
Tyson Kopezynski

Windows
me)clfe)alell

UNLEASHED
I
|

jal

7|
\

u\

Property of Microsoft Library Bint /O¥/0/ c opy
Supplier Py. ef __

Rec'd Price $a a= |

QA/76.762/M563/K69/2007

Windows PowerShell unleashed

Tyson DISGARD

33156001053323 c10

Tyson Kopcezynski

Windows”
PowerShell

UNLEASHED

AL 800 East 96th Street, Indianapolis, Indiana 46240 USA

Windows® PowerShell Unleashed
Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval

system, or transmitted by any means, electronic, mechanical, photocopying, recording,

or otherwise, without written permission from the publisher. No patent liability is

assumed with respect to the use of the information contained herein. Although every

precaution has been taken in the preparation of this book, the publisher and author

assume no responsibility for errors or omissions. Nor is any liability assumed for

damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32953-0

Library of Congress Cataloging-in-Publication Data

Kopczynski, Tyson.

Microsoft PowerShell unleashed / Tyson Kopczynski.

p. cm.

ISBN 0-672-32953-0

1. Microsoft Windows (Computer file) 2. Operating systems (Computers) |. Title.

QA76.76.063K66 2007

005.4’46—dc22

2007008894

Printed in the United States of America

First Printing:

10 09 O8 O7 AS eee el

Trademarks
Ail terms mentioned in this book that are known to be trademarks or service marks

have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of

this information. Use of a term in this book should not be regarded as affecting the

validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-

ble, but no warranty or fitness is implied. The information provided is on an “as is”

basis. The authors and the publisher shall have neither liability nor responsibility to any

person or entity with respect to any loss or damages arising from the information

contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for

bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Editor-in-Chief

Karen Gettman

Senior Acquisitions

Editor

Neil Rowe

Development Editor

Mark Renfrow

Managing Editor

Gina Kanouse

Project Editor

George E. Nedeff

Copy Editor

Lisa M. Lord

Senior indexer

Cheryl Lenser

Proofreader

Water Crest

Publishing

Contributing Authors

Pete Handley, Mark

Weinhardt, and

Josh Tolle

Technical Editor

Pawam Bhardwaj

Publishing

Coordinator

Cindy Teeters

Book Designer

Gary Adair

Page Layout

Jake McFarland

Nonie Ratcliff

Safari The Safari® Enabled icon on the cover of your favorite technology book means the book is available

aooxsonune trough Safari Bookshelf. When you buy this book, you get free access to the online edition for
45 days. Safari Bookshelf is an electronic reference library that lets you easily search thousands

of technical books, find code samples, download chapters, and access technical information whenever and

wherever you need it.

To gain 45-day Safari Enabled access to this book

> Go to http://www.samspublishing.com/safarienabled

» Complete the brief registration form

> Enter the coupon code BICN-Z63E-MTEX-R2EQ-PTKW

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail

customer-service@safaribooksonline.com.

Contents at a Glance

Part ill

Introduction

Introduction to PowerShell

Introduction to Shells and PowerShell

PowerShell Basics

PowerShell: A More In-Depth Look

Code Signing

PowerShell Scripting Best Practices

Translating Your Existing Knowledge into PowerShell

PowerShell and the File System

PowerShell and the Registry

PowerShell and WMI

PowerShell and Active Directory

Using PowerShell to Meet Your Automation Needs

Using PowerShell in the Real-World

Using PowerShell to Manage Exchange

Index

107

125

157,

183

205

230

261

295

Table of Contents

Part |

Introduction

Introduction to PowerShell

Introduction to Shells and PowerShell

What Is a Shell?

Basic Shell Use

Basic Shell Scripts

A Shell History

Enter PowerShell

Summary

PowerShell Basics

Introduction

Getting Started

Accessing PowerShell

Understanding the Command-Line Interface (CLI)

Navigating the CLI

PowerShell Command Types

Calling PowerShell from Other Shells

Understanding cmdlets

Common Parameters

Useful cmdlets

Get-Help

Get-Command

Expressions

Understanding Variables

Built-in Variables

Understanding Aliases

Discovering Alias cmdlets

Creating Persistent Aliases

Escape Sequences

Understanding Scopes

Global

Local

Script

Table of Contents

Private

Your First Script

Summary

PowerShell: A More In-Depth Look

Introduction

Object Based

Understanding the Pipeline

-NET Framework Tips

Understanding Providers

Accessing Drives and Data

Mounting a Drive

Understanding Errors

Error Handling

Method One: cmdlet Preferences

Method Two: Trapping Errors

Method Three: The Throw Keyword

PowerShell Profiles

The All Users Profile

The All Users Host-Specific Profile

The Current User’s Profile

The Current User’s Host-Specific Profile

Understanding Security

Execution Policies

Setting the Execution Policy

Additional Security Measures

The PowerShell Language

Summary

Code Signing

Introduction

What Is Code Signing?

Obtaining a Code-Signing Certificate

Method One: Self-Signed Certificate

Method Two: CA Signed Certificate

The PVK Digital Certificate Files Importer

Signing PowerShell Scripts

Verifying Digital Signatures

Signed Code Distribution

Enterprise Code Distribution

Public Code Distribution

Summary

Ys

53

56

57

O//,

Oy

58

60

72

74

77

78

80

80

81

83

84

84

84

85

85

85

86

88

91

of

91

93

93

94

9S

96

97

99

100

101

102

105

105

106

vi Microsoft PowerShell Unleashed

5

Part Il

6

PowerShell Scripting Best Practices

Introduction

Script Development

Treat Scripting Projects as Actual Projects

Use a Development Life Cycle Model

Design and Prototype Your Scripts by Using Pseudocode

Gather Script Requirements Effectively

Don’t Develop Scripts in a Production Environment

Test, Test; Test

Keep Your Scripts Professional

Script Design

Put Configuration Information at the Beginning of Script

Use Comments

Avoid Hard-Coding Configuration Information

When Necessary, Use Variables in One Place

Provide Instructions

Perform Validity Checking on Required Parameters

Make Scripts and Functions Reusable

Use Descriptive Names Rather Than Aliases

Provide Status Information for Script Users

Use the WhatlIf and Confirm Parameters

Script Security

Digitally Sign PowerShell Scripts and Configuration Files

Never Set Execution Policies to Unrestricted

Try to Run Scripts with the Minimum Required Rights

Standards for Scripting

This Book’s Scripting Standards

Summary

Translating Your Existing Knowledge into PowerShell

PowerShell and the File System

Introduction

File System Management in WSH and PowerShell

Working with Drives

Working with Folders

Working with Files

Working with Permissions

Setting Permissions with SubInACL

Setting Permissions in PowerShell

From VBScript to PowerShell

The ProvisionWebFolders.wsf Script

Part Ill

10

Table of Contents

The ProvisionWebFolders.ps1 Script

Summary

PowerShell and the Registry

Introduction

Registry Management in WSH and PowerShell

From VBScript to PowerShell

The LibraryRegistry.vbs Script

The LibraryRegistry.ps1 Script

Summary

PowerShell and WMI

Introduction

Comparing WMI Usage Between WSH and PowerShell

Using WMI in WSH

Using WMI in PowerShell

Type Accelerators

From VBScript to PowerShell

The MonitorMSVS.wsf Script

The MonitorMSVS.ps1 Script

Summary

PowerShell and Active Directory

Introduction

Comparing ADSI Usage Between WSH and PowerShell

Using ADSI in WSH

Using ADSI with PowerShell

Retrieving Object Information

Creating an Object

From VBScript to PowerShell

The IsGroupMember.wsf Script

The IsGroupMember.ps1 Script

Summary

Using PowerShell to Meet Your Automation Needs

Using PowerShell in the Real-World

The PSShell.ps1 Script

Component One: Shell Replacement

Component Two: PSShell.exe

Component Three: PSShell.ps1

Putting It All Together

vii

146

Ihoy3)

157

SY

157

161

162

169

181

183

183

183

184

185

187

git

191

197

203

205

205

205

207

208

209

210

A

NV 2

222,

ZZ

235

ZS

236

239

240

245

Vili Microsoft PowerShell Unleashed

11

The ChangeLocalAdminPassword.ps1 Script

Summary

Using PowerShell to Manage Exchange

Introduction

The Exchange ManagementShell (EMS)

It’s Just a Snap-in

The GetDatabaseSizeReport.ps1 Script

The GetEvent1221Info.ps1 Script

The ProvisionExchangeUsers.ps1 Script

Summary ..

Index

246

299

261

261

261

262

266

Oe)

285

222

295

About the Author

With more than nine years of experience in the information technology sector, Tyson

Kopczynski has become a specialist in Active Directory, Group Policy, Windows scripting,

Windows Rights Management Services, PKI, and information technology security prac-

tices. Tyson has been a contributing author for such books as Microsoft Internet Security and

Acceleration (ISA) Server 2004 Unleashed and Microsoft Windows Server 2003 Unleashed (R2

Edition). In addition, he has written detailed technical papers and guides covering the

various in-the-field technologies he works with extensively. As a consultant at Convergent

Computing (CCO), Tyson has been able to work with the next generation of Microsoft

technologies since their inception and played a key role in expanding scripting and devel-

opment practices at CCO. Tyson also holds the SANS Security Essentials Certification

(GSEC), Microsoft Certified Systems Engineer (MCSE) Security certification, CompTIA

Security+ certification, and SANS Certified Incident Handler (GCIH) certification.

Dedication

I dedicate this book to the love of my life and very understanding

wife (Maiko). Without her support, my continuing pursuit of the

perfect script surely would have ended in disaster by now.

Acknowledgments

The first of many acknowledgments I would like to make starts with Rand Morimoto.

Without his support and guidance, this book would never have gotten off the ground. In

addition, I would like to thank Neil Rowe for giving me a chance to do this book and

overseeing it to fruition. I’m also grateful to my contributing authors, Pete Handley, Mark

Weinhardt, and Josh Tolle, for assisting me with putting the technical aspects of this book

together. To the editing team, Pawam Bhardwaj, George Nedeff, Mark Renfrow, and Lisa

Lord, I’m deeply indebted to you for the fantastic suggestions and your meticulous work

in editing this book. Also, to all my family, friends, and coworkers who have been

wondering if I still exist, | was working on a book, not ignoring you!

Last, but not least, | would like to give a huge thanks to the little turtle (PowerShell) that

lives in the eBay koi pond. During a project there, I spent many lunch hours watching

that little guy and his antics. Although his world was small in size, he obsessively

attempted to explore and understand every micron of it. Keep learning, little guy, as will I!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we're doing right, what we could do better, what

areas you'd like to see us publish in, and any other words of wisdom you're willing to

pass our way.

As a senior acquisitions editor for Sams Publishing, I welcome your comments. You can

e-mail or write me directly to let me know what you did or didn’t like about this bobok—

as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We

do have a User Services group, however, where I will forward specific technical questions related to

the book.

When you write, please be sure to include this book’s title and author as well as your

name, e-mail address, and phone number. | will carefully review your comments and

share them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe

Senior Acquisitions Editor

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site

at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in

the Search field to find the page you’re looking for.

ae : . - 1

. al
Lt) Get iri theh pT any aw 7

vdew O42 &= Aap. Q Fe af * pelts arin IR ae dined aap & rae

tin? ot gh thee 2 a> > svibeT JER eG Pa aplape oe
1 HOGAN Fg Mae ~ Tain. sain oy (a.gt" ae MF seqge ait eo %

.

-_ a,

> Gt AOAC | wie nts wt go) oH AZ. OU onli an ei ry Me emcee gB %
Bet OF WS +41 (hit yo 1 6a ed | Se Ae Oh 2 Gre) pn tie

2 Tits ogi Sy) (hry G OS apt we Sloe a Lien

AGT. ait Shou rik’ her som, te! Seen 3s ee 4.
ih Tes an hey Gabi! ey? cee) heweegt fire (eedlie, ee yew! Penh Prete) ioe

=

wal
a in << ; 7 Cen A % Out Op 4 ga! Ciena Ab We ian el ep ee .

aie AIRS alte Dm cot 1 ig Lelie ean aay pe) ana Ae om rear

AS woah as go SM Me GM Aline was sigan eee
i wie |) Gy > ee a engetaiina J i"

bios On) is 4 Gree < E>.
7 ' i

Pipes. be ke ROT ww. | wane’ h Pe :

1 On Deis Miele) b+ ing te Oy Oe Ss
@e ie ean” | ot => ihe BW Be a 9 12a os ae

PGs sy FF * O18 GO07L, 6 vas WY Se “od evah eae

Srey Set, | es ges i: ep a ape!

2 Ae is rears alt
jot e PA i ohio 21 ate

ai ’

Introduction

When I first started working on the PowerShell Unleashed

book, I happened to be reading a book on public key infra-

structure (PKI). Although the materials in the book gave

good background and reference information about PKI,

they lacked details on how to apply PKI in an environ-

ment. Applied presentation is a component I have often

wished was included in many technical books. With this

realization, I decided I would try to approach the subject

matter in the PowerShell book in a way different from most

other technical books.

The outcome of this realization is the book you’re now

reading. Although this book contains detailed reference

information about what PowerShell is, I made an effort to

show readers how PowerShell can be applied to meet their

specialized needs. This approach might not be new or

groundbreaking, but I hope it helps you gain a unique

perspective on one of the most impressive Microsoft prod-

ucts to be recently released.

That last statement is by no means free marketing for

Microsoft. The PowerShell team has truly created a shell

that’s enjoyable, easy, fun, and, yes, powerful. I can’t wait

to see what’s in store for the future of PowerShell and what

products will embrace its use.

Who Is This Book’s Intended

Audience?
This Unleashed book is intended for an intermediate level of

systems administrators who have invested time and energy

in learning Windows scripting and want to translate those

skills into PowerShell skills while learning how it can meet

their real-world needs. This book has been written so that

anyone with a scripting background can understand what

PowerShell is and how to use it, but by no means is it

meant to be a complete PowerShell reference. Instead,

2 Microsoft PowerShell Unleashed

think of it as a resource for learning how PowerShell can be applied in your own environ-

ment. Therefore, the structure of this book reflects that focus by including numerous

command examples and working scripts.

How This Book Is Organized
The book is divided into the following three parts:

¢ Part I, “Introduction to PowerShell”—This part introduces you to what PowerShell is

and how to use it. Topics covered include why PowerShell came into existence,

general use of PowerShell, an in-depth review of code signing, and PowerShell best

practices.

¢ Part II, “Translating Your Existing Knowledge into PowerShell’”—This part dives into a

point-by-point comparison of how existing Windows scripting knowledge can be

translated to learning PowerShell scripting. Topics covered include working with the

Windows file system, Registry, Windows Management Instrumentation (WMI), and

Active Directory Services Interfaces (ADSI). To assist you, examples of performing

automation tasks and working scripts in both VBScript and PowerShell are included.

¢ Part III, “Using PowerShell to Meet Your Automation Needs’—The goal of this part is to

expand on how PowerShell can be used to manage systems. Topics covered include

using PowerShell to meet security needs, automating changes across numerous

systems, and managing Exchange Server 2007 with PowerShell.

Conventions Used in This Book
Commands, scripts, and anything related to code are presented in a special monospace

computer typeface. Bolding indicates key terms being defined, and italics are used to indi-

cate variables and sometimes for emphasis. Great care has been taken to be consistent in

letter case, naming, and structure, with the goal of making command and script examples

more readable. In addition, you might find instances in which commands or scripts

haven't been fully optimized. This lack of optimization is for your benefit, as it makes

those code samples more intelligible and follows the practice of writing code for others to

read. For more details about the layout, conventions, and practices used for commands

and scripts in this book, see Chapter 5, “PowerShell Scripting Best Practices.”

Introduction 3

Other standards used throughout this book are as follows:

Black Code Boxes

These code boxes contain commands that run in a PowerShell or Bash
shell session.

Gray Code Boxes

These code boxes contain source code from scripts, configuration files, or

| other items that aren't run directly in a shell session.

CAUTION a

Cautions alert you to actions that should be avoided.

Notes give you additional background information about a topic being discussed.

yo

Soave a
= ppp «

So we a ee 4

samy Oli ote

erie? O@. ax

ats) we

i= : vo

> © HAS ty

oem? Fin @

: (pas o>

, Lived ed <3 wrempeie ~~

a Sebes OD ee
—_ wa oe ve “i te arerieme &

mi « th Aiutwre Au Pied) ORE orPeed ape. 6

a 7 i b gti dfs IF Wes KF os teams CF 69),

= ‘ pe iW im ee ieal/anh

i ieadiieelo gee, Bleed ois pmaninve 06 Witte poate
% Hog : jez & wie Open coed Ae

ca es = 90 Lnewe SO tna”” Y=

S)

+ —)
=a 7

“1

n't, PPO He aPAcorng a oft,
eT ef vi

PART |

Introduction to

PowerShell

IN THIS PART

CHAPTER 1 Introduction to Shells and PowerShell 7

CHAPTER 2 PowerShell Basics ARS)

CHAPTER 3 PowerShell: A More In-Depth Look 57,

CHAPTER 4 Code Signing 93

CHAPTER 5 PowerShell Scripting Best

Practices MON

Introduction to Shells

and PowerShell

Shes are a necessity when using operating systems

because they make it possible to perform arbitrary actions

such as traversing the file system, running commands, or

using applications. As such, every computer user has dealt

with a shell by typing commands at a prompt or by click-

ing an icon to start an application. Shells are inescapable

when you’re working on a computer system.

In this chapter, you take a look at what a shell is and see

the power that can be harnessed by interacting with one.

To do this, you walk through some basic shell commands,

and then build a shell script from those basic commands to

see how they can become more powerful via scripting.

Next, you take a brief tour of how shells have evolved over

the past 35 years. Finally, you learn why there was a need

for PowerShell and what its inception means to scripters

and system administrators.

What Is a Shell?
A shell is an interface that allows users to interact with the

operating system. A shell isn’t considered an application

because of its inescapable nature, but it’s the same as any

other process running on a system. The difference between

a shell and an application is that a shell’s purpose is to

allow users to run other applications. In some operating

systems (such as UNIX, Linux, and VMS), the shell is a

command-line interface (CLI); in other operating systems

(such as Windows and Mac OS X), the shell is a graphical

user interface (GUI).

IN THIS CHAPTER

>» What Is a Shell?

> A Shell History

» Enter PowerShell

8 CHAPTER 1 Introduction to Shells and PowerShell

In addition, two types of systems in wide use are often neglected in discussions of shells:

networking equipment and kiosks. Networking equipment usually has a GUI shell (mostly

a Web interface on consumer-grade equipment) or a CLI shell (in commercial-grade

equipment). Kiosks are a whole other animal; because many kiosks are built from applica-

tions running atop a more robust operating system, often kiosk interfaces aren’t shells.

However, if the kiosk is built with an operating system that serves only to run the kiosk,

the interface is accurately described as a shell. Unfortunately, kiosk interfaces continue to

be referred to generically as shells because of the difficulty in explaining the difference to

nontechnical users (which is a virtue that results in the automation of tasks, thereby

increasing the efficiency with which tasks are accomplished as well as the accuracy and

consistency with which tasks are performed).

Both CLI and GUI shells have benefits and drawbacks. For example, most CLI shells allow

powerful command chaining (using commands that feed their output into other

commands for further processing; this is commonly referred to as the pipeline). GUI

shells, however, require commands to be completely self-contained. Furthermore, most

GUI shells are easy to navigate, whereas CLI shells require a preexisting knowledge of the

system to avoid attempting several commands to discern the location and direction to

head in completing an automation task. Your choice of shell depends on what you’re

comfortable with and what’s best suited to perform the task at hand.

Even though GUI shells exist, the term “shell” is used almost exclusively to describe a

command-line environment, not a task you perform with a GUI application, such as

Windows Explorer. Likewise, shell scripting refers to collecting commands normally

entered on the command line or into an executable file.

Basic Shell Use

Many shell commands, such as listing the contents of the current working directory, are

simple. However, shells can quickly become complex when more powerful results are

required.

The following example lists the contents of the current working directory.

$ ls

FV oF- ol Yam ob | etc include lib libexec man sbin share. var

However, often seeing just filenames isn’t enough and so a command-line argument

needs to be passed to the command to get more details about the files.

If these commands are unfamiliar, don’t worry. They're here for the sake of illustration,

not to teach you the intricacies of the Bash shell.

What Is a Shell?

The following command gives you more detailed information about each file using a
command-line argument.

$ ls -l

total 8

drwxr-xr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

lrwxr-xr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

apache2

bin

etc

include

lib

libexec

man -> share/man
sbin

share

var

Now you need to decide what to do with this information. As you can see, directories are

interspersed with files, making it difficult to tell them apart. If you want to view only

directories, you have to pare down the output by piping the ls command output into the

grep command. In the following example, the output has been filtered to display only

lines starting with the letter d, which signifies that the file is a directory.

$ 1s -1 |
drwxr-xr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

drwxrwxr-x

apache2

bin

etc

include

lib

bis of-b:¢-To

sbin

share

var

However, now that you have only directories listed, the other information like date,

permissions, sized, etc. is superfluous because only the directory names are needed. So in

this next example, you use the awk command to print only the last column of output

shown in the previous example.

$ ls -1 | grep ‘*“d’ | awk '{ print SNF }"
apache2 Chea

bin

eter:
include
lib

libexec

sbin

share

var

10 CHAPTER 1. Introduction to Shells and PowerShell

The result is a simple list of directories in the current working directory. This command is

fairly straightforward, but it’s not something you want to type every time you want to see

a list of directories. Instead, we can create an alias or command shortcut for the

command that we just executed.

$ alias lIsd="ls -1 | grep '“*d' | awk '{ print \SNF }'”

Then, by using the Isd alias, you can get a list of directories in the current working direc-

tory without having to retype the command from the previous examples.

$ lsd

FY ey-Vod = ¥4

bin

etc

include

lib

libexec

r=) ob

share

var

As you can see, using a CLI shell offers the potential for serious power when you're

automating simple repetitive tasks.

Basic Shell Scripts

Working in a shell typically consists of typing each command, interpreting the output,

deciding how to put that data to work, and then combining the commands into a single

streamlined process. Anyone who has gone through dozens of files, manually adding a

single line at the end of each one, will agree that scripting makes as much sense as

breathing.

You've seen how commands can be chained together in a pipeline to manipulate output

from the preceding command and how a command can be aliased to minimize typing.

Command aliasing is the younger sibling of shell scripting and gives the command line

some of the power of shell scripts. However, shell scripts can harness even more power

than aliases.

Collecting single-line commands and pipelines into files for later execution is a powerful

technique. Putting output into variables for reference later in the script and further

manipulation takes the power to the next level. Wrapping any combination of commands

into recursive loops and flow control constructs in a sense makes scripting a form of

programming.

Some say that scripting isn’t programming, but that’s not true, especially with the variety

and power of scripting languages these days. Shell scripting is no different in that respect,

What Is a Shell? AL

as compiling code doesn’t necessarily mean you're programming. With this in mind, try

developing your one-line command from the previous section into something more

useful.

You have a listing of each directory in the current working directory. Suppose you want a

utility to show how much space each directory uses on the disk. The utility you use to

show disk usage in Bash does so on a specified directory’s entire contents or a directory’s

overall disk usage in a summary; it also gives use amounts in bytes by default. With all

that in mind, if you want to know each directory’s disk usage as a freestanding entity, you

need to get and display information for each directory, one by one. The following exam-

ples show what this process would look like as a script.

Notice the command you worked on in the previous section. The for loop goes through

the directory list the command returns, assigning each line to the DIR variable and

executing the code between the do and done keywords.

#!/bin/bash

for DIR in $(1is -1 ' grep ““d™ ; awk ‘{ print SNE}); do

du -sk ${DIR}

done

As scosetiomnoosnensnesnseasaeanaitassnsietneromanertiesesansOehitstiCHN NESCONSET AAA AOD SLA ALTE ALARA AOA MME AAA DOL AE LED

Saving the above code as directory.sh script file and then running the script within a Bash

session produces the following output.

Tae ob Ke Bs BB af -Loh Lod ahiaee-)

17988 FY ef- Cod X=

5900 «bin

72 etc

2652 include

82264 lib

(0) libexec

(0) sbin

35648 share

166768 var

This output doesn’t seem especially helpful. With a few additions, you could get some-

thing more useful considering you want to know the names of all directories using more

than a certain amount of disk space. To achieve this requirement, modify the directory.sh

script file as shown in this next example.

eZ CHAPTER 1 Introduction to Shells and PowerShell

| #!/bin/bash

| PRINT_DIR_MIN=35000

for DIR in $(is.-l | grep ““d | awk “{ print SNF }-); ¢o

DIR SIZE=$(du -sk ${DIR} | cut -f 1)
if [${DIR SIZE} -ge ${PRINT DIR MIN}];then

echo ${DIR}

fi
| done

Now, you’ve started adding variables; PRINT_DIR_MIN is the minimum number of kilobytes

a directory uses to meet the printing criteria. This value could change fairly regularly, so

you want to keep it as easily editable as possible. Also, you could reuse this value else-

where in the script so that you don’t have to change the amount in multiple places when

the number of kilobytes changes.

You might be thinking the find command would be easier to use. However, the reason

the convoluted 1s command is used is that find is terrific for browsing through directory

structures but too cumbersome for simply viewing the current directory. If you’re looking

for files in the hierarchy, the find command is highly recommended. However, you’re

simply looking for directories in the current directory because only those directories are

relevant in this example.

The following is an example of the output rendered by the script so far.

Tam ob Ko Ms be ok -Loh Lo} ahi aer-) 1}
lib
share

var

This output could be used in a number of ways. For example, systems administrators

might use this script to watch user directories for disk usage thresholds if they want to

notify users when they have reached a certain level of disk space. For this purpose,

knowing when a certain percentage of users reaches or crosses the threshold would be

useful.

NOTE

Keep in mind that plenty of commercial products on the market notify administrators

of overall disk thresholds being met, so although some money could be saved by

writing a shell script to monitor overall disk use, it’s not necessary. The task of finding

how many users have reached a certain use threshold is different, as it involves proac-

tive measures to prevent disk use problems before they get out of control. The solu-

tion is notifying the administrator that certain users should be offloaded to new disks

What Is a Shell? 13

because of growth on the current disk. This approach isn’t foolproof but is an easy way
to add a layer of proactive monitoring to ensure that users don’t encounter problems
when using their systems. Systems administrators could get creative and modify this
script with command-line parameters to serve several functions, such as listing the top
disk space users and indicating when a certain percentage of users have reached the
disk threshold. That sing of Complexity, however, is EQNS) the scope of this Gna picl

Next, the script is modified to display a message when a certain percentage of directories
are a specified size.
Co seennnonmeeg unineme nan onnsrtiiiiensaenanneenimennne

#!/bin/bash

DIR_MIN_ SIZE=35000

DIR_PERCENT BIG MAX=23

DIR_COUNTER=0 |
BIG_DIR_COUNTER=0

Tor Din in $(is -1 | grep ““d | awk ‘{ print SNF }'): do

DIR_COUNTER=$(expr ${DIR COUNTER} + 1)

DIR SIZE=$(du -sk ${DIR} | cut -f 1)
if [${DIR_SIZE} -ge ${DIR_MIN SIZE} }];then |

BIG_DIR_COUNTER=$(expr ${BIG DIR COUNTER} + 1)
i

done

if [${BIG_ DIR COUNTER} -gt @]; then

DIR_PERCENT_BIG=$(expr $(expr ${BIG_DIR_COUNTER} * 100) / ${DIR_COUNTER})

if [| ${DIR_PERCENT_BIG} -gt ${DIR_PERCENT_ BIG MAX}]; then

echo "${DIR PERCENT BIG} oo of the directories are larger than

${DIR_MIN_ SIZE} kilobytes."

i

:
|
|

|

|
:
'
I
|

)
i |
:

i

|
i

g

| \
|

i

|
i

'

L

Now, the preceding example barely looks like what you started with. The variable name

PRINT _DIR_MIN has been changed to DIR_MIN_SIZE because you're not printing anything

as a direct result of meeting the minimum size. The DIR_PERCENT_BIG_MAX variable has

been added to indicate the maximum allowable percentage of directories at or above the

minimum size. Also, two counters have been added: one (DIR_COUNTER) to count the

directories and one (BIG_DIR_COUNTER) to count the directories exceeding the minimum

size.

Inside the for loop, DIR_COUNTER is incremented, and the if statement in the for loop

now simply increments BIG_DIR_COUNTER instead of printing the directory’s name. An

14 CHAPTER 1 Introduction to Shells and PowerShell

if statement has been added after the for loop to do additional processing, figure out the

percentage of directories exceeding the minimum size, and then print the message if

necessary. With these changes, the script now produces the following output:

Yee os Ke Ms be ib ok Loh Lo} oh ant) 01

33 percent of the directories are larger than 35000 kilobytes.

The output shows that 33% of the directories are 35MB or more. By modifying the echo

line in the script to feed a pipeline into a mail delivery command and tweaking the size

and percentage thresholds for the environment, systems administrators could schedule

this shell script to run at specified intervals and produce directory size reports easily. If

administrators want to get fancy, they could make the size and percentage thresholds

configurable via command-line parameters.

As you can see, even a basic shell script can be powerful. With a mere 22 lines of code,

you have a useful shell script. Some quirks of the script might seem inconvenient (using

the expr command for simple math can be tedious, for example), but every programming

language has its strengths and weaknesses. As a rule, some tasks you need to do are

convoluted to perform, no matter what language you're using.

The moral is that shell scripting, or scripting in general, can make your life easier. For

example, say your company merges with another company. As part of that merger, you

have to create 1,000 user accounts in Active Directory or another authentication system.

Usually, a systems administrator grabs the list, sits down with a cup of coffee, and starts

clicking or typing away. If an administrator manages to get a migration budget, he or she

could hire an intern or consultants to do the work or purchase migration software. But

why bother performing repetitive tasks or spending money that could be put to better use

(such as a bigger salary)?

Instead, the answer should be automating those tasks by using scripting. Automation is

the purpose of scripting. As a systems administrator, you should take advantage of script-

ing with CLI shells or command interpreters to have access to the same functionality

developers have when coding the systems you manage. However, scripting is within a

platter that tends to be more open, flexible, and focused on the tasks that you as an IT

professional need to perform.

A Shell History
The first shell in wide use was the Bourne shell, the standard user interface for the UNIX

operating system, and UNIX systems still require it for booting. This robust shell provided

pipelines and conditional and recursive command execution. It was developed by C

programmers for C programmers.

Oddly, however, despite being written by and for C programmers, the Bourne shell didn’t
have a C-like coding style. This lack of a similarity to the C language drove the invention
of the C shell, which introduced more C-like programming structures. While the C shell

A Shell History tS

inventors were building a better mousetrap, they decided to add command-line editing
and command aliasing (defining command shortcuts), which eased the bane of every
UNIX user's existence: typing. The less a UNIX user has to type to get results, the better.

Although most UNIX users liked the C shell, learning a completely new shell was a chal-
lenge for some. So the Korn shell was invented, which added a number of the C shell
features to the Bourne shell. Because the Korn shell is a commercially licensed product,
the open-source software movement needed a shell for Linux and FreeBSD. The collabora-
tive result was the Bourne Again Shell, or Bash, invented by the Free Software Foundation.

Throughout the evolution of UNIX and the birth of Linux and FreeBSD, other operating
systems were introduced along with their own shells. Digital Equipment Corporation
(DEC) introduced Virtual Memory System (VMS) to compete with UNIX on its VAX
systems. VMS had a shell called Digital Command Language (DCL) with a verbose syntax,

unlike that of its UNIX counterparts. Also, unlike its UNIX counterparts, it wasn’t case

sensitive nor did it provide pipelines.

Somewhere along the line, the PC was born. IBM took the PC to the business market, and

Apple rebranded roughly the same hardware technology and focused on consumers.

Microsoft made DOS run on the IBM PC, acting as both kernel and shell and including

some features of other shells. (The pipeline syntax was inspired by UNIX shells.)

Following DOS was Windows, which went from application to operating system quickly.

Windows introduced a GUI shell, which has become the basis for Microsoft shells ever

since. Unfortunately, GUI shells are notoriously difficult to script, so Windows provided a

DOSShell-like environment. It was improved with a new executable, cmd.exe instead of

command.com, and a more robust set of command-line editing features. Regrettably, this

change also meant that shell scripts in Windows had to be written in the DOSShell syntax

for collecting and executing command groupings.

Over time, Microsoft realized its folly and decided systems administrators should have

better ways to manage Windows systems. Windows Script Host (WSH) was introduced in

Windows 98, providing a native scripting solution with access to the underpinnings of

Windows. It was a library that allowed scripting languages to use Windows in a powerful

and efficient manner. WSH is not its own language, however, so a WSH-compliant script-

ing language was required to take advantage of it, such as JScript, VBScript, Perl, Python,

Kixstart, or Object REXX. Some of these languages are quite powerful in performing

complex processing, so WSH seemed like a blessing to Windows systems administrators.

However, the rejoicing was short lived because there was no guarantee that the WSH-

compliant scripting language you chose would be readily available or a viable option for

everyone. The lack of a standard language and environment for writing scripts made it

difficult for users and administrators to incorporate automation by using WSH. The only

way to be sure the scripting language or WSH version would be compatible on the system

being managed was to use a native scripting language, which meant using DOSShell and

enduring the problems that accompanied it. In addition, WSH opened a large attack

vector for malicious code to run on Windows systems. This vulnerability gave rise to a

stream of viruses, worms, and other malicious programs that have wreaked havoc on

computer systems, thanks to WSH’s focus on automation without user intervention.

16 CHAPTER 1 Introduction to Shells and PowerShell

The end result was that systems administrators viewed WSH as both a blessing and a

curse. Although WSH presented a good object model and access to a number of automa-

tion interfaces, it wasn’t a shell. It required using Wscript.exe and Cscript.exe, scripts

had to be written in a compatible scripting language, and its attack vulnerabilities posed a

security challenge. Clearly, a different approach was needed for systems management,

over time, Microsoft reached the same conclusion.

Enter PowerShell
Microsoft didn’t put a lot of effort into a CLI shell; instead, it concentrated on a GUI

shell, which is more compatible with its GUI-based operating systems. (Mac OS X didn’t

put any effort into a CLI shell, either; it used the Bash shell.) However, the resulting

DOSShell had a variety of limitations, such as conditional and recursive programming

structures not being well documented and heavy reliance on goto statements. These

drawbacks hampered shell scripters for years, and they had to use other scripting

languages or write compiled programs to solve common problems.

The introduction of WSH as a standard in the Windows operating system offered a robust

alternative to DOSShell scripting. Unfortunately, WSH presented a number of challenges,

discussed in the preceding section. Furthermore, WSH didn’t offer the CLI shell experi-

ence that UNIX and Linux administrators had enjoyed for years, thus resulting in

Windows administrators being made fun of by the other chaps for the lack of a CLI shell

and its benefits.

Luckily, Jeffrey Snover (the architect of PowerShell) and others on the PowerShell team

realized that Windows needed a strong, secure, and robust CLI shell for systems manage-

ment. Enter PowerShell. PowerShell was designed as a shell with full access to the under-

pinnings of Windows via the .NET Framework, Component Object Model (COM) objects,

and other methods. It also provided an execution environment that’s familiar, easy, and

secure. PowerShell is aptly named, as it puts the power into the Windows shell. For users

wanting to automate their Windows systems, the introduction of PowerShell was exciting

because it combined “the power of WSH with the warm-fuzzy familiarity of a shell.”

PowerShell provides a powerful native scripting language, so scripts can be ported to all

Windows systems without worrying about whether a particular language interpreter is

installed. You might have gone through the rigmarole of scripting a solution with WSH in

Perl, Python, VBScript, JScript, or another language, only to find that the next system you

worked on didn’t have that interpreter installed. At home, users can put whatever they

want on their systems and maintain them however they see fit, but in a workplace, that

option isn’t always viable. PowerShell solves that problem by removing the need for non-

native interpreters. It also solves the problem of wading through Web sites to find

command-line equivalents for simple GUI shell operations and coding them into .cmd

files. Last, PowerShell addresses the WSH security problem by providing a platform for

secure Windows scripting. It focuses on security features such as script signing, lack of

executable extensions, and execution policies (which are restricted by default).

Summary a7,

For anyone who needs to automate administration tasks on a Windows system,
PowerShell provides a much-needed injection of power. Its object-oriented nature boosts
the power available to you, too. If you’re a Windows systems administrator or scripter,
becoming a PowerShell expert is highly recommended.

PowerShell is not just a fluke or a side project at Microsoft. The PowerShell team
succeeded at creating an amazing shell and winning support within Microsoft for its
creation. For example, the Exchange product team adopted PowerShell as the backbone of
the management interface in Exchange Server 2007. That was just the start. Other
product groups at Microsoft, such as System Center Operations Manager 2007, System
Center Data Protection Manager V2, and System Center Virtual Machine Manager, are
being won over by what PowerShell can do for their products.

In fact, PowerShell is the approach Microsoft has been seeking for a general management

interface to Windows-based systems. Over time, PowerShell could replace current manage-

ment interfaces, such as cmd.exe, WSH, CLI tools, and so on, and become integrated into

the Windows operating system as its backbone management interface. With the introduc-

tion of PowerShell, Microsoft has addressed a need for a strong Windows CLI shell.

The sky is the limit for what Windows systems administrators and scripters can achieve

with it.

Summary
In summary, this chapter has served as an introduction to what a shell is, where shells

came from, how to use a shell, and how to create a basic shell script. While learning

these aspects about shells, you have also learned why scripting is so important to systems

administrators. As you have come to discover, scripting allows systems administrators to

automate repetitive tasks. In doing so, task automation allows systems administrators to

perform their jobs more effectively, thus freeing them up to perform more important

business enhancing tasks.

In addition, to learning about shells, you have also been introduced to what PowerShell

is, and why PowerShell was needed. As explained, PowerShell is the replacement to WSH,

which, while powerful, had a number of shortcomings (security and interoperability

being the most noteworthy). PowerShell was also needed because Windows lacked a

viable CLI that could be used to easily complete complex automation tasks. The end

result, for replacing WSH and improving on the Windows CLI, is PowerShell, which is

built on the .NET Framework and brings a much-needed injection of backbone to the

world of Windows scripting and automation.

: es | thll! Coy cine Unitrin) anne, CL eee — 7 arene Raine 0d deen db Meodt dit Dem eithinn a ee ee mip the Beene on ecm iGee yaaa =
: Dasara onsen WA ogre ee mm |

a Ate pir’ ae es We istry GEE : Wat Sd eS Filta
uw” TA A We ils eae! oO A hy giv; 7" po CG Ae Gepsee
‘s 4 m= ini a 2) SIP) Ce ad 6 seqanie OB? aia ’ Fite pp Pecree ne as oveemegraeis) on@ amit = aehee ees

— hg ie ed as R, (hp == 4 wags 3 an pe “2 ORL? The -
SURES TS 16) a iF, Pty i eY'ea Nei Te’ ‘ph

Be Poo 7 Yeu fol ni Tipline ASEM ¢ Wet
‘ U 7

EPA Oey a oo wees oan a en ere oral 7 oil? a7 3
Tipie Siwy ari’ Ctn LOM Geel en e~rriks ya ter © ~rithoenzeg?’ = Bee), ee 2 ee eee ee .S (we ae a Mavtomtire o/s Seo S| Man eTemm se. Uuira 94 le eee eae 1.4, om U as Sirus > eu ;
a 7 4 ny “ue Wile 1 5 ‘> ~Jey ‘ot rie F ot,

, ;
-

“WAT Gan =) VY Minow oe area 16)! PAO Se At? eer ‘ wae LORE acs af) oe eo 4 6)i96 Gary Gis Meer
ASE T2307) airy Ay Quays «Se erga df —@V pq=-panlia daa omen at
ob avg are) if sun ny! @ONvornlvigne- io. vilngne nite aes pgm COE tt) een omnia eaten One caress ait a weil

\) ARO Or 1 “Tied me 06 de: een itd iiaiia
so SS = a

a

set es ee aa ni sor pi Sicteiatialacmapenra bam epacedarth dane 5 Ae, Cle. Abie. (ptigrwet Jute. om NU apere /)
Wee GE sie: wet mote Enc oe ?
6 ORS AEs E21) Kien 1m
i? iQ-<) Awe 4 58 © » chow Yorgehael © ;
y Dany) bw iS tons Hegte «

s = § eo > pey -oluese
me Hie # 077 96 (Pala *
an ow 905 ae & Gov i

c a eee nl |
a en ee

Per ie the 6103 0 pat

q 4

CHARTER 2

PowerShell Basics

Introduction

This chapter brings you up to speed on the technical basics

of PowerShell and how to use it. You learn how to down-

load and install PowerShell, work with the PowerShell

command-line interface (CLI), use cmdlets, use variables,

use aliases, understand scopes, and write a basic script. This

chapter isn’t intended to be a complete getting-started

guide; instead, it covers the important concepts you need

to understand for later chapters.

Getting Started
The best way to get started with PowerShell is to visit the

Windows PowerShell home page at www.microsoft.com/

windowsserver2003/technologies/management/

powershell/default.mspx (see Figure 2.1).

This site is a great resource for information about

PowerShell, download documentation, tools, and provides

access to the latest news, and the latest versions of

PowerShell. Your next step is downloading and installing

PowerShell, but first, you need to make sure your system

meets the following PowerShell installation requirements:

e Windows XP Service Pack 2, Windows 2003 Service

Pack 1, or later versions of Windows

e Microsoft .NET Framework 2.0

If .NET Framework 2.0 is not installed on your machine,

you can download its installation package from the

Microsoft Download Center at www.microsoft.com/down-

loads/ (see Figure 2.2).

IN THIS CHAPTER

> Introduction

>» Getting Started

> Accessing PowerShell

>» Understanding the Command-

Line Interface (CLI)

» Understanding cmdlets

» Useful cmdlets

» Expressions

» Understanding Variables

» Understanding Aliases

>» Escape Sequences

» Understanding Scopes

>» Your First Script

20 CHAPTER 2. PowerShell Basics

Windows PowerShell
Microesht Wiedons P

Sener,
Testsioay Gerters
Parsecy
Windows Server
Commneonty

Siresowe Namie
Hiesoactt Servers Related Resources

Whodews Pomncthell £42

‘Midows vinta

Hirovelt Lecharae 2007

Yirtwal Machine Mannace

Oats Protection Manawer “vz

Lechiet Scrint Center

Windom fusexsShett Team Poe

Widows.
thier
Sarees
Owerioger Tvole
Rueness Soktinne
Gaetan % Yoan
84
Windons tote
Al Danese

Bomninad Categurtes
Garren,
ieacke
beancemt, Popular Downloads
Windows Secs ty &
dates :
enbcas Side
Diroeere $
Heme 8 Ahan ‘
idan Dewsns % sii
Mas Otter fRattorens Hote 2aoutar
Swewee Wise
Deveionenars Rexvurces Here Trwnloads
Dommtowd Resources
Hicrosot Undine Garvinns

mea mts

Dewrtvnd Canter Maly
Hawes wine

Domntoad Botitications
Nota Bw

Wartdertete Orommto.sity \ ‘
Canning & Kegon Browes (or Cownkeady 4

Download Categories Prodiact Parties S

GB dewvet RI =

FIGURE 2.2 The Microsoft Download Center

After installing .NET Framework 2.0, your next step is downloading the PowerShell instal-

lation package from www.microsoft.com/windowsserver2003/technologies/management/

powershell/download.mspx (see Figure 2.3).

To install PowerShell, on the download page, find the correct PowerShell installation

package for your x86 or x64 version of Windows. Then download the PowerShell

installation package by clicking the appropriate download link. Next, start the

Accessing PowerShell 24)

PowerShell installation by clicking Open in the download box or double-clicking the
installation file. (The filename differs depending on the platform, Windows version, and
language pack.) After the installer has started, follow the installation instructions.

How to Download Windows PowerShell 1.0

Windows Vista &C1 (S600) and Windiws Server code name “Longhorn” IDS (660)
ene Fortes,

costae Server spe mains: hanghar” seby

Windows XP Service Pack 2 — Windows Powershell 1.0 81
ponies Plattorm
server plattorm.
laos ser nse tecenes
[emcee 2s ew tae

Oe

FE hi yi is

Lege

FIGURE 2.3. Download Windows PowerShell 1.0

Another installation method is a silent installation at the command line, using the

/quiet switch with the PowerShell installation filename. This installation method can be

useful if you plan to install PowerShell on many different systems and want to distribute

the installation via a logon script, Systems Management Server (SMS), or another software

management method. To perform a silent installation, follow these steps:

4. Click Start > Run.

2. Type cmd and click OK to open a cmd command prompt.

3. Type PowerShell -exe -filename_/quiet (replacing the italicized text with the

PowerShell installation filename) and press Enter.

Accessing PowerShell
After installing PowerShell, you can access it with three methods. To use the first method

of accessing it from the Start menu, follow these steps:

4. Click Start > All Programs > Windows PowerShell 1.0.

2. Click Windows PowerShell.

22 CHAPTER 2. PowerShell Basics

To use the second method, follow these steps:

1. Click Start > Run.

2. Type PowerShell in the Run dialog box and click OK.

Both these methods open the PowerShell console, shown in Figure 2.4.

BD C:\WINDOWS\system32\windawsPowerShell\v1.0\powershell.exe

FIGURE 2.4 The PowerShell console

Follow these steps to use the third method from a cmd command prompt:

4. Click Start > Run.

2. Type cmd and click OK to open a cmd command prompt.

3. At the command prompt, type powershell, as shown in Figure 2.5, and press Enter.

GX CA\WINDOWS\systern32\cmd.exe - powershell

Microsoft Windows #P (Uersion, $.1.2640]
<C> Copyright 1985-2461 Microsoft Corp.

PPS UEN>

FIGURE 2.5 The PowerShell console launched through the cmd command prompt

Understanding the Command-Line Interface (CLI)
The syntax for using PowerShell from the CLI is similar to the syntax for other CLI shells.

The fundamental component of a PowerShell command is, of course, the name of the

Understanding the Command-Line Interface (CLI) 23

command to be executed. In addition, the command can be made more specific by using
parameters and arguments for parameters. Therefore, a PowerShell command can have
the following formats:

[command name]

[command name] -[parameter]

[Command name] -[parameter] -[parameter] [argumentt]

[command name] -[parameter] -[parameter] [argument1], [argument2]

In PowerShell, a parameter is a variable that can be accepted by a command, script, or

function. An argument is a value assigned to a parameter. Although these terms are

often used interchangeably, remembering these definitions is helpful when discussing

their use in PowerShell.

You can see an example of using a command, a parameter, and an argument by running

the dir command with the /w parameter (which displays the output of dir in a wide

format) and an argument of C:\temp*.txt, as shown here:

C:\>dir /w C:\temp*.txt
Volume in drive C is: 0S

Volume Serial Number is 1784-ADF9

} oe af -on Lo} ah amo} dal OIG A111) 0)

Bad Stuff.txt mediapc.txt note.txt Progress.txt
4 File(s) 953 bytes

O Dir(s) 16,789,958,656 bytes free

The result of this command is a wide-format directory listing of all the .txt files in

C:\temp. If you use the dir command without any parameters or arguments, the outcome

would be entirely different. The same result happens with PowerShell. For example, here

is a basic PowerShell command that gets process information about explorer.exe:

PS C:\> get-process -Name explorer

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

14068 149

24 CHAPTER 2. PowerShell Basics

In this example, Get -Process is the command, -Name is the parameter, and explorer is

the argument. The result of this command is process information about explorer.exe. If

no parameters or arguments are used, the Get -Process command just lists process infor-

mation about all currently running processes, not information about a specific process. To

have control over what a command does or have it perform more than its default action,

you need to understand the command’s syntax. To use commands effectively in the CLI,

use the Get -Help command, discussed later in “Useful cmdlets,” to get detailed informa-

tion about what a command does and its use requirements.

Navigating the CLI

As with all CLI-based shells, you need to understand how to navigate the PowerShell CLI

to use it effectively. Table 2.1 lists the editing operations associated with various keys

when using the PowerShell console.

TABLE 2.1 PowerShell Console Editing Features

Keys Editing Operation

Left and right arrows Moves the cursor left and right through the current command line.

Up and down arrows Move up and down through the list of recently typed commands.

Insert Switches between insert and overstrike text-entry modes.

Delete Deletes the character at the current cursor position.

Backspace Deletes the character immediately preceding the current cursor

position.

Fit Displays a list of recently typed commands in a pop-up window in

the command shell. Use the up and down arrows to select a previ-

ously typed command, and then press Enter to execute the

selected command.

Tab Auto-completes command-line sequences. Use the Shift+Tab

sequence to move backward through a list of potential matches.

Luckily, most of the features in Table 2.1 are native to the cmd command prompt, which

makes PowerShell adoption easier for administrators already familiar with the Windows

command line. The only major difference is that the Tab key auto-completion is

enhanced in PowerShell beyond what’s available with the cmd command prompt.

As with the cmd command prompt, PowerShell performs auto-completion for file and

directory names. So if you enter a partial file or directory name and press Tab, PowerShell

returns the first matching file or directory name in the current directory. Pressing Tab

again returns a second possible match and allows you to cycle through the list of results.

Like the cmd command prompt, PowerShell’s Tab key auto-completion can also auto-

complete with wild cards, as shown in this example:

Understanding the Command-Line Interface (CLI) 25

PS C:\< cd C:\Doc*
<tab>

PS C:\> cd 'C:\Documents and Settings'
PS C:\Documents and Settings>

The difference between Tab key auto-completion in cmd and PowerShell is that

PowerShell can auto-complete commands. For example, you can enter a partial command

name and press the Tab key, and PowerShell steps through a list of possible command

matches, as shown here:

PS C:\> get-pro
<tab>

PS C:\> get-process

PowerShell can also auto-complete parameter names associated with a particular

command. Simply enter a command and partial parameter name and press the Tab key,

and PowerShell cycles through the parameters for the command you have specified. This

method also works for variables associated with a command. In addition, PowerShell

performs auto-completion for methods and properties of variables and objects. Take a

look at an example using a variable named $2Z set to the value "Variable":

PS C:\> $Z = "Variable”

PS C:\> $Z.<tab>

After you type $Z and press the Tab key, PowerShell cycles through the possible operations

that can be performed against the $Z variable. For example, if you select the $Z.Length

property and press Enter, PowerShell returns the length of the string in the $Z variable, as

shown here:

PS C:\> $Z = "Variable”

PS C:\> $Z.

<tab>

PS C:\> $Z.Length

3}
PS C:\

The auto-complete function for variables distinguishes between properties and methods.

Properties are listed without an open parenthesis (as in the preceding $Z.Length

example), and methods are listed with an open parenthesis, as shown in this example:

26 CHAPTER 2 PowerShell Basics

PS C:\> $Z = "Variable”

PS C:\> $Z.con

<tab>

PS C:\> $Z.Contains(

When the $Z.Contains(prompt appears, you can use this method to query whether the

$Z variable contains the character V by entering the following command:

PS C:\> $Z = "Variable"

PS C:\> $Z.Contains("V")
True
PS C:\

PowerShell corrects capitalization for the method or property name to match its defini-

tion. For the most part, this functionality is cosmetic because by default, PowerShell is

not case sensitive.

PowerShell Command Types

When you execute a command in PowerShell, the command interpreter looks at the

command name to figure out what task to perform. This process includes determining the

type of command and how to process that command. There are four types of PowerShell

commands: cmdlets, shell function commands, script commands, and native commands.

cmdlet

The first command type is a cmdlet (pronounced “command-let”), which is similar to the

built-in commands in other CLI-based shells. The difference is that cmdlets are imple-

mented by using .NET classes compiled into a dynamic link library (DLL) and loaded into

PowerShell at runtime. This difference means there’s no fixed class of built-in cmdlets;

anyone can use the PowerShell Software Developers Kit (SDK) to write a custom cmdlet,

thus extending PowerShell’s functionality.

A cmdlet is always named as a verb and noun pair separated by a - (hyphen). The verb

specifies the action the cmdlet performs, and the noun specifies the object being operated

on. More details on cmdlets and cmdlet syntax are covered later in “Understanding

cmdlets.”

Shell Function Commands

The next type of command is a shell function command. Shell function commands

provide a way to assign a name to a list of commands. Functions are similar to subrou-

tines and procedures in other programming languages. The main difference between a

script and a function is that a new instance of the shell is started for each shell script, and

Understanding the Command-Line Interface (CLI) 2if,

functions run in the current instance of the same shell. Here’s an example of defining a
simple function in PowerShell:

PS C:\> function my-dir-function {get-childitem | £t Mode,Name}

After my -dir-function has been defined, it yields a formatted listing for the current direc-

tory, as shown in this example:

PS C:\Stuff> my-dir-function

NY (ote {=} Name

d---- Books

. Dev

d---- Tools

a VMs

-a--- Bad Stuff.txt

-a--- Configuring Credential Roaming.doc

-a--- mediapc.txt

PS C:\Stuff>

You can see how PowerShell is executing an existing function in the current console

session by enabling debug logging. To do this, use the following command:

PS C:\Stuff> set-psdebug -trace 2

Next, execute the function:

PS D:\Stuff> my-dir-function
fp >) >) =) oe ‘1+ my-dir-function
DEBUG: ! CALL function ‘my-dir-function'
DEBUG: 1+ function my-dir-function {get-childitem | ft Mode,Name}

When the my-dir-function function is pushed onto the stack, PowerShell runs the

Get -ChildItem cmdlet as specified in the function. To turn off PowerShell debugging,

enter the Set-PSDebug -trace ® command.

28 CHAPTER 2 PowerShell Basics

Functions defined at the command line (as with my -dir-function) remain in effect

only during the current PowerShell session. They are also local in scope and don’t

apply to new PowerShell sessions. For more information, see “Understanding Scopes”

later in this chapter.

Although a function defined at the command line is a useful way to create a series of

commands dynamically in the PowerShell environment, these functions reside only in

memory and are erased when PowerShell is closed and restarted. Therefore, although

creating complex functions dynamically is possible, writing these functions as a set of

script commands might be more practical.

Script Commands

Script commands, the third command type, are PowerShell commands stored in a .ps1

file. The main difference from shell function commands is that script commands are

stored on disk and can be accessed any time, unlike shell function commands that don’t

persist across PowerShell sessions.

Script commands can be run in a PowerShell session or at the cmd command prompt. To

run a script in a PowerShell session, type the script name without the extension. The script

name can be followed by any parameters. The shell then executes the first .ps1 file match-

ing the typed name in any of the paths located in the PowerShell $ENV: PATH variable.

| FH OIA ihig-Leob ob ho} ar ole BI Mtb axe 74

The preceding command runs the myscript.ps1 script using the arg1 and arg2 arguments

if the script is located in any of the paths located in the PowerShell $ENV: PATH variable. If

not, you must specify where the script is by using one of these two methods:

PS C:\> & 'C:\My Scripts\myscript.psl' argl arg2
PS C:\Scripts> .\myscript.psl argl arg2

NOTE

The & call operator is used in the preceding example because the script path has

spaces that requires the script name to be encapsulated in quotes. This operator

instructs the shell to evaluate the string as a command. If the path doesn’t have

spaces, you can omit the & call operator and the quotes from the script name.

To run a PowerShell script from a cmd command prompt, first use the cd command to

change to the directory where the script is located. Then run the PowerShell executable

with the -command parameter and specify which script to be run, as shown here:

Understanding the Command-Line Interface (CLI) 29

C:\Scripts>powershell -command .\myscript.psl

If you don’t want to change to the script’s directory with the cd command, you can also
run it by using an absolute path, as shown in this example:

C:\>powershell -command C:\Scripts\myscript.psl

An important detail about script commands in PowerShell concerns their default security

restrictions. By default, scripts are not enabled to run as a method of protection against

malicious scripts. You can control this policy with the Set -ExecutionPolicy cmdlet,

which is explained in Chapter 3, “PowerShell: A More In-Depth Look.”

Native Commands

The last type of command, a native command, consists of external programs that the

operating system can run. Because a new process must be created to run native

commands, they are less efficient than other types of PowerShell commands. Native

commands also have their own parameters for processing commands, which are usually

different from PowerShell parameters.

One serious usability concern is the way PowerShell handles the focus for native

commands. When a native command runs, PowerShell might wait for the command to

finish or continue processing. Take a look at this example:

PS C:\> .\myfile.txt
PS C:\>

The PowerShell prompt returns almost immediately, and the default editor for files with

the .txt extension starts and displays C:\myfile.txt. In this case, notepad.exe starts and

opens the C:\myfile.txt file if you haven’t changed the default text editor.

NOTE —
PowerShell has a unique security feature. To run or open a file from the current direc-

tory, you must prefix the command with .\ or ./. This security feature prevents

PowerShell users from accidentally running a native command or script without specify-

ing its execution explicitly.

The same behavior occurs when specifying native commands explicitly, as in the follow-

ing command:

PS C:\> notepad C:\myfile.txt

PS C:\>

30 CHAPTER 2. PowerShell Basics

In this example, the C:\myfile.txt file is opened in Notepad, and the PowerShell prompt

is returned immediately. However, when you run a native command in the middle of a

pipeline (described in Chapter 1, “Introduction to Shells and PowerShell”), PowerShell

waits for the external process to stop before returning control to the console, as in this

example:

PS C:\> ping myserver | findstr "rr"
Reply from 10.0.0.2: bytes=32 time<lms TTL=126

Reply from 10.0.0.2: bytes=32 time<lms TTL=126

Reply from 10.0.0.2: bytes=32 time<lms TTL=126

Reply from 10.0.0.2: bytes=32 time<lms TTL=126

PS C:\>

PowerShell waits for the ping process to stop before returning control to the console and

finishing the pipeline. When this command is entered (replacing myserver with a valid

host on your local network), the PowerShell prompt briefly disappears as the output of

the ping command is piped to the findstr command to look for the string "TTL". The

PowerShell prompt is returned only when the native command has stopped processing.

Calling PowerShell from Other Shells

In addition to the command-line functionality of PowerShell you’ve been exploring, you

can call PowerShell from other shells, such as the cmd command prompt. When you call

PowerShell as an external application, you can make use of a wide variety of supported

commands, parameters, and arguments. The following command example lists all of the

commands, parameters, and arguments when PowerShell is used from the cmd command

prompt:

C:\>powershell -?

powershell[.exe] [-PSConsoleFile <file> | -Version <version>]

[-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive]

[-OutputFormat {Text | XML}] [-InputFormat {Text | XML}]
[-Command { - | <script-block> [-args <arg-array>]

| <string> [<CommandParameters>] }]

powershell[.exe] -Help | -? | /?

-PSConsoleFile

Loads the specified Windows PowerShell console file. To create a console

file, use Export-Console in Windows PowerShell.

-Version

Starts the specified version of Windows PowerShell.

BB \ fo} ole fo)
_ Hides the copyright banner at startup.

Tass ~

Understanding the Command-Line Interface (CLI)

-NoExit

Does not exit after running startup commands.

-NoProfile

Does not use the user profile.

-Noninteractive

Does not present an interactive prompt to the user.

—-OutputFormat

Determines how output from Windows PowerShell is formatted. Valid values
are "Text" (text strings) or "XML" (serialized CLIXML format) .

-InputFormat

Describes the format of data sent to Windows PowerShell. Valid values are

"Text" (text strings) or "XML". (serialized CLIXML format).

Se Orey iit betel

Executes the specified commands (and any parameters) as though they were

typed at the Windows PowerShell command prompt, and then exits, unless

NoExit is specified. The value of Command can be "-", a string. or a

script block.

If the value of Command is "-", the command text is read from standard

input.

Script blocks must be enclosed in braces ({}). You can specify a script

block only when running PowerShell.exe in Windows PowerShell. The results

of the script are returned to the parent shell as deserialized XML objects,

not live objects.

If the value of Command is a string, Command must be the last parameter

in the command , because any characters typed after the command are

interpreted as the command arguments.

To write a string that runs a Windows PowerShell command, use the format:

"& {<command>}"

where the quotation marks indicate a string and the invoke operator (&)

causes the command to be executed.

-Help, -?, /?

Shows this message. If. you are typing a powershell.exe command in Windows

PowerShell, prepend the command parameters with a hyphen (-), not a forward

slash (/). You can use either a hyphen or forward slash in Cmd.exe.

EXAMPLES

powershell -psconsolefile sqlsnapin.pscl

powershell -version 1.0 -nologo -inputformat text -outputformat XML

powershell -command {get-eventlog -logname security}

powershell -command "& {get-eventlog -logname security}"

C:\>

CHAPTER 2 PowerShell Basics

One useful way to take advantage of this capability is to run PowerShell commands from

a cmd command prompt. When PowerShell is called with the -command parameter,

PowerShell scripts or other cmdlets and commands can be used as arguments to the

-command parameter. The following example shows PowerShell being called from a cmd

command prompt, executing a Get -Service cmdlet, selecting the services currently in the

Running state, and then sorting the results by the service’s DisplayName. The entire

command string is enclosed in quotation marks to prevent cmd from attempting to

handle the pipeline.

C:\>powershell.exe -command "get-service | where-object {$_.Status -eq
‘Running'} | sort DisplayName"

Status

Running

Running

Running
Running

Running

Running

Running

Running

Running

Running
. Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

Running
Running

Running

Running

Running

Name

ALG

wuauserv

EventSystem

(Oh ah'g oh hice]

DcomLaunch

}») sXe} 9}
bb et-Lot- Cod o=)

ERSvc

Eventlog

helpsvc

IISADMIN

PolicyAgent

dmserver

MDM

McAfeeFramework

Messenger

MSExchangeMGMT

1\ (=) ol Koo fo) 9]

McShield
McTaskManager

Netman

Nla

OracleMTSRecove...

