
SHELL PROGRAMMING
LOWELL JAY ARTHUR & TED BURNS

UNIX* Shell
Programming

FOURTH EDITION

LOWELL JAY ARTHUR

TED BURNS

WILEY COMPUTER PUBLISHING

John Wiley & Sons, Inc.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Publisher: Robert Ipsen
Senior Editor: Marjorie Spencer
Managing Editor: Brian Snapp
Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trade¬
marks and registration.

This text is printed on acid-free paper.

Copyright © 1997 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub¬
lisher is not engaged in rendering legal, accounting, or other professional service. If
legal advice or other expert assistance is required, the services of a competent pro¬
fessional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section
107 or 108 of the 1976 United States Copyright Act without the permission of the
copyright owner is unlawful. Requests for permission or further information should
be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:
Arthur, Lowell Jay, 1951—

UNIX shell programming / Lowell Jay Arthur, Ted Burns. — 4th ed.
p. cm.

"Wiley Computer Publishing.”
Includes bibliographical references and index.
ISBN 0-471-16894-7 (paper: alk. paper)
1. UNIX (Computer file) 2. UNIX Shells. I. Burns, Ted, 1959-.

II. Title.
QA76.76.063A765 1997
005.4'3—dc21 97-11528

CIP

Printed in the United States of America

10 98765432

About the Authors vii
Preface viii

PART ONE—Shell for the Novice 1

1. The Power of Shell 3
Why Shell? 4
What’s in It for Me? 6
Shell Simplicity 7
The UNIX Shells 8
When to Use the Shell 12
Productivity and the Shell 13

2. UNIX Basics 15
What Is UNIX? 16
The UNIX Kernel 16
UNIX Files 17
Logging In 20
The Graphical User Interface (GUI) 24
Summary 30
Exercises 31

3. Shell Fundamentals 33
Command Syntax 33
Metacharacters and Filename Generation
Regular Expressions 49
Filters 59
Input/Output Redirection 61

Pipes 64
Summary 67
Exercises 68

.
IV ♦ Contents

4. Shell Commands 69
File and Directory Commands 70
Selection Commands 82
Combining and Ordering Commands 88
Transformers and Translators 93
Printing 98
Security 101
Built-In Commands 104
Summary 110
Exercises 111

5. Shell Decisions and Repetitions 113
Shell Variables 114
Inspiring Quotes 126
Test 132
Expr 135
Sequential Control Structures 138
Looping Commands 144
Summary 154
Exercises 155

6. Shell Programming 157
Interactive Shell Usage 157
Command History and Editing 165
Foreground and Background Procedures 178
Interactive Shell Summary 183
When to Create Shell Programs 183
Creating Shell Programs 184
How the Shell Finds Commands 199
Shell Programming 203
Summary 216
Exercises 217

PART TWO—Shell Programming for the User

7. User Shell Programming 221
The Shell Relational Database 223
Data Input 227
Database Update 240
Data Selection 244
Reporting 249
System Interfaces 250
Working with Numbers 252
Summary 260
Exercises 260

219

8. Structuring Shell Programs 261
Shell Functions 262
Good Program Structure 272
Designing Reusable Functions 273
Recursive Functions 274
Summary 277
Exercises 277

9. Internet and the Shell 279
HTML (Hypertext Markup Language) 280
CGI (Common Gateway Interface) Programming 284
Security 295
Summary 295
Exercises 296

10. C Shell 297
Setting Up Your C Shell Environment 298
C Shell Commands 300
Redirection Using C Shell 302
Control Structures 303
History 308
Job Control 309
Summary 309

PART THREE—Shell Programming for the Power User

11. Rapid Prototyping and Reuse 313
Benefits of Prototyping 314
Rapid Prototyping 316
Rapid Evolution Metaphors 319
Rapid Prototyping Process 321
Software Evolution 323
Innovation 324
Vision 329
Recommendations 332
Reuse 332
Internet Reuse Catalog 344
Summary 346
Exercise 347

12. Shell for Programmers 349
C Language Programming 350
Compiling 353
Creating and Maintaining Libraries: ar
Testing and Debugging 359

358

vi ♦ Contents

Change Control and Configuration Management
Summary 367

13. The Shell Innovator 369
Systems Integration 371
Strategic Information Systems 373
Rapid Prototyping 376
Tools for Strategic System Development 381
Development and Maintenance Tools 383
Shell Tools 386
Unimaginable Systems 389
Summary 389
Exercises 390

14. Shell Mastery 391
Reliability 392
Maintainability 396
Reusability 399
Efficiency 400
Portability 402
Usability 403
Summary 406
Exercises 406

15. The UNIX System Administrator 407
Administration Duties 408
Administrative Directories and Files 408
Daily Administration 411
Routine Maintenance 415
Diagnose and Fix Problems 417
Ensure System Security 418
Provide User Assistance 420
Summary 421
Exercises 421

Appendixes
A. Reusable Shell Code 423
B. C Language Prototype 425
C. Makefile Prototype 427
D. Shell Syntax 429
E. Shell Built-in Commands Reference 433
F. Sed Reference 489
G. Awk Reference 497

363

Bibliography
Index 513

509

About the Authors ♦ VII

About the Authors

Lowell Jay Arthur
Jay Arthur became a UNIX Zealot at Bell Laboratories in Piscataway, New Jersey.
Then, as a UNIX system administrator for Mountain Bell, he introduced one of the
largest UNIX minicomputer systems ever implemented. He has worked on the cre¬
ation of a fully integrated software cockpit for UNIX workstations. He is the
author of six widely read books on software engineering including Improving
Software Quality, Rapid Evolutionary Development, and Software Evolution. He
is the author of forthcoming workbooks on Total Quality Management (TQM):
The Quality Improvement Coloring Book (Problem Solving Made Easy), The
Quality Improvement Connect the Dots Book (Process Management Made Easy),
and The Quality Improvement Book of Bows and Arrows (Hoshin Planning Made
Easy). Jay has over 21 years of work experience developing and maintaining soft¬
ware in IBM, UNIX, and PC environments. He has consulted with many firms both
nationally and internationally.

Jay is a quality-improvement instructor and facilitator with an extensive
background in quality improvement, process design, and measurement. For the
last three years, Jay has been continuously involved in implementing TQM in a
large software organization. He has helped teams improve all aspects of the
business: customer service, repair and installation, and information system
development and maintenance.

Jay is also a certified master practitioner of Neuro-Linguistic Programming
(NLP)—the programming language of the mind. He specializes in communica¬
tion and performance enhancement to rapidly integrate improved quality tech¬
niques. He has a B.S. in systems engineering and an M.S. in operations research.

You can e-mail Jay at lifestar@rmii.com or visit his Web side at http://rmi
.net/~lifestar.

Ted Burns
Ted Burns has been building software systems for 13 years, the last 8 years as a
member of the technical staff for U S West Communications. While pursuing hs
M.S. degree in computer science, he became a UNIX and AI (Artificial Intelligence)
enthusiast. Since then he has exclusively developed UNIX-based application sys¬
tems. Currently he is working on a UNIX-based expert system. Send e-mail to Ted
at ted_burns@den.invasco.com.

p R E F A C E

Upon a mountain height, far from the sea,
I found a shell,
And to my listening ear the lonely thing
Ever a song of ocean seemed to sing,
Ever a tale of ocean seemed to tell.

—Eugene Field

This book is like the shell of a chambered nautilus—sheltering you during your
evolution from a novice to a power user of Shell programming. Along the way,
you will learn the basics and travel the avenues to knowledge and wisdom. In
Shell—as in life—there are three stages to growth: childhood, adolescence,
adulthood; apprentice, journeyman, master; and so it is with this book: novice,
user, and power user. We have added and expanded many chambers of knowl¬
edge and experience that will guide your growth through the book.

Shell unlocks the power of UNIX and, with it, the power of the Internet,
because UNIX is the primary server for the Internet. The Shell presumes that
users can and will do remarkable things. Shell teaches us how to do things
rapidly; one line of Shell can do the work of 100 lines of C language. A simple
Internet form coupled with Shell can do what might take weeks or months of pro¬
gramming. Shell teaches programming through composition of existing pro¬
grams, not through coding of complex, custom software. Shell teaches reuse in
ways that support such advanced concepts as object-oriented programming.

To enable everyone to derive the maximum benefit from using the Shell, we
have designed this book to carry you from beginning Shell usage all the way
through power user status. There are three major sections:

VIII

Preface ♦ IX

1. Shell for the Novice
2. Shell Programming for the User
3. Shell Programming for the Power User

ShellJor the Novice leads you through files and processes and the power of
Shell. It teaches you how to use Shell, from simple commands to more compli¬
cated programming. These elementary skills give you the ability to understand
the simplicity of the Internet, which is more fully explored in the next section.

Shell Programming Jor the User teaches you how to use these basic skills
to create whole applications—applications that can run stand-alone or be trig¬
gered via interactions on the Internet. Anything you can do with Shell can be
incorporated into your Internet sites and applications. People do things every day
that could benefit from automation, but do not require a sophisticated database
system. This section of the book will teach you how to master using Shell to
automate your everyday needs. It will show you how to create “CGI” programs to
make your Web site more interactive and compelling. It also establishes the
foundation for building more exotic applications as you evolve toward Shell
mastery.

Shell Programming Jor the Power User steps into the world of software
developers and systems administrators. This part of the book discusses rapid pro¬
totyping and other crucial software engineering activities in detail. There are new
reference sections and extensions for power usage of Shell.

Throughout, the attention will be on UNIX and the varieties of Shell. There
are three major flavors of UNIX: AT&T, Berkeley, and Linux. From AT&T Bell
Labs, we received the Bourne and Korn Shells. Berkeley gave us the C Shell.
Linux brings the Bash Shell. Bourne is the most common. C Shell is widely avail¬
able in all Berkeley UNIX systems. Korn retains the power of the Bourne Shell
while adding the power features of the C Shell. Linux relies on the Bash Shell.
This book will address all four shells. So regardless of your environment, it will
support your growth and development. In past editions, the Bourne and Korn
Shell examples appeared on the left-hand side of the page, and the matching C
Shell examples were on the right-hand side of the page. In this edition, the C Shell
has been moved into its own chapter. Rather than retrain their customers, most
vendors are providing most or all of these shells with their UNIX systems. Now
you can choose the shell that suits your needs the best.

When I wrote the first edition of this book in 1984, UNIX was still a four-
letter word and Shell was not far behind. You couldn’t find a reference to either
of them in any of the industry journals or magazines. The second edition, in
1990, found even wider acceptance because more people were using UNIX. The
third edition, with my coauthor Ted Burns, found even wider application and the
Internet was hardly a glimmer on the horizon. Now references to UNIX and Shell
shine from almost everywhere. Windowing systems on workstations have sim¬
plified the interface to UNIX. Once having mastered the graphical user interface
(GUI), you’ll want to step back behind the windows to explore the depth and
power of Shell. Through the growth in popularity of UNIX and the Internet, the

X ♦ Preface

use of Shell—the UNIX command language—has grown as well. We want to
show you why.

Step by step, this edition will lead you into the depths of Shell and its
usage. We hope that you will find the book as readable and enjoyable as we
found the experience of writing it. We know that you will benefit greatly from the
use of Shell to make your job more effective and efficient. We also know that, if
you let it, the Shell will teach you elegant ways of thinking about application cre¬
ation and evolution. It will teach you ways of doing things more quickly and effi¬
ciently than you ever thought possible. Have fun and enjoy your adventure in
the world of UNIX Shell programming.

JAY ARTHUR
TED BURNS

Denver, Colorado
July 1997

1 THINK HE PAEANS
3 UNIX NOT EUNUCHS.
S AND I ALREADY

KNOU UNIX.

IF THE COMPANY
NUR5E DROPS BYj

TELL HER I SAID

"NEVER niND. "

Shell for the Novice

The mind of the beginner is empty, free of the habits of the
expert, ready to accept, to doubt, and open to all the possibilities.

Shunryu Suzuki

.

CHAPTER 1
The Power of Shell

The Shell is the key to improving productivity and quality in a UNIX environ¬
ment. In the 1990s, unfortunately, the person who can make the best use of
technology to get things done rapidly will be the one who retains his or her job.
Whether you are a novice or a sophisticated user, the Shell can automate repeti¬
tive tasks, find where you left things, do things while you are at lunch or asleep,
and a host of other time-saving activities. The use of the Shell can double, triple,
or quadruple your productivity, making you more effective and more efficient.
The Shell accomplishes these things by letting you create tools to automate many
tasks. To maximize productivity and quality, we have to learn how to automate
mundane and complex tasks. The Shell enables you to rapidly construct proto¬
types of applications, programs, procedures, and tools. The speed with which
you can build a working prototype, enhance it to provide exactly what you need,
or just throw it away and begin again, will allow you the flexibility to create
exactly the right tool or application without a lot of coding, compiling, and test¬
ing. It will rarely be necessary to do things manually, because the Shell can grap¬
ple with almost any problem.

%

3

4 ♦ Chapter One

Why Shell?

Before we get into the meat of Shell, let’s look at a few key reasons for using the
UNIX Shell.

1. More and more data exists in a mechanized format all over the world.
The networks to connect people worldwide to this information already
exist and are being enhanced to provide an information superhigh¬
way—the Internet—that will offer information, communication, and
entertainment to consumers. For people to benefit from these rich
sources of data, however, it must be transformed into information,
knowledge, and wisdom (Figure 1.1). There are only a few ways that
data can become these higher forms of understanding:

♦ Selection of data separates the wheat from the chaff. The amount
of available information doubles every few years. Selection, like
light, can help you illuminate the key pieces of information that
you desire. Shell filter programs can help you select and display
only the information you want to see, not the whole universe of
information. Search engines make the ever expanding Internet
and Web sites more usable.

♦ Combination of data creates a collision course for two or more
groups of data, and, in this collision, information is created and
knowledge is gained. Gregory Bateson (1979) suggests that we
can know something only by comparing one thing to another. In
other words, all understanding comes from the comparison of
things. Additional Shell commands can help you compare and

FIGURE 1.1 The evolution of data.

The Power of Shell ♦ 5

scrub data together to gain further insight about the opportunity
or problem at hand.

♦ Decisions and rules help us further analyze the resulting infor¬
mation to gain knowledge. The Shell lets you ask IF-THEN-ELSE
questions and repeatedly loop through reams of files and infor¬
mation in ways that will help you automate processes and eval¬
uate information to create knowledge.

♦ Serendipity causes a person to mentally combine ideas, data, and
information in a totally unexpected way. Shell commands offer
so many ways to examine and evaluate existing information that
serendipity is almost guaranteed.

2. UNIX was the first fully integrated CASE (computer-aided software
engineering) toolkit. Integration of tools is the cornerstone of UNIX
Shell. UNIX will continue to be the platform of choice for IPSE (inte¬
grated project support environment). UNIX workstations are already
leaving their early engineering applications and being used as power¬
ful front ends to assist business users in serving customers more
effectively and efficiently. UNIX Shell can be a powerful tool for proto¬
typing end-user applications and testing out new and improved ways
of handling information for everything from customer contact applica¬
tions to complex processing of databases.

3. Shell is a full programming language. It has:

♦ Variables
♦ Conditional and iterative constructs (IF-THEN-ELSE, CASE, DO

WHILE, DO UNTIL)
♦ Tailor able user environment

4. UNIX Shell is the original rapid prototyping tool, teaching such key con¬
cepts as modularity, reuse, and development through composition
instead of coding. The Shell library of tools is the most widely reused
library in the world other than perhaps a few FORTRAN math libraries.
The UNIX philosophy: Build on the work of others; stand on the shoul¬
ders of those who have gone before you. To be competitive in the 1990s,
applications must be created quickly and be flexible enough to endure
the nonstop changes brought on by the emerging global economy.

5. UNIX Shell is one of the original fourth-generation programming lan¬
guages (4GL). Whole applications can be built quickly and effectively
in Shell. Compare the power of Shell; what takes 1 line in Shell may
take 10 or more lines in C++ or 100 lines in C (or COBOL). Some peo¬
ple complain that Shell has an awkward syntax, and it does, but no
more so than most 4GLs.

6. Machines are cheaper than people. With Shell you can optimize your
investment in people by creating look-alike environments for new
users and developing an environment that can grow as the users grow.

Wfo,
6 ♦ Chapter One

The key to productivity is to make user interfaces idiot-proof and easy
to learn. Train the machine instead of retraining people.

What’s in It for Me?

So what? you might ask. We’ve heard these claims before. Or you might be a user
rather than a developer of systems. What’s in it for me? How about the following?

1. Would you like to be more successful, more confident, more produc¬
tive, receive more praise, and take more pride in your work? Shell is
the key to personal satisfaction and success. Shell allows you to com¬
pose whole applications in hours or days versus months or years in
conventional environments. Completion of projects provides a major
source of psychic income—self-esteem, recognition, and reward.

2. Would you like to be more effective and take advantage of opportuni¬
ties? Shell gives you the ability to solve problems quickly and effec¬
tively. Shell can help you automate needed systems quickly to respond
to market windows that close all too quickly. Programmers naturally
tend to think that they must program in C or COBOL or some language.
This is unnecessary. Composing systems from Shell programs will
accomplish almost any task. Instead of waiting months or years for the
“perfect solution,” prototype applications built in Shell can be devel¬
oped and refined and implemented. These can then be used as the
requirements specification for the actual development of a “real” sys¬
tem, if needed. The ability to apply the full power of the UNIX Shell
toolkit to immediate problems outweighs the efficiency penalties of
using Shell. If you have time, you can go back later and tune up the
performance of your application by coding the inefficient components
in a programming language.

3. Do you need more time? Shell frees you from drudgery. Every job has
its exciting parts and its dull parts. Dull tasks are typically repetitive
and easily automated with Shell.

4. Do you need more timely information? Shell can extract and massage
huge quantities of information to meet your needs. Why look through
a whole report when Shell can scan and retrieve important information
for you effortlessly. Shell programs combined with Internet or intranet
(inside your company) can create “applets” (small applications) that
can simplify, automate, and accelerate your entire organization.

5. Do you need to integrate information from various existing systems?
Using the communication facilities of UNIX and the power of Shell,
this can be done at a fraction of the normal cost.

6. Are you having a hard time creating the applications that you or your
clients really need? With UNIX Shell, you can rapidly prototype appli¬
cations to make sure you have the requirements right before you build

The Power of Shell ♦ 7

the production system. Even then, the Shell version may be completely
satisfactory.

7. Would you like to be more creative? Are you having enough fun at
work? Tinkering with Shell programming can be great fun for both the
novice and the expert.

Beaten paths are for beaten men.

Shell, with its vast arsenal of tools that can be easily combined, lets
you automate much of this repetitive activity. When 1 was at Bell Labs,
I had the excellent good fortune to work with John Burgess, a bearded,
spectacled wizard, who was our resident UNIX toolsmith. All one
needed to do was complain about something and by the next morning,
John would automate it with Shell. The project I was on was success¬
ful in many ways because of his tool-building support. Since then, cre¬
ating tools in Shell has become a way of life. Some tools are needed
only once, and creating them ensures the accuracy of the resulting
work. Some tools, like seeds, start small and grow into powerful aids
for all of the work required.

8. Would you like to avoid retraining to use UNIX? Would you rather use
familiar command names instead of UNIX commands? Shell lets you
emulate any environment that you have used in the past. The Shell can
easily imitate DOS (which I call “baby” UNIX) or an IBM MVS TSO
environment. Using the smorgasbord of Shell tools, you can create
commands that emulate the functionality of most systems. No need for
retraining!

How can the UNIX Shell do all of these things? It must be complex! On the
contrary, it is simplicity that allows this to happen, not complexity. Processing,
interfaces, and data management are all dirt simple. This is what makes the Shell
such a pleasure to use. It is also the foundation that enables the Internet to pro¬
vide powerful information and tools to people anywhere and at anytime.

Shell Simplicity

How you use the Shell is perhaps one of its greatest simplicities. Unlike many
programming languages, Shell commands do not need to be compiled (a transla¬
tion process that is used to turn programming commands into something the
computer understands) before execution. The Shell is an interpreted language,
as opposed to compiled, meaning that when you type in a command its meaning
is determined at that time. You can sit at your terminal and interact with the Shell
directly, getting immediate feedback about the task you are trying to perform.
This makes it easy to prototype and test your ideas quickly, getting feedback

along the way.

8 ♦ Chapter One

Shell commands talk to one another through a simple and consistent inter¬
face called a pipe. The Shell uses the UNIX file system (which is a hierarchy,
much like an organizational chart) that lets you organize files into cabinets and
folders (directories). This hierarchy of directories and files yields a simple, clean
view of all information in the system.

The UNIX system is another key to the Shell’s ability. UNIX is portable; it
runs on almost any computer hardware made today. So your investment in train¬
ing, education, and development of Shell programs will be portable from system
to system as you move around. UNIX also supports multiple users and multiple
tasks. Again, your investment in Shell programming will support dozens of other
users and allow for hundreds and even thousands of repetitive tasks to be done
in the “background” while you work on something else. .

The Shell is almost exactly what it sounds like: It is a friendly environment
for users that protects each user from every other one. It allows users to do what¬
ever they want without affecting anyone else. When a user logs into a UNIX sys¬
tem, the operating system automatically starts a unique copy of the Shell, under
which the user can perform any function available. It is this protected yet pow¬
erful environment that gives each user the ability to be more productive.

The UNIX Shells

There are several major flavors of UNIX utilized in the marketplace today. These
include but are not limited to:

♦ Berkeley UNIX (BSD 4.3)
♦ AT&T System V Release 4
♦ SunOS/Solaris
♦ XENIX
♦ SCO
♦ LINUX

The AT&T System V Release 4 is an attempt to bring together the best of all
the UNIX variations while adding some new commands and functionality to the
UNIX operating system. With the recent sale of UNIX to Novell and with POSIX
looming on the horizon as a standard, further unification and standardization
will hopefully occur. Unfortunately the hope for a unified UNIX still remains a
dream, but work continues in that direction. With the increased power of PCs
over the past several years, UNIX has become more prevalent in this environ¬
ment. The explosive growth of the Internet has fueled the application of UNIX as
engine of choice for Internet servers.

The newest addition to the UNIX family is the LINUX version of UNIX. This
version has become very popular for one very important reason: It’s free. Unlike
other versions of UNIX, which are supplied for and charged for by UNIX vendors,
the LINUX system is free to anyone who wants it. Within these major UNIX envi-

The Power of Shell ♦ 9

ronments, there are usually three Shells available: Bourne, Korn, and C, with a
new fourth shell quickly gaining support—GNU’s Bash shell (Table 1.1). The
Korn shell has become the standard on most vendor-supplied UNIX versions, but
GNU’s Bash is supplied as the default shell with LINUX. All support processes—
both foreground and background, pipes, filters, directories, and other similar
standard features of UNIX.

The original Shell was rewritten by S. R. Bourne about 1975, giving us one
version of the Shell known as the “Bourne Shell,” which runs on most UNIX sys¬
tems. Bill Joy and students on the Berkeley campus created another version of
the Shell known as the “C Shell” that is useful for C language programmers.
David Korn, at AT&T, created the “Korn Shell,” which preserves the functional¬
ity of the Bourne Shell and incorporates many powerful extensions. These exten¬
sions include some nice features from the C Shell as well as many new
commands. The Bash shell (which stands for the Bourne again shell) was writ¬
ten at the Free Software Foundation which is headed up by Richard Stallman.
The goal of the Free Software Foundation is to build and distribute free versions
of the UNIX operating system and its related utilities. The bash shell is the Free
Software Foundation’s UNIX shell contribution. While the Korn Shell has become
the dominant shell, the bash shell has gained wide support with the other shells
still having their users (although fading from popularity). Which of these Shells
will dominate the market is yet to be seen, but I expect the Korn Shell to domi¬
nate. This book will describe all four Shells. Let’s take a look at the shells and
some of their key differences (Thble 1.2).

Bourne Shell

The Bourne Shell is the most common of the shells (Thble 1.3). Almost all UNIX
implementations offer the Bourne Shell as part of their standard configuration. It
is smaller than the other two shells and therefore more efficient for most shell
processing. However, it lacks the interactive bells and whistles of either the C or
Korn Shell.

Occasionally, problems can arise from your programming or from the sys¬
tem itself. These exceptions can cause problems unless you have a way of deal¬
ing with them. The Bourne Shell allows exception handling using the trap
command, which will be discussed in detail in later chapters. The trap command
is not available with the C Shell. Connecting one command to another or a file to

TABLE 1.1 The UNIX Shells

Shell Originator System Name Prompt

Bourne S. R. Bourne sh $
Korn David Korn ksh $
C Bill Joy csh %
Bash Free Software Foundation bash $

10 ♦ Chapter One

TABLE 1.2 Summary of Shell Capabilities

Korn Bash Bourne C

Shell scripts Yes Yes Yes Yes

Command alias Yes Yes No Yes
Command line editing Yes Yes No No

Command history Yes Yes No Yes
Filename completion Yes Yes No Yes
Job control Yes Yes No Yes

a command is handled by a simple facility called input/output redirection.
Bourne Shell input/output redirection is more versatile than C Shell. For exam¬
ple, unlike the C Shell, the Bourne Shell allows redirection of standard input and
output into and out of whole control structures. The Bourne Shell can also take
advantage of System V’s named pipes.

To support structured programming, the Bourne Shell supports both local
and global variables. Global variables must be exported. The Bourne Shell offers
the IF-THEN-ELSE, CASE, FOR, WHILE, and UNTIL control structures. It relies,
however, on the UNIX utilities test and expr to evaluate conditional expressions,
unlike either the C or Korn Shell, both of which evaluate expressions directly.

C Shell

Developed at the University of California at Berkeley, the C Shell offers some
advantages over the Bourne Shell: history, and direct evaluation and execution

TABLE 1.3 Shell Functions

Function Bourne Korn Bash

Availability All commercial systems Almost all commercial Available for most
systems systems (must be installed)

Variables local local local
global (export) global (export) global (export)

Control commands if-then-else-fi if-then-else-fi if-then-else-endif
case-esac case-esac switch-case-endsw

select select
for-do-done for-do-done for-do-done
xargs xargs xargs
while-do-done whi1e-do-done while-do-done

unti1-do-done unti1-do-done
Conditional
evaluation test, expr direct direct

Interactive history, editing history, editing
Aliasing alias functions, alias functions, alias
Signals trap trap trap
Efficiency fast medium medium

The Power of Shell ♦ 11

of conditions and “built-in” commands. Interactively, the C Shell keeps track of
the commands as you enter them (history) and allows you to go back and exe¬
cute them again without reentering the command. Or, if you want to, you can
recall them, make modifications, and then execute the new command.

The C Shell offers aliasing, which allows the user to create alternatives for
command names. The C Shell also offers greater control over background (behind
the scenes) and foreground (at the terminal) tasks. In the Bourne Shell, if you
start a command in background or foreground, it stays there until it ends. In the
C Shell, you can move commands from foreground execution to background exe¬
cution as required.

The C Shell offers two kinds of variables: regular (local) or environment
(global). The C Shell uses set and setenv to establish these two kinds of variables.

The syntax of the C Shell is more like C language programming and offers
all of the C conditional operators (=, >, etc.), which C programmers might find
useful. The C Shell offers the IF-THEN-ELSE, SWITCH, FOREACH, REPEAT, and
WHILE control constructs. The C Shell evaluates conditional expressions within
these control structures directly.

Korn Shell

The Korn Shell retains the complete functionality of the Bourne Shell and com¬
bines many of the key features of the C Shell. It also includes many new com¬
mands. The Korn Shell is faster than the C Shell, but slower than the Bourne for
most processing.

The Korn Shell offers command-line editing which allows you to modify
entered commands using features found in several common UNIX editors. It also
provides improved history management, which provides direct access to past
commands. Further it incorporates job control (background/foreground) and
enhanced programming capabilities. The Korn Shell evaluates conditional
expressions directly for efficiency and adds a select control construct (such as
CASE) for menu-driven shells.

Bash Shell

The Bash Shell includes almost all of the features found in the Korn Shell and C
Shell and also provides unique extensions. Probably one of the prominent fea¬
tures of the Bash Shell is improved command-line editing. This includes file¬
name and pathname completion much like that available in GNU’S emacs editor.
For serious users these can be great time-saving features. But one of the great¬
est things about the Bash Shell is that you can get it anytime for free. And if you
are a Linux user, then you already have the Bash Shell as your default shell.
More about how to obtain the Bash Shell later, but for the most part it’s as sim¬
ple as visiting the GNU site on the World Wide Web and FTPing the needed files
down to your machine. (FTP is the standard file transfer protocol.)

n% Chapter One

Choosing a Shell

For the novice, I’d choose the Korn Shell. I find the Korn/Bourne Shell syntax
simpler than and preferable to the C Shell. The combination of simplicity and nice
enhancements found in the Korn Shell make it the Shell of choice. More experi¬
enced users, familiar with the C Shell, will benefit from staying with what they
already know. Bourne Shell users, however, can benefit from the interactive
power of the Korn Shell and will find the migration to the Korn Shell simple and
straightforward.

When to Use the Shell

Choose your weapons to match the war.
Brad Cox

Anytime you enter a UNIX command, you are using the Shell. To increase pro¬
ductivity, use the Shell whenever you are faced with:

1. Doing something to many files, or
2. Doing the same task repeatedly

It’s as simple as that. By necessity, people perform repetitive tasks, such as:

♦ The dates or names in a group of documents must be changed.
♦ Reports must be produced every month.
♦ Status must be entered daily and reported monthly.

Each of these tasks can be automated with a Shell program.
You can also use the Shell interactively at your terminal to automate one¬

time tasks. There are many situations that could benefit from use of the power¬
ful features of Shell, but they do not require the creation of a separate Shell
program. These problems can be solved with interactive use of the Shell. We look
at interactive Shell usage in more depth later in Chapter 5.

You should not use the Shell when the task:

♦ Is too complex, like writing an entire billing system,
♦ Requires high efficiency,
♦ Requires a different hardware environment, or
♦ Requires different software tools

Use the Shell to automate anything that requires data manipulation: selecting data,
adding numbers, printing statistics, or whatever. Finding the right information in
a mound of reports is simple for the Shell and cumbersome for people. Manip¬
ulating data and putting it into printable form is also tedious and unreliable. The
Shell, as you will soon see, can do all of these things quickly and reliably.

The Power of Shell 4 13

Productivity and the Shell

Studies (for example, Thadhani 1984) have shown that an average programmer
may spend 20 to 25 hours a week at the terminal. Ninety-five percent of that
time involves “human-intensive” activities like editing and data manipulation.
As homes, offices, and businesses become increasingly automated, 20-25 hours
may climb to 30-35. To make people more productive:

1. Response times must be kept to a minimum (under one second), or
2. People must be allowed to automate their human-intensive activities.

The Shell and its tools have been designed and optimized to automate
many of these activities. It requires some insight into the Shell and its usage to
derive these benefits, but it takes only a little ingenuity to become more effective
and efficient. As you learn to use the Shell, you will gain invaluable insights into
how to design robust, reusable, and flexible systems that can respond to contin¬
uously changing environments.

Since the Shell can automate most of the recursive tasks, which encompass
50 to 80 percent of the human-intensive activities, it is little wonder that the
Shell can double or triple productivity. The simplicity of UNIX files and the file¬
system design makes this possible. The simple IF-THEN-ELSE, CASE, and loop¬
ing controls of Shell enable you to automate the decisions and actions that are
the key ingredient in “artificial intelligence” applications.

Whether you are a beginner, apprentice, or master user of UNIX Shell, the
following chapters will help you discover powerful ways to make use of the Shell.
Part of the pleasure of Shell is the seemingly endless possibilities for exploring
new and interesting ways to combine tools to create new tools and new ways of
looking at information. Like Darwin on the HMS Beagle, enjoy your journey of
discovery—a journey into the power of UNIX Shell.

*

'

c H A P T E R

UNIX Basics

A good beginning makes a good ending.
English proverb

In today’s rapidly evolving technological environment, UNIX must be one of the
arrows in your quiver. In today’s complex applications, more and more power
needs to be placed at the fingertips of the user. UNIX workstations offer power
and flexibility above and beyond personal computers, while offering the flexibil¬
ity to run DOS applications as one of many windows in the system. UNIX is the
workhorse of the Internet. Most World Wide Web servers are UNIX platforms.
Powerful applications can be built using a company’s intranet and the Shell.
There is no way to separate a discussion of the Shell from UNIX (although some
single-tasking versions of Shell run under DOS). Without the simplicity of the
UNIX architecture, the Shell could not exist. The Shell derives much of its power
from UNIX.

%

15

16 ♦ Chapter Two

What Is UNIX?

Is UNIX an operating system? a philosophy? the juice fueling the Internet? or
just a red-hot environment for personal productivity that runs on every hard¬
ware platform from a personal computer to the Cray Super computer? Answer: all
of the above.

UNIX is one of the most flexible operating systems available. UNIX departed
from most traditional approaches to operating systems in that it simplified much of
the typical complexity, especially the reading and writing of files—input/output
(I/O). UNIX simplified I/O by having all files and devices look the same to any com¬
mand that used them. Files contain data as streams of characters—no records, no
varying record sizes, and fewer problems. Because of this uniqueness, every util¬
ity program in UNIX has been designed to accept input from any other program.
Each program can perform a single unique function or be connected to other pro¬
grams, devices, or files via the Shell. This simple design gives UNIX and the Shell
much of their power. UNIX offers one of the richest “libraries” of reusable software
components and programs to be found in any system. The result: You do less cod¬
ing and more composing of applications from reusable parts, which translates into
huge improvements in personal productivity and software quality.

Following the development of UNIX, many software developers contributed
additional user-oriented tools. These tools were packaged as an extension to
UNIX called the Programmer’s Workbench (PWB). This has since been included
into the standard package, UNIX.

The UNIX Kernel

Let’s take a little closer look at how the UNIX operating system is structured. The
system is layered like an onion. At the heart of the system is the “kernel." All
programs that run on a UNIX system interact with the kernel to get their work
done. Figure 2.1 shows a high-level depiction of the UNIX system.

The kernel sits above your computer’s hardware, guiding all of the activity.
All other programs, including the UNIX shells, interact with your computer
through the kernel. When developing applications for the UNIX system, we add
new layers to the onion by employing software that exists in the lower layers.
Figure 2.1 shows another very important feature of the UNIX operating system:
Since all programs are insulated from the computer hardware by the kernel,
moving programs from one computer to another is much easier. This hardware
independence is one reason why UNIX runs on so many different types of com¬
puter hardware.

While it is good to understand what the kernel is and how the various Shell
programs fit into the overall UNIX system architecture, it is not something that
you must be concerned with in day-to-day use of the UNIX system. In general,
you interact with the kernel indirectly through the UNIX Shell and need not be

UNIX Basics ♦ 17

YOUR SHELL PROGRAMS

KORN SHELL BASH SHELL BOURNE SHELL
r

KERNEL
S

'

HARDWARE •
_

OTHER UNIX COMMANDS C SHELL

FIGURE 2.1 UNIX.

concerned with any details about the kernel. We will talk more about the kernel
when looking at UNIX processes in later chapters.

UNIX Files

UNIX files are unique because they are basically free-form. Each file is just a
sequence of characters (see Figure 2.2). Lines or records are delimited by the
new-line (n\n) character. The end of a file is delimited by an end-of-file (EOF) or
end-of-tape (EOT) character. Since every file can be read character by character
and output the same way, every Shell tool has been designed to handle this sim¬
ple file architecture. Because of this design choice, the output from any program
can be used as input to any other program. This design feature allowed the orig¬
inators of UNIX to create simple, modular programs to perform single functions.
Each function, although trivial when viewed as a single entity, becomes vastly
more important when combined with other singular functions to do virtually any
kind of activity.

UNIX files reside in a hierarchical file system or inverted tree (organization-
chart style), like the one shown in Figure 2.3. To implement this structure, UNIX
uses a special file known as a directory. You can think of a directory as a file cab-

The UNIX shell is the key to improving your productivity^
and quality in a typical UNIX environment.^
The Shell can automate repetitive tasks, \n
find where you left things,'\n
do things while you are at lunch,'\n
and perform a host of other time-saving activities.\MO

FIGURE 2.2 A UNIX file.

18 ♦ Chapter Two

inet, file drawer, or file folder, which is how you will see it displayed in a window.
Each directory is a fork in the hierarchy, from which other branches may grow.
This facility is useful for organizing files and information. In the example, my
user identification (ID), lja, resides under the file system /unixl. Under my ID
there are directories for source code (src), Shell commands (bin), and documents
(doc). These names are short because most people are terrible typists. Longer
names such as source code or documentation can rarely be typed without error,
and typing them is time consuming. Even my ID, lja, is nothing but initials.
Under src are directories for “C” language (c.d) and COBOL (cobol.d). The “.d”
suffix makes them readily identifiable as directories. Under each of these direc¬
tories are a variety of files, which are represented by rectangles in the diagram.
Just by use of directories and their names, I can usually find what I need in short
order. Finding where you left something in a UNIX file system is often a chal¬
lenge, especially if you have 30 to 100 files in a directory. The find command,
which will be discussed later, can often be used to locate files in the directory
structure.

The UNIX file system is designed so that you can move around within the
directory structure. Moving to a certain directory is much like opening the file
folder or file drawer to reveal what is inside. The concept of traversing the UNIX
directory hierarchy to locate files and programs is a fundamental UNIX concept.
UNIX provides several commands to allow you to move around the file system
hierarchy and view what is contained in a directory. These commands are cov¬
ered in detail in Chapter 4 (Shell Commands).

FIGURE 2.3 A UNIX file system.

UNIX Basics ♦ 19

Home Directory

A home directory is a standard UNIX directory that is assigned to you and is usu¬
ally where you will create and edit files. The UNIX system associates a particular
directory, in the overall directory structure of the system, as your home directory.
After you log in to the system you will be located in your home directory. In the
diagram of the UNIX file system, my home directory may be lja. You are free to
arrange your home directory however you wish. You can create and alter subdi¬
rectories (such as bin, doc, and src in the diagram) to keep your files organized
in any manner that seems to make sense to you. Normally the first time you log
in your home directory will be empty. This may not be true if your system admin¬
istrator sets up some standard files that are used by UNIX or perhaps others that
are used by local utilities on your machine. Quite often a standard UNIX file
named the .profile will have been created in your home directory. This file plays
a large roll in customizing your Shell environment at the time you log in. This is
covered in more detail in Chapter 4.

Pathnames

UNIX provides a naming convention, called a pathname, to uniquely identify a
file or directory in the hierarchy shown in Figure 2.3. A pathname starts with a
/ (slash) to indicate the root directory of the UNIX file system and is followed by
a series of directory names, separated by / and ends with either a directory name
(when referring to a directory) or a file name (when referring to a file). For
example, my home directory has the full pathname /enduser/lja. The full
pathname to my src directory would be /enduser/lja/src. The full path¬
name to the test file located in the src directory would be /enduser/

1 j a/src/ test. A pathname is used when we want to explicitly tell a UNIX or
Shell command exactly which file or directory we want to work with. Shell and
UNIX commands often use a filename or directory name as an argument. A com¬
mon command form is:

"command filename"

"command directoryname”

When you are located in a particular directory, such as your home directory,
it is referred to as your current working directory. Any files or subdirectories con¬
tained in that directory are in your current view and do not need to have a full
pathname specified in order to reference them. Your current working directory is
your implied pathname. For example, if my current working directory is my doc
directory, the files chapter 1 and chapter2 are within my view and can be referenced
directly without a full pathname by using a format like " command chapterl11.

This is the same as saying " command/enduser/lja/doc/chapterl". When¬
ever you type a filename or directory name without a path it is assumed that file
or directory is located in your current working directory. This is sometimes called a

20 ♦ Chapter Two

relative path; it is relative to your current working directory. If you need to spec¬
ify a file or directory that is not located in your current working directory then the
full pathname needs to be specified. UNIX needs to know exactly which directory
or file you wish to access. It can know this only if you provide a full pathname to
the command. For example, if my current working directory is my /lja/doc

directory and I want to reference the test file over in my src directory, then I would
need to specify the full path to that file. This full pathname is /enduser/lja/

src/test.

UNIX does provide some shortcuts to help alleviate the typing chore. The
symbol (double period) represents the directory level one level above the
current directory, or the parent directory. And the symbol (a single period)
designates the current directory. These will be discussed in Chapter 4 when we
talk about specific file and directory commands.

Special Files

Directories and data files are not the only types UNIX offers. There are other,
special “files” that are not really files at all, but devices like terminal handlers,
disk drives, tape drives, and so on. Using the simplicity of UNIX input and out¬
put, we can treat these devices like files—reading and writing information as if
they were a simple file. (These will be discussed in detail in the advanced mate¬
rial later in this book.) Any of these files can be processed using a Shell com¬
mand to filter or enhance the data.

Logging In

The first step that you must accomplish before you can use UNIX or the Shell is
to log in to your machine. This is usually a very straightforward process provided
that you have a login ID and a password. If you don’t have both your login user
ID and your password, you won’t be able to gain access to the system. When you
try to access your system UNIX will display a prompt that looks something like
this:

login: fuzzy

Password: was-he

After receiving the login prompt you enter your login ID (Juzzy in the
example), after which you receive the Password prompt. At this stage you must
type in your password (was-he in the example). Your password does not display
on the screen when you type it in. It is hidden for your protection. The password
you use should be kept private. It is the method used by the UNIX system to pre¬
vent unauthorized entry into the system. Although your user ID is a public thing
that many people will know and use, your password should be guarded. In addi-

jgfaBJaaEai

UNIX Basics ♦ 21

tion, it should be changed frequently. On many systems you are required to
change your password after a period of time. This is called password aging. After
a specified period of time your password expires and the next time you log in the
system requires you to change your password. In addition, you can change your
password whenever you like on most systems by using a command to alter your
password. We will discuss how to change your password a little later when we
discuss security.

Your Initial Login

While the above procedure is the general method for logging in to a UNIX sys¬
tem, your first login session might be a little different. The main difference is that
since you have not been on the system before, you may not have your own per¬
sonal password. On many systems the system administrator will provide a
default password that you use for your first login session. Once you provide the
default password to the Password: prompt, the system will ask you to change
your password to one that only you know. This will be the same process that you
will follow when your password ages and expires on your system. Essentially
your system administrator has provided a default password that is already
expired. When the system determines that your password has expired, it forces
you to provide a new one before you can gain access to the system. A typical first
login might look like the following:

login: fuzzy

Password: Welcome

Your password has expired.

Choose a new one.

Old password: Welcome

New password: was-he

Re-enter new password: was-he

Again, none of the passwords you type will actually display on the screen. Note
this same process is followed when your password expires in the future. When
you reenter the password it must match what you typed before or you will be
prompted for the new password again.

Choosing and Changing Your Password

As was pointed out previously, an important part of the UNIX security system is
centered on your password. It prevents intruders, more commonly called hack¬
ers, from entering the system. Hackers, however, are a determined bunch and
they know that people often choose passwords that are easy to guess. There are
actually lists of commonly used passwords that many hackers will try. When you
choose a password you should try to avoid the common passwords that hackers
often use. These passwords include things such as your name, your spouse’s

22 ♦ Chapter Two

name, the word password, the letter X, and other easily guessed passwords. If
you use passwords like these, a hacker will have an easy time gaining access to
your system and will be in a position to cause great damage to your files and
directories. They will also be able to read most of the proprietary information that
exists on the system. To prevent some of these password abuses, the UNIX sys¬
tem requires a password to have certain properties. While this is not a complete
list, here are some of the rules that UNIX uses to check a password for validity:

♦ The password must have at least six characters.
♦ It must contain at least two alpha characters and at least one numeric or

special character.
♦ It cannot be any permutation of your login ID.

To change your password you can use the passwd command. At the UNIX
prompt you type the command " passwd" and the system prompts you for your
old password, to make sure it is really you doing the changing, and then asks
you to provide a new password. This process is the same as is used when your
password expires through the password aging process.

Improper Login

Sometime you may not type the login ID or password properly. When you do this
the system will respond with the following message:

login: fuzzy

Password: Welcom

Login incorrect

login:

Note that the system does not tell you which one is incorrect. Again, this is a
security measure. Even if you type your login ID improperly you will still get the
password prompt. This way an intruder cannot guess login IDs. You usually get
three to five attempts to get it right before your terminal is disconnected. Many
times a message is displayed to the system administrator telling him or her that
several unsuccessful attempts were made on your login ID. If you do not respond
within a minute your terminal is disconnected and your dial line is dropped or
you are returned to your LAN prompt.

The Login Process

Back to the process of login: Once you type in a user ID and a password, the sys¬
tem attempts to verify that you are indeed a valid user on the system and that
your password is correct. This is done by searching a file on the system called
/etc/passwd. This file contains all the valid user IDs for the system along with
their current passwords and some other very important UNIX information. You
can look at this file at any time for reference, but you are not able to modify it.

UNIX Basics ♦ 23

The information in the password file is critical to the UNIX system and should be
changed with care by a system administrator. Let’s take a look at some entries in
the /etc/passwd file. (It should be noted that for this example we are looking at
an older style of the UNIX passwd file. This was done because it is a little easier
to see all the pieces with the old style passwd file.)

fuzzy :Wpe5JdZ7XB3NI , 2 /. . -.108:100: the Fuzz: / staff/fuzzyl: /bin/sh

fred:WSwXMk5vpG37w,2/..:109:100:\

Fred 303-111-4545:/prog/fred:/bin/sh

nancy:eL.dVgT3FM7Zs,21. . :314:100:\

Nancy 454-222-1212:/staff/nancy:/bin/sh

elroy:yEspcrjOQ.P1U,2/..:110:150:\

Elroy Jetson 303-999-8976:/support/elroy:/bin/ksh

stinkfot:jBsF82rrn2VYo,2/aG:201:400 : \

STINKFOOT 303-333-4444:/guest/stinkfot:/bin/ksh

The fields in the password file are separated by the colon A few of the
fields are of little concern at this stage, but others will lead to some insight into
the UNIX login procedure. The first field is your login ID and is very important to
the login procedure. The system uses this field to locate you as a valid user. If the
user ID you type in is not found in the password file, then you are not permitted
to log in to the system. The second field is your encrypted or coded password.
UNIX stores your password in this encrypted form to permit other users to view
the information in the password file without discovering what your password is.
The new versions of UNIX do not have the encrypted password entry in this file.
Instead you will see a in this field. The encrypted passwords are stored in a
separate file that no one can look at. This provides extra security since hackers
could encrypt common passwords and compare the encrypted characters. But no
matter which style is used, the results are the same: UNIX knows what your real
password is by decoding this field. As you can see, UNIX goes to great lengths to
protect the privacy of your password. The next field, an integer, is your UNIX user
number. The UNIX system actually keeps track of who you are by using this num¬
ber, which is associated with your user ID. This is used mainly by UNIX and is
normally of no concern to a UNIX user. Following the UNIX user number is the
UNIX group number. UNIX uses this field to identify you as belonging in some¬
thing called a user group. The group you belong to plays a role in what you are
allowed to see and do on the system, or in other words, what permissions you
have. This is covered in greater detail in the section on UNIX permissions in
Chapter 4. Next we have an informational field which can contain any informa¬
tion about the user, such as name and telephone number, as in the previous
example.

The last two fields are very important to the login procedure once you have
been identified as a valid user who knows the proper password. The second-to-
last field in the password file tells UNIX what your home directory is. The impor¬
tance of the home directory was discussed in the previous section on UNIX files.
Once the login procedure is completed, you will be located in that directory.

24 ♦ Chapter Two

The final field in the password file tells UNIX where to locate the Shell pro
gram to run for your login session. This is very important because this is where
you indicate to UNIX which of the shells you wish to use when you log in to the
system—Bourne, Korn, Bash, or C. UNIX uses this password file field to locate
the executable version of the Shell program and runs that program. The Shell
provides you with a system prompt, often a “$” although this can be and usually
is altered, indicating that it is ready to interact with you. Once the Shell is exe
cuting, everything else that you type at the terminal is interpreted by the Shell
you choose to run. From that point forward all your interactions with UNIX are
done through the Shell. The login procedure is complete and you are ready to
enjoy the productivity gains provided by the Shell.

Determining Which Shell Is Running

Let’s say that you have just logged in for the first time and you want to deter
mine which shell you are running. Often this determination is made by your sys
tern administrator at your company and will most often be the Korn Shell. There
are several ways to determine which Shell is running, but the best method is to
look at the Shell process that is executing under your user ID. This can be done
by issuing the UNIX ps command. The ps command will be covered in detail
later, but for now enter the command shown below.

ps

After you enter this command, you will see some output like this:

PID TTY STAT TIME COMMAND

84 vOl S 0:00 -bash

108 vOl R 0:00 ps

The output shows all the processes that are running for you. As you can
see in the command column the Bash Shell is listed as the Shell which was run¬
ning on my Linux machine. The ps command is also shown because it was a pro
cess that was running after we issued the ps command. If you were running
some other Shell that would show in the command column. For example the
Korn Shell would show as ksh in the command column. It should be noted that
the output from the ps command might not be the same between different ver
sions of UNIX, so the output you get might look slightly different from the pre
vious example but should always show the command name.

The Graphical User Interface (GUI)

In the previous section, we discussed the basic UNIX login procedure. The end
result of that login procedure was a user sitting at a terminal, Shell of choice

UNIX Basics ♦ 25

installed, ready to take commands. In years past, this was how UNIX users
started their login session. But with modern UNIX this may or may not be
the end result of logging in. With the ever increasing popularity and user-
friendliness of graphical user interfaces (GUIs for short), the face of UNIX has
changed. A graphical user interface is another layer of software (around the ker¬
nel and the Shell) that changes the way a user interacts with the UNIX system.
Instead of typing commands at a command-line interface, a method that requires
lots of typing and memorization, the user is presented with a screen that usually
contains a set of graphical objects to ease the burden of using the system. While
the focus of this book is not on UNIX GUIs or windowing systems, these topics
must be covered in a general way so that you can understand how the Shell and
the GUI work in a synergistic manner. This should allow you to integrate the
material learned in this book for use in your environment even if you are utiliz¬
ing a GUI.

Some of the more frequently used objects in a GUI are windows, icons,
pull-down menus, push buttons, and dialog boxes. Often the user interacts
with these objects, either by using a mouse or some other device for selecting
the objects, in conjunction with the keyboard. A window is a rectangular
region on the screen that can usually be resized and moved and is at the heart
of most GUIs. Often a particular software application runs inside a window.
There can be multiple windows open on the screen at any one time. This abil¬
ity allows the user of a GUI to run several applications on the screen at one
time and to switch between them with ease. An icon is a small picture that
appears on the screen and is usually associated with a command or applica¬
tion. To run that command or application, a user can simply point to the icon
and double-click the mouse button. Pull-down menus are small windows that
appear on the screen upon demand and provide the user with a list of allow¬
able commands or options. These commands can be selected using the mouse
to point to the option desired. A push button is a small button often used to
select some action. The user selects the action indicated on the button by again
pointing to it with the mouse and performing the selection criteria. These ele¬
ments combine to make a GUI a user-friendly environment. They often relieve
the burden of memorizing and typing lots of difficult commands and demon¬
strate the functionality of a software application. In addition, and perhaps
more important, a GUI provides a consistent way to interface with almost all
applications developed to run under the GUI. By exploring the various compo¬
nents of the GUI, users can often discover many aspects of an application or
system that they never knew existed.

There have been many popular GUIs in the marketplace in the latter part of
the 1980s and certainly the early 1990s. Anyone who has had any exposure to
computers over the last five years has probably experienced a GUI. Perhaps the
most successful GUI, as well as one of the first, belongs to the Apple Macintosh.
Now the very popular Microsoft Windows provides a GUI for IBM-compatible
personal computers. The UNIX GUI marketplace has begun to grow over the last
several years. The development of a UNIX GUI first had to have a windowing

26 ♦ Chapter Two

system that met the needs of the users of UNIX systems as well as the philoso¬
phy of UNIX. These needs include the ability to run over a network, to be inde¬
pendent of any specific display terminal, and to be hardware independent. The
heart of almost all UNIX GUIs is the X window system.

The X Window

The X window system is a general-purpose window development and delivery sys¬
tem. It is a comprehensive package of software used to run and develop window-
based graphical user interfaces. The X window system grew out of software
projects that were done at MIT in the 1980s. It is based on a concept called the
“client/server model,” which permits the separation of software applications
from the input/output terminal or device (a mouse, for instance). In this model
there is a special application called the server that handles all input and output to
the terminal, including the drawing of all types of graphical objects used to build
a GUI, and any user interaction with those objects. The server interacts with
another type of X program called the client. The client, or application program,
tells the server what to draw on the screen based on information received from
the server about what action a user took. Thus there is a two-way interaction
between client and server. They send messages back and forth with the server
telling the client what the user did and client telling the server what action to
take based on this user action. The idea of sending messages is a powerful one.
These messages can be sent locally, with the client and server running on the
same machine; or over a network, with the client and server being located on dif¬
ferent machines. An X client application program utilizes software provided with
X (called the X library or xlib) to tell the server what action to perform on the
user’s screen. Most of the basic X commands are very simple graphical com¬
mands, such as “draw a line from point A to point B.”

While the xlib provides all that a user would need to build a full-blown GUI,
it would be quite time consuming to do so. If everyone built a GUI or X client from
the ground up using these primitive X library commands, each person would
determine how windows and menus would look and feel. This would defeat one
of the major advantages of a GUI. For this reason there exists a number of X
toolkits that help developers build GUI applications in a consistent and simplified
manner. These toolkits provide a higher level of software support and more
directly implement the objects found in a GUI. For example, in most X toolkits
there is a command that is called to draw a window on the screen at a certain posi¬
tion and of a certain size. This window has all the properties that one would
expect from a window, and every window has the same basic properties. You can
see that this is a large step forward from the simple xlib command to draw a line
from point A to point B. By providing this kind of support, the toolkits simplify the
development task while at the same time helping to maintain a consistent method
for interfacing with the GUI objects. Two of the more popular X toolkits are Motif
and Open Look. Both of these toolkits have a certain look and feel to the GUI

UNIX Basics ♦ 27

objects that are utilized. But in the end they both do a good job of allowing the
construction of attractive and consistent graphical user interfaces. Users who are
familiar with Microsoft Windows on a PC will feel very comfortable with the Motif-
style interface. The previous few sections have presented several new layers of
software that are utilized to support a GUI in the UNIX environment. We might
now view the software layers of our system in Figure 2.4.

While there are many X clients that run in a typical GUI environment, all of
which perform some certain task, there is one client application that is particu¬
larly important to our discussion and is found in almost all X GUI environments.
This client, perhaps the most widely used X client in existence today, is called
xterm, short for X terminal.

Using xterm

X terminal, or xterm, is the key X client for several reasons. The first is that it
provides a window in which a user runs a Shell session. When you start the
xterm client running in your GUI, a window appears, and in that window is the
Shell prompt. From this point you can type Shell commands in that window and
the Shell responds just as if no GUI existed. You are back to command-line inter¬
action with the Shell. This direct connection to the Shell will be invaluable as you
continue to learn Shell programming. Another very useful aspect of the xterm
Shell window is the ability to have more than a single Shell window running at
a time. Using the ability of the X Window system, you can actually have numer¬
ous Shell sessions active at one time and switch between them whenever
needed. If you have more than one Shell on your system (Bourne, Korn, or C),
you can use these two windows to do different applications using different
Shells, or you can just run two copies of the same Shell.

GUI

Motif Open Look

X Windows libraries

Korn Shell C Shell

Kernel

Hardware

Other Unix commands Bourne Shell

X Windows

Motif Open Look

GUI

FIGURE 2.4 Graphical user interface.

28 ♦ Chapter Two

Another very important contribution of the xterm client is that it provides a
consistent terminal interface for all UNIX applications. If you are running X
Window, it just does not matter what type of terminal you are utilizing. As soon
as you start an xterm window you successfully emulate a DEC VT102 terminal or
a TEKTRONIX 4014 in that window. This means that developers can target any
nongraphical character-based user interfaces for these types of terminals and
know that anyone running in an X-window environment will be able to run the
application properly. In the past this was not always the case. Users ran many
different types of terminals, and developers had to anticipate and develop soft¬
ware with many different terminal types in mind.

Starting an xterm Window

The xterm client can most often be started from the system or root menu of a
GUI. In many GUIs the system menu can often be found by holding down the left
mouse button while pointing at the GUI background. (Background could be
interpreted to mean not pointing at any GUI object.) When this is done a small
menu will pop up. Often this window will have an xterm option. While you con¬
tinue to hold down the left mouse button, select the xterm option and then
release the mouse button. This action will often start an xterm window. If this
does not seem to work on your system, then refer to the manuals that come with
your machine to determine how an xterm session is started.

Making the Most of xterm

There are many nice features and options associated with xterm clients. Many of
these features can make using xterm more user-friendly while others make it
more productive. The next few sections point out some of the options available
when utilizing xterm. They do not go into great detail about how to accomplish
these things. If you see something that would make your experience more
rewarding or productive, please refer to the xterm documentation for your sys¬
tem to determine how to utilize the feature outlined.

Emulation Options

As was previously pointed out, the xterm client is a VT102 emulation program.
There are various emulation options that can be controlled via xterm to help pro¬
vide an emulation that best fits your needs. These options can be set by using
the VT102 emulation pop-up menu available from inside an executing xterm
window. To access this menu, strike the middle mouse button while holding
down the Ctrl key on your keyboard. These menu options allow you to select or
remove various emulation options such as 80-column or 132-column mode. For
a full description of all the emulation options, please refer to your system docu¬
mentation.

UNIX Basics ♦ 29

General xterm Options

The are several general xterm options which can be set by running a pop-up
menu inside the xterm window. This general xterm pop-up menu can be seen by
holding down the left mouse button and the Ctrl key on the keyboard at the same
time. The “logging” function in an xterm session will retard your actions in a log
file. There are other useful functions available on this menu as well, including
the ability to kill a program that is running in the window and the ability to
redraw the window.

Multiple Windows

It is possible to have two xterm clients active at the same time. You may be run¬
ning a Shell program or application program in one xterm window and have a
need to run some other Shell command while in the process. Suppose, for
example, that you are running a Shell program and at some point, after you
have already answered numerous questions, the program asks you for a file¬
name that it needs for processing. You cannot remember what that filename is,
but you don’t want to stop the program and look since you have already typed
in a great deal of information. This problem is easily solved by starting another
xterm window and looking for the proper filename. Once you find the filename,
you can return to the other window and type in the name without losing any of
your work.

Cut and Paste

Another very useful feature when utilizing a GUI is the ability to “cut and paste”
between windows. This powerful feature is generally applicable between any two
windows, and it seems to be especially useful when working with xterm clients.
There is a fair amount of typing involved with command-line interfaces to Shell
commands and application programs. Cut-and-paste operations can help reduce
the amount of repetitive typing.

The idea behind a cut-and-paste operation is the utilization of a buffer or
clipboard that is accessible to all windows. Text is cut or copied from one window
to the buffer and is then pasted into another window as needed. The actual
method for the cut/copy operation is done with highlighting or marking text for
the cut operation. The marking operation can often be done most effectively with
the mouse. Often text is marked by holding down the left mouse button and mov¬
ing the mouse to highlight all text that is to be copied. When you move the mouse
while holding down the left mouse button, the text is highlighted by using reverse
video. Releasing the mouse button copies the text to the buffer. Now any other
operations can be performed and the text will remain in the buffer. You can switch
to another window, run a Shell program, or start your favorite application pro¬
gram, and the copied text will be available at any time for recall. To recall—or
paste—the copied text, many systems use the middle mouse button.

30 ♦ Chapter Two

To see how this might be useful, let’s return to the example for using mul¬
tiple windows. In this example the problem was a forgotten filename. Let’s say
that when we start our second window to determine the needed filename, instead
of depending on our memory for typing the filename, we use the cut-and-paste
operation. When we discover the filename in our second window, we cut the file¬
name to the buffer, return to our first window, and use the paste operation to
provide the filename to our Shell program. This avoids possibly forgetting the
name again or typing it incorrectly.

The Look and Feel of the xterm Window

The way the xterm window looks on your screen, including colors, size, and
fonts, can all be controlled. A default setting is provided with your system and
controls how the window appears upon starting the xterm client. Often these
defaults are not ideal or not to our liking. It is often nice to have the xterm win¬
dow color and fonts set to our preference, for example. These in particular can
make looking at the window for long periods of time much easier. This is most
often done by setting preferences in a file called .Xdefaults, but can also be done
using xterm menu options to set the preferences on the fly. For a list of all the
available preference settings, see your local system xterm documentation.

Summary

UNIX is a powerful multiuser, multitasking operating system that provides a
wealth of powerful user tools. At the heart of the UNIX operating system in the
kernel. The kernel hides all other software from a particular hardware implemen¬
tation. The software of a UNIX system is layered, with each layer using the func¬
tionality of the layer below in increasingly powerful ways. The simplicity of UNIX
files and the file system structure gives the Shell much of its flexibility and power.
The UNIX file system is arranged in an inverted-tree structure, with directories
representing branch points and files being stored under the directories. The direc¬
tories traversed to reach a particular file or directory are called the path. All users
on the UNIX system are provided with a special directory called their home direc¬
tory where they perform much of their work. In order to log in to a UNIX system,
you must provide a valid user ID and password that correspond with an entry in
the /etc/passwd file. If you are utilizing a GUI, then the look and feel of the UNIX
user interface is dramatically changed. Most popular UNIX-based GUIs utilize X
Windows for creating the graphical objects used. In order to utilize the Shell at a
command-line level when running an X Windows-based GUI, you must run the
xterm client. The xterm client provides a terminal emulation window and allows
character-based interaction with the Shell of your choice. The Shell and all of its
facilities allow users to become more productive, automating the routine tasks
and giving them time to pursue more creative, fulfilling work.

UNIX Basics ♦ 31

Exercises

1. When should the Shell be used:

a. Interactively?
b. For programming?

2. Describe UNIX file and file system structures.
3. How can you use the xterm feature of X Windows to easily access the

power of the Shell? What other ways can you use the power of the
Shell via your GUI?

.

CHAPTER

Shell Fundamentals

There are certain fundamentals that hold true for almost all Shell commands.
This chapter will cover these fundamentals before covering the basic commands
themselves. The principles learned in this chapter will be important building
blocks for all Shell commands and Shell programs developed later. This chapter
covers the basic command syntax of all Shell commands. In addition, we will
look at special characters called “metacharacters” that help make using the Shell
easier and more productive. We also introduce methods for controlling input to
and output from commands using a technique called I/O (input/output) redirec¬
tion. Finally, we will take a first look at using Shell commands together to
achieve greater results than would be achieved by using the commands individ¬
ually. This method of command interaction is accomplished using a device called
a “pipe.” This will be our first step toward Shell programming.

Command Syntax
The syntax of English is subject-verb-object. Using Shell, the syntax is verb-
modifier-object:

command -options argument

33

34 ♦ Chapter Three

The command can be any one of the hundreds of commands available to
the Shell or a Shell command that you have developed. Shell commands operate
on files, directories, and various devices—tapes, disks, printers, and so forth.
You will need to choose your tool to match the task at hand. The wealth of Shell
commands and their many uses will be explored further in subsequent chapters.

Options, like adverbs in English, modify the operation of the command;
they change how the command operates. They cause the command to do one
thing and not another, or they allow the command to effectively handle excep¬
tions. Most options are single letters or numbers prefaced by a dash (-):

command -a -1 argument

Not all commands use options in the same way. Unfortunately, some
options work differently in various versions of UNIX. If you get surprise results,
check the system documentation for a description of how the command works in
your environment.

Regardless of whether you use options, you will soon begin to discover one
of the pleasures of Shell commands: They all tend to take an intelligent default
action. By that I mean that if you use a command incorrectly, it might:

♦ Give you a help message

rm

syntax: rm -[rf] file(s)

♦ Exit gracefully with a return code
♦ Do whatever will cause the least damage (for example, leave a file un¬

changed)

Intelligent default actions prevent defects and can save you a lot of effort and
rework. Now let’s look at the key file and directory commands.

While most newer Shell and UNIX commands follow the syntax just
described, some of the older commands were developed before this syntax stan¬
dard was set. Therefore you may find some commands that do not follow this
syntax. Today this syntax is well understood and used by developers. The details
of how options and arguments should be defined is spelled out clearly in the doc¬
umentation on the getopts command and is further discussed in this book when
we look in detail at the command. As you progress and begin to develop your own
Shell commands, you should keep this command syntax standard in mind. If you
do, then UNIX Shell users will know how to execute commands that you develop.

What Is a Command?

All Shell commands start out with a command name. What is this command
name? Just like most other things in UNIX, the command is a file that resides in
the UNIX file system. UNIX knows, based on the syntax described previously, that

Shell Fundamentals ♦ 35

the filename given as the command should be a file that contains executable com¬
mands. By “executable” we commonly mean that the file contains either instruc¬
tions for the machine itself (machine code) or a further list of Shell commands for
the Shell to examine. If this is indeed the case, then the Shell takes the proper
action to execute the command. So when you specify a command name in the
Shell syntax described, you are really providing the name of an executable file.

Since commands are really files, we can specify command names in the
same way that we specify filenames: either as stand-alone filenames or with a
related path in front of the name. The Shell has a standard method of trying to
locate the filename specified as the command name when no specific pathname
is provided. This method essentially consists of telling the Shell which directo¬
ries within the file system should be searched, in addition to your current direc¬
tory, which is always in your view, in order to try to locate the command name.
A path is often needed when you create a Shell command of your own. If your
command filename is not located in any of these places specified to search for
commands, then you must tell the Shell where it is by using a path. How to tell
the Shell where to search for commands and how to build your own commands
is covered in detail later.

More on Options

Options modify the normal behavior of the Shell command or provide some input
for the command. Options are either a simple flag (-f) or a letter followed by a
value (-f 47). This can be represented either as “-xvalue” or “x value” where x
is the option and value is the value associated with that option. Some commands
take values in both forms, others require that they be separated, and still others
want no separation. How a command will behave in this respect is often hard to
predict. Most new commands want the value separated by a space so you should
probably assume this to be true in most cases. The offenders are usually older
commands. In cases where commands use multiple simple flags, the flags can be
stacked into a single string, listed separately, or a combination of the two. The
following command option lists are the same:

command -1 -s -t

or

command -1st

or

command -Is -t

When you specify options, they usually come after the command, separated
by a space, and before the argument—but they are never required.

36 ♦ Chapter Three

More on Arguments

To be useful, commands have to do something—read, write, transform, or mod¬
ify data in some useful way. The object of a command, an argument, can be a file,
directory, device, or whatever. The argument usually follows the options, if any
are specified, and always follows the command. It is differentiated from the
option by the fact that it is not preceded by a Many commands expect a file¬
name as the argument. The filename can stand alone or be qualified with a path.

Command Interpretation

The Shells (sh, csh, ksh, bash) are command interpreters; they read the Shell
commands and figure out what to do. More formally, the Shell is an interpreted
computer language. This means every command entered is analyzed while you
wait and is converted into a form the computer understands. This is different
from some computer languages that convert the commands into a form the com¬
puter understands and stores them in the converted form to be run at any time
in the future. These are compiled languages. A compiled language is often more
efficient, since commands do not need to be converted while you are waiting, but
interpreted languages are often easier to use, faster for more personal productiv¬
ity, and more interactive. With an interpreted language you can get immediate
feedback about the outcome of any commands you entered. Most interpreted
languages, including the UNIX Shell, go through a standard looping procedure
for reading and analyzing Shell commands. This is often called the Jetch-
analyze-execute cycle (Figure 3.1).

The Shell is always ready to read your next command. This is referred to as
thefetch portion of the cycle. When you type in a Shell command at your termi¬
nal, the Shell fetches (or reads) that command. Next the Shell will analyze what
it is that you entered on the line in order to make some sense of it. Finally, if the
Shell determines that what was entered on the line forms some valid Shell com¬
mand, it will attempt to execute that command.

When the Shell analyzes what you have entered on the command line, it
uses the syntax that we described earlier in conjunction with special white-space
characters to determine what was entered. These special characters are called
white-space and consist mainly of a space, tab, or new-line. The new-line (a.k.a.

Fetch Command -*-

Analyze

Execute

FIGURE 3.1 Shell command loop.

Shell Fundamentals ♦ 37

the Return key) tells the Shell that you have completed entering the command.
The Shell considers all characters up to the first white-space character, disre¬
garding any leading white space, to be the command. The remainder of the line,
up to the new-line character, is passed to the command as input. It is actually the
executable command itself that looks at the options and arguments portion of the
command line. All extra white space is ignored. For example the following Is
commands all behave the same since they vary only in the amount of white
space contained on the line.

$ Is -1 /usr/tburns

$ Is -1 /usr/tburns

$ Is -1 /staff/tburns

After analyzing the input entered in these examples, based on the rules given
about white space, the Shell determines in all cases that the command to be exe¬
cuted is the Is command and that the options and arguments are -1 /staff/tburns.

This example—of the analysis portion of command interpretation—is actu¬
ally a very simple example of the steps the Shell goes through to understand the
exact command you want to execute. The analysis of the command line entered
varies from Shell to Shell and is a fairly complicated process, and is presented in
detail later after several of the key components of the analysis phase have been
covered. As an example, the Bash Shell goes through seven possible types of
expansions, one of which is filename and pathname expansion introduced later
in the analysis phase, before executing the command. The analysis phase is an
important and powerful aspect of the Shell and, when utilized, can provide the
user a great deal of power.

Getting Help on Commands

Bash

A nice feature of the Bash Shell is the help facility. It provides useful infor¬
mation about shell built-in commands. The syntax of the help command is

help [pattern]

If you provide a pattern, then help information is provided on all
commands that match the pattern. If you do not provide any pattern at all,
then all the built-in commands are listed. The pattern can be a partial
name, in which case all the commands that match that partial name will be

Continued

38 ♦ Chapter Three

listed. The pattern can also contain the filename expansion characters
(introduced in the next section), *, ? , but they must be enclosed in quotes
to prevent filename generation on the command line. An example of the
help command output is shown below for the bg shell built-in command.

help bg

bg: bg [job_spec]

Place JOB_SPEC in the background, as if it had been started with *&’.
If JOB_SPEC is not present, the shell’s notion of the current job is used.

In addition to Bash’s help command discussed above, most UNIX systems
supply a command called apropos, which lists all UNIX commands that match
some pattern. This can be very helpful when you are looking for a command to
accomplish some task and you are not sure if a command exists, or perhaps you
just forget the name of the command. The apropos command lists a short
description of every command whose description matches the pattern that you
type as an argument to the apropos command. The syntax of the apropos com¬
mand is:

apropos [keywords]

As an example of the output produced from the apropos command, we entered
the following command on the Linux system to see what commands are related
to editing:

apropos edit

ed, red (1) - text editor

elvis, ex, vi, view, input (1) - The editor

joe (1) - Joe's Own Editor

pico (1) - simple text editor

sed stream editor (1) -

vim (1) - Vi IMproved, a programmers text editor

bitmap, bmtoa, atobm (lx) - bitmap editor and converter

utilities for the X Window System

editres (lx) - a dynamic resource editor for X Toolkit

applications

xedit (lx) - simple text editor for X

The apropos command returned a list of all the commands on the system
that had the pattern “edit” in the command description. The command name is
on the left side, followed by the short description. Once the apropos command
returns a list of potential commands, you can get further information on any par-

Shell Fundamentals ♦ 39

ticular command by issuing the man command to see the full manual page entry
for the command.

Metacharacters and Filename Generation

The Shell assumes that anything on a command line that is not a command or an
option is a file, directory, or special file. To simplify handling files and directories
there is another labor-saving Shell facility, metacharacters, which:

♦ Reduces the amount of typing necessary
♦ Encourages good naming conventions
♦ Simplifies Shell programming

The Shell provides the user with special characters (*, ?, [...]) to allow auto¬
matic substitution of characters in file- and pathnames. These special characters,
sometimes calledfilename generation metacharacters, are shown in Table 3.1.

When the Shell sees these characters on the command line, it interprets
them as having special meaning. They are not the same as other letters, digits,
and characters used to form file and directory names. Instead they are inter¬
preted by the Shell with the meaning outlined in Thble 3.1. For an example, let’s
say that we wanted to list all the files in our current directory that started with
the letters “test”. Also let’s assume that we have three files that we want to list,

TABLE 3.1 Filename/Pathname Generation Metacharacters

Metacharacter Description

* Matches any string of characters (including none).
? Matches any single alphanumeric character.
[...] Matches any single character or series of characters within the

brackets.

KSH

1 (pattern-list)

* (pattern-list)
+(pattern-list)
@ (pattern-list)
! (pattern-list)

Optionally matches any of the patterns in pattern-list. The pattern-
list is a list of one or more patterns separated by I character.

Matches zero or more of the patterns in pattern-list.
Matches one or more of the patterns in pattern-list.
Matches only one of the patterns in pattern-list.
Matches any character except one of the patterns in pattern-list.

KSH/BASH Tilde Pathname Generation Characters

Your Home directory is substituted for this character.
Your previous working directory is substituted for the characters.

~+ Your current working directory is substituted for the characters,
-userid The home directory of the user “userid” is substituted for the char¬

acters.

40 ♦ Chapter Three

each of which start with “test”: testl, test2, test3. This could be done by enter¬
ing any of the following Is commands in conjunction with metacharacters.

$ Is test*

$ Is test?

$ Is test[123]

Metacharacters can significantly reduce the key strokes required to access
a series of filenames. There are a few drawbacks, however. In the previous
example, I would have gotten different results if the following files existed in the
directory:

testl test2 test3 test4 test-5 testmess

The first command would have listed all six files. The second command would
have listed the first four. The last command would be the only one that worked
exactly as required. Metacharacters can reduce typing effort, but can give unex¬
pected results depending on the files in a directory. When you are preparing to
use a metacharacter in a filename to identify more than a single file to a Shell
command, it is often a good idea to use the Is command to list the files that you
would use when running the command. This prevents accidentally using incor¬
rect files.

More on the * and ? Characters

The simple example just shown demonstrates the power of using metacharacters
to match against multiple filenames. Let’s look a little more closely at using the *
and ? characters to help generate lists of filenames.

First it should be pointed out that any of the metacharacters can be used
anywhere in a file- or pathname, not just at the end as in the example. Often we
use the metacharacters at the end of filenames because it is a natural way to find
files that are named in a similar way. The power of metacharacters, however, can
be used to look in multiple directories while looking for multiple files. For exam¬
ple, the following command will list all the files that end with “doc” and reside in
any directories with names starting with the string “ documents residing in the
directory /system/doc/.

Is /system/doc/document_*/*doc

The * metacharacter will match zero or more characters. In the example just
given, any file that was named with some string of characters followed by “doc”
would be matched as well as the file named doc, if it existed.

Now of course, the metacharacters can be used in combination to generate
filenames as needed. For example, if we had documents named chapterl.doc
through chapter20.doc in the document directories /system/doc/document_7

Shell Fundamentals ♦ 41

and we wanted to use chapterl.doc through chapter9.doc we could use the fol¬
lowing command:

Is /system/doc/document_*/chapter?.doc

We can combine the metacharacters in any number of ways and make the
expression more useful and occasionally more complicated. For example, let’s
say that our chapters listed in the example were further divided into files con¬
taining sections of the chapter using a naming convention like chapter_chap#_
section#. So, for example, “chapter_l_l.doc” would contain Chapter 1 Section 1.
Let’s say that we were interested in looking at all sections for Chapters 1 through
9. The following command would do the job:

Is /system/doc/document_*/chapter_?_*.doc

For another example, let’s say that we were interested in seeing all the sec¬
tions for Chapters 10 through 19. The following command works well:

Is /system/doc/document_*/chapter_l?_*.doc

As a further example, suppose we only wanted to see Section 1 of all the chap¬
ters. Again, using metacharacters makes it easy. The following command will list
all the chapters in Section 1.

Is /system/doc/document_*/chapter_*_l.doc

As a final example, suppose that we wanted to work only with sections num¬
bered >10. The following command that combines more than a single ? would do
the job since it would require that two characters occur for the section name.
Sections 1 through 9 would not meet this criterion.

Is /system/doc/document_*/chapter_*_??.doc

Depending on how you organize your files and directories, and how you
name your files, metacharacters can simplify all of your commands. It will
require some exploration, but once you learn how to use metacharacters to sim¬
plify your work, you will wonder how you ever got along without them.

More on the [...] Metacharacter

The [...] “regular expression” metacharacter matches any one of the characters
listed between the brackets. It also has a few other features that make it a pow¬
erful tool for Shell programming. First, you can specify ranges of characters by
separating the characters with a character (a-z). Second, you can use the
negation symbol “!” as the first symbol after the [to match characters that are

42 ♦ Chapter Three

not found enclosed in the brackets (!a-z). Using the [...] in conjunction with
and “!” allows you to match on a wide range of character combinations. Let’s
look at a few examples that continue the use of /system/document/chapters.

If we wanted to work only with a few chapters—Chapters 1, 7, and 9, for
example—the following command, which uses the [...] metacharacter, would do
the trick:

Is /system/doc/document_*/chapter_[179]_*.doc

What if we wanted to work with Chapters 2 through 6? We could specify this as
a range:

Is /system/doc/document_*/chapter_[2-6]_*.doc

How about all the chapters between 1 and 9 except Chapter 7? Easily done:

Is /system/doc/docuinent_*/chapter_[l-689]_*.doc

Or if we wanted to eliminate Chapter 5, we could use two ranges as follows:

Is /system/doc/document_*/chapter_[l-46-9]_*.doc

Instead of wanting just Chapters 1 through 9 except Chapter 5, what if we
wanted all chapters except Chapter 5? The negation symbol could be used to find
everything but 5.

Is /system/doc/document_*/chapter_[!5]_*.doc

As you can see, the [...] is a powerful metacharacter. A few other important
ranges are used frequently. The range [a-z] matches any lowercase character;
[A-Z] matches any uppercase character. The range [0-9] matches any single
digit as we saw in the preceding examples. The negation of these ranges is also
powerful. The range [!a-z] matches any character that is not a lowercase charac¬
ter and [!0-9] matches anything that is not a digit.

KSH
The Korn Shell supports some other special filename generation metachar¬
acters that offer additional flexibility. These are shown in Table 3.1 and
basically offer a range of pattern-matching capabilities to filename genera¬
tion. Basically a pattern is used to match against potential filename gener¬
ation. The patterns can be lists of patterns separated by a I character. How

Continued

the patterns are matched depends on which form of the pattern-matching
metacharacters is used. The best way to understand this is to look at an
example. Let’s say we have the following files in a directory:

Is

tb.e tb.el tb.elc tb.elc.hold

Now if we use the ? (pattern-list) to match any pattern in the pattern
list and provide the following patterns:

Is tb.?(eI el|elc)

tb.e tb.el tb.elc

As you can see, only the files that matched the patterns provided were
expanded. In this case any of the patterns matched. If we wanted all the
files that did not match any of the provided patterns we could use the
! (pattern-list).

Is tb.!(eI el Ielc)

tb.elc.hold

In this case the filename that did not match any of the patterns was gen¬
erated. As some final examples, let’s look at the + (pattern-list) and the
* (pattern-list), which match one or more occurrences of the given pattern
or zero or more occurrences of the pattern, respectively.

Is tb.el+(x)*

Is: ERROR: Cannot access tb.el+(x)*: No such file or

directory -»

We asked the shell to match all files that the format tb.elx followed by
any text. In addition by using the + (pattern-list) form, we requested that
the x must exist in the generated file—at least one occurrence must be
present. Since there are no files of the form tb.elx the Is command issues
the error message. But if we use the * (pattern-list) instead, the following is
produced:

Is tb.el*(x)*

tb.el tb.elc tb.elc.hold

You can see that, since we requested that the x can be optionally
present, three of the filenames matched. The pattern-matching forms of file¬
name generation provide additional flexibility when using the Korn Shell
and can be combined in a wide range of ways to generate desired filenames.

44 ♦ Chapter Three

KSH/Bash

Pathname Expansion:
The ~ Character

The Korn and Bash Shells support a special character that also helps reduce
the amount of typing needed when specifying pathnames. This is the ~
(tilde character). When the Korn Shell sees this special character at the
start of a path, your home directory name is substituted. Since you will
often type your home directory at the start of a pathname, it can really save
typing effort. For example, we could list the contents of our home directory
with the command:

Is ~

If our home directory was /usr/tom, then all the Files in that directory
would be listed with the Is ~ command. Let’s say that we wanted to change
to /usr/tom/bin. The following Korn Shell shorthand would do the trick:

cd ~/bin

The Korn and Bash Shells also offer a few other variations on the ~
substitution that can be very convenient at times. In a similar manner, they
help reduce the typing needed to reference pathnames. The other forms
were listed in Thble 3.1.

The first of these forms is the — form, which is used to substitute
your previous working directory. This can be very useful when you are
working with files from two different directories. This situation occurs
often. The Korn Shell makes referencing the Files in the two different direc¬
tories a snap. First cd to one of the directories, making it your current
working directory. Then cd to the other directory, making it your new cur¬
rent working directory. The previous files in the first directory can be
accessed with the — special character, while the files in the current work¬
ing directory can be accessed using normal Shell conventions. This is espe¬
cially useful when the pathnames are quite long. For example, let’s say that
we want to work with some files named doc-1, doc-2, doc-3 located in the
directory /system/doc/userdoc. We need to reference these Files often from
our home directory /usr/tom. The following sequence of commands could
be used to access the files:

Continued

Shell Fundamentals ♦ 45

cd /system/doc/userdoc # change to the doc directory

Is * ## list what is in the directory

doc-1

doc-2

doc-3

cd ~ # Change to our home directory

Is — # What in the document dir again?

Notice no need to type path

doc-1

doc-2

doc-3

Is -1 ~-/doc-l

Now if we need to reference one of the files in the document directory,
there is no need to type the long pathname /system/doc/userdoc over and
over again, as would be required using other Shells. Simply place the —
special character and the Korn Shell does the typing for you.

As if that were not enough to convince you that the Korn Shell is the
best, there are still some other forms of tilde special characters. While these
are probably not quite as useful as the ones already covered, they can be a
convenient shortcut at times. The first has the form -username, where
username is the name of some user on your system. When the Korn Shell
sees this series of special characters, it determines the home directory of
the user specified in username and substitutes that home directory in the
path. This is nice if you know a user’s ID but not his or her home directory
name. For example, the following command would change your directory
to lja’s home directory:

cd ~lja # Switch to /usr/programmers/teaml/lja

lja's home directory

The last form of tilde special character substitution is one used to ref¬
erence your current working directory. While your current working direc¬
tory is assumed to be the default path used by the Shell, the form can often
be useful in Shell programs when the working directory might be changing
and you want to reference the current directory in some way. As a simple
example, consider:

echo The current directory is ~+

This command would echo to the user screen the current working
directory name.

46 ♦ Chapter Three

Bash

Brace Expansion: The {} Characters

In addition to the filename and pathname generation characters shown
above, the Bash Shell offers another form of expansion that can be useful
when working with files and pathnames. This form of expansion is called
brace expansion and is used to generate arbitrary strings that are placed in
the expanded shell line. In other words, the filename or pathname need not
exist in order to be generated by the shell; instead the shell expands the
string in all cases.

The syntax of the brace expansion is:

preamble{expansion-list}postamble

where the preamble is some series of characters that are prepended to each
of the character strings in the expansion-list. The expansion-list is a
comma-separated list of characters. The postamble is a string that is placed
at the end of each generated string. The Bash Shell generates strings by
using the combination of preamble, expansion-list, and postamble. The
following simple example shows how brace expansion works:

f{a,i,aul,oo}t

would expand to the following strings

fat fit fault foot

The braces can be nested and can be used in conjunction with filename and
pathname expansion characters.

The following example would list any files that were located in any
subdirectory of my home directory that ended with the file extension
“.doc" or “.doc.back”.

Is -/*/*{.doc,.doc.back}

Another great use for brace expansion is to create set lists of names.
For example, the following command will create a directory structure under
your home directory, with the directory names listed in the brace expan¬
sion. The mkdir command is responsible for making new directories and is
covered in detail in the Chapter 4 (Shell Commands).

mkdir ~/{doc,src,ctl,shl,txt}

Shell Fundamentals ♦ 47

While we have clearly seen the power of metacharacters, care must be taken
when using them. Complicated expression using numerous metacharacters can be
difficult to understand and may not always return the file- or pathnames you
think. A good practice is to check the filenames returned using the Is command
with the expression to ensure that you are going to use-the correct files. You can
imagine the consequences of using the * metacharacter in conjunction with the
UNIX command to remove files! Finally, you may have noticed that when files are
named in a way that forms recognizable patterns, it makes using the metacharac¬
ters easier and more powerful. So when naming your files, use simple naming
conventions—this can greatly increase your ability to access files using the Shell.

Other Special Characters

Other special Shell characters are shown in Thble 3.2. These are characters that
the Shell interprets differently and uses to determine special operations to be
performed. These are different from the Shell metacharacters because they are
not involved with forming file or directory names in a shorthand way. Instead
they instruct the Shell to perform a special task. Some of these special characters
are covered in the following sections of this chapter, while others are covered in
later chapters when they are appropriate.

The Comment Character

As we progress through the book the examples become increasingly more
detailed, and there are points where comments have been placed alongside Shell

TABLE 3.2 Special Characters

Character Purpose Example

y Sequential command separator cmdl; cmd2; cmd3
& Place the command in the

background for execution cmdl&

0
1

Groups the stdout of commands (cmdl 1 cmd2; cmd3)
Create a pipe between commands cmdl 1 cmd2

< Command input redirection cmdl < file
> Command output redirection cmdl > file
${var} Shell variable $ {variable}
'cmd' Substitute stdout var= ‘cmd2’
\ Quote a character to remove special

meaning (Also acts as command
continuation indicator when used
as the last character on a command line)

*

‘string’ Quote all the characters in a string ‘1,000’
“string” Quote all characters but allow substitution “${var}$l”
Shell comment character # execute command
{cmdl; cmd2} Execute commands in current shell { cmdl 1 cmd2 }

48 ♦ Chapter Three

code to help clarify what the command or group of commands is doing. The Shell
recognizes these lines as comment lines by the use of the # special character.
Anytime the Shell sees this character it considers all following text, up to the end
of the line, to be comments. The Shell ignores all comments. If the comment
character occurs at the start of a line, then the entire line is a comment. If the
comment occurs on the line following the command, it must be separated by a
space or tab; otherwise it will be considered to be part of the command line.
Following is an example of adding a comment line and a comment tag line that
follows a command:

#This is a comment line and is ignored by the Shell.

Is /staff/tburns #List tburns directory

When you begin to write Shell programs, you will want to use comments to
describe what the program is doing. You may remember what the command does
today, but you may not have a clue a month from now. Similarly, other people
may borrow your programs. How can they learn and understand without your
forethought about describing the program? Providing good comments in pro¬
grams helps you and others understand what your program does. You will find
that a few comments now can save lots of time in the future. They will jog your
memory and provide insight into complicated Shell programs.

