
individual page elements. But they don’t create that same level ground
for browsers’ support for newer selectors and CSS properties. A drop-in
JavaScript bridge library may be a convenient way to bridge the gaps in
CSS support so that older browsers function like more recent browsers.

When the included library loads, it will typically test the browser’s
support against a list of CSS features. If a feature is supported, the script
will do nothing. However, for those unsupported features, it will comb
the style sheet code for their use and then attempt to replicate the
behavior of the unsupported CSS through scripting.

You can use JavaScript to check for all CSS 2.1 or CSS3 features missing
in a browser, and other libraries are written to target specific gaps in
support.

Common Bridge Libraries
There are many JavaScript bridge libraries available to use on your proj-
ects, each approaching the task of extending support for the CSS code
you’ve written in different ways.

ptg

Chapter 13: Resets and Frameworks 223

IE7.js

The goal of IE7.js (http://code.google.com/p/ie7-js/) is to make Internet
Explorer 5.5 and 6 behave like and support the features of Internet
Explorer 7. This includes fixing some HTML and CSS bugs as well as
adding support for alpha-transparent PNG images. This may seem like a
baby step, but if IE7 is among your target browser matrix and your code
is already stable there, you may not need to do more than this to get IE6
in line.

IE8.js and IE9.js scripts are also part of the project, by Dean Edwards,
providing similar version bridging support (to match IE8 and IE9,
respectively).

Selectivzr

Keith Clark’s ie-css3.js (http://selectivizr.com/) is an example of a project
that aims to add missing selector support (::first-child, ::nth-child(),
[attr], and so on) to Internet Explorer 6 through 8. It remains lightweight
by leveraging other JavaScript libraries already included in the document,
such as jQuery or MooTools, that have selector tools.

eCSStender

Aaron Gustafson’s eCSStender (http://ecsstender.org/) provides a flexible
framework for all browsers for fixing browser bugs or lack of support as
well as helping navigate the tangle of vendor extension usage in more
modern browsers. Extensions are available that add support for CSS3
features such as transitions, transforms, and rgba()/hsla() colors in
older browsers.

Modernizr

Unlike the previous libraries mentioned, Modernizr (http://www
.modernizr.com/) does not itself add support for any missing feature

http://www.modernizr.com/
http://www.modernizr.com/
http://code.google.com/p/ie7-js/
http://selectivizr.com/
http://ecsstender.org/

ptg

The CSS Pocket Guide224

or browser bug. Instead, it provides feature detection, the results of
which can be referenced from your CSS or JavaScript code. Classes such
as .multiplebgs or .no-multiplebgs are added to the <html> element
of your document, allowing you to define an alternate set of styles.

More Targeted Solutions

Another class of scripts does not attempt to fix a group of CSS features
or fix a specific browser’s problems, instead targeting a very specific
CSS feature.

The rounded corners discussion in Chapter 8 mentioned using JavaScript
to create DOM elements to apply rounded corner effects for browsers
that do not support the border-radius property. CurvyCorners (http://
www.curvycorners.net/) is one library that does this for you and is an
example of a library that is used to target one specific gap in browser
support rather than going after a larger class of problems.

Why Not Use JavaScript?
These JavaScript libraries can be useful to bring a browser in line with
the A-grade browsers you’re targeting with your CSS code, but they can
be overkill. By design, many of these libraries attempt to fix most or all
problems with a browser, whereas your project may have only one or two
unsupported features or browser bugs that need to be fixed. Why load a
script to add support for the :not() selector or border-radius property
if it doesn’t appear in your code?

When there are just a few features that would have to be fixed in this
manner, it may be more efficient to find alternate ways to code the
effects through CSS and HTML rather than turn to scripting. There may be
other selectors you can use, for example. In browsers with lower usage, it
may be OK just to leave things unsupported.

http://www.curvycorners.net/
http://www.curvycorners.net/

ptg

Chapter 13: Resets and Frameworks 225

Likewise, if you are tasked with building a site where you know you have
older browsers in that A- or B-grade classification (Chapter 2), you proba-
bly will want to avoid some of the unsupported selectors or cutting-edge
CSS3 features while building the site. This will ensure that your targets
are met and your site displays properly, even without JavaScript enabled,
in the largest segment of your user base.

These bridge libraries are best when you have a few noncore elements
of the design you’d like to see supported in a wider space or when you’re
looking to help out the lower-grade browsers that you’d still like to
deliver the full experience to.

CSS Frameworks
With so many millions of sites being designed each year, it is a good
assumption that any new project that comes along will have a layout
grid or other layout properties that may have already been built for
another site. Perhaps there are details or contexts of content items that
will be unique, but patterns will emerge from the layout grid or other
areas that can be transferred from one project to another.

Open source frameworks allow developers to share these patterns and
conventions, start with a tested baseline of code, and spend time on the
specifics instead of retyping code.

These frameworks include not only a style sheet but also HTML markup
patterns and examples for accomplishing common tasks such as a
layout grid.

tip If you’re using a popular content management system (CMS), there
may be a theme or template that combines a CSS framework with the

basic markup and application features already included. The Sandbox theme for
WordPress is a good example of this generic baseline with which to work from.

ptg

The CSS Pocket Guide226

Common CSS Frameworks
Far from a comprehensive listing, here are a few frameworks that have
become popular because of the quality of their code and their flexibility.

Blueprint

Blueprint (http://www.blueprintcss.org/) provides a broad starting point
for starting to build a site including a reset, layout grid tools, and base-
line typographic and form styling. There are also plug-ins or examples for
common content elements such as tabs, buttons, and iconography.

960

The 960 grid system (http://960.gs/) takes a 960-pixel area and allows
you to specify a 12- or 16-column grid with 20-pixel gutters between
them. This split, and the code that is generated and provided for you
to place content in the grid, allows you to quickly put a page layout
together. The sizing and spacing rules offer a very controlled grid to
design a site from without being too restrictive.

Object Oriented CSS (OOCSS)

As much code philosophy as framework, Object Oriented CSS (http://
wiki.github.com/stubbornella/oocss/ or http://oocss.org), spearheaded
by Nicole Sullivan, focuses on content elements first. It breaks down the
content into pieces and modules and uses their similarities to define
a common language of content labels applied as class names. This is
particularly useful for large sites because it takes full advantage of the
cascading aspects of CSS to help maintain consistency across the many
different content types typical of larger web sites.

http://www.blueprintcss.org/
http://960.gs/
http://wiki.github.com/stubbornella/oocss/
http://wiki.github.com/stubbornella/oocss/
http://oocss.org

ptg

Chapter 13: Resets and Frameworks 227

YUI Library

The Reset file I mentioned earlier is just a small part of the YUI Library.
The larger project is comprised of a baseline set of CSS files , baseline
JavaScript files, and components for common web application interface
components such as cookie access, drag-and-dropped elements, date
pickers, and sliders. Similar interface widget libraries are available from
jQuery UI, script.aculo.us, and MochaUI. They all provide a collection of
widgets to choose from and rules for embedding and skinning those
content elements, but they do not offer the more general reset and
framework aspects that YUI does.

Why Not Use a Framework?
Like any other tool, frameworks are developed with certain priorities
based on the specific problems developers are attempting to solve. As
they evolve, they may become more generic, but each framework main-
tains these priorities that are sometimes not the same as your needs on
any given project.

For instance, the YUI tools tend to be a bit more web application focused,
and OOCSS works best when the site is complex enough to have the
depth of content types to manage. Attempting to go against the grain
will cause you to write more code than what you’d save and will cause
you more headaches than starting from scratch.

Beyond Frameworks
Frameworks provide a starting point to begin developing a web site,
but they don’t change how you write and edit CSS code. All the rules of
inheritance, specificity, source order, and syntax discussed in this book
continue to apply for any site-specific code you add on top of a chosen
framework.

ptg

The CSS Pocket Guide228

There is an emerging class of tools for authoring and generating CSS
code that makes small modifications to the language and allows helpers
such as variables and selector nesting to be used. These changes remove
some of the repetition and document searching that typically come with
building and maintaining styles for a larger site.