PlugPlay

Spooler

bh alo} X-Loh A-Tol-h Loh at-(o (-]

RasMan

RpcSs

RemoteRegistry

r-{-{oR Mole Loy el

SamSs

lanmanserver

ShellHWDetection

SMTPSVC

SSDPSRV

SENS

srservice

Schedule

DisplayName A

Application Layer Gateway Service

Automatic Updates

COM+ Event System
(Oh aig oh Cole pat-Yo) se Rolt-{—) anim Rol-t-}

DCOM Server Process Launcher

1») : (0) am On Ee K-50 8 a

DNS Client

Error Reporting Service

Event Log

Help and Support

IIS Admin

IPSEC Services

Logical Disk Manager

Machine Debug Manager

McAfee Framework Service
Messenger

Microsoft Exchange Management

Net Logon

Network Associates McShield
Network Associates Task Manager

Network Connections

Network Location Awareness (NLA)

OracleMTSRecoveryService

Plug and Play

Print Spooler

bP ooh A-Loh A-1o Mth Loy at- Le (-)

Remote Access Connection Manager

Remote Procedure Call (RPC)
Remote Registry

Secondary Logon

Security Accounts Manager

Server

Shell Hardware Detection

Simple Mail Transfer Protocol (SMTP)
SSDP Discovery Service

System Event Notification

System Restore Service

Task Scheduler

Understanding cmdlets 33

Running LmHosts TCP/IP NetBIOS Helper
Running TapiSrv Telephony
Running TermService Terminal Services
Running Themes Themes
Running WebClient (=) elon poh a
Running AudioSrv Windows Audio
Running SharedAccess Windows Firewall/Internet Connectio.. «
Running winmgmt Windows Management Instrumentation
Running W32Time Windows Time
Running WZCSVC Wireless Zero Configuration
Running lanmanworkstation Workstation
Running W3SVC World Wide Web Publishing

Understanding cmdlets
cmdlets are a fundamental part of PowerShell’s functionality. They are implemented as

managed classes (built on the .NET Framework) that include a well-defined set of methods

to process data. A cmdlet developer writes the code that runs when the cmdlet is called

and compiles the code into a DLL that’s loaded into a PowerShell instance when the shell

is started.

cmdlets are always named with the format Verb-Noun where the verb specifies the action

and the noun specifies the object to operate on. As you might have noticed, most

PowerShell names are singular, not plural, to make PowerShell more universally usable.

This is done because a command might provide a value or a set of values, and there’s no

way to know ahead of time whether a cmdlet name should be plural. Also, the English

language is inconsistent in dealing with plurals. For example, the word fish can be singu-

lar or plural, depending on the context. If English isn’t your first language, figuring out

what’s supposed to be plural or the correct plural form could be daunting.

NOTE D i

The default PowerShell verb is Get, which is assumed if no other verb is given. The

effect of this default setting is that the Process command produces the same results

as Get -Process.

To determine the parameters a cmdlet supports, you can review the help information for

the cmdlet by using either of the following commands:

PS C:\> cmdletName -?

PS C:\> get-help cmdletName

34 CHAPTER 2 PowerShell Basics

Furthermore, you can use the Get -Command cmdlet to determine what parameters are

available and how they are used. Here’s an example of the syntax:

PS C:\> get-command cmdletName

When working with the Get -Command cmdlet, piping its output to the Format -List cmdlet

produces a more concise list of the cmdlet’s use. For example, to display just the defini-

tion information for Get -Process, use the following command:

PS C:\> get-command get-process | format-list Definition

s

Definition : Get-Process [[-Name] <String[]>] [-Verbose] [-Debug]

eed Ft Ko) of Kod oe oy el
<ActionPreference>] [-ErrorVariable <String>]

[-OutVariable <String>] [-OutBuffer <Int32>]

Get-Process -Id <Int32[]> [-Verbose] [-Debug]

[-ErrorAction <ActionPreference>] [-ErrorVariable <String>]

[-OutVariable <String>] [-OutBuffer <Int32>]

Get-Process -InputObject <Process[]> [-Verbose] [-Debug]

[-ErrorAction <ActionPreference>] [-ErrorVariable <String>]

[-OutVariable <String>] [-OutBuffer <Int32>]

PS C:\>

Common Parameters

Because cmdlets derive from a base class, a number of common parameters, which are

available to all cmdlets, can be used to help provide a more consistent interface for

PowerShell cmdlets. These common parameters are described in Table 2.2.

TABLE 2.2 PowerShell Common Parameters

Parameter ___DataType _ Description

Verbose Boolean Generates detailed information about the operation,

much like tracing or a transaction log. This parameter

is effective only in cmdlets that generate verbose data.

Debug Boolean Generates programmer-level detail about the operation.

The cmdlet must support the generation of debug data

for this parameter to be effective.

ErrorAction Enum Determines how the cmdlet responds when an error

occurs. Values are Continue (the default), Stop,

SilentlyContinue, and Inquire.

Useful cmdlets 35

Parameter x ___Data Type — : Description

ErrorVariable String Specifies a variable that stores errors from the

command during processing. This variable is populated

in addition to $error.

OutVariable String Specifies a variable that stores output from the

command during processing.

OutBuffer Int32 Determines the number of objects to buffer before

calling the next cmdlet in the pipeline.

WhatIf Boolean Explains what happens if the command is executed but

doesn’t actually execute the command.

Confirm Boolean Prompts the user for permission before performing any

action that modifies the system.

NOTE

The last two parameters in Table 2.2, WhatIf and Confirm, are special, in that they

require a cmdlet to support the .NET method ShouldProcess, which might not be true

for all cmdlets. The ShouldProcess method confirms the operation with the user,

sending the name of the resource to be changed for confirmation before performing

the operation.

Useful cmdlets
When you're getting started with PowerShell, the Get -Help and Get -Command cmdlets are

extremely useful. These two cmdlets, described in the following sections, help you explore

what PowerShell does and learn more about the commands you can run.

Get -Help

As you might expect, you use the Get -Help cmdlet to retrieve help information about

cmdlets and other topics. To display a list of all help topics, enter Get -Help * at the

PowerShell command prompt, as shown here:

PS C:\> get-help *

Name Category Synopsis

FYo} : ias . Add-Content

asnp i Add-PSSnapin

cle : i (on FP aed Oo} hep eh

cli - : i Clear-Item

fon io) on K=¥- 0 ote th X=) 11) sp ale) ol) an hig

Con Bi op =¥- aten tb om YOM =)

cpi i Copy-Item

Co} 0} 2)
Copy-ItemProperty

onig oy-'
Convert-Path

CHAPTER 2

foreach

Get-Command

Get-Help

Get-History

Invoke-History

Add-History

| Koy af -Vo) ale) oly K-Loh a

Lf e¥=P of te 0) oly KT a

Set-PSDebug

Add-PSSnapin

Remove-PSSnapin

Get-PSSnapin

) Op 4 ole} ah tel Ore) s¥ fol K)

Fo} oF og od ib at -b eV Loh ab o} ol

oh fo} oLew bat bel Lob abi oh a

Add-Content

Clear-Content

Clear-ItemProperty

Pu oye oe) =F oo)

Convert-Path

Copy-ItemProperty

Get-EventLog

Get-ChildItem

Get-Content

Get-ItemProperty

Get-wmiObject
Move-ItemProperty

Get-Location~

Set-Location

Push-Location

| Lo} oka olel- hos Keys]

New-PSDrive

Remove-PSDrive

Get-PSDrive

Alias

Environment

' FileSystem

Function

Registry

Variable

(X=) af oh ee Roth oX]

about_alias

PowerShell Basics

Alias

Alias

Alias
Alias

Alias

Alias

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet —

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Provider

Provider

Provider

hake h tae Ke (-) a

Provider

Provider

Provider

bs CW 0) Ob |

Compare-Object

Export-Alias

} Ob '4 ofo} ah ta Oth ig

Format-Custom

Format-List

oh od t-Co} C0) oy K-Len a

Gets basic information.

~Displays information a.

Gets a list of the com.

Runs commands from the.
Appends entries to the.

Performs an operation .

Creates a filter that .

Turns script debugging.
Adds one or more Windo.

Removes Windows Powers.

Gets the Windows Power.

Exports the configurat.

Creates a record of al.

Stops a transcript.

Adds content to the sp.

Deletes the contents o.

Deletes the value of a.

Combines a path and ch.
Converts a path from a.

Copies a property and.

Gets information about.

Gets the items and chi.

Gets the content of th.

Retrieves the properti.

Gets instances of WMI .

Moves a property from .

Gets information about.

Sets the current worki.

Pushes the current loc.

Changes the current lo.

Installs a new Windows.

Removes a Windows Powe.

Gets information about.

Provides access to the.

Provides access to the.

The PowerShell Provide.

Provides access

Provides access

|B ao hta Ko (-1-fe-Volol-t-4-4

Provides access

Using alternate

bo Mh of « (2

to the..

to the..

to X50...

names ..

about_arithmetic_ operators
Volol ih at-bat ath

about_assignment_operators

about_associative array
about_automatic variables
about_break
about_command_search
about_command_syntax
about_commonparameters

about_comparison_operators
about_continue
about_core_commands
about _display.xml

about_environment_variable

PS C:\>

HelpFile

bs C= o) om eM -)

HelpFile

HelpFile

HelpFile

HelpFile

HelpFile

HelpFile

1 (Bo) Ob ie)
HelpFile

bs C8 o) oh

HelpFile

HelpFile

HelpFile

Useful cmdlets 37

Operators that can be ...

Py Wacete) i\oy- Con omire fb of Wit —p of af Fo of b Cane

b0} of=b af-h Ao} of Min of oY hom of- bo Wall of - Mao

Waele) wy oy- Con sake Fh of- ath ob a} Con oh | Cu

Variables automaticall...

A statement for immedi...

How the Windows Powers...

Command format in the ...

Parameters that every ...

Operators that can be ...

Immediately return to ...

Windows PowerShell cor...

Controlling how object...

How to access Windows ...

If that list seems too large to work with, you can shorten it by filtering on topic name and
category. For example, to get a list of all cmdlets starting with the verb Get, try the

command shown in the following example:

PS C:\> get-help -Name get-* -Category cmdlet

Name

Get-Command

Get-Help ~

Get-History

Get-PSSnapin

Get-EventLog

Get-ChildItem

Get-Content

PS C:\>

Category

Cmdlet

Synopsis

ef-} tia of-t-p Roume eb Lob a \t-h oh Ro) EE

Displays information a...

Gets a list of the com...

Gets the Windows Power...

Gets information about...

Gets the items and chi...

Gets the content of th...

After you have selected a help topic, you can retrieve the help information by using the

topic name as the parameter to the Get -Help cmdlet. For example, to retrieve help for the

Get -Content cmdlet, enter the following command:

PS C:\> get-help get-content

PowerShell Basics 38 CHAPTER 2

In Windows PowerShell RC2, two parameters were added for the get-help cmdlet: -

detailed and -full. The -detailed parameter displays additional information about

a cmdlet, including descriptions of parameters and examples of using the cmdlet. The

-full parameter displays the entire help file for a cmdlet, including technical informa-

tion about parameters.

cmdlet Help Topics

PowerShell help is divided into sections for each cmdlet. Table 2.3 describes the help

details for each cmdlet.

TABLE 2.3 PowerShell Help Sections

Help Section Description

Name The name of the cmdlet

Synopsis A brief description of what the cmdlet does

Detailed Description

Syntax

Parameters

Input Type

Return Type

Terminating Errors

Non-Terminating Errors

Notes

Examples

Related Links

A detailed description of the cmdlet’s behavior, usually including

usage examples

Specific usage details for entering commands with the cmdlet

Valid parameters that can be used with this cmdlet

The type of input this cmdlet accepts

The type of data that the cmdlet returns

If present, identifies any errors that result in the cmdlet terminat-

ing prematurely

Identifies noncritical errors that might occur while the cmdlet is

running but don’t cause the cmdlet to terminate its operation.

Additional detailed information on using the cmdlet, including

specific scenarios and possible limitations or idiosyncrasies

Common usage examples for the cmdlet

References other cmdlets that perform similar tasks

Get -Command

Another helpful cmdlet is Get -Command, used to list all available cmdlets in a PowerShell

session:

PS C:\> get-command

Name

Add-Content

Add-History

Add-Member

Add-PSSnapin

Clear-Content

CommandType Definition

Add-Content [-Path] <String[...

Add-History [[-InputObject] ...

Add-Member [-MemberType] <PS...

Add-PSSnapin [-Name] <String...

Clear-Content [-Path] <Strin..._- Cmdlet

Understanding cmdlets

Cmdlet Clear-Item Clear-Item [-Path] <String[]...
Cmdlet Clear-ItemProperty Clear-ItemProperty [-Path] <...
Cmdlet fon R-¥- bata te-b an =} of K-| Clear-Variable [-Name] <Stri...
Cmdlet exe) ior bal-ba0) oly Ton a Compare-Object [-ReferenceOb...

PS C:\>

The Get -Command cmdlet is more powerful than Get -Help because it lists all available

commands (cmdlets, scripts, aliases, functions, and native applications) in a PowerShell

session, as shown in this example:

PS C:\ get-command note*

CommandType Name . | OY a oe os oy 0 We

PN 0) oe me Rot-h ob Ro) | NOTEPAD. EXE C: \WINDOWS\NOTEPAD. EXE

PN o} oN Me oth oh Koy | notepad.exe C: \WINDOWS\system32\notepad.exe

PS C:\>

When using Get -Command with elements other than cmdlets, the information returned is a

little different from information you see for a cmdlet. For example, with an existing appli-

cation, the value of the Definition property is the path to the application. However,

other information about the application is also available, as shown here:

PS C:\> get-command ipconfig | format-list *
FileVersionInfo :

Path

Extension

‘Definition

Name

Cores iiiit-bekow nig of—

File: C: \WINDOWS\system32\ipconfig.exe
InternalName: ipconfig.exe
OriginalFilename: ipconfig.exe
FileVersion: 5.1.2600.2180

(xpsp_sp2_rtm.040803-2158)
| op Bl -) DY -Y-foh of oy oh od oan @ “a Oo} eh a He AUB ath om oy eM Oh ob Bs hg
Product: Veep coy-foh me AOMM I hb Xs lo) (OMe) ol—bat-he belo

System

bp ofole hier AIC —b af Koy sh 5.1.2600.2180
Debug: False

Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False -
Language: English (United States)

C: \WINDOWS\system32\ipconfig.exe
-exe 3
C: \WINDOWS\system32\ipconfig.exe
BB ole} sha Ke mb 4
pV oy oM ie ot ob Ko) |

40 CHAPTER 2. PowerShell Basics

With a function, the Definition property is the body of the function:

PS C:\> get-command Prompt

CommandType Name Definition

Function prompt Write-Host ("PS " + $(Get-Lo...

| OA

With an alias, the Definition property is the aliased command:

PS C:\> get-command write

CommandType Name Definition

write Write-Output

PS C:\>

With a script file, the Definition property is the path to the script. With a non-

PowerShell script (such as a .bat or .vbs file), the information returned is the same as

other existing applications.

Expressions
An additional capability of PowerShell is evaluating expressions. In the following

example, PowerShell returns a result for a simple mathematical expression:

PS C:\> (100 / 2) * 3
150

| O

What’s important to notice in this example is that PowerShell calculates and outputs

the result of the expression immediately. This approach is different from other shells

and scripting languages, where the result of this expression would need to be

assigned to a variable or printed before it could be displayed.

Understanding Variables 41

Although PowerShell displays the results of expressions immediately, you can also store
the output of expressions in variables or text files for later use. The following example
stores the output of the expression in the $Calc variable:

PS C:\> $Calc = (100 / 2) * 3
PS C:\> $Cale
150

PS C:\>

This technique can also be extended to PowerShell cmdlets. In the following example, the
$Procinfo variable is set to contain the results of the Get -Process cmdlet by using the
-Name parameter:

PS C:\> $Procinfo = get-process -Name explorer
PS C:\> $Procinfo

Handles NPM(K) PM(K) WS(K) VM(M) CPU(Ss) ProcessName

-45 explorer

PS C:\> $Procinfo

Handles NPM(K) WS(K) VM(M) Le) = Of 9) ProcessName

(=)'4 oW Koh a-ha

In this example, the $Procinfo variable is set to contain the results of the get -process

-Name explorer command. The value of $Procinfo is then queried, which returns the

results for the explorer process. When $Procinfo is queried a second time, the value for

CPU(s) is different from the first query. This example demonstrates that the contents of

the $Procinfo variable are dynamic, meaning you get real-time information on the

explorer process.

Understanding Variables
A variable is a storage place for data. In most shells, the only data that can be stored in a

variable is text data. In advanced shells and programming languages, data stored in vari-

ables can be almost anything, from strings to sequences to objects. Similarly, PowerShell

variables can be just about anything.

To define a PowerShell variable, you must name it with the $ prefix, which helps delin-

eate variables from aliases, cmdlets, filenames, and other items a shell operator might

want to use. A variable name is case sensitive and can contain any combination of

42 CHAPTER 2 PowerShell Basics

alphanumeric characters (A-Z and 0-9) and the underscore (_) character. Although

PowerShell variables have no set naming convention, using a name that reflects the type

of data the variable contains is recommended, as shown in this example:

PS C:\> $MSProcesses = get-process | where {$_.company -match

",*Microsoft*"} ‘

PS C:\> $MSProcesses

Handles. NPM(K) f WS(K) VM(M) CPU(s) ProcessName

ctfmon

big of Rob afb

iexplore

powershell

WINWORD

As you can see from the previous example, the information that is contained within the

$MSProcesses variable is a collection of Microsoft processes that are currently running on

the system.

A variable name can consist of any characters, including spaces, provided the name is

enclosed by braces ({ and } symbols). However, if you use a nonstandard variable

name, PowerShell warns you this practice is not recommended.

Built-in Variables

When a PowerShell session is started, a number of variables are defined automatically, as

shown in this example:

PS C:\> set-location variable:
PS Variable:\> get-childitem

Name

Error {CommandNotFoundException}

DebugPreference SilentlyContinue
PROFILE \\bob 'shosting.com\homes\tyson\My Documents\P...
HOME U:\

Host

System.Management .Automation.Internal.Host.In...

MaximumHistoryCount 64

MaximumAliasCount 4096

Understanding Variables

input System.Array+SZArrayEnumerator
i} t= Co} |G ib at Cot =) at System.Management.Automation.

CommandDis...
SX) of o} ah of bab lob ato} ele) nicl} b aol =) 2
ExecutionContext System.Management .Automation.

EngineIntrinsics
true True
VerbosePreference SilentlyContinue
ShelllId IVER ob ofol-Loh ch ae Lo) /(-b af} C=
false False
null

MaximumFunctionCount 4096
ConsoleFileName

b=} ole} a ot Ob ab oh af} slo) Nich t= Lod a bb a= Lol =) 0

FormatEnumerationLimit 4

? True
PSHOME C:\Program Files\Windows

PowerShell\v1.0
MyInvocation System.Management.Automation.

InvocationInfo
PWD Variable: \
“ r=} oon Koler- ho Ko} 4]

BS) oo} ag of Db op fo} at} 110) 1) Dp dol-) oh oh Ro) 1 On Etta 0)

ProgressPreference Continue

ErrorActionPreference Continue
rb abe f {}

MaximumErrorCount 256

NestedPromptLevel 0

WhatIfPreference 0)

$ variable:

ReportErrorShowInnerException 0

ErrorView _ Normalview
WarningPreference Continue

PID 3124
ConfirmPreference High

MaximumDriveCount 4096

MaximumVariableCount, 4096

PS C:\>

These built-in shell variables are divided into two types. The first type has a special

meaning in PowerShell because it stores configuration information for the current

PowerShell session. Of these special variables, the following should be considered note-

worthy because they’re used often throughout this book:

e $ Contains the current pipeline object

e $Error Contains error objects for the current PowerShell session

44 CHAPTER 2 PowerShell Basics

PS C:\> get-service | where-object {$_.Name -match "W32Time"}

Status Name DisplayName

Running W32Time Windows Time

| On

PS C:\> $Error
Unexpected token 'Name' in expression or statement.

PS C:\>

The second type of built-in variable consists of preference settings used to control the

behavior of PowerShell. Table 2.4 describes these variables, based on the PowerShell User

Guide.

A command policy can be one of the following strings: SilentlyContinue,

NotifyContinue, NotifyStop, or Inquire.

TABLE 2.4 PowerShell Preference Settings

Name — Allowed Values Description |

$DebugPreference Command policy Action to take when data is written via

Write -Debug in a script or

WriteDebug() in a cmdlet or provider

$ErrorActionPreference Command policy Action to take when data is written via

Write-Error ina script or

WriteError() in a cmdlet or provider

$MaximumAliasCount Int Maximum number of aliases

$MaximumDriveCount Int Maximum number of allowed drives

$MaximumErrorCount Int Maximum number of errors held by

$Error

$MaximumFunctionCount Int Maximum number of functions that

can be created

$MaximumVariableCount Int Maximum number of variables that

can be created

$MaximumHistoryCount Int Maximum number of entries saved in

the command history

$ShouldProcessPreference Command policy Action to take when ShouldProcess is

used in a cmdlet

Understanding Aliases 45

Name de Allowed Values _ Description

$ProcessReturnPreference Boolean ShouldProcess returns this setting

$ProgressPreference Command policy Action to take when data is written via

Write-Progress in a Script or

WriteProgress() in a cmdlet or

provider

$VerbosePreference Command policy Action to take when data is written via

Write-Verbose in a Script or

WriteVerbose() in a cmdlet or provider

Understanding Aliases
Unfortunately, using PowerShell requires a lot of typing unless you’re running a script.

For example, open a PowerShell console and try typing the following command:

PS C:\> get-process | where-object {$_.Company -match ".*Microsoft*"}
| format-table Name, ID, Path —Autosize

That’s a long command to type. Luckily, like most shells, PowerShell supports aliases for

cmdlets and executables. So if you want to cut down on the typing in this command, you

can use PowerShell’s default aliases. Using these aliases, the Get -Process example looks

like this:

PS C:\> gps | ? {$_.Company -match ".*Microsoft*"} | ft Name, ID, Path

—Autosize

This example isn’t a major reduction in the amount of typing, but aliases can save you

some time and prevent typos. To get a list of the current PowerShell aliases supported in

your session, use the Get -Alias cmdlet, as shown here:

PS C:\> get-alias

Moxey its belo ling ole Name Definition

F- Yo] Add-Content

asnp Add-PSSnapin

(on Ko] (on K-¥-} atl Oro) eh Sebo

Con ie Clear-Item

fon io) op K-¥-} atom ih X=) 11) ob alo) ol ak og

clv fon R-¥-b arent é- a =) oA

rej oh Bi Copy-Item

fo} 2} 2) Copy-ItemProperty

lobia of-) Convert-Path

CHAPTER 2 PowerShell Basics

exe) vey b bee) oy Ton a

Export-Alias

Export-Csv

Format-Custom

Format-List

| Ko} of OF-Vod te 0) oly f-Lona

| oa F-Ko) tte) ody Lon a
Format-Table

Format-Wide

Get-Alias

Get-Content

Get-ChildItem

Get-Command

Get-PSDrive

Get-History

Get-Item

Get-Location
Get-Member _

Get-ItemProperty

Get-Process

Group-Object

Get-Service

Get-PSSnapin

Get-Unique

Get-Variable

Get-Wmi0Object

Invoke-Expression

Invoke-History

Invoke-Item

Import-Alias

Import-Csv

Move-Item

Move-ItemProperty

New-Alias

New-PSDrive

New-Item

New-Variable

Out-Host

Remove-PSDrive

Remove-Item

Rename-Item

Rename-ItemProperty

Remove-ItemProperty

rsnp Remove-PSSnapin

rv Remove-Variable

rvpa Resolve-Path
sal Set-Alias

sasv Start-Service

sc Set-Content

select Tow Yoh Ae 0) oly Kod o
si Set-Item

si. Set-Location

Understanding Aliases

Start-Sleep

Sort-Object

Set-ItemProperty

fh Lo) oked b aol ol-J-1-}

Stop-Service

Set-Variable

HWY 0) oly E-Ten a

Ap eX= bof -te1 0) oly K-Loh ol

Where-Object

Write-Output

Get-Content

Set-Location

fon K-¥-b aed: (othe

Copy-Item

Get-History

Get-History

Stop-Process

Out-Printer

Get-ChildItem

New-PSDrive

Move-Item

| Lo) ofan Ho Lot- hob Koy]

Get-Process

Push-Location

(e{—} sep iolet- 4 ob oye]

Invoke-History
Remove-Item

Remove-Item

Write-Output
. Clear-—Host

Set-Location

Copy-Item

Remove-Item

Get-ChildItem

{Toh id — tae i of =) 11)

Move-Item

Remove-Item

Rename-Item

Set-Variable

Get-Content

Discovering Alias cmdlets

Several alias cmdlets enable you to define new aliases, export aliases, import aliases, and

display existing aliases. By using the following command, you can get a list of all related

alias cmdlets:

48 CHAPTER 2. PowerShell Basics

PS C:\> get-command *-Alias

CommandType Name Definition

Export-Alias Export-Alias [-Path] <String..

Get-Alias Get-Alias [[-Name] <String[]...

Import-Alias Import-Alias [-Path] <String...

New-Alias New-Alias [-Name] <String> [...
Cmdlet Set-Alias Set-Alias [-Name] <String> [...

You’ve already seen how to use the Get -Alias cmdlet to produce a list of aliases available

in the current PowerShell session. The Export-Alias and Import-Alias cmdlets are used

to export and import alias lists from one PowerShell session to another. Finally, the New-

Alias and Set -Alias cmdlets allow you to define new aliases for the current PowerShell

session.

Ae oe
The alias implementation in PowerShell is limited. As mentioned earlier, an alias works

only for cmdlets or executables, not for cmdlets and executables used with a parame-

ter. However, there are methods to work around this limitation. One method is defining

the command in a variable and then calling the variable from other commands. The

problem with this approach is that the variable can be called only in the current

PowerShell session, unless it’s defined in the profile.ps1 file. The second but better

method is placing your command in a function.

Creating Persistent Aliases

The alises created when you use the New-Alias and Set -Alias cmdlets are valid only in

the current PowerShell session. Exiting a PowerShell session discards any existing aliases.

To have aliases persist across PowerShell sessions, you must define them in the

profile.ps1 file, as shown in this example:

set-alias new new-object

set-alias time get-date

Although command shortening is appealing, the extensive use of aliases isn’t recom-
mended. One reason is that aliases aren’t very portable. For example, if you use a lot of
aliases in a script, you must include a Set -Aliases sequence at the start of the script to

make sure those aliases are present, regardless of machine or session profile, when the
script runs.

However, a bigger concern than portability is that aliases can often confuse or obscure the
true meaning of commands or scripts. The aliases you define might make sense to you,

Escape Sequences

but not everyone shares your logic in defining aliases. So if you want others to under-
stand your scripts, you must be careful about using too many aliases. Instead, look into
creating reusable functions.

When creating aliases for scripts, use names that other people can understand. For
example, there's no reason, other than to encode your scripts, to create aliases
consisting of only two letters.

Escape Sequences
The grave-accent or backtick (*) acts as the PowerShell escape character. Depending on

49

when this character is used, PowerShell interprets characters immediately following it in a

certain way.

If the backtick character is used at the end of a line in a script, it acts as a continuation

character. In other words, © acts the same way & does in VBScript, allowing you to break

long lines of code into smaller chunks, as shown here:

$Reg = get-wmiobject -Namespace Root\Default -computerName ~

$Computer -List | where-object °

{$_.Name -eq "StdRegProv"}

If the backtick character precedes a PowerShell variable, the characters immediately

following it should be passed on without substitution or processing:

PS C:\> $String = "Does this work?"

PS C:\> write-host "The question is: S$String"
The question is: Does this work?

PS C:\> write-host "The question is: ~$String"

The question is: $String

PS C:\>

If the backtick character is used in a string or interpreted as part of a string, that means

the next character should be interpreted as a special character. For example, if you want

to place a TAB in your string, you use the *t escape character sequence, as shown:

PS C:\> $String = "Look at the tab: t [TAB]"
PS C:\> write-host $string /
b ole) Gar amma oY — Yin x oft [TAB]

PS C:\>

50 CHAPTER 2. PowerShell Basics

Table 2.5 lists the escape character sequences supported by PowerShell.

TABLE 2.5 PowerShell Escape Sequences

Character Meaning

my Single quotation mark

Double quotation mark

Null character

Alert (bell or beep signal to the computer speaker)

Backspace

Form feed (used for printer output)

Newline

Carriage return

Horizontal tab (8 spaces)

Vertical tab (used for printer output) —inhe SS Sh ee eS

Understanding Scopes
A scope is a logical boundary in PowerShell that isolates the use of functions and vari-

ables. Scopes can be defined as global, local, script, and private. They function in a hierar-

chy in which scope information is inherited downward. For example, the local scope can

read the global scope, but the global scope can’t read information from the local scope.

Scopes and their use are described in the following sections.

Global

As the name indicates, a global scope applies to an entire PowerShell instance. Global

scope data is inherited by all child scopes, so any commands, functions, or scripts that

run make use of variables defined in the global scope. However, global scopes are not

shared between different instances of PowerShell.

The following example shows the $Processes variable being defined as a global variable

in the ListProcesses function. Because the $Processes variable is being defined globally,

checking $Processes.Count after ListProcesses completes returns a count of the number

of active processes at the time ListProcesses was executed.

PS C:\> function ListProcesses {$Global:Processes = get-process}
PS C:\> ListProcesses
PS C:\> $Processes.Count

37

Understanding Scopes 51

In PowerShell, you can use an explicit scope indicator to determine the scope a vari-

able resides in. For instance, if you want a variable to reside in the global scope, you

define it as $Global: variablename. If a explicit scope indicator isn’t used, a variable

resides in the current scope for which it’s defined.

Local

A local scope is created dynamically each time a function, filter, or script runs. After a

local scope has finished running, information in it is discarded. A local scope can read

information from the global scope but can’t make changes to it.

The following example shows the locally scoped variable $Processes being defined in the

ListProcesses function. After ListProcesses finishes running, the $Processes variable

no longer contains any data because it was defined only in the ListProcesses function.

As you can see, checking $Processes.Count after the ListProcesses function is finished

produces no results.

PS C:\> function ListProcesses {$Processes = get-process}

PS C:\> ListProcesses
PS C:\> $Processes.Count
PS C:\>

Script

A script scope is created whenever a script file runs and is discarded when the script

finishes running. To see an example of how a script scope works, create the following

script and save it as ListProcesses.ps1:
poe ce

| $Processes = get-process

write-host "Here is the first process:" -Foregroundcolor Yellow

| $Processes[Q]

After you have created the script file, run it from a PowerShell session. Your output should

look similar to this example:

52 CHAPTER 2. PowerShell Basics

PS C:\> .\ListProcesses.psl
Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

PS C:\> $Processes[0]
Cannot index into a null array.
At line:1 char:12
+ $Processes[0 <<<<]

PS C:\>

Notice that when the ListProcesses.ps1 script runs, information about the first process

object in the $Processes variable is written to the console. However, when you try to

access information in the $Processes variable from the console, an error is returned

because the $Processes variable is valid only in the script scope. When the script finishes

running, that scope and all its contents are discarded.

What if you want to use a script in a pipeline or access it as a library file for common

functions? Normally, this isn’t possible because PowerShell discards a script scope when-

ever a script finishes running. Luckily, PowerShell supports the dot sourcing technique, a

term that originally came from UNIX. Dot sourcing a script file tells PowerShell to load a

script scope into the calling parent’s scope.

To dot source a script file, simply prefix the script name with a period (dot) when running

the script, as shown here:

PS C:\> . .\myscript.psl

Private

A private scope is similar to a local scope, with one key difference: Definitions in the

private scope aren’t inherited by any child scopes.

The following example shows the privately scoped variable $Processes defined in the

ListProcesses function. Notice that during execution of the ListProcesses function, the

$Processes variable isn’t available to the child scope represented by the script block

enclosed by { and } in lines 6-9,

Your First Script 53

PS C:\> function ListProcesses {$Private:Processes = get-process
>> write-host “Here is the first process:" -Foregroundcolor Yellow
>> $Processes[0]
>> write-host
>>

>> &{
>> write-host "Here it is again:" -Foregroundcolor Yellow

$Processes[0]
>>
>> }
>>

PS C:\> ListProcesses

Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

is again:
Cannot index into a null array.
At line:7 char:20
+ $Processes[0 <<<<]

5 OD

This example works because it uses the & call operator. With this call operator, you can

execute fragments of script code in an isolated local scope. This technique is helpful for

isolating a script block and its variables from a parent scope or, as in this example, isolat-

ing a privately scoped variable from a script block.

Your First Script
Most of the commands covered in this chapter are interactive, meaning you enter

commands at the PowerShell prompt and then output is returned. Although using

PowerShell interactively is helpful for tasks that need to be done only once, it’s not an

effective way to perform repetitive automation tasks. Fortunately, PowerShell has the

capability to read in files containing stored commands, which enables you to compose,

save, and recall a sequence of commands when needed. These sequences of stored

commands are commonly referred to as scripts.

PowerShell scripts are simply text files stored with a .ps1 extension. You can use any text

editor (such as Notepad) to create a text file containing commands that make up a

PowerShell script. For example, open Notepad and type the following command:

| get-service | where-object {$_.Status -eq "Stopped"}

54 CHAPTER 2. PowerShell Basics

Next, save this file with the name ListStoppedServices.ps1 in a directory of your choice.

For this example, the C:\Scripts directory is used.

Before you can run this script, you need to adjust PowerShell’s execution policy because

the default setting doesn’t allow running scripts for protection against malicious scripts.

To change this setting, you use the Set -ExecutionPolicy cmdlet as shown in the follow-

ing example. You can also use the Get -ExecutionPolicy cmdlet to verify the current

execution policy. (Chapter 3 discusses PowerShell security and best practices in more

detail.)

PS C:\> set-executionpolicy RemoteSigned

PS C:\> get-executionpolicy
RemoteSigned

PS C:\>

The RemoteSigned policy allows scripts created locally to run without being digitally

signed (a concept discussed in Chapter 4, “Code Signing”), but still requires scripts down-

loaded from the Internet to be digitally signed. These settings give you the flexibility to

run unsigned scripts from your local machine yet provide some protection against

unsigned external scripts.

After changing PowerShell’s execution policy to RemoteSigned, you can run the script in

any PowerShell session by simply typing the script’s full directory path and filename. In

the following example, entering the C:\Scripts\ListStoppedServices.ps1 command

produces this output:

PS C:\> C:\Scripts\ListStoppedServices.psl

Status Name DisplayName

Stopped Alerter Alerter

Fh Xo) o) oL=To May -No) ou Cot ih a Application Management

Stopped aspnet state ASP.NET State Service

Stopped BITS Background Intelligent Transfer Ser...

Fo} Lo) o) ofto Mm -b ao) Et —b a Computer Browser

oh Lo} of of Yo mm OF I hiiel Indexing Service
Fo) 0) oT To Mim On Ee ot ang op iB +) =fole) 4

Stopped clr optimizatio... .NET Runtime Optimization Service v...
Fh Ko} 0} of Yo Ma CLO) UTD IE-F:N 0) 0) COM+ System Application

Stopped dmadmin Logical Disk Manager Administrative...
Stopped FastUserSwitchi... Fast User Switching Compatibility
Stopped HidServ . Human Interface Device Access
Stopped HTTPFilter HTTP SSL

Stopped IDriverT InstallDriver Table Manager

Stopped ImapiService IMAPI CD-Burning COM Service °
Stopped mnmsrvc NetMeeting Remote Desktop Sharing

Stopped MSDTC Distributed Transaction Coordinator
Stopped MSIServer Windows Installer

Stopped MSSQLServerADHe... MSSQLServerADHelper

oe

Your First Script 55

3 Lo) 0} oL=Lo Mima \ (—) of D) 9) 2 Network DDE

| Stopped NetDDEdsdm Network DDE DSDM

Stopped NGClient Symantec Ghost Client Agent

Stopped NtLmSsp NT LM Security Support Provider
Stopped NtmsSvc Removable Storage

EJ Lo} o} of To Miia 0} at-Con K-10) -¥:\ 7) on ls K-Pu O} af-Col 10) 0:Nc A On Me Ry 0 oh OF- Lol 0-1
Stopped ose Office Source Engine

Stopped RasAuto Remote Access Auto Connection Manager

Stopped RDSessMgr Remote Desktop Help Session Manager

Stopped RemoteAccess Routing and Remote Access

Stopped rpcapd Remote Packet Capture Protocol v.0 ...

Eo} Keo) o) of To Mame 54 oLel Melet-b neh a Remote Procedure Call (RPC) Locator

Stopped RSVP QoS RSVP

oh Xo} o} oT M1 Ot-bast hia g t=) (1b oh oO - B ato |

Stopped SwPrv MS Software Shadow Copy Provider

Rh Koyo) ello Mhz tiled et mele! Performance Logs and Alerts

Stopped TlntSvr Telnet

Stopped TrkWks Distributed Link Tracking Client

Stopped upnphost Universal Plug and Play Device Host

Stopped UPS Uninterruptible Power Supply

Stopped vmount2 VMware Virtual Mount Manager Extended

Stopped VSS Volume Shadow Copy

Stopped WmdmPmSN Portable Media Serial Number Service

Stopped Wmi Windows Management Instrumentation ...

Stopped WmiApSrv WMI Performance Adapter

Fo} oo) o) of Te Mmmm Leth ide: Security Center

Stopped xmlprov Network Provisioning Service

PS C:\>

Although this basic one-line script is simple, it stills serves to illustrate how to write a

script and use it in PowerShell. If needed, you can include more commands to have it

perform an automation task. The following is an example:

: param ([string] $StartsWith)

$StopServices = get-service | where-object {$_.Status -eq "Stopped"}

write-host "The following $StartsWith services are stopped on"

"SEnv:COMPUTERNAME:" -Foregroundcolor Yellow

| $StopServices | where-object {$_.Name -like $StartsWith} ;

format-table Name, DisplayName

56 CHAPTER 2. PowerShell Basics

The script then displays this output:

PS C:\> C:\Scripts\ListStoppedServices.psl N*
The following N* services are stopped on PLANX:

Name DisplayName

bY C=} of DD) 2} Network DDE

NetDDEdsdm Network DDE DSDM

NtLmSsp NI LM Security Support

Provider
NtmsSvc Removable Storage

PS C:\>

This script is a little more complex because it can filter the stopped services based on the

provided string to make the output cleaner. This script isn’t a complicated piece of

automation, but it does serve to illustrate just some of the power that PowerShell has. To

use that power, you just need to gain a better understanding of PowerShell’s features so

that you can write more complex and meaningful scripts.

Summary
In this chapter, you have focused on learning the PowerShell basics. In learning these

basics, you have gained insight into such concepts as PowerShell’s different command

types, what cmdlets are, how to use aliases variables and the CLI, and PowerShell scopes.

After learning these concepts, you then moved on to learning the basics around

PowerShell script writing and completed your first script. But, the most important

concept that should be taken from this chapter is that you have downloaded PowerShell,

installed it, and started using it.

By just using PowerShell, you have taken the first of many steps to becoming a master in

PowerShell usage. This first step is after all the hardest, and once taken, the road should

start to become easier and easier. As such, over the next couple chapters or maybe by the

end of this book, you should notice your proficiency in PowerShell growing as more

concepts are reviewed and a push is made to understand how PowerShell can be applied

to meet automation needs.

3

PowerShell: A More
In-Depth Look

Introduction

This chapter delves into some specifics of how PowerShell

works that you need to understand for the later scripting

chapters. Try not to get too bogged down in details;

instead, focus on understanding the concepts. Because

PowerShell is a change from Windows scripting of the past,

you might also need to change your scripting methods.

With practice, it will start to feel as familiar as Windows

scripting via VBScript or JScript, which was the standard

method for Windows automation tasks.

Object Based
Most shells operate in a text-based environment, which

means you typically have to manipulate the output for

automation purposes. For example, if you need to pipe data

from one command to the next, the output from the first

command usually must be reformatted to meet the second

command’s requirements. Although this method has

worked for years, dealing with text-based data can be

difficult and frustrating.

Often, a lot of work is necessary to transform text data into

a usable format. Microsoft has set out to change the stan-

dard with PowerShell, however. Instead of transporting

data as plain text, PowerShell retrieves data in the form of

.NET Framework objects, which makes it possible for

commands (cmdlets) to access object properties and

methods directly. This change has simplified shell use.

Instead of modifying text data, you can just refer to the

IN THIS CHAPTER

> Introduction

» Object Based

p> Understanding Providers

» Understanding Errors

» Error Handling

» PowerShell Profiles

pe Understanding Security

» The PowerShell Language

58 CHAPTER 3. PowerShell: A More In-Depth Look

required data by name. Similarly, instead of writing code to transform data into a usable

format, you can simply refer to objects and manipulate them as needed.

Understanding the Pipeline
The use of objects gives you a more robust method for dealing with data. In the past, data

was transferred from one command to the next by using the pipeline, which makes it

possible to string a series of commands together to gather information from a system.

However, as mentioned previously, most shells have a major disadvantage: The informa-

tion gathered from commands is text based. Raw text needs to be parsed (transformed)

into a format the next command can understand before being piped. To see how parsing

works, take a look at the following Bash example:

$ ps -ef | grep "bash": | cut -£2

The goal is to get the process ID (PID) for the bash process. A list of currently running

processes is gathered with the ps command and then piped to the grep command and

filtered on the string "bash". Next, the remaining information is piped to the cut

command, which returns the second field containing the PID based on a tab delimiter.

A delimiter is a character used to separate data fields. The default delimiter for the

cut command is a tab. If you want to use a different delimiter, use the -d parameter.

Based on the man information for the grep and cut commands, it seems as though the ps

command should work. However, the PID isn’t returned or displayed in the correct

format.

The command doesn’t work because the Bash shell requires you to manipulate text data

to display the PID. The output of the ps command is text based, so transforming the text

into a more usable format requires a series of other commands, such as grep and cut.

Manipulating text data makes this task more complicated. For example, to retrieve the

PID from the data piped from the grep command, you need to provide the field location

and the delimiter for separating text information to the cut command. To find this infor-

mation, run the first part of the ps command:

$ ps -ef | grep "bash"
boo) o] 3628 1 con 16:52:46 /usr/bin/bash

The field you need is the second one (3628). Notice that the ps command doesn’t use a

tab delimiter to separate columns in the output; instead, it uses a variable number of

spaces or a whitespace delimiter, between fields.

Object Based 59

A whitespace delimiter consists of characters, such as spaces or tabs, that equate to
blank space.

The cut command has no way to tell that spaces should be used as a field separator,
which is why the command doesn’t work. To get the PID, you need to use the awk script-

ing language. The command and output in that language would look like this:

$ ps -ef | grep "bash" | awk '{print $2}'
Ri-y4:}

«

The point is that although most UNIX and Linux shell commands are powerful, using

them can be complicated and frustrating. Because these shells are text-based, often

commands lack functionality or require using additional commands or tools to perform

tasks. To address the differences in text output from shell commands, many utilities and

scripting languages have been developed to parse text.

The result of all this parsing is a tree of commands and tools that make working with

shells unwieldy and time consuming, which is one reason for the proliferation of

management interfaces that rely on GUIs. This trend can be seen among tools Windows

administrators use, too; as Microsoft has focused on enhancing the management GUI at

the expense of the CLI.

Windows administrators now have access to the same automation capabilities as their

UNIX and Linux counterparts. However, PowerShell and its use of objects fill the auto-

mation need Windows administrators have had since the days of batch scripting and

WSH in a more usable and less parsing intense manner. To see how the PowerShell

pipeline works, take a look at the following PowerShell example:

PS C:\> get-process bash | format-table id -autosize

Id

3628

PS C:\>

Like the Bash example, the goal of this PowerShell example is to display the PID for the

bash process. First, information about the bash process is gathered by using the Get -

Process cmdlet. Second, the information is piped to the Format-Table cmdlet, which

returns a table containing only the PID for the bash process.

60 CHAPTER 3 PowerShell: A More In-Depth Look

The Bash example requires complex shell scripting, but the PowerShell example simply

requires formatting a table. As you can see, the structure of PowerShell cmdlets is much

easier to understand and use.

Now that you have the PID for the bash process, take a look at the following example,

which shows how to kill (stop) that process:

PS C:\> get-process bash | stop-process
PS C:\>

.NET Framework Tips

Before continuing, you need to know a few points about how PowerShell interacts with

the .NET Framework. This information is critical to understanding the scripts you review

in later chapters.

New-Object cmdlet

You use the New-Object cmdlet to create an instance of a .NET object. To do this, you

simply provide the fully qualified name of the .NET class you want to use, as shown:

PS C:\> $Ping = new-object Net.NetworkInformation. Ping
PS C:\>

By using the New-Object cmdlet, you now have an instance of the Ping class that enables

you to detect whether a remote computer can be reached via Internet Control Message

Protocol (ICMP). Therefore, you have an object-based version of the Ping.exe command-

line tool.

If you’re wondering what the replacement is for the VBScript CreateObject method, it’s

the New-Object cmdlet. You can also use the comObject switch with this cmdlet to create

a COM object, simply by specifying the object’s programmatic identifier (ProgID), as

shown here:

PS C:\> $IE = new-object -comObject InternetExplorer.Application
PS C:\> SIE.Visible=$True
PS C:\> SIE.Navigate("www.cnn.com")
PS C:\>

Square Brackets

Throughout this book, you'll notice the use of square brackets ({ and]), which indicate

that the enclosed term is a .NET Framework reference. These references can be one of the

following:

¢ A fully qualified class name—[System.DirectoryServices.ActiveDirectory.Forest],

for example

Object Based 61

¢ A class in the System namespace—[string], [int], [boolean], and so forth

e A type accelerator—[ADSI], [WMI], [Regex], and so on

Chapter 8, “PowerShell and WMI,” explains type accelerators in more detail.

Defining a variable is a good example of when to use a .NET Framework reference. In this

case, the variable is assigned an enumeration value by using an explicit cast of a .NET

class, as shown in this example:

PS C:\> $SomeNumber = [int]1

PS C:\> $Identity = [System.Security.Principal.NTAccount] "Administrator"

PS C:\>

If an enumeration can consist of only a fixed set of constants, and you don’t know these

constants, you can use the System. Enum class’s GetNames method to find this information:

PS C:\>

[enum] : :GetNames([System.Security.AccessControl.FileSystemRights])

bh 5 od Db Lon Lo} hig

ReadData

WriteData

CreateFiles

CreateDirectories

AppendData

ReadExtendedAttributes

WriteExtendedAttributes

Traverse

ExecuteFile

DeleteSubdirectoriesAndFiles

ReadAttributes

WriteAttributes

Write

Delete

ReadPermissions

Read

ReadAndExecute

Modify
ChangePermissions

TakeOwnership

hig sted eb aces sb yA)

FullControl

PS C:\>

62 CHAPTER 3. PowerShell: A More In-Depth Look

Static Classes and Methods

Square brackets are used not only for defining variables, but also for using or calling static

members of a .NET class. To do this, just use a double colon (::) between the class name

and the static method or property, as shown in this example:

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::

Lefag AOL bab of beh of eo} al th ol QO

Name taosage.internal

Sites {HOME}
Domains {taosage.internal}

fee) oy- Beer hr. W mole f-] {sol.taosage.internal}

ApplicationPartitions {DC=DomainDnsZones , DC=taosage, DC=internal,

DC=ForestDns :
_ Zones ,DC=taosage, DC=internal}

1 Kop af -t-f ot Vole l=) Windows2003Forest

RootDomain taosage.internal

Schema

CN=Schema, CN=Configuration,DC=taosage,DC=internal

SchemaRoleOwner sol.taosage.internal

NamingRoleOwner sol.taosage. internal

PS C:\>

Reflection

Reflection is a feature in the .NET Framework that enables developers to examine objects

and retrieve their supported methods, properties, fields, and so on. Because PowerShell is

built on the .NET Framework, it provides this feature, too, with the Get -Member cmdlet.

This cmdlet analyzes an object or collection of objects you pass to it via the pipeline. For

example, the following command analyzes the objects returned from the Get -Process

cmdlet and displays their associated properties and methods:

PS C:\> get-process | get-member

Developers often refer to this process as “interrogating” an object. It’s a faster way to get

information about objects than using the Get -Help cmdlet (which at the time of this

writing provides limited information), reading the MSDN documentation, or searching

the Internet.

Object Based

PS C:\> get-process | get-member

TypeName: System.Diagnostics.Process

Name MemberType Definition

Handles = Handlecount

AliasProperty Name = ProcessName

AliasProperty NPM = NonpagedSystemMemorySize

AliasProperty PM = PagedMemorySize

AliasProperty VM = VirtualMemorySize

AliasProperty WS = WorkingSet

Method System.Void add_Disposed(Event...

Method System.Void add _ErrorDataRecei...

Method System.Void add Exited(EventHa...

Method System.Void add_OutputDataRece...

Method System.Void BeginErrorReadLine()

Method System.Void BeginOutputReadLine()

Method System.Void CancelErrorRead()

Method System.Void CancelOutputRead()

Method System.Void Close()

Method System.Boolean CloseMainWindow()

Method System.Runtime.Remoting.ObjRef...

Method System.Void Dispose()

Method System.Boolean Equals(Object obj)

Method System.Int32 get _BasePriority()

Method System. ComponentModel.IContain...

So Lore | System.Boolean get_EnableRaisi...

Handles AliasProperty
Name

add_Disposed

add_ErrorDataReceived

F-Vs Co i Ob hh ate |

add_OutputDataReceived

BeginErrorReadLine

BeginOutputReadLine

CancelErrorRead

CancelOutputRead

fon Ket -t—)

CloseMainWindow

CreateObjRef

Dispose

Equals

get_BasePriority

get_ Container

get_EnableRaisingEvents

___NounName

BasePriority

Container

EnableRaisingEvents

bop ge of Ooo (=

ExitTime

Handle

System.String _ NounName=Process

System.Int32 BasePriority {get;}

System.ComponentModel.IContain...

System.Boolean EnableRaisingEv...

System.Int32 ExitCode {get;}

System.DateTime ExitTime {get;}

System.IntPtr Handle {get;}

System.Int32 HandleCount {get;}

System.Boolean HasExited {get;}

System.Int32 Id {get;}
System.String MachineName {get;}

System.Diagnostics.ProcessModu...

System.IntPtr MainWindowHandle...

System.String MainWindowTitle ...

System.IntPtr MaxWorkingSet {g...

System.IntPtr MinWorkingSet {g...

IS fo} oh} <b alo) oT) af oh

Property

bP ako) ol —} ah ig

DB ako) ob a hig

bb af 0) of oh hig

bb ago) ol —} ah og

bb ago) ofS ah hg

HandleCount Property

HasExited Property

Id Property
MachineName Property

MainModule Property

MainWindowHandle Property

MainWindowTitle Property

MaxWorkingSet SPake) of =F at hig
MinWorkingSet Property

fefeyuver-behig

CPU

Description

FileVersion

Path

Product

ProductVersion

PS C:\>

FoYob ah lo} of = ako) ob ah hig

F-Yoh ah Wo} of ale) ol —b ah hig

Loh ag ho} of sb oho} of —b an hig

FsLob ab ho} of <b ke) ol —b an hig

FoLoh ab oh of sb alo} of —b at hig

Fsfop ab Ho} of ob ae) ol -b ah hig

FsTob ahh oh of bale) ol -b ah hg

System.Object Company {get=$th...

System.Object CPU {get=Sthis.T...

System.Object Description {get...

System.Object FileVersion {get...
System.Object Path {get=$this....
System.Object Product {get=Sth...

System.Object ProductVersion {...

64 CHAPTER 3. PowerShell: A More In-Depth Look

This example shows that objects returned from the Get -Process cmdlet have additional

property information that you didn’t know. The following example uses this information

to produce a report about Microsoft-owned processes and their folder locations. An

example of such a report would be as follows:

PS C:\> get-process | where-object {$_.Company -match ".*Microsoft*"} |

format-table Name, ID, Path -Autosize (

Name

ctfmon C:\WINDOWS\system32\ctfmon.exe
explorer C:\WINDOWS\Explorer .EXE
BK=>'4 of Ko} f-) C:\Program Files\Internet Explorer\iexplore.exe

BK —p:4 oo} a=) C:\Program Files\Internet Explorer\iexplore.exé

mobsync C: \WINDOWS \system32\mobsync.exe

notepad C: \WINDOWS \system32\notepad.exe

notepad i eccrine Saoaane eye toa ec
notepad C: \WINDOWS \system32 \NOTEPAD . EXE

notepad _C:\WINDOWS \system32\notepad.exe
fo) dy ele) 54 C:\Program Files\Microsoft Office\OFFICE11\OUTLOOK. EXE.

powershell C:\Program Files\Windows PowerShell\v1.0\powershell.exe

WINWORD C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

PS C:\>

You wouldn’t get nearly this much process information by using WSH with only a single

line of code.

The Get -Member cmdlet isn’t just for objects generated from PowerShell cmdlets. You can

also use it on objects initialized from .NET classes, as shown in this example:

PS C:\> new-object System.DirectoryServices.DirectorySearcher

The goal of using the DirectorySearcher class is to retrieve user information from Active

Directory, but you don’t know what methods the returned objects support. To retrieve

this information, run the Get -Member cmdlet against a variable containing the mystery

objects, as shown in this example.

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher

PS C:\> $Searcher | get-member

TypeName: System. DirectoryServices.DirectorySearcher

Name MemberType Definition

_ add_Disposed Method System.Void add_Disposed(EventHandle...

Object Based

CreateObjRef Method System.Runtime.Remoting.ObjRef Creat...
Dispose ; Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
FindAll . Method System.DirectoryServices.SearchResul...
FindOne Method System.DirectoryServices.SearchResul...

Asynchronous Property System.Boolean Asynchronous {get;set;}

AttributeScopeQuery Property System.String AttributeScopeQuery {g...

CacheResults Property System.Boolean CacheResults {get;set;}

ClientTimeout Property System.TimeSpan ClientTimeout {get;s...

Container 1 ke) oJ —) ot hig System.ComponentModel.IContainer Con...

DerefAlias Property System.DirectoryServices.Dereference...
DirectorySynchronization Property System.DirectoryServices.DirectorySy...

bp 4 =} eo (To 1D) \| Property System.DirectoryServices.ExtendedDN ...

Filter Property System.String Filter {get;set;}

PageSize Property System.Int32 PageSize {get;set;}

bh ake) ol— af oR -T-} Wo) Mol-(o| Property System.Collections.Specialized.Strin... .

PropertyNamesOnly Property System.Boolean PropertyNamesOnly {ge...

ReferralChasing Property System.DirectoryServices.ReferralCha...

SearchRoot Property System.DirectoryServices.DirectoryEn...

SearchScope Property System.DirectoryServices.SearchScope...

SecurityMasks Property System.DirectoryServices.SecurityMas....

ServerPageTimeLimit Property System.TimeSpan ServerPageTimeLimit ...

ServerTimeLimit Property System.TimeSpan ServerTimeLimit {get...

Site Property System.ComponentModel.ISite Site {ge...

SizeLimit Property System.Int32 SizeLimit {get;set;}

Sort ; Property System.DirectoryServices.SortOption ...

Tombstone i bsp alo) oL— 3 oh hg System.Boolean Tombstone {get;set;}

VirtualListView Property System.DirectoryServices.

DirectoryVi...

PS C:\>

Notice the FindAll method and the Filter property. These are object attributes that can

be used to search for information about users in an Active Directory domain. To use these

attributes the first step is to filter the information returned from DirectorySearcher by

using the Filter property, which takes a filter statement similar to what you’d find in a

Lightweight Directory Access Protocol (LDAP) statement:

PS C:\> $Searcher.Filter = (" (objectCategory=user) ")

Next, you retrieve all users from the Active Directory domain with the FindAll method:

PS C:\> $Users = $Searcher.FindAl11()

66 CHAPTER 3 PowerShell: A More In-Depth Look

At this point, the $Users variable contains a collection of objects holding the distin-

guished names for all users in the Active Directory domain:

PS C:\> $Users

- Path Properties

LDAP: //CN=Administrator,CN=Users , DC=. {homemdb, samaccounttype, countrycod...

LDAP: //CN=Guest,CN=Users, Bewtubeace o.: {samaccounttype, objectsid, whencrea...

LDAP: //CN=krbtgt ,CN=Users,DC=taosage... {samaccounttype, objectsid, whencrea...

LDAP: //CN=admintyson,OU=Admin Accoun... {countrycode, cn, lastlogoff, usncre...

LDAP: //CN=servmom,OU=Service Account... {samaccounttype, lastlogontimestamp,...

LDAP: //CN=SUPPORT_388945a0,CN=Users,... {samaccounttype, objectsid, whencrea...

LDAP: //CN=Tyson,OU=Acc... {msmqsigncertificates, distinguished... 2

LDAP: //CN=Maiko,OU=Acc... {homemdb, msexchhomeservername, coun...

LDAP: //CN=servftp,0U=Service Account... {samaccounttype, lastlogontimestamp,...

LDAP: //CN=Erica,OU=Accounts,OU... {samaccounttype, lastlogontimestamp,...

LDAP: //CN=Garett,OU=Accou... {samaccounttype, lastlogontimestamp,...

LDAP: //CN=Fujio,OU=Accounts,O... {samaccounttype, givenname, sn, when...

LDAP: //CN=Kiyomi,OU=Accounts,... {samaccounttype, givenname, sn, when...

LDAP: //CN=servsql,OU=Service Account... {samaccounttype, lastlogon, lastlogo...

LDAP: //CN=servdhcp,OU=Service Accoun... {samaccounttype, lastlogon, lastlogo...

LDAP: //CN=servrms ,OU=Service Account... {lastlogon, lastlogontimestamp, msmq...

PS C:\>

The commands in these examples use the default connection parameters for the

DirectorySearcher class. This means the connection to Active Directory uses the

default naming context. If you want to connect to a domain other than the one specified

in the default naming context, you must set the appropriate connection parameters.

Now that you have an object for each user, you can use the Get -Member cmdlet to learn

what you can do with these objects:

PS C:\> $Users | get-member

TypeName: System.DirectoryServices.SearchResult

Name MemberType Definition

Equals Method System.Boolean Equals(Object obj) ~

fe (=) oa Fh of Method System.String get_Path()

get_Properties Method System.DirectoryServices.ResultPropertyCollecti...

GetDirectoryEntry Method System.DirectoryServices.DirectoryEntry GetDire.. .:

GetHashCode Method System.Int32 GetHashCode()

GetType Method

ToString Method

Path Property

Properties Property

PS C:\>

Object Based

System.Type GetType()

System.String ToString()

System.String Path {get;}

System.DirectoryServices.ResultPropertyCollecti...

To collect information from these user objects, it seems as though you need to step

through each object with the GetDirectoryEntry method. To determine what data you

can retrieve from these objects, you use the Get -Member cmdlet again, as shown here:

PS C:\> $Users[0].GetDirectoryEntry() | get-member -MemberType Property

TypeName: System.DirectoryServices.DirectoryEntry

Name

accountExpires

adminCount

badPasswordTime

badPwdCount

cn

fofote (=32F- Vo f=)

rofolt beh ob ahi, ecole (—]

description

displayName

distinguishedName

homeMDB

homeMTA

instanceType

BEY Ob ah oe Rot- Whig yf 1110) oy Lon a

RIF ¥-} oh ole lose)

lastLogonTimestamp

BK ={of-Cehig Op do} steve (-30)\)

pole Loy sleroj hb eh a

mail

mailNickname

mDBUseDefaults
hitsyilel-baehd

FY} Dp fo} sV-WiKO) oy K-Lop AIA bof os}

msExchHomeServerName

msExchMailboxGuid

MemberType Definition

bsp ako} of —b a hig System.DirectoryServices.Property...

| ao} off ah oh System.DirectoryServices.Property...

bh alo) oT ob oh System.DirectoryServices.Property...

Property System.DirectoryServices.Property..

Property System.DirectoryServices.Property..

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System. DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices. Property.

bd ako) ofp a ig System.DirectoryServices. Property.

bb ago) of at tg System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

| alo) of —3 ah oi System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

bsp ake) ob oh hig System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

Property System. DirectoryServices.Property.

bh ato) of ah hg System.DirectoryServices.Property.

| msExchMailboxSecurityDescriptor Property System.DirectoryServices.Property.

msExchPoliciesIncluded

msExchUserAccountControl

mSMQDigests

mSMQSignCertificates

name

Property System.DirectoryServices.Property.

Property System.DirectoryServices.Property.

bP alo) of —b a ig System.DirectoryServices.Property.

bh ago) ofS a hg System.DirectoryServices.Property...

bh ao} of am i System.DirectoryServices.Property...

CHAPTER 3. PowerShell: A More In-Depth Look

PMNs {-Loh tb ob i chig DY -T Leb ah Goh Lod a Property System.DirectoryServices.Property.

fo) ols Yon AOr- bale Loh anid Property System.DirectoryServices.Property.

Co) oy K=fon of OF IF Vf Property System.DirectoryServices.Property.

ae) of Lon AC10 9D) Property System.DirectoryServices.Property.

Co) oly K-Yoh top Ko | bp ake) ob oh oh'g System.DirectoryServices.Property.

primaryGroupID bop alo} of} ah hg System.DirectoryServices.Property.

proxyAddresses bh alo) of ah og System.DirectoryServices.Property..

pwdLastSet I ao} ofS oh hig System.DirectoryServices.Property.

sAMAccountName Property System. DirectoryServices.Property.

VNU I Voforo) bb oh oil inig of) bb ako) oT ah hd System.DirectoryServices. Property.

showInAddressBook Property System. DirectoryServices.Property.

textEncodedORAddress Property System. DirectoryServices.Property.

Lb af VololohibehAGle) eh ob aol Property System. DirectoryServices. Property.

DEJ (04 st-beve (Lol Property System. DirectoryServices.Property.

uSNCreated bh ao) ofS ab og System.DirectoryServices. Property.

igst=p eles ok bole (-T0l Property System.DirectoryServices.Property.

whenCreated j bh ake) ofS oh Ag System.DirectoryServices.Property...

PS C:\>

The MemberType parameter tells the Get -Member cmdlet to retrieve a specific type

ofmember. For example, to display the methods associated with an object, use the

get-member -MemberType Method command.

To use PowerShell effectively, you should make sure you're familiar with the Get -Member

cmdlet. If you don’t understand how it works, figuring out what an object can and can’t

do may be at times difficult.

Now that you understand how to pull information from Active Directory, it’s time to put

together all the commands used so far:

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher

PS C:\> $Searcher.Filter = ("(objectCategory=user) ")

PS C:\> $Users = $Searcher.FindAll()

PS C:\> foreach ($User in $Users) {$User.GetDirectoryEntry/() .sAMAccountName}

Administrator

elit-y-$ 4

krbtgt

admintyson

servmom

SUPPORT_388945a0

Tyson

Maiko

servftp

bof ah Kof-|

Lez af —} oho

Object Based 69

Fujio
Kiyomi
servsgql

servdhcp

servrms
PS C:\>

Although the list of users in this domain isn’t long, it shows that you can interrogate a set
of objects to understand their capabilities.

The same is true for static classes, however, when attempting to use the Get -Member cmdlet
in the same manner as before creates the following error:

PS C:\> new-object System.Net.Dns

New-Object : Constructor not found. Cannot find an appropriate constructor for
type System.Net.Dns.
At line:1 char:11

+ New-Object <<<< System.Net.Dns

PS C:\>

As you can see, the System.Net.Dns class doesn’t have a constructor, which poses a chal-
lenge when you're trying to find out what this class does. However, the Get -Member
cmdlet can handle this challenge. With the Static parameter, you can gather information

from static classes, as shown in this example:

PS C:\> [System.Net.Dns] | get-member -Static

TypeName: System.Net.Dns

Name. - MemberType Definition

BeginGetHostAddresses Method static System.IAsyncResult BeginGetHostAddr...