The Command Separator

Another very useful special character that can save time is the semicolon com¬
mand separator character (;). This special character tells the Shell that you have
completed one command and are about to begin another. This, of course, allows
you to enter more than one command on a line. If you know a series of com¬
mands will be needed to accomplish your desires, you may enter these com¬
mands on a single line separated by a semicolon. For example, if I wanted to
change to my home directory and then list what files reside in the directory, I
could issue the needed cd and Is commands on a single line:

cd /staff/tburns; Is *

The Quote Character

It should be pointed out that these special characters, or metacharacters, will
sometimes need to be used as their normal character representation. When this
happens the special meaning of the metacharacter can be ignored by using the
quote special character (\, or backward slash) before the metacharacter. When
the Shell sees the \ it will ignore the meaning of the next character. In essence,
the \ character is a special character that tells the Shell not to consider the char-

Shell Fundamentals ♦ 49

acter following it to be special. The following command will remove a file with
the name “*junk”.

rm *junk

Regular Expressions

Throughout this book we use UNIX tools that utilize regular expressions. A reg¬
ular expression could better be described as a pattern-matching expression.
Regular expressions are formed by using letters and numbers in conjunction
with special characters that act as operators. They can greatly aid in the ability to
find and filter information in files. The most common UNIX tools that utilize reg¬
ular expressions are ed, sed, awk, the various forms of grep, and the emacs edi¬
tor (an even richer set of regular expression operators). In addition, you will find
other tools that utilize a more limited form of regular expressions. An example of
this is filename generation in the Shell. Although it does not support a full imple¬
mentation of regular expressions, you will see that several of the regular expres¬
sion operators are at work (unfortunately, the implementation is not completely
consistent—note * and ? following). Another example of a tool that supports reg¬
ular expressions is the pg command. In this section we cover each of the regular
expression operators and learn how to build regular expressions using them.
You will find this information to be applicable in many areas of UNIX.

Let’s first take a grand tour of all the regular expressions operators. Table
3.3 shows all of the regular expression character operators along with a brief
description of how they operate. Any character that is not in this list and is used
in a regular expression stands for itself and nothing else. They are often called
ordinary characters. For example, all of the alphabetic and numeric characters
stand for themselves when used in a regular expression.

Simple Regular Expressions

In this section we start to explore the building of regular expressions by exam¬
ining simple regular expression patterns. The point of showing these somewhat
trivial examples is to ensure that the difference between ordinary and special
characters is understood. The following string is a regular expression that con¬
sists of the character q and would match just the character q and nothing else:

q

While this seems trivial, it shows that q is an ordinary character that can
represent a regular expression. Simple regular expressions consist of no special
operators (Table 3.3) and simply represent themselves. Further the regular
expression

quit

•*s

50 ♦ Chapter Three

TABLE 3.3 Regular Expression Operators

Character Description

Match any single character (like ? in filename generation).
$ Match preceding regular expression only if it occurs at the end of a line.

Match following regular expression only if it occurs at the start of a line.
* Match zero or more occurrences of preceding regular expression. (Note

that this is different from filename generation which matches any string.)
\ Used before any of the characters in this table to escape their special

meaning. When a \ occurs in front of any special character, it stands for
itself in that occurrence.

[] Match any character found between the brackets. This operator is used to
form a class or set of characters to be matched. The - is used to describe
a range of characters. For example [0-9] matches all numeric characters
and is the same as writing [0123456789]. Note that all characters
(except' in the first position and - in a range) become ordinary when
they appear between [].

[~] Match any character not found between the brackets. The" acts as the
complement operator for the set or character class. For example, f 0-9]
would match all characters that are not numeric.

W The null regular expression that resolves to the last regular expression
encountered.

\(reg_exp\) Remember the reg_exp enclosed between () for later reference. Each
occurrence of () is referenced based on its occurrence from the left side
of the regular expression string.

This construct controls the number of times that the preceding regular
expression matches with m being the minimum and n being the
maximum. If the regular expression occurs at least m times and at most
n times, then it is assumed to match. There are variations on this as
shown. If m occurs alone (as in \{m\}), then the regular expression must
match exactly m times. If m occurs and n is missing (as in \{m,\}), then
the regular expression must occur at least m times.

\{/rc,/A)
\{m\}

is a simple regular expression that would match the characters q, u, i, t in suc¬
cession. Any character that is not listed as a special operator character in Table
3.2 can occur in a simple regular expression and will stand for itself and nothing
else. For example,

column; row%

is a simple regular expression that in essence matches the string “column;row%”.
If for some reason we need to include a special character as part of a simple regu¬
lar expression, then we can do so by preceding it with the escape character Y This
character means that the next character should not be considered a special char¬
acter but simply an ordinary character in the regular expression. The following
example would match the string ABC*:

ABC*

Shell Fundamentals ♦ 51

It should also be noted that a space participates in a regular expression as an
ordinary character that must be matched by a space.

A simple regular expression can stand alone as shown here, but is often
combined or concatenated with regular expression operators and other simple
regular expressions to form complex regular expressions. This is of course the
real power of regular expressions and deserves close inspection.

Matching Any Single Character Using .

A period is a special character in regular expressions that will match any single
character. You use this in a regular expression anytime you want a single char¬
acter to occur but it does not matter what that character is. For example, if we
wanted to match all three-character strings that start with the letter r and end
with the letter n, the following regular expression would do the trick:

r .n

This would of course match the strings run, ran, and ron, which form valid
words, but would also match any of a long list of more nonsensical character
strings—such as rln, rxn, and r&n—as well as longer strings which contain r.n
as a substring such as ronald or rink. The point here is not to overlook the fact
that the period matches any character in the ASCII character set, not just num¬
bers and letters.

As another example, let’s say that we were filtering a file that contained
Five-character part codes. We want to match any part code that has the character
Z as the third character. The regular expression that would accomplish this task
could be written as:

. .z..

This regular expression would of course match any character string five charac¬
ters long that had a Zas the third character. In this example we will assume that
our file contained only part numbers and no other strings. If that were not the
case, this regular expression could get us into trouble if we did not use care to
isolate just the part number.

Matching Sets of Characters Using []

The left bracket starts the definition of a character set in a regular expression.
Any characters that occur between the left bracket and the right bracket are con¬
sidered part of the set. The regular expression matches if any of the characters in
the set occur in the string being examined. As an example, let’s return to our
three-character string that begins with r and ends with n. We saw previously

52 ♦ Chapter Three

that the period special character gave us many matches. If our intention were just
to match three-character words that start with rand end with n, we might utilize
the [] construct in our regular expression to help us narrow our matches. We
might begin by assuming that we should narrow our search to just lowercase
alphabetic characters. We can do this using a character class. Of course, we could
list every lowercase character between the brackets, but luckily we can use a
shorthand notation to represent this. The - is used to represent a range of char¬
acters. So the range [a-z] represents [abcdefghi...z] and thus forms our desired
regular expression representing all lowercase alphabetic characters. Now getting
back to our example, the full regular expression would be:

r[a-z]n

This would eliminate any string that does not have a lowercase alphabetic char¬
acter in the second position. But clearly this can still match lots of nonsense
words (rbn, rcn, and so forth). If we assume that a vowel needs to occur in the
second position, then we could further limit our regular expression by placing
just the vowels in the our character set. For example,

r[aeiou]n

would match more closely with our intentions of matching words that contain a
substring that starts with rand ends with n (ran, run, ron, ronald, rink). Placing
a space after the n in the regular expression would make it more closely match
just three-character words that start with r and end with n followed by a space.

The [] construct is very powerful at limiting the scope of regular expres¬
sion matching to particular characters or sets of characters. The range operator -
can specify any sequence of characters as long as they are continuous in the
ASCII sequence. For example, [A-C] represents just the uppercase characters
ABC. Several commonly used ranges are listed as follows:

[A-Z] all uppercase alphabetic characters

[a-z] all lowercase alphabetic characters
[0-9] all digital characters

[A-Za-z] all alphabetic characters

In addition to the range operator, there is another operator that has special
meaning within the brackets. If the first character after the left bracket is a A,
then the complement of the character set defined between the brackets is
matched. This means that any character that is not in the set defined will be
matched. For example, the regular expression

r[AA-Z]n

would match any three-character string that started with rand ended with n and
did not contain an uppercase alphabetic character in the second position. This

Shell Fundamentals ♦ 53

operator can be applied to the common ranges shown previously to form other
very useful ranges. For example:

[AA-Za-z] matches all nonalphabetic characters

One last point concerning the [] construct: All characters that occur inside
the brackets are ordinary. The only characters that have special meaning within
the [] are the range operator - and the A complement operator. Of course, these
can stand for themselves if preceded by an \ escape character.

Matching the Start of a Line Using A

If the A character occurs outside of the character class operator [] and at the start
of a regular expression, then the expression that follows must match at the
beginning of a line. For a very simple example, consider the following regular
expression:

AWindy

This regular expression would only match the characters “Windy” if they
occurred at the beginning of a line. All other occurrences of “Windy” would not
match. Matching the beginning of a line can be a very useful tool when editing
files and is a frequently used regular expression in sed and ed. The A character
alone matches just the beginning of a line and can be used to insert information
onto the front of a line using sed. For example, the regular expression

will match the start of every line in the file.
But the A character can really occur before any regular expression. Let’s

return to our previous example where we wanted to match a part number located
in a file. If you recall, this was accomplished using the regular expression

. .z..

As we pointed out then, this regular expression could match on any character
string in the file the contained a Z in the third position. We were safe as long as
we just had part numbers in the file. Let’s assume instead that the part number
was at the beginning of each line in the file. Then the following regular expres¬
sion, using the A special character, could limit the matching performed to just the
start of the line:

A Z. .

You will find the A operator to be very useful in forming regular expressions
since key information is often located at the start of a line of data. In addition, it

54 ♦ Chapter Three

is often easy to arrange it so that important information is located at the start of
a line.

Matching the End of a Line Using $

Like the A special character for the start of a line, the $ character following a reg¬
ular expression is used to cause a match to occur only if the preceding regular
expression occurs at the end of a line. For example,

END$

would match only if the string “END” occurred at the end of a line. All other
occurrences of the string “END” would be ignored. The $ character can be used
after any valid regular expression to force the match to occur only at the end of
the line. Consider this example where we want to match the word end, but in any
case mixture:

[E,e][N,n][D,d]$

This is often a good technique for matching user input where the input can be in
any case and you want to look simply for the word regardless of case.

Consider the following example, which uses both the A and the $ regular
expression characters:

A$

This regular expression will match all blank lines.

Matching Zero or More Characters Using *

The * character is used to match zero or more of the preceding character (s) or
regular expression (s). Note that this is different from the filename generation *
symbol, which says to place any string in this position. (This is accomplished in
regular expressions by the formation which is any character repeated any
number of times.) The * in regular expressions is simply a repeat symbol. The
preceding character can repeat any number of times, including zero times, and
still match. As an example, consider the following regular expression:

ZA*P

This regular expression would match the string ZP as well as the string
ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP. If we wanted to ensure that
at least one occurrence of the A were to appear in the string, we could write the
regular expression

Shell Fundamentals ♦ 55

ZAA*P

which would at a minimum match ZAP.
Of course the * special character can be used after any regular expression

to indicate that it is to repeat zero or more times. For example, here are several
widely used regular expressions involving *:

[A-Za-z] [A-Za-z] * matches any string of characters (basically matches all
words)

[±][0-9][0-9]* matches any integer with a preceding + or -

matches any string of characters

A *$ matches lines that have only spaces

Note that a .* alone will match the entire line since regular expressions match the
longest possible string if any ambiguity exists. This is a good way to match all
the lines in a file.

Matching a Specified Number of Characters

Using \{m,n\}

The * character introduced in the previous section is very powerful but provides
no control over how many occurrences of a character is considered valid as a
match. It can range from 0 to some very large number of occurrences. Sometimes
we would like to have a little more control when building regular expressions.
The construct provides three ways to control matching of repeating char¬
acters. These are:

1. Character must repeat within a range specified by m and n with m
being the minimum number of times the character can repeat and n the
maximum. This has the form \{/w,/A}.

2. Character must repeat at least m number of times. This has the form

3. Character must repeat exactly m number of times. This has the form

These forms often provide the control that we need when forming complex
regular expressions. For example, consider the example from the previous sec¬
tion that described integers:

[+ \-3 [0-9] [0-9]*

Actually, this forces our integers to have a preceding + or - sing. Often this is not
the case when trying to match integers in general, which may or may not have a
+ or - sign in front. But without the \{m,/A} construct it would be very difficult to
write a regular expression to match the general case integer. Using [±]* would

56 ♦ Chapter Three

simply not work for obvious reasons. But now that we can control the number of
occurrences, the following regular expression should do the trick:

[±]\{0*l\}[0-9] [0-9]* matches any legal integer expression

Likewise, we could now form an expression that would match any real or integer
number by using the following regular expression:

[±]\{0,l\}[0-9][0-9]*\.\{0,1\}[0-9][0-9]* matches any real or integer
decimal expression

As another example, let’s return to our part number and assume that the
first two positions in the part number are alphabetic and the final two positions
are numeric. Then our part number would look something like AAZ23. We may
want to match a part number anywhere it is found and can assume that part
numbers always have this form. Using the repeating control construct, we can
form a regular expression which matches part numbers as follows:

[A-Z]\{2\}Z[0-9]\{2\}

The first part of the expression, [A-Z]\{2\}, says that we must have exactly two
occurrences of uppercase alphabetic characters followed by a Z, which of course
is followed by two numeric characters.

Save a Match and Compare Later Using \(...\) and \n

The \(...\) construct provides the ability to save a matched string in memory for
comparison later in the regular expression. Any regular expression can be placed
between the \(\) parentheses. Each time that a string is stored using this con¬
struct it is assigned a number 1 through 9 based on its position in the regular
expression. These stored expressions can then be referenced later in the same
regular expression by using the \n construct in the place of a regular expression.
For example, let’s suppose that we had a file which contained lines that were
divided into fields based on the field delimiter There are four fields on each
line. We want to select lines only where the first field matches the third field and
the second field matches the fourth. The following regular expression should do
the trick and demonstrates how saved expressions are assigned numbers:

The first field is matched and stored as \1 using \(.*\): that says to match any
character string up to the first: (which is our field delimiter). The second field is
stored as \2 by the second occurrence of \(.*\):. Finally, we recall the saved pat¬
terns by referencing \1 in the third field position and \2 in the fourth field posi¬
tion. If the third field matches the pattern saved for the first field and the fourth
field matches the pattern saved for the second field, then the line matches.

Shell Fundamentals ♦ 57

Saving matched patterns is a very useful tool especially when using sed
and ed, which allow the saved pattern to be used as a replacement value when
editing a file. Note that this construct \(...\) is not available when using awk.

Creating More Complex Regular Expressions

In the previous sections, we have developed several examples used to demon¬
strate each of the regular expression special characters. As we progressed we
developed increasingly complex expressions. As you can imagine, regular
expressions are very powerful and can match or recognize a wide variety of
strings. This is done by concatenating smaller regular expressions into longer
strings. We saw this in some of the latter examples in the previous sections.
For example, the regular expression to match an integer or real decimal was
given by

[+ \-]\{0,l\)[0-9][0-9]*\.\{0,1\} [0-9] [0-9]*

This is of course a concatenation of several smaller regular expressions. We can
extend this concatenation into a wide array of complex regular expressions that
will match all kinds of classes of strings. In fact, regular expressions are used in
computer language compilers to help recognize valid syntactic components of the
language.

Egrep and Awk Extensions to

Regular Expressions

In addition to the regular expressions previously listed, egrep and awk extend
the capabilities of regular expressions by adding several other regular expres¬
sion characters (Table 3.4). Note that these are available only in egrep and awk
and cannot be used in other tools such as sed and ed. As already mentioned,
the \(...\) construct is not part of the egrep/awk regular expression special
characters.

TABLE 3.4 Awk Extensions to Regular Expression Operators

Character Description

+ Match the previous character one or more times. This is different from
the * operator because zero occurrences do not match.

? Match the previous character zero or one time only.
I The OR operator, which means to match either regular expression

pattern occurring on either side of the OR symbol: reg_expllreg_exp2
() A regular expression grouper that can be used to group entire regular

expressions. Aids in removing ambiguities in complex regular
expressions.

58 ♦ Chapter Three

Matching One of More Characters Using +

The + operator is used much like the * operator described previously, except that
the + operator does not consider zero occurrences to be a match. The preceding
character must occur at least once. This is a very convenient operator since there
are often situations where we want to ensure that the regular expression charac¬
ter occurs at least once. In the previous sections we saw examples of regular
expressions that describe words and integers. In each of these regular expres¬
sions we had to take measures to ensure that a letter or digit occurred at least
once, as is shown in the following:

[A-Za-z][A-Za-z]*

By using the + operator we can simplify the expression to be

[A-Za-z]+

This implies that at least a single alphabetic character must be found in order for
a match to occur.

We could simulate the behavior of the + character using the \{ 1 ,\} construct
which implies that the preceding character must occur at least one time.

Matching Zero or One Occurrence

of a Character Using ?

Similar to the * and + operators, the ? matches zero or one occurrence of the pre¬
vious character. This can be thought of as a special case of the construct,
where m is 0 and n is 1. The ? operator is provided because the need to specify
zero or one occurrence arises frequently when developing regular expressions. In
our previous example of a regular expression that matched integer or real num¬
ber decimal representations, we looked for zero or one occurrence of a + and -
sign and a decimal point. This regular expression was as follows:

[+ \-]\{0,l\}[0-9][0-9]*\.\{0,1\} [0-9] [0-9]*

Using the ? and the + operator, as was demonstrated in the previous section, we
can simplify this regular expression to the following:

[+\-]?[0-9];+\.?[0-9]+

Matching Either of Two Regular

Expressions Using I

The I is an OR operator that can be used to specify two full regular expressions,
either of which can match to cause a match of the regular expression. The syn¬
tax for using the OR operator is:

Shell Fundamentals ♦ 59

reg_exp_l\reg_exp_2

which means either reg_expl or reg_exp2 can match to cause an overall match.
For example, the simple regular expression

RED I TED

would match either the string RED or the string TED. This can be useful when we
want to match several conditions in a single position in a regular expression.

Filters

As we discussed briefly in Chapter 1, a key way to turn raw data into useful
information is to filter out the extraneous data. You should think of most Shell
commands as filters, such as the one shown in Figure 3.2. They have a single
input, called standard input (abbreviated as stdiri; see Table 3.5), that gives them
a character at a time. Each command also has two outputs: standard output (std-
out) and standard error (stderr). Each command filters data from the standard
input or refines it in some fashion, and passes it to the standard output. Any
errors that it encounters (if any) are passed to stderr. Errors rarely occur, how¬
ever, because most UNIX commands are designed to take intelligent default
actions in most situations. If, for example, you don’t assign a file as stdiri, then
the Shell assumes that your terminal is stdiri. If you don’t assign a file as stan¬
dard output, then the Shell again assumes that the terminal is standard output.
One of the dumbest things you will ever do is type a command such as “cat”
(concatenate and print) followed by a return and then wonder what happened:

cat

What is happening? See Figure 3.3. The Shell is waiting for you to type input
from the screen, and it will display it back to you when you are done. To get out
of this command, you have to hit the break or Delete key, or type Ctrl(d) for end-
of-ffle (EOF).

The cat command is the simplest of the Shell’s filters. It does not change
the data; it takes the standard input and reproduces it on the standard output. At
first glance, this seems worthless, but if you want to view a file on your termi¬
nal, all you have to do is type the command:

cat file

stdin stdout

stderr

FIGURE 3.2 A Shell filter.

__
DU ♦ Chapter Three

TABLE 3.5 File Descriptors

Name I/O File Descriptor

stdin input 0
stdout output 1
stderr error output 2
user-defined input/output 3-19

The Shell will open the file and reproduce it on stdout (your terminal). Any errors
detected, such as a missing file, will be passed to stderr (again, your terminal).

Other filters extract only the data you want to see, while others add or
change the data per your instructions. The grep command (globally look for a
regular expression and print) will find every occurrence of a word or phrase in a
UNIX file. For example, the following command will find all occurrences of my
name in a document:

grep "Arthur" chapter1

Author: Lowell Jay Arthur

King Arthur and the Knights of the Round Table

Two occurrences were found. Grep filtered out all of the other lines in the file
chapter 1. Please notice that all Shell commands are case sensitive. Uppercase
and lowercase letters are different. To illustrate how the Shell can use commands

FIGURE 3.3 A terminal as stdin, stdout, and stderr.

Shell Fundamentals ♦ 61

to modify and enhance data, imagine that I need to change all occurrences of
“shell” to “Shell”. The sed (stream editor) command is useful:

sed -e "s/shell/Shell/g" chapterl

Sed will open chapterl as stdin and pass the file to stdout (the terminal) while
changing all occurrences of “shell” to “Shell”. Well, you might say, that is cer¬
tainly useful, but 1 need the output in a new file. To create a new file with Shell,
you need to use a facility called input/output redirection.

Internet Filters

As you will discover in Chapter 9 (Internet), this simple input/output process
gives great power to the Internet. It makes the Internet much more interactive
and flexible. Forms posted to your Internet server can be processed by CGI (com¬
mon gateway interface) programs. The form is read from stdin and a response
sent back by writing to stdout. This makes Internet CGI programming fairly sim¬
ple. If you can read from stdin and write to stdout, you can write CGI scripts for
the Internet! Anything you can do with the Shell can be done with CGI scripts on
the Internet. The Shell is also a very powerful way to prototype and test CGI pro¬
grams on the Internet.

Input/Output Redirection

Input and output redirection allows you to:

1. Create files
2. Append to files
3. Use existing files as input to the Shell
4. Merge two output streams
5. Use part of the Shell command as input

You can use I/O redirection to change the direction of stdin, stdout, and stderr, or
any other user-defined file descriptor (Table 3.5). Afile descriptor is a numeric
handle that UNIX uses to identify a file that is open for processing. Twenty files
may be open at one time; their file descriptors are 0-19. The first three file
descriptors are reserved for stdin (0), stdout (1), and stderr (2).

The syntax of the two most frequently used redirection activities is as follows:

file-descriptor-1 operator file-name (e.g., 2> errorfile)

file-descriptor-1 operator file-descriptor-2 (e.g., 2> &1)

62 ♦ Chapter Three

TABLE 3.6 Redirection Operators

Operator Action

< Open the following file as stdin.
> Open the following file as stdout.
» Append to the following file.
«del Take stdin from here, up to the delimiter del.
<& Use file descriptor 2 as input wherever file descriptor 1 is used.
>& Merge file descriptor 1 with file descriptor 2.
»& Append file descriptor 1 to file descriptor 2.
1 Pipe stdout into stdin.

The first format opens a file as either input or output and assigns it to a specified
file-descriptor. The second format duplicates or assigns one file descriptor to
another. The Shell recognizes the operators shown in Thble 3.6.

In the previous example, I could have used I/O redirection to save the out¬
put in a new file as follows:

sed -e "s/shell/Shell/g" chapterl > newchapterl

The sed command knew to open the file, chapterl, as stdin, but I could also have
written the command as:

sed -e "s/shell/Shell/g" < chapterl > newchapterl

But what about stderrl Isn’t it still directed to the terminal? Well, yes.
Redirecting stderr into a file is occasionally useful to debug a Shell command. To
do so, however, the Bourne and Korn Shells recognize the file descriptor for
stderr (2) and the output symbol (>) to mean that stderr should be placed in a
file:

sed -e "s/shell/Shell/" chapterl > newchapterl 2> newerrors

Any errors will be put in the file, newerrors. {Note: This syntax will not work
with the C Shell.)

Sometimes, it is useful to combine stdout and stderr into one output stream
and put it into a single file. To do so is simple:

sed -e "s/shell/Shell/g" chapterl 2>&1 > newchapterl

The expression “2>&1” tells the Shell to assign stderr (2) to the same file
descriptor as stdin (&1). Then, the Shell redirects both outputs into the file,
newchapterl.

The Shell has two other special features—appending to a file and using part
of the Shell command as input—to handle special situations. The output redirec-

Shell Fundamentals ♦ 63

tion command “>” creates a new file if the filename does not exist. If the file
already exists, the Shell writes over it.

KSHr Bash

The overwriting of files is a mixed blessing. While it is convenient—you
don’t really need to think about the current status of an existing file—it can
also be disastrous. If an already existing file that has important informa¬
tion in it, the Bourne Shell does not indicate in any way that it is ready to
overwrite the file. Your data is simply gone. You can help prevent this by
ensuring that you redirect output to a certain directory or by restricting file
permission on important files, but the Bourne Shell does nothing to warn
you. The Korn and Bash Shells have added the noclobber option to help
you prevent overwriting of important information. You set the noclobber
option with the set command using the -o (option) option.

set -o noclobber # Don't overwrite any existing files

set -C # same as set -o noclobber in the Bash Shell

Once this option is set, you will no longer be able to overwrite file using
redirection of output. Instead, you will receive an error message that the
file already exists. You can force the file to be overwritten by using the >1
symbol for output redirection. This kind of overwrite protection is also
available with the C Shell.

Sometimes, it is useful to write some text into a file and then add text to it
as required. To do this, you use the symbol to append “»”.

♦ If the file does not exist, then the Shell will create it.
♦ If it exists, the Shell will append text to the file.

A common example involves writing Shell procedures. Often, when using a
Shell procedure, you want to create a file of errors and mail them to the person
executing the command:

echo "First Error" > mailfile # create a new error file

echo "Second Error" >> mailfile # append errors to the error file

echo "Third Error" >> mailfile # append more errors

mail lja < mailfile # mail the error file

The first error is detected and stored in a new mail file. The use of “>” cre¬
ates a new file and avoids appending new errors to old errors in a similar file. All
subsequent errors are appended to the mail file. Finally, the mail is sent to the

64 ♦ Chapter Three

person executing the command—one message is usually better than three sepa¬
rate ones.

The remaining redirection device, uses lines of data within the Shell
command as input. Using this method of input to a Shell command is often
referred to as a Here document. Using data within the Shell command is most
often useful with the editor. Rather than having a separate file as input to the
command, you can include it directly with the Shell command:

ed mailfile <<EOF!

g/Error/s//Terminal Error/

/First/d

w

q
EOF!

This command will edit the mail file using the subsequent lines, up to the
first occurrence of delimiter line “EOF!”, as input. The editor will replace all
occurrences of “Error” with “Terminal Error”, delete the next occurrence of
“First”, write the mailfile, and quit. This ability is useful when you need to edit
more than one file and make the same changes to each.

By the way, you do not have to use “EOF!”—any word or character will do.
For example, you could use “de” {ed spelled backwards).

ed mailfile <<de

s/Error/Terminal Error/

/First/d

w

q
de

Anything else will work equally as well.
To close an open file descriptor, use

exec 4>&- # Close file descriptor 4

exec 1<&- # Close stdin

Occasionally, you will want to pass the output of one Shell command
directly to the input of another. Rather than create a file and have the second
command read it, you can pass the data from one command to another using the
Shell facility called “pipe.”

Pipes

The pipe is exactly what it sounds like—a conduit to carry data from one com¬
mand to another. (See Figure 3.4.) It connects the stdout of one command to the
stdin of another—no messy temporary files to deal with, fewer errors, and

Shell Fundamentals ♦ 65

FIGURE 3.4 A Shell pipe.

greater productivity. Besides eliminating temporary files, the pipe allows the two
commands to operate at the same time (asynchronously). As soon as the first
command creates some output, the second command can begin execution. Figure
3.5 shows the difference in execution time between processes that execute syn¬
chronously and asynchronously. The pipe is not only useful but efficient as well.

In a previous example, I changed all occurrences of “shell” to “Shell” in
Chapter 1. It might be useful to change all occurrences in all of the chapters and
put them into a single file. The pipe would let me combine the cat and sed com¬
mands to do this simply:

cat chapterl chapter2 chapter3 I sed -e "s/shell/Shell/" > book

Cat concatenates the chapter files and puts them on stdout. The pipe passes
the data from the cat command to the stream editor command (sed), which then
edits the data and writes it into the file book.

Synchronous process

Asynchronous process

>

Finished

v
Productivity lag

FIGURE 3.5 Asynchronous versus synchronous processes.

66 ♦ Chapter Three

It is also possible to redirect standard error into standard output and then
pipe them both into another command as follow?:

command arguments 2>&1 I nextcommand

Aside from this minor difference, the Bourne, Korn, and C Shells all handle pipes
in the same way.

Because it may be necessary to save the data passing through a pipe—to
test that the command is passing correct data or just to retain the data for future
use—there is a facility to save the information in a file. What better name for a
pipe fitting than tee? Tee writes the standard input into a file and onto the stan¬
dard output. Tee is as simple to use as a pipe:

cat chapter? I tee book I nroff -cm

In this example, cat pulls together all of the chapters, tee creates the com¬
piled book, and nroff formats them.

Pipes are used to connect Shell commands to perform complex functions
and improve efficiency. Rather than coding some new command to handle a
needed function, Shell commands can be reused, coupled with each other, and
shaped to handle even the most difficult information applications. Information
passing through pipes can be saved in files with tee. Pipes are a key component
of the Shell’s flexibility and usability.

Named Pipes

Using the Bourne or Korn Shell, you can create special devices called named
pipes. The difference between a named pipe and the pipes discussed previously
is that a named pipe is a permanent pipe device that exists until it is removed.
The previous pipes were temporary, existing only as long as the command ran.
Instead of accepting input from one program, named pipes can accept input from
any commands that write to them. Typically, only one background command will
read the input, however. To see how this works, let’s create a named pipe called
LOG using the mknod (make node) command and run a background process
runlog that will write log records to the logfile:

/etc/mknod LOG p

log < LOG

while TRUE

do

read line

echo 'date+1%H%M%S

done < LOG

$line » /usr/local/logfile

Continued

Shell Fundamentals ♦ 67

nohup nice log&

Now, all of the other commands we have running can write to the named pipe,
LOG, and the log command will then read and create records with the output
from these commands:

command1 > LOG

command2 > LOG

The handy thing about named pipes and their background commands is that
they can be running all day while other commands come and go. This is a great
way to reuse applications such as writing logs or error files.

Summary

The basic Shell command uses the following syntax:

command -options argument

The argument is often, but not always, a file- or pathname. The options
are almost always specified with a preceding character. Each section of the
command—command name, option, and argument—is separated by at least a
single white-space character. Command options alter the actions a command
performs.

Shell commands are really UNIX files that contain executable Shell code.
Since commands are filenames, they can be specified with a path if needed. The
Shell has a default method for trying to locate command files in the file system.
Commands are interpreted by the Shell using the fetch-analyze-execute cycle.
Once a command is located and executed, options and arguments are passed to
the command to be analyzed.

The Shell has certain characters that it reserves to have special meaning
when seen on the command line. These characters, called metacharacters and
special characters, perform a variety of tasks that make using the Shell easier
and more powerful. The metacharacters are used to help match many file- and
pathnames that fit a certain pattern. The filenames that match are generated for
use with a particular command. This will alleviate the need to type a large num¬
ber of similar filenames when they all need to be accessed or processed in the
same way. The Shell special characters tell the Shell to take some specified
action. For example, the symbols “<,>” tell the Shell to redirect standard input
(stdin) and standard output (stdout).

Shell commands can be viewed as filters. They take input data from a file
stream, called standard in {stdin), filter or transform the data in some way, and
place the resulting data in the output file stream. The output file stream is called

68 ♦ Chapter Three

standard out (stdout). There is also a related output stream called stderr that is
used by the Shell to output error information.

The redirection of I/O allows the input and output for a command to be
redirected from the default file stream—your terminal—to a particular filename.
Input redirection tells the Shell to read command input from the named file while
output redirection tells the Shell to place the results in the named file. Saving the
results of a Shell command is very useful. It can then be used as information or
as input to other Shell commands for further processing.

The idea of a pipe is to allow the connection of Shell commands to accom¬
plish a transformation of input data. The pipe is a conduit between commands
that attaches the standard input of one command with the standard output of
another command. It is an efficient and easy way to accomplish the task of using
a series of Shell commands. There is no need for intermediate files and the Shell
commands in the “pipeline” operate in an asynchronous mode.

Exercises

1. Describe the use of the Shell metacharacters:

a. *
b. ?
c. [...]
d. \

2. Given a directory containing the following files—Abel, Cain, George,
Gorth, Greg, Sam, Ted, Trod—use the Is command to list only those files:

a. consisting of three letters
b. consisting of four letters
c. that begin with a G followed by e or o
d. that begin with T and end with d

3. Diagram and describe a typical Shell filter.
4. What are standard input (.stdin), standard output (.stdout), and stan¬

dard error (stderr)!
5. What is input/output redirection?
6. Write a simple interactive Shell using I/O redirection to accept input

from file 1, put stdout in file2, and stderr in file3.
7. Write a simple Shell to redirect stderr into stdout and put the combined

output in outerfile.
8. Write a simple Shell to append to an existing file.
9. Write a simple Shell, using the pipe, to sort a file both before and after

using grep to extract information from it. Which form is more efficient?
10. Use pipe and tee with the previous exercise to put the output of grep

into a file before sorting the information selected.

Shell Commands

Almost any UNIX command is available for use with the Shell. This chapter
explains how the Shell finds commands and files. It also introduces some of the
most useful, but simplest, commands. From these simple tools, a Shell program¬
mer can grow increasingly functional programs that will perform tasks that are
hundreds of times more powerful than their basic Shell commands. These com¬
mands fall into several key categories:

File and directory

Selection

Combining and ordering

Printing

Security

Built-in

Before we get into these various kinds of commands, I need to explain that
I’m not going to attempt to reiterate the UNIX manual pages for each command
discussed. If you would like to know more—and believe me, there is much more
to most commands that we have space to discuss in this book—then you will

69

70 ♦ Chapter Four

need to look up the commands either in your documentation or interactively on
the UNIX system. To view the documentation for a command, use man:

man command_name

If you need to view it page by page, pipe the output into more or pg:

man command_name I more

Or, if you absolutely need a paper copy, you can pipe the output into either lp or
lpr—the line printer commands—depending on which is appropriate for your
system. I will encourage you to avoid paper output as long as possible. Printed
reports seem to need to be copied multiple times and are ultimately thrown away.
Electronic reports can be copied thousands of times and only consume a small
quantity of disk space. Think ecologically. Print things only when you really need
them:

man command_name I lpr

Now that we’ve handled the administrative details, we will begin our investiga¬
tion into Shell commands. When reading about the Shell commands presented in
the following sections, keep in mind the Shell basics covered in the previous
chapter, including command syntax.

File and Directory Commands

Directories are like file cabinets and file folders; they allow you to organize your
information effectively in various files. The standard maximum length of all file
and directory names is 14 characters. File and directory names can include any
of the following characters: ‘_ a-z A-Z 0-9 ’.

The Shell file and directory commands are shown in Thble 4.1. The most
elementary directory commands are pwd, Is, cd, mkdir, and rmdir. Elementary
file commands include cat, cp, mv, and rm.

Directory Commands

Since it’s easy to get lost in the file system, you will occasionally need to ask the
question: Where am I? The pwd command does this for you:

pwd #Please tell me what directory I'm in

/unixl/lja

Shell Commands ♦ 71

TABLE 4.1 File and Directory Commands

Type Command Purpose

Directory cd Change directory
Is List a directory’s contents
pwd Print working directory
mkdir Make a new directory
rmdir Remove an existing directory (if empty)

File cat Concatenate file(s)
cp Copy file(s)
csplit Split a file based on arguments
In Link two names to one file
mv Move file(s)
rm Remove file(s)
split Split a file into n line chunks

KSH/Bash

The Korn and Bash Shells provide a method to allow your current working
directory to always be displayed. It is a very nice feature and is covered in
detail in the section on the Shell variable PS1. It helps prevent that lost
feeling when moving around in the file system.

Another common question is: What’s in this directory? The Is (list) com¬
mand, without any options or arguments, gives a listing of all of the files and
directories in the current directory:

Bourne/Korn

Is

bin

doc

src

The Is command can be combined with numerous options, most commonly
-1 (for long) and -Id (for directory names only, not their contents), to give a more
detailed listing of the current directory and its contents:

Is -1

drwxrwx- 3 lja adm 992 Dec 1 05:39 bin

drwx- 28 lja adm 496 Dec 4 12:28 doc

drwxrwxrwx 32 lja adm 1008 Dec 3 18:22 src

Is -Id

drwxrwxrwx 32 lja adm 437 Dec 3 18:22

72 ♦ Chapter Four

It is possible, however, that there might be some hidden files in a directory.
Hidden files have a period (.) as the first character of their name. Hidden files are
normal UNIX files but are ones that are hidden from your normal view. In gen¬
eral they are files that you do not work with on a regular basis. You can change
and create hidden files just like other files. To see all of the files in a directory,
including those deliberately hidden, you should use the -a option:

Is -a

cshrc

login

profile

bin

doc

src

There are many options to the Is command. We do not cover them all in this
book, but there are a few others that are worth pointing out. There are several
options that sort the file names in various orders based on date and times
instead of the default sort order of names. These are the -t, -c, -r, and -u options.
There are also several options that change the way the listing is displayed. There
are the -x, -C, and -F options. One final option that is useful at times is the -q
option that shows unprintable characters that may exist in your filename as “?”.
This can be a real help when your filename was mistakenly created with a char¬
acter that does not display on your terminal. When this happens you cannot
access the file because you don’t know what the real filename is. You can’t print
it, edit it, or remove it. The -q option can help identify when this has happened.

Once you know where you are and have a list of the directories beneath the
current one, you may want to move into another directory. The cd (change direc¬
tory) command moves you from one directory to another:

cd directory_name

The cd command will change to any directory that is located under your current
working directory. This command works just like other Shell commands when it
comes to recognizing directory names. The directories under your current work¬
ing directory are within view and do not need to be prefaced by a full pathname.
You should put related files in different directories (cabinets, drawers, or folders)
to make them easier to find. Proper naming of directories and files will help you
locate them.

Using the cd command without any arguments will transfer a user to the
home directory:

pwd

/unixl/1ja/src/application

Where am I?

Continued

cd #Take me Home

pwd

/unixl/lja

To make a big leap and change to any other directory in the system, you
would use the full pathname to the other directory. For example:

cd /usr/bin

pwd

/usr/bin

KSH/Bash

Since changing directories is a frequent activity, the Korn and Bash Shells
have a few shortcuts that can help out. Of course, the full set of ~
metacharacters are very helpful at reducing typing of pathnames—these
were discussed in the previous chapter. The Shell also provides an exten¬
sion to the cd command itself, which is the cd - syntax. This command will
return to your last working directory. For example:

cd /usr/bin #change to the /usr/bin directory

cd # home please

pwd

/usr/tburns

cd - #back to /usr/bin

pwd

/usr/bin

Bash

The bash shell also provides some nice extensions for changing directories:
the pushd, popd, and dirs built-in functions. These functions implement
and manage a stack of directories and allow you to move between the direc¬
tories stored on the stack. One of the best analogies of a stack is the stack
of dishes in a cafeteria. The first one placed on the stack, or pushed onto the
stack, is the first one taken off, or popped off the stack. This is why a stack
is often called a last-in-Jirst-out queue. The pushd function takes a direc¬
tory and places it on the stack. In addition, it also cd’s to that directory. Once
the directory is placed on the stack you will be able to reach that directory
again without having to retype the directory path. The popd command, on
the other hand, actually removes the directory name from the stack. Once

% Continued

74 ♦ Chapter Four

the directory name is removed from the stack you will not be able to change
to that directory without retyping the directory path. The dirs command will
actually display a list of all the directories that are on the stack.

Since there is no limit to the number of directories that can be stored
on the stack, it provides the ability to move between a large number of
directories without having to retype the directory paths. This is very bene¬
ficial for anyone who utilizes a large number of directories while working.
It provides a great extension over the directory management provided by
Bourne and Korn Shells. With the Korn Shell you can move between the
current directory and the last-visited directory rapidly using the cd - com¬
mand. But if a third directory needs to be visited, then a return to the first
is not possible without retyping the path.

Let’s take a look at how all this works. First, we must add a directory
to the stack using the pushd command. The syntax for the pushd com¬
mand is

pushd [directory_name] [+n] [-n]

where directory jiame is the name of the directory that you both want to
place on the stack and to which you want to move via the cd command.
Whatever directory is placed on the top of the stack (or rotated to the top of
the stack using the +-n option) is the directory to which you are moved via
a cd command. Thus if you push a second directory on the stack, that
directory is placed on the top of the stack and made the current directory.
Notice that all the arguments are optional. If no argument is provided then
pushd exchanges the two top directories in the stack and cd’s to the sec¬
ond directory. The +n and -n arguments allow you to reach the other ele¬
ments of the stack and make those elements the top element of the stack.
The position of any given directory in the stack can be determined using
the dirs command, which lists all the elements of the stack.

The +n argument refers to the /2th item in the list returned by dirs,
counting from the left of the list to the right (starting the numbering at
zero). The -n argument refers to the /2th item in the dirs list looking at the
list from right to left. So if you specify pushd + 3 the third item in the list
will be rotated to the top of the stack and a cd command will be issued to
move you to that directory. Note that this shifts the order of the directories
in the stack. Thus, whenever a pushd command is successful, a dirs com¬
mand is performed and the contents of the stack listed. So the pushd com¬
mand is responsible for both adding elements to the directory stack as well
as rotating the stack elements, making a particular item the top of the stack
and thus moving to that specified directory.

Continued

Shell Commands

The popd command is simply responsible for removing directories
from the stack. The syntax for the popd command is:

popd [+/-n]

If no arguments are provided, then the top element of the stack is removed
and the element below becomes the new top and is made the current direc¬
tory via a cd command. If a numeric argument is provided, then that par¬
ticular element is removed from the stack. The +n element refers to /2th
entry shown by the dirs command moving from left to right (starting the
numbering at zero). The -n element refers to the nth entry shown by the
dirs command moving from right to left. When the popd command
removes a stack element successfully then a dirs is performed showing the
new stack arrangement.

As discussed previously, the dirs command is used to list all the
directory elements in the stack. The syntax for the command is:

dirs [-1] [+/-n]

If no arguments are provided then all the elements are listed. The -1 option
provides a longer listing of the directories. Normally the ~ is used to indi¬
cate the home directory. The -1 option displays the full path. The +/-n
option displays that particular stack element entry.

Now let’s take a look at an example using the pushd, popd, and dirs
command. First, let’s place some directories on the stack using the pushd
command:

$ pushd doc

~/doc ~

$ dirs

/home/eburns/doc

The results of the command show that the directory doc was placed on the
top of the stack and my home directory is the second element on the stack.
In addition, you can see that the dirs command shows that we were moved
to the doc directory as a side effect of the pushd command. Now let’s add
the source directory under my home to the top of the stack:

$ pushd ~/src

~/src ~/doc ~

$dirs

/home/eburns/src

Continued
%

The results of the command show that there are now three directories on
the stack. In addition the dirs command shows that we were moved to the
src directory. Let’s add one more directory:

$ pushd /usr/local/bin

/usr/local/bin ~/src ~/doc ~

Now we issue the pushd command without any arguments. This swaps the
first and second element of the stack and moves to the new directory:

$ pushd

~/src /usr/local/bin ~/doc ~

$ dirs

/home/eburns/src

Now let’s move to a particular directory on the stack. Let’s move back
to my home directory, which is at the bottom of the stack or in position +3
when looking from left to right and numbering from position 0 as is shown
by the dirs command below. The numbering under the listing produced by
the dirs command shows the positional numbering of the stack elements
from left to right:

$ dirs

~/src /usr/local/bin ~/doc ~

+0 +1 +2 +3

Now let’s move to position +3 or my home directory:

$ pushd +3 *

~ ~/src /usr/local/bin ~/doc

Now back to the /usr/local/bin directory but using the positions from right
to left:

$ pushd -1

/usr/local/bin ~/doc ~ ~/src

Finally, let’s use the popd command to remove the top element of the stack.
Usually you will use popd to remove directories when the stack becomes
too large or when you get duplicate directory entries on the stack and wish
to remove one of the entries.

$ popd

~/doc ~ ~/src

Shell Commands ♦ 77

You will also need to create and delete directories. This is simple using mkdir
(make directory) and rmdir (remove directory):

mkdir new_directory

rmdir old_directory

Rmdir, however, will not let you remove a directory if it still holds any files
or subdirectories. To delete the directory, you first have to delete all of the files
and directories within it. Only the entries can exist in the directory. More
about deleting files in the next section.

Is -a # list directory

only . and .. occur - the only entries allowed for rmdir to work

When you create a new directory with mkdir, the permissions that are
placed on the directory may not allow others to access the directory you created.
The permissions that are placed on your new directories and files are based on
the setting of your umask value. You can of course change the permissions
using the chmod command, but if you do not, then the system default permis¬
sion is assigned (usually rwxr-xr-x—umask 022). The umask command and
what it does for file and directory permissions is covered later in this chapter. If
the permissions are not set correctly for the directory, then others may not be
able to read, write, or search it. This may indeed be what you want, but in gen¬
eral, there are probably others in your group that you like to have access your
directories. If others will need to gain access to your directories and files, you can
save yourself headaches by ensuring that your umask value is set properly.

Using the Shell interactively or with actual procedures often requires
changing directories. Determining the current directory is also important. Both
the cd and the pwd command can be used anywhere at any time. You can then
use mkdir and rmdir to create and delete directories as you require.

Pwd, Is, cd, mkdir, and rmdir handle most of the basic directory-handling
needs. They provide the ability to move within the file system (cd), to see what
is contained in the file system (Is), to determine the current directory (pwd), and
to alter the layout of the file system hierarchy (mkdir, rmdir). Ls and pwd are
especially important; they produce their output on stdout, so they can be coupled
with other commands via pipes to create more complex commands. Once you
have set up directories, you will need to begin working with files of data and
information.

File Commands

The most common file commands are cat, cp, mv, and rm. The cat command
takes one or more filenames as its arguments, opens the indicated files, and

78 ♦ Chapter Four

copies them to standard output. Cat allows you to display them on your terminal
or redirect them into other files:

cat .profile # Show me what's in my .profile

PATH=${PATH}:${HOME}/bin

export PATH

#Contents of files jan-march to status file

cat January february march > status_lQ_90

While cat is a very useful command, especially when the need to place
the contents of a file to stdout exists, it can be awkward to view the contents
of a file on your screen using cat. First, it does not scroll in any sensible fash¬
ion. The contents of a file are placed on your screen and continue to roll by
until the entire contents of the file have been listed. (This can be somewhat
controlled by using scroll control on your terminal, typically Ctrl-s to stop and
Ctrl-q to continue.) Further, the cat command is not very good at handling files
that contain nonprintable characters. It can just make a mess of the output list¬
ing to your screen and will sometimes lock your terminal. Often you can break
out of this by sending cat a break (Delete key). The real power of cat is in han¬
dling multiple files and being able to stream their contents to the stdout. This
allows easy redirection of their contents into a file or to some other command
using a pipe.

But have no fear. UNIX provides a method for viewing Files in a sensible
manner. (See the section on screen-oriented print displays for a discussion of the
pg command, which solves many of the cat command problems.)

The move (mv) and copy (cp) commands work similarly. You can move or
copy one file to another:

Move file named filel to file2 - filel no longer exists

mv filel file2

Copy file named filel to file2 - filel and file2 exist

cp filel file2

Or you can move or copy many files into another directory:

mv filel file2 file3 directory

cp filel file2 file3 directory

Or you can copy all the files in a certain directory to another using metacharacters:

copy all the file in current directory to /usr/fred

cp * /usr/fred

Shell Commands ♦ 79

At other times, you may want to remove (rm) one or more files:

rm file_name

rm filel file2 file3

rm file*

rm file?

The rm command has a very nice feature that allows you to remove all files and
subdirectories under the current directory. To do this you specify the -r option
(recursive option) to the rm command. This is often used when you wish to
remove a directory using rmdir and the directory contains files and subdirecto¬
ries that also have files. The rm command with the -r option can be used to
remove all these files and subdirectories in a single command. For example, sup¬
pose that we had the following directory with files and subdirectories:

cd /usr/fred/src # Change to fred's source directory

Is -1 * #

testprog:

total 154

list all the directories and any files that exist

-rwxrwxr-x lfred progmrs 28672 Apr 14 10:07 programl.

-rw-rw-r-- 1 fred progmrs 10700 Apr 14 10:26 program2.c

-rw-rw-r-- 1 fred progmrs 7936 Nov 10 12:02 program3.c

-rw-rw-r--

prodprog:

total 38

1 fred progmrs 3543 Feb 17 14:31 program4.c

-rw-rw-r-- 1 fred progmrs 3130 Mar 3 1992 sightl.c

-r--r--r-- 1 fred progmrs 19217 Feb 12 1992 sight2.c

-r--r--r--

-rw-rw-r--

compile:

total 93

1 fred

1 fred

progmrs

progmrs

12072 Feb 12

91 Feb

1992 sight4.c

25 1992 sight5.c

-rwxrwxrwx 1 fred progmrs 6 Aug 13 1991 msghandle.c

-rwxrwxrwx 1 tburns progmrs 1693 Oct 29 1991 market.c

-rwxrwxrwx 1 tburns progmrs 362 May 30 1991 constant.c

-rwxrwxrwx 1 tburns progmrs 95 Aug 13 1991 blue.c

So you can see based on the Is listing of /usr/fred/src that the directory
contains three subdirectories—testprog, prodprog, and compile—all of which
contain files. If we wanted to remove the /usr/fred/src directory, each of these
three directories would need to be empty. We could cd to each directory and per¬
form an rm * command and then cd back up to the /usr/fred/src directory and
use the rmdir command to remove the directory (which is required to remove the
src directory), or we could use the rm -r command and do all that with a single
command.

80 ♦ Chapter Four

cd /usr/fred/src

rm -r * # rm all file, and subdirectories

Is -la # Show that all files gone except . and ..

Another nice option to the rm command is the -i option. This puts the rm com¬
mand into interactive mode and it prompts you before it removes it.

rm -i junkl

junkl: ? y

Is junkl

junkl not found

Sometimes when you use the rm command it will prompt you with a rather
obtuse message that looks something like this:

rm junk2

junk2: 400 mode ? y

The remove command is prompting you to tell it whether file junk2 should be
deleted. This occurs when the file you are attempting to remove does not have
the correct permissions for you to be able to remove a file but the directory con¬
taining the file would allow you to delete files. The 400 mode is specifying what
the permissions are on the file. If you answer y the file is removed; otherwise it
is not removed.

Of course, when specifying filenames to any of the commands talked about
in this section, you can use any valid metacharacter (s) as needed to specify a file¬
name. When using metacharacters with rm, please use care. Be sure that you are
specifying the files that you intend to designate, and of course use the command
rm * with caution as it will remove all files from your current working directory.

File Compression Commands

There are several UNIX file commands that help to save disk space by using a com¬
pression algorithm to shrink the size of a file. This can be very useful when you are
processing large files or are short on disk space (a seemingly never ending prob¬
lem in many places). The compress command takes a filename as an argument,
compresses the file, and writes the compressed file in place of the original. The
compressed file has a .Z file extension appended to show that the file is in a com¬
pressed format. Let’s say that we have a large file called big_daddy that we want to
compress to conserve disk space. We could issue the following command:

$ compress big_daddy

$ Is big*

big_daddy.Z

Shell Commands ♦ 81

You can see that the end result is a file named like the original, only with the .Z
extension. The amount of space saved when a file is compressed varies depend¬
ing on the file being compressed, but normal text or code files are generally
reduced in size 50 to 60 percent. Anytime you see a file with a .Z extension you
can generally assume that the file is in a compressed form. Likewise, it is not
wise to give your files a .Z extension as this could lead to confusion.

The uncompress command performs the opposite. It takes a file that is
compressed and returns an uncompressed file, removing the .Z extension, and
writing the uncompressed file in place of the compressed file.

$ uncompress big_daddy.Z

$ Is big*

big_daddy

The zcat command is a related command that performs the same function
as the cat command, but only on a compressed file. The contents of the com¬
pressed file are uncompressed and placed on standard out.

File Splitting Commands

Having put the files together using the cat command, you may need to split them
apart. There are two key programs to support splitting files: split and csplit.
Split chops files into smaller ones that contain a user-specified number of lines.
To split book into 100 line files, I could use the following command:

split -100 book

Is

book

xaa

xab

xac

The files created by split—xaa, xab, xac—each contain 100 lines of the file
book. Those filenames are the default filenames created by the split command.
This might not give me exactly what I want, however. To split the book back into
chapters, I could use csplit—a context split. Csplit splits files wherever it finds a
match between its arguments and the content of the file. For example, to split the
file by chapter, I could use the following:

csplit -f Chapter book "/Chapter 1/" \

"/Chapter 27" "/Chapter 3/"

Is Chapter*

Chapter00

ChapterOl

Chapter02

ChapterO?

82 ♦ Chapter Four

In this example, csplit created four files using the prefix (-f Chapter), dividing
the chapters wherever it found the chapter headers. Csplit always begins num¬
bering the created files from 00. The first file in this example would be a null file
because “Chapter 1” is the first text the command encounters in the book file.
Just remember that split works in numbers of lines and csplit searches for
strings oj characters.

Now that you know how to find and manipulate files and directories, it is
important to learn how to extract information from either.

Selection Commands

Every Shell user will need to select, extract, and organize information from exist¬
ing files, thereby transforming data into usable information. Several Shell com¬
mands make it easy to select information (by row and column) and prepare it for
printing or processing. The commands to handle this important task are also
shown in Thble 4.2.

To begin to understand why these commands are important and how they
work, we must again look at how to structure data files. All files are simple,
“flat” files, but through the addition of delimiters like the tab character, these flat
files become transformed. What was once a flat file can become a relational data¬
base (Figure 4.1) or a spreadsheet (Figure 4.2). Why not use a true relational
database or a spreadsheet, you might ask? If you have access to one, do so. Most
relational database management systems (RDBMS) and spreadsheets, however,
do not keep their data in a form that is directly accessible by the Shell. You may
have to export data from the software packages to get them into a simple format
usable by the shell. We discuss how to do this in later chapters, but for now you
can keep the same data in simple files that are easily accessible.

To get data from a spreadsheet or an RDBMS, you need to be able to select
information by row (horizontal) and column (vertical). Grep, head, line, sed,
tail, and uniq operate on rows. Cut operates on columns.

TABLE 4.2 Selection Commands

Type Command Purpose

Selection awk Pattern scanning and processing language
cut
diff
grep
head
line
sed
tail
uniq
wc

Select columns
Compare and select differences in two files
Select lines or rows
.elecl header lines
Read the first line
Edit streams of data
Select trailing lines
Select unique lines or rows
Count characters, words, or lines in a file

Shell Commands ♦ 83

Social
Security <tab> Last <tab> First <tab> Middle
Number <tab> Name <tab> Name <tab> Initial
527964942 <tab> Arthur <tab> Lowell , <tab> Jay
234567890 <tab> Doe <tab> John <tab> D.

FIGURE 4.1 Relational table.

Line or Row Commands

There are some simple ways of getting information from files. The first is line.
Line can easily get the first line from a file. The first line is an excellent place to
put any heading information:

line < employee_file # Print the first line

SSN Name Street City State

Or we might want to look at only the first few lines of a file. Two commands
support previewing files: head and sed. If I wanted to view the first ten lines of
a file, the following two commands would be equivalent:

head file # Print the first 10 lines of a file

sed -e ’ll,$d' file # Print the first 10 lines of a file

Similarly, I could use tail to view the last ten lines of a file:

tail file

tail < file

Another useful feature of the tail command is the ability to view the last ten lines
of the file and then observe any new lines that are appended to the file. This is
most often used when we want to see what data is being written to a file as it
actually occurs. To get the tail command to display new lines, you supply the -f
option with the filename. This causes the tail command to display the last lines
in the file and then instead of ending it will sleep, waking every few seconds,

Month <tab> Income <tab> Expense
Jan <tab> 10000 <tab> 9000
Feb <tab> 12000 <tab> 10500
Mar <tab> 11500 <tab> 9800

FIGURE 4.2 Spreadsheet.

84 ♦ Chapter Four

displaying any new data that was appended to the end of the file. To stop the tail
command from waiting, issue the break command from your keyboard (usually
Delete key or Ctrl-C).

tail -f file

Although these commands are simple methods of extracting information
from a file, there are other, more exotic ways of selecting information. The grep
command finds and selects information that is often hidden deep within files. It
looks for character strings in files and writes the requested information on std-
out. I might, for example, want to determine each of the chapters that has the
word PATH in it. To do so, I would enter the following command:

grep PATH chapter?

chapter2: PATH=${PATH}:${HOME}/bin

chapter2: export PATH

chapter9: the PATH variable.

Unfortunately, grep also provided all of the lines in each of these files that
contains PATH. To get just the name, I would use the -1 option:

grep -1 PATH *

chapter2

chapter9

Or I might want to know which lines in the files contain PATH. I could use
the -n option and enter the following command:

grep -n PATH chapter2

28:PATH=$PATH:$HOME/bin

29:export PATH

When using grep and looking for strings of more than one word, you must
enclose the string in double quotes; otherwise grep thinks that the spaces or tabs
between words separate the search string from the filenames:

grep -1 export PATH *

cannot open PATH

grep -1 "export PATH" *

chapter2

The -i option on the grep command is also very useful. It tells grep to ignore dif¬
ferences in case when searching for matches on the string entered. Thus, if you

Shell Commands ♦ 85

were not sure what case the string was in, you could find it anyway. If you don’t
use the -i option, the case of the string searched for must match exactly with the
case of the string in the file. For example,

grep -i PATH chapter2

would match not only the string PATH in the file but also Path, path, PatH, pATH,
and so on. Without the -i option, only PATH would be matched.

One final option for grep that can come in handy at times is the -v option.
This tells grep to return all the lines that do not contain the string or pattern
specified. So if we switched the -n option on the following command with the -v
option, we would get all the lines except 28 and 29:

grep -n PATH chapter2

28:PATH=$PATH:$HOME/bin

29:export PATH

#Returns line 1-27 and 30 through end-of-file

grep -v PATH chapter2

There are two other forms of grep—egrep (extended grep) and fgrep (fast
grep). Egrep looks for more than one string at a time, whereas fgrep looks for
many strings that exactly match a line of the file. These two variations of the
command provide efficiency when looking for multiple strings in the same files.
For simplicity, however, I find it most useful to stick with grep.

Another useful command, word count (wc), can count the number of char¬
acters, words, and lines in a file. The counts of characters and words are useful for
determining speed and productivity and document content. The number of lines in
a file, however, is often useful in Shell programs to determine the scope of a file.
Sorts work more efficiently when they know the exact number of lines or records
in the file. Also, if a command should create only 10 records instead of 10,000, you
could use wc to check the outcome of the processing. To find out how many files
contain the word PATH, for example, I could couple grep with wc:

How many files have string PATH in them grep -1 PATH

chapter? I wc -1

2
who | wc -1 # How many people are logged on

37

The -1 option tells wc to return a count of the number of lines instead of the num¬
ber of words. Likewise, the -c option tells wc to return the number of characters
instead of the number of words.

Grep is the key tool for extracting information from fields of data. Another
useful command is uniq. Uniq, in its simplest form, removes identical lines or
rows from a file. Invariably, data is duplicated throughout files and databases.
Uniq gets rid of the redundancy. For uniq to work, however, the file must be

86 ♦ Chapter Four

sorted. We see how to do this a little later in this chapter. Since the uniq com¬
mand requires that data be in sorted order (for uniq to recognize two rows as
identical they must occur next to each other in the file), we often use sort fol¬
lowed by uniq. For example:

remove any duplicate part names from parts list.

sort parts_list I uniq

If uniq does not have an input filename, it reads standard in. If it does not
have any output filename, then it places the unique file on stdout. The -d option
is often useful. It reports the duplicate lines that exist in the file. So if, for exam¬
ple, the part “coupler” was repeated in the partsjist, the uniq -d option would
list coupler. Now if the part “coupler” occurred 15 times in the file, the -d option
would print it only once. To get a count of the number of times something is
repeated in a file, use the -c option. It prints each line in the file and the number
of times it is repeated.

Column Commands

Cut does exactly what its name suggest—cut files into pieces that can be pasted
back together in some other usable fashion. Cut can operate on a character-by¬
character or field-by-field basis or some combination of both. These columns can
be put back together later using a command called paste. Paste, unlike cut,
works line by line to put new files together.

One of the most simple examples of using cut involves finding a person’s
name in the /etc/passwd file using just his or her logname. If you entered the fol¬
lowing commands you would get the lines shown:

who

root console Jan 2 6:00

lja ttypO Jan 2 8:30

grep lja /etc/passwd

lja:password:user#:group#:Jay Arthur x9999:/unixl/lja:/bin/sh

This is more information than needed. Cut, however, can extract the
required fields. Fields in /etc/passwd are delimited by a colon (:). Field 1 is the
login name; number 2, the password; and so on. All you really need are fields 1
and 5. Grep and cut can retrieve this information:

grep lja /etc/passwd | cut -fl,5 -d:

lja:Jay Arthur x9999

In this example, the -f option indicated the fields that were to be cut. In this case,
field 1 and field 5. Fields can also be specified as ranges using a dash. For exam¬
ple, an option of -fl-5 would have returned the first five fields of the passwd

Shell Commands ♦ 87

entry. The -d option is followed by the delimiter character. The cut command
uses the character to define fields. In this case the (:) is used to indicate fields.

When creating files using Shell, use delimiters to take advantage of cut and
a command we discuss in a moment, paste. Most files currently created or main¬
tained in the UNIX system have delimiters to facilitate th?ir use.

Even without delimiters in a file, cut can be used in character mode. When
this is done the cut command looks forward the number of characters specified
and begins the cut at that position. If the character count is a range, for example
2-7, then the characters starting at position 2 through position 7 are used as a
column. There is no need for a field delimiter in this form. This can be useful in
files that have fixed-length columns, but will give very inconsistent results using
files that have variable-length columns such as the passwd file. As an example,
some of the outputs from Shell commands are not delimited. The output of the Is
-1 command has no delimiters. Cut can be used, on a character-by-character
basis, to extract only the data required:

#cut out file permissions and file name from Is output

Is -1 I cut -cl-15,55-

drwxrwx- 3 bin

drwx- 28 doc

drwxrwxrwx 32 src

As another example, let’s say that we have the following file containing
employee information:

12345678901234567890123456890

John engineer

Paul marketing

George software

Henry personnel

Skip engineer

173-76-0978

152-90-8976

130-54-7689

152-7,6-9078

168-89-0965

All the rows are 30 characters long and each column is 10 characters wide in this
file. With a file like this, we can use the cut command successfully by utilizing
the character mode of the command. The following cut command would list the
employee name and the social security number:

list the employee name and social security number

cut -cl-10, 20-30 emp_file

John 173-76-0978

Paul 152-90-8976

George 130-54-7689

Henry 152-76-9078

Skip 168-89-0965

Like grep, cut is an incredibly powerful command for operating on tables
of data, removing the fat from the meat of the information you require. Having

88 ♦ Chapter Four

looked at ways of selecting information, let’s look at ways of combining and
ordering the selected data to create even more useful information.

Combining and Ordering Commands

Having selected the data you need, the next logical step is to further refine it
using the commands shown in Table 4.3. Using selection commands, you can
extract information from a file in any form required. Once the data is cut into
several slices, however, you will want to recombine the file’s contents in a differ¬
ent order to present the information in a more usable form.

Paste

Paste can put files together in useful ways. Paste works on single files, multiple
files, or the standard input. The syntax of the paste command takes several forms:

paste file(s) #paste two or more files together

paste -d"list" file(s) #paste files using delimiters

paste -s -d“list" files ipaste subsequent lines of files

paste - - #paste two subsequent lines from stdin

In the first two forms, the paste command treats each of the files as columns and
pastes the files listed together horizontally—file 1 forms column 1, file 2 forms
column 2, and so on. The tab character is used to separate the columns unless
the -d option is provided, in which case the characters in “list” are used to sepa¬
rate the columns. These forms of paste can be thought of as a counterpart to the
cat command, which puts files together in a vertical fashion. The final two forms
of the paste command shown in the previous example paste subsequent lines
from a file or from stdin to form a single line.

TABLE 4.3 File Processing Commands

Type Command Purpose

Joining cat Concatenate files
join Join two files, matching row by row
paste Paste multiple files, column by column

Ordering sort Sort and merge multiple files together
Transform sed Edit streams of data

tr Transform character by character
Printing awk Pattern scanning and processing language

cat Concatenate and print
pr Format and print
lp Print on system printer

Security chmod Change security mode on a file or directory
umask Set default security mode

Shell Commands ♦ 89

Using the Is command, for example, you can easily create a multiple-
column listing of a directory’s contents:

Is -a I paste - - - -

. .. .cshrc .login

.profile bin doc src

The dashes tell paste to use one line from standard input in each of those posi¬
tions. The same result could have been obtained with the following commands:

Is -a > dirlist

paste -s -d"\t\t\t\n" dirlist

. .. .cshrc .login

.profile bin doc src

The -s parameter tells paste to merge subsequent lines from the same file. The
-d parameter tells paste to use the characters between the double quotes as
delimiters between subsequent lines. In this case, the first three delimiters are
tabs (\t); the last delimiter is the new-line character (\n). The following command
would produce an output with two items per line:

paste -s -d"\t\n" dirlist

.cshrc .login

.profile bin

doc src

Paste can also put two files together once they have been separated. Using
the passwd file, let’s extract two of the fields and put them back together in a dif¬
ferent order:

cut -fl -d: /etc/passwd > tempi

cut -f5 -d: /etc/passwd > temp2

paste temp2 tempi > loginlist

pr -e20 loginlist

Jay Arthur x9999 lja

Paula Martin x9999 pgm

This could also be accomplished using awk:

awk -F: '{print $5 $1}' /etc/passwd

Jay Arthur x9999 lja

Paula Martin x9999 pgm

The secret to making people more productive is to select the right data and
present it in a usable format. Grep, cut, and paste provide a tremendous facility

-V • .■

90 ♦ Chapter Four

to extract only the data needed, recombine the fields, create a new file, or print
the information with another command. Grep Rnd cut select the data required;
paste combines selected data into a usable format.

These commands provide the basic tools of a relational database: select and
join. It takes a while to gain an understanding of the use and relationships
among these commands, but once this occurs, you will wonder how you ever got
along without them.

Sort

In many cases, sorting the data makes the resulting output even easier to use.
In other cases, it may be necessary to merge two files that have already been
sorted on a common key. The sort command performs both of these functions.
Sorted output often contains duplicate lines of data; uniq will remove them or
display only the repeated lines. Uniq facilitates the removal or selection of
duplicate data—a common requirement in Shell programming.

When we sort rows of data in a file, we want the rows to be arranged in
some order based upon some fields contained in each row of the file. We call these
fields sort keys. The sort keys defined to the sort command can be defined as
fields, which are groups of characters delimited by white space (a tab or space),
or as a group of characters that you define based on the position these characters
have in the file. The sort command will then take the sort keys and order the rows
in the file based on the sort key value. The order can be either ascending (the
default) or descending order of the keys. Once again, sort is designed to work
easily with grep, cut, and paste. For efficiency, sort should be used after the data
has been selected with grep and cut. Why sort a whole file when you can sort a
small subset of the total data? For example, I could sort the passwd file by user ID
and then extract all of the users under the file system /unixl:

sort -t: +0 -1 /etc/passwd I grep unixl I cut -fl -d:

lja

pgm

This example forces the Shell to sort the entire passwd file and then extract the
pertinent information. It would have been more efficient to extract the data and
then sort it:

grep unixl /etc/passwd I cut -fl -d: I sort

lja

pgm

Looking at the previous two examples, you might wonder why the first one
had the options: +0-1. These options told sort to use field 0 as the sort key.
Since there was only one field in the second example, no options were necessary.

Shell Commands ♦ 91

Why does sort count from field 0 and character 0? I don’t know. It has confused
more people than it has helped. I presume that because C language counts from
0, sort was designed to take advantage of human beings instead of the opposite.
Figure 4.3 shows a variety of sort commands and the sort keys that will be used.

To specify that the fields are delimited by other than a common tab charac¬
ter, you must specify the character using the -t option. In the passwd file exam¬
ple, the delimiter was a colon (:). In some files, it may be a blank: -t” ”. If there
are no consistent field delimiters in the file, use 0. (character position) to iden¬
tify the start and end positions. To sort a long listing of a directory by the num¬
ber of characters in each file, in descending (reverse) sequence, use the following
command:

Is -al I sort +4nr

-rwxr-xr-x 1 lja adm 12839 Jun 23 05:12 .profile

-rwxr-xr-x 1 lja adm 4839 Jun 23 05:12 .cshrc

-rwxr-xr-x 1 lja adm 4139 Jun 23 05:12 .login

drwxrwxrwx 32 lja adm 1008 Dec 3 18:22 src

drwxrwx- 3 lja adm 992 Dec 1 05:39 bin

drwx- 28 lja adm 496 Dec 4 12:28 doc

Merge

Sort can organize any UNIX file by fields or characters. Occasionally, the need
arises to combine two or more files that are already sorted. In these cases, it is
more efficient to merge the files. The output of the Is command, for example, is
already sorted. To get a sorted listing of the commands available to a user under
the /bin and /usr/bin directories (this is where many Shell commands reside),
the following commands would provide equivalent outputs:

Is /bin > binlist

Is /usr/bin > usrbinlist

sort binlist usrbinlist > cmdlist

Is /bin > binlist

Is /usr/bin I sort -m binlist - > cmdlist

sort -nr file sort in reverse numerical order
sort -t: +0 -2 file sort on fields 1 and 2 delimited by a
sort +0.20 -0.25 file sort on characters 20-25
sort -rt" “ +3 -4 file sort on field 4 delimited by blanks
sort -m filel file2 merge filel and file2

FIGURE 4.3 Various sort commands.

92 ♦ Chapter Four

Since merging is more efficient than sorting, the second set of commands
is preferable. The second command uses the dash (-) to tell sort to look for one
of its inputs on stdin (the output of “Is/usr/bin”). This eliminates one temporary
file, another efficiency consideration. The file, cmdlist, can now be printed or
included in a memo or user guide.

As previously mentioned, problems can occur when there are duplicate
command names in /bin, /usr/bin, and user bins. To identify these potential
problems, you could manually compare the three listings of /bin, /usr/bin, and
$HOME/bin. This is nothing but drudgery and is prone to error. It can be auto¬
mated using join, which reads two files as input and puts out a single file con¬
taining a “join" of only those lines from both files that match on a specified field
(normally the first and, in this case, the command names):

Is /bin > binlist

Is $HOME/bin > homebinlist

join binlist homebinlist

cat

sort

Sort and uniq can automate this analysis when more than two files are
involved:

Is /bin > binlist

Is /usr/bin > usrbinlist

Is $HOME/bin > homebinlist

sort -m binlist usrbinlist homebinlist I uniq -d

cat

sort

There are two commands, cat and sort, that are duplicated in two of the
three directories. These could easily be located:

egrep cat\|sort *binlist

binlist:cat

binlist:sort

homebinlist:cat

homebinlist:sort

Similarly, uniq could have been used to create a merged listing of the three
directories, excluding all duplicate command names:

sort -m binlist usrbinlist homebinlist I \

uniq > cmdlist

In other instances, use uniq to show only those lines that are not repeated.
When comparing two directories that should have identical contents, the only con¬
cern is the files unique to each directory. To list them, use the following command:

Shell Commands ♦ 93

Is dirl > dirllist

Is dir2 | sort -m dirllist - I uniq -u > differences

Sort, merge, join, and uniq are powerful tools for manipulating informa¬
tion to prepare it for human consumption. Combined with selection commands,
they provide a marvelous facility to automate the common functions of data
selection, combination, and ordering. The remaining needs of a Shell program¬
mer are to transform or translate the information into another form, and to print
the results.

Transformers and Translators

There are two main facilities for transforming or translating data (see "fable 4.3):
sed (the stream editor) and tr (translator). Sed transforms incoming data by
executing editor commands on the standard input. Tr translates incoming data,
character by character, based on conversion tables specified by the user. Let’s
look at ways to use these standard transformers.

Sed is used in pipes in place of the standard line editor (ed). The syntax for
the sed command is:

sed edit_cormand file

where edit_command is an ed-like editor command andfile is the name of the
file which is to be acted on by the editor commands. If no filename is specified,
then standard input is assumed. The original file is never altered. In order to get
the transformed version of the file, you must redirect the output from the sed
command.

For simple substitutions, the editor commands can be put on the command
line:

sed -e "s/shell/Shell/" Chapterl > newchapterl

In this example, the editor command “s/shell/Shell/” is applied to each row of
data in file Chapterl. The resulting row of data, after the edit command has been
applied, is placed in the file newchapterl. The edit command in this case is telling
sed to substitute the first occurrence of the text “shell” with the text “Shell”. To
replace all occurrences of the text “shell” you would need to use the global option
on the substitute line, as shown:

sed -e "s/shell/Shell/g" Chapterl > newchapterl

For more complex transformations involving many substitutions, you can put
the editor commands in a file and specify them as input to sed:

*

sed -f sedfile Chapterl > newchapterl

94 ♦ Chapter Four

where sedfile contains the following edit commands:

s/shell/Shell/

s/c language/C Language/

The sed command is a full-function editor. It has the ability to perform
many different types of translations on a file. The edit_command portion of the
sed command can control what rows should have the edit commands applied as
well as what the edit function itself should be. In the example just presented, the
substitute command was applied to the entire file. We could have limited this to
just certain rows by using a row range in the beginning of the editjzommand.
The following command would have limited the substitution to only the first five
rows of the file:

sed -e "1,5 s/shell/Shell/" Chapterl > newchapterl

The row range is presented at the start of the edit command in the form
start_row, end._row. If only a single number is used, then just that row is affected.
We can also limit the rows affected by the edit command by specifying a match
action. This means that only rows that contain a specified string will have the
edit command applied. The string to match on is specified between slash charac¬
ters. For example, the following command would apply the substitute action to
only the rows in the file that contain the string “Unix”.

sed -e "/Unix/ s/shell/Shell/" Chapterl > newchapterl

Now that we have seen how to better control the application of edit com¬
mands in the file, let’s look at some other common edit commands that are avail¬
able with sed to aid in the transforming of data. Some of the more common
commands are outlined in Table 4.4.

TABLE 4.4 Common sed Edit Commands

Command Description Example

s Substitute the first string for the second " s/gold/silver"

d Delete lines from the file "1,5d"

i Insert text in the output file "i/This is an inserted

line/"

a Append text in the output file "a/This is an extra

line/"

c Change lines ”c/This is changed

text/"

P Print certain lines from the file
(can be used to select rows from a file)

"1,5p"

w file Write changed rows to a file "w output"

Shell Commands ♦ 95

This is really not all the sed commands. Once you start putting sed com¬
mands into edit script files using the -f option, sed really turns into an edit com¬
mand language that allows you to manipulate the text in a variety of ways. See
your manual pages on sed for further details.

The print option can be used to select certain ranges of rows from the file.
If you use it with the -n option, sed can be viewed as a selection command. The
-n option tells sed to print just the lines that were selected with the p option.
Usually sed prints all lines to the standard output. For example, to print the first
ten lines of a file, use the following command:

#print the first 10 lines of file 1 to output. No changes.

sed -n "1,10p” filel > output

Sed is an efficient method of transforming a file into some other usable
format. For example, the output of the word count command (wc) looks like this:

wc -1 file

35 file

File has 35 lines in it. Using sed, the numbers can be extracted by removing
blanks, tabs, and the characters a to z as follows:

Sed using regular expressions

wc -1 file I sed -e ”s/[\ta-z] [\ta-z]*//g"

35

wc -1 < file

35

The translate command, tr, works similarly to the sed command, but it
changes the standard input, character by character rather than string by string.
Sed operates on rows and strings, but is hard to use on a character-by-character
basis. The tr command has the following syntax:

tr from_string_list to_string_list

where the from ^stringJist and to_string_list must have one-to-one correspon¬
dence. The tr command will substitute using this one-to-one correspondence
between'from _s tiring fist and to_string_list. Use the following command to
translate a file from uppercase into lowercase:

tr " [A-Z]11 " [a-z]" < uppercase > lowercase

The expression “[A-Z]” signifies the uppercase letters from A to Z The
second expression “[a-z]” tells tr to substitute the lowercase letters, on a one-

96 ♦ Chapter Four

for-one basis, with the uppercase letters. Doing this with sed would take a file
with 26 editor commands; tr is much simpler. .

Tr can also be used in other situations that require transformations. If I
wanted to change Chapter 1 into a file of just words and obtain a sorted listing of
the words and the number of times they were used, I could issue the following
command:

tr "[]" ” [\012]" < chapterl I sort I uniq -c

In this example, tr translates blanks into new-line (\012 is the ASCII code for
new-line, any ASCII code can follow a \) characters (one word per line). These
are then sorted in alphabetical order and counted by uniq. This output would
show all of the words in the document and the number of times they occur. It can
be used to identify overused words that should be varied to improve the quality
of the prose.

Similarly, to convert a file delimited by colons (:) to a file delimited by tab
characters, you could use either of the following commands:

the \t represents a tab

sed -e "s/:/\t/g" < colonfile > tabfile

tr "[\t]" < colonfile > tabfile

The tr command has some useful options as well. The -d option tells the tr
command to delete the characters in theJfomjstringJist. For example, the fol¬
lowing tr command would strip all the tab characters from chapterl:

#get rid of all the tab characters in chapterl.

tr -d " [\t]" < chapterl

Another useful option is the -s option, which tells tr to squeeze out all extra
occurrences of the substituted character. If after substitution the character occurs
more than once in the text, the extra repeated characters are squeezed from the
text. This is often used to remove repeated characters in text by specifying the
from_string_list and to_string_list to be the same. A very useful tr squeeze com¬
mand is to squeeze all the multiple spaces from a document:

remove any extra spaces in chapterl

tr -s "[]" "[]” < chapterl

The following command will remove all multiple tabs from a file:

tr -s " [\t]" " [\t]" < chapterl

Both sed and tr are useful for translating and transforming a file or input
stream. Sed is stronger for use with strings, words, or lines. Tr is stronger when
operating on characters. Each plays an integral part in the use of the Shell.

Editors

Shell Commands ♦ 97

UNIX editors (and there are a slew of them; see Figure 4.4) are also commands
available to the Shell. The specifics of using each editor have been left out of this
section because editor usage varies from installation to installation.

Sometimes, it is not possible to grep, cut, paste,’ sed, or tr a file into a
required format. A few lines may need to be added to a file or human analysis
will be needed. In these cases, you can use the editor of your choice from within
a Shell command. Editors are an important tool to manipulate text. When used
repetitively within a Shell procedure, they become more beneficial.

Ed

As previously described, the standard UNIX line editor, ed, can use commands
typed in-line as follows:

ed file «eof!

/First/

a

These are the times that try men's souls

And mine too for that matter.

w

q
eof!

This would find the line with the first occurrence of the word First and
append the next two lines after that line. This facility is occasionally useful in
Shell commands.

Vi, Se, Emacs, and Other Editors

From the terminal, vi or any of the other editors can be invoked interactively.
They can also be used in Shell commands to present a file to a user for editing:

vi chapter?

The UNIX line and screen editors are an easy way to create or modify a file.
They have many uses in Shell programming.

ed line editor
emacs a screen editor
se another screen editor
vi the most common screen editor

FIGURE 4.4 UNIX editors.

98 ♦ Chapter Four

Printing
m

The previous sections have discussed various ways of selecting information from
files, translating the information into other forms, and sorting the information
into a meaningful order. These are the essential steps in preparing information for
use. The final step displays the information on the user’s screen or printer.

All of the Shell commands have stdout and stderr files that can be dis¬
played on the screen or a printer. The output of these can be redirected into files
or devices. But these outputs are rarely formatted for easy human consumption.
The facilities for formatting output are cat, more, pg, pr, nroff, and awk. Some
are screen-oriented; others are more paper-oriented.

Screen-Oriented Displays

Cat, as we have seen, reads a file and “prints” it exactly as found. Cat is effec¬
tive for simple viewing of a file. For more relaxed viewing, pg (page) or more
(the ucb version of page) will display the file one page at a time.

The command to display a C language file on a screen and pause between
pages would be:

pg file.c

or

more file.c

When a full screen of information is displayed, the pg command will stop
and prompt for input. The default pg prompt is a : (colon) character. When you
receive the prompt on the bottom left side of the screen you have several options.
You can continue scrolling a screen at a time or you can jump around in the file
moving backward and forward a certain number of pages. To move forward,
enter a +n at the prompt where n is the number of pages to move forward. To
move backward in the file, enter -n. It is also possible to search the file for pat¬
terns. At the prompt, enter the command /text where the text is the test that you
want to search for in the file. Several other features exist and can be found in
your manual pages on pg. You will find pg to be a much easier way to view the
contents of a file on your screen. The other method of viewing files is to use a
screen editor such as vi or Emacs, as was previously discussed.

Paper-Oriented Displays

Regardless of how much people talk about “paperless” offices, there seems to be
no end to the amount of reports that need to be printed and distributed. Shell
provides you with many ways of formatting reports.

Shell Commands ♦ 99

Pr

Pr prints files with simple headings and page breaks. Where cat lists a file
exactly as it exists, pr provides the filename and date of last modification in the
title and provides facilities to break the output every so many lines for clarity.
The command line to print a C language file would be: •

pr file.c

The same command to display the file on a 25-line terminal screen and
pause between pages would be:

pr -124 -p -t -w79 file.c

pg file.c

more file.c

To print a file, delimited by colons (:), with a special heading and 20-
character-width fields:

pr -e:20 -h "Special Report" file

To obtain a more attractive listing, use the print command (pr):

Is -a > dirlist

paste -s -d"\t\n" dirlist I pr -e20

.cshrc .login

.profile bin

doc src

Or more simply:

Is -a I pr -2 -e20

.cshrc .login

.profile bin

doc src

Nroff

Nroff formats documents using nroff and mm macros, but it can be used with
files whose fields are delimited by unique characters, such as the password file.
Tbl, the table preprocessor, creates the input to nroff.

Tbl requires a text file like the following:

.TS

tab(:) ;% I tablestart
Continued

100 ♦ Chapter Four

1 1 n n 1 1 1. —I

text file

.TE —l-tableend

The password file can be formatted with tbl and nroff as follows:

tbl tablestart /etc/passwd tableend I nroff

Awk

For those users with even more rigorous reporting requirements, awk (a pattern¬
scanning and processing language named after its developers, Aho, Weinberger,
and Kernighan) provides many of the capabilities of C language. It allows variable
definition and control flow, but is interpretive and therefore more responsive to
the user’s needs than compiling and testing C language programs.

One of the previous examples formatted the /etc/passwd file using awk to
print the first and fifth items in the file:

awk -F: '{print $5 $3}' /etc/passwd

This example could be expanded to print the other fields of the /etc/passwd file
as follows:

passwdprnt

BEGIN { FS = : }

{ printf "%-3s %.4d %.4d %-3Ss %s\n", $1, $3, $4, $5,

$6 }

“$1 ” represents the first field in the passwd file; “$2”, the second; and so on. The
format shown following the printf statement use the same conventions of the C
language printf statement. The command to print the file would be:

awk -f passwdprnt /etc/passwd

Awk uses the passwdprnt file as the program to process the file/etc/passwd. The
resulting output would be:

lja 1 1 Jay Arthur x9999 /unixl/lja

PPm 2 2 Paula Martin x9999 /unixl/pgm

Awk, pr, and nroff give the user a variety of ways of printing information
already selected and sorted by the commands already described in this chapter.
These formatted reports simplify human interaction with UNIX and are desir¬
able. Human effectiveness is only as good as the information presented and its
format.

Shell Commands ♦ 101

Modern Word Processing

There are several modern word processors now available for the UNIX environ¬
ment. These programs provide the robust features of PC-based word-processing
programs and allow for powerful control over printing, fonts, spelling, and gen¬
eral text manipulation. In many cases these programs are UNIX implementations
of PC-based products. Of course, these programs are not free. You must purchase
them from the software vendor or from someone who sells the program. All of
the text manipulation and printing tools talked about up till now have been stan¬
dard Shell commands available on almost all UNIX systems. If you are doing a
great deal of document development and maintenance, an investment in one of
these word-processing programs could be worthwhile. Here is a sample of some
of the word processors available on many of the popular UNIX platforms:

Word Perfect for UNIX A full-function word processor that is equivalent to the

PC-based version

Microsoft Word A full-function word processor that is equivalent to the

PC-based version

FrameMaker A full-featured desktop publishing package

Security

Security is an important feature of UNIX and the Shell. You can create files and, by
setting the permissions, allow people to read, write, or execute your file. The per¬
missions are established in binary as shown in Figure 4.5. Two commands affect
the accessibility of a file: umask and chmod. The long form of the list command
(Is -1) will display the accessibility of any file or directory that the user can read.

There are three levels of security: what the owner of the file can do, what
his or her related group can do, and what the world can do. The different levels
or modes are also shown in Figure 4.5. Within each of these three levels, a file
can be set to be (or not be by the absence of the flag) readable (r) by that level,
writable (w) by that level, or executable (x) by that level. Let’s look at a few
examples to help clarify. Here is a sample Is -1 listing showing file permissions
for files in a directory:

Is -1 *

-rw-r--r-- i fredl progmrs 271353 May 4 17:55 mail

-rwxrwxrwx ■ i fredl progmrs 0 Oct 13 1992 calendar

-r--r- i fredl progmrs 131 Jan 19 14:44 cost.data

drwxrwxrwx i fredl progmrs 15 Apr 21 15:38 junk

The first file listed by the Is -1 command, mail, has the permissions rw- (read and
write) for owner, r— (read only) for the group of users in group progmrs, and r—
(read only) for all users. No one has execute permissions on this file. The next
file is wide open. It has the permissions rwx (read, write, and execute) for the

102 ♦ Chapter Four

chmod 777 file

rwx rwx rwx

u
s
e
r

g
r
o
u
p

o
t
h
e
r

7 in binary is 111
r — read
w—write
x—execute

u—user
g—group
o—other

FIGURE 4.5 File security.

owner, group, and the world. The next file, cost data, is read only for the owner
and the group. The final file, junk, is a directory as indicated by the d in the first
position. The directory is wide open to owner, group, and the world. As you can
see, if the permission is not present on the file, then a - (dash) character appears
in place of the r, w, or x.

The file permissions used by the ShellUNIX on files is often very confusing
to new Shell users. The commands that follow allow two different methods for
indicating the file permission flags. First there is the numeric method, which rep¬
resents each flag as a number total based on position. Then there is a method
which uses the alpha characters just like the Is command shows. Let’s look at
each in detail.

The numeric method uses a digit number in the range of 1 through 7 to
represent the flags for each of the levels—owner, group, and the world. For
example, the number 777 says that the owner, group, and all users have read,
write, and execute permissions (rwx). How did we get this number? Each flag
position holds a value that is added together to get the number used for the
level. The read flag has a numeric value of 4, the write flag a numeric value of
2, and the execute flag a numeric value of 1. So if all three flags are present,
the sum of each of the flags is used to come up with the numeric indicator.
Thus an rwx permission is equal to a 7 (4+2+1). A read-only permission totals
4; a read-and-execute permission totals 5. Only eight values are possible, as
listed in Table 4.5.

The numeric method uses a number for each level as was indicated previ¬
ously. The number represents the various levels—owner, group, and others from
left to right. The character method uses the characters r, w, and x to represent the
permission flags, and they are used in conjunction with + and - symbols to rep¬
resent addition of the permission and removal of the permission respectively.
Used in conjunction with this are the flags that represent the levels. The flag u is
for the owner of the file, the flag g is for group, and o is for all others. The com-

Shell Commands ♦ 103

TABLE 4.5 Permissions

Numeric Permission description Character representation

0 no permissions —

1 execute permission only —X
2 write permission only -w-
3 write (2) + execute (1) permissions -wx
4 read only permission r—
5 read (4) + execute (1) r-x
6 read (4) + write (2) rw-
7 read (4) + write (2) + execute (1) rwx

bination of these flags sets the permissions. For example, ug+x adds the execute
(x) permission for the owner and the group to the existing permissions (add 1 is
another way to look at it). The permission flag setting of o-rwx would remove all
the permissions for the others on the system. Finally, u+rwx adds all permissions
for the owner.