CSS Preprocessors
To turn the written code back into code in a syntax, browsers understand
a conversion layer (preprocessor) is added as a compilation step via tools
on your local development machine or via server-side scripts.

Less

Less (http://lesscss.org/) is a Ruby gem that adds the ability to include
the CSS rules from one selector into another (a mixin), selector nesting,
simple mathematical formulas, and variables that stand in for values
so that colors, sizes, and other values need to be typed only once. The
following is an example of both a variable definition and a nested rule
as written using Less:

@highlight_color: #eaa;

blockquote {

font-size: 1.4em;

a {

 text-style: italic;

 background-color: @highlight_color;

}

}

http://lesscss.org/

ptg

Chapter 13: Resets and Frameworks 229

The previous code gets compiled into the following final code that gets
sent to the visitors’ browsers:

blockquote {

font-size: 1.4em;

}

blockquote a {

text-style: italic;

background-color: #eaa;

}

Sass

Sass (http://sass-lang.com/) is also a Ruby gem and offers variable, mixin,
math, and nesting features similar to Less. It has two different syntaxes
to choose from, one similar to CSS (and Less) and an alternate syntax that
breaks from the brackets and colons of CSS into a tab-based style some
may find more readable or manageable.

http://sass-lang.com/

ptg

This page intentionally left blank

ptg

As CSS has evolved as a language, it has often attempted to make
common tasks that may be difficult or inflexible quite easy. Some of
these new properties are based on experimental properties in individual
browsers, but often they’re based on design and code patterns used every
day by developers.

For example, the need to use multiple HTML elements as hooks so that
multiple background images can be used (shown in Figure 7.4), and the
frequency with which this is done, has led to CSS changes that support
multiple background images on a single element, as you saw in Chapter 8.

The Not Too Distant
Future of CSS

14

ptg

The CSS Pocket Guide232

Several CSS3 features have been covered in previous chapters because
they have broad support in modern browsers, they are used to accom-
plish enhancements without major impact on the design if not
supported, or both. Either way, they can be incorporated into the toolbox
for most new web projects.

This chapter will give you a look at other new properties you can use
today as well as what is to come. In some cases, these features have
much less support in current browsers than the features covered
elsewhere. Included in this chapter is information on current browser
support for each property to help you make an informed decision about
which of these properties have wide enough support to find their way
into your projects. Check the already mentioned browser support charts
or When Can I Use… (http://caniuse.com/) for detailed and current
browser support information before deciding whether to use each
property.

The box-shadow Property
Drop shadows, either solid or with feathered edges, can be drawn behind
content boxes using the box-shadow property. CSS3 box shadows are
more flexible than what you might be able to do with older techniques
such as using a fixed-sized, semitransparent PNG image as the back-
ground image of an item. The box-shadow property can take one or more
comma-separated <shadow> definitions.

■ none: No shadow is drawn.

■ <shadow>: The definition of a shadow.

The description of a CSS <shadow> has three parts: two to four <length>
values, a shadow <color>, and an optional inset keyword. The <length>
values represent, in order, the horizontal offset of the shadow, the verti-
cal offset of the shadow, the blur distance (0 is no blur), and a spread

http://caniuse.com/

ptg

Chapter 14: The Not Too Distant Future of CSS 233

distance (the growth or contraction of a shadow from the size of an
element). The first two values, or the offsets, are required. If the blur
or spread lengths are not supplied, they are assumed to be 0.

Shown in Figure 14.1, the following code demonstrates a sharp box
shadow (no blur radius) and a fuzzy shadow (with a blur radius set).

Figure 14.1
Example of a box
shadow without
and with a blur
radius.

div.one {

/* for Firefox */

-moz-box-shadow: 10px 10px rgba(0,0,0,0.8);

/* for Safari and Chrome */

-webkit-box-shadow: 10px 10px rgba(0,0,0,0.8);

/* W3C specs */

box-shadow: 10px 10px rgba(0,0,0,0.8);

}

div.two {

/* for Firefox */

-moz-box-shadow: 10px 10px 20px rgba(0,0,0,0.8);

/* for Safari and Chrome */

-webkit-box-shadow: 10px 10px 20px rgba(0,0,0,0.8);

/* W3C specs */

box-shadow: 10px 10px 20px rgba(0,0,0,0.8);

} (continues on next page)

ptg

The CSS Pocket Guide234

[...]

<div class="one">

Box with a sharp drop shadow

</div>

<div class="two">

Box with a drop shadow with a large blur

</div>

Shadows can be draw inside an element using the inset keyword in the
definition of a shadow. Replacing the inside shadow made with a back-
ground image used on the text input field in Figure 11.4 can be done with
the following code (Figure 14.2):

div.one {

/* for Firefox */

-moz-box-shadow: inset 10px 10px rgba(0,0,0,0.8);

/* for Safari and Chrome */

-webkit-box-shadow: inset 10px 10px rgba(0,0,0,0.8);

/* W3C specs */

box-shadow: inset 10px 10px rgba(0,0,0,0.8);

}

div.two {

/* for Firefox */

-moz-box-shadow: inset 10px 10px 20px rgba(0,0,0,0.8);

/* for Safari and Chrome */

-webkit-box-shadow: inset 10px 10px 20px rgba(0,0,0,0.8);

/* W3C specs */

box-shadow: inset 10px 10px 20px rgba(0,0,0,0.8);

}

[...]

<div class="one">

Box with a sharp inset shadow

</div>

ptg

Chapter 14: The Not Too Distant Future of CSS 235

<div class="two">

Box with a inset shadow with a large blur

</div>

Figure 14.2
Example of an
inset box shadow
without and with
a blur radius.

The box-shadow property is supported now in Firefox 3.5+, Safari 3.0+,
Chrome 1+, Opera 10.5+, and Internet Explorer 9+. Safari 5+ and Chrome
4+ offer full support of the box-shadow definitions, but older versions
don’t support the inset keyword. See my blog post at http://placename
here.com/article/384/ for more information on creating a cross-browser
drop shadow using both the box-shadow property and the proprietary IE
filter extension to apply a similar shadow in IE6 through IE8.

The background-size Property
Through CSS 2.1, background images were displayed at their default/
inherent size. If you wanted to have an image behind an element be
the fill size of the element, you would either have to make sure the size
of the image and the element matched or have to use some trickery to
place the image in a <div> positioned and sized to the content element
but with a lower z-index value.

But now images can be scaled or resized using the background-size
property that accepts two values: the first for the horizontal sizing and
the second for the vertical sizing (if one value is given, the second is
assumed to be auto).

http://placenamehere.com/article/384/
http://placenamehere.com/article/384/

ptg

The CSS Pocket Guide236

■ auto: Scales the side of the image so that the inherent aspect ratio of
the image is maintained; if both values are auto, the image appears at
its normal size (default).

■ <percentage>: Scales the size of the background image to a percent-
age of the element’s (not image’s) background area in the specified
direction.

■ <length>: Scales the side of the background image to the specified
length.

Figure 14.3 demonstrates the background-size property when these
<percentage> and <length> values are used for sizing.

div.one {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

}

div.two {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

/* for Firefox 3.6 */

-moz-background-size: 100% 50px;

/* for Safari and Chrome */

-webkit-background-size: 100% 50px;

/* for Opera */

-o-background-size: 100% 50px;

/* W3C specs */

background-size: 100% 50px;

}

div.three {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

ptg

Chapter 14: The Not Too Distant Future of CSS 237

/* for Firefox 3.6 */

-moz-background-size: 100% 100%;

/* for Safari and Chrome */

-webkit-background-size: 100% 100%;

/* for Opera */

-o-background-size: 100% 100%;

/* W3C specs */

background-size: 100% 100%;

}

[...]

<div class="one">

Background with no background sizing

</div>

<div class="two">

Background with background-size set to 100% 50px

</div>

<div class="three">

Background with background-size set to 100% 100%

</div>

Figure 14.3 Example of a background image without background-size set and with
background-size set to specific dimensions.

ptg

The CSS Pocket Guide238

As an alternative to the paired values shown earlier, the singular
keywords contain and cover describe explicit behaviors for how the
background may fill the available space.