BeginGetHostByName Method static System.IAsyncResult BeginGetHostByNa...

BeginGetHostEntry Method static System.IAsyncResult BeginGetHostEntr...

BeginResolve . Method . static System.IAsyncResult BeginResolve(Str...

EndGetHostAddresses Method static System.Net.IPAddress[] EndGetHostAdd...

EndGetHostByName Method static System.Net.IPHostEntry EndGetHostByN...

EndGetHostEntry Method static System.Net.IPHostEntry EndGetHostEnt...

EndResolve Method static System.Net.IPHostEntry EndResolve(IA...

Equals . Method static System.Boolean Equals(Object objA, 0...

‘GetHostAddresses Method static System.Net.IPAddress[] GetHostAddres...

Left}: Coy pad =hig-No Cob al—t-1-] Method static System.Net.IPHostEntry GetHostByAddr...

GetHostByName (yo Loto | static System.Net.IPHostEntry GetHostByName...

GetHostEntry Method static System.Net.IPHostEntry GetHostEntry(...

GetHostName a Method static System.String GetHostName()

70 CHAPTER 3 PowerShell: A More In-Depth Look

ReferenceEquals Method static System.Boolean ReferenceEquals(Objec...

Resolve Method static System.Net.IPHostEntry Resolve(Strin...

PS C:\>

Now that you have information about the System.Net.Dns class, you can put it to work.

As an example, use the GetHostAddress method to resolve the IP address for the Web site

www.digg.com:

PS C:\> [System.Net.Dns] ::GetHostAddresses ("www.digg.com")

IPAddressToString 64.191.203.30

Address 516669248

AddressFamily -: InterNetwork

Tole} f= nis |

IsIPv6Multicast False

IsIPv6LinkLocal False

 IsIPv6SiteLocal False

PS C:\>

As you have seen, the Get-Member cmdlet can be a powerful tool. It can also be time

consuming because it’s easy to spend hours exploring what you can do with different

cmdlets and classes. To help prevent Get-Member User Stress Syndrome (GUSS), try

to limit your discovery sessions to no more than a couple of hours a day.

Extended Type System (ETS)

You might think that scripting in PowerShell is typeless because you rarely need to specify

the type for a variable. PowerShell is actually type driven, however, because it interfaces

with different types of objects from the less than perfect .NET to Windows Management

Instrumentation (WMI), Component Object Model (COM), ActiveX Data Objects (ADO),

Active Directory Service Interfaces (ADSI), Extensible Markup Language (XML), and even

custom objects. However, you typically don’t need to be concerned about object types

because PowerShell adapts to different object types and displays its interpretation of an

object foryou.

In a sense, PowerShell tries to provide a common abstraction layer that makes all object

interaction consistent, despite the type. This abstraction layer is called the PSObject, a

common object used for all object access in PowerShell. It can encapsulate any base object

(.NET, custom, and so on), any instance members, and implicit or explicit access to

adapted and type-based extended members, depending on the type of base object.

Object Based Tab

Furthermore, it can state its type and add members dynamically. To do this, PowerShell
uses the Extended Type System (ETS), which provides an interface that allows
PowerShell cmdlet and script developers to manipulate and change objects as needed.

When you use the Get -Member cmdlet, the information returned is from PSObject.

Sometimes PSObject blocks members, methods, and properties from the original

object. If you want to view the blocked information, use the BaseObject property

with the PSBase standard name. For example, you could use the $Procs.PSBase |

get -member command to view blocked information for the $Procs object collection.

Needless to say, this topic is fairly advanced, as PSBase is hidden from view. The only

time you should need to use it is when the PSObject doesn’t interpret an object

correctly or you’re digging around for hidden jewels in PowerShell.

Therefore, with ETS, you can change objects by adapting their structure to your require-

ments or create new ones. One way to manipulate objects is to adapt (extend) existing

object types or create new object types. To do this, you define custom types in a custom

types file, based on the structure of the default types file, Types.ps1xml.

In the Types.ps1xml file, all types are contained in a <Type></Type> node, and each type

can contain standard members, data members, and object methods. Using this structure

as a basis, you can create your own custom types file and load it into a PowerShell session

by using the Update-TypeData cmdlet, as shown here:

PS C:\> Update-TypeData D:\PS\My.Types.Pslxml

You can run this command manually during each PowerShell session or add it to your

profile.ps1 file.

The Types.ps1xml file defines default behaviors for all object types in PowerShell. Do

not modify this file for any reason. Doing so might prevent PowerShell from working,

resulting in a “Game over”!

The second way to manipulate an object’s structure is to use the Add-Member cmdlet to

add a user-defined member to an existing object instance, as shown in this example:

‘PS C:\> $Procs = get-process :

PS C:\> $Procs | add-member -Type scriptProperty ‘TotalDays rf

>> $Date = get-date

>> $Date.Subtract ($This.StartTime) .TotalDays}

>>

PS

72 CHAPTER 3 PowerShell: A More In-Depth Look

This code creates a scriptProperty member called TotalDays for the collection of objects

in the $Procs variable. The scriptProperty member can then be cailed like any other

member for those objects, as shown in the next example:

The $This variable represents the current object when you're creating a script method.

PS C:\> $Procs | where {$_.name -Match "WINWORD"} | ft Name,
TotalDays -AutoSize

Name TotalDays

WINWORD 5.1238899696898148

PS C:\>

Although the new scriptProperty member isn’t particularly useful, it does demonstrate

how to extend an object. Being able to extend objects from both a scripting and cmdlet

development context is extremely useful.

Understanding Providers
Most computer systems are used to store data, often in a structure such as a file system.

Because of the amount of data stored in these structures, processing and finding informa-

tion can be unwieldy. Most shells have interfaces, or providers, for interacting with data

stores in a predictable, set manner. PowerShell also has a set of providers for presenting

the contents of data stores through a core set of cmdlets. You can then use these cmdlets

to browse, navigate, and manipulate data from stores through a common interface. To get

a list of the core cmdlets, use the following command:

PS C:\> help about_core_commands

ChildItem CMDLETS

Get-ChildItem

CONTENT CMDLETS

Add-Content

Clear-Content |

Get-Content

Set-Content

DRIVE CMDLETS

Get-PSDrive

New-PSDrive

Remove-PSDrive

oN

Understanding Providers

ITEM CMDLETS

Clear-Item

Copy-Item

Get-Item

Invoke-Item

Move-Item

New-Item

Remove-Item

Rename-Item

Set-Item

LOCATION CMDLETS

Get-Location

| fo} ote Molor-h ot Koy 1]

Push-Location

Y=) ted ofor-b as os]

PATH CMDLETS

Join-Path

Convert-Path

Split-Path

Resolve-Path

Test-Path

PROPERTY CMDLETS

Clear-ItemProperty
Copy-ItemProperty

Get-ItemProperty
CoS fF Go) 1) sb alo) ob a hig

New-ItemProperty

Remove-ItemProperty

Rename-ItemProperty

Set-ItemProperty

PROVIDER CMDLETS

Get-PSProvider

To view built-in PowerShell providers, use the following command:

PS:-C:\> get-psprovider

Name Capabilities Drives

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

74 CHAPTER 3. PowerShell: A More In-Depth Look

FileSystem Filter, ShouldProcess 16 foD 5 Kiss eis oe)

Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess ; {cert}

PS C:\>

The preceding list displays not only built-in providers, but also the drives each provider

currently supports. A drive is an entity that a provider uses to represent a data store

through which data is made available to the PowerShell session. For example, the Registry

provider creates a PowerShell drive for the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER

Registry hives.

To see a list of all current PowerShell drives, use the following command:

‘PS C:\> get-psdrive

Name Provider

Alias

Cie FileSystem
ol} ah COX —} a oh Bb oe Roth oh]

FileSystem

FileSystem

Environment

FileSystem

Function Function

fej FileSystem

HKCU Registry HKEY. CURRENT_USER

HKLM Registry HKEY LOCAL MACHINE
U FileSystem U

Variable Variable

PS C:\>

Accessing Drives and Data

One way to access PowerShell drives and their data is with the Set -Location cmdlet. This

cmdlet, shown in the following example, changes the working location to another speci-

fied location that can be a directory, subdirectory, location stack, or Registry location:

Understanding Providers

PS C:\> set-location hklm:

PS HKLM: \> set-location software\microsoft\windows

PS HKLM: \software\microsoft \windows>

Next, use the Get -ChildItem cmdlet to list the subkeys under the Windows key:

PS HKLM: \software\microsoft\windows> get-childitem

Hive: Microsoft.PowerShell.Core\Registry: :HKEY_ LOCAL MACHINE\software\micros

oft \windows

SKC VC Name Property

CurrentVersion {DevicePath, MediaPathUnexpanded, SM...

Help {PINTLPAD.HLP, PINTLPAE.HLP, IMEPADEN...

Html Help {PINTLGNE.CHM, PINTLGNT.CHM, PINTLPAD...

ITStorage {}

Shell Teas a

- PS HKLM: \software\microsoft \windows>

Note that with a Registry drive, the Get -ChildItem cmdlet lists only the subkeys under a

key, not the actual Registry values. This is because Registry values are treated as properties

for a key rather than a valid item. To retrieve these values from the Registry, you use the

Get -ItemProperty cmdlet, as shown in this example:

PS HKLM: \software\microsoft\windows> get-itemproperty currentversion

PSPath Microsoft .PowerShell.Core\Registry: :HKEY_LOCAL MACHI

NE\software\microsoft \windows\currentversion

PSParentPath Microsoft.PowerShell.Core\Registry: :HKEY LOCAL MACHT

' NE\software\microsoft \windows

- PSChildName currentversion

PSDrive HKLM

PSProvider Microsoft.PowerShell.Core\Registry

DevicePath C:\WINDOWS\inf£

MediaPathUnexpanded C:\WINDOWS \Media

SM_GamesName Games

SM_ConfigureProgramsName Set Program Access and Defaults

ProgramFilesDir ; C:\Program Files

CommonFilesDir C:\Program Files\Common Files

b=Pagele hi Con oe Ke 76487-OEM-0011903-00101

WallPaperDir C: \WINDOWS \Web\Wallpaper

MediaPath C:\WINDOWS\Media

CHAPTER 3 PowerShell: A More In-Depth Look

ProgramFilesPath : C:\Program Files

SM_AccessoriesName : Accessories

-PF_AccessoriesName : Accessories

(default)

PS HKLM: \software\microsoft \windows>

As with the Get -Process command, the data returned is a collection of objects. You can

modify these objects further to produce the output you want, as this example shows:

PS HKLM: \software\microsoft\windows> get-itemproperty currentversion

YW K-Loh A bakole ht Con ob Kol

i baxeleh Con op Kel

WAYS: ¥ Foe) 1UCD.0.0.0.0.0.0, €).0.0.0.0.4

PS HKLM: \software\microsoft \windows>

Accessing data from a FileSystem drive is just as simple. The same type of command logic

is used to change the location and display the structure:

PS HKLM: \software\microsoft\windows> set-location c:

PS C:\> set-location "C:\WINDOWS\system32\windowspowershell\v1.0"

PS C:\WINDOWS\system32\windowspowershell\v1l.0> get-childitem about_a*

Directory: Microsoft. PowerShell .Core\FileSystem: :C: \WINDOWS\system32\window

spowershell\v1.0

LastWriteTime

9/8/2006 : about_alias.help.txt

9/8/2006 : about_arithmetic operators.help.txt

9/8/2006 : about_array.help.txt

9/8/2006 2 about. assignment_operators.help.txt

9/8/2006 : about_associative array.help.txt

9/8/2006 : about_automatic_variables.help.txt

PS C:\WINDOWS\system32\windowspowershell\v1.0>

Understanding Providers (Ci

What's different is that data is stored in an item instead of being a property of that item.
To retrieve data from an item, use the Get -Content cmdlet, as shown in this example:

PS C:\WINDOWS\system32\windowspowershell\v1.0> get-content
about_Alias.help.txt
TOPIC

Aliases

SHORT DESCRIPTION

Using pseudonyms to refer to cmdlet names in the Windows PowerShell

LONG DESCRIPTION

An alias is a pseudonym, or "nickname," that you can assign to a

cmdlet so that you can use the alias in place of the cmdlet name.

The Windows PowerShell interprets the alias as though you had

entered the actual cmdlet name. For example, suppose that you want

to retrieve today's date for the year 1905. HE HOUE an alias, you

would use the following command:

Get-Date -year 1905

Not all drives are based on a hierarchical data store. For example, the Environment,

Function, and Variable PowerShell providers aren’t hierarchical. Data accessed through

is ce LOU is in the root Bpecatlon: on the SEIN One:

Mounting a Drive
PowerShell drives can be created and removed, which is handy when you’re working with

a location or set of locations frequently. Instead of having to change the location or use

an absolute path, you can create new drives (also referred to as “mounting a drive” in

PowerShell) as shortcuts to those locations. To do this, use the New-PSDrive cmdlet,

shown in the following example:

PS C:\> new-psdrive -name PSScripts -root D:\Dev\Scripts -psp FileSystem

Provider Root CurrentLocation

PSScripts FileSystem D:\Dev\Scripts

PS C:\> get-psdrive

CHAPTER 3

Function

(ec

HKCU

HKLM

PSScripts

U

Variable

PS C:\>

To remove a drive, use the Remove -PSDrive cmdlet, as shown here:

Provider

FileSystem

Certificate

FileSystem

FileSystem

Environment

FileSystem

PAN y Koh oe Koy]

FileSystem G:\

Registry HKEY_ CURRENT_USER

Registry HKEY. LOCAL_ MACHINE

FileSystem DIA SAN Lob ob Bo) of

FileSystem U:\

Variable

PS C:\> remove-psdrive -name PSScripts

PS C:\> get-psdrive

Name

Alias

Cc

Col =} af of

Function

G

HKCU

HKLM

U

Variable

PS C:\>

i ohh hs (ba

FileSystem |

OXY ah op ie oe ot bof -]

FileSystem

FileSystem

Environment

FileSystem

Function

FileSystem

Registry HKEY_CURRENT_USER
Registry HKEY_LOCAL MACHINE
FileSystem U:\
Variable

Understanding Errors
PowerShell errors are divided into two types: terminating and nonterminating.

Terminating errors, as the name implies, stop a command. Nonterminating errors are

generally just reported without stopping a command. Both types of errors are reported in

PowerShell: A More In-Depth Look

(oli bab a=} oh ot Me fot-t op Moye]

software

..-crosoft\windows
s

CurrentLocation

software

...crosoft\windows

Understanding Errors G2

the $Error variable, which is a collection of errors that have occurred during the current
PowerShell session. This collection contains the most recent error, as indicated by
$Error[Q] up to $MaximumErrorCount, which defaults to 256.

Errors in the $Error variable can be represented by the ErrorRecord object. It contains
error exception information as well as a number of other properties that are useful for
understanding why an error occurred

The next example shows the information that is contained in InvocationInfo property of
an ErrorRecord object:

PS C:\> S$Error[0].InvocationInfo

Get-ChildItem

1

-2147483648

MyCommand

ScriptLineNumber
OffsetInLine

ScriptName

Line

| Leth ho Koy 1 (-t-¥-$- Ce (-]
dir z:

At line:1 char:4

+ dir <<<< z:

- InvocationName dir

PipelineLength 1

} eH oX—W Ms eX) Lol ho Rode] 1

PS C:\>

Based on this information, you can determine a number of details about $Error[Q],

including the command that caused the error to be thrown. This information is crucial to

understanding errors and handling them effectively.

Use the following command to see a full list of ErrorRecord properties:

-PS C:\> SError[0] | get-member -MemberType Property

TypeName: System.Management .Automation.ErrorRecord

Name MemberType Definition

of A-Lo fo} igh se Lo) b= ao) of —) ah hig System.Management .Automation.ErrorCategoryl...

} Op ap oho} of DL — go - a Oe) Property System.Management.Automation.ErrorDetails E...

) pid of -) 0} ob Ko} e] Property System.Exception Exception {get;}

FullyQualifiedErrorId Property System.String FullyQualifiedErrorId {get;}

80 CHAPTER 3 PowerShell: A More In-Depth Look

InvocationInfo Property System.Management.Automation.InvocationInfo...

Hie b eco (440) oy K-Lon a Property System.Object TargetObject {get;}

PS C:\>

Table 3.1 shows the definitions for each of the ErrorRecord properties that are listed in the

preceding example:

TABLE 3.41 ErrorRecord Property Definitions

Property Definition

CategoryInfo Indicates under which category an error is classified

ErrorDetails Can be null, but when used provides additional information about

the error

Exception The error that occurred

FullyQualifiedErrorid Identifies an error condition more specifically

InvocationInfo Can be null, but when used explains the context in which the error

occurred

TargetObject Can be null, but when used indicates the object being operated on

Error Handling
Methods for handling errors in PowerShell can range from simple to complex. The simple

method is to allow PowerShell to handle the error. Depending on the type of error, the

command or script might terminate or continue. However, if the default error handler

doesn’t fit your needs, you can devise a more complex error-handling scheme by using

the methods discussed in the following sections.

Method One: cmdlet Preferences

In PowerShell, ubiquitous parameters are available to all cmdlets. Among them are the

ErrorAction and ErrorVariable parameters, used to determine how cmdlets handle

nonterminating errors, as shown in this example:

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue

PS C:\> if ($Err){write-host $Err -Foregroundcolor Red}

Cannot find drive. A drive with name 'z' does not exist.

PS C:\>

The ErrorAction parameter defines how a cmdlet behaves when it encounters a nontermi-
nating error. In the preceding example, ErrorAction is defined as SilentlyContinue,
meaning the cmdlet continues running with no output if it encounters a nonterminating
error. Other options for ErrorAction are as follows:

Error Handling 81

¢ Continue—Print error and continue (default action)

° Inquire—Ask users whether they want to continue, halt, or suspend

¢ Stop—Halt execution of the command or script

The term nonterminating has been emphasized in this section because a terminating

error bypasses the defined ErrorAction and is delivered to the default or custom

error handler.

The ErrorVariable parameter defines the variable name for the error object generated by

a nonterminating error. As shown in the previous example, ErrorVariable is defined as

Err. Notice the variable name doesn’t have the $ prefix. However, to access

ErrorVariable outside a cmdlet, you use the variable’s name with the $ prefix ($Err).

Furthermore, after defining ErrorVariable, the resulting variable is valid for the current

PowerShell session or associated script block. This means other cmdlets can append error

objects to an existing ErrorVariable by using a + prefix, as shown in this example:

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue

PS C:\> get-childitem y: -ErrorVariable +Err -ErrorAction SilentlyContinue

PS C:\> write-host $Err[0] -Foregroundcolor Red

Cannot find drive. A drive with name 'z’ does not exist.

PS C:\> write-host $Err[1] -Foregroundcolor Red

Cannot find drive. A drive with name ‘y’ does not. exist.

| Fe OA

Method Two: Trapping Errors
When encountering a terminating error, PowerShell’s default behavior is to display the

error and halt the command or script execution. If you want to use custom error handling

for a terminating error, you must define an exception trap handler to prevent the termi-

nating error (ErrorRecord) from being sent to the default error-handling mechanism. The

same holds true for nonterminating errors as PowerShell’s default behavior is to just display

the error and continue the command or script execution.

To define a trap, you use the following syntax:

_ trap ExceptionType {code; keyword}

The first part is ExceptionType, which specifies the type of error a trap accepts. If no

ExceptionType is defined, a trap accepts all errors. The code part can consist of a

command or set of commands that run after an error is delivered to the trap. Defining

82 CHAPTER 3 PowerShell: A More In-Depth Look

commands to run by a trap is optional. The last part, keyword, is what determines

whether the trap allows the statement block where the error occurred to execute or

terminate.

Supported keywords are as follows:

¢ Break—Causes the exception to be rethrown and stops the current scope from

executing

® Continue—Allows the current scope execution to continue at the next line where

the exception occurred

e Return [argument]|—Stops the current scope from executing and returns the argu-

ment, if specified

If a keyword isn’t specified, the trap uses the keyword Return [argument]; argument is

the ErrorRecord that was originally delivered to the trap.

Trap Examples

The following two examples show how traps can be defined to handle errors. The first

trap example shows a trap being used in conjunction with a nonterminating error that is

produced from an invalid DNS name being given to the System.Net.Dns class. The second

example shows a trap being again used in conjunction with a nonterminating error that is

produced from the Get -Item cmdlet. However, in this case, because the ErrorAction

parameter has been defined as Stop, the error is in fact a terminating error that is then

handled by the trap.

Example one: errortraps1.ps1

$DNSName = "www. -baddnsname-.com"

trap [System.Management .Automation.MethodInvocationException] {

write-host ("ERROR: " + $_) -Foregroundcolor Red; Continue}

write-host "Getting IP address for" $DNSName

write-host ([System.Net.Dns]::GetHostAddresses("www.$baddnsname$.com"))

write-host "Done Getting IP Address"

The $_ parameter in this example represents the ErrorRecord that was delivered to the trap.

Output:

PS C:\> .\errortrapsl.ps1

Getting IP address for www.-baddnsname-.com

ERROR: Exception calling "GetHostAddresses" with "1" argument(s): "No such. host
is known"

Done Getting IP Address

“PS C:\>

Error Handling 83

Example two: errortraps2.ps1

| write-host "Changing drive to z:"

trap {write-host("[ERROR] " + $_) -Foregroundcolor Red; Continue}

get-item z: -ErrorAction Stop

| $TXTFiles = get-childitem *.txt -ErrorAction Stop

| write-host "Done getting items"

A cmdlet doesn’t generate a terminating error unless there’s a syntax error. This

means a trap doesn’t catch nonterminating errors from a cmdlet unless the error is

transformed into a terminating error by setting the cmdlet’s ErrorAction to Stop.

Output:

PS C:\> .\errortraps2.psl
Changing drive to z:

[ERROR] Command execution stopped because the shell variable

"ErrorActionPreference" is set to Stop: Cannot find drive. A drive

with name ‘z' does not exist.

Done getting items

PS C:\>

Trap Scopes

A PowerShell scope, as discussed in Chapter 2, “PowerShell Basics,” determines how traps

are executed. Generally, a trap is defined and executed within the same scope. For

example, you define a trap in a certain scope; when a terminating error is encountered in

that scope, the trap is executed. If the current scope doesn’t contain a trap and an outer

scope does, any terminating errors encountered break out of the current scope and are

delivered to the trap in the outer scope.

Method Three: The Throw Keyword

In PowerShell, you can generate your own terminating errors. This doesn’t mean causing

errors by using incorrect syntax. Instead, you can generate a terminating error on purpose

by using the throw keyword, as shown in the next example if a user doesn’t define the

argument for the MyParam parameter when trying to run the MyParam.ps1 script. This

type of behavior is very useful when data from functions, cmdlets, data sources, applica-

tions, etc. is not what is expected and hence may prevent the script or set of commands

from executing correctly further into the execution process.

84 CHAPTER 3. PowerShell: A More In-Depth Look

Script:

param([{string]$MyParam = $(throw write-host "You did not define MyParam"

-Foregroundcolor Red))

_ write-host $MyParam

Output:

PS C:\ .\MyParam.ps1

You did not define MyParam

ScriptHalted

At C:\MyParam.psl:1 char:33

+ param([string]$MyParam = $(throw <<<< write-host "You did not define MyParam

-Foregroundcolor Red))

PS C:\>

PowerShell Profiles

A PowerShell profile is a saved collection of settings for customizing the PowerShell envi-

ronment. There are four types of profiles, loaded in a specific order each time PowerShell

starts. The following sections explain these profile types, where they should be located,

and the order in which they are loaded.

The All Users Profile

This profile is located in %windir%\system32\windowspowershell\v1.0\profile.ps1.

Settings in the All Users profile are applied to all PowerShell users on the current

machine. If you plan to configure PowerShell settings across the board for users on a

machine, then this would be the profile to use.

The All Users Host-Specific Profile

This profile is located in %windir%\system32\windowspowershell\v1.0\ShellID_

profile.ps1. Settings in the All Users host-specific profile are applied to all users of the

current shell (by default, the PowerShell console). PowerShell supports the concept of

multiple shells or hosts. For example, the PowerShell console is a host and the one most

users use exclusively. However, other applications can call an instance of the PowerShell

runtime to access and run PowerShell commands and scripts. An application that does

this is called a hosting application and uses a host-specific profile to control the

PowerShell configuration. The host-specific profile name is reflected by the host’s

She11ID. In the PowerShell console, the She111D is the following:

Understanding Security 85

PS C:\ $ShellId

Microsoft. PowerShell

PS C:\

Putting this together, the PowerShell console’s All Users host-specific profile is named
Microsoft.PowerShell_profile.ps1. For other hosts, the She11ID and All Users host-

specific profile names are different. For example, the PowerShell Analyzer (www.power-
shellanalyzer.com) is a PowerShell host that acts as a rich graphical interface for the
PowerShell environment. Its ShellID is PowerShellAnalyzer.PSA, and its All Users host-

specific profile name is PowerShellAnalyzer.PSA_profile.ps1.

The Current User’s Profile

This profile is located in Suserprofile%\My Documents\WindowsPowerShell\profile.ps1.

Users who want to control their own profile settings can use the current user’s profile.

Settings in this profile are applied only to the user’s current PowerShell session and

doesn’t affect any other users.

The Current User’s Host-Specific Profile

This profile is located in %userprofile%\My Documents \WindowsPowerShell\ShellID_

profile.ps1. Like the All Users host-specific profile, this profile type loads settings for the

current shell. However, the settings are user specific.

NOTE

When you start the shell for the first time, you might see a message indicating that

scripts are disabled and no profiles are loaded. You can modify this behavior by chang-

ing the PowerShell execution policy, discussed in the following section.

Understanding Security
When WSH was released with Windows 98, it was a godsend for Windows administrators

who wanted the same automation capabilities as their UNIX brethren. At the same time,

virus writers quickly discovered that WSH also opened up a large attack vector against

Windows systems.

Almost anything on a Windows system can be automated and controlled by using WSH,

which is an advantage for administrators. However, WSH doesn’t provide any security in

script execution. If given a script, WSH runs it. Where the script comes from or its

purpose doesn’t matter. With this behavior, WSH became known more as a security

vulnerability than an automation tool.

86 CHAPTER 3 PowerShell: A More In-Depth Look

Execution Policies

Because of past criticisms of WSH’s security, when the PowerShell team set out to build a

Microsoft shell, the team decided to include an execution policy to mitigate the security

threats posed by malicious code. An execution policy defines restrictions on how

PowerShell allows scripts to run or what configuration files can be loaded. PowerShell has

four execution policies, discussed in more detail in the following sections: Restricted,

AllSigned, RemoteSigned, and Unrestricted.

Restricted

By default, PowerShell is configured to run under the Restricted execution policy. This

execution policy is the most secure because it allows PowerShell to operate only in an

interactive mode. This means no scripts can be run, and only configuration files digitally

signed by a trusted publisher are allowed to run or load.

AllSigned

The AllSigned execution policy is a notch under Restricted. When this policy is

enabled, only scripts or configuration files that are digitally signed by a publisher you

trust can be run or loaded. Here’s an example of what you might see if the AllSigned

policy has been enabled:

PS C:\Scripts> .\evilscript.psl
The file C:\Scripts\evilscript.psl cannot be loaded. The file
C:\Scripts\evilscript.psl is not digitally signed. The script will not

execute on the system. Please see "get-help about signing" for more
details.

At line:1 char:16

+ .\evilscript.psl <<<<
PS C:\Scripts>

Signing a script or configuration file requires a code-signing certificate. This certificate can

come from a trusted certificate authority (CA), or you can generate one with the

Certificate Creation Tool (Makecert.exe). Usually, however, you want a valid code-signing

certificate from a well-known trusted CA, such as Verisign, Thawte, or your corporation’s

internal public key infrastructure (PKI). Otherwise, sharing your scripts or configuration

files with others might be difficult because your computer isn’t a trusted CA by default.

Chapter 4, “Code Signing,” explains how to obtain a valid trusted code-signing certifi-

cate. Reading this chapter is strongly recommended because of the importance of digi-

tally signing scripts and configuration files.

Understanding Security 87

RemoteSigned

The RemoteSigned execution policy is designed to prevent remote PowerShell scripts and

configuration files that aren’t digitally signed by a trusted publisher from running or

loading automatically. Scripts and configuration files that are locally created can be

loaded and run without being digitally signed, however.

A remote script or configuration file can be obtained from a communication application,

such as Microsoft Outlook, Internet Explorer, Outlook Express, or Windows Messenger.

Running or loading a file downloaded from any of these applications results in the

following error message:

PS C:\Scripts> .\interscript.psl
The file C:\Scripts\interscript.psl cannot be loaded. The file

C:\Scripts\interscript.psl is not digitally signed. The script will

not execute on the system. Please see "get-help about signing" for

more details..

At line:1 char:17
+ .\interscript.psl <<<<
PS C:\Scripts>

To run or load an unsigned remote script or configuration file, you must specify whether

to trust the file. To do this, right-click the file in Windows Explorer and click Properties.

In the General tab, click the Unblock button (see Figure 3.1).

interscript.psi Properties

_ Opens with: Notepad

11 bytes (11 bytes}

4.00 KB [4.096 bites}

Today, August 27, 2006, 724:28 PM

Today. August 27, 2006, 7:24:28 PM

Today, August 27, 2006, 7:29:07 PM

This file came from another es t
computer and might be blocked to b.2-
help protect this computer.

FIGURE 3.1 _ Trusting a remote script or configuration file

88 CHAPTER 3. PowerShell: A More In-Depth Look

After you trust the file, the script or configuration file can be run or loaded. If it’s digitally

signed but the publisher isn’t trusted, PowerShell displays the following prompt:

PS C:\Scripts> .\signed.psl

Do you want to run software from this untrusted publisher?

File C:\Scripts\signed.psl is published by CN=companyabc.com, OU=IT,

O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on

your system. Only run scripts from trusted publishers.

[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help

(default is "D"):

In this case, you must choose whether to trust the file content.

Chapter 4 explains the options in this prompt in more detail.

Unrestricted

As the name suggests, the Unrestricted execution policy removes almost all restrictions

for running scripts or loading configuration files. All local or signed trusted files can run

or load, but for remote files, PowerShell prompts you to choose an option for running or

loading that file, as shown here:

PS C:\Scripts> .\remotescript.psl

Security Warning

Run only scripts that you trust. While scripts from the Internet can

be useful, this script can potentially harm your computer. Do you want
to run

C:\Scripts\remotescript.ps1l?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is ”D”):

Setting the Execution Policy

To change the execution policy, you use the Set -ExecutionPolicy cmdlet, shown here:

PS C:\> set-executionpolicy AllSigned
PS C:\>

If you want to know the current execution policy, use the Get -ExecutionPolicy cmdlet:

Understanding Security 89

PS C:\> get-executionpolicy
AllSigned
PS C:\>

By default, when PowerShell is first installed, the execution policy is set to Restricted. As

you know, default settings never stay default for long. In addition, if PowerShell is

installed on many machines, the likelihood of its execution policy being set to

Unrestricted increases.

Fortunately, you can control the PowerShell execution policy through a Registry setting.

This setting is a REG_SZ value named ExecutionPolicy, which is located in the

HKLM\ SOFTWARE \Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell key.

Controlling the execution policy through the Registry means you can enforce a policy

setting across many machines managed by a Group Policy Object (GPO).

In the past, creating a GPO to control the execution policy was simple because the

PowerShell installation includes a Group Policy Administrative Template (ADM). However,

as of the PowerShell RC2 release, the ADM is no longer part of the installation and may

or may not be available in a separate PowerShell download. If Microsoft doesn’t provide

an ADM to control the execution policy, you can always create your own, as shown in the

following example:

CLASS MACHINE

| CATEGORY !!PowerShell
i POLICY !!Security

| KEYNAME "SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft. PowerShell"
;

EXPLAIN !!PowerShell ExecutionPolicy

i PART !!ExecutionPolicy EDITTEXT REQUIRED

VALUENAME "ExecutionPolicy"

END PART
| END POLICY
| END CATEGORY

[strings]

PowerShell=PowerShell

Security=Security Settings

PowerShell _ExecutionPolicy=If enabled, this policy will set the PowerShell

execution policy on a machine to the defined value. Execution policy values can be

| Restricted, AllSigned, RemoteSigned, and Unrestricted.

Executionpolicy=Execution Policy

90 CHAPTER 3. PowerShell: A More In-Depth Look

You can find a working version of this ADM on the PowerShell Unleashed Reference Web

site: www.samspublishing.com. Although the PowerShellExecutionPolicy.adm file has

been tested and should work in your environment, note that the execution policy settings

in this file are considered preference settings. Preference settings are GPOs that are

Registry values found outside the approved Group Policy Registry trees. When a GPO

containing preference settings goes out of scope, the preference settings aren’t removed

from the Registry.

As with everything provided on the PowerShell Unleashed Reference Web site, test the

ADM in a non-production environment before deploying a GPO that uses it.

To configure the PowerShellExecutionPolicy.adm file, follow these steps:

1. Log on to a GPO management machine as the GPO administrator.

2. Using the Group Policy MMC, create a GPO named PowerShell.

3. In the console tree, click to expand Computer Configuration and then

Administrative Templates.

4. Right-click Administrative Templates and click Add/Remove Templates in the

shortcut menu.

5. Navigate to the folder with the PowerShellExecutionPolicy.adnm file. Select the file,

click Open, and then click Close. The PowerShell node is then displayed under the

Administrative Templates node.

6. Click the Administrative Templates node, and then click View, Filtering from the

Group Policy MMC menu. Click to clear the Only show policy settings that can be

fully managed checkbox. Clearing this option allows you to manage preference

settings.

7. Next, click the PowerShell node under Administrative Templates.

8. In the details pane, right-click Security Settings and click Properties in the shortcut
menu.

9. Click Enabled.

10. Set the Execution Policy to one of these values: Restricted, AllSigned,

RemoteSigned, or Unrestricted.

11. Close the GPO, and then close the Group Policy MMC.

Controlling the execution policy through a GPO preference setting might seem like a less
then perfect solution. After all, a preference setting doesn’t offer the same level of security
as an execution policy setting, so users with the necessary rights can modify it easily. This
lack of security is probably why Microsoft removed the original ADM file from

Summary 91

PowerShell. A future release of PowerShell might allow controlling the execution policy
with a valid GPO policy setting.

Additional Security Measures
Execution policies aren’t the only security layer Microsoft implemented in PowerShell.
PowerShell script files with the .ps1 extension can’t be run from Windows Explorer
because they are associated with Notepad. In other words, you can’t just double-click a
.ps1 file to run it. Instead, PowerShell scripts must run from a PowerShell session by
using the relative or absolute path or through the cmd command prompt by using the
PowerShell executable.

Another security measure, explained in Chapter 2, is that to run or open a file in the
current directory from the PowerShell console, you must prefix the command with
.-\ or ./. This feature prevents PowerShell users from accidentally running a command

or PowerShell script without specifying its execution explicitly.

Last, by default, there’s no method for connecting to or calling PowerShell remotely.

However, that doesn’t mean you can’t write an application that allows remote PowerShell

connections. In fact, it has been done. If you’re interested in learning how, download the

PowerShell Remoting beta from www.gotdotnet.com/workspaces/workspace.aspx?id=

ce09cdaf-7da2-4f1c-bed3-f8cb35deSaea.

The PowerShell Language
From this point on, this book varies from the usual format of many books on scripting

languages, which try to explain scripting concepts instead of showing you actual working

scripts. This book focuses on the practical applications of PowerShell.

It’s assumed you have a basic understanding of scripting. In addition, because the

PowerShell scripting language is similar to Perl, C#, and even VBScript, there’s no need

tospend time reviewing for loops, if...then statements, and other fundamentals of

scripting.

Granted, there are some unique aspects to the PowerShell language, but you can consult

the PowerShell documentation for that information. This is not a language reference

book; it’s about how PowerShell can be applied in the real world. For more detailed infor-

mation about the PowerShell language, you can download the PowerShell User Guide

from www.microsoft.com/downloads/details.aspx?FamilyId=B4720B00-9A66-430F-BDS6-

EC48BFCA154F&displaylang=en.

Summary
In this chapter, you have delved deeper into what PowerShell is and how it works. You

reviewed such topics as Powershell’s Providers, how it handles errors, its profiles, and its

execution policies. However, of the items reviewed the most important concept to take

from this chapter is that PowerShell is built from and around the .NET Framework. As

2 CHAPTER 3 PowerShell: A More In-Depth Look

such, PowerShell is not like other shells because it is an object-based shell that attempts to

abstract all objects into a common form that can be used without modification (parsing) in

your commands and scripts. Going forward this and the knowledge that you have learned

from Chapters 2 and 3 will be the keystone from which you shall explore PowerShell

scripting. Moving through each chapter, the scripts will increase in complexity as we

review different aspects of how PowerShell can be used for Windows automation.

4 IN THIS CHAPTER

> Introduction

Code Signing » What Is Code Signing?

>» Obtaining a Code-Signing

Certificate

% » Signing PowerShell Script
Introduction tt
In an effort to learn how to sign PowerShell scripts and

configuration files, you have searched the Internet, read

several blogs about code signing, reviewed the PowerShell

documentation, and even browsed through some

PowerShell books. Yet the more you read about code

signing, the more confused you are. Finally, in frustration,

you open your PowerShell console and enter the following

command:

> Verifying Digital Signatures

>» Signed Code Distribution

 cacaaiueuaasacnesnetasaneectmanasnemmenenammemmiamenea meme eeemeemmemeccoteetemeee

| set-executionpolicy unrestricted

L.

Before you enter this command, remember what you

learned about execution policies in Chapter 3, “PowerShell:

A More In-Depth Look.” Using the Unrestricted setting

negates an important security layer that was designed to

prevent malicious code from running on your system.

Code signing is another essential component of PowerShell

security, but many people believe it’s too complicated to

learn and set their execution policies to Unrestricted to

avoid having to use it. In response to an entry on script

signing at Scott Hanselman’s blog (www.hanselman.com/

blog), one person commented that “Handling code signing

certificates is way over the head of most users, including

average developers and admins.” This statement indicates a

real need that should be addressed—hence this chapter

devoted to code signing. Code signing seems complicated

on the surface, but with some clear instructions, the

process is easy to understand. Scripters, developers, and

administrators should be familiar with it as an important

part of their overall security efforts.

94 CHAPTER 4 Code Signing

What Is Code Signing?
In short, code signing is the process of digitally signing scripts, executables, DLLs, and so

forth to establish a level of trust for the code. The trust granted to digitally signed code is

based on two assumptions. One, a signed piece of code ensures that the code hasn’t been

altered or corrupted since being signed. Two, the digital signature serves to prove the

identity of the code’s author, which helps you determine whether the code is safe for

execution.

These two assumptions are a way to ensure the integrity and authenticity of code.

However, these assumptions alone are no guarantee that signed code is safe to run. For

these two assumptions to be considered valid, you need the digital signature and the infra-

structure that establishes a mechanism for identifying the digital signature’s originator.

A digital signature is based on public key cryptography, which has algorithms used for

encryption and decryption. These algorithms generate a key pair consisting of a private

key and a public key. The private key is kept secret so that only the owner has access to it,

but the public key can be distributed to other entities through some form of secure inter-

action. Depending on the type of interaction, one key is used to lock (encrypt) the

communication, and the other key is used unlock (decrypt) the communication. In digital

signatures, the private key is used to generate a signature, and the public key is used to

validate the generated signature. The process is as follows:

1. A one-way hash of the content (documents, code, and so forth) being signed is

generated by using a cryptographic digest.

2. The hash is then encrypted with the private key, resulting in the digital signature.

3. Next, the content is transmitted to the recipient.

4. The recipient then creates another one-way hash of the content and decrypts the

hash by using the sender’s public key.

5. Finally, the recipient compares the two hashes. If both hashes are the same, the

digital signature is valid and the content hasn’t been modified.

NOTE

A one-way hash (also known as a message digest, fingerprint, or compression function)

is a cryptographic algorithm that turns data into a fixed-length binary sequence. The

term one-way comes from the fact that it is difficult to derive the original data from the

resulting sequence.

To associate an entity, such as an organization, a person, or a computer, with a digital

signature, a digital certificate is used. A digital certificate consists of the public key and
identifying information about the key pair owner. To ensure a digital certificate’s integrity,
it’s also digitally signed. A digital certificate can be signed by its owner or a trustworthy
third party called a certificate authority (CA).

Obtaining a Code-Signing Certificate 95

The act of associating code with the entity that created and published it removes the
anonymity of running code. Furthermore, associating a digital signature with a code-
signing certificate is much like using a brand name to establish trust and reliability. Armed
with this information, users of PowerShell scripts and configuration files can make
informed decisions about running a script or loading a configuration file. This, in a
nutshell, is why code signing is an important aspect of the PowerShell security framework.

Obtaining a Code-Signing Certificate
There are two methods for obtaining a code-signing certificate: generating self-signed

certificates and using a CA from a valid public key infrastructure (PKI).

Generating a self-signed certificate for signing your PowerShell scripts and configuration

files is simpler and quicker and has the advantage of not costing anything. However, no

independent third party verifies the certificate’s authenticity, so it doesn’t have the same

level of trust that’s expected from code signing. As a result, no other entity would trust

your certificate by default. To distribute your PowerShell script or configuration file to

other machines, your certificate would have to be added as a trusted root CA and a

trusted publisher.

Although changing what an entity trusts is possible, there are two problems. One, entities

outside your sphere of control might not choose to trust your certificate because there’s

no independent method for verifying who you are. Two, if the private key associated with

your self-signed certificate becomes compromised or invalid, there’s no way to manage

your certificate’s validity on other entities. Given these problems, limiting the use of self-

signed certificates to a local machine or for testing purposes is recommended.

If you plan to digitally sign your scripts and configuration files so that they can be used

in an enterprise or even the public realm, you should consider the second method of

obtaining a code-signing certificate: a CA from a valid PKI. A valid PKI can mean a well-

known and trusted commercial organization, such as www.globalsign.net, www.thawte.

com, or www.verisign.com, or an internal PKI owned and operated by your organization.

Obtaining a code-signing certificate from an external PKI can be quick and easy, as long

as you keep a few caveats in mind.

First, a certificate must be purchased from the owner of the external PKI. Second, because

you’re purchasing the certificate from an outside entity, you’re placing a lot of trust in the

organization’s integrity. For these reasons, code-signing certificates from commercial PKIs

should be limited to certificates used to sign scripts and configuration files for public

distribution.

Therefore, an internal PKI should be used for scripts and configuration files not meant for

public consumption. Keep in mind that deploying and managing an internal PKI takes

planning, effort, and money (Hardware Security Modules (HSMs), security consultants,

and so forth can be expensive). Most organizations tend to shy away from the effort

required to set up a PKI. Instead, they bring up CAs ad hoc, purchase certificates from

commercial PKIs, or ignore PKI requirements. A commercial PKI might not provide the

level of trust your organization needs, and the ad hoc approach isn’t recommended

96 CHAPTER 4 Code Signing

because it reduces trust of certificates generated by rogue CAs, which are CAs that have a

low level of assurance around their integrity. Having no valid PKI infrastructure could

make internal distribution of digitally signed files difficult. Last, organizations that ignore

PKI requirements illustrate another drawback of using an internal PKI: time.

If there’s no PKI in your organization, obtaining a code-signing certificate might take an

extended period of time. PKIs do not materialize overnight. If you have identified a PKI

requirement for your scripts, there are probably additional PKI requirements in your orga-

nization. These requirements will need to be identified and considered before a PKI is

deployed. Trying to drive a PKI deployment around your needs alone isn’t the best

approach for an infrastructure service that needs to meet the needs of an entire organiza-

tion. After you have presented the PKI requirement to your organization, you might have

to wait for the services to be provided. However, after the PKI is in place, you can obtain

code-signing certificates knowing that the infrastructure fully supports the distribution of

your signed PowerShell scripts and configuration files.

Method One: Self-Signed Certificate

This method of creating a self-signed certificate is based on using the makecert utility,

which is part of the .NET Framework Software Development Kit (SDK). Follow these steps:

1. Download the latest Microsoft .NET Framework SDK from http://msdn2.microsoft.

com/en-us/netframework/aa731542.aspx. At the time of this writing, the current

-NET Framework SDK version is 2.0.

2. Install the SDK on the machine where you want to generate the self-signed

certificate.

3. Locate the makecert utility on your system. The default location is C:\Program

Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.

4. Open up a cmd command prompt and change the working directory to the location
of the makecert utility using the cd command.

5. Create a self-signed certificate by using the following command:

makecert -r -pe -n "CN=CertificateCommonName" -b 1/01/2000 -e 01/01/2099 -eku

| 1(3.6.1.5.5.7.0,.9:-s6 My

You should see output similar to the following:

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin>makecert -r -
pe -n "CN= Turtle Code Signing" -b 01/01/2000 -e 01/01/2099 -eku
1.3.6.1.5.5.7.3.3 -ss My

f=} bKefet-\-\ol-lol

Obtaining a Code-Signing Certificate 97

6. Finally, use the following PowerShell command to verify that the certificate was

installed:

PS C:\> get-childitem cert:\CurrentUser\My -codesign

Directory: Microsoft .PowerShell.Security\Certificate: :CurrentUser\My

Meh btilejohahmelel Subject

944E910757A862B53DE3113249E12BCA9C7DDODE CN=Turtle Code Signing

Method Two: CA Signed Certificate

This method is based on obtaining a code-signing certificate from a Microsoft Windows

CA. These steps assume a PKI has been deployed at your organization. If not, installing

Windows Certificate Services to meet your immediate need isn’t recommended. Follow

these steps to request a code-signing certificate:

1. Request that your PKI administrator create and enable a code-signing certificate

template for your PowerShell scripts and configuration files.

2. Use Internet Explorer to access the Certificate Services Web Enrollment site at

https://CAServerName/certsrv (replacing CAServerName with the name of your

server).

3. Click the Request a Certificate link.

4. On the Request a Certificate page, click the Advanced certificate request link.

5. On the Advanced Certificate Request page, click the Create and submit a request

to this CA link.

6. In the Certificate Template section, click to select the code-signing certificate your

PKI administrator created.

7. Enter the rest of the identifying information and certificate request options accord-

ing to your organization’s certificate policy. You can use Figure 4.1 as a guideline.

8. Click the Submit button.

9. In the Potential Scripting Violation dialog box that opens (see Figure 4.2), click Yes

to continue.

98 CHAPTER 4 Code Signing

Advanced Certificate Request

Certificate Template:

PowerShell Code Signing Bi

Identifying Information For Offline Template:

Name [PowerShell Code Signing

E-Mail: Richard Stallman@goodcade com

Company: |Good Code ae.
Department: [r |

City ‘Santa Clara :

State: |C& *:

Country/Region: US

Key Options:

© Create new key set © Use existing key set

CSP: Microsoft Enhanced Cryptographic Provider v1.0 7 |

Key Usage Signature

=" Min: 1024
Key Size: |1024 isan tease

© Automatic key containername § @ User specified key container name

@ Mark spac as exportable

Enable strong pret key protection

Additional Options:

Request Format @CMC © PKCS10

Hash Algorithm: SHA-1

FIGURE 4.1 Example of requesting a code-signing certificate

Scripting Violation

“This Web site is requesting a new certificate on your behalf, ‘You should allow only trusted Ww.
Do you want to request a certificate now?

FIGURE 4.2 Potential Scripting Violation message box

10. Next, if applicable, set the private key security level based on your organization’s

certificate policy (see Figure 4.3), and then click OK.

Creating 4 new RSA signature key

An application is creating a Protected item

CiyptoAPl Private Key

Secuily level set to Medium & Set. Gecurlty Levelr

FIGURE 4.3 Creating a new RSA signature key dialog box

Obtaining a Code-Signing Certificate 99

11. If your organization’s certificate policy requires approval from a certificate manager,

then ask your certificate manager to approve the certificate request you just submit-

ted. If approval isn’t required, go to step 16.

12. After the certificate request has been approved, use Internet Explorer to access

the Certificate Services Web Enrollment site at https://CAServerName/certsrv

(replacing CAServerName with the name of your server).

13. Click the View the status of a pending certificate request link.

14. On the next page, click the appropriate certificate request link.

15. On the Certificate Issued page, click the Install this certificate link.

16. In the Potential Scripting Violation dialog box that opens (see Figure 4.4), click Yes

to continue.

Potential Scripting Vislation

' This Web site is adding one or more certificates to this computer. Allowing an untrusted Web site to update your certificates is a security risk,
‘The Web site cauid install certificates you de not trust, which could allow programs that you do not trust to run on this computer and gain
access to your date, y

De you want this program ta add the certificates now? Click Yes if you trust this Web site. Otherwise, Click No.

FIGURE 4.4 Potential Scripting Violation message box

17. Finally, the Certificate Services Web Enrollment site states that the certificate was

installed successfully. Use the following PowerShell command to verify the certifi-

cate installation status:

PS C:\> get-childitem cert:\CurrentUser\My -codesign

Directory:

Microsoft .PowerShell.Security\Certificate: :CurrentUser\My

Mid atbbi eyes ah mele Subject

5CBCE258711676061836BC45C1B4ACA6F6C7D09E

E=Richard.Stallman@goodcode.com, C...

PS C:\>

The PVK Digital Certificate Files Importer

When a digital certificate is generated, sometimes the private key is stored in a PVK

(private key) file, and the corresponding digital certificate is stored in a Software

Publishing Certificate (SPC) file. When a code-signing certificate has been obtained from

100 CHAPTER 4 Code Signing

Verisign or Thawte, for example, the digital certificate is issued to you as a SPC and PVK

file combination. If you want to use the code-signing certificate to digitally sign

PowerShell scripts or configuration files, you must import the SPC and PVK file combina-

tion into your personal certificate store.

NOE
A certificate store is a location that resides on a computer or device that is used to

store certificate information. In Windows, you can use the Certificates MMC snap-in to

display the certificate store-for a user, a computer, or a service according. Your

To import the SPC+PVK, you use the Microsoft utility called PVK Digital Certificate

Files Importer. You can download it from the Microsoft Download Web site at

www. microsoft.com/downloads/details.aspx?FamilyID=F9992C94-B129-46BC-B240-

414BDFF679A7 &displaylang=EN.

Next, enter the following command to import the SPC+PVK, substituting your own file-

names:

pvkimprt -IMPORT "mycertificate.spc" "myprivatekey.pvk"

Signing PowerShell Scripts
When signing a PowerShell script, you use the Set -AuthenticodeSignature cmdlet,

which takes two required parameters. The first parameter, filePath, is the path and file-

name for the script or file to be digitally signed. The second parameter, certificate, is

the X.509 certificate used to sign the script or file. To obtain the X.509 certificate in a

format the Set -AuthenticodeSignature cmdlet understands, you retrieve the certificate as

an object with the Get -ChildItem cmdlet, as shown in this example:

PS C:\> set-authenticodesignature -filePath signed.ps1 -certificate [CY fe [-\ ote
childitem cert:\CurrentUser\My -codeSigningCert) [0] -includeChain "All"

1 Dh af Yoh Loh ant ar l Ol-IA |

F=f ep eX hf OL) af oth Oh ots Rot of -] Status Path

5CBCE258711676061836BC45C1B4ACA6F6C7D09E Valid : signed.ps1

PS C:\>

reer eer emennonaesecnmmmysonmmncinnreen isomers nner nanny setae sara denen tattoo amenesso.ptntutesoiamttiibittomee ssn icntosttnessaneesy iu emrwamomeesessnninbaeacsanonntdtn

|
i
i
i
i

i i
i
i

i

|

Verifying Digital Signatures 101

To retrieve the certificate you want from your own “user” certificate store, you use the Get -
ChildItem cmdlet with the codeSigningCert SwitchParameter. This SwitchParameter can
be used only with the PowerShell Certificate provider and acts as a filter to force the Get -
ChildItem cmdlet to retrieve only code-signing certificates. Last, to ensure that the entire
certificate chain is included in the digital signature, the includeChain parameter is used.

After the Set -AuthenticodeSignature cmdlet has been executed successfully, the signed
file has a valid digital signature block containing the digital signature. A signature block
in a PowerShell script or configuration file is always the last item in the file and can be

found easily because it’s enclosed between SIG # Begin signature block and SIG # End

signature block, as shown here:

write-host ("This is a signed script!") -Foregroundcolor Green

SIG # Begin signature block ig
MIITHQYJKoZIhvcNAQcCoIIIDj CCCAOCAQExCZAJBgUrDgMCGgUAMGkGCisGAQQB

gj cCCAQSgWZBZMDQGCisGAQQBg j cCAR4wJg IDAQAABBAT zDt gWUsITrck@sYpfvNR |

AgEAAgEAAgEAAgEAAGEAMCEwCQYFKw4DAhoFAAQUOBxWZ+ceVCY8SKCVL1/3igq2F

w@0gggYVMIIGETCCBPmgAwIBAgI Kc suBWwADAAAAT ZANBgkqhkiG9w@BAQUFADBE | 3 Fk tt Fe

KwYBBAGCNWIBCZEOMAWGCisGAQQBg j cCARUWIWYJKoZIhvcNAQkEMRYEFG+QcdwH

dHiuftHilhdyHCeS1Q0UgMAQGCSqGSIb38DQEBAQUABIGAZxItZJ+u01E/cVhOCFex |

QhinxULa3s@urQi362qa+NQ7yV3XczQOAP10/kBIrECwFN6YyS7PPmOwkCAPnfib |

4J3uKXZK+419iHTiEVmp1Z05G+P3KrqUS9ktFs7v9yTgqc8JdLznxsRLvMwZpAMBO |

R2792YGWHSJy4AwDYel jQ6Y=
SIG # End signature block

i Siecovenaaimaminninieiitiielda esisinnnnlinANhA hittin nshininisntitinasss ili MAGI DIIbOTi EAA ANIMES STINSON MOHAN HIE RENN SELDEN NS ON CILD NNN ine SINE Nie om iiiceaemsssssebiiiiseiNssnne Nee

NOTE :

This process for digitally signing scripts also applies to PowerShell configuration files.

As discussed in Chapter 3, configuration files, depending on the execution policy

setting, might also need to be signed before they are loaded into a PowerShell

session.

Verifying Digital Signatures
To verify the digital signature of PowerShell scripts and configuration files, you use the

Get -AuthentiCodeSignature cmdlet. It returns a valid status or an invalid status, such as

HashMismatch, indicating a problem with the file.

102 CHAPTER 4 Code Signing

Valid status:

| PS C:\> get-authenticodesignature signed.ps1

Directory: C:\

SignerCertificate : Path

5CBCE258711676061836BC45C1B4ACA6F6C7D09E Valid signed.ps1

PS C:\> .\signed.ps1

bbl os fe Mt Maes Ke p a kL | script!

PS C:\>

Invalid status:

PS C:\> Get -AuthenticodeSignature signed.ps1

1D) af —You oo} n'a i CAIN

fafa We p eX of OX —b on ole ih oh Moth of —) Status Path

5CBCE258711676061836BC45C1B4ACA6F6C7D09E HashMismatch signed.ps1

PS C:\ .\signed.ps1

File C:\signed.psl1 cannot be loaded. The contents of file D:\signed.ps1

but iam ot Wig Was ofl —y eM of -biivol— bal —Yo a of (oth E-{_ Yam of eB ef W-¥'e Mop Mt of e\— WED ols Ot Wo (ol TUE oo} oD TT okel o ME of ol

hash stored in the digital signature. The script will not: execute on the

system. Please see “get-help about _ signing” for more details.

At line:1 char:12

+ .\signed.psl <<<<

PS Cs\>

Based on the error in the preceding example, the script has been modified or tampered

with or is corrupt. If the script has been modified by its owner, it must be signed again

before it can be used. If the script has been tampered with or is corrupt, it should be
discarded because its validity and authenticity can no longer be trusted.

Signed Code Distribution
Distributing signed PowerShell scripts and configuration files requires the user to deter-
mine whether to trust code from a particular publisher. The first step is to validate the

Signed Code Distribution 103

publisher’s identity based on a chain of trust. To establish a chain of trust, the user uses
the publisher's code-signing certificate associated with the digital signature to verify that
the certificate owner is indeed the publisher. For example, Figure 4.5 shows an unbroken
path (or chain) of valid certificates from the publisher’s certificate to a trusted root certifi-
cate (or trust anchor).

| |S) thawte Premium Server CA
() Thawte Code Signing CA

Foseavane or]

his certificate is OK.

FIGURE 4.5 _ The certificate path

When a well-known trusted public root CA or internally trusted root CA is the trust

anchor for the publisher’s certificate, the user explicitly trusts that the publisher’s identity

claims are true.

For Windows users, if a root CA is considered trusted, that CA’s certificate resides in the

Trusted Root Certification Authorities certificate store (see Figure 4.6).

When a root CA is not a valid trust anchor or the certificate is self-signed, the user needs

to decide whether to trust a publisher’s identity claim. If the user determines the identity

claim to be valid, the root CA’s certificate or the self-signed certificate should be added to

the Trusted Root Certification Authorities certificate store to establish a valid chain of

trust.

After the publisher’s identity has been verified or trusted, the next step is deciding

whether the signed code is safe for execution. If a user has previously decided that code

from a publisher is safe for execution, the code (PowerShell script or configuration file)

runs without further user action.

For Windows users, if a publisher is considered trusted, their code-signing certificate

resides in the Trusted Publishers certificate store (see Figure 4.7).

104 CHAPTER 4 Code Signing

Wa Consoler Current UserTrusted lian Authortias\Gertiicates}

Action View

(Console Root\Certificates

Faygrites Window Help

—_J Consote Root
~ ED Certificates « Current User

Cd Persanal
J Trusted Reot Certification Authorities

a Certificates,
LJ Enteeprise Trust

J Intermediate Certification Authorities
_] Active Directory User Object

2) Trusted Publistees
J Untrusted Certificates
<J Third-Party Root Certification Authorities
J Trusted Peopte
_] Other People
) Cemificate Enroliment Requests

[tssuedto 2 Liss 8
Gl re Trustcenter Class 2. CA
Gite trustcenter Clase 9 CA
Gre TrustCentor Class 4 CA
GAITC TrustCenter Time Stampi..
thawte Personal Basic CA
El thawte Personal Freemail CA
Elthawte Personal Premium CA
=

Edthawte Server ca
Thawte Timestamping CA
UTN - OATACOrp SGC

GJutn-userrirst-Ctient Authen,..

UTM-USERFirst-Hardware

UTN-USERFirst-Network Appl...
LAUIN-USERFirst- Object
Avensign Clas? 3 Public Prim...
Bl verisign Commercial Softwa...
Ed versign Commercist Softwa...
GQvensign individual Software...
El verisign Individual Software...
Ed verisign Trust tetwark
(Dverisign Trust Network

Verisign Trust Network
Verisign Trust tetwork
VeriSign Trust Network
VenSign Trust Network

Ed verisign Trust Ketwork
Ed verisign Trust Network
Gd xcert £2 by OST

Trusted Roct Certification Authorities store contains 112 cenbifkates.

FIGURE 4.6

Certificates

‘avgeites —findaw

Curr

~ GP Certificates - Current User
+ CL) Personal

LD Trusted Root Certification Authorities
CJ Enterprise Trust
(J Intermediate Cerbfication Authorities
LL) Active Directory User Object
LJ Trusted Publishers

~Y Certificates
Ly Untrusted Certificates.
_J Third-Party Root Certification Authorities
J Trusted People

LJ Other People
Lu} Certificate Enrollment Requests

Trusted Publishers store contains 2 certificates,

FIGURE 4.7

M User\Trusted Publishers

a) companyate.com
Ed microsatt Corporation

ato

TC TrustCenter Class 2 CA

TC TrustCenter Class 3 CA
TC TrustCenter Class 4 CA

TC TrustCenter Time Stampin...

Thawte Personal Basic CA

Thawte Persanal Freemail C4

Thawte Personal Preriaurs CA

Thawte Server CA
Thavete Timestamping CA
UTH - DATACorp SGC
UTH-USERFirst-Client Authenti,
UTH-USERFirst-Mardware
UTN-USERFirst-Network Applic...

UTN-USERFirst-Object

VeriSign Class 3 Public Primar...
VeriSign Commercial Software...
WenSign Commercial Software...
VeriSign Individual Software P...
VeriSign Individual Software P...
VerSign Trust Network
VenSign Trust Network
VenSign Trust Metwork
VeriSign Trust Network
VenSign Trust Network
VenSign Trust Network
VenSign Trust Network
VenSign Trust Network
Xeert EZ by OST

Thawte Code Signing CA
Microsoft Code Signing PCA

Trusted Publishers certificate store

VW1/2011

1/2011

W1/2011

1/1/2011

12/94/2020

12/54/2020

12/31/2020

12/31/2020
12/31/2020
6/24/2029
7/9/2019
2/9/2029
7/9/2019

2/9/2019

7/16/2036
12/31/1999
1/7/2004

12/31/1999
1/2/2004

§/16/2016
BAL/2026

S/1B/2018
8/1/2028
S/1G/2026

8/1/2026
8/1/2020

5/18/2028
TALL/2009

10/4/2003

1044/2007

Secure Email, Se...

Secure Email, Se...

Secure Email, Se...

Time Stamping
Chent Authenticat...

Chent Authenticat...

Cheri Authenticat...

Server Authentic...

Time Stamping
Server Avthentc...

Secure Email

Server Authentic...

Secure Email, Se...

Time Stamping, ..
Server Authentic...

Secure Email, Co...

Secure Email, Co...

Secure Email, Co...

Secure Email, Co...

Secure Ervail, Cli...

Secure Email, Cli,

Secure Email, Chi...

Secure Ernail, Cli,,

Secure Email, Chi

Secure Email, Chi

Secure Email, Cli

Secure Email, Chi...

Secure Email, Se

Code Signing, 2
Code Signing

TC TrustCenter ©

TC TrustCenter C...

TC Trustienter C..,

TE TrustCenter T.

Thawte Persanal ...

Thavite Fersonal ...

Thawte Personal
,

Thawte Server CA

Thawte Timestam... (4

UTM - DATAC orp... |
UTN ~ USERFirst-..,

UTM - USERFirst-..

UTM - USERFirst

UTN » USERFirst>..

Verisign
VeriSign Comme...

VenSign Comme...
VenSign individu...
VeriSign Individu...
VeriSign Class 2 ...
Veridign Class 2 ..

VeriSign Class 3 ..

VeriSign Class 3...
VeriSign Class 4 ...
VeriSign Class 1...
VeriSign Class 4 .
Verisign Class 1 .