If all that seems a bit confusing, it is. The character method of specifying
permission flags was added after many people complained of how confusing the
numeric method is. Although it is true that it is confusing at first, it is also more
abbreviated. That is why you will still see many UNIX power users using that
method of specifying file permissions. Use what is comfortable for you. Soon
enough, both methods will make sense.

The umask command sets up the default security for any file or directory
created. The default security for a file is 666 (read and write permission for
everyone). The default security for a directory is 777 (read, write, and execute).
Without the execute bit, directories cannot be searched. The umask command
tells the operating system which permissions to exclude when creating a new file
or directory. The umask command is executed at login time by either /etc/profile,
$HOME/.profile, $HOME/.cshrc, or $HOME/.login. The most common umask
command is:

umask 022

which says to omit write permission for the user’s group and the world.
Everyone can read your files or directories, but no one can write in or over them.
If you wanted to keep the world out of your files, put the following command in
your .profile:

umask 027

which lets your group read your files or directories, but prohibits any other users
from accessing your files in any way.

104 ♦ Chapter Four

Once the file or directory has been created with default security, you will
occasionally need to change the permissions. The change mode command
(chmod) allows you to do so:

chmod 755 shellcommand

chmod +x shellcommand

When you write a Shell command with one of the editors, the file is nor¬
mally created with read and write permissions, but not execute. To make the file
executable, you must change the permissions as previously shown. Note that if
you write a Shell command and do not make it executable, the Shell will not run
your program. To let just your group and yourself execute the command, you
would enter:

chmod 750 shellcommand

chmod ug+x,o-rwx shellcommand

Sometimes, you will create an important file that you do not want to delete.
The remove command, rm, will remove anything for which you have write per¬
mission. To get rm to ask you before it removes the important file, you can
change the file’s mode:

chmod 444 importantfile

chmod -w importantfile

rm: importantfile mode 444 ?

The umask and chmod commands allow control of file and directory
access. Changing permissions is necessary and continuous in a UNIX environ¬
ment. Knowing how to make files accessible and executable is an important part
of creating Shell commands, but now we need to understand how the Shell finds
commands.

Built-In Commands

The Shell, for efficiency, includes several built-in commands. The Bourne Shell
has the fewest, relying on existing commands to do the work. For this reason, it
is the smallest and fastest of the three Shells. The Korn and C Shells have the
most built-in commands, so they are noticeably larger and but not noticeably
slower. The Shell built-in commands are shown in Thble 4.6. They are discussed
in more detail in future sections.

Shell Commands ♦ 105

How the Shell Finds Commands

By convention, most Shell commands reside in directories called ‘bins”: /bin and
/usr/bin. Others, important only to the system administrator, reside in /etc,/usr/rje,
and /usr/adm. It is possible for Shell commands to reside in any directory and
users can create their own bin directories or other appropriate directory to contain
Shell commands, but more on this in Chapter 6. For the majority of users, the com¬
mands available in /bin and /usr/bin will be of most importance. The /usr/ucb bin
contains the Berkeley 4.2 BSD commands. On Berkeley systems, System V com¬
mands can be found in /usr/5bin.

When a user logs in, the Shell sets up a standard environment using sev¬
eral variables (see Thble 4.7). Shell variables are introduced in detail in a later
chapter, but for now you can simply think of them just like variables in any other
programming language. They hold data and make that data accessible by a sym¬
bolic name. The Shell uses the PATH (sh, ksh) or path (csh) variable to search
for executable Shell programs—by looking in each directory listed in the PATH—
to find each bin that a user can access. The PATH variable is initialized at login
time. To find out the default paths available, try the following command:

echo $PATH

: /bin:/usr/bin:

The response means that you have all of the standard Shell commands available
for execution. Often the PATH variable is set to large numbers of searchable direc¬
tories and the location of Shell commands can vary across the various implemen¬
tations of UNIX. So if your PATH does not look just like this, don’t despair; your
system administrator probably created a default PATH that is customized to your
installation and most standard UNIX commands will be available. The Shell uses
the PATH variable to determine where to search for commands and in what order
you want to search the bins. The current value of PATH indicates that the Shell
will first search the current directory, then /bin, and finally /usr/bin. The current
directory is represented by a null name, followed by a colon. You can change the
order of the search by redefining the value of PATH as follows:

PATH=/usr/bin:/bin::

which reverses the order of the search. If you had a user bin under your home
directory, you might add it to the search path using another Shell variable,
HOME:

PATH=${PATH}:${HOME}/bin

Using my login as an example, this would change the value of PATH to:

/usr/bin>/bin::/unixl/lja/bin

106 ♦ Chapter Four

TABLE 4.6 Shell Built-in Commands

Bourne Shell Korn Shell Bash Shell Purpose

alias alias

bg bg

bind

break break break

builtin

cd cd cd

command

continue continue continue

declare

dirs

echo echo echo

enable

eval eval eval

exec exec exec

exit exit exit

export export export

f c f c

fg fg
getopts getopts getopts

hash

jobs

hash

help

history

jobs

kill kill

let let

local

logout

newgrp newgrp

popd

print

priv

pushd

pwd pwd pwd

read read read

readonly readonly readonly

return return return

set set set

shift shift shift

suspend

test test

times times times

trap trap trap

Null command

Create a command name alias
Place a job in the background
Bind key sequences to a readline function. Used for

command-line editing.
Exit enclosing FOR or WHILE loop
Execute a one of the Shell built-in commands listed

in this table. Used to override a function that has
the same name as a built-in command.

Change directory
Run a command suppressing function lookup
Continue next iteration of FOR or WHILE loop
Declare a variable and provide attributes for the
variable

Print directory stack created by pushd command
Write arguments on stdout
Enable/Disable built-in Shell commands
Evaluate and execute arguments
Execute the arguments
Exit Shell program
Create a global variable
Fix command—command-editing feature
Bring a command into foreground
Parse positional parameters passed to the shell
Remember the full path of the arguments
Displays help information on the built-in command
Display command history list
List active jobs
Kill a job
Evaluate arithmetic arguments
Create a local variable with limited scope
Terminate a login Shell
Change to a new user group
Pop the directory stack
Print to standard output
Set or display privileges
Push a directory onto the directory stack
Print the full path of current working directory
Read a line from stdin
Change a variable to read only
Causes a function to exit with a particular value
Set Shell options and positional parameters
Shift the Shell positional parameters
Suspend the execution of current shell
Evaluate conditional expressions
Display execution times
Manage execution signals

Shell Commands ♦ 107

TABLE 4.6 Shell Built-in Commands (Continued)

Bourne Shell Korn Shell Bash Shell Purpose

type type

typeset typeset

ulimit ulimit ulimit

umask umask umask

unalias unalias

unset unset unset

wait wait

whence

wait

Show the full pathname that would be used to exe¬
cute command

Sets attributes of variables—same as declare in

bash shell.
Set a range of resource limits
Set default security for files and directories
Discard aliases
Unset a local variable
Wait for a background process to complete
Show the full pathname that would be used to exe¬

cute command—same as type in other shells

Whenever I execute a command, the Shell will first look in /usr/bin, then /bin
(the current directory), and finally my user bin. This means that I can type a
command name and the Shell will find it; I do not have to type in the full path¬
name to use a command I have created. This is an important feature of the Shell
that helps improve productivity; bins full of user commands can be placed any¬
where in the system and accessed directly via the PATH variable.

The system administrator can redefine PATH to include common user bins
by inserting the following two lines into /etc/profile:

PATH=:/bin:/usr/bin:/local/bin

export PATH

The export command makes the PATH variable available to all subsequent pro¬
cesses initiated by the user.

Because users would rather not change the PATH variable during every
session, the user may further modify the PATH variable automatically at login

TABLE 4.7 Shell Variables

Boume/Kom Shell Purpose

CDPATH

HOME

MAIL

PATH

PS1

PS2

IFS

search path for cd
path name of the user’s login directory
name of user’s mail file
the Shell’s search path for commands
the primary prompt string

“$” for Bourne/Korn Shell systems
“hostname%" fpr C Shell systems
“#” for superuser the secondary prompt string:”>”

Secondary Prompt String
internal field separators (space, tab, newline)

108 ♦ Chapter Four

time. The PATH variable can be modified using either /etc/profile (usually only
the system administrator can modify this PATH) or the .profile in the user’s
home directory. In a C Shell system, the PATH variable can be modified in the
user’s .login or .cshrc Files which reside in the user’s home directory. You can cre¬
ate the .profile (csh: .login/.cshrc) file in your HOME directory and add the fol¬
lowing two lines to include your own command bin:

PATH=${PATH}:${HOME}/bin

export PATH

These two lines will add your bin to the Shell’s search path. The .profilefile is a
file that contains Shell commands that are executed each time you log in (if you
use the Bash Shell, other files are potentially used—.bash_profile in particular).
The use of .profile is covered later in detail. The Shell can now automatically look
in all command bins to find any command you request. Problems can occur,
however, if there are two commands with the same name in different bin direc¬
tories; the Shell will execute the first one it finds. This is especially important in
systems which have all three Shells: Bourne, Korn, and C. Not all System V com¬
mands behave like Berkeley commands. To obtain System V commands, put
them first in the PATH variable. On Berkeley UNIX systems, reverse the positions
of /usr/5bin and /usr/ucb:

PATH=:/bin:/usr/bin:/usr/5bin:/usr/ucb

That’s about all you need to know about the PATH variable. If you execute
a command but it doesn’t behave like the documentation, you might suspect the
PATH variable is pointing to libraries in the wrong order. Or if you enter a com¬
mand and the Shell indicates that the command does not exist, then you might
suspect that your PATH does not contain the directory where the command
resides.

There is a command in the Bourne and Bash Shells—the type command—
that will allow you to see which version of a command is being executed by the
Shell. It will echo back the full pathname used to locate the command as well as
what type of command was entered as an argument. It is convenient when the
command does not appear to be doing what you think it should be doing and you
want to see where the command is being executed from. For example, if we had
a Shell procedure proj_status, and we wanted to see where the Shell was execut¬
ing this command from, we would enter the type command:

type proj_status

proj_stat is /usr/tburns/shellpgms/proj_stat

As you can see, the full path the Shell used to locate the command is printed.
This eliminates confusion over exactly which command is being executed. The

Shell Commands ♦ 109

type command will also tell you if the command is a built-in command or if it is
a hashed command.

type test

test is a shell builtin

KSH
The Korn Shell provides the whence command to find the pathname used
to locate commands. The whence command is similar to the type com¬
mand but offers an option that is not supported by the Bourne Shell. The
-v option provides information about the command much as the type
command does. But the whence command used alone will provide just the
full pathname used to locate the command and can be used as input to
another command. This cannot be done using the type command. The fol¬
lowing command would allow the emacs editor to be loaded on the script
proj_status:

whence proj_status

/usr/tburns/shellpgms/proj_s tat

emacs 'whence proj_status'

As mentioned, the -v option provides verbose output about what type of
command was passed as an argument.

whence -v proj_status

proj_stat is a tracked alias for /usr/tburns/shellpgms/proj_stat

The whence command provides information about what type of com¬
mand was passed even when the -v option is not provided. It will report
whether the command is a regular command, a function, an alias, or is
unknown to the Shell. The response provided depends on the type of com¬
mand. A normal command causes whence to respond with the full path¬
name of the command. If the command passed is an alias, then the alias is
echoed to the screen. A function passed as an argument causes whence to
respond with just the name of the function. Finally, if the command is not
known to the command, then no response is provided. For example, the
alias r gets the following response from the whence command:

whence r

fc -e%-

110 ♦ Chapter Four

CDPATH Variable

The Bourne and Korn Shells also use an environment variable, CDPATH, with the
cd command to reduce typing. Users can set up CDPATH in their .profile to
include any of their major directories. Then, no matter where they are in the
directory structure, all they have to do is cd to the directory name and the Shell
remembers where those directories are, changing them without extensive typing.
For example, if there was an entry in the .profile as follows:

CDPATH=$HOME/doc

export CDPATH

and you are already in the /usr/bin directory as your working directory, you
could change into the doc directory by typing:

cd doc

The directories can also be listed like the PATH variable to give immediate
access to any of the major directories:

CDPATH=$HOME/bin:$HOME/doc:$HOME/src

export CDPATH

Using the cd command, the user can change from one directory to another
without typing long pathnames. The Shell will print the pathname of the direc¬
tory it has changed into:

cd doc

/unixl/lja/doc

Summary

Shell commands are usually found in directories called bins. The most frequently
used directories are /bin and /usr/bin. As a user or toolsmith develops new Shell
tools, they can be placed in local bins that can be directly addressed via the PATH
variable.

The most commonly used file and directory commands are Is, cd, cat, and
grep. The output of these commands has been structured to maximize their util¬
ity when combined with other commands—for example, cut, paste, uniq, and
pr—that select portions of their output and report the information required.

Ordering the output in a meaningful way is the job of sort, which handles
both sorting and merging information. The join command also can be used to
integrate information from two different files.

Once output files have been created, the information they contain can be
translated by sed or tr. Sed operates on strings of information; tr operates on

Shell Commands ♦ 111

characters. More complex transformations that require operator intervention can
be handled by using the UNIX editors. These can be invoked directly from the
Shell or Shell procedures.

The output of these commands can be formatted for ease of use with the
awk, pr, and nroff commands. Each of these commands can work on files of
lines and the fields within those lines. Awk and pr, in particular, are good for
prototyping report programs. Awk allows the user to create detailed reports that
are not easily possible with the other two commands.

These basic commands are the roots of more advanced usage of the Shell.
Understanding how they interact with each other via the pipe or by input/output
redirection is essential to advanced Shell usage.

Exercises

1. Describe the importance of PATH and CDPATH.
2. Describe the Is, pwd, and cat commands.
3. Describe the grep, cut, and paste commands.
4. Describe the use of sort, merge, join, and uniq.
5. Name the different Shell translation commands and the type of data

(strings, characters, delimiters) they are best designed to handle.
6. Write a Shell to extract, sort, and print all users in the global file sys¬

tem. (Use the /etc/passwd file as input.)
7. Using the Shell from the previous exercise, extract only those users

with multiple entries in the /etc/passwd file.
8. Write a Shell to translate the /etc/passwd file into uppercase and trans¬

late the delimiters into tab characters.
9. Describe the usage of umask and chmod. How do they offer security

in a UNIX file system?
10. Write the umask command to prohibit all other users (except for the

owner) from accessing files created by the user.
Write the chmod commands to make Shell programs executable by:

a. The owner
b. The owner and his or her group
c. The world

11. Write the pr command to print the /etc/group file on the user’s screen
and printer.

12. Write a simple awk command to print the same information from the
/etc/group file as in the previous problem.

.

.

CHAPTER

Shell Decisions and
Repetitions

Who can control his fate?
—Shakespeare

The chapters to this point have provided information about using simple Shell
commands. To make full use of the Shell, however, requires the use of a special
set of Shell commands that control what happens and when. These commands
allow the user to decide among:

♦ two different actions (IF-THEN-ELSE)
♦ many actions (CASE)
♦ looping through an action many times (FOR, REPEAT, WHILE, and UNTIL)

All third-generation programming languages have these basic control
structures: IF-THEN-ELSE, CASE, DO WHILE, and DO UNTIL. Using these con¬
trol structures in conjunction with the Shell commands that we learned in
Chapter 4 makes the Shell a full-blown programming language capable of many
powerful information-processing tasks. Using these capabilities of the Shell we
will be able to build powerful programs to solve many problems. This chapter

113

114 ♦ Chapter Five

discusses the use of these control structures. The next chapter talks about how
to construct a Shell program.

The Bourne, Korn, and Bash Shells all provide these control structures
(see Thble 5.1). The Bourne and Korn Shells rely on the test command to han¬
dle the evaluation of all conditions. In the C Shell, evaluations of conditions are
performed directly by the Shell. The Korn and Bash Shells have made some
enhancements to the test command; these are covered in detail in this chapter.
The Shell also provides mechanisms for executing repetitive commands interac¬
tively: xargs (csh: repeat) and find. Each of these control structures permits
loops and decisions to be made by Shell procedures. The ability to test condi¬
tions and take actions are the most important features of the Shell command
language.

Shell Variables

Shell variables come in three main flavors. First, there are the Shell variables that
are set by the Shell when it starts processing. These variables are sometimes
called special shell variables and are shown in Table 5.2. The second type of Shell
variables are called environment variables. These are variables that the Shell
uses to help control your environment. The third and final type are variables that

TABLE 5.1 Shell Control

Structure Bourne Shell Korn Shell Bash Shell

IF if t. ..] if [. . .] if [. . .]
THEN then then then
ELSE-IF elif elif elif
ELSE else else else
ENDIF fi fi fi
CASE case case case

value) value) value)
/ / i r # /
•) *) *)
esac esac esac

FOR for for for
do do do
done done done

REPEAT xargs -1 xargs -1 xargs -1
UNTIL until until until

do do do
done done done

WHILE while while while
do do do
done done done

Shell Decisions and Repetitions ♦ 115

TABLE 5.2 Special Shell Variables

Variable Modifiable? Purpose

$# No Number of positional arguments
$0 No Command name used to invoke shell
$1, $2 . . . Yes Positional arguments passed to shell
$* No Expands to “$1 $2..”
$@ No Expands to “$1” “$2”..
$- No Shell options from set command
$? No Return code from last command
$$ No Process number of current Shell
$! No Process number of last background job

you create to help you control your environment and write Shell programs. We
will refer to these as program variables. Program variables play an important
role in the Internet. They offer one of the main ways to process the forms com¬
pleted by your site guests. Finally, the Korn Shell provides a fourth type of vari¬
ables called array variables.

Special Variables

The Shell maintains some special variables that provide you with information
about your Shell process. They are always set by the Shell. These variables are
still just like any other variables from the aspect of accessing the variables;
they are always available using $ to reference them. All of the variables, how¬
ever, are maintained by the Shell and cannot be changed through regular
assignment. These special variables are most often used when you write a
Shell program. The variables $0 to $9 are assigned the parameters passed to
the Shell program. This makes arguments accessible to your Shell program
without your needing to do anything special. These play a more prevalent role
when we begin building Shell programs in the next chapter and are covered in
detail there.

Environment Variables

Environment variables are used by the Shell for storing data that helps control
your Shell session and can also be accessed and set by you. These generally
provide control over your login environment. Some of these variables are set
by the Shell; some are not, and are your responsibility to set. These variables
are different from the special variables because their values can be changed by
simple assignment. An example of an environment variable is PATH, which
was discussed previously. This variable is used by the Shell to determine

116 ♦ Chapter Five

TABLE 5.3 Key Environment Variables

Bourne Korn Bash Description

CDPATH CDPATH CDPATH Search path for cd command.
HOME HOME HOME Path name of the user’s home

directory set at login time.
MAIL MAIL MAIL Name of the user’s mail file.
PATH PATH PATH The Shell’s search path for

commands.
PS1 PS1 PS1 The primary prompt string displayed

at login:
“$” for all Shells
“#” for the superuser

PS2 PS2 PS2 Secondary prompt string used when
you start a subshell:

“>” by default
HISTFILE HISTFILE Filename used to save command

history.
HISTSIZE HISTSIZE The number of commands

remembered by history.
IFS IFS IFS Internal field separator (space, tab,

newline) used to separate command
words.

PWD PWD

EDITOR

PWD Current working directory pathname
set by the Shell.

Command editor used for editing
commands on the Shell input line;
can be emacs, gmacs, or vi.

MAILCHECK MAILCHECK MAILCHECK The time, in seconds, that passes
before the Shell checks your mail file
to see if you have received any new
mail.

TMOUT TMOUT TMOUT The amount of time, in seconds, the
shell will remain active before
timing out.

where it should search for commands. Some of the more important environ¬
ment variables are shown in Table 5.3. These are not all the environment vari¬
ables and you should refer to your manual pages (man ksh, man sh, man
bash) for a complete list.

All the variables just outlined contain values that help control how your
environment will look and behave. All the values can be changed during your
login session by simply assigning a new value. For example, if we wanted to
change the time between mail checks to 30 seconds, we could simply assign a
value of 30 to the variable MAILCHECK:

MAILCHECK=30

Shell Decisions and Repetitions ♦ 117

KSHr Bash

The Korn and Bash Shells provide a very nice extension to the PS1 vari¬
able. They will reevaluate the contents of the PS1 variable and make sub¬
stitutions for any variables found in the string. This 'is not done in the
Bourne Shell. For example, if we set our PS1 variable as shown in the fol¬
lowing example, then the current working directory will be displayed as
part of our Shell prompt. Setting your PS1 variable in this manner allows
you to determine your current working directory at a glance.

PS1='${PWD}: '

With our PS1 environment variable set as shown, the following
prompt will be displayed if the current working directory is /usr/tburns:

/usr/tburns:

Several environment variables are unique to the Korn and Bash
Shells. In particular, the HISTSIZE and HISTFILE are used to control the
Shells’ command history, which allows you to recall recent commands for
reexecution. This is a very powerful feature of these Shells and is covered
in detail in a later chapter.

The Bash Shell provides an extension to the prompting capabilities
for PS1 and PS2 variables. The prompt string can be customized by using
a number of backslashed escape characters to provide additional informa¬
tion in the prompt line. There are a number of these available; Thble 5.4
lists some of the more useful ones.

So if we wanted to set the PS1 variable to show the current working
directory as we did previously, but using the escape sequences, the prompt
string would be:

PS1="\w "

TABLE 5.4 Bash Prompt Strings

Escape string Description of decoded value

\t Current time in HH:MM:SS format
\a Current date—format “Sat Nov 23”
\w Current working directory
\u Username
\h Hostname
\! History number of this command

118 ♦ Chapter Five

Program Variables

The Shell lets you establish variables to hold values while you process them. It
provides several standard variables (see Table 4.7 and Thble 5.2) that are always
accessible with the Shell providing values for these variables. In addition to the
special and environment variables, which are an integral part of the Shell envi¬
ronment, you can also construct your own variables for your own programming
needs. Variable names can be of any reasonable length and must begin with an
alphabetic character or followed by any of the characters a-z A-Z 0-9”.

Variables hold values that are manipulated by a Shell program while pro¬
cessing. A variable may be set to a value once or many times in the course of a
Shell program. It may also be referenced, to extract the value that it contains, as
many times as needed. A variable either is set to some single value or it is said
to be unset (has never existed as a variable). It is possible to unset a variable
once it has been set by using the unset command. A variable may also be set
but may contain the null value or empty string. This is not the same as being
unset. If a variable contains the null value, it is set. This difference between a
variable’s being set or null is important because often in the course of writing
Shell programs we need to determine if a value is set or null. Also, the Shell
variable operators, discussed in the next section, make a distinction between a
variable being set and null. Shell variables are an integral part of Shell pro¬
gramming. They provide the ability to store and manipulate information within
a Shell program. The variables you use are completely under your control. You
can create and destroy any number of variables as needed to solve the problem
at hand.

You establish your own variables by simply assigning values to variable
names:

temp_name=/usr/tmp

month=01

Note that when assigning variables values using the “=” assignment operator,
there are no spaces between the = and the variable name and variable value. If
you leave a space the Shell will try to interpret your variable value as a command
to be executed. When the Shell finds the assignment operator, it will create the
value on the left side of the =, if it does not already exist, and assign it the value
provided on the right side of the =. If the variable already exists it will receive the
new value, replacing the old value that the variable contains.

To access the values stored in the variables, you insert the variable name
(preceded by a dollar sign) wherever you need it:

Copy file to name held in variable temp_name

cp file $tempname

#Show the user the value of the month variable

echo "Current month is $month"

Current month is 01

Shell Decisions and Repetitions ♦ 119

Whenever the Shell sees a %varjiame, it substitutes the value that is
stored for that variable into the command line at that location. To be perfectly
accurate and prevent errors, you should enclose the name in braces:

cp file ${temp_name}

echo "Current month is ${month}"

Otherwise, establishing other variable names can lead to problems when the
Shell tries to interpret your commands:

temp=/tmp/

echo $temp

/tmp/

t emp_name=/u s r/tmp

echo $temp_name

/usr/tmp

echo ${temp}_name

/tmp/_name

echo ${temp_name}

/usr/tmp

You can see that when the Shell attempts to substitute the variable value in
the command line it has no way to distinguish between the variable named
%temp and %tempjiame. The Shell scans forward from the $ character looking
for the end of the variable name string. It considers the end to be any character
that cannot be used to form a variable name. In this case it is the space charac¬
ter. When a variable name is formed, its value is substituted. Thus, in the pre¬
ceding example, the variable %temp_name is substituted when no brackets are
used instead of the variable %temp followed by the string “ jiame”, which may
be what you intended. The {} characters prevent this type of ambiguity by defin¬
ing exactly what the variable name is. When we use %[temp] jiame the Shell
knows that we want to use the variable %temp, not %temp jiame.

You can assign values to variables directly or from the output of various
Shell programs. For example, to create a variable called currentjnonth and
assign the system’s value for month, we could use the date command:

current_month='date +'%m’'

The characters surrounding the date command (') are called accent graves.
They tell the Shell to execute the command in a subshell and to put the result¬
ing value in place of the command. So, the date command returns only the
month (%m), a value between 01 and 12. This is often referred to as command
substitution. This powerful capability is explored in more detail as the book
progresses.

Because variables can be changed throughout the execution of a Shell pro¬
gram, looping and testing can be done without repeating the logic many times.

120 ♦ Chapter Five

The examples in the following sections expand and clarify the benefits and usage
of Shell variables.

Controlling Variable Assignments

The Shell also provides variable operators used for assigning values to vari¬
ables under varying conditions. In general, the operators take action based on
whether the variable named is set or not, or whether the variable is null or not
null (Table 5.5).

As is pointed out by the Action column, these variable operators provide a
method for taking some action based on whether the variable is set or not. These
operators are more convenient then testing for the condition using the “if” Shell
command. The operators exist because these are actions that are frequently per¬
formed when utilizing Shell variables.

The operators shown in Thble 5.5 also have a related set of operators that
provide a method of checking for whether the variable is null in addition to
whether it is set. The difference between whether a variable is set or whether it
was null was discussed previously. If the following the vamame in Table 5.5
is omitted, then the Shell only checks whether the variable is set or not. The
related set of operators utilize the symbol to also include the not null condi¬
tion in the variable operator check. Let’s look at a few examples of using these
assignment operators. These examples should help make it clear how the vari¬
able operators help simplify variable assignment.

Perhaps the most widely used of the operators is the default assignment
operator The operator will assign a value to a variable if no value exists.
Very convenient.

#if file type is not set or null then make the value "doc"

${file_type:="doc"}

This situation can occur whenever the Shell program is expecting a value to be
set by a user. If the variable filejype was to be entered or set by the user, then
we have no way of ensuring that this was done properly. The user may have
forgotten to set the value of the variable or may have entered a null value.
These conditions may make your Shell program work improperly. So we need
to ensure thatfilejype has some value assigned by checking that value. If the
user does not provide that value, then we will assume a default value. The
{file_type:=“doc”} conveniently provides that default value. Consider the fol¬
lowing check that uses an “if test” to ensure that the variable is set:

if [!file_type] # is the variable file_type null ?

then

file_type=doc # if it is then set it to doc

fi

Shell Decisions and Repetitions ♦ 121

TABLE 5.5 Shell Variable Name Expansion

Variable operator* Action Description

${varname}

${varname:=value}

${varname:+value}

${varname:-value}

${varname:?value}

${#varname}
(Korn and Bash only)

${varname#pattern>
${varname##pattern}

(Korn and Bash only)

${varname%pattern}
$ {varnameVspattern}

(Korn and Bash only)

${#arrayname[*]}

(Korn only)

Nonambiguous variable
substitution.

Assign a default value
for the variable if a
value does not exist.

Utilize value if varname
is set.

Assign a temporary
default value for a
variable if one does not
exist.

Issue an error message
if the value of variable
is not set to any value.

Return the length of the
value contained in
varname or the number
of positional parameters.

Substitute varname with
pattern removed from
the beginning of
varname.

Substitute varname with
pattern removed from
the end of varname.

Substitute the number of
elements in the array.

Simple variable substitution
occurs with the value of var¬
name bfeing substituted.

If varname does not have a value
or is set to null, then varname
is set to value.

Varname is then substituted in
the statement.

If the variable, varname, contains
a value and is not null, then the
alternate value, value, is substi¬
tuted instead of the value of the
variable varname. Otherwise
nothing is substituted.

If the variable, varname, contains
a value and is not null, then it is
substituted; otherwise the value,
value, is substituted but is not
assigned to varname. (different
from = operator)

If the variable, varname, contains
a value and is not null, then it is
substituted; otherwise an error
message containing the value,
value, is printed and the Shell
exits.

If varname is set, the length of
the value of varname is
returned. If the special variable
* or @ is used as varname then
the number of positional param¬
eters are returned.

If the pattern matches the begin¬
ning of varname, then pattern
is removed from varname. If the
form is used, then the short¬
est match is removed. If the ##
form is used, then the longest
match is replaced.

If the pattern matches the end of
varname, then pattern is
removed from varname. If the
% form is used, then the
shortest match is removed. If
the %% form is used, then the
longest match is replaced.

The number of elements in the
array arrayname is substituted.

• Note that if the is not included in the pattern, then the Shell only checks whether the varname
is set or unset instead of whether it is set and not null.

122 ♦ Chapter Five

The “if test” logic is covered in detail in the section on the Shell test and IF
command constructs. As you can see, this test is quite a bit more work and is
prone to typing and logic errors. The variable operator “=" accomplishes the
same task and is less prone to typing and logic errors.

KSH

Array Variables

The Korn Shell provides several extensions to the standard variables avail¬
able with both the Bash (future version of Bash will have this available) and
Bourne Shells. One of these is the ability to have array variables. An array
is a set of similar items that are referenced with a common name: a set
name, if you will. Items in the set can be assigned values using the assign
operator and they can be referenced just like any other variable. Arrays are
a very convenient way to store lists of information that you may need to use
in your Shell program. Arrays are a very powerful programming tool and
are used universally in all major programming languages. As you begin
programming you will discover endless applications for array variables.

There are 512 elements that can be contained in an array variable
using the Korn Shell. The method of indexing an array variable to either
assign or reference the variable is to use the [] characters following the
variable name. The index numbers start with 0 and go through 511 on
most versions of the Korn Shell. For example, to make an array containing
a list of cities, the following Shell assignments would work:

cities[0]=DENVER

cities[1]=SEATTLE

cities[2]=DALLAS

cities[3]=HUSTON

cities[500]=PHILADELPHIA

Each position of the array can be viewed as a variable that can be set or
unset, null or not null. Note that the assignment can be random. We
assigned the slot cities [500] without assigning any values between 4 and
499. You can think of the array as a variable that contains slots, with each
slot holding a value that is indexed by a unique number.

Cities Array

Slot/Index

0
1

Value

DENVER

SEATTLE

Continued

Shell Decisions and Repetitions ♦ 123

Cities[2]=======> 2 DALLAS

3 HOUSTON

500 PHILADELPHIA

To reference an element of the array, simply utilize the [] syntax fol¬
lowing the variable name referenced by the $ operator. There is a minor
problem with referencing array variables directly in what would seem to be
the most obvious manner, namely $cities[3]. This syntax is valid Bourne
Shell syntax and is interpreted as such by the Korn Shell. What you get is
the following:

echo $cities[3]

DENVER[3]

The Korn Shell see $cities as the name of a variable and substitutes
the [0] element of the array for cities (the default action if no index is pro¬
vided for the array variable) and then appends the string “[3]”. To remove
this ambiguity you must enclose the array variable reference in braces {}.
For example, to utilize the third element of the array, enter the following:

echo ${cities[3]}

HOUSTON

Any element of the array can be referenced individually and used
anywhere that a normal variable would be used. The Korn Shell also allows
the index reference enclosed in the brackets “ [] ” to be an arithmetic
expression. So, for example, the reference to an index element could be
based upon an expression using integer variables:

typeset -i x=2 y=l

echo ${cities[x+1]}

HOUSTON

echo ${cities[x+y]>

HOUSTON

The typeset command is used to assign an integer type to the vari¬
ables x and j'. This is also a Korn Shell extension and is discussed in the
next section.

The Korn Shell also provides some special operators to help in the
processing of array variables. The first is the [*] array reference operator.

Continued

124 ♦ Chapter Five

When [*] is used as the index to an array variable, the entire array contents
are expanded and substituted. Each element of the array is separated by a
space. Any unset or null elements are not expanded. For example, the cities
array would expand as follows:

echo cities!*]

DENVER SEATTLE DALLAS HOUSTON PHILADELPHIA

A related operator [@] performs the same task but treats the elements of
the array as quoted strings.

To determine the number of elements in an array, the Korn Shell pro¬
vides an # operator. This is a very useful operator since it allows you to
perform a loop to access the elements of an array no matter how many ele¬
ments might be contained in the array. The operator to determine the num¬
ber of elements in an array is the # placed before the variable name and is
used in conjunction with the [*] operator. For example,

echo ${#cities[*]}

501

Note that in this case it considered the array to have 501 elements even
though many of the elements were not set. This is because we placed
Philadelphia at the five hundredth array position. Moving the PHILADEL¬
PHIA array assignment to position 4 would give the expected array count:

cities[0]=DENVER

cities[1]=SEATTLE

cities[2]=DALLAS

cities[3]=HOUSTON

cities[4]=PHILADELPHIA

echo ${#cities[*]}

5

KSH and Bash

Assigning Variable Types
and Properties

The Korn and Bash Shells provide a method for assigning types and prop¬
erties to variables. Of particular interest is the ability to assign a variable a

Continued

Shell Decisions and Repetitions ♦ 125

type of integer. This gives the Korn Shell the ability to use the variable
directly in situations where it is expecting a numeric argument. An exam¬
ple of this was shown in the preceding section when we used the variables
x and y directly in array subscripts as well as directly in an arithmetic
expression that was then used as an array subscript. This is a very nice
feature of the Korn and Bash Shells and is discussed in more detail when
we talk about arithmetic operations in Chapter 7. In order to define a vari¬
able as an integer type, we use the typeset command:

typeset -i counter=l

Note that we can define the variable type and provide an initial value (1 in
this case) using the typeset command.

In general, the syntax of the typeset command is as follows:

typeset [-+options] [var_name=value]

where the most frequently used options are shown in the typeset entry of
the built-in command reference at the end of the book and varjiame is the
variable name that is having the properties set. Note that options are
turned on by using the and turned off by using the

Assigning a variable to be of type integer is not the only thing that
can be done with the typeset command. It also provides the ability to
assign properties to string variables. For example, a string can be made to
be a fixed length with either left or right justification. It is also possible
to force a variable to contain only uppercase or lowercase letters. Variables
can be made read-only and can be defined as immediately exported. There
are differences between the Korn Shell and the Bash Shell in the types that
can be assigned, but both support the major types used most often. Refer
to the list of options shown in the reference section on built-in commands
(Appendix E).

As an example, let’s make a variable read-only and then try to assign
a value to it:

Set the mode to read-only and assign value update

typeset -r mode=update

echo $mode

update

mode=add # Try and change the value of mode to add

ksh: mode: is read only
*

126 ♦ Chapter Five

Variables and the Internet

When guests respond to forms and queries on the Internet, the servers send
strings that look a lot like variable assignments. Sometimes, these responses are
carried in the queryjstring variable and sometimes they are simply available on
stdin. (See Internet chapter for more detail.) The variables in these response
strings are separated by the ampersand character. Spaces are plus “+” signs:

name=Arthur&street=2244+S+Olive&city=Denver&ST=CO&zip=80224

By translating the ampersand into a space, you can create a variable string:

var_str='echo $query_string I tr " "1

echo $var_str

name=Arthur street=2244+S+01ive city=Denver ST=CO zip=80224

The variable string can be used to set the variables and transfer them
directly into a Shell script:

$var_str shell_script

As you can see, this makes it simple to handle and decode information
from the Internet. Once decoded, these variables can be processed in all of the
available ways shown thus far. The simple example shown gives an idea of how
customer address information might be captured through the Internet and pre¬
pared for a database, ordering, or invoicing.

Inspiring Quotes

Now that we have learned about variables and the way the Shell performs sub¬
stitution in command-line expressions, we look at the various ways the Shell has
to control the evaluation of the variable name. This method of controlling both
variable name substitution and filename substitution (covered in Chapter 3) is
referred to as quoting. Quoting protects white space that occurs in a string as
well as controlling various types of command-line expansion (filename expan¬
sion and variable expansion in particular). This protection of white space causes
quoted strings to be interpreted as a single word by the Shell. This is needed
when we want a string to contain spaces but be evaluated as a single argument
to a command. The Shell respects four different flavors of quoting, outlined in
Table 5.6.

Although quoting can seem confusing at first, it is needed to protect
strings from the default action of the Shell—evaluate and substitute. While
this feature of the Shell provides much of the Shell’s power, it is not always

Shell Decisions and Repetitions ♦ 127

TABLE 5.6 Quote Characters

Quote
character (s) Substitution?

File name
substitution?

Variable name
recognized? White-space description

No quotes

Single quote

Yes Yes Yes With no quoting, each word that
is separated by white space is
interpreted by the Shell with
full filename and variable substi¬
tution.

'string'

Double quotes

No No No Everything within the quotes is
protected. No evaluation occurs.
The string is viewed as a single
argument to a command.

"string"

Backslash

No Yes No The string is evaluated but only
certain characters are recognized
as significant. These characters
are $, \ (backslash), and “ (back-
quote) . The corresponding action
is taken when these characters
are found. All other characters
are protected.

\c

Backquotes

N/A N/A N/A The character following the back¬
slash is protected from evalua¬
tion by the Shell.

'cmd_string1 Yes* Yes* Yes* The cmd_string is evaluated by a
subshell and the results of run¬
ning the command are substi¬
tuted in place of the cmd_string.
The subshell evaluates the com¬
mand string in the normal way,
including embedded quoting.

* This is true as long as no other quoting is embedded within the backquotes. Any quoting done within the backquotes
will be interpreted in the standard way by the subshell executing the command.

what we want. Previous examples have demonstrated this feature, but now
that we have explored variables in detail, we can take a more in-depth look at
quoting.

As was mentioned in the previous paragraph, the Shell’s default action is
to evaluate and substitute. The command line is scanned, and white-space char¬
acters divide the command line into words and any special characters are evalu¬
ated and substituted. The evaluated words are parsed in a manner consistent
with Shell command syntax:

%

command -options arguments

128 ♦ Chapter Five

But the standard command-line evaluation is not suitable in all cases. An often
cited example (because it occurs often) is using a space-delimited string in con¬
junction with the grep command. The grep syntax is:

grep expression file_name_list

The Shell passes each word (strings separated by white space) following the
grep command as arguments. The first is taken to be the expression to search for
in the files that follow. But consider the following grep command:

grep Error file number error.log

grep: can't open file

grep: can't open number

The intention was to search for the string “Error file number” in error.log,
but with the white space separating the expression string, the word Error was
considered the expression to search for and the words file and number were con¬
sidered part of the filename list. Of course, these files don’t exist and therefore
the error message from grep. (It is even more confusing when one of those file¬
names happens to exist.) So the solution to this problem and many other, related
problems is the judicious use of quote characters.

The Single Quote

The single quote is the most restrictive of the quote characters used. It tells the
Shell to ignore evaluation of the string between the single quotes. White space is
ignored as well as any special characters ($, *, ?, and so forth). The string is
treated as a string literal and is passed as a single argument to commands. So to
solve the grep problem just cited, we could enclose the expression in single
quotes followed by the filename.

grep ’Error file number’ error.log

Grep now sees the expression as “Error file number” and the file list as error.log.
Literally anything can occur between the single quotes. For example, let’s say
that we wanted to show the message “Enter $amount or * to see all entries in the
list or ? for help menu” to the user. If we utilize the echo command in the nor¬
mal manner, you can imagine the results.

echo Enter $amount or * or HELP? for help menu

Enter or ETransfer HELPX HELPY RMAIL awk bin calendar cat

shellpgms or HELPX HELPY for help menu

This is not exactly the string we wanted to display to our user! Of course, sub¬
stitution by the Shell is the culprit here. Let us look more closely at what hap-

Shell Decisions and Repetitions

pened. First the Shell tried to interpret $amount as a variable name. Since there
was no variable defined, it returned null. The * had file substitution performed
and was replaced with the list of all the files in the current directory. Finally
HELP? was interpreted as a filename substitution as well and was replaced with
two file names HELPX and HELPY. The single quote can be used to eliminate this
problem. If we surround the string with single quotes, no evaluation will occur.

echo 'Enter $amount or * or HELP? for help menu'

Enter $amount or * to see all entries in the list or HELP?

for help menu

The single quote took care of all our substitution problems. This is very
useful in many cases but also very restrictive. Let’s say that we really wanted the
user to be prompted with a particular amount to be entered that is stored in the
variable $amount. The single quotes surely won’t do the trick. We need a quote
mechanism that allows partial substitution to occur. This leads us to a discussion
of the double-quoted string.

The Double Quote

The double quoting of strings tells the Shell to evaluate the string but to recog¬
nize only certain characters as special when the evaluation is done. The three
special characters recognized are the $ variable indicator, the backquote charac¬
ters ("), and the backslash character (\). Notice that this list does not include file
substitution wild-card characters (*, ?, and the like). This means that although
variable substitution does occur with double quotes, filename substitution does
not. This is very nice. It can get rid of the sometimes pesky (but powerful!) file¬
name substitution while keeping the ability to substitute variables. Notice also
that a single quote is not recognized. Thus single quotes contained within dou¬
ble quotes hide the single quote from the Shell evaluation.

The substitution that is performed on a variable contained in double quotes
is slightly different from the normal command-line substitution of a variable due
to the protection provided by the double quotes. This can be seen in the follow¬
ing example:

MYSTRING="HELLO CRUEL CRAZY WORLD”

echo $MYSTRING

HELLO CRUEL CRAZY WORLD

echo "$MYSTRING"

HELLO CRUEL CRAZY WORLD

You can see that placing the variable in double quotes protected the spaces
that were embedded in the string MYSTRING. The double quotes, although
allowing variable substitution, differ from the normal substitution in the Shell.
The Shell will normally take a variable and strip any extra white space and rec-

130 ♦ Chapter Five

ognize each element as separate. In this simple case, each word was stripped of
leading spaces and was passed to the echo Command. The echo command
receives each word as an individual argument and prints each argument with a
single space between each. In the case where the string is quoted, then the
spaces are protected and the echo command receives the string as a single argu¬
ment—the string containing spaces—and prints it.

Let’s return to the example that we used in the previous section to
explore substituting within double quotes in a little more detail. Suppose that
in the example given with the user input sting (following) that we really
wanted to show the user a particular amount for the variable $amount but
wanted the remainder of the string to print just as it is- without filename sub¬
stitution.

amount=99.99

echo "Enter $amount or * or HELP? for help menu"

Enter 99.99 or * or HELP? for help menu

As you can see, the double quotes did the trick, providing the ability to
substitute the amount variable with a value of 99.99 while not performing any
file substitution on the File substitution metacharacters *. and ?.

The Backslash Quote

The backslash quote character is a little different from the other quote charac¬
ters, all of which occur in pairs while the backslash stands alone. It is a unary
operator. The backslash quote simply protects the character following from being
evaluated by the Shell. In essence, it is a way to protect any character at any
time. The only place where a backslash character is not recognized is within the
single quote characters. It is often used within a double-quoted string to protect
a double quote character that occurs with the string. Look at the following grep
command for an example:

grep "Error \"TIME=$SECS\"" error.log

The grep expression that we wish to search for is ‘Error “TIME=$SECS’ ”
where SECS is a variable that is to be substituted. This of course requires the
double quotes around the string. But in order to embed the double quotes
around the TIME string we must use the backslash to protect them from being
evaluated.

As another example, let’s consider the user prompt string that we have
looked at previously. We could have used the backslash quote mechanism to pro¬
tect the string from filename substitution or variable substitution by using the
backslash character to protect the special characters that indicate to the Shell that
it is to take special action. The following examples show the use of the backslash
character to protect the string as needed. The first shows how to protect the

Shell Decisions and Repetitions ♦ 131

string from variable name and filename substitution; the second allows for vari¬
able name substitution to take place. Note that using this technique does not
protect the string from white-space evaluation.

echo Enter \$amount or * or HELP\? for help menu

Enter $amount or * or HELP? for help menu

echo Enter $amount or * or HELP\? for help menu

Enter 99.99 or * or HELP? for help menu

We also could have protected the spaces by using double quotes and then also
protected the variable evaluation by using the following command which
encloses the string within double quotes. Remember that the backslash charac¬
ter is recognized within double quotes.

echo "Enter \$amount or * or HELP? for help menu

Enter $amount or * or HELP? for help menu

The backslash quote character is a powerful tool that really helps control
Shell evaluation, but it also serves another function for the Shell. When the
backslash character occurs as the last character on the line, then the Shell con¬
siders it as a continuation and prompts you for more input using the secondary
prompt string. The secondary prompt string is assigned using the PS2 envi¬
ronment variable. It is good to know what your secondary prompt string is so
that you can determine when the Shell is asking for more input. This some¬
times occurs when you make an error, and seeing the secondary prompt string
can be confusing unless your aware of what it is set to. The secondary prompt
allows you to enter the remainder of the line and then executes the command
as a single line.

PS2=more:

echo "This is a very long input line that I would \

more: like to continue on the next line but have it \

more: considered as a single line by the shell"

This is a very long input line that I would like to continue

on the next line but have it considered as a single line by

the shell

When typing long command lines, this can be a handy feature.

The Backquote

The backquote is a very powerful tool, especially when programming because it
causes the Shell to treat whatever is between the backquote characters as a com¬
mand and substitute the output in place. This is very often called command sub¬
stitution. You will find it endlessly useful when programming, particularly when

132 ♦ Chapter Five

assigning values to a variable. For instance, let’s look at a simple example where
we want to assign the variable TODAY with today’s date using the UNIX date
command. Seems simple enough, but not unless we have the backquote com¬
mand substitution at our disposal.

TODAY=date #assign TODAY the value of date?

echo $TODAY

date

TODAY='date' #assign using command substitution

echo $TODAY

Sun May 8 13:27:28 MDT 1993

As you see, the string date was first assigned to the variable TODAY. The
Shell regards any characters to the right of the equal sign to be part of the literal
that you wish to assign. No evaluation is performed. The backquote characters
cause the evaluation to take place with the output of the date command in its
place. This assigns the TODAY variable the date string as expected.

Any valid command can occur with the quotes, even more than a single
command by using the command separator, with the command entered being
evaluated just as if it had been entered on the command line. The reason for this
is that the command is actually executed in its own subshell. This of course
means that events that occur within the sub shell will not be retained upon return
to the main calling Shell. You will find the command substitution to be a power¬
ful and necessary tool as we explore Shell programming.

Test

At the heart of each control structure is a conditional test. The test command can
determine if a given name is a file or directory; whether it is readable, writable,
or executable; and whether two strings or integers are greater than, less than, or
equal to each other. The features of the test command also allow the primitives
shown in Thble 5.7 to be combined using AND, OR, and NOT logic. The AND
operator is -a; the OR operator is -o; and the negation operator is the ! character.
Note that the list in Thble 5.7 is not exhaustive and you should refer to the man¬
ual page for a complete list. Table 5.7 shows most of the basic comparisons avail¬
able with test.

Test, like any other Shell command, always returns a true (0) or false (1)
value in the Shell variable $?. All Shell commands should return a zero (0) when
successful and a nonzero value (usually 1 or -1) when they fail.

If a file exists and it is readable, the result is TRUE (0):

test -r filename

echo $?

0

(

Shell Decisions and Repetitions ♦ 133

TABLE 5.7 Test Condition Primitives

Test Condition Returns

-r file true if file exists and is readable.
-w file true if file exists and is writable.
-x file true if file exists and is executable.
-f file true if file exists and is a regular file.
-d file true if file exists and is a directory.
-p file true if file exists and is a named pipe (fifo).
-s file true if file exists and has a size greater than zero.
-z si true if the length of string si is zero.
-n si true if the length of the string si is nonzero.
si = s2 true if strings si and s2 are identical.
si ! = s2 true if strings si and s2 are not identical.
si true if s 1 is not the null string.
nl -eq n2 true if nl and n2 are equal. Any of the comparisons -ne (not

equal), -gt (greater than), -ge (greater than or equal to), -it
(less than), and -le (less than or equal to) may be used in
place of -eq.

Similarly, if two strings are not equal, test returns a FALSE (nonzero):

test "myname" = "lja"

echo $?

1

When comparing two strings or a variable to a string, it is best to put both
strings in double quotes. That way, if one is null, the test command will still
know how to evaluate the comparison. If the following $variable evaluated to
null, then the test command would receive only two arguments (=, and “lja”)
and would issue an error message. The double quotes prevent this from occur¬
ring. This is a common Shell programming error, so use care and avoid pass¬
ing test null variables. You can use the -n test to determine is a variable is null
or not.

test "$variable" = "lja"

The following example shows how to use the relational operator AND in a
test condition. Note that you can use parentheses to group logical expressions,
but when you do so they must be quoted, as parentheses have special meaning
to the Shell. The first example asks if the file supertag has a size greater than
zero and in addition whether the file is readable:

test "(-s supertag) -a (-r supertag)"

echo $?

0

'IifEflKiwpwtf: fc
134 ♦ Chapter Five

The next example asks whether the file supertag is writable or whether it is a
named pipe:

test -w supertag -o -p supertag

echo $?

1

Under the Bourne Shell, the test command can be written by enclosing the
conditions in square brackets.

if [-r file_name]

Either of these two versions is preferable because they make the control struc¬
tures easier to read. The readability becomes apparent when looking at any of
the control structures: 1F-THEN-ELSE, CASE, DO WHILE, or DO UNTIL. More on
using these with test in the following sections.

Most tests will be performed on variable names created in the Shell, so use
of the control structures will also depend on the use of variables.

KSH

The Korn Shell provides some extensions in the area of the test command.
First there are several new test primitives provided. These are in addition
to the tests that are already provided with the Bourne Shell. See the man¬
ual page for a complete list of all the primitives. These new test conditions
are outlined in Thble 5.7.

In addition to the more robust set of test primitives provided by the
Korn Shell test conditions previously listed, there are also a few other
extensions that relate to the test command itself. First, it is possible for the
numerical comparison tests to have numeric expressions instead of just
integers. This is very convenient for calculating and comparing at the same
time. This often occurs in programming for a wide range of tasks—perhaps
a counter for a loop or an index for an array variable. Following is a simple
example:

numeric expressions in test conditions - only Korn

if ["q -z" -ne "w + 2"]

In addition to these extensions to the regular test command, the Korn Shell
also provides a more flexible test condition of its own. This test condition
uses the syntax

[[test_cond]]

Continued

Shell Decisions and Repetitions ♦ 135

where testjcond is any of the test conditions that are outlined in Thble 5.7.
This alternate form of the test command also allows the AND and OR oper¬
ators (-a and -o), used to form compound test conditions, to be expressed
as && for an AND condition and II for an OR condition. Many people, espe¬
cially C programmers, will find this a familiar form of expressing com¬
pound Boolean expressions. Most Shell users find the double brackets to
be quite a bit more readable.

Expr

Like test, expr evaluates arguments and returns true (0) or false (1) for com¬
parisons. Otherwise, expr returns a numerical value from an arithmetic evalua¬
tion. Expr uses essentially the same numerical evaluators as the C Shell:

if expr $a = $b

Expr will also work for string comparisons:

if expr "$my_name" = "Jay Arthur"

Expr can also perform numerical evaluations, which are more straightforward in
C Shell:

a='expr $a + 1'

Note that when we use the expr command, we must use the backquotes
characters to perform command substitution when we wish the output (from the
expr command) to be assigned to a variable (most often the case). This is because
the expr command is a UNIX command and the output from the command must
be substituted in the Shell. The expr command is the only method to perform
integer calculations in the Bourne Shell. You will often use the expr command to
calculate counters of all types as well as for conditional checks on integer values
in all of the conditional expressions. These are covered in the following sections
of this chapter. The expr command expects each operator and operand in the
arithmetic statement to be separate arguments. Of course, this means that you
should not single-quote or double-quote the arithmetic statements. Table 5.8 con¬
tains the commonly used arithmetic operators that work with the expr command.
Note that all the operators work with integers only.

As indicated in Thble 5.8, the multiplication symbol must be protected from
the Shell either by enclosing it in single quotes or by using the backslash quote
character:

Protect the multiplication from file substitution

i = '$i * 15'

136 ♦ Chapter Five

TABLE 5.8 Expr Operators (in precedence order)

Operator
•

Description Returned value

* Integer multiplication {Note: the *
special character must be protected
from Shell substitution or syntax error
occurs).

Integer

/ Integer division Integer
% Remainder function returns remainder

after integer division
Integer

+ Integer addition Integer
- Integer subtraction Integer
= Equality Ttue/False
t- Not equal True/False
> Greater than True/False
>= Greater than or equal to True/False
< Less than True/False
<= Less than or equal to True/False

KSH

The Korn Shell, on the other hand, has some nice enhancements in this
area. A full discussion of the arithmetic abilities of the Korn Shell is found
in Chapter 7, but a brief discussion seems in order here. By using the inte¬
ger variables types provided in the Korn Shell, it is possible to do straight¬
forward arithmetic expressions where and how you might expect. No need
for the expr command. The following shows a few examples of using the
integer variables in situations where the expr command would be used in
the Bourne Shell.

integer x=l # declare x as integer and set to 1

x=x+l # add 1 to the counter x—no expr needed

echo x # what's the value of x

Notice that when we form arithmetic expressions using the Korn
Shell, the variables on the right of the “=” do not have a $ preceding them.
The Korn Shell attempts to interpret anything on the right side of the “=”
as arithmetic expressions or integer constants. (We cover this in detail
when we talk about Korn Shell arithmetic.) The following example shows
the use of an arithmetic expression as an array subscript:

integer x = 2

integer y =3

echo ${cities[x+y]}
Continued

Shell Decisions and Repetitions ♦ 137

HOUSTON

Finally, let’s see an example where an arithmetic expression is used
as in conjunction with a control structure. We look at control structures for
the remainder of this chapter.

integer loop_count=l

while [loop_count -le 25]

do

echo ${CITIES[loop_count]}

1oop_count=1oop_count+1

done

This example shows the use of arithmetic expressions while using control
structures and should be helpful when working with many of the com¬
mands discussed next. The while command shown in the example is
talked about later in this chapter. (These are not all the details related to
Korn Shell arithmetic, but more of a quick tour to help you out with arith¬
metic that will be needed when we discuss the control commands in the
following sections. More detail about Korn Shell arithmetic is covered
later.)

Bash

The Bash Shell handles arithmetic evaluation in a different way. It provides
a built-in arithmetic evaluation command. Anything that is surrounded by
the $((..)) is considered to be an arithmetic expression. This is very simi¬
lar to using the expr command only it is easier to understand and is built
in to the Shell. This is covered in more detail later when we discuss integer
arithmetic, but for now here is a simple example showing how it works in
the previous case where we wish to add 1 to the loop counter:

while [loop_count -le 25]

do

echo ${loop_count}

1oop_count=$((1oop_count +1))

done

138 ♦ Chapter Five

Sequential Control Structures

Several devices control execution of sequential commands. They are the fol¬

lowing:

command delimiter

command grouping with execution in subshell

command grouping with execution in current shell

command substitution

test for true return code and execute

test for false return code and execute

0
{}

&&

II

The command delimiter, allows for more than one sequential command
on one line:

cmdl; cmd2; cmd3

The grouping parentheses, (), and braces, {}, combine the stdout and
stderr of multiple commands into one stream for ease of processing:

(cmdl; cmd2 I grep) I wc # execute in the shell

{ cmdl; cmd2 | grep } I wc # execute in a subshell

When using the grouping braces, note that they must occur separated by a
space. If they are not isolated in this way, they are considered to be just another
character.

Note that this cannot be accomplished in C Shell. The output of each com¬
mand must be placed in a temporary file and then processed by later commands:

cmdl > /tmp/tmp$$; cmd2 I grep » /tmp/tmp$$

wc /tmp/tmp$$

The command substitution allows for the nesting of commands and their
application to variables:

var='grep "line" chapter? I line'

The two test operators, && and II, test the previous command’s return code
to decide whether to execute the next command:

commandl && command2 # do command2 if commandl true

commandl I! command2 # do command2 if commandl false

The && and II commands are very convenient when writing Shell commands that
are dependent on each other. They allow you to check the status of the previous
commands without writing an IF statement (covered in the next section) as
shown in the following example:

?y

SiZ.

Shell Decisions and Repetitions ♦ 139

commandl #execute command 1

if [$? -eq 0] #check for good return code

then

command2

command3

fi

By using the II and && commands in conjunction with the grouping statements,
we can control the execution of groups of commands:

commandl || { command2; command3}

This would not have been possible without the grouping statements. For exam¬
ple, the following command would not have the same effect:

commandl I I command2; command3

This series of commands will always execute command3.
These commands control simple sequential execution of commands. To

gain further control and the ability to turn information into knowledge, we need
decisions.

IF-THEN-ELSE

You will often want to test whether a file exists before attempting to modify it.
The simplest way to make a TRUE/FALSE test is with the IF-THEN-ELSE (Figure
5.1). All three Shells use the identical form of the IF-THEN-ELSE command.
Bourne and C Shell versions of the IF-THEN-ELSE are almost identical. There are
two forms of the IF-THEN-ELSE:

if [test conditions]

then

command_list

else

command_list

fi

FIGURE 5.1 IF-THEN-ELSE.

140 ♦ Chapter Five

It should be noted that the ELSE portion of the if syntax is optional. It is
possible to check for a condition and if it is not true, then perform no action. This
form of the if command would have the following syntax:

if [test conditions]

then

command_list

fi

In the previous examples of the if command syntax, it should be noted that the
command_list can be a single or a group of commands. In most cases, you will
want to take one of two actions. If a file exists, for example, you might want to
print it on the screen. If not, you might want to create it. A simple test to do so
would look like this:

if [-r filename]

then

cat filename

else

echo "Enter the data for filename"

cat > filename

fi

Some Shell commands will run in the background, without user interac¬
tion. They may also be run interactively. To test whether to send messages to the
terminal or to mail them to the user (rather than interrupting what the user is
currently doing), you could include the following logic in your Shell:

if [-tO] # (If the standard input is a terminal)

then

echo "Error Message"

else # (the command is running in background)

echo "Error Message" | mail ${LOGNAME}

fi

You may also test if a parameter has a value and take an action:

if ["$PATH"]

then

echo $PATH

else

echo "No path is specified"

fi

Test automatically assumes that if there are no parameters, it should return
a FALSE exit status. This test is particularly useful when applied to user-created
variables and parameters.

Shell Decisions and Repetitions ♦ 141

Another feature of the IF-THEN-ELSE statement is the Bourne Shell offers
a feature that the C-Shell does not—an operator to nest IF-THEN-ELSE con¬
structs, elif, which is useful for implementing CASE control structures.

if [-d ${variable}]

then

process-the-directory ${variable}

elif [-f ${variable}]

then

process file ${variable}

else

error

fi

The IF-THEN-ELSE is useful for two-path decisions and nested tests of the
form shown, but to test a single variable for more than one value, use the CASE
construct.

CASE

Many times, a Shell command will create variables or receive parameters that can
have many different values. Although the IF-THEN-ELSE can be used to test
each of these values and take action, the CASE control structure (Figure 5.2) is
more convenient. The following form is a very simple and common example of
the case command where the value contained in $variable is matched against
value 1, value2, value3, and value4. If a match is found, then the corresponding
actions are performed.

case $variable in

value1)

actionl

/ #

value2)

action2

/ }
vaiue31 vaiue4) Continued

FIGURE 5.2 CASE.

142 ♦ Chapter Five

action3

7 7

*)
default action

7 7

esac

The last test, is a default action; if no other value matches, then the
default action is taken. Often, you will need to issue an error message and exit
from the Shell without doing anything when none of the values are matched.

The more general syntax of the case command is the following:

case match_string_expression in

[match_pattern [I match_pattern] ..)

actioncommandlist ;;

esac

In the general-purpose CASE statement, the match_string_expression can be
any string expression or command list that evaluates to a string expression. For
example, it is possible to use a command substitution as the value of the match_
string_expression.

list control files and run report if found

case 'Is control*' in

control1)

run_reportl ;;

control2)

run_report2 ;;

control3)

run_report3 ;;

*)

echo "Don\'t know what to do with control files"

esac

Really any expression that evaluates to a string can be used for the
match_string_expression. A further enhancement that is provided with the CASE
statement, something that cannot be done with the test command used with an
IF-THEN statement, is the ability for the match_pattern to contain file-matching
pattern. This is done using any of the characters provided in filename substitu¬
tion (for example, *, ?, and the like). This is really where the default case is gen¬
erated from: An asterisk (*) matches any string. General patterns can be formed
using the file-generation characters. Use caution when specifying general pat¬
terns. The match patterns are executed in the order written. Place more specific
patterns first so that they will match before more general patterns. If you don’t
do this, they will never execute. The following example demonstrates:

Shell Decisions and Repetitions ♦ 143

case 'Is control*' in

control?)

run_reportl ;;

control[2..5])

run_report2 ;;

control[6..9])

run_report3 ;;

*)

echo "Don\'t know what to do with control files"

esac

In this example, the more general case (control?) will match before any of the
more specific cases. Since the match patterns are executed in order, the more spe¬
cific cases (control[2..5], and control[6..9]) will never be executed because any
condition that they match will be matched by the more general condition that is
first in the list of match patterns. To fix this we just need to rearrange so the
more general case (control?) is after the more specific cases.

CASE structures are particularly useful for processing parameters to the
procedure. For example, the Shell variable, $#, contains a count of the number of
parameters passed to a Shell command. When working interactively, $# is zero
(0). When using a Shell command, the value can run from zero to several hun¬
dred. Most Shell commands require some parameters (at least a file to operate
on) as information to begin processing. $# should be greater than zero. To test
for the number of parameters, use the CASE construct and $#:

case $# in

0)

echo "Enter file name:

read argument1

1)

argument1=$1

echo "Invalid number of arguments

echo "Syntax: command filename"

exit 1

esac

main processing begins here

Assume for a moment that you use Shell to create a monthly report and
that the processing differs from month to month. To test and properly execute the
command, you could use the date command and test for each of the months:

current_month='date +’%m''

case ${current_month> in

01) Continued

144 ♦ Chapter Five

January-

02)

February

12)

December

7 7

*)
echo "Problems with the date command"

7 7

esac

The Shell executes the command line:

case 01 in

January, February, and so on are the actual names of commands that have to be
executed.

The CASE control structure can also be used for character strings. Multiple
character strings can be specified to default to the same action:

case $current_date in

Oil Jan I January)

January

7 7

02|Feb I February)

February

esac

The CASE construct is a powerful way of handling many comparisons and
many different actions. Sometimes, however, an action needs to be repeated
using different files or different information.

Looping Commands

The commands to handle repetitive operations are for, while, and until.

For

The for (Bourne Shell) control structure (Figure 5.3) permit looping through a
series of actions while changing a variable name specified on the command line.

Shell Decisions and Repetitions ♦ 145

Both interactively and in a background mode, the use of Shell will require pro¬
cessing many different files the same way. The common form of the control
structure is:

for variable in valuel value2...

do

action on $variable

done

The for structure will repeat the action commands a specified number of times—
once for each value listed in the list of strings “valuel value2...”. The optional
list of strings can be any expression that evaluates to a list of strings (file names,
command substitution, and so forth). If you omit the list of strings, then the
Shell defaults to use the special variable $* which represents all the arguments
passed to the Shell. When the for loop executes, the variable takes on each value
listed in the list of values. Each iteration of the loop assigns the next value in the
value list to the variable.

For example, to edit all of the files for this book, replacing “shell” with
“Shell”, I could use the following commands:

for file in chapter*

do

ed - $file «eof!

g/shell/s//Shell/g

w

q
eof!

done

This could also be done for files with many different names:

for file in filel filename xyz etc

FOR control structures, as well as any of the Shell control structures,
can be nested inside of one another. For example, to process all of the files in the
directories bin, doc, and src, I could use the following nested control structure:

146 ♦ Chapter Five

for dir in bin doc arc

do

cd $dir

for file in *

do

if [-f $file]

then

process $file

fi

done

cd ..

done

For each of the directories, the Shell would change into that directory.
Then, for each file it would test to ensure that the variable %file is really a file and
not a directory, and then the Shell would execute the command “process” on
each filename. When the Shell finished with all of the files under bin, it would
change up to the parent directory and then start working on the doc directory.
Nesting control structures is a convenient way to handle complex operations that
would otherwise require extensive typing to accomplish the same ends.

The FOR construct is not the only way to handle looping through repetitive
operations. The WHILE and UNTIL constructs provide another alternative.

While and Until

The while construct (Figure 5.4) takes a form similar to the for construct:

while command list

do

actions

done

In the following example, let’s use a variable, month, and the while loop to
process every month’s activity:

month=l

while [${month} -le 12]

do

process ${month}

month='expr $month + 1'

done

FIGURE 5.4 WHILE.

Shell Decisions and Repetitions ♦ 147

Using the Bourne or Korn Shell, you can do something you can’t do in the
C Shell—it is possible to direct stdout into a conditional statement using the pipe:

for file in Chapter?

do

cat $file I \

while read line # read a line

do

process $line

done

done

This is a great way to process a file one line at a time. Or you may need to pro¬
cess the stdout from the command using a pipe:

for file in filel file2

do

line < $file

done I wc > header_count

At some time, you may need to start an infinite loop. The test command
recognizes the existence of any value as TRUE:

while [1]

do

process something

done

To prevent looping forever or forcing the user to break out of the loop by
using one of the Break or Delete keys, you will need to break out of the loop. The
break command, as shown in the following example, is the way to jump out of a
loop without causing logic problems.

while [1]

do

if [end condition]

then

break

else

process something

fi

done

Sometimes the processing will need to continue without processing any¬
thing. The continue command handles these requirements:

while [1]

do Continued

148 ♦ Chapter Five

echo "Enter file name"

read filename

if [-r $filename]

then

process $filename

else

continue

fi

echo "Processed file ${filename}"

done

The WHILE construct can also use test on variable names and files, pro¬
cessing them accordingly:

while ["$variable" = something]

do

process $variable

done

Is |\
while [-r $file]

do

process $file

done

The until form of the loop (Figure 5.5), available only with the Bourne
Shell, is used less often. It executes the processing at least once and then tests
the conditions.

until [end conditions]

do

processing

done

The difference between the while loop and the until loop is the point at
which the test is performed. The while loop first examines the test condition to
assure that the loop should be executed. If the result of the test or command is
true, then the loop is executed. With the until loop, the condition is checked at
the end of the processing loop. Thus the processing specified with the until loop

FIGURE 5.5 UNTIL.

Shell Decisions and Repetitions ♦ 149

will always be executed at least once. You should take this into account when
writing until loops.

The following is an example of an until:

until ["'who I grep lja'11]

sleep 60

done

The until example shown previously is useful when watching for known
hackers to enter the system under a specific ID. A generalized hacker check could
watch for the user ID to appear on the system and then send mail and call the
system administrator:

Hacker Check

until ["'who i grep $1'"]

do

sleep 60

done

echo 'date' there's a hacker in the machine I mail lja

call my office phone (or home phone)

cu 5551234

The C Shell also includes the repeat form of loop, which executes a com¬
mand a specified number of times:

repeat 10 command

Aside from the for, foreach, while, until, and repeat, there are a few other
ways of handling loops and the processing of many files: xargs and find.

Xargs, Repeat, and Find

The Shell provides two other facilities for handling repetitive operations: xargs
(csh: repeat) and find. Xargs simplifies the implementation of loops when you
need to execute only one command with a list of files. The problem is more com¬
plicated when every file under a user’s ID must be examined or when entire file
systems must be changed. The find command has the ability to look through
entire directory trees for specific files or directories and then execute commands
on those file or directory names.

Xargs takes lines of input and executes commands, substituting the input
lines wherever specified. You could view xargs as a command constructor and
executor. Repeat, in the C Shell, executes a command a specified number of
times (xargs performs this function for Bourne and Korn Shells). Find searches
downward from a specified directory and can execute commands, substituting

150 ♦ Chapter Five

KSH, Bash

Select Statement

The select statement is unique to the Korn and Bash Shells. It is provided
to allow for the easy creation of menu-driven user input. The select state¬
ment acts like a combination of a while and a case statement. The syntax
of the select statement is shown as:

select variable in [words ...]

do

command list

done

The words, determined by white-space separation, are printed on the stan¬
dard error (usually your terminal) with a number associated with each
word printed. The Korn Shell uses two standard variables to facilitate the
select command—the PS3 prompt string and the variable named REPLY.
After printing the menu based on the words listed, the user is prompted
with the PS3 prompt string. The user input is then read into the variable
REPLY. If the first character in the REPLY variable is a valid number that
was associated with a word menu option, then the variable is set to the cor¬
responding word. If this is not the case, then the variable is set to null but
REPLY still contains what the user entered.

Whenever the user enters something on the prompt line, the variable
is set (possibly to null), REPLY is set, and the command list is executed.
Usually this command loop checks for a valid menu option and then takes
some action based on the option that the user entered. After executing the
commands listed in the command list, the user is again prompted for input.
If the user does not enter any input the menu is redisplayed. The executed
do loop is an endless loop. You, or the user, must break the loop execution.
As a Shell programmer you will almost always want to provide your users
with a menu option that allows them to gracefully exit the loop. To exit the
loop in the Shell, the break or exit commands can be used. The user can
usually break out of the loop by exiting the Shell in a forced manner (that
is, with a break command—Delete key on the keyboard). While all this
might sound confusing, an example will help clear the fog index.

PS3="Hello master! What would you like oh wise one?: "

select option in "Create Gold Bullion" \

"Alter the weather" \

"Create happiness" "Create despair" \

"Create a new World" "End it all" "Exit"

Continued

vs^sSgrjp.

Shell Decisions and Repetitions ♦ 151

do

echo "You chose to $option"

case $REPLY in

1) echo "Programmers wish computers could do this" ;;

2) echo "Dream on" ;;

3) echo "Sometime computers do this” ;;

4) echo "Most often computer actually do this" ;;

5) echo "Don't know the ingredients for a new world." ;;

6) echo "Sorry you can't stop it now" ;;

7) echo "To serve you has been a pleasure"

exit;;

esac

done

The results of running this example are shown below:

1) Create Gold Bullion

2) Alter the weather

3) Create happiness

4) Create Despair

5) Create a new World

6) End it all

7) Exit

Hello master! What function would you like oh wise one?: 4

You chose to Create despair

Most often computers actually do this

Hello master! What function would you like oh wise one?:

1) Create Gold Bullion

2) Alter the weather

3) Create happiness

4) Create despair

5) Create a new World"

6) End it all

7) Exit

Hello master! What function would you like oh wise one?: 6

You chose to End it all

Sorry you can't stop it now

Hello master! What function would you like today oh wise

one?: 7

You chose to Exit

To serve you has been a pleasure

Note that when the user simply entered nothing, the variable option
was set to null and the menu was redisplayed without executing the con¬
tents of the do loop. If the user enters an invalid option, the variable option
is also set to null and REPLY is set to what the user actually entered. You
can of course take some default action in this case. Most often you will
want to issue an error message of some sort. You can see that the select
statement is a very easy way to create menu-driven user interfaces.

152 ♦ Chapter Five

file or directory names into the command. Xargs is useful when interactively
executing the same command on many files in a directory. Find is more useful
for examining entire directory structures and executing commands.

Some Shell commands, like remove (rm), only work on a maximum num¬
ber of files (100). Since the command,

rm *

results in an error message when there are more than 100 files, xargs can be
used to execute the rm command with the first 100 and then the remaining files:

Is I xargs -nlOO rm -f Is | repeat 100 rm -f

When executed, this xargs command will generate rm -f commands followed by
a list of 100 filenames. The filenames are generated by the Is command and
piped to the xargs command. If the -n option was removed, then xargs tries to
construct as many arguments as it possibly can. Xargs uses an internal buffer to
store the command and once that is full the command is executed. The -n option
provides control over how many arguments should be allowed.

Similarly, a series of existing files can be copied to other names:

Is chapter* I xargs -i cp {} old{}

The -i option of the xargs command places xargs in insert mode. The command is
constructed by replacing the string {} (this is the default; string could be any
string) with the word read in from standard input. In this case the word is a chap¬
ter name. This command creates a duplicate set of the chapters from a book named
oldchapterl, and so on. Instead of creating duplicate copies, however, it would be
better to store each of the chapters in the source code control system (SCCS):

Is chapter* I \

xargs -i admin -n -i{} $HOME/doc/sccs/book/s.{}

This command stores the chapters in the directory $HOME/doc/sccs/book for
later retrieval and update.

There are other options under the xargs command that should be explored.
For instance, it impossible to execute the command for each line read from stan¬
dard input, to print the command generated before executing it, and to print the
command and then prompt for authorization to execute the command. See your
manual pages for details on these options.

A common occurrence is for users to change from one work group to
another. To allow other members of their group to access a file, they could either
change each file and directory one at a time, or they could use find:

cd $HOME

find . -exec chgrp newgrp {} \;

Shell Decisions and Repetitions ♦ 153

which says “Find all of the files and directories under my login and change the
group ownership of each one to the new group.” Note that the find command
recursively searches each subdirectory of the directory named as the starting
path. In this case the starting path is the current directory $HOME, but it
could have been any pathname. The braces indicate where the find command
should substitute the name of each file and directory found during its search.
The same ability can be used to change the mode on all of the files or to copy the
files from one place to another:

cd $HOME/bin

find . -exec chmod 775 {} \;

find . -print I cpio -pd new_place

Find can also test each name and take action. To change mode on all of the
directories under the login directory, you could use:

Cd $HOME

find . -type d -exec chmod 770 {} \;

The find command has many different tests that can be performed on files
to control which files are listed. It is possible to check for files owned by a par¬
ticular user ID, a particular name (often used to locate lost files), a particular
size, or last access time, just to name a few. See your manual pages for full
details.

The find command used to print the location of filenames would have the
following format:

find $HOME -name chapterl -print

This command would print the location of files named chapterl found anywhere
under my login directory or any of its subdirectories.

Find can even ask you if it is okay to execute the command:

find . -type d -ok chmod 770 {} \;

The option -ok works just like -exec except that find will prompt you before exe¬
cuting the command.

Rules of Thumb

♦ Use xargs or repeat when working on a list of files.
♦ Use find to operate on all of the directories and files under a

specific directory.

They both work well when using the Shell interactively.

154 ♦ Chapter Five

Summary

In order to store information that you want to use in Shell procedures, you must
utilize a Shell variable. A Shell variable is a storage area that has a handle,
which is the name you used when assigning a value to a Shell variable. To
retrieve the contents of a variable you must precede the name of the variable
with the $ character. The Shell provides a number of operators which can be
used in conjunction with a variable to provide default assignment values. The
Korn Shell offers some nice extensions to Shell variables by providing array
variables. The Korn and Bash Shells both provide typed variables. By providing
an integer variable type, the Korn and Bash Shells provide enhanced arithmetic
capabilities.

The Shell provides many facilities for controlling actions. The use of repet¬
itive control structures like for, foreach, repeat, until, while, xargs, and find
will improve your productivity. The test, if-then-else, and case commands each
help improve the reliability and usability of your commands.

The Shell control structures are the foundation of good Shell programming.
Use them wisely and productively. They can be used productively in two ways:
interactively at the terminal and as the basis for interactive and batch commands
that automate much of a UNIX user’s work. These subjects are more fully
explored in the next two chapters.

Shell Decisions and Repetitions ♦ 155

Exercises

1. Name the control structures in the Bourne and C Shells and describe
their use.

2. What Shell facility handles all conditional tests for the Shell control
structures? Which Shell variable contains the return code from a con¬
ditional test?

3. What other Shell commands can be used to handle repetitive processes?
4. What Shell facility handles errors and interrupts?
5. Write the 1F-THEN-ELSE statement to test whether a variable name is

a directory. Write the same test for filenames.
6. Write a CASE statement to test a variable name for the values “data”,

“source”, “comments”, or anything else.
7. Write a FOR loop to process all of the files in a directory.
8. Write an infinite loop to prompt the terminal user for filenames to be

removed and remove them. Use trap to exit gracefully when finished.
9. Write an infinite loop to check a directory for files, print them using pr

if any are found, remove them after printing, and then sleep for 15
minutes (900 seconds).

10. Use xargs to process all of the files in a directory.
11. Use find to locate all of the files in a user’s ID named *.c (C language

source code) and print them with pr.
12. Write the trap statements to handle:

a. Ignoring hangup signals
b. Removing temporary files when QUIT or INTERRUPT is received
c. Removing temporary files when the command ends normally

qfct) iii- ■ »:

t

Shell Programming

Shell programming is little more than combining the commands and control
structures you have learned up to this point. You can program interactively or by
combining Shell commands in an executable program (a UNIX file that holds the
commands) that you and others can execute. Shell procedures are simple ways
to automate complex processes as well as simple everyday ones.

Interactive Shell Usage

One of the most productive ways to use the Shell is interactively at the terminal.
People familiar with the Macintosh or any other WIMP (windows, icon, mouse,
and pointer) interface will ask: Why bother? As an avid Macintosh user, I agree,
for some applications. If you want to start up a single application program and
just do one thing to one file, icons and mice are a great way to go. However, if
you want to start up many commands and do many things to many files, you’ll
need the Shell. The commands to do this are shown in Thble 6.1.

157

158 ♦ Chapter Six

TABLE 6.1 Looping Commands

Command Operations Files Variables

for many many one
repeat many
xargs one many one
while many many
until many many

When creating a Shell program (as described in the next chapter), you will
often use the Shell interactively to prototype or test out how the command will
ultimately work. It is also useful when you are having some problem in your
Shell program and you want to test portions independently to assure that they
are working properly. A quick way to do this is by typing the Shell commands
interactively. So, interactive use of the Shell will also serve the development of
Shell programs.

Shell Setup

As a user logs into and out of UNIX, several files come into play to set up the
environment for the user and the Shell (Thble 6.2). We briefly touched on these
files when discussing the login procedure in Chapter 2. One of the final stages of
the login procedure is the execution of your .profile. The Shell does this auto¬
matically for you. You can put any Shell commands (except .exrc) in these files
that you would use elsewhere, but each file has a specific use.

All the Shells first execute the commands stored in the file /etc/profile. In the
Bourne and Korn Shells, the file /etc/profile is defined by the system administra¬
tor to set up the common shell environment for all users. To override or enhance
these system defaults, you can place any commands you want in ${HOME}/.pro-
file. As you log in, UNIX executes /etc/profile and then ${HOME}/.profile before
creating a Shell for you. ${HOME}/.profile is an excellent place to create specific
global variables like PATH or to send yourself a good morning message or to
change the default system prompts:

PATH=$ {PATH} :$ {HOME} /bin # add bin to PATH

PS1="#@%\\! "

PS2="More Input!> "

export PATH PS1 PS2

echo "G'day mate!"

${HOME}/.profile is also an excellent location to place Shell Junctions, which are
discussed in the advanced material. The Korn Shell also permits alias commands
to be placed in your .profile. For a simple example, however, let’s take the dir
command of MS-DOS:

Shell Programming ♦ 159

dir ()

{

Is -1

}

Some of the more important environment-specific variables that are often
set in your .profile are shown in the Thble 6.3. These are'of course many of the
environment variables that were discussed in Chapter 5. As was discussed in
that section, the setting of many of the environment variables is up to you, while
others are provided automatically by the Shell. You may override or change any
of the environment variables to customize your work environment.

TABLE 6.2 Setup Files

Bourne Shell

File name
Order read
at login Purpose

/etc/profile 1 Systemwide setup procedure at login.
.profile 2 User-specific setup for sh at login.

Korn Shell

/etc/profile 1 Systemwide setup procedure at login.
.profile 2 User-specific setup for ksh at login.
•kshrc 3 Common name used to provide

addition commands to the shell both
at login as well as when a new ksh
shell is started interactively.
Determined by expanding the
environment variable $ENV at startup.

Bash Shell

/etc/profile 1 Systemwide setup procedure at login.
.bash_profile 2a User-specific setup file for bash at login.
.bash login 2b If.bash__prof ile does not exist then

.profile 2c

bash looks for .bash_login. It
serves the same function as
.bash_prof ile. Also supplies user-
specific setup for bash at login.

If neither .bash_profile or

.bashrc Not read at

. bash_login exists, then bash looks
for .profile to supply user-specific
setup commands.

This file is read by bash whenever
login. an interactive shell in started.

.bash logout Read on When the login shell is exited, any
% exit from commands stored in this file are

login shell. executed.

160 ♦ Chapter Six

KSH

In addition to the /etc/profile and your .profile, the Korn Shell also executes
another file at login. This file is determined by evaluating the environment
variable $ENV. If this variable evaluates to the name of an existing file, the
commands stored in that file are executed. Often the name of the file stored
in the variable $ENV is $HOME/.kshrc, although this need not be the case.
Therefore any commands stored in the file .kshrc in your home directory
are executed after /etc/profile and .profile.

The .kshrc file also serves another purpose. The Korn Shell makes a
distinction between a login shell and an interactive shell. The login shell is
the shell session that is started when you first log in to the machine. An
interactive shell session is one that you start after you are already logged
in. This occurs often in a GUI environment where you can start multiple
Shell windows. When you start an interactive Shell, the .kshrc file is exe¬
cuted to set up the environment for that interactive Shell session. Note that
this is the only file that is executed when an interactive Shell session is
started.

Bash

The Bash Shell provides some further enhancements to the login process
provided by the Bourne and Korn Shells. As you can see by Table 6.2, the
Bash Shell first executes the commands in the standard /etc/profile as the
other shells do. But after executing this file, the Bash Shell looks for sev¬
eral possible command files that all act as synonyms. The first file that is
searched for is the .bash_profile. If this file exists, the commands in the file
are executed and no other files are used. If this file does not exist, however,
then the Bash Shell looks for the file .bashjogin. If found, the commands
contained are executed. If this file does not exist then the file named .pro¬
file is searched for and executed. These synonym files are utilized to pro¬
vide compatibility with the other Shells. For example, if you are using the
Korn Shell and then move to the Bash Shell, you would not need to move
your .profile to the .bash_profile as the Bash Shell will read the .profile.

In addition to the files used above, the Bash Shell also utilizes another
file, .bashrc, when starting an interactive Shell session. Interactive Shell ses¬
sions were previously described when discussing the Korn Shells .kshrc file.
The Bash Shell uses the .bashrc file in the same way. Anytime an interactive

Continued

Shell Programming

Shell is started, the commands stored in the .bashrc file are executed. Unlike
the Korn Shell, the Bash Shell does not evaluate the $ENV environment vari¬
able to determine the name of the command file for interactive Shell sessions.
It simply looks for the file named .bashrc. Another difference is that the com¬
mands stored in the .bashrc file are not executed by a login Shell.

The Bash Shell provides another setup file for added flexibility. The
.bashjogout file is searched for, and executed, whenever you exit from the
login Shell. This allows you to perform any cleanup that you may wish to
do at logout time.

The commands and variables shown in Table 6.3 are really the very basics
that you will want to have in your .profile. As you become a more powerful user,
your .profile will grow and become increasingly sophisticated—all in an effort to
utilize the full power of the Shell with a customized environment.

In the C Shell, ${HOME}/.cshrc performs similar functions. It is the perfect
place to set key Shell variables:

set noclobber # don't clobber files during execution

set history=20 # keep track of 20 previous commands

set prompt="#@%! "

set path=${path}:${HOME}/bin

echo "G'day Mate!"

${HOME}/.cshrc is also an excellent place to put aliases for commands:

alias dir 'Is -1'

The ${HOME}/.login file executes after .cshrc. It is an excellent place to set
terminal characteristics with stty and to set environment variables with setenv:

stty erase 'AH1 # set erase to a backspace

setenv PRINTER MYroom # set PRINTER default to MYroom

TABLE 6.3 Variables/Commands Commonly Set in .profile

PATH=$PATH:/your directories here Append your important directories to the default
Shell search path.

TMtt=/usr/maiI/mylogin Tell me about my incoming mail,
umask 022 Set my default file creation mask.
AS7=“NEXT: ” Set your primary prompt.
TERM=vtlOO Tell the system what type of terminal you are

running with.

162 ♦ Chapter Six

In a Sun workstation, or any X Windows-based environment, you can also use
.login to execute the window manager:

sunview

If you are using the C shell, the ${HOME}/.logout file runs after a user logs
out of UNIX, so it’s best to have only background processing in this file. It can
say good-bye and then clean up junk files or whatever:

clear # clear screen

echo "G’bye Mate!"

nohup nice find -name 'junk*1 -exec \rm '{}' \; &

The final setup file, ${HOME}/.exrc, sets up the environment for the vi edi¬
tor. It allows you to define macros for use in that editor. For example, to main¬
tain the same indentation as the previous line, a user could set autoindent. Then
the program would automatically follow the current indentation:

set autoindent

Or, for documentation, you can set wrapmargin to automatically insert a line¬
feed. whenever you get close to the right-hand margin:

set wrapmargin=10

I’ve rarely used .exrc, but it’s a handy feature for gung ho power users and
programmers.

Using the Shell Interactively

Any time you execute any command—Is, cat, or who, for example—you are
using the Shell interactively: stdin, stdout, and stderr are all directed to the ter¬
minal. Combining commands via the pipe or executing existing Shell programs
all contribute to productive interactive use of the Shell.

You should use the Shell interactively whenever you need:

♦ Immediate results (list a directory with Is)
♦ To interact with the command (it asks you questions)
♦ To perform a repetitive operation on a one-shot basis (look for and operate

on specific files in a directory)

Using simple commands, like the editors, is an effective use of the Shell,
but less productive than joining Shell commands together to perform complex
operations for you. Learning effective use of grep, cut, paste, and numerous
other tools is the essence of productivity improvement. The Shell provides a con-

Shell Programming ♦ 163

sistent environment of reusable tools that can be joined together to manipulate
virtually any text into some required form. The hard part is developing the men¬
tal focus to understand this flexibility and use it in everyday activities. The Shell
can quickly extract and format information or it can handle more complex, recur¬
sive procedures.

In-Line Procedures

Selecting and reporting information is an excellent way to improve productivity
with the Shell. Files containing fields and delimiters, such as /etc/passwd, can be
inspected and printed:

cut -fl,5 -d: /etc/passwd I pr

lja Jay Arthur

pgm Paula Martin

Or you can print a document and mail it to many users:

nroff document_file I mail user_id user_id user_id

Using data selection commands like grep, cut, and uniq can quickly elim¬
inate extraneous information. Reporting commands like awk, cat, pr, and nroff
can then format the remaining information. For further information on these
commands, refer to Chapter 3. Another good way to use the Shell interactively is
with looping procedures.

Looping Procedures

In everyday usage, you will need to perform many operations on many files. The
main Shell facilities to help you are for, find, and xargs. While and until are
also occasionally useful. Find is invaluable when you have left a file somewhere
under your login, but have no idea where. To find the file from your HOME direc¬
tory, type:

find . -name lostfile -print

./doc/unix/lostfile

Once you have identified that find is locating the proper filenames, you
can execute commands on those files. I would not, however, recommend exe¬
cuting commands that remove or change files before you have determined that
find is obtaining only the filenames you require. Otherwise, you could lose
or corrupt a large number of files and never know it was done. If you are
in doubt, use the -ok feature of find to check each filename before executing
the command:

164 ♦ Chapter Six

find . -name s* -ok rm -f {} \;

./doc/unix/book/s.chapterl? n

./doc/unix/book/s.chapter2? n

./src? n

./src/slop? y

./src/sludge? y

Without these checks, find would have removed the SCCS files containing
Chapters 1 and 2. Re-creating them would not be fun unless the system admin¬
istrator could restore them from backup. A simple command to remove all junk
files, however, would be:

find . -name junk* -exec rm -f {} \;

Find is useful for any task that requires looking down through directory
structures, finding files, and executing commands to modify or delete the files. It
does not work well, however, when you want to work on just the files in the cur¬
rent directory. For these looping processes, you need for and xargs.