■ contain: The background image is sized as large as it can be so that it
is completely contained within the available space; if the aspect ratio
of the image is different from the background area, then one side will
be 100 percent, and another will be smaller than the available length.

■ cover: The background image is sized so that it scales up (or down) to
completely fill the background area; if the aspect ratio of the image is
different from the background area, then one side will be 100 percent,
and another will be larger than the available length and appear cropped.

Figure 14.4 displays the background-size property when set using these
keywords.

div.one {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

}

div.two {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

/* for Firefox */

-moz-background-size: cover;

/* for Safari and Chrome */

-webkit-background-size: cover;

/* for Opera */

-o-background-size: cover;

/* W3C specs */

background-size: cover;

}

ptg

Chapter 14: The Not Too Distant Future of CSS 239

div.three {

background: url(images/background_sizing_tile.png)

➥ no-repeat top left;

/* for Firefox */

-moz-background-size: contain;

/* for Safari and Chrome */

-webkit-background-size: contain;

/* for Opera */

-o-background-size: contain;

/* W3C specs */

background-size: contain;

}

[...]

<div class="one">

Background with no background sizing

</div>

<div class="two">

Background with background-size set to cover

</div>

<div class="three">

Background with background-size set to contain

</div>

Figure 14.4 Examples of background-size keywords.

ptg

The CSS Pocket Guide240

Background image sizing is supported in some form by Firefox 3.6+,
Safari 3+, Chrome 4+, Opera 9.5+, and IE9+.

Color Gradients
The background property is getting another enhancement with a feature
that allows for the definition of a color <gradient> value to take the
place of a more conventional file-based background-image.

Color gradients are lighter weight and more flexible than attempting to
create the properly sized gradient via an image file in Photoshop or other
graphic creation tool. Gradients can be linear or radial and can optionally
transition between one or more color “stops.”

The following code builds a linear gradient that shifts from solid black to
solid white and then back to black (Figure 14.5):

div {

[...]

/* for unsupported browsers */

background: #aaa;

/* for Firefox */

background: -moz-linear-gradient(top, #000, #fff, #000);

/* for Safari and Chrome */

background: -webkit-gradient(linear, left top, left

➥ bottom, from(#000), to(#000), color-stop(0.5,#fff));

/* W3C specs */

background: linear-gradient(left top, #000, #fff, #000);

}

The direction (or angle) of the gradient can be controlled, as can the
distance it takes to transition colors.

ptg

Chapter 14: The Not Too Distant Future of CSS 241

Figure 14.5
A linear gradient
with three colors.

Unfortunately, the draft of the CSS3 Images Module specification and
the syntax used by WebKit browsers and Firefox vary a good deal, so the
definition of the gradient is currently quite complex. Westciv has a handy
tool to create gradients and code for either browser at http://westciv.
com/tools/gradients/.

CSS gradients are supported in their experimental forms in Firefox 3.6+,
Safari 4+, and Chrome 3+.

Border Images
Flexible, image-based borders can replace the standard border styles
using the border-image property. This is achieved by slicing the border
area into a nine-segment grid representing each of the corners of the
border area and the sides, as shown in Figure 14.6. A single image file is
similarly split into nine segments and mapped to each of the areas of the
border area and the center of the container.

Figure 14.6
An example
of the nine-
quadrants of
an image used
for a border
background.

http://westciv.com/tools/gradients/
http://westciv.com/tools/gradients/

ptg

The CSS Pocket Guide242

The value for border-image property is comprised of an image reference,
a description where the image is divided to create nine segments, how
those segments are positioned, and finally a description of how they tile
to fill the available area.

border-image-source

The border-image-source property accepts a reference to the image
used as the border image.

border-image-slice

border-image-slice defines where the four lines that slice an image
into segments are positioned, inset from each of the four sides of the
image. For the image displayed in Figure 14.6, it would make sense to
position these dividing lines 30 pixels from each edge to create nine even
segments. The distance from each edge can be measured by the follow-
ing values:

■ <number>: The number of pixels (or the coordinates for SVG images).
Pixel units are implied for bitmap background images, and the unit
should be left off.

■ <percentage>: A percentage value based on the dimensions of
the image.

A width for the border can optionally be assigned via the
border-image-slice property by adding a forward slash (/) after the
slice position values. These width measurements are the same as the
border-width property, and if both properties are set, then the border
width values set as part of border-image-slice override those set in
the border-width property. The following example sets the slices that
segment the image to be 30 units from each edge, with a border width of
30 pixel for the top and bottom border and 15 pixel for the left and right.

ptg

Chapter 14: The Not Too Distant Future of CSS 243

div.one {

/* for Firefox */

-moz-border-image-slice: 30 / 30px 15px;

/* for Safari and Chrome */

-webkit-border-image-slice: 30 / 30px 15px;

/* W3C specs */

border-image-slice: 30 / 30px 15px;

}

tip The border width behavior of border-image-slice allows you to set
one width for browsers that only understand the traditional border

properties and alter the size for those that understand border-image.

border-image-repeat

The border-image-repeat property defines how the slices of the border
image fill the flexible space on the side borders and middle portion of
the border area. You can use one or two of the following keywords:

■ stretch: The image slice is scaled to fit the available space, without
repeating (default).

■ repeat: The image slice is not scaled but tiled to fill the available
space. As a result, the image may appear cropped on some edges.

■ round: The image slice is tiled; however, only whole images are used.
The tiles are then scaled evenly to fill the remaining space.

If only one keyword is provided, it is applied to both the borders and the
center section.

border-image (Shorthand)

The shorthand border-image accepts the previous three subproper-
ties, as well as the additional properties of border-image-width

ptg

The CSS Pocket Guide244

and border-image-outside (that describe where the images are
drawn in the border area) in the order <border-image-source>,
<border-image-slice>, <border-image-repeat>.

Figure 14.7 uses the image from Figure 14.6 as a border image and
demonstrates the difference between border-image-repeat values.

div {

/* set common width for all browsers */

border-width: 30px;

}

div.one {

/* for Firefox */

-moz-border-image: url(images/border_background_tile.png)

➥ 30 30 30 30 round round;

/* for Safari and Chrome */

-webkit-border-image: url(images/border_background_tile.png)

➥ 30 30 30 30 round round;

/* W3C specs */

border-image: url(images/border_background_tile.png) 30 30

➥ 30 30 round round;

}

div.two {

/* for Firefox */

-moz-border-image: url(images/border_background_tile.png)

➥ 30 30 30 30 stretch stretch;

/* for Safari and Chrome */

-webkit-border-image: url(images/border_background_tile.png)

➥ 30 30 30 30 stretch stretch;

/* W3C specs */

border-image: url(images/border_background_tile.png) 30 30

➥ 30 30 stretch stretch;

ptg

Chapter 14: The Not Too Distant Future of CSS 245

}

[...]

<div class="one">

border image with sides and middle set to round

</div>

<div class="two">

border image with sides and middle set to stretch

</div>

Figure 14.7
Examples of
border back-
grounds with
round and
stretch values
for border-
image-repeat.

Border backgrounds are supported in Firefox 3.5+, Opera 10.5+, Chrome
3+, and Safari 3.2+.

WAI-ARIA Roles
Though not explicitly CSS related, the Accessible Rich Internet Application
(WAI-ARIA) specification (http://www.w3.org/TR/wai-aria/) provides
definitions of common semantics of application widgets and states as
a semantic layer to be added to existing HTML markup using the role
attribute. Role types include navigation, progressbar, alertdialog,
tab, and tooltip. By applying these roles to HTML elements, screen
readers and other assistive devices can react to these items more appro-
priately than they would an element with a class or id of progressbar.

http://www.w3.org/TR/wai-aria/

ptg

The CSS Pocket Guide246

The CSS attribute selector can also leverage these role definitions, along
with state-based attributes such as aria-checked, as hooks for styling,
rather than relying on class attributes.

You can find more about WAI-ARIA roles and their usage in the spec on
the W3C site (http://www.w3.org/TR/wai-aria/usage).