Trusted Root Certification Authorities certificate store

If a publisher is not trusted, PowerShell prompts the user to decide whether to run signed
code from that publisher, as shown in this example:

Signed Code Distribution 105

PS C:\> .\signed.ps1

Do you want to run software from this untrusted publisher?
File C:\signed.psl is published by @)\\ Toles iie}-behig-Volemmole)\ \ammm@) Of ml i
O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on your
system. Only run scripts from trusted publishers. :
[Vv] Never run [D] Do not run [R] Run once [A] Always run [?] Help

(default is "D"):

The following list explains the available options:

» [V] Never run—This option places the publisher’s certificate in the user’s Untrusted
Certificates certificate store. After a publisher’s certificate has been determined to be
untrusted, PowerShell never allows code from that publisher to run unless the

certificate is removed from the Untrusted Certificates certificate store or the execu-

tion policy is set to Unrestricted or RemoteSigned.

» [D] Do not run—This option, which is the default, halts execution of the untrusted

code.

> /[R] Run once—This option allows one-time execution of the untrusted code.

» [A] Always run—This option places the publisher’s certificate in the user’s Trusted

Publishers certificate store. Also, the root CA’s certificate is placed in the Trusted

Root Certification Authorities certificate store, if it isn’t already there.

Enterprise Code Distribution

You might be wondering how to control what code is considered trusted in your organiza-

tion. Obviously, having users or machines decide what to trust defeats the purpose of

distributing signed code in a managed environment. If your environment is managed,

your PKI deployment should have methods for controlling what’s trusted in an organiza-

tion. If your organization is a Windows environment, the most common method is

through GPO. For example, you can define trusted publishers by using a Certificate Trust

List (CTL) or manage them through the Internet Explorer Maintenance extension.

Public Code Distribution

Determining trust in the public realm is entirely different. When establishing trust

between two private entities, they are able to define what is and isn’t trusted. When

dealing with public entities, you don’t have this level of control. It is up to those public

entities to determine what they do or do not trust.

106 CHAPTER 4 Code Signing

Summary
In summary, this chapter, as its name suggested, was an in-depth exploration into code

signing. Based on the information that you have gleaned from this chapter, you should

now have an understanding for just how important code signing is to PowerShell security

and how to use it. If you haven’t come to this realization, then it is again stressed that

code signing be understood and used in conjunction with your script development

activities.

In addition to stressing the use of code signing, you should also now have a better under-

standing for the infrastructure that is required to make code signing a viable method for

trusting code within an organization. Granted, while PKI can be difficult to understand,

one of the main goals of this chapter was to explain PKI from the perspective that was

related to your scripting activities—an approach that was taken in an effort to reduce the

amount of bewilderment, on your part, by relating PKI to something that is applicable to

how it would be used with PowerShell. With this knowledge, you should now be able to

determine, or at least convey, a PKI need and hopefully move a project forward such that

the scripts you developed can be trusted at your organization.

PowerShell Scripting
Best Practices

Introduction

Many helpful guides are available for learning what script-

ing practices to follow. Often these guides cover best prac-

tices for a particular language, general scripting concepts,

or even one scripter’s views on what’s considered good

scripting. No matter what type of guide you consult, your

goal should always be to seek improvements in how you

script.

This chapter is intended to provide guidelines based on

experience for scripting best practices that tie into software

development best practices. Scripting is similar to software

development, in that it involves writing and developing

code in a way that makes sense. Furthermore, many aspects

of a software development project apply to scripting

projects. Extending software development guidelines to

scripting best practices can give you a good foundation for

improving your script writing.

Script Development
The following sections offer best practices for script devel-

opment that applies to scripting in general. It is highly

recommended that when you are developing your own

scripts that the practices discussed in these sections be

followed to some extent or another. By doing this, you

should find that your scripts will start to meet stated

project requirements, take less time to develop, and have

fewer issues when deployed into production.

IN THIS CHAPTER

» Introduction

» Script Development

>» Script Design

> Script Security

» Standards for Scripting

108 CHAPTER 5 PowerShell Scripting Best Practices

Treat Scripting Projects as Actual Projects

Developing a script can take as much effort as any software development project. For

example, you should make sure to incorporate some prototyping and testing to prevent

the script from having any negative impact on an environment. So whenever you write a

script, check the scope of the effect it might have. If the script is complex, takes more

than a few minutes to complete its tasks, requires more resources than yourself (such as

other people), or carries a high level of risk when its runs, turning the script job into a

project might be appropriate.

Use a Development Life Cycle Model

As with all software development projects, you should choose a development life cycle

model that fits the needs of your scripting project. These models range from the tradi-

tional waterfall model to newer models such as Agile, Extreme Programming (XP), Spiral,

Iterative, and so forth. The choice of a model isn’t as important as having a formal

process for managing your scripting projects, however.

If the models mentioned here seem overly complex for a scripting project, Figure 5.1

shows a simple series of steps developed for scripting projects.

Return to

Development

Cyclical Phases | Development Sf |

|

BaG ad ACE |

FIGURE 5.1. The process map for a scripting project

Script Development 109

Although similar to a full development life cycle model, the steps are simply pointers to
tasks that need to be completed for a typical scripting project. You can follow this script-
ing model or develop your own, but the point of this practice is to choose a method for
Managing your scripting projects.

Design and Prototype Your Scripts by Using Pseudocode
The idea behind designing and prototyping a script by using pseudocode is that it enables
you to develop a script’s structure and logic before writing any code. Working out the
structure and logic beforehand helps you ensure that your script meets its requirements
and helps you detect possible logic flaws early in the process. Furthermore, pseudocode is
language independent and can be written so that other people, especially those who need
to give input on the script design, can read and understand it easily. The following is an
example of pseudocode:

Param domain

Param resource account CSV file

Bind to domain

Open and read CSV file

For each resource account in CSV file:

-Create a new account in the specified OU. |

-Set the password (randomly generated complex 14-character password). |

| -Log password to admin password archive. i

i -Set the user account attributes based on CSV file information. i

| -Mail-enable the account.

| -Add the user to the appropriate groups based on CSV file information.

|

Gather Script Requirements Effectively
As with any project, you need to define the problem your script will be solving to deter-

mine what’s required of it. Sometimes a script just solves a simple automation need, as

such its requirements are easy to determine. When a script needs to solve more complex

business automation needs, however, you might need to learn more about the business

processes being automated to determine its requirements. In either case, identifying the

requirements for a script and having all parties sign off on those requirements is pivotal

to ensuring its success. Overlooking these steps in the development process may mean

that your final script fails to meet its requirements and is then rejected as a solution for

the original business need.

Don’t Develop Scripts in a Production Environment

Most scripts are designed to make changes to a system, so there’s always the chance that

running a script in a production environment could have unwanted or possibly damaging

110 CHAPTER 5 PowerShell Scripting Best Practices

results. Even if a script makes no changes, it could have an undesirable effect, or you

might not fully understand the impact. Even worse, when you run the script to test its

functionality, you might accidentally run the script outside your designated testing scope

and perhaps affect production systems. Therefore, developing your scripts in a production

environment isn’t a good idea.

Test, Test, Test
Scripts are usually written to perform some type of automation task, such as modifying an

attribute on every user in an Active Directory domain. The automation task might carry

ahigh or low level of impact, but some form of quality assurance testing should be

conducted on the code before running it in a production environment. Scripts in par-

ticular should be tested thoroughly because of their potential effect on an environment.

Keep Your Scripts Professional
Many scripters tend to view scripting as a quick and easy way to complete tasks and don’t

see the need for professional considerations, such as planning, documentation, and stan-

dards. This mindset is likely a holdover from the days when scripting was considered a

clandestine task reserved for UNIX and Linux coders. Clearly, this view is changing with

Microsoft’s release of PowerShell. CLI use, scripting, and automation are becoming the

foundation for how Windows systems administrators manage their environments. With

this change, scripting, with its flexibility and raw power, will be increasingly viewed as a

solution to business automation needs and, therefore, a task that should be done with

professionalism.

To be professional when creating scripts, you should make sure your work meets a certain

level of quality by developing standards for all your scripts to meet, writing clear and

concise documentation, following best practices in planning and layout, testing thor-

oughly, and so forth. Adhering to professional standards can also ensure that others

accept your work more readily and consider it more valuable.

Script Design
The following sections offer best practices for PowerShell script design. The term “design”

is used lightly here as the goal is to provide insight into design aspects that should and

should not be done when writing a PowerShell script. For example, when writing a script,

you should validate information that is provided to the script. Again, it is highly recom-

mended that the practices reviewed in these sections be applied, in some form, to scripts

that you develop. Following these practices will help make your scripts more readable,

usable, robust, and less buggy.

Put Configuration Information at the Beginning of Script

When setting variables, parameters, and so on that control script configuration, you

should always place them near the beginning of a script to make locating these items easy

for anyone using, reading, or editing the script, as shown in this example:

Script Design alll

$Owner = "Administrators"

$Targets = import-csv $ImportFile |

i

:

j
|

ee Nie ok arnt

Another reason for this practice is to reduce the number of errors introduced when

editing the script configuration. If configuration information is spread throughout a

script, it’s more likely to be misconfigured, declared multiple times, or forgotten.

Use Comments

You can’t assume users will understand the logic you’ve used in a script or be familiar

with the methods you used to perform tasks. Therefore, using comments to assist users in

understanding your script is a good practice. Comments don’t have to be as lengthy as a

novel, but should provide enough information to help users see how the script logic

flows. In addition, if your script includes a complex method, class, or function, adding a

comment to explain what it does is helpful. Another benefit of comments is that the

information makes it easier for you to review or update a script. The following example

shows the use of comments to provide helpful information:

t

ee |
| # Add -DACL |

ee |
Usage: Grants rights to a folder or file.

| # $Object: The directory or file path. ("c:\myfolder" or i

"ci \myfile. txt") |

| # $Identity: User or Group name. ("Administrators" or

i # "mydomain\user1"

$AccessMask: The access rights to use when creating the access rule. |

i# ("FullControl", "ReadAndExecute, Write", etc.)

$Type: Allow or deny access. ("Allow" or "Deny") a

tC

Avoid Hard-Coding Configuration Information

Hard-coding configuration information is a common mistake. Instead of asking users to

supply the required information, the configuration information is hard-coded in variables

or randomly scattered throughout the script. Hard-coding requires users to manually edit

112 CHAPTER 5 PowerShell Scripting Best Practices

scripts to set the configuration information, which increases the risk of mistakes that

result in errors when running the script. Remember that part of your goal as a scripter is

to provide usable scripts; hard-coding information makes using a script in different envi-

ronments difficult. Instead, use parameters or configuration files, as shown in the follow-

ing example, so that users can set configuration information more easily.

param({string] $ADSISearchPath=$(throw "Please specify the ADSI Path!")) |

OUNCE CTL ALT A LEO OTT

When Necessary, Use Variables

If configuration information does need to be hard-coded in a script, use variables to repre-

sent the information. Defining configuration information in a variable in one place

instead of several places throughout a script decreases the chance of introducing errors

when the information needs to be changed. Furthermore, having configuration informa-

tion in a single place, particularly at the beginning of a script, helps reduce the time to

reconfigure a script for different environments.

Provide Instructions

Most scripts are written for use by others. In many cases, the user is an administrator

who isn’t comfortable with code and command-line interfaces. This means that your

scripts have to be usable as well as useful. If you don’t include instructions to make sure

even a novice can run the script and understand what it does, you haven’t succeeded as

a scripter.

It’s common to see scripts without any instructions, with incorrect instructions, or with

little explanation of what the script does. For users, these scripts are usually frustrating.

Even worse, they might have no clue what impact a script could have on their environ-

ment, and running it could result in a disaster.

The following example includes instructions that might be included in a readme file on

the script’s purpose and how it works:

Name: AddProxyAddress.ps1

Author: Tyson Kopezynski

Date: 6/02/2006

Description:

Use this script to add secondary proxy addresses to users based on a CSV import

file. When trying to add the additional proxy addresses, this script checks the

following conditions:

Biss He Te

Script Design as

EEE

Does the user exist?

Is the user mail-enabled?

| Does the proxy address currently exist? i

This script will create a log file each time it is run.

CSV file format: |

| [sAMAccountName] , [ProxyAddresses]

| tyson, tyson@cco.com; tyson@taosage.net

| maiko,maiko@cco.com |
bob, bob@cco.com

| erica,erica@cco.com
i

_ The ProxyAddresses column is ; delimited for more than one proxy address.

<a ereinmmnnnnnnnnnnntsovnetiniahtonhnmasinoimesodeiaresioaseestiomnwussatssitirpasnswsinsnmnenh

Perform Validity Checking on Required Parameters

Failing to perform basic validity checks on required parameters is a common mistake. If

your script requires input from users, neglecting these validity checks could mean that

users enter the wrong input, and the script halts with an error. This oversight might not

be a major issue with small scripts, but, with large, complex scripts, it could seriously

affect their usability.

Say you have written a script that performs a software inventory. In your development

environment consisting of a few machines, you run the script but fail to provide the

correct information for a required parameter. The script runs, and a couple of seconds

later, it fails. You realize that you mistyped a parameter, so you correct your mistake and

rerun the script.

Then the systems administrator runs your script against thousands of machines; it runs

for six hours and then fails. Reviewing the error information, the administrator discovers

the script failed because of a mistyped parameter. At that point, the administrator has

already invested six hours only to encounter an error and might conclude your script isn’t

usable. In other words, you wrote a script that works for your environment but not the

administrator’s environment. To prevent this problem, make sure you perform validity

checking on required parameters, as shown in the following example:

Eee ances $TemplatePath = $(throw write-host ~

"Please specify the source template path of the folder structure to" ~

"be copied." -Foregroundcolor Red), [string] $ImportFile = $(throw ~

| write-host "Please specify the import CSV filename." °

-Foregroundcolor Red))

|
|
i

write-host "Checking Template Path" -NoNewLine

114 CHAPTER 5 PowerShell Scripting Best Practices

| if (!(test-path $TemplatePath)) {

throw write-host “t "$TemplatePath is not a valid directory!"

-Foregroundcolor Red

}
else {

write-host ‘t "[OK]" -Foregroundcolor Green

}

_write-host "Checking Import File" -NoNewLine

if (!(test-path $ImportFile)) {

throw write-host °t "$ImportFile is not a valid file!" -Foregroundcolor Red

}
| else {

write-host “t "[OK]" -Foregroundcolor Green

}

Make Scripts and Functions Reusable

If you have spent time developing sophisticated script functionality, you should take the

time to make that functionality reusable. With a common set of scripts or functions, you

can also save time when you need to create new scripts. For example, in one script you

have created logic for parsing data from a comma separated value (CSV) file to create an

HTML table. Instead of copying and modifying that logic for new scripts, you can create a

script or library file that includes this logic so that it can be reused in any script.

Reusability is an important best practice. In PowerShell, the concept of reusability makes

even more sense because scripts and library files can be ported easily by calling reusable

code from a PowerShell console session or loading the script or library file with a dot

sourced statement. The following example shows a series of script files being called from

the PowerShell console as part of the pipeline.

PS C:\> .\get-invalidusers.psl mydomain.com | .\out-html.psl | .\out-ie.psl

Use Descriptive Names Rather Than Aliases

Using aliases in PowerShell can save time but make your scripts difficult for users to read.

The PowerShell language is designed to be easy to write and read, but your naming stan-

dards and use of aliases have an effect on readability. To ensure readability, follow consis-

tent naming standards and use descriptive names rather than aliases, when possible.

Making your code more readable benefits users trying to understand it and means future

updates and changes will be easier for you, too. If you take the time to follow consistent

naming standards and avoid the overuse of aliases, making modifications to the script

should be a breeze.

Script Design TAS

Provide Status Information for Script Users
Providing status information in an automation script is essential so that users understand
how the script is progressing during execution and know whether script tasks have been
completed successfully. Status information also lets users know whether any errors have
occurred and can even indicate how much longer until the script has finished running.

You can provide status information to users in the form of console displays, as shown in
Figure S.2, by using the Write-Host and Write-Progress cmdlets, written to a log file, or
Windows Forms.

template .\user

Checking Template Path {OKI
Checking Import File tox)

{OK}

OMI
SYSTEM [OK]

AdaDACL for Maike [6K]

AGADACL For
AddDACL Fox

Mis\Fujio
COPIED)

Done Provisioning Web Folders:

FIGURE 5.2 Example of how a script can provide status information

NOTE

Regardless of the method, the idea is to provide enough status information without

overloading users with useless details. If you need different levels of detail when

displaying information to users, you can use the Write-Verbose and Write -Debug

cmdlets, the Verbose and Debug parameters, or custom output.

Use the WhatIf and Confirm Parameters
As discussed in Chapter 2, “PowerShell Basics,” two cmdlet parameters are designed to

help prevent scripters and systems administrators from making unwanted changes. The

WhatIf parameter is designed to return information about changes that would occur if the

cmdlet runs yet doesn’t actually make those changes, as shown in this example:

116 CHAPTER 5 PowerShell Scripting Best Practices

What if: Performing operation "Stop-Process”" on Target ."explorer (2172)".—

In this example, the process object returned from the Get -Process cmdlet is

explorer.exe. Normally, if a process object is then piped to the Stop-Process cmdlet, the

received process stops. However, when using the WhatIf parameter with the Stop-Process

cmdlet, the command returns information about the changes that would have happened

instead of carrying out the command. For example, say you entered this command:

Do not run the following command as it is only meant as an example of what not to do.

PS C:\> get-process | stop-process

Without the WhatIf parameter, this command would stop your PowerShell console

session as well as your system. Adding the WhatIf parameter gives you information

warning that the command would likely result in a system crash, as shown here:

PS C:\> get-process | stop-process -WhatIf

What if:

What if:

What if:

‘What if:

What if:

What if:

What if:

What if:

What if:

What if:

What if:

What if:

(1888)".

What if: Performing operation "Stop-Process"

a eLolole MK—W Kolo NW of-b al (oh on ae h—S a @-YACL-

Performing

Performing

Performing

Performing

Performing

Performing
Performing

Performing

Performing

Performing

Performing

Performing

fo} ofp at-home Koy}

fo} oY —bat- ho oy}

fo} oX—bat-h op eo}

fo} oY bat- hon oy}

fo} ofp atom Koy e]

fo} of batho Roy}

(oy of—-bat- hob Koy]

(oy oth at- hob Re)

operation

(oy ofp ath ob Roy]

Co} ol-b at-b ob Ke)]

(oy ol —bat- bob oye]

"Stop-Process"

"Stop-Process"

"Stop-Process"

"Stop-Process"

"Stop-Process”"

“Stop-Process"

"Stop-Process"

"Stop-Process"

"Stop-Process”

"Stop-Process"

"Stop-Process"

"Stop-Process"

"alg (1048)".

"ati2evxx (1400)".

"ati2evxx (1696)"-

"atiptaxx (3644)".

"BTSTAC~1 (2812)".
"BITray (3556)".

"btwdins (1652)".

eet) oft @ i Da

"“ctfmon (1992)".

"“eabservr (3740)".

apd oN Ko) of) all 7 Wy 7D

"googletalk

The Confirm parameter prevents unwanted modifications by forcing PowerShell to

prompt users before making any changes, as shown in this example:

Script Security tla Uy 4

PS C:\> get-process expl* | stop-process -confirm

Confirm

Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "explorer (2172)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(Ce (=> £- 1) 8 ee a a

As a best practice, you should use the WhatIf and Confirm parameters whenever possible

to identify potentially harmful changes and give users a choice before making these

changes.

The WhatIf and Confirm parameters are valid only with cmdlets that make

modifications.

Script Security
Security is often an item that is not considered during the development of software. The

same is true with scripting. Unfortunately, considering for and incorporating security into

your scripts is very good best practice. That is why the next three sections may be the

most important sections within this chapter because they deal with PowerShell script

security best practices.

Digitally Sign PowerShell Scripts and Configuration Files
As emphasized in Chapter 4, “Code Signing,” you should always digitally sign your

PowerShell scripts and configuration files so that users and machines running your scripts

can trust that the code is actually from you and hasn’t been tampered with or corrupted.

Adhering to this practice also means you can keep the PowerShell execution policy on

your machine and others in your organization set to Al1lSigned.

NOTE —

Code signing doesn’t apply just to PowerShell scripts and configuration files. You can

apply the principles of code signing to other items, such as executables, macros,

DLLs, other scripts, device drivers, firmware images, and so forth. Other code can

benefit from the security of digital signatures, and you can further limit the possibility

of untrusted code running in your environment.

118 CHAPTER 5 PowerShell Scripting Best Practices

Never Set Execution Policies to Unrestricted

Setting your execution policy to Unrestricted is like leaving an open door for malicious

code to run on your systems. Because of this risk, you should set your execution policy to

RemoteSigned at a minimum. This setting still allows you to run scripts and load configu-

ration files created locally on your machine but prevents remote code that hasn’t been

signed and trusted from running. However, the RemoteSigned setting isn’t foolproof and

could allow some remote code to run through PowerShell.

Following these guidelines and becoming proficient in code signing are crucial to guaran-

teeing that your PowerShell environment doesn’t become a target for malicious code.

Setting your execution policy to AllSigned increases security even more because it

requires that all scripts and configuration files be signed by a trusted source before

running or loading them.

Try to Run Scripts with the Minimum Required Rights
IT security practices include following the principle of least privileges, which ensures that

entities such as users, processes, and software are granted only the minimum rights

needed to perform a legitimate action. For example, if a user doesn’t need administrative

rights to run a word processing program, there’s no reason to grant that user administra-

tive rights.

The principle of least privileges also applies to scripting. When you’re developing a script,

make an effort to code in a manner that requires the minimum rights to run the script. In

addition, document the required rights to run your script in case they aren’t apparent to

users. If users don’t know the required rights to run a script, they might try running it

with administrative rights, which increases the possibility of causing unwanted and possi-

bly damaging changes to your environment.

Standards for Scripting
As in software development, your scripting practices should incorporate some form of

standardization. The term “standardization” as used here doesn’t mean a formal standard,

such as one from the International Organization for Standardization (ISO) or Institute of

Electrical and Electronics Engineers (IEEE). Instead, it refers to using consistent methods

for how your scripts are named, organized, and structured; how they function; and how

they handle errors. Standardizing these aspects of your scripts ensures consistency in how

others interact with, troubleshoot, and use your scripts.

Using a consistent naming standard across scripts or even within a single script can

improve a script’s readability. Another standardization practice, using a standard script

layout, benefits those trying to read, troubleshoot, or modify your script. Standardization

can also reduce the time you need to develop new scripts. For example, you can create

standard forms for common tasks such as error handling, log file creation, and output

formatting and reuse that functionality.

Standards for Scripting 119

This Book’s Scripting Standards

Subsequent chapters in this book focus on real-world examples for PowerShell scripts. So,
working scripts have been pulled from actual projects developed to meet business require-

ments and are used throughout the remainder of this book. While the full source code for

these scripts is presented in the remaining chapters, the source code has also been

provided on the PowerShell Unleashed Reference Web site which allows you to examine

the scripts in usable format. The URL for this Web site is: www.samspublishing.com/.

In addition, this book’s reference Web site also contains several utilities used with scripts

as well as the original source code. You can download a .zip file, which contains the

Scripts file for each chapter. Each chapter subfolder contains another subfolder for a

script and any related files.

To access the downloadable scripts, go to www.samspublishing.com/title/0672329530.

To address a few potential problems of standardization, some choices were made for how

to present scripts in this books. First, scripts are limited to the PowerShell and VBScript

languages to reduce the complexity of dealing with many different scripting languages.

Second, VBScript scripts reside in a Windows Scripting File (WSF). Third, each PowerShell

and VBScript is structured with a common layout that’s easy to comprehend. Figures 5.3

and 5.4 are examples of the layouts used in this book.

Fourth, a digital code-signing certificate from Thawte was purchased, and all PowerShell

scripts have been signed by the entity companyabc.com. If you have followed best prac-

tices for your execution policy setting, you need to configure companyabc.com as a

trusted publisher to run the PowerShell scripts.

CAUTION

The scripts provided with this book are functioning scripts. They have been tested and

should perform according to their intended purposes. However, this doesn’t mean the

scripts can be used in a production environment. If you plan to run one of these

scripts in a production environment, conducting testing on that script first is strongly

recommended.

Last, PowerShell and VBScript scripts tend to provide the same type of interaction for

input and output, although there are differences occasionally when new concepts are

introduced. Overall, however, methods for providing input and output are clear and

concise through use of the PowerShell console, log files, and Windows Forms.

120 CHAPTER 5 PowerShell Scripting Best Practices

Script Configuration

Functions

FIGURE 5.3. WSF script layout

Params

Functions

Script Configuration

FIGURE 5.4 PowerShell script layout

Summary
In this chapter, you were presented with a number of PowerShell scripting best practices.

These practices focused on how you develop, design, and secure your scripts so that your

overall ability as a scripter will improve. The sources for these practices are based both

from software development best practices and real-world scripting experience. They are by

no means all inclusive or set in stone to how they apply to your own scripting practices.

Summary AL

If anything, the real goal of this chapter was to act as a prompt for your own thought

processes around what is considered a good scripting practice. In the end, you may

choose to expand on or add to these practices as long as you consider them when sitting

down to write your next PowerShell script. After all, the PowerShell team went through

all the trouble to produce the perfect shell. That favor should be repaid by trying to

produce a well thought-out, well-designed, and secure script.

ees ae
. Phan” ein ameel ay tHe Scent ey teem ay aah.

a = lem prin vay

Pe oa ~%

a So Pace

eel oe se.
; s

a)
~'(@So ‘ae ;

7 _ == -

ey AD cae
‘ o-

so/

and a ; | 7 >

ee
7 _. oo

7
——-

7 ~< Cyuea-(e =e

apmurary |

Hee era, Fe a (eee et A ae a
ay Cthaey trot? We Sond gel Copemegy
LwIGs £y 6 ia: a ae Wh, wa ’

nay ¢ ao PCs iar SD ee ar mn

een 4 jaf

serene

ere w dua no Ghangeel
ie cal (ia ahaa a0

p% beectEt Myint the
ae = utes hee seule =
:

a heen:

=< = « ees '

in - 7 :
— a wi 7

ha Rs ss po ; . ak . tp ;

oe - —_ ’ -

_ © ad ,
: a 7 7

=
—

ee eer
: is «@ a)

: _ ’ i oi

* a 7 4
e& a sf v

-_ = q ©

| ~o — :

er er) =,

smemn ane tp hall ye Gar Wied
7

-
a

PART Il

Translating Your Existing
Knowledge into
PowerShell

IN THIS CHAPTER

CHAPTER 6 PowerShell and the File System 125

CHAPTER 7 PowerShell and the Registry 157

CHAPTER 8 PowerShell and WMI 183

CHAPTER 9 PowerShell and Active Directory 205

CHAPTER 6 | iN Tuis CHAPTER

PowerShell and the ee Management in

Hier VSlen WSH and PowerShell

>» Working with Permissions

» From VBScript to PowerShell

Introduction

This chapter explains how PowerShell can be used to

manage the Windows file system. To do this, the chapter

explores in-depth examples of managing the file system

using both Windows Script Host (WSH) and PowerShell.

These examples are presented from both perspectives in an

effort to give the reader a path to learn PowerShell based

on existing Windows scripting knowledge. In addition to

the example-based comparisons, this chapter also presents

a working file-management script based on a real-world

situation. The goal, like the rest of the chapters in this

book, is to give the reader a chance to learn how

PowerShell scripting techniques can be applied to meet

real-world automation needs.

File System Management in WSH
and PowerShell
WSH offers several methods for manipulating the Windows

file system. The FileSystemObject (FSO) object model,

Windows Management Instrumentation (WMI), and utili-

ties such as copy, calcs, and xcalcs are just a few exam-

ples. Using this plethora of tools, you can perform tasks

such as copying, creating, and deleting files and folders.

Most scripters use the FSO model to work with file systems.

FSO is part of the WSH object model. The

FileSystemObject object acts as the root object for a hier-

archy of COM objects, methods, and collections for

working with the file system. FSO usually allows scripters

126 CHAPTER 6 PowerShell and the File System

to manipulate the file system as they see fit, but in some instances, it doesn’t provide

enough features, so additional tools and methods are needed for certain tasks.

PowerShell, on the other hand, has a built-in provider, the PowerShell FileSystem

provider, for interfacing with the Windows file system. The abstraction layer this provider

furnishes between PowerShell and the Windows file system gives the file system the

appearance of a hierarchical data store. Therefore, interfacing with the file system is the

same as with any other data store that’s accessible through a PowerShell provider. As

discussed in Chapter 3, “PowerShell: A More In-Depth Look,” the core set of cmdlets for

accessing and manipulating other data stores are also used with the file system. The

following command that you’ve seen previously retrieves a list of the core cmdlets for

manipulating data stores available via PowerShell providers:

PS C:\> help about_core_ commands

Working with Drives

In WSH, you can use the FSO Drive object to retrieve information about available drives

on a system, as shown in this example:

_ Dim FSO, objFolder

| Set FSO = CreateObject("Scripting.FileSystemObject*)

Set objDrive = fso.GetDrive(fso.GetDriveName("C:\"))

_ WScript.Echo "Total Space: " & FormatNumber(objDrive.TotalSize / 1024, Q)

4

Maks iscsi

In PowerShell, you can access some drive information with the Get -PSDrive and

Get -Item cmdlets. However, as discussed in Chapter 3, PowerShell treats drives differently

than WSH does. So if you want to access the same information available with the FSO

Drive object, you need to use the appropriate .NET class, as shown in this next example,

or WMI:

PS C:\> $CDrive = new-object System.I0.DriveInfo C
PS C:\> $DriveSize = ($CDrive.TotalSize / 1024) / 1000 /1000
PS C:\> $DriveSize = "{0:NO}‘* -f $DriveSize
PS C:\> write-host "The C Drive is $DriveSize GB."
The C Drive is 69 GB.

PS C:\>

Working with Folders

In WSH, you can access folder information and create, delete, copy, and move folders by

using the FSO Folder object, as in this example:

File System Management in WSH and PowerShell 27

Dim FSO, objFolder

| Set FSO = CreateObject("Scripting.FileSystem0bject")

Set objFolder = FSO.GetFolder("C:\tools")

WScript.Echo objFolder.DateLastAccessed

In PowerShell, you use the core cmdlets to perform the same tasks, as shown in this

example:

PS C:\> get-item C:\tools | select LastAccessTime

LastAccessTime

9/10/2006 10:58:51 PM

PS C:\>

Working with Files

In WSH, you can access file information and create, modify, read, copy, move, and delete

files by using the FSO File object, as shown here:

| Dim FSO

| Set FSO = CreateObject("Scripting.FileSystemObject")

strExtensionName = FSO.GetExtensionName("C:\tools\World_ Domination Plans R1.doc")

WScript.Echo strExtensionName

In PowerShell, you use the core cmdlets to access file information and manipulate files, as

in this example:

PS C:\tools> $File = get-item World Domination Plans _R1.doc
PS C:\tools> $File.extension
Pxs Cofo}

PS C:\tools>

As you can see from these examples, the methods for working with the Windows file

system are similar in FSO and PowerShell, and the core cmdlets in PowerShell can

perform many of the same tasks as FSO objects.

128 CHAPTER 6 PowerShell and the File System

Working with Permissions
Working with file system permissions in WSH has limitations. For example, there’s no

straightforward method for changing permissions on a file or folder. Scripters must

choose between using an external utility, such as cacls, Xcacls, Xcalcs.vbs, or SubInACL,

or using ADsSecurity.d1l or the WMI Win32_LogicalFileSecuritySetting class. Neither

method offers a complete or standard solution for working with file system permissions in

WSH. Usually, a scripting workaround is needed to compensate for a lack of features.

Setting Permissions with SubInACL

Given the limitations of WSH, the SubInACL utility is often used for file system permission

changes. This tool isn’t perfect, but if you script around its shortcomings, it’s usually satis-

factory for making permission changes. In addition, SubInACL supports files, directories,

file shares, and printer shares and can be used on the Registry, system services, and even

the Internet Information Services (IIS) metabase. You can download SubInACL from

www. iicrosoft.com/downloads/details.aspx?FamilyId=E8BA3E56-D8FE-4A9 1-93CF-

ED6985E3927B&displaylang=en.

The syntax for SubInACL consists of [/Option] /object_type object_name

[[/Action[=Parameter]..]. Although the syntax seems simple, SubInACL is actually a

complex permissions tool that can handle a variety of situations.

No matter what tool you use, the following permission changes are the ones most

commonly needed:

» Take ownership

> Dump permissions

>» Add permissions

>» Remove permissions

This list isn’t exhaustive, but it does give you a foundation for developing functions that

are used frequently. Developing reusable functions is a highly recommended best practice.

They can be used in many scripts and reduce the time needed to develop a script. For file

system permission changes, developing reusable functions makes even more sense

because working with the supported interfaces in WSH or existing tools can be time
consuming. Therefore, the functions for SubInACL explained in the next section have

been created for reuse in scripts.

SubInACL Functions

There are four SubInACL functions: SetOwner, DumpPerm, AddPerm, and RemovePerm. Each
function takes arguments and builds a command string for the SubInACL utility. Then
using a WshShell object the SubInACL utility is executed using the constructed command
string. Next, output in the log. temp file from SubInACL is read for errors by using the
ParseTempFile function. Based on the error information derived from log.temp, a success
or failure status is then written to the console, as shown in this example:

3
;

Working with Permissions

Function SetOwner(path, account)

‘Used to set the owner on a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& “/subdirectories """ & path & """ /setowner=""" & account & """"

ErrorCode = objWS.Run(strCommand, @, TRUE)

If ErrorCode <> @ Then

StdOut.Write{” ~ & account & "i" |

& " [SetOwner Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = @ Then

StdOut Weite(- = S-account & ‘i5

& " [SetOwner Failed] on " & path)

Else

StdOQut.Write(" © & account & °:" _

& " [SetOwner OK] on " & path)

End 17

End if

ErrorCode = vbNullString

i End Function

Function DumpPerm(path)

' Used to clear permissions from a folder or subfolders.

On Error Resume Next

strCommand = "Subinacl /verbose /output=log.temp

& "/subdirectories """ & path & """ /perm"

ErrorCode = objWS.Run(strCommand, @, TRUE)

If ErrorCode <> @ Then

StdOut.Write(" Dropped perm on " & path)

Else

StdOut.Write(" Dropped perm on " & path)

End If

ErrorCode = vbNullString

End Function

129)

‘

i

130 CHAPTER 6 PowerShell and the File System

SMS MLR AE OSS EES AMEE EMO AMOR ANTAL MA OORT MLN LY ILLES

_ Function AddPerm(path, account, access) |

' Used to grant a user's rights to a folder or subfolders. i

On Error Resume Next

strCommand = "“subinacl /verbose /output=log.temp" _

& § /subdirectories § = & path & = /Qvant= =

& account & "‘" =" & access

ErrorCode = objwS.Run(strCommand, @, TRUE)

If ErrorCode <> @ Then

StdQut.Write(” © & account & ": ® & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), “will not be processed")

If Not return = @ Then

SEdOuUt.Write(> <« & account & : © & access

& " [AddPerm Failed] on " & path)

Else

Stdout.Write(” . ' & account & :; & access _

& " [AddPerm OK] on " & path)

End If

End If

ErrorCode = vbNullString

| End Function

' Used to remove a user's rights to a folder or subfolders.

On Error Resume Next

strCommand = "“subinacl /verbose /output=log.temp" _

& * (subdirectories “"" & path & °"" /revoke="** —

& account & """ =" & access

ErrorCode = objWS.Run(strCommand, @, TRUE)

If ErrorCode <> ® Then

StdOut.Write(” © & account & "; & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = @ Then

|

|
i

|

|
|
|
N

|
'

|

Function RemovePerm(path, account, access) |

|
i
|
i

|
|

|
|

|
|
Hl

StdOut.Write(" “° & account & “: * & access _

ss

Working with Permissions leh

& " [AddPerm Failed] on " & path)

Else

StdOut.Write(" " & account & ": " & access _

& " [AddPerm OK] on " & path)

End IF

End If

ErrorCode = vbNullString

| End Function

Setting Permissions in PowerShell

With two built-in cmdlets named Get -ACL and Set-ACL, you might think managing file

system permissions is easier in PowerShell. However, the Set -ACL cmdlet requires a secu-

rity descriptor object defined by the System.Security.AccessControl.ObjectSecurity

class. Constructing a security descriptor isn’t difficult, but managing permissions isn’t as

straightfoward to script as you might have hoped. When faced with terms such as security

descriptors and access control rules (ACLs), you might be tempted to stick with more

familiar tools, such as SubInACL. If you sit down and go through the process step by step,

however, it’s not as complex as it seems at first glance. It consists of these basic steps:

4. Get the security descriptor (ACL) for an object by using Get -ACL.

2. Build the ACL with access control entries (ACEs).

3. Add the ACL to the security descriptor.

4 Bind the new security descriptor to the object by using Set -ACL.

The following code is an example of using these steps:

PS C:\> $SD = get-acl "Helena’s Programs.csv"

PS C:\> S$Rule = new-object
System.Security.AccessControl .FileSystemAccessRule("maiko",

"FullControl", "Allow")

PS C:\> $SD.AddAccessRule($Rule)
PS C:\> set-acl "Helena’s Programs.csv" $SD
PS C:\>

The hardest step to understand in this example is building the access rule. An access rule

consists of three parameters to define user or group, access right, and access control type.

The first parameter, Identity, is easy to define because you know the user or group to be

added to an access rule. The second parameter, FileSystemRights, is more difficult

because it requires understanding file system rights to define the access. However, you can

use the following command to produce a list of supported rights:

1132 CHAPTER 6 PowerShell and the File System

[enum] : :GetNames ([System.Security.AccessControl.FileSystemRights])

ListDirectory
ReadData

WriteData

Co of -¥- 4 A -) oe OY]

(ob a -F- 4 f-) Dh Loh Lo} om K-T—)

AppendData
ReadExtendedAttributes

WriteExtendedAttributes

Traverse
ExecuteFile

DeleteSubdirectoriesAndFiles

ReadAttributes

WriteAttributes

Write

Delete

ReadPermissions

Read

ReadAndExecute

Y Cole i ang
ChangePermissions

TakeOwnership

Synchronize

FullControl

PS C:\>

From this list, you can define a single right, such as Modify, or string rights together into

a list, such as Read, Write, and Delete. The third parameter, AccessControlType, is easy to

define because it can be only Allow or Deny.

PowerShell Functions

As with the SubInACL utility, a set of reusable permission management functions can be

developed for use in your scripts. Examples of such functions are as follows:

Clear -Inherit

| eee e eee ee eee ee eee eee eee eee ee ee ee eee eee

Usage: Used to protect against inherited access rules

and remove all inherited explicitly defined rules.

| # $Object: The directory or file path. ("c:\myfolder" or

it VCh\MyTile, txt:)

function Clear-Inherit{

param ($0bject)

$SD = get-acl $0bject

$SD.SetAccessRuleProtection($True, $False)

set-acl $0bject $SD

}

:

i

i

i
:
j
i
|
i

i

i
i
i
E
i |
:

i

Working with

Clear -Inherit is probably the wrong name for this function because i

Permissions 133

n addition to

preventing inherited permissions from being applied from the parent object and clearing

inherited permissions from the root object and subobjects, it clears explicitly defined

permissions on subobjects. Therefore, before using the Clear-Inherit function, it’s a good

practice to take ownership of the object or make sure you have explicitly defined rights for

yourself on the root file system object. If you don’t ensure that you ha ve access to file

system objects, you might see "access denied" messages after clearing inherited rights.

The next function, Set -Owner, as its name might imply, is used to set the owner on a file

system object:

Pree a ea ee PS eee ee ee ee

Set-Owner

Be ee a

Usage: Used to set the owner on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"ce: \myfile. txt”)

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

function Set -Owner{

param ($Object,

[System.Security.Principal.NTAccount]$Identity)

Get the item that will be changed

$Item = get-item $Object

Set the owner

$SD = $Item.GetAccessControl()

$SD.SetOwner ($Identity)

$Item.SetAccessControl($sD)

}

Ho ae ee ee a ae a eS

Clear -SD

eT a

Usage: Used to drop all permissions on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"co: \myfile.txt")

ay

Roa na aR ue Nea ces Sa ueyoae a

134 CHAPTER 6 PowerShell and the File System

j

j
i
i
i

function Clear -SD{

param ($0bject)

OUI otter en | # Get the security descriptor for the object

$SD = get-acl $0bject

Set the SD to Everyone - Full Control

: |
Yes, this isn't a best practice; if you don't like it, then

set the SD to the current user.

$SD.SetSecurityDescriptorSddlForm("D:PAI(A;OICI;FA; ; ;WD) °) |

set-acl $0bject $SD |

|

Although the Clear -SD function isn’t used in the file system management script later in

this chapter, it’s a good illustration of how you can set a security descriptor with Security

Descriptor Definition Language (SDDL). SDDL is used to describe a security descriptor

as a text string. If the Clear-SD function is used, an object’s security descriptor is

cleared and then set to FullControl for the Everyone group by using the string

"D:PAI(A;OICI;FA;;;WD)".

NOTE

For more information on constructing a security descriptor with the Security Descriptor

String Format, refer to http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/secauthz/security/security_descriptor_string_format.asp.

The next function, Add-ACE, is used to grant rights to a file system object for a user or

group. This function, while very similar to the example at the beginning of this section,

also shows how to control inheritance settings for a new Access Control Entry (ACE) with

System.Security.AccessControl.PropagationFlags and System.Security.

AccessControl.InheritanceFlags enumerations:

|

"mydomain\user1"

$AccessMask: The access rights to use when creating the access rule.

("FullControl", "ReadAndExecute, Write", etc.)

Add -ACE |

Usage: Grants rights to a folder or file. |

$Object: The directory or file path. ("c:\myfolder" or |

"Or \myfile. txt”)

$Identity: User or Group name. ("Administrators" or |

:

Working with Permissions 135

erent meeneiemrtmmmmnstsnrmnenreeene aie nseanraResietsteone

| # $Type: Allow or deny access. ("Allow" or "Deny")

function Add-ACE{

param ($Object,

[System.Security.Principal.NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

|
|

|

| [System.Security.AccessControl.InheritanceFlags]°

"ContainerInherit, ObjectInherit”

$PropagationFlags = °

| [System.Security.AccessControl.PropagationFlags] "None"

:

|

Get the security descriptor for the object

$SD = get-acl $Object

Add the AccessRule

$Rule = new-object ~

System.Security.AccessControl.FileSystemAccessRule($Identity, ~

$AccessMask, $InheritanceFlags, $PropagationFlags, $Type)

$SD.AddAccessRule($Rule)

set-acl $0bject $SD

es |

Don’t let the name of these flags confuse you as they control how an ACE is applied to an

object and all objects under that object. In the Add-ACE function, the flags are set so that

an ACE is applied to file system objects as "This folder, subfolders, and files." This means

that the ACE will be applied not only to the object being modified, but it will also be

propagated to all objects under that object. Propagating the ACE as defined in the Add-

ACE function should be sufficient for most file system management tasks. If not, you can

modify the function so that it accepts inheritance settings as an argument.

|
|

$InheritanceFlags = ° |

|
|

|
|
|

The last function is the Remove-ACE function. This function is used to remove an ACE

from an ACL:

|
ee

| # Remove -ACE

Fe

Usage: Removes rights to a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

ECU\MYTILE EXT)

issiuasssscuissivseoivbbastsusibtasstesisaiciteenmbsn sisi sinssesLibiIieswssbliiNaaichisommaidiiNietninnNA II siiaNaeliiinnimanatiioniiinnnittaiuimN Itt NaIsiNNhsteetuatemteeemente

136 CHAPTER 6 PowerShell and the File System

| # $Identity: User or Group name. (“Administrators* or

| # "mydomain\user1“

$AccessMask: The access rights to use when creating the access rule.

("FullControl", “ReadAndExecute, Write*, etc.)

$Type: Allow or deny access. (“Allow" or “Deny“)

function Remove-ACE{

param (S$Object,

[System.Security.Principal .NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

Get the security descriptor for the object

$SD = get-acl $Object

Remove the AccessRule

$Rule = new-object ~

System.Security.AccessControl.FileSystemAccessRule(S$Identity,

$AccessMask, $Type)

$SD.RemoveAccessRulef$Rule)

set-acl $Object $SD

}
Kaeersieemmasttitttsommaitrrn inne ittmnthissiimnteteenriienerrtt Hemant enS Ri ireanteeneentinlianecnnntanaila mente sooo wt nn ssi

From VBScript to PowerShell
In addition to showing practical applications for PowerShell, this book demonstrates how

to convert VBScript scripts to PowerShell scripts. The first example is an account provi-

sioning script for companyabc.com, a fast-growing ISP. When provisioning new user

accounts, companyabc.com creates a Web site folder for each account. The folder struc-

ture is based on a template that’s copied to new users’ Web site folders. In the past,

companyabc.com hired interns or contractors to manually create new Web site folders

and set permissions on the folder structure.

After several errors in permission contiguration and accidental folder deletions, IT

management decided that using interns or contractors to create Web folders wasn't the

best method for new account provisioning. To replace the manual process, the IT manage-

ment staff wanted an automated method for creating a user’s Web folder, copying the

template folder structure to the new Web folder, and setting folder permissions.

The ProvisionWebFolders.wsf Script

ProvisionWebFolder.wsf is a VBScript based Windows Script File (WSF) script developed

to meet companyabc.com’s user-provisioning automation needs. A working copy is in

the Scripts\Chapter 6\ProvisionWebFolders folder and is downloadable at

www.samspublishing.com. This script requires that two parameters be defined.

he

From VBScript to PowerShell TSI

First, templatepath should have its argument set to is the source path of the template

folder structure copied to new users’ Web folders. Second, importfile should have its

argument set to the name of the CSV import file used to define new users and their Web

folder locations. Here’s the command to run the ProvisionWebFolders.wsf script, with

sample output shown in Figure 6.1:

cscript ProvisionWebFolders.wsf /templatepath:".\Template" /importfile:"

. \users.csv"

OC\WINDOWS\system32\cmd.exe

ript ProvisionWebFolders.wsf /templatepath:".\Template” /importfile:"

Mi <R> Windows Script Host Version 5.6
Copyri nt (<C> Microsoft Corporation 1996-2081. ALL rights reserved.

RELULEARAUUNTURRALRANCAUNOUNBSHNRUTRS ARE
" rovisionVebFolders t
BERAUMASURLTHESUNBURESUH TAREE RUA RO AEE

Checking Template Path {OKI
Checking Import File [oki

Provision Web Folders:
D=\ih on [COPIED]
fidministr. spat {SetOuner OK] on D:\Work\WWs\Tyson
Administrator {SetOuner OK] on D:\Work\Wuls\T yson*.
Dropped perm on D:=\Work\iiils\Tyson
Dropped per D=\Work\wuls NI yson*

5 [addPern OKI] on D: Nilo NUM
F ffddPerm OK] on D=\Hork Wis T

= F (fddPerm OKI on D2 Norkus Ty:
=: F {fddPerm OK] on D:=\York*iis\T yson*.*

Hs Nia ane [COPIED]
at SetOuner OK] on D>\YorksWiitis\Maiko

teetOuner OK] on D:\WorkMiliis\Maiko*. *
D=\Work\ Wis \Maiko

on D=\Work Wlils<\Maiko*. >
(AddPerm OK] on D: pkNUiiis Maiko
In MOEe Ss OKI on Ben s\Maiko*.#

: Cad m OK] on D-=*Yorkis
at F {fiddPerm OK] on Besa kus
Maiko: F (AddPerm OK] on D=\Work\Wills\Maiko
Maiko: F (fAddPerm OK] on D:\Vork\Willls\Maiko\™.*

tt (COPIED)
{[SetOuner OK} on D:\WorkNillis\Garett
SetOwner OK] on D:\Work\uls\Garetts*.

on Dz\Hork iissGarett
Dropped ‘perm on D:\WorkMiiiiis*Garett *
Cal alpaca (AddPerm OK] on Dz Nilor! kNUs \Garett

{AddPerm OK} on A is \Garettnx.*
F faddPern OKI on D=\ork. vu arett
F {fddPerm OK] on D:\Work Nil arett *.%*

3 F [AddPerr OK] on D=\orkstil! barett
Garett: F [fddPerm OKi on D=\Mork\Willis<Garett\~.*

FIGURE 6.1 The ProvisionWebFolder.wsf script being executed

The ProvisionWebFolder.wsf script performs the following sequence of actions:

1. The script verifies the template folder path.

2. Next, the script opens and reads the CSV file’s contents (new users and folder

locations) into an array.

3, For each user in the array, the script uses xcopy to copy the template folder structure

to the new user’s Web folder.

4. The script then uses SubInACL to set permissions on each folder, such as the

following:

» Administrators: Owner

» Administrators: FullControl

138 CHAPTER 6 PowerShell and the File System

> System: FullControl

> NewUser: FullControl

Used throughout this script are a set of common console or log file output functions

named Mess, StatStart, and StatDone. When writing scripts for administrators who

aren't scripters, try to make user interaction consistent throughout to improve scripts’

usability and maintain a professional appearance. The source for these functions are

found at the end of this script.

The first code sample consists of the initial XML elements for a WSF. These elements are

used to define the allowed parameters, the script’s description, examples on the script’s

operation, and the scripting language being used:

<?xml version="1.0" ?>

<package>

<job id="ProvisionWebFolders">

<runtime>

<description>

KKKEKKKKEKKEKKKEK KKK KERR KKK KKK REE KKK KE RK KKK KEK KKK KKK KEK KKKKERKEKK

This script provisions user Web folders based on a user list.
RKKKKKKEKKEKKEKKEKKEKKEKEKE KKK KKK KKK E KEKE KEK KKK KEKE KKK KEKE KEKE KKEEEEKE

</description>

<named name="templatepath" helpstring="The source template path of the

folder structure to be copied." type="string" required="1" />

<named name="importfile" helpstring="The path\name of the CSV import file."

type="string" required="1" />

<example>

Example:

cscript ProvisionWebFolders.wsf /templatepath:"C:\Template Folders\Folder1"

<script language="VBScript">

_ <I [CDATA[

/importfile:"c:\temp\importfile.csv"

</example>

</runtime>

Next, the script checks to see if arguments have been defined for the required parameters
templatepath and importfile. If the arguments are not present the script returns the
script usage information (defined in the previous code sample) to the console and quits. If
arguments are defined, the script then sets up the script environment by defining the
variables that will be used throughout the rest of the script:

From VBScript to PowerShell 139

On Error Resume Next

if WScript .Arguments.Named.Exists("templatepath") = FALSE Then

WScript.Arguments .ShowUsage()

WScript.Quit

End If

If WScript.Arguments.Named.Exists("importfile") = FALSE Then

WScript.Arguments .ShowUsage()

WScript.Quit

End If

SSS SSS SSS S SSS SSS SSS SSS SSS SSS SSS HSS SS SSS SS SSeS SS SSS SSS SS SSS ee

Const ForReading = 1

ReDim arrTargs(@)

Dim StdOut

Dim FSO, objWS

Dim strTemplatePath, strimportFile

Lop) D ct c Oo ok (o) oO £4) ea <

Set StdOut = WScript.StdOut

Set FSO = CreateObject("Scripting.FileSystemObject")

Set objWS = CreateObject("WScript.Shell")

————

strTemplatePath = WScript.Arguments.Named("templatepath")

strIimportFile = WScript.Arguments.Named("importfile")

ESSER nee

The next code sample is the beginning of the actual automation portion of the script.

First, the script writes the script header to the console, then checks to see if the

templatepath is a valid file system path. If the path is valid the script continues. If the

path is not valid the script quits. Notice how information about the validity of the

templatepath and the status of the script execution is written to the console functions for

the script operator to review using the StatStart and StatDone functions:

SUE En. a a NN RS ce aR oa ane
i

SSeS 555552 2525S 2255-5525 52-522255=225 55522555 S5SSSSSSSSSSSeealcseneSses |

i
' Seah eee se eis sees ie es ae ee ee SSS SSS SS SSCS SSS SSS SSS SaaS SS SS SS SS eS ee ee |

Mess "#H#HHHHHHHHHHHHHHHHHHAHHHHHHHHHHHHHRAHE HHH

Mess "# ProvisionWebFolders x

en

140 CHAPTER 6 PowerShell and the File System

Mess " ét #t ## HH HHH HH HE HHH AE HE EE HE EE

Mess vbNullString

StatStart "Checking Template Path" |

iy (FSO.FolderExists(strTemplatePath)) Then

StatDone
Else

| StdOut.WriteLine(" Critical Error: Template Path doesn't exist...")

WScript .Quit()
| End If :
i
F 3
ices eraemencnemauanniei tinh seein ittimamhlneineaSiasaisisicinmeNstaleshiiem enh linoleate niin nncmsitsshinitemnaeteteneensentasbenienndinndennnnnnetnattninnninansianimmcud

The ParseFile function in the following code sample reads each line (but skips the first

line) in the CSV file and adds that line as an item to an existing array. This function is

written such that if there is an error encountered the function Xerror will be called. The

Xerror function will stop execution, write the error to the console, and quit the script:

J

| StatStart "Checking Import File"

ParseFile strimportFile, arrTargs

| StatDone
Kove eemmnetonmwretiisenemeeasimmetntisnementniot bine ooseoaeomanencovereermenneneuinictienmunneteiienenamnsiienunvemnnseitteteensnetenmerenrmnnanenteiereriemtent

In the following code sample, the script uses the xcopy utility to create a user’s Web folder

and copy the template folder structure to it:

ee htt aA: SEES EEEEREEEEeneR

| Mess vbNullString

_ Mess "Provision Web Folders:"
;

| For Each Targ In arrTargs

arrTargRecord = split(Targ, ",")

cities aeeemenmmmmmmeinnme i ec

From VBScript to PowerShell 141

strUserName = arrTargRecord(Q)

| strPath = arrTargRecord(1)

StdOut.Write(" " & strPath)

StdOut.Write("\" & strUserName)

strCommand = "xcopy """ & strTemplatePath & """ """ & strPath & "\" _

& struserName & ""* /0 /E /1 /Y"

ErrorCode = objWS.Run(strCommand, @, TRUE) |
{

If ErrorCode <> @ Then |
i

i
i
i
{

J

| StdOut.WriteLine(" [FAILED][Command used: " & strCommand & "]")

Else
StdOut.WriteLine(" [COPIED]")

When calling the xcopy utility, the script uses a defined command string (strCommand)

and a WScript.Shell object called objwsS. The same results could have been achieved with

an FSO object, but the xcopy utility reduces the lines of code needed to perform the task.

Now that the Web folder has been created for the user, the next task is to set the permis-

sions for that folder. To do this, the script makes use of the SubInACL utility by calling the

DumpPerm, SetOwner, AddPerm functions. Pay particular attention in the next code sample

how the functions are called twice for each instance where an object’s permissions are

modified:

' Set Administrators as owner of folder

SetOwner strPath & "\" & strUserName, "Administrators"

i Mess vbNullString

{ ' Set Administrators as owner on everything below

SetOwner strPath & "\" & strUserName & "*.*", "Administrators"

i Mess vbNullString

' Dump permissions on the folder

DumpPerm strPath & "\" & strUserName

Mess vbNullString

' Dump permissions on everything below

DumpPerm strPath & "\" & strUserName & "*.*"

Mess vbNullString

142 CHAPTER 6 PowerShell and the File System

' Add Administrators

AddPerm strPath & "\" & strUserName, "Administrators", "F"

Mess vbNullString

' Add Administrators on everything below

AddPerm strPath & "\" & strUserName & "*.*", "Administrators", "F"

Mess vbNullString

' Add SYSTEM

AddPerm strPath & "\" & strUserName, "SYSTEM", "F"

Mess vbNullString

' Add SYSTEM on everything below

AddPerm strPath & "\" & strUserName & "*.*", "SYSTEM", "F"

Mess vbNullString

winienscnnireemnemeeniithamnetsalinnesetametnmestettnmcsmetmteetnitthtittaastatettemetantiTiCnnitiiiammemoentTitimtmtTt " Add the User

AddPerm strPath & "\" & strUserName, strUserName, "F"

Mess vbNullString

' Add the User on everything below

AddPerm strPath & "\" & strUserName & "*.*", strUserName, "F"

Mess vbNullString

End If

Mess vbNullString

ErrorCode = vbNullString

| Next

shinai ticaiesmecennntnmacsnntnetiliiioiienTnmstee mmm
Mess "Done Provisioning Web Folders:"

The first SubINACL call is to change permissions on the root folder, and the second

SubINACL call is to modify permissions for all subfolders and files under the root folder.

Granted, the second call probably isn’t needed after permissions have been dumped from

the root folder. However, dumping permissions from a folder structure doesn’t always set

inheritance settings correctly, and some subfolders and files may not inherit the root

folder’s permissions. Calling SubInACL for the second time to modify permissions for

subfolders and files under the root folder seems to solve the inheritance problem.

The last code sample consists of the Subs and Functions that are used throughout the

script and the closing XML elements for the script. Further review of the final section of

From VBScript to PowerShell 148

the script is not needed because these Subs and Functions are either fairly self explana-

tory or have been previously discussed:

Sub Mess(Message)

' Write to console

StdOut.WriteLine (Message)

End Sub

| ' General Start Message Sub

Sub StatStart (Message)

' Write to console

StdOut.Write (Message)

End Sub

Sub StatDone

' Write to console

StdOut.Write(vbTab & vbTab)

StdOut .WriteLine("[OK]")

End Sub

| Sub Xerror

If Err.Number <> @ Then

' Write to console

StdOut .WriteLine(" Critical Error: " & CStr(Err.Number) _

i

& " " & Err.Description)

WScript.Quit()

End If

End Sub

NTA TN NN ATTN OAT TTT

144 CHAPTER 6 PowerShell and the File System

Function ParseFile(file, arrname)

' This function parses a file and gives you back an array

' (Skips the first line!!!)
On Error Resume Next

count = -1

' Open file for reading

Set objFile = FSO.OpenTextFile(file, ForReading)

objFile.SkipLine ‘note: This will always be the col headers

Xerror

' Reads each line in the file and places it into an array

Do While objFile.AtEndOfStream <> True

count = count + 1

If count > UBound(arrname) Then ReDim Preserve arrname(count)

arrname(count) = objFile.Readline

Loop

Xerror

' Close the file because you are done with it.

objFile.Close()

Set objFile = Nothing

count = 0

End Function

Function ParseTempFile(path)

' Open file for reading

Set objFile = FSO.OpenTextFile(path, ForReading)

tempfileinfo = vbNullString

Do While objFile.AtEndOfStream <> True

tempfileinfo = tempfileinfo & objFile.Readline

Loop

i

i ;

i
;
:

ParseTempFile = tempfileinfo

objFile.Close()

i Set objFile = Nothing

| End Function

|
|
|
|
|
|
|
|

|
|

|
|

:

|

|
eee

From VBScript to PowerShell

Function SetOwner(path, account)

' Used to set the owner on a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& “/Subdirectories '"" & path & """ /setowner="""& account & """"

ErrorCode = objWS.Run(strCommand, @, TRUE)

If ErrorCode <> @ Then

SteQut,Write@: "= & account &)f" |

& " [SetOwner Failed] on “ & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = @ Then

SstdQut.Write(™ © & aecount & =i" |

& " [SetOwner Failed] on " & path)

Else

StdQut.Write(" ° & account & 7:7 _

& " [SetOwner OK] on " & path)

End If

ENG 27

ErrorCode = vbNullString

End Function

Function DumpPerm(path)

' Used to clear permissions from a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& "/subdirectories """ & path & """ /perm"

ErrorCode = objWS.Run(strCommand, @, TRUE)

If ErrorCode <> @ Then

StdOut.Write(" Dropped perm on " & path)

Else

StdOut.Write(" Dropped perm on " & path)

End If

ErrorCode = vbNullString

| End Function

145

i

| }1>
i

| </job>

146 CHAPTER 6 PowerShell and the File System

pisses pinenenhtt hsm LOH NOONAN COUN AS COA MOCO MAMAN NEN TTT ELC NPC tI IIY

i
Function AddPerm(path, account, access)

' Used to grant a user's rights to a folder or subfolders.
N

On Error Resume Next

}
i

strCommand = "subinacl /verbose /output=log.temp" _

& " Jsubdirectories °"" & path & *"" /grant="—° _

& accolint & """ =" & access

ErrorCode = objWS.Run(strCommand , @, TRUE)

If ErrorCode <> @ Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), _

"will not be processed")

If Not return = @ Then

StdQut.Write(" ° & account & ": © & access

& " [AddPerm Failed] on " & path)

Else

StdOut.Write(" " & account & “: " & access _

& " [AddPerm OK] on " & path)

End If

End If

ErrorCode = vbNullString

End Function

</script>

i

| </package>
|
i

sirens seems ureeereteesascntenerstiseaatoenne niet tant asin tye CcaetattisncnetnCateateteastciintaaaneNeenintnNetitsitttatiameeamatinentntttsinanivnnianinninictnetntitsiaautetiil

The ProvisionWebFolders.ps1 Script

ProvisionWebFolders.ps1 is a PowerShell conversion of the ProvisionWebFolder.wsf

script. A working copy is in the Scripts\Chapter 6\ProvisionWebFolders folder and is

downloadable at www.samspublishing.com. You need to provide two parameters to run

this script. First, TemplatePath should have its argument set to the source path of the

template folder structure copied to new users’ Web folders. Second, ImpertFile should

have its argument set to the name of the CSV import file used to define new users and

their Web folder locations. Here’s the command to run the ProvisionWebFolders.ps1

script, with sample output shown in Figure 6.2:

From VBScript to PowerShell 147

PS D:\Work> .\ProvisionWebFolders.psl .\template .\users.csv

WINDOWS \system32\WindowsPowerShell\v1.0\powershell.exe

template .\u

g Tenplate Path (OKI
g Import File COK]

ators [OKI
tors [OK]

SetOwner for
¢ ACL for Hd

Clearinher
AdADACL fo
AddDACL Fo

trators [0K]
rators [OK]

1
EM LOK

i [OKI

Done Provisioning Yeh Folders:

FIGURERGr2 The ProvisionWebFolder.ps1 script being executed

The ProvisionWebFolders.ps1 script performs the following sequence of actions:

1. The script verifies that the template folder path exists.

2. Next, the script verifies that the import folder path exists.

3. The script import the CSV file into the $Targets variable.

4 For each user in $Targets, the script copies the template folder structure to the new

user’s Web folder.

5. Finally, the script sets permissions on each folder, such as the following:

> Administrators: Owner

> Administrators: FullControl

Vv System: FullControl

> NewUser: FullControl

The first code sample contains the header for the ProvisionWebFolder.ps1 script. In this

header includes information about what the script does, when it was updated, and the

script’s author. Just after the header are the script’s parameters:

148 CHAPTER 6 PowerShell and the File System

HEHEHE HH HAE HE HH A EH HH HHH HH HH

ProvisionWebFolders.ps1

| # Used to provision new user Web folders. !