For lets you perform multiple operations on specified files. Xargs, on the
other hand, can execute only one command per file. One of the most frequent
uses of the for loop involves editing files in the current directory to change an old
word to a new one:

for file in chapter?

do

ed $file <<!

g/shell/s//Shell/g

w

q
i

done

The for command substitutes chapterO through chapter9 for the variable file and
executes the editor commands that follow.

Similarly, for could calculate the average length of each word in each chapter:

for file in chapter?

do

totalchar='wc -c ${file} I cut -cl-7 '

totalwords=1wc -w ${file} | cut -cl-7'

average='expr ${totalchar}/${totalwords}’

echo ${file} ${average}

done

These are fairly simple examples, but they show the basic interactive uses
of for. The other command for operating on files in a directory is xargs.

Shell Programming ♦ 165

Xargs works well on files in a directory when you want to execute only one
command:

Is junk* | xargs -i rm -f {>

Adding, getting, or creating deltas of files in SCCS is another application of
xargs. In the following example, all of the chapters can be added to SCCS with
one command line:

Is chapter? | xargs -i admin -i{} -y"First draft" s.{}

Xargs is a handy way to process many files at one time. For more complex
loops, the Shell user will need while and until.

The while loop can be used interactively when you want to set a variable
to a value and loop until it reaches some other value. The following simple exam¬
ple calculates the sine of all angles between 1° and 90°:

angle=l

while [${angle} -le 90]

do

sine='echo "scale=2;s(${angle})" I be -1'

echo "Sine of ${angle} = ${sine}"

angle='expr ${angle} + 1’

done

All of the values would print out on the terminal. These values could also be
directed into a file or printed with pr.

Note that the while loop simplifies interactive commands that change vari¬
ables other than filenames. For and xargs are more effective with files.

All of these commands—find, for, until, while, and xargs—allow the user
to execute repetitive actions on files and directories. When the user needs to
interact with these commands, the process should be run in foreground.
Whenever possible, however, these commands should be run in background so
that the user can continue working.

Command History and Editing

Once startup processing completes, the Shell begins reading commands from
the terminal. The C Shell, the Korn Shell, and the Bash Shell all have the ability
to keep track of commands as you enter them from the terminal. The Shell
stores these commands in memory and allows them to be recalled, modified,
and executed.

166 ♦ Chapter Six

KSH
The Korn Shell handles history somewhat differently (see Table 6.4). The
ability to recall commands and perform editing on those commands is a
very powerful feature of the Korn Shell and one that should be fully
explored by anyone who is using the Korn Shell on a regular basis.

The Korn Shell provides command history—the ability to recall pre¬
viously executed commands—by saving all commands entered in a UNIX
file. By searching the file looking for a previous command to execute, you
can save a great deal of typing. The name of the file used to store the com¬
mands in is assigned via an environment variable, HISTFILE. This is most
often set in your .profile. If you do not provide a name, then the Shell will
default it to $HOME/.sh_history. The number of commands that the Shell
keeps in the file is controlled by the environment variable H1STSIZE,
which again is most often set in your .profile. The default for this value is
128. You may want to set this higher if disk space on your system is not
a problem and you perform a great deal of interactive Shell work.

The Korn Shell provides two methods for interacting with the com¬
mands stored in the history file. The first (and older) method is through
the use of the fc command. This command allows you to see what is in the
command history file and to edit and reexecute the commands. The second
method of interacting with the command history is through the command
editing mode. This is an enhancement to the Korn Shell that allows your
command line to behave like your favorite editor (as long as your favorite
editor is vi or emacs, that is). By using commands that are taken from the
editors, you can manipulate the command text much like you manipulate a
line of text in the editor itself. The beauty is that this is built right into the
Shell. It is always available without invoking an editor. By using editorlike
commands, you can scroll back through the history file, select commands,

TABLE 6.4 History Commands

Korn Shell Bash Shell Purpose

r 1 1 Execute last command
r n ! n Execute previous command line n
r -n ! - n Execute current command line

minus n
r cmd ! cmd Execute the previous command line

beginning with cmd
!? str? Execute the previous command line

containing str
r strl = str2 cmd ! cmd:s/strl/Btr2 Substitute and execute last cmd

Continued

Shell Programming ♦ 167

edit them, and reexecute directly on the command line! First we will look at
the older fc command.

The fc command provides a way to view and manipulate the com¬
mand history file. You can view the contents of the file, edit the contents
through a specified editor, and execute commands in the history file all
through the fc command. The first form of the command is used for view¬
ing and reexecuting the contents of the file and has the syntax:

fc [-e editorname] [-nlr] [first_line] [last_line]

-n no number in listing

-1 list the contents of command file; don't edit and execute

-r reverse the listing order

The syntax of this command is really a bit confusing and one reason why
many people prefer using command editing to access previous commands.
But if you use the fc command and only wish to list the commands to see
what is in the file, you must specify the -1 (for list) option. If you do not
specify -1, then the fc command assumes that you want to edit and reexe¬
cute a command in the file.

There are several ways to list the commands stored in the history file.
First, you can use the fc -1 command with no other options. This will list
the last 16 commands that you entered on your screen. This default com¬
mand is also provided in a built-in alias called history. Typing the fc -1
command or the history command will yield the following listing:

fc -1

6414 fc -1 -30

6415 fc -1

6416 man .profile

6417 jobs

6418 history

6419 fg

6420 fc -e emacs -1

6421 fg

6422 exit

6423 emacs

6424 fc -1

6425 fg

6426 envp

6427 aqcb_stat

6428 fg

6429 fc -1

* Continued

168 ♦ Chapter Six

As you can see, each command that is listed is preceded by a number. That
number is assigned when the command is placed in the file and can be used
with the fc command to specify a particular command that you wish to work
with. The fc command will always let you specify a particular command from
the list or a range of commands. For example, let’s say we wanted to see the
last four commands in the commands list. We could type the command:

fc -1 6426 6429

6426 envp

6427 aqcb_stat

6428 fg

6429 l-h

Q
 1

There is also another numbering scheme that can be used with the fc
command. The commands are determined relative to the last command
entered. For example, the last command entered is -1 the second-to-last
command entered is -2, and so on. Thus, we could have listed the previous
four commands by using the following command:

fc -1 -4

6426 envp

6427 aqcb_stat

6428 fg
6429 fc -1

It is also possible to use a string value for the values of first Jine and
lastjine. This will search back through the command stack for the first
command that starts with the string listed. If you do not provide an end
line, then the command history is listed to your screen starting with the
command that contains the string given through the last command
entered. You can even use a string for both starting and ending line or a
combination of string and number references.

Now that we know how to see what is in the command file, how do we
reexecute the commands? There are two methods of reexecution supported
through the fc command. First is the edit/reexecute method, or there is the
direct reexecution with no editing. The first method of edit and execute uses
the fc command as we saw previously, only without the -1 option. When this
is done, the fc command allows you to edit, through an editor that you spec¬
ify, the command(s) from the command history file. If you use the -e edi-

Continued

Shell Programming ♦ 169

torjiame option, that editor is executed and loaded with the commands
specified from the command list. The commands can be listed in the same
method as was done with the -1 option, previously mentioned. Any of those
techniques is valid. Once you have edited the commands and exited your edi¬
tor, the command(s) are executed by the Shell. In order to provide a default
action, the Shell will use the editor listed in the FCEDIT environment variable
if no editor name is given. If you are using the fc command, you will want to
set the FCEDIT variable in your .profile. This will prevent the need to specify
an editor when you wish to edit commands. The following command would
edit and reexecute the previous command from command history using the
default editor listed in FCEDIT (in this case, the emacs editor).

FCEDIT= /usr/local/bin/emacs

fc -5

The next method for simple reexecution of the commands from com¬
mand history, without editing them first, is to use the following form of the
fc command:

fc -e - [old=new] [line]

In this form of the fc command the -e/- option tells the fc command that
you do not wish to invoke an editor but simply to reexecute a command
directly. The line is a particular line from the command history file that you
want to reexecute. The line that you wish to reexecute can be specified in
any of the ways that were discussed before. You can specify a particular
line number, a relative line number, or the string representation of the
command. If you specify old=new, then a substitution of the old string with
the new string is performed on the command that you reexecute. This is
quick edit on a previous command.

It should be pointed out that the command with only the -e - option
will reexecute the last command that you entered. This is so common that
the Korn Shell provides a standard alias for this function. The alias is the r
alias. Entering r on the command line will reexecute the previous com¬
mand in the command history file. The alias is simply set to the fc com¬
mand shown:

r=fc -e -

Let’s perform a simple command reexecution:

Continued

170 ♦ Chapter Six

Is * #List the contents of the directory

master_usr.doc

ums_mail.doc

ums_memo.doc

ums_notes.txt

ums_team.txt

ums_todo.txt

fc -1 -1 #Show me the last command on the command

stack

6612 Is *

6613 fc -1 -1

r # rerun the Is command

master_usr.doc

ums_mail.doc

ums_memo.doc

ums_notes.txt

ums_team.txt

ums_todo.txt

fc -e - *=*.doc -1 #Change the Is command to show

only doc files

master_usr.doc

ums_mail.doc

ums_memo.doc

The fc command, while useful and powerful, is somewhat awkward to
use and has really been superseded by command line editing discussed next.

Bash

The Bash Shell supports several forms of command history manipulation.
First it supports the fc command previously described for the Korn Shell.
It also provides extensive command-line editing features that are dis-

Continued

Shell Programming ♦ 171

cussed shortly. As previously described, command-line editing allows
access to history commands using the editing commands of your favorite
editor. Finally, the Bash Shell supports a history mechanism that is largely
taken from the C Shell. This is often referred to as history substitution.

The Bash Shell history substitution views history commands in two
ways to allow substitution to occur. First, each command in the history
list is called an event. Each event is broken down into words. History
substitution, in the Bash C Shell, begins by typing the character “!”
(Table 6.4). These commands allow you to refer to a particular event in
the history list. There are lots of exotic ways to modify or execute previ¬
ous commands in bash csh. The simplest way is to directly execute a
previous command:

H execute last command

In execute previous command line n

\-n execute current command line minus n

\str execute the previous command line beginning with str

\lstfl execute the previous command line containing str

You can also select specific words from a previous command using various
word designators. These follow the event designator (!) and are preceded
by a :. See the manual pages for a complete list of word designators. Note
the following examples:

!!: 1 !!:3 select word 1 & 3 from the last command

H:2—4 select words 2-4 from the last command

There are also a number of modifiers that follow the word designators and
provide further substitution control. For example, you can also substitute
words using the following:

#replace 'gerp' with 'grep' and execute

!?gerp?:gs/gerp/grep/

There are more exotic substitutions than this, and if you use the
C Shell, I suggest you explore them. They can speed your effort at the
terminal.

There are many ways to edit command history using the history sub¬
stitution features of the Bash Shell, but it is really somewhat awkward to
use and the commands are specialized and not easy to remember. This type
of command history editing is great if you already know all these com¬
mands (if you are a previous C Shell user), but otherwise it is really much
better to use command-line editing features to be described next.

172 ♦ Chapter Six

KSH

Command Edit Mode

As was mentioned before, the Korn Shell also provides a more advanced
way of editing and reexecuting commands from command history. This is
done through a feature called command editing. Essentially this provides
vi, emacs, and gmacs editing capabilities to each command line previously
entered. This is built into the Korn Shell. Any command line entered can
be edited in very powerful ways with commands that you are already
familiar with (given that you use vi or emacs). Even if you do not use the
vi or emacs editor, it is probably worth learning a few commands that can
be great time-savers when typing many interactive Shell commands.

The first step in using command-line editing capabilities is to tell the
Korn Shell that you wish to do so. This can be accomplished in several
ways. One is to invoke the Korn Shell with the -o option set to the command¬
line editing option you wish to use. The second is to use the set command
to do the same. And finally, the easiest and most flexible method is to set
the VISUAL or EDITOR global variable. The Korn Shell searches for these
variables to determine if command-line editing should be invoked. If the
string assigned to either of these variables ends with a valid editing mode
indication (emacs, gmacs, vi), the Korn Shell will install that style of com¬
mand-line editing. Often the EDITOR variable is set in your .profile. The
following example would invoke emacs-style command editing as well as
point to the location of the emacs editor for any other commands or Shell
programs that may need to invoke an editor:

EDITOR=/usr/local/bin/emacs

Once you have set your Korn Shell session to one of the editor
options, your command line becomes a single-line editor window onto the
command history file. It is much like editing the command history file with
emacs or vi but viewing only a single line of the file at a time. The single
line that you are viewing is the current Shell command line. This editor
window contains many of the commands that you would use if you were
editing the line in vi or emacs itself. It also provides the ability to move
around in the command history file by using editor commands to see the
previous or next line. It is also possible to search for particular commands
in the command history file and reexecute them at will. In general, most of
the common editing commands that you use when editing a file with your
editor of choice are available to you at the command line.

Continued

Shell Programming ♦ 173

While there are many command-line edit options available, based on
your editor choice, the major ones used for each of the editor options are
indicated in the Thbles 6.5 and 6.6. To get a full list of all the commands
that are available, see the manual pages on the Korn .Shell (man ksh).

TABLE 6.5 Common Vi Command Editing*

Command Mode Description

<Enter> I Execute the command on the command line.
<Esc> I Enter command mode. When using the vi

editor you have to different modes—an input
mode where characters typed are actually
entered on the line, and command mode
where the editor takes the next character to
be a special command that will act on the
input text in some way.

<Erase> I Delete previous character.
aw I Delete previous word.

I Exit the current Shell. If this is your login
shell, then you will be logged off the system.

a C Add text after the current cursor position after
returning to input mode.

dd C Delete the entire line.
cc C Delete entire line and return to input mode.
i c Insert text before the cursor position. Return to

input mode.
[n]G c Make line n the current line in the command

history. If n is not provided, then look at the
last entered command.

u c The previous command is undone and the
command line is returned to its original state.

? command_string Search for the command string in the command
history file. The search is done in a forward
direction. The first command in command
history that contains the commandjstring is
made the current line in the edit window.

/command_string c Search for the command string in the
command history file. The search is done in a
backward direction. The first command in
command history that contains the
command_string is made the current line in
the edit window.

\ c Filename completion—replaces the current
word on the command line with the longest
prefix of all the filenames in the current
directory which match the word entered.

Note that the mode is either I for input or C for command mode. The command shown is
effective only when you are in that mode.

Continued

174 ♦ Chapter Six

TABLE 6.6 Common Emacs Command Editing*

Command Description

Af Move the cursor forward one character.
Ab Move the cursor backward one character.
M-f Move the cursor forward one word. (The escape

version of the command usually acts on a word
instead of a character.)

M-b Move the cursor backward one word.
Ad Delete the current character.
Ak Kill from the current cursor position to the end of the

line.
Aa Move cursor to the start of the line.
Ae Move cursor to the end of the line.
Ap Move to the previous command in the command

history file. Repeated ~ p commands will continue to
move backward through the command history stack.

An Move to the next command in the command history
file. Repeated * n commands will continue to move
forward in the command history file.

Arcommand_string Search backward through the command history file for
the first line that contains commandjstring. Note
that you must hit Return after typing in the command
string.

M-ESC File name completion—replaces the current word on
the command line with the longest prefix of all the
filenames in the current directory which match the
word entered.

* The common emacs notation is used here where ~ is Ctrl and M- is Escape.

In addition to all the basic editor commands available, particular atten¬
tion should be paid to the filename completion commands available. These
commands can be great time-savers when you are using the Shell interac¬
tively. Basically the filename completion command will take a word that you
enter on the command line and complete it with the longest common prefix
of all filenames in the current directoiy. If the match is unique after comple¬
tion, then the Shell will append a space to the name if it is a file and a / if the
file is a directory name. This can save a lot of typing and misspelling of file
and directory names. Let’s look at a quick example of how this works. If we
are in our home directory and wish to change into a new directory called
net_manage_fee and enter the word net on the command line and then hit
M-ESC, the directory name will be completed for us by the Shell:

Perform file completion by using M-esc

/home/burnsen cd net

Continued

Shell Programming ♦ 175

directory name completed with no typing

/home/burnsen cd net_manage_fee/

If we had two directories with the names net_manage_fee and net_manage_
charge and we performed the filename completion just shown, the longest
possible prefix would be completed as shown:

Perform file completion by using M-esc

/home/burnsen cd net

directory name partially completed

/home/burnsen cd net_manage_

type character to make name unique then M-ESC

/home/burnsen cd net_manage_c#

directory name completed with no typing

/home/burnsen cd net_manage_charge/

If you are not familiar with vi or emacs and are a heavy Shell user, it would
be worth the effort at least to gain a basic understanding of one of these
editors. The command-line edit options will make much more sense and
will give you greater productivity in the Shell.

Bash

Command-Line Editing

The Bash Shell also provides a command-line editing interface. This is a
library of routines that are called the readline library. It provides both an
emacs and a vi style of editing. However, the readline library is modeled
after the emacs editor and the concepts of functions and key bindings are
used to control the command-line interface. These concepts give the Bash
command-line interface added flexibility by allowing you to customize how
the command-line interface behaves.

The readline library provides a set of functions that perform the
command-line editing functions. For example, the function in the readline
library to move to the beginning of the line is:

beginning-of-line

When this function is run, the cursor is moved to the beginning of the line.
In order to provide an easy-to-use interface, these functions are bound to
particular key sequences. For example, the beginning-of-line function is

Continued

176 ♦ Chapter Six

bound to the Ctrl-a key sequence in emacs editing mode. Thus entering
Ctrl-a will execute the beginning-of-line function.

The binding of key sequences to functions is dynamic. Therefore it is
possible to customize how the command-line interface behaves. If we did
not like using the Ctrl-a for the beginning-of-line function, we could change
the key binding. There are several ways to control the binding of keys to
functions using Bash. The first is to supply the key bindings in a startup file
called .inputrc. The second method is to supply the key bindings inter¬
actively using the bind built-in command.

The .inputrc file is used to bind key sequences to functions or macros.
The format of the lines in the file is:

Key-name: function-name or macro-name

It is possible to define the key-name in two different forms. The first is to
use symbolic English names for the keys. The second form is to use the
actual key sequence.

Generally speaking, the key sequences are either the Control key fol¬
lowed by some key or Escape (the Escape key is referred to as the meta key
in emacs terminology) followed by some key. This prevents conflicts with
normal keystrokes at the keyboard. For example, the following would bind
the Ctrl-w key sequence, pressing the Control key followed by the w key, to
the function clear-screen.

Control-w: clear-screen

Generally, the symbolic method means combining the keywords Control or
Meta along with another key to form a unique key sequence to bind to a
function. In addition to combining Control and Meta with normal keys, it is
also possible to use the symbolic key names shown in Thble 6.7 as keys.

TABLE 6.7 Bash Readline Symbolic Key Names

Symbolic name Key

RUBOUT References the delete key
DEL References the delete key
ESC References the escape key
NEWLINE References the return key
RET References the return key
RETURN References the return key
SPC References the space bar
SPACE References the space bar
TAB References the tab key

Continued.

Shell Programming ♦ 177

To perform the same key binding using the second form for key-name:

''\C-w": clear-screen

would again bind Ctrl-w key sequence to the clear_screen function. In
this case, we use the actual escape sequence to specify the Control key.
The escape sequences available to form key sequences are shown in
Table 6.8.

In addition to setting key bindings in the .inputrc file, it is also possi¬
ble to set any of a number of variables that control how readline behaves.
The most important of these is the editing-mode variable which determines
whether the Bash Shell will use vi or emacs editing mode. The default is
emacs mode. If you wanted to change to vi mode you would place the fol¬
lowing command in your .inputrc.

set editing-mode vi

Any of the variables can be set using the set command in your .inputrc file.
For a complete list of the variables, see your Bash manual pages.

There are many command-line editing functions that provide a rich
emacs-like editing environment. Most of the functions available have
default bindings that reflect the emacs editor key-sequence bindings.
Many of the most used emacs command-key bindings are shown in Table
6.6. The bind command has a number of options that allow you to interac¬
tively view the functions available as well as the key sequences that are
bound to those functions. The following command would list all the read¬
line functions available:

bind -1

The -v option can be used to list all the functions and their current key
bindings.

TABLE 6.8 Bash Readline Escape Sequences

Escape sequence Description

\c- Control key
\M- Meta key—on most keyboards this is the escape key
\e Escape key
\\ Backslash character
\" “character
\ ' ‘character

Continued

178 ♦ Chapter Six

A real advantage of the Bash readline library is that it implements
many of the powerful features of the emacs editor. It goes beyond the emacs
functions that are implemented in the Korn Shell by including powerful
commands to search and manipulate command history, perform command
and filename completion, and form keyboard macros. For a complete list of
all the functions and the assigned key bindings see the Bash manual pages.

As with the Korn Shell, pay particular attention to the command and
filename completion functions. These functions can save you a lot of typ¬
ing time by completing command and filenames based on what you have
entered and comparing that with what could possibly complete the entry.
The Bash Shell offers a wider range of completion functions than the Korn
Shell and deserves attention if you are a power Shell user.

Foreground and Background Procedures

Any time that you need immediate answers, execute Shell commands in fore¬
ground at the terminal. When you can afford to wait—because the command
takes a long time and will tie up the terminal, which you could use for other pro¬
ductive work—you can submit the command in background. The Shell facility to
handle this is simple and easy to remember: &. The ampersand at the end of a
command line tells the Shell to run the command in background. Initiating back¬
ground processes can be very productive and is something everyone should
learn how to use. In a previous example:

Is chapter? I xargs -i junkproc {} &

2304

The Shell started up a background process and printed out the process number
(2304). This number is used to reference the process. The Shell variable $! con¬
tains the number of the last background process initiated.

You can also ask a command to sleep for a number of seconds and then
execute:

(sleep 900 ; Is chapter? I xargs -i junkproc {})&

2717

Processes may also be submitted to background so that you can hang up
(log off the machine) and let the process continue (all processes are killed other¬
wise) . The facility that allows this is called nohup:

nohup nightlyprocess&

15342

Shell Programming ♦ 179

Nohup stands for no hangup. It prevents the process from terminating when a
user logs off. Any output generated by the command on either stdout or stderr is
placed into a file called nohup.out, which can be examined later to determine the
success or failure of the processing.

To be kind to your fellow UNIX users, the priority of any background pro¬
cesses should be lowered to speed up terminal response time. The Shell facility
to lower priorities is called nice. It should be used as follows:

nice command argl arg2 arg3 ... &

nohup nice command argl ... &

Note that both find and xargs lend themselves to background execution.
For, while, and until are more easily initiated in foreground. But they can be
executed in background by use of parentheses, which cause the for command to
be initiated in a separate subshell that is placed in the background:

(for file in *

do

cp $file newdir

done

)&

2413

While and until loops can be initiated in background in the same fashion.
Some systems have a command that allows execution of commands at a

specified time. The at command allows a UNIX user to execute commands at
night, on weekends, or on holidays, without ever logging in to UNIX. It takes the
following forms:

at 6pm nightlyprocess

at 6pm

nightlyprocessl

nightlyprocess2

cntl(d)

Nightlyprocess[12] will be executed at 6 p.m. with all of the user’s characteristics.
The at command is an excellent way to off-load CPU and I/O intensive activities
to the evenings or weekends. When you begin to experience degraded response
time on a UNIX system, consider using at to reduce prime time system load.

Bourne Shell Job Control

The Bourne Shell uses kill and wait to control background jobs. There are times
when you will need to kill a process:

180 ♦ Chapter Six

kill $! # Kill the last job placed in the background

2717 killed

Or you will need to wait on it to complete:

wait 2304

C Shell Job Control

The C Shell offers some additional job control features that can suspend background
processes (stop) or switch them in and out of foreground: bg and fg. To stop a fore¬
ground process, type either stop or cntl(z). To stop a background job, type:

stop %job

To pull a job back into foreground in csh, list the jobs using jobs and then select
the job using % or fg:

jobs

1 find...

3 nohup...

%1

fg %1

Then you can send the job back with % or bg:

%i

bg %1

KSH, Bash

As you may have guessed, the Korn and Bash Shells also provide some
nice job control extensions. It behaves a great deal like C Shell job control,
but with some ease-of-use enhancements. The jobs command is used to
display the stopped and background jobs that are currently active for your
session. The list produced is used to manage the jobs using the other Korn
Shell job management commands (bg, fg, kill). By using this list, you can
tell the Shell which job to work with when using the other commands.
After entering the command jobs at your terminal, you might see a display
that looked something like the following:

Continued

Shell Programming ♦ 181

jobs

[1] + Stopped emacs tester.c

[2] - Stopped zap

[3] Running counter

[4] Done magic

The number in the brackets represents the job number associated with exe¬
cuting this UNIX process. You can use this job number to manage the jobs
that you are executing. This is done by referring to %num wherever a job
is called for in any of the Korn Shell job management commands. Suppose
that we wanted to begin executing our emacs editing session again. This
could be done by bringing the emacs edit session back to the foreground by
entering the command

fg %1

In this case, the “%” symbol is a way to refer to a job number. Thble 6.9 out¬
lines other ways to reference particular jobs when using the job control com¬
mands. In Thble 6.9, the current job and previous job are indicated by the +
and - designation shown in the preceding jobs printout. The + is the current
job (the most recently stopped) and the - is the previously stopped job. The
job control commands work with the current job when no job is indicated.

Fg Command

The fg (foreground) command is used to move a job that is currently
stopped or is in the background to the foreground. This will make the job
the currently active job associated with your login. The foreground com¬
mand has the following syntax:

fg [job_name]

TABLE 6.9 Korn Shell Job Identifiers

Job identifier What it represents

number The UNIX process ID
% number Job control number printed by jobs

command
%+ Current job
%- Previous job

Continued

182 ♦ Chapter Six

where the jobjiame is any of the valid job names listed in Thble 6.9. If no
job_name is provided, then the current job name is used. For example, we
could have started the emacs edit session listed in the preceding jobs list by
entering just fg with no job number. Since the emacs job is the current job
(as indicated by the +), it would be the job selected by the fg command. We
could have specified any of the other jobs by providing a job identifier and
that job would have become the current job. To move a job from the fore¬
ground to the background, issue the Ctrl-Z command. The Ctrl-Z command
is usually the suspend command and will interrupt the currently active
foreground command and place it in a stopped state. This will place the
currently active job in a stopped status. Once a job is stopped it can be
manipulated with the job control commands.

Bg Command

The bg (background) command is used to move a job that is in a stopped
status (using Ctrl-Z) into the background for execution. The bg command
has the following syntax:

bg [job_name]

where jobjiame can be a job number from the jobs list or a process num¬
ber. If no job_name is provided, then the current job is moved into the
background. The fg command can be used to return the command into the
foreground.

Kill Command

When using the Korn Shell, use the kill command to send a specified sig¬
nal to a job. It has the following syntax:

kill [-signal] job_name

The signal can be either the name of any of the signal commands used in
UNIX, or it can be the corresponding number which is related to the signal.
The available signals and their related numbers are listed in the reference
section. The job can be identified using any of the methods outlined in
Table 6.9. It can be job number or a process number. If no signal is speci-

Continued

Shell Programming ♦ 183

fied, then the TERM (software termination) signal is sent to the job.
Sending this particular signal to a job will usually cause the job to termi¬
nate. There are many UNIX signals and the way that any particular com¬
mand responds can vary. However most Shell commands respond and
terminate when they receive the default TERM signal. Signal processing is
covered in greater detail later in this chapter.

Interactive Shell Summary

Interactive Shell usage can be highly productive. It can extract and report useful
information. It can repetitively perform complex processes on files, directories, or
whatever. Use of repetitive procedures and background processing promote pro¬
ductivity. Processing can even be delayed into non-prime time with commands
such as at.

Interactive Shell helps test prototypes of new Shells. It can also be used to
prototype C language programs to eliminate bugs before coding the commands in
a more efficient form.

Once you begin using the Shell interactively and discover that many inter¬
active processes require too much typing, it is time to learn about Shell pro¬
gramming—putting those interactive commands into an executable file that you
can reuse to further improve your productivity.

Complex commands should be created as Shell procedures. Trying to per¬
form complex activities interactively is usually frustrating because syntax
errors can easily negate all of your typing. If you try an interactive command a
couple of times without success, consider putting the whole thing in a Shell pro¬
cedure that can be edited (using your favorite editor) and corrected as errors are
uncovered.

When to Create Shell Programs

You gain the most power from the Shell when you create a Shell program, com¬
monly called Shell procedures, Shell programs, or just plain “Shells” for brevity.
Create Shell programs (Figure 6.1) anytime you need to perform:

♦ A complex procedure using many command lines
♦ A procedure from which all users can benefit
♦ The same simple command over and over again

The advantage of Shell is that it has access to many small functional com¬
mands. These reusable commands can be combined to automate increasingly
complex functions that you would normally do manually.

184 ♦ Chapter Six

Frequency

Once Often

g Program
rT* n O

Program

o
< <u

g4 Interactive Program

FIGURE 6.1 Interactive and Shell program¬
ming.

Creating Shell Programs

To create a Shell program, Shell commands are combined in various ways to
accomplish the user’s needs. This is the fun part. Users create procedures by enter¬
ing Shell commands into a UNIX file via any of the available editors. To make the
Shell file executable, all you have to do is change its mode:

chmod 755 shellproc

Rules of Thumb

1. Try each command line interactively, to make sure it works correctly.
2. Build the program using one of the editors interactively, one line at

time, testing as you go.

Here are a few tips for creating a Shell of any complexity. First, try each
command line interactively, making sure that it works as expected. The follow¬
ing simple example extracts a user’s name from the password file by login name
and reports it:

grep lja /etc/passwd I cut -f5 -d:

Jay Arthur

If the field displacement or delimiter of the cut command had been wrong, I
would have known it immediately. I can now include this command iri a Shell
procedure with faith that it works just as I want it to.

You can execute commands directly from the vi editor as you create pro¬
grams by typing:

:! shell_command

Then as you write your Shell program, you can test it right from vi by first writ¬
ing using the following:

:!your_shell_program -options argument(s)

To make commands reusable, however, you will need to know about argument
lists.

If you are using the emacs editor you can accomplish the same type of test¬
ing by opening a Shell window buffer in emacs, and when you receive a com¬
mand-line prompt you can enter the name of the command that you are building
and testing. Emacs also supports a direct execution, much like vi, by using the
M-! command (ESC-!).

Option and Argument Lists

Most Shell programs will need to have options and arguments on the command
line, just like a typical Shell command:

command -options argumentl argument2 ...

When creating a Shell procedure, you will probably want to pass it the
name of one or more files or you will need to give it some special information to
affect its processing. This can be done easily with options and arguments:

shell_program -a filel file3 file5

shell_program -k "Jay Arthur" "lja"

The Shell recognizes each of these arguments and assigns them special variable
names that can be accessed within the program—$1, $2, $3:

shell_program -a filel file3 file5

With this command line, the following assignments are made:

$0 is set to shell_program

$1 is set to the option -a

$2 is set to the argument filel

$3 is set to the argument file3

$4 is set to the argument file5

These special variables were covered briefly in Chapter 5 (see Table 5.2)
but deserve some more attention here. As you can see from the preceding exam¬
ple, each portion of the Shell command is assigned to default special variable
name $0-$9. These variables can then be accessed in your Shell procedure to
refer to the arguments passed. The $0 argument is always the name of the Shell
program. The remainder of the variables $1 to $9 are the actual arguments the
user of your Shell supplied. The number of arguments passed is stored in a spe¬
cial variable set by the Shell. The $# stores the count of the number of arguments

passed. In the previous example it would contain the value 4. This is useful in
looping commands that access the arguments.

To edit each of these options and arguments, we can use much of what we
have already learned about looping in the Shell:

edit_status=TRUE

for arg in $* #loop through arguments

do

case $arg #process options

-a)

process option -a

-k)

process option -k

•)
if ['echo $arg | cut -cl' =]

then

echo "Option: $1, invalid"

edit_status=FALSE

elif [-f $arg]

then

process $arg

else

echo "Invalid File Name $arg"

edit_status=FALSE

fi

r i

esac

done

exit ${edit_status}

In this example, I edited all of the arguments to the command (rather than
edit until I found one problem and then exit). Then, at the end, I checked for a
valid status to decide whether to exit or continue processing the program.

The Shell variables—$1, $2, $3, and so on—can be changed as they are
used by use of the shift command. Shift moves each argument, $1 through $#,
to the left, changing the previous argument list as follows:

shell_program file3 file5

$0 $1 $2

Shift is used with while loops to process arguments:

while ["$1"]

do

process $1

shift

done

Shell Programming ♦ 187

This example processes each argument and then shifts the remaining argu¬
ments. When there are no more arguments, test will return a false value to the
while loop and the command will exit successfully. Shift makes looping through
arguments simple and straightforward. Shift is also useful when processing two
or more arguments at a time:

while ["$1" -a "$2"]

do

process $1 $2

shift;shift

done

It should be noted that the Bourne Shell only allows for the arguments
$0-$9. If you have more than nine arguments, then you must use shift to access
the arguments beyond the $9. The Shell will not recognize $10 as an argument
reference. It will interpret this as the $1 followed by the 0 character.

KSH, Bash

The Korn and Bash Shells permit the direct reference to variables beyond
$9 by using the numbers $10-$99. The only restriction here is that the
variables beyond $9 must be enclosed in braces to retain consistency with
the Bourne Shell. So to access variable $10 in your Shell program it must
be written as ${10}.

There are two other Shell variables that reference the arguments $1
through $#: $* and $@. These are used when one Shell procedure invokes
another with the argument list. The two are almost identical except in how they
pass the arguments when they are quoted—$* passes all of the arguments to the
receiving command as a single argument:

shell_program file?

#shell_program

rm "$*"

is the same as

rm "filel file3 file5"

$@ passes the arguments as they were originally specified so that the command
can work properly:

rm B$@"

188 ♦ Chapter Six

is the same as

rm "filel" "file3" "file5"

If the executed command had been another Shell procedure instead of a
remove command, that procedure’s arguments would have varied as follows:

subshell "$*"

(subshell "filel file! file5")

$1 = “filel file3 file5"

The following substitution would have occurred using $@:

subshell

(subshell "filel" "file3" "file5")

$1 = filel $2 = file3 $3 = file5

The $* form is useful with echo to display all of the arguments:

echo "$*"

filel file3 file5

Without the double quotes, $* and $@ are equivalent, but these two can
cause confusion and problems, so be careful.

Arguments to a Shell program should be edited using either the IF-THEN-
ELSE construct for single arguments or the CASE construct for programs with more
than one argument. Editing arguments helps improve a program’s reliability.

A Shell program that expects a single argument, perhaps a filename,
should test for too many arguments and for a valid filename:

if [$# -eg 1]

then

if I -f $1 I

then

process $1

else

echo "$1 invalid file name"

fi

else

echo "$0 syntax: $0 filename"

fi

Most Shell programs, however, will have many options and files. There are
two special commands that are used to help process command-line options and

Shell Programming ♦ 189

arguments. These are the older, and soon-to-be-obsolete, getopt command and
the newer getopts command. The discussion of getopt is provided for complete¬
ness as there may be some older Shell programs that use this command. This
command should not be used in new Shell programs as it will not be supported
in future releases of UNIX. The newer replacement command getopts should be
used in place of getopt. It provides better functionality and will be supported into
the future.

The one special command, getopt, can parse $* and separate flags when
they have been clumped together by a user (for example, -abet is actually -a -b
-c -t). Some utility programs work this way, so it can be useful to design com¬
mands to handle users’ options this way. To use getopt, you simply reset the
Shell’s positional parameters, $*, by supplying a string of options:

set 'getopt abet $*'

Once the positional parameters have been reset using getopt, a program
with more than one argument can use the CASE construct to handle the argu¬
ment edits:

case $# in

0) # oops no arguments

echo enter argumentl

read argl

echo enter argument2

read arg2

2)

argl=$l

arg2=$2

''
*)

echo " $0 syntax: $0 argl arg2"

esac

Or a program may expect a series of options as well as filenames or what¬
ever. Options should be separated from the remaining arguments:

while ['echo $1 I cut -cl' =]

do

case $1 in

-al-b|-c)

options="${options} $1"

*)
echo "$1 is not a valid option"

esac Continued

190 ♦ Chapter Six

shift

done

Then, the tests for the remaining arguments can be performed using the
CASE construct or IF-THEN-ELSE. Editing arguments is an important part of
building reliable Shell programs.

When creating a Shell procedure, you will probably want to pass it the
name of one or more files, or you will need to give it some special information to
affect its processing. This can be done easily with options and arguments.

KSH
In addition to this manual method, which in the Bourne Shell is the best
method, the Korn Shell also provides a more automated way of accessing
and processing the arguments passed. This is done through the newer
getopts command. This is the Korn Shell version of the getopt command.
The getopts command is standard command for processing command-line
options and arguments. This new version should be used in place of the
UNIX getopt command wherever possible. This new Korn Shell version is
more powerful and also functions as a built-in command instead of a UNIX
call. The Korn and Bash Shells support the getopts command as a built-in
command. Often the Bourne Shell uses a UNIX utility to supply getopts
functionality.

The getopts command is used to parse argument lists passed to a
Shell in a standard manner. The syntax of the getopts command is:

getopts options_str opt_variable [args ..]

The getopts function was designed to handle all of the various forms of
command-line options used when executing Shell and UNIX commands.
For example, a typical UNIX or Shell command that excepts command-line
arguments can take those arguments in various forms as shown:

grep -bi group file.test

or

grep -b -i group file.test

The getopts command parses the argument list and allows the Shell pro¬
gram to examine its arguments in an organized and consistent way no

Continued

Shell Programming ♦ 191

matter which order a user inputs options. The Shell program need only uti¬
lize the getopts command, and the flexibility of specifying options on the
command line is automatically provided. Getopts provides this functional¬
ity by utilizing a few standard variables and information passed to getopts
in your Shell program.

In order to utilize the getopts command you must specify to getopts
which command-line options are valid. This is done by providing a string
of legal options for the command in the options_str. For example, if we
were to use the string “abcf: ” for options_str in the getopts command, we
are telling getopts to accept the options -a, -b, -c, and -f followed by any
argument (such as a filename). The colon (:) following an option specifies,
as was illustrated by the previous example, that a variable has arguments
or groups of arguments. If the options_str begins with a colon, then the
getopts command allows your Shell program to handle illegal options
(options entered by the user but not in the options_str). This is described
in the next paragraph. If you don’t specify a colon at the start of the
options_str, then getopts provides a standard error message when an ille¬
gal option is entered.

Each time that getopts is called (you are responsible for calling it
until all command-line arguments are parsed), it parses the options and
provides the next option to you in the variable named in opt_variable in the
getopts command. Let’s take a look at another example:

getopts :xyzf: $BULL_ARG

Now each time we call getopts it will return the options passed to the Shell
program, provided they are valid options listed in options_str, into the vari¬
able $BULL_ARG. If the variable $BULL_ARG does not exist, then getopts
creates it. If the option is preceded by a -, then only the option letter appears
in $BULL_ARG. But if the option was preceded by a + sign, then
$BULL_ARG contains the + followed by the option letter. If your options_str
indicates error checking, as the string does in the example by preceding all
options by a :, then an illegal option assigns a value of ? to $BULL_ARG.

In conjunction with passing your program the option that was just
parsed, the getopts command also sets two global variables $OPTIND and
$OPTARG. OPTIND tells you which option indicator will be processed next
and OPTARG holds the arguments for the option parsed. For example, if a
user had called the Shell containing the getopts command previously listed
using the command

foo -f "stuff"

Continued
\

192 ♦ Chapter Six

then the variable $OPTARG would contain “stuff” when $BULL_ARG con¬
tained “f”.

The optional args that can be passed to getopts indicate that you
would like getopts to parse the parameters found in the string. If you do
not provide an argument (the usual case), then the standard positional
parameters are parsed ($1, $2, and so on). Often if an argument is pro¬
vided, then it is the special Shell variables “$*” or

Getopts Example

The main function of getopts is to read options and arguments passed to
your Shell program by a user. This is usually done by putting the getopts
command into a while loop in conjunction with a CASE statement. This is
demonstrated by the following Shell program called showopts.

USAGE="showopts [-q] quiet mode [-v] verbose

mode(default) [-h] help -f ffilename"

while getopts :qvf: h WHICH_OPTION

do

case $WHICH_OPTION in

q) echo "You selected the option $WHICH_OPTION"

echo "The shell is in quiet mode1'

echo "No messages will be displayed during

shell execution"

Q_MODE=l;;

v) echo "You selected the option $WHICH_OPTION"

echo "The shell is in verbose mode"

echo "All informational and error messages

will be displayed"

V_M0DE=1;;

f)

echo "You selected to work with file named $OPTARG";;

h)

echo "You selected the help option."

echo "The format of this command is $USAGE"

exit(-l);;

?) echo "$USAGE"

exit(-1);;

esac

done

if ([Q_MODE -eq 1] && [V_MODE -eq 1])

then

Continued

Shell Programming

echo "Quit mode and verbose mode are exclusive"

echo "Pick one or the other"

exit(-1)

fi

Now if we enter the following command, let’s see what happens:

showopts -q -f FRED

You selected the option q. The Shell is in quiet mode

No messages will be displayed during Shell execution

You selected to work with file named FRED

Variables in Shell Programs

Assigning values to variables is an important feature of creating Shell procedures.
Previous chapters showed how variables work with control structures (IF-THEN-
ELSE, CASE, FOR, UNTIL, and WHILE). The Shells allow simple assignment:
Bourne and C Shells assign variables differently. The C Shell requires the user to
set variables, whereas the Bourne and Korn Shells allow simple assignment:

variable=value

Shell users can also create variables to improve maintainability and
reusability of the procedure. A simple example involves keeping all of the boiler¬
plate for documents—letters, memos, forms, whatever—in a unique directory. To
allow for future changes in the directory name on various systems, you might
create a variable that points to the boilerplate directory:

docdir="/unixfs/boilerplate"

Then, create a Shell called getdoc that selectively retrieves boilerplate from the
directory:

#getdoc

docdir="/unixfs/boilerplate"

if [-r ${docdir}/$l]

then

cp ${docdir}/$l $2

echo "$1 boilerplate created as $2"

else

echo "$1 boilerplate not found in ${docdir}"

echo "Valid templates are:"

Is ${docdir}

fi

194 ♦ Chapter Six

Setting and using the variable docdir ensures that the command can later be
changed to point to other directories on other machines by changing only the
variable assignment, not the entire procedure. Using variables for pathnames is
definitely desirable: They are easily maintained and more reliable.

A common problem with new Shells is that variables are referenced before
they are assigned a value. To counter the effects of this problem, the Shell can be
told to treat unset variables as fatal errors:

set -u

Or, you can specify a default value for a variable:

if [-d ${docdir:=/unixfs/boilerplate}]

The Shell checks to see if docdir has a value; if so it uses it, otherwise, it uses
/unixfs/boilerplate. Having meaningful defaults for variables means never hav¬
ing to say you’re sorry. They prevent improper operation of the Shell. For exam¬
ple, suppose that you had a command that did the following:

cd $temp

rm -rf *

If %temp has no value, the Shell will change to $HOME and remove all of your
files. This could have been avoided by using a default value of /tmp:

cd ${temp:=/tmp}

rm -rf *

which would only remove those files in /tmp that belong to your user ID.
Variables can also be set to the output of Shell commands by use of the

accent grave characters (backwards apostrophe). For example:

cmdpath=/usr/bin/nroff

dirname=1basename ${cmdpath>'

echo $dirname

/usr/bin

The set command can also be used to set the command variables: $1, $2,
$3.... To set these variables to all of the filenames in the current directory, use
the following command:

set - *

To set $1 to a new value, set can also be used as follows:

set - "new value for $1" "new value for $2" . .

Shell Programming ♦ 195

Another ability of the Shell involves setting variables before execution
using the command line:

varl=value var2=value \

command -options argumentl argument2 . . .

Although this may not sound that exciting at first, we could use it to act like a
mail merge—adding names and addresses to a letter before printing:

name="Jay Arthur'' address= "Radio Free Denver CO" \

l_print query_letter

#l_print

sed -e "s/name/${name}/g" -e "s/address/${address}/g"\

$1 I nroff

In this example, I set the variables name and address before executing the com¬
mand Lprint. Within l_print, I then had access to these two variables, used them
with sed to change queryJetter, and then formatted and printed the letter with
nroff. This is one of many ways that presetting variables can be used in the Shell.

Variables are an important part of writing good Shell procedures. They can
be assigned both string and numeric values from any source including the out¬
put of other Shell commands. Put them all together with arguments, commands,
and control structures, and you have the ability to manipulate files into any
required format.

Built-in Commands in Shell Programs
_,4-

The Shell uses certain commands that are built in. The Bourne, Korn, Bash and
C Shell built-in commands were shown in Thble 4.6. The commands break, cd,
exit, export, set, shift, and test have been demonstrated in prior examples. Of
equal importance are the eval, exec, read, and wait commands.

The eval command lets the user build command strings and then use them
as if they were part of the Shell program. For example, a complicated Shell com¬
mand might have to determine the proper input and output filters for a given com¬
mand. Rather than execute the command many different ways, the Shell could
create a variable containing the correct input filters and one containing the proper
output filters. The complete command could be evaluated and executed as follows:

inputfilter="cmdl I cmd2"

outputfilter="cmd3 I cmd4"

eval "$inputfilter I command I $outputfilter"

which would be the equivalent of executing the commands:

196 ♦ Chapter Six

cmdl I cmd2 I command I cmd3 I cmd4

Using eval can increase the flexibility of many Shell programs by allowing you
to dynamically create Shell commands based on user input. The overall net effect
of the eval command is that the line passed to eval is scanned by the Shell two
times. First substitution is performed and then the line is evaluated again to
determine the Shell line that is to be executed. For example, let’s say that we had
built the following line of Shell code in the variable OUTPUT, based on some
information provided by the user, and then try to use this portion of code in con¬
junction with the cat command:

OUTPUT=" maxfact > maxfactout"

cat $OUTPUT

Here are the results of the maximum factor calculation:

cat: cannot open >

cat: cannot open maxfactout

As you can see, the Shell performed the substitution of $OUTPUT, but then
the redirection symbol was not properly evaluated. You can use eval to perform
the evaluation of the redirection operator-.

OUTPUT=" maxfact > maxfactout"

eval cat $OUTPUT

This time the output is redirected to the file maxfactout because of the double
evaluation caused by eval.

The exec command will execute a command in place of the current com¬
mand without creating a new process. The Shell that is currently running is
replaced and the new command runs in its place without any subshell being cre¬
ated. This is occasionally useful if control need never return to the parent Shell
and can reduce the number of processes running on your machine.

Another command, often called sourcing a command file, is all the more
useful because it reads a Shell program as input and executes the commands as
if they were part of the current Shell program. Changes made to any variables
effect the Shell that executes the command:

shell_module

This facility encourages modularity (a key quality design goal of all soft¬
ware) and helps to encourage reuse of Shell programs. The Shell code in
shelLmodule is reusable by any Shell program that needs it. Reusability, in turn,
can reduce maintenance costs—rather than fixing ten versions of the same code,
only one module need be changed.

Shell Programming ♦ 197

The read command gets a line from standard input. In most cases, stdin
will be a terminal. The read command is the main input mechanism you will use
in your Shell programs. The syntax of the read command is:

read [var_name ...]

Each word read from the standard input is assigned to the variables listed as
varjiame. If there is more input than variable names, then the last variable
named in the list varjiame receives the remainder of the input. The read com¬
mand returns an exit code of zero unless it detects an end-of-file condition. If the
user is entering input from the terminal then the Ctrl-d sequence indicates the
end-of-file condition.

In most Shell programs, if the user does not enter the correct number of
arguments, it is better to ask for them than to exit and demand that they be
entered on the command line. A combination of echo and read handles the job
nicely:

if [$# -eq 0]

then

echo "Enter filename”

read filename

else

filename=$l

fi

Read can also get a line of input from a file or pipe used as standard input:

shellcommand < file

command I shellcommand

#shellcommand

while read inputline

do

process inputline

done

This could also be handled by the line command, although read, because
it is built in, is faster:

while inputline='line'

etc.

The read command is a handy built-in function to get information from the
standard input and assign the result to a variable that can then be handled like
any other.

198 ♦ Chapter Six

KSH

The Korn Shell provides some extensions to the read command that
increase its flexibility. The major enhancement provided is the ability to
read from files other than the standard input. The syntax of the read com¬
mand is the following:

read [-prsu[n]] [name ? prompt] [var_name ...]

where the -p and -u options have the following meaning:

-p Read from the input pipe of a process spawned using l&. If an
end of file is read, then the spawned process is cleaned up so
that another can be spawned.

-u [n] Read from the file associated with file descriptor n. If n is not
supplied, then 0 is used.

As with the Bourne Shell version, the Korn Shell reads from standard
input unless the -p or the -u option is used. The -p and -u options provide
the ability for a single Shell procedure to read input from more than a sin¬
gle file. If no variable names are provided to place the read input into, then
the Korn Shell uses a default variable REPLY to store what was read. The
other enhancement provided is the prompt string option. If the first vari¬
able named in the varjiame list is followed by a ?, then the read command
will use the prompt string to prompt the user for input.

BASH

The Bash Shell supports the read command as a built-in with some of the
abilities of the Korn Shell read command. The format of the command is:

read {-r] [var_names]

which behaves exactly like the Bourne Shell version, with input being
assigned to variables listed in varjiame, except that if no variables are
listed in varjiames, the input is assigned to the variable $REPLY.

The wait command, as its name implies, waits for a background process to
complete before continuing. A Shell program might start a background process,
do some other processing, and then have to wait on the background process (or
processes) to complete before continuing. Wait is a patient command:

Shell Programming ♦ 199

commands # put the command in background

other Shell commands

wait $- # wait for
command to finish
wait # wait for
finish

the last background

all background commands to

continue processing.
Wait, like the rest of these built-in commands, meets special needs of the

Shell programmer. They help make it simple to build useful Shell procedures.

How the Shell Finds Commands

Most Shell commands reside in directories called ‘bins”: /bin and /usr/bin.
Others, important only to the system administrator, reside in /etc, /usr/rje, and
/usr/adm. Of course, you can create your own bin directories to store all your
Shell procedures. In fact, the directory can really be any valid UNIX directory
name but it is just customary to place Shell programs in directories called bin.
The only stipulation is that the Shell procedure stored in the directory must have
its mode changed to executable. For the majority of users, the commands avail¬
able in /bin and /usr/bin will be of most importance. The /usr/ucb bin contains
the Berkeley 4.2 BSD commands. On Berkeley systems, System V commands can
be found in /usr/5bin.

When a user logs in, the Shell sets up a standard environment using sev¬
eral variables (see Thble 5.5). As was discussed in previous chapters, the Shell
uses the PATH (sh, ksh) or path (csh) variable to find each directory path that
should be searched to find commands. The PATH variable is initialized at login
time. To find out the default paths available, try the following command:

echo $PATH csh: echo $path

:/bin:/usr/bin: . /bin /usr/bin

The response means that you have all of the standard Shell commands available
for execution. The Shell uses the PATH variable to determine where to search for
commands and in what order you want to search the bins. The current value of
PATH indicates that the Shell will first search the current directory, then /bin, and
finally /usr/bin. The current directory is represented by a null name, followed by
a colon. You can change the order of the search by redefining the value of PATH
as follows:

PATH=/usr/bin:/bin::

which reverses the order of the search.

200 ♦ Chapter Six

If you had a user bin under your home directory, you might add it to the
search path using another Shell variable, HOME:

PATH=${PATH}:${HOME}/bin

Using my login as an example, this would change the value of PATH to:

/usr/bin:/bin::/unixl/1ja/bin

Whenever I execute a command, the Shell will look first in /usr/bin, then /bin,
the current directory, and finally my user bin. This means that I can type a com¬
mand name and the Shell will find it; I do not have to type in the full pathname
to use a command I have created. This is an important feature of the Shell that
helps improve productivity; bins full of user commands can be placed anywhere
in the system and accessed directly via the PATH variable.

The system administrator can redefine PATH to include common user bins
by inserting the following two lines into /etc/profile:

PATH=:/bin:/usr/bin:/local/bin

export PATH

The export command makes the PATH variable available to all subsequent pro¬
cesses initiated by the user.

Because users would rather not change the PATH variable during every
session, the user may further modify the PATH variable automatically at login
time. The PATH variable can be modified using either /etc/profile (usually done
by the system administrator) or the .profile in the user’s home directory. In a C
Shell system, the PATH variable can be modified in the user’s .login or .cshrc
files, which reside in the user’s home directory. You can create the .profile (csh:
.login/.cshrc) file in your HOME directory and add the following two lines to
include your own command bin:

PATH=${PATH}:${HOME}/bin

export PATH

These two lines will add your bin to the Shell’s search path. The Shell can now
automatically look in all command bins to find any command you request.
Problems can occur, however, if there are two commands with the same name in
different bin directories; the Shell will execute the first one it finds. This is espe¬
cially important in systems which have all three Shells: Bourne, Korn, and C. Not
all System V commands behave like Berkeley commands. To obtain System V
commands, put them first in the PATH variable. On Berkeley UNIX systems,
reverse the positions of /usr/5bin and /usr/ucb:

PATH=:/bin:/usr/bin:/usr/5bin:/usr/ucb

Shell Programming ♦ 201

There is a command in the Bourne shell, the type command, that will allow you
to see which version of a command is being executed by the Shell. It will echo
back the full pathname used to locate the command as well as what type of com¬
mand was entered as an argument. It is convenient when the command does not
appear to be doing what you think it should be doing and you want to see where
the command is being executed from. For example, if we had a Shell procedure
proj_status, and we wanted to see where the Shell was executing this command
from we would enter the type command:

type proj_status

proj_stat is /usr/tburns/shellpgms/proj_stat

As you can see, the full path the Shell used to locate the command is printed.
This eliminates confusion over exactly which command is being executed. The
type command will also tell you if the command is a built-in command or if it is
a hashed command.

type test

test is a shell builtin

KSH

The Korn Shell provides the whence command to find the pathname used
to locate commands. The whence command is similar to the type com¬
mand but offers an option that is not supported by the Bourne Shell. The
-v option provides information about the command much as the type com¬
mand does. But the whence command used alone will provide just the full
pathname used to locate the command and can be used as input to
another command. This cannot be done using the type command. The fol¬
lowing command would allow the emacs editor to be loaded on the script
proj_status:

whence proj_status

/usr/tburns/shellpgms/proj_stat

emacs 'whence proj_status'

As already mentioned, the -v option provides verbose output about what
type of command was passed as an argument.

whence -v proj_status

proj_stat is a tracked alias for /usr/tburns/shellpgms/proj_stat

Continued

202 ♦ Chapter Six

The whence command provides information about what type of com¬
mand was passed even when the -v option is not provided. It will report
whether the command is a regular command, a function, an alias, or is
unknown to the Shell. The response provided depends on the type of com¬
mand. A normal command causes whence to respond with the full path¬
name of the command. If the command passed is an alias, then the alias is
echoed to the screen. A function passed as an argument causes whence to
respond with just the name of the function. Finally, if the command is not
known to the command, then no response is provided. For example, the
alias r gets the following response from the whence command:

whence r

fc -e -

That’s about all you need to know about the PATH variable. If you execute
a command but it doesn’t behave like the documentation, you might suspect the
PATH variable is pointing to libraries in the wrong order. Or if you type a com¬
mand name and the Shell issues an error message saying that the command can¬
not be found, check your PATH variable to ensure that is pointing where you
believe the commands exist.

The Bourne and Korn Shells also use an environment variable, CDPATH,
with the cd command to reduce typing. Users can set up CDPATH in their .profile
to include any of their major directories. Then, no matter where they are in the
directory structure, all they have to do is cd to the directory name and the Shell
remembers where those directories are and changes to them without extensive
typing. For example, if there was an entry in the .profile as follows:

CDPATH=$HOME/doc

export CDPATH

and you are already in the /usr/bin directory, you could change into the doc
directory by typing:

cd doc

The directories can also be listed like the PATH variable to give immediate
access to any of the major directories:

CDPATH=$HOME/bin:$HOME/doc:$HOME/src

export CDPATH

Using the cd command, the user can change from one directory to another
without typing long pathnames. The Shell will print the pathname of the direc¬
tory it has changed into:

cd doc

/unixl/1ja/doc

Shell Programming ♦ 203

Shell Programming

To illustrate the prior facilities and concepts, let’s develop a few Shells, ranging
from simple to complex.

The who command tells who is logged on to the system at any time, but it
only tells the person’s login ID, not his or her name. This information is in the
password file, but not in a form that can easily be used. Let’s develop a com¬
mand, called whois, to extract the user from the password file and print only the
relevant information.

First, we need to extract the user ID from the /etc/passwd file and then
extract only the person’s name. Whois will have the following form:

whois userid

if [$# -eg 0]

then

no user ids supplied

echo "Enter userid"

read userid

else

userid=$l

fi

grep $userid /etc/passwd I cut -f5 -d:

whois lja

Jay Arthur

To make this command work on more than one user ID, it could be modi¬
fied as follows:

whois userid(s)

if [$# -eq 0]

then

no user ids supplied

echo "Enter userid"

read userid

grep $userid /etc/passwd I cut -f5 -d:

else

while ["$1"]

do

grep $1 /etc/passwd I cut -f5 -d:

done

fi

The command could be made more efficient by using egrep and pasting all of the
arguments together as follows:

204 ♦ Chapter Six

whois userid(s)

if [$# -eq 0]

then

no user ids supplied

echo "Enter userid"

read userid

else

userid='echo $* I sed -e "s/ /\l/g"'

fi

egrep $userid /etc/passwd I cut -f5 -d:

Another simple Shell procedure might need to look through all directories
under the current one and execute commands entered by the user. This com¬
mand should also trap interrupts (discussed in more detail later in the chapter)
and allow processing to continue:

dirsearch [directory name]

search the specified directory for other directories

in each one, prompt the user for commands to be

executed.

if [-d "$1"]

then

cd $1 # change directory to $1

else

dir='pwd' # dir=current directory

for file in * # all files in directory

do

if [-d $file] # Directory ?

then

cd ${dir}/${file}

while echo "${file} ?"

trap "exit 0" 12 3

read cmd # read command

do

trap ""123

eval $cmd $file #execute command

done

cd . .

fi

done

fi

Another simple but useful command displays information on the screen a
page at a time. Using cat to display a file often causes the important information
to disappear before the user can hit the no scroll key. Simple commands to dis¬
play pages on 25-line terminals are more and pg. The same can be accomplished
with pr:

pr -p -t -123 filename # pause every 23 lines

more filename

pg filename

Shell Programming ♦ 205

But on other occasions, it would be nice to page through the output of another
command:

nroff -cm document | more

These can be combined into a single Shell that handles whatever it’s given:

page [files]

case $# in

0)

if the terminal is standard input and

there are no arguments

prompt for a file name

if [-t 0] # standard input is a terminal

then

echo "What file? "

read filename

more ${filename:=/dev/null}

else # read from standard input

more <&0

*)

while ["$1"]

do

clear

more $1

shift

done

esac

Another example involves a directory that contains files or commands
spooled by another command. If the first line of each file contains a header line
with the user’s ID and other information, the user can check the status of those
jobs as follows:

status

spooldir=/usr/spool/whatever

cd ${spooldir}

(for files in * # all files in spool directory-

do

line < ${files} # read first line

done

) | grep ${LOGNAME} #grep userid from first lines

In this example, line will extract the first line of each file in /usr/
spool/whatever. Because the for loop is enclosed in parentheses, all of the

206 ♦ Chapter Six

output from each of the line commands is placed on stdout. Instead of many
separate streams of information, the Shell combines the output of each of the
line commands into a single stream that can Be piped into grep. Grep then
looks through the stream for header lines that match the user’s login name,
${LOGNAME}.

Another simple need of a Shell user would be to execute a series of com¬
mands, but execute them at intervals so that the system’s users would notice lit¬
tle degradation. The program, today, to read a command from an input file and
execute it at 15-minute intervals, would look like this:

nohup today commandfile&

exec 0< $1 #open commandfile as stdin

while

read cmd # get line from commandfile

test -n ''${cmd}"

do

eval ${cmd} # execute command

sleep 900 # sleep 15 minutes

done

The possibilities for creating useful commands seems endless. It requires
some ingenuity to pick the best combination of commands, pipes, redirection,
and Shell constructs to build a new Shell, but with a little experience it is easy.
One of the best ways to get new ideas is to study the shells that come with UNIX:
those in /bin, /usr/bin, and /usr/ucb/bin.

Handling Error Conditions

There are two major types of error conditions that you should check for in your
Shell script if it is to be well behaved and of high quality. First there are internal
errors in your script itself. This is generally caused by some command’s failing to
perform as expected or the user’s not providing the information needed to the Shell
program. The second type of error is an external error that the Shell procedure must
respond to properly. These type of errors are sent to your Shell procedure in the
form of a signal sent by the system telling you that some system-level event has
occurred that will have an effect on your Shell procedure. An example of this would
be if the user of your Shell procedure hangs up while in the middle of processing.
Quality Shell procedures handle these events in a reasonable way (when possible)
and take action based on the event that occurred. In this section we will look at
each type of error condition and what you should do to handle each type.

User-error conditions are unique and need to be tested for on a case-by¬
case basis. In general, you need to ensure that the user is not allowed to provide
invalid input that will cause the Shell to behave incorrectly. A quality Shell pro¬
gram will always tell users some meaningful error message when they perform
an incorrect action. It should also provide a means to allow the user to correct the
action performed if at all possible. Well-designed user interfaces are the key to

Shell Programming ♦ 207

developing useful Shell procedures. An integral part of a well-designed user
interface is the quality of error messages provided as well as the degree to which
the Shell procedure protects the user from erroneous input that will cause prob¬
lems in the Shell procedure. A good first step, as is demonstrated by several of
the previous Shell program examples, is to always check the options and argu¬
ments passed to the Shell to ensure that there are no arguments or options that
are invalid. This can best be done by using the getopts command if you are a
Korn Shell user. The getopts command provides a foundation for defining how
the user will input options and arguments and provides a foundation for parsing
those options and arguments in your Shell procedure.

The second type of error that can occur in your Shell procedure is some
unexpected command failure. For example, perhaps your Shell procedure
needs to copy a UNIX file to obtain some information that will be used in pro¬
cessing. If this file no longer exists, then you will not be able to continue pro¬
cessing properly. You will need to check to ensure that you copy the file
properly; otherwise, the results of later processing by the Shell command may
be unpredictable. Each time a Shell command is executed, the special variable
$? is set to the return status of the command. This provides you with the abil¬
ity to check and ensure that the command worked properly. By convention a
command returns zero when it was properly executed and a nonzero value
when it has not. Any time you execute a critical command in your Shell proce¬
dure you should check to be sure that it returned a zero return code. If it did
not, then you should take some reasonable error action. As a side note, your
Shell procedures should try to follow the same convention. If your Shell fin¬
ished properly then you should return a zero. Providing this type of standard¬
ization makes your Shell more reusable by yourself and others. As an example
of checking the return code let’s look at the following copy statement Shell
fragment. The cp command returns 0 when the cp was completed successfully
and a nonzero return code otherwise.

copy the skeleton file to the current directory

cp /shellpgms/var_skel .

if [$? != 0]

then

echo "Sorry the shell program was unable to copy"

echo "file /shellpgms/var_skel \n"

echo " to your current directory - "

echo "The Shell program cannot continue\n"

exit 1 # Exit the shell and return invalid code

fi

Now if the copy command did not work properly, the user will get an error
message indicating that the Shell procedure cannot continue. It would also be
possible to check for error conditions using the test command to ensure that the
files and directories to be copied from and to exist. This can be done before the
copy command itself. The real point to be made is that you should check the sta-

tus of every critical command in your Shell procedure to be sure that it worked
as you expected it to work.

Signals and the Trap Command

The second type of error is an error that occurs external to your Shell process.
Certain kinds of actions by the user and the system can cause errors which will
interrupt your Shell program. These errors are captured by the UNIX system and
passed to your process as a “signal”. The system is signaling your Shell proce¬
dure (a UNIX process) that there is a problem and some action may need to be
taken. This action can be any valid Shell action, or it may be no action at all. You
control how your Shell procedure will respond in each case.

The trap command lets you handle signals: phone lines hanging up,
breaks, deletes, kill commands, and many others. Each of these is a signal
described in Section 2 of the UNIX User’s Manual under signal(2). Some of the
more common signals are listed in Thble 6.10. Note that this is not a complete
list of all signals. For a list of all signals, see the reference section under the kill
command.

The Shell trap command allows you to decide which signals you want to
handle and the action that should be performed when a particular signal is
“caught” by your Shell program. The syntax of the trap command is shown as:

trap [command list] [signal list]

where the commandJist is a Shell command (s) to be performed when the
Shell receives any of the signals found in signaljist. In the case of the Bourne
Shell, the signal must be a numeric value. Using the Korn and Bash Shells, it
is possible to refer to all signals by the string name arguments shown in the
Table 6.10. The trap command with no arguments will provide a list of all
existing traps that have been set. Please note that it is not possible to trap a
signal 11 (memory fault) or a signal 9 (sure kill). A signal 9 is designed to be

TABLE 6.10 Common Interrupt Signals

Signal name Signal number Description

EXIT 0 Exit from the shell procedure
SIGHUP 01 Hangup (user disconnects in some way)
SIGINT 02 Interrupt (user hits Del key on keyboard)
SIGQUIT 03 Quit (user hits Ctrl - \ on most keyboards)
SIGKILL 09 Kill (cannot be caught or ignored)
SIGALRM 14 Alarm clock
SIGTERM 15 Software termination signal (default sent by kill

command)

Shell Programming ♦ 209

a critical signal that ensures some method for killing a UNIX processes that
otherwise won’t complete properly. The default action for all signals, if you do
not specifically take some other action using the trap command, is to termi¬
nate the Shell program and exit. So if you choose not to trap some particular
signal, your Shell procedure will terminate with no action taken. While not the
most graceful way to leave your Shell procedure, the default action may be
appropriate in some cases. In most cases though you will want to catch a sig¬
nal and take some sort of reasonable action like cleaning up files and exiting
properly.

Most often, when the Shell receives a signal, you will want to remove all
temporary files and exit gracefully with a return code. This is accomplished by
executing the following command:

trap (rm tmp*;exit 0) 1 2 3 14 15

When the Shell receives a hang-up (1), interrupt (2), quit (3), alarm (14), or
software termination (15) signal, it will remove the temporary files (rm tmp*)
and exit with a false value (exit 0). In other cases, the command may be
working on many files and you would like to know where to restart the
command:

trap (echo ${filename} > stopfile; exit 0) 1 2 3 14 15

Stopfile will contain the name of the last file used by the command.
In addition to taking some particular action it is also possible to ignore a

signal by taking no action at all. If you specify a null string for the commands to
be executed, then the Shell will trap the signals specified and take no action at
all. Your Shell will continue to execute as if it had not received any signal. This
can be useful when you do not want a shell procedure to be interrupted at some
critical stage of processing. You could decide to ignore the interrupt signal by
using the statement below.

trap ""123

Actually this statement ignores signals 1, 2, and 3. These are the most common
methods that a user adopts to stop a Shell that is processing. In general, you will
want to allow the user a way to stop the Shell from processing, but in certain
cases you will want to ensure that the Shell is not stopped unless it absolutely
must. In these cases the ignore trap is a very useful tool.

It is also possible, as you may already have determined, to change how a
trap behaves at particular points in you program. As was discussed, we might
want to ignore some signals for certain portions of our Shell program but then
reset them back to some other action after the critical code has completed.

210 ♦ Chapter Six

KSH

The Korn Shell adds a few nice features to the trap command. First, the
signals can be listed by name as well as by number. In place of omitting the
command to reset the trap action to its default, it is permissible to use
with the Korn Shell to indicate a desire to reset signal action.

The Korn Shell also defines some special signals that cause com¬
mands to be executed at particular times. These are very handy for debug¬
ging Shell programs. In particular, if signal is ERR, then the commands
listed are performed any time a command returns a nonzero return code.
The DEBUG signal can be used to execute a trap command after each Shell
command in your program. The EXIT signal (or 0) performs the commands
after a function, if the trap was done inside a function, or after exiting the
Shell if not inside a function.

trap ""123 # ignore user interruptions

do some critical processing

trap 1 # reset trap for signal 1 to default action

leave temp files

remove temp files if user exits

trap (rm tmp*;exit 0) 2 3

Note that the trap command without any command resets the trap to the
default action which is to terminate and exit with a return code of 0. This is not
the same as the null command which causes the shell to ignore a signal.

By setting a trap for a signal 0, you can specify some action that is always
to be performed when the Shell procedure exits with a 0 return code. When the
shell completes with a return code of 0, the actions specified with the trap are
taken. This can be useful for cleanup routines or just to issue a message of
some kind.

trap "echo The Shell procedure has completed properlyA

with no errors" 0

One other note about the trap command. If a Shell ignores a signal, then all
subshells also ignore that signal. If, however, a Shell takes some action based on
a signal then all subshells take the default action on that signal. In other words
trap actions are not inherited by subshells.

These are simple examples, but every Shell command should clean up after
itself and take some meaningful action when interrupted. Trap encourages the
active rather than passive handling of signals.

Trap is not available in the C Shell, but a similar command onintr handles
trapping signals and takes remedial action.

Shell Programming ♦ 211

Bash

The Bash Shell supports a somewhat more limited trap functionality than
the Korn Shell. The syntax for the Bash Shell trap command is

trap [-1] [arg] [signal]

The -1 option is used to list signal names and numbers from the system.
Like the Korn Shell, the arg can be a - which is used to reset the trap back
to the default value. The signal can be either a numeric signal representa¬
tion or a symbolic signal representation. The only special trap signal sup¬
ported by the Bash Shell is the EXIT trap.

Testing Shell Programs

Before subjecting the rest of the user community to your new Shell program, it is
a good idea to test the Shell thoroughly. The Shell provides a couple of interac¬
tive debugging facilities in the form of Shell parameters (-vx).

You can execute a procedure and the Shell will display every command line
as it reads it as they were written in the Shell procedure:

sh -v shell_program

Similarly, the Shell will display each command executed and the values substi¬
tuted for variables:

sh -x shell_program

Let’s look at an example of the output from the debugging options. We will
use the whois Shell developed earlier in the chapter as an example. For illustra¬
tion though, let’s assume that we made a simple syntax error in the Shell. The
read command was misspelled as reqf instead of read. The whois command is
shown below:

whois userid

if [$# -eq 0]

then

no user ids supplied

echo "Enter userid"

reaf userid

else

userid=$l

f i

grep $userid /etc/passwd I cut -f5 -d:

212 ♦ Chapter Six

Now let’s try and run this command and see what happens:

whois

Enter userid

whois: reaf: not found

Not only do we get the above error message indicating that the Shell could
not find a command called reaf, but the Shell also hangs up and causes us to exit
with an interruption. If we wanted to see what had happened we could run the
Shell with the -x option to observe exactly what had occurred. The results of
doing this are shown:

sh -x whois

+ [0 -eq 0]

+ echo Enter userid

Enter userid

+ reaf userid

whois: reaf: not found

+ cut -f5 -d:

+ grep /etc/passwd

Each line that is preceded by a + is a line that the Shell has evaluated and
performed variable substitution on. Lines without a + are the normal output sup¬
plied by the Shell. Now that it is possible to see the trace of all commands as they
are executed, it is very easy to see where the errors have occurred. We can pin¬
point that the read command was misspelled. In addition, we can see exactly
where the error occurred. While in this simple example it is fairly obvious, in
larger Shell programs it can be difficult to determine where error messages are
generated from. The reason the Shell appears to “hang up” and not finish prop¬
erly is also clear. The grep command is now incomplete since no user ID was pro¬
vided. The grep command is simply missing an argument.

While the -x option is most useful in solving most bugs, the -v option can
be used to trace the flow of a Shell program. The -v option simply prints the Shell
lines, just as they are in the Shell program, to your terminal.

sh -v whois tburns

whois userid

if [$# -eq 0]

then

no user ids supplied

echo "Enter userid"

reaf userid

else

userid=$l

fi

grep $userid /etc/passwd I cut -f5 -d:

Ted Burns 303-555-8949

Shell Programming ♦ 213

Sometimes it may be difficult, using the -x option, to determine what
line has executed after all the variable substitution has occurred. You can use
the -v and -x options together to see a before and after image of the Shell
lines as they execute. While useful at times, I usually find this to be more con¬
fusing overall and use it only when I just cannot determine what line has been
executed.

There are several other options that can aid in debugging a new procedure
(Thble 6.8). Any of these commands can be set within the procedure by use of
the set command:

set -x

Any of the currently set options are contained in the Shell variable $-.

echo $-

xx

Another useful technique in Shell debugging uses a global variable in con¬
junction with the set -x command to turn debugging on and off in your Shell pro¬
cedure. If we tie the turning of the -x option in all Shells to some global variable,
then we can turn debugging on and off in a snap just by setting a global variable
to some particular value. For example, let’s say we call our global variable DEBUG.
Then at the top of the Shell we check to see if the variable is set to “ON”. If so,
then we turn debugging on in the Shell. To turn debugging off, we simply set the
DEBUG variable to some other value (that is, “OFF”). Don’t forget that you must
export the DEBUG variable. Here is what the whois Shell would look like with the
DEBUG code installed:

whois userid

if ["$ {DEBUG}’1 = "Oft”]

then

set -x

fi

if [$# -eq 0]

then

no user ids supplied

echo "Enter userid"

read userid

else

userid=$l

fi

Now if we wanted to turn the -x option on we would simply do the following:

DEBUG=ON

export DEBUG

214 ♦ Chapter Six

When the whois command executes, the -x option is turned on and the debug
lines are displayed to your screen. To turn debugging off you simply do some¬
thing like the following:

DEBUG=off

export DEBUG

The setting of the DEBUG variable can be made an alias to simplify the process:

alias debug='DEBUG=ON; export $DEBUG

Although, at first glance, this approach may not seem to have much of an
advantage, there are actually several valuable things that this approach pro¬
vides. First, if you are consistent and always place this code at the top of every
Shell program that you write, then you have a very consistent and easy method
for turning on and off debugging in all your Shell procedures. Where this really
becomes advantageous is when you are working with Shell programs that call
other Shell programs to perform some work. If you try to debug this series of
Shell programs using the standard “sh -x” invocation you will find that it does
not work as expected. The called Shell programs do not have the -x option set
since they are invoked as a subshell. As an example, let’s say that we modified
the whois Shell program to call a general-purpose password grep procedure.
This procedure is passed the user ID and the column to cut from the password
file. A simplified version of this general purpose grep and cut is shown. (Note
that for simplicity much of the error checking that should be done is not.)

#a general purpose password file grep and cut

if ["${DEBUG}" = "ON"]

then

set -x # turn

debugging output on

fi

if [$# -eq 0]

then

echo "No arguments supplied for passgrep"

echo “- Arguments are userid and field # to cut"

fi

grep $1 /etc/passwd I cut -f$2 -d:

Now if we call this routine from inside the whois command, instead of
doing the grep directly we have problems if we try to use the “sh -xv” to debug.
Here is what we get when we try to debug the Shell program:

sh -x whois tburns Continued.

Shell Programming ♦ 215

+ [= ON]

+ [1 -eq 0]

userid=tburns

+ passgrep tburns 5

Ted Burns 303-555-8949

As you can see, there is no debug information provided for the passgrep Shell. This
problem can be overcome using the global environmental variable as shown below:

debug # turn on debugging

whois tburns

+ [1 -eq 0]

userid=tburns

+ passgrep tburns 5

+ [2 -eq 0]

+ cut -f5 -d:

+ grep tburns /etc/passwd

Ted Burns 303-555-8949

Both Shell procedures have debugging turned on. When Shell procedures
start to become large and call many other Shell procedures, then this debugging
technique can save hours of headaches trying to locate a problem. Another use¬
ful tip is to place other information in the debug code that sets debugging on. For
example, you could echo the name of the Shell which is being invoked as well as
the arguments passed to the Shell. These can be very useful when trying to track
down problems. But any information that might be useful can be placed inside
the debug check. Here is an example:

if ["${DEBUG}" = "ON"]

then

echo "Entering whois command; debugging is on"

echo "The arguments passed to the whois shell are $*"

set -x

fi

Using this technique you can also set various debugging levels in your
Shell program. By setting DEBUG to particular values you can provide various
levels of debugging output, or maybe only debug particular Shell programs or
functions. For example, maybe we want to have a trace and a detail debug out¬
put with detail providing debug information for every statement and trace just
showing which procedures are being called. This could be done by setting
DEBUG=TRACE or DEBUG=DETAIL and checking for these values and turning
debug on and off as needed. There are lots of ways this technique can be used to
provide flexible and complete debugging information.

To increase your speed, you can use vi and test the command interactively
as you develop it. Once you’re in vi and you’ve created the first few lines of the
Shell program, write the file (:w). Then you can execute it without leaving vi:

216 ♦ Chapter Six

:w

:!sh -vx %

: gets you to the vi command line

! tells vi to execute the following shell command

% vi fills in with the current file name (the shell program)

If you use the vi editor (or other full-screen editors with an escape, T, facil¬
ity) , you won’t believe how fast you can develop and test Shell programs. The
emacs editor provides the same capability by using a Shell window or by exiting
to a Shell prompt using the Ctrl-Z command to place emacs into the background.

Summary

Shell procedures are simple to create—put a group of commands into a UNIX file
and make the file executable. Shells should be created anytime it requires too
much typing to enter the commands interactively or when the series of com¬
mands can be reused by many users.

Arguments, variables, pipes, input/output redirection, Shell control con¬
structs, and all of the existing commands are available for command construc¬
tion. Because of the simplicity of command interfaces, one Shell program can
interface with another Shell or a native command. Increasingly complex pro¬
cesses can be automated with groups of Shell programs. Whole systems can be
built with Shell. Once the system has been shaken out and the user’s requests for
changes decrease, Shell programs can be rewritten in C language for efficiency.
But writing in C language before all of the requirements are known is often a
burden. Use Shell to design a working model of what is needed. If it becomes too
complex or slow, it can be rewritten in C. Otherwise, Shell is more maintainable
and the Shell program should be used.

Subsequent chapters will give further examples of Shell programs.
Examples are the best way to learn Shell concepts. Then, trying your own Shells
will help cement an understanding of how Shell programming can automate
much of the routine, daily work of a user, programmer, analyst, or manager.

Shell Programming ♦ 217

Exercises

1. Describe the two types of interactive Shell procedures.
2. Describe the difference between foreground and background pro¬

cesses. What is the Shell character that puts commands into back¬
ground?

3. What command allows the Shell user to run commands in background
and hang-up?

4. What other ways can interactive Shell usage serve the development of
Shell programs?

5. Write an interactive command to search through your directories,
removing junk files. Make sure the command runs after 10 p.m. to reduce
system load.

6. Write a background command to edit all of the files in the current
directory, replacing the word while with until.

7. How are Shell programs created? How are they made executable?
8. What Shell options allow for “verbose” testing of Shell programs?
9. Which Shell variables contain the arguments to a Shell?

10. What Shell command changes the values of these variables?
11. Describe the difference between $* and $@.
12. What are the Shell built-in commands?
13. Write a Shell program to test for arguments: argl, arg2, and arg3. If

they are not present, prompt the user for them.
14. Write a Shell program to test for arguments of the form: -c, -d, -e, and

so forth. Set arguments of the same names (c, d, e) to TRUE (1) or
FALSE (0) depending on whether the argument exists on the com¬
mand line.

15. Write a Shell program to loop through the arguments on the command
line and process them only if they are files.

16. Combine exercises 14 and 15 into one program to loop through the
dashed arguments like -c, shifting the Shell variables and then loop
through the remaining arguments processing them if they are files.

17. Expand exercise 16 to prompt the user for filenames if none are spec¬
ified. Multiple filenames are possible, so loop through the prompt
sequence until the user enters a return without any filename.

18. Describe and write a program to use accent grave characters to assign
values to variables in a Shell program.

■

• ■

PART 2
Shell Programming

for the User

Great is the art of beginning, but greater is the art of ending.
—Longfellow

«

CHAPTER

User Shell
Programming

Up to this point, we have looked at Shell and all of its facilities to gain a founda¬
tion of understanding. To have benefit in the real world, however, we need to
know how to compose application systems using the Shell and its supporting
tools. This chapter will help most users experience ways to build an entire sys¬
tem using Shell. These systems will ultimately result in enhanced effectiveness
and efficiency.

In Shell, we compose systems from various programs written in Shell. In
the world of software, there are five basic program designs (Figure 7.1) that
make up virtually all systems:

1. Data input—Users enter data and information.
2. Information queries—Users request specific information and it is dis¬

played.
3. Information output— Screens and reports condense the data into use¬

ful views of the information contained in the database.
4. Database update— Data input by users and passed from other systems

changes the base of information in the database. The three key actions
against the database are add, change, and delete.

221

222 ♦ Chapter Seven

FIGURE 7.1 Program types.

5. System interfaces— Input from and output to other systems, since all
systems interrelate in some fashion or other.

As we discovered in Chapter 4, virtually all Shell utilities will support one of
these categories. Shell programs may consist of one or more of these designs.

The input process creates information. The input process may consist of:

♦ Displaying a menu
♦ Getting the user’s selection
♦ Displaying the input fields
♦ Reading and validating the input

Once valid, up-to-date data is in the database, the user may want to query the
database to extract information. Queries are both an input and an output pro¬
cess. Outputs may be either screen displays or reports. To create an output, you
will want to:

♦ Select information
♦ Organize it
♦ Format it
♦ Display or report the desired information

Getting the data into the database is a trick in itself. The update process
adds, changes, or deletes data from the database. Finally, all systems interact
with each other, sharing data. System interfaces link application with application
and machine with machine.

Having introduced the basic kinds of programs, the following sections
delve into each of these five basic program designs and ways to implement each
in Shell. In this chapter we develop portions of an employee payroll application.

User Shell Programming ♦ 223

The layout of this system is shown in Figure 7.2. Before looking at each section
of the system, we must first explore the relational database that will be used in
many of the examples developed for our application system. Following this, we
will look at building the data input portion of the system.

The Shell Relational Database

Grasp, if you will, that one of the keys to Shell power is the ability to use UNIX
files and Shell commands to form an elementary relational database manage¬
ment system (RDBMS). Databases are the primary problem-solving tools of
industry; where else can you find everything there is to know about your busi¬
ness in an automated form that can easily be analyzed? The relational table—a
table much like a spreadsheet—stores data and information in the simplest
usable form: rows and columns. A relational model of a user’s system consists of
a collection of interrelated tables.

Traditional relational databases use lots of resources, require complicated
setup, lots of training, and use proprietary data storage formats. Using the Shell
and relational files, on the other hand, gives you the power to use all of the exist¬
ing Shell tools to massage your data into any shape or form. The simplicity of
implementing an RDBMS in Shell, added to the straightforward files it uses,
gives you a powerful tool for data processing and information gathering. To har¬
ness this power, let’s begin by looking at the design and use of the relational
database.

FIGURE 7.2 Payroll system design.

224 ♦ Chapter Seven

Relational Database Design

All applications require some kind of database. The relational database is the
current industry workhorse. Before we begin examining how to implement this
data model in Shell, I’d like to give you the key to successful software system
development:

Design the data first.

If you don’t absorb anything else I’ve said in this book, remember that
well-designed data will minimize the amount of effort you spend to build and
maintain a software system. It maximizes the flexibility of the resulting system,
reduces duplication of data, and builds a safe foundation for the future.
Relational databases accent this power and flexibility.

Relational databases store data in tables. Within the table are rows and
columns. In Shell, we use plain files with fields separated by delimiters to imple¬
ment these tables. The most common delimiter character is the tab (\t). The for¬
mat of these tables is:

column 1 column 2 column 3
row 1 index/key delimiter datajtem delimiter datajtem. ..

The first field is the index or key to what’s in the rest of the record. The key
should uniquely identify all subsequent data items. To begin to illustrate the
nature of database design and the relational model, let’s use the simple model of
a payroll system shown in Figure 7.2. There are three database tables:

♦ Employee
♦ Time Worked
♦ Tbx Tables

The employee number (Figure 7.3)—the U.S. Social Security Number
(SSN), for example—could be the key to an employee record:

SSN Last First Middle Sex Birthday Salary

527964942 \t Arthur \t Lowell \t Jay\t M \t 1951/12/18\t 35000 ...

Employee # Employee Name Sex Birthday Salary
1

Employee # Date Time Worked
l

FIGURE 7.3 Partial payroll database design.

User Shell Programming ♦ 225

In this example, I used my SSN, last name, first name, middle name, birthday,
and salary to define a row in a table. I used a tab character (\t) as the delimiter
between fields. SSN is the primary key; last name could be a secondary key. This
will simplify sorting, organizing, and retrieving the information later. Birthday
contains three other subfields: year, month, and day. You can create sub fields by
using a different delimiter character—in this case the slash (/). You could also
use the colon (:), semicolon (;), blank (), or any other character as a delimiter
between fields and subfields. A word of caution, however: Do not use a delimiter
character that might commonly appear within the row, record, or field. Errors will
result when the Shell attempts to separate fields based on such a character.

Notice also that I put the data items in the order that we most often like to
organize information: alphabetical by last name and chronologically by year/
month/day. The query and reporting tools can handle putting the data back in
user-friendly order.

In a well-designed relational table, there are rarely more than seven data
items. If your table must be larger, there should be more than one table. There
are many-to-one relationships that require additional tables. For example, I
might represent days and time worked in another table:

SSN Day Time Worked

527964942 \t 1997/01/02 \t 9.5

527964942 \t 1997/01/03 \t 7.0

527964942 \t 1997/01/04 \t 8.5

These separate tables {employee and time worked) can then be processed
independently, merged or joined based on their primary keys. Joining tables
together often creates the greatest insights and knowledge about your system,
your customers, and your company.

Finally, we might have to show relationships between tables. We might
define the company’s department table as follows:

Department Department

Number Name

1 \t Corporate Headquarters

47 \t Information Systems

We could then define the relationship between employees and departments
{many-to-one) in another table, as follows:

Department

Number

47 \t

47 \t

(has Employee

an) SSN

527964942

513234567

There are also many-to-many relationships. In today’s modern-day corpo¬
rate culture, with matrix management, an employee could work for multiple
departments:

226 ♦ Chapter Seven

Department (has Employee

Number an) SSN

47 \t 527964942

12 \t 527964942

Another command that combines existing tables by matching on specific
fields is join. Join does not merge lines. When it finds matching records in the
two input files, it creates a single output record containing any or all of the fields
in both records. Imagine two files with the following lines in each file:

Filel File2
Arthur:555-1234 Arthur:123 Main:Denver:CO:80202
Martin:555-2345 Martin:245 Juniper:Denver:CO:80202

Smith:555-3456

The command, join -t: filel file2, will produce:

Arthur:555-1234:123 Main:Denver:CO:80202
Martin:555-2345:245 Juniper:Denver:CO:80202

Only the matched lines are joined to create an output line. The -t option tells join
to use the colon as the field separator character. The output produced is the
matched field, which in this case is the first field by default, followed by fields
from filel followed by the fields from file2. To generate an output line for all lines
in filel, the command could be changed to:

join -al -t: filel file2

Arthur:555-1234:123 Main:Denver:CO:80202

Martin:555-2345:245 Juniper:Denver:CO:80202
Smith:555-3456

To get just the name, phone number, and zip code from these files, join would be
invoked as:

join -al -o 1.1 1.2 2.5 -t: filel file2

Arthur:555-1234:80202

Martin:555-2345:80202

Smith:555-3456

The -o option specifies that only fields one and two (1.1 and 1.2) in filel and the
fifth field of file2 (2.5) should be output.