The calc() Function
The calc() function lets you replace any <length> value assignment
with a mathematical expression rather than a fixed-length unit. These
arithmetic expressions can be built with the operators +, -, *, /, min, max,
and mod.

The problem of leftover pixels that arose in Chapter 7 when mixing
percentage values and fixed lengths (Figure 7.9) can be solved by using
calc() instead. Figure 14.8 shows the updated multicolumn, flexible
layout.

/* modifications to 7.9 using calc() */

.main_left,

.main_center {

/* for unsupported browsers */

width: 48%;

/* for Firefox 4 */

width: -moz-calc(50% - 7px);

/* W3C specs */

width: calc(50% - 7px);

}

http://www.w3.org/TR/wai-aria/usage

ptg

Chapter 14: The Not Too Distant Future of CSS 247

Figure 14.8
A flexible,
multicolumn
layout using
calc().

In the previous code, the available width of the container is split shared
by the margins between the boxes (the four vertical side borders), with
the remaining area split evenly between the two flexible columns. The
arithmetic you would use to calculate what is left over after the fixed
area is 100% – 10px – 4px. That area split between each column and
cleaned up a bit is 100%/2 – 14px/2.

calc() will be supported in upcoming browsers including Internet
Explorer 9 and Firefox 4.

Transformations and Rotations
Using CSS transforms, you can rotate, skew, or scale elements.

Transforming an element does not change the flow of a document;
instead, the element takes up its pretransformed shape in the document
much in the same way that relative positioned elements behave.

transform

The transform property is used to define one or more
<transform-functions> for the specified element.

■ none: No transform is applied.

■ <transform-function>: The description of a transform to be applied
to an element.

ptg

The CSS Pocket Guide248

Values for <transform-function>

The following are values for <transform-function>:

■ translateX(<length>): Translates the element by the specified
amount on the x-axis.

■ translateY(<length>): Translates the element by the specified
amount on the y-axis.

■ translate(<length>[, <length>]): Translates the element by the
specified amount; the first value is along the x-axis, and the second
is along the y-axis (0 if not specified).

■ scaleX(<number>): Scales the element by the specified factor along
the x-axis.

■ scaleY(<number>): Scales the element by the specified factor along
the x-axis.

■ scale(<number>[, <number>]): Scales the element by the specified
factor along each axis; the first value is the x-axis, and the second is
along the y-axis (equal to x if not specified).

■ rotate(<angle>): Rotates an element around the origin by the speci-
fied angle (in deg units); a positive angle rotates the element in a
clockwise direction.

■ skewX(<angle>): Skews the element along the x-axis by the specified
angle (in deg units).

■ skewY(<angle>): Skews the element along the y-axis by the specified
angle (in deg units).

■ skew(<angle>[, <angle>]): Skews the element along each axis by
the specified angle (in deg units); the first value is the x-axis, and the
second is along the y-axis (0 if not specified).

ptg

Chapter 14: The Not Too Distant Future of CSS 249

■ matrix(<number>, <number>, <number>, <number>, <number>,
<number>): Specifies a linear transformation matrix (http://
en.wikipedia.org/wiki/Linear_transformation#Examples_of_linear_
transformation_matrices) for transformation of the element.

Starting with the dated flag graphic used the negative positioning
demonstration in Figure 7.6, you can rotate the flag and text by 270
degrees to sit alongside of the content item it is matched with.

/* modifications to 7.6 using transform */

article time {

/* adjust positioning */

top: 29px;

left: -81px;

/* for Firefox */

-moz-transform: rotate(270deg);

/* for Safari and Chrome */

-webkit-transform: rotate(270deg);

/* for Opera */

-o-transform: rotate(270deg);

/* W3C specs */

transform: rotate(270deg);

}

In the previous code example, the element was rotated and then posi-
tioned with absolute positioning to properly place it (Figure 14.9 on the
next page). The position before the rotation (and thus in any browser
that doesn’t support transitions) is shown by the dotted outline.

http://en.wikipedia.org/wiki/Linear_transformation#Examples_of_linear_transformation_matrices
http://en.wikipedia.org/wiki/Linear_transformation#Examples_of_linear_transformation_matrices
http://en.wikipedia.org/wiki/Linear_transformation#Examples_of_linear_transformation_matrices

ptg

The CSS Pocket Guide250

Figure 14.9
The flag and text
content is rotated
by 270 degrees
to a vertical
position.

If this position before the translation is undesirable (for example, because
it is shifted too low), it may be better to position the element as it was in
the original example and then apply two transforms to get it to its final
appearance: rotation and translation (Figure 14.10).

/* modifications to 7.6 using two transforms */

article time {

/* for Firefox */

-moz-transform: rotate(270deg) translate(-19px,-31px);

/* for Safari and Chrome */

-webkit-transform: rotate(270deg) translate(-19px,-31px);

/* for Opera */

-o-transform: rotate(270deg) translate(-19px,-31px);

/* W3C specs */

transform: rotate(270deg) translate(-19px,-31px);

}

Figure 14.10
The flag and text
content is rotated
and translated,
leaving a
more desirable
nontransformed
state.

ptg

Chapter 14: The Not Too Distant Future of CSS 251

transform-origin

The origin for any transform is by default the center of the element (50%
50%). You can adjust this origin using the transform-origin property,
allowing for rotation around a different point. transform-origin accepts
two values: the first is the horizontal position of the element, and the
second is the vertical position. Fixed units such as px units, negative
values, and values greater than 100 percent are all accepted, allowing for
the point of origin to be moved outside the element. Also accepted are
keywords for defining the origin point, including left, center, and right
along the x-axis and top, center, and bottom along the y-axis.

Figure 14.11 shows how the effects of a rotation of an element change
when the transform-origin is changed from its default position.

Figure 14.11
Elements
rotated around a
transform origin.
The diagonal
arrow represents
the new position
of the origin; the
circle represents
the rotational
transform.

note For the sake of brevity, only the code targeting Firefox is displayed in
the following code.

div {

height: 50px;

width: 50px; (continues on next page)

ptg

The CSS Pocket Guide252

border: 1px solid #000;

-moz-transform-origin: -100% -100%;

}

div.one {

border: 1px dashed #ccc;

}

div.two {

-moz-transform: rotate(45deg);

}

div.three {

-moz-transform: rotate(90deg);

}

div.four {

-moz-transform: rotate(135deg);

}

div.five {

-moz-transform: rotate(180deg);

}

div.six {

-moz-transform: rotate(225deg);

}

div.seven {

-moz-transform: rotate(270deg);

}

div.eight {

-moz-transform: rotate(315deg);

}

[...]

<div class="one">div one</div>

<div class="two">div two</div>

<div class="three">div three</div>

ptg

Chapter 14: The Not Too Distant Future of CSS 253

<div class="four">div four</div>

<div class="five">div five</div>

<div class="six">div six</div>

<div class="seven">div seven</div>

<div class="eight">div eight</div>

The second value is optional. In cases where it is left off, it is assumed to
be center.

The CSS3 transform property, its values, and the transform-origin prop-
erty are supported in some form by Safari 3.2+, Chrome 3+, Opera 10.5+,
Firefox 3.5+, and Internet Explorer 9+.

Transitions
CSS transitions are a way to define parameters for animating changes
to CSS properties on a specified element. Changes to styles can occur
because of updates in element state (:hover, :valid, and so on), scripted
changes to styles on an element, or other scripted changes to the DOM
structure causing a change in how selectors are applied.

transition-property

transition-property designates which CSS property or properties are
animated when a change occurs. Animations can occur with most CSS
properties; however, some properties such as background-image and
text-decoration cannot.

■ none: No properties will be animated (default).

■ all: All properties that can be animated will be.

■ <property-name>[, <property-name>]: A comma-separated list of
one or more properties that can be animated if a change occurs.

ptg

The CSS Pocket Guide254

transition-duration

The time it takes to transition from the original value of a property to the
final value can be set via the transition-duration property.

■ <time>: The time it takes for a transition to complete; in seconds
(s units)

transition-timing-function

By default the transition between values of a property is animated
along an even, linear function. You can alter this change via the
transition-timing-function by choosing between several built-in
functions or a custom cubic-Bezier curve.