Le

| # Created: 9/12/2006
_ # Author: Tyson Kopczynski |

RHEE HEHE AEE

param({string] $TemplatePath = $(throw write-host ~

"Please specify the source template path of the folder structure to"

"be copied." -Foregroundcolor Red), [string] $ImportFile = $(throw ©

write-host "Please specify the import CSV filename."

-Foregroundcolor Red))

Notice how the throw keyword is being used in the param declaration to generate an error

when a parameter does not have a defined argument. This technique is used force a para-

meter to be defined by stopping execution of the script and providing the script operator

with information about the required parameter using the Write-Host cmdlet. When using

the Write-Host cmdlet, you can use the Foregroundcolor parameter as shown in the

previous code sample to control the color of output text. This feature is handy for focus-

ing attention on details of the script status, as shown in Figure 6.3:

PS D:\Work>

FIGURE 6.3. Green and red console output text being used to convey script status

Next, as seen in the following code sample, the script loads the file system management

functions into its scope. Having reviewed these functions previously in this chapter,

further explanation is not needed:

From VBScript to PowerShell 149

FF EAE AEE HF BEE AE BE HP PE PE AP A EH

Functions

HF EH HE AEE EAE HE BE EE BE

ee ee i

Clear-Inherit

#--- +--+ 2-5-2 ee ee eee ee eee eee eee

Usage: Used to protect against inherited access rules

and remove all inherited explicitly defined rules.

$Object: The directory or file path. ("c:\myfolder" or

"ce: \myfile.txt”)

function Clear-Inherit{

param ($Object)

$SD = get-acl $0bject

$SD.SetAccessRuleProtection($True, $False)

set-acl $0bject $SD

Lee |
Ho oe yw he ee ew eS

Set-Owner

fee a

Usage: Used to set the owner on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"oe: \myfile.txt’)

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

|

E

|
i

$Item.SetAccessControl($SD)

|
i
‘
|
L.

function Set -Owner{

param ($Object,

[System.Security.Principal .NTAccount]$Identity) i

Get the item that will be changed

$Item = get-item $Object

Set the owner

$SD = $Item.GetAccessControl()
\

$SD.SetOwner ($Identity)

150 CHAPTER 6 PowerShell and the File System

ar > a Q LS () m

te

Usage: Grants rights to a folder or file.

$O0bject: The directory or file path. ("c:\myfolder" or

"o:\myfile.txt")

$Identity: User or group name. ("Administrators" or

"mydomain\usert"

$AccessMask: The access rights to use when creating the access rule.

("FullControl", "ReadAndExecute, Write", etc.)

$Type: Allow or deny access. ("Allow" or "Deny") t+ tt Ht Ht Ht Ht He Ht

| function Add-ACE{
| param ($0bject,

[System.Security.Principal.NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

$InheritanceFlags = ~

[System.Security.AccessControl.InheritanceFlags]

“ContainerInherit, ObjectInherit”

$PropagationFlags = ~

[System.Security.AccessControl.PropagationFlags] "None"

Get the security descriptor for the object

$SD = get-acl $0bject

Add the AccessRule

$Rule = new-object ~

System.Security.AccessControl.FileSystemAccessRule($Identity,

$AccessMask, $InheritanceFlags, $PropagationFlags, $Type)

$SD.AddAccessRule($Rule)

set-acl $0bject $SD

}

The next code sample contains the beginning of the script’s automation portion. First the

script checks to see if the string contained in the $TemplatePath variable is a valid folder

path. Then the script checks to see if the string contained in the $ImportFile variable is a

valid file path. To perform these tests, the if...then statements in code sample use of

Test-Path cmdlet. This is a very handy cmdlet that can be used for verifying whether a

folder or file (-pathType container or leaf) is valid. If any of these paths are invalid,

the script execution is halted and information about the invalid paths is returned to

script operator:

From VBScript to PowerShell Si

HAE HE AEF AF A EAE AEE

_ # Main

HAE AE A HE HE HE EAE EAE EA
amnecrnereonrsnisrsionmncias

E White; HOSb Mies eees cece eee "

write-host "- ProvisionWebFolders ot

write-hOSt “-------- + - 04-28 eee wee eee te eee ee ee :

| write-host

/ write-host "Checking Template Path" -NoNewLine

|

;

i
;

if (!(test-path $TemplatePath -pathType container)){

throw write-host “t "$TemplatePath is not a valid directory!" ~

-Foregroundcolor Red

}
|} else {

write-host ‘t "[OK]" -Foregroundcolor Green

|
write-host "Checking Import File" -NoNewLine |

|

i

| if (!(test-path $ImportFile -pathType leaf)){

throw write-host “t "$ImportFile is not a valid file!" -Foregroundcolor Red

}
poeise. {

write-host “t "[OK]" -Foregroundcolor Green

}

In the next code sample, the rest of the variables that are used in the script are defined.

The first variable, $Owner, is used by the script to define the owner for each user’s Web

folder structure, which in this case is the local Administrators group. Then the variable

$Targets is defined using the Import-Csv cmdlet. This cmdlet is used to read values from

the import CSV file ($ImportFile) into the $Targets variable, which is used to provision

new users’ Web folders:

eee
| # Set Vars |

bee ee auc se

| $Owner = "Administrators" |

| $Targets = import-csv $ImportFile |

In the following code sample, the script uses the path and username information from

the information contained in the $Target variable to construct the final destination path

152 CHAPTER 6 PowerShell and the File System

using the Join-Path cmdlet. Then the script uses the Copy-Item cmdlet to copy the

template folders to the destination path:
ee eee

[ee pds see cee ee ews
| # Provision Web Folders

Lee ee |
write-host

write-host "Provision Web Folders: "

foreach ($Target in $Targets) {

| $Path = join-path $Target.DestPath $Target.UserName

| $UserName = $Target.UserName >

write-host $Path

| |
| if ({(test-path $Path)) {
| copy-item $TemplatePath -Destination $Path -Recurse ~ |

| -ErrorVariable Err -ErrorAction SilentlyContinue

if (!$Err){ |

| write-host " Folder " -NoNewLine

| write-host "[COPIED]" -Foregroundcolor Green

Used to stop loops

| $Err = $False

Next, the script uses the Set -Owner function to change ownership of user’s Web folder

structure to the local Administrators group:

-{
trap{write-host "[ERROR] Failed to take ownership!"

-Foregroundcolor Red;

$Script:Err = $True;

Continue}

Set Owner

write-host " SetOwner for $Owner " -NoNewLine

Set-Owner $Path $Owner

if ($Err -eq $False) { |
$Items = get-childitem $Path -Recurse '

[void]($Items | foreach-object °

i

From VBScript to PowerShell 1153

eae ee oe ae ae ee ee ee

{Set-Owner $.FullName $Owner})

| }
else{

}

| # Stop the loop

| Continue
:

| }
|

write-host "[OQK]" -Foregroundcolor Green

You might be wondering why the code for Set -Owner is enclosed in a script block. The

dot (.) call operator preceding the script block tells PowerShell to run the script block

within the current scope. If the call operator isn’t used, PowerShell doesn’t run the script

block. The reason for creating an independent script block to handle the code for Set -

Owner is to ensure that the trap statement is scoped only to this block of code. This tech-

nique for controlling the trap’s scope is used frequently in this book.

trap{write-host "[ERROR] Failed to clear inherited"’

"permissions!" -Foregroundcolor Red;

$Script:Err = $True;

Continue}

| r :
trap{write-host "[ERROR] Failed to add rights!"

| -Foregroundcolor Red;
$Script:Err = $True;

Continue}

| # Add Administrators
| write-host " AddACE for Administrators " -NoNewLine
|

i Add-ACE $Path "Administrators" "FullControl" "Allow"
\

if ($Err -eq $False){

write-host "[OK]" -Foregroundcolor Green '

i }
| else{

i # Stop the loop

Continue
| }

}

|
“{

|

|
bi

154 CHAPTER 6 PowerShell and the File System

Clear inherited permissions

write-host " ClearInherit " -NoNewLine

Clear-Inherit $Path

if ($Err -eq $False) {

write-host "[OK]" -Foregroundcolor Green

} :
else{

Stop the loop

Continue

As mentioned previously, the Clear-Inherit function clears inherited permissions from

the root folder, subfolders, and files as well as explicitly defined permissions on all

subfolders and files. If the Administrators group didn’t have explicitly defined rights on

the root folder, the rest of the script wouldn’t run because of a lack of rights.

NOTE

Explicitly defined permissions are permissions that are directly defined for a user on

an object. Implicitly defined permissions are permissions that are either inherited or

defined through membership of a group.

In the last code sample, the SYSTEM and the user are then granted FullControl to the

user’s Web folder and the script notifies the script operator of its completion:

Add SYSTEM

write-host " AddACE for SYSTEM " -NoNewLine

if ((Add-ACE $Path "SYSTEM" "FullControl" "Allow") -eq $True){

write-host "[OK]" -Foregroundcolor Green

} |
'
|

Add User |
write-host " AddACE for $UserName " -NoNewLine

if ((Add-ACE $Path $UserName "FullControl" "Allow") -eq $True){

write-host "[OK]" -Foregroundcolor Green

}

scans eeeetaneanoneamemmmanmipmmedamenerannemmmummmmnemmmummm semen: come commer Ree

Summary gS

else {

write-host " Folder " -NoNewLine

write-host "Error:" $Err -Foregroundcolor Red

}

}
else {

write-host " Folder " -NoNewLine

write-host "[EXISTS]" -Foregroundcolor Yellow

}

write-host

} tatiana ienaasaStatasiaasd

_write-host "Done Provisioning Web Folders:"

Summary
In summary, this chapter has focused on how to manage the Windows File System using

both WSH and PowerShell. While both scripting interfaces provide methods to manage

the file system, PowerShell’s FileSystem provider allows for a more holistic data source-like

approach when it comes to working with the file system. When developing future scripts

or from working with the PowerShell console, you may find that the PowerShell approach

allows greater freedom to access, review, and manipulate the file system.

In addition to helping you understand the differences between WSH and PowerShell

when working with the Windows file system, this chapter also focused on explaining how

to manage file system permissions using both scripting interfaces. You may have the

opinion that trying to manage permissions using either scripting interfaces may seem like

a daunting task. While permission management is seemingly difficult, you should have

also hopefully come to the conclusion that the task is not impossible, as demonstrated in

this chapter. Permission management via an automation script can be a very powerful

tool. For example, you could create very powerful automation scripts that enforce file

system permissions based on a defined policy, audit permissions on a file system for

changes based on a baseline, or search for instances where a user or group have been

granted rights.

-_ “ff

a 7 i: . -~ rr .

a ic
—_

bd = : a 7 = _

7 ag = 7 7

j aoe 7 Cas
i : @ ta , ae >,

7 +)
y= ie

wa aa SSF ; ®

my 7 ‘

. J ”
' »

o >, .

: o O
a) ms

~~ , 7 es = > €

as _ - a > = _ —— a.

>
; ¢ i. 1 : : ¥

7 7 : 7 — ms “(yeti .

a oJ 4 ee we? & a

Pu (Os ar Ars, Seeeeuy eh eM ir Lh eit, Legge” MeL fay? cs cee

Mie @ (ee « Fic pep ararn) Rell Mibu het de laalevrct umm HW:

oe. rer oy ~ eka ee oi»
ie oar, 7 hee

To 7 uM on 7° et ! 1 Pett eh aie

Pres his wiht a et sh De m= ¢ Vain’ o
me ola Yrs ac here ry bh : 7 ve “St em 6412 2Ai ce va

7 Outs VE ine RR so ahh 32 Pa og Piers ani ee ere

PAAR CRs EE | Wk Vids tite ea, Git ie re
Ast eae 1Ehr mare ear

a) Gage ti ie as am age itt i LAr
rien Aran : >t tN ey

PowerShell and the

Registry

Introduction

This chapter explains how PowerShell can be used to

manage the Windows Registry. To do this, the chapter

explores in-depth examples of managing the Registry using

both Windows Script Host (WSH) and PowerShell. These

examples are presented from both perspectives in an effort

to give the reader a path to learn PowerShell based on

existing Windows scripting knowledge. In addition, to the

example-based comparisons, this chapter also presents a

series of working Registry management functions that are

based on a real-world situation. The goal is to give the

reader a chance to learn how PowerShell scripting tech-

niques can be applied to meet real-world Registry manage-

ment automation needs.

Registry Management in WSH
and PowerShell
The WSH object model has an object for working with

running applications, launching new applications, creating

shortcuts, creating popups, handling environmental vari-

ables, logging event messages, and even accessing or modi-

fying the local Registry. This object, called WshShe1l,

contains three methods for accessing and manipulating the

Registry, described in the following list:

> RegDelete deletes a key or one of its values from

the Registry.

>» RegRead reads the value of a named value from

the Registry.

IN THIS CHAPTER

> Introduction

>» Registry Management in WSH

and PowerShell

> From VBScript to PowerShell

158 CHAPTER 7 PowerShell and the Registry

> RegWrite creates new keys, adds another named value to an existing key, or changes

the value of an existing named value.

Using the WshShe11 object and its Registry methods is simple. The WshShe11 object is a

COM object and, like all COM objects, can be created by using the CreateObject() WSH

method. After a WshShell object is created, you can use its Registry methods as you would

any other method in WSH.

In PowerShell, you work with the Registry a little differently. As discussed in Chapter 3,

“PowerShell: A More In-Depth Look,” PowerShell has a built-in provider, Registry, for

accessing and manipulating the Registry on a local machine. The Registry hives available

in this provider are HKEY_LOCAL_MACHINE (HKLM) and HKEY_CURRENT_USER (HKCU). These

hives are represented in a PowerShell session as two additional PSDrive objects named

HKLM: and HKCU:.

The WshShell object has access to not only the HKLM: and HKCU: hives, but also

HKEY_CLASSES_ ROOT (HKCR), HKEY_USERS, and HKEY_CURRENT_ CONFIG. To access

these additional Registry hives in PowerShell, you use the Set -Location cmdlet to

change the location to the root of the Registry provider.

As you'll also recall from Chapter 3, accessing data through the Registry provider means

PowerShell treats data in the HKLM: and HKCU: PSDrive objects like other hierarchical data

stores. Therefore, accessing and manipulating data from these PSDrives requires using the

PowerShell core cmdlets, as shown in this example:

PS C:\> set-location hkcu:

PS HKCU:\> get-childitem

Hive: Microsoft .PowerShell.Core\Registry: :HKEY_CURRENT_USER

SKC VC Name Property

0 AppEvents {}

Console {ColorTable00, ColorTable01, ColorTab...

Control Panel {Opened}

Environment . {TEMP, TMP}

Identities {Identity Ordinal, Migrated5, Last Us...

Keyboard Layout {}

Printers {DeviceOld}

Software { (default) }

LO) \ 00) >) IMD ob afole b at-V ied afolty of {}

Windows 3.1 Migration Status {}

SessionInformation {ProgramCount } :

Volatile Environment {LOGONSERVER, HOMESHARE, HOMEPATH, US... ;

i) N

2

2

4

0

1

4

3

2

0

2

(0)

10) Oroocrraoaqan Se

Registry Management in WSH and PowerShell 159

PS HKCU:\> get-itemproperty ‘Volatile Environment’

PSPath Microsoft .PowerShell.Core\Registry: :HKEY_ CURRENT _USER\Volatile

Environment 2

PSParentPath Microsoft .PowerShell.Core\Registry::HKEY_CURRENT_ USER

PSChildName Volatile Environment

PSDrive HKCU

PSProvider Microsoft. PowerShell.Core\Registry

LOGONSERVER '\\SOL

HOMESHARE \\taosage. internal\homes\tyson

HOMEPATH \
USERDNSDOMAIN TAOSAGE . INTERNAL

CLIENTNAME

SESS IONNAME Console

APPDATA C:\Documents and Settings\tyson\Application Data

HOMEDRIVE U:

PS HKCU: \>

By using the PowerShell core cmdlets, you can manipulate the local Registry as you see

fit, just as you would when using Registry methods of the WshShe1l object. The syntax

and methodology are slightly different, however. In WSH, you create an object and then

use the object’s methods to perform the Registry task. In PowerShell, you access and

manipulate the Registry as you do with the file system. For example, to read a Registry

value in WSH, you use the RegRead method shown in the following example:

_ Dim objws

| Set objWS = CreateObject("WScript.Shell")

strKey = "HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\"

_ WScript.Echo objwS.RegRead(strkey & "ProductName")

In PowerShell, you use the Get -ItemProperty cmdlet shown in the following example:

PS C:\> $Path = "HKLM: \Software\Microsoft\Windows NT\CurrentVersion"

PS C:\> $Key = get-itemproperty $Path
PS C:\>. $Key.ProductName
DUG Moh fol-foh hom | bm Yolo) tap. 2

PS C:\>

160 CHAPTER 7 PowerShell and the Registry

To create or modify a Registry value in WSH, you use the RegWrite method shown in this

example:

Dim objWS

Set objwS = CreateObject("WScript.Shell")

strkKey = "HKEY_CURRENT_USER\Software\"

objWS.RegWrite strKey & "PSinfo", "PowerShell_Was_Here"

WScript.Echo objwS.RegRead(strKey & "PSinfo")

In PowerShell, you use the Set -ItemProperty cmdlet:

PS C:\> $Path =-."HKCU: \Software"
PS C:\> set-itemproperty -path $Path -name: "PSinfo" —type

"String" -value "PowerShell Was Here”
PS C:\>
PS C:\> $Key = get-itemproperty $Path

PS C:\> $Key.info

PowerShell Was_ Here
PS C:\>

Remember that the Windows Registry has different types of Registry values. You use the

Set -ItemProperty cmdlet to define the Type parameter when creating or modifying

Registry values. As a best practice, you should always define Registry values when using

the Set -ItemProperty cmdlet. Otherwise, the cmdlet defines the Registry value with the

default type, which is String. Other possible types are as follows:

>» ExpandString

>» Binary

> DWord

> MultiString

>» Qword

NOTE

Depending on the Registry value you're creating or modifying, the data value you set

the named value to needs to be in the correct format. So if the Registry value is type

REG_BINARY, you use a binary value, such as $Bin = 101, 118, 105.

From VBScript to PowerShell 161

To delete a Registry value in WSH, you use the RegDelete method, as shown here:

Dim objWS

| Set objWS = CreateObject("WScript.Shell")

| StrKey = "HKEY_CURRENT_USER\Software\"

objWS.RegDelete strKey & "PSinfo"

In PowerShell, you use the Remove -ItemProperty cmdlet:

PS C:\> $Path = "HKCU: \Software"
PS C:\> remove-itemproperty -path $Path -name "PSinfo"
PS C:\>

These examples give you an idea of how to work with the Registry. It’s fairly simple as

long as you understand how to use the core cmdlets and remember that working with the

Registry is much like working with the Window file system.

However, there’s no built-in cmdlet for accessing the Registry on a remote machine. This

omission makes sense because by default, no PowerShell providers are available for access-

ing remote data stores. Until someone writes a provider you can use to manage the

Registry remotely, you have to turn to an existing method, explained in the next section.

From VBScript to PowerShell
This section focuses on a VBScript script for reading and manipulating the Registry and

the script’s conversion to PowerShell. Companyabc.com was in the process of evaluating

the IT department’s efficiency. When reviewing the development of automation scripts,

the evaluation team noticed a pattern of certain tasks being repeated in many scripts.

These tasks included creating user accounts, setting account information, managing

machines remotely, performing maintenance activities, and so forth.

The evaluation team concluded that consolidating repetitive code into a series of reusable

library files would cut the time needed to develop scripts. This simple method creates a

generic function or script for performing an often repeated task, such as generating a

random password. When developing a script that requires this task, you don’t need to

write new code. In WSH and PowerShell, you simply include or dot source the library file

you want in your script or console session.

The script examples in this section contain a series of functions for reading and

modifying the Registry on a local host or remote machine that were developed for

companyabc.com. To use these functions, scripters can simply copy them into a script

or call them from a library file that has been included or dot sourced into the script.

End Sub

162 CHAPTER 7 PowerShell and the Registry

In addition to reducing the time to create scripts, using reusable code stored in a library

file makes your code more standardized and interchangeable. In fact, Jeffrey Snover, the

PowerShell architect, has often recommended following this best practice for scripting.

The LibraryRegistry.vbs Script

LibraryRegistry.vbs is a VBScript file for reading or modifying the Registry on the local

host or a remote machine. A working copy is in the Scripts\Chapter 7\LibraryRegistry

folder and is downloadable at www.samspublishing.com. To use this file in another script,

you must include it in the calling script. The calling script then has access to the func-

tions, routines, constants, and so on defined in the included file.

VBScript has two methods for including a script file in another script file. The first

method works only with VBScript (.vbs) files and uses the VBScript ExecuteGlobal state-

ment. This statement takes a single string value and runs it as a VBScript statement in a

script’s global namespace. Then the script can access the contents of the string value. The

following code shows this process:

' Method to include VBScript files

Sub Include(strFileName)

On Error Resume Next .

Dim objFSO, objFile, strScript

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists(strFileName) Then

Set objFile = objFSO.OpenTextFile(strFileName)

strScript = objFile.ReadAll

objFile.Close

ExecuteGlobal strScript

End If

Set objFSO = Nothing

Set objFile = Nothing

This method has several disadvantages, however. First, you run the risk of overwriting
existing global variables and functions at runtime. Second, there’s no good way to debug
the contents of the string value you supply to ExecuteGlobal. After all, the value is just a
string that happens to run. Third, VBScript doesn’t have a valid include statement, so this
method is actually just a workaround.

|
|

From VBScript to PowerShell 163

For these reasons, using the ExecuteGlobal statement in a VBScript file isn’t the preferred
method for including files in a script file. The most reliable, robust method for including
external code in a script is using a WSF file because the format supports include state-
ments, as shown in this example:

_ <job>

;

|
<script src="LibrarySuperFunctions.js" language="UScript" /> |

<script language="vbscript">
'
;

strEvent = "Vaction Time!"

| </job>

strDate = GetCalendarDate(strEvent)

WScript.Echo strDate

</script>

Leticia eed i N i i g i : | i i : : ; i : 5 i ' i Hi i i i i i : ‘ | i 2 | = ;

As this example shows, a VBScript job in a WSF file can include a JScript file. The reverse

is possible, too; a JScript job can include a VBScript file. You can also include both types

of files in a script or have a single WSF file performing multiple jobs that use different

languages (engines) for each job. The point is that regardless of the method you choose,

after you have included a script file, you can use its functions, constants, routines, and so

on in your script.

Each function in the LibraryRegistry.vbs script uses the WMI StdRegProv class, located

in the WMI root\default namespace. This class contains methods for reading and

manipulating Registry keys and values to perform the following tasks:

» Verify that a user has the specified permissions.

> Create, enumerate, and delete Registry keys.

>» Create, enumerate, and delete Registry values.

> Get or update a security descriptor for a Registry key (supported only in Vista or

Longhorn).

The remainder of this section gives code examples to illustrate the functions in

LibraryRegistry.vbs.

The ReadRegValue function:

164 CHAPTER 7 PowerShell and the Registry

Function ReadRegValue(strComputer, strkKeyPath, strValueName, strType)

| On Error Resume Next

const HKEY LOCAL MACHINE = &H80000002

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" _

& strComputer & "\root\default:StdRegProv")

If strType = "BIN" Then

objReg.GetBinaryValue HKEY_ LOCAL MACHINE, strKeyPath, _

strValueName, arrValue

ReadRegValue = arrValue

End If

If strType = "DWORD" Then

objReg.GetDWORDValue HKEY LOCAL MACHINE, strKeyPath, _

strValueName, strValue

ReadRegValue = strValue

End If

If striype = EXP Then

objReg.GetExpandedStringValue HKEY_LOCAL MACHINE, strKeyPath, _

strValueName, strValue

ReadRegValue = strValue

End 1f

If strType = "MULTI" Then

objReg.GetMultiStringValue HKEY_LOCAL MACHINE, strKeyPath, _

strValueName, arrValue

ReadRegValue = arrValue

End: If

If strType = "STR" Then

objReg.GetStringValue HKEY_LOCAL_ MACHINE, strKeyPath, _

strValueName, strValue

ReadRegValue = strValue

i End If

| End Function

From VBScript to PowerShell 165

The ReadRegValue function retrieves a Registry data value for named values under the

HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

> strComputer—The name or IP address of the computer to retrieve Registry informa-

tion from; "." can be used to denote the local host

>» strKeyPath—The key path where the Registry value is located

> strValueName—The name of the Registry value you’re trying to retrieve data from

> strType—A defined string representing the type of Registry value from which data is

being retrieved, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP

(REG_EXPAND SZ), MULTI (REG _MULTI_$Z), and STR (REG SZ)

Based on the strType value, the ReadRegValue function uses the appropriate StdRegProv

method to retrieve the specified value’s data from the Registry. The data returned from

ReadRegValue can be in the form of a string, an integer, or an array. The return value

needs to be handled according to the type of Registry value you’re reading. For example,

if you retrieve data from a REG_BINARY value, the data returned from ReadRegValue is in

an array containing binary values. To read the binary values, you need to step through

the array, as shown here:

| Set StdOut = WScript.StdOut

strServer = "serverxyz.companyabc.com" |

| binValue = ReadRegValue(strServer, "SOFTWARE\Turtle Worm", "“binValue", "BIN")

StdOut.WriteLine "BIN Value:"

For i = 1Bound(binValue) to uBound(binValue)

i StdOut.WriteLine binValue(i)

Next

The CreateRegKey function:

i

Function CreateRegKey(strComputer, strKeyPath)

On Error Resume Next

const HKEY_ LOCAL MACHINE = &H80000002

Set objReg = GetObject("winmgmts: {impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

objReg.CreateKey HKEY_LOCAL_MACHINE, strkeyPath

End Function

poser secamnnamnnes

166 CHAPTER 7 PowerShell and the Registry

The CreateRegKey function creates a Registry key under the HKEY_LOCAL_MACHINE hive.

This function requires defining the following parameters:

>» strComputer—The name or IP address of the computer to create the key on; "." can

be used to denote the local host

> strKeyPath—The key path for the new Registry key

Here’s an example of using this function:

strServer = "Serverxyz.companyabc.com"

- CreateRegkKey strServer, "SOFTWARE\Turtle Worm"

The CreateRegValue function:

_ Function CreateRegValue(strComputer, strKeyPath, _

strValueName, strvalue, strType)

On Error Resume Next

const HKEY LOCAL MACHINE = &H80000002

Set objReg = GetObject("winmgmts: {impersonationLevel=impersonate}!\\" &

strComputer & "\root\default:StdRegProv")

If strType = "BIN" Then

objReg.SetBinaryValue HKEY_LOCAL_MACHINE, strkeyPath, _

strValueName, strValue

End If

If strType = "DWORD" Then

objReg.SetDWORDValue HKEY LOCAL MACHINE, strKeyPath, _

strValueName, strValue

Endl t

If strType = "EXP" Then

objReg.SetExpandedStringValue HKEY_LOCAL_MACHINE, strKeyPath, _

strValueName, strValue

End If

If strType = "MULTI" Then

objReg.SetMultiStringValue HKEY_LOCAL_MACHINE, strkeyPath, _

strValueName, strValue

End sf

From VBScript to PowerShell 167

objReg.SetStringValue HKEY_LOCAL_MACHINE, strKeyPath, _

strValueName, strValue

End If

If strType = "STR" Then

;

|

End Function

The CreateRegValue function creates or modifies a Registry value under the

HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

>» strComputer—The name or IP address of the computer to create or change a

Registry value on; "." can be used to denote the local host

>» strKeyPath—The key path where the Registry value is located

> strValueName—The name of the Registry value you're trying to create or change

>» strValue—The value to which to set the Registry value

>» strType—A defined string representing the type of Registry value being created or

changed, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP (REG_EXPAND SZ),

MULTI (REG_MULTI_SZ), and STR (REG SZ)

The value you supply for the strValue parameter depends on the type of Registry value

you're creating or modifying. If you’re working with a REG_BINARY value, the value

provided to CreateRegValue must be an array containing binary values. For

REG_MULTI_SZ, the value must be an array containing string values. With REG_SZ and

REG_EXPAND_SZ, the values must be in the form of a string. However, with REG_EXPAND_SZ,

the value must include a valid environment variable, or the GetExpandedStringValue

method can’t expand the string when the value is retrieved. Last, when creating or modi-

fying REG_DWORD, the value provided to CreateRegValue must be a valid DWORD value.

Here’s an example of using this function:

Set StdOut = WScript.StdOut

strServer = "serverxyz.companyabc.com"

Multi = Array({"PowerShell", “is", ‘fun!")

CreateRegValue strServer, "SOFTWARE\Turtle_ Worm", "multiValue", Multi, _

"MULTI"

prmsectaeamarmensnte:

| Function DeleteRegKey(strComputer, strKeyPath)
i

168 CHAPTER 7 PowerShell and the Registry

The DeleteRegKey function:

On Error Resume Next

const HKEY LOCAL MACHINE = &H80000002

Set objReg = GetObject("winmgmts: {impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

objReg.DeleteKey HKEY LOCAL MACHINE, strkKeyPath

| End Function

The DeleteRegKey function deletes a Registry key from the HKEY_LOCAL_MACHINE hive. This

function requires defining the following parameters:

> strComputer—The name or IP address of the computer to delete the key from; "."

can be used to denote the local host

> strKeyPath—The key path for the Registry key to be deleted

NOTE :

Deleting a key deletes all subkeys and their values.

Here’s an example of using this function:

Set StdOut = WScript.StdOut

_ strServer = "serverxyz.companyabc.com"

DeleteRegkKey strServer, "SOFTWARE\Turtle Worm"

The DeleteRegValue value:

On Error Resume Next

const HKEY_LOCAL MACHINE = &H80000002

| Function DeleteRegValue(strComputer, strKeyPath, strValueName) |

From VBScript to PowerShell 169

Set objReg = GetObject ("winmgmts: {impersonationLevel=impersonate}! \\" &

strComputer & "\root\default:StdRegProv")

objReg.DeleteValue HKEY LOCAL MACHINE, strKeyPath, strValueName

| End Function

The DeleteRegValue function deletes a Registry value from the HKEY_ LOCAL MACHINE hive.
This function requires defining the following parameters:

> strComputer—The name or IP address of the computer to create the key on; "." can
be used to denote the local host

>» strKeyPath—The key path where the Registry value resides

>» strValueName—The name of the Registry value being deleted

Here’s an example of using this function:

Set StdOut = WScript.StdOut

_ strServer = "server1000"

_ DeleteRegValue strServer, "SOFTWARE\Turtle Worm", "binValue"

The LibraryRegistry.ps1 Script

LibraryRegistry.ps1 is a PowerShell conversion of the LibraryRegistry.vbs VBScript

file. A working copy is in the Scripts\Chapter 7\LibraryRegistry folder and is down-

loadable at www.samspublishing.com. Before using this library file in a PowerShell

console session, you must dot source itas discussed in Chapter 3. The dot sourcing

format is a period followed by a space and then the filename, as in this example: .

.\myscript.ps1. To dot source LibraryRegistry.ps1 from a PowerShell console session,

use the following command:

u "D: \Scripts\LibraryRegistry.ps1"PS C:\>

However, dot sourcing a script file every time you want to use its set of functions tends to

be more work than it should be. When you dot source a script file, the contents are

loaded into your current PowerShell console session’s global scope. If you close that

session and open a new session, everything that was in the global scope is discarded,

forcing you to dot source the script file every time you start a new session.

To avoid this problem, you can use a PowerShell profile to control the configuration of

your PowerShell console. By using a PowerShell profile, such as Profile.ps1, and dot

170 CHAPTER 7 PowerShell and the Registry

sourcing your script files in a profile file, you have everything you need already loaded in

the global scope every time you start a new console session. Here’s an example of a

Profile.ps1 file:

"D:\Scripts\LibraryRegistry.ps1°

| set-location C:\

/ cls

Welcome Message

"Welcome to back to more reg fun: " + $ENV:UserName

LibraryRegistry.ps1 can also be dot sourced in a script file. Dot sourcing a .ps1

script file as such tells PowerShell to load the script into the calling script’s scope.

Remember that a script’s parent scope can be a PowerShell session or another script.

After a new PowerShell session is loaded with the customized Profile.ps1, the console

prompt looks like this:

Welcome back to more reg fun: script_master_snover

PS C:\>

By retrieving information from the Function PSDrive object, as shown in the following

example, you can determine whether the Registry functions defined in

LibraryRegistry.ps1 have been loaded into the current PowerShell session:

PS C:\> get-childitem Function:

CommandType Name Definition

Function prompt "PS ' + $(Get-Location) + $(...

Function TabExpansion shen

Function Clear-Host $spaceType = [System.Managem...

Function more param([string[]]$paths); if...

Function help param([string]$Name, [string[...

Function man param([string]$Name,[string[...

Function mkdir param([string[]]$paths); New...

bolt h Con a oy] ~~ md param([string[]]Spaths); New...
Function A: §et-Location A: °

From VBScript to PowerShell SL/L

Function rT} ep olet- ho Kos]

Function : Set-Location

Function W: Set-Location

Function X: Set-Location

Function Y: Set-Location

Function Zs Set-Location Z:

Function Get-RegValue param($Computer, $KeyPath,

Function Set-RegKey param($Computer, $KeyPath)

Function Set-RegValue param($Computer, $KeyPath,

Function Remove-RegKey param($Computer, $KeyPath)

Function Remove-RegValue param($Computer, $KeyPath,

Notice in the preceding example there are five different Reg functions that can be used in

the current PowerShell session to read and manipulate subkeys under the HKEY_LOCAL_

MACHINE hive for the local host or remote machines. The remainder of this section gives

you more information about these functions

| The Get -RegValue function:

OE ae Oe re Cy cen
| # Get-RegValue
a ee

| # Usage: Used to read an HKLM Registry value

on a local or remote machine.

$Computer: The name of the computer.

| # $KeyPath: The Registry key path.

| # ("SYSTEM\CurrentControlSet\Control")

$ValueName: The 1 value name. ("CurrentUser")

| # $Type: The Registry value type. ("BIN’, "“DWORD",

i # "EXP! “MULTI®. or “STR*) i ;

} i
;

| function Get-RegValue{

param ($Computer, $KeyPath, $ValueName, $Type)

$HKEY_LOCAL MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

Ae CHAPTER 7 PowerShell and the Registry

$Reg = get-wmiobject -Namespace Root\Default -computerName ~ |

$Computer -List | where-object ~

{$_.Name -eq "StdRegProv"}

if ($Type -eq "BIN"){

return $Reg.GetBinaryValue($HKEY LOCAL MACHINE, $KeyPath,

$ValueName) |

: |
elseif ($Type -eq "DWORD") { i

return $Reg.GetDWORDValue($HKEY LOCAL MACHINE, $KeyPath, |

$ValueName)

}
elseif ($Type -eq "EXP"){

return $Reg.GetExpandedStringValue($HKEY LOCAL MACHINE,

$KeyPath, $ValueName)

}
elseif ($Type -eq "MULTI"){

return $Reg.GetMultiStringValue($HKEY LOCAL MACHINE, ~

$keyPath, $ValueName)
}

elseif ($Type -eq "STR"){

return $Reg.GetStringValue($HKEY_ LOCAL MACHINE,

$KeyPath, $ValueName)

The Get -RegValue function retrieves a Registry value for named values under the

HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

> $Computer—The name or IP address of the computer to retrieve Registry information

from; "." can be used to denote the local host

>» $KeyPath—The key path where the Registry value is located

> $ValueName—The name of the Registry value you're trying to retrieve data from

> $Type—A defined string representing the type of Registry value from which data is

being retrieved, such as BIN (REG_BINARY), DWORD (REG _DWORD), EXP

(REG_EXPAND_SZ), MULTI (REG _MULTI_SZ), and STR (REG SZ)

The following example shows how to use this function:

PS C:\> get-regvalue "Arus" "SOFTWARE\Voltron" "BlueLion" "BIN"

From VBScript to PowerShell 173.

The Set -RegKey function:

Set -RegKkey

ee ee a ee

Usage: Used to create/set an HKLM Registry key

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

fia ("SYSTEM\CurrentControlSet\Control")

function Set -RegKey{

param ($Computer, $KeyPath)

$HKEY_LOCAL_ MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName ~

$Computer -List | where-object °

{$_.Name -eq "StdRegProv"}

return $Reg.CreateKey($HKEY_LOCAL MACHINE, $KeyPath)

}

The Set -RegKey function creates a Registry key under the HKEY_LOCAL_MACHINE hive. This

function requires defining the following parameters:

> $Computer—The name or IP address of the computer to create the key on; '"." can

be used to denote the local host

>» $KeyPath—The key path for the new Registry key

Here’s an example of using this function:

PS C:\> set-regkey "Arus" "SOFTWARE\Voltron"

The Set -RegValue function:

Usage: Used to create/set an HKLM Registry value

174 CHAPTER 7 PowerShell and the Registry

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

$ValueName: The Registry value name. ("CurrentUser")

$Value: The Registry value. ("valuei", Array, Integer)

$Type: The Registry value type. ("BIN", “DWORD",

PEXP i MUTE 6 OF SiRF) tH St He Ht HH HK RK

_ function Set-RegValue{

param ($Computer, $KeyPath, $ValueName, $Value, $Type)

$HKEY_ LOCAL MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName ©

$Computer -List | where-object ©

{$_.Name -eq "StdRegProv"}

if ($Type -eq "BIN"){

return $Reg.SetBinaryValue($HKEY_LOCAL MACHINE, $KeyPath,

$ValueName, $Value)

}
elseif ($Type -eq "DWORD") {

return $Reg.SetDWORDValue($HKEY_ LOCAL MACHINE, $KeyPath,

$ValueName, $Value)

}
elseif ($Type -eq "EXP"){

return $Reg.SetExpandedStringValue($HKEY_LOCAL MACHINE,

$KeyPath, $ValueName, $Value)

}
elseif ($Type -eq "MULTI"){

return $Reg.SetMultiStringValue($HKEY LOCAL MACHINE,

$KeyPath, $ValueName, $Value)

}
elseif ($Type -eq "STR"){

return $Reg.SetStringValue($HKEY LOCAL MACHINE,

$KeyPath, $ValueName, $Value)

From VBScript to PowerShell 175

The Set -RegValue function creates or changes a Registry value under the HKEY_LOCAL_

MACHINE hive. This function requires defining the following parameters:

> $Computer—The name or IP address of the computer on which to create or change a

Registry value; "." can be used to denote the local host

>» $KeyPath—The key path where the Registry value is located

> $ValueName—The name of the Registry value you’re trying to create or change

> $Value—The data to which to set the Registry value

> $Type—A defined string representing the type of Registry value being created or

changed, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP (REG_EXPAND SZ),

MULTI (REG_MULTI_SZ), and STR (REG SZ)

The following example shows how to use this function:

PS C:\> $Multi = "PowerShell", "is", "fun!"

PS C:\> set-regvalue "Arus" "SOFTWARE\Voltron" "Lion Statement" $Multi "MULTI"

The Remove -RegKey function:

EES eR ee

Remove -RegKey

bpp

| # Usage: Used to delete an HKLM Registry key

| # on a local or remote machine.

| # $Computer: The name of the computer.

_ # $KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

£

; function Remove -RegKey{

param ($Computer, $KeyPath)

$HKEY_LOCAL_ MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName °

/ $Computer -List | where-object ~

{$_.Name -eq "StdRegProv"}

i return $Reg.DeleteKey($HKEY_LOCAL_MACHINE, $KeyPath)

bo i

176 CHAPTER 7 PowerShell and the Registry

The Remove -RegKey function deletes a Registry key from the HKEY_LOCAL_MACHINE hive.

This function requires defining the following parameters:

> $Computer—The name or IP address of the computer where you’re deleting the key;

"." can be used to denote the local host

>» $KeyPath—The key path for the Registry key to delete

An example of using this function is shown here:

PS C:\> remove-regkey "Arus" "SOFTWARE\Voltron”

The Remove -RegValue function:

ep ae Pe ee re oe eee ee

Remove -RegValue

CU eg ee See

Usage: Used to delete an HKLM Registry value

on a local or remote machine. |

$Computer: The name of the computer.

_ # $KeyPath: The Registry key path. i

_# ("SYSTEM\CurrentControlSet\Control")

_ # $ValueName: The Registry value name. ("CurrentUser")

function Remove-RegValue{

param ($Computer, $KeyPath, $ValueName)

$HKEY_ LOCAL MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue} |

$Reg = get-wmiobject -Namespace Root\Default -computerName ~ |

$Computer -List | where-object ° |

{$_.Name -eq "StdRegProv"}

return $Reg.DeleteValue($HKEY LOCAL_MACHINE, $KeyPath, $ValueName)

} |

The Remove -RegValue function deletes a Registry value from the HKEY_LOCAL_MACHINE
hive. You must define the following parameters:

>» $Computer—The name or IP address of the computer where you're creating the key;
"." can be used to denote the local host

From VBScript to PowerShell ALFA

>» $KeyPath—The key path where the Registry value resides

>» $ValueName—The name of the Registry value being deleted

Here’s an example of using this function:

PS C:\> remove-regvalue "Arus" “SOFTWARE\Voltron" "Lion Statement"

Using the Library

Now that you understand the Registry functions in the LibraryRegistry.ps1 script, you

can practice using these functions. The first step is to create a Registry key called

Turtle_Worm under the HKLM\Software key on an Active Directory domain controller

named DC1. To do this, you use the following command:

PS C:\> set-regkey "DC1" "SOFTWARE\Turtle Worm"

2
__ PARAMETERS

__GENUS
___CLASS

___SUPERCLASS
__DYNASTY
__RELPATH

___PROPERTY_COUNT

__DERIVATION
___ SERVER
___NAMESPACE

__ PATH
ReturnValue

__ PARAMETERS

1
{}

The command returns a WMI object that contains no information. If any error occurred,

the trap in the function would write the error information to the console, as shown in

this example:

PS C:\> set-regkey "Pinky" "SOFTWARE\Turtle Worm"

[ERROR] The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)

PS C:\>

CHAPTER 7 PowerShell and the Registry

Next, you create values under the Turtle_Worm Registry key with the following set of

commands:

‘PS C:\> $Bin = 101, 118, 105, 108, 95, 116, 117, 114, 116, 108, 101
PS C:\> set-regvalue."DC1" "SOFTWARE\Turtle Worm" "binValue" $Bin
"BIN" :

y)
___PARAMETERS

___GENUS .
__CLASS
__SUPERCLASS
__DYNASTY
__RELPATH
___PROPERTY_COUNT
___DERIVATION
___SERVER
__NAMESPACE
__ PATH
ReturnValue

___ PARAMETERS

1
{}

PS C:\> SNull set-regvalue "DC1" "SOFTWARE\Turtle Worm" "dwordValue"
"1" "DWORD"

PS C:\> S$Null = set-regvalue "DC1" "SOFTWARE\Turtle Worm" "“expValue"
"SSystemRoot?\system32\Turtle Hacker.dll" "EXP"
PS C:\> $Multi = "PowerShell", "is", "fun!"
PS C:\> $Null = set-regvalue "DC1" "“SOFTWARE\Turtle Worm" "multiValue"
$Multi "MULTI"

PS C:\> $Null = set-regvalue "DC1l" "SOFTWARE\Turtle Worm" "“strValue"
"Reg work done!" "STR"
PS C:\>

These steps simulate creating a Registry key and its values. Next, you use the Registry

library functions to determine whether a set of values exists. To do this, use the

Get -RegValue function:

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle Worm" "binValue" "BIN"

2
on __PARAMETERS
___SUPERCLASS
__DYNASTY ___ PARAMETERS
__RELPATH
___PROPERTY_COUNT : 2
___ DERIVATION {}
__SERVER
__. NAMESPACE
-__ PATH

From VBScript to PowerShell 179

ReturnValue O

uValue {101, 118, 105, 108...}

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle Worm" "dwordValue" "DWORD"

__GENUS

__CLASS

___SUPERCLASS

__DYNASTY

__RELPATH
___PROPERTY_COUNT

___DERIVATION

___SERVER

___NAMESPACE

__PATH

ReturnValue

uValue

2

___PARAMETERS

__ PARAMETERS

2
{}

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle Worm" "expValue" "EXP"

y)
__PARAMETERS

__GENUS :
__CLASS :
__SUPERCLASS :
__ DYNASTY : __ PARAMETERS
___RELPATH ~ :

__PROPERTY_COUNT : 2
__DERIVATION ee
__SERVER :
__NAMESPACE :

__PATH :
ReturnValue “

sValue :

0

C: \WINDOWS\system32\Turtle Hacker.dl1l

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle Worm" "multiValue" "MULTI"

y)
__ PARAMETERS

___GENUS
__CLASS
__SUPERCLASS

___ DYNASTY
__RELPATH
___PROPERTY_COUNT
__ DERIVATION
__SERVER
__NAMESPACE

___PARAMETERS

180 CHAPTER 7 PowerShell and the Registry

__PATH
ReturnValue (0)

~ sValue {PowerShell, is, fun!}

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle Worm" "strValue" "STR"

2

___PARAMETERS

__GENUS
__CLASS

___SUPERCLASS

__DYNASTY
__RELPATH
___PROPERTY_COUNT

___DERIVATION

___SERVER
__NAMESPACE
__PATH
ReturnValue

sValue

___PARAMETERS

He
ba

(0)
Reg work done!

PS C:\>

As you can see from the WMI object returned, if a value exists, its information is returned

as an sValue or uValue property. If the value or key doesn’t exist, the ReturnValue prop-

erty is the integer 2. If the ReturnValue property is set to the integer 0, it indicates that

the WMI method was completed successfully.

Now that you have verified that values under the Turtle_Worm Registry key exist on DC1,

it’s time to delete the Turtle_Worm Registry key and its values. There are two methods to

perform this task. You can delete each value by using the Remove -RegValue function, as

shown in the following example:

PS C:\> remove-regvalue "DC1" "SOFTWARE\Turtle Worm" "binValue"

__ GENUS aka
__ CLASS __PARAMETERS
___SUPERCLASS
__ DYNASTY ___PARAMETERS
__RELPATH
__PROPERTY_COUNT : 1
en) Sat Uib do) {}
__SERVER
___NAMESPACE
__ PATH

Summary 181

ReturnValue

PS C:\>

The other method is using the Remove -RegKey function to delete the Turtle Worm Registry

key, which deletes all its subkeys and their values, as shown here:

PS C:\> remove-regkey "sol" "SOFTWARE\Turtle Worm"

__ GENUS
__CLASS
___SUPERCLASS
__ DYNASTY
__RELPATH
__ PROPERTY COUNT

y)
___ PARAMETERS

__PARAMETERS

___ DERIVATION

__SERVER
___NAMESPACE
___PATH
ReturnValue °o

Summary
In closing, this chapter has focused on how to manage the Windows Registry using both

WSH and PowerShell. While both scripting interfaces provide methods to manage the

Registry, PowerShell’s method tends to be more robust because it treats the Registry as a

hierarchical data store. The only shortcoming in the current implementation is that

PowerShell doesn’t have a built-in method for managing the Registry on a remote

machine (which WSH also suffers from). In this case, as reviewed in this chapter,

PowerShell in conjunction with WMI can be used to remotely manage the Registry on a

machine. Using both WMI and PowerShell, you should be able to accomplish any future

Registry automation tasks that are required of you.

How to use reusable code and library files were also introduced in this chapter. As

explained in Chapter 5, “PowerShell Scripting Best Practices,” reusing code is a very

important practice that can reduce the amount of time it takes to develop a script. This

chapter further expanded the concept of reusable code by showing you how to imple-

ment it in the form of a library file based on a real-world example.

: n ™ : ah 44 i
i 4 ty raed + yi » I) ae ‘ oa ,

De a age oe : ‘i. eh eh Ab. " 4 WF a 7: ‘ ,

‘ d = ee Pe a b o™ s -_ ws 7 7 » :

b> al re Pa Waa i fr, p “-# 4

ee ws tog ‘ae hap
iphones Gunn = nhs ld tall sane bs ee i
1G ae tae? oh th Gren meth, aha eal ir sees
ma palate na eygags | Gus eh 7 ti) AO worimurd FUNEP

chai BS) a + ap) bu
a

ieee Lm A : }

wee " fc

4 i, :

1

* J

Lan

of
i"
-

Sipe:
a

ce
a8

_

—

i ol,

Snaull

I

ad -

8 IN THIS CHAPTER

PowerShell and WMI | 77"
» Comparing WMI Usage

between WSH and PowerShell

>» From VBScript to PowerShell

Introduction

This chapter shows how to use PowerShell to manage

systems with Windows Management Instrumentation

(WMD and compares the methods Windows Script Host

(WSH) and PowerShell use for WMI tasks. You also examine

some scripting examples that use WSH to perform WMI

tasks and then see how PowerShell can be used for those

tasks. Finally, you look at an example of converting a

VBScript script to PowerShell to perform an automation

task by using WMI. The goal is to give the reader a chance

to learn how PowerShell scripting techniques can be

applied to complete real-world automation needs.

Comparing WMI Usage Between
WSH and PowerShell
To use WMI via scripting, you use a set of objects in the

Scripting API for WMI with the WSH methods

CreateObject() and GetObject() (or another scripting

language’s methods for creating or connecting to COM

objects). In this way, you can connect to a WMI object that

might be a WMI class or an instance of a WMI class.

There are two methods to connect to a WMI object. The

first is creating a SWbemServices object with the corre-

sponding CreateObject() method and then connect to a

WMI object by specifying that object’s path. For the

purpose of this discussion, however, you should focus on

the second method. This method uses a "winmgmts:"

moniker string (a standard COM mechanism for encapsu-

lating the location and binding of another COM object).

These methods are similar, but the SWbemServices object

184 CHAPTER 8 PowerShell and WMI

method is often chosen for error handling and authentication reasons, and the moniker

string is usually chosen for convenience because a connection can be made with a single

statement.

Using WMI in WSH

The following VBScript example uses a moniker string, which connects to a remote

machine and then returns the amount of installed RAM:

On Error Resume Next

Dim objWMIService, objComputer, colItems

Dim strComputerName

| strComputerName = "Jupiter"

Set objWMIService = GetObject("winmgmts:\\" & strComputerName _

& "\root\cimv2")

Set colItems = objWMIService.ExecQuery _

("Select * from Win32_ComputerSystem")

For Each objItem in colItems

WSeript.Echo “Total RAM is: ° _

& FormatNumber((objItem.TotalPhysicalMemory \ 1024)

\ 1000, 0, @, @, -1) & " MB"

Next

Saving the script as getmemory.vbs and then running it by using cscript produces the

following results:

C:\>cscript getmemory.vbs

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Total RAM is: 774 MB

Ci\>

The following sections walk through this script to show you how it gets the installed

memory information from the remote machine Jupiter.

Step One

First, you connect to the WMI service object under the root\cimv2 namespace on Jupiter,

as shown here:

N

Comparing WMI Usage Between WSH and PowerShell 185

Set objWMIService = GetObject("winmgmts:\\" & strComputerName _

& "\root\cimv2")

Step Two

Next, you use the ExecQuery() method of the WMI service object with the WMI Query
Language (WQL) to create an object bound to an instance of the Win32_ComputerSytem

class, as shown in this example:

Set colItems = objWMIService.ExecQuery _

("Select * from Win32_ComputerSystem")

Step Three

Finally, using the colItems variable and a for loop, you step through the newly created

object collection and retrieve memory information from the TotalPhysicalMemory prop-

erty. After formatting the numeric value with the FormatNumber function, you write the

amount of memory (in megabytes) installed on the remote machine to the cmd

command prompt, as shown in the following code:

SLAB TEEN EHLERS NOMEN ERE CRE EHH RATE YEON DORN YS VYSSH OULU SHILLER ES OME O NS MUO SID NSO Ce

For Each objItem in collItems

WSeript.Echo “Jotal RAM is: * |

& FormatNumber((objItem.TotalPhysicalMemory / 1024) _

/ 1000, @, @, ®, -1) & " MB"

Using WMI in PowerShell
Using WMI in PowerShell has similar conceptual logic as in WSH. The main difference is

that the PowerShell methods are based on WMI .NET instead of the WMI Scripting API.

You have three methods for using WMI in PowerShell: WMI .NET (which is the .NET

System.Management and System.Management. Instrumentation namespaces), the

Get -WmiObject cmdlet, or the PowerShell WMI type accelerators: [WMI], [WMIClass],

and [WMISearcher].

The first method, using the System.Management and System.Management. Instrumentation

namespaces, isn’t discussed in this chapter because it’s not as practical as the other

methods. It should be only a fallback method in case PowerShell isn’t correctly encapsu-

lating an object within a PSObject object when using the other two methods.

The second method, the Get -WmiObject cmdlet, retrieves WMI objects and gathers infor-

mation about WMI classes. This cmdlet is fairly simple. For example, getting an instance of

the local Win32_ComputerSystem class just requires the name of the class, as shown here:

186 CHAPTER 8 PowerShell and WMI

PS C:\> get-wmiobject "Win32_ComputerSystem"

Domain Hm oLo) ii} of-behig-} elem ote) ii}
‘Manufacturer : Hewlett-Packard
Model : Pavilion dv8000 (ES184AV)

Name : Wii
PrimaryOwnerName : Damon Cortesi

TotalPhysicalMemory : 2145566720

The next example, which is more robust, connects to the remote machine named Jupiter

and gets an instance of the Win32_Service class in which the instance’s name equals

Virtual Server. The result is an object containing information about the Virtual Server

service on Jupiter:

PS C:\> get-wmiobject -class "Win32 Service" -computerName
"Jupiter" -filter "Name='Virtual Server'"

| pds Wy of OXo Yo (Samra)

Name : Virtual Server

ProcessId : 656

StartMode : Auto

State : Running
Status Him ©) 5¢

The following command returns the same information as the previous one but makes use

of a WQL query:

PS C:\> get-wmiobject -computerName "Jupiter" -query "Select * From
Win32_Service Where Name='Virtual Server'"

bob's hy OL oo (-) 0°

Name Virtual Server

ProcessId 656

StartMode Auto

State Running
Status (0) "4

PS C:\>

Comparing WMI Usage Between WSH and PowerShell 187

Finally, here’s an example of using Get -WmiObject to gather information about a WMI
class:

PS C:\> get-wmiobject -namespace "“root/cimv2" -list | where
{$_.Name -eq "Win32_Product"} | format-list *

Name

mn) 2) 1 0)

__CLASS

» __ SUPERCLASS

___ DYNASTY

___RELPATH

___PROPERTY_ COUNT

__ DERIVATION

__SERVER

___NAMESPACE

__PATH

Win32_ Product
1
Win32_ Product
CIM_ Product

CIM_Product

Win32_Product
L206
{CIM_Product}
PLANX

-ROOT\cimv2
\\PLANX\ROOT\cimv2:Win32_ Product

PS C:\>.

Although using Get -Wmi0bject is simple, using it almost always requires typing a long

command string. This drawback brings you to the third method for using WMI in

PowerShell: the WMI type accelerators. The following section explains what a type accel-

erator is and how to use the PowerShell WMI type accelerators.

Type Accelerators

Type accelerators have been used in previous chapters but haven’t been fully explained

yet. A type accelerator is simply an alias for specifying a .NET type. Without a type accel-

erator, defining a variable type requires entering a fully qualified class name, as shown

here:

PS C:\> $User = [System. DirectoryServices.DirectoryEntry] "LDAP: //CN=Fujio

FW Ao) oO) ULF Vofofolt beh t-gemo) of UCbat=Le t-te Mi @) oly Lon of-Jom PL OrereLoriitor-pohig-¥ ol ope >] OL afete) ii

PS C:\> $User

distinguishedName

{CN=Fujio Saitoh,0OU=Accounts , OU=Managed Objects , DC=companyabc , DC=com}

PS C:\>

188 CHAPTER 8 PowerShell and WMI

Instead of typing the entire class name, you just use the [ADSI] type accelerator to define

the variable type, as in the following example:

.PS C:\> $User = [ADST] "LDAP: //CN=Fujio r-F- Wi Xo) WHO LUL TT Volelole be te OU=Managed

Objects , DC=companyabc , DC=com"

PS C:\> $User

distinguishedName

{CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects ,DC=companyabc ,DC=com}

PS C:\>

The PowerShell team has included type accelerators in PowerShell, mainly to cut down on

the amount of typing to define an object type. However, for some reason, type accelera-

tors aren’t covered in the PowerShell documentation, even though the [WMI], [ADSI], and

other common type accelerators are referenced on many Web blogs.

Regardless of the lack of documentation, type accelerators are a fairly useful feature of

PowerShell. Table 8.1 lists commonly used type accelerators.

TABLE 8.1 Type Accelerators in PowerShell

Type Accelerator Name Type

{int] typeof (int)

[int[]] typeof (int[])

[long] typeof (long)

[long[]] typeof (long[])

[string] typeof (string)

[string[]] typeof (string[])

[char] typeof (char)

{[char[]] typeof (char[])

[bool] typeof (bool)

[bool[]] typeof (bool[])

[byte] typeof (byte)

[double] typeof (double)

[decimal] typeof (decimal)

[float] typeof (float)

[single] typeof (float)

[regex] typeof (System. Text.RegularExpressions. Regex)

[array] typeof (System.Array)

[xml] typeof (System. Xm1.Xm1Document)

([scriptblock] typeof (System.Management.Automation.ScriptBlock)

Comparing WMI Usage Between WSH and PowerShell 189

Type Accelerator Name Type

[switch] typeof (System.Management.Automation.SwitchParameter)

[hashtable] typeof (System.Collections.Hashtable)

[type] typeof (System. Type)

[ref] typeof (System.Management.Automation.PSReference)

[psobject] typeof (System.Management.Automation.PSObject)

[wmi] typeof (System.Management .ManagementObject)

[wmisearcher] typeof (System.Management .ManagementObjectSearcher)

{wmiclass] typeof (System.Management.ManagementClass)

[adsi] typeof (System.DirectoryServices.DirectoryEntry)

How to use the PowerShell WMI type accelerators is explained in the following sections.

[WMI] Type Accelerator

This type accelerator for the ManagementObject class takes a WMI object path as a string

and gets a WMI object bound to an instance of the specified WMI class, as shown in this

example:

PS C:\> $CompInfo = [WMI] '\\.\root\cimv2:Win32_ComputerSystem.Name="PLANX” '

PS C:\> $CompInfo

Domain Fimrele)ijer-tohig-} elem ote) ii]

Manufacturer : Hewlett-Packard

Model : Pavilion dv8000 (ES184AV)

Name : : PLANX

PrimaryOwnerName : Frank Miller

TotalPhysicalMemory : 2145566720

_N .
To bind to an instance of a WMI object directly, you must include the key property in

[WMIClass] Type Accelerator

This type accelerator for the ManagementClass class takes a WMI object path as a string

and gets a WMI object bound to the specified WMI class, as shown in the following

example:

CHAPTER 8 PowerShell and WMI

PS C:\> $CompClass
PS C:\> $CompClass

= [WMICLASS]”\\.\root\cimv2:Win32_ComputerSystem”

Win32 ComputerSystem

PS C:\> $CompClass

Name
__GENUS
__CLASS
___SUPERCLASS
__ DYNASTY
___RELPATH
___PROPERTY_COUNT
___ DERIVATION
CIM_System,

__SERVER
___NAMESPACE .
__PATH

PS C:\>

| format-list *

Win32_ComputerSystem

i
Win32_ComputerSystem
CIM_UnitaryComputerSystem
CIM _ManagedSystemElement

Win32_ComputerSystem
54
{CIM_UnitaryComputerSystem, CIM_ComputerSystem, —

CIM_LogicalElement...}
PLANX

ROOT\cimv2
\\PLANX\ROOT\cimv2:Win32_ComputerSystem

[WMISearcher] Type Accelerator

This type accelerator for the ManagementObjectSearcher class takes a WQL string and

creates a WMI searcher object. After the searcher object is created, you use the Get ()

method to get a WMI object bound to an instance of the specified WMI class, as shown

here:

PS C:\> $CompInfo [WMISearcher]”Select * From Win32_ComputerSystem”

* PS C:\> $CompInfo.Get()

Domain

Manufacturer

Model

Name

PrimaryOwnerName

TotalPhysicalMemory

fofosiver-tehig-} eLomm ote) ii]

Hewlett-Packard

Pavilion dv8000 (ES184AV)

PLANX

Miro

2145566720

From VBScript to PowerShell 191

From VBScript to PowerShell
This next section explains the conversion of a VBScript script into a PowerShell script.

The sample script is used to monitor virtual machines on a Microsoft Virtual Server
2005 host.

Before this script was developed, companyabc.com was in the process of switching most

of its hardware application servers to virtual machines. As part of this switch, the

company wanted a simple yet effective method for monitoring the virtual machines each

Microsoft Virtual Server hosted. However, an effective monitoring platform, such as

Microsoft Operations Manager (MOM), wasn’t in place. The IT department suggested an

automation script to meet the company’s short-term monitoring needs, so one was devel-

oped that administrators could use to manage Virtual Server systems.

The MonitorMSVS.wsf Script

MonitorMSVS.wsf is a VBScript WSF file developed to meet companyabc.com’s virtual

machine monitoring needs. A working copy is in the Scripts\Chapter 8\MonitorMSVS

folder and is downloadable at www.samspublishing.com. Running this script requires

defining the servername parameter, which should have its argument set to the name of

the Virtual Server system hosting the virtual machines to be monitored. Here’s the

command to run MonitorMSVS.wsf, with an example of the output shown in Figure 8.1:

D:\Scripts>cscript MonitorMSVS.wsf /servername:vsserver0l

=< C:\ WINDOWS \system32\cmd.exe

D=\Scripts+cscript MonitorMSUS .wsf /s STMER Hane jupiter
Microsoft €R>. Windows Script Host Version
opyright €C> Microsoft Corporation 1996— 200i. All rights reserved.

“igh deichelat pti hitb abit hci hdc laha lett abil
i
aatnntaganIUAAAnnnMnenANANNAnAEAAE

Checking MSUS Status LONLINE
Checking UM Data [OK]

(NanmeJ} (Uptime) ee [Memory] EDisk]
chronos 4,992 1,828 5,484
we bi 1 100 PA

D=\Scripts >.

FIGURE 8.1 The MonitorMSVS.wsf script being executed

The MonitorMSVS.wsf script performs the following sequence of actions:

1. The script pings the specified Microsoft Virtual Server (MSVS) to verify that the

server is operational.

2. Next, the script connects to the MSVS host by using a moniker string and, therefore,

creating a WMI service object.