As shown in these examples, join updates files by adding fields or creating
whole new files with subsets of the fields in the original files. It is another tool
in the arsenal for updating files.

User Shell Programming ♦ 227

Paste works similarly to join by putting two files together regardless of
their order:

cc

In this form, paste gives the user another way to create tables. It is more
primitive than join, but it often serves a useful purpose in Shell programming.

That’s a brief overview of the various kinds of relational table designs
using UNIX files. To summarize, here are a few key rules for tables:

1. Use a single unique delimiter (\t) between columns.
2. Use a different unique delimiter (/:;) between subfields.
3. Organize the data for machine efficiency: primary keys first, secondary

keys next, then data items.
4. Restrict the number of fields per table to less than ten data items or

redesign the table.
5. Create additional tables for multiple occurrences of data items’ (one-

to-many, many-to-one, or many-to-many) relationships.
6. Small tables—under 50 rows/records—are more efficient than larger

tables. They are faster to sort and faster to access sequentially.

Now let’s take a look at how to use this foundation to construct the inputs,
queries, outputs, updates, and interfaces to an application system.

Data Input

The user interface software is the portion of the system that allows an end user
to utilize the functionality of a system. It is the window that exposes the user to
the capabilities of the software that you have developed. It is perhaps the most
important part of a software system because it determines how a user will inter¬
act with your software. Clearly this emphasis can be seen in today’s modern soft¬
ware market with its increasing use of graphical user interfaces (GUIs) and on
the Internet where FORMS (Chapter 9) allow easy entry of information. A user-
friendly interface will permit a user to utilize all the functionality with ease. You
can have some of the best software imaginable, but if it is difficult to use and
understand (a poorly designed user interface), then it will never be utilized as it
should be. Even if your software does everything that users ever wanted it to do,
if they cannot figure out how to make it work it is worthless to them as a pro¬
ductivity tool. People spend more time trying to figure out how to make the sys¬
tem work properly than the time they save using the system. Since the goal of all
software systems is to add value to individuals and companies in the form of
increased productivity, a poorly designed user interface is counterproductive to
the central purpose of software. A good portion of all system design and devel¬
opment time should be spent ensuring that the system will be easy to use and
understand. So clearly a good user interface is a key goal in the development of
any system, but what makes a good user interface?

228 ♦ Chapter Seven

Although a full discussion of user interface design and development is clearly
beyond the scope of this book, there are a few key qualities that any good user
interface should possess. These are discussed further in the following paragraphs:

♦ The user interface should be easy to use.
♦ The user interface should expose the functionality of the system.
♦ The user interface should provide help to the user when it is needed.
♦ The user interface should provide understandable, helpful, and clear error

messages.

The first property, and perhaps the most evasive quality, is ease of use.
What does it mean for a user interface to be easy to use? While what is easy for
one person to use may not be the same for the next, there are some things that
will always make a user interface easier to use. These properties should be built
into any user interface whether it is a state-of-the-art graphical user interface or
a menu-driven system such as the one we intend to develop in this chapter.
Some of these properties are listed and are briefly discussed.

1. Consistency, Consistency, Consistency. Perhaps the number one rule
of a good user interface is to make it consistent. There is nothing more
annoying (or counterproductive) to a user than an inconsistent user
interface. For example, let’s say you have a menu-driven system that
consists of a number of screens that are arranged in a hierarchy. If the
user leaves one screen and returns to the next screen up in the hierar¬
chy by selecting a particular option from the screen, then make this
option the same on all screens. Don’t make the “Exit” option one thing
on one screen and something else on the next—not a very good thing
to do. It forces the user to be familiar with each screen and increases
the chances that the user will make a mistake by selecting the wrong
thing. As another example, suppose you make a user enter the same
data in a different manner in various places on your screen. Let’s say
you force a date to be entered as “mm/dd/yy” in one date field and as
“yyyy-mm-dd” in another. I guarantee you will not have a very happy
user. Consistency is perhaps the “golden rule” of user interface design.

2. Make it clear what users are to do and how they are to do it. When
users are presented with a screen, it should be clear what they are sup¬
posed to do on the screen and how they are to go about doing it. This
can be done in a wide variety of ways, from field highlighting to
increased verbiage on the screen. For a simple example, let’s say that
users were presented with the following very poorly designed screen:

Employee System

Add

Change

Delete

Exit

User Shell Programming ♦ 229

It should be clear that this screen leaves much to be desired. What are
users to do here? Are they supposed to select one of these options?
What are they going to add, change, or delete? How will they tell the
system they want to take that action? Do they enter the number that
corresponds to the option or the name of the option? Does “exit” mean
return to the previous screen, or does it medn that the program will
end? As you can see, this is the kind of ambiguity that users just can¬
not tolerate if the system is to be usable by many. Here is an improved
version of the preceding that mainly relies on increased verbiage on
the screen.

Employee System

Employee Update Screen

Select one of the following actions you wish to perform:

1. Add a new employee to the system

2. Change an existing employee

3. Delete an existing employee

4. Return to the main system screen

Select the option and enter the number ==> _

Although this is a simple example, it points out the need to communi¬
cate clearly with the user.

3. Provide users with lots offeedback. Users like to know what is about
to happen, what’s happening right now, and what went wrong. For
example, if a user takes some invalid action, don’t just provide a beep
with no feedback. Give users a clear indication of what they did wrong
and how they can correct it. If the system is doing some work that
takes a fair amount of time, let users know that the system is working
on it. Perhaps provide a message that shows the progress being made.
Don’t just leave users sitting there wondering whether the system is
doing the right thing (or anything, for that matter).

4. Understand your users and how they work. If you know the way
that users work, you can design a user interface that better fits their
needs. For example, if you know that they perform some particular
function with the system 90 percent of the time, don’t make that
option difficult to find or use. Be sure that it is the central focus of the
user interface.

The second major goal of a user interface is to expose the functionality of
the system. If users cannot determine what the system can do for them, they will
not utilize it as they should. This means that all of the available options in the
system should be accessible in a straightforward manner. For example, if you are
making a menu-driven system, try to expose as much of the functionality on a
single screen as possible. Don’t make users delve six levels deep to find applica¬
ble functionality. Deep-screen nesting hides functionality.

In addition to these user interface goals, users should always have the
ability to ask for help. If the current screen seems confusing to users, then they

230 ♦ Chapter Seven

should be able to pull up a more complete description of how the screen works.
Users should never be left to guess what action to take. There are many ways
to provide help for users. They may be able to swap to a help screen, for exam¬
ple, by always entering a particular value, or maybe they can find more specific
help information by entering a ? in the field. But one thing that should be made
clear is that your help should be useful. If you are not going to provide complete
and thorough help, then your users will be calling you every time they use the
system.

Finally the user interface should provide clear and helpful error messages.
If users do something wrong, it should be clear to them what the problem was
and how they might go about fixing that problem. Anyone who has used soft¬
ware systems in the past knows the frustration of receiving an error message
such as “Beep - Invalid Entry”. Well, what was wrong with it? What entry are
you talking about? What are the valid entries? Don’t leave users guessing what
went wrong. Tell them what the problem was and how to fix it. Remember that
users like good and verbose feedback.

Now that we have discussed some of the salient features of a well-designed
user interface, let’s write some Shell programs that will provide the user interface
portion of our system.

Creating Menus/Screen Input

Through the use of terminal description files, /etc/termcap and /etc/terminfo, the
Shell supports a huge array of terminal types—everything from the old vtlOO to
Sun workstations. To use these files to simplify screen handling:

1. The TERM variable must be set to the appropriate terminal type.
2. The System V tput command must be available on your system. If it is

not, then you can use the clear and echo commands to create the
menus outlined next. Although not as flexible as the Shell that follows,
they can generate and control menu screens and user input screens.

KSH

As was discussed in Chapter 5, the Korn Shell provides the select state¬
ment to aid in the construction of menu screens. Please refer to Chapter 5
for a full discussion on how to use the select command.

Thble 7.1 shows the various capabilities of tput. Since most of these capa¬
bilities are simple character sequences, you can store most of them in variables
and then use the variables to improve efficiency:

User Shell Programming ♦ 231

TABLE 7.1 Tput Capabilities

Option Action

bel Echo the terminal’s “bell” character
blink Blinking display
bold Bold display
clear Clear the screen
cols Echo number of columns on the screen
cup r c Move cursor to row r and column c
dim Dim the display
ed Clear to end of the display
el Clear to end of the line
lines Echo number of lines on the screen
smso Start stand out mode
rmso End stand out mode
smul Start mode underline
rmul End underline mode
rev Reverse video (black-on-white) display

term_bel='tput bel'

term_blink='tput blink'

term_bold=’tput bold'

term_clear='tput clear'

max_cols='tput cols'

term_dim='tput dim'

term_ed='tput ed'

term_el='tput el'

max_lines='tput lines’

last_line='expr $term_lines - 1'

term_so=’tput smso'

term_eso='tput rmso'

term_su='tput smul'

term_eul='tput rmul'

term_rev='tput rev1

Once these are set, you can proceed to set up the screen any way you please
using variables and tput cursor movements. For example, let’s create a Shell to
center one or more text lines beginning on a given row:

#center_text row_number input_text_file

max_cols='tput cols'

max_lines=1tput lines'

row_number=$1

shift

cat $* I \ # read from stdin

while read input_text

do
%

Continued

232 ♦ Chapter Seven

line_length='echo $input_text I wc -c'

tput cup $row_number \

'expr \($term_cols - $line_length \)*/ 2’

echo $input_text

row_number=1expr $row_number + 1’

if [$row_number -ge $max_lines]

then

echo "Too many lines for the screen"

break

fi

done

We could also center rows on the screen, beginning at a certain column:

#center_lines col_number input_lines

max_lines=’tput lines’

col_number=$l

shift

cat $* > /tmp/tmp$$ # create temporary file

number_of_lines=’wc -1 < /tmp/tmp$$’

row_number='expr \($max_lines - $number_of_lines \) / 2’

cat /tmp/tmp$$ I \

while read input_line

do

tput cup $row_number $col_number

echo $input_line

row_number=’expr $row_number + 11

if [$row_number -ge $max_lines]

then

echo "Too many lines for the screen"

break

fi

done

Using these two tools, we can now create a menu screen for the Time Reporting
System using tput. First, we can create a header file (trs_header) and a menu file
(trs_menu) containing the menu of choices:

trs_header trs_menu

Time Reporting System 1. Add Time Worked

Time Worked Data Input 2. Change Time Worked

3. Delete Time Worked

X. Exit

The first thing we’ll do is print the header on the screen and then center and
indent the menu choices. Finally, print and ask the user to input a choice:

User Shell Programming ♦ 233

term_clear='tput clear'

max_lines='tput lines'

last_line='expr $max_lines - 3'

echo $term_clear

trs_prompt="Please enter your choice> "

trs_indent=15

center_text 0 trs_header

center_lines $trs_indent trs_menu

tput cup $trs_indent $last_line

echo $trs_prompt

read reply

case $reply

1)

add_time

7 7

2)

change_time

7 7

3)

delete_time

7 7

'x'I'X')

exit TRUE

7 7

*)

echo "Invalid choice"

echo "You must enter 1, 2 or 3 or X to exit "

7 7

esac

Once the user selects an action, we can have a series of screens to add, change,
or delete the data. Since the basic screen mask will be used by all of these Shell
programs, we can create the command, time_screen, as follows:

time_screen

center_text 0 trs_header

tput cup 4 0; echo "SSN:"

tput cup 6 0; echo "Date:”

tput cup 8 0; echo "Time Worked:"

We could then add time-reporting data by first displaying the field names,
their default values, and then getting the data for each field. As you read through
the example, notice how to edit each field, especially the SSN, and how to add the
record to the database:

term_clear=1tput clear'

max_lines='tput lines'

last_line='expr $max_lines - 3'

Continued

234 ♦ Chapter Seven

echo $term_clear

text_indent=15

time_screen # display time worked screen mask

Date='date %y/%m/%d' # set date

tput cup 6 $text_indent; echo $Date

tput cup 8 $text_indent; echo "8.0"

while [TRUE]

do

tput cup 4 $text_indent; read SSN

if [-z "'grep $SSN employee.db1"] # check for SSN

then

tput cup $last_line 0;

echo "$SSN not in Employee Data Base"

else

break

fi

done

tput cup 6 $text_indent; read tmp_date

if [! -z "$tmp_date"] # not default date

then

Date=$tmp_date

fi

tput cup 8 $text_indent; read time_worked

if [-z "$time_worked"] # default time worked 8hrs

then

time_worked=8.0

fi

echo "${SSN}\t${Date}\t${time_worked} >> \

time_worked.db

Getting valid file or directory names, correct string and numeric variables,
and so on, is essential to having a Shell program execute correctly and reliably.
To ensure that all variables, files, and special files are valid, you must edit the
data and names. Is the filename correct and is the file readable? writable? exe¬
cutable? Is the name a directory, block special, or character special file? Is a vari¬
able equal to a specified value or other variable? Each of these questions is
answered by editing the data within the Shell procedure (see Figure 7.4). The
primary commands for editing data are test and awk.

Test combined with IF-THEN-ELSE handles most edits on arguments or
data in a Shell program. The CASE statement handles the rest of the edits nor¬
mally required.

User Shell Programming ♦ 235

FIGURE 7.4 Interactive and sequential edit program design.

Expr can be used to edit the content of fields. Expr will compare a variable
to a regular expression and return a count of characters matched. So, for exam¬
ple, we can evaluate alphabetic and numeric variables as follows:

expr $var : '[a-zA-Z]*' # count alphabetic characters

expr $var : '[-+]*[0-9.]*' # count numeric characters

To ensure that we got only what we expected, we could compare the returned
length to the total length of $var:

if ['expr $var : '[- +]* [0-9.]*11 -eq \

'expr $var : '.*'']

then

its numeric all the way through

else

its not

fi

Another useful and very powerful editing program is awk. Awk can edit
fields using the matching operator (~). (Please see the section later on in this
chapter on awk syntax for details.) In the following examples, we can test each
field of the time_worked table for validity and numeric input:

$0 ~ /[0-9]+/

$1 ~ / [0-9] [0-9]\/[0-9] [0-9]\/[0-9] [0-9]/

$2 - /[0-9]+/

236 ♦ Chapter Seven

Similarly, we could edit the last_name field from the employee record as follows:

$2 ~ /[A-Z][a-z-]+/

Input data, including Shell command-line arguments, is normally entered
by humans and, as such, is most prone to error. Data should always be edited for
validity before using it in processing. If the user does not enter a valid value,
then an appropriate error message should be displayed.

Screen Output

Using the existing input command, we can modify it to display information from
the database one record at a time. To do this, let’s create two commands—one to
display the screen mask, called trs_view, and another to display the data, called
time_data:

time_data input_record text_indent

SSN='echo $1 | cut -fl'

Date='echo $1 | cut -f2'

time_worked='echo $1 I cut -f3'

tput cup 4 $2; echo $SSN

tput cup 6 $2; echo $Date

tput cup 8 $2; echo $time_worked

trs_view time_worked.db or trs_view 3< file

term_clear='tput clear'

max_lines='tput lines'

last_line=1expr $max_lines - 1'

echo $term_clear

text_indent=15

if ["$1"] # file specified

then

exec 3< $1 # open fd 3

else the command must be executed with 3< file

fi

time_screen # display time worked screen mask

while

input_record=1 line <&3' # read record from stdin

test ! -\ "$input_record"

do

display time worked data

time_data "$input_record" $text_indent

Continued

terminal is stdin?

User Shell Programming ♦ 237

if [-t 0]

then

tput cup $last_line 0;

echo "Press Return for Next Record"

read next

fi

done

Using this command, we could display the whole database one record at a time
using the following command:

trs_view time_worked.db

Or we could sort it first:

sort time_worked.db > /tmp/tmp$$

trs_view /tmp/tmp$$

rm /tmp/tmp$$

This command will be useful for updating existing records as well as displaying
the results of queries.

Screen Query

We can use essentially the same chunk of code to query the database by first
painting the screen, getting the user’s selection criteria, and then searching the
database and displaying the results:

trs_query

term_clear='tput clear'

max_lines=1tput lines'

last_line='expr $max_lines - 1'

echo $term__clear

text_indent=15

if ["$1"] # file specified

then

exec 3< $1 # open fd 3

else the command must be executed with 3< file

fi

trs_screen # display time worked screen mask

while [TRUE]

do

Continued

238 ♦ Chapter Seven

tput cup 4 $text_indent; read SSN

if [-z " $ SSN11] # not selecting by SSN

then •

break

elif [-z 11'grep $SSN employee.db' "]

then # check for SSN

tput cup $last_line 0;

echo "SSN not in Employee Data Base"

else

break # valid SSN

fi

done

tput cup 6 $text_indent; read Date

tput cup 8 $text_indent; read time_worked

if ["$SSN" -a "$Date" -a "$time_worked"]

then

grepstr="$SSN\t$Date\t$time_worked"

elif ["$SSN" -a "$Date"]

then

grepstr="$SSN\t$Date"

elif ["$Date" -a "$time_worked"]

then

grepstr="$Date\t$time_worked"

elif ["$SSN"]

then

grepstr="${SSN}"

elif ["$Date"]

then

grepstr="${Date}"

elif ["${time_worked}"]

then

grepstr=$time_worked

else

exit FALSE

fi

grep "$grepstr" time_worked.db > /tmp/tmp$$

trs_view /tmp/tmp$$

rm /tmp/tmp$$

This would show one record per page (Figure 7.5). If, instead, we would
like to see multiple records per page (Figure 7.6), we could substitute the fol¬
lowing for the display portion of the previous program:

echo " SSN Date Time Worked"

grep "$grepstr" time_worked.db

This Shell program is a simple example of how we could query the
time_worked database for information by SSN, date worked, or time worked.
More exotic queries can be handled using awk.

User Shell Programming ♦ 239

SSN:

Date

Time

Time Reporting System

Time Worked Data

527964942

1997/01/02

Worked: 8.0
•

FIGURE 7.5 Time worked output screen.

Time Reporting System

Time Worked Data

SSN: Date: Time Worked:

527964942 1997/01/02 8.0

527964942 1997/01/02 9.5

527964942 1997/01/02 10.0

FIGURE 7.6 Multiple record output screen.

The output from the previous example was fairly crunched together.
Instead of using more, we could use the advanced formatting features of awk to
beautify the output (Figure 7.7):

echo " SSN Date Time Worked"

awk 'BEGIN { FS=OFS=~\t" } \

{ split($2, Date, "/") \

printf(" %3d-%2d-%4d %2d/%2d/%4d %4.1f\n’\ \

substr($1,1,3), substr($l,4,2), \

substr($l,6,4), \

Date[2], Date[3], Date[l], $3)\

} '

Time Reporting System

Time Worked Data

SSN: Date: Time Worked:

527-96-4942 01/02/1997 8.0

527-96-4942 01/02/1997 9.5

527-96-4942 01/02/1997 10.0

FIGURE 7.7 Formatted output screen using awk.

240 ♦ Chapter Seven

These are just a few of the ways that you can gather input from a screen,
query a database, and output to the screen. Later, in this chapter we look at more
exotic ways to use awk to select and format information for reports. Next, how¬
ever, let’s look at what it takes to update the database.

Database Update

Updating a file or database means adding, changing, or deleting data from it.
Earlier in this chapter we learned some ways to take input data from a screen and
add a record to the database by appending the record to the table. Now let’s con¬
sider ways to change and delete records from the database.

The design of a simple sequential update program is shown in Figure 7.8.
There are one or more possible transaction files or screens that affect the origi¬
nal or master file. The master (or old) file is used as input and a new file is cre¬
ated as output. Any errors are directed onto stderr. In the following paragraphs
we explore methods of performing the update function using Shell tools and
commands.

The Shell commands that handle most of the common updates to UNIX files
are awk, cat, echo, join, merge, paste, sed, and tr. The UNIX editors also
update files, but they do so manually rather than mechanically. This section
deals with the automated forms of file update. First let’s explore methods for cre¬
ating the new master file itself.

The simplest update program is cat, which can create new files, concate¬
nate several files into one new file, or append one file to an existing file. Each of
these forms of update is shown in the following examples:

cat > file # enter data from the terminal

cat filel file2 > file3 # create a new file from two

cat file3 » file4 # append file3 to file4

FIGURE 7.8 Update program design.

User Shell Programming ♦ 241

In each of these examples, cat adds data to a new or existing file. Similarly, echo
can combine fields and add a single record to a database:

echo "$fieldl $field2 $field3" » table.db

Cat and echo work well for creating or adding lines to a file as long as there
is no concern about the order of that information. When the information should
be in order, however, either sort or merge (sort -m) serves as a better update
program.

Sort can put one or more files into a specified order. This form of update is
best used on unsorted files:

sort filel file2 > file3

When the transaction and master files are already in order, however, it is
more efficient simply to merge them:

sort -m table.db transl trans2 > newtable.db

A simple example involves listing two directories and merging the files found:

Is /bin > binlist

Is /usr/bin > usrbinlist

sort -m binlist usrbinlist > combinedlist

When updating files in this way, duplicate entries may cause problems.
There should not be two identical records in the resulting new master file. To
eliminate duplicates, the output can be passed through uniq:

sort -m table.db transl I uniq > newtable.db

sort -mu table.db transl > newtable.db

Each of these examples using sort assumed that the first field in each file
was the sort key. Other keys can be specified with positional parameters passed
to the sort utility.

To update tables safely using these tools, we will need to create a tempo¬
rary copy of the revised file, rename the old one as backup (bak), and rename the
temporary file to the database name:

update employee.db > tmp$$

mv employee.db employee.bak

mv tmp$$ employee.db

Now that we have looked at methods to create the new master file from the
transaction files and old master file, let’s look at how we might apply changes to
the actual data within the master file. The commands that actually change infor-

242 ♦ Chapter Seven

mation within a file or table are sed and tr. Tr translates characters within a file.
Sed can also be used to add, delete, or update records from the table. To change
the text in the file to uppercase would require the following command:

tr "[a-z]" "[A-Z]" < file2

ARTHUR:123 MAIN:DENVER:CO:80202

MARTIN:245 JUNIPER:DENVER:CO:80202

Sed lets the user update fields within the file. For example, assume that
everyone moved to San Francisco, California. Sed could handle all updates as
follows:

sed -e "s/Denver:CO/San Francisco:CA/" file2

Arthur:123 Main:San Francisco:CA:80202

Martin:245 Juniper:San Francisco:CA:80202

Or the edit commands, including the zip code change, could have been placed in
a file called city_state:

s/Denver/San Francisco/

s/CO/CA/

s/80202/74539/

Then sed could be invoked as follows:

sed -f city_state file2

To delete information from files, sed can selectively delete lines or parts of
fields from files. To delete all of the records for people on Juniper Street and the
word “Denver” from file2, the following command would be required:

sed -e "/Juniper/d" -e "s/Denver//g" file2

Arthur:123 Main::CO:80202

“/Juniper/d” is a line-editor command to delete lines containing the word
“Juniper.”

“s/Denver//g” is the line-editor command to substitute nothing (//) for each
occurrence of the word “Denver.” Using these editor com¬
mands, sed acts like a program that updates fields or deletes
lines. We could encapsulate the update capability into the fol¬
lowing command which will update the time worked data¬
base with a new time worked amount provided by the user:

User Shell Programming ♦ 243

trs_screen # paint the screen

tput cup 4 $text_indent; read SSN

tput cup 6 $text_indent; read Date

if ["$SSN" -a "$DATE"]

then

search_string="${SSN}\t${Date}"

elif ["$SSN"]

then

search_string="$SSN"

elif ["$Date"]

then

search_string="$Date"

else

echo "You must supply either the SSN or the Date"

search_string="999999999"

fi

cp time_worked.db time„worked.bak # create backup of

data base

grep "$search_string” time_worked.db | \

while

read record

do

echo $record I trs_view

Display the record

sed_string='echo $record I cut -fl,2 -d' 11

#Create the Sed edit string

tput cup 8 $text_indent; read time_worked # Get

new time worked
ft***

The following sed statement will update the time

worked db with new info

sed -e "/${sed_string}/s/[0-9.]*\$/$time_worked/"\

time_worked.db > tmp$$

mv tmp$$ time_worked.db

#Create new data base from update

fi

It would then be simple to apply this same technique to display a given
record and ask for confirmation before deleting the record.

Each of the commands presented in this section serves a specific purpose
when updating UNIX files. Once the files have been updated and put in correct
order, the data will need to be retrieved and printed. The commands to do so are
described in the next two sections: Data Selection and Reporting.

244 ♦ Chapter Seven

Data Selection

Both queries and reports will need to select data (Figure 7.9). Selecting informa¬
tion from files can be handled in a number of ways with the Shell. Information
can be selected row-by-row, field-by-field, or both. The primary commands that
perform data selection are awk, cut, grep, and uniq.

Uniq is perhaps the simplest. It works on a line-by-line basis, eliminating
duplicate lines or every line except for the duplicate lines. Uniq assumes that its
input is sorted. Given the following sorted file, called names, note how uniq
selects the various lines in the file:

Original

File uniq names uniq -u names uniq -d names

Arthur

Martin

Martin

Smith

Arthur

Martin

Smith

Arthur

Smith

Martin

The first example removes the duplicate name, “Martin.” The second eliminates
“Martin” entirely. The final example eliminates all names except “Martin.” Uniq
also has other options available. For example, it is possible to return a count of
the number of duplicated lines and to skip portions of the file. Uniq provides an
efficient tool for selecting information from files that contain duplicate lines.

Grep also operates on a line-by-line, row-by-row basis. It looks through a
file for lines that contain the specified regular expression. Any matching records
are selected. The extended grep (egrep) and fast grep (fgrep) commands provide
for selecting on more than one regular expression at a time or by matching entire
lines.

Given the following file, grep and its cousins can extract information and
place it on stdout:

Selection
Criteria

Queries

s \
/

r~ —s

Reporting

j

FIGURE 7.9 Data selection and report program design.

User Shell Programming ♦ 245

Arthur Denver CO

Martin Denver CO

Smith Colorado Springs CO

grep "Denver" file

Arthur Denver CO

Martin Denver CO

egrep "Martini|Smith" file

Martin Denver CO

Smith Colorado Springs CO

fgrep "Martin Denver CO" file

Martin Denver CO

Grep provides other options that increase its flexibility. For example, if you
use the -i option, grep will ignore case distinctions when it compares the file
with the match string. The -c option prints a count of the number of matches that
were found in each file. And the ever useful -v option tells grep to return every¬
thing in the file that does not match the regular expression.

We can see the results of using the -v option in conjunction with grep in
the following example:

grep -v "Arthur" file

Martin Denver CO

Smith Colorado Springs CO

There are still other options for grep which can be found in your manual pages.
To select information on a field-by-field basis requires the use of cut or

awk. Cut can select fields from a file based on the character positions or based
on the delimiters that separate the fields. An example of selecting fields uses
the time_worked database. The fields selected are the SSN (fl) and time
worked (f3):

cut -fl,3 time_worked.db

awk -F"\t" 'print $1, $3' time_worked.db

527964942 8.0

527964942 9.5

527964942 10.0

Fields can also be selected by their character position within a file. Consider
a long listing of a directory:

246 ♦ Chapter Seven

Is -1

drwxrwx- 3 lja adm 992 Dec *1 05: : 39 bin

drwx- 28 lja adm 496 Dec 4 12: : 28 doc

drwxr-x- 2 lja adm 192 Sep 5 17: : 55 jcl

drwx- 2 lja adm 816 Sep 5 16: : 15 job

drwxrwxrwx 2 lja adm 3760 Dec 3 09 : 37 r je

drwxrwxrwx 32 lja adm 1008 Dec 3 18 : 22 src

1 2 3 4 5

123456789012345678901234567890123456789012345678901234567890

Fields can be selected by column:

cut -cl6-24,55-

lja bin

lja doc

lja jcl

lja job

lja r je

lja src

In this example, cut selected only the information contained in columns 16 to 24
and 55 through the end of each line. In both of these examples, cut shows its
ability to select specific information for future reporting. In this particular exam¬
ple, the output was suitable for human consumption.

Grep and cut can be combined to extract information line-by-line and
field-by-field. The output of grep can be piped into cut. In the following exam¬
ple, the commands extract all of the users in the “unixl” File system from the
/etc/passwd file and then extract the user’s name from the File:

grep "527964942" time_worked.db | cut -f3

8.0

9.5

10.0

Grep and cut are good for quick work, but do not handle formatting of the
information. Awk, however, handles both row-by-row and field-by-field data
selection (see Figure 7.10) as well as formatting data for reports or screens. Why
not use it all of the time instead of grep and cut? Well, awk has to interpret a
data selection and reporting program and then process the file. For less sophisti¬
cated processing, grep and cut are optimized to do their job more efficiently.
When more exotic data selection criteria are applied to a file, however, awk gives
the user more flexibility.

: ,

User Shell Programming ♦ 247

awk } /USA/ }print $1} } FILE

FILE

Denver CO USA

Seattle WA USA

London W1 UK

Paris X FR

Boston MA USA

Denver

Seattle

Boston

FIGURE 7.10 Using awk to select and report
information.

Awk Syntax

awk 'program' files - interactive use

awk -f program_file files - programming

The previous example could have been written in awk and summed as follows:

BEGIN { FS=OFS="\t" } # field separator is a colon

/527964942/ { print $3; sum += $3 }

END { print sum }

This program sets the field separator (FS) to a tab (\t) and then in the pro¬
cessing section looks for all records that match the string “527964942” and
print the third field in the records matched. Assuming that this awk program
was stored in a file called Arthur_time, the command could be executed as
follows:

awk -f Arthur_time time_worked.db

9.5

7.0

8.5

8.0

33

248 ♦ Chapter Seven

As data selection criteria become more complex, awk can greatly enhance
the user’s ability to get at the information stored in files. In another example
using the previous long listing of a directory, awk can extract the lines contain¬
ing files last updated in September and print just the owner, group, and filename
as follows:

Is -1 I awk '/Sep/ { print $3, $4, $8 }'

Without a specified field separator, awk assumes that a blank delimits
fields. The following lines show how awk would pick up the fields from each
record:

$1 $2 $3 $4 $5 $6 $7 $8

drwxr-x 2 lja adm 192 Sep 5 17:55 jcl

The resulting output would be:

lja adm jcl

lja adm job

Awk can also select information from fields within each line. In the fol¬
lowing awk program, the hours and minutes are selected from a long directory
listing:

split($8, hourmin,)

print hourmin[0]; # print the hours first

print hourmin[1]; # print the minutes next

This particular example splits the hours and minutes field ($8) by use of
the delimiter (“:”) and places the two resulting numbers into the two-
dimensional array hourmin. The following two statements print the hours (hour¬
min [0]) on one line and the minutes (hourminflj) on the next. This would
produce two lines for each line from the long listing. The same processing using
grep and cut would have been more complex. Awk handles the processing more
clearly.

As shown in these examples, awk can handle the functions of grep, cut,
paste, and pr. Awk is a powerful programming tool that also has the basic con¬
trol structures IF-THEN-ELSE, FOR, and WHILE and much more. In addition to
selecting data, awk also provides that ability to format the data in a flexible
manner. Almost any data selection or reporting need can be programmed in awk.

Once the information has been extracted from a file using grep, cut, sed,
or awk, it needs to be reported in ways that humans can best use. There are
many Shell commands that support clear concise reports. The following section
will describe them in detail.

User Shell Programming ♦ 249

Reporting

The design of a typical report program is shown in Figure 7.11. Notice that it is
very similar to the design of a typical command, using stdin and stdout. Each of
the standard Shell commands produces reportlike output that is fairly legible.
The cat command will reproduce files on either the terminal screen or a printer.
Commands such as Is and who generate readable listings. But when data selec¬
tion commands such as grep, cut, and awk have been used on files, it often
requires a more specific reporting mechanism to make the output readable.

There are two major facilities for reporting information: pr and awk. Pr
produces paginated reports that fit the printed page or a terminal screen. Awk
can handle more exacting report specifications with “C”-like precision. Lp, the
print manager, handles the simple spooling and printing of output to a wide vari¬
ety of printers.

Printing files or selected information on a printer is more useful when the
output is offset by eight characters to allow room for a three-hole punch on the
left-hand side:

pr -o file I lp pr file I lpr -i8

Files with field delimiters such as the tab (\t) can be printed more legibly
with pr:

cut -fl,3 time_worked I pr -e20

527964942 8.0

527964942 8.5

527964942 10.0

Printing these two fields in reverse order would have been much more dif¬
ficult. You should try using cut, paste, and pr to print the fields in the reverse
order. It is easier to use awk when manipulating fields. The awk program to
reverse these fields and print them would be:

awk -F'\t' '{ print $3, $1 }' time_worked.db

FIGURE 7.11 Report generation program design.

8.0

8.5

10.0

527964942

527964942

527964942

To obtain a more readable version of this report, the program could have
used printf, an awk function that is exactly like the C language function by the
same name:

BEGIN { FS="\t" }

{ printf "\tV-10.1f V10s\n", $3, $1 }

8.0 527964942

8.5 527964942

10.0 527964942

The printf statement uses aformat statement (enclosed in double quotes)
to describe how the output should look. In this example, there is a tab character,
a right-aligned floating point (use a d instead of any for integers), number of
length 10 (%-10.1f), another (right-aligned) string (%-10s), and a new-line
character (\n). The first and third fields of the time_worked database are format¬
ted in reverse order using this format specification. Increasingly more complex
formatting operations can be handled with awk and printf.

Awk is the best Shell tool for formatting detailed reports. For more infor¬
mation, see the awk references in the bibliography. Now, having all of the four
key programs available for application use, let’s look at ways to plug our system
into the others around it.

System Interfaces

Other systems often provide input to or accept output from our system via disk,
tape, or electronic transmission (Figure 7.12). The commands that interface with
other systems are shown in Table 7.2.

Ar typically manages libraries of C object modules. If a file is on disk, there
is usually little problem getting the file into or out of the system. To copy files
from one disk to another, cpio is a useful mechanism. Cpio can be used with
either disk or tape. T&r, like cpio, packages and compresses information for stor¬
age on tape:

Input Interface

ar x archive.a

cpio -i < /dev/mtO

Is olddir/file* I cpio -pdl .

tar xf - I application

Continued

User Shell Programming ♦ 251

FIGURE 7.12 System interfaces.

Output Interface

ar q archive.a filel file2 ...

Is file* I cpio -o > /dev/mtO

Is file* I cpio -pdl new_dir

tar u file*

Both disk and tape interfaces have their place, but are often cumbersome.
(Trust the postal system with my tape? Never!) Nothing beats the immediacy of
electronic transmission. Using a modem, we can call another UNIX system
using cu:

cu 95551234

TABLE 7.2 System Interfaces

Interface Command Description

Disk ar
cpio

Tape tar
cpio

Transmission cu
ftp
mail
r jestat
rlogin
uucp
uustat
uuto
uupick
uux

Archive and library maintenance
Copy input/output
Tape archive
Copy input/output
Call another UNIX system
File transfer program (network)
Electronic mail
Remote job entry (RJE) status
Remote login to a system on the network
UNIX-to-UNIX communication program
Status of uucp
uucp file copy
uucp file pickup
UNIX-to-UNIX command execution

252 ♦ Chapter Seven

On a local area network, we can use rlogin or the more powerful telnet to
access another UNIX system, log in, and accomplish file transfers. Over wider
networks, we can use ftp (ARPANET file transfer protocol) to move files around
the nation and the world. Mail allows for direct contact with users on virtually
any system. Uucp handles file transfers with a greater degree of security. Send
lets a little old UNIX system flog a big IBM mainframe with job requests, retrieve
information, and hack it up for more exhaustive processing in Shell. And a host
of other communication programs, like Kermit, wait in the public domain. Some
examples of these commands follow:

rlogin network_system

ftp remote_hostname

mail system!system!username

uucp system!filenames destination_system!dir

uuto filenames systemluser

uupick

For most application developers, intimate knowledge of these commands
will be unnecessary. The UNIX wizard, however, will find them to be a vital tool
in the worldwide quest for knowledge.

Working with Numbers

Every Shell programmer encounters the need to work with numbers: a sine here,
a sum there, and an occasional graph. A significant part of UNIX is text, but the
other part is numbers. Manipulating them and integrating them with the Shell is
simple. There are only a few commands in the Bourne Shell that affect numbers:
be, dc, and expr.

Aside from handling various string comparisons and evaluations, expr
also handles basic integer math: addition, subtraction, multiplication, and divi¬
sion. This facility is useful for simple mathematical processing and for control¬
ling loops. Interactively, expr can handle simple calculations:

expr 327 + 431

758

expr 431 / 327

1

In loops, it can handle repetitious calculations. For example, the following
command would sum all of the numbers from 1 to 100:

while [${i:=1} -le 100]

do

total='expr ${total:=0} + ${i}1

i='expr ${i} + 1'

done

echo $total

User Shell Programming ♦ 253

Expr can also control the number of times a loop executes. Since the
Bourne Shell has no repeat control construct, expr and while handle the repeti¬
tion of processing.

while [$ {i: =1} -le 10] # repeat 10 times

do

process something

i='expr ${i} + 1'

done

The C Shell can handle simple integer arithmetic using standard C language
operators: +, *, /, and %. When assigning values to parameters, the C shell can
use the integer operators of C: +=, -=, *=, /=, ++, and —. The following example
demonstrates the use of integer arithmetic:

if ($variable + 1 > $maximum) then

@ varl += 5

@ var2--

endif

KSH,Bash

The Korn and Bash Shells provide some nice extensions to enhance the
arithmetic capabilities of the Bourne Shell while at the same time remain¬
ing compatible. We have already explored some of the integer arithmetic
capabilities of the Korn Shell and will now cover them in greater detail.
First we must review how to make a variable to be an integer type.

The Korn and Bash Shells, as discussed in Chapter 5, allow you to
assign a variable to be of type integer. As you will recall, this is done using
the typeset command. Or if you are using the Bash Shell, you can use
either the typeset command or the synonym declare. The following exam¬
ple will declare counter to be of type integer.

type -i counter # Korn or Bash Shell

declare -I counter # Bash Shell only

Once a variable is declared as integer, the Korn Shell recognizes it as such
and permits arithmetic operations to be performed directly using standard
mathematical notation. The assignment operator “=” can be used in a
straightforward manner—no need for the Bourne Shell expr command. For
example, the loop shown that adds the numbers 1 through 100 using
Bourne Shell could be written in the Korn or Bash Shell as follows:

Continued

ns;

254 ♦ Chapter Seven

Set the variable i = 1 and

tell Korn shell it is an integer type

typeset -i i=l

typeset -i total=0

while [$i -le 100]

do

total=total+i

i=i+l

done

echo $total

5050

Notice that there is no need for the expr command here. Once the vari¬
able is declared integer, the assignment is done directly. It should be pointed
out that when the integer variables are used, there is no preceding $ in front
of the variable. When evaluating an arithmetic statement, the Korn Shell
does not require the $ although the statement still works properly if the $ is
present. Please note that if you do not declare the variable as an integer, the
Korn and Bash Shells will treat it as a string just as the Bourne Shell does.
This is to maintain compatibility with the Bourne Shell. This can give you
unexpected results, as you can imagine, as shown using the previous exam¬
ple but not defining the variable total to be of type integer:

Set the variable i = 1 and

tell Korn shell it is an integer type

typeset -i i=l

while [$i -le 100]

do

total=total+i

i=i + l

done

echo $total

total+i

In this case total was assigned the string value “total+i”—not at all
what we had in mind. The other thing to keep in mind is that you cannot
place a space between the operator (in this case +) and the operands unless
you quote the string. While this is to be expected, it is not obvious at first.
So the expression total=total + 1 would not be evaluated properly due to
spaces; the expression total=“total + 1” is just fine.

The Korn and Bash Shells provide more arithmetic operators than the
Bourne Shell as is shown in Thble 7.3. These arithmetic operators can be
combined to form expressions. An integer expression consists of integer vari¬
ables, integer constants, and the operators shown in the table. Forming arith¬
metic expressions using these components ensures that the Korn Shell will
understand how to evaluate it properly. But if you use a noninteger variable

Continued

User Shell Programming ♦ 255

in an expression (a variable that is not defined as an integer variable using
typeset or declare in Bash Shell), then the Korn Shell will attempt to evalu¬
ate it as an expression instead of an integer. If the variable does not evaluate
properly, an error will occur. Let’s look at an example of how this works:

TABLE 7.3 Korn and Bash Shell Arithmetic Operators

Operator Action performed

Korn Shell
unary negation (make a number negative)

\ logical negation
~ bitwise NOT
* multiplication
/ integer division
% remainder after integer division
+ addition
— subtraction
«,» left shift, right shift
<, <= less than, less than or equal to
>, >= greater than, greater than or equal to
— i- » • equal to, not equal to
& bitwise and

bitwise exclusive or
1 bitwise or
&& logical and

II logical or
= assignment

Bash Shell
-y + unary negation (make a number negative) and plus

logical negation
bitwise NOT

* multiplication
/ integer division
% remainder after integer division
+ addition
_ subtraction
«, » left shift, right shift

<, <= less than, less than or equal to

>, >= greater than, greater than or equal to
equal to, not equal to

& bitwise and
* bitwise exclusive or
\ bitwise or
&& logical and
|| logical or

=, *=, %=, ■+=, -=. assignment
«=, »=, &=, * =,
1=

Continued

256 ♦ Chapter Seven

Set the variables to integer using the Korn Shell

alias integer j

integer i

integer first_total=0

integer second_total=0

Set the total integer expression

total_expr="10 (j / i) + 5"

j =20

i=5

first_total="$total_expr + j"

second_total="$total_expr + i"

echo $first_total

echo $second_total

65

As you can see the total_expr was evaluated as an integer expression.
In this case it did indeed contain a valid integer expression and the results
were calculated properly. A few other things should be pointed out in this
example. First, we utilized the integer alias that is a standard alias in the
Korn Shell. This is simply an alias for the typeset -i command. This is not
available in the Bash Shell. The total_expr variable is also an example of
developing a more complex arithmetic expression containing several vari¬
ables and operators. Note that the parentheses can be used to control
precedence evaluation, as you would expect.

As you may have determined by now, the variable on the left side of the
assignment statement is what allows the Korn Shell to determine whether it
should perform arithmetic evaluation on the right side of the assignment. If
the variable is defined as an integer, the Korn Shell performs arithmetic eval¬
uation on the right side of the expression; otherwise, the right side is treated
like a string. But what if you want the left side of the assignment statement
to be a string variable but still perform arithmetic evaluation on the right
side? The Korn Shell provides this ability through the use of the let command.

The Korn Shell let command allows you to specify when arithmetic
evaluation is to take place. It forces the Korn Shell to look at the statements
on the right side of the assignment operator as an expression instead of a
string. If the variable on the left side of an assignment operator is a string
variable then the assignment is made anyway. The syntax of the let com¬
mand is

let “expression ..." or ((expression)) in Korn Shell or

let “expression . . ." or $((expression)) in Bash Shell

where the expression is any valid arithmetic expression as previously
described. (No need for $ in front of variables.) The let command returns

Continued

User Shell Programming ♦ 257

an exit code of zero if the last expression in the expression list returns a
nonzero value and 1 otherwise. Note that the expression should be
enclosed in quotes if the let command is used. This helps remove ambigu¬
ity in the expression. You can place white space in your expression and it
will be evaluated properly. It also helps remove the ambiguity between the
shell operators and the arithmetic operators (that is, < less than and Shell
redirection). The (()) form of the let command is provided for convenience
and does not require the quotes; quotes are assumed. It should be pointed
out that the let command allows multiple expressions to be entered for
evaluation, while the double-parentheses form of let allows only one. All
the characters between the ((and the)) are treated as let “characters.”
Let’s look at an example of how the let command can be used. Let’s
restructure our previous example that totals the integers 1 through 100 to
use the let command in Korn Shell.

let "i=l" "total=0"

while ((i <= 100))

do

((total = total + i))

((i=i+l))

done

echo $total

5050

There are several things that are different in this Shell procedure.
First, notice that we do not use the typeset command to define the vari¬
ables used as integer. Instead, we have used the let command to force
assignment to string variables. The next thing to notice is that we used
the let command to control the WHILE loop. This is taking advantage of
the fact that the let command returns an exit code. In this case we have
tested to see whether the variable i is less than or equal to 100. If this is
true, then the loop continues because of the exit value returned by let.
This notation is often clearer than the standard test condition used before.
It pro /ides for the use of standard mathematical notation to describe test
conditions. Most people understand the meaning of <= but are often left
guessing at the meaning of the test operators (-le, -eq, etc.). The modified
version of the Shell also uses the let command to calculate the total and
loop control variable i. Notice that even though we are assigning to non¬
integer Shell variables, the $ construct need not precede the variable
names.

The combination of the let command and the use of integer variables
allows for a more intuitive approach to working with integer expressions in
your Shell procedures that utilize the Korn or Bash Shell.

258 ♦ Chapter Seven

Handling more complex mathematics and floating point numbers
requires the use of be or dc. The desk calculator, dc, works just like a desk cal¬
culator, but is not as flexible as the basic calculator, be, for use with Shell pro¬
grams. Using a syntax not unlike C or the C-Shell, be provides for unlimited
precision arithmetic. It can also work in bases other than base 10. (This is also
a capability that the Korn and Bash Shells have. Please see your manual pages
for details on the Korn Shell.) Be has at its command the IF, FOR, and WHILE
control structures. It also has access to various functions: sqrt, length, scale,
sine, cosine, exponential, log, arctangent, and Bessel functions; be also allows
users to define functions that can be included to handle complex math opera¬
tions.

When executed, be first reads any files that were specified as arguments.
User-defined functions can be stored in these files. Then, be begins to read the
standard input, which can be a file, a device, or a terminal. Two of the previous
examples could be accomplished with be:

echo "327 + 431" I be # add 327 and 431

758

echo ”scale=2;431 / 327" I be # divide 431 by 327

1.32

In the previous example, the echo command creates an input string for be.
The first example adds 327 and 431. The second example first sets the decimal
accuracy (scale) to two. Then, the division of 431 by 327 is echoed into be.
Unless set to another value, the scale of every be command defaults to zero dec¬
imal places.

For simple integer arithmetic, expr or Korn or Bash Shell arithmetic is the
best choice. But when higher precision is required, be handles the job nicely.

The be command can also use the math library functions to calculate vari¬
ous limited equations. To calculate the sine of all angles from 1 to 90°, the basic
calculator can be invoked in a WHILE loop:

while [${angle:=l} -le 90] # for angles < 90

do

calculate the sine to four decimal places

sin='echo "scale 4;s(${angle})" I be -1'

echo "Angle=${angle})" I be -1'

echo “Angle=${angle} Sine=${sin}" # print the result

i=1expr ${angle} +1' # increment the

angle

done

The be command can also handle functions stored in files to process more
complex equations. The following functions handle converting Fahrenheit to
Celsius:

User Shell Programming ♦ 259

scale=2

define f(c) { /* convert Celsius to Fahrenheit */

/* Fahrenheit variable */ auto f

f = (c *

return(f)

1.8) + 32

/* return value */

/* convert */

define c(f) {

auto c

/* convert Fahrenheit to Celsius' */

/* Celsius variable */

c = (f -

return(c)

32) / 1.8

/* return value */

/* convert */

Assuming that these functions were contained in a file called temp, conversions
could be handled by invoking be:

be temp # invoke be with Fahrenheit/Celsius conversions

f(100) # convert 100 degrees Celsius to Fahrenheit

212.00

c(32) # convert 32 degrees Fahrenheit to Celsius

0.00

quit

Or the results could be stored in a variable:

fahrenheit='echo "f{100)" I be temp'

celcius='echo "c(0)" I be temp'

Although these are simple examples, be can use functions to process sig¬
nificantly more complex arithmetic equations as the need arises. It can also han¬
dle other functions required by programmers, such as conversion of numbers
from one base into another.

Computers use base 2 for their calculations, but most of them display their
information in octal (base 8) or hexadecimal (base 16). Be can handle these con¬
versions easily by assigning an input base and/or an output base. An octal cal¬
culator would set both input base [ibase) and output base [phase) to 8:

be

/* set input base to octal */

/* set output base to octal */

/* octal 11 + 7 = 20 octal */

ibase=8

obase=8

11 + 7

20

quit

The same facility is available for the hexadecimal environment. Either hex¬
adecimal or octal can be converted directly to decimal:

be

ibase=8 /* input base is octal, output base is decimal /*

Continued

260 ♦ Chapter Seven

10 /* octal 10 is 8 decimal */

8

ibase=16 /* input base hexadecimal; output'base decimal */

10 /* hexadecimal 10 is 16 decimal */

16

quit

In the previous example, an octal 10 is equal to a decimal 8 and a hexadec¬
imal 10 is equal to a decimal 16. When reading octal or hexadecimal dumps of
data or programs, these calculators can improve any programmer’s productivity.

Summary

As you have seen, you can construct complete application systems using the
Shell as a fourth-generation language. You can create Shell systems anytime that
a simple system will serve many users. As this system grows and evolves, it may
eventually need to be rewritten using an actual database—Oracle, Ingress,
Informix, Unity, Unify, or some other RDBMS. This leads us to one of the funda¬
mental laws of software engineering:

Any system that works has always evolved from a simple system that
works.

In any situation, a Shell prototype will serve as an excellent model for the
development of a needed system. The prototype system can then serve the needs
of customers and clients until the final product is available. This prototype system
is composed of the five common types of software programs—input, output, query,
database update, and interface. This chapter has demonstrated the key commands
and Shell programs that support each of these types of program designs. Shell
users who wants to maximize their effectiveness and efficiency should become
familiar with the system-building capabilities described in this chapter.

Exercises

1. When should you use the Shell to create application systems?
2. Describe the format of a relational table.
3. What are the five basic program designs most often created in Shell?
4. Which Shell commands are used in each of the basic program designs?
5. Build the input, output, query, and database update programs for:

♦ the employee database
♦ the tax tables

6. Write the paycheck program for the payroll system.
7. Why are data modeling and design so important?

*

Structuring Shell
Programs

Now that we have looked at how to write Shell programs in Chapter 6 as well as
the components that make up a Shell system in Chapter 7, we are now ready to
spend a little more time exploring Shell program structure. In this chapter we
look at what makes up a well-structured program and how to use Shell functions
to aid in developing that program.

As your Shell programs increase in complexity, good structure will be
essential. Without good structure, larger Shell programs can become difficult to
follow and understand and even more difficult to maintain and modify. Applying
structured techniques while developing your programs will greatly aid you,
and—maybe more important—others, to understand, maintain, and modify your
programs with greatly improved productivity. Structured programming tech¬
niques have long been recognized as a key to quality software systems and are
used extensively by professional programmers and system developers through¬
out the world. By applying these techniques to your Shell programs, you can
achieve the same benefits.

You may feel that giving time to your program structure will slow you down
and make you less productive. The voice of experience tells us that this is just
not true in the long run. By giving some thought to the structure of your Shell

261

262 ♦ Chapter Eight

program, especially one that is not used as a prototype, you will save yourself
hours of time and frustration. Even Shell systems that are being used for a pro¬
totype are better off being developed in some structured manner. When the time
comes to replace the prototype with C language code, you will want to be able to
understand what functions the Shell performs.

At the heart of structured programming is the function. The function pro¬
vides you—the Shell programmer and developer—the ability to divide you pro¬
gram into small packages that perform some particular task. Most robust
software development languages, including the UNIX Shell, provide some
method for building functions. Shell functions are most often used in the follow¬
ing situations:

1. To store often used sequences of commands in the login Shell environ¬
ment.

2. To provide structure to Shell programs by dividing up long command
sequences into logical units.

3. To increase the reuse of code in the Shell procedures. This prevents
redundant coding of the same process in numerous spots in the Shell
program.

With this in mind, let’s explore Shell functions.

Shell Functions

A Junction is a group of commands that are assigned a name that acts like a
handle to that group of commands. In order to execute this group of commands
defined in the function, you simply call the function by the name you provided.
The syntax for defining a function in Shell is the following:

Bourne: function_name () { coimand_list; }

KSH, Bash: function function_name () { command_list; }

where theJunction jiame is the name by which you want to refer to the func¬
tion and the commandjist is a list of one or more valid Shell commands. The
function name can be any valid Shell variable name. Note that a space must
occur after the left brace “{” and the first command as well as before the right
brace “}”, which follows the semicolon of the last command in commandjist.
This is so that the Shell will recognize the braces as special keyword charac¬
ters. The parentheses following the Junctionjiame alert the Shell to the fact
that you are attempting to define a function. The function is read into memory
and executed any time that you invoke the function name. Invoking a function
after it has been defined is done in the same manner as any other command.
Simply type the name at the Shell command prompt or place the name in your
Shell procedure.

Structuring Shell Programs ♦ 263

Declaring Functions

As an example, let’s declare a simple function and see how it behaves:

dir() {

Is -la I pg

}

This function, called dir, simulates the MS-DOS directory command. It invokes the
Is command with the -la option and pipes the output to the pg command for
browsing. Now if we type dir at the command line, the results are a listing of our
current directory, much like an MS-DOS listing, piped to pg. Functions can be
defined by placing the function in a file and making the file executable, as with
any other Shell program, or they can be entered interactively at the command line.
With the interactive approach the Shell will prompt you, using the secondary
prompt string, for input until it sees the right brace, as in the following example:

dir() {

More: Is -la I pg

More: }

In this example, our secondary prompt, $PS2, was set to “More:” and we
were prompted for input until the right brace is seen by the Shell, indicating that
the function definition is complete. Although the interactive approach is useful
for temporary functions, it is prone to error and you must retype the functions
each time you log in. This is not very efficient, and the entire point of functions
is to increase efficiency.

If you attempt to define a function using a name that already exists, one of
two things will happen. If the name is a function you will redefine that function.
If the name is an alias you will not redefine the alias but will instead run the alias.

Functions and Your Environment

Functions can perform a wide variety of keystroke-saving work. By defining
small functions like the dir function cited previously, you can save lots of typing
and frustration. As an added benefit you can place functions in your profile
(.bash_profile if you are using the Bash Shell) so that they are defined when you
log in. In this respect functions are much like forming aliases in the Korn or Bash
Shell but are much more powerful since they allow for any number of commands
to be included in the definition. Functions can be very powerful tools in helping
customize your environment and saving lots of typing effort. Once you get the
hang of building them to accomplish repetitive typing chores, you’ll have dozens
in your .profile. A good way of organizing them is to place them in another file
called .myfuncs and then execute .myfuncs from your .profile. This can help keep

264 ♦ Chapter Eight

KSH

Korn Shell Autoload

The Korn Shell allows you to declare a function as undefined and then load
that function when it is first invoked. To declare a function as undefined,
you use the typeset command with the -fu options flags. For example:

typeset -fu function_name

would declare junction jiame as undefined.
When the Korn Shell attempts to execute this function for the first

time, it recognizes that the function is not defined and searches the path¬
names defined in the variable FPATH for a file with the same name as the
function. When it Finds this file it executes the commands that contain the
function definition for junction jiame. If the FPATH variable is not defined,
then the current directory is searched. The FPATH variable is defined in the
same manner as your PATH variable. Once the function is loaded, all sub¬
sequent calls run the function directly.

your .profile orderly. You can even use this approach to define groups of func¬
tions that you may use for particular tasks. Store the related functions in a file
and then execute that file in your current Shell:

Read in and define test functions in my environment

. testfunctions

What if we always wanted the standard Is command to behave in the same
manner as the dir function? In order to do this we could have named the func¬
tion Is.

is () {

/usr/bin/ls -la I pg

}

If we do this, then we have in effect redefined the meaning of Is for our
Shell session. Now when we type Is at the command line it would execute the Is
function and not the standard Is command. It is important to understand this
naming priority that functions have. It can be a powerful tool in customizing
your environment. Note that it is actually still possible to access the original Is
command by using its full pathname. As a matter of fact, the full pathname used

\ 'VnwfmiYWr •

Structuring Shell Programs ♦ 265

in the Is function mentioned earlier is necessary. Once you define the Is function,
any reference to that calls the Is function. So if we were to define the Is command
as shown next, we would cause problems:

is () {

Is -la I pg

}

While your intention may have been to invoke the UNIX Is command, what
was accomplished was a recursive call to the Is function (the Is function calls the
Is function calls the Is function ...), which in this case causes an endless loop
and never returns. Actually, recursive calls can be a very powerful programming
technique. (We cover recursive calls later in this chapter.) Just use care when
redefining UNIX commands.

Listing Function Definitions

Now that we have seen how to define functions, let’s look at ways to list the
functions that are active in our session. If you are using the Bourne Shell, the
functions are listed along with variables by using the set command. Since vari¬
ables and function names are stored together, their names must be unique when
using the Bourne Shell. Note that if you define a function when using the Bourne
Shell and then assign a variable the same name, your function definition will be
lost.

KSH, Bash

When you are using the Korn or Bash Shell, listing of function definitions
is done using the typeset command with the -f option. It is also possible in
the Bash Shell to use the declare command with the -f option which is a
synonym for the typeset command The typeset -f command is also stored
as a standard alias in Korn Shell called functions. The typeset command
or functions alias will list all your function definitions. They are not listed
with the set command as in the Bourne Shell. This brings out a distinction
between the Korn and Bash Shells’ and Bourne Shell’s handling of func¬
tions. In the Korn and Bash Shells, functions are not stored with the vari¬
ables. Thus they are not listed with the set command and the variable
name and function name conflict that exist with the Bourne Shell does not
exist. When using the Korn or Bash Shell, it is possible to have variables
with the same names as functions. This removes the potential for defining
functions and having them overlaid with variable names by a simple nam¬
ing mistake.

266 ♦ Chapter Eight

Removing Function Definitions

In order to remove function definitions using the Bourne Shell, you use the
unset command as shown:

unset function_name

where junction jiame is the name you provided for the function when you
defined it. This is the same method used to unset variable names. This seems
logical since the Bourne Shell stores functions as variable names. Once the unset
command is executed, the function is no longer available.

KSH, Bash

The Korn and Bash Shells also use the unset command in conjunction with
the -f option flag to remove function definitions. This is needed because
the Korn and Bash Shells store function names separately from the vari¬
able name and also permit overlap between the function and variable
names. The syntax of the unset command is:

unset -f function_name # remove a function name

unset var_name #remove a variable name

Function Execution

After declaring your function it is a simple matter to execute the function; simply
type the name of the function just as you would any other command. The Shell
locates the function and executes the associated commands. While this is very
similar to using other Shell commands or Shell programs that you have written,
there are differences.

Once the function is declared it is stored in your environment and is exe¬
cuted directly. This differs from the typical command where the Shell must read
the file and then interpret the commands contained in the file. This is much more
demanding and thus much slower than a function call.

Commands stored in a function are not executed in a subshell; they are
executed in your current Shell. This is very similar to invoking a Shell program
with the dot (.) command:

. shell_pgm

where the shell_pgm is some Shell procedure that you (or someone else) have
created. If you recall, this command tells the Shell to execute the command in
your current Shell environment. This is different from invoking the Shell directly,

Structuring Shell Programs ♦ 267

which causes the commands to run in a subshell. Since functions are executed in
your current Shell, any changes to the environment performed in the function
are permanently made to the current Shell. Upon return from the function exe¬
cution, the changes made to the environment remain intact. Most important, the
following changes remain in effect after return from the function call:

1. Any changes to any variables. This means setting of variables, unset¬
ting, and exporting. Basically, any changes to any variables are per¬
manent.

2. Any changes to the current directory remain in effect.
3. Any files used are also shared.

So use care when you execute a function call. It does behave differently from a
normal Shell program call.

The commands in the function are executed until either the end of the
function is reached, or an exit or return statement is encountered. If an exit
statement is coded in your function, then both the function and the invoking
Shell are exited. (We have seen previous examples of the exit command.) The
return statement is a way to exit just the function with the option of returning
some particular value. The syntax of the return statement is: return n, where
n is an integer value that you would like returned as an exit status to the call¬
ing Shell. This value can be tested for using the $? variable to check to see what
action the function performed. Did it complete properly or does some other
action need to be taken? The return statement provides the ability to leave a
function whenever you choose. For example, if some error condition occurs you
can return from the function and inform the calling Shell program that some
problem has occurred. If you do not supply a return statement and the end of
the function is reached, then an implied return is performed with the exit status
equal to the exit status of the last command performed in the function. This is
also true if you provide a return statement with no value for n. The last exe¬
cuted command provides the return code. After completion of the function you
are returned to the spot where the function was called from. If this was the com¬
mand line, then you are returned to the command line. If the function was exe¬
cuted from within a Shell program, then a return starts execution at the line
following the function call in the program.

If your function has an error when processing under the Bourne Shell, then
the function and its calling Shell are exited.

KSH, Bash

The Korn and Bash Shells, on the other hand, do not abort the entire Shell
program when an error occurs in a function. Only the function is aborted.
Control is returned to the calling Shell program.

268 ♦ Chapter Eight

Passing Arguments to Functions

Arguments are passed to functions in the same manner as any other Shell pro¬
cedure. Simply type the arguments following the command name, in the normal
fashion, and the function will be able to access these arguments in the variables
$1 ... $9 in the case of the Bourne Shell. Of course, the Korn and Bash Shells
can access variables beyond $9, as was discussed previously.

There is one small anomaly that you should take note of. When you call a
function with arguments from inside a Shell program, the function arguments
replace the arguments originally passed to the Shell program. Of course, the
solution to this problem is to store the arguments in a variable before you make
the call to the function and then, upon return, replace the arguments if there is a
need to do so. This can be done using the set command.

Another related approach is to parse all the arguments prior to any function
calls and store any arguments in your own variables. The nice thing about this
approach is that you can assign arguments to variable names that have more
meaning than $1, $2, and so forth. When your programs start to get large and
filled with numerous function calls and calls to other Shell programs, it is easy to
lose track of what is being stored in the special variables $1 through $9. Good
variable names are a key to easy understanding and maintenance of any pro¬
gram. Even though this approach is preferable, it may not always be possible. In
those cases, the first approach of storing the arguments and then restoring them
can always be used.

Function Scope

Functions declarations have rules about where the functions themselves are
applicable and what variables are accessible to the functions while they are exe¬
cuting. These rules are referred to as scoping rules.

KSH, Bash

The Korn and Bash Shells do allow for functions to be exported. This per¬
mits Shell programs that are executing in a subshell to access functions
that were defined in the parent Shell program. This is done in the same
manner as exporting variables. The syntax for the export is:

export func_name using Korn Shell

export -f func_name using Bash Shell

whertjuncjiame is the name of your function you want exported. With
some older versions of the Korn Shell the typeset command must be used
to export functions.

Structuring Shell Programs ♦ 269

When using the Bourne Shell, function declarations are local to the Shell in
which they are defined. This means that any Shell program that runs in a sub¬
shell will not have access to the functions that were defined in the parent calling
Shell process. In other words it is not possible in the Bourne Shell to export func¬
tions to make them available to called Shell procedures.

Once a function begins executing, there is the issu'e of which variables are
available to the function. Since functions run in the current Shell, all variables
defined in the current Shell procedure are available to all the functions declared
in that Shell process. Also, any arguments passed to the function are available
to the function in the special variables $1..$/? as was mentioned before. Also,
any variables defined in the function itself become available to the calling Shell
procedure as well as to all other functions which may be called. Variables that
participate in this kind of global sharing are called global variables. They are
shared globally between all functions and procedures. By exporting a variable
you make it global not only to functions but also to any Shell programs that run
in a subshell.

When using the Bourne Shell, all traps are shared between the calling
Shell program and the function. Thus, if a trap is reset in a function, it is reset
for the calling Shell as well. The exit trap (signal 0) is not activated in the
Bourne Shell when a function returns. This is not entirely true for the Korn
Shell.

Placing Functions in Your Shell Program

Now that we have looked at the basic mechanisms used to declare and use func¬
tions, let’s look more closely at how to use functions to improve our Shell pro¬
gram structure. In order to use Shell functions they must first be defined. This is
true in both your login Shell environment and your Shell programs. This means

KSH,Bash

The Korn and Bash Shells do provide for local variables in functions. This
means that the variable is visible only in the function where it is declared,
and is not shared by the calling Shell or any other functions. Once the func¬
tion is finished executing and a return to the calling procedure is performed,
the variable and its value are no longer available. A variable declared as
local in a function becomes global to any functions it calls. In order to define
the variables as local variables you must use the typeset command in Korn
Shell typeset command. When using the Bash Shell, the built-in command
local is used to define a variable with scope limited to the current function.

270 ♦ Chapter Eight

that your Shell programs will have all function definitions at the top of your file.
This allows all functions that are to be called to be defined before they are used.
The layout would look something like the outline shown here:

Typical Shell layout Skeleton

Section 1 - Function Definitions

functionl () { command_list

return 0;}

function2 () { command_list

return 0; }

functionN () { command_list

return 0; }

Section 2 - Main Shell Program Body

commands

functionl

function2

more commands and function calls as needed

exit

In this skeletal layout, the functions used in a Shell program are defined before the
main code begins to execute. This allows the functions to be called from the main
procedure whenever you need to perform the task accomplished by the function.

The layout just shown has one slight disadvantage. The functions that are
defined in the Shell program as shown are available only to this Shell program;
they cannot be used by other Shell programs that you might construct. If you are
developing numerous Shell programs, the sharing of Shell functions can be very
beneficial. It can save you hours of time by reducing the need to code and test
Shell procedures. We can overcome this problem by placing the functions in a

KSH

In the Korn Shell, all traps are shared except for the exit and the err trap. If
an exit trap (signal 0) is activated in a Korn Shell function, it is executed
upon return from the function. This can be a very nice debugging tool. The
err trap is available only in the Korn Shell and is performed every time a com¬
mand returns an unsuccessful return code. With Korn Shell functions, the err
trap can be defined in the function and will be executed anytime an error exit
status is returned in the function. Also a very powerful debugging tool.

Structuring Shell Programs ♦ 271

file(s) and then executing the file to declare the functions. This way, numerous
Shell programs can share the same common and reusable functions. The skele¬
tal outline for this is shown next. In a Shell program file, funcfile, we provide the
function declarations:

File funcfile contains common function definitions

functionl () { command_list

return 0;}

function2 () { command_list

return 0; }

functionN () { command_list

return 0; }

Then, in our Shell program, we include the function declarations:

Typical Shell layout Skeleton

Section 1 - Function Definitions

. funcfile # declare function definition

in the current shell

Section 2 - Main Shell Program Body

commands

functionl

function2

more commands and function calls as needed

exit ..

As you can see, when using the Bourne Shell you must execute the com¬
mon function file using the command to ensure that the functions are
declared in the current Shell. Also note that when using the Bourne Shell the
functions declared in this Shell program are available only to this Shell process.
If you call another Shell program that executes in a subshell, the functions will
not be available.

KSH,Bash

By using the ability of the Korn and Bash Shells to export functions, this
limitation can be overcome. If we were to export the functions after they
are declared, they would be available to all other Shell procedures that exe¬
cute as subshells.

272 ♦ Chapter Eight

Good Program Structure
m

Now that we have seen how to define functions in our Shell program, we should
spend a little time discussing what good program structure is. When you are
designing programs in any programming language, a well-structured program
will greatly facilitate understanding of the program. To provide a well-structured
program we utilize functions and other Shell programs which we call from our
main Shell program. Essentially we want to divide our program into manageable
and logical chunks. These chunks take the form of functions and Shell programs.
Our goal is to avoid building what we will loosely call the “run on” program. This
is a program where all the functionality and logic are built into a single main pro¬
cedure. While it is easy to get away with a “run on” program when it is small,
larger programs quickly become unmanageable. The advantages of dividing up
your program are:

1. Makes the program easier to understand
2. Reduces redundant code (calls the function instead of repeating the

code many times)
3. Makes debugging much easier
4. Increases maintainability
5. Encourages reusing code
6. Decreases testing time

Of course, all of these advantages are closely tied to software quality. Build more
reliable software, faster, cheaper, and with less maintenance costs.

When building a structured program, try to build a short main procedure
(Section 2 in the skeletal Shell provided in the previous section) that provides the
general flow and logic of the program. Perhaps this main program ensures that
correct arguments and options have been selected and, based on those argu¬
ments, calls a number of functions or Shell programs to accomplish the task.
When you are designing your program for the first time, try to think about divid¬
ing it up based on some logical functional division. For each logical division, cre¬
ate a separate function or program that will work to accomplish that task. Of
course these Shell programs and functions can call other functions and programs
as needed. When developing Shell programs my goal is to develop a main proce¬
dure that is no longer than one or two printed pages. All other functionality is
placed in Shell functions and called Shell programs. The two-page guideline
could be applied to any Shell function or program that you develop. If any pro¬
gram gets too long, it becomes difficult to understand and debug. Your goal
should be to develop small, manageable, reusable functions.

When you are in the process of coding your program, you may find your¬
self coding the same thing over and over again. Any time that you find yourself
copying or duplicating code, you should consider utilizing a function. Some
things that often end up being functions in many of my Shell programs are:

Structuring Shell Programs ♦ 273

1. Error routines—No need to produce the same code for every error;
make it a function.

2. Input/output routines—Often you will read/write to/from the terminal
or a file in several places. No need to create the code in all places; make
it a function.

3. Any repeated process—Any procedure that you repeat more than two
times should be a function.

Designing Reusable Functions

If you really want to become a productive Shell programmer (or any kind of pro¬
grammer, really), you must work to reuse your code. This means that the func¬
tions and programs you develop should be shared with other programs and
functions as much as possible. When you are writing a new function or program
to accomplish some task, you should ask yourself the following questions:

1. Is there some way that I could generalize this function so that it could
be used in many different programs to accomplish the task at hand?

2. Is there a way to make the module independent from the current call¬
ing program so that other programs can share the code?

As an example of what we mean by generalizing, let’s look back at some
code we wrote in Chapter 6. In this example we had developed a program that cut
particular fields from a password file record based on the user ID. Instead of
building a program that just cut a particular field we developed a program that
would cut any field from the password file record based on user ID. Since cutting
fields from the password file is a common process in the UNIX environment there
is a good chance that we may be able to use this procedure elsewhere in our pro¬
gramming efforts. So we place this in a common program or function, making it
accessible to any Shell program. The original code in the Shell program looked
like the following:

grep $userid /etc/passwd I cut -f5 -d:

We generalized this to the following Shell program:

#a general purpose password file grep and cut

if [$# -eg 0]

then

echo "No args supplied for passgrep"

echo "- Arguments are userid and field # to cut"

fi

grep $1 /etc/passwd I cut -f$2 -d:

Now any user ID and field can be specified.

274 ♦ Chapter Eight

This also demonstrates how we can accomplish making the function inde¬
pendent from the current Shell program. In this case we have elected to make the
function work with arguments passed to the function instead of depending on
global variables that would be shared with the calling Shell program. Sharing
global variables couples the function to the calling environment. This is what we
want to avoid when trying to construct general-purpose functions and programs.
Avoid interacting with other Shells through the use of shared information that
links the programs together. Build a barrier or wall around your function so that
it uses information passed solely through arguments and produces specific, well-
identified results.

The goal is to build up a library of reusable Shell programs that can be
linked together later, in some modified way, to accomplish a different task. In
order to do this well, you must keep the rules of reusability in mind.

Recursive Functions

The Shell supports recursive function calls. A recursive Junction is a function
that calls itself. At first this can seem like a confusing concept, but really recur¬
sive function calls are just another form of looping. You are repeatedly perform¬
ing the statements in the function call by calling the function multiple times. In
most cases it is possible to perform the same task using an iterative loop in place
of the recursive function call. But a recursive function can solve some problems,
very elegantly, that would be awkward using looping.

When designing a recursive function, a call is placed in the function to the
function itself, as shown:

calculate () {

statement_list;

calculate; # call the calculate function again

}

The function, calculate, is called in a recursive manner by calling the func¬
tion within the function itself. While this example shows how to make a function
recursive, it also brings up a rule concerning recursive functions. You must pro¬
vide an exit condition that eventually becomes true when building recursive
functions. This exit condition is used to stop the recursive calling of the function.
If you do not do this, the recursive calls never stop and the function ends up
looping, endlessly calling the function. Eventually the recursive call will make
your Shell session run out of system recourses and it will terminate. This is prob¬
ably not exactly what you had in mind. How to set up recursive function calls
should become a little clearer when we look at an example.

Let’s take a Shell program that we developed previously and turn it into a
recursive procedure. This Shell procedure adds the integers 1 through 100 and is

Structuring Shell Programs ♦ 275

shown next basically in its original form except that it has been formed into a
function called sum_em.

sum_em () {

while [${i:=1} -le 100]

do

total='expr ${total:=0} + ${i}'

i=’expr ${i} + l1

done

>

Now to modify this into a recursive function we will remove the while loop
and replace it with a call to the function. Note that the function has also been
generalized so that it can now accept the integer values to sum. The first argu¬
ment is the starting integer and the second argument is the ending integer. The
Shell function to accomplish this task is shown:

sum_em () {

This is the exit condition to stop the recursion

if [$1 -It $2]

then

Call the function again with the next integer

sum_em 'expr $1+1' $2

#Total the return from sum_em with current $1

totals'expr $? + $1

return $total #Return the new total

else

return $2 # Return $2 if we have made all the calls

fi

>

At first glance, this may seem confusing. To get a better understanding of how a
recursive function operates, let’s turn on the debugger and take a look at the
Shell as it executes. For this example we will only add the numbers 1 through 10.

set -vx

sum_em 1 10

+ sum_em 1 10

+ [1 -It 10]

+ expr 1+1

+ sum_em 2 10

+ [2 -It 10]

+ expr 2+1

+ sum_em 3 10
Continued

276 ♦ Chapter Eight

+13 -it 10]

+ expr 3+1

+ sum_em 4 10

+ [4 -It 10]

+ expr 4+1

+ sum_em 5 10

+ [5 -It 10]

+ expr 5+1

+ sum_em 6 10

+ [6 -It 10]

+ expr 6+1

+ sum_em 7 10

+ [7 -It 10]

+ expr 7+1

+ sum_em 8 10

+ [8 -It 10]

+ expr 8+1

+ sum_em 9 10

+ [9 -It 10]

+ expr 9+1

+ sum_em 10 10

+ [10 -It 10]

+ return 10 #

+ expr 10+9

total=19

+ return 19

+ expr 19+8

total=27

+ return 27

+ expr 27+7

total=34

+ return 34

+ expr 34+6

total=40

+ return 40

+ expr 40+5

total=45

+ return 45

+ expr 45+4

total=49

+ return 49

+ expr 49+3

total=52

+ return 52

+ expr 52+2

total=54

+ return 54

+ expr 54+1

total=55

+ return 55

This is the end of the recursive calls

Structuring Shell Programs ♦ 277

If you examine the output, you can see that the sum_em function is called
ten times. Each time, the current invocation waits until the next invocation of the
function completes. So in the first phase the function calls stack up until the exit
condition is satisfied. Then the tenth invocation of the function returns a value
of 10 to the ninth invocation of the function. The ninth invocation then adds the
returned 10 with the value of $1 (in this case, 9) giving 19. This value is
returned to the eighth invocation of the function. This continues until all invoca¬
tions have been satisfied. At the end, all the integers have been added and the
value for total returned is the sum we desired.

There are many uses for recursive functions. As you begin to explore recur¬
sive functions, their power will become evident. At first they may seem awk¬
ward, but after a little practice they will seem more natural and you will develop
a sense for which problems can best be solved using a recursive technique.

Summary

This chapter has explored the use of Shell functions. A function is a series of
Shell commands that are given a name. This name is then used as a handle to
execute the statements declared as part of the function. To execute a function,
you type its name on the command line or in your Shell program just like any
other command. In order to execute a function, it must first be declared. Use the
set command to list functions declared in your current Shell environment and
unset to remove already existing function definitions. Shell functions can be
used to enhance your login Shell environment by placing commonly used func¬
tions in your .profile so that they are defined when you log in. Unless you are
using the Korn or Bash Shell, function definitions are local to your current Shell
and cannot be exported to subshells. Variables declared and used in functions
are global unless you-are using the Korn or Bash Shell, which supports both
global and local variables. Functions can be called with arguments. When build¬
ing a Shell program, functions are very useful for structuring your program to
make it easier to understand and maintain. Functions also encourage code reuse.

Exercise

1. Thke any of the Shell programs in previous chapters and convert them
to Shell functions.

*

4

■'

Internet and
the Shell

The Shell can help make the Internet more interactive and user-friendly. Shell
scripts can search files, create hypertext references, process survey responses,
and issue orders based on requests from your guest’s site. If you can read from
stdin and write to stdout, you can write CGI shells. To be able to use the Shell on
the Internet, you will need to understand the basics of Web sites and Web pages.

Web sites consist of one or more pages of HTML—hypertext markup lan¬
guage—or some sort of executable script such as Shell, Java, C++, and the like.
Common types of pages (Figure 9.1) include:

♦ Home page—Starting page or “store front” for any company, organization,
or individual’s area on the Web. Typically stored in a directory public_html
and named index.html.

♦ Info pages—Pages of information linked via hypertext links to other pages
under the home page.

♦ Interactive queries—Using Shell combined with the ISINDEX feature of
HTML, guests can use keywords to search for information on your site.
Responses can be composed by the Shell and sent back to the guest.

♦ Interactive forms— Forms make the World Wide Web more interactive.
Guests at your site can answer surveys and input their names, thoughts,

279

280 ♦ Chapter Nine

shell.cgi

FIGURE 9.1 Internet pages.

addresses, and orders via forms written in HTML. The information from
these forms can be emailed to you or processed via Shell scripts.

HTML (Hypertext Markup Language)

HTML is one of the essential ingredients for using the Internet. To use the Shell
to make the Internet more interactive, you will want to understand the basics of
HTML because Shell scripts build HTML responses to your site guests.

When most people first look at HTML, they blanche. But it’s not that tough,
once you understand the structure. It’s a whole lot easier if you know nroff,
because HTML is shockingly similar to the old nroff documentation language

Internet and the Shell ♦ 281

and it allows hypertext (point-and-click) links to other Web pages. If you know
nroff, you can learn HTML in a very short period of time. If you don’t know nroff,
you can still learn HTML in a short period of time by using the templates or boil¬
erplate that are provided in this chapter.

In 1975, long before word processing and desktop publishing in personal
computers, there lived two commands—nroff and troff—that could do virtually
everything that modern packages could do. Nroff formatted documentation for
the ocean of dot-matrix and letter-quality printers; troff formatted documents for
PostScript laser printers and phototypesetters. For more information on nroff, see
Appendix F. The essence of these formatting languages was used to create HTML.

The Internet serves a wide variety of computers and browsers. On the
Internet, your Web browser reads the HTML and formats it for your screen. In
the same way that nroff allowed many kinds of output devices to correctly for¬
mat documents, HTML allows all kinds of computers to correctly display HTML
information. So HTML works for the simplest text-oriented browser all the way
up to more sophisticated browsers.

HTML Format

Every HTML file is a simple text file that, like nroff, uses embedded commands
(Table 9.1) to instruct the Web browser how to format the content. Most HTML
commands are like bookends-, they have a start command (for example,

TABLE 9.1 Nroff to HTML

Nroff command HTML start HTML end

-HTML code <HTML> </HTML>
-Header copy <HEAD> </HEAD>
-Body copy <BODY> </BODY>
-Address copy <ADDRESS> </ADDRESS>
.tl—title <TITLE> </TITLE>
.br—break

.p—paragraph <P>
-line across screen <HR> Hard rule
.ol—ordered list
.ul—bullet list
.li—list item
.hi—Header level 1 <H1> </Hl>
.h2—Header level 2 <H2> </H2>
.h3—Header level 3 <H3> </H3>
-blockquote <BLOCKQUOTE> </BLOCKQUOTE>
-graphic/picture

”
-hypertext reference
,TS and .TE <TABLE> </TABLE>
—Thble Row <TR> </TR>
—Table Element <TH>

282 ♦ Chapter Nine

<TITLE>) and an end command (for example, </TITLE>). The ending command
has a forward slash to differentiate it from the start command. Other HTML
commands do not enclose information, so there is only a single command (for
example, <P> begins a new paragraph).

These commands are used to compose Web pages. Each informational Web
page (Figure 9.2) consists of three main parts enclosed within start/end HTML
commands:

<HTML>

♦ HEAD—for title information

♦ BODY—for the content

♦ ADDRESS—for guests to contact you

</HTML>

Head

The TITLE appears at the top of the browser window. The following template
(headtemp.html) is all you need to start a Web page. The keyword, “PAGE-
NAME,” can be modified by any of the Shell editors (for example, sed) to pro¬
duce a new title.

<HTML>

<HEAD>

<TITLE>PAGENAME<TITLE>

</HEAD>

<BODY BGCOLOR="#00ffff">

<H1>HEADER1<H1>

text or graphic content<P>

<IMG

SRC="photo. jpeg"x/A>

<A HREF="page.html"xIMG

SRC="graphic . gif "></AxBR>

</BODY>

<HR>

<ADDRESS>

YOURNAME< BR>

YOURPHONE

Fax:YOURFAX

YOURADDRESS

YOUREMAIL</AxBR>

<AHREF = " index. html" >Home Page< /AxBR>

(C) 1997 YOURNAME

</ADDRESS>

</HTML>

FIGURE 9.2 Web pages in HTML.

* /

Internet and the Shell ♦ 283

headtemp.html

<HTML>

<HEAD>

<TITLE>PAGENAME</TITLE>

</HEAD>

Body

The BODY contains the information you want to convey to site guests. It may
contain graphics, pictures, headers, quotes, bullet lists, numbered lists, and
paragraphs of text. The following template (bodytemp.html) contains the basic
building blocks of a simple Web page: background color (BGCOLOR), a level 1
header, text, or graphics.

bodytemp.html

<BODY BGCOLOR= 11 # 0 0 f f 0 0 " >

<H1>HEADER1</H1>

text or graphic content

</BODY>

<HR>

Address

The address block, “addresstemp.html,” lets people know how to get ahold of
you. It should contain your name, physical address, phone, fax, a copyright, and
hypertext links to your email and Web home page. It can contain the ending
</HTML> statement.

addresstemp.html

<ADDRESS>

YOURNAME

YOURPHONE

Fax: YOURFAX

YOURADDRESS

 YOUREMAIL</AxBR>

Home Page</AxBR>

(C) 1997 YOURNAME

</ADDRESS>

</HTML>

Graphics and Photos

Graphics and photos can be included in Web pages. They can stand alone, serve
as icons, be used as buttons, or be mapped to create visual hypertext links. Line
drawings are usually included as .gif or graphic interface format; photos are
stored in .jpeg format—72 DPI or lines per inch. They can be included in the Web
page with the following HTML:

284 ♦ Chapter Nine

These images can be turned into hypertext links to other pages as follows:

Once you know these basics about HTML, you’re ready to begin exploring
how to use them to create interactive experiences on the Internet using the Shell.
The Shell can respond to queries and process forms through the Common
Gateway Interface—CGI.

CGI (Common Gateway Interface)
Programming

Normally, guests access your site by use of a URL—Universal Resource
Locator—which tells servers and the Internet where to find the requested infor¬
mation. This is normally a simple act of getting existing pages from an existing
Web site. The Common Gateway Interface (CGI) allows external users to interact
with applications on your HTTP or Web servers. Each time a guest requests your
CGI program, your server will execute it in real time. The output of the program
goes directly to the guest.

CGI is a simple protocol that can be used to communicate between Web and
your programs. Gateway programs written in Shell provide a means to make the
Internet more interactive. When initiated, the server activates a CGI program
using any FORM, ISINDEX, or other data from the requesting site (Figure 9.3).
The CGI program processes the input and sends it to your server, which sends the
resulting information back to the requesting site. CGI programs can be written in
any number of languages—Shell, C, C++, Perl, and so on. This book will focus on
using the Shell for CGI programs, because executable scripts are easy to write
and modify as required. Execution speed is less important because the network
speed is often slower.

Here’s the typical sequence of steps for a Shell CGI script:

1. Read and parse the user’s input—command line or form.
2. Process the data.
3. Write an HTML response to stdout.

The CGI program gets the data from the server in one of two ways: as envi¬
ronment variables (ISINDEX) or via stdin (data posted from FORMS, Figure 9.4).
The CGI program passes data back to the server by writing to stdout. Client sites
send data to the server in two main ways:

1. An query generated by ISINDEX or the GET method of an HTML FORM:
http://www.site.com/cgi-bin/program7query_string

2. A message “POSTed” from an HTML FORM:
<FORM METHOD=POST ACTION=“cgi-bin/program”>

Internet and the Shell ♦ 285

Guest's Web Server

HTML
.gif

■jpeg
CGI-Shell

Your Web Site

FIGURE 9.3 Internet, Web, and Shell.

CGI uses environment variables to send parameters. The most important envi¬
ronment variable is: QUERY_STRING.

QUERY_STRING follows the first “?” in the URL. This information could be
added either by ISINDEX or by an HTML FORM (with the GET action). This
string will usually be a query.

This QUERY_STRING is encoded. The name-value pairs are in one long
string, so you will need to decode the string in order to use it. The CGI directory
at Yahoo includes many existing CGI routines and scripts. To parse the string
yourself:

♦ Split the string on
♦ Convert all “+” characters to spaces. A simple way to do both uses tr:

tr"&+" " \012 "
♦ Convert all “%XX” hexadecimal encodings to its ASCII value: “%40” hex is

Get a current HTML reference to get all of the codings. This can be done
easily with sed using a file of transformation commands, hexconvert:

ISINDEX
(query)

FORM

FIGURE 9.4 CGI processing.

286 ♦ Chapter Nine

tr "&+" " \012 " I sed -f hexconvert

where hexconvert contains lines of the form:

/%34/s//\"/

/%39/s//\ ' /

/%40/s// (/

/%41/s//)/

/%91/s//[/

/%92/s//\\/

/ % 9 3 / s / /] /

/%123/s//{/

/%12 4/S//\ I /
/ % 12 4 / s / /} /

This would convert the following input correctly:

testl=on&inline=Jay%39s+New+Shell+is+a+pipe+%34%124%34

testl=on

inline=Jay's New Shell is a pipe "I"

Tr and sed can handle most of the cleanup required to process an response from
an HTML FORM. Now let’s look at handling the variables extracted from a
response.

CGI Environment Variables

In order to pass data about the information request to the script, the server also
uses environment variables. These environment variables are set when the
server executes the gateway program. Some are set regardless of the request
(Thble 9.2); others depend on the request (Thble 9.3).

Responding to Your Guest

CGI programs can return a variety of document types—images, HTML, plain text,
audio clips, or references to other documents. The CGI Shell script responds to
the guest by sending streams of HTML to stdout. This output can be either a doc¬
ument generated by the script, or instructions to the server for retrieving the
desired output. Your server sends these on to the guest.

The CGI program must tell the server what type of document it is sending
by use of a “MIME” (Multipurpose Internet Mail Extension) type. MIME types
are standard strings that identify a file type. They start with the general file

TABLE 9.2 Environment Variables Set for All Requests

SERVER_SOFTWARE The name and version of the software answering the request.
SERVERJSIAME The server’s hostname, DNS alias, or IP address.
GATEWAYJNTERFACE The CGI revision specification.