■ ease | linear | ease-in | ease-out | ease-in-out: Keywords represent-
ing different types of built-in functions for animation

■ cubic-bezier(<number>, <number>, <number>, <number>): A transi-
tion function to define a custom cubic-Bezier curve

transition-delay

You can add a delay before a transition using the translation-delay
property.

■ <time>: The time it takes before for a transition begins animating; in
seconds (s units)

transition (Shorthand)

The shorthand transition property accepts one or more groups of
transition subproperty groups in the order: <transition-property>
<transition-duration> <transition-timing-function> <transition-
delay>. The following code example defines the transform for the hover
state on an image and applies a basic easing animation to the transition.

ptg

Chapter 14: The Not Too Distant Future of CSS 255

img {

/* for Firefox 4 */

-moz-transition: -moz-transform 0.5s ease-out;

/* for Safari and Chrome */

-webkit-transition: -webkit-transform 0.5s ease-out;

/* For Opera */

-o-transition: -o-transform 0.5s ease-out;

/* W3C specification */

transition: transform 0.5s ease-out;

}

img:hover {

/* for Firefox 4 */

-moz-transform: scale(1.5, 1.5);

/* for Safari and Chrome */

-webkit-transform: scale(1.5, 1.5);

/* For Opera */

-o-transform: scale(1.5, 1.5);

/* W3C specification */

transform: scale(1.5, 1.5);

}

[...]

<img src="images/hover_me.png" width="90" height="90"

➥ alt="Hover Me" />

The Mozilla Developer Center has a thorough article on working with
transitions at https://developer.mozilla.org/en/CSS/CSS_transitions.

CSS transitions are supported in Safari 3.2+ Chrome 3+, Opera 10.5+,
Firefox 4+, and Internet Explorer 9+.

https://developer.mozilla.org/en/CSS/CSS_transitions

ptg

SYMBOLS AND NUMBERS
#id (ID selector), 38
#rgb color values, 62
#rrggbb color values, 62
% (percentage-based units), 59–60
* (universal selector), 38
/* and */ in comments, xix
; (semicolons), at-rules and, 4
<url> function, 61
@font-face rule, 162–163
@import rule, 14, 208
@media rule, 208–209
@page rule, 211
\ as escape character, xix
960 grid system, 226

A
A-grade browsers, 33
A+-grade browsers, 34

absolute length-based units of
measurement, 60

absolute positioning, 85–88
Accessible Rich Internet Application

(WAI-ARIA) specification, 245–246
action pseudo-class selectors, 41
:active pseudo-class, 41
actual values, 9
adjacent sibling combinatory, 49
Adobe Flash

Flash replacement with sIFR, 169
z-index and, 92

Adobe Kuler tool, 67
::after pseudo-element selector, 47
Almost Standards Mode, 25
alpha color transparency, 64–66
and keyword, 214
at-rules, 4–5
attribute selectors, 39–41

Index

ptg

 Index 257

B
background images

background-image property, 124–125
background-position property, 125–126
basics, 128
buttons and, 202
for faking rounded corners, 140–141
fitting to elements, 128
layering, 107–109
multiple, 127
sprites, 133–135

backgrounds, 105–109, 123–135
background images, basics, 128
background images (buttons), 202
background images, fitting to

elements, 128
background images, multiple, 127
background shorthand property, 126–127
background-attachment property, 125
background-color property, 124, 125
background-position property, 125–126
background-repeat property, 125
background-size property, 235–240
border backgrounds, 241, 245
bullets, custom, 128–130
clever design and, 133, 192
faux columns, 106–107
form controls and, 191
images on list items, 174
overlapping elements, 130–131
smart tiling, 131–132
sprite images, 133–135

::before and ::after pseudo-elements,
47, 175, 176

B-grade browsers, 33
block elements, 9, 84
Blueprint, 226
body element, 108–109
borders, 135–145

basics, 123
border backgrounds, 241, 245
border boxes, 82
border images, 241
border shorthand property, 136–137
border-collapse property (tables),

182–183
border-color property, 135
border-image (shorthand) property,

243–245

border-image property, 242
border-image-repeat property, 243
border-image-slice property, 242–243
border-image-source property, 242
border-radius property, 137–138
border-spacing property (tables), 184
border-style property, 135–136
border-width property, 73, 136
on floated elements, 94
form controls and, 191
outlines, 138–139
rounded corners, faking. See rounded

corners, faking
box model, 69–82

alternative box model, 81–82
basics, 69–70
box sizing property, 81–82
horizontal centering blocks, 80–81
min and max dimensions, 74–75
negative margins, 78–80
nesting elements, 75–77
percentage calculations and, 60
properties, 71–74

box-shadow property, 232–234
box-sizing property, 81–82
bridge libraries, 222–225
browsers. See Web browsers
“Bulletproof @font-face syntax,” 165
bullets, custom, 128–130
Burdette, Lenny, 111
buttons, 201–204. See also radio buttons

C
calc() function, 246–247
Candidate Recommendations (CR),

specification drafts, 10
cascading process, 5–6
case sensitivity (CSS), xviii–xix
cells in tables, 182–185
chaining selectors, 50
check boxes, 189, 197–199
:checked pseudo-class selector, 193–194
child combinator, 49
child selector, 49
Chrome developer tools, xxi, xxii
Clark, Keith, 223
Clark, Richard, 221
.class (class selector), 39
clear property, 97–99

ptg

The CSS Pocket Guide258

clearfix utility class, 115
code

code examples for this book, xvii
CSS coding styles, 15–20
writing CSS code, xviii–xxii

color
with alpha transparency, 64–66
background color, 124, 125
basics, 62–64
border-color property, 135
color gradiants, 240–241
color palettes, 67–68
design and, 67
form controls and, 190–191
outline-color property, 139
text color, 64

columns. See also multicolumn layouts
constraints, column design and, 121–122
faux, 106–107
fixed-sized, 117
flexible, 119

combinators, 48–49
combining selectors, 50
comments, CSS code and, xix, 17–20
computed values, 7, 8
conditional comments, 29–30
constraints, column design and, 121–122
contain keyword, 238
containers

container elements, 88
containing blocks, 89–91
escaping, 110–111

content
in CSS, 101, 102
generated, 175–176, 212
hiding, 112

content blocks, creating, 102–104
content boxes, 81, 82
continuous media, defined, 12–13
corners. See rounded corners, faking
counters (lists), 177–179
cover keyword, 238
“Creating Presentations/Slideshows with

HTML & CSS,” 207
CSS

basics, 1–2
code, writing, viii–xxii
coding styles, 15–20
CSS2, CSS 2.1, CSS3, 11

Curvy Corners JavaScript library, 145, 224
custom bullets, 128–130

D
dashed keyword, 136
data

data: URI scheme, 61
tabular data, inputting (forms), 199

The data: URI kitchen tool, 61
declaration blocks, 3
declarations/declaration blocks, 3
descendant combinator, 48–49
design

clever design, 133
color and, 67
responsive design (media), 216–217

developer tools, xxi–xxii
devices

handheld, 213–214
user agents and, 12

dimensions, min and max in box model,
74–75

:disabled pseudo-class selector, 193–194
display property, 84–85
display:none property, 112
DOCTYPE switches, 25–26
Document Object Model (DOM)

JavaScript and, 15
documents, CSS code and, 17–18
DOM, JavaScript and, 15
dotted keyword, 135
drafts, of specifications, 10
drop-down menus, 111–112
duration of transitions, 254
dynamic pseudo-classes, 41

E
eCSStender, 223
Edwards, Dean, 223
elements

basics, 9
element types for content display, 84–85
form elements. See form controls
nested, font sizes and, 149–151
nesting, 75–77
overlapping in backgrounds, 130–131
required vs. optional embellishments, 140
reusing. See resets

ptg

 Index 259

em units, 58, 60
embedding fonts, 162–165
empty pseudo-class selector, 46
Eric Meyer’s Reset, 221
escape character (\), xix
ex units, 60