Preece ee eee

192 CHAPTER 8 PowerShell and WMI

3. Next, the script calls the ExecQuery() method of the WMI service object, passing it

a WQL query requesting a collection of instances of the VirtualMachine Class.

4. Finally, for each currently active virtual machine (present in the collection), the

script writes to the cmd command prompt the current values for the Uptime,

CpuUtilization, PhysicalMemoryAllocated, and DiskSpaceUsed properties.

The first code sample consists of the initial XML elements for a WSF. These elements are

used to define the allowed parameters, the script’s description, examples on the script’s

operation, and the scripting language being used:

<?xml version="1.0" ?> .

<package>

<job id="MonitorMSVS">

<runtime>

<description>
KKKKKKKKEKKEK KKK KKK KE KKK KEKE KKK KEKE KK KEKE KKREKK KEK KERKKKKKEKRKKKEKKEE

This script is used to monitor Microsoft Virtual Server 2005.
KRKK KK KKK KKK KEKE KR KEKE KKK KEK KK KERR KKK KEKE KEKE KEK KKK KR ERK KKKKEEKRKEEEE

</description>

<named name="servername" helpstring="The name of the MSVS host to monitor."

type="string" required="1" />

<example>

Example:

cscript MonitorMSVS.wsf /servername: "vms®1.companyabc.com"

</example>

</runtime>

<script language="VBScript">

<! [CDATA[

Next, the script checks to see if an argument has been defined for the required parameter

servername. If an argument is not present, the script returns the script usage information

(defined in the previous code snippet) to the console and quits. If an argument is defined,

the script then sets up the script environment by defining the variables that will be used

throughout the rest of the script

On Error Resume Next

If WScript.Arguments.Named.Exists("servername") = FALSE Then

WScript.Arguments.ShowUsage()

From VBScript to PowerShell 193

' WScript.Quit

End If

| Dim StdOut
| Dim strServerName

| Set StdOut = WScript.Stdout

| strServerName = WScript.Arguments.Named("servername")

The next code snippet is the beginning of the actual automation portion of the script.

First, the script writes the script header to the console, then checks to see if the specified

MSVS host in the servername variable is operational by pinging it using the Ping func-

tion. If the MSVS host is operational, the script continues; otherwise, script execution is

stopped and an appropriate status message is displayed to the script operator:

' Start Job

| Mess “#######HHHHHHHHHHHHHHHHHHEHHHHEHH RAHA AEE

| Mess "# MonitorMSVS #"
i Mess "“AAAAHAAH HHH HH HH HH HH HHH HHH HH HHH HHA HH HEE

| Mess vbNullString

| StatStart "Checking MSVS Status"

If Ping(strServerName) = @ Then

StdOut.Write(vbTab & vbTab)

StdOut .WriteLine("[OFFLINE]")

WScript.Quit()
| Else

StdOut .Write(vbTab & vbTab)
| StdOut .WriteLine("[ONLINE]")

| End If
OR Bs See

The next task is to connect to the MSVS host using WMI and retrieve performance infor-

mation about its virtual machines. Once the information has been retrieved, it then needs

to be converted into a readable format before being written to the console, as shown in

the following code snippet:

194 CHAPTER 8 _ PowerShell and WMI

_ StatStart "Checking VM Data"

: Set objWMIService = GetObject("winmgmts:\\" & strServerName _

& "\root\vm\virtualserver")

Set colltems = objWMIService.ExecQuery("SELECT * FROM VirtualMachine")

i Xerror

_ StatDone

 StdOut.WriteLine(vbNullString)

i ' Header Info

- StdOut.WriteLine("[Name] [Uptime] [CPU] [Memory] [Disk]")

_ For Each objiItem In colltems

| StdOut.Write(objItem.Name & vbTab)

StdOut.Write(FormatNumber(objItem.Uptime / 60, @, 0, @, -1) & vbTab)

StdOut.Write(FormatNumber(objItem.CpuUtilization, 0) & vbTab)

StdOut.Write(FormatNumber ((objItem.PhysicalMemoryAllocated

/ 1024) / 1000, @, @, 0, -1) & vbTab)

StdOut .Write(FormatNumber((objItem.DiskSpaceUsed / 1024) _

{ 1000,.0, @, 0, -1))

StdOut.WriteLine(vbNullString)

| Next

To make the values returned from the Uptime, CouUtilization, PhysicalMemoryAllocated,

and DiskSpaceUsed properties more readable, the script uses the FormatNumber function.

This VBScript function controls the formatting of a numeric value and can be used to

specify formatting such as the following:

>» How many places to the right of the decimal are displayed

>» Whether a leading zero is displayed for fractional values

» Whether to place negative values in parentheses

>» Whether numbers are grouped by using the group delimiter specified in Control

Panel

MonitorMSVS.wsf uses the FormatNumber function to format numeric values so that zero

decimal places are shown and values are grouped by using the delimiter specified in a

machine’s regional settings. Last, those values are also converted into units that make

more sense, as in these examples:

From VBScript to PowerShell 195

» Uptime is converted from seconds to minutes.

> PhysicalMemoryAllocated is converted from bytes to megabytes.

>» DiskSpaceUsed is converted from bytes to megabytes.

The next code snippet consists of all the Subs that are used throughout the script:

_ Sub Mess (Message)

' Write to console

StdOut .WriteLine (Message) |

| End Sub i

Sub StatStart (Message) |

' Write to console |
StdOut .Write (Message) |

_ End Sub |

Sub StatDone

' Write to console
StdOut.Write(vbTab & vbTab)

StdOut .WriteLine("[OK]")

_ End Sub

_ Sub Xerror

If Err.Number <> @ Then |

' Write to console
|

StdOut.WriteLine(" Critical Error: " & CStr(Err.Number) _

& " " & Err.Description)

WScript.Quit()

End If |
| End Sub

196 CHAPTER 8 PowerShell and WMI

Part of the logic in the MonitorMSVS.wsf script is to verify that the specified MSVS host is

operational before continuing. This check is performed with an ICMP ping, as shown in

the following example:

' This function is used to test if a machine is on the network.

Function Ping(Machine)

On Error Resume Next

Set colltems = GetObject("winmgmts: {impersonationLevel=impersonate}")

ExecQuery("select * from Win32_PingStatus where address = '"_

& Machine & "'")

For Each coliltem in colItems

If IsNull(colItem.StatusCode) or colItem.StatusCode <> @ Then

Ping = 0

Else

Ping = 1

End If

Next

End Function

To carry out the ICMP ping, the script uses a function aptly named Ping that performs

the following sequence of actions:

1. The Ping function calls the ExecQuery() method of the WMI service object.

2. Ping passes ExecQuery() a WQL query requesting all properties from the instance
of the Win32_PingStatus class, in which the address is that of the host you’re trying
to ping.

3. The resulting collection of instances (in this case, one instance, which is just an

object) is assigned to the colltems variable.

4. The ping’s results are collected from colItems and returned to the script so that it
can determine whether to continue or stop.

Using an ICMP ping reduces the time the script would take to fail if the server requested a
WMI query it wasn’t capable of performing. This advanced error-handling technique can

Tiss senisisineresamaiontiasananpi id

From VBScript to PowerShell 197

predict when the script might fail and includes logic to prevent the failure from happen-
ing. Also, a WMI method is used instead of ping. exe because the results returned from

WML are easier to work with than the text-based results ping. exe returns.

The last code snippet consists of closing XML elements for the script:

i>

| “</script>

| </job>

</package>

The MonitorMSVS.ps1 Script

MonitorMSVS.ps1 is a PowerShell conversion of the MonitorMSVS.wsf script. A working

copy is in the Scripts\Chapter 8\MonitorMSVS folder and is downloadable at

www.samspublishing.com. Running this script requires defining the ServerName

parameter, which should have its argument set to the name of the Virtual Server

system hosting the virtual machines to be monitored. Here’s the command to run

MonitorMSVS.ps1, with an example of the output shown in Figure 8.2:

PS D: \Scripts> .\MonitorMSVS.psl -ServerName Jupiter

3S C:\WINDOWS\system32\WindowsPowerShellv1.0\powershell.exe

Checking HSUS Status CONLINE]
Getting UN Names [DONE]
Getting UM Data {DONE

Status Uptime Mins CPU »% Memory MB Disk HB

chronos
we bG1 Online

PS D:s\Scripts> .

FIGURE 8.2 The MonitorMSVS.ps1 script being executed

In the command to run the MonitorMSVS.ps1 script, the ServerName parameter is

named in the command string, whereas in the example from Chapter 6, “Powershell

and the File System,” the script’s parameters aren’t named in the command string. In

PowerShell, you can name or partially name parameters when running a script, as

shown here:

.\MonitorMSVS.ps1 -S Jupiter

198 CHAPTER 8 PowerShell and WMI

lf you define the arguments in an order matching how parameters are defined in

the script, the parameters don’t need to be named at all when running a script, as

shown here:

.\MonitorMSVS.ps1 Jupiter

The MonitorMSVS.ps1 script performs the following sequence of actions:

1. The script pings the specified Microsoft Virtual Server (MSVS) to verify that the

server is operational.

2. Next, the script connects to the Microsoft Virtual Server Administration Web site

and retrieves a list of virtual machines on that MSVS host. The list of virtual

machines is defined as the $Servers variable.

3. The script uses the Get -WmiObject cmdlet to retrieve a collection of instances of the

VirtualMachine class, which is defined as the $VirtualMachines variable.

4. For each virtual machine object in the $Servers variable, the script adds the virtual

machine’s current status as another member of that object. If the virtual machine is

online (present in the $VirtualMachines collection), the script also adds current

values for the Uptime, CpuUtilization, PhysicalMemoryAllocated, and

DiskSpaceUsed properties as members of the virtual machine object.

5. Finally, the script returns the information to the PowerShell console by using the

Format -Table cmdlet.

The first code snippet contains the header for the MonitorMSVS.ps1 script. This header

includes information about what the script does, when it was updated, and the script’s

author. Just after the header is the script’s only parameter ($ServerName):

«HEHEHE EEE EE

| # MonitorMSVS.ps1

_ # Used to monitor Microsoft Virtual Server 2005.

4

_ # Created: 12/01/2006

_ # Author: Tyson Kopezynski |

HH HE EE HEH HH EE HE HH HE A HHH A HH

param([string] $ServerName = $(throw write-host ~

"Please specify the name of the MSVS host to monitor!" ~

-Foregroundcolor Red))

The next code snippet contains the beginning of the script’s automation portion. First,

the variable $URL is defined as the URL for the MSVS host’s Virtual Server Administration

Website. Then, like the MonitorMSVS.wsf script, MonitorMSVS.ps1 uses an ICMP ping to

verify that the specified MSVS host is operational before continuing. However, the

] / i i : '

From VBScript to PowerShell 199

MonitorMSVS.ps1 script uses the -NET Net .NetworkInformation.Ping class instead of WMI
to conduct the ping. Either method, including ping. exe, could have been used, but
Net .NetworkInformation.Ping requires less work and less code. The choice of a method
doesn’t matter, however, as long as you try to predict where the script will fail and handle
that failure accordingly:

eee eee ee ee ee eee eee ee eT
Main

HHPHHHHRHAHHAAHH HAAR

$URL = “http: //$($ServerName) :1024/VirtualServer/VSWebApp. exe?view=1 "

MEALO*NOSE © 5-6 2h a re wk ee ee ee a ee we :

write-host "- MonitorMSVS <*

WRETC-NOSt “<9 -2 ese ee a

write-host

write-host "Checking MSVS Status" -NoNewLine

trap{write-host “t "[ERROR]" -Foregroundcolor Red;

throw write-host $ -Foregroundcolor Red;

Break}

$Ping = new-object Net.NetworkInformation.Ping

$Result = $Ping.Send($ServerName)

if ($Result.Status -eq "Success"){

write-host ‘t "[ONLINE]" -Foregroundcolor Green

}
else{

write-host ‘t "[OFFLINE]" -Foregroundcolor Red

write-host

Break

If the MSVS host is operational, script writes to the console that the host is “ONLINE”

and continues execution of the script. Conversely, if the MSVS host is not operational,

then the script writes to the console that the host is “OFFLINE” and halts execution of

the script.

Once the operational status of the MSVS host has been verified, the next step is to

connect to host and retrieve a list of virtual machines that are hosted. The following code

200 CHAPTER 8 PowerShell and WMI

snippet completes this task by improving the logic from the original MonitorMSVS.wsf

script and showcasing one of PowerShell’s more impressive capabilities:

$Webclient = new-object Net.WebClient i

- $Webclient.UseDefaultCredentials = $True

write-host "Getting VM Names" -NoNewLine

ae)

trap{write-host ~“t "[ERROR]" -Foregroundcolor Red; |

throw write-host $_ -Foregroundcolor Red;

Break}

$Data = $Webclient.DownloadString("$URL")
i

write-host ~t "[DONE]" -Foregroundcolor Green

}

This Regex gets a list of server entries from the data returned

$Servers = [Regex]::Matches($Data, '(?<=&vm=)[*"\r\n]*(?=")')

There are many duplicates so you need to group them /

_# Plus, this gives you a better name for your property

$Servers = $Servers | group Value | select Name

i

The MonitorMSVS.wsf script had a major flaw: The WMI query returned information only

about virtual machines that were online at the time of the query. If a virtual machine

happens to be off when the MonitorMSVS.wsf script runs, there’s no way to display that

fact to users. A list of all virtual machines and their current status is helpful information

for a script used as a monitoring tool.

To gain access to this information, the script must create a list of all virtual machines on

the MSVS host. Such a list exists on the Microsoft Virtual Server Administration Web site.

To access it, the script uses the .NET Net .WebClient class to connect to the Microsoft

Virtual Server Administration Web site remotely and download the HTML content from

the Master Status Page.

From VBScript to PowerShell 201

Because PowerShell can use the .NET Framework, it can access Web services as

sources for external data or as applications. For example, you can use PowerShell to

post and read blogs, check the availability of the Wii on bestbuy.com, or perform an

automation task based on data or applications provided by your enterprise’s Web

services. The possibilities are endless.

In the HTML content that is downloaded, the names of each virtual machine are embed-

ded and repeated several times. To build the list, the script uses the regular expression

type accelerator, [Regex], to strip each virtual machine name out of the HTML content

and into the $Servers variable. The resulting list in the $Servers variable then contains

each virtual machine’s name, which is repeated several times. To shorten the list so that

each virtual machine is listed only once, the script uses the Group-Object cmdlet. The

final list, which contains the names of all virtual machines on the specified MSVS host,

is then redefined in the $Servers variable.

Next, the script retrieves the virtual machines’ performance information from instances of

the WMI VirtualMachine class by using the Get -Wmi0jbect cmdlet. The next step is to

merge the two resulting data sets: the virtual machine information ($VirtualMachines)

and the list of virtual machines ($Servers). To do this, the script steps through each

virtual machine object in the $Servers variable. If the virtual machine name is in both

object collections, the Add-Member cmdlet is used to extend the virtual machine object in

the $Servers variable so that it includes the performance information in the

$VirtualMachines variable.

This object extension adds an Online status indicator and related property information

from $VirtualMachines. If the virtual machine is offline (not in both collections), the

script only extends the object to include an Offline status indicator. The concept of

changing an object dynamically was introduced in Chapter 3, “Powershell: A More

In-Depth Look,” but this example illustrates the power of this feature used in an automa-

tion script. The following example shows the code for this process:

trap{write-host “t°t "[ERROR]" -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

"

$VSMachines = get-wmiobject -namespace "root/vm/virtualserver

-class VirtualMachine -computername $ServerName

202 CHAPTER 8 PowerShell and WMI

-ErrorAction Stop

write-host *t°t "[DONE]" -Foregroundcolor Green

_ foreach ($Server in $Servers) { |
af |

$VSMachine = $VSMachines | where {$_.Name -eq $Server.Name}

if ($VSMachine) { :

$Uptime = $VSMachine.Uptime / 60

$Memory = ($VSMachine.PhysicalMemoryAllocated / 1024) / 1000

$Disk = ($VSMachine.DiskSpaceUsed / 1024) /1000

add-member -inputObject $Server -membertype noteProperty ©

-name "Status" -value "Online"

add-member -inputObject $Server -membertype noteProperty ©

-name "Uptime" -value $Uptime

add-member -inputObject $Server -membertype noteProperty ©

-name "CPU" -value $VSMachine.CpuUtilization

add-member -inputObject $Server -membertype noteProperty ©

-name "Memory" -value $Memory

add-member -inputObject $Server -membertype noteProperty ~ |

-name "Disk" -value $Disk
} i

else{

add-member -inputObject $Server -membertype noteProperty ~

-name "Status" -value "Offline"

}

}

}

The last step is writing information in the $Servers variable to the PowerShell console

with the Format -Table cmdlet. This cmdlet can add calculated properties; in this case, it’s

used to change the labels of properties coming from $Servers. The format operator (-f)

controls the formatting of these properties, as shown in the next code snippet:

| NOTE

For more information on the -f operator, refer to the Format method of the .NET

System.String class at http://msdn2.microsoft.com/en-us/library/system.string.

format.aspx.

Summary 203

EON OH ENN ei EHH HNO NONI HHO

$Servers , format-table Name, Status ~ (

i ,@{label="Uptime Mins"; expression={"{Q:NO}" -f $.Uptime}} ~°

| »@{label="CPU %"; expression={$.CPU}} ~

,@{label="Memory MB"; expression={"{@:NQ}" -f $ _.Memory}} ~

|
'

,@{label="Disk MB"; expression={"{@:NQ}" -f $.Disk}} © /

-wWrap : |

Summary
In summary, this chapter has focused on how to utilize WMI in conjunction with WSH

and PowerShell to complete automation tasks. The examples and scripts shown in this

chapter are by no means inclusive to what automation tasks can be completed using

WMI. Furthermore, this chapter has shown you just how easy using WMI with PowerShell

is. Armed with this knowledge, the limits to what you can accomplish using the two of

these technologies should be fairly unbounded.

During the review of the real-world automation scripts, this chapter also unveiled a very

powerful PowerShell feature. As discussed, a side effect of PowerShell’s relationship with

the .NET Framework is the ability to interact with and retrieve data from Web-based

services. The resulting feature was used in the MonitorMSVS.ps1 script to gain access to

Microsoft Virtual Server information that previously using VBScript would be more diffi-

cult to access and process. It really can’t be stressed enough that the example shown in

this chapter only scratched the surface in what can be done using this feature.

ig ; a. : PSS,
; > » D ° “% 2s ;

ae | 7 a ‘ > a ' ;
i, Fo - co] < ;

eae a Ry oe 7 we
= - : 7 < 4"

a 7 - - _ < 2 , 7 i) -) 7
; n= 6 2) se 2 1 een a

a. he ae 7 ids i ‘ ip an ates :
— iY : 2 wy i 7 oat) 4

a 4 asa) é 5 7 , by + be ‘ &~9G we Ly

ra ‘a * in Sitettielt ele
= > OF on, Se! &s - =e | sega” @<

or ijk a 2 ; : xy @ Sate a ia ae

mn aa): S aa aks ris i OP oats Sais @e

‘ wives ‘Sen aa

a i ole ~ a tx i! Ash ret 1S" ny.

a A Gar? 4s on iny a2 ee me - oUrmed bard
‘ i ea, 7) eT ". i i.
i q - ’ wae ae ; , PEt Alanine

r , 7 ij
POs her Te ee Sey: ee >: 1. re
2 a ie f al < o > iL ; , ® @ 4

; nin’ : ng Geter ; eran 7 Sn ee cae

| SON ee Mit emned
gf jo . 7 Ce eee eat oon Can ay

vein a) We) A ae Gaba © a

R Q InN THIS CHAPTER

>» Introduction

PowerShell and

Active Directory
» Comparing ADS! Usage

Between WSH and PowerShell

» From VBScript to PowerShell

Introduction

This chapter explains Active Directory Services Interfaces

(ADSI) and describes the approaches Windows Script Host

(WSH) and PowerShell take for Active Directory manage-

ment tasks. To understand these concepts, you review some

examples that compare using WSH and PowerShell for

Active Directory management tasks. Finally, you see a

VBScript-to-PowerShell example that uses ADSI to perform

an Active Directory automation task. The goal is to give

the reader a chance to learn how PowerShell scripting

techniques can beapplied to complete real-world automa-

tion needs.

Comparing ADSI Usage Between
WSH and PowerShell
Before learning how to use PowerShell to manage Active

Directory, you need to know that ADSI is the primary

programming interface for managing Active Directory. Any

Active Directory management tool typically uses ADSI to

interact with Active Directory. Similarly, when managing

Active Directory through a script, you usually use ADSI.

To use ADSI as a component in your scripts, you need to

understand several key concepts. First, ADSI consists of a

series of providers: Lightweight Directory Access Protocol

(LDAP), Novell Directory Services (NDS), Novell NetWare

3.x (NWCOMPAT), and Windows NT (WinNT). These

providers allow external programs and scripts to manage a

variety of network-based directories and data repositories,

206 CHAPTER 9 PowerShell and Active Directory

such as Active Directory, Novell NetWare 4.x NDS, and NetWare 3.x Bindery, and any

LDAP-compliant directory service infrastructure (LDAP V2 and up). However, additional

ADSI providers can be developed to support other types of data repositories. For example,

Microsoft has an Internet Information Services (IIS) ADSI provider for managing LIS.

Second, an ADSI provider implements a group of COM objects to manage network direc-

tories and data repositories. For example, an administrator can use the ADSI WinNT

provider to bind to and manage Windows domain resources because it includes objects

for users, computers, groups, and domains, among others. Objects made available by an

ADSI provider typically reside in the target resource you want to manage. By accessing the

applicable ADSI provider, a program or script can bind to an object and manage it with a

set of methods and properties defined for that object.

Third, ADSI provides an abstraction layer so that you can manage objects across different

directory services and data repositories. This abstraction layer, called the IADs interface,

defines a set of properties and methods as the foundation for all ADSI objects. For

example, an ADSI object accessed through the IADs interface has the following features:

>» An object can be identified by name, class, or ADsPath.

>» An object’s container can manage that object’s creation and deletion.

> An object’s schema definition can be retrieved.

>» An object’s attributes can be loaded into the ADSI property cache and changes to

those attributes can be committed to the original data source.

>» Object attributes loaded into the ADSI property cache can be modified.

Fourth, ADSI provides an additional interface (IADsContainer) for objects that are consid-

ered containers (such as organizational units, or OUs). When bound to a container object,

this interface provides a set of common methods for creating, deleting, moving, enumer-

ating, and managing child objects.

Fifth, ADSI maintains a client-side property cache for each ADSI object you bind to or

create. Maintaining this local cache of object information improves the performance of

reading from and writing to a data source because a program or script needs to access the

data source less often. What’s important to understand about the property cache is that

object information it contains must be committed to the original data source. If new

objects or object changes aren’t committed to the original data source, those changes will

not be reflected.

Now that you have a better understanding of using ADSI to interact with objects in Active

Directory, you can compare ADSI use in WSH and PowerShell in the following sections.

Comparing ADSI Usage Between WSH and PowerShell 207

Using ADSI in WSH

WSH has two methods for using ADSI. The first one is using a method (such as WSH’s

GetObject()) or function (such as VBScript’s GetObject ()) to connect (bind to) an Active

Directory object. In doing so, you use ADSI’s LDAP or WinNT provider while specifying

the object’s ADSI path, as shown in these two examples:

| Set objUser = GetObject("LDAP://CN=Garett Kopczynski,OU=Accounts , OU=Managed

Objects ,DC=companyabc , DC=com")

sseseennennenenes vans ae EE ASN ON nteonnsesecdannetetneenastata:ss sistent een eneesesntor nsession etaeesse etna

| Set objUser = GetObject ("WinNT://companyabc.com/garett")

r

;
}

The other WSH method for interacting with ADSI is ActiveX Data Objects (ADO). ADO

allows applications or scripts to access data from different data sources by using a series of

underlying Object Linking and Embedding Database (OLE DB) providers. One of these

providers is an ADSI OLE DB (ADODB) provider that enables you to use ADO and its

support for Structured Query Language (SQL) or LDAP to perform rapid searches in Active

Directory. In the following example, you find a user account in Active Directory by

using LDAP:

| set objConnection = CreateObject("ADODB.Connection") |

| Set objCommand = CreateObject ("ADODB.Command")

objConnection.Provider = "ADsDSOObject"

| objConnection.Open("Active Directory Provider")

| objCommand.ActiveConnection = objConnection

objCommand.Properties("Page Size") = 1000

objCommand.CommandText = _

i "<LDAP: //companyabc.com>;(&(objectCategory=user)" _

| & "“(sAMAccountName=tyson)) ;sAMAccountName, distinguishedName ; subtree"

| Set objRecordSet = objCommand.Execute

Sdhdsbbeassssicririninsienssestittassinesnimcco PIN aAaUIMRN ITT ANLINLIS SCONCE DECENT TMM batts alaetEIN Iie

If the user exists, the resulting ADO recordset consists of the user’s sAMAccountName and

distinguishedName. This example shows just the tip of the iceberg, however. By using

SQL or LDAP, you can build more powerful searches to retrieve complex filtered sets of

information about Active Directory objects. Using ADO can make your Active Directory

scripts more powerful. However, all this power has a catch. The ADSI OLE DB provider

allows just read-only access to Active Directory, so to interact with objects, you still need

to use ADSI.

208 CHAPTER 9 PowerShell and Active Directory

Using ADSI with PowerShell

PowerShell also has two methods for working with Active Directory. The first (and easiest)

method is using the built-in [ADSI] type accelerator. It’s similar to the [WMI] type acceler-

ator, in that you specify the object path to which you’re connecting. The difference is

that an object path must be in the form of an ADSI path, as shown in this example:

PS C:\> $User = [ADSI] "LDAP: //CN=Garett
-Kopezynski,OU=Accounts ,OU=Managed Objects, DC=companyabc, DC=com"

This example uses an LDAP ADSI path. However, other providers as well as the [ADST]

type accelerator are available to ADSI. As discussed in Chapter 8, “PowerShell and

WMI,” PowerShell’s [ADSI] type accelerator is a type shortcut for the .NET System.

DirectoryServices.DirectoryEntry class, which can interface with these ADSI providers:

HS, LDAP, NDS, and WinNT. For example, if you want to access the same user account but

with the ADSI WinNT provider, use the following command:

PS C:\> $User = [ADSI] "WinNT: //companyabc.com/garett"

The second method is using the .NET System.DirectoryServices namespace via the

New-Object cmdlet. When using this namespace, you can use two component classes to

manage Active Directory. The first is System. DirectoryServices.DirectoryEntry, the

same Class used by the [ADSI] type accelerator. Its use is shown in the following example:

PS C:\> $User = new-object DirectoryServices .DirectoryEntry
("LDAP: //CN=Garett Kopczynski,OU=Accounts , OU=Managed
Objects , DC=companyabc , DC=com")

The second is the System.DirectoryServices.DirectorySearcher class, which can be

used to perform LDAP searches, as shown here:

PS C:\> $Searcher = new-object DirectoryServices.DirectorySearcher
PS C:\> $Searcher.Filter =

" (& (objectCategory=person) (objectClass=user) (samAccountName=garett)) "
PS C:\> $User = $Searcher.FindOne() .GetDirectoryEntry ()

PowerShell’s methods for using ADSI are similar to the WSH methods. Like WSH,

PowerShell has a direct method involving the System.DirectoryServices.

DirectoryEntry class or the [ADSI] type accelerator to connect to Active Directory objects

and manage them. In addition, like WSH, PowerShell also has a second method involving

Comparing ADSI Usage Between WSH and PowerShell 209

the System.DirectoryServices.DirectorySearcher class to perform searches against

Active Directory and retrieve read-only information about objects.

Therefore, managing Active Directory is much the same in PowerShell and WSH. Despite

PowerShell using the .NET Framework to manage Active Directory, the System.

DirectoryServices.DirectoryEntry and the System.DirectoryServices.

DirectorySearcher classes are just .NET interfaces for ADSI. The differences between WSH

and PowerShell are only in the specific functions and methods for managing Active

Directory and their syntax. The next two sections examine these similarities by reviewing

how to retrieve objection information and create an object using VBScript and

PowerShell.

Retrieving Object Information
The following VBScript example binds to the specified user object by using the VBScript

GetObject() method with an ADSI LDAP provider. The script then retrieves the user

object’s Name, userPrincipalName, description, and physicalDeliveryOfficeName attrib-

utes and echoes them back via a message box or to a cmd command prompt, as shown

here:

Set objUser = GetObject("LDAP://CN=Garett Kopczynski,0U=Accounts , OU=Managed

Objects ,DC=companyabc ,DC=com")

WScript.Echo objUser.Name

| WScript.Echo objUser.userPrincipalName

_ WScript.Echo objUser.description

| WScript.Echo objUser.physicalDeliveryOfficeName

Saving the script as getuserinfo.vbs and then running it by using cscript produces the

following results:

C:\>cscript getuserinfo.vbs
Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

CN=Garett Kopczynski

(eb al-h al cKeleyiiloy-pehig-¥ oLedpmere) itl

Marketing Manager
Dallas

C:\>

To perform the same automation task in PowerShell, you use the [ADSI] type accelerator

to bind to the specified user object. To retrieve the user object's attributes, you use the

ADSI Get() method, as shown here:

210 CHAPTER 9 PowerShell and Active Directory

PS C:\> $User = [ADSI] "LDAP: //CN=Garett
‘Kopezynski,OU=Accounts,OU=Managed Objects, DC=companyabc, DC=com"

PS C:\> $User.Get("Name”")
Garett Kopczynski
PS C:\>

After binding to the user object, you can access its attributes directly from PowerShell

with any of the object formatting or manipulation cmdlets. For example, to access and

display the same attributes as in the VBScript example, you use the Format -List cmdlet:

PS C:\> S$User | format-list Name, userPrincipalName, description,

physicalDeliveryOfficeName

name : {Garett Kopczynski}

userPrincipalName : {Garett@taosage.net}

description : {Marketing Manager}
: {Dallas} | physicalDeliveryOfficeName

PS C:\>

Creating an Object

The following VBScript example binds to the Accounts OU by using the VBScript

GetObject() method with an ADSI LDAP provider. Next, the script uses the ADSI Create()

method to create a user object named David Lightman in the Accounts OU, and then

defines attributes for the new user object with the ADSI Put() method. Finally, the new

user object is written to Active Directory by using the ADSI SetInfo() method, and a

status message about the object creation is displayed via a message box or at a cmd

command prompt, as shown here:

Set objOU = GetObject("LDAP: //O0U=Accounts ,OU=Managed Objects ,DC=companyabc , DC=com")

Set objUser = objOU.Create("user", "CN=David Lightman")

objUser.Put "sAMAccountName", "dlightman"

objUser.Put "sn", "Lightman"

objUser.Put "givenName", "David"

objUser.Put "userPrincipalName", "dlightman@norad.gov"

objUser.SetInfo

Wscript.Echo "User account " & objUser.Get("sAMAccountName") & " created."

Comparing ADSI Usage Between WSH and PowerShell 211

Saving the script as createuserinfo.vbs and then running it by using cscript produces

the following results:

C:\>cscript createuserinfo.vbs

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

User account dlightman created.

Ci \>

To perform the same automation task in PowerShell, you use the [ADSI] type accelerator.

The resulting commands are similar in logic and syntax to the VBScript example. For

example, to create the user object, you bind to the Accounts OU, and then create a new

user object named David Lightman by using the ADSI Create() method. Next, you use

the ADSI Put() method to define the user object’s attributes and the ADSI SetInfo()

method to write the user object to Active Directory. Last, to verify that the account was

created, you bind to the new user object by using the [ADSI] type accelerator. This

process is shown in the following code:

PS C:\> $OU = [ADSI]"LDAP://OU=Accounts ,OU=Managed
Objects , DC=companyabc , DC=com"

PS C:\> $NewUser = $OU.Create("user", "CN=David Lightman")

PS C:\> $NewUser.Put("SAMAccountName”, "dlightman")

PS C:\> $NewUser.Put("sn", "Lightman")
PS C:\> $NewUser.Put("givenName", "David")
PS C:\> $NewUser.Put("userPrincipalName", "dlightman@norad.gov")

PS C:\> S$NewUser.SetInfo()
PS C:\> [ADSI]"LDAP://CN=David Lightman, OU=Accounts , OU=Managed
Objects , DC=companyabc, DC=com"

distinguishedName

{CN=David Lightman, OU=Accounts , OU=Managed

(0) ols K=fon t-oew LOL ereresiilor-behig-) elem» Ooaole) 8a

| OF

If you try to use this example in your environment, you'll notice that the resulting user

objects are disabled initially because the userAccountControl value defaults to 514,

indicating that the account is disabled. To make this example work, you would need to

define addition parameters, such as user password, account status, group member-

ships, and so on.

212 CHAPTER 9 PowerShell and Active Directory

From VBScript to PowerShell
This section shows a VBScript script converted into a PowerShell script. The script deter-

mines whether a list of users are members of a specific group.

At the time this script was developed, companyabc.com was in the process of migrating

users from the old retail management application to a new one. To streamline the process

and limit interruptions in employee productivity, the migration was carried out in stages.

Part of the process involved producing lists of users to be migrated from the old applica-

tion. Each user on the list was migrated to the new application with a configuration based

on Active Directory group membership.

However, manually verifying each user’s group membership on a migration list was time

consuming, and producing membership reports was daunting, with thousands of users

and groups. companyabc.com needed a way to automate the group verification process so

that migration could continue without interruptions. To meet this need, companyabc.

com requested a script that could take a list of users being migrated and produce a report

indicating group memberships for those users.

The IsGroupMember.wsf Script

IsGroupMember.wsf is a VBScript WSF file that was developed to handle companyabc.

com’s group verification process. A working copy is in the Scripts\Chapter 9\

IsGroupMember folder and is downloadable at www.samspublishing.com. To run this

script, two parameters must be defined. The groupname parameter should have its argu-

ment set to the sAMAccountName of the group that user membership is verified against.

The importfile parameter should have its argument set to the name of the CSV import

file listing users who need to be verified. An optional parameter, exportfile, should have

its argument set to the name of the export file where data by the script is stored.

NOTE
The CSV import file must contain only one column (sAMAccountName). To see an

example, refer to the users.csv file in the Scripts\Chapter 9\IsGroupMember

folder, which is downloadable at www.samspublishing.com.

Here’s the command to run the IsGroupMember.wsf script, with an example of the output

shown in Figure 9.1:

D:\Scripts>cscript IsGroupMember.wsf /groupname:
"TAO-D-RA-LS-LocalWorkstationPowerUsers"

/importfile:".\users.csv" /exportfile: "export.csv"

From VBScript to PowerShell 21/3

tema2\omd.exe BER |

*'4inportf&
oft CR) Window:

SHE TE
t IsGroupMember t
TNT EEE

{OKI
Cok]

Checking Import File COKI
Get Group Nenbership Infa COK]
Getting User Info COKI

[Name], [IsMenber]

SePica, Yes
ill.Doesn’t Exist

FIGURE 9.1 The IsGroupMember.wsf script being executed

The IsGroupMember.wsf script performs the following sequence of actions:

1. The script tests the connection to the current domain by retrieving its

DefaultNamingContext, which is used later to query Active Directory. If this con-

nection fails, the script halts.

2. The script creates an ADO connection object, which is used later to search Active

Directory by using the ADSI OLE DB provider.

3. Next, the ParseFile function opens the specified CSV file and parses user informa-

tion into the specified array (arrUsers). If this function fails because the specified

file is invalid, the script halts.

4. The script queries Active Directory for the specified group by using the ADO object.

If the group isn’t valid, the script halts. If the group is valid, however, the script

connects to the group by using ADSI, retrieves the group members, and adds them

to the group Dictionary object (dictGroup).

5. Next, the script steps through users in the arrUsers array, connecting to each user

object by using ADSI and retrieving the user’s dist inguishedName. Invalid users are

added to the user Dictionary object (dictUsers) with the value "Doesn't exist". If

the user is valid, the script checks whether the user’s distinguishedName exists in

the dictGroup object. Users who are group members are added to the dictUsers

object with the value "Yes". Users who aren’t group members are added to

dictUsers with the value "No".

6. Last, the script writes information in the dictUsers object to the cmd command

prompt. If an export filename is specified, the same information is written to the

export file.

/ <?xml version="1.0" ?>

| <package>

214 CHAPTER 9 PowerShell and Active Directory

The first code snippet consists of the initial XML elements for a WSF. These elements are

used to define the allowed parameters, the script’s description, examples on the script’s

operation, and the scripting language being used:

_ <job id="IsGroupMember">

<runtime>

<description>
' KEK KKK KK KEKE KKK KKK EK KEK KR KEK KKK KKK KKK KKK EKRKRKEKRKEKEKKEKKEKEKKEKKKKEKEE

_ Used to check if users are members of a specified group.

</description>

<named name="groupname" helpstring="The name of the group to check."

type="string" required="1" />

<named name="importfile" helpstring="The import CSV file path/filename."

type="string" required="1" />

<named name="exportfile" helpstring="The export CSV file." type="string"

required="0" />

<example>

|

i
H

: KEK KKK KKK KKK KKK KK KEK KKK KEKE KEK K KEKE KKEKKKKEEKKEKKKREKKKKKKKKEK |

|

Example:

cscript ISGroupMember.wsf /groupname:"mygroup" /importfile:"users.csv"

</example>

</runtime>

<script language="VBScript">

<![CDATA[|

Next, the script checks to see if arguments have been defined for the required parameters

groupname and importfile. If the arguments are not present, the script returns the script

usage information (defined in the previous code snippet) to the console and quits. If argu-

ments are defined, the script then sets up the script environment by defining the vari-

ables that will be used throughout the rest of the script.

Because VBScript arrays are difficult to store and retrieve data from, this script makes use

of the Windows Scripting Runtime Library’s Dictionary object (dictGroup and dictUsers

in the preceding code). The Dictionary object, unlike normal arrays, allows you to store

data in key/value pairs. With this storage method, you can access data in the array by

specifying the key, use the Dictionary object’s methods and properties on data in the

array, and add or remove data from the array dynamically without needing to resize it as

shown in the next code snippet:

From VBScript to PowerShell 215

'On Error Resume Next

If WScript.Arguments.Named.Exists("groupname") = FALSE Then

WScript.Arguments.ShowUsage()

' WScript.Quit

End If

If WScript.Arguments.Named.Exists("importfile") = FALSE Then

| WScript.Arguments.ShowUsage()

' WScript.Quit

| End If

_ Const ForReading = 1

Const ForWriting = 2

| ReDim arruUsers(Q)

_ Dim arrMemberOf |

| Dim StdOut

_ Dim FSO

_ Dim strGroupName, strImportFile, strExportFile

Dim strDNSDomain, dictGroup, dictUsers

Set StdOut = WScript.StdOut

Set FSO = CreateObject("Scripting.FileSystemObject")

; Set dictGroup = CreateObject("Scripting.Dictionary")

Set dictUsers = CreateObject("Scripting.Dictionary”)

HUE NS

strGroupName = WScript .Arguments .Named("groupname")

i strimportFile = WScript.Arguments.Named("importfile")

strExportFile = WScript.Arguments.Named("exportfile")

Seannniec: a

The next code snippet is the beginning of the actual automation portion of the script.

First, the script writes the script header to the console, binds to the RootDSE object, and

retrieves the DefaultNamingContext. This is done for two reasons. First, the script is

testing for a valid connection to an Active Directory domain. This test is performed

216 CHAPTER 9 PowerShell and Active Directory

because if the script cannot connect to an Active Directory domain at this point during

its execution. Then the script will fail when it later tries to query information from Active

Directory. As in Chapter 8, this is an advanced form of error handling by determining

when a script might fail and including a method for preventing the failure.

Second, the script needs to get the current logon domain’s name for use later in the

script. Without this information, a script would have to be modified to ask users from

which domain they want to get group membership information. In environments with

multiple domains, you might want to add this feature to your scripts. However, for this

example, you don’t need it, so the script retrieves the domain’s name from the RootDSE

object and stores it in the strDNSDomain variable:

| Mess "sé ei ditt HHH HHH HHH HH HH EE A

| Mess "# IsGroupMember #"
Mess "###HHHHHHHHHAAHHH HA HHHHHHABHHHHAAHHHHAAE |

Mess vbNullString

|

i

? 1

StatStart "Test Domain Connection" |

Set objRootDSE = GetObject("LDAP: //RootDSE") |

StrDNSDomain = objRootDSE.Get("DefaultNamingContext")

i
Xerror i

StatDone

Sse sani ss oii cts enone ai es un

In the following code example, an ADO object (objConnection) is created, which will be

used later in the script. Then the ParseFile function is used to import the user informa-

tion from the CSV file into the arrUsers array:

'

j
|

Ce ae Ce ee ee

N
N
;

me

' Set up ADODB connection
i
|
'
StatStart "Set up ADODB Connection"

| Dim objConnection

| Dim objCommand

Dim objRecordSet

| Set objConnection = CreateObject ("ADODB.Connection")

Set objCommand = CreateObject ("ADODB.Command")

From VBScript to PowerShell DN

objConnection.Provider = "ADsDSOObject"

objConnection.Open("Active Directory Provider")

objCommand.ActiveConnection = objConnection

objCommand.Properties("Page Size") = 1000

: Xerror

_ StatDone

' Check CSV Import File
1

_ StatStart "Checking Import File"

ParseFile strImportFile, arrUsers

| StatDone

LOSSES

ssteseatrtnernnnnnnnnssneiiniteascrscssseion

Next, the script uses the ADO object created in the previous code example to perform an

LDAP search for the specified group in the current Active Directory domain. Based on

information from this search, the script determines whether the group exists and its

distinguishedName. Next, the script uses distinguishedName to bind directly to the group

object in Active Directory and retrieve the group’s members. The members are then

placed in the arrMemberOf array. This array is then stepped through with a For loop,

adding each group member to the dictGroup object with a placeholder value of

"Something" (which can be anything as long as the key/value pair is completed):

StatStart "Get Group Membership Info"

objCommand.CommandText = _

"<LDAP://" & strDNSDomain & ">;(&(objectCategory=group)" _

& “(sAMAccountName=" & strGroupName & "));distinguishedName; subtree’

Set cbjRecordSet = objCommand.Execute

If objRecordset.RecordCount = @ Then

StdOut.Write(vbTab)

StdOut.WriteLine("Not a valid group!")

WScript.Quit()

Else

Set objGroup = GetObject _

("LDAP://" & objRecordSet.Fields("distinguishedName"))

objGroup.getInfo

218 CHAPTER 9 PowerShell and Active Directory

arrMemberOf = objGroup.GetEx("member") |

For Each Member in arrMemberOf

dictGroup.Add Member, "Something"

Next

End If

Set objGroup = Nothing

| StdOut .Write(vbTab)

| StdOut.WriteLine("[OK]")

The following code snippet steps through the arrusers array that was created by parsing

the import file:

| StatStart "Getting User Info"

For Each User In arruUsers

Err.Clear

objCommand.CommandText = _

"<LDAP://" & strDNSDomain & ">; (&(objectCategory=user)" _

& "(sAMAccountName=" & User & "));distinguishedName; subtree"

Set objRecordSet = objCommand.Execute

/ If objRecordset.RecordCount = 0 Then

i dictUsers.Add User, "Doesn't Exist"

i Else

strUserDN = objRecordSet.Fields("distinguishedName")

If (dictGroup.Exists(strUserDN) = True) Then

dictUsers.Add User, "Yes"

Else

dictUsers.Add User, "No"

: End If

| eee

Set objRecordset = Nothing

Next

StatDone
terme RA reat monn onrermmenihioeminesrin sn ntiivniinmoenmenrninieiaumni

i
i

|

i

|
|

|

strUserDN = vbNullString

From VBScript to PowerShell 24:9

For each user, the script performs an LDAP search in the current logon domain using the

ADO object. Users who don’t exist are added to the dictUsers object with the value

"Doesn't Exist". However, if a user does exist, the script takes the distinguishedName

from the recordset returned from the LDAP search and does a comparison operation to

see if that user exists in the dictGroup object.

To perform this comparison operation, the script uses the Dictionary object’s Exists()

method, which enables you to see whether a key exists in a Dictionary object. This is the

main reason for using the Dictionary object instead of a VBScript array. Next, based on

information returned from the Exists() method, the script adds the user to the

dictUsers object with a value of "Yes" to indicate the user is a group member or a value

of "No" when the user isn’t a group member.

The result is a collection of user information stored in the dictUsers object. Based on

information in this object, the script then loops through the users in the dictUsers

object and writes the information to the console, as shown in this next code example:

Mess vbNullString

Mess "[Name],[IsMember] "

For Each User In dictUsers

StdOut.Write User & ","

StdOut.WriteLine dictUsers.Item(User)

If the variable exportfile was defined when the script was executed, the script creates the

export file using the FSO object. Then the script again loops through the dictUsers object

and writes the user information into the export file. The following example shows the

code for this process:

Mess vbNullString

StdOut.Write "Creating Import File..."

If strExportFile <> "" Then

Set objExportFile = FSO.OpenTextFile(strExportFile, ForWriting, TRUE)

For Each User In dictUsers

objExportFile.Write User & ","

objExportFile.WriteLine dictUsers.Item(User)

Next

:

cain iwistaasiasasicainaaatutiensialiah

220 CHAPTER 9 PowerShell and Active Directory

a ee IN een ee ee ee ee ee - , . =

| objExportFile.Close()

| Set objExportFile = Nothing

StdOut.WriteLine "[DONE]"
| End If

The last code snippet consists of the Subs and Functions that are used throughout the

script and the closing XML elements for the script. Further review of the final section of

the script is not needed because these Subs and Functions are either fairly self explana-

tory or have been previously discussed:

Sub Mess (Message)

' Write to console

StdOut.WriteLine(Message)

End Sub

Sub StatStart (Message)

' Write to console

| StdOut.Write (Message)

End Sub

Sub StatDone

' Write to console

StdOut.Write(vbTab & vbTab)

StdOut.WriteLine("[OK]")

End Sub

End

From VBScript to PowerShell

/ Sub Xerror

If Err.Number <> @ Then

' Write to console

StdOut.WriteLine(" Critical Error: " & CStr(Err.Number) _

& " " & Err.Description)

WScript.Quit()

End if

Sub

' Functions

- Function ParseFile(file, arrname)

End

He

' This function parses a file and gives you back an array

' (Skips the first line!!!)

On Error Resume Next

count = -1

' Open file for reading

Set objFile = FSO.OpenTextFile(file, ForReading)

objFile.SkipLine ‘note: This will always be the col headers

Xerror

' Reads each line in the file and places it into an array

Do While objFile.AtEndOfStream <> True

count = count + 1

If count > UBound(arrname) Then ReDim Preserve arrname(count)

arrname(count) = objFile.Readline

Loop

Xerror

' Close the file because you are done with it.

objFile.Close()

Set objFile = Nothing

count = 0

Function

</script>

</job>

</package>

PION

222 CHAPTER 9 PowerShell and Active Directory

The IsGroupMember.ps1 Script

IsGroupMember.ps1 is a PowerShell conversion of the IsGroupMember.wsf script.

A working copy is in the Scripts\Chapter 9\IsGroupMember folder and is downloadable

at www.samspublishing.com. You need to define two parameters to run this script.

The GroupName parameter should have its argument set to the sAMAccountName of the

group that user membership is verified against. The ImportFile parameter should have its

argument set to the name of the CSV import file listing users who need to be verified. An

optional parameter, ExportFile, should have its argument set to the name of the export

file where data written to the script should be stored. Here’s the command to run the

IsGroupMember.ps1 script:

nS D: ney ARYA: ING ecbiaeahes - ps1 "TAO-D-RA-LS-LocalWorkstationPowerUsers"

-\users.csv" "“export.csv”

Figure 9.2 shows the execution of the IsGroupMember.ps1 script without an export file

being specified and Figure 9.3 shows the execution of the script with an export file

having been specified:

ae CA\WINDOWS\system32\windowsPowerShell\ v1. O\powershell.exe

PS_D:\Scripts .\isGroupHember.psi "TAO-D-RA-LS-LocalWorkstationPowerlisers” ©

IsGroupMember
aes to check if users are members of a specified group.

on
at Dat iy 1672886 22:
NoeinAnaNnNNN Hanunannin wii fiat i

Domain Connection Faas age - internal
OK

hecking Import File [OKI]

lo
Doesn’t Exist
No
Doesn’t. Exist

Doesn’t Exist

s S

FIGURE 9.2 The IsGroupMember.ps1 script being executed without an export file

t\Scripts .\IsGroupMember. ps1
" “export .csu”

Seript IsGroupMenber .
At teas : Used to check if users are members of a specified group.

tye BO
672006 22 5?

as. einn nant asee aa wah wih hana Sh

Donain Connection taosage.internal
Checking Group Name COKI
Checking Import. File [OKI

Exported Data To: export.csy

PS D:\Scripts

FIGURE 9.3. The IsGroupMember.ps1 script being executed with an export file

From VBScript to PowerShell 2238

The IsGroupMember.ps1 script performs the following sequence of actions:

1. The script connects to the current logon domain by using the .NET
System.DirectoryServices.ActiveDirectory.Domain class, and then retrieves the
domain name, which is written to the PowerShell console. If this connection fails,

the script halts.

2. The script verifies that the specified group exists in the current domain by using the
Get -ADObject function. If the group exists, the function returns an object bound to
the group object in Active Directory ($Group). If the group doesn’t exist, the script
halts.

3. The script uses the Test -Path cmdlet to verify that the import file is valid. If the file

is invalid, the script halts.

4. The script uses the Import -Csv cmdlet to populate the $Users variable with the

contents of the CSV import file.

5. The script uses the Get -ADObject function to verify that each user in the $Users

collection exists in the current domain and to bind to that user’s Active Directory

user object.

6. If the user exists, the script compares the user’s distinguishedName against distin-

guished names in the specified group’s ($Group) member attribute. When a match is

found, the user’s object is extended by using the Add-Member cmdlet to indicate the

user is a group member ("Yes"). If there’s no match, the user’s object is extended by

using the Add-Member cmdlet to indicate the user isn’t a group member ("No"). If the

user doesn’t exist in the current domain, the user’s object is extended by using the

Add-Member cmdlet to indicate that information ("Doesn't Exist").

7. If an export file has been specified, the script uses the Export -Csv cmdlet to create a

CSV file based on the $Users variable’s contents. If no export file has been specified,

the script writes the $Users variable’s contents to the PowerShell console.

The first code snippet contains the header for the IsGroupMember.ps1 script. In this

header includes information about what the script does, when it was updated, and the

script’s author. Just after the header are the script’s parameters:

HAH HH HH AH HE A HE a HH

IsGroupMember.ps1

Used to check if users are members of a

specified group.

Created: 10/21/2006

Author: Tyson Kopezynski

HHH HEH AEH HEE HE AE A HH A

param([string] $GroupName, [string] $ImportFile, [string] $ExportFile)

224 CHAPTER 9 PowerShell and Active Directory

Next, as seen in the following code snippet, the script loads the Get -ScriptHeader and

Show-ScriptUsage functions:

«RAE HEHEHE HEE EEE EE

Functions

HHHAHHHHHHHAHHHHHHHHHH HHH RRR EHH

Pie Ss oe tial ee a we bine Soe ee ee ee ones Sele aie mies

Get-ScriptHeader

#-------------------------- oe ee

Usage: Generates the script header statement.

$Name: The name of the script.

$Usage: What the script is used for.

function Get-ScriptHeader{

param ($Name, $Usage)

$Date = Date

$SText = "HHHHHHHHHHHHHHHHHHHHEHAHHHHHH HHH HH Oo"

$Text t= "# Script $Name “n"

$Text += "# Usage: § $Usage ‘n"

$Text += "# User: $Env:username ‘n"

$Text += "# Date: $Date “n"

SText += "ee eH AE HH HE AEH AH HHH HAH A A HH A HE A

$Text

}

We Oe ede eG oa ee es ee i ee

Show-ScriptUsage

He SG Sa Me Blan Ghee ates win bw Swi a Sc a pieeu G etets a ore ee

Usage: Used to show script usage information.

function Show-ScriptUsage{

write-host

write-host "Usage: ISGroupMember -GroupName value"

"-ImportFile value -ExportFile value"

write-host

write-host "Options:"

write-host

From VBScript to PowerShell 225

write-host "GroupName *t: The name of the group to check."

write-host "ImportFile ‘t: The import CSV file path/filename. "

write-host "ExportFile ‘t: [Optional] The export CSV file."

"path/filename. "

write-host

write-host "CSV Format: "

write-host "sAMAccountName"

write-host

write-host "“Example:"

write-host 'ISGroupMember.ps1 "mygroup"'

“eusers.csv" “results.csv"’

write-host

These functions are used to display script usage information similar to what a WSF script

displays, as shown in this example:

PS D:\Scripts .\IsGroupMember.ps1

Please specify the group name!

HHFHEEEREE RETR EET EERE EEE RETR EEE H ETH

Script IsGroupMember
Usage: Used to check if users are members of a specified group.

User: tyson
Date: 12/17/2006 09:12:16

HHEFHHHEEEEEREEH ERE EEREREEE EERE EE HH HH

Usage: ISGroupMember -GroupName value -ImportFile value -ExportFile value

Options:

GroupName ‘The name of the group to check.

ImportFile The import CSV file path/filename.

ExportFile [Optional] The export CSV file. path/filename.

CSV Format:

sAMAccountName

Example:

ISGroupMember.psl "mygroup" "users.csv" "results.csv"

PS D:\Scripts

226 CHAPTER 9 PowerShell and Active Directory

A helpful feature of a WSF file is that it can be used to give users information about the

script’s purpose and parameters and examples of how to use it. Users don’t have to read

comments or refer to external documentation to understand what a script does and how

to use it. This feature improves users’ experience with an automation script, thus increas-

ing the chance that they will consider your scripts highly usable.

Unfortunately, PowerShell lacks this feature. The best you can do with PowerShell is

define the required parameters and give information about their use by means of the

throw keyword. The throw keyword has been used in previous scripts, but it doesn’t

display information in the same user-friendly format that WSF scripts do. To achieve this

same level of usability, additional logic had to be added in the form of the Show-

ScriptUsage and Get -ScriptHeader functions. Show-ScriptUsage defines what the script

does, its parameters, and how it can be used. Although you can reuse this function’s

structure in other scripts, the content is static and must be changed for each script. Get -

ScriptHeader is simply used to display a script title. It can be reused in other scripts with

little modification because the $Name and $Usage parameters are what define the informa-

tion in the output.

The end result is that the functions in the script usage information displayed in the

previous example is similar to what’s produced from a WSF script. Although modifying

Show-ScriptUsage for reuse is a little cumbersome, the benefit of these simple, generic

functions is the illusion of,a script that has been written for users rather than scripters.

These functions are used throughout the remainder of the book.

NOTE
A possible enhancement to the Show-ScriptUsage function is making it more generic

so that it can be used in other scripts without modification. For example, the informa-

tion returned from this function could be based on an XML string structured much like

a WSF file.

After the script has loaded the usage functions, the next two functions to be loaded are

used to interact with Active Directory:

- EE BS tice tenn Sete

Hee ea ee oe oe ee 5 pinlee we Oe Ura wie Oi os

Get-CurrentDomain

Hie Sia era ioie s e ee wie a wate nc Mais | Reus yh cee Se ee

Usage: Used to get the current domain.

| function Get-CurrentDomain{

[System.DirectoryServices.ActiveDirectory.Domain] : :GetCurrentDomain()

i

|

From VBScript to PowerShell DOT,

Usage: Used to retrieve an object from Active Directory.

$Item: The object item type. (sAMAccountName or distinguishedName)
_ # $Name: The name of the object. (sAMAccountName or distinguishedName)

| # $Cat: The object category.

_ function Get -ADObject{

param ($Item, $Name, $Cat)

trap{Continue}

$Searcher = new-object DirectoryServices.DirectorySearcher

$SearchItem = "$Item"

$SearchValue = "$Name"

$SearchCat = "$Cat"

$Searcher.Filter = °

"(&($($SearchItem) =$($SearchValue)) (objectCategory=$($SearchCat)))"

$Searcher.FindOne().GetDirectoryEntry()

}

The first function, Get -CurrentDomain, is a basic function that binds to the current logon

domain object. To do this, the function uses a .NET Framework reference to the

System.DirectoryServices.ActiveDirectory.Domain class (as discussed in Chapter 3,

“PowerShell: A More In-Depth Look”) with the GetCurrentDomain() method. Next, the

function returns the resulting domain object, which verifies a connection to the domain

and provides a method to display the domain’s DNS name to script users (a visual

reminder that the domain information is being queried).

The second function, Get -ADObject, verifies an object’s existence in Active Directory

based on a unique identifier, such as the sAMAccountName or distinguishedName attrib-

utes. Then it connects to that object by using the System.DirectoryServices.

DirectorySearcher class, which is a .NET method for performing Active Directory

searches. When calling Get -ADObject, you must provide the object’s unique identifier

($Name), the type of object ($Item) that the unique identifier is (sAMAccountName or

distinguishedName), and the object’s category ($Cat) type (User, Computer, or Group).

Using these values, Get -ADObject creates a $Searcher object and sets its Filter property

to an LDAP search string constructed from the information you’ve provided. Next,

Get -ADObject uses the $Searcher object’s FindOne() method, which performs the search

and returns only the first entry found. Last, the GetDirectoryEntry() method is used on

the returned search entry to bind to the referenced object in Active Directory. At this

point, you have either verified that an object exists, or you can interrogate the object

returned from the function for more information.

Tircanirenisentio

228 CHAPTER 9 PowerShell and Active Directory

In the following code snippet, the $ScriptName and $ScriptUsage variables are defined.

These variables will be used later in the script to display the script usage information:

HF HE HEH HE HEE HE AE EE A EA EA EE AE |
Main

1 AEE AEE EEE A

Poe
_ # Set Config Vars
eo ee

| $ScriptName = "IsGroupMember"

$ScriptUsage = "Used to check if users are members of a specified group."

In addition to displaying information on the script’s usage information, the Get -

ScriptHeader and Show-ScriptUsage functions also provide a help scheme when users

define the first argument as one of these strings: -?, -h, and -help. To do this, the script

makes use of the match comparison operator defined in this statement: $args[®] -match

'-(\?1 (hj (help)))' as shown in the following code snippet:

SLMS OHMHE OS NUUONLHERONESEEIOSENLL SEO OEP LONNIE ITN et cnsomteseteeemecnseceensessiesaomaoeteeteesimnsasssieetsteeseelammnnsteetei ascescaamesteeetettia ssn maremmnmeraetntovstsonmenmnneerettetetetair tina ne

[sce Petey oe pees |
_ # Verify Required Parameters

| rece ere nance teens snes
| if ($args[0] -match ‘-(\?!(h!(help)))'){

| write-host :
| Get-ScriptHeader $ScriptName $ScriptUsage

| Show-ScriptUsage

i Return |

| a |
L csvset setmeasoscuanioatanttneaatamtesentesiatassssasiaetomashieiesamatinceshattee

The next two code sections are methods to check for required script parameters. Previous

script examples relied on the throw keyword when defining a parameter (with the param

keyword), thus controlling what parameters were required. In this script, instead of just

using the throw keyword, you check for the required parameter later in the script to give

script users a helpful message stating that they forgot to provide an argument for a

required parameter. You can also give script users information about parameters, their use

and examples of arguments.
,

Last, Get -ScriptHeader is used to display a script header, which gives users visual confir-

mation that they’re running the right script. In addition, if the script takes several hours
to finish, the header displays the date and time the script started to let users know how
long it has been running.

From VBScript to PowerShell 229

The point of these functions is to improve the script’s usability, a quality that’s often over-

looked in scripts and CLIs. Lack of usability is one of the main reasons Windows system

administrators have stayed away from using scripts and CLIs for managing their Windows

environments. The PowerShell team recognized the usability problems of past CLIs and

scripting languages and made an effort to create a shell and language not only for

scripters, but also for IT professionals. When you develop your scripts, keep users’ percep-

tions in mind. As discussed in Chapter 5, “PowerShell Scripting Best Practices,” automa-

tion is but one part of the puzzle when developing a script.

if (!$GroupName) {

| write-host

write-host "Please specify the group name!" -Foregroundcolor Red

write-host
Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage

Return

}

if (!$ImportFile) {

| write-host

| write-host "Please specify the import CSV filename!" -Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage

Return

Erereuusennctininieneneenenbisiniiiisensiihiiiiiiensils ENUM MN MSA MIS MN LMA ADL AARNE LLL WIM AAS SLAM MAO AOA LANA TENT

In the next code snippet, the Get -ScriptHeader function is used to indicate to the script

operator that the automation portion of the script has started:

write -host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

The next step is for the script to verify that there is a valid domain connection. To accom-

plish task, the script uses the Get -CurrentDomain. If a valid domain connection doesn’t

exist, the script halts and returns the script status to the operator. If a connection does

exist, the script continues execution and writes the domain name to the console, as

shown in the next code snippet:

230 CHAPTER 9 PowerShell and Active Directory

trap{write-host t "[ERROR]" -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

write-host "Domain Connection" -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain's name

write-host ‘“t $Domain.Name -Foregroundcolor Green

In the next code snippet, the group name in the $GroupName variable is verified. To

perform the verification, the script uses Get -ADObject function. This function connects to

Active Directory and completes a search for the group by its name. If an object is returned

from the function, then the group name is valid; if no object is returned, the group name

is considered invalid and the script halts:

_ write-host "Checking Group Name" -NoNewLine

Now get the group# Now get the group

$Group = Get-ADObject "“sAMAccountName" $GroupName "Group"

if (!$Group) {

write-host “t "Is not valid!" -Foregroundcolor Red

write-host

Break

}
else{

write-host *t "[OK]" -Foregroundcolor Green

}

The last verification task to verify the validity of import file name in the $ImportFile

variable by using the Test -Path cmdlet:

From VBScript to PowerShell 231

perseereerrmrnneeeqomoserenreret ies zr Ue 7 nna mitt rh i ee em pepe ene mene SSITH Ramen

i i

| write-host "Checking Import File" -NoNewLine |

if (!(test-path $ImportFile -pathType leaf)) { i

write-host ‘t "Is not a valid file!" -Foregroundcolor Red

write-host

Break

}
| else{

write-host ~t "[OK]" -Foregroundcolor Green

} |

i
:
i

‘

| |
|
i i
:
i
; i

In the following code snippet, the script is completing the user’s group membership veri-

fication. As explained previously, based on the user’s validity in Active Directory and if

they are a member of the specified group ($GroupName), the script extends the user’s

object in the $Users collection:

oor

ee eee kes
Check Each User's Group Membership

|. #--- 22-2202 e eee ers e ee
$Users = import-csv $ImportFile

foreach ($User in $Users) {

Fae
| $sAMAccountName = $User.sAMAccountName

i
$ADUser = Get-ADObject "“sAMAccountName" $sAMAccountName "User"

| if ($ADUser) {
| [string]$DN = $ADUser.distinguishedName

|
|
i $IsMember = $Group.Member |

where {$_ -eq $DN}

if ($IsMember) {

add-member -inputObject $User -membertype noteProperty ©

-name "IsMember" -value "Yes"

else{

add-member -inputObject $User -membertype noteProperty :

|
i

|
|
/
|
cf

i }
|
i

| -name "IsMember" -value "No"

232 CHAPTER 9 PowerShell and Active Directory

else{

What if the user doesn't exist?

i add-member -inputObject $User -membertype noteProperty ~

-name "IsMember" -value "Doesn't Exist"

Sscesosnesesnsneessteht ei itetetteneetetie Saabscene

You might recall from previous chapters that the & call operator runs a script block in its

own scope. When the script block finishes, its scope is destroyed along with anything

defined in that scope.