TABLE 9.3 Optional Environment Variables

Environment variable Description

Internet and the Shell ♦ 287

AUTH_TYPE
CONTENT_LENGTH
CONTENT.TYPE
HTTP_Authorization
Hup content-type
Http content-length
PATHJNFO
PATH_TRANSLATED

QUERY_STRING
REMOTE_ADDR
REMOTE JtOST
REMOTE_USER

REQUEST_METHOD
SCRIPT_NAME
SERVER.PORT
SERVER_PROTOCOL

The protocol-specific authentication method used.
The length of the content.
Content type of attached data—html, text, etc.
Header line,
html/text/etc.
Number of characters.
The extra path information provided by the guest.
Translated version of PATHJNFO with virtual-to-physical

mapping.
The information which follows the “?” in the URL.
The IP address of the requesting host.
The hostname making the request.
If the server supports user authentication, and the script is

protected, this is the username they have authenticated as.
GET, HEAD, POST, etc.
A virtual path to the script being executed.
The port number to which the request was sent.
The protocol and revision of the request.

type—text, image, or audio—and end with the specific file type—such as html,
gif, or jpeg. Common MIME types are: text/html for HTML, text/plain for ASCII,
image/gif, and image/jpeg. Responses always begin with a header that identifies
the response. Currently, there are two key types of headers:

1. Content-type—This is the MIME type of the document you are return¬
ing. There must be a blank line after the header:

Content-type: text/html

<HTML>

</HTML>

2. Location—This specifies a reference to a document or URL. The server
will automatically find and return this reference to your site guest.

Location: response.html

Location: http://www.server.com

The body of the HTML response can be sent by a number of means:

♦ echoing every line:

echo<HTML>

♦ eating whole HTML files:
%

cat response.html

288 ♦ Chapter Nine

♦ Using sed to customize templates for the header, body, and address:

sed -e "s/PAGENAME/Speakers Directory/“'headtemp.html

♦ Using the Location header shown previously:

echo Location: response.html

. The Shell provides total flexibility in structuring the response sent to the
guest’s server. Just create the HTML response, step-by-step, and send it to std-
out. Let’s begin by looking at how to do this for queries initiated by ISINDEX.

ISINDEX Queries

Searching

The following HTML will produce what is shown in Figure 9.5—a search request
that will trigger a CGI program:

<BODY BGCOLOR="# 0 0 f f f f">

<H1>

Speakers Directory

</Hl>

<ISINDEX PROMPT="Search by Topic Keywords or Name">

The server decodes the query by converting any “+” signs into blank spaces
and then using the remaining information as command line arguments:

http://.../cgi-bin/spkrqry.cgi?quality+management

is translated into the following shell command:

spkrqry.cgi quality management

Continued

Netscape: Speaker Query

<p° =<> ft ii mi BTn
Back Forward Home Reload Images Open Print Find Stop

Go To: */w ww .server .com / cgi-bin /spkrqry ?key word

PWhat's Cool? I Handbook Net Search | Net Directory | Software

Speakers Directory ' ,;

,

Search hy Topic Keywords or Name keyword

B? B

FIGURE 9.5 ISINDEX query.

4

■ 'iWFZp--
Internet and the Shell ♦ 289

spkrqry.cgi

#!/bin/sh

echo "Content-type: text/html”

echo "11

if [$#=0] # no search arguments

then

cat spkrqry.html # send ISINDEX web page

else

sed -e "s/PAGENAME/Speaker Query/" headtemp.html #send header

echo “<BODY BGCOLOR="#00ffff">Search for$*<P>"

echo "<Hl>Speakers Directory</Hl>“

RE='echo "$*" I sed -e "s//\\\l/"'

FILES=1egrep -1 $RE *.html I xargs echo'

for name in $FILES

do

grep title $name I sed -e "s/<title>//" -e "s/<\/title>//" l\

sed -e "s/A/ /" -e "s/$/<\/A>
/"

done

echo "</BODY>"

fi

cat addresstemp.html #send address

Forms

Web “forms” are the computer equivalent of the paper forms we fill out in every¬
day life. HTML FORMS allow guests to enter purchase orders, complete surveys,
subscribe to newsletters, and a host of other possibilities. Shell CGI scripts pro¬
cess the FORM and determine the appropriate HTML response. At the end of
every form is a “Submit” button. When you push this button, two things are sent
to the server: the data entered and an ACTION, which basically tells the server
what to do. ^

Your server distinguishes FORM responses from ISINDEX responses
because there are unencoded equal signs “=” in the resulting query string:

VI=on&V2=on&K3 = on&V4=on&A5=on&V6=on&A7=on&V8=on&V9=on&

Each variable (VI, for instance) and its value are delimited by an amper¬
sand as shown. Special characters encoded by the sending server, will need
to be decoded. There are two main types of input used in a FORM: CHECKBOX
(that is, “radio” buttons) and NAME (that is, alphanumeric fields).

FORMs exist within the BODY of an HTML page. There are three methods of
using forms on the Internet: MAILTO:, GET, and POST. MAILTO: will send the
guest’s response in an email message. The other two methods, GET and POST, can
be used to access CGI programs. Depending on which method you use, your pro¬
gram will receive the results in a different way. If your form uses METHOD=“GET,”
the input will arrive in the environment variable QUERY_STRING. If your form
uses METHOD=“ POST, ” the input will arrive on stdin.

290 ♦ Chapter Nine

Data from a FORM consists of a stream of “name=value” pairs separated by
the “&” character. Each “name=value” pair is,URL encoded. This means that
blanks are encoded as “+” and special characters are encoded as their decimal
representations: %XX. Sed and awk can easily convert a GET form data string
into separate environment variables. First, split the data by the ampersands.
Then, for each “name=value" pair decode the name and then the value.

MAILTO FORM

The following survey FORM (Figure 9.6) will mail the results to the email
address specified. No processing is performed on the input.

<FORM METHOD=POST ACTION^"mailto:lifestar@rmii.com">

Check all answers that apply.</STRONGxP>

 When I have leisure time, I prefer to:

cINPUT TYPE="checkbox" Name="Vl">a. watch TV, a video, or go to the

movies.

<INPUT TYPE="checkbox" Name="Al"> b. listen to music, radio, or read

books.

<INPUT TYPE=”checkbox" Name="Kl"> c. do something athletic, physical, or

using my hands.<P>

Continued.

Netscape: Suruey

s ft) 0
Back Forward Home Reload Images Open Print Find Stop

Go To: | mailto :lifestar@rmii .corrj

What's New? I What's Cool? I Handbook Net Search Net Directory Software

Guest Survey^
Check all ausirers that apply.

1. When I have leisure time, I prefer to:
□ a. "vetch TV, a video, or go to the movies.
= b. listen to music, radio, or read books.
□ c. do something athletic, physical, or using my hands.

Check only one anstrer.

2. When I have leisure time, I prefer to:
O a. vetch TV, a video, or go to the movies.
O b. listen to music, radio, or read books.
O c. do something athletic, physical, or using my hands.

SUBMIT

B. Document: Dong. E53? 0

FIGURE 9.6 Survey form.

Internet and the Shell ♦ 291

Check only one answer.</STRONGxP>

 When I have leisure time, I prefer to:

<INPUT TYPE="radio" Name="A" VALUE="Visual"> a. watch TV, a video, or go to

the movies.

<INPUT TYPE="radio” Name="A" VALUE="Auditory"> b. listen to music, radio, or

read books.

cINPUT TYPE="radio" Name=,lA“ VALUE="Kinesthetic"> c. do something athletic,

physical, or using my hands.<P>

</0L>

<INPUT TYPE="SUBMIT" VALUE="SUBMIT'><P>

</FORM>

GET FORM

The GET method is useful when there is a small amount of data and you want to
have the input look like an 1SINDEX query. When a form is submitted to a server
using the GET method, the FORM data is appended to the URL as a query string.
If we use the same form as shown in the previous mailto example, but change
the METHOD to GET and ACTION to a Shell CGI program named survey would
result in the following changes:

<FORM METHOD=GET ACTION="http://.../cgi-bin/survey.cgi">

GET can be processed just like an ISINDEX query. If, in response to the form,
the guest checked the VI and K1 checkboxes, the result would be as follows:

GET /cgi-bin/survey.cgi?Vl=on&Kl=on

POST FORM

The POST method, in contrast to the GET method, sends the data directly rather
than appending it to the URL. The POST method is better when sending large
amounts of data, because, given the way many servers pass GET query strings
to server scripts, you run an excellent chance of having the contents truncated by
hardcoded Shell argument lengths. With POST, you never have such problems.

The following FORM creates a book order form (Figure 9.7) that is filled in
by the customer, submitted to and processed by a Shell program called cgi-
bin/bookorder.cgi:

<FORM METHOD=POST ACTION="http://.../cgi-bin/bookorder.cgi11 >

< STRONG>Quant i ty< / STRONG>-< STRONG>BOOK< / STRONGxBR>

<INPUT NAME=11 Shell" SIZE="4" VALUE=111 “>UNIX Shell Programming (3rd)

<HR>

Your name: <INPUT NAME="theName">

Company: cINPUT NAME= 11 Company">

Purchase Order Number cINPUT NAME=11 PONumber11 >

Continued

292 ♦ Chapter Nine

FIGURE 9.7 Book order form.

Address: <INPUT NAME="Address" SIZE=”35">

Apt/Ste. <INPUT NAME="Ste" SIZE= " 5 11 >

P.0. Box: <INPUT NAME=”POBox”>

City <INPUT NAME="City">

ST <INPUT NAME=“ State11 SIZE=2>

Zip (Postal Code) <INPUT NAME=“ZIP" SIZE=10xBR>

Country <INPUT NAME="Country” VALUE="USA">

Email: <INPUT NAME="Email">

Phone: <INPUT NAME=11 Phone”>

Fax: <INPUT NAME="Fax"><P>

<INPUT TYPE="SUBMIT" VALUE="SUBMIT ORDER"><P>

</FORM>

The resulting input to the bookorder program would be:

shell=l&theName=Jay+Arthur&Company=LifeStar&Address=2244+S.+01ive+St&Ste=&P

OBox=&City=Denver&State=CO&ZIP=80224&Country=USA&Email=user@aol.com&Phone=
303+7 57-2039&Fax=303+753-9675

Internet and the Shell ♦ 293

This book order could be processed simply by changing the characters to
new-line characters ‘\012’, “+” to blank spaces, stripping the variable names,
and mailing the result to an email address:

#bookorder.cgi

!# /bin/sh

tr "&+" "\012 ”1 sed -e "s/A.*=//" I mail lifestar@rmii.com

echo "Content-type: text/html"

cat catalog.html # send catalog page back

Use the environment variable CONTENT_LENGTH to determine how much data
you should read from stdin.

Or it could be processed by initiating an ordering program using the argu¬
ments after they have been separated by changing the and “+” characters to
spaces. Putting the arguments in front of the command makes them global vari¬
ables for the Shell program order.

#bookorder.cgi

!# /bin/sh

args='tr "&+” "

$args order

echo 11 Content-type: text/html"

cat catalog.html # send catalog page back

These are simple examples that begin to demonstrate how the Shell can
make the Internet more productive and interactive. Every example in every other
chapter in this book could be employed within a CGI script.

TEXTAREA Fields ^

The TEXTAREA keyword creates fields for entering large amounts of text.
TEXTAREA signals the browser to display a multiline field. The ROWS and COLS
tags tell it how many lines long and how wide the field should be.

<TEXTAREA NAME= " feedback11 ROWS=20 COLS-60></TSXTAREA>

CHECKBOXes

Checkboxes allow users to select one or more items with the click of a mouse
(Figure 9.6). Checklists make it fast, easy, and fun for guests to enter information,
especially survey responses. The initial value of a checkbox can be checked or not.

RADIO Buttons

Radio allow users to select one item out of a group with the click of a mouse
(Figure 9.6).

294 ♦ Chapter Nine

OPTION List

Option lists allow users to select from a list. Option lists (Figure 9.8) can include
“drop down” and scrolling list boxes:

Drop Down List Box

<SELECT NAME=speakers>

<OPTION>Jay Arthur

<OPTION>Ted Burns

</SELECT>

<P>

Scrolling List Box

<SELECT NAME=speakers SIZE=4>

<OPTION SELECTED>Jay Arthur

<OPTION>Ted Burns

<OPTTON>Ruby Newell-Legner

<OPTION>Laura Woloch

<OPTION>Orvel Ray Wilson

</SELECT>

The SIZE keyword determines how an option list is displayed. The SIZE keyword
determines the number of rows visible at one time. If the SIZE is one (default), a
drop-down listbox will appear. Otherwise, a scrolling listbox will appear. The
SELECTED keyword sets the default selection.

FIGURE 9.8 List box form.

Execution

Internet and the Shell ♦ 295

Remember to make your cgi script executable:

chmod 750 script.cgi or chmod 755 script.cgi

Application Programs

If you have a database and you want to allow people from anywhere on the Web
to query it, you will need to create a CGI program. The server executes the pro¬
gram which sends the query to the database and formats the results into HTML.

Security

Since CGI shells are executable, you are letting any user run a program on your
system, which may not be the safest thing to do. Any program interacting with a
guest encounters the possibility of that guest attacking the program to gain
unauthorized access. Even the most innocent-looking script can be dangerous.
Security precautions include:

♦ Never trust your guests
♦ Put CGI programs in a special directory: /cgi-bin.
♦ Avoid “-filename” inclusions in email.
♦ Beware the eval statement which allows you to construct a string and have

the interpreter execute that string.
♦ Special characters can confuse a script and gain unauthorized access.

Remove any special characters that might do things that you do not want,
such as the semicolon or pipe “I”, and the like.

♦ Be careful with popen and system if you use any data from the guest.

Summary

Shell provides some excellent tools for handling HTML pages and preparing them
for distribution on the wide variety of browsers available to the Internet. CGI scripts
are easy to write and test. They can be used for everything from simple queries to
more complex Internet applications. All of the applications shown in other chapters
can be used within a CGI Shell script. The possibilities seem limitless.

*

296 Chapter Nine

Exercises
•

1. Create an ISINDEX query to search a tab-delimited database of key¬
words with associated HTML pages. Respond back to the user with an
HTML page of links to selected pages.

2. Use the GET method with a FORM to collect survey responses from
guests. Use radio buttons and checkboxes to gather input. Process this
form using a simple CGI program to tally survey responses.

3. Use the PUT method with a FORM to gather detailed information from
guests. Use text boxes for longer information. Process this form using
both MAILTO and CGI actions.

4

Bill Joy and students on the University of California at Berkeley campus created
a version of the Shell known as the “C Shell” that is useful for C language pro¬
grammers. The C Shell offers some advantages over the Bourne Shell: history,
and direct evaluation and execution of conditions and more “built-in” com¬
mands. Many of these improvements have been incorporated into the Korn and
Bash Shells. Interactively, the C Shell keeps track of the commands as you enter
them (history) and allows you to go back and execute them again without re¬
entering the command. Or, if you want to, you can recall them, make modifica¬
tions, and then execute the new command.

The C Shell offers aliasing, which allows the user to create alternatives for
command names. The C Shell, like Korn and Bash, also offers greater control
over background (behind the scenes) and foreground (at the terminal) tasks. In
the Bourne Shell, if you start a command in background or foreground, it stays
there until it ends. In the C Shell, you can move commands from foreground exe¬
cution to background execution as required.

The C Shell offers two kinds of variables: regular (local) or environment
(global). The C Shell uses set and setenv to establish these two kinds of variables:

297

298 ♦ Chapter Ten

set variable=value

The syntax of the C Shell is more like C language programming and offers
all of the C conditional operators (==, >, etc.), which C programmers might find
useful. The C Shell offers the 1F-THEN-ELSE, SWITCH, FOREACH, REPEAT, and
WHILE control constructs. The C Shell evaluates conditional expressions within
these control structures directly.

Setting Up Your C Shell Environment

In the C Shell, ${HOME}/.cshrc performs similar functions to the .profile in
Bourne. The commands and variables shown in Thble 10.1 are really the very
basics that you will want to have in your .profile. As you become a more power¬
ful user your .profile will grow and become increasingly sophisticated all in an
effort to utilize the full power of the Shell with a customized environment. It’s the
perfect place to set key Shell variables (Table 10.2):

set noclobber # don't clobber files during execution

set history=20 # keep track of 20 previous commands

set prompt="#@%! "

set path=${path}:${HOME}/bin

echo "G'day Mate!1'

${HOME}/.cshrc is also an excellent place to put aliases for commands:

alias dir 'Is -1'

The ${HOME}/.login file executes after .cshrc. It is an excellent place to set
terminal characteristics with stty and to set environment variables with setenv:

stty erase 1AH' # set erase to a backspace

setenv PRINTER MYroom # set PRINTER default to MYroom

TABLE 10.1 Variables/Commands Commonly Set in .login

/?c7r/z=$path:/your directories here

wtf/A/usr/mail/mylogin
umask 022
prompt^1 NEXT:”
TERM=vt\00

Append your important directories to the default
Shell search path.

Tell me about my incoming mail.
Set my default file creation mask.
Set your primary prompt.
Tell the system what type of terminal you are
running with.

C Shell ♦ 299

TABLE 10.2 C Shell Variables

C Shell Purpose

cdpath Search path for cd
cwd Full pathname of current directory
home Pathname of the user’s login directory ’
mail Name of user’s mail file
path The Shell’s search path for commands
prompt The primary prompt string:

" hostnameV for C Shell systems
“#” for the superuser; the secondary prompt string: “>”

history Number of commands remembered by history
ignoreeof Ignore end of file
noclobber Don’t overwrite existing files
noglob Inhibit filename expansion

If you are using the C shell the $ {HOME}/.logout file runs after a user logs
out of UNIX, so it’s best to have only background processing in this file. It can
say good-bye and then clean up junk files or whatever:

clear # clear screen

echo "G'bye Mate!"

nohup nice find -name ’junk*' -exec \rm ’{}’ \; &

The final setup file, ${HOME}/.exrc, sets up the environment for the vi edi¬
tor. It allows you to define macros for use in the vi editor. For example, to main¬
tain the same indentation as the previous line, a user could set autoindent. Then
their program would automatically follow the current indentation:

set autoindent

Or, for documentation, you can set wrapmargin to automatically insert a line¬
feed whenever you get close to the right-hand margin:

set wrapmargin=10

I’ve rarely used .exrc, but it’s a handy feature for gung ho power users and pro¬
grammers.

In a C Shell system, the path variable can be modified in the user’s .login or
.cshrc files which reside in the user’s home directory. You can create the
.login/.cshrc file in your HOME directory and add the following two lines to
include your own command bin:

set path=(${path} ${home}/bin)

export path

300 ♦ Chapter Ten

These two lines will add your bin to the Shell’s search path.

Variables

Shell variables provide the ability to store and manipulate information within a
shell program. There are several useful environmental variables (Table 10.3). Or
you can establish your own variables by simply assigning values to variable
names:

set temp_name=/usr/tmp

set month=01

Table Variables

C Shell and Korn Shell (see Chapter 5) can also implement the use of tables and
access the elements of those tables more effectively than the Bourne Shell:

C Shell

set table=(John Jay Jerry)

foreach person tablet*]

process $person

end

mail $table[2] < letter

C Language

static char **table = { "John",

"Jay", "Jerry"};

for(i=0;i<3;i++) {

process(table[i]);

}
sprintf(cmd,"mail %s < letter",

table[2]);

system(cmd);

C Shell Commands

The C Shell uses the built-in commands shown in Thble 10.4. Trap is not avail¬
able in the C Shell, but a similar command onintr handles trapping signals and
takes remedial action.

TABLE 10.3 C Shell Variables

C Shell Purpose

$# Number of positional arguments
$0 Command name
$1, $2 . . . Positional arguments
$argv[n] Positional arguments $1 ...

$*, $argv[*] $1 $2 ...
$$ Process number of current command

C Shell ♦ 301

TABLE 10.4 C Shell Built-in Commands

C Shell Purpose

l Null command
alias Create a command name alias

Run current command in background
break Exit enclosing FOR or WHILE loop
breaksw Break out of a switch
default Default case in switch

dirs Print directory stack
echo Write arguments on stdout
exit Exit Shell program
& Display or set shell variables
fg Bring a command into foreground
foreach Execute FOREACH loop
glob Perform filename expansion
goto Go to label within Shell program
history Display history list
if IF-THEN-ELSE decision
jobs List active jobs
kill Kill a job
limit Limit a job’s resource usage
login Terminate login Shell and invoke login
logout Terminate a login Shell
nice Change priority of a command
nohup Ignore hangups
notify Notify user when job status changes
onintr Control Shell processing on interrupt
popd Pop the directory stack
pushd Push a directory onto the stack
repeat Repeat a command n times
set Set a local C Shell variable
setenv Set a global C Shell variable
shift Shift the Shell parameters $* or $argv
source Read and execute a file
stop Stop a background process
suspend Stop the Shell
switch CASE decision
timestime Display execution times
unalias Discard aliases
unlimit Remove limitations on resources
unset Unset a local variable
unsetenv Unset a global variable
while WHILE loop
% job Bring a background job to foreground

>

302 ♦ Chapter Ten

Directory Commands

The Is (list) command, without any options or arguments, gives a listing of all of
the files and directories in the current directory:

Is

bin doc src

To see all of the files in a directory, including those deliberately hidden, you
should use the -a option:

.cshrc .profile doc

.login bin src

Redirection Using C Shell

The C Shell handles input/output redirection similarly to the other Shells, except
for a couple of minor exceptions: combining standard output with standard error
and overwriting existing files. Sometimes, it is useful to combine stdout and
stderr into one output stream and put it into a single file. To combine stderr with
stdout, add an ampersand at the end of the redirection sign.-

sed -e "s/shell/Shell/g" chapterl >& newchapterl

The expression “>&” tells the C Shell to assign stderr (2) to the same file descrip¬
tor as stdin (&1). Then, the Shell redirects both outputs into the file, newchap¬
terl. The same applies to appending information to a file:

command arguments >>& outfile

The output file will contain all of the standard output and standard error data
created by the shell command. The C Shell also has a variable called noclobber
that can be set to prevent accidental destruction of existing files:

setenv noclobber # Don't overwrite any existing files

Once this option is set you will no longer be able to overwrite files using redirec¬
tion of output. Instead you will receive an error message that the file already
exists. You can force the file to be overwritten by using the >! symbol for output
redirection.

command arguments >! outfile

command arguments >&! outfile Continued

command arguments »! outfile

command arguments »&! outfile

C Shell ♦ 303

Outfile will be rewritten or appended whether it exists or not. If the variable
noclobber is not set, the exclamation points are ignored. It does so without con¬
cern for the format of the files, whether they exist or should be created. The Shell
handles all of this for you. As you will see in the next chapter, input/output redi¬
rection gives you great flexibility to manipulate text.

Sometimes, however, it’s unnecessary and somewhat inefficient to create a
file for everything. Occasionally, you will want to pass the output of one Shell
command directly to the input of another. Rather than create a file and have the
second command read it, you can pass the data from one command to another
using the Shell facility called pipe.

C Shell Limitations

The trap command is not available with the C Shell. Bourne Shell Input/Output
redirection is more versatile than C Shell. For example, it allows redirection of
standard input and output into and out of whole control structures, unlike the C
Shell. The Bourne Shell can also take advantage of System V’s named pipes.

Pipes

The “pipe” is a conduit to carry data from one command to another (see Figure
3.4). It connects the stdout of one command to the stdin of another—no messy
temporary files to deal with, fewer errors, and greater productivity.

It is also possible to redirect standard error into standard output and then
pipe them both into another command as follows:

command arguments I & nextcommand

Control Structures

The C Shell provides these basic Shell control structures, although the C Shell dif¬
fers in many respects (Table 10.5). The Bourne and Korn Shells rely on the test
command to handle the evaluation of all conditions. In the C Shell, evaluations
of conditions are performed directly by the Shell.

In C Shell, the output of multiple commands cannot be grouped. Each
command must be placed in a temporary file and then processed by later com¬
mands:

cmdl > /tmp/tmp$$; cmd2 I grep » /tmp/tmp$$

wc /tmp/tmp$$

304 ♦ Chapter Ten

TABLE 10.5 C Shell Control Structures

Structure C Shell
«

IF if (...)

THEN then

ELSE-IF else if

ELSE else

ENDIF endif

CASE switch case: value

breaksw

default:

endsw

FOR foreach

end

REPEAT repeat

WHILE while

end

If

Bourne and C Shell versions of the IF-THEN ELSE are almost identical. The C
Shell version uses parentheses “ () ” instead of brackets “ [] ” to enclose the
expression to be evaluated; then must appear on the same line as the if; and the
C Shell uses endif instead of if:

if (test conditions) then

command_list

else

command_list

endif

It should be noted that the else portion of the if syntax is optional. It is pos¬
sible to check for a condition and if it is not true then perform no action. This
form of the if command would have the following syntax:

if (test conditions) then

command_list

endif

In these examples, the commandJist can consist of one or more commands. In
most cases, you will want to take one of two actions. If a file exists, for example,
you might want to print it on the screen. If not, you might want to create it. A
simple test to do so would look like this:

if (-r filename) then

cat filename

else Continued

{

C Shell ♦ 305

echo "Enter the data for filename"

cat > filename

endif

The C Shell can handle simple integer arithmetic using standard C language
operators: /, and %. When assigning values to parameters, the C shell can
use the integer operators of C: +=, -=, *=, /=, ++, and —. The following example
demonstrates the use of integer arithmetic:

if ($variable + 1 > $maximum) then

@ varl += 5

@ var2--

endif

Switch

The C-Shell CASE construct, switch, is identical to the C language construct
except that it will work with strings and the C language switch works only on
characters. The IF-THEN-ELSE construct is also identical to the C language syn¬
tax. This parallel design allows quicker understanding and translation of designs
into code.

The CASE construct translates into C language differently depending on
how it is used. If switch is used with characters or integers, the translation is
identical:

C Shell

switch $variable

case 'a':

whatever

breaksw

case 10:

case 11:

whatever

breaksw

default:

default action

breaksw

endsw

C Language

switch(variable) {

case 'a':

whatever;

break;

case 10:

case 11:

whatever;

break;

default:

default(action);

break;

} /* END SWITCH */

When the switch works on strings, however, the C language switch cannot
be used. A series of IF-ELSE1F statements must be used along with the string
comparison functions:

switch $variable

case "Jan":

January

breaksw

if(strcmp(var,"Jan")==0) <

January();

} else if(strcmpfvar,"Feb")==0) {

February(); Continued

Chapter Ten

case "Feb":

February

breaksw

default:

default action

breaksw

endsw

} else if ...

} else {

default(action);

} /* END CASE */

Foreach

The foreach control structure (see Figure 5.3) permits looping through a series
of actions while changing a variable name specified on the command line. Both
interactively and in a background mode, the use of Shell will require process¬
ing many different files the same way. The common form of these control
structures is:

foreach variable (valuel value2 ...)

action on $variable

end

The foreach structure will repeat the action commands a specified number
of times; once for each value listed in the list of strings “valuel value2 .. .”. The
optional list of strings can be any expression that evaluates to a list of strings
(file names, command substitution, and so forth). If you omit the list of strings
then the Shell defaults to use the special variable $* which represents all the
arguments passed to the Shell. When the for loop executes, the variable takes on
each value listed in the list of values. Each iteration of the loop assigns the next
value in the value list to the variable.

For example, to edit all of the files for this book, replacing “shell” with
“Shell”, I could use the following commands:

foreach file (chapter*)

ed - $file <<eof!

g/shell/s//Shell/g

w

q
eof!

end

FOREACH control structures, as well as any of the Shell control structures,
can be nested inside of one another. For example, to process all of the files in the
directories bin, doc, and src, I could use the following nested control structure:

foreach dir (bin doc src)

cd $dir

foreach file (*)

if (-f $file) Continued

i

C Shell ♦ 307

then

process $file

endif

end

cd ..

end

For each of the directories, the Shell would change into that directory.
Then, for each file it would test to ensure that the variable $file is really a File and
not a directory, and then the Shell would execute the command “process” on
each File name. When the Shell finished with all of the files under bin, it would
change up to the parent directory and then start working on the doc directory.
Nesting control structures is a convenient way to handle complex operations that
would otherwise require extensive typing to accomplish the same ends.

The FOREACH construct is not the only way to handle looping through repet¬
itive operations. The WHILE and UNTIL constructs provide another alternative.

While

The while construct (see Figure 5.4) takes a form similar to the for construct:

while (expression)

actions

end

In the following example, let’s use a variable, month, and the while loop to
process every month’s activity:

set month=l

while ($ {month} < 12) -**

process ${month}

@ month += 1

end

The C Shell also includes the repeat form of loop, which executes a com¬
mand a speciFied number of times:

repeat 10 command

Aside from the Shell constructs—IF-THEN-ELSE, CASE, FOR, and WHILE—
just about anything else required of a C language program can implemented in
Shell. Writing to a terminal and reading a response are easy with echo and read:

C Shell

echo "Enter filename

read file

C Language

printf("Enter filename");

gets(file);

308 ♦ Chapter Ten

Each sub-shell creates outputs that are used by future processes. The sub¬
shells can also be executed individually when required.

Subshells can also be executed directly in-line with the parent shell’s code
so that the subshell can access and modify any of the parent’s variables:

C Shell

parent Shell

variable=/usr/bin

source subshell

subshell

cd $variable

Is -1

variables/bin

History

Both the C Shell and Korn Shell have the ability to keep track of commands as
you enter them from the terminal. The Shell stores these commands in memory
and allows them to be recalled, modified, and executed.

History substitution, in the C Shell, begins by typing the character T (Table
10.6). There are lots of exotic ways to modify or execute previous commands in
csh. The simplest way is to directly execute a previous command:

!! execute last command

\n execute previous command line n

l-n execute current command line minus n

\str execute the previous command line beginning with str

Mstrl execute the previous command line containing str

You can also select specific words from a previous command using these as a
prefix:

!!:1 !!:3 select word 1 & 3 from the last command

H2-4 select words 2-4 from the last command

You can also substitute words:

!?gerp?:gs/gerp/grep/ replace ‘gerp’ with ‘grep’ and execute

There are more exotic substitutions than this, and if you use the C Shell, I
suggest you explore them. They can speed your effort at the terminal.

C Shell ♦ 309

TABLE 10.6 History Commands

C Shell Purpose

! n
! -n
! cmd

i i

!cmd:s/strl/str2

!? str?

Execute last command
Execute previous command line n
Execute current command line minus n
Execute the previous command line

beginning with cmd
Execute the previous command line
containing str

Substitute and execute last cmd

Job Control

The C Shell offers some additional job control features that can suspend back¬
ground processes (stop) or switch them in and out of foreground: bg and fg. To
stop a foreground process, type either: stop or cntl(z). To stop a background job,
type:

stop %job

To pull a job back into foreground in csh, list the jobs using jobs and then select
the job using % or fg:

jobs

1 find...

3 nohup...

Then you can send the job back with % or bg:

Summary

The C Shell offers additional features above and beyond the Bourne Shell, but
most of these capabilities have been expanded and improved in the Korn and
Bash Shells.

.

.

PART

Shell Programming
for the Power User

Many men go fishing all of their lives without knowing that it is
not fish that they are after.

—Henry David Thoreau

Rapid Prototyping
and Reuse

Do it badly, do it quickly, make it better, and then say you
planned it.

—Tom Peters

The preceding chapters have delved into the detail of Shell programming. For a
chapter, I want you to take a moment and rise up above the din and detail and
view the Shell from a totally different angle. I learned virtually everything 1 know
about creating software systems from working with Shell programming. I taught
me how to be fast. The Shell taught me how to stop coding and start composing
systems from reusable components. It taught me how to rise above everyday
programming and start thinking functionally. If you let it, Shell will teach you
how to grow applications four times faster than you can build them using con¬
ventional coding languages. Let’s look at how rapid prototyping and the Shell
complement each other and the different colored glasses we need to use to see
the power of these two together.

We should focus on solutions that will bear fruit quickly, within
a manager’s 12-month planning horizon.

—Brad Cox (Cox 1990)

313

314 ♦ Chapter Eleven

Rapid prototyping relies on speed, simplicity, and a shared vision to create
a desired product. In rapid prototyping, prototypers create a basic working sys¬
tem which does not contain all of the infinite variety the customer ultimately
desires, but which does work and provides the essential initial elements of
the system. A baby has all of the bones, muscles, and organs it will ever need,
but none are full sized or fully developed. Once this basic working system is
installed and turned over to the customer, a series of stepwise improvements—
evolutions—turn the system into the customer’s desired Garden of Eden.
Sounds like a utopian fantasy, doesn’t it? And it's much more likely to occur
this way than through software construction.

Rapid prototyping flies in the face of almost everything we believe about
setting and achieving goals and objectives. Rapid prototyping demands that we
embed the decision making and direction setting in the fabric of the ongoing pro¬
cesses of creation and evolution. Paul MacCready, inventor of the ultralight
Gossamer Condor aircraft, put it this way (Insight 1990): “If it’s worth doing, it’s
worth doing badly. If you can make it crudely, you can make it fast and it doesn’t
cost much. You can test it easily ... fix it crudely.” He insists that this approach
maximizes the speed of learning, and I agree; the same applies to software and
especially Shell programming.

Unlike the traditional development life cycle, speed is required more than
direction. Once you’re rolling, you can change course at will. If you’re not moving,
you have no feedback to guide your first steps. For those of you who know how
to ski or have ever thought of learning, you can’t position or turn the skis until
you are moving. The faster you move, the easier it is to turn. At too slow a speed,
skis are rigid and inflexible and it takes just plain work to direct them anywhere.
Just like skiing, rapid prototyping requires that we point our skis downhill and
build up some momentum before we start setting directions and goals

Benefits of Prototyping

Compared to standard development processes, Rapid prototyping offers several
benefits. Rapid prototyping:

1. achieves more effective communication because prototypes demon¬
strate what is happening, rather than represent it. Designs are maps of
the world. Prototypes are the territory. Prototyping simplifies demon¬
stration, evaluation and modification of the growing system.

2. reduces risk by eliminating uncertainty. The initial system is often cre¬
ated with fewer people in less time. Cycle time to proof of concept is
dramatically reduced.

3. increases the ability to deliver desired functionality. Customers contin¬
uously refine their needs by using the prototype and offering feed¬
back. This reduces the need for maintenance and enhancement when
the system is delivered.

Rapid Prototyping and Reuse ♦ 315

4. incorporates a learning process into the development process. Since
we know that we are operating on incomplete knowledge whenever we
start a development process, rapid prototyping encourages us to learn
as we go, backtracking and changing things until we get them right. It
encourages change rather than stifles it. Frozen requirements cannot
reflect the dynamics of the organization or market.

5. encourages discovery and serendipity in the development of desired
functionality. If we learn as we go, there is a much greater chance of
discovering opportunities along the way that will shape the course of
the system and possibly the course of the company.

6. chops cycle time from concept to delivered product by a factor of four
or more. Since we are only creating the 20 percent of the product that
provides 80 percent of the value, the infant system comes into the
world with incredible capabilities. “80/20 solutions . .. have a great
deal to recommend them—80 percent of the ideal result, achieved
through 20 percent of the effort that might have been expended.
Companies can gain strategic advantage .. . through 80/20 solutions,
when aggressive company-wide efforts are judged to take too long and
cost too much (Ernst 1989).”

Evolution then expands and enhances these capabilities to quickly
converge on the desired solution, even though we couldn’t see it when
we began the journey. Rapid prototyping allows information systems
to be created quickly and effectively at low cost. Kraushaar and Shirland
(1985) suggest that the cost of a microbased system can be as low as
$10,000 to $50,000 for a three-to-twelve-month effort. It also permits
early availability of a working system to begin exploiting the opportuni¬
ties in the market.

7. reduces defects through continuous testing and evaluation of system
components during the initial prototyping and ongoing evolutionary
phases. User thanuals and training can be developed using the work¬
ing prototype to ensure accuracy.

8. encourages the creation oj evolutionary systems that are easy to
maintain because every step of development is an evolutionary step
as well.

9. continuously involves users in the solution which encourages owner¬
ship and commitment, and a level of cooperation rarely experienced.
It also encourages product acceptance. The marriage of IS and users
creates a healthy environment for the system’s growth and devel¬
opment.

The “objective" is to nudge forward the process of
discovering goals along the way to induce the largest
number of people possible to quickly engage, to try
something; to maximize the odds of serendipity.

—Tom Peters

316 ♦ Chapter Eleven

Peters further suggested in his article that “ ‘having goals’ and ‘making
plans’ are two of the most important pretenses.” But they are dangerous in that
they prevent us from getting into the thick of .things and discovering the “real
goals” and needs of our customer. Our customers don’t often know for sure what
they want, specifically, but they know it when they see it. Our job is to help them
discover what they’re really after as quickly as possible.

In Davis et al. (1988), the authors observed that user needs are always
changing and that software, by nature, is always late and falls short of the user’s
expectations. Evolutionary prototyping, however, minimizes delay and shortfall
when compared with conventional, incremental, or throwaway prototype devel¬
opment approaches.

Attempts to establish software factories have often failed, largely due to a
failure to understand the nature of the methods and tools required. In many
cases, software factories need a toolsmith to create the tools and bridges to sup¬
port the team. In others, managers mistakenly believed that their staff didn’t
want to change, when what the staff really wanted was to clearly understand the
new process and tools. Managers often tend to view new methods and tools as a
quick fix, but fail to train their personnel in even the basics of using the meth¬
ods and tools. Most managers are looking for microwave solutions, not the kind
of steadfast, consistent attention to training and evolution required to create an
environment that fosters rapid evolutionary development.

Rapid Prototyping

The rapid prototyping method of development is contrary to our
standard method of developing systems. There was a problem
getting technical people to work that way. They had a concern
that they were generating a poor quality system.

—Boeing project manager (Rockart and DeLong 1988)

Different cultures view things differently: Americans and Europeans have a dis¬
tinct past, present, and future; Hopi Indians have no words for any time except
the present; and Arabs can see no further than a week or two into the future.
This puts Americans in the unique category of those able to plan for the future;
but compared to most Asians, Americans are quite primitive. In America, the
focus is on this quarter’s profits and “What have you done for me lately?” In
many Asian cultures, future time spans hundreds of years. The Chinese leased
Hong Kong to the British for 99 years, and now they are about to get it back. In
Japan, for another example, mortgages may span three generations—father, son,
and children not yet born. Rapid prototyping is sometimes viewed as yet another
American desire to reap a crop almost as soon as the seed is sown.

For those of you who are paralyzed by the thought of doing things wrong,
prototyping will kill you. Indecision is usually the worst mistake you can make.

Rapid Prototyping and Reuse ♦ 317

Requirements

Design

Code

Traditional Development

Test

FIGURE 11.1 Rapid prototyping versus traditional development.

Prototyping, by design, ferrets out the fatal flaw and drags it out in the open for
all to see. Then and only then can you take the kind of action required to change
direction and solve the user’s dilemma from a different perspective.

Rapid prototyping is the starting point of rapid prototyping (Figure 11.1).
Rather than a minor part of the development process as it is in the requirements
specification portion of a more traditional “construction” development process,
prototyping plays a vital role in both the creation and evolution of software.
Rapid prototyping, when done well, can reduce risk, enhance customer percep¬
tions, and deliver more value in less time than any other method for software

• - zk , y/ r

318 ♦ Chapter Eleven

creation. Your customers, of course, will expect you to deliver whatever you
show them. Satisfy their expectations and you will win a great victory. If you tell
them that they will have to wait a couple of years for the “real” system to be
delivered, you may lose the war.

Fortunately, if you work together with the customer using the “right” tools in
the “right” environment and with an eye on the vision of the future, you can use
prototyping to create and deliver useful products quickly. Then you can grow and
evolve the simple starting system into its future place in the business. If, however,
you use the latest technical fad in an underpowered platform and ignore the ecol¬
ogy of the metasystem and the evolutionary path of the product, you are doomed
to some of the worst technical and customer relations failures of your career.

The school of data-driven prototyping .. . believes that proto¬
types should not be thrown away. Instead, they should evolve,
extending the data architecture of the business in a process
somewhat akin to learning.

—Dan Appleton

The best way to know what you want it to experience it First hand. Think
about it: You experience cars, electronics, and numerous other products before
you buy; why not software? Evolutionary prototypes help customers and proto¬
typers get a hands-on feeling for the system as it develops. This ongoing, expe¬
riential feedback allows us to learn from our mistakes and make continuous
corrections as we move toward the customer’s desired system.

Have you ever noticed that customers actually don’t want systems; they want
what the system will do for them—the benefits. If you think of a system as pro¬
viding a service that will assist customers in achieving their goals and objectives,
you will be that much closer to being able to meet their needs in a timely fashion.

Imagine walking into a car dealer’s showroom and seeing that perfect red
sports car that you’ve always wanted. The salesperson takes you for a test drive
and it feels like a dream. It corners like it’s on rails and the acceleration is second
to none. You know that in this car, you’ll feel unstoppable, on top of the world.
This car is everything you’ve ever wanted. You say, “I’ll take one” and the sales¬
person says, “I’m sorry . .. this is only a prototype, but I can have one ready for
you in 24 to 36 months.” How would you feel? disappointed? angry? Would you
take your business elsewhere?

This is the common mistake most prototyping projects make using the con¬
struction paradigm. They believe that the customer will stand still, waiting while
the IS staff redevelops the “production” version of the system based on the pro¬
totype’s demonstrated requirements. If you can show it to them, they’ll want it
and you had better be ready to deliver, or there will be hell to pay in terms of cus¬
tomer relations and lost credibility.

If you are going to create a prototype, it must be a deliverable prototype
that can then be evolved to meet the customer’s desires and expectations. It is

Rapid Prototyping and Reuse ♦ 319

much easier to manage the momentum of a system in operation than it is to
shout “STOP!” when the prototype is completed and start building the produc¬
tion system.

When I put up the first UNIX system in the company where I worked, IBM
was the “standard.” To simplify the learning process and to create acceptance, we
created over 200 look-alike IBM TSO commands in just under six weeks. Except
for the screen editor, our system behaved just like TSO, only faster. This is the
power of rapid prototyping with Shell to create usable applications.

One way to look at Rapid prototyping would use a logical view of what
happens:

Grow (initial prototype) Creation

Until (replaced) Evolution

Grow (expanded version)

enduntil

Grow (system)

Until (converge to a solution)

(Plan) Analyze the customer's needs

♦ people, tools, environment

♦ processes

(Do) Create a demonstrable prototype

Check closeness of fit

Act to improve

enduntil

Deliver the system

End (Grow)

First, we create and grow the initial working system. Then, until the system is
replaced by a younger one, we continue to expand and grow the system from
infancy to maturity using PDCA (plan, do, check, act). Amazing things can hap¬
pen using this approach.

Rapid Evolution Metaphors

Another way to look at rapid prototyping is to liken it to human courtship and
family development.

Courtship

First, you have to choose the right mate. Initially, there’s a lot of courting as the
software developer and customer romance each other. Eventually, they decide to
“get into bed” together. A prenuptial agreement is often a great idea.

320 ♦ Chapter Eleven

Pregnancy

Prototyping is much like pregnancy. First, the customer conceives an idea.
Together, the software developers and the customer work as the fertile nucleus
develops into the initial version of the system. This pregnancy is accompanied by
tremendous enthusiasm and growth.

Notice that mothers never ask fathers, “How many corners do you want me
to cut in the construction of our child?” Systems with birth defects usually carry
them for the rest of their life unless a highly skilled software surgeon makes the
necessary repairs. Lots of prenatal care will prevent such problems.

And notice that fathers never ask, “How long will this take? Couldn’t you
deliver it in four months instead of nine?” Everyone knows it takes nine months,
no matter how many people you put on the task. Children born prematurely need
a lot of care, most of it expensive. Children born too late are a burden on the
mother and cause endless anxiety. It’s best to let the prototyping process take its
natural course and deliver the baby when it’s ready.

During this period, the parents must prepare a loving environment to receive
the new child. Everyone has to be trained in child care, feeding, and so on.

Birth

Finally, the system is formed sufficiently to live in the world. The initial version
(a small one) is “delivered” and installed for use. Like most newborns, it will
wake us up in the middle of the night with all kinds of problems—it can soil
itself, it can get sick, it can get hungry. Brand new systems need a lot of initial
care. Parents don’t say, “When is this child going to be able to take care of
itself?” because they know it will take time for the system to reach a level of
maturity where it can do things for itself.

The Terrible Twos

The system needs a lot of care and feeding in its first few years as it continues to
grow. Like expectant parents, the software developers and the customers con¬
tinue to care for its needs. The rampant enthusiasm of the pregnancy yield to a
feeling of confinement. A lot of preparation and work must go into any outing
with the new system. The baby system continues to grow organically and natu¬
rally—no new hands, feet, or organs are added.

It is a good idea at this point to immunize the system against all of the
childhood diseases.

Childhood

Look who’s talking! At this point the system is fairly well mannered. It contin¬
ues to grow and learn at a reasonable rate. Customers and IS both enjoy this
period of working together to help the system develop.

4
\i//S

Rapid Prototyping and Reuse ♦ 321

Adolescence

The system will continue to grow, gain weight, and learn. At this stage, changes
in markets or organizations can cause problems. The software may develop
some wild hormonal urges that will test the mettle of the developer and customer.
The software may need braces for its teeth or strong guidance to set its path.

At this point, the system may get the urge to spin off some children of its
own. JUST SAY NO!

Adulthood

Maturity develops. We can no more create a mature system than we can create a
mature person. As the system matures, however, it will provide increasingly
more benefit to the customer and require less support and attention from the
developer.

At some point in their life, systems may put on some extra weight and need
to reduce some of the flab—both data and processes. Some systems will opt for
plastic surgery and various creams and balms to postpone the aging process.
This is okay! No one likes ugly, old systems; we appreciate elegant, mature ones.
Through good nutrition and balanced effort, the system can stay younger longer
than we perhaps ever thought possible.

Old Age

Through proper exercise and diet, software can thrive. It can live a long and
healthy life and retire, or it can develop all kinds of health problems and require
expensive medical care. All of this depends on how it was treated during its life¬
time. Rapid prototyping demands that we examine the overall ecology of any
change in the system dufing its life.

I prefer this metaphor of courting and childbearing to the more algorithmic
model offered previously. The question on you mind now, however, might be:
“How do I begin to use the model?”

Rapid Prototyping Process

History has shown us that large, cumbersome, software methodologies will only
fit a certain size of project, not all projects. These heavy methodologies also gen¬
erate masses of paper and require extensive paper support systems which further

impede productivity.
A flexible, evolutionary prototyping methodology lays out the fundamen¬

tals of software creation and evolution using PDCA. It can significantly improve
productivity and quality. The methodology works like the expansion unit in a
personal computer: The application creation or evolution team can choose the

322 ♦ Chapter Eleven

Rapid Evolutionary Development

PLAN

CHECK

FIGURE 11.2 Rapid evolutionary development.

specific methods (expansion cards) to customize the prototyping methodology to
match their application.

Using a flexible methodology, we can then integrate software tools with the
methods to create an integrated technology platform to automate the software
processes. The technology platform will then support all of the activities of soft¬
ware creation and evolution.

The creation process for rapid prototyping is simple (Figure 11.2):

Plan the Project

1. Choose a project that requires fast delivery and is not well understood.
This means that there must be rapid growth and evolution of the
requirements and the whole product during its development. Iteration
and evolution will occur whether it is planned for or not. Planned evo¬
lution before the product escapes is better than unplanned evolution
after a failure in the field.

2. Gather and define customer and market requirements. It is useful at
this point to begin framing users’ expectations of the creation process.
We will focus on their needs, not their wants or wishes. We will re¬
quire many rounds of mutual negotiation, participation, and feedback

Rapid Prototyping and Reuse ♦ 323

to evolve the prototype to the point that it can be used effectively. This
repeated assessment of the customers’ and market’s requirements will
insure rapid convergence on the best possible solution.

3. Begin the analysis of the customer’s process. As we gather require¬
ments, we need to begin sorting and chunking the customer’s requests
into needs, wants, and wishes. We need to begin anticipating the evo¬
lutionary path of the system as it grows. Process analysis helps IS
guide the technical evolution. Will the system be a plant, rooted in one
place, or a more mobile system which can move quickly to attack var¬
ious markets?

Create the Prototype

4. Create a prototype or model. The prototype plays a key role in the suc¬
cess of the software mission. A demonstrable, behavioral model pro¬
vides so much feedback that you can’t help but come up with better
products. Static, two-dimensional representations (i.e., design docu¬
ments) of dynamic software systems that are supposed to move and
grow and process information cannot help but be incomplete.

Check Closeness of Fit

5. Evaluate the prototype using customer feedback. Given a working,
demonstrable system, customers can tell you how far or how close you
are to their goal. They can give you better feedback about how to make
the system better.

Act to Improve

6. Act to improve the prototype. Using customer and prototyper feedback,
identify the next steps required to ecologically grow the fetal system to
the next step in its evolution.

Software Evolution

Unlike a car that rolls off an assembly line or a house ready for occupancy, soft¬
ware systems continue to expand and change over time. The next step of rapid
prototyping delivers the system into everyday use. From here on, the freewheel¬
ing accelerated growth of the prenatal system slows. The system grows and
evolves in a more carefully orchestrated and focused process of software evolu¬
tion (Arthur 1988).

The software creation process (steps 1-6) can be used throughout the sys¬
tem’s life to create major enhancements and extensions of the systems knowl-

324 ♦ Chapter Eleven

edge and abilities. Using the software evolution and the rapid evolutionary
development (Arthur 1992), prototypers can continuously improve and enhance
the system as the environment changes around it. The system, however, is not
the only thing that needs to evolve.

Evolution of the Methodology

One of the problems with most “construction" or “manufacturing” method¬
ologies is that they rarely evolve to meet the changing needs of the business
or technology. When a methodology does change, it is typically too little too
late. The methodology and technology must evolve to match the needs of the
customer. The PDCA process will assist you in keeping the process and tech¬
nology up-to-date with the evolutionary life forms created using rapid proto¬
typing.

Innovation

The greatest pleasure in life is doing what people say you can¬
not do.

Innovation occurs when a small team of key people combines with resources, iso¬
lation, and esprit de corps and does the seemingly undoable. This “skunkworks”
approach changes the essence of how software is conceived and created. An evo¬
lutionary development team consists of top people, usually less than 25 percent of
the normal team size. Prototypers share communication in many ways—sharing
the same location, electronic mail, voice mail, and visual work areas all around.
Prototyping projects also minimize paperwork.

Prototyping is a great way to converge on an innovative solution, but it can
also be a way to go wrong in a hurry.

To succeed, the team needs to focus on a small subset of the entire func¬
tionality. People have only a limited ability to reason about complex systems and
their use.

The Process

Consider the Genesis model of software development—creation and evolution.
God created this earthship in six days according to Judeo-Christian beliefs.
Similarly, the genesis of most prototypes is an intensive period of creation fol¬
lowed by a never ending series of periodic evolutions. The initial prototyping pro¬
cess is a vibrant period of prototypers and customers working together to create
a little, test a little, and tune, tailor, and tweek the system toward its initial in¬
carnation. Every day during the prototyping process consists of many miniature

Rapid Prototyping and Reuse ♦ 325

software development life cycles—plan, do, test, and act to improve. Prototypers
make user needs operational as quickly as possible to generate feedback that
allows growth and evolution to occur at a phenomenal pace.

There are several types of prototyping processes:

♦ Exploration of various alternative approaches to verify feasibility
♦ Experimentation to clarify and verify requirements for development (an

original model on which something is patterned) provides a demonstration
prototype

—simulation of interfaces, functioning, etc.
—closest to original meaning

—also a dead horse

♦ Growth and evolution to deliver a working product (first full scale and
functional form of a new type or design)

—field and production prototype

—farthest from original meaning of the word prototype, but also most
powerful

♦ Incremental evolution to develop expanding versions of the system

Any of these approaches may focus their efforts on data or processing.
Data-driven prototyping is better for business applications. Process-driven pro¬
totyping is better for real-time applications.

Simple Prototyping Process

The price of success: “Dedication, hard work, and an unremit¬
ting devotion to the things you want to see happen.”

A strong, but flexible methodology ensures the success of the project. Rapid pro¬
totyping with Shell can create small, one-shot programs or large, complex appli¬
cations. The prototyping process follows the plan-do-check-act cycle of growth
and evolution. A simple version of this methodology would be:

1. Gather a small, focused set of requirements.
2. Evaluate alternatives and create a working model.
3. Test for correctness with the user.
4. Act to improve the set until both IS and the user are satisfied.
5. Loop through steps 1-4 until sufficient functionality is available that

the users are licking their chops in anticipation of using the system.
6. Test to ensure that the system is industrial strength.
7. Release the system to a pilot group.
8. Loop through steps 1-7 until everyone is satisfied.
9. Release the system for general use.

326 ♦ Chapter Eleven

On-Line Systems

To develop an on-line system using Shell:

1. Focus your energy in three main areas to begin with:

♦ Data models to begin creating the databases for the system as
a stable, reusable platform for development of the system pro¬
cessing.

♦ On-line screens and reports to begin developing the look and feel
of the system from the user’s point of view.

♦ Transactions required to accomplish the system’s objectives (e.g.,
calculations, add customer, update tax table). Model the simple
transactions first and then the more complex ones.

2. Once these are somewhat stable, you can begin creating the process¬
ing required to:

♦ Access and update the databases (using information hiding prin¬
ciples) .

♦ Transform the user’s inputs into stored data and useful outputs.

3. Continue to grow the system to a working level that would provide at
least 50 percent of the functionality required.

4. Put the system into a pilot location to work the remaining bugs out
while continuing to evolve the system toward excellence. Remember:
there is no failure, only feedback. Add only user needs to the system at
this point, keeping the overall ecology of the system in mind. It has to
be able to grow from this infant stage into adulthood. In other words,
minimize birth defects in the system.

5. Deploy the system across its user base and begin the evolution of the
system towards its desired capabilities. Use the evolutionary process
to schedule important enhancements to the system and keep ecology
and evolutionary ability continuously in the forefront of everyone’s
mind. You can continue to apply rapid prototyping to the creation of
major system enhancements as well.

Ecology Issues

For an evolutionary prototype to survive in the “real” world, it will need to take
into account the ecology of the entire metasystem it enters. Living systems focus
energy on maintaining ecology through:

♦ Minimizing impacts on existing systems and cultures
♦ Providing adequate documentation and training
♦ Ensuring quality: maintainability, flexibility, reusability, portability, relia¬

bility, efficiency
♦ Focusing on needs versus wants or wishes

Rapid Prototyping and Reuse ♦ 327

♦ Ensuring security
♦ Ensuring performance and response time of the delivered system
♦ Evaluating and providing evolutionary hardware requirements
♦ Minimizing cost
♦ Maximizing error handling and recovery (immune system response)
♦ Allowing backup and recovery
♦ Providing adequate resources for the task

If a developing prototype changes too fast without regard for ecology, no
one can keep abreast of the changes or manage to synchronize all of the docu¬
ments and deliverables. It can become impossible to adequately test the system
in such tumultuous times. It will take time for the system to become self-
sustaining. Prototypers must keep their thoughts on the system’s future, not
only its present. Toward this end:

1. No poorly structured design should be accepted.
2. Any change that causes design deterioration must invoke a redesign

of the affected system parts.
3. Code that becomes obsolete through evolution must be replaced, not

patched.

Rapid prototyping gives you the time that “construction” takes away.
In rapid prototyping, you always have time to make the system right before
you release it, but you will never have time to do it over. You must keep ecology
in mind.

During World War II, huge formations of bombers would gather to assault
specific targets. It often took them hours to form the force that would attack a
target and many times whole groups would miss the rendezvous. In today’s
world, a small, highly trained, heavily armed forces flying the latest in advanced
technology can strike with lightning speed against targets of opportunity as they
are identified.

The old construction model of software development mirrors the World War
II bombing raids. Rapid prototyping teams mirror the aerial strike forces of today.

To tell you a little story, I wrote my first software metrics analyzer in UNIX
Shell, and the next one in awk, and the final versions in the UNIX lexical ana¬
lyzer. Each successive tool and environment took less time because I more thor¬
oughly understood the application. I’m sure that if I had tried to learn the
application and the lexical analyzer all at one time I would have given up. As it
was though, it took me only six months to go from the Shell version to the com¬
plete suite of lexical analyzers I created for COBOL, PL/I, and C.

Software Issues

A major factor in prototyping software selection should be its speed, flexibility,
and familiarity among the prototyping team. There are four key technological
components that must be created for any software system:

328 ♦ Chapter Eleven

1. The user interface—input, output, and query
2. Databases, tables, files, and so forth
3. Processing—algorithms, computations, and so forth
4. Interfaces to other systems

Open Architectures

[The personal computer is like] an old testament God, with lots
of rules, and no mercy.

—Joseph Campbell

Several different alternatives exist for prototyping platforms: desktop computers
or desktop workstations connected to one or more larger computers. Prototypers
are only as efficient as the environment they use. Open hardware and software
architectures allow the maximum flexibility for changes in functionality and
technology. Closed architectures tend to trap prototyping teams in technological
quicksand. Proprietary technology is its own tar pit.

From this perspective, an operating system such as UNIX that runs on a
wide variety of platforms is a strategic weapon. UNIX offers portability and flex¬
ibility that you will be hard pressed to find elsewhere. UNIX has several strate¬
gic advantages:

1. It frees you from dependence on a single hardware vendor.
2. It runs on a broad range of computer architectures, from PCs to super¬

computers.
3. It comes with loads of reusable components.
4. It is the user interface of the future (workstations all run UNIX).
5. Expert systems and parallel processing environments rely on UNIX.
6. The tools you’ve grown to love in MS-DOS are migrating to UNIX.

UNIX runs on more types of computers than any other operating system
(Cureton 1988). It offers windowing (X Windows among others), relational
and semantic databases, extensive networking and communication, and expert
systems. Sun, Digital, IBM, Apollo, and HP all have some form of UNIX work¬
station.

Virtually all of the vendors are working toward a true IPSE—integrated
project support environment—a software cockpit where prototypers can grow
and evolve software with ease. Visions of a software cockpit grew out of the
dynamic changes that have rocked the software industry. Most companies have
a large suite of relatively independent applications that were both internally and
externally developed. It has, however, become essential to realign and integrate
our information systems to meet the competitive challenges of the 1990s.

Based on the three key elements of an effective software cockpit—people (the
pilots), process (how to fly a software mission), and tools (the plane)—the analogy

Rapid Prototyping and Reuse ♦ 329

between pilots and software professionals is so apt that the “software cockpit” can
serve as the overriding vision of how people will create software in the future.

Vision

During World War II, the outcome of the war was largely decided by control of
the air above the battle. In the latter stages of the war, huge constellations of
bombers and fighters pounded the Axis. In today’s combat environment (we call
it competition), a few high-tech aircraft with advanced weaponry can perform
these feats. The battleground of the 1990s will be information. To meet the chal¬
lenges of the information economy, the massive software efforts of the past must
give way to smaller, faster, more versatile groups of highly trained software
pilots working in advanced software environments.

The analogy can be extended further to describe software projects as one of
the following:

General aviation

Commercial aviation

Military aviation

Space exploration

End-user computing (EUC)

IS software creation and evolution

Offensive and defensive product deployment

New market development

Each of these analogies can benefit from rapid prototyping. To develop the soft¬
ware cockpit of the future, the hardware and software tools and methods must
be chosen to reflect the type of mission a software pilot performs. For example,
the personal computer of an end user may be completely inappropriate for a
quick strike into an information technology market, and vice versa.

Yet, like aircraft pilots, software pilots will share certain common needs and
abilities. For example, all three of these missions—EUC, IS, and product—require
a plan for completion: a flight plan. Some of the requirements that software pilots
might share are:

Project management (flight planning)

Flexible methodology to match the type of software mission

Instrumentation—measurement of progress, direction, altitude, and so on

Advanced human factors interfaces—heads-up displays, sound, video

These skills can be likened to ground school (programmer basic training) and
flight school (evolutionary training). They teach a software pilot to fly, but only
the basic skills needed for general aviation. To become a commercial or military
software pilot, we will need additional rigor, discipline, and training to handle
the specifics of each type of mission. A strong training program helps eliminate
the cultural shock of change.

This evolutionary environment is a conceptual view of the software cockpit
for development and evolution. It exists independent of methods, tools, and

330 ♦ Chapter Eleven

hardware platforms. It incorporates the critical success factors of people, process
(how work is done), and technology (to support the process).

The Cockpit

Engineering workstations (cockpits) coupled to a dynamic repository (mission
control) seemed the best route to follow. Most available vendor products, how¬
ever, offer one of two things: only a small part of the cockpit or a closed archi¬
tecture that would prohibit integration and choice.

Since vendors have no incentive to achieve integration and openness, you
might as well do the best you can with the available packages that are both open
and extensible.

Cockpit Overview

If you want an open architecture, about the only way you can get it from more than
one vendor is through UNIX. Only through the multitasking and integration capa¬
bilities of UNIX can you create the environment desired. UNIX workstations offer
an excellent hardware platform for the software cockpit. The Japanese reusability
project—Sigma—has moved in this direction, using a UNIX-like variant.

To simplify creation and evolution, the cockpit will need a repository of
data, designs, code, and other reusable components which can be shared by all
the pilots.

You can’t create the super software cockpit of the future until, like aviation
of the past, you have some sort of an initial dashboard that can then evolve to
fully meet your needs. The SEI maturity framework will cause rapid shifts in
methods and tools if you move rapidly toward excellence. The cockpit needs the
flexibility to change and grow with the software process.

Begin building your software cockpit on UNIX workstations coupled with
other host computers—UNIX, IBM, and the like. Choose platforms and tools that
offer:

1. Open Architecture—for flexible choice
2. Extensibility—to allow growth
3. Availability—to ensure reliability
4. Performance—to ensure productivity
5. Support of a defined-process methodology

Choose your software pilot’s basic instrumentation first. During a flight, for
example, a pilot uses only five or six instruments to keep the aircraft aloft;
choose a core of five to seven tools to aid the software pilot. Then, just as first-
generation aircraft contained very primitive tools, so too will the initial cockpit.
The seven areas of concern are:

1. Project management
2. Quality management

Rapid Prototyping and Reuse

3. Prototyping
4. Code generation
5. Documentation management
6. Change and configuration management
7. Release control

These seven items constitute the minimum set of tools for a successful mission.
Other valuable tools include:

♦ A repository of data and reusable components
♦ Screen prototyping
♦ Report generation
♦ Measurement and analysis
♦ Query facilities
♦ Document creation (text, graphics)
♦ Fourth-generation languages (4GLs)
♦ Relational database management systems
♦ Application generators

Process

Tests cannot establish the absence of errors.
—Edgar Dijkstra

Many companies have found that in the race to automate the software process,
tools can lock you into an ineffective process. These tools are ultimately aban¬
doned because they don’t help people get the job done. W. Edwards Deming
suggests that any process (including software) that is not under some form of
quality management wastes 25 to 40 percent of all effort and expenditures.
Looking at the “debugging industry” that threatens all software projects,
either creation or evolution, you have to address not only the technological
aspects of cockpit, but the process issues as well. Before you can automate the
process, you must define and streamline the software process. Florida Power
and Light, winner of the 1989 Deming Prize, found that methodology was
more important than tools for improving productivity and quality in their
Information Systems department. Projects are not all alike. No one process or
methodology can encompass the full range of software missions, just as no
one flight plan, airplane, or pilot can perform all aviation missions. There are,
however, some common activities that must be addressed; but the bulk of the
methods used in any project should be modular and flexible and fit into this
backbone process. This leads us to the concept of a flexible, evolutionary
methodology that supports a wide variety of methods which can be selectively
chosen for a given project.

332 ♦ Chapter Eleven

Recommendations
•

The people and organization are the keys to the success of prototyping projects.
These people then select the project management, creation, and evolution meth¬
ods and tools that allow them to achieve the result required. The team chooses
the technology required to support the rapid evolutionary development using
these methods.

Creating a team of customers and prototypers will produce the vital, initial
20 percent of a system’s ultimate functionality in record time.

In spite of what might appear on the surface to be a chaotic development
process, prototypers follow a rigorous methodology that includes project manage¬
ment, quality control using inspections and testing, requirements specification,
architecture and data design, detailed design, and code. High-caliber prototyping
staffs recognize the value of defined processes and standards. Together, prototyp¬
ing team members can apply their cumulative experience to customize a stream¬
lined methodology to match the project’s objectives.

The use of rapid prototyping will result in a more usable and responsive
system to meet the customer’s needs.

Evolution of the system will consume as much as 50 percent of the proto¬
typing staff for problem solving and “baby sitting” the existing system. To suc¬
ceed at innovation and rapid evolutionary development, you must choose the
right people, process, technology, and environment.

Reuse

There is an untapped potential for productivity gains through
the reuse of standard software components.

—Ted G. Lewis and Paul W. Oman

Why do schools teach almost nothing of the pattern which con¬
nects?

—Gregory Bateson

Using DNA, cells reproduce to create exact copies of themselves. Entire beings
are created from a single initial cell. As the fetus grows, cells differentiate to form
the various organs, tissues, muscles, nerves, and bones. To succeed at software
reuse, we will need to follow a similar strategy.

The continuing success of rapid evolutionary development depends on the
reuse of system parts and components—data especially, and then other compo¬
nents such as processing, documentation, and training. We must ask how is one
thing related to another? What pattern connects them? One human is much like
another, with two legs, two arms, a torso, and a head. Legs are much like arms,

Rapid Prototyping and Reuse ♦ 333

with five fingers and five toes and similar bone structures. Humans are also sim¬
ilar to horses and dolphins: we breathe air; we share limbs or fins, and a head
with two eyes and a mouth. What are the similarities among software systems
and how can we reuse them?

By emphasizing the creation and reuse of system components from current
prototyping projects, a resource pool of data, software, and design documenta¬
tion can begin to grow to meet the future needs of the corporation. Using these
resources, prototypers can maximize their effectiveness and efficiency during the
creation of new projects. This is especially important when working with third-
generation programming languages and tools.

People sometimes ask, “If reusability is so great, why haven’t we already
done it?” Good question, and the answer is largely because reuse requires an
investment. In a world of get-rich-quick schemes, reuse makes money the old-
fashioned way: over the long haul. Let’s look at the basic laws of reuse:

1. Part of all you code is yours to keep. (Write Shell programs that you
can reuse.)

2. Start thy software repository to fattening. (The UNIX library has a vast
store of tools.)

3. Make thy software multiply. (Reuse the Shell programs you’ve cre¬
ated.)

4. Increase thy ability to develop reusable software. (Learn reuse from
UNIX and Shell.)

Software will form the competitive edge of companies in the next decade. IS
departments must step off the slow productivity improvements of the last few
decades (approximately 5 percent per year) and explore the new paradigm of
software creation that will double or triple productivity in three to five years. Eric
Sumner, AT&T Bell Labs’ vice president for operations planning, put it this way:
“If there’s a single key, it’s reuse.” Ted Biggerstaff at the MCC says that improve¬
ments of 20 to 50 percent are reasonable within a narrow application domain.
He also said that quality improves with reuse. “Quality comes along for free
because you use the components that have been debugged and used exten¬
sively.” Reuse offers prototypers a way to stop reinventing the wheel for com¬
mon elements, parts, components, and subsystems and to improve quality
through rigorous testing of the reusable components. The incentives to reuse
software parts in the creation of new systems are:

♦ Economic savings, especially for large complex projects
♦ Customer satisfaction through more reliable systems
♦ Prototyper satisfaction through faster creation of systems
♦ Prototyper stress reduction through focus on the creation of

new components

Reuse changes the whole software process. The game becomes one of
putting the puzzle together, not creating the pieces. This is a wonderful change
because there’s never a project that isn’t under the gun.

334 ♦ Chapter Eleven

Reuse Process

The reuse process is actually very simple; doing it rigorously is what takes time
and effort. In the reuse process, you will need to:

1. Identify reusable designs, parts, and components (Figure 11.3)
2. Create the reusable components
3. Certify the quality of the reusable parts
4. Catalog and store them for easy retrieval
5. Manage change to these reusable items

Identifying Reusable Parts

There is a simple test that will help you determine how easily you can grasp and
use reusability techniques. Before you read the next paragraph, take a handful
of coins out of your pocket and describe what you see.

There are two common and two more unusual responses to what people
see. People who have the easiest time reusing software will notice first how the
coins are alike and then how they are different. For example, some people will
respond that they see American coins that are all round that have faces of former
presidents on them. Others will see what they add up to: 72 cents or some such
thing. These people first see how things are alike and then how they are differ¬
ent, which allows them to see how two functions are alike so that they could be
reused. Then they see how the functions are different so that they know what
will need to be uniquely created.

People who will have more difficulty reusing software will first notice how
the coins are different and then how they are similar. For example, they will say
things like: “There’s a penny, nickel, dime, and quarter. The penny is a copper
color and they all have different obverse designs. They are all different sizes.”
These are all statements of difference. These people will then follow by saying

Rapid Prototyping and Reuse ♦ 335

how the coins are alike: “they’re all cents and round.” A few people will be at the
poles of this discussion: the coins will all be exactly the same or completely dif¬

ferent. Any of these latter three types of people will have problems relating to
reuse. To reuse software easily, you will need to first notice how things are alike
and then how they are different. You learned this mental strategy early in life and
it’s easy to borrow and apply the optimal strategy to reuse once you know how
your strategy is similar or different.

To initiate reuse, you must begin by defining the typical issues that arise
when building some class of systems. Then you can begin to create reusable
designs, code, and data from these generalizations. There are several types of
reuse:

♦ Design, code, and data extraction and adaptation from other products
♦ Direct reuse from component repositories and databases
♦ Program generation
♦ 4GL usage

Design and code adaptation reflects that software engineering is often
reengineering, not art or invention. Adapting existing software requires clear
documentation so that changes can be made safely. Adaptive reuse creates main¬
tenance and configuration control problems (yet another component joins the
family). Adaptive reuse can be achieved by:

♦ Chunking designs, code, or data to extract multiple functions or views of
the data

♦ Combining designs, code, or data into higher-level, reusable functions or
databases

♦ Generalizing an existing part or component into a reusable design, module,
or database

♦ Customizing desigris, code, or data to prepare them for a specific application
or environment

Chunking helps us identify the different functions or data woven together
in a module or database. These can then be separated and reused. Data nor¬
malization, for example, progressively chunks data down into its component
groupings.

Combining these elemental units into higher-level organs or organisms
enables us to reuse the power and elegance of the smaller parts to create even
more powerful reusable components.

Generalizing lets us look at two or more similar yet different functions or
data structures and observe their similarities. Once we know how they are alike,
we can create higher-level abstractions that allow us to reuse the basic principles.
In object-oriented programming, for example, we can define a class of objects
called “door” which has hinges, latches, and states of being open or closed. We
can then reuse these abilities to describe car doors or house doors or even hoods
and trunks.

336 ♦ Chapter Eleven

Customizing, on the other hand, invites us to look at how the function or
data is different and unique. Continuing the door example, we could define
classes of doors for hoods, trunks, and car doors that specify their unique func¬
tion or application.

Regardless of how we identify and create a reusable component—design,
code, data, or test case—we will need some way to store and retrieve it on
demand.

Reuse Repositories

[Data] is an open system .. . that learns from its experiences. It
has adaptive mechanisms ... It is, in a sense, organic.

—Dan Appleton

Component repositories are a form of long-term “memory” that facilitate reuse.
They encounter initial success and enthusiasm as people begin to add parts to
the repository. Difficulties occur when these same people are called upon to reuse
the components in the library. Initial components may lack the robust function¬
ality required to ensure reuse. As a result, there will be some technical difficul¬
ties in applying reuse to achieve customer needs. This is okay because there is
no failure, only feedback. These early components can be evolved into important
members of the reuse repository. To encourage reuse, programmers and analysts
should be challenged to argue their use or avoidance of reusable components
during an inspection or walkthrough.

Reusable designs increase the possibility of code reuse and make the
resulting programs more maintainable. Strict focus on reusing designs, however,
can cause designers to overlook better alternatives. Use your common sense;
reuse what is reusable.

Program generators capture similarities among applications and apply
knowledge at higher conceptual levels. Fourth-generation languages do the
same thing. They are a powerful tool in the hands of a prototyper who has
access to a reusable repository of data, information, and knowledge about the
business.

Reuse opportunities vary with the class of system and its environment.
Groundbreaking new systems will initially have fewer reuse opportunities than
existing, known application domains. Japanese software houses, for example,
reuse up to 80 percent of existing application software when creating a custom
configuration for a customer. Creating space station software, on the other hand,
is a less-understood application domain; reuse may be more difficult. You can
measure the value of reuse by counting every incident of reuse. It costs more to
set up a reuse program initially, and then it begins to repay itself over time. The
Japanese Sigma project has allied over a hundred different companies to produce
reusable components for the UNIX environment. Toshiba’s Heavy Apparatus

•r

Rapid Prototyping and Reuse ♦ 337

Engineering Lab uses real-time Fortran for 60 percent of its reusable code and is
moving toward the C language for the remainder. GTE Data Services uses COBOL
and assembly because of the transaction-processing nature of their business
(Gruman 1988).

Reuse can happen anywhere in the software process—from project plans to
design documents, from code to data, from test cases to user training. Figure
11.3 shows the reuse pyramid. The foundation of most effective business-
oriented reuse strategies is data. By creating pools of shared data, prototypers
can begin to leverage their work with each successive application created. These
pools also provide a strategic resource for users to evaluate their customer base,
identify new markets, be more responsive to changes in market conditions, and
counter competitive threats. One of the reasons that the “Information Center”
concept never caught on was that the data for one of these was often spread
across dozens if not hundreds of applications. This is another reason that exec¬
utive support or decision support systems, which are vital to the strategic health
of the organization, have had a hard time getting started and delivering return
on investment.

This philosophy of shared data pools often seems strange to those of us
brought up with structured programming and data flows. To be successful at
rapid evolutionary development, most of your data can’t flow; it must remain in
one place where people can use and reuse it. It can be managed and duplicated
where required. It can be syphoned off, transformed, and streamed into other
pools. In event-driven, real-time systems, this obviously isn’t so, but in applica¬
tion creation it is.

Another advantage of data pools (that is, tables or databases) lies in the
ability to create and maintain and share documentation and training in their use.
Then, with this foundation to stand on, prototypers can create reusable parts to
access and process the raw data into forms more suitable for human consump¬
tion. Data pools simplify the development of the processing required to meet a
customer’s needs—another advantage of creating the data First.

The data pools or repositories form a more object-oriented or information
engineering strategy for software creation. Customers, for example, would know
their own names, addresses, phone numbers, and so on. They might also know
what kind of products or services they buy on a regular or irregular basis, and
how much money they have to spend. This object-orientation can benefit rapid
evolutionary developers because it focuses on organisms and organizations and
elements of the total system and can be implemented in any language, not just
object-oriented ones.

Regardless of which reuse level interests people the most, the most impor¬
tant key to rapid evolutionary development is data.

Reusing Data

If we look at the eons of time, evolution seems to take forever. Insects, however,
evolve quickly to deal with pesticides through their rapid generational turnover,

338 ♦ Chapter Eleven

which provides massive and frequent opportunities for genetic recoding. The
rapid rate of human evolution, however, depends on our ability to change and
adjust our conceptual, logical, and physical worlds to our needs. Rather than
change the human organism, we change the programs we put into the biocom¬
puter we call a brain (training) and we extend the reach of our physiology
through the use of machines—cars, planes, boats, rockets, or computers. Sat¬
ellites in space vastly extend our ability to see changes on the planet. Our per¬
sonal evolution grows each time we expand our understanding of the world. In
this way, we change without having to resort to genetic mutation and natural
selection. Data evolves in much the same way as human knowledge, by learning
as it grows. As we add data to a database, the information or knowledge con¬
tained in that database increases just like the mind of any child.

Data-driven prototyping develops and maintains open, shared databases
that can constantly be extended to accommodate new information requirements.
Reusable data will need to be normalized. Over the years, several genetically
advanced forms of data have appeared—normal forms. First normal form simply
deals with establishing a consistent number of fields per record, all of the same
size. Second and third normal forms introduce key fields and their relation¬
ships to other nonkey fields. Second normal form ensures that all nonkey fields
relate to the entire key. Third normal form ensures that no nonkey field relates
to another nonkey field. Fourth normal form ensures that a record contains
no more than one independent, multivalued field. Fifth normal form simplifies
things even more by creating smaller groups of data from which larger, more
complex groups of information can be derived.

Using this model as the basis of creating and growing evolutionary software
systems, we can begin to see that we must have ways of storing our models of
the world in such a way that it can be changed easily. You can change your mind,
but can you change your software? Typically not very easily, because the knowl¬
edge is hard coded into the program or inflexible data structures. Through proper
use of data, evolution becomes a process of changing the data stored in data¬
bases, not genetically reengineering the software system. The database, like the
human mind, can code, store, and retrieve data, generate decisions, and much
more. Successful data design is the foundation of evolution and reusability.

There are three levels for data architecture: a conceptual or enterprise level,
a logical or functional level, and a physical level.

Just having the right data and information can have a strategic impact
because it will enable customers to identify new markets, evaluate trends, and
increase sales through the application of “end-user” tools for database analysis.

The technical, physical, and political barriers to data can be a major road¬
block in the rapid evolutionary development of any project. For prototyping to
succeed, the prototyper must have access to any and all data, regardless of how
far back in the woods it may be.

For data to be as reusable as possible, IS prototypers must use the same
name for data elements with as few synonyms as possible. Unfortunately, dur¬
ing English classes in school, some teacher instilled in students that repeating

Rapid Prototyping and Reuse ♦ 339

the same word over and over again would be boring for the reader. Bore me!
Especially in computer programs. Bore me! Make it easy for me. Simple subject,
simple verb, and simple object: MOVE COLORADO TO STATE, and then simply
refuse to give COLORADO and STATE more exotic names. Bore me!

Reusing Processing

There are many levels at which reuse can be achieved. Fred Brooks suggests three
levels (Gruman 1988): algorithm, code component, and design reuse. Algorithms
validate fields like employee and customer names and numbers and crunch arith¬
metic calculations. Code components can update databases, communicate with
users and other systems, and process specific types of application problems. For
example, the common Ada missile parts, a generalized cruise-missile guidance
system that uses Ada packages, has been widely reused (Gruman 1988). At
Toshiba’s Heavy Apparatus Engineering Lab, reuse rate is 55 percent of delivered
code. The challenge for reusable components is to create ones that can do a lot of
work, but also be flexible enough for broad application and reuse to defray the
cost of creating them. Design reuse takes software up a level of abstraction such
that a design can be tailored and delivered in any software or hardware domain.
Compared to code or algorithm reuse, design reuse offers the flexibility to choose
hardware and software platforms. Design reuse begins at the system’s concep¬
tion. Prototypers must constantly be on the alert for an opportunity to create or
reuse portions as they chunk the system into subsystems and components. Early
identification of reusable design pieces also tends to result in the creation of
reusable code components.

At the lowest level, module designs and code can be adapted to work with
new data. This implies genetic reengineering of the element or cell to allow for
evolutionary growth and development. In evolutionary terms, this is known as
adaptive radiation—the -rapid divergence of many new forms of life from some
common ancestor. Although a valuable way to reuse software, it creates prob¬
lems because:

1. It can propagate defects to a wide range of components.
2. It creates new parts that have to be maintained.

At the next level, data tables, databases, software modules, and documen¬
tation are used as is. This cellular approach maximizes the benefit of any given
part. Nothing need be changed. The only drawbacks to this approach are:

1. Changes to the part can impact many applications and requires exten¬
sive testing.

2. The part can try to be all things to all users and eventually fail to be of

value to any.
3. It may be difficult for prototypers to evaluate which parts offer the

right features for their application.

340 ♦ Chapter Eleven

At the next higher level, a more object-oriented level, data and processing
combine into reusable components that perform higher-level functions. At this
level, the component acts like an organ in the body, processing specific inputs and
developing specific outputs. As a prototyper moves toward higher level reusable
components, the value of each instance of reuse increases and the number of
times a component can be reused decreases because it becomes more specific. The
more stable the data pool, the more likely it becomes that major reusable compo¬
nents can be created.

At the highest level, whole applications can be reused. This is like cloning
whole organisms. In Japan, software houses provide custom systems from re¬
usable applications. Banking applications, for example, are created for one cus¬
tomer and then customized for each additional customer. Because the core of the
processing is reusable, the custom features can be added at a low cost, maximiz¬
ing customer satisfaction and profit per system. Comparing this to our biological
example, there are similarities among different races and species of humans and
useful specializations as well.

At this high level of reuse, reusable documents and training can assist in
delivering the maximum productivity and quality with minimal cost. This is how
software houses make a profit, through development and continuous reuse of
existing components and applications. This is why so many companies are writ¬
ing software for desktop computers; the opportunities from reuse on a grand
scale reduce the cost per copy to a level that almost anyone can afford.

Fred Brooks (Gruman 1988) said that “in UNIX, the power of the whole
pipes-and-filters and unified files structures .. . lets people lash together pieces
they have lying around. These kinds of reusability are immediate.” Having used
UNIX extensively in the 1970s and 1980s, I can agree. Programming in the UNIX
Shell can teach you a lot about reusability. I liked it so much that I wrote a book
about it (Arthur 1992).

Types of Reusable Processing Modules

There are six key kinds of business processing modules:

1. Data gathering—getting input for the process
2. Data storage—updating data in memory or magnetic media
3. Data processing—converting the raw data into information

or knowledge
4. Data retrieval—selecting stored data and information
5. Data presentation on various media
6. Communication

Data-gathering modules include user and system interfaces. Data storage
modules take the gathered data and store it in appropriate databases. Process¬
ing modules transform the raw data into information and knowledge. Data
retrieval modules include queries and extracts for reports. Data presentation

Rapid Prototyping and Reuse ♦ 341

modules include reports and screens. Communication modules connect the sys¬
tem with its external and internal components.

At minimum, these reusable software modules should have the qualities of
being general, flexible, reliable, modular, simple, and self-documenting. Generality
implies that the module is usable in many circumstances. Flexible modules evolve
easily. Reliable modules rarely fail. Modular components have a single entry and
exit point, and perform a single function. This singularity brings about simplicity
(7±2 decisions). These modules also document their abilities through clear use of
the programming language, data names, and comments.

Unfortunately, most of today’s programmers tend to subtly encode specific
information about the operating environment—operating system, database, hard¬
ware, and interfaces—into modules. To enhance their reliability, modules should
be as independent of the data as possible. Using “information hiding,” the struc¬
ture and origin of the data can be hidden from the module’s processing. Reusable
modules may also practice “mutual suspicion”; this paranoid practice ensures
that the data passed from some other module is valid before using it. Other
fault-tolerant practices can be employed to trap errors when they occur and exit
gracefully.

Reusable Documentation

Looking at the coding process as the only place to reuse things is often short¬
sighted. If, as Capers Jones suggests, paperwork is 25 percent of the total effort
in a software project; then documentation is another great place to generate a
return on investment by creating everything from boilerplate to complete docu¬
ments that can be reused to provide:

1. Requirements for similar applications or portions (for example, secu¬
rity, reporting, error handling)

2. Designs—system and detailed designs
3. Plans—project management, test plans, quality assurance plans
4. Methods and procedures—design and testing methods and procedures
5. User guides

Reusability Tools

The most innovative and successful software creation in the 1990s will be done
by organizations that have specialized tools like the reuse catalog and reusable,
evolutionary components and computing abilities that match their business. The
Japanese Sigma project has three major design principles for reusability tools
(Akima 1989):

1. Let users create an optimal integrated environment for their needs.
2. Promote technology transfer through use.
3. Encourage development of future third-party tools which can be inte¬

grated or used to replace or mask existing reusability tools.

342 ♦ Chapter Eleven

Some of Sigma’s existing tools include documentation, networking, and
project-management tools. Project-management tools include the plan, do, check,
act (PDCA) cycle for continuous quality improvement. There are over 40 Sigma
tools consisting of two million lines of C code. Other tools include integrated
screen, form, file, and database design tools.

The Sigma design environment consists of 32-bit workstations with pow¬
erful networking functions, resource sharing functions, advanced user interface,
and the minimum resources needed to run the UNIX-like OS and Sigma tools.

Central Software Repository and Catalog

Reuse can begin immediately. Many small, one-celled modules and databases
can be created as projects develop. These can be added to the ever growing
wealth of software in the repository. The power of the Internet or intranet in
larger companies can be harnessed to create this repository. As projects grow and
mature, other larger components differentiate and grow from the smaller pieces.
Ready-made tissues and organs—menuing, graphics, application libraries—can
spawn from the creation process. These various components can be created to be
portable across computing systems to facilitate rapid and inexpensive transition
to new or additional platforms.

As the population of reusable components expands, we must be able to cat¬
alog and reuse information, ideas, and knowledge, as well as various software
parts and components. An effective and efficient cataloging system is essential
to successful software reuse. The reusable software repository or catalog should
match the sophistication of the public libraries. Storing components is one thing,
retrieving them is another. People think in ideas, concepts, and facts. The cata¬
log should think in the same way. Consider Yahoo!, shareware catalogs like
www.winsite.com, and other Internet catalogs as a model for reusable compo¬
nent libraries. Prototypers should be able to tag and link components on the fly
as they discover relationships. Prototypers may also want to add notes in the
margin or bookmarks into the repository so that they can return to a reference
after they have finished looking around. The catalog can also enable a user to
navigate through the webs of reusable components demonstrating connections
and interactions. HTML allows for hypertext linking of all of these elements!

Prototypers need a rapid method for identifying available candidates for
reuse (Figure 11.4). If it takes too long, they will turn to creating the parts all
over again. The model suggested by Prieto-Diaz and Freeman (1987) looks first
at how one component is like another and then how they are different:

begin

search library

if identical match then select and terminate (directreuse)
else

collect similar components Continued.

Rapid Prototyping and Reuse

FIGURE 11.4 Reuse catalog.

for each component

compute degree of match

end

rank and select the best

modify component to fit (adaptive reuse)
endif

end

For information, knowledge, designs, code, and data to be accepted into the
repository, it will need to pass the following tests:

if an object is

hardware independent and

software independent and

general and

modular and

self-documenting

then

it is reusable

endif

If the object

fits the business model and

fits the architecture and

is reusable

then

it can go in the repository

endif

344 ♦ Chapter Eleven

Internet Reuse Catalog

Suppose that we create files (reusable_object.ftp) that contain the line:

ftp:II.../ftp/reusable_object: keyword(s) description

The following HTML (reuse.html) will produce the IS1NDEX query shown
in Figure 11.5—a search request that will trigger a CGI lookup program:

<HTML>

<HEAD>

<TITLE>Reuse Catalog</TITLE>

<BODY BGCOLOR= " # 0 0 f f f f 11 >

<Hl>Reuse Catalog</Hl>

<BxISINDEX PROMPT=" Search by Topic Keywords or Name">

The server decodes the query by converting any “+” signs into blank spaces
and then using the remaining information as command line arguments:

http:II.../cgi-bin/reuse.cgi?date

is translated into the following reuse.cgi shell command:

#!/bin/sh

echo "Content-type: text/html"

echo ""

if [$# = 0] # no search arguments

then

cat reuse.html # send ISINDEX web page

else

sed -e "s/PAGENAME/Reuse/11 headtemp.html #send header

echo "<BODY BGCOLOR="#00ffff">Search for $*<BxP>"

echo "<Hi>Reuse cataiog</Hi>" Continued

FIGURE 11.5 Reuse catalog query.

Rapid Prototyping and Reuse ♦ 345

RE='echo "$*" I sed -e "s/ /\\\ I /"1

FILES='egrep -1 $RE catalog/*.ftp I xargs echo

for name in $FILES

do # create FTP hypertext links

grep ftp $name I \

sed -e "s/A/<A HREF=\"/" \

-e ”s/:/\">$name <\/A>/" -e "s/$/
/"

done

echo "</BODY>”

cat addresstemp.html #send address

This CGI command would create a listing of the reusable components that
contain the keywords specified (Figure 11.6). This is a simple example, but it
could be expanded.