F
faux columns, 106–107
F-grade browsers, 34
fields, conditional (forms), 199–201
Firebug extension, xxi, xxii
Firefox

developer tools, xxi, xxii
Yahoo! YSlow, xxii

first and last child pseudo-class selectors,
44–45

first and last of type pseudo-class
selectors, 45

::first-letter pseudo-element selector, 47
::first-line pseudo-element selector, 47
fixed positioning, 88–89
fixed-sized columns, 117, 119–121
fixed-width layouts, 119
Flash

Flash replacement with sIFR, 169
z-index and, 92

flexible columns, 119, 121, 247
floated columns, wrapping, 115
floats

basics, 93–97
clear property and, 97–99
floated columns, wrapping, 115
floated list items, 109–110
floating into margins, 104–105

:focus pseudo-class, 41
Font Squirrel @font-face Generator, 165, 166
font styling

font shorthand property, 153–154
font styles, 152
font-family property, 148–149
font-size property, 149–151
font-style property, 152
font-variant property, 152
font-weight property, 152
letter-spacing property, 157
reviewing for style and legibility, 160
text-align property., 157
text-decoration property, 155–156

text-indent property, 158
text-shadow property, 159
text-transform property, 156
white-space property, 158
word-spacing property, 156
word-wrap property, 158

fonts. See also font styling; Web fonts and
typography

embedding, 162–165
font services, 165–166
Fonts.com offerings, 165–166

form controls, 189–194
backgrounds and borders, 190–191
colors, 190–191, 193
inheritance, 192–193
pseudo-class selectors, 193–194
sizing, 189–190

form element layouts
conditional fields, 199–201
labels above fields, 194–195
labels beside fields, 197
multicolumn forms, 195–196
placeholder text, 201
radio buttons and check boxes, 197–199
tabular data, inputting, 199

forms, 187–201
in different browsers, 188, 189, 192
form controls. See form controls
form element layouts. See form element

layouts
in various operating systems, 187–188

four-sided properties, defining values, 4
frameworks, 225–228

common frameworks, 226
limitations of, 227–228

functional notation, 62–63

G
general sibling combinator, 49
generated content, 175–176, 212
global styles, 16
Google

Google Font Directory, 166
Google Page Speed, xxii

gradiants, color, 240–241
grading (browsers), 32–34
groove keyword, 136
Gustafson, Aaron, 223
gutters around text, 77, 79, 104–105

ptg

The CSS Pocket Guide260

H
hacks, targeting browsers with, 28–29
Halbach, Till, 207
handheld devices, 213–214
hasLayout flag, 30–32
height properties, 70, 71, 153
hexadecimal color values, 62
hidden keyword, 93
horizontal centering blocks, 80–81
:hover pseudo-class, 41
hsla(h,s,l,a), color value, 65, 66
hsl(h,s,l), color scheme, 63
HTML, 8, 12, 13–15
HTML <link> element, 13–14
HTML <style> element, 14
html element, 108–109
HTML5 Reset, 221
hue-saturation-lightness color scheme, 63
hyperlinks, printing and, 212

I
ID selector, 38
IE7.js, 223
images. See also background images

border images, 241–245
image replacement, 167–169
list-style-image property, 173, 174

“Increase Your Font Stacks With Font
Matrix,” 162

inheritance, 7–8, 192–193
inline elements, 9
Internet Explorer (IE)

bridge libraries and, 223
conditional comments and, 29–30
Developer Tools, xxi
hasLayout and, 30–32

Irish, Paul, 165

J
JavaScript

to add four-corner elements, 145
browser support and, 222–225
drop-in libraries for browser support,

34–35
style sheets and, 15

The JavaScript Pocket Guide, 111

K
keywords. See also specific keywords

background-repeat property and, 125
border-image-repeat property and, 243
border-style property, 135–136
color keywords, 63
font-family property, 148–149
lists, 175

Koch, Peter-Paul, 27
Korpela, Jukka, 27

L
labels, 194–195, 197, 199
Lamb, Iain, 160
language pseudo-class, 43
Last Call periods (LC), 10
last child pseudo-class, 44–45
last of type pseudo-class, 45
left keyword, 93, 97
Less, 228
letter-spacing property, 157
library, drop-in JavaScript, 34–35
licensing of fonts, 165–166
line-height property, 153
link pseudo-class selectors, 41
links as buttons, 202–204
liquid layouts, 119
lists, 171–179

::before and ::after pseudo-elements,
175, 176

::marker pseudo-element, 175
counter() function, 177
counters, 177–179
generated content, 175–176
list items, 109–110
list properties, 172–175, 177
list-item default value, 172
ul, ol, and li, 172

LoVe/HAte, 42

M
Marcotte, Ethan, 217
margin property, 70, 71–72
margins, 78–80, 94, 95
max-width property, 121–122
measurements, 58–60
media

mobile, 213–214
print, 210–213

ptg

 Index 261

queries, 214–218
types. See media types

media types
@import rule, 208
@media rule, 208–209
media HTML attribute, 207–208
specifying, 207

Meyer, Eric, 221
Microsoft

conditional comments, 29–30
Web Embedding Fonts Tool (WEFT), 165

min and max dimensions, 74–75
min-width and max-width properties, 121–122
mixed-column layouts, 119–121
mobile media, 213–214
Modernizr, 223–224
monospace typeface, 149, 161
Mozilla Developer Center, 211
multicolumn layouts

constraints, 121–122
flexible columns, 119, 121, 247
floated columns, wrapping, 115
forms, 195–196
mixed-columns, 119–121
three columns, 117–118
two columns, 113–116

“Multi-column Layouts Climb Out of the
Box,” 118

multiple background images, 127

N
negation pseudo-class selector, 46
negative margins, 78–80
negative positioning, 110
Neil, Jon, 22
nesting

elements, 75–77
lists and, 175

none keyword, 85, 93, 97
not keyword, 214–215
nth child pseudo-class selectors, 43–44
nth of type pseudo-class selectors, 45

O
Object Oriented CSS (OOCSS), 226
ol list element, 172
only child pseudo-class selector, 45
only keyword, 215
only of type pseudo-class selector, 46

Opera, xxi, 207
operating systems, forms in different,

187–188
order of appearance of declarations, 6
origins, positioning and, 89–90
outlines, 138–139

outline shorthand property, 139
outline-color property, 139
outline-style property, 139
outline-width property, 139

overflow properties, 74, 115
overlays, 111–112

P
padding property, 70, 72–73
page layouts, 101–122

backgrounds. See backgrounds
content blocks, creating, 102–104
escaping containers, 110–111
floating into margins, 104–105
list items, 109–110
multicolumn. See multicolumn layouts
overlays, tooltips, drop-down menus,

111–112
page-break properties, 210–211
paged media, defined, 13
pages

preparing for printing, 211–212
Pearce, Alan, 118
Pedrick, Chris, xxii
Peekaboo bug, 31
percentage-based units (%), 59–60
pixel units (px), 58, 60
pixels, faking rounded corners and, 145
points (pt), 59, 60
position

background-attachment property, 125
list-style-position property, 173

positioning elements, 83–99
absolute positioning, 85–88
clear property, 97–99
default positioning, changing, 84
display property, 84–85
fixed positioning, 88–89
floats, 93–97
origins and containing blocks, 89–91
position basics, 85
relative positioning, 85
static value, 85

ptg

The CSS Pocket Guide262

positioning elements (continued)
visibility property, 93
z-index property, 92

positioning properties, 125–126
position:relative , 102
preferences, user browser settings and, 23
preprocessors, 228
print media, 210–213
properties. See also specific properties

box model properties, 71–74
camel casing in multi-word, 15
four-sided, values for, 4
inheritance and, 7
style properties, defined, 3
user style, custom, 23

Proposed Recommendation (PR)
specification drafts, 10

pseudo-class selectors, 41–46
:enabled, :disabled, :checked

(UI pseudo-classes), 42
:first-child, :last-child (pseudo-

classes), 44–45
:first-of-type, :last-of-type (pseudo-

classes), 45
:hover,:active, :focus (action pseudo-

classes), 41
:lang() (language pseudo-class), 43
:link, :visited (link pseudo-classes), 41
LoVe/HAte, 42
:not() (negation pseudo-class), 46
:nth-child(), :nth-last-child()