In the previous code snippet example, the & call operator is used so that variable names

can be recycled without having to worry about old data. For example, when you come

out of the for loop, the $sAMAccountName and $ADUser variable names are still valid

objects. Instead of risking the possibility of using these old objects accidentally, you just

use the & call operator to make sure the object is destroyed after running the script block.

The task as shown in the following code snippet is to either write the contents of the

$Users collection to the console. Or, if an export file has been specified, the contents are

written to a CSV file using the Export -CSV cmdlet.

if (!$ExportFile) { |

$Users |

| } |
| else{

write -host

write-host "Exported Data To: " -NoNewLine |

$Users | export-csv $ExportFile

write-host "$ExportFile" -Foregroundcolor Green |

write-host

i

}

~
Vy

i
:

i
H

i
t

i

i
|

i

i

i
) i
|

i
x

Summary
In this chapter, you explored how PowerShell interacts with ADSI and how it can be used

to read and modify Active Directory objects. During this exploration, you learned that

PowerShell has the same access to Active Directory management interfaces, if not more

with its relationship with .NET Framework, as WSH. In addition to reviewing how

PowerShell can be used to manage Active Directory, you also reviewed a working script

that is used to determine if a list of users are members of a group. Like WSH, this is but
one.of the many possible types of Active Directory management scripts that can be
developed using PowerShell.

PART III

Using PowerShell
to Meet Your

Automation Needs

IN THIS PART

CHAPTER 10 PowerShell and Systems

Management 235

CHAPTER 11 PowerShell and Exchange 261

Teg Gay

-R 10

Using PowerShell
in the Real-World

This chapter shows you how powerful PowerShell can be

when managing Windows environments. You review two

PowerShell scripts used for systems management. The first

script, PSShell.ps1, manages user interaction with the

Windows desktop by creating a controlled, secure, and

attractive desktop replacement. The second script,

ChangeLocalAdminPassword.ps1, manages local administra-

tor passwords on servers in an Active Directory domain.

These scripts demonstrate how to meet an organization’s

systems management needs. As you step through each

script, you learn new PowerShell concepts and see how

they can be applied to meet your automation needs.

The PSShell.ps1 Script
PSShell.ps1 can be used as a secure shell solution for

kiosk workstations. A working copy is in the Scripts \

Chapter 10\PSShell1 folder and is downloadable at

www.samspublishing.com. This script requires an

understanding of Windows Shell Replacement. Make sure

you read the following sections about the script compo-

nents to ensure that you know how to deploy and use the

script effectively. First, however, you should review why

this script is needed.

companyabc.com manufactures processors for the general

public and the U.S. government. Employees working on

processors intended for government use must have special

security clearance, and any data related to manufacturing

these processors must be secured to prevent exposure to

unauthorized entities, both inside and outside the

company.

IN THIS CHAPTER

>» The PSShell.ps1 Script

>» The ChangeLocalAdminPassword.ps1

Script

236 CHAPTER 10 Using PowerShell in the Real World

These security requirements pose a challenge for companyabc.com. Its IT department has

to support business procedures for both the retail and government contract divisions.

Also, companyabc.com’s CEO has issued a directive that all computer use must take place

on a centralized system, which means all users at any location must have access to data

and applications, which further complicates security measures.

The IT department’s solution to meet these requirements involves deploying Windows

Terminal Services (WTS) server farms. Users working on the retail side would have one set

of WTS farms with a lower level of security. Users working in the government contract

division would have a different set of WTS farms isolated from retail users and with a

high degree of security.

The IT department has decided to use thin clients for the WTS farms for quick deploy-

ment and a high degree of control over access and data security. However, although

companyabc.com has the budget to build the WTS farms, funds to purchase thin clients

and thin client software for all users aren’t available. Further complicating matters is a

recent company-wide Windows XP desktop refresh. In addition, desktop hardware that

was just purchased must be used for another few years until it can be replaced.

To stay within the budget, the IT department has searched for an inexpensive way to turn

the existing Windows XP desktops into thin clients. One systems administrator read a

technical article about using Windows Shell Replacement to turn a Windows XP desktop

into a secure kiosk, but it involves replacing Windows Explorer with Internet Explorer to

create the kiosk interface. Although this method is fine for a simple Web browsing kiosk,

the IT department needs complete control over the user interface shell.

To meet this need, the IT department has decided to use PowerShell and its support of

-NET Windows Forms as a way to provide a customizable shell replacement for Windows

Explorer. After development and testing, the final solution to companyabc.com’s thin-

client need is a hybrid of several different components. These components include

Windows Shell Replacement, which uses cmd.exe as the base shell, and a PowerShell

script that uses Windows Forms to present a secure, Windows Explorer-like desktop to

logged on users. The following sections explain the components of PSShell.ps1 (named

PSShell Kiosk) in more detail.

Component One: Shell Replacement

PSShell Kiosk’s first component is the shell replacement. Windows, by default, uses the

Windows Explorer shell (explorer.exe) as an interface for interacting with the operating

system. However, this shell is not required to run Windows. Sometimes users want more

functionality than Windows Explorer offers, or they want to decrease functionality as a

way to improve security, as is the case with companyabc.com.

Windows users and administrators can modify explorer.exe or replace it with another

shell (although it might not be supported by Microsoft). This process is called Windows

Shell Replacement. Shells that can be used with Windows Shell Replacement range from

The PSShell.ps1 Script 237

GUlI-based shells, such as Internet Explorer (iexplore.exe), Geoshell, and LiteStep, to

CLI-based shells, such as cmd.exe, command.com, and even PowerShell.

You can use two methods to replace explorer.exe. One is modifying the Windows

Registry and specifying your replacement shell in the Shell value found in the

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon key.

For companyabc.com, changing the Registry on every Windows XP desktop isn’t an

option. Furthermore, getting rid of the shell for the entire Windows XP installation isn’t

wise. Suppose IT technicians need to log on to machines to perform system maintenance.

If the default shell for the entire machine has been replaced by using the Registry

method, the technicians are stuck with using the limited replacement shell because the

shell has been changed for all users. Although there are ways to enable user-based shell

replacement in the Registry, changing the Registry isn’t a user-friendly or effective way to

manage the deployment of replacement shells, as companyabc.com’s IT department has

discovered.

The second method for replacing explorer.exe, which requires Active Directory, is using

the Group Policy Object (GPO) setting called Custom user interface. This setting allows

you to specify the shell for users when they log on to a machine. The benefits of using

GPOs include centralization and ease of management. In addition, you can have different

shell settings based on the user, not the machine the user is logging on to. Because

companyabc.com is looking for this type of control, the IT department has chosen the

GPO method to manage the PSShell Kiosk. The following sections explain the steps to set

up this solution.

Step One: Creating the PSShell Secure Kiosk GPO

To create the GPO for configuring the Windows Shell Replacement, follow these steps:

1. Using the Group Policy Management Console (GPMC), create a GPO called PSShell

Kiosk Desktop GPO.

2. Next, disable the Computer Configuration settings.

3. Remove Authenticated Users from the security filter settings for the PSShell Kiosk

Desktop GPO.

4. In the Active Directory Users and Computers console, create a Domain Local group

called PSShell Kiosk Desktop GPO - Apply and add a test user account to the

group.

5. Add the PSShell Kiosk Desktop GPO - Apply group to the security filter settings for

the PSShell Kiosk Desktop GPO.

6. Finally, link the PSShell Kiosk Desktop GPO to the top-level organizational unit

(OU) containing all your user accounts, and make sure the linking order of any

other GPOs doesn’t override the PSShell Kiosk Desktop GPO.

238 CHAPTER 10 Using PowerShell in the Real World

Linking the PSShell Kiosk Desktop GPO to the top-level OU containing user accounts

assumes there are no other GPOs linked to child OUs that might override this GPO.

Furthermore, the GPO is applied to a group of users instead of a group of machines to

prevent users with a higher security clearance from having a nonsecured desktop.

Step Two: Configuring the Windows Shell Replacement Settings

Next, you configure the Windows Shell Replacement settings by following these steps:

1. In the Group Policy Management Console (GPMC), edit the PSShell Kiosk Desktop

GPO.

2. In the GPMC, click to expand User Configuration, Administrative Templates, and

then System. Then click to select the Custom user interface setting.

3. Right-click Custom user interface and click Properties.

4. In the Custom user interface Properties dialog box, click to select the Enabled

option, type cmd /c “C:\PSShell\Launch.bat” in the Interface file name text box,

as shown in Figure 10.1, and then click OK.

Custom use¢ interface Properties

Setting | Explain |

a Custorn user interlace

< Not Contigured

(Enabled

(Disabled

Intertace fila name [for example, Explorer exe]

cmd /c "'c:\psshell\Launch, bat'|

Supported on: At least Microsalt Windows 2000

Previous Setting | Next Setting |

coc _|

FIGURE 10.1 Custom user interface Properties dialog box

Setting the interface filename to cmd forces Windows to use cmd.exe as the replacement
shell. The /c switch forces cmd to carry out the C:\PSShel1\Launch.bat command and
then stop, which closes the cmd window after the Launch. bat file has finished running.

The PSShell.ps1 Script 239

NOTE

Using the C:\PSShell path assumes that the files for PSShell Kiosk have been copied

to this location on the client’s machine. However, these files don’t necessarily need to

be copied to this location. They can be located on clients or a Windows network share.

Component Two: PSShell.exe

You might be wondering why cmd is used as the replacement shell instead of PowerShell.

Unfortunately, when you’re running a PowerShell script, there’s no way to do so without

displaying the PowerShell console. If explorer.exe is replaced with PowerShell, the result-

ing desktop contains the PowerShell console.

However, companyabc.com wants users to have a desktop similar to explorer.exe, nota

desktop containing the PowerShell console. The solution involves the second component,

PSShell.exe. PSShell.exe is a C# Windows application that hides the PowerShell console

when PSShell.ps1 runs. The following code snippet shows the source code for this

application:

frormcrmnTCRNTET T C try

using System;

using System.Diagnostics;

namespace PSShell

{
static class Program

{
static void Main()

{
Process Process = new Process ();

|
|

|
|

|
|
i

| Process.StartInfo.FileName = "powershell.exe ';

| Process.StartInfo.Arguments = "-Command \"C:\\PSShel1\\PSShell.ps1\""; |

| Process.StartInfo.CreateNoWindow = true;

Process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden; |

| Process.Start(); |

| i |
|

| |
i j

}
seewaneincetisi peasant tit bOI CITA RECTOR COCO D

To hide the PowerShell console, PSShe11.exe makes use of the .NET System.Diagnostics.

Process Class. By using this class with the .NET ProcessWindowStyle enumeration, you

can define how a process’s window should appear when it starts. The style (appearance)

can be Hidden, Normal, Minimized, or Maximized. For this example, you want the

240 CHAPTER 10 Using PowerShell in the Real World

PowerShell window’s style to be defined as Hidden. After starting the PowerShell process

by using the Start() method with the specified arguments to run PSShell.ps1, Windows

doesn’t draw (display) the PowerShell console.

NOTE
Again, the C:\PSShell1 path in the PSShell.exe source code is only a suggestion. If

you change the deployment path for PSShell Kiosk, you need to update the code and

build a new executable. If you’re familiar with C#, however, a better solution is modify-

ing PSShell.exe so that it can take arguments to define the path to the PSShell.pst1

script.

To understand why cmd is used as the replacement shell, remember that PSShel1l. exe is

not a shell, but an application written to suppress the PowerShell console when running a

script. It’s also needed to start PowerShell and run PSShell.ps1 so that the PowerShell

console is hidden. To start PSShell.exe, however, you need to call it from another shell,

such as cmd. The interface filename you entered for the Custom user interface setting

specified a batch file named Launch.bat, which is used to start PSShell. exe.

The result is that cmd is used to run Launch. bat, which then starts PSShell. exe.

PSShell.exe, in turn, starts PowerShell, which finally runs the PSShell.ps1 script. This

workaround is a bit convoluted but necessary to compensate for a feature PowerShell

lacks. With this workaround, you can still use PowerShell to generate a secure desktop.

Component Three: PSShell.ps1

The last component of PSShell Kiosk is PSShell.ps1, which generates the PSShell Kiosk

desktop for logged on users. This desktop is generated by a Windows Form, which is

possible because of PowerShell’s capability to use .NET Windows Forms. The sole purpose

of this script is to give users the illusion of seeing the default Windows desktop, when

they’re actually using a custom desktop with limited functionality.

The PSShell Kiosk solution determines what users see and what programs they can run

from the desktop. companyabc.com wants high-security users to be able to perform these

tasks on a secure desktop:

> Starting the Microsoft Remote Desktop (RDP) client, which is configured to connect

to the secure WTS farm

> Starting a limited instance (by GPO) of Internet Explorer that navigates to compa-
nyabc.com’s Web-based e-mail site

> Logging off the PSShell Kiosk when they’re finished using it

The first code snippet contains the header for the PSShell.ps1 script. This header
includes information about what the script does, when it was updated, and the script’s
author:

The PSShell.ps1 Script 241

HHHHHHHHHHHHHHAHHHHAHHH AHHH AHHH HHA

PSShell.ps1

Used as a shell replacement for explorer.exe.

Created: 10/17/2006

Author: Tyson Kopcezynski

HEHHHHRHHHHHHHHHHHHHHRRRHHRA HH RHHHHHHHHHHHHHHRR RH

s

x

a

In the next code snippet, are two long, complex statements involving the .NET
System.Reflection.Assembly class:

$Null=[System.Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

$Null=[System.Reflection.Assembly]::LoadWithPartialName("System.Drawing")

These two statements are necessary because PowerShell loads only a few .NET assemblies

into its AppDomain. For example, if you try to create a Windows Forms object with the

New-Object cmdlet, you would get the following error:

PS C:\> $Form = new-object System.Windows.Forms.Form

New-Object : Cannot find type [System.Windows.Forms.Form]: make sure

the assembly containing this type is loaded.
At line:1 char:19

+ $Form = new-object <<<< System.Windows.Forms.Form
PS C:\>

To use the System.Windows.Forms.Form class, you need to load the assembly into

PowerShell first by using the LoadWithPartialName() method. Assemblies must also be

loaded into PowerShell for .NET-based DLLs included with Microsoft SDKs, third-party

vendors, or your custom DLLs. For example, say you develop a .NET-based DLL to manage

xyz application. To use that DLL in PowerShell, you use the LoadFrom() or LoadFile()

methods from the System.Reflection.Assembly class, as shown in this example:

PS C:\> [System. Reflection. Assembly]: :LoadFrom("C:\Stuff\myfirst.d1l")

8)
PS C:\>

242 CHAPTER 10 Using PowerShell in the Real World

Microsoft has made the LoadWithPartialName() method obsolete. The replacement

is the Load() method, which is meant to prevent partial binds when .NET assemblies

are loaded. Using the Load() method requires more work. However, if you don’t mind

the implications of a partial bind (such as your script failing), you can continue using

LoadWithPartialName() until it’s removed from the .NET Framework.

Now that the required assemblies for Windows Forms objects have been loaded, the next

task is to finish configuring the runtime environment for the script. The first step, as

shown in the following code snippet, is to define a set of launch command strings that

will be used to control the applications users can launch from the PSShell Kiosk

desktop. These command strings are discussed in more depth later in this section:

Launch command strings

_ $LaunchIE = {$IE = new-object -com InternetExplorer.Application;

$IE.navigate("webmail.companyabc.com"); $IE.visible = $True; $IE}

$LaunchRemoteDesktop = {mstsc /v:earth.companyabc.com /f}

Then after defining the launch command strings, the next task is to create a PowerShell

Runspace, as demonstrated in the next code snippet:

For more info on Runspaces see:

http: //windowssdk.msdn.microsoft.com/en-us/library/ms714459(VS.80) .aspx

 $Runspace =

[System.Management .Automation.Runspaces.RunspaceFactory]::CreateRunspace()

_ $RunspaceInvoke =

i new-object System.Management .Automation.RunspaceInvoke($Runspace)

| $Runspace.Open()

NNN AON TON

This code shows a PowerShell runspace, which is represented by the PowerShell

System.Management.Automation.Runspaces namespace. A runspace is an abstraction of

the PowerShell runtime that allows a hosting application to run PowerShell commands to

perform tasks or gather information. Although powershell.exe is a hosting application

and uses its own runspace to process commands, runspaces are most beneficial when used

in applications outside PowerShell.

The PSShell.ps1 Script 243

Runspaces are needed to support PowerShell, but they were developed mainly to create an

easy way for other applications to call the PowerShell runtime and have it run PowerShell

commands. In a sense, the Windows Form that PSShell.ps1 creates is an application, so

it makes sense for it to interact with a PowerShell runspace to perform tasks. By taking

advantage of PowerShell runspaces, you then don’t have to spend time adding logic to

the Windows Form to make it perform tasks for users.

Creating a runspace ($Runspace) for the Windows Form simply involves using the

CreateRunspace() method from the PowerShell System.Management.Automation.

Runspaces.RunspaceFactory class. Next, you create a RunspaceInvoke object that allows

the Windows Form to run commands via the runspace. Last, you open the runspace by

using the Open() method so that it can be used by the Windows Form.

After defining the runspace, the next task is to construct the form itself as shown in the

following code snippet. The section that is titled “Define Images,” a series of

Drawing. Image objects are created. These objects will be used later in the form to repre-

sent such items are the PSShell Kiosk desktop start menu and application icons. Then in

the code section, titled “Create Form,” the form object is created using a set of predefined

properties used to make the form look like the default Windows desktop.

reentrant ENP Hann

| $ImagePath = Split-Path -Parent $MyInvocation.MyCommand.Path

$ImgStart = [Drawing.Image]::FromFile("$Imagepath\Images\Start.png")

$ImgRDP = [Drawing.Image]::FromFile("$Imagepath\Images\RDP.png")

$ImgIE = [Drawing.Image]::FromFile("$Imagepath\Images\IE.png")

ee

| $Form = new-object System.Windows.Forms.Form

$Form.Size = new-object System.Drawing.Size @(1,1)

$Form.DesktopLocation = new-object System.Drawing.Point @(0,0)

$Form.WindowState = "Maximized"

$Form.StartPosition = "CenterScreen"

$Form.ControlBox = $False

$Form.FormBorderStyle = "FixedSingle"

$Form.BackColor = "#647258"

Having constructed the form, the final task before activating the form and showing it to

the user is to add in the menu items. The following code adds several MenuItems to the

ToolStripMenu that acts as the Start Menu for the PSShell Kiosk desktop:

H

3
i

244 CHAPTER 10 Using PowerShell in the Real World

$MenuStrip = new-object System.Windows.Forms.MenuStrip

$MenuStrip.Dock = "Bottom"

$MenuStrip.BackColor = "#292929"

Start Menu

$StartMenultem = new-object System.Windows.Forms.ToolStripMenuItem("")

$StartMenultem.Padding = 0

$StartMenultem.Image = $ImgStart

$StartMenultem.ImageScaling = "None"

Menu Item 1

$Menultem1 = new-object System.Windows.Forms.ToolStripMenultem("&Webmail")

$Menultem1.Image = $ImgIE

$Menultem1.ImageScaling = "None"

$MenuItem1.add_ Click({$RunspaceInvoke. Invoke($LaunchIE) })

$StartMenultem.DropDownItems.Add($MenuItem)

Menu Item 2

$MenuItem2 = new-object System.Windows.Forms.ToolStripMenuItem("&Remote Desktop")

$Menultem2.Image = $ImgRDP

$Menultem2.ImageScaling = "None"

$Menultem2.add_Click({$RunspaceInvoke. invoke ($LaunchRemoteDesktop) })

$StartMenultem.DropDownItems.Add($Menultem2)

Menu Item 3

$MenuItem3 = new-object System.Windows.Forms.ToolStripMenulItem("&Log Off")

$Menultem3.add Click({°

$RunspaceInvoke. invoke({Get-WmiObject Win32_OperatingSystem |

foreach-object {$_.Win32Shutdown(Q) }})})

$StartMenultem.DropDownItems.Add($MenuItem3)

Basically, the preceding code snippet shows several MenuItems being added to the

ToolStripMenu, which is acting as the start menu for the PSShell Kiosk desktop. These

menu items are the way users start applications or log off the PSShell Kiosk desktop. Each

snesmettbamnetetitiaistiiitiiehrnisestenmmncnnnnenamnsnetibiiadadeetiNiisintiie

The PSShell.ps1 Script 245

menu item is assigned a click event that uses the $RunspaceInvoke object and its
invoke() method to run a specified PowerShell command. The following list describes the
action each menu item performs:

> $MenuItem1—Uses the command specified in the $LaunchIE variable to start Internet
Explorer

>» $MenuItem2—Uses the command specified in the $LaunchRemoteDesktop variable to
start mstsc.exe (the Microsoft RDP client)

>» $MenuIltem3—Uses the Get -Wmidbject cmdlet to log off Windows

Last, the script needs to activate the form and show it to the user using the ShowDialog

method. This is shown in the final code snippet:

_ $MenuStrip.Items.Add($StartMenuItem)

$Form.Controls.Add($MenuStrip)

$Form.Add_Shown({$Form.Activate()})

$Form.ShowDialog()

Putting It All Together

After the PSShell Kiosk Desktop GPO is configured and ready to be applied to users, the

next step is to deploy the following PSShell Kiosk files to the desktops used as secure thin

clients:

>» Launch.bat—The batch file used to start PSShell.exe

>» PSShell.exe—The C# application used to run the PSShell.ps1 script

>» PSShell.psi—The PowerShell script that creates the PSShell Kiosk

>» Images folder—The folder containing images used on the PSShell Kiosk desktop

As discussed earlier, the PSShell Kiosk solution is currently configured to reside in the

C:\PSShell path. So after you have deployed these files to this location on each desktop,

you can place users who need a secure desktop in the PSShell Kiosk Desktop GPO - Apply

group. Figure 10.2 shows the PSShell Kiosk desktop with the three menu items.

246 CHAPTER 10 Using PowerShell in the Real World

Samy Remote Desktop

Log GFF

FIGURE 10.2 The PSShell Kiosk desktop

The ChangeLocalAdminPassword.ps1 Script
The ChangeLocalAdminPassword.ps1 script was developed to address a time-consuming

task for systems administrators. This task is the routine (as in scheduled) or forced

(because the network was attacked) local administrator password change. Changing this

password ranks as one of the biggest chores of systems management activities, and

administrators often neglect this task because it’s so tedious.

companyabc.com operates a Windows Server 2003 server farm of 500 servers. As part of

the company’s security practices, the IT department tried to change the local administra-

tor password routinely on all 500 servers, usually every 30 days or when a systems admin-

istrator left the company. Not surprisingly, because of the time and effort to change the

administrator password on S00 servers, the IT department tended to fall behind schedule

in completing this task. Eventually, they stopped trying to change local administrator

passwords, which soon resulted in a major security incident: An external entity took

advantage of the lapse in password management practices to commandeer a number of

companyabc.com’s servers and demanded a ransom to return control of these systems.

This incident prompted the IT department to seek a way to change local administrator

passwords quickly and en masse. They decided to use an automation script that creates a

list of servers in a specified OU, and then connects to each server and changes the local

administrator password. To meet this need, the ChangeLocalAdminPassword.ps1 script was

developed.

The ChangeLocalAdminPassword.ps1 Script 247

A working copy is in the Scripts\Chapter 10\ChangeLocalAdminPassword folder and is

downloadable at www.samspublishing.com. Running this script requires defining one

parameter: OUDN. This parameter’s argument should be set to the distinguishedName of

the OU containing the servers that need to have their local administrator passwords

changed. Here’s the command to run the ChangeLocalAdminPassword.ps1 script:

PS D:\Scripts> .\ChangeLocalAdminPassword.psl "OU=Servers ,OU=Managed

(0) oly [fon tem LOL eles ivol-behig-} olouie DL OL ole) ik

Figures 10.3 and 10.4 show the ChangeLocalAdminPassword.ps1 script being executed.

@c \WINDOWS\system32\WindowsPowerShell\v1.0\powershellexe [(0)
anaged Objects .DC=—y

; A aece perp er
428606 16:41:

iaeanni ibarnaare aed abecat eA a AEE

Domain Connection taosage.internal
Checking OU Name [0K]

Question:
Do you want mé to generate a random: password?
[YI Yes [N] No [7] Help <default is ‘'¥"

Then please enter a passuord: HeHeHHHernnREHHE

Getting Server Info [DONE]
Getting Sta’ Info (DONE 1
Changing Passwords

FIGURE 10.3 Changing the Local Admin Password

@C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe [_ jo}
-\ChangeLocalAdminPassword.psl “OU=Servers .OU=Managed Objects, DC=
rnal”

mgt adalat eich pepe fit nici
S$ t ChangeLocalAdminPassword

Used to change the local admin passwords on machines.
administrator
12/22/2806 18:41:19

Mnaremrererrrnirttet trent nn ttt ty

Domain Connection taosage.internal
Checking OU Name [OK]

Question:
Do you want me to. generate ‘a random pas
[¥] Yes [(N] No £7] Help <default is “

Then please enter a password: sexiness

Getting Server Info CDONE]
Getting Status Info CDONE]
Changing aden tag [DONE]

Script is now DONE?
tags the ChangeLocalAdminPassword_Errors . log for errors.
PS

FIGURE 10.4 ChangeLocalAdminPassword.ps1 script completion

The ChangeLocalAdminPassword.ps1 script performs the following sequence of actions:

4. The script dot sources the LibraryCrypto.ps1 library file, which contains a function

for randomly generating passwords.

248

10.

14.

CHAPTER 10 Using PowerShell in the Real World

The script creates a new DataTable object ($ServersTable) by using the .NET

System.Data.DataSet class. This DataTable object is used later in the script to store

status information about machines in the specified OU.

In addition, the script creates an error log named ChangeLocalAdminPassword_

Errors.log by using the Out -File cmdlet. This error log displays detailed error

information to users.

The script connects to the current logon domain by using the Get -CurrentDomain

function. Using the object returned from this function, the script then writes the

domain’s name to the PowerShell console. If this connection fails, the script halts.

Next, the script verifies that the specified OU exists in the current domain by using

the Get -ADObject function. If the OU is not valid, the script halts.

The script uses the Set -ChoiceMesssage and New-PromptYesNo functions to ask users

whether they want a randomly generated password or one they specify. For

randomly generated passwords, the script uses the New-RandomPassword function

from the LibraryCrypto.ps1 library file to generate a password of a specified length

that’s stored as a secure string ($Password) and returned to the user for verification.

For user-specified passwords, the script uses the Read-Host cmdlet with the

AsSecureString property to collect the password and store it in a secure string

($Password).

Next, the script uses the .NET DirectoryServices.DirectoryEntry class to bind to

the specified OU in Active Directory and then the .NET DirectoryServices.

DirectorySearcher Class to create a $Searcher object. The SearchRoot property for

the $Searcher object is set to the bound OU object, and an LDAP search is

performed to populate the $Computers variable with all servers in the OU.

Next, the script uses the System.Net .NetworkInformation.Ping class to ping each

server that is in the $Servers object collection. If a server replies then a new row is

added into the $ServersTable DataTable which consists of the server’s name and

its "Online" status. If a server doesn’t reply, a new row is still added into the

$ServersTable DataTable; however, that server’s status is set to "Offline".

. The script uses the System.Net .NetworkInformation.Ping class to ping each server
in the $Computers object collection. If a server replies, a new row is created in the

$ServersTable DataTable consisting of the server’s name and its "Online" status. If
a server doesn’t reply, a new row is created in the $ServersTable DataTable with
the server’s status set to "Offline".

The listing of servers and their status information is sent to the script’s error log for
future reference by using the Out -File cmdlet.

Next, the script uses the .NET System.Runtime. InteropServices.Marshal class to
convert the secure string stored in the $Password variable to a regular string that can

_ be used later in the script.

The ChangeLocalAdminPassword.ps1 Script 249

12. Finally, for each server with an "Online" status in $ServersTable, the Get -

Wmi0bject cmdlet is used to connect to the server and return a list of user accounts.

The local administrator account has a security ID (SID) ending with "-500". The

script binds to this account by using the ADSI WinNT provider and changes its pass-

word to the string now stored in the $Password variable.

Here’s the LibraryCrypto.ps1 library file:

HERE EHH HEH EA A HH A

LibraryCrypto.ps1

Functions within this file can be used to perform

crypto operations.

Created: 11/3/2006

Author: Tyson Kopcezynski

HHHHHHHHHHHAHHHBRHHBHHH RH HH HE

df ee eee ee ee oe i e's

New-RandomPassword
I ee

Usage: Used to generate a random password.

$Size: The length of the password to generate.

function New-RandomPassword{

i param ([int] $Size)

$Bytes = new-object System.Byte[] $Size

$Chars = "“abcdefghijklmnopqrstuvwxyz".ToCharArray ()

$Chars += "ABCDEFGHIJKLMNOPQRSTUVWXYZ" . ToCharArray ()

$Chars += "0123456789 ~!@#$**()-_=+[]{} \j3:°'>",./".ToCharArray()

$Crypto =

new-object System.Security.Cryptography.RNGCryptoServiceProvider

Now you need to fill an array of bytes with a

i # cryptographically strong sequence of random nonzero values.

$Crypto.GetNonZeroBytes ($Bytes)

foreach ($Byte in $Bytes) {

For each Byte, perform a modulo operation

$Password += $Chars[$Byte % ($Chars.Length - 1)]

}

Finally, return the random password as a SecureString

ConvertTo-SecureString "$Password" -AsPlainText -Force

}

oe tenrenenriionnnerncrs nents

| # Set-ChoiceMessage

250 CHAPTER 10 Using PowerShell in the Real World

As mentioned previously, ChangeLocalAdminPassword.ps1 uses the New-RandomPassword

function from the LibraryCrypto.ps1 file to generate random passwords of a specified

length based on a predetermined set of allowed characters. To do this, the function uses

the .NET System.Security.Cryptography.RNGCryptoServiceProvider class as a crypto-

graphically strong random number generator.

A random number generator improves the strength of passwords, even those consisting of

both characters and numbers. The New-RandomPassword function uses the random number

generator to generate random characters for passwords. To do this, the function first takes

the specified length of the random password and creates a System.Byte array ($Bytes) of

the same length. It then defines a character array ($Chars) consisting of all possible char-

acters that can make up the random passwords.

Next, New-RandomPassword creates a random number generator ($Crypto) by using the

System.Security.Cryptography.RNGCryptoServiceProvider class. The GetNonZeroBytes()

method then uses $Crypto to populate the $Bytes array with a cryptographically strong

sequence of random nonzero values. For each byte in the $Bytes array, the function

performs a modulo operation (the remainder of dividing one number by another) to

determine which character from the $Chars array is added to the $Password variable. The

end result is a random password returned to the caller as a secure string.

The next code snippet contains the header for the ChangeLocalAdminPassword.pst1 script.

This header includes information about what the script does, when it was updated, and

the script’s author. Just after the header is the script’s parameter OUDN:

ieee eee arene cece ene emma emnEEREEEREEEmmemmem meee]

AAR ARR aaiRdididaiadidididiniaiaiaididitid

ChangeLocalAdminPassword.ps1

Used to change the local admin passwords for machine

acounts in Active Directory.

Created: 11/2/2006 |
Author: Tyson Kopczynski

HH HE HEH HH HE HE A HH A HH

param([string] $OUDN)

Next, the script loads the Set -ChoiceMessage and New-PromptYesNo functions, as seen in

the following code snippet:

HH HE HH HE A EAH HH

Functions

aR RIRRIRIRIRIRIRIRIRLL LLL

BS asap a: is as Sine mw Mela A ais Sia aie ee a a Le era Ome ee

Eevee

The ChangeLocalAdminPassword.ps1 Script 251

_ # Usage: Used to set yes and no choice options.

_ # $No: The no message.

$Yes: The yes message.

function Set-ChoiceMessage{

param ($No, $Yes)

$N = ([System.Management .Automation.Host.ChoiceDescription] "&No")

$N.HelpMessage = $No

$Y = ([System.Management .Automation.Host.ChoiceDescription]"&Yes")

$Y.HelpMessage = $Yes

Return ($Y,$N)

}

Dee apie Me ee ER cpt l he ee i se ee

New-PromptYesNo

fa no a

_ # Usage: Used to display a choice prompt.

| # $Caption: The prompt caption.

$Message: The prompt message.

_ # $Choices: The object catagory.

function New-PromptYesNo{

param ($Caption, $Message,

[System.Management .Automation.Host.ChoiceDescription|[]]$Choices)

$Host.UI.PromptForChoice($Caption, $Message, $Choices, Q)

}

In PowerShell, sometimes you’re prompted to make a choice before a command contin-

ues. For example, as you learned in Chapter 4, “Code Signing,” PowerShell might prompt

for confirmation before running a script that isn’t signed by a trusted entity, depending

on your execution policy setting. Or PowerShell prompts you for confirmation before

running a command when a cmdlet is used with the confirm switch parameter, as

shown in this example:

252 CHAPTER 10 Using PowerShell in the Real World

PS C:\> get-process | stop-process —confirm

Confirm

' Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "~e5d141.tmp (792)".

[¥] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): 3

With the Set -ChoiceMessage and New-PromptYesNo functions, you can build a menu of

Yes or No choices to display to users in the PowerShell console. The Set -ChoiceMessage

function creates a collection of choice objects and is used with the New-PromptYesNo func-

tion to generate the choice menu. To generate this menu, New-PromptYesNo uses the

PromptForChoice() method from the $host.UI object, which is just an implementation of

the System.Management.Automation.Host.PSHostUserInterface Class.

In the following code snippet, variables that will be used later in the script are defined. In

addition, there are two library files that are dot sourced into the script’s scope. The first

file, LibraryGen.ps1, is a general library file that contains the script usage and Active

Directory functions that were used in Chapter 9, “PowerShell and Active Directory.” The

second file is the LibraryCrypto.ps1 library, which, as mentioned previously in this

section, contains the New-RandomPassword function:

«AREER PP
| # Main
«RARE EAE AEAE AEE EEE

. \LibraryGen.ps1

.\LibraryCrypto.ps1

Set Config Vars

| fe - +--+ 2-2 - eee eee eee

_ $ScriptName = "ChangeLocalAdminPassword.ps1"

$ScriptUsage = "Used to change the local admin passwords on machines."

| $ScriptCommand = "$ScriptName -OUDN value"

| $ScriptParams = "OUDN = The distinguishedName of the OU where"

+ "the machines are located."

| $ScriptExamples = "$ScriptName ""OU=Accounts ,DC=companyabc ,DC=com"""

| $ErrorLogName = $ScriptName + "_Errors.log"

' $Date = Date

The ChangeLocalAdminPassword.ps1 Script 253

After defining the script’s variables and the dot sourcing of any library files, the next step
is to check if the user needed any usage help or if the required OUDN parameter has been
defined. This step is shown in the next code snippet:

BCS ee
| # Verify Required Parameters

EE eae
| if ($args[@] -match '-(\?!(h!(help)))'){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (1SOUDN) {
write-host

write-host "Please specify the OU machines are located in!" °

-Foregroundcolor Red

write -host

Get-ScriptHeader $ScriptName $ScriptUsage |

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples |

Return

}

Next, the script creates a DataTable object. This is a new concept that uses an

.NET DataTable object (from the System.Data.DataTable class, part of the ADO.NET

architecture):

Define DataTable

| $ServersTable = new-object System.Data.DataTable

| $ServersTable.TableName = "Servers"

[Void]$ServersTable.Columns.Add("Name")

| [Void]$ServersTable.Columns.Add("Status")

DataTable objects are the equivalent of a database table, except the table is located in

memory. Your scripts can use this table to hold data retrieved from other sources or data

you specify manually.

In this script, a DataTable is used to hold status information about the servers queried

from Active Directory. The script first creates a DataTable named $ServersTable by using

254 CHAPTER 10 Using PowerShell in the Real World

the New-Object cmdlet and System.Data.DataTable class. When you first create a

DataTable, it’s empty and lacks structure, so you must define the structure before you can

store data in it. For $ServersTable’s structure, the script uses the Add() method to add

Name and Status columns to its Columns collection. Later in the script, the Add() method

is used to add rows of data to $ServersTable’s Rows collection.

In the next code snippet, the Out -File cmdlet is used to create an error log and write

header information to it. Then the Get -ScriptHeader function is used to indicate to the

script operator that the automation portion of the script has started:

|
:

| # Setup ErrorLog |
$ScriptName + “ Ran on: " + $Date | out-file $ErrorLogName |

/ | write-host
i

| Get-ScriptHeader $ScriptName $ScriptUsage

| write-host
Becton samiisanaestnonaasinSantktN RAOUL iNOS SLOMAN INES UOONESRLEC OUNCES NSCs NCsAlttissn nN aaNaaainNitit inmate emmaantitstataaaseiNntenetnnesesiiisaaaenNitisesieIeitidaaasenteNtettiNtits

The next step is for the script to verify that there is a valid domain connection. To accom-

plish task, the script uses the Get -CurrentDomain function. If a valid domain connection

doesn’t exist, the script halts and returns the script status to the operator. If a connection

does exist, the script continues execution and writes the domain name to the console.

Then the script uses the Get -ADObject function to validate if the string in the $OUDN vari-

able is a valid distinguished name. If an object is returned from the function, then the

variable is valid; if no object is returned, the variable is considered invalid and the script

halts, as shown in the next code snippet:

———

| +f |
|

|
|

trap{write-host °t "[ERROR]" -Foregroundcolor Red;

throw write-host $ _ -Foregroundcolor Red;

Break}

write-host "Domain Connection" -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain's name

write-host “t $Domain.Name -Foregroundcolor Green

i write-host "Checking OU Name" -NoNewLine

q

$Choices = Set-ChoiceMessage "No" "Yes"

i $Prompt = New-PromptYesNo "Question:"

| while(!$Password) {

q

i

i

The ChangeLocalAdminPassword.ps1 Script 255

if (!(Get-ADObject "distinguishedName" $OUDN "organizationalUnit")){

write-host “t "Is not valid!" -Foregroundcolor Red

write-host

Break

}

write-host “t "[OK]" -Foregroundcolor Green

}

| else{ |

The following code snippet contains the logic for defining the password that will be used.

First, the script asks the user if a password should be generated or specified by the user. If

a password is to be generated, the script asks what the password length should be. Then

based on the defined length, a password is generated using the New-RandomPassword

function. If the user chooses to specify the password, then the script uses the Read-Host

cmdlet with the AsSecureString switch to collect the password from the user:

"Do you want me to generate a random password?" $Choices

trap{write-host "You need to input an integer!"

-Foregroundcolor Red; Continue}

if ($Prompt -eq 0){

write-host

[int]$Length = read-host "Please enter the password length"

if ($Length -gt @){

&{
$Temp = New-RandomPassword $Length

write-host

write-host "Your new random password is:"

-Foregroundcolor White

256 CHAPTER 10 Using PowerShell in the Real World

nee Rae

[System.Runtime.InteropServices.Marshal] : :PtrToStringAuto (;

[System.Runtime. InteropServices.Marshal] : :SecureStringToBSTR(;

$Temp))

$Prompt = New-PromptYesNo "Question:"

"Is this password ok?" $Choices

if ($Prompt -eq @){

$Script:Password = $Temp

}

}

}
else{

write-host "Password length needs to be longer then @!"

-Foregroundcolor Red

}
else{

write-host

$Password = read-host "Then please enter a password" -AsSecureString

OO rrr—e

Now that the script has the password that will be used, it must next get a list of machines

that will have their passwords changed. The next code snippet contains the code that

accomplishes this task. In this code, you will see usage of the DirectoryServices.

DirectorySearcher class to perform search for computer objects (servers) under the

defined OU. Then for each computer object that is returned from the search, the script

then pings the server and adds a row to the $ServersTable DataTable that contains the

server’s dNSHostName and its status:

write-host

write-host "Getting Server Info" -NoNewLine

trap{write-host *t "[ERROR]" -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

The ChangeLocalAdminPassword.ps1 Script

$Root =

new-object DirectoryServices.DirectoryEntry "LDAP: //$OUDN"

$Searcher = new-object DirectoryServices.DirectorySearcher

$Searcher.SearchRoot = $Root

$Searcher.PageSize = 1000

$SearchItem = "CN"

$SearchValue = "*"

$SearchClass = "Computer"

$SearchCat = "*"

$Searcher.Filter =

"(&($($SearchItem)=$($SearchValue)) (objectClass=$(~

$SearchClass)) (objectCategory=$($SearchCat)))"

$Script:Computers = $Searcher.FindAll()

write-host ~t "[DONE]" -Foregroundcolor Green

-write-host "Getting Status Info" -NoNewLine

_ $Computers | foreach-object -Begin {$i=0;} ~

-Process {$Ping = new-object Net.NetworkInformation.Ping;

&{$dNSHostName = $_.GetDirectoryEntry() .dNSHostName.ToString() ;

trap{"Ping [ERROR]: " + $dNSHostName + " $_" | out-file °

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($dNSHostName) ;

if ($Result.Status -eq "Success") {

[Void]$ServersTable.Rows.Add($dNSHostName, "Online")} ©

else{[Void]$ServersTable.Rows.Add($dNSHostName, "“Offline")};

$i = $itl;

write-progress -Activity "Pinging Servers - $($dNSHostName)" °*

-Status "Progress:"

-PercentComplete ($i / $Computers.Count * 100) }}

_ write-host ~t "[DONE]" -Foregroundcolor Green

| # Write status info to ErrorLog
. $ServersTable | out-file $ErrorLogName -Append

EXSY

258

The next task is to change the passwords on all of the online servers. First, the script

converts the secure string in the $Password variable back to a regular string. Next, the

script defines the $OnlineServers variable with all the server objects that have an online

status using the DataTable Select() method. Then, the script uses WMI to connect to

the server, figure out which account is the Administrator account, and then set its pass-

CHAPTER 10 Using PowerShell in the Real World

word to the string that is in the $Password variable:

ANNEAL NCCLS RNIN NEEL TNT ITC

write-host "Changing Passwords" -NoNewLine
i
:
i

$Password = [System.Runtime. InteropServices.Marshal] ::PtrToStringAuto (

[System.Runtime. InteropServices.Marshal]::SecureStringToBSTR (

$Password))

i
: }

$OnlineServers = $ServersTable.Select("Status = ‘Online'")

foreach ($Server in $OnlineServers) {

&{
write-progress -Activity "Getting Users - $($Server.Name)"

-Status "Stand by..."

$Users = get-wmiobject -ErrorVariable Err -ErrorAction ~

SilentlyContinue Win32_UserAccount -Computer $Server.Name

write-progress -Activity "Getting Users - $($Server.Name) "

-Status "Done" -completed $True

if ($Err.Count -ne Q){

"Getting Users [ERROR]: " + $Server.Name + “ “ + $Err ! out-file ~

$ErrorLogName -Append

;
else{

foreach ($User in $Users) {

if ($User.SID.EndsWith("-500") -eq $True) {

write-progress -Activity ~

"Changing Password - °$($User.Name) "

-Status "Stand by..."

trap{"Change Password [ERROR]: " + ~

server: Name + 7 "+ S$ | out-file

$ErrorLogName -Append; Continue}

‘

Summary 259

$WinNTUser =

new-object System.DirectoryServices.DirectoryEntry (

"WinNT://" + $Server.Name + "/" + $User.Name)

$WinNTUser .SetPassword($Password)

$Null = $WinNTUser.SetInfo

write-progress -Activity ~

"Changing Password - $($User.Name)"

-Status "Done" -completed $True

}

}

}
}

}

write-host “t "[DONE]" -Foregroundcolor Green

write-host

write-host "Script is now DONE!" -Foregroundcolor Green

write-host "Check the $ErrorLogName for errors." -Foregroundcolor Yellow

Summary
In this chapter, you were able to review two PowerShell scripts that were developed to

meet some very demanding automation needs. In the first script, you learned that

PowerShell was able to act outside of its normal role as an automation tool by filling a

critical security need as a Windows shell replacement. The second script gave you further

insight into just how powerful of an automation tool PowerShell can be. Both scripts only

scratched the surface as to what automation tasks can be tackled using PowerShell.

As it has been stressed repeatedly throughout this book, the limits to what you can

accomplish with PowerShell are boundless. This chapter should only serve as a stepping

stone in a continuing quest for exploring PowerShell and what it can do.

oA Perens ‘Clie

a

| wel 3
Sigal eae 7

7
®

Using PowerShell to
Manage Exchange

Introduction

This chapter explains how to use PowerShell to manage an

Exchange Server 2007 environment. Exchange Server 2007

uses PowerShell to perform management and automation

tasks through the Exchange Management Shell (EMS). In

addition, the concept of PowerShell snap-ins is explained,

and you learn that the EMS is just a PowerShell snap-in.

Last, you take a look at three PowerShell scripts for manag-

ing an Exchange Server 2007 environment and see how

they can be used to meet your automation needs.

The Exchange Management
Shell (EMS)
For years, Exchange administrators have had two choices

for performing repetitive tasks: Do them manually by using

the graphical interface, or write scripts in complicated and

time-consuming programming languages. Although these

programming languages could be used to perform many

routine tasks in an Exchange environment, they weren’t

developed specifically with that purpose in mind. Hence,

even the simplest task could take hundreds of lines of code.

Over time, the inability to automate tasks easily has proved

to be one of the most frustrating aspects of managing an

Exchange environment. In fact, as pointed out throughout

this book, Windows automation in general wasn’t suffi-

cient because of Microsoft’s reliance on GUIs and little

support for CLIs. This frustration became one of the

IN THIS CHAPTER

» Introduction

» The Exchange Management Shell

(EMS) :

>» The GetDatabaseSizeReport.ps1

Script

>» The GetEvent1221Info.ps1

Script

» The ProvisionExchangeUsers.ps1

Script

262 CHAPTER 14 Using PowerShell to Manage Exchange

motivations for the PowerShell team, led by Jeffrey Snover, to develop a CLI shell inter-

face that enables administrators to do everything from the command line.

Around that time, the Exchange product team was designing the specifications for the

next version of Exchange (E12, which became Exchange Server 2007). Initially, it seemed

the team would develop yet another limited Microsoft Management Console (MMC) GUI

as the Exchange management interface. However, the Exchange team decided to take a

different course by embracing the concept of PowerShell-based management.

The result is that in Exchange Server 2007, configuration and administration are done

with two new administrative tools: the EMS and the Exchange Management Console

(EMC). Both utilities rely on PowerShell to access and modify information and configura-

tion settings in an Exchange Server 2007 environment.

Exchange Server 2007 is the first Microsoft product to use PowerShell exclusively to

drive its management interfaces.

The EMS is a command-line management interface for performing server administration

and configuration. Because it’s built on a PowerShell platform, it can connect to the .NET

runtime (also known as the Common Language Runtime, or CLR). So tasks that previ-

ously had to be done manually in the management application can now be scripted,

giving administrators more flexibility for repetitive tasks. Furthermore, administrators can

manage every aspect of Exchange Server 2007, including creating and managing e-mail

accounts, configuring Simple Mail Transport Protocol (SMTP) connectors and transport

agents, and setting properties for database stores. Every management task in the Exchange

environment can now be accomplished from the command line. In addition, the EMS

can be used to check settings, create reports, provide information on the health of

Exchange servers, and, best of all, automate tasks that need to be done frequently.

The EMC is an MMC 3.0 GUL utility for viewing and modifying the configuration of

Exchange Server 2007 organizations. Although similar to the Exchange System Manager

(ESM) in previous Exchange versions, the EMC’s interface has been redesigned to be more

organized and easier to learn. The EMC is limited in the scope of modifications adminis-

trators can make, so some configuration settings can be accessed only by using the EMS.

The EMS and EMC rely on PowerShell to accomplish management tasks. The EMC is

simply a graphical interface that calls the EMS to perform tasks, and the EMS is just a

snap-in for PowerShell. Therefore, no matter which utility administrators use to create a

report or modify a setting, they’re actually using PowerShell.

It’s Just a Snap-in

A snap-in is nothing more than a collection of one or more cmdlets compiled into a DLL,

which is used as a way to extend PowerShell’s functionality. Typically, extending func-

tionality is done to manage an application with PowerShell and can be accomplished
easily by using snap-ins, much as you add snap-ins to the MMC to increase functionality.

The Exchange Management Shell (EMS) 263

Like an MMC snap-in, a PowerShell snap-in must be loaded into your current PowerShell
session before it can be used. For example, say you just finished creating a PowerShell
snap-in in C#. You have compiled that custom snap-in into MyFirstSnapin.dll, and now
you want to use it in PowerShell. However, you must register it with a PowerShell installa-
tion first by using the .NET Framework Installer (installutil.exe), as shown in this

example:

PS C:\Dev> set-alias IntUtil

$Env:windir\Microsoft .NET\Framework\v2.0.50727\installutil.exe
PS C:\Dev> IntUtil MyFirstSnapin.dll
Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

Running a transacted installation.

The transacted install has completed.
PS C:\Dev>

For a 64-bit version of Windows, this is the path for the .NET Framework Installer:

PS C:\Dev> set-alias IntUtil SEnv:windir\Microsoft. HED yi Remewarks*)

v2.0.50727\installutil.exe.

After the snap-in has been registered, you might want to verify that it’s loaded by using

the Get -PSSnapin cmdlet with the registered switch parameter, as shown here:

PS C:\Dev> get-pssnapin —registered

Name MyFirstSnapin

PSVersion LO
Description Used to take over the world.

PS C:\Dev>

The list Get -PSSnapin returns consists of only the snap-ins registered with a

PowerShell installation. This list doesn’t contain any snap-ins included with the base

Bowe ne iineelaion

APTER 14 Using PowerShell to Manage Exchange

After verifying the snap-in registration, you load the snap-in into the current PowerShell

session by using the Add-PSSnapin cmdlet, as shown in this example:

|. PS C:\Dev> add-pssnapin MyFirstSnapin

PS C:\Dev>

Now that the snap-in has been loaded, you use the Get -PSSnapin cmdlet to confirm its

availability for the current PowerShell session, as shown here:

PS C:\Dev> get-pssnapin

Name

PSVersion

) oY =¥ Leh am ho} oe Royo}

Name

PSVersion

Description

Name

PSVersion

Description

Name

PSVersion

Description

Name

PSVersion

Description

Name

PSVersion

) T-F-Loh ah oh oh Ke} el

PS C:\Dev>

Microsoft. PowerShell .Core
1.0

This Windows PowerShell snap-in contains Windows PowerShell

management cmdlets used to manage components of Windows PowerShell.

Microsoft. PowerShell.Host

1.0 ‘

This Windows PowerShell snap-in contains cmdlets used by the

Windows PowerShell host.

Microsoft. PowerShell.Management

pS)

This Windows PowerShell snap-in contains management cmdlets used

to manage Windows components. ;

Microsoft.PowerShell.Security

1.0
This Windows PowerShell snap-in contains cmdlets to manage Windows

- PowerShell security.

Microsoft.PowerShell.Utility

1.0 .

This Windows PowerShell snap-in contains utility cmdlets used to

manipulate data.

MyFirstSnapin

1.0

Used to take over the world.

You can now use the custom MyFirstSnapin in your current PowerShell session. However,

if you close that session and open a new one, the snap-in must be loaded again. Like

aliases, functions, and variables, a snap-in, by default, is valid only for the current

The Exchange Management Shell (EMS) 265

PowerShell session. To make a snap-in persistent across sessions, it must be loaded each
time a PowerShell session is started.

As you learned in Chapter 2, “PowerShell Basics,” one way to make aliases, functions, and
variables persistent is to use a PowerShell profile. You can also use a profile to load a snap-
in into your PowerShell sessions. Another method is the PowerShell console file, which is a
configuration file with the .psc1 extension, consisting of XML information listing snap-ins
that are loaded when the PowerShell session starts. To create a console file, you use the
Export -Console cmdlet, as shown in this example that creates the MyConsole.psct1 file:

PS C:\Dev> export-console MyConsole
PS C:\Dev>

The following code snippet shows an example of a PowerShell console file:

| <?xml version="1.0" encoding="utf-8"?>

<PSConsoleFile ConsoleSchemaVersion="1.Q">

<PSVersion>1.@</PSVersion>

<PSSnapIns>

<PSSnapIn Name="MyFirstSnapin" />

</PSSnapIns>

</PSConsoleFile> (

PowerShell can then use this XML information to load snap-ins based on a previous

PowerShell console configuration. To use a console file to configure a PowerShell session

at startup, you use the PSConsoleFile parameter with PowerShell.exe, as shown here:

C:\>powershell.exe —PSConsoleFile C:\Dev\MyConsole.pscl

Naturally, you don’t want to type this command every time you use PowerShell. So if

you’re planning to use a PowerShell console file, you should create a shortcut for starting

your custom configuration. This method is similar to opening the EMS from the Windows

Start menu.

Because the EMS is just a PowerShell snap-in, accessing EMS cmdlets simply requires

loading the EMS snap-in into your PowerShell session, as shown here:

PS c:\> add-pssnapin Microsoft.Exchange.Management .PowerShell.Admin

PS C:\>

266 CHAPTER 141 Using PowerShell to Manage Exchange

However, there are some differences in loading the EMS snap-in and starting the EMS

with the Windows Start menu shortcut. If you just load the snap-in, you don’t get the

customized Exchange administration console. Your PowerShell session won’t look and act

like the EMS because the snap-in loads only the cmdlets for managing the Exchange envi-

ronment. To make your PowerShell session resemble the EMS, you need to run the same

configuration script that the Start menu shortcut runs to start the EMS. This script,

Exchange.ps1, is in the default Exchange Server 2007 bin directory: C:\Program

Files\Microsoft\Exchange Server\Bin.

The GetDatabaseSizeReport.ps1 Script
The first Exchange Server 2007 script you examine in this chapter is the

GetDatabaseSizeReport.ps1 script, which produces a report on the size of a mailbox

databases in an Exchange organization. The report contains the following information:

>» The mailbox server name

>» The full database name, including the storage group name

>» The drive where the database is located

» The free space on the drive in gigabytes

>» The database size in gigabytes

Here’s an example of the report GetDatabaseSizeReport.ps1 produces:

Server ,Database,Drive,FreeSpace, Size

| SFEX1,SG1\DB1,C: ,34.67,40.453

| SFEX02,SG1\DB1,F: ,40.56, 20.232 |

SFEX02,SG1\DB2,F:,40.56,30.2144

_ SFEX02,SG2\DB1,F:,40.56,45.333

Any information about your network environment is helpful. However, when you're

using Exchange, an understanding of mailbox database sizes, their growth, free space on

the hosting drive, and an overall picture of how mailbox databases are functioning in a

network environment can help you prevent potential problems.

This script was developed for companyabc.com, a small manufacturing company with a
network consisting of several hundred users and two Exchange servers. Because of budget
constraints, the IT department is made up of only one person. The limited budget has also
prevented companyabc.com from purchasing and installing monitoring and reporting soft-
ware for IT systems. As a result, the IT employee has only manual methods for ensuring the
systems’ operational status and often doesn’t have time to do any proactive monitoring.

As a result, the Exchange mailbox databases have grown to the point that offline mainte-
nance can no longer be done, and database disks tend to run out of space. After several

The GetDatabaseSizeReport.ps1 Script 267

near disasters, companyabc.com’s management has asked the IT employee to find a way

to improve monitoring of the Exchange databases. Needing a quick, flexible, and cost-

effective solution, the IT employee turned to scripting and requested the development of

the GetDatabaseSizeReport.ps1 script.

A working copy is in the Scripts\Chapter 11\GetDatabaseSizeReport folder and is

downloadable at www.samspublishing.com. Running this script doesn’t require any

parameters be defined. However, an optional parameter, ExportFile, should have its

argument set to the name of the CSV file where you want to export report data. Here’s

the command to run the GetDatabaseSizeReport.ps1 script:

C:\Scripts> .\GetDatabaseSizeReport.psl

Figures 11.1 and 11.2 shows the execution of the GetDatabaseSizeReport.ps1 script.

a late = 5 eA 66:1
SESEESETOTESESE TELE SE EE ETE E ERE EEE EE

Getting Mailbox Servers (DONE]
Getting Status Info (DONE)
Getting Report Info.

FIGURE 11.1 The GetDatabaseSizeReport.ps1 script being executed

[ft Machine: E2007 CWD: C:\scripts
[MSH] G:\scripts>.\GetDatabaseSizeReport .msh report .csv

wah rebecca boty ited fb eloi tah
aS Get DatabaseSizeReport :

Used to ge rote an Exchange database size report.
ee ato

+ D 1673 0/2806 18: 66:17 PM
iutiitinnrmnnannnentannnnannannnnnnnen

ing Hailbox Servers [DONE]
g Status Info [DONE]
g Report Info CDONEJ

Server: E2007

Drive FreeSpace Size

6. G6 44683837898625

Server: ¢2607CCR

tehoun 2\Mailbox Datahase 2 A. 99% j .058'746337898625
torage Group\Mailbox Database F: A. 995 §.4058746337898625

now DONE?

vd |

FIGURE 11.2 The GetDatabaseSizeReport.ps1 script after being executed

268 CHAPTER 11 Using PowerShell to Manage Exchange

You might notice a difference in prompts in the screenshots and some of the source

documentation because the screenshots were taken when Exchange 2007 was still in

beta. At the time, the EMS was using an older version of PowerShell that had the old

Microsoft Shell MSH-based prompt.

The GetDatabaseSizeReport.ps1 script performs the following sequence of actions:

4. The script creates two DataTable objects: $ServersTable, used to store status infor-

mation for Exchange mailbox servers, and $ReportTable, used to store the Exchange

database size report.

2. The script creates an error log named GetDatabaseSizeReport_Errors.log by using

the Out -File cmdlet. This error log gives users detailed error information.

3. The script uses the Get -MailboxServer cmdlet to get a list of all Exchange mailbox

servers, which is then populated into the $MailboxServers variable.

4. The script uses the System.Net .NetworkInformation.Ping class to ping each server

in the $MailboxServers object collection. If a server responds, a new row is created

in $ServersTable consisting of the server’s name and its status as "Online." Ifa

server doesn’t respond, a new row is created in $ServersTable with the server’s

Status see tO Mm Onhlames.

5. The listing of servers and their status information is sent to the script’s error log for

future reference by using the Out -File cmdlet.

6. For each server with an "Online" status in $ServersTable, the script does the

following:

» The Get -MailboxDatabase cmdlet is used to get a listing of all mailbox data-

bases on the server. Each mailbox database’s Name, StorageGroupName, and

EdbFilePath are populated into the $Databases variable.

> For each mailbox database in the $Databases object collection, the script uses

the Get -WmiO0bject cmdlet to collect information about the database size and

free drive space. The script then adds a row to the $ReportTable containing

the mailbox server name ($Server.Name), database name ($DBName), drive letter

of the database’s location ($DBDriveName), free space ($DBDriveFreeSpace), and

database size ($DBSize).

7. The script exports all data from the $ReportTable by using the Export -DataTable
function.

This script and the remaining scripts in this chapter can be run only by using a

PowerShell session that has the Microsoft.Exchange.Management.PowerShell.

Admin snap-in loaded.

The GetDatabaseSizeReport.ps1 Script 269

The first code snippet contains the header for the GetDatabaseSizeReport.ps1 script. This

header includes information about what the script does, when it was updated, and the

script’s author. Just after the header is the script’s only parameter ExportFile:

CHHHHH HAHA AHR

_ # GetDatabaseSizeReport.ps1

Used to generate an Exchange database size report.

| # Created: 10/26/2006

| # Author: Tyson Kopczynski

| param([string] SExportFile)

PE EEE HE HEHE HEE HE HE HEHE PE EP

For the GetDatabaseSizeReport.ps1 script, only one function (Export -DataTable) is

loaded as shown in the next code snippet:

HHHHHHHHHHHHAHHHHHHRHH HRB HRA

Functions

HHAHHHHHAHHAAHRAHRRHHRRBR RBH RRB HBR RRR

Pw ee ee a a en i ee ee ee

Export-DataTable

Hee ns i a nw i i a a eee ee ee

Usage: Used to export a DataSet to a CSV file.

$Data: A DataSet object.

$FileName: The name of the export CSV file.

function Export -DataTable{

param ($Data, $FileName)

$Null =

[System.Reflection.Assembly]: :LoadWithPartialName(:

"System.Windows.Forms")

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

if ($FileName -eq '""){

$exFileName = new-object System.Windows.Forms.saveFileDialog

$exFileName.DefaultExt = "csv"

$exFileName.Filter = "CSV (Comma delimited) (*.csv),*.csv"

$exFileName.ShowDialog()

$FileName = $exFileName.FileName

}

270 CHAPTER 11. Using PowerShell to Manage Exchange

if ($FileName -ne ""){

$LogFile = new-object System.10.StreamWriter($FileName, $False)

for ($i=0; $i -le $Data.Columns.Count-1; $i++) {

$LogFile.Write($Data.Columns[$i] .ColumnName)

if ($i -1t $Data.Columns.Count-1) {

$LogFile.Write(",")

}

$LogFile.WriteLine() :

foreach ($Row in $Data.Rows) {

for ($i=0; $i -le $Data.Columns.Count-1; $i++) {

$LogFile.Write($Row[$i].ToString())

if ($i -1t $Data.Columns.Count-1){

$LogFile.Write(",")

}

$LogFile.WriteLine()

}

$LogFile.Close()

}

To perform the data export, the Export -DataTable function uses the .NET System. 10.

StreamWriter class to create an object based on the .NET TextWriter class. The resulting

TextWriter object (SLogFile) can be used to write an object to a string, write strings to a

file, or serialize XML. In this script, $LogFile is used to dump the DataTable’s contents

into the CSV export file (which is created along with $LogFile). To perform this task, the

Export -DataTable function writes DataTable’s column names, separated with a comma

(,) delimiter, to the CSV export file. Then the function loops through each value in

DataTable’s rows and writes these values to the CSV export file, separated with a comma

(,) delimiter.