Problems

There are several reusability issues. How much will it cost to save money with
reuse? How much will it improve productivity? How do I estimate return on
investment? What are the employee incentives and barriers to reuse?

Roadblocks to reuse include the not-invented-here (NIH) syndrome,
whisky (WISCY—Why isn’t Sammy coding yet?), and the investment in learning
and understanding reuse. Training designers and programmers to use the reuse
repository costs time and money. Tracking usage of components makes configu¬
ration management costs higher. Elevating the creativity level to the design or
requirements stage, and rewarding early product delivery will often knock down
these roadblocks.

Reusable components cost more to build, test, and document, but you can
use them repeatedly in endless variations. Reuse dramatically reduces the time

. Iia , ■■ m Netscape: Reuse Catalo fj . -. .- ■ ■ j 1

<po

Back

°<>

Forward
ft

Horne Reload Images
WTi
Open Print

0$
Find Stop

N

Go To : |http ://ww .server.com/cgi-bin/reijse.cgl

Wh3t's Nov? | VhatJs Cool? | Handbook | Not Search | Net Directory | Software

Reuse Catalog
date cony.ftp date to day of century
date 2000. ftp Year 2000 date concision

j
ir

JUj m ItM^j_-_

FIGURE 11.6 Reusable component list.

" *.

346 ♦ Chapter Eleven

required to create and deliver a system. Reuse increases confidence in estimates
and allows for ongoing evolution of requirements.

The technical problems of creating and cataloging and recovering compo¬
nents can be complex. Noboru Akima, planning director of the Japanese Sigma
(reuse) project (Gruman 1988), said that “these problems are exactly the ones
that prevent the idea from realization.” “It [is] difficult to define the component
size, interface, and functionality.”

Programmer productivity, if measured in terms of just lines of code pro¬
duced, tends to punish groups that reuse code extensively. Prototypers will gen¬
erate less code and reuse more. One way to overcome this is to measure total
functionality delivered in Junction points or to include all instances of reuse in
the productivity calculation.

Some languages, COBOL specifically, do not encourage modularity, but
rather encourage large, ever expanding programs consisting of dozens to hun¬
dreds of paragraphs that, because of their custom nature, are difficult if not
impossible to reuse.

Reuse is most effective at solving routine, common problems. Within the
confines of known application domains, reuse offers great potential. New-
application domains, however, require innovative solutions. Innovative designs,
by their very nature, will require innovative approaches which may or may not
be able to leverage the existing base of software components. At best, innovative
solutions will be able to use the most basic elements of software, but possibly
not the larger components.

Reuse is still struggling to establish itself in environments where the
underlying technology is changing rapidly. COBOL and Fortran, for example, are
stable and relatively unchanging. In parallel-processing environments, however,
reuse may be difficult initially. Rapid technological changes require more inno¬
vation and risk.

Summary

In this chapter we’ve explored the benefits, critical success factors, and process
of rapid prototyping. By using the metaphor of evolution, we can drop the con¬
straints of the “construction” paradigm and discover new ways to quickly grow
working systems that can surprise and delight both users and IS personnel.
We’ve also looked briefly at the other evolutionary processes that support con¬
tinued growth of the software, software processes, and technology that support
it. In the next chapter, we'll look at ways to gather customer requirements in
ways that allow us to focus on the vital 20 percent of the functionality that will
provide 80 percent of the benefit. We’ll learn how to separate customer needs
from wants and wishes. Once we know their needs in sufficient detail, we can
begin to use rapid prototyping to create systems in record time.

The prototyper’s job becomes easier as we learn to take advantage of
reusable data, processing, and documentation. Reusable components may take a

little longer to create, but they will serve the corporation for many years, perhaps
even decades as they grow and evolve. Vast improvements in productivity are
possible when we adopt a mind set that we will reuse what is reusable and cre¬
ate new reusable components where none were previously available.

To maximize the benefits from rapid prototyping, reusability has to be one
of the arrows in your quiver.

Exercise

1. Create a reuse catalog using Shell and the Internet. As you create the
catalog, create reusable shell components that comprise at least 10
percent of the total catalog.

*

CHAPTER 12
Shell for

Programmers

C programmers have a wide variety of Shell tools and utilities at their disposal to
help aid in the development process. The beauty of the UNIX Shell toolset and
utilities is that they are an integrated part of UNIX and are available on almost
all UNIX platforms. When used together they form a comprehensive, flexible,
and portable foundation for developing the complex software systems of the
1990s. While today’s complex systems require a host of high-powered tools to
yield maximum programmer proficiency, the UNIX Shell toolset still offers a
great foundation for any development project.

This chapter will explore the basic tools and utilities that C programmers
will find useful. Although the chapter will not contain exhaustive coverage on
any particular tool, it will provide an overview and a description of the basic
ways that the tools work and how they are used on many software development
projects. C programmers (or aspiring programmers) as well as software project
managers will find this chapter most interesting and informing.

349

350 ♦ Chapter Twelve

C Language Programming

The Shell, especially the C Shell, is oriented to work with C language program¬
ming. The Shell can assist in all phases of C language development: prototyping,
coding, compiling, and testing. The Shell provides the means to try out new ideas
quickly and easily. C language is the vehicle to construct an efficient program
once its design has been established and tested with Shell.

Chapter 7 described the five major types of programs: input, output, query,
update, and interface. Each can be prototyped easily with Shell. Then begins the
important task of translating the Shells into C language. One of the best ways to
speed up the process of writing C language programs is to establish a directory
containing skeletal programs of the five major program designs. These can be
easily copied into the programmer’s directory for expansion using Shell:

proto skeleton newname.c

skeletondir=/global/C/skeletons

case $# in

Oil)

echo "Prototype List:\n"

Is $skeletondir

echo "Enter skeleton type"

read skeleton

echo "Enter newname.c"

read cname

7 7

2)

skeleton=$l

cname=$2

7 7

echo "Enter skeleton type"

read skeleton

echo "Enter newname.c"

read cname

7 7

2)

skeleton=$l

cname=$2

7 7

*>
echo "$0 syntax: $0 skeleton newname.c

esac

while [! -f ${skeletondir}/$skeleton]

do # prompt until they get a valid skeleton type

echo "Skeleton $skeleton not found"

echo "Enter skeleton type"

read skeleton

echo "Enter newname.c"

Continued

Shell for Programmers ♦ 351

read cname

done

cp $skeleton $cname # copy skeleton to newname.c

echo "Skeleton module $cname has been created"

C or Shell skeletons of the five major program designs should be created
and maintained for the prototyping staff. Reusing designs and code is much
more productive than reinventing the wheel. So, let the Shell handle as much of
the typing and logic as possible. A simple C language skeleton is shown in
Appendix B.

Aside from the proto command which you can develop for your own use to
speed up the coding process, UNIX provides a series of commands to aid the pro¬
gramming process. They are shown in Thble 12.1. These commands handle con¬
cerns like structuring the code for readability, printing the code, and
documenting what the code does.

The C language beautifier, cb, lets the programmer enter the code in any
format and then transforms the code to one of several standard conventions. It
straightens up the code and makes the logic more visible. The readability of the
code is enhanced and so is the maintainability. Cb provides a consistent format
for the code.

List and nl provide two means of printing C language listings. List works
on object files that contain symbolic debugging symbols; nl provides a numbered
listing of C source code. Either can be combined with pr to produce a clean list¬
ing of a C program:

clist cnames.c

for file in $*

do

nl $file I pr -h "Source listing for $file"

done

In Berkeley systems, there is a formatting program called vgrind. It
emboldens keywords and sets comments in italics. Its output is in troff (-t) for¬
mat. It can be invoked as follows:

TABLE 12.1 C Language Coding Commands

Command Description

cb Beautifier
cf low Flow analyzer
cxref Cross-reference listing
list Print listing
lint Syntax checker
nl Print numbered listing

352 ♦ Chapter Twelve

cprint files.c

vgrind -t $* I lpr -t

What if you don’t have vgrind on your system? In Chapter 15 we’ll look at
how to write your own filters to format code any way you want.

As programmers create programs, they often include data names that
aren’t used, statements that cannot be reached, or other problem code. Lint, the
C program checker, finds all kinds of stylistic problems and bug-prone code. The
output produced by lint can be selected, cut, pasted, and reported in ways that
help clean up the code before compilation. Lint also helps spot C language porta¬
bility problems when invoked with the -p option. Lint is an important tool in the
development of portable, bug-free C language programs.

Cflow and cxref help document how the program works—which module
calls another, which data names are referenced and where, and so on. Cflow
works on any combination of C, yacc, lex, assembler, and object files. The output
from a run of cflow is a listing of the call pattern of a set of C programs. For
example, if function A calls function B, this fact will appear in the cflow listing.
Cxref works only on C language files. The output from a run of cxref is a cross-
reference listing of all variables declared in a set of C programs and how they are
used by the set of functions listed.

By keeping all of the source code for a single program in a single directory,
cflow can be executed simply as:

cflow *.[closy] I pr -h "Cflow listing for program

'pwd'" | lp

Similarly, cxref can operate on all C language files:

cxref *.c I pr -h "Cross Reference for 'pwd | \

basename'" I lp

The commands presented—cb, cflow, lint, and so on—are not the only
ones that can be used during the coding process, but they are the major ones.
Inventive toolsmiths will find others that can aid the coding process.

You can also call the Shell from a C language program using the system call.
This is especially helpful when cobbling together the first draft of a system. Use
Shell calls to handle things in stubs of modules that you will construct later. The
Shell calls then serve as pseudocode for the routine you will ultimately construct.
System calls are as simple as:

system(who; date);

Now that your program has been coded using the finest tools available, it
must then be compiled and tested.

Shell for Programmers *H8§

Compiling

C language programs are created in three separate steps: preprocessing, compil¬
ing, and loading (see Figure 12.1). The commands that perform these processes
are shown in Thble 12.2. The Shell is the glue that links these commands together.

Phase 1: Preprocessing

Preprocessing occurs before compilation and provides the programmer with the
ability to alter the source code in some particular way. The C preprocessor is a
program that scans C source code looking for preprocessor macro commands and
performing the actions specified by those commands. Some of the things that are
done with the preprocessor are defining constants in the program, including
external source files into the program, and conditional inclusion of source code.

There are five major preprocessors for C language: the C language prepro¬
cessor (cpp), which is invoked automatically by the C compiler; lex, which gen¬
erates lexical analysis programs; yacc, which generates grammar analysis and
parsing programs; m4, which allows for macro substitution; and regcmp, which
compiles regular expressions for use with the function regex (which examines
text in much the same way as grep). Simple commands to preprocess lexical ana¬
lyzer or yacc code into C language and then compile it look like this:

lex file.l && cc lex.yy.c -11

yacc file.y && cc y.tab.c

The m4 macro processor was designed as a preprocessor for C and assem¬
bly code. It allows the definition of macros which are then expanded by m4 prior
to compilation. Many of the abilities of m4 are included in the C preprocessor.
Only on rare occasions will a programmer need to use the macro preprocessor.
Some of the assemblers (as), however, use m4 as a preprocessor. It can be
invoked whenever needed:

m4 file.m > file.cc && cc file.c

The regular expression compiler, regcmp, performs most of the work done
by the C function by the same name. It allows regular expressions to be compiled

FIGURE 12.1 Steps in compiling a program.

354 ♦ Chapter Twelve

TABLE 12.2 Preprocessing and Compiling Commands

Command Description

as Assembly language compiler
cc C language compiler
dis Object file disassembler
Id Link editor
lex Lexical analyzer preprocessor
make Compile and assemble programs
m4 Macro preprocessor
regcmp Regular expression compiler
strip Strip symbol tables
yacc Yet another compiler compiler *

(an expensive process) before a C language program is compiled or tested,
thereby saving execution time. It creates an output file,y?fe.4 which can be
included directly into C language code. Once compiled, regular expression anal¬
ysis can be performed directly by regex:

regcmp regfile && cc file.c

where file.c contains a statement of the form:

#include "regfile.i"

In most cases the standard C preprocessor, cpp, is utilized. It is automati¬
cally called when using the standard C compiler, cc. There is no need to call the
cpp preprocessor separately.

Phase 2: Compiling

Compiling is a process that translates the source program into a language that
the machine can understand (machine code). Once the preprocessing stage is
completed, the compiler (cc) and assembler (as) are brought into play. As previ¬
ously stated, these two invoke their own preprocessors (cpp and m4). The out¬
put of these two processors are then compiled into what are commonly referred
to as object modules. Object modules usually end with the .o suffix. Once a suc¬
cessful compilation has occurred with each C source program being translated
into corresponding object module, phase 3 begins.

Phase 3: Link Editing

The linkage editor (Id) has the task of taking the object modules, created by the
compiler, and creating an executable module. An executable module can be run
directly from the Shell command line by typing the name just like any other com-

Shell for Programmers ♦ 355

mand. The linkage editor assures that all called functions are accounted for and
finalizes the relative machine addresses for all variables. Unless Id is told other¬
wise, the output of the linkage editor phase is stored in a file named a. out.

The three steps described above are most often accomplished automatically
by using the standard UNIX C compiler command cc. Compiling a program is
most often a single step for the programmer with the preprocessor, compiler, and
linkage editor being called directly.

Simple C language programs can be compiled and tested easily:

cc file.s && a.out

cc file.c && a.out

More complex programs containing several modules must be compiled and
then linked into an executable module. As pointed out previously the linkage
editor, Id, is automatically invoked by cc when needed:

cc filel.c file2.c file3.c -o ctest && ctest

In this example, all of the C files are compiled into their respective object
files: filel.o, file2.o, file3.o, and file4.o. These are then linked together by Id,
which is executed automatically by cc. The output of the linkage editor phase
will be the executable program ctest. There are many options which can be
passed to the cc command. Please refer to your manual pages for complete
details.

One of the possible options (-g) that can be utilized when compiling is an
option that tells the compiler to include debugger information into the object
module. This debugger information is stored in a table called the symbol table.
Several of the most widely used C debuggers use this table to ascertain informa¬
tion about the program while it is executing. For improved efficiency, the linkage
editor, or strip, can be used to strip the symbol tables out of an executable pro¬
gram. The benefit of removing the symbol tables is that the programs load more
quickly and require less disk space. The drawbacks are that the program cannot
be easily debugged without the symbol tables and the executable program may
not be portable between different releases of the UNIX operating system. Only
final, production versions of programs should be striped of their symbol tables.

Compiling Using Make

Because the Shell scripts to accurately preprocess, compile, and link large pro¬
grams and entire systems would be overly complex, UNIX provides the make
command to handle the complexity of preprocessing, compiling, and linking in
more complex environments. A prototype makefile is available in Appendix C.

Make is a command generator that understands dependencies between
files. In particular, make most often generates compile commands based on rela¬
tionships between C source files, object files, and executables. By using the date

and time stamp stored on files, make can determine which modules need to be
recompiled.

Make knows about all of the different file types in UNIX: SCCS (s.file¬
names), C language (filename.c), assembly language (filename.s), lex (file-
name.l), yacc (filename.y), object files (filename.o), and libraries (library.a).
Make, for example, knows that to create an object file, it must first compile a C
language or assembly language file by the same name. It also knows that it may
have to get the file from SCCS (Source Code Control System is part of the UNIX
change control management system—see the next section for details) if it does
not exist. Make decides what to do based on the last modification time of each
file. If the object file is newer than either the SCCS or C language file, make
assumes that the object file is the most current and does not compile anything. If
the SCCS file is newer, make gets the file from SCCS and compiles it to create the
object module. The makefile to accomplish this task for a single source file would
be as follows:

OBJECTS = cmdname.o # name of the object file

cmdname: $(OBJECTS) # command depends on cmdname.o

cc $(OBJECTS) -o cmdname # compile & link cmdname

Make automatically knows to look for the SCCS (s.cmdname.c) and source files
(cmdname.c). Once a makefile is created, correctly compiling a program is as
simple as:

make

The output from this command using the previous makefile would be:

get -p s.cmdname.c > cmdname.c

cc -c cmdname.c

cc cmdname.o -o cmdname

Since the date on s.cmdname.c was newer than either the C or object files, make
executed get to retrieve the file from SCCS. Then, make executed the C compiler
to create an object module (cmdname.o) from the source file. Finally, make exe¬
cuted the C compiler to link the object file into the executable program (cmd¬
name) .

Sometimes, a C language file will include a data header file, filename.h,
which may change and affect the resulting program. Make can know about these
files and invoke the compiler when the header file changes:

OBJECTS = cmdname.o # name of the object file

cmdname: $(OBJECTS) # command depends on cmdname.o

cc $(OBJECTS) -o cmdname # compile & link cmdname

cmdname.o: cmdname.c cmdname.h # .o depends on .c & .h

Shell for Programmers ♦ 357

Similarly, a single program may depend on many object files. Make can be
instructed, via the makefile, to compile all of the modules and link them together:

OBJECTS = filel.o file2.o file3.o file4.o

cmdname: $(OBJECTS) # command depends on all objects

cc $(OBJECTS) -o cmdname # compile & link the command

filel.o: filel.c filel.h # object depends on header

This makefile will instruct make to compile all of the objects including
filel.c, which also depends on filel.h. All four objects are created and then
linked together. Since these larger compilations take longer to accomplish, the C
language programmer should put the whole process into background and con¬
tinue working on other activities:

nohup nice make&

A listing of commands executed by make and the resulting errors will be
stored in the file nohup.out for later examination.

Besides the variable, OBJECTS, there is another important make variable
used to set the C compiler flags for all compiles and links—CFLAGS. This single
variable can affect how all modules are compiled. To optimize the output of the
compiler, for example, set CFLAGS to “-0”:

CFLAGS = -0 # optimize executable code

Similarly, to include the regular expression and lexical analyzer library (PW and
1) with the resulting executable program, set CFLAGS as follows:

optimize and include RE & LEX libs

CFLAGS = -0 -1PW -11

To invoke the inclusion of test code defined in preprocessor statements, use
CFLAGS to set the “-D” flag:

CFLAGS = -DTEST

which would cause the inclusion of code such as the following:

#ifdef TEST

fprintf(stderr,"Entering Main\n");

#endif

Using this technique, instruments can be left in the code to test its func¬
tioning, but turned on and off with the make variable CFLAGS.

In summary, UNIX comes with a variety of preprocessors, compilers, and a
linkage editor that facilitate the construction of C language programs. The Shell
and make are both useful for executing these commands in the proper order to

vW

358 ♦ Chapter Twelve

create executable programs. Once compiled, however, C language programs must
be tested and debugged.

Creating and Maintaining Libraries: ar

The UNIX archive utility, ar, gives programmers the ability to store compiled
object modules in a common library that can be used by the link editor. Building
libraries using ar allows for the grouping of object modules under a common
name. These grouped modules can then be shared by other functions. This
makes it possible to maintain a single version of source code and related object
code that can be utilized freely by other modules. Large numbers of related object
modules can be stored in a single library. The library, when created, is given a
name which can then be used in conjunction with the C compiler, cc.

The archive utility provides ways for fully maintaining libraries. This
includes creating libraries, adding modules to libraries, deleting modules from
libraries, and listing the contents of libraries. The syntax of the archive com¬
mand is shown as:

ar [-] keywords [posname] archive_file_name \

[object_file_list]

where keywords are one of those shown in Tbble 12.3 and the archive_file_name
is the name of the archive file which is to have the actions performed. Following
the archive_file_name are the names of object files that are to be added, deleted,
and so forth.

Each of these keywords performs the primary function listed. In addition
there are keyword modifiers that can be used in conjunction with the above
listed keywords that modify the normal behavior. Please refer to the manual
pages on ar for details.

The following command would create a new archive library, if one does not
already exist, and place the named modules in the archive:

TABLE 12.3 ar Keyword Commands

Keyword Description

d Delete object files named in the object file list from the named library,
r Replace existing object members with those named in the object list

in the named library.
q Quick add of objects named in the object list. No check is made to see if

the object name already exists.
t List the object modules found in the named archive file,
p Print the object files listed in the object list,
m Move the named object file to a new position in the archive file,
x Extract named object files from the archive.

Shell for Programmers ♦ 359

ar r ioarch iomodl.o iomod2.o iomod3.o

ar: creating ioarch

In this example the archive file ioarch is created and the object modules iomodl,
iomod2, and iomod3 are added to the archive. If the archive file already exists
then the r keyword will replace an object module in the. archive, if one by the
same name exists, or it will add the module to the end of the archive if the mod¬
ule does not exist.

To list the modules in our archive we can use the t keyword as shown:

ar t ioarch

iomodl.o

iomod2.o

iomod3.o

The x keyword can be used to extract the listed object modules from the
archive file:

ar x ioarch iomodl.o

Now that we can create and maintain an archive we need to be able to uti¬
lize created libraries with the linkage editor. This is really very straightforward.
Simply list the library name just as you would any other object module that you
would like to have linked into the final executable. The linkage editor is trained
to search libraries looking for modules that are needed to resolve function calls.
This is shown in the following command that utilizes the ioarch previously cre¬
ated when compiling a module.

cc mygame.c -o mygame ioarch

In this example, if the source code in mygame.c made a function call to iomodl
to perform some input/output processing the reference would be resolved by the
linkage editor simply by listing the ioarch archive since it contains the iomodl
object module. Similarly if the source in mygame.c made references to all three
modules contained in the ioarch archive they would likewise be resolved by the
linkage editor simply by listing the library name on the compile line.

Figure 12.2 shows how a typical C software project utilizes the tools out¬
lined above to create and maintain an up-to-date executable program module.

Testing and Debugging

The major UNIX commands that aid testing and debugging are shown in Table
12.4. Adb, sdb, and dbx are the three major debugging facilities. Ctrace is a
more primitive debugging tool that allows for the tracing of C programs as they

360 ♦ Chapter Twelve

FIGURE 12.2 C utilities.

execute. Prof, time, and timex are all useful for determining a program’s effi¬
ciency. All of these commands are useful for testing.

Adb, a debugger, is available with various versions of UNIX and is the
most primitive of the three debuggers. It is primarily an assembly-level debugger
and is not widely used. Sdb, the symbolic debugger, is available with virtually all
systems and debugs at a source level. Dbx, like sdb, is a symbolic source level
debugger that is mainly available on Berkeley UNIX systems. Sdb is perhaps the
more powerful and more widely used of the two symbolic debuggers but really
both sdb and dbx work in very similar ways and accomplish similar tasks. When
a program aborts or requires specialized testing, these debuggers can analyze

TABLE 12.4 Testing and Debugging Commands

Command Description

adb A debugger
diff File comparison utility
dump Dump object file
od Octal dump
prof Execution profiler
sdb Symbolic debugger
time Timer
timex Timer and system activity reporter

Shell for Programmers ♦ 361

compiled C language programs, core (a file left behind when a program termi¬
nates that shows its final state) images of the program when it failed, and aid the
programmer in analysis of the problem. To maximize the effectiveness of sdb
and dbx, the program must be compiled with the -g option and the symbol table
must not be stripped from the executable file:

cc -g *.c -o ctest && ctest || sdb ctest

Or, the CFLAGS variable could have been changed to include the -g option and
the program compiled and tested as follows:

make && ctest I I sdb ctest

This command stream will compile all C language modules in the current direc¬
tory, link them into a program called ctest, execute ctest, and if it fails, invoke
sdb. Since most programs are compiled without the -g option or the symbol
tables, this compilation and retest are required to generate all of the information
needed by sdb and dbx.

A simple use of sdb traces the path the program took before ended abnor¬
mally. After executing sdb and receiving the sdb prompt (*), enter a lower case t:

sdb ctest

*t

doprnt()

subl()

main()

In this example, the program ended in doprnt (a printf function) and was
called from subl. Subl was called from main. The C programmer can now trace
potential paths of error in,.the subroutine subl. To get a more specific trace, ctest
would have to have been compiled with the -g option, but this example is suffi¬
cient for tracing most errors.

Sdb and dbx can also execute a program a line at a time allowing the pro¬
grammer to watch its progress as it steps toward completion. Both of these facil¬
ities are useful when testing and debugging programs.

Ctrace is a utility that allows you to trace the execution path of a C pro¬
gram. It is not as powerful as a symbolic debugger like sdb or dbx but is easier
to learn and use. It is very similar to using the -x option on Shell programs and
tracing the flow of the program as it executes. Ctrace works by inserting printf
statements in your program for you. For each line in the program printf state¬
ments are generated which will show you the line that is executing along with
any variable values that where used on that line. In order to use ctrace you spec¬
ify a C source program as input. Ctrace takes the input file and modifies the pro¬
gram by inserting printf statements. The modified version of the program is
placed on the standard output. The output can be captured to a file and compiled
by the C compiler cc. The ctrace command has the following syntax:

362 ♦ Chapter Twelve

ctrace [options] [filename]

where filename is the C source program. To create a trace program for the ctest
module from above the following would do the trick:

#capture new source program to ctsttrace.c

ctrace ctest.c > ctsttrace.c

cc ctsttrace #compile the modified program

After creating the new program and compiling it we run the executable and
we get trace information. Each line is displayed as it executes along with any
variables and their values. As you can imagine, tracing programs in this way can
get quite cumbersome. A great deal of output can be generated very rapidly. In
order to help control the scope of the tracing, ctrace provides a few options. The
-f option allows you to specify tracing in particular functions in the program. The
-v option is the complement of -f, telling ctrace to trace all functions that are not
in the list.

The three commands prof, time, and timex, can help identify programs
that are resource hogs. Time and timex both give rudimentary indications that a
program takes too many resources, either CPU or disk. Prof encourages a more
exacting analysis of a program’s efficiency. These three commands can be exe¬
cuted as follows:

time command

timex command

cc -p *.c -o command && command && prof command

The last command compiles the program command with a -p option to invoke the
creation (the mon.out) file readable by prof. The command is then executed and
prof profiles the execution of the command using mon.out in conjunction with
the programs symbol table. The output of prof can be directed to a file, printer,
or terminal as required.

Each of these commands—time, timex, and prof—allow analysis of a pro¬
gram’s execution in ways not possible with sdb. Once a program has executed,
however, analysis focuses on the program’s output.

The remaining commands—diff and od—help analyze the results of a pro¬
gram test. Diff compares files, while od generates an octal dump of a file. Diff is
useful with standard files that end with a new-line character (\n). Od, on the
other hand, prints the unprintable, showing normally unreadable octal charac¬
ters as their octal value. Because many terminals require control strings that may
be unprintable, od provides a simple means to examine the output of commands
that generate terminal control strings. Other files, like SCCS files, have embedded
octal characters that cannot be detected without od. Both diff and od help ana¬
lyze test results.

Diff, a file comparison utility, can examine two output files and display
only those lines that differ. It shows which lines were added, changed, or deleted

Shell for Programmers ♦ 363

from the test output. This comparison aids a technique called regression test¬
ing—comparing the old to the new to ensure that only the desired changes
occurred. Eliminating identical information from both tests helps the program¬
mer determine the success or failure of a change:

oldcoiranand [args] > oldstdout 2>oldstderr

newcommand [args] > newstdout 2>newstderr

compare the output from the old and the new

diff oldstdout newstdout I pr

diff oldstderr newstderr | pr

Examination of diff s output should indicate that the changes were made suc¬
cessfully or incorrectly.

Diff has several sister commands: bdiff, sdiff, and sccsdiff. Bdiff works on
larger files than diff can handle. Sdiff gives a side-by-side difference listing, and
sccsdiff compares two versions of an SCCS file. Sccsdiff is one of the best ways
to determine the changes that occurred between two versions of a program’s code,
providing that the source code is stored in SCCS in the first place. SCCS is a major
portion of the change control and configuration management facilities of UNIX.

Change Control and Configuration
Management

These big words—change control and configuration management—are simply
the way that programs are built and changed in an orderly fashion. Working with
UNIX and SCCS (Source Code Control System), you are fortunate to be working
with one of the best tools available. SCCS stores C language code, documents,
shells, or anything consisting of text. The available SCCS commands are shown
in Thble 12.5. When developing new shells or C language programs and you
complete an early working version, store the version in SCCS so that you can
recover it later if required. When changing a program, get the source code out of

TABLE 12.5 SCCS Commands

Command Description

admin Add a file to SCCS
comb Combine two versions of an SCCS file
delta Create a new version of an SCCS file
get Get a file from SCCS
prs Print a description of an SCCS file
rmdel Remove a delta
sccsdiff Compare two versions of an SCCS file
val Validate an SCCS file
what Look for what strings in an SCCS file

Chapter Twelve

SCCS, change it, store it back, and then build the changes to the program into the
SCCS source.

SCCS can hold all versions of a program, from its infancy through adult¬
hood until it is scrapped. Most library system will only hold the most current ver¬
sion of the source; the older versions are backed up on tape somewhere.
Recovering old versions is no fun. With SCCS, however, it is simple. Even pro¬
grammers on single-user systems will find SCCS of immeasurable value for con¬
trolling changes to software and documentation.

SCCS files can be kept in any directory, but for convenience it is best to
store them in one location so that shells for accessing them can be built easily.
Normally, they are stored under a directory called “sees” which can exist under
the user’s home directory or the group’s file system (see Figure 12.3). Some
users prefer to store documentation with the program and others favor a sepa¬
rate directory. Once the organization of SCCS directories is decided, Shell inter¬
faces are easily created to add or change SCCS files.

The command to add files to SCCS is admin. It has a variety of options that
are often unclear to new users. A simple Shell interface would accept the type of
file, program name, and source name and add the file as follows:

#cadd program file

sccsdir=$HOME/sccs/C

if [$# -eg 2] # two arguments?

then

if [! -d $sccsdir/$program] # new program?

then

Continued.

FIGURE 12.3 SCCS directory structure.

Shell for Programmers ♦ 365

mkdir $sccsdir/$program # create a directory

fi

echo "Enter one line description"

read desc

admin -n -i$file -y"${desc}"

$sccsdir/$program/s.$file

else

echo "$0 syntax: $0 program file

fi

A user could add a program to SCCS easily with the following command
and the code would be equally easy to retrieve:

cadd prgl main.c

Similarly to edit an SCCS file would require the following command:

#cedit program file

if [$# -eq 2]

then

sccsfile=$HOME/sccs/c/$program/s.$file

if [-r csfile]

then

get -e -s $sccsfile

echo "$file has been retrieved for editing"

else

echo "File $sccsfile does not exist"

fi

else

echo "$0 syntax: $0 program file

fi

A user could retrieve the source as follows:

cedit prgl main.c

To save the changed file back into SCCS requires a similar command:

#csave program file

if [$# -eq 2]

then

sccsfile=$HOME/sccs/c/$program/s.$file

if [-r $sccsfile]

then

echo "Enter one line description of change"

read comments

delta -y"$comments" $sccsfile

else
Continued.

366 ♦ Chapter Twelve

echo "File $sccsfile does not exist"

fi

else

echo "$0 syntax: $0 type program file

fi

A user can save the changed source as follows:

csave prgl main.c

SCCS also provides numerous ways to print information about SCCS files
and the changes applied. Prs prints the status of various releases and levels of
the source code. Get can retrieve the source code with the release and level num¬
ber preceding each line of text. A simple command to print the history of changes

to a file would be:

#chist program file

if [$# -eq 2]

then

sccsfile=$HOME/sccs/c/$program/s.$file

if [-r $sccsfile]

then

prs -e -d":I: :D: :P: :C:" $sccsfile I pr -h

"$file"

else

echo "File $sccsfile does not exist"

fi

else

echo "$0 syntax: $0 program file

fi

Executing chist on an SCCS file would print a listing of changes (:I:), the
dates the changes were created (:D:), the programmer who made the change
(:P:), and the comments associated with the change (:D:). Reports of this type
are useful to managers, analysts, and programmers for various activities.

Programmers, however, can get more out of a program listing containing
the program code and the deltas associated with each line. A command similar to
chist could be built to get this information:

get -p -m $sccsfile I pr -08 -h "Source listing for

$file"

The output of this command would contain the SCCS release and level number
from which each line was retrieved, a tab character, and then the source code line:

1.1 main(argc,argv)

1.1 int arge;

1.1 char **argv;

Continued

Shell for Programmers ♦ 367

1.1 {

1.2 char c;

2.3 char *ptr;

Bugs are often found in recent modifications to the program. This facility of
SCCS enables the programmer to quickly locate recent code changes. Managers
can also track errors back to the release and level number of the source code.

The SCCS keywords can be used to automate version and run control in C
language programs. The version number of each C source file can be stored in a
variable using the SCCS keyword "%A%":

/* SCCS Version information */

static char *version = "%AV;

When retrieved from SCCS, the keyword would expand to a what string
that contains the source type, the source file name, and its release, level, branch,
and sequence number:

static char *version =

”@(#) clang filename.c 2.3.1.1 @(#)";

This information can be extracted from the executable program using what
to check for proper version information:

what filename

clang filename.c 2.3.1.1

clang subl.c 1.2

clang sub2.c 1.3.1.1

The version information can also be printed or written to run control files
to log the execution of the command. The SCCS keywords give the programmer a
strong tool for tracking and controlling change in C language programs.

Other similar friendly interfaces to SCCS can be built around the remaining
commands: comb, rmdel, sccsdiff, val, and what. The Shell can handle many
functions that will not only improve change control and configuration manage¬
ment, but will also improve productivity and the quality of the resulting system.
Many people question the need for all of this control, especially some of the UNIX
gurus, but as system complexities increase, the need for SCCS control becomes
more intense.

The Shell provides many tools that aid the development and maintenance of C
language programs. The Shell can be used to develop working prototypes of C

language programs to test the correctness of their design. The Shell can be used
to automate much of the coding, compiling, testing, and debugging processes.
Even the control of changes to C language source code, documentation, and other
text files can be orchestrated by the Shell. Every development project needs a
toolsmith to create these productivity tools. The examples in this chapter provide
a starting point for further development and enhancement of the C programming
environment.

User friendly interfaces to all of these commands can also be constructed to
present the user with menus or windows into the C language. But the Shell can
still automate most of the activities required during software development and
maintenance. Use its facilities to maximize productivity and quality.

CHAPTER

The Shell Innovator

The sole advantage of power is that you can do more good.
—Baltasar Gracian

Over the last 40 years we have automated virtually all of the systems that sup¬
port existing business needs. Unfortunately, automation has locked us into the
way we did things 10, 20, or 30 years ago and the way we did things then was
fairly inefficient and ineffective. Most of these systems are too inflexible to meet
the challenges of the 1990s. Some of the concerns that face software profession¬
als because of these dinosaurs include “manual” interfaces, redundant and inac¬
cessible data, and the closed proprietary architectures of today’s vendors. The
Information Society is an economic reality, not an intellectual abstraction.

I know of no teachers so powerful and persuasive as a little
army of specialists. They carry no banners, they beat no drums;
but where they are men learn that bustle and push are not the
equals of quiet genius and serene mastery.

—Oliver Wendell Holmes, Jr.

369

The Shell power user will set the pace, direction, and inspiration for other
users. As such, you will need to lead by example. If you do things in a half-baked
way, so will everyone else. The Shell innovator demonstrates the power of Shell.

UNIX and Shell offer the promised land of application portability across all
types of computers. The POSIX standard put UNIX in the hands of the user, not
the vendor. The long reign of hardware tyranny is coming to an end. UNIX will
be the software cockpit of the 1990s and Shell will be one of the weapons in your
arsenal.

This ability to develop applications that run in UNIX, but no specific hard¬
ware environment gives users freedom of choice and a way to lower overall
costs. This is why UNIX is often called an open system. It also gives you con¬
nectivity to all of your existing applications via the communication tools, which
will ultimately lead to increased vendor and hardware independence. This free¬
dom will also:

♦ Protect your application portfolio
♦ Give you leverage with vendors
♦ Increase organizational flexibility to use the same software everywhere
♦ Simplify application maintenance
♦ Reduce risk of technological change
♦ Increase user control
♦ Provide full suites of programming, text, interface, and support tools
♦ Encourage continuity of user knowledge from MS-DOS
♦ Enhance access to corporate data as needed

Using UNIX and Shell to integrate existing systems and develop new
strategic ones is a global solution that leads to:

♦ Lower costs
♦ Greater results
♦ Reduced time-to-market
♦ Empowered employees
♦ Increased competitive advantage

The winners of the future will need to:

1. Select the right opportunities
2. Apply the appropriate methodology and technology

The right opportunities for the businesses of the 1990s include integration
of existing systems and the development of strategic information systems. The
right methods and tools include graphical user interfaces (GUIs), object-oriented
programming (OOPs), rapid application development (RAD), and open systems
architectures (OSA). The absence of these foundations causes entropy, illness,
and the death of Information Systems (IS). IS death occurs when management
retreats behind policies and procedures to preserve the status quo. Those who
fail at these two key activities will fumble their future. The key issues at stake in
this information revolution are:

The Shell Innovator ♦ 371

♦ Survival
♦ Revenue
♦ Reputation for quality, price, and service

True simplicity is not easy.
The challenge facing all users and software developers will be to redesign

existing processes to be more effective and efficient, and then to automate them.
While we’re doing this, however, we will have to keep the old systems growing
and evolving. This is no simple challenge. The systems we have today live
lonely, separate lives. In today's business climate, however, they need to share
data and information to meet the company’s information needs (see User Shell
Programming, Chapter 7). Rather than build a whole new system to replace sev¬
eral others, we can use 80 percent of the existing system or systems to perform
the core processing and use UNIX and Shell to integrate the user interfaces.
Using this strategy, we can integrate existing systems at 20 percent of the cost of
building new ones.

Systems Integration

Inventors and men of genius have almost always been regarded
as fools at the beginning (and very often at the end) of their
careers.

—Dostoevsky

All “operating cost reduction” software was built in the 1960s and 1970s. These
tactical systems are getting older by the day and everyday, like clockwork, vast
hordes of programmers add new functions and patch bugs in the software.
Unless someone is actively rejuvenating this software, entropy is moving it and
your company closer to the software graveyard. Information managers keep
waiting for some magic to appear that will redesign and rewrite these systems
overnight. Alas, no such luck.

If the user is the least flexible element in any system, then existing software
systems must be the second most inflexible element. Fortunately, however, we can
use UNIX and the Shell to rapidly create user-seductive interfaces, integrate exist¬
ing systems, and breathe a few more years of life into these dinosaurs (Figure
13.1). By using the Shell to build the user interfaces, we can save money and time
in comparison to developing a full GUI. This is useful for updating systems that are
slated for redevelopment but may need to live on for a few more years. The data we
need is available from existing screens or reports; all we need to do is extract it
using Shell tools like grep or awk. Consider the following examples:

1. TWo (or more) systems maintain the same data (e.g., an employee
record, the area code of your phone number, or a state code table). Use

372 ♦ Chapter Thirteen

s
H
E UNIX
L
L

DATA BASE

Existing
Tactical
System

FIGURE 13.1 Systems integration.

Shell as a front-end preprocessor and build a single update screen (as
we demonstrated in Chapter 7), manage the data, and update the data
in both systems (Figure 13.2) using Shell communications.

2. Your company buys a smaller company with its own suite of systems
and programs. Use Shell (Figure 13.3) to bridge the chasm between
the two companys’ systems until you can merge them.

There are, however, a few drawbacks to this technique:

1. The response time of the integrated system is equal to the response
time of the slowest system.

S
H
E
L

UNIX

L

DATA BASE

303 Colorado
719 Colorado
970 Colorado
801 Utah

System 2
303 Colorado
719 Colorado
970 Colorado
201 New Jersey
212 New York

FIGURE 13.2 Systems integration of databases.

The Shell Innovator ♦ 373

FIGURE 13.3 Systems integration of companies.

2. Functionality is impaired when one of the systems is down.
3. The integration is highly dependent on existing screen and report

design. If these change, then the integration package must change as
well.

Aside from these minor drawbacks, system integration is an excellent way
to maximize the benefits of Shell. Most computer vendors specialize in certain
areas—data management, real time transaction processing, or whatever.
Unfortunately, their architecture is closed. Vendors are like a railroad: you have
to stay on their line and only stop in certain places, which makes it difficult to
share data among disparate systems. Connecting diverse vendor systems is like
trying to connect short stretches of superhighway with long, narrow dirt roads
that wind through mountains, deserts, and rolling plains. Using the open archi¬
tecture of UNIX and the Shell you can build your own superhighway between
these systems to help you access data, and then do what you want with it. This
is the power and freedom of Shell.

Strategic Information Systems

The one that controls the software controls the war.
—Katsuhide Hirai

Estimates project that the world software market will explode from $50 billion to
$1 trillion during the 1990s. The United States consumes 52 percent of the
world’s software and controls 70 percent of the market (Rifkin 1989). And yet,
today’s businesses are suffering from an advanced case of information starva-

374 ♦ Chapter Thirteen

tion and indigestion. Marketing types hunger for the information to forge new
markets. They need real-time customer information to find and develop in new
markets. Strategic information systems help you identify markets and decide
where you’ll be in three to five years. Thctical systems maintain the status quo.
Existing systems feed a flood of data into the corporate hierarchy—far more
information than can be digested. Using the power of Shell and UNIX to glue
these systems together and scrub their combined outputs into meaningful infor¬
mation will accelerate the growth and power of your company.

Existing systems are tactical in nature: They keep the business running
from day to day. Although they provide value by keeping the business going,
they are rarely of strategic value (Figure 13.4). The future belongs to those com¬
panies who can access their information in new ways to identify strategic oppor¬
tunities. Information technology is a competitive weapon. Most information
systems managers are just beginning to hear of and see the potential of strategic
information systems. With the power of UNIX and the Shell, you can create
strategic systems today.

An example of a strategic system might include a frequent flyer system in
an airline company: If you know the 20 percent of the people who supply 80 per¬
cent of your business, would you be in a better position to target your marketing
and sales to those people? You bet you would. If, in the case of a public service
company, you knew that you could gather data from several different systems
and provide service within an hour of when a customer calls in a request, would
that generate more revenue? Yes, of course. Or, if you knew that a call was com¬
ing in from an upscale neighborhood, wouldn’t you like to know that you should
try to sell more upscale services that appeal to that neighborhood? You bet.
These are strategic uses of information.

An information tool like an electronic mail system can have a
tremendous effect.

—Walter B. Winston

Strategic
Information
Systems

Tactical
Systems

Low High

Future Value

FIGURE 13.4 Information system value—
tactical and strategic systems.

.sXj|P

The Shell Innovator ♦ 375

In 1984, as the Bell System approached divestiture, U S WEST was formed from
three existing Bell Operating Companies (BOCs)—Mountain Bell, Pacific
Northwest Bell, and Northwestern Bell. Facsimile transmission didn’t exist at the
time and we needed a way to connect the presidents of the three companies. Of
course there were three different kinds of office automation systems that simply
refused to talk to one another. There were, however, UNIX systems in all three
companies. In less than three days from the announcement of divestiture, the
system administrators in each company had connected the three presidential
offices via UNIX mail and uucp. Did this have an impact on U S WEST’S ability to
cope with the change? It must have. Now of course there are more standard net¬
working tools for communication of this nature (i.e., the Internet).

The growth of information databases like Dow Jones and networks such as
Usenet offer unlimited opportunity for information gathering. Unfortunately, it
would take a herd of analysts to pull all of the information every day and then
digest it. Using the Shell tools we’ve discussed so far you could automate this
process (see Figure 13.5):

1. Access these services using dial-out facilities like cu or via Internet.
2. Use a script to interact with the database to retrieve any pertinent

information.
3. Store the data in a simple UNIX database or file.
4. Scrub the stored data against the other data collected.
5. Filter the information.
6. Compose it in some usable format.
7. Mail the information electronically to interested people.

With UNIX and the Shell, you can use the open communications facilities,
bring in data, manipulate it with Shell, and present the information in any
desired fashion.

FIGURE 13.5 Strategic information system.

376 ♦ Chapter Thirteen

That is power.
The Shell, coupled with the vast toolkit at its disposal and the simplicity of

the UNIX file system, can accelerate the development and deployment of these
strategic information system. Some people have asked: “Why not buy an exist¬
ing application system that provides this strategic ability?” Simple. Purchased
systems only “level the playing field.” If everyone else can buy it, there is no
strategic advantage. Purchased systems, however, might be an extremely valu¬
able way to deliver tactical systems—accounting, payroll, and so forth. Strategic
systems are not off-the-shelf.

Why not use our existing mainframe computers? Mainframe computers are
great for the centralized, tactical systems that require high transaction volumes
and the like. They are terrible, however, for strategic applications. The central¬
ized architecture of the past is inappropriate for strategic information systems
that draw their power from putting the data and processing power close to the
customer. A distributed systems architecture that is perfectly suited to UNIX
and the Shell is essential to successful implementation of strategic information
systems.

Strategic systems also require quick development to maximize their bene¬
fit. To build a strategic system, therefore, will require very different tools and
techniques than we have used in the past for conventional development. You just
can’t wait 18 months for a strategic system. You need to know now where you
should be in 18 months. A few weeks or a couple of months at the outside is
often all you have. You must choose your weapons to match the war. Strategic
systems will rely on rapid prototyping and rapid development methods and tools
to achieve their goals.

UNIX and Shell provide those tools.

Rapid Prototyping

A complex system that works is invariably found to have evolved
from a simple system that works.

A complex system designed from scratch never works and can¬
not be patched up to make it work.

Strategic information systems lend themselves to prototyping and rapid applica¬
tion development. Prototyping allows us to manage the expectations of our cus¬
tomers by involving them deeply in the project from the outset and to construct
a system quickly to meet the needs of the business.

Building the strategic and integration systems of the future will require a
software attack team (SWAT) that is highly skilled in the application of the rapid
development tool suite. To succeed at rapid prototyping and rapid development,
we must shift from custom coding to composition of systems from libraries of

existing tools (Figure 13.6). The Shell provides these capabilities. Using Shell
and prototyping can dramatically reduce the time-to-market for a strategic sys¬
tem or the integration of existing ones. To give you an idea of how dramatically
Shell can impact productivity consider the following: Bruce Cox, the father of
Objective-C, gave the following comparison of productivity when using Shell,
object-oriented programming, and C Language:

Shell 1 line of code

Object-oriented 10 lines of code

C Language 100 lines of code

As you can see, Shell helps you quickly evaluate various design alterna¬
tives and then convert them into more rigid languages. Since requirements and
design inject over 60 percent of all system defects, it is important to weed these
out before we implement the system. Shell programs play an important part in
prototyping full-scale applications. Using the hundreds of tools in Shell, we don’t
have to start from scratch. We can compose, extend, and create whole systems as
we demonstrated in Chapter 7.

Why do you care? Well, this gives us:

1. The ability to build things quickly
2. The ability to rapidly identify a user’s real requirements
3. Portability at the system level (UNIX), not at the hardware level

Given a prototype, users can always tell you what they don’t like. That
saves a tremendous amount of effort that might have been wasted developing
the wrong system. Customers don’t want data or information; they want knowl¬
edge they can act upon to create value for the corporation. More important, cus-

Business
Needs

Prototyper

FIGURE 13.6 The prototyping life cycle.

378 ♦ Chapter Thirteen

tomers always want more of everything. Prototyping lets us add that functional¬
ity before we deliver the system, not during the two years after release.

The goal of prototyping is to deliver the 20 percent of a system’s function¬
ality that provides 80 percent of the customer’s needs. Rapid iteration as shown
in Figure 13.6 can rapidly converge on the customer’s key requirements. To
deliver the full system, however, requires additional effort—typically to develop
the other 80 percent of the functionality that satisfies the customer’s remaining
needs. Using the Shell as described in Chapter 7, we can determine most of the
customer’s requirements for a system. It may then require the use of a true rela¬
tional database management system (RDBMS) to achieve the levels of security
and response time required in the final system. With most of the client’s
demands met by the Shell prototype, however, rapid implementation of the end
product is much easier. And it’s typically easy to integrate a relational data base
into Shell programs using SQL—the structure query language:

echo "select first, middle, last, salary from \

employee" I sql

Lowell Jay Arthur 35000

Chapter 7 described the five basic types of program designs: input, output,
query, data base update, system interface. It also described the various tools
available to a Shell programmer for implementing these designs. These tools can
be used to develop a working version of any program design. The resulting Shell
program is a prototype of the final working version that can be created in the C
or C++ language or any other for that matter.

One of the best design tools for describing new programs is the data flow
diagram (Figure 7.2). Shell is one of the best tools for implementing a working
model—a prototype—of a data flow. Because of facilities like pipes, tees, and
input/output redirection, an idea can be prototyped in Shell, tested, changed as
required, and then implemented in C. Many different designs can be tested,
rejected, and accepted in a short time frame using Shell. The triumphant design
can then be created in C language for efficiency. In many cases, however, the
Shell program will be sufficient. In the instances that require C programming, the
program design evolved using the Shell will be more resilient and open to
change.

Data flows have long been recognized as excellent methods of describing
system, as well as program, designs (Stevens 1982). Shell helps implement
those designs. Prototyping, in a UNIX environment, works best with a small
design team that is experienced with Shell programming. The result of such a
design process is a simple, economy grade, working system.

C Shell provides an excellent pseudocode for C. The following example is a
C Shell prototype of a C language main program:

Bourne C-Shell C Language

for file in * for each file main(argc,argv)

Continued

The Shell Innovator ♦ 379

d° ($argv[*]) int argc; /* number of args */

process process $file char **argv; /* argument array */

$file end {

done int i = 0;

for(i=l;i<argc;i++) {

process(argv[i]);

} /* END FOR */

} /* END MAIN /*

The Shell takes the complexity of data definition out of the program and
allows the designer to concentrate on what the program should do, not the intri¬
cacies of how it should be done. The Shell serves as a clear design definition as
well. Shell prototypes can also be used to design and test enhancements to the
program as they are required.

C Shell and Korn Shell (see Chapter 5) can also implement the use of tables
and access the elements of those tables more effectively than the Bourne Shell:

C Shell C Language

set table=(John Jerry Terry) static char **table =

foreach person tablet*]

process $person

end

mail $table[2] < letter

"Jerry",

for(i=0;i<3;i++) {

process(table[i]);

}

{ "John",

"Terry" };

sprintf(cmd,

"mail %s < letter",

table[2]);

system(cmd);

The Bourne Shell, unlike the C Shell and Korn Shell, cannot directly access
any item in the table. To obtain the last name, Terry, it would have to be cut out
of the list or processed with awk:

lastperson='echo $table I cut -f3 -d"

echo $table I \

awk '{ process $1; process $2; process $3 }' -

There are other advantages to the C Shell. The C Shell CASE construct,
switch, is identical to the C language construct except that it will work with
strings and the C language switch works only on characters. The IF-THEN-ELSE
construct is also identical to the C language syntax. This parallel design allows
quicker understanding and translation of designs into code.

The CASE construct translates into C language differently depending on
how it is used. If switch is used with characters or integers, the translation is
identical:

C Shell

switch $variable

C Language

switch(variable) {

Continued

380 ♦ Chapter Thirteen

case 'a':

whatever

breaksw

case 10:

case 11;

whatever

breaksw

default:

default action

default(action);

breaksw

endsw

case 'a':

whatever;

break;•

case 10:

case 11:

whatever;

break;

default:

break;

} /* END SWITCH */

When the switch works on strings, however, the C language switch cannot
be used. A series of IF-ELSEIF statements must be used along with the string
comparison functions:

switch $variable

case "Jan":

January

if(strcmp(var,"Feb")==0) {

breaksw

case "Feb":

February

breaksw

default:

default action

breaksw

endsw

if(strcmp(var,"Jan")==0) {

January();

} else

February() ;

} else if ...

} else {

default(action);

} /* END CASE */

Aside from the Shell constructs—IF-THEN-ELSE, CASE, FOR, and
WHILE—just about anything else required of a C language program can be
implemented in Shell. Writing to a terminal and reading a response are easy with
echo and read:

C Shell C Language

echo "Enter filename printf("Enter filename");

read file gets(file);

More complex processes, involving pipes and several commands, often
translate into submodules in C language. For example, the best way to process
the following command in C language is to open /etc/passwd, match the name,
and then print the required values:

grep lja /etc/passwd I cut -fl,5

Throughout the course of these examples you have seen the possibilities of
using the Shell to prototype C language programs. A rudimentary working sys-

The Shell Innovator ♦ 381

tem can be constructed quickly and tested easily. Different design choices can be
evaluated and accepted or rejected. Design changes can be accomplished quickly
before coding begins. As much as 80 percent of the errors in developed systems
can be traced to problems in the design phase. Using Shell to weed out those
problems can keep a software development project on track and produce a
higher-quality product. Once coding begins, the Shell takes on other duties that
aid in the development and maintenance of C language programs: coding, com¬
piling, testing, debugging, configuration management, and release control.

Tools for Strategic System Development

In the universe, great acts are made up of small deeds.
—Lao Tzu

Most software managers and their clients will agree that the biggest problem fac¬
ing business today is programmer productivity: how to get new systems more
quickly and how to maintain those that already exist. Toward this end they seek
“magic” solutions that will improve productivity from 100 percent to 1000 per¬
cent. Is this unrealistic? Yes and no. Depending on a single tool, such as a fourth-
generation language, to accomplish a 1000 percent improvement is unrealistic.
Using an integrated family of products and tools to achieve these increases is not.

Many managers overlook quality improvements (from local tool construc¬
tion) as the stepping stone to vast productivity improvements, but this is one of
the lessons of Tom Peters’ book, A Passion for Excellence: One thousand percent
improvements are possible by small improvements in many aspects of the work.
Part of the problem with software manufacturing is that much of the critical work
is tedious or time consuming. Fortunately, the Shell offers a vast arsenal of tools
to handle much of the effort. Toolsmithing can create the pathways of informa¬
tion and automate day-to-day tasks. These small improvements attain the pro¬
ductivity goals, not the other way around.

For better or worse, man is the tool-using animal,
and as such he has become the lord of creation.

—William Ralph Inge

Many software managers and clients try to solve their problems by depend¬
ing on a single hardware system and a group of unrelated software products to
handle their programming needs. As evidence of this, one need only look at large
mainframe development groups and stand-alone personal computer users. The
PCs are excellent for word processing and graphics, but are deficient for sharing
information, which is essential to successful software development and mainte-

382 ♦ Chapter Thirteen

nance. Mainframes are excellent for compiling and testing products, but are
clumsy for editing, word processing, and similar human-intensive activities.

The productivity and quality solution should use an integrated network of
mainframes, minis, and microcomputers for each task required of a programmer
or analyst. Software for these hardware components (see Figure 13.7) should:

♦ Provide the strongest integrated tools for each programming or analysis
need—development or maintenance

♦ Allow for exchange of text and data among the machines and people
♦ Minimize the training required to use each tool
♦ Maximize product quality

UNIX fits virtually all of these categories for virtually all types of software
development and maintenance. If it is also the target machine for the developed
software, it can be used for compilation and testing. UNIX is also used to simu¬
late personal computer operating systems, thereby emulating the target machine
for faster testing in more powerful machines. In fact in today’s modern UNIX
environment many of the most popular MS-DOS word processing and graphics
programs are available. This allows many users who are familiar with MS-DOS
to run their favorite applications on a more powerful operating system. In addi¬
tion, the ability to run UNIX on virtually any hardware platform makes it an ideal
choice for the modern software development project. The ability to run UNIX on
INTEL-based microprocessors has opened up many exciting new avenues for
streamlining software development projects. It is now much more cost effective

Corporate
Computing

Centers

FIGURE 13.7 Information systems of
the future.

The Shell Innovator ♦ 383

to have a large number of UNIX-based machines sharing information and being
used as personal development machines.

UNIX—because of its communication and networking facilities—can pro¬
vide many of the development and maintenance activities for any host system.
As such, programmers and analysts need only learn this one environment to
develop and maintain programs for a wide array of host machines. This mini¬
mizes retraining costs when moving from one host to another.

Technology is a jealous god. It can demand more and more from people, but
not serve them. Managers often ask: “Why isn’t Sammy coding yet?” In the rush
to deliver products, we often forget the keys to success: people, process, and then
technology (Figure 13.8). People are the most costly part of most software devel¬
opment efforts; finding out what they do and how they do it (the process) and
then automating the process will lead to powerful improvements in productivity
and quality for both development and maintenance.

Development and Maintenance Tools

To maximize productivity and quality, we must automate those development and
maintenance activities that are human intensive. These are:

1. Documentation—requirements, designs, plans, and all operational
documentation or user guides. Word-processing facilities are essential
to productivity improvements. Graphics tools to create the pictorial
representations of designs, such as data flow diagrams and hierarchy
charts, are important tools as well.

Admittedly, nroff and memorandum macros are not the most
user-friendly of word-processing facilities, but micro-based packages
written in C have now moved into the UNIX environment, as was
mentioned previously. Graphics tools, such as data flow diagrams and
hierarchy charts, are available in UNIX environments and are impor-

Process

Technology

FIGURE 13.8 The three keys to productivity.

384 ♦ Chapter Thirteen

tant as well. Productivity improvements using these tools vary from 3
to 25 percent for people whose major work products are written doc¬
umentation.

2. Communications—keeping users and programmers informed of
changes in an ongoing maintenance or development effort improves
productivity and quality. Programmers can waste up to 30 minutes per
day playing telephone tag and leaving notes. Electronic mail can be
sent anytime and read when time is available. Electronic mail, unlike
its paper counterpart, cannot get lost on someone’s desk.

Mail and uucp are inexpensive methods of communicating in a
UNIX environment. Electronic mail costs little (less than 1 percent of
the machine usage), but will average 20,000 messages per month. In
an environment with 100 users, that means 200 messages per user per
month. Most studies have found a 3 to 5 percent improvement in pro¬
ductivity with the use of mail. In today’s modern networking environ¬
ment it is now easier than ever to utilize mail. Mail can be sent and
received to just about anywhere in the world with ease.

In addition to sending messages, a modern UNIX TCP/IP network
allows a vast array of information to be shared between UNIX plat¬
forms that sit side by side on a desk or are separated by thousands of
miles. It is now quite easy to log in to machines that are located
halfway around the world and copy files back and forth as if the
machine was located right next door. In addition to moving files
around, it’s possible to remotely mount hard disks located over just
about any distance and access them as if they were located on your
machine. This type of communication ability opens up a whole new
world of productivity enhancements that are centered around more
effective sharing of information and resources.

3. Editing—entering and editing source code is another human-intensive
activity that is best performed on a highly-responsive hardware plat¬
form. This often implies personal workstations or PCs since larger
machines are often used to support production systems and should not
be burdened with the editing task.

There are many sophisticated UNIX and PC full-screen editors
that will meet this need. Editing is best performed in PCs and mini¬
computers. It is a waste of resources on a host machine. Programmers
spend up to 75 percent of their time editing. Any improvement in their
response time and effectiveness will significantly improve productiv¬
ity. No expense should be spared here. The best possible editor(s)
should be available and all programmers should be trained to be as
effective as possible in utilizing this tool.

4. Project management— scheduling of work and resources needs to be
updated as events complete. This software should be available for
update and review by all project members. It should reside on a shared
resource.

The Shell Innovator ♦ 385

Scheduling of work and resources is available on micros and
UNIX minicomputers. It is best accomplished on a minicomputer or a
networked PC environment where the information can be shared. With
its existing graphics and documentation facilities, UNIX can exchange
information among these tools easily. Project management keeps pro¬
jects on schedule and therefore contributes to productivity.

5. Configuration management—all of the source code and documents
should be controlled under a common configuration management sys¬
tem. The object and executable programs should be controlled on the
target system. Configuration management improves the quality of the
delivered software and often productivity by reducing the chaos sur¬
rounding software evolution.

UNIX has possibly the best configuration management systems—
Source Code Control System (SCCS) and Revision Control System
(RCS)—for controlling all of the source code and documents developed
or maintained for a given software project. Control of software and
documentation rarely appears to improve productivity, but it can
reduce delivered errors in systems by 20 to 30 percent, which drasti¬
cally reduces overtime costs for corrective maintenance.

6. Change management— mechanizing change requests will improve
communications with the client, improve the quality of information
collected from maintenance, and automate much of the auditing and
quality-assurance processes. When coupled with the configuration
management system, change management can secure the software
from unauthorized modifications, which is especially important in
financial systems.

The change management tracking system, under UNIX, mecha¬
nizes change request initiation and tracking. It can be coupled with
SCCS to prevenUinauthorized changes. It ensures that changes are not
lost, misplaced, or ignored. It can also feed the project management
systems with information about project status. It automates the audit
trail and the collection of quality assurance data such as programs or
modules with reliability or maintainability problems that are candi¬
dates for restructuring or rewrites. By identifying and correcting these
wayward programs, maintenance and downtime costs can be reduced
by as much as 60 percent.

7. Application generators—the tools available for rapid prototyping have
grown tremendously in recent years. The ability to use these tools to
specify system requirements undoubtedly improves the quality of
delivered systems by reducing requirements defects. It also improves
productivity by speeding up the requirements process and providing a
working system for the developers to expand upon.

The Shell command language is an excellent tool for rapidly pro¬
totyping UNIX applications. Entire systems can be created with Shell
and rewritten in C as the requirements settle down. There are other

386 ♦ Chapter Thirteen

tools like C English and databases like Oracle that can prototype UNIX
and IBM DB2 systems, respectively. These application generators
improve development productivity by 50 percent or more.

8. Toolkits—the need for integrated tools and a Shell command language
to encourage automation of mundane manual tasks should be recog¬
nized. Integration of all types of analyst and programmer tasks has
been greatly improved over the last several years through the use of
graphical user interfaces. A nice graphical user interface can make tools
from many different vendors fit together in ways never before possible.
In addition, there are toolkits sold that specifically aid in the software
development process and are very highly integrated and can aid in
overall productivity. Automating repetitive tasks eliminates defects and
improves productivity. Programmers and analysts who understand how
to use these tools consistently outperform their counterparts.

Integrated tools and Shell command language encourage auto¬
mation of mundane manual tasks. The authors’ studies and those of
Boehm (1984) have shown that this toolkit improves productivity by
15 to 25 percent. It often takes several years to learn all of the facilities
of UNIX and the Shell, so these improvements occur not once but pro¬
gressively over time for several years.

9. Database management systems—a. portable relational DBMS that
spans micro, mini, and mainframe lines would allow for development
and prototyping to occur in any environment and minimize training
costs. Larger information crunching databases should remain in the
host, while distributed relational databases will serve the decision
support needs of clients more readily. These systems will need to work
with the office automation systems and virtually all of these tools to
provide business information.

A host of databases span the decision support system needs
of most users. Oracle, Ingres, Informix, UNIFY, and a host of SQL-
compatible relational databases span the micro and minicomputer
environments. This vertical portability of applications enhances pro¬
ductivity and allows selection of hardware based on user needs.

There is a vast array of hardware and software that can be brought
to bear on the existing productivity and quality problems. Selecting an
integrated set of tools and an environment that will meet future require¬
ments will insure continuous productivity and quality improvement.

Shell Tools

Shell can automate activities for everyone, including the Shell toolsmith. For
example, hundreds of tools lie waiting for discovery. Flow do apprentice, jour¬
neyman, and master Shell builders find these tools? Well, in some systems, the

The Shell Innovator ♦ 387

man command has an option to search the documentation by keyword. We could
create a Shell browser that searches by keyword:

browser keyword

if ["$1"]

then

while ["$1"]

do

echo $1

man -k "$1"

shift

done

else

clear

while

echo "Keyword: "

read keyword

test ! -z "$keyword"

do

man -k "$keyword"

done

fi

What if we didn’t have this extension to the man command? Could we create a
database of commands and keywords, and the commands to search it? Of
course. Using keyword and plural previously developed we could examine all of
the man pages, extract their keywords, and create a database. Using the query
and reporting options we covered in Chapter 7, we could compose commands to
search the database based on the toolsmith’s keyword choice. To do this we
would first need to build the database for the browser. First we could create a list
of all of the commands in /bin, /usr/bin, /usr/5bin, and so on:

Is /bin /usr/*bin I sort I uniq > cmdlist

Next, we need a command that can build database records for each command
using keyword and plural:

builder

cmd= $1

CMD='echo $cmd I tr " [a-z]" "[A-Z]"1

delete upper case headers

man $cmd I sed -e "/$CMD/d" > /tmp/$cmd

keyword -20 /tmp/$cmd I sed -e "/$cmd/d" I plural I \

head -14 | paste ------- I \

sed -e "s/A/$cmd\t/" » browse.db

rm /tmp/$cmd

388 ♦ Chapter Thirteen

This command will build records for the database containing the 14 most com¬
mon keywords in the document (after removing headers and references to the
command itself, which can skew the results). Next, we need a simple command
to execute this command on all of our commands:

build_db cmdlist

while

read cmd

do

builder $cmd

done

Now we can run the whole thing overnight to create the database:

nohup nice build_db cmdlist&

This will give us a database like the following:

adb print address value systems command names symbol

adb source objectfile file default current subprocess

cp copy directory file contents system subdirectories Is

grep expression regular match string character line file

Now all we need is a command to search the database for us. The browser
we wrote before can be changed to meet our needs:

browser keyword (s)

if [''$1"]

then

clear

while ["$1"]

do

echo $1

grep $keyword browse.db I cut -fl |\

sort I unig | pr -7

shift

done

else

clear

while

echo "Keyword: ”

read keyword

test ! -z "$keyword"

do

grep $keyword browse.db I \

cut -fl I sort I unig | pr -7

Continued.

The Shell Innovator ♦ 389

done

fi

This is just one of the many tools that a toolsmith can construct to aid in the con¬
struction of systems. This type of browser would be effective for C Language pro¬
grams. Just extract the comments and build a database from there. This is what
I love about toolsmithing. One idea just leads to another and another. This abil¬
ity drives high levels of productivity and can increase project team effectiveness.

Unimaginable Systems

Judging from the negligible impact of personal computers in 1980 to their omi¬
nous presence in all walks of life by 1990, the 1990s will deliver completely
unimaginable systems. Multimedia systems will stimulate the senses with
graphics, text, sound, animation, and video. Computer animation houses have
discovered that UNIX and Shell fit their needs. Specialized software coupled with
UNIX and the Shell are winning animation awards all over the world. Animation
tools are created in UNIX and C so that they can be picked from the toolbox and
hooked together with pipes! The biggest advantage of UNIX and Shell for ani¬
mators is that they can develop software today without knowing what machines
they’ll be running on tomorrow.

Technological innovation requires an open, loosely structured, risk-taking,
forgiving environment. The Shell innovator will be at the core of this information
revolution. The challenges are to discover creative ways to meet your company’s
information needs as these toolkits emerge.

Summary

As a power user of Shell, your future and your company’s future depend on your
ability to create the information bridges and strategic information systems that
will drive your company’s success in the 1990s and beyond. Because of the
diversity of options available for system integration and strategic information
systems, this chapter discussed only possible opportunities. As you read this
chapter, I hope you saw, heard, or felt the creative challenges that a power user
can look forward to in the use of Shell.

390 ♦ Chapter Thirteen

Exercises

1. Build a rapid prototype of an airline reservation system, based on what
you know about the airline industry.

2. Build a rapid prototype of a frequent flyer system, based on what you
know about the airline industry.

3. Build a strategic system to capture data from both of these systems to
develop marketing data for the holiday and summer travel seasons.

4. Use Internet Forms to deliver a button-driven interface to the Time
Worked system described in Chapter 7.

CHAPTER

Shell Mastery

Order and simplification are the first steps toward the mastery
of a subject—the actual enemy is the unknown.

—Thomas Mann

Any hack can cobble together a few tools. Making them robust enough to with¬
stand the brutality of daily use is another kettle of fish. A major concern of
advanced Shell programming is not special tools, fancy techniques, or exotic
human-machine dialogues, but a concern for quality. Shell, just like any other
programming language, can be used elegantly or shoddily. Quality is the highest

concern of a Shell guru. But what is quality?

It is easier to confess a defect than to claim a quality.
—Max Beerbohm

Quality consists of several quality factors: reliability, maintainability,
reusability, efficiency, portability, and usability. Each has a place in advanced

391

392 ♦ Chapter Fourteen

shells. Reliability is concerned with shells that rarely fail and always perform the
correct actions. Maintainability ensures that a shell can be enhanced or repaired
easily when the need arises. Reusability demands that Shell programs be as flex¬
ible and reusable as any other UNIX command. Efficiency cares about the
machine resources used—the fewer the better because new machines are expen¬
sive and the longer their purchase can be delayed the better. Portability is a key
factor in the popularity of UNIX; Shells should remain as portable as possible.
Usability is a key feature of Shell: native UNIX is not that friendly, but Shell is
the means to overcome that problem.

Trouble is easily overcome before it starts.
Deal with it before it happens.
Set things in order before there is confusion.

—Lao Tzu

Shell wizardry is to ballet, what hacking is to hockey. Shell programs are
born in the fire of creative activity. These draft programs, however, must be
edited and improved to maximize their usefulness. This evolution of draft Shell
programs leads us to quality. It is the essence of advanced Shell programming.
The Shell, in its creator’s wisdom, provides many facilities that encourage qual¬
ity programming. The following sections discuss their use.

Reliability

The costs of reliability problems can be found easily: waste, defect investigation,
rework, retest, downtime, and productivity losses. Waste costs involve the
machine and user time lost when a command fails or works incorrectly. Defect
investigation is the time it takes to identify the cause of a defect in a Shell pro¬
gram. Rework includes the labor to fix the command and to rerun the command.
Retest includes the resources necessary to test a repaired command. Downtime
includes the cost of the users’ inability to do their work. Productivity losses
include all of the costs of delaying work.

Shell facilities to handle reliability fall into two broad areas: default actions
and fault handling. Default actions help eliminate scrap, rework, and downtime.
Fault handling reduces scrap, defect investigation, rework, retest, and downtime.
Both help eliminate productivity losses.

Default Actions

One of the simplest default actions occurs when a user executes a command that
requires certain input parameters. If the user executes the command without any

Shell Mastery ♦ 393

parameters, a simple Shell command will exit with an error message. An
advanced Shell program, however, will prompt for the missing arguments and
only exit if the user interrupts the processing.

So what if the user fails to give a filename on the command line, the Shell
will prompt for the missing information. On the other hand, if the user gives
many filenames, the Shell will process each file. In either case, the Shell can pre¬
vent scrapping this execution of the command and the rework of reentering the
command with the proper arguments.

Variable substitution offers another means of taking default actions. If a
variable has no value, a default value can be substituted. If a variable has a
value, a default value can be substituted. Or, if it has no value, do not change it
or issue an error message and exit from the Shell. Invoking these defaults
instead of using undefined variable names will help make any Shell more reli¬
able. Consider the output of the following commands:

Output ${name} becomes

name= :/usr/bin

echo ${name} /usr/bin /usr/bin

echo ${name:-"/dev/null"} /usr/bin /usr/bin

echo ${name:="/dev/null"} /usr/bin /usr/bin

echo ${name:?"Error"} /usr/bin /usr/bin

echo ${name:+"/dev/null"} /dev/null /usr/bin

name= : ”" # set name to NULL

echo $ {name}

echo ${name:-"/dev/null"} /dev/null NULL

echo ${name:="/dev/null"} /dev/null /dev/null

echo ${name:?"Error"} Error NULL (exit program)

echo ${name:+"/dev/null"} NULL

Omitting the colon (:) in any of these examples causes the Shell to check only
the variables’ existence. The Shell will not check for a null variable. In the pre¬
vious example, the variable name is set, but has a null value. The results
change as follows:

name="" # set name to NULL

echo ${name}

echo $ {name- "/dev/null"} NULL NULL

echo ${name= "/dev/null"} NULL NULL

echo $ {name? "Error"} NULL NULL

echo ${name+ "/dev/null"} /dev/null NULL

Other examples of using default actions requires a look at the Shell con¬
structs IF-THEN-ELSE and CASE. To display the best Shell programming style,
every IF should have an ELSE and every CASE should have a default action:

394 ♦ Chapter Fourteen

if [-r $filename]

then

process $filename

else

while [! -r $filename]

do

echo "File $filename does not exist"

echo "Please enter the correct filename"

read $filename

done

process $filename

fi

case $TERM in

vtlOO)

tabs

630)

tabs

TERM=450

*) # default

echo "Setting up terminal as tty37"

TERM=37

r i

esac

In either of these two examples, a default action prevents the unexpected
from occurring. The absence of a default path is one of the hardest errors to find
in programs. IFs without ELSEs and a CASE without a default are often suspect
when a Shell program is unreliable.

Taking intelligent default actions is one of the cornerstones of UNIX phi¬
losophy. Advanced Shell programs echo that philosophy. Errors and faults are
usually avoidable in most Shell programs—an extension of UNIX reliability.

Fault Handling

Fault handling is another feature of the Shell. The two major commands that han¬
dle error detection and correction are test and trap. Test helps detect errors before
they occur, while trap catches interrupts and takes intelligent default actions.

As shown in previous examples, test can check for the presence of files,
directories, or devices. It can compare the value of two variables or test the value
of a single one. Test can prevent many errors from happening and thereby pre¬
vent scrap, rework, downtime, and productivity losses.

Some Shell programs are made to run in either foreground or background.
A file run in the background should not interrupt the user with spurious errors.
It should mail them for later reference. Test can help direct error messages to the
terminal or the user’s mail as follows:

Shell Mastery ♦ 395

if the terminal is associated with standard input

if [-t 0]

then

echo "Execution message"

else

echo "Execution message" I mail $LOGNAME

fi

Test can also check for the presence of a variable:

if $1 is non-null

if ["$1"]

then

process $1

else

echo "Enter file name"

read filename

process $filename

fi

The importance of test is to detect problems before they occur and then take an
intelligent default action.

Trap works with system interrupts such as the break or Delete keys. The
most common interrupts are hangup (1), interrupt (2), quit (3), alarm clock (14),
and software termination (15). Many of the available interrupts are shown in Thble
6.10. Another useful interrupt (0) occurs at the successful termination of a Shell
command. With it, trap can take default actions upon completion of the command.

TYap is often used to clean up after a shell when it ends. Temporary files are
created in /tmp, /usr/tmp, or the user’s directory. Whether the command ends or
is interrupted, these files should be removed:

trap "rm -f /tmp/tmp$$ tmp$$; exit 0" 0 1 2 3 14 15

Trap can also identify the last file processed when a process is interrupted:

trap "echo $filename I mail $LOGNAME" 1 2 3 14 15

Trap can also ignore interrupts while the Shell does tricky stuff that is not
easily fixed after the command has been interrupted and reset itself after the
operation is complete:

trap "" 1 2 3 14 15 # ignore common signals

cp /tmp/tmp$$ /etc/passwd # copy updated password file

trap 1 2 3 14 15 # reset signal traps

Trap can handle increasingly complex jobs as required. These few simple
examples are a beginning. Reliability is integral to UNIX; fault handling with
trap is an important method of achieving that reliability.

396 ♦ Chapter Fourteen

Maintainability

Though a program be but three lines Tong, someday it will have
to be maintained.

—Geoffrey James

Maintainability depends on quality factors called consistency, modularity, self¬
documentation, and simplicity. Consistency recommends doing things in the
same way from Shell to Shell. Instrumentation gives indications of the success or
failure of the Shell as it processes its input. Modularity, is one of the keys to the
success of UNIX; Shell programs should be modular. Self-documentation
assumes that the Shell program will document itself. Simplicity says it all—a
simple command is easily understood, modified, and maintained.

One facet of maintainability that is difficult to quantify is programming
style. The examples in this book attempt to present a “good” and consistent pro¬
gramming style. To improve consistency, use the skeletal Shell program in
Appendix A as a starting point for all Shell programs. It contains most of the
information needed for good self-documentation and on-line help facilities.
Indenting Shell control structures to show the structure of the program is another
form of consistent programming style (see Figure 14.1). Programming style is
also concerned with simplicity. Because of the wealth of operators available with
UNIX, any required program can be created in a number of different ways. Only
a few of those ways will be simple and easy to maintain. Programming style is
also reflected in the use of program development tools, like SCCS, to manage
change to Shell programs and thereby simplify maintenance.

As Shell users become more sophisticated, they will begin to see new
opportunities for using existing commands. This means that Shell commands, no
matter how well written, will need to evolve to meet those needs. Keeping Shells
in SCCS will help track the evolution of a command. The reasons for changing the
commands will be stored with the SCCS file, so there is no documentation to lose.
A list of changes and their reasons are as close as the prs command.
Furthermore, as one UNIX machine grows to two or three or three dozen, the
process of administering changes to the system can be simplified by extracting
commands only from the SCCS libraries.

Before the commands are stored in SCCS, however, they have to be devel¬
oped. Self-documentation is an important part of that development. Comments
can be inserted easily into the code: they can be on a line by themselves or after
an executable statement. The pound sign (#) begins all comments:

If the user supplies an argument use it

if ["$1"]

then

process $1

else # prompt for an argument Continued

Shell Mastery ♦ 397

IF-THEN-ELSE

if [conditions] if (conditions) then

then

processl

else

processl

else

process2

fi

CASE

process2

endif

case $var in switch ($var)

matchl) case matchl:

processl processl

7 / breakswk

match2) case match2:

process2 process2

! 1

•>

breaksw

default:

default process default process

i / breaksw

esac endsw

FOR

for variable in list foreach variable (list)

do

process $variable

done

process $variable

end

WHILE

while [conditions] while (conditions)

do

process process

done end

FIGURE 14.1 Shell programming style.

398 ♦ Chapter Fourteen

echo "Enter file name"

read filename

process $filename

These comments are essential to program maintainability when Shell com¬
mands become more complex. If the developer is struggling to understand how
all of the commands fit together to accomplish the task, just think what the per¬
son who later maintains it must think.

Just about every Shell programmer runs across ways of doing things that
are more elegant than others. Whenever possible, store these methods and use
them in new Shells or use them to replace complex code in existing Shells.
Simplicity should prevail over complexity. Otherwise, it eventually becomes
impossible to maintain all of the existing Shells without an army of Shell gurus.

Keeping things simple is why modularity was invented. Cars are made of
small modular components. The parts are easier to design and build than com¬
plex hand-built components. The parts are also easier to replace when they fail.
The same is true for Shell programs. Modularity will improve maintainability.

Modularity can be obtained in two ways: simplifying processing and creat¬
ing subshells. Any Shell program over two pages in length is too complex. In
some cases, the program can be simplified. The Shell may have one central pro¬
cess with various input and output filters. A simple, modular design would be:

choose input filters

choose processing parameters

choose output filters

execute input filters I major process I output filters

Creating subshells allows the main Shell to control the actions of several
others to obtain the required result. Rather than write one huge Shell, each sub¬
shell can do its unique part and then pass control back to the parent Shell.
Subshells are also an important feature of reusability.

Modular Shells can execute as follows:

edit inputfiles

update datafiles

select reportdata

print reports

Each subshell creates outputs that are used by future processes. The sub¬
shells can also be executed individually when required.

Subshells can also be executed directly in-line with the parent Shell’s code
so that the subshell can access and modify any of the parent’s variables:

Bourne Shell

parent shell Continued

Shell Mastery ♦ 399

variable=/usr/bin

. subshell

subshell

cd $variable

Is -1

variable=/bin

From a pure programming standpoint, this is somewhat dangerous
because the subshell can change the parent’s variables. Otherwise, the parent
would have to export the variable for the subshell to have access to it:

parent shell

variable=/usr/bin

export variable

subshell

In this example, subshell would have access to the variable but would not
be able to change it. Also, any changes made by the subshell to the current envi¬
ronment (such as changing directories) would not affect the parent Shell.

Making small modular Shell programs helps improve maintainability. Small
programs are easily understood. Modular programs also affect reusability.

Reusability

One of the reasons that Shell is so popular is that each command is modular
and reusable. Each command can be easily mated with other commands via the
pipe. In the process of building commands to automate repetitive tasks for the
users, functions are repeated from Shell to Shell. Creating a separate Shell for
these functions improves maintainability (there is only one copy to maintain).
All of the Shells that need the reusable function can then invoke it as a sub¬
shell.

When using Shell to prototype C language programs, reusable Shells often
indicate the need for reusable C programs as well. Current technology has
demonstrated that as much as 80 percent of a program’s code is reusable, leav¬
ing only 20 percent to develop uniquely. This can increase programmer produc¬
tivity and quality by a factor of two to five.

A simple way of affecting reusability is to create a library of generic Shell
programs that can be copied and then enhanced to fit the need. These skeletons
should include all of the quality features described in this chapter. (A good skele¬
ton for Shell development is contained in Appendix A.) As described in Chapter
7, there are five basic types of programs: input, output, query, update, and inter¬
face. A reusable Shell skeleton can be built for each.

400 ♦ Chapter Fourteen

Efficiency
m

Techies often worry about efficiency to the exclusion of effectiveness. To maxi¬
mize efficiency, focus on people effort first and machine effort second. Once
you’ve minimized the effort required to use and maintain a Shell program, then
worry about improving the machine efficiency.

Shell runs on a wide variety of hardware, but it still concerns itself with
efficiency. Spending money for additional hardware is never easy, so it makes
sense to take efficiency into consideration whenever building a Shell. Some effi¬
ciencies are handled by the system administrator; others are available to the
common user.

The system administrator (super user) can set the “sticky bit” on a pro¬
gram. Once the program has been loaded into memory, a copy is retained until
the system is brought down. Keeping a copy of the program means that it can be
swapped in when requested rather than read from disk, thereby speeding up pro¬
cessing. UNIX programs that are used extensively in Shell programs should
stored in memory using the sticky bit:

chmod 1777 shell_pgm

Each user can further improve efficiency by simple actions. The most obvi¬
ous one is to run commands during non-prime time. Commands can be queued
via the at command (if it is available on your system). The at command can
offload the processor during prime time and improve response time. The follow¬
ing example would execute a Shell accounting report called acctrpt at 6 p.m. on
Sunday:

at 6pm Sunday acctrpt

Shell efficiencies involve the number of variables, commands, and files.
The number of bins searched for commands and their ordering are often prime
candidates for efficiency improvement. These two criteria are established by the
PATH variable:

PATH=:/bin:/usr/bin:/global/bin

The search order for this PATH is the current directory, /bin, /usr/bin, and
/global/bin. If the user rarely uses the current directory and almost always uses
/global/bin, then efficiency can be increased by switching the search order:

PATH=/global/bin:/bin:/usr/bin::

Other users will put all possible bins into their PATH:

PATH=:/bin:/usr/bin:/global/bin:$HOME/bin . .

Shell Mastery ♦ 401

To find the requested command, the Shell must search through many directories
and hundreds of files. A simple solution is to invoke the Shell itself as a subshell
with the expanded PATH list:

home

PATH=$HOME/bin:${PATH} PSl="HOME> " sh $@

This command will change the PATH variable to include $HOME/bin and
change the user’s prompt to “HOME>” so that they are aware of the change.
When finished using commands in $HOME/bin, the user types a control(d) to
exit from the subshell.

Another way to improve efficiency is to change into a directory rather than
use a long pathname repeatedly. This eliminates the need for the Shell to search
through directory after directory for each file:

cd $HOME/RDBMS/employee

for file in *

do

process $file

done

The user can also affect efficiency by reducing the number of temporary
files used in a shell. Pipes and better selection of commands can reduce the num¬
ber of temporary files:

cut -fl,5 /etc/passwd > /tmp/tmp$$

pr -h "Password listing" /tmp/tmp$$

rm /tmp/tmp$$

cut -fl,5 /etc/passwd I pr -h "Password Listing"

In this example, the number of commands was reduced by one and tempo¬
rary files were eliminated totally. Pipes do create temporary files of their own, but
pr can begin executing as soon as the cut has passed a line to the pipe. Herein
lies the advantage of the pipe.

This example also showed how programming style can reduce the number
of commands required. Similarly, the commands fgrep and egrep can be more
efficient than grep for special data selection requirements. There are a multitude
of available commands in UNIX. Often, one can be substituted for several others,
thereby reducing complexity and improving efficiency.

The number and length of variable names can also influence efficiency. But
the advantages of having good variable names and using them to represent only
one variable instead of many outweigh the efficiency considerations.

Also, for efficiency, use built-in commands instead of called programs.
Slowness of Shell programs occurs when the system must create a new process
(fork), search the PATH to find a given command, and then execute it. Built-in
commands are executed directly. So use read instead of line, and so on.

402 ♦ Chapter Fourteen

And, as we’ve demonstrated in other examples, put reducing filters—grep,
cut, and awk—first in a pipe. This will reduce the amount of data that must be
transferred by the Shell:

grep $1 employee.db I sort I pr

For users running System V, there is a facility that allows users the same
capabilities of the “sticky bit.” The Bourne and Korn Shells allow the use of Shell
functions. Shell functions can be included in the user’s .profile or entered directly
on the command line anywhere for that matter. Once a command containing the
function is executed, the Shell retains a memory copy of the function for later
execution. When the user executes the command again, the function is invoked
from memory instead of from disk. Response time is much faster. Shell functions
are formed as follows:

functname()

{

Shell commands

}

For commands that are frequently executed, Shell functions will be the
fastest way to obtain a response. For more examples, see the section on Shell
functions in Chapter 8.

Efficiency is still a concern in UNIX systems. As UNIX users learn more
about the system, their ability to use its resources expands exponentially, mak¬
ing it hard to obtain enough hardware to satisfy their cravings. The commands
time and timex can examine resource usage of commands and be used to
improve efficiency. Efficiency is one way of ensuring that there will be plenty of
resources for all.

Portability

Portability is another major concern of the UNIX system. Shell programmers
should also be concerned because there are many different Shells: C Shell,
Bourne Shell, Korn Shell, Bash Shell, and others. And there are many different
versions of UNIX. The C Shell and Bourne and Korn Shells are also incompatible
in many of their control constructs. These incompatibilities raise portability
issues. The same utility (e.g., pr) may perform differently in different systems.

Every UNIX system provides new tools that are not part of standard UNIX.
These are then used in Shell programs which then lose their portability. Binary
copies of UNIX sold by third parties often have nonstandard utilities that are not
portable to other systems.

To maximize the chances that Shells can be ported from one machine to
another, stick to the standard UNIX commands contained in /bin and /usr/bin. A

Shell Mastery ♦ 403

Shell command using any other commands will need some work when moved
from a micro to a minicomputer or mainframe environment. But standards are
not the only key to portability. Portability consists of three key elements:

♦ Design for portability
♦ Management for portability
♦ Standards

To achieve portability of your Shells, you must begin with the design. To
achieve any quality for that matter, you begin in design. By simply focusing on
a quality like portability, you will be more likely to achieve it. Then as you move
forward with development, manage the evolution of the Shell to ensure portabil¬
ity. Shell checkers, like lint for C, are under development and should appear
soon. Finally, use standard commands (those defined by POSIX, for instance).

Usability

Probably the major problem with UNIX is its usability. Users complain of cryptic
commands and so on. Shell is the bridge to improve usability. The best Shells will
need default actions, help facilities, and possibly on-line instruction.

Usable Shell commands do not give cryptic error messages and exit when
the argument list is deficient. They should prompt for the proper information as
described in the reliability section of this chapter. Usable Shell commands should
anticipate the user’s needs and meet them wherever possible. The use of the trap
command to handle interrupts is another means of making a Shell more usable;
a Shell that cleans up after itself and restores order before exiting is more usable
than one that does not.

On-line Help

On-line help facilities are another usability concern. The files contained in UNIX
help directory/usr/lib/help are not very beneficial, but they can be beefed up by
the system administrator. User-developed Shell commands have other possibili¬
ties. Embedding help information in the Shell command is a good way to improve
self-documentation and provide help facilities for locally developed commands.