(pseudo-classes), 43–44
:nth-of-type(), :nth-last-of-type()

(pseudo-classes), 45
:only-child (pseudo-class), 45
:only-of-type (pseudo-class), 46
:root (root element pseudo-class), 43
:target (pseudo-class), 42

pseudo-element selectors, 46–48

Q
queries, media, 214–218
Quirks Mode, 25
quote marks, xix–xx, 61

R
radio buttons, 189–190, 192, 197–199
radius

border-radius property, 137–138

Recommendations (R), specification drafts,
10–11

relational selectors, 48–49
relative length–based units of

measurement, 60
relative positioning, 85, 131
rendering modes, 24–27
replaced elements, 9
:required pseudo-class selector, 193–194
resets, 219–222
resources, general, xviii
“Responsive Web Design,” 217
RGB colors, 62–63
rgba(r,g,b,a) color values, 65, 66
rgb(r,g,b), 62–63
ridge keyword, 136
right keyword, 93, 97
root element pseudo-class selectors, 43
rotations, 249–253
rounded corners, faking, 139–145

background images, using, 140–141
drawing pixels, 145
four backgrounds, using, 143–145
when one edge is fixed, 141–143

rows in tables, 185
rule sets, 3
rules

@font-face rule, 162–163
@import rule, 14, 208
@import rule (HTML), 14
@media rule, 208–209
@page rule, 211
coding styles and, 18–20

Rutter, Richard, 162

S
Safari

developer tools, xxi
form controls and, 189

sans-serif typeface, 149, 161
Sass, 229
Schmitt, Christopher, 188
selection pseudo-element selector, 48
Selectivzr, 223
SelectOracle, 50
selectors, 37–56. See also specific selectors

#id (ID selector), 38
* (universal selector), 38
arrangement of, 18–20

ptg

 Index 263

attribute selectors, 39–41
browser support for, 54
.class (class selector), 39
combinators, 48–49
combining and chaining, 50
defined, 3, 37
grouping, 54
!important declaration, 53
pseudo-class selectors. See pseudo-class

selectors
pseudo-element selectors, 46–48
readability of, 55
resuability of, 55–56
specificity, 51–53
speed of, 54–55
statements and, 3
targeting browsers with, 28
type selectors, 38

semicolons (;), at-rules and, 4
serif typeface, 148, 161
shadows, 232–235
Shea, Dave, 169
shorthand properties. See specific shorthand

properties
background shorthand property, 126–127
border/border radius shorthand

properties, 136–138
font shorthand property, 153–154
list-style shorthand property, 174
outline shorthand property, 139
transition shorthand property, 254–255

sidebars
two-column layouts with right

sidebar, 116
sIFR project, 169
Sitepoint CSS Reference, 211
sites. See Web sites
size

background-size property, 236–240
fixed-sized columns, 117, 119–121
of fonts, relative vs. fixed, 151
font-size property, 149–151
form controls, sizing, 189–190

smart tiling, 131–132
source order of declarations, 6
specifications, for CSS and HTML, 9–12
specificity of declarations, 5
sprites, background images, 133–135
Standards Mode, 24–25
statements, 2–4. See also at-rules; rules

static value, 85, 88
structural pseudo-classes, 41
style attribute (HTML), 15
style sheets

author, user, user agents, 5
basics, 2
browsers, 22
users, 5, 23–24

styles. See also font styling
border-style property, 135–136
code locations and, 16–17
fonts reviewing for style and

legibility, 160
outline-style property, 139

Stylish Firefox extension, 23
Sullivan, Nicole, 226
syntax hacks, 28–29
system fonts, 161–162

T
tables, 180–185

basics, 180–181
border-collapse property, 182–183
border-spacing property, 184
display values, 184–185
table, table-row, table-caption:

elements, 84
table-layout property, 182
text-align property, 184
vertical-align property, 184

tabular data, inputting (forms), 199
target pseudo-class selector, 42
text. See also font styling; Web fonts and

typography
placeholder text (forms), 201
text-align property, 157
text-align property (tables), 184
text-decoration property, 155–156
text-indent property, 158
text-shadow property, 159
text-shadow property, 202
text-transform property, 156
underlining, 156
white-space property, 158
word-spacing property, 156

three-column layouts, 117–118
tiling

background-repeat property and, 125
tiling, smart, 131–132

ptg

The CSS Pocket Guide264

timing of transitions, 254
tools. See also font styling

Adobe Kuler tool, 67
basics, xx–xxii
border-radius, 138
for color gradients, 241
The data: URI kitchen tool, 61
outlines as debugging tools, 139
SelectOracle, 50
Stylish Firefox extension, 23
Web Embedding Fonts Tool (WEFT), 165

tooltips, 111–112
transformations and rotations, 247–253

<transform-function> values, 248–249
transform property, 247, 253
transform-origin property, 251–253

transitions, 253–255
shorthand transition property, 254–255
transition-duration property, 254
transition-property, 253
transition-timing-function, 254
translation-delay property, 254

transparency, adding to color, 64–66
transparent color keyword, 66
Tricks Button Maker (CSS), 202
two-column layouts, 113–116
type selectors, 38
typeface. See font styling
typefaces, specifying, 161–169

@font-face rule, 162–163
custom fonts via text replacement,

166–169
embeddable fonts, creating, 165
font embedding, 162
font formats, 164–165
font licensing and foundries, 165–166
system fonts, 161–162

Typekit, 166
Typograph, 160
typography. See Web fonts and typography

U
UI pseudo-class selectors, 42
ul list element, 172
uniform resource identifiers (URIs), 61
universal selector, 38
URLs, 61
used values, 8–9
user agents, 12–13

user interfaces. See also forms
radio buttons and check boxes,

197–199
in various operating systems, 187–188

V
:valid and :invalid pseudo-class selectors,

193–194
validation tools, xx
values

<transform-function> values, 248–249
alpha values, 65
background-repeat property and, 125
basics, 8–9
color values, 62, 65
of declared properties, 3
display values (tables), 184–185
for four-sided properties, 4
inheritance and, 7–8
spcified, computed, used and

actual, 8–9
vertical-align property, 154–155, 184
visibility property, 93, 192
visibility:hidden property, 112
visible property, 93

W
WAI-ARIA roles, 245–246
Walker, Alex, 115
Web browsers, 21–35

bridge libraries and, 222–225
browser style sheets, 22
browser support for CSS properties, 232
CSS support via JavaScript, 34–35
forms in different, 187–188, 192
grading, 32–34
hasLayout flag, 30–32
media queries support, 217–218
rendering modes, 24–27
targeting, 27–30
user agents and, 12
user settings, 23
user style sheets, 23–24

Web Developer Toolbar extension, xxii
Web Embedding Fonts Tool (WEFT), 165
Web fonts and typography, 147–169

@font-face rule, 162–163
basics, 148, 161
customizing text. See font styling

ptg

 Index 265

embeddable fonts, creating, 165
font formats, 164–165
font licensing and foundries, 165–166
font shorthand property, 153–154
font-family property, 148–149
font-size property, 149–151
font-style property, 152
font-variant property, 152
font-weight property, 152
line-height property, 153
relative vs. fixed-sized fonts, 151
reviewing for style and legibility, 160
system fonts, 161–162
vertical-align property, 154–155

Web inspectors, xx–xxi
Web sites for downloading

Adobe Kuler tool, 67
code examples for this book, xvii
The data: URI kitchen tool, 61
Firebug extension, xxi
X-UA-Compatible headers, 27