If Export -DataTable is called and a CSV export filename isn’t specified, this function

makes use of a .NET System.Windows.Forms.saveFileDialog class to construct a Save As

dialog box for collecting the export file’s name and location (see Figure 11.3).

The GetDatabaseSizeReport.ps1 Script 271

Save As 21x!

=) scripts a ee fi ek ff

File name: f >| Save

+ ¢ Save as type: {csv (Comma elimited|{*. csv) | Cancel |

FIGURE 11.3 Windows Forms Save as dialog box

This example is only one of many that show how PowerShell can use .NET-based

Windows Forms to collect or display data.

In the next code snippet, variables that will be used later in the script are defined. In

addition, the library file LibraryGen.ps1, which contains the script usage functions, is

being dot sourced:

pesnaecaetestciencumeutesensinnmmamaamseasosnsneatesosseaamansenanocansntseinyataesnesteneanmsnenssiiiisesenemmamaneaseremttetenestnnnansssstsit jposumesemmmmacttattecesestnmmntesssipinesvennmmpnianinaneoseommmesetttimeamssaniantimeenoninrtenetiitamistiitinnmnnnnanetniiaentannessneniioonmeniinsiins

HHHHHHAHHHHAHHAHHHHR RRR HHH

Main

HHHHHHAHHARRRRAHHHHHHHH HRA

$ScriptName = "GetDatabaseSizeReport.ps1"

$ScriptUsage = "Used to generate an Exchange database size report."

$ScriptCommand = "$ScriptName -ExportFile value"

$ScriptParams = "ExportFile = The export CSV file path/filename."

$ScriptExamples = "$ScriptName ""report.csv'""

$ErrorLogName = "GetDatabaseSizeReport.1log"

$Date = Date

-—---------S

Next, the script checks to see if the user needed any usage help, 2s shown im the follows

code snippet: 5

Lio
| # Verify Required Parameters
WB gor cr a tte aa aces

| if (Sargs[®] -match *-(\?) (h) (Relp)))")4

i write-hdst :

| Get-ScriptHeader SScrniptNeme SScripiiisage

Show-ScripiUsage $ScripiCommand SScripiParams SScripiixamles

: Return

| 3
a a

Then in the next code snippet, the two DataTable objects ate Gresied: The fest DataTable

is the $ServersTable, which will store server information, and the second DeteTable S

the $ReportTable, which will store the report Infommatjon-

Define Datalables ‘

$ServersTable = new-object System.Dete.DeteTahle

$ServersTable.TebleNeme = “Servers*

[]Void]$ServersTeble.Colums .Add(“Name")

[Void]$ServersTable.Colums.Add("*Status*)

$ReportTable = new-object System.Data_DataTable
$ReportiTable.TebleNeame = “Serwers*

[Void]SReportTeble.Columms.Add(*Server*)

[Void] SReportTable.Columns .Acd(“Database” }

[Void]SReportTable.Colums .Add(Drive")

| [Void] SReportTable. Columns .Add(“FreeSnace*)

| [Void] $ReportTable. Columns Add (Size")
a

Next, the Out-File cndiet is used to create an eqror log and woite header Information to

it. Then the Get -Scriptiteader function is used to indicate to the soript operator that the

automation portion of the script has started:

ff rene ree ;
| # Setup ErrorLog

:
: _———, esses

|

The GetDatabaseSizeReport.ps1 Script 273

$ScriptName + " Ran on: “ + $Date | out-file $ErrorLogName

| write-host

Get-ScriptHeader $ScriptName $ScriptUsage
write-host

After displaying the script header to the user, the script’s next task is to get a list of

mailbox servers using the Get -MailboxServer cmdlet. Then for each server object in

$MailboxServers variable, the script pings that server to determine its status. During this

task, both the resulting status and the server’s name are written to a new row in the

$ServersTable DataTable, as shown in the next code snippet:

' write-host "Getting Mailbox Servers" -NoNewLine

| $MailboxServers = get-mailboxserver

write-host ~“t "[DONE]" -Foregroundcolor Green

| write-host "Getting Status Info" -NoNewLine

i | $MailboxServers | foreach-object -Begin {$i=0;} ;

-Process {&{$Ping = new-object Net.NetworkInformation.Ping;

$MBServerName = $_.Name;

trap{"Ping [ERROR]: " + $MBServerName + “ $_" | out-file ~

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($MBServerName) ;

if ($Result.Status -eq "Success"){

[Void]$ServersTable.Rows.Add($MBServerName, "Online")} °

else{[Void]$ServersTable.Rows.Add($MBServerName, "Offline")};

Sis= Siti;

write-progress -Activity "Pinging Servers - $($MBServerName) "

-Status "Progress:"

-PercentComplete ($i / $MailboxServers.Count * 100) }}

write-host ‘t "[DONE]" -Foregroundcolor Green

Write status info to ErrorLog

$ServersTable | out-file $ErrorLogName -Append

274 CHAPTER 11 Using PowerShell to Manage Exchange

The next task, as shown in the next code snippet, is to generate the final report. To do

this, the script uses the Get -MailboxDatabase cmdlet to get the EdbFilePath for each

Exchange server that is online. Then, for each mailbox database, the script uses WMI to

collect the database size and free space for the drive that the database is located on. After

collecting and formatting report information, the script then adds a new row to the

$ReportTable DataTable that contains the database information, its size, and the drive

free space:

write-host "Getting Report Info". -NoNewLine

- $OnlineServers = $ServersTable.Select("Status = 'Online'")

_ foreach ($Server in $OnlineServers) {

&{
trap{ “Make Report [Error]: " + $Server.Name +" $7" 4

out-file $ErrorLogName -Append; Continue}

write -progress -Activity "Getting Database Info - $($Server.Name) "

-Status "Stand by..."

$Databases = get-mailboxdatabase -Server $Server.Name |}

select Name, StorageGroupName, EdbFilePath

foreach ($Database in $Databases) {

&{
write-progress ~

-Activity "Getting Drive Info - $($Server.Name)"

-Status "Stand by..."

$DBDriveName = $Database.EdbFilePath.DriveName

$DBDrive = ~

get-wmiobject Win32_PerfRawData_PerfDisk LogicalDisk ~

-Computer $Server.Name -Filter "Name = '$DBDriveName' "

write-progress -Activity °

"Getting Drive Size Info - $($Server.Name)"

-Status "Stand by..."

Needed to replace \ with \\

$DBPath = $Database.EdbFilePath.PathName.Replace("\","\\")

The GetEvent1221Info.ps1 Script 275

i $DBFile = get-wmiobject CIM DataFile -Computer $Server.Name °
-Filter "Name = '$DBPath'"

$DBName = $Database.StorageGroupName + "\" + $Database.Name

| # Needed to convert from MB to GB i
| $DBDriveFreeSpace = $DBDrive.FreeMegabytes / 1000

Needed to convert Bytes to GB

$DBSize = $DBFile.FileSize / 1073741824

[Void]$ReportTable.Rows.Add($Server.Name, $DBName, ~

$DBDriveName, $DBDriveFreeSpace, $DBSize)

write-progress -Activity ~ i

"Getting Database Info - $($Server.Name)" * {

-Status "Done" -completed $True

write-host ‘t "[DONE]" -Foregroundcolor Green

Last, the script writes the report to the PowerShell console using the Format -Table cmdlet

and then exports the data to a CSV file using the Export -DataTable function.

$ReportTable | format-table -groupBy Server Database, Drive,

FreeSpace, Size -autosize

|
| $Null = Export-DataTable $ReportTable $ExportFile

SrnemeneneSeOnita RAMANA TSN IIIA HI SCSI NCCC REI SHRU ASSOLE HAO NeNeNiTeierDlitcossneaaeNietnitalaaNUitesisininaanettt ibiiccatenamimmisimsibonesy iris

The GetEvent1221Info.ps1 Script
Administrators can use the GetEvent1221Info.ps1 script to search the Application event

logs of Exchange Server 2007 mailbox servers and generate a report containing Event ID

1221 messages. Exchange administrators can use these messages to determine the amount

of whitespace present in a database over a specified time span (number of days before the

current day). Based on information gathered from Event ID 1221 messages, the report

contains the following:

PS CMAPTER Lt Using PowerShell to Manage Exchange

> The maox srver Ree

> The date and time the event was wiitten te the Appikation log

> The fall Gtatae nome. chang the Surge group name

> The amonnt of whitespace in megabytes

Here’S an exgamnlk of the report Getivent 1221 Infe.ast produces

Server Tisaratten Detatese iB
| FENG TA/DT/DVVS TLV AW, SST ST RW
| SFENSD LTO /DT/DWWS TANS AW_VQQ\FET TW
| SFENGD, TO DT y/DVVS DWNVE AW SSDS? WV
| SPEND, TO/DT/DWVS DONNT_ AW GHDFF 1 TRV
| SSENUD, FD/DT/DVVS SLAW _AW_ SS St RW
) SPEND TV/DT/AWVS SBS AW GDS TV ~
| SFERWD DIST /DVVS 42VVNW AW_SSt|WSt Ve
| SPENGD V/V DVWS EBON AW_VQDIFEt TRO
| SFENOT Te/DT DMS TBOLVe AW SST LNAI VV
| SFENOT POST AAS TLVVVE AW_ VSP Dt 1aN
| SFENGT TO /DT/BWVS DVOLho AW Sst Bsr VV ~
| SENT TWypDT/DVVS DMO AW_SSr|NRD, AV
| SFENWT A/D /DWVS Sr SV AW_SSr Ost 1a
| SFENOT TO /DT/AWVS SSL: AW_VSr RD, WO
| SFENOT TO/DT DVS VVVV AW_VSr|\OSt 2s
SPENT TO/DT/DVVS 42GB AW SSs |WRD_ 1a

This scr was developed for companvat<.com, 2 marketing finm of WO users that has very

lage (468 and wp) Exchange manones. Ft produces marketing packages consisting of
Gigal mages, which resak im an average package Size af more than 2UMB. companyabe.

Com 'S emplowees are Sdattered amrang maany home offices andi remote locations, so they

wsaalivy qamail marketing packages 2 each other inmtead of posting them: to 2 shared

logatan.

Recaas ennlovess have beer ug their mailhoxes as online file systems, mailbox sizes
have grown Row, Realising that mailboxes of this sie would be costly and difficult to
MAMTA, Companvadi.coms Exchange admnimitirator hes requested that marketing

content be sawed locally % wer hand Gives and them deleted from their mailboxes. This

practke has kept the Exchange Gatahaes from growing too quichiy; however, the high
Geketion rete of lage quad meages has created another problem: large areas of white-
Space im Exchange Gathers,

The amount of whhResnace & Rgertant Decause after an Exchange database grows, its size
cant be Gacreasad until the admaimtrator does an oftiine defragmentation. For example, 2

The GetEvent1221Info.ps1 Script 277

database has grown to 12GB, but users have deleted 3GB of messages. After an online
defragmentation, Event ID 1221 logs report 3GB of whitespace. New messages written to
the database use this whitespace, and the database doesn’t grow until that whitespace is
exhausted.

The database still takes up 12GB on the hard drive, even though it contains only 9GB of
data. A larger than necessary database can increase the time needed for backup and

restore jobs. By reviewing Event ID 1221 messages, administrators can determine whether

an offline defragmentation is needed to shrink the database in an effort to improve

overall performance. Furthermore, with periodic review of Event ID 1221 logs, administra-

tors can track a database’s average whitespace amount, which helps determine the growth

patterns of actual data in a database. This information can be helpful in deciding when

additional space needs to be allocated for a database.

With no budget available to purchase a suite of Exchange tools, companyabc.com

requested the development of a script for monitoring the amount of whitespace in

Exchange databases. The resulting script is GetEvent1221Info.ps1.

A working copy is in the Scripts\Chapter 11\GetEvent1221Info folder and is download-

able at www.samspublishing.com. Running this script requires defining one parameter.

The Days parameter should have its argument set to the time period (in number of days)

for querying Event ID 1221 messages from mailbox servers. An optional parameter,

ExportFile, should have its argument set to the name of the CSV file where you want

to export report data. Here’s the command to run the GetEvent1221Info.ps1 script:

PS C:\Scripts> .\GetEvent1221lInfo.psl1 5

Figures 11.4 and 11.5 shows the execution of the GetEvent1221Info.ps1 script.

Date: 1673672 215231
SEEDER ACAD ADAD SE AEA EAE EE EERE EE EE TESA EE EEE AEE EE

Getting Mailbox Servers: [DONE]
Getting Status Info C DONE]
Getting Event Info,

FIGURE 11.4 The GetEvent1221Info.ps1 script being executed

8 HAPTER s

Se 1 C-\script=>.

eli@ate 122% eweats fren nailbex servers-

store status infor-

store the Event ID

. log by using the G

is error log gives users detailed error information

3. The script uses the Get -MailboxServer cmdlet to get a list of all Exchange mailbox
\

iz

servers, which is then populated to the SMailboxServers variable.

4. The script uses the System.Net.NetworkInformation. hing class to ping each server

in the $MailboxServers object collection. If a server replies, a new row is added to

SServersTable consisting of the server’s name and its "Online™ status. If a server

doesn’t reply, a new row is added with the server's status set to "Offline

5. The listing of servers and their status information is sent to the script’s error log for

future reference by using tl

6. For each server with an *Online* status in $ServersTable, the script does the

tLog function is used to create an object (SEvents) bound

o the server’s Application log. To create the object, the function uses the .NET

log class, which allows an application or script to

> Next, the script uses the Select-Object cmdlet to select all the 1221 events

bject’s Entries property that fall within the specified

collection of events is populated to the

221Event in the $1221Events object collection, the script then uses

the get_timewritten() method of $1221Event to populate the $TimeWritten

BHR HH HHH HAH HA

| # GetEvent1221Info.ps1

_ # Used to consolidate 1221 events from mailbox servers.

| param([int] $Days, [string] $ExportFile)

The GetEvent1221Info.ps1 Script 279

variable with the time the event was written. Next, a regular expression is used
to strip the database’s free space ($MB) and name ($Database) from the event
message.

>» A row is added to $EventsTable containing the server’s name ($Server.Name),

time the event was written ($TimeWritten), database name ($Database), and

free space in megabytes ($MB).

7. The script exports all data from $EventsTable by using the Export -DataTable
function.

The first code snippet contains the header for the GetEvent1221Info.ps1 script. This
header includes information about what the script does, when it was updated, and the

script’s author. Just after the header are the script’s parameters:

i 4 i 3 H q 3

Created: 10/26/2006

Author: Tyson Kopczynski

HHHHHHAHHHAHHHHA HHA BHAA A EAHA AAR

Next, the Get -RemoteEventLog function is loaded. This function is used to collect remote

EventLog information from a machine using the System.Diagnostics.Eventlog class.

Then the Export -DataTable function is loaded. This function was discussed in the previ-

ous section:

j

| SER aces NON LERE OAs BIEBER mn sunec ra aor |

HHH HE HE HE EA HE A A EE

| # Functions

| HHHHHHHAHHHHHAHH AH

g

ee ee

Get-RemoteEventLog

Fw co eg nn i a ww we we rie ke ee eK

Usage: Used to collect remote EventLog information from a machine.

$Machine: The name of the machine. ("MyServer")

$Log: The name of the EventLog. ("Application")

function Get -RemoteEventLog{

param ($Machine, $Log)

trap{Continue}

TT

{

estan inane

280 CHAPTER 11 Using PowerShell to Manage Exchange

new-object System.Diagnostics.Eventlog $Log, $Machine

err SC

Export -DataTable

ee er ee

Usage: Used to export a DataSet to a CSV file.

$Data: A DataSet object.

$FileName: The name of the export CSV file.

function Export -DataTable{

param ($Data, $FileName)

$Null =~

[System.Reflection.Assembly]::LoadWithPartialName(~

"System.Windows.Forms")

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

if ($FileName -eq "")4

$exFileName = new-object System.Windows.Forms.saveFileDialog

$exFileName.DefaultExt = "csv"

$exFileName.Filter = "CSV (Comma delimited) (*.csv)|*.csv"

$exFileName.ShowDialog()

$FileName = $exFileName.FileName

}

if ($FileName -ne ""){

$LogFile = new-object System.10.StreamWriter($FileName, $False)

for ($i=0; $i -le $Data.Columns.Count-1; $i++) {

$LogFile.Write($Data.Columns[$i] .ColumnName)

if ($i -1t $Data.Columns.Count-1){

$LogFile.Write(",")

}

$LogFile.WriteLine()

foreach ($Row in $Data.Rows) {

for ($i1=0; $i -le $Data.Columns.Count-1; $i++) {

$LogFile.Write($Row[$i].ToString())

HH HE EH HE HH

The GetEvent1221Info.ps1 Script 281

if ($i -1t $Data.Columns.Count-1){

$LogFile.Write(",")

}

$LogFile.WriteLine()

}

$LogFile.Close()

}

In the next code snippet, variables that will be used later in the script are defined. In

addition, the library file LibraryGen.ps1, which contains the script usage functions, is

being dot sourced:

| # Main
HHH HH a HE HE HE HE

 $ScriptName = "GetEvent1221Info.psi"

/

i

Fi
<

$ScriptUsage = "Used to consolidate 1221 events from mailbox servers.

$ScriptCommand = "$ScriptName -Days value -ExportFile value"

$ScriptParams = "Days = The number of days to filter events by.",

"ExportFile = The export CSV file path/filename."

$ScriptExamples = "$ScriptName 5 ""report.csv'""

$ErrorLogName = "GetEvent1221Info.log"

$Date = Date

Next, the script checks to see if the script user needed any usage help. If no help is needed

the script then checks to see if the Days parameter has been defined. If this parameter has

not been defined, the script then informs the script operator that the parameter is

required and shows the script usage information, as shown in the following code snippet:

282 CHAPTER 11 Using PowerShell to Manage Exchange

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

ge ea a ae |
| # Verify Required Parameters

pee ee |
| if ($args[@] -match '-(\2?}(h;j(help)))'){

write-host

i Get-ScriptHeader $ScriptName $ScriptUsage i

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples |

| Return

fod |
| if (!$Days) { ‘

write-host |

write-host "Please specify the number of days!" -Foregroundcolor Red

| write-host

Return

}

Then in the next code snippet, the two DataTable objects are created. The first DataTable

is the $ServersTable, which will store server information, and the second DataTable is

the $EventsTable, which will store the report information:

$ServersTable = new-object System.Data.DataTable

$ServersTable.TableName = "Servers"

[Void]$ServersTable.Columns.Add("Name")

[Void]$ServersTable.Columns.Add("Status")

ie We Oe)

_ $EventsTable = new-object System.Data.DataTable

/ $EventsTable.TableName = "Servers"

| [Void]$EventsTable.Columns.Add("Server")

[Void] $EventsTable.Columns.Add("TimeWritten", [DateTime])

_ [Void]$EventsTable.Columns.Add("Database")

[Void]$EventsTable.Columns.Add("MB")

Next, the Out -File cmdlet is used to create an error log and write header information to

it. Then the Get -ScriptHeader function is used to indicate to the script operator that the
automation portion of the script has started:

The GetEvent1221Info.ps1 Script

oS ee

‘ # Begin Script

_ # Setup ErrorLog

$ScriptName + " Ran on: " + $Date | out-file $ErrorLogName

write-host

| Get-ScriptHeader $ScriptName $ScriptUsage

write-host

283

The next task is to get a list of mailbox servers using the Get -MailboxServer cmdlet. Then

for each server object in $MailboxServers variable, the script pings that server to deter-

mine its status. During this task, both the resulting status and the server’s name are

written to a new row in the $ServersTable DataTable, as shown in the next code snippet:

| write-host "Getting Mailbox Servers" -NoNewLine

| $MailboxServers = get-mailboxserver

write-host “t "[DONE]" -Foregroundcolor Green

write-host "Getting Status Info" -NoNewLine

$MailboxServers |! foreach-object -Begin {$i=0;} ©

-Process {&{$Ping = new-object Net.NetworkInformation.Ping;

$MBServerName = $_.Name;

trap{"Ping [ERROR]: " + $MBServerName + " $_" | out-file ©

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($MBServerName) ;

if ($Result.Status -eq "Success") {

[Void]$ServersTable.Rows.Add($MBServerName, "“Online")} °

else{[Void]$ServersTable.Rows.Add($MBServerName, "Offline")};

$i = $it+l;

write-progress -Activity "Pinging Servers - $($MBServerName) "

-Status "Progress:"

-PercentComplete ($i / $MailboxServers.Count * 100) }}

write-host ~t "[DONE]" -Foregroundcolor Green

Write status info to ErrorLog

$Serverstable | out-file $ErrorLogName -Append

284 CHAPTER 11 Using PowerShell to Manage Exchange

In the next code snippet, the script generates the final report. To do this, the script uses

the DataTable Select() method to create a collection of online server objects

($OnlineServers). Then for each server in $OnlineServers object collection, the script

uses the Get -RemoteEventLog function to retrieve all of the Application event messages

from that server. For each event message retrieved with an event ID of 1221, a new row is

then added to the $EventsTable DataTable which contains formatted information from

the event message and the server’s name:

ie

| ho,
| # Get Event Info

i

|
| write-host "Getting Event Info" ¥*NoNewLine

i
i

| $OnlineServers = $ServersTable.Select("Status = 'Online'")

|

foreach ($Server in $OnlineServers) {

&{
trap{"Event Info [Error]: " + $Server.Name + " $ "|

out-file $ErrorLogName -Append; Continue}

$Events = Get-RemoteEventLog $Server.Name "Application"

This may take a long time depending on the number of servers

write-progress -Activity "Querying Events From - $($Server.Name) "

-Status "This may take sometime..."

$1221Events = $Events.Entries | where {$ _.EventID -eq "1221" -and ~

$_.TimeWritten -ge $Date.AddDays(-$Days) }

foreach ($1221Event in $1221Events) {

&{

$Message = $1221Event | select Message

$TimeWritten = $1221Event.get_timewritten()

This RegEx strips out the database name from the message

$Database = [Regex]::Match($Message, '"[*"\r\n]*"')

$Database = $Database.Value.Replace('"', "")

This RegEx strips out size of the whitespace

$MB = [Regex]::Match($Message, '[@-9]+')

[Void]$EventsTable.Rows.Add($Server.Name, $TimeWritten,

$Database, $MB)

$Null = Export-DataTable $EventsTable $ExportFile

write-host

| write-host "Script is now DONE!" -Foregroundcolor Green

write-host "Check the $ErrorLogName for errors." -Foregroundcolor Yellow

ir yeocceenan

The ProvisionExchangeUsers.ps1 Script 285

write-progress -Activity "Querying Events From - $($Server.Name) "

-Status "Done" -completed $True

| write-host *t "[DONE]" -Foregroundcolor Green

Last, the script exports the report information from the $EventsTable DataTable using

the Export -DataTable function:

The ProvisionExchangeUsers.ps1 Script
With the ProvisionExchangeUsers.ps1 script, Exchange administrators can provision

mail-enabled user accounts in Exchange Server 2007 environments quickly and easily

based on information in a CSV import file. This file is structured as follows:

> The user’s first name

» The user’s last name

> The user’s e-mail alias

> The fully qualified database name

Here’s an example of the import file:

FName,LName,Alias,Database
j
i
; i

:
i

:

i
;
Hi

5

;

Lo

| Stu,Gronko, sgronko, SFEX01\SG1\DB1
| Caelie,Hallauer, challauer , SFEX02\SG2\DB2

- Duane, Putnam, dputnam, SFEX02\SG2\DB2

Essie,Fea,efea,SFEX@2\SG1\DB1

| Rona, Trovato, rtrovato , SFEX@1\SG1 \DB2
Gottfried,Leibniz,gleibniz,SFEx®1\SG1\DB1

286 CHAPTER 14 Using PowerShell to Manage Exchange

With some tweaking to the code in ProvisionExchangeUsers.ps1, the format of the CSV

import file and the information for provisioning mail-enabled user accounts can be

tailored to fit any environment. This flexibility is important to meet ever-changing

automation needs.

This script was requested by companyabc.com, a large technology company, in the process

of completing several mergers resulting in the need to provision many new mail-enabled

user accounts. Because of the number of accounts to create and the varying information

for each merger’s account-provisioning process, an automated method that could be

changed to meet different needs is the best solution. To meet the flexibility requirements,

companyabc.com’s IT department has developed the ProvisionExchangeUsers.ps1 script.

A working copy is in the Scripts\Chapter 11\ProvisionExchangeUsers folder and is

downloadable at www.samspublishing.com. Running this script requires defining three

parameters. UPNSuf fix should have its argument set to the UPN (universal principal

name) suffix for new mail-enabled accounts. OUDN should have its argument set to the

distinguishedName of the OU where new mail-enabled accounts should be stored.

ImportFile should have its argument set to the name of the CSV import file containing

the list of users to create. Here’s the command to run the ProvisionExchangeUsers.ps1

script:

PS C:\Scripts> .\ProvisionExchangeUsers.psl "“companyabc.com"
"OU=Accounts , DC=companyabc , DC=com" : users .csv

Figures 11.6 and 11.7 shows the execution of the ProvisionExchangeUsers.ps1 script.

cking OU Name (OKI
shecking Import File COKI

Please enter passvuord: xs#OeveMe:

.
FIGURE 11.6 The ProvisionExchangeUsers.ps1 script being executed

The ProvisionExchangeUsers.ps1 Script

CMSH] C:\scr ipts>.\ProvisionExchangeUsers .msh conpanyahbc .com “OU=Accounts , DC=comBy
panyabe »DC=com" users.csv

matinee share chy edb ch stat abe:
HS Py rovis ionExchangellsers

ie : Used to eroudsdan Exchange users based an CSU import File.
. fs BEES adninistr

1873626) 10: 42:58
HRANNUNUARUNNAEAREnnuEaNAgHaRETENnoN

Checking OU Name COK]
Checking Import File toKI

Please enter passvard: seen.

Script is now DONE?
CMSH] C:\scripts>,

J

FIGURE 11.7 The ProvisionExchangeUsers.ps1 script after being executed

The ProvisionExchangeUsers.ps1 script performs the following sequence of actions:

4. The script creates an error log named ProvisionExchangeUsers_Errors.1log by using

the Out -File cmdlet. This error log gives users detailed error information.

The script connects to the current logon domain by using Get -CurrentDomain func-

tion. Using the object returned from this function, the script writes the domain’s

name to the PowerShell console. If this connection fails, the script halts.

The script verifies that the specified OU exists in the current domain by using the

Get -ADObject function. If the OU isn’t valid, the script halts.

The script uses the Test -Path cmdlet to verify that the import file is valid. If the file

is invalid, the script halts.

The script uses the Read-Host cmdlet and its AsSecureString parameter to request

the password for all new user accounts. The resulting secure string is then populated

into the $Password variable.

The script uses the Import-Csv cmdlet to populate the $Users variable with the CSV

import file’s contents.

For each user in the $Users object collection, the script uses the New-Mailbox cmdlet

to create a mail-enabled user account based on information in the CSV file and

information provided by the user. Errors generated during account creation are sent

to the script’s error log by using the Out -File cmdlet.

The first code snippet contains the header for the ProvisionExchangeUsers.ps1 script.

This header includes information about what the script does, when it was updated, and

the script’s author. Just after the header are the script’s parameters:

288 CHAPTER 11 Using PowerShell to Manage Exchange

Begin gray code box

edad dit AiAiAidiaiaiiAiAiAididinidididiaididinididiainididiniididinidididiaididieaaiaidi

| # ProvisionExchangeUsers.ps1

Used to provision Exchange users based on CSV import file.

Created: 10/21/2006

Author: Tyson Kopczynski

HH A HH HH HE HH aH A Ha

param([string] $UPNSuffix, [string] $OUDN, [string] $ImportFile)

ne re

In the next code snippet, variables that will be used later in the script are defined. In

addition, the library file LibraryGen.ps1, which contains the script usage functions, is

being dot sourced:

77 meee IE RERUN MEHMET SRI RRND CLUS LOO meet teeter eerste

WLLL LLL

Main

| HHHHHHHHHHHHAHHAH HEAR

ScriptParams = "UPNSuffix = The new users UPN suffix.",

"QUDN = The distinguishedName of the OU to create users in.",

"ImportFile = The import CSV file path/filename. "

$ScriptExamples = "$ScriptName ""Ccompanyabc.com"""

+ " ""QU=Accounts ,DC=companyabc ,DC=com"""

4" "EUSOPS. CSV." «

$ErrorLogName = "ProvisionExchangeUsers. log"

$Date = Date

As shown in the following code snippet, the script next checks to see if the script user

needed any usage help. If no help is needed, the script then checks to see if the

UPNSuf fix, OUDN, and ImportFile parameters have been defined. If either of these

'
H

H
i
i i

The ProvisionExchangeUsers.ps1 Script 289

parameters has not been defined, the script then informs the script operator that the
parameter is required and shows the script usage information:

| # Verify Required Parameters

Pies a eh owen ea =

| if (Sargs[®] -match '-(\2}(h{(help)))'){
write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

| if (!$UPNSuffix) {

write-host

write-host "Please specify the UPN suffix!" -Foregroundcolor Red

write -host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

| if (!$0UDN){
i write-host

write-host "Please specify the OU to create users in!" ~

-Foregroundcolor Red

write-host

Get -ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

| if (1$ImportFile) {
write-host
write-host "Please specify the import CSV file name!"

-Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

290 CHAPTER 11 Using PowerShell to Manage Exchange

Next the Out -File cmdlet is used to create an error log and write header information to

it. Then the Get -ScriptHeader function is used to indicate to the script operator that the

automation portion of the script has started:

Setup ErrorLog

_ $ScriptName + " Ran on: " + $Date |; out-file $ErrorLogName

_ write-host

Get-ScriptHeader $ScriptName $ScriptUsage

| write-host

write-host "Domain Connection" -NoNewLine

The next step is for the script to verify that there is a valid domain connection. To accom-

plish this task, the script uses the Get -CurrentDomain. If a valid domain connection

doesn’t exist, the script halts and returns the script status to the operator. If a connection

does exist, the script continues execution and writes the domain name to the console, as

shown in the next code snippet:

trap{write-host ‘t "[ERROR]" -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

write-host "Domain Connection" -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain's name

write-host ~t $Domain.Name -Foregroundcolor Green

In the next code snippet, the distinguished name in the $OUDN variable is verified. To

perform the verification, the script uses Get -ADObject function. This function connects to

Active Directory and completes a search for the OU by its distinguished name. If an

object is returned from the function, then the OU is valid; if no object is returned, the

OU is.considered invalid and the script halts:

The ProvisionExchangeUsers.ps1 Script Zoi

write-host "Checking OU Name" -NoNewLine

write-host “t "Is not valid!" -Foregroundcolor Red

write-host

Break

Pe |
etset

write-host ‘t "[{OK]" -Foregroundcolor Green

}

i i | if (!(Get-ADObject "distinguishedName" $OUDN “organizationalUnit")) { i

/
(

Then the script verifies that the import file is a valid file using the Test -Path cmdlet:

| write-host "Checking Import File" -NoNewLine

if (!(test-path $ImportFile -pathType Leaf)){

throw write-host °t "Is not a valid file!" -Foregroundcolor Red

| }
| else{

write-host “t "[OK]" -Foregroundcolor Green
5
f

Sa ornare sneer a Sve RCT TEN ee TE
BAP wrist estes nei cose Ph

Next, to collect the password from the user, the script uses the Read-Host cmdlet with the

AsSecureString switch, as shown in the next code snippet:

ee |
| # Get Password

| #e-- eee see ee se
| write-host
| $Password = read-host "Please enter password" -AsSecureString

Last, the script provisions the new user accounts using the New-Mailbox cmdlet, informa-

tion from the import file, and information provided by the script user:

TI

292 CHAPTER 11. Using PowerShell to Manage Exchange

oo

eee
| # Create mailboxes

| Heres nce e rene eee eens

| write-host
| write-progress -Activity "Adding Users" -Status "Stand by..."

|
| $Users = import-csv $ImportFile

| $Users | foreach-object -Begin {$i=0;} ~

| -Process {$FName = $_.FName;

$LName = $_.LName;

$Alias = $ -Alias;
$Database = $_.Database;

SUPN = $Alias + "@" + $UPNSuffix;
$Name = $FName + " " + $LName;

$Null = new-mailbox -Name $Name -Database $Database ~

-OrganizationalUnit $O0UDN -UserPrincipalName $UPN °
-Password $Password -ResetPasswordOnNextLogon $True ©

-Alias $Alias -DisplayName $Name -FirstName $FName ~

-LastName $LName -ErrorVariable Err -ErrorAction °

i SilentlyContinue;

| if ($Err.Count -ne 0){ °
| "Add User [ERROR]: "+ $Alias +" * + $€rr |

out-file $ErrorLogName -Append};

$i = $it1;
| write-progress -Activity "Adding Users" -Status "Progress:"

| -PercentComplete ($i / $Users.Count * 100) }

| write-host "Script is now DONE!" -Foregroundcolor Green

| write-host "Check the $ErrorLogName for errors." -Foregroundcolor Yellow

Summary
In this chapter, you were introduced to how PowerShell is used to manage Exchange

Server 2007 through not only a GUI using the EMC, but also the command line using the

EMS. Exchange Server 2007 is the first of what will be many applications that use

PowerShell in this fashion. To accomplish this feat, Exchange Server 2007 makes use of

PowerShell’s ability to be extended through the use of snap-ins. By using a snap-in, more

cmdlets are made available to a PowerShell user, thus further increasing their ability to

manage an Exchange organization.

The scripts that were reviewed in this chapter served as a good demonstration of what can

be accomplished using the Exchange Server 2007 snap-in. Thanks to these examples, you

should now have an understanding about how to use PowerShell to gather Exchange

SEER a eno |

Summary 293

database size information, calculate a database’s whitespace, and quickly provision mail-

enabled users. But, the limits to what can be accomplished around Exchange manage-

ment don’t stop there. Rather, as it has been stressed throughout this book, the limits to

what can be done with PowerShell should in many respects only be bounded by your

own scripting talent and imagination.

Opening your mind to the concept of what scripting can accomplish is by far the first

step in understanding what PowerShell can do for you. True, you need to understand

what PowerShell is before you can tackle grander and more elaborate automation needs.

However, by taking that first step, you have started down a journey of discovery that will

ultimately lead to using PowerShell as the PowerShell development team envisioned.

Aspects of this book should have assisted you with starting this journey in two areas.

First, the book allowed you to gain an understanding of what PowerShell is and how to

use it. However, background information and feature explanations were kept to only

several chapters by focusing on topics most important to gaining a working understand-

ing of PowerShell. Second, this book approached PowerShell usage from an angle not

normally seen. That angle was to not try and explain every single nuance of PowerShell’s

features and language syntax. Instead, this book zeroed in on how to apply PowerShell.

To show the application of PowerShell, there were a number of chapters that showed

comparisons between Windows scripting and PowerShell. In these comparisons, both

command-line examples and working scripts were analyzed using VBScript and

PowerShell. By doing this, the goal was to allow you to relate your existing Windows

scripting knowledge to new PowerShell concepts. The last two chapters were dedicated to

showing you how PowerShell might be used to meet various automation needs and how

PowerShell is used to manage Exchange Server 2007. Again like the previous chapters, the

focus of these chapters was on the application of PowerShell.

Now, having reached the end of this book, your journey continues. PowerShell is one of

the more amazing products to come out of Microsoft in a long time. Jeffrey Snover and

the rest of the PowerShell team should be given a lot of credit for seeing a need and then

developing PowerShell to meet that need. In time, as more and more Microsoft and third-

party applications adopt using PowerShell, the scope to what can be accomplished will

only further materialize. As a result, the depth to what you will be able to accomplish

using PowerShell will only continue to grow.

‘ .

oye = a) te
—

@ Cyto y fel s era cea ie ay iy > HI? '

Ss) =. oA a ins. Dew Pea ae

a oo bia’ bs ‘sett
ys St AO 2 ia J i ay> o> an

i ae a -

Wy - =~ SS Se ¢ -

ig ing Ak . Levit ae &
ie Ae en ee ee a

> /& 2 &. Fide Al ape iT: oe iv he oe hart

Attend aS. Toa , wl ttke a a = Cpe, Myles ny ax} ine
ie oy" : oe Py x To cht ts Sete ae Sa ag f

7 7 ; :
: Sine ie exis Vt i as ied . quip sel = Aes 3

7 > = . a : : ,

Ee ei ae ee te Pe ae a AT a aa
WHA i Ree ee ee ee Tapes Uw Eee gh

Meas my » wal eed} S ay igi cat | i wey, 4 ae avy ve ' =

i eee ae ey: ve CG Sa@ee)
7 . = 7 am 7

(a ila. 160-5 > ye Oy oe ee ohh ig; A
mo STL) ae Ge > ; »tas ke red md D le i a) eee ; oh a

i : oe: S.'@, oes oa of; aaa) A | — Abd
fis) 66 . Pia Mr i ee Fe Sie Dee) Ie

° : i ¥ - Arak ; at 7% mk? a)

: ° oe a ot ae ee we | S73
a Fe 3 ee ee ai - ae » pHs: oy

jhe! . “48 ww ¥ BS 7 _ e — S93 Rogue YS

io iia er pret ° thay) heared <paeiel +h.
7 yea! ; sileihalea errors ane

i me) | pe uae eee = irae ts Ae eae Any

' a por wee : us -

tine or oe ies x ak ous : pene :

pee yt a Pin eee Ya
- pers : ne ile .4.00 2s we |

yor’ ry be E SU. Tary MOS (4 CRTs ald Sines see)

Te deecayit ty WIG 6) Wepdiveme elie i

ivves are 7 usc) ee ipry Fuse fe) Cel Be Ole
a> JTF. awh tl Sale o 4 bP OG O10, Nat im ap +m

Te gatmnit? lerwS<A Otel Gil te Ob he ae ;

* pot oe See ORR Oe ed
' ee ee
OAL ye (ie -y ORs a

ms bh [ape oe i —_ -

il. egv:s) Gin, Riese SI
{ Se at ge Vile ise -=iqer hone’

iD «) BO ie 117i Maes) es oe

Index

Symbols

~ (backtick), 49-50

{ } (braces), 42

& call operator, 28, 53, 232

. (dot) call operator, 153

:: (double colon), 62

$ prefix, 41

/ prefix

opening files, 29

running scripts, 91

.\ prefix

opening files, 29

running scripts, 91

[] (Square brackets), 60-61

A

abstraction layers (ADSI), 206

Access Control Entry (ACE), 134-135

access rules, building, 131

accessing

drives, 74-77, 126

file information, 127

folder information, 126-127

PowerShell, 21-22

ACE (Access Control Entry), 134-135

296 Active Directory Services Interfaces

Active Directory Services Interfaces. See ADSI

ActiveX Data Objects (ADO), 207

Add-ACE function, 134-135

Add-Member cmdlet, 71

Add-PSSnapin cmdlet, 264

ADM (Group Policy Administrative

Template), 89-91

administrator passwords, changing,

246-256, 258

ADO (ActiveX Data Objects), 207

ADSI (Active Directory Services

Interfaces), 205-206

group membership scripts, 212-232

objects

creating, 210-211

retrieving object information, 209-210

in PowerShell, 208

in WSH, 207-208

[ADSI] type accelerator, 208

aliases, 45

cmdlets for, 47-48

creating, 10

Definition property, 40

naming standards and, 114

persistent aliases, 48-49

All Users host-specific profile, 84-85

All Users profile, 84

AllSigned execution policy, 86, 118

ampersand (&) call operator, 28, 53, 232

applications

Definition property, 39

shells versus, 7

arguments, 23

assemblies, loading, 241

auto-completion, 24-26

B

backtick (), 49-50

Bash shell, 15

best practices

script design, 110-117

script development, 107-110

script security, 117-118

standardization, 118-120

blocked information, viewing, 71

Bourne Again Shell (Bash), 15

Bourne shell, 14

braces ({ }), 42

built-in variables, 42-45

C

C shell, 14

CA (certificate authority), 86

defined, 94

signed certificates, obtaining from, 97-99

calling PowerShell from other shells, 30-32

certificate authority. See CA

certificate store

defined, 100

Trusted Publishers certificate

store, 103-105

Trusted Root Certificate Authorities

certificate store, 103

Untrusted Certificates certificate store, 105

certificates. See digital certificates

chaining commands, 9

ChangeLocalAdminPassword.ps1

script, 246-258

classes, static, 62

custom object types, creating 297

Clear-Inherit function, 133, 154

Clear-SD function, 133-134

CLI (command-line interface), 22-24

commands

formats of, 23

storing in scripts, 53-56

command types

cmdlets, 26

native commands, 29-30

script commands, 28-29

shell function commands, 26-28

GUI shells versus, 8

navigating, 24-26

shells as, 7

cmdlets. See also names of specific cmdlets

aliases, 45-49

common parameters, 34-35

defined, 26

help information for, 33-34

listing, 38-40

naming conventions, 33

ubiquitous parameters, error

handling, 80-81

code signing, 86

best practices, 117

defined, 94-95

digital certificates

CA signed certificates, obtaining, 97-99

importing, 99-100

obtaining, 95-96

self-signed certificates, creating, 96-97

digital signatures, verifying, 101-102

importance of, 93

PowerShell scripts, 100-101

trust, establishing, 102-105

command chaining, 9

command shortcuts. See aliases

command-line interface. See CLI

types of

cmdlets, 26

native commands, 29-30

script commands, 28-29

shell function commands, 26-28

comments, 111

common parameters, list of, 34-35

compression function, 94

configuration information

hard-coding, 111

location of, 110-111

variables in, 112

configuring PowerShell console, 170

Confirm parameter, 115-117

confirmation, prompts for, 251

connections

remote PowerShell connections, 91

WMI connection methods, 183-184

console files for persistent snap-ins, 265

converting VBScript to PowerShell

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

Copy-Item cmdlet, 152

CreateRegKey function (VBScript), 165-166

CreateRegValue function (VBScript), 166-167

cryptography, public key, 94

current user’s host-specific profile, 85

current user’s profile, 85

custom object types, creating, 71

How can we make this index more useful? Email us at indexes@samspublishing.com

298 data store providers

D

data store providers, 72-74

drives, accessing, 74-77

drives, mounting, 77-78

data types, ETS (Extended Type System), 70-72

databases, mailbox databases

size of, determining, 266-275

whitespace, determining, 275-285

DCL (Digital Command Language), 15

defining variables, 41-42

Definition property

for aliases, 40

for applications, 39

for functions, 40

for scripts, 40

DeleteRegKey function (VBScript), 168

DeleteRegValue function (VBScript), 168-169

delimiters, 58

deploying PSShell.ps4 script, 245-246

designing scripts. See script design

-detailed parameter (Get-Help cmdlet), 38

development life cycle model, 108-109

Dictionary object, 214

digital certificates

CA signed certificates, obtaining, 97-99

defined, 94

importing, 99-100

obtaining, 95-96

self-signed certificates, creating, 96-97

Digital Command Language (DCL), 15

digital signatures. See also code signing

defined, 94

verifying, 101-102

dir command, 23

directories

disk usage, determining, 10-14

listing, 8-10

disk usage of directories, determining, 10-14

distribution of signed code, 102-105

documentation for PowerShell, 91

dollar sign ($) prefix, 41

DOSShell, 15-16

dot (.) call operator, 153

dot sourcing

script files, 169

scripts, 52

double colon (::), 62

downloading

.NET Framework 2.0, 19

PowerShell, 20

Drive object, 126

drives

accessing, 74-77, 126

defined, 74

mounting, 77-78

E

EMC (Exchange Management Console), 262

EMS (Exchange Management Shell),

261-262, 265-266

enterprise code, establishing trust, 105

error handling

with ErrorAction and ErrorVariable

parameters, 80-81

throw keyword, 83-84

trapping errors, 81-83

$Error variable, 78-79

ErrorAction parameter, 80-81

ErrorRecord object, 78-80

errors

$Error variable, 78-79

ErrorRecord properties, 79-80

nonterminating errors, 78

handling, 80-81

trapping, 81-83

terminating errors, 78

throw keyword, 83-84

trapping, 81-83

ErrorVariable parameter, 80-81

escape sequences, 49-50

ETS (Extended Type System), 70-72

Event ID 1221 messages (Exchange

2007), 275-285

Exchange 2007

scripts

GetDatabaseSizeReport.ps1, 266-275

GetEvent1221Info.ps1, 275-285

ProvisionExchangeUsers.ps1, 285-291

task automation, 261-262

Exchange Management Console (EMC), 262

Exchange Management Shell (EMS),

261-262, 265-266

ExecuteGlobal statement (VBScript), 162

execution policies

AllSigned, 86

AllSigned setting, 118

RemoteSigned, 87-88

RemoteSigned setting, 118

Restricted, 86

setting, 88-91

Unrestricted, 88

Unrestricted setting, 93, 118

explicit scope indicators, 51

explicitly defined permissions, 154

Export-Alias cmdlet, 48

Export-Console cmdlet, 265

functions 299

Export-CSV cmdlet, 232

Export-DataTable function, 269-270,

275, 279, 285

expressions, 40-41

Extended Type System (ETS), 70-72

extending object types, 71

F

File object, 127

file system management. See also permissions

management

VBScript, converting to PowerShell

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

WSH versus PowerShell, 125-127

files, accessing information, 127

FileSystem provider, 126

FileSystemObject object, 125

fingerprint, 94

Folder object, 126

folders, accessing information, 126-127

Format-List cmdlet, 210

Format-Table cmdlet, 275

FormatNumber function, 194

FSO object model, 125

Drive object, 126

File object, 127

FileSystemObject object, 125

Folder object, 126

-full parameter (Get-Help cmdlet), 38

functions. See also specific functions

defined, 26-28

Definition property, 40

for permissions management, 132-135

in SubInACL utility, 128

How can we make this index more useful? Email us at indexes@samspublishing.com

300 Get-ACL cmdlet

G

Get-ACL cmdlet, 131

Get-ADObject function, 227, 230, 254, 290

Get-Alias cmdlet, 45

Get-AuthenticodeSignature cmdlet, 101-102

Get-Childltem cmdlet, 75

Get-Command cmdlet, 34, 38-40

Get-Content cmdlet, 77

Get-CurrentDomain function, 227-229,

254, 290 :

Get-ExecutionPolicy cmdlet, 88

Get-Help cmdlet, 35-38

Get-item cmdlet, 126

Get-ItemProperty cmdlet, 75, 159

Get-MailboxDatabase cmdlet, 274

Get-MailboxServer cmdlet, 273, 283

Get-Member cmdlet, 62-71

get-process cmdlet, 23-24

Get-PSDrive cmdlet, 74, 126

Get-PSProvider cmdlet, 73

Get-PSSnapin cmdlet, 263-264

Get-RegvValue function, 171-172, 178

Get-RemoteEventLog function, 279, 284

Get-ScriptHeader function, 224-229, 254,

272, 282, 290

Get-WmiObject cmdlet, 185-187

GetDatabaseSizeReport.ps1 script, 266-275

GetEvent1221Info.ps1 script, 275-285

global scope, 50-514

GPO (Group Policy Object)

setting execution policies, 89-91

for shell replacement, 237-238

graphical user interface shells. See GUI shells

group membership scripts, converting VBScript

to PowerShell

IsGroupMember.ps1 script, 222-232

IsGroupMember.wsf script, 212-220

Group Policy Administrative Template

(ADM), 89-91

Group Policy Object (GPO)

setting execution policies, 89-91

for shell replacement, 237-238

GUI shells, 7

CLI shells versus, 8

Windows as, 15

H

handling errors. See error handling

hard-coding configuration information, 111

help information

for cmdlets, 33-34

Get-Help cmdlet, 35-38

hiding PowerShell console, 239-240

history

of PowerShell, 16-17

of shells, 14-17

hosting applications, 84

ICMP pings, 196

implicitly defined permissions, 154

Import-Alias cmdlet, 48

Import-Csv cmdlet, 151

importing digital certificates, 99-100

including script files in VBScript, 162-163

installing PowerShell, 19-21

instances of .NET objects, creating, 60

instructions including with scripts, 112

interface. See CLI

interrogating objects, 62-70

IsGroupMember.ps1 script, 222-232

IsGroupMembet.wsf script, 212-220

J-K

Join-Path cmdlet, 152

keyboard editing features, 24

kiosk shells

overview, 8

PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows

Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

Korn shell, 15

L

language references for PowerShell, 91

launching PowerShell, 24-22

least privileges, principle of, 118

LibraryRegistry.ps1 script, 169-181

LibraryRegistry.vbs script, 162-169

listing

cmdlets, 38-40

directories, 8-10

loading

assemblies, 241

EMS snap-in, 265-266

snap-ins, 264

local administrator password,

changing, 246-258

local scope, 51

New-Alias cmdlet

M

mailbox databases

size of, determining, 266-275

whitespace, determining, 275-285

makecert utility, 96-97

ManagementClass class, 189

ManagementObject class, 189

ManagementObjectSearcher class, 190

message digest, 94

methods

defined, 25

static methods, 62

moniker strings, 183

monitoring virtual machines

MonitorMSVS.ps1 script, 197-202

MonitorMSVS.wsf script, 191-197

MonitorMSVS.psi script, 197-202

MonitorMSVS.wsf script, 191-197

mounting drives, 77-78

N

naming conventions, 114

cmdlets, 33

variables, 41-42

native commands, 29-30

navigating CLI, 24-26

.NET Framework

downloading, 19

instances of objects, creating, 60

references in square brackets, 60-61

reflection, 62-70

static classes/methods, 62

networking equipment, shells in, 8

New-Alias cmdlet, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

301

302 New-Mailbox cmdlet

New-Mailbox cmdlet, 291

New-Object cmdlet, 60, 241, 254

New-PromptYesNo function, 250-252

New-PSDrive cmdlet, 77

New-RandomPassword function, 250, 255

nonterminating errors, 78

handling, 80-81

trapping, 81-83

O

object information, retrieving with

ADSI, 209-210

object-based environment

ETS (Extended Type System), 70-72

pipeline in, 59-60

text-based environment versus, 57-58

objects, creating with ADSI, 210-211

one-way hash, 94

opening files, 29

Out-File cmdlet, 254, 272, 282, 290

p

parameters

common parameters, list of, 34-35

defined, 23

determining, 33-34

ubiquitous parameters, error

handling, 80-81

validity checking on, 113

passwords, local administrator

password, 246-258

permissions management

VBScript, converting to PowerShell

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

WSH versus PowerShell, 128-135

persistent aliases, 48-49

persistent snap-ins, 265

Ping function, 196

pipeline. See also command chaining

defined, 8

in object-based environment, 59-60

in text-based environment, 58-59

PKI (public key infrastructure), 95-96

PowerShell

ADSI in, 208

calling from other shells, 30, 32

console, hiding, 239-240

converting VBScript

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

downloading, 20

file system management, 125-127

history of, 16-17

installing, 19-21

language references, 91

launching, 21-22

permissions management, 128-135

Registry management, 157-161

scripts

signing, 100-101

trust, establishing, 102-105

system requirements, 19

WMI in

Get-WmiObject cmdilet, 185-187

type accelerators, 187-190

preference settings, 44-45, 90

private scope, 52-53

production environment, avoiding script

development in, 109

professional standards for scripts, 110

profiles

All Users host-specific profile, 84-85

All Users profile, 84

configuring PowerShell console, 170

current user’s host-specific profile, 85

Current user's profile, 85

defined, 84

for persistent snap-ins, 265

projects, scripts as, 108

prompts for confirmation, 251

properties

defined, 25

ErrorRecord object, 79-80

providers, 72-74

ADSI, 205

drives

accessing, 74-77

mounting, 77-78

ProvisionExchangeUsers.ps1 script, 285-291

provisioning user accounts (Exchange

2007), 285-291

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

.psi extension, 53

PSBase, 71

pseudocode, 109

PSObject, 70-72

PSShell.exe, 239-240

PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows

Forms, 240-245

requirements, gathering 303

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

public code, establishing trust, 105

public key cryptography, 94

public key infrastructure (PKI), 95-96

PVK Digital Certificate Files Importer, 99-100

R

Read-Host cmdlet, 255, 291

readability, 114

ReadRegValue function (VBScript), 163-165

references, .NET Framework, 60-61

reflection, 62, 64-70

RegDelete method (WSH), 161

registering snap-ins, 263

Registry management

shell replacement, 237

VBScript, converting to PowerShell, 161

LibraryRegistry.ps1 script, 169-181

LibraryRegistry.vbs script, 162-169

WSH versus PowerShell, 157-161

Registry provider, 158

RegRead method (WSH), 159

RegWrite method (WSH), 160

remote PowerShell connections, 91

RemoteSigned execution policy, 54, 87-88, 118

Remove-ACE function, 135

Remove-ItemProperty cmdlet, 161

Remove-PSDrive cmdlet, 78

Remove-Regkey function, 175-176, 181

Remove-RegValue function, 176-177, 180

replacing Windows Explorer, 236-238

required parameters, validity checking on, 113

requirements, gathering, 109

How can we make this index more useful? Email us at indexes@samspublishing.com

304 Restricted execution policy

Restricted execution policy, 86

retrieving object information with

ADSI, 209-210

reusability, 114

rights, principle of least privileges, 118

running scripts, 54, 94

runspaces, 242-243

S

scope

defined, 50

global scope, 50-51

local scope, 51

private scope, 52-53

script scope, 51-52

trapping errors, 83

script commands, 28-29

script files

dot sourcing, 169

including in VBScript, 162-163

scripts

ChangeLocalAdminPassword.ps1, 246-258

creating, 53-56

Definition property, 40

design, 110-117

development, 107-110

dot sourcing, 52

for Exchange 2007

GetDatabaseSizeReport.ps1, 266-275

GetEvent1221Info.ps1, 275-285

ProvisionExchangeUsers.ps1, 285-291

including instructions with, 112

professional standards for, 110

as projects, 108

PSShell.ps1, 235-236

deploying, 245-246

desktop generation with Windows

Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

purpose of, 14

running, 54, 94

script files

dot sourcing, 169

including in VBScript, 162-163

scope, 51-52

security. See security

software development versus, 107

testing, 110

SDDL (Security Descriptor Definition

Language), 134

secure kiosk shells, PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows

Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

security

best practices, 117-118

code signing. See code signing

execution policies

AllSigned, 86

RemoteSigned, 87-88

Restricted, 86

setting, 88-91

Unrestricted, 88

remote PowerShell connections, 91

scripts, running, 91

WSH, 85

Security Descriptor Definition Language

(SDDL), 134

Trusted Root Certification Authorities certificate store

Security Descriptor String Format, 134

selecting development life cycle

model, 108-109

self-signed certificates, creating, 96-97

Set-ACL cmdlet, 134

Set-Alias cmdlet, 48

Set-Aliases cmdlet, 48

Set-AuthenticodeSignature cmdlet, 100-101

Set-ChoiceMessage function, 250-252

Set-ExecutionPolicy cmdlet, 88

Set-ItemProperty cmdlet, 160

Set-Location cmdlet, 74

Set-Owner function, 133, 152-153

Set-RegKey function, 173

Set-RegValue function, 173-175

shell function commands, 26-28. See

also functions

shell replacement, 236-238

shell scripting

purpose of, 14

usage example, 10-14

shells

applications versus, 7

calling PowerShell from, 30-32

defined, 7-8

history of, 14-17

usage example, 8-10

Show-ScriptUsage function, 224-228

signature blocks, 101

signatures. See digital signatures

signing code. See code signing

size of mailbox databases,

determining, 266-275

snap-ins

confirming availability of, 264

defined, 262

EMS snap-in, loading, 265-266

loading, 264

persistent snap-ins, 265

registering, 263

verifying, 263

software development, scripting versus, 107

square brackets ([]), 60-61

standardization, 118-120

static classes, 62

static methods, 62

status information, providing, 115

StdRegProv class (WMI), 163

storing

commands in scripts, 53-56

expressions in variables, 41

SubInACL utility, 128, 141-142

system requirements of PowerShell, 19

T

terminating errors, 78

throw keyword, 83-84

trapping, 81-83

Test-Path cmdlet, 150, 230, 291

testing scripts, 110

text-based environment

object-based environment versus, 57-58

pipeline in, 58-59

$This variable, 72

throw keyword, 83-84

trapping errors, 81-83

trust, establishing, 102-105

Trusted Publishers certificate store, 103-105

Trusted Root Certification Authorities

certificate store, 103

How can we make this index more useful? Email us at indexes@samspublishing.com

305

306 type accelerators

type accelerators, 187-188

list of, 188-189

[WMIClass], 189

[WMlSearcher], 190

[WMI], 189

types, ETS (Extended Type System), 70-72

U

ubiquitous parameters, error handling, 80-81

Unrestricted execution policy, 88, 93, 118

Untrusted Certificates certificate store, 105

Update-TypeData cmdlet, 71

user accounts (Exchange 2007),

provisioning, 285-291

V

validity checking on required parameters, 113

variables

built-in variables, 42-45

in configuration information, 112

defining, 41-42

definition of, 41

naming conventions, 41-42

storing expressions in, 41

VBScript, converting to PowerShell

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

verifying

digital signatures, 101-102

snap-ins, 263

viewing blocked information, 71

virtual machines, monitoring

MonitorMSVS.psi script, 197-202

MonitorMSVS.wsf script, 191-197

W-X-Y-Z

Whatlf parameter, 115-117

whitespace in mailbox databases,

determining, 275-285

whitespace delimiters, 59

Windows, 15

Windows Explorer, replacing, 236-238

Windows Forms, 240-245

Windows Management Instrumentation.

See WMI

Windows Script Host. See WSH

Windows Shell Replacement, 236-238

WMI (Windows Management Instrumentation)

connection methods, 183-184

in PowerShell

GetWmiObject cmdlet, 185-187

type accelerators, 187-190

in WSH, 184-185

[WMIClass] type accelerator, 189

{[WMlSearcher] type accelerator, 190

[WMI] type accelerator, 189

Write-Host cmdlet, 148

WSH (Windows Script Host), 15-16

ADSI in, 207-208

file system management 125-127

permissions management, 128-135

Registry management, 157-161

security issues, 85

WMI in, 184-185

WshShell object, 157

xcopy utility, 140-141

safari
BOOKS ONLINE ENABLED

THIS BOOK IS SAFARI ENABLED

INCLUDES FREE 45-DAY ACCESS TO THE ONLINE EDITION

The Safari® Enabled icon on the cover of your favorite technology

book means the book is available through Safari Bookshelf. When you

buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily

search thousands of technical books, find code samples, download

chapters, and access technical information whenever and wherever

you need it.

TO GAIN 45-DAY SAFARI ENABLED ACCESS TO THIS BOOK:

@ Go to http://www.samspublishing.com/safarienabled

® Complete the brief registration form

@ Enter the coupon code found in the front

of this book on the “Copyright” page

If you have difficulty registering on Safari Bookshelf or accessing the online edition,

please e-mail customer-service @safaribooksonline.com.

Hy
i

|

ASP.NET 2.0

Unleashed

ISBN: 0672328232

Microsoft BizTalk

Server 2006

Unleashed

ISBN: 0672329255

Microsoft ISA Server

| 2006 Unleashed

_ ISBN: 0672329190

| Microsoft Office

Project Server 2007
Unleashed

| ISBN: 0672329212

| Microsoft SharePoint

2007 Development

Unleashed

ISBN: 0672329034

Microsoft Small

Business Server 2003

Unleashed

ISBN: 0672328054

OTHER UNLEASHED TITLES ~

Unleashed takes you beyond the basics, providing

an exhaustive, technically sophisticated reference

for professionals who need to exploit a technology

to its fullest potential. It’s the best resource for

practical advice from the experts, and the most

in-depth coverage of the latest technologies.

Microsoft SQL Server

2005 Unleashed

ISBN: 0672328240

Microsoft Visual C#

2005 Unleashed

ISBN: 0672327767

Microsoft Windows

Server 2003

Unleashed

(R2 Edition)

ISBN: 0672328984

Studio 2005

Unleashed

ISBN: 0672328194

Windows Presentation

Foundation Unleashed

ISBN: 0672328917

~ SAMS
www.samspublishing.com

Microsoft SharePoint 2007

Unleashed

ISBN: 0672329476

Microsoft Exchange Server 2007

Unleashed

ISBN: 0672329204

Microsoft Windows Vista

Unleashed

ISBN: 0672328941

eo,

PowerShell is an exciting new command line shell and scripting language

developed by Microsoft to provide IT professionals the power to fully

automate and customize administrative tasks on the systems they manage.

Leveraging the incredible power of the .NET Framework, PowerShell, with its

easy-to-learn syntax and collection of powerful tools, is designed from the

ground up to both save valuable time and provide the power and flexibility

you need to increase productivity.

Windows PowerShell Unleashed first focuses on PowerShell basics, how it

relates to existing Windows scripting practices, and how your existing knowl-

edge can be translated into PowerShell knowledge. After gaining insight into

PowerShell, the author presents transferable PowerShell scripting examples.

He outlines PowerShell examples and methods to help you manage

Windows Server, Active Directory, and Exchange Server 2007, through

examples that have not been explained or touched upon by other sources.

With more than nine years of experience within the Information Technology

sector, has become a Specialist in Active Directory, Group

Policy, Windows scripting, Windows Rights Management Services, PKI, and

Information Technology Security practices. He has been a contributing

author for such books as Microsoft Internet Security and Acceleration (ISA)

Server 2004 Unleashed and Microsoft Windows Server 2003 Unleashed

(R2 Edition). |n addition, Tyson has written detailed technical papers and

guides that covers the various in-the-field technologies with which he exten-

sively works. AS a consultant at Convergent Computing (CCO), he has

worked with the next generation of Microsoft technologies since early in

their inception and has played a key role in expanding the scripting and

development practices at CCO. Tyson holds a SANS Security Essentials

Certification (GSEC), the Microsoft Certified Systems Engineer (MCSE)

Security certification, the CompTIA Security+ certification, and the SANS

Certified Incident Handler (GCIH) certification.

Category: Windows Server

User Level: Intermediate

ISBN-13: 978-0-672-32953-1
ISBN-10: 0-672-32953-0

il) Ty
9 "78067 2!1329531 vi

$39.99 USA / $49.99 CAN / £28.99 Net UK www.samspublishing.com

Understand PowerShell’s basics

and background

Script using PowerShell

Transfer existing Windows

scripting skills to PowerShell

Analyze how PowerShell can be

used to solve real-world problems

Manage the Windows File

System, the Windows registry,

Active Directory, and Exchange

using PowerShell

Manage Systems using WMI

and PowerShell

Customize PowerShell to meet

your needs

Script using best practices

Digitally sign your PowerShell

scripts

Register your book at
www.samspublishing.com/

register for access to download

all examples and source code
presented in this book.

Safari Includes

BOOKS ONLINE FREE 45-Day

Online Edition