Web sites for further information
bridge libraries, 223
browser support, 232
clearfix utility class, 115
CSS hacks, 29
CSS2.1 and CSS3, 11
floated elements, 99
frameworks, 226
general resources, xviii
Google Page Speed, xxii
“Graded Browser Support,” 32
hasLayout, 32
HSL colors, 63
IE's base style sheet, 22
image replacement, 169
modes, 27
Mozilla Developer Center, 211
Quirks Mode, 26
resets, 221
screenshots, 188
SelectOracle, 50

shadows, 235
sIFR project, 169
Sitepoint CSS Reference, 211
Stylish Firefox extension, 23
transitions, 255
W3C, 9
W3C validation service, xx
WAI-ARIA, 245, 246
Web fonts and styling, 160, 162
working around styling limitations, 192
Yahoo! YSlow, xxii

Web sites
modes and building new, 25

Web standards and specifications, 9–12
WebFonts.info Directory, 166
weight of declarations, 5
Westciv, 241
When Can I Use. . ., 232
whitespace, xix
white-space property, 158
width, of tables, 182
width properties

border-width, 136
in box model, 70, 71
outline-width , 139

word-spacing property, 156
word-wrap property, 158
wrapping, 93–97, 115

X
X-grade browsers, 34
X-UA-Compatible headers, 26–27

Y
Yahoo! YSlow, xxii
YUI Library, 227
YUI Library CSS Reset, 221

Z
zebra striping, 43–44
z-index property, 92, 192

	Contents
	Introduction
	Who Should Read This Book
	What You Will Learn
	What You Won’t Find in This Book
	What You Need to Follow Along
	Resources
	Writing CSS
	Case Sensitivity
	Comments
	Whitespace
	Quoting and Escaping Quotes
	Tools

	Chapter 1: CSS Basics
	What Is CSS?
	What Are Styles Sheets?
	Anatomy of a Statement
	Cascading
	Inheritance
	Specified, Computed, Used, and Actual Values
	Block, Inline, and Replaced Elements
	Web Standards and Specifications
	User Agents, Browsers, and Devices

	Working with CSS
	Attaching Styles to HTML
	Coding Styles

	Chapter 2: Web Browsers
	Where Do Styles Come From?
	Browser Style Sheets
	User Settings
	User Style Sheets

	Rendering Modes
	Standards Mode
	Almost Standards Mode
	Quirks Mode
	Choosing Modes with a DOCTYPE Switch
	X-UA-Compatible
	Specific Mode Differences

	Targeting Browsers
	Targeting with Selectors
	Targeting with Syntax Hacks
	Microsoft Conditional Comments

	IE and hasLayout
	Browser Grading
	A-Grade Browsers
	B-Grade Browsers
	F-Grade Browsers
	X-Grade Browsers
	A+-Grade Browsers

	CSS Support via JavaScript

	Chapter 3: Selectors
	E (Type Selectors)
	* (Universal Selector)
	#id (ID Selector)
	.class (Class Selector)
	Attribute Selectors
	[att]
	[att=val]
	[att~=val]
	[att|=val]
	[att^=val]
	[att$=val]
	[att*=val]

	Pseudo-class Selectors
	:link, :visited (Link Pseudo-classes)
	:hover, :active, :focus (Action Pseudo-classes)
	:target (Target Pseudo-class)
	:enabled, :disabled, :checked (UI Pseudo-classes)
	:lang() (Language Pseudo-class)
	:root (Root Element Pseudo-class)
	:nth-child(), :nth-last-child() (Nth Child Pseudo-classes)
	:first-child, :last-child (First and Last Child Pseudo-classes)
	:nth-of-type(), :nth-last-of-type() (Nth of Type Pseudoclasses)
	:first-of-type, :last-of-type (First and Last of Type Pseudoclasses)
	:only-child (Only Child Pseudo-class)
	:only-of-type (Only of Type Pseudo-class)
	:empty (Empty Pseudo-class)
	:not() (Negation Pseudo-class)

	Pseudo-element Selectors
	::first-letter (First-Letter Pseudo-element)
	::first-line (First-Line Pseudo-element)
	::before, ::after (Before and After Pseudo-elements)
	::selection (Selection)

	Combinators or Relational Selectors
	E F (Descendant Combinator)
	E>F (Child Combinator)
	E+F (Adjacent Sibling Combinator)
	E~F (General Sibling Combinator)

	Combining and Chaining Selectors
	Specificity
	The !important Declaration
	Selector Strategies
	Browser Support for Selectors
	Grouping Selectors
	Selector Speed
	Selector Readability
	Selector Reusability

	Chapter 4: Measurements, URLs, and Color Units
	Measurements
	Pixels (px)
	Ems (em)
	Points (pt)
	Percentages (%)
	Other Units of Note

	URLs
	Basic Colors
	#rrggbb or #rgb
	rgb(r,g,b)
	hsl(h,s,l)
	Color Keywords

	Color with Alpha Transparency
	rgba(r,g,b,a)
	hsla(h,s,l,a)
	transparent

	Creating and Maintaining Color Palettes
	Design
	Maintenance

	Chapter 5: The Box Model
	Properties
	width
	height
	margin
	padding
	border-width
	overflow

	Min and Max Dimensions
	Nesting Elements
	Using Negative Margins
	Horizontal Centering Blocks
	An Alternative Box Model
	box-sizing

	Chapter 6: Positioning and Floats
	The Document Flow
	display
	Position
	static
	relative
	absolute
	fixed

	Origins and Containing Blocks
	z-index
	visibility
	float
	clear

	Chapter 7: Page Layouts
	Building Blocks of CSS Layouts
	Creating Content Blocks
	Floating into Margins
	Creative Use of Backgrounds
	Inline and Floated List Items
	Using Positioning to Escape Containers
	Overlays, Tooltips, and Drop-Down Menus

	Multicolumn CSS Layouts
	A Two-Column Layout
	Two Columns with Right Sidebar
	A Three-Column Layout
	Fixed-Sized, Flexible, and Mixed Columns
	Designing with Constraints

	Chapter 8: Backgrounds and Borders
	Backgrounds
	Multiple Background Images
	Strategies for Background Images
	Background Image Sprites

	Border
	Outline
	Faking Rounded Corners

	Chapter 9: Typography and Web Fonts
	Font Basics
	font-family
	font-size
	font-weight
	font-variant
	font-style
	line-height
	font (Shorthand)
	vertical-align

	Additional Font Styling
	text-decoration
	text-transform
	word-spacing
	letter-spacing
	text-align
	white-space
	word-wrap
	text-indent
	text-shadow

	Specifying Typefaces
	System Fonts
	Font Embedding
	Custom Fonts via Text Replacement

	Chapter 10: Lists and Tables
	Lists
	display: list-item
	list-style-type
	Generated Content
	Counters

	Tables
	table-layout
	border-collapse
	border-spacing
	empty-cells
	vertical-align
	text-align
	Table display Values

	Chapter 11: Forms and User Interface Elements
	Working with Form Controls
	Sizing
	Colors, Backgrounds, and Borders
	Text and Form Element Inheritance
	States: Disabled, Required, and Invalid

	Common Form Element Layouts
	Label Stacked Above the Field
	Basic Multicolumn Forms
	Label Besides the Field
	Exceptions for Radio Buttons and Check Boxes
	Inputting Tabular Data
	Conditional Fields
	Placeholder Text

	Making Buttons
	Background Images
	CSS3: text-shadow, border-radius, and Gradients
	Links As Buttons

	Chapter 12: Media: Printing and Other Devices
	Media Types
	List of Media Types
	Specifying Media Types

	Print Media
	page-break-before and page-break-after
	page-break-inside
	The @page Rule
	Print Considerations
	Hyperlinks and Generated Content

	Mobile Media
	Mobile Considerations

	Media Queries
	Media Features
	Responsive Design
	Browser Support

	Chapter 13: Resets and Frameworks
	CSS Resets
	Using Resets
	Why Not Reset?

	Cross-Browser CSS via JavaScript
	Common Bridge Libraries
	Why Not Use JavaScript?

	CSS Frameworks
	Common CSS Frameworks
	Why Not Use a Framework?

	Beyond Frameworks
	CSS Preprocessors

	Chapter 14: The Not Too Distant Future of CSS
	The box-shadow Property
	The background-size Property
	Color Gradients
	Border Images
	WAI-ARIA Roles
	The calc() Function
	Transformations and Rotations
	Transitions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