Since shells should be stored in SCCS, the what command provides a facil¬
ity for extracting help information from shells. The what command extracts lines
from files containing the SCCS keyword string “%Z%” which expands to @(#).
This keyword can be embedded in Shell commands:

%Z% syntax: command [parameters] [files]

which expands as follows when the file is retrieved from SCCS:

@(#) syntax: command [parameters] [files]

404 ♦ Chapter Fourteen

What can examine the Shell File and produce the following:

syntax: command [parameters] [files]

Grep can also be used. Some users will require just a simple example of the
command’s syntax; others will need more extensive assistance. Two levels of
help information can be provided by combining grep with what:

#localhelp

grep "@#@" $1 # print syntax line

echo "More Information?"

read answer

if [${answer} = "y"]

then

what $1 # print extended description

fi

Examples of the grep and what strings are shown in Appendix A. The local
help command can be enhanced to look for the command in any of the bins spec¬
ified by $PATH:

bins='echo $PATH I tr ■

bins="$bins 'pwd1"

for dir in $bins

do

if [-r ${dir}/$l]

then

localhelp ${dir}/$l

break

fi

done

"' # remove : delimiters

add current directory

check each bin

if command exists

print help information

leave FOR loop

This help command can be enhanced as required.
In addition to the facilities, as shown in these commands, a user should

always be able to ask for help from a Shell command by providing a parameter
that tells the Shell to print extended help documentation for the command
beyond just the simple syntax provided by the default. This is often done by pro¬
viding the command with the -h parameter for help.

On-line help for Shell commands is a necessary part of productive use of
UNIX. Usability is a major factor in the acceptance of UNIX and new commands.
On-line tutorials, such as the ones available with microcomputer packages, will
be essential to reduce the training costs for new users. Local commands will need
to take advantage of these packages to ensure that proper training is received by
one and all. Training is a major part of usability. Developing a Shell is often easy.
Creating help and training materials often takes longer, but is perhaps more
important than the resulting Shell.

Documentation

Shell Mastery ♦ 405

All words are pegs to hang ideas on.
—Henry Ward Beecher

A system is composed of more than just software or Shells. A system includes
the hardware, software, documentation, and training to help make users effec¬
tive. Effective, high-quality Shell programming requires the development of man
pages and other supporting documentation. A basic outline of a man page is
shown in Figure 14.2. Use it to document local commands. Manage the docu¬
ment’s evolution using SCCS, just as you would the code.

Shell is a simple language compared to written language. Shell has but a
few hundred verbs (e.g., grep), while written language has tens of thousands of
verbs and words. Do not look down on the written word; it is the complex pro¬
gramming language of the mind.

.TH COMMAND-NAME [8]

.SH command name

.SH SYNOPSIS
command name syntax

.SH DESCRIPTION
text description

.SH OPTIONS
-flags description

.SH FILES
associated files (if any)

.SH SEE ALSO
related command names

.SH DIAGNOSTICS
error messages

.SH BUGS
Why would you have any of these?

.SH EXAMPLES
demonstrate how to use the thing effectively!

FIGURE 14.2 Man page boilerplate.

406 ♦ Chapter Fourteen

Summary

Expert Shell programming is concerned with the quality of the programs pro¬
duced. It demands reliability, maintainability, reusability, efficiency, portability,
and usability. A Shell could be complex and intricate, a brilliant piece of work, but
without self-documentation and maintainability, it cannot be what 1 call expert.

It is a simple task to make things complex,
but a complex task to make things simple.

Appendix A contains a skeleton of a Shell that can be used to improve reli¬
ability, maintainability, and usability. The principles that involve advanced Shell
programming are not ones of complexity, but ones of simplicity and elegance.

Exercises

1. What one thing is the major concern of an advanced Shell
programmer?

2. What are the major factors that make up quality?
3. What is, in your words, programming style?
4. What Shell commands and features help provide reliability, maintain¬

ability, reusability, efficiency, portability, and usability?
5. Write a Shell program to test the various default values assigned to a

variable that is:

a. Not set
b. Set but has no value (NULL)
c. Set and has a value

6. Write the trap command to ignore the interrupt and quit signals. Use
it in a Shell command and test its performance with the break or Delete
key on your terminal.

The UNIX System
Administrator

A well-administered UNIX system is a joy to both the administrator and the sys¬
tem’s users. On the other hand, a poorly administered system can be a source of
pain and the cause of much of the bad publicity about UNIX today. The key to
proper system administration is the Shell.

Successfully administered systems are popular. One can mushroom into
dozens of others. From 1979 to 1984, for example, the first system I installed grew
to a crop of seven that coupled with half a dozen more across U S WEST. In indus¬
try today, fields of UNIX systems—workstations, minis, and mainframes—support
hordes of users on Internets and intranets worldwide. Automating the administra¬
tion of your first system will greatly simplify the growth that will follow.

Shell programs can automate most of the activities of the day-to-day
administration and operation. Automating activities like adding users or backing
up the file systems helps ensure that nothing is forgotten or done incorrectly.
Even the best of typists (which many UNIX administrators are not) have a hard
time entering the complete command to volcopy or dump a disk to a backup
disk or tape without errors. Since file system backups are often done at night
when even the best console operators are not totally awake, errors can occur
unless the system does most of the work for them.

407

408 ♦ Chapter Fifteen

Other administration activities will require no human intervention at all.
These can be automated with Shell and executed as required by cron, the clock
daemon that executes commands based on the system’s internal clock.

This chapter covers how the Shell can automate many of the administra¬
tor’s activities and the files used for system administration. Because of its abil¬
ity to handle complex processes reliably, the Shell is the key to productive,
high-quality system administration.

Administration Duties

The UNIX system administrator has several key duties, most of which can be
automated with Shell:

1. Add, change, and delete

a. Users
b. Software
c. Hardware

2. Prevent problems through routine maintenance

a. Back up daily activity
b. Restore files

3. Diagnose and fix problems

a. Monitor system usage—disk, cpu, network
b. Maintain services—mail, uucp, network

4. Ensure system security
5. Provide user assistance

This chapter covers the routine activities of administration, not the nitty-
gritty stuff of changing kernels. Why the day-to-day activities? Because the sys¬
tem never stays the same. Shell is a powerhouse for doing your daily grunt work.
Let the Shell work for you. First, however, let’s look at where the administrator’s
tools reside.

Administrative Directories and Files

A UNIX system administrator is directly involved with the directories shown in
Table 15.1. Each of these directories contains files and commands that affect
system administration.

The major files and commands of concern to the system administrator are
shown in Thbles 15.2 and 15.3. The file system, /etc, contains most of the com¬
mands required for system operation.

TABLE 15.1 Administrative Directories

Directory Description

/etc Administrative and operational commands reside here as well
as passwd and group files

/usr/adm Accounting directories
/usr/docs System documentation
/usr/games Games
/usr/lib Operational logs, cron tables, commands
/usr/lib/acct Accounting commands
/usr/lib/uucp uucp commands
/usr/lp Line printer spooling system
/usr/news Local news directory
/usr/pub Public directories
/usr/tmp Temporary directories
/tmp Temporary files—often a small amount of space
/usr/man Online manual pages
/usr/local Local software
/usr/local/bin Local executables

The UNIX system administrator is also responsible for the Shell and C com¬
mands that are locally developed. The source code as well as the commands
themselves should be maintained on one system and delivered to all other sys¬
tems. Shell can help automate building and delivering locally developed software
to other systems. Once received, the other Shell administration systems can
automatically install the software in the appropriate bin directories.

TABLE 15.2 Administrative Files and Shell Commands

File or Command Description

/etc
/etc/brc Executed at startup by init
/etc/checklist Default file systems checked by f sck
/etc/group Listing of group IDs and passwords
/etc/inittab Event list for init
/etc/motd Message of the day
/etc/mnttbl List of mounted file systems
/etc/passwd Login and password file
/etc/profile Custom shell executed by init
/etc/rc Startup shell executed by init
/etc/termcap Terminal capabilities database
/etc/wtmp Log of login processes

/usr/adm
/usr/adm/pacct Accounting log

/usr/lib
/usr/lib/cronlog Log of cron processing
/usr/lib/crontab Event list for cron

410 ♦ Chapter Fifteen

TABLE 15.3 Administrative Commands in /etc

Command Description

config Configure a UNIX system
crash Crash the system
cron Execute commands in /usr/lib/crontab

f sck Check a file system
fsdb Debug file system errors
init Initialize the system
killall Kill all processes
labelit Label a disk or tape volume
mkf s Make a file system
mknod Make a special file node (e.g., named pipes)
mount Mount a file system
shutdown Gracefully shut the system down
startup Gracefully start it up
umount Unmount a file system
vo 1copy Volume-to-volume file system copy
wall Send a message to all users

The other files that a system administrator deals with are not really Files at
all, but devices—terminals, disks, tapes, and line printers—that handle special
functions. These are known as special Files and come in two varieties: character
and block special. The various UNIX Files are shown in Thble 15.4. Block, char¬
acter, socket, and named pipe files are created with the mknod command.

Shell commands write to character special Files directly, whereas block spe¬
cial Files require special commands. Character special Files act just like regular

TABLE 15.4 File Types

File type Description

Regular Standard UNIX file
Directory Standard UNIX directory
Character devices

/dev/acu Auto call unit (cu, uucp)
/dev/console System console
/dev/rdsk* Disk
/dev/rmt~ Tdpe
/dev/lp Line printer
/dev/tty Terminals
/dev/vpm Virtual protocol machines (RJE)

Block devices
/dev/dsk* Disk drive
/dev/mt~ Tape drive

Named pipe FIFO pipe created with mknod
Hard link
Symbolic link (BSD)
Socket (BSD) Similar to a named pipe

The UNIX System Administrator ♦ 411

files, except that they are hardware devices. The following examples echo the
system date onto the console, copy the contents of a directory to a tape, and print
a file on the line printer:

date > /dev/console # print date on console

find . -cpio /dev/rmtO # backup a directory to tape .

pr file > /dev/lp # print a file on a printer

Special files can also be restricted with chmod to prevent users from writ¬
ing to them. For example, terminals (/dev/tty) should be mode 700 to prevent
other users from writing directly onto their terminal while they are working.
Only /etc/wall overrides this protection.

Most of the block and character special files are the province of the system
administrator. They facilitate disk and tape backups, console messages, terminal
communications, and so on. Administrators will gain the most familiarity with
their use and benefits when used in the Shell. Again, any activity an administrator
does on an hourly, daily, weekly, or monthly basis can be automated with Shell.

Aside from locally developed commands and special files, the administra¬
tive files, commands, and directories can be broken into several categories: daily
administration, automated administration, system start up, and system shut¬
down. Each of the following sections covers the application of Shell to these
activities.

Daily Administration

Day-to-day work is where Shell truly shines as an aid for productive system
administration. Hardly a day goes by that the administrator is not asked to add
or delete a user or group from the system, restore a file, or inform the users of
changes in commands,- operations, or whatever. Each of these activities repre¬
sents various levels of effort required of the system administrator. Possibly the
most frequent activity required is the addition of a user.

Add, Change, and Delete Users

Adding a user is not as simple as it sounds. Entries must be made in the passwd
and group files. Directories and files must be created. Environment variables
must be established to point the user’s login toward correct line printers, RJE
lines, and so on. Because remembering all of these things is difficult, we can fol¬
low Einstein’s advice: Never keep anything in your mind that you can look up.
Rather than miss your vacation, it makes sense to automate this activity with
Shell. To add a user, the passwd file must be updated first:

usrno=1 tail -1 /etc/passwd I cut -f3 -d:1 # get last user

no

Continued

412 ♦ Chapter Fifteen

usrno='expr $usrno + 11 # increment user no

echo "Which group will user belong to?"

read group # get group number

grpno=1grep $group /etc/group I cut -f3 -d:'

echo “User's login name?"

read logname

echo "User's name and phone?"

read usrname

echo “File system?"

read fs

echo \

"${logname>:..,:${usrno}:${grpno}:${usrname}:\

/${fs}/${logname}:/bin/sh" \

» /etc/passwd # add user entry to password file

Next, adduser will have to create the user’s directories and files:

homedir=/${f s}/${logname}

mkdir ${homedir} # make login directory

mkdir ${homedir}/cgi-bin # make other required directories

mkdir ${homedir}/public_html

mkdir ${homedir}/ftp

mkdir ${homedir}/src

cp /unixfs/proto/profile ${homedir}/.profile # add profile

chmod 755 ${homedir} ${homedir}/* # all dirs readable

chmod 700 ${homedir}/.profile # unchangeable

make all files and directories owned by user & group

chown ${logname} ${homedir} ${homedir}/* ${homedir}/.profile

chgrp ${group} ${homedir} ${homedir}/* ${homedir}/.profile

These few Shell commands comprise the basic needs of the adduser com¬
mand. As the user population requires more hooks into the additional subsys¬
tems of UNIX—lp, lpr, rje, etc.—the adduser command should be enhanced to
establish all of the environment variables required to make the user’s entrance
into the system as comfortable as possible. Taking care of all of these details
when adding a user to a system not only helps the user, but keeps the adminis¬
trator from having to answer numerous phone calls from frustrated users.

The command to add a group the /etc/group file would be similar in format
to adduser. Addgroup can be created easily with a few modifications to the
commands shown.

The next frequent requirement is to delete a user. To delete a user, all refer¬
ences to the user must be removed from the system including /etc/passwd,
/etc/group, and /fs/logname. Using the same variable names as used in adduser,
deluser executes as follows:

deluser - remove /etc/passwd entry

sed -e "/A${logname}/d” < /etc/passwd > /etc/opasswd

Continued

The UNIX System Administrator ♦ 413

cp /etc/opasswd /etc/passwd # replace passwd file

ed /etc/group <<! # remove group entry

g/${logname},/s///

g/,${logname}/s///

w

q
I

cd /${fs}/${logname} # change dir to user directory

if [$? -eg 0] # successful cd?

then

rm -rf * # remove all files and directories

cd . .

rmdir ${logname} # remove user directory

else

echo "OOPS — /${fs}/${logname} not found”

fi

Again, as more hooks are added to a system’s users, deluser will need to
delete more references to the login name. Aside from administering logins, the
system administrator must restore files and directories when a user inadver¬
tently removes a semiprecious file. Note that this is less likely to happen within
Shells that support the noclobber variable. It should be noted that most UNIX
systems these days come with a suite of commands for managing users and user
groups. The commands are useradd, userdel, usermod, groupadd, groupdel,
and groupmod. See the manual pages on these commands for details on their
operation in the C Shell system when the user has the noclobber variable set.

Add, Change, and Delete Software

Figure 15.1 shows a UNIX environment of the future—workstations in a local
area network (LAN) tied into larger, distributed systems which include both
UNIX and other operating systems via various network protocols. The challenge

FIGURE 15.1 Network configurations.

414 ♦ Chapter Fifteen

for power administrators will be to develop, build, install, and maintain all of the
software from a central point and distribute it to remote sites. To accomplish this,
you will need to create a system which:

1. Builds the software from SCCS
2. Sends the software via the network or uucp
3. Loads the software on the remote systems during off hours
4. Sends confirmation of installation to the administrator

Since this varies widely from environment to environment, you will want to
develop such a delivery system for your individual configuration. Automating
this process in Shell took only a couple of days and saved countless thousands
of hours over the ten-year life of the seven-system configuration.

Much of daily administration work occurs in the off hours, while users and
administrators rest. The tool that pilots this work is cron.

Cron

Cron reads /usr/lib/crontab and executes the commands found according to the
time specifications. Cron gives the system administrator a handy way of being
everywhere, doing everything, without having to be on the system.

Crontab entries have six fields. The first five fields tell cron when to exe¬
cute the command: minute (0-59), hour (0-23), day (1-31), month (1-12), and
day of the week (0-6, Sunday = 0 and Saturday = 6). To match a number of dif¬
ferent times or days, a field may contain comma-separated numbers. To match
any time or day, an asterisk (*) can be used in any of these fields. The sixth field
contains the command to be executed.

A simple crontab will have entries to print the date and time on the console
every 30 minutes and to sync the super block every 10:

0,30 * * * * date > /dev/console; echo "\n" > /dev/console

0,10,20,30,40,50 * * * * /bin/sync > /dev/null

To execute the calendar program every week day morning at five AM, add
the following line to /usr/lib/crontab:

05** 1-5 /usr/bin/calendar -

The system administrator should use cron to handle as many routine tasks
as possible. These include activities like monitoring disk usage, cleaning up tem¬
porary files, validating SCCS files, keeping system logs to a reasonable size,
printing accounting reports (acctcom, sar), administering subsystems like lp,
Ipr, and rje, or any related administrative task. The system can handle all kinds
of detective work in nonprime hours when the administrator is home having din¬
ner or sleeping. Use cron like an army of administrators and have it send
detected errors to the real administrator for resolution.

The UNIX System Administrator ♦ 415

Cron is started when the system is brought up and stops when the system
is shut down for backups. Both of these two activities—start-up and shutdown—
can be automated with Shell, to further reduce operational costs and errors.

Start-Up

Trouble is easily overcome before it starts.
—Lao Tzu

Starting the system is handled by init; /etc/inittab controls the actions of init in
each of its states—mounting disks and bringing all of the terminal devices
(/dev/tty) on-line.

/etc/rc checks all of the file systems for errors using fsck, mounts the file
systems, and starts process accounting, cron, the RJE, lp, uucp, and anything
else that should be available when users enter the system.

Since /etc/rc is a Shell, it can be modified to ensure the system comes up
cleanly, ready for users, /etc/rc can execute special Shells to handle the require¬
ments of the system administrator, such as mailing the date and time of system
start-up. All of these files are under the control of the system administrator and
should evolve to simplify system operation.

Shutdown

Give as much care to the end as to the beginning, then there will
be no failure.

—Lao Tzu

Shutting the system down is probably more important than how it is started.
Rash actions like halting the machine from the console before all commands are
killed, file systems unmounted, accounting stopped, subsystems stopped, and so
on, can generate all kinds of problems that can be avoided by using the shut¬
down command. Since shutdown is a Shell command, it can be modified to
improve system reliability.

Once the system has been gracefully shutdown, placed in single-user
mode, and file systems checked, the shutdown command should ask the opera¬
tor about disk or tape backups and execute these commands as required.

Routine Maintenance

A system administrator can reduce the possibility of lost files by requiring
nightly backups and by automating the backup process with Shell commands to

416 ♦ Chapter Fifteen

mount the proper backup disk or tape and volcopy the File systems. Disk and
tape backup commands are fairly similar. The following command will backup
the root and usr file systems:

diskbackup

day='date +%a' # get day of week Sun-Sat

echo "Backup volume name is bck${day}

echo "Mount backup pack labeled FILE SYSTEM = root"

echo "Hit return when ready"

read answer

mount /dev/rdskl4 /bck > /dev/null # mount root bkup

volcopy root /dev/rdskO unixO /dev/rdskl40 bck${day}

volcopy usr /dev/rdsk2 unixO /dev/rdskl42 bck${day}

umount /dev/rdskl4 > /dev/null #unmount bkup drive

The command could also use labelit to check the volume name of the
backup pack before continuing. Disk and tape backup commands should be
developed for each system to ensure the accuracy of the backup procedures.
There is nothing more vicious than a user who has lost data and work. Do not let
this happen to the users on your system.

Restoring Files requires that the operations staff mount the correct backup
disk or tape. What better way to ensure that the most current backup copy is
used than to let the Shell request the backup disk from a history log. Assuming
that the disk backup command creates a log of the file systems backed up and
the volume names of the backup disks, a command called File_restore could
determine which disk to use:

file_restore

echo "Enter full path name:

/fs/userid/dir.../filename"

read path

fs='echo $path | cut -f2 -d"/"

get latest log

backup=’grep $fs /etc/backuplog | tail -1’

get volume

backupvol='echo ${backup> I cut -f2 -d:1

get special name

special='echo ${backup> I cut -f3 -d:'

echo "Mount $backupvol on backup drive"

echo "Hit <return> key when ready to continue"

read answer

mount ${special} /bck # mount backup as bck

file=1 echo $path | cut -f3- -d/’ # cut filesys

cp /bck/${file} $path # copy backup file

umount ${special} # unmount backup drive

echo "${path} restored from /bck/${file}"

echo "Remove $backupbvol from backup drive"

The UNIX System Administrator ♦ 417

If the backup log contained the following information:

unixl:bkuptues:/dev/rdskl40

unix2:bkuptues:/dev/rdskl42

unixl:bkupwed:/dev/rdskl40

unix2:bkupwed:/dev/rdskl42

then the command to back up the file, /unixl/lja/src/main.c, would ask the system
administrator to mount the disk labeled bkupwed on the backup drive (in this case
dskl4). The filejrestore command would then mount the backup file system as
/bck and copy the previous version of the file into the requested directory and file.

Diagnose and Fix Problems

No computer system is impervious to errors. You will, however, find it much eas¬
ier to prevent problems than to fix them when they occur. This is also less costly.
Prevention involves monitoring the system’s functions and taking corrective
action before problems occur. Fix it before it breaks!

Monitoring System Usage

Because the sage always confronts difficulties, he never experi¬
ences them.

—Lao Tzu

The first thing to manage on most systems is disk usage. The disk free (df) com¬
mand can help pinpoint rapidly growing disk usage. If the amount of free space
under a file system drops below a certain level, you will want to request free
spaces from the user community or consider expanding their file system:

df /userfs

You may also find it useful to fully automate this process so that the system
tracks changes in disk usage, comparing one day against the next, and notifies
you of any untoward activity. You may also want to monitor remote systems
using uux:

uux 'df / I mail home!yourself' remote_system

Then you can use the disk usage (du) command to identify the 20 percent
of the users who use 80 percent of the disk space. Pareto’s rule often holds true
for all system resource usage.

418 ♦ Chapter Fifteen

CPU and access times can be monitored via the accounting data. In my
experience, UNIX systems experience a slow initial growth rate, then modest
growth, and toward the end, massive growth. By tracking and plotting the trend,
you will have sufficient advance warning to install hardware upgrades and tune
the system to meet the demands.

You will need to develop additional commands to monitor the other services
on the system: mail, uucp, ftp, lp, lpr, and networking.

Ensure System Security

The Shell administrator has four key jobs with respect to system security:

1. Prevent unauthorized access
2. Maintain system integrity
3. Preserve data privacy
4. Prevent interruption of service

To prevent unauthorized access, you need to make sure that all of the users and
groups have passwords and that there are no duplicate user IDs:

awk -f: 'if ($2 == "") \

{ print }" /etc/passwd /etc/group

cut -fl -d: /etc/passwd I sort I unig -d

cut -fl -d: /etc/group I sort | unig -d

To maintain system integrity, you will need to manage the permissions on
executable files and directories. The following shows the three permissions that
allow the user to assume someone else’s identify for the duration of the com¬
mand, even the superuser’s:

4000 set user ID (setuid) changes to the owner of the executable program

2000 set group ID (setgid) does the same for the group

1000 sticky bit keeps a program in memory

The most dangerous of these, of course, is the first, especially when the
owner is root. To find these programs, cron should periodically search the sys¬
tem as follows:

find / -user root -perm 4000 -exec Is -lg {} \;

find / -perm 2000 -exec Is -lg {} \;

find / -perm 777 -type f -print

To preserve data privacy, the administrator will need control of the mount
and umount commands, and file and directory permissions. Mounting and
unmounting file systems lies in the control of the superuser who has access to

The UNIX System Administrator ♦ 419

/etc/mount and /etc/umount. Controlling data security is augmented by the
umask command, which determines the default file permissions. To prevent
anyone except the user and their group from accessing files created by the user,
we could put the following statement in /etc/profile or .cshrc:

umask 027

As a backup procedure, we could periodically check for directories which can be
read and written by anyone in the “world”:

find / -perm 777 -type d -print

We could also encourage users to set their own default security and use crypt for
really important files. All of these activities are designed to help prevent loss of
data or loss of the system. To further prevent interruption of service, we could
place external users in a restricted Shell.

Restricted Shells

Occasionally, the administrator will need to allow a group of users access to the
machine without giving them all of the power of UNIX. In these instances, the
system administrator can create a restricted environment that lets them perform
some necessary work, but prohibits them from going crazy in the system.
Creating restricted Shells is easy.

First, the administrator creates a restricted login that points to /bin/rsh
instead of /bin/sh. When users log in, they will be prohibited from executing the
cd command, changing the value of PATH, redirecting output, or executing com¬
mands beginning with “/”. These restrictions are enforced only after login has
executed the commands in the user’s .profile.

By creating the proper .profile and not allowing users to change it, the sys¬
tem administrator can put them in any directory, supply any commands required
with PATH, and rest assured that they can do little damage.

The commands required are often linked from /bin and /usr/bin to a set of
restricted bins: /rbin and /usr/rbin. A simple .profile to restrict a user’s activities
would be:

PATH=:/rbin:/usr/rbin

cd /unixfs/rdir

export PATH

Users could then execute the commands in the current directory, /rbin,
and /usr/rbin. They would be restricted from moving about the system. This
will be only occasionally useful, but it is an option for good system administra¬
tion. Use it sparingly; the goal of administration is to help users do whatever
they need to do.

420 ♦ Chapter Fifteen

Provide User Assistance

The final requirement of daily administration is to communicate all system
changes to the user population. A knowledgeable user population minimizes the
number of phone calls an administrator will receive. The commands that handle
user communication are mail, news, and wall. The file /etc/motd, message of
the day, can also be used to provide daily information when the user logs into
UNIX. The following example shows various entries for /etc/motd:

/etc/motd

The system will be down for preventive maintenance Sunday,

July 17 from 9AM to 6PM. Please refer questions to xl234.

News is used for changes to the system or system commands. Users can
read the daily news (newsrn) when they have time. News files are kept in the
directory /usr/news. Mail communicates directly with specific users or groups of
users. Wall writes to all users that are logged in when immediate communication
is required (for example, when the system is coming down for emergency main¬
tenance) .

Shell programming can aid the system administrator in all phases of daily
administration. Shell commands should be developed to automate any activity
that happens frequently, such as adding or deleting users, or restoring files.
Other administration tasks must occur on a set schedule. Rather than demand
that these be done by the administrator, they can be executed automatically by
cron.

Help

Nothing is more frustrating to a UNIX user than to need help and not know
where to call to get it. Consider building a simple command, called helpme, that
prints the administrator’s work and home phone numbers. If there is more than
one administrator and each specializes in certain UNIX subsystems, then include
that information too:

helpme

print list of administrators

cat /global/help/oncall

Periodically, check all of the system logs for signs of trouble. As certain
kinds of errors rise to the surface, develop Shell commands to grep for errors in
the logs and mail them to the system administrator nightly using cron. The
sooner errors are detected and corrected, the sooner the administrator can kick
back and spend his or her time developing new and better tools to support the
user population.

Summary

The UNIX System Administrator ♦ 421

The UNIX system administrator has as much to gain from Shell usage as any
UNIX user. Much of the work of administering a system can be handled with
Shell commands, cron, and the start-up and shutdown procedures. Productive
UNIX administration relies on extensive use of the Shell‘and all of its facilities.
From the UNIX guru to the simplest user, Shell is the way to help users accom¬
plish their goals. May you spend your time collecting rare and beautiful Shells to
satisfy your every need.

Exercises

1. Write FAQ (frequently asked questions) Internet help desk page(s) for
users of your server.

2. Write the command to send mail to groups of users by extracting their
user IDs from the /etc/group file.

3. Write the command to backup file systems to tape on your system.
(Look up your device types for magnetic tape.)

4. Write the commands to restore files and File systems from tape.
5. Modify the backup command to include all of the disks and file sys¬

tems on your UNIX system.
6. Write the crontab entry to print the accounting reports in /usr/adm/

acct/fiscal on a line printer.
7. Write the crontab entry to validate all of the SCCS files on the system

and send mail of the corrupted files to the system administrator.
8. Write the command to allow users to create news Files in /usr/news.

%

■

1 *

APPENDIX

Reusable Shell
Code

%M% %Y% %I%

Most recent update: JfcG% at %U%

#%z% Function -

#%Z%

@#@ Syntax -

#%Z% General Instructions
#9-79- TT XI Zj XI

#%z% Parameters -

#%Z% Required -
#9-7 9-
Tr x Zj x

#%Z%Optional -

#%Z%

store the flags

while ['echo $1 I cut —f1' =]

do

parm%="${parms) $1" Continued

423

424 ♦ Appendix A

shift

done

case $# in

if they don't give any files, prompt for them

0)

echo ~'enter filename"

read filename

/ i

if they give exactly the right number, do something

1)

filename=$l

if they give a whole bunch, process all of them

2)

filename=“$*"

esac

#describe actual processing

for file in $(filename)

do

process $file

done

APPENDIX

C Language
Prototype

char mainrelI

#include <stdio.h>

♦include <string.h>

maintargc, argv)

int argc;

char **argv;

{

/
*

° o /

**
*

* main program:
*

* program description:
*

* subroutines called or required:
*

* reference: (job definition, etc)

*

* %A%
%

*

***/

425

426 ♦ Appendix B

char *cmdname;

cmdname=argv[0]; /* save pointer to the commandname */

argc--; argv++;

/*

check for control flags

*/

while (argc>l && *argv[l]=='- 1) {

switch(argv[0][1]) {

case 1f1: /* flags */

/* insert -f processing */

break;

default:

fprintf(stderr, "%s: invalid parameter %s\n",

cmdname, *argv);

return(1);

break;

} /* END SWITCH */

argc-; /* decrement the argument counter */

argv++; /* increment the argument pointer */

} /* END WHILE */

while(argc>0){

/•
if the file exists reopen it as standard input

*/

if (freopen(*argv, “r", stdin) == NULL) {

fprintf(stderr,“%s: can't open %s\n“, pgm, *argv)

return(1);

} /* END IF */

} /* END WHILE */

} /* END PROGRAM */

APPENDIX

Makefile Prototype

OBJECTS = main.o sub.o lex.yy.o y.tab.o

LIB = -11 -lm

CFLAGS = -0

BIN=/usr/local/bin

command: $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(LIB) -o command

main.o: command.h main.c

sub.o: command.h sub.c

lex.yy.o: command.h lex.yy.c

lex.yy.c: cobmet.l

lex cobmet.l

Continued

427

PPENDIX C

y.tab.o: command.h

y.tab.c

y.tab.c: command.y

yacc command.y

clean:

rm *.o

install:

cp command $(BIN)

Shell Syntax

Basic Command Syntax

command options arguments

Item Example Description

command grep name of executable command
options -a single letter representing an option

-f filename single letter option requiring an argument
arguments $* pathname or other argument

- stdin

Looping and Decision Syntax

FOR

for variable in wordlist

429

430 ♦ Appendix D

do

done

commandlist

Item Example Description

variable file

wordlist $*

commandlist

for each loop through the commandlist variable is
set to the next word in wordlist

list of words, files, directories to be used as fodder
for the commandlist.

any sequence of Shell commands

WHILE

while comparison

do

commandlist

done

Item Example Description

comparison ($1 = “a”) Test the expression and if there is a zero (good) exit
status, execute commandlist.

commandlist any sequence of Shell commands

BREAK

break n escape from level n for or while loop

CONTINUE

continue n resume next level n for or while loop

EXIT

exit/2

CASE

case variable in

RE) commandlist;;

exit shell with n return code

esac

Item Example Description

variable choice Compare variable to the RE (regular expression), if it
matches commandlist, variable is set to the next
word in wordlist.

Shell Syntax ♦ 431

RE

commandlist

1 I 2 I [7-9] REs (In this example, if $choice is 1, 2, 7, 8, or 9,
then execute commandlist.)

any sequence of Shell commands

IF

if comparison then

commandlist

elif comparison then

commandlist

else

commandlist
ft

Item Example Description

comparison ($1 = “a”) Test the expression and if there is a zero (good) exit
status, execute commandlist.

commandlist any sequence of Shell commands

0
(icommandlist) execute commandlist in a subshell

U
\commandlist-,) execute commandlist

>

; grep “string” file; cat file2 Command Separator

COMMENTS
Everything that follows is a comment

VARIABLES

^{variable) ${file} Variable name

$variable $file

INPUT/OUTPUT REDIRECTION

< input

> output

» append

«delimiter

Open input as stdin

Open output as stdout

Append stdout to append file or device

Read following inputlist as stdin up to delimiter

Appendix D

inputlist

delimiter •

<&digit Link file descriptor digit to stdin

>&Ldigit Link file descriptor digit to stdout

<&- Close stdin

>&- Close stdout

appendix

Shell Built-in
Commands
Reference

This appendix lists the Shell built-in commands along with a brief description of
what each command does. In addition, an example of how to use the command
is provided. The notation used is fairly standard. Anything enclosed in [] is
optional and anything followed by a ... means that the argument can repeat.

: Null Operation

SYNTAX

: [arg ...]

USAGE

This is the null command and performs no action. It always returns a zero return
code. The argument list is optional. If it is included, then any arguments are eval¬
uated by the Shell. If it is not included, then it simply returns the value of true
and can be substituted for the value true.

433

434 ♦ Appendix E

EXAMPLE

while :

will perform the same as a while true statement.

. Execute Shell Commands Contained in a File

SYNTAX

. filename

KSH, Bash: . filename [args ..]

USAGE

The . command causes any Shell commands found in the file to be executed.
The filename can be either an absolute path or a relative path. If it is a relative
path, then the environment variable PATH is used to search for the filename.
The . command does not execute the commands contained in the file as a sub¬
shell and thus variables set or changed while the commands in the file are being
executed are permanent changes to the current environment. This is very use¬
ful when you write a Shell program and wish to have it alter your current envi¬
ronment in some way.

The Korn Shell enhancement allows arguments to be passed to the Shell
named in filename. These arguments are passed in the standard way as
positional parameters, $1, $2, $3, and so forth.

EXAMPLE

The following command

. .profile

will cause your .profile to be executed, and any changes made will have a per¬
manent effect on your current login session. This is a convenient way to have
changes that were made to your .profile active in your current environment with¬
out the need to log in again.

Shell Built-in Commands Reference ♦ 435

alias Create a New Name for a Shell Command

SYNTAX

KSH, Bash: alias [name=[value] ...]

USAGE

Use the alias command as a convenient way to provide different or shorter
names for commands or as a method of providing commonly used options to
commands.

EXAMPLE

If you are an MS-DOS user, you may be familiar with the command “dir” used
to list the contents of a directory in DOS. In order to make a dir command in
the Shell we can use the alias command. The following command does the
trick:

alias dir='ls -Id'

Now if you enter the command

dir

then the Is command is executed with the -Id options.

bg Place Job in the Background for Execution

SYNTAX

KSH, Bash: bg [job ...]

USAGE

The bg command is part of the Korn and Bash Shells’ job-control extension. It
permits jobs to be executed in the background. If no job is provided, then the
current job is placed in the background. In order for a job to be moved to the
background the job must be stopped. To stop a job that is currently executing in
the foreground, the suspend key sequence is issued: This is usually the Ctrl-Z
key combination. Job names can take on various forms and are described in
detail in the “jobs” built-in command later in this reference.

436 ♦ Appendix E

EXAMPLE

jobs # List the jobs that are executing

[1] + Stopped struct

bg %1 # place the program in the background

bind Display Readline Key and Function Bindings or Bind a

Readline Edit Function to a Key Sequence

SYNTAX

Bash: bind [-m keymap] [-lvd] [-q function_name]

bind [-m keymap] -f filename

bind [-m keymap] keyseq:function-name

USAGE

The bind command provides a flexible command-line editing interface when
using the Bash Shell. It allows you to assign readline functions, the Bash Shell’s
command-line editing interface, to any key sequence that you like. In this way
you can completely customize the command-line editing in the Bash Shell. The
command also permits you to see the current readline key bindings. The -m
option is used to specify that the key bindings to be listed or set should be taken
from or affect the given keymap. A keymap is a set of bindings that are used in
certain edit modes. The available keymaps are emacs, emacs-standard, emacs-
meta, emacs-ctlx, vi, vi-move, vi-command, vi-insert.

The first form of the bind command is used to list current bindings. The
following options are available:

-1 List the names of all readline functions

-v List current function names and their associated key bindings

-d Dump function names and bindings so that they can be reused using bind

The -q option is used to query the key binding for the given function name.
The second form of the bind command is used to read the key bindings

from a file named in the -f option. This provides a convenient way to store and
apply alternate key bindings. It should be noted that key bindings can also be
stored in your .inputrc file.

The final form of the bind command is used to actually set a particular func¬
tion to key sequence binding. This takes the form keyseq: function_name, where
keyseq is one of the standard key sequence abbreviations used for an edit mode
and function _name is the name of a readline function (all of which can be listed

Shell Built-in Commands Reference ♦ 437

using the -1 option above). The standard key sequences are described in the Bash
manual pages and also in this book in the section on command-line editing.

EXAMPLE

First we will list the current command to key bindings by using the -v option of
the bind command:

bind -v

abort can be found on "\C-g","\C-x\C-g","\e\C-g".

accept-line can be found on ”\C-j ", 11 \C-m".

arrow-key-prefix is not bound to any keys

backward-char can be found on "\C-b","\eOD“,"\e[D".

backward-delete-char can be found on 11 \C-h", "\C-?".

You can see from this list that each readline function is listed along with any
associated key bindings. If there are no keys bound to a function then it also lets
you know. You can see the arrow-key-prefix command is not bound to any key
sequence. Let’s say that we wanted to bind this function to the key sequence
CTRL-ap. We would also use the bind command to accomplish this:

bind '"\C-ap":arrow-key-prefix'

And now we can list the key bindings once again and see that the arrow-key-
prefix command could be executed by using the CTRL key in conjunction with
the “a” and “p” keys. Now after the bind command we can see that arrow-key-
prefix is bound:

abort can be found on "\C-g“, "\C-x\C-g”, 11 \e\C-g“ .

accept-line can be founef on "\C-j","\C-m".

arrow-key-prefix can be found on “\C-ap".

backward-char can be found on ” \C-b", 11 \eOD”, "\e [D” .

backward-delete-char can be found on "\C-h","\C-?“.

break Escape from a Loop Command

SYNTAX

break [n]

USAGE

The break command is used to exit the enclosing loop or case command. The
loop command can be any of the Shell looping commands: for, while, until, or

438 ♦ Appendix E

select. The command will also exit from a case statement. The next command
executed after a break is the command that follows the enclosing loop(s). The
optional argument n is an integer value that represents the number of levels to
break in the case where loop commands are nested. This is a convenient method
to exit a deeply nested looping structure when some type of error occurs.

EXAMPLE

In the following example, the while loop is set to continue forever. But within the
while loop, a conditional if statement causes a break command to execute,
which exits the loop.

while true # Do the loop until some user id's are

entered

do

echo

echo "You have not provided any user id's."

echo "You must provide a user id(s) 11

echo "you wish to have userfix clear. 11

echo "Enter the user id's separated by a space"

echo "(e.g. tburns freddy guest)"

echo

echo "Enter valid user id's ==> \c"

read USERS

Any user id's entered? If so break the loop

if [”$USERS" ! =]

then

break

fi

done

builtin Execute a Shell Built-in Command Bypassing Any

Functions with the Same Name

SYNTAX

Bash: builtin shell_builtin_command [arguments]

USAGE

The builtin command runs a Bash Shell built-in command (the commands listed
in this appendix), passing it any provided arguments, and returns the result of
running the command. This is used when you wish to access a built-in command
when there is a function defined with that name. This is most often used when

Shell Built-in Commands Reference ♦ 439

redefining a built-in function but you wish to access the Shell built-in function
from within the redefined function.

EXAMPLE

Let’s say that we wanted to redefine the Bash logout function to confirm that log¬
ging off the machine was indeed what we wanted to do. We could write a func¬
tion called logout that would wrap the standard logout function with the
appropriate question. However, if we try to write the function like the following,
we run into problems:

function logout {

echo "Are you sure you want to logout(y/n)"

read answer

if [$answer = ”y"]

then

logout

fi

}

The problem with this function is that we try to reference the logout command
from within our new logout function, which causes a recursive loop with the
logout function calling itself when we answer “y” to the question. Our intention
was to call the builtin command from within the function, but since functions
are evaluated before built-ins, the function ends up calling itself. The builtin
command can be used to fix this problem; this function provides the results we
were trying to achieve, as demonstrated in the following:

function logout {

echo "Are you sure(y/nj-*

read answer

if [$answer = "y"]

then

builtin logout

fi

}

cd Change the Working Directory

SYNTAX

cd [pathname]

cd old rfew

KSH: cd -

440 ♦ Appendix E

USAGE

The cd (change directory) command is used to change the working directory to
some new directory name specified in pathname. If no pathname is specified,
then the default path becomes the path specified in the environment variable
$HOME, which usually specifies your home directory. If an absolute pathname is
provided, then that directory is made the current working directory. An absolute
pathname starts with the /,./,../ characters. If a relative pathname is provided,
then the environment variable $CDPATH is used to search for the pathname.
When a change of directory takes place, the environment variable $PWD is set to
the current working directory.

The second form of the cd command replaces the string “old” with the
string “new” in the current directory name.

The Korn Shell extension provides a mechanism for returning to the most
recently visited directory path. Using a “-” in the place of pathname will
return you to your previous working directory.

EXAMPLE

cd # Return to $HOME directory

cd programs # Change to directory programs

#- If not a subdirectory of current directory

then search CDPATH path for a directory named programs

cd -/programs # Korn Shell: switch to $HOME/programs

cd - # Korn Shell: return to the previous directory

cd /user/john/mailstuff # Go to a fully qualified path

command Execute a Shell Command Bypassing Normal

Shell Function Lookup

SYNTAX

Bash: command [-pVv] command_name [arguments]

USAGE

Execute command in order to run command_name while bypassing function
lookup. Only the commands that are built-in or commands that can be found in

Shell Built-in Commands Reference ♦ 441

the standard PATH are executed. No defined functions are considered. If the
-p option is used, then a standard path is used which ensures finding all stan¬
dard utilities. If the -V or -v option is used, then a description of the com-
mand_name is printed: The -v option prints the pathname used to invoke the
command_name; the -V option provides greater description detail.

EXAMPLE

The Shell built-in command is much like the builtin command discussed previ¬
ously, but is less restrictive. Where the builtin command would consider locat¬
ing only built-in functions to execute, command will simply not consider any
defined aliases or functions when trying to run command_name. Let’s say that
we redefined the logout command with a function that asks for confirmation:

function logout {

echo "Are you sure(y/n)"

read answer

if [$answer = "y"]
then

builtin logout

fi

>

If for some reason we did not want to run this version of logout, but instead
wanted to run the built-in function, we could invoke logout with command as
shown next. This would bypass the function mentioned in the previous example,
run the built-in function logout, and log us off the machine without any prompting.

command logout

COfltlflliC Skip to the Next Iteration of a Loop

SYNTAX

continue [n]

USAGE

The continue command is used to skip to the top of the next iteration of a loop¬
ing statement. Any commands that follow the continue statement but are part of
the enclosing loop command are skipped, and execution continues at the top of
the loop. If an integer value is provided after the continue command, the num¬
ber of enclosing loop levels are skipped.

442 ♦ Appendix E

EXAMPLE
•

This example reads standard input (a redirected file name, for example) and per¬
forms some processing on the input lines. Note that if it is the first line, then pro¬
cessing is skipped.

FIRST=1

while read INPUT

do

if [$FIRST = 1]

then

FIRST=0

continue

fi

CON_NUM='echo $INPUT I cut -c9-14'

echo $CON_NUM

grep "$CON_NUM" /user/list >/dev/null

if [$? = 0]

then

echo " $ INPUT11 » inlist_con

else

echo "$INPUT" » new_con

fi

done

dirs Display the List of Stored Directories on Directory Stack

SYNTAX

Bash: dirs [-1] [+/- n]

USAGE

The dirs command is used to list all the directory names stored on the direc¬
tory stack using the pushd command. Using the list produced by dirs, it is pos¬
sible to move to a listed directory. This can be a great time-saver when moving
between a large number of directory names. See the pushd command for details
on how to move to the listed directory names. The -1 option provides a long list¬
ing of the directory names with the home directory fully qualified. The [+/-] n
option is used to control the display of the listing. The +n begins the list at the
/tth entry from the left of the list when dirs is invoked without the option. The
-n option does the same thing, but starts the list from the /2th entry from the right
of the original list.

Shell Built-in Commands Reference ♦ 443

EXAMPLE

The dirs command displays the directory stack after the pushd command has
been used to place the directory names on the stack. The following is an exam¬
ple of the output from the command. (For more information see the discussion
on the use of the directory stack in Chapter 4.)

$ dirs

~/src /usr/local/bin ~/doc ~

Each of the directories listed is on the stack with the ~/src directory being the top
element. The stack can then be manipulated using pushd and popd.

echo Write Arguments to the Standard Output

SYNTAX

echo [arg ..]

Bash: echo [-neE] [arg...]

USAGE

The echo command is used to write strings and Shell variables to the standard
output (usually your terminal). This is very useful for producing messages to the
screen when writing Shell programs and for examining the value of Shell vari¬
ables stored in your environment.

***■

Bash
The Bash Shell version of the echo command provides several options.

-n any trailing newline is suppressed from the output

-e enable interpretation of backslash escaped characters

-E disables interpretation of backslash escaped characters

EXAMPLE

A very common use for the echo command is to see the value of a Shell variable
in your current environment. If we wanted to see the value of our home directory
path, we could enter the following command at the prompt:

444 ♦ Appendix E

echo $HOME

/usr/tburns

You can see that the Shell responds by returning the value of the variable

enable

$HOME to the terminal. Any text which is not a variable is reproduced on the
screen directly. We could enhance the previous example by typing the following:

echo My home directory is $HOME

My home directory is /usr/tburns

In this example, each word is considered an argument to the echo command and
is echoed to the terminal. The arguments may be enclosed in quotes, which
allows for the interpretation of the special formatting escape sequences such as
\b, \c, \f, \n, \r, \v, W, and \n, where n is octal code for some ASCII character.

The last example could be enhanced so that the terminal skips to the next
new-line (nice for skipping lines in output) by embedding a \n in the command:

echo "My home directory is $HOME \n"

My home directory is /usr/tburns

Enable or Disable Shell Built-in Commands

SYNTAX

Bash: enable [—n] [-all] [command_name]

USAGE

Use the enable command to enable or disable Bash Shell built-in commands. This
allows a UNIX command, with the same name as a Shell built-in, to be executed
without specifying the full pathname. The -n option disables the built-in com¬
mand listed as command_name. If -n is not specified, then the named com-
mand_name is enabled. If no options are given, then a list of all the enabled Shell
built-ins is provided. If only the -n option is given with no command_name, then
a list of all disabled built-ins is provided. If the -all option is given, then a list of
all built-ins is given with an indication as to whether they are enabled or disabled.

EXAMPLE

To disable the directory stack functions dirs, pushd, and popd, the following
command would be entered:

$ enable -n dirs pushd popd

$ enable -all Continued

Shell Built-in Commands Reference ♦ 445

evcd

enable .

enable :

enable [

enable alias

enable bg

enable bind

enable break

enable builtin

enable cd

enable command

enable continue

enable declare

enable -n dirs

enable echo

enable enable

enable eval

enable exec

enable exit

enable export

enable fc

enable fg

enable getopts

enable hash

enable help

enable history

enable jobs

enable kill

enable let

enable local

enable logout

enable -n popd

enable -n pushd

enable pwd

As you can see the dirs, pushd, and popd commands are disabled and cannot be
accessed unless they are enabled. This would allow us to build local commands
with the same names.

Evaluate Arguments as Input to the Shell and Execute

SYNTAX

eval [command_line]

USAGE

The eval command evaluates the command line to complete any Shell substitu¬
tions necessary and then executes the command line. This is most often needed

446 ♦ Appendix E

when a single pass of Shell substitution does not complete all needed expan¬
sions. Often this arises when a Shell command, is constructed in a Shell variable
(a very flexible and powerful technique in Shell programming). When this con¬
structed command contains variables that must be expanded, the eval command
does the trick. The following example should make this clear:

EXAMPLE

OUTPUT="macfact > macfactout"

eval cat $OUTPUT

In this example the information in the file macfact is placed in the file macfactout
as was the intended result. However, if we remove the eval from the cat line,
then cat will get confused looking at each argument in OUTPUT as a file. When
looking for a file named “>” an error will be produced as shown:

cat: cannot open>

6XCC Run Specified Command without a New Process

SYNTAX

exec [command_line]

USAGE

The exec command is used to run the specified command without starting
another subshell process. This is efficient since no new UNIX process is created
and the existing environment is replaced. This aids in the removal of subshells
that no longer need to be maintained by the system. These subshells are created
each time a command (which is not a built-in command) is executed from the
Shell.

EXAMPLE

Let’s say that we have some users on our system that do nothing but execute an
application program called PIGGY. To accomplish this we run PIGGY directly from
the users .profile as the last command. But in order for PIGGY to run correctly some
environment variables must be set and exported. Once we have done this, we are
done with the current Shell and no longer need it. Instead of just running PIGGY
directly at the end of the .profile—which would create a new subshell process—we
exec PIGGY, replacing the current log on Shell with PIGGY. This allows each user to
have only a single process instead of two, which saves system resources.

$ cat .profile

Shell Built-in Commands Reference ♦ 447

HOUSEl=straw

H0USE2=sticks

H0USE3=brick

WOLF=bad

export H0USE1 H0USE2 H0USE3 WOLF

PIGGY

This .profile would create two processes, one for the .profile Shell and one for the
PIGGY program.

But the following would create only a single-user process at login through
the use of the exec command.

$ cat .profile

HOUSEl=straw

HOUSE2=sticks

HOUSE3=brick

WOLF=bad

export HOUSE1 HOUSE2 HOUSE3 WOLF

$ cat .profile

HOUSEl=straw

HOUSE2=sticks

H0USE3=brick

WOLF=bad

export HOUSE1 HOUSE2 HOUSE3 WOLF

PIGGY

exec PIGGY

CXlt Exit from Current Shell and Return Exit Status

SYNTAX

exit [n]

USAGE

The exit command is used to exit the currently running Shell. If the exit com¬
mand contains an integer value n, then n is returned as the exit value from that
Shell. If no value is provided for n, the exit value of the last command is
returned. It should be noted that if you perform an exit command and the only

448 ♦ Appendix E

Shell running is your login Shell, then you are returned to the login prompt,
which effectively logs you off the system. If a Shell program does not have an
exit command, then the end of file has the same effect as exiting without a value
supplied for n.

EXAMPLE

Our goal in this example is to write a Shell script that will tell users to log off the
system. We could write a Shell script that checks to see if anyone is logged onto
the system. If this is the case, then the Shell returns an exit value which indicates
this condition and our parent Shell can then issue an appropriate message to all
users on the system. It might look something like this:

$ cat parent

if ['anyone' = 1]

then

broadcast "LOG OFF NOW EARTH SCUM OR DIE! UNIX GOD";

exit 1

else

exit 0

fi

$cat anyone

if [1 who 1 wc -1' >1]

then

exit 1

else

exit 0

fi

export Add Variables to the Global Environment

SYNTAX

export [variable_name]

Bash: export [-nfp] [variable_name]

USAGE

The export command is used to make Shell variables, or functions in the case of
the Bash Shell, available to all subshells. Exporting a variable is a method of
making a variable defined in the current Shell global so that all subshells will
have access to the variable. In reality the variable is copied to the subshell envi¬
ronment. If a variable is not exported then the variable is local to the current

Shell Built-in Commands Reference ♦ 449

Shell. It should be noted that it is not possible for a subshell to alter the value of
a variable in a parent Shell even when it is exported. This is because the exported
variable is copied and upon returning to the parent Shell that copy is destroyed,
thus returning to the original value in the parent Shell.

The Bash Shell provides several options to the export command. The -p
option specifies that the Shell list all exported variables. The -n option removes
the exported property from a variable. And finally the -f option is used to indi¬
cate that the variable_name is actually the name of a function.

EXAMPLE

Let’s say that we have a few Shell programs, setl, set2, set3.

$ cat setl

SHAPE=round

COLOR =red

#make shape global

export SHAPE

Now if we execute setl and check the value of SHAPE and COLOR, here is what
we get:

$setl

$echo $SHAPE

round

$echo $COLOR

$

As you can see, only shape was made available to our log on Shell since it was
the variable that was exported. Once the shell setl finished running, its envi¬
ronment was removed and thus all local variables destroyed.

Now lets look at a variation:

$cat set2

SHAPE=round

COLOR =red

#make shape color global

export SHAPE COLOR

echo "Before set3 SHAPE = $SHAPE, COLOR= $COLOR”

set3

echo “After return from set3 SHAPE = $SHAPE, COLOR= $COLOR"

450 ♦ Appendix E

You can see that set2 calls set3. Let’s see what set3 does:

$cat set3

echo $SHAPE $COLOR

SHAPE=sguare

COLOR=blue

export SHAPE COLOR

echo "After export in set3 SHAPE = $SHAPE, COLOR=$COLOR"

Now when we run set2 we get the following output:

$set2

Before set3 SHAPE=round,COLOR=red

After export in set3 SHAPE=square,COLOR=blue

After return form set3 SHAPE=round, COLOR=red

This demonstrates the fact that exported variables are passed to subshells as
copies (passed by value) and that a subshell cannot change a value in a parent
Shell even when using the export command. However, if another Shell had been
called from set3—perhaps set4—it would have had the values of square and blue
placed in its environment.

Reexecute a Command on the History Stack

SYNTAX

KSH, Bash: fc [-e editor] [-nlr] [first_line] [last_line]

fc -e - [old=new] [line]

USAGE

The fc command allows previously executed commands, stored in the command
history file, to be edited and reexecuted via an editor. Editing and listing com¬
mands are accomplished by the first form of the command. Each command is
stored in the history file and has an associated line number that is used to access
the command directly via the fc command. Use the -1 option to list the last 16
commands entered into the file along with their associated line numbers. It is
also possible to access the commands in the history file by specifying a relative
line number or a command name that is used to search the stack. Use the -e
option to specify an editor to edit and reexecute a particular command. A default
editor can be specified by using the Shell environment variable FCEDIT. The
meaning of the options for the first form of the command are as follows:

Shell Built-in Commands Reference ♦ 451

-n no number in listing

-1 list the contents of command file; don’t edit and execute
-r reverse the listing order

To reexecute commands directly, without editing, use the second form of
the command, fc -e-, which tells fc that you do not want to use an editor but
instead want to directly reexecute the command. The Korn Shell alias r provides
direct reexecution of the last command entered.

EXAMPLE

fc -1 # list the last 16 lines in the history file

fc 6426 # edit line number 6426 using editor

specified in FCEDIT and reexecute

fc -e emacs -4 #edit and execute the command in position -4

(4th previous command)

fc -e - 6426 #reexecute command line number 6426

Move a Job to the Foreground

SYNTAX

KSH, Bash: fg [job_name]

USAGE

The fg command is part of the Korn and Bash Shells’ job-control extension. This
command is used to move a job that is stopped or executing in the background
to the foreground. Job names can take on various forms and are described in
detail in the “jobs” built-in command later in this reference. The stopped or
background job becomes the foreground job, and will continue to execute in the
foreground unless it is stopped again using a Ctrl-Z. If no job name is given, the
last stopped job is used to bring to the foreground.

EXAMPLE

fg %2 # bring the job numbered 2 into the foreground

fg 23456 # bring the process id(pid) number 23456 into the

foreground

fg # current job into the foreground

getopts Parse the Argument List Passed to a Shell Program

SYNTAX

KSH, Bash: getopts options_str opt_variable [args ..]

USAGE

Used to parse argument lists passed to a Shell in a standard manner. This is the
Korn and Bash Shell version of the getopt command. This new version should
be used in place of the UNIX getopt command wherever possible. This new ver¬
sion is more powerful and also functions as a built-in command instead of a
UNIX call.

EXAMPLE

USAGE="showopts [-q] quit mode [-v] verbose mode(default) [-h]

help -f filename"

while getopts :qvf: h WHICH_OPTION

do

case $WHICH_OPTION in

q) echo "You selected $WHICH_OPTION“

echo "indicating shell is in quit mode"

echo "No messages will be displayed"

Q_M0DE=1;;

v) echo "You selected $WHICH_OPTION"

echo "indicating shell is in verbose mode"

echo "All messages will be displayed"

V_M0DE=1;;

f) echo " You selected to work with file named $OPTARG“;;

h) echo "You selected the help option"

echo "The format of this command is $USAGE"

exit(-1);;

?) echo "$USAGE"

exit(-1);;

esac

done

if ([Q_MODE -eq 1] && [V_MODE -eq 1])

then

echo "Quit mode and verbose mode are exclusive of each other;”

echo "pick one or the other"

exit(-1)

fi

Now if we enter the following command, let’s see what happens:

Shell Built-in Commands Reference ♦ 453

showopts -g -f FRED

You selected the option q indicating shell is in quit mode

No messages will be displayed during shell execution

You selected to work with file named FRED

hash Control Command Hashing

SYNTAX

hash t -r] name..

USAGE

The hash command is used to control the internal hash table used by the Shell
to increase performance. Each time you enter a command, it is stored in the
hash table to improve efficiency. The Shell uses the hash table to locate com¬
mands you have already used. By doing so it saves on searches of the PATH
you have defined. These PATH searches can be very costly since they require
disk access. You can control what is in that table by adding entries to it
or removing entries from it. To add a command to the hash table, give the
command:

hash command_name

To remove a command from the hash table, use the command:

hash -r command_name

To view a list of what is in the hash table, enter the hash command alone with
no other options.

It should be noted that the Korn Shell does not utilize the hash table.
Command tracking is instead implemented using tracked aliases. The hash
command is actually aliased to the alias command itself in conjunction
with the -t option. You can see this by typing alias to see a list of all aliased
commands for your session. For more information on tracked aliases
please see the section on alias.

►_____

454 ♦ Appendix E

EXAMPLE

Let’s say that we have a Shell command that resets our modem so that it will be
in autoanswer mode. This Shell is called, surprisingly enough, reset. We will be
using reset often so we want to hash the command. If we enter the hash com¬
mand with no arguments we see something like this:

hash

hits cost command

1 2 /usr/bin/pg

3 1 /bin/ls

1* 7 ./junk

This shows all the commands that have been placed into the hash table so far,
along with the number of times the hash table has been used to locate the com¬
mand (hits) and a relative cost of looking up and executing the command. Now
let’s say we want to add reset:

hash reset

hash

hits cost command

0* 7 ./reset

1 2 /usr/bin/pg

3 1 /bin/ls

1* 7 ./j unk

You can see that the reset cc
command will be found in the hash table each time it is executed. To remove it
from the hash table, enter:

hash -r reset

help Print Help Information on Shell Built-in Commands

SYNTAX

Bash: help [builtin_command_name I pattern]

USAGE

Use the help command to list help information about the Shell built-in command
listed. If no command name is given then a list of all the Shell built-in commands

■

Shell Built-in Commands Reference ♦ 455

is provided. It is also possible to provide a pattern to the help command, in which
case help information is provided for all commands that match the pattern pro¬
vided.

EXAMPLE

The following shows an example of running the help command for the pushd
built-in Bash function.

$ help pushd

pushd: pushd [dir I +n I -n]

Adds a directory to the top of the directory stack, or rotates

the stack, making the new top of the stack the current working

directory. With no arguments, exchanges the top two

directories.

+n Rotates the stack so that the Nth directory (counting

from the left of the list shown by 'dirs') is at the top.

-n Rotates the stack so that the Nth directory (counting

from the right) is at the top.

dir adds DIR to the directory stack at the top, making it the

new current working directory.

You can see the directory stack with the ‘dirs’ command.

history Display the Command History File

SYNTAX

Bash: history [num_of_lines]

history -rwan [filename]

USAGE

The history command is used to display all commands stored in the command
history file. The previously entered commands are displayed as a numbered list.
If the argument num_of_lines is supplied, then only the last num_of_lines is
listed. If filename argument is provided, then it is assumed to be the name of the
file containing the list of previously entered commands. Otherwise, the file is
assumed to be the file named in the environment variable HISTFILE (default is
.bash_history). The history command accepts the following options:

-a Append any new history lines to the history file. New history lines are any
lines entered since the start of the current Bash session.

456 ♦ Appendix E

-n Read any unread lines from the history file and append them to the cur¬
rent list of history commands stored in memory.

-r Read the contents of the history file and use them as the current history
list.

-w Write the current history list to the history file.

EXAMPLE

$ history

513 mcopy enable.1 a:

514 su

515 history

516 history I more

517 history 500

518 history 200

519 help local

520 history 500

521 history 500 > history.1

This is a numbered list of all entries in the history file specified by the environ¬
ment variable $H1STFILE.

jobs List Stopped and Background Jobs

SYNTAX

KSH: jobs [-Ip]

:Bash: jobs [-lnp] [job_id]

jobs -x command [args]

USAGE

The jobs command is used to display the stopped and background jobs that are
currently active for your session. The list produced is used to manage the jobs
using the other Shell job management commands (bg, fg, kill). By using this list
you can tell the Shell which job to work with when using the other commands.
The two options control how the display is sent to your screen. The -1 option tells
the jobs command to list UNIX process-id numbers. These are numbers used by
UNIX to keep track of your running programs. This is in addition to the other job
information that is provided. The -p option just prints the process-id of all jobs
and no other information. This is much like the UNIX ps command. In addition,
the jobs command indicates the state of the job. It will list whether the job is run¬
ning, stopped, or done. The job name in Shell job processing can take on several
various forms that are outlined in the table that follows.

Shell Built-in Commands Reference

In addition to the option listed above, the Bash Shell provides several
other options which can be used with the jobs command. The -n option lists
only jobs that have had a change of status since the last notification of
job status. Another feature provided by the Bash Shell is the ability to pro¬
vide a particular job_id to the jobs command and get information just
about that particular job_id. Finally, the -x option allows you to execute a
command where the jobjd listed in command is replaced by that job’s pro¬
cess ID.

Shell Job Identifiers

Job identifier What it represents

number The UNIX process id
% number Job control number printed by jobs command
%+ Current job
%- Previous job

EXAMPLE

jobs

[1] + Stopped

[2] - Stopped

[3] Running

[4] Done

emacs tester.c

zap

counter

magic

Send a Signal to a Job

SYNTAX

KSH, Bash: kill [-signal] job

KSH, Bash: kill -1

USAGE

The kill command is used to send a specified signal to a job. The signal can be
either the name of any of the signals used in UNIX or it can be the correspond¬
ing number which is related to the signal. The available signals and their related
numbers are shown in the following table:

458 ♦ Appendix E

Table of UNIX Signals

Signal Name Signal Number Signal Description

SIGHUP 01 hangup (user disconnects in some way)
SIGINT 02 interrupt (user hits DEL key on keyboard)
SIGQUIT 03 quit (user hits Ctrl - \ on most keyboards)

SIGILL 04 illegal instruction (not reset when caught)
SIGTRAP 05 trace trap (not reset when caught)
SIGABRT 06 ABORT instruction
SIGEMT 07 EMT instruction

SIGFPE 09 kill (cannot be caught or ignored)

SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket
SIGSTOP 17 stop (cannot be caught or ignored)
SIGTSTP 18 stop signal generated from keyboard
SIGCONT 19 continue after stop
SIGTSTP 20 child status has changed
SIGTTIN 21 background read attempted from control terminal
SIGIO 23 I/O is possible on a descriptor
SIGXCPU 24 CPU time limit exceeded
SIGXFSZ 25 file-size limit exceeded
SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling timer alarm
SIGUSR1 28 user-defined signal 1
SIGUSR2 29 user-defined signal 2
SIGPWR 30 power fail
SIGPOLL 31 selectable event pending

This list is a typical list of signals or system interrupts. While it would be possi¬
ble to send a job or process any of these signals, it is typical to send those that
are outlined with a border. Many of the other signals are used by the system to
communicate with executing processes. The way that any particular program or
Shell responds to a received signal varies. Some processes may ignore a signal,
whereas others may try to perform some action and exit gracefully. For this rea¬
son the sending of signals should be done very cautiously since a program may
not respond in a desired manner. The only signal that cannot be ignored by a
program is the KILL(-9). This is a sure kill and will not allow the executing pro¬
cess to exit gracefully. IT SHOULD BE USED WITH CAUTION AND ONLY WHEN
NO OTHER SIGNALS KILL THE PROCESS IN A GRACEFUL MANNER. Some
programs do not like being killed with KILL(-9) and doing so can cause prob¬
lems. The other common signals TERM(-15), HUP(-l), INT(-2), and QUIT(-3)

Shell Built-in Commands Reference ♦ 459

are much friendlier ways to kill a process and most Shells, including any you
write, should handle them in some graceful manner.

If no signal is specified then the TERM signal is sent to the job. The job
name can be any of the job names described in the job’s built-in command.

With the second form of the command, using the -1 option, a list of all avail¬
able signals is presented.

EXAMPLE

Let’s say we stopped our emacs edit session using the ~ Z command. We would
see the following:

[1] + Stopped emacs

jobs -1

[1] + 6362 Stopped emacs

kill %1

jobs -1

[1] + 6362 Terminated emacs

So you can see that the emacs edit job was sent the default TERM signal and that
emacs terminated after receiving the signal. It would also have been possible to
perform the same kill by providing the following command:

kill -15 6362

This says to send a -15(TERM) signal to the process ID 6362. Or if the job was
very stubborn and seemed to be ignoring all signals, we could send the kill com¬
mand as the last resort.

kill -KILL +%

jobs -1

[1] + 6484 Killed emacs

let Evaluate an Arithmetic Statement

SYNTAX

KSH, Bash: let expr..

USAGE

The let command forces evaluation of an arithmetic expression when using the
Korn or Bash Shell. The expr can be any valid numeric expression (s) as defined

Appendix E

by the Shell. If the expression has any special Shell characters then it must be
enclosed in quotes. The shell command ((..)) in Korn or $((..)) in Bash is equiv¬
alent to let “expr”.

An advantage of using the let command is that since it is a Shell built-in,
it executes much faster than the expr command. It also has the advantage that,
when using Korn or Bash Shells, it recognizes whether the assignment is being
done to an integer variable or a string variable. If it is an integer variable, the
let command performs integer arithmetic; otherwise, it converts the variables
to strings as needed. The let command always regards the expression passed as
a numeric expression unlike the expr command. This is convenient since it
removes the need to place a $ in front of variables. The let command recognizes
only numbers, variables, and arithmetic operators.

The expression does not need to be an assignment statement. The let com¬
mand returns an exit value which indicates whether the last expression evalu¬
ated to a nonzero number or a one otherwise. This allows the let command to be
used in conjunction with an if statement and makes a more natural arithmetic
statement than what is usually created with the test statement.

Example

n=l

let "n = n+1"

This statement adds one to the number n. Note that the n on the right-hand side
of the assignment did not require a $n.

a=5

x=5

n=l

let "n = n +1" "q = (a+5 + (x *100))"

print $n $q

2 510

Note the use of parentheses in the last statement, which contains two numeric
expressions.

i=9

if ((i < 10))

then

print Yes it is

fi

In this statement, the let command is used in the form ((..)) and is used to test
an arithmetic expression. Notice that it is much easier to write and understand
than the following test command:

Shell Built-in Commands Reference ♦

if t "$i" -It 10]

then

fi

local Create a Local Variable for Use in a Function

SYNTAX

Bash: local [var_name [=value] ...]

USAGE

The local command is used to create a local variable within a function. For each
varjname given, a local variable is created and if a value is provided then that
value is assigned to the newly created variable. The command can be used only
within a function with the scope of the created variable being limited to the func¬
tion in which the command is used.

EXAMPLE

If the local command is not used within a function, then any variables set
become accessible to the Shell that invoked the function. If we source the fol¬
lowing function into our current Shell and run the function, the variable $MSG
becomes available in our environment.

function movedata {

MSG=”Are you sure you want move production data to backup (y/n) 11

echo $MSG

read answer

if [$answer = "y"]

then

cp ~/prod/*.data -/backup/

fi

}
$ movedata # Run the function

The function runs

$ echo $MSG # Can we see msg ?

Are you sure you want move production data to backup(y/n)

$ # Yes we can see the value of $MSG

So, you can see that after running the function, the variable $MSG is set in the
calling environment; but if we define the same function with the MSG variable
being local, then the results are different.

462 ♦ Appendix E

logout

function movedata {

local MSG="Are you sure you want move production data (y/n)"

echo $MSG

read answer

if [$answer = "y"]
then

cp ~/prod/*.data ~/backup/

fi

}
$ movedata # Run the function

The function runs

$ echo $MSG # Can we see msg ?

$ # No we cannot see the value of $MSG

When the variable is defined as local, then the value of that variable is available
only to the function in which it is defined and any subshells that function starts.

Exit a Login Shell

SYNTAX

Bash: logout

USAGE

The logout command is used to exit the login Shell. It is equivalent to issuing the
exit command from the login Shell.

EXAMPLE

$ logout

This command will allow your exit from the login Shell.

newgrp Switch to a New UNIX Group

SYNTAX

newgrp [-] [group_name]

USAGE

The newgrp command is used to switch to a new UNIX group in order to alter a
user’s access to UNIX files. In order to switch to a new UNIX group, the user’s

Shell Built-in Commands Reference ♦ 463

login ID must be listed as a part of that group (/etc/group). If no group name is
provided then the user is switched to his or her default group as defined in the
/etc/passwd file entry for that user.

When a user issues the Korn Shell built-in command “newgrp” it is like
executing the UNIX command:

exec newgrp group_name

The user’s current Shell is replaced with a new Shell that has the real and effec¬
tive group identifier set to the group listed in group_name. If the group is not
found, then the Shell is still replaced and the group remains the same. Please
note that any variables that are not exported will be lost as when you exec any
command.

If the first argument to newgrp is a -, the environment is altered to look
just as if the user had logged in under that group ID. This includes the resetting
of environment variables and the reexecution of .profile.

The user is prompted for a password if the group has a password and the
user does not, or if the group has a password and the user is not in the group
indicated in groupjname. To be a group member, the user must be listed in
/etc/group as being a member of that group.

EXAMPLE

id

uid=413 (tburns) gid=400(progmrs)

newgrp general

id

uid=413(tburns) gid=600(general)

This command sequence shows that tburns was a member of group progmrs
before the newgrp command was issued to switch to the group general.

popd Remove Stored Directories from the Directory Stack

SYNTAX

Bash: popd [+/-n]

USAGE

The popd command is used to remove directory entries from the directory stack
stored within Bash. The directory stack is a list of all previously visited directo¬
ries. This stack can be used to move quickly between directories without retyp-

464 ♦ Appendix E

ing long directory names. The popd command helps manage the stack and is
used in conjunction with the pushd and dirs commands, which also help man¬
age the directory stack.

EXAMPLE

The following pushd commands place directories on the stack.

$ pushd doc

~/doc

$ pushd ~/src

~/src ~/doc ~

$ pushd /usr/local/bin

/usr/local/bin ~/src ~/doc ~

To remove the directories from the stack the popd command can be used.

$ popd

~/src ~/doc ~

This popd command removed the top element of the stack.

$ popd +1

~/src ~

This last popd command removed the ~/doc directory name from the stack as it
was in the +1 position from the right (starting the numbering from 0).

print Print Arguments on Standard Output

SYNTAX

KSH:

print [-Rnprsu[n]] [arg ...]

USAGE

The print command is the Korn Shell output command that is used in place of the
Bourne Shell echo command. The print command can perform just as the echo
command does, simply by using no command options, or it can support extended
functionality through the use of the command options. The print command
mainly provides more flexibility in formatting and direction of Shell output as
outlined here:

Shell Built-in Commands Reference ♦ 465

Option Description

-R Places the print command which specifies that all escape sequences
are to be ignored. The escape sequences are \t(tab), \n(newline), and
\c (escaped special char) are ignored as special and are printed. All
command line options that follow the -R, except for the -n option,
are ignored.

-n Do not place a newline character at the end of the output.

-p Write output to process spawned with l& instead of standard
output.

-r Raw mode just as -R but no other command line options are recog¬
nized.

-s Write the output to the history file.

-u Write the output to the file descriptor specified with number (one
digit only). Default is 1.

EXAMPLE

print HELLO CRUEL WORLD

HELLO CRUEL WORLD

STRING1="I am not who I appear to be\n \tJust as expected!

print -r $STRING1

I am not who I appear to be\n \tJust as expected!

print $STRING1

I am not who I appear to be

Just as expected!

STRING2="THE MAN IN THE MOON"

STRING3="\027 EATS GREEN CHEESE!"

print $STRING2; print $STRING3

THE MAN IN THE MOON

EATS GREEN CHEESE!

print -n $STRING2; print $STRING3

THE MAN IN THE MOON EATS GREEN CHEESE!

piislul Adds Entries to the Directory Stack

SYNTAX

Bash: pu3hd [dir_name]

pushd [+/-n]

466 ♦ Appendix E

USAGE
■

The pushd command is used to add directory names to the directory stack in the
Bash Shell as well as move to a particular entry in the stack. In order to add an
entry to the stack, the first form of the command is used where a dir_name is
provided. When used in this way, the pushd command exchanges directory to
the dir_name given and adds that directory name to the top of the stack. If this
is successful then the pushd command performs a dirs command and lists the
current directory stack.

The second form of the command is used to change directory to one of the
stack elements. In the simplest form, no arguments are given and the two top
stack elements are swapped with the second element moving to the top of stack.
Whenever an element is moved to the top of the stack, it is made the current
directory via the cd command and a dirs command is performed. By providing a
positive or negative numeric argument to pushd any stack element can be made
the top element of the stack. This directory is also made the current working
directory. The numeric arguments correspond to the position of the directory
name in the stack. Specifically the following is true:

+n rotates the stack so the /?th element counting from the left (as listed with
the dirs command) and starting with zero is made the top of the stack.
This directory is also made the current working directory.

-n rotates the stack so the /tth element counting from the right (as listed with
the dirs command) and starting with zero is made the top of the stack.
This directory is also made the current working directory.

EXAMPLE

The following shows the results of pushing several directories onto the stack
using the pushd command:

$ pushd doc

~/doc ~

$ pushd ~/src

~/src ~/doc ~

$ pushd /usr/local/bin

/usr/local/bin ~/src ~/doc ~

Once these directories are on the stack, it is possible to move to any of them by
using the pushd command as well.

$ pushd +3

~ ~/src /usr/local/bin ~/doc

This command moved to my home directory (represented by ~) and moved that
directory to the top of the stack. (See Chapter 4 for a full discussion of the dirs,
pushd and popd commands.)

Shell Built-in Commands Reference ♦ 467

Display the Current Working Directory

SYNTAX

USAGE

The pwd command shows the current directory in which you are working. The
pathname printed is the full pathname.

EXAMPLE

pwd

/usr/tburns

KSH,Bash

When using the Korn or Bash Shell the pwd command is often used in the
primary prompt string (PS1) to show your current working directory as
part of your prompt. This way you are always aware of your current work¬
ing directory. Very convenient!

PS1='${PWD}: '

export PS1

Now when you change directories your prompt will contain whatever your work¬
ing directory is. For example:

/usr/tburns: pwd

/usr/tburns

/usr/tburns: cd src

. /src

/usr/tburns/src: cd rules

/usr/tburns/csrc/rules

/usr/tburns/csrc/rules: cd

/usr/tburns:

read Read an Input Line From a File and Parse

SYNTAX

read [name ...]

KSH: read'[-prsu[n]] [name ? prompt] [name ...]

Bash: read [-r] [name ...]

468 ♦ Appendix E

USAGE
•

The read command is used to obtain input from a file. In the case of the Bourne
Shell, the file read is the standard input. In the case of the Korn Shell the file can
be, in addition to standard input, a pipe created with l& or a file descriptor. The
line read from the file—whatever that file happens to be—is parsed using the IFS
environment variable as a delimiter. Using this delimiter, the first field is sent to
the first name, the second field to the second name, and so forth. Leftover fields
are sent to the last name. In this case a name represents a Shell variable. If all
goes well then the read command returns a zero. If the end of file is reached then
a nonzero return code is issued.

KSH

As was mentioned previously the file read can be other than standard input
when the Korn Shell is being used.

The following options control the file being accessed.

-p Read from the input pipe of a process spawned using l&. If an
end of file is read then the spawned process is cleaned up so
that another can be spawned.

-u[n] Read from the file associated with file descriptor n. If n is not
supplied then 0 is used.

As well as being able to control what file is being read, the Korn Shell also
provides some options for being able to control how the input line is read
and where to place the input if no name is provided.

-r Raw mode - this implies that a \ at the end of the line does not
signify a line continuation.

-s Save the line read as a command on the history stack.

If no name variable is provided then the Korn Shell uses the default vari¬
able named REPLY (very handy). If the first variable name is followed by a
? then the text to the right of the ? is used as a prompt when entering the
data interactively.

Bash

Bash reads from the standard input and performs assignment in the same
manner as the Korn Shell. It supports the -r option for raw mode in the
same manner as the Korn Shell but does not support reading from other file
types. The default variable REPLY is also supported as in the Korn Shell.

Shell Built-in Commands Reference ♦ 469

EXAMPLE

echo $IFS

read JUNK?"What would you like master? "

What would you like master? FOOD PLEASE

echo $JUNK

FOOD PLEASE

In this example, the full string is assigned to the variable JUNK, even with the IFS
variable set to a space because there is only a single variable. Let’s try it a dif¬
ferent way:

read JUNK?"What would you like master? " STUFF

What would you like master? FOOD PLEASE

print $ JUNK

FOOD

print $STUFF

PLEASE

As you can see the line is parsed into the two variables JUNK and STUFF.
A file can also be read by redirecting standard input to the Shell:

shellpgm < filename

And shellpgm can then contain a while loop that is used to read the input fields:

while read fieldl field2 field3

do

process input line

done

Prevent Variables from Being Changed

SYNTAX

readonly [variable_name ...]

Bash: readonly [-f] [name ...

readonly -p

USAGE

The readonly command is used to specify variables that should not be allowed
to change. Once a variable_name has been specified in a readonly statement,

470 ♦ Appendix E

the variable is unalterable. Any attempts to change that variable will cause an
error message to be generated. When using the Bourne Shell, once a variable
has been declared as readonly it is not possible to make the variable modifi¬
able again. Note that variable names are used without the $. This is because
we are assigning an attribute to the variable itself and not the value the vari¬
able contains.

Korn, Bash

The Korn and Bash Shells do provide a few nice enhancements to the read¬
only typing of variables. First, it is possible to assign a value to a variable
when you declare it as readonly. This cannot be done when using the
Bourne Shell. Second, it is possible to change the variable back to being
modifiable again. This can be done by using the typeset command.

The Bash Shell provides a few other extensions to the readonly com¬
mand. The -f option is used to supply the name of a function to the read¬
only command. If no argument is supplied or the -p option is given then
the Bash Shell prints a list of all readonly variables.

EXAMPLE

First let’s set a variable and declare it as readonly. Then if we try to change the
value, the resulting messages are shown-.

readonly TEST_MACHINE="explorer"

TEST_MACHINE="stargazer"

ksh: TEST_MACHINE: is read only

unset TEST_MACHINE

ksh: TEST_MACHINE: is read only

Now let’s try and make the variable modifiable again using the typeset com¬
mand. The +r option tells the Korn or Bash Shell to turn off read only mode on
the named variable (please see the typeset command for details):

typeset +r TEST_MACHINE

TEST_MACHINE="stargazer"

print $TEST_MACHINE

stargazer

Now let’s switch to the Bourne Shell and try the same thing. The error mes¬
sage shows that we are not able to assign a value to a variable when we de
clare it.

Shell Built-in Commands Reference ♦ 471

sh

readonly TEST=1

TEST=1: is not an identifier

In order to accomplish this assignment in Bourne Shell, we must assign and then
declare it as readonly.

VCtVUfTi Return from a Shell Function and Assign a Return Code

SYNTAX

return [n]

USAGE

The return command is used with Shell functions. It will return from a function
to the point where that function was called. The Shell continues execution from
that point. The optional value, n, is returned as the value of that function. If you
do not specify n, then the return value of the function is the value of the last
command. If return is not used in a function then it behaves the same as the exit
command.

EXAMPLE

Let’s define a function that returns a value 1 if the TEST_MACHINE variable is
“stargazer” and 0 otherwise. Then we can check the return value from the func¬
tion by using the $? variable.

echo $TEST_MACHINE

stargazer

mach_test() { if ["$TEST_MACHINE" = "stargazer"]

then

return 1;

else

return 0;

fi

}

mach_test

echo $?

1

The mach_test function could be called from another within a Shell script and the
return would cause execution to begin at the statement following the call to
mach_test.

472 ♦ Appendix E

SCt Change the Shell Invocation Options and Arguments

SYNTAX

set [-+aefhkntuvx [arg ...]]

KSH: set t-+aCefhkmnopstuvx] [+o option]...[+A name] [arg...]

Bash: set [-+abeffhkmnptuvxldCHP] [-o option] [arg...]

USAGE

The set command is used to turn on and off the various Shell control options and
to change the values of any arguments passed to the Shell when it was invoked.
This is very useful when you wish to alter the behavior of the Shell dynamically.
To make an option active you use the to make the option inactive you use the
+. The current list of active options can be viewed by looking at the value of the
variable $-. A list of the various options and the functionality they control within
the Shell is listed in the following table. Please note that all these Shell options
can be set upon invocation of the Shell. The args are passed to the Shell as posi¬
tional parameters $1, $2, and so forth.

BOURNE SHELL OPTIONS

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a nonzero exit status.

-f Disable filename generation.

-h Locate and remember function commands as functions when they are
defined (function commands are normally located when the function is
executed).

-k All keyword arguments are placed in the environment for a command, not
just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print Shell input lines as they are read.

-x Print commands and their arguments as they are executed.
Do not change any of the flags

KORN SHELL OPTIONS

-A Assign values sequentially from the list arg. If +A is used the variable
name is not unset first.

-a All subsequent variables that are defined are automatically exported.

Shell Built-in Commands Reference ♦ 473

-C Turns off directory caching. Pwd will use the actual path instead of fol¬
lowing links.

-e If a command has a nonzero exit status, execute the ERR trap if set and
exit. This mode is disabled while reading profiles.

-f Disables filename generation.

-h Each command becomes a tracked alias when first encountered.
-k All variable assignment arguments are placed in.

-n Read commands and check them for syntax errors but do not execute
them. Ignored for interactive Shells.

-o The following argument can be one of the option names outlined in the
table following this one.

-p Use the /etc/suid_profile instead of .profile whenever the ENV profile was
to be executed. This occurs only if the group ID or user ID of the process
is not the same as the effective ID.

-s Sort the positional parameters and gid.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print Shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.

— Setting $1 to a value beginning with -. If no arguments follow this flag
then the positional parameters are unset.

Table of Option (-o) Arguments for Korn Shell Set Command

-o argument Description

allexport
bgnice

cache
errexit
emacs
gmacs
ignoreeof

keyword
markdirs
monitor
noclobber

noexec
noglob
nolog

Same as -a
Run all background commands at reduced priority. This is just like
using the nice command for background jobs. No need to use nice if
this is set
Same as -C
Same as -e
Use emacs editor commands for command line editing
Use the gmacs editor commands for command line editing
The Shell will not exit on end-of-file. It will ignore the eof key
sequence f d) and will not exit the Shell when this occurs. You
must use the exit command to exit the Shell
Same as -k
Place a/ after all filenames generated
Same as -m
Prevents existing files from being overwritten when the > or»
redirection is used on a Shell command
Same as -n
Same as -f
No function definitions in history file

Table of Option (-0) Arguments for Korn Shell Set Command (Continued)

-0 argument Description

nounset Same as -u
privileged Same as -p
verbose Same as -v
trackall Same as -h
vi Use vi commands as the command-line editor
viraw No buffering of characters—processed as they are typed
xtrace Same as -x

BASH SHELL OPTIONS

-a All subsequent variables that are defined are automatically exported

-b Status of terminated background jobs are reported immediately

-e If a command has a nonzero exit status, execute the ERR trap if set and
exit

-f Disables pathname expansion

-h Remember function names as they are defined or located as opposed to
always looking up the function

-k Place keyword arguments in the environment for a command

-m Monitor mode—turn on job control. By default this is turned on

-n Read commands and check them for syntax errors but do not execute
them. Ignored for interactive shells

-0 The following argument can be one of the option names outlined in the
table following this one

-p Privileged mode—The $ENV variable is not processed and Shell func¬
tions are not inherited from the environment

-t Exit after reading and executing one command

-u Treat unset parameters as an error when substituting

-v Print Shell input lines as they are read

-x Print commands and their arguments as they are executed
-1 Save and restore the binding of a variable

-d Disable the hashing of commands

-C Enable the noclobber option

-H Enable ! style history substitution

-P If set do not follow symbolic links for files

Turns off -x and -v flags and stops examining arguments for flags

— Setting $1 to a value beginning with If no arguments follow this flag
then the positional parameters are unset

Shell Built-in Commands Reference ♦ 475

Table of Option (-0) Arguments for Bash Shell Set Command

-0 argument Description

allexport Same as -a
braceexpand Shell performs brace expansion which is the default
emacs Use emacs editor commands for command-line editing
errexit Same as -e
ignoreeof The Shell will not exit on end-of-file. It will ignore the eof key

sequence f d) and will not exit the Shell when this occurs. You must
use the exit command to exit the Shell

monitor Same as -m
noclobber Prevents existing files from being overwritten when the > or» redi¬

rection is used on a Shell command
noexec Same as -n
noglob Same as -f
nohash Same as -d
notify Same as -b
nounset Same as -u
physical Same as -p
posix Change the behavior of the Shell to be posix-compliant
privileged Same as -p
verbose Same as -v
vi Use vi commands as the command-line editor
xtrace Same as -x

EXAMPLE

set -a # Tell the shell to export all variables

set -o ignoreeof # Don't log me off when I hit Ad - Thank you

shift Shift Passed Arguments to the Left

SYNTAX

shift [n]

USAGE

The shift command is used to shift arguments to the left and is usually used to
gain access to arguments which are >$9. (Really, this is necessary only with
Bourne Shell since Korn and Bash Shells allow >9 arguments.) In general, the
(n+1) argument becomes the $1 argument, (n+2) becomes $2, and so on. The
default for n is 1. The arguments which are shifted over are no longer accessible
and the value of $# is adjusted accordingly.

476 ♦ Appendix E

EXAMPLE
•

The following while loop will process all the arguments passed to a Shell program
by shifting until there are no arguments left.

while ["$1"]

do

process $1

shift

done

suspend Suspend the Execution of the Current Shell

SYNTAX

Bash: suspend [-f]

USAGE

The suspend command can be used to suspend the execution of a Shell until it
receives the SIGCONT(19) signal. The -f option is used to suspend a login Shell
without an error message being produced.

EXAMPLE

$ suspend

This command would suspend the currently running Shell until it received the
SIGCONT signal.

test Evaluate a Conditional Expression to True or False

SYNTAX

test [cond_expr]

[cond_expr]

KSH: [[..]]

USAGE

The test command, in any of its forms, is used to evaluate the cond_expr and
return a value of TRUE (0) or FALSE (any other number). The result of the test

Shell Built-in Commands Reference ♦ 477

can therefore be used in conjunction with an if or while command to test a par¬
ticular condition and take some action based on its outcome.

EXAMPLE

The following code checks to ensure that the previously executed command had
a successful return code and if not takes some error action.

if (test $? -eq 0)

then

echo "There is an error in the program”

exit (1)

fi

The same test condition could be written in the following abbreviated format:

if [$? = 0]

then

echo “There is an error in the program”

exit (1)

fi

times Determine lime Used by a Command

SYNTAX

times

USAGE

The times command is used to display the user and system time consumed by
the Shell and by any commands run from the Shell. The output is shown in min¬
utes and seconds. The output from the times command is a little less than user
friendly but in its raw form it looks something like:

0m0.68s 0m2.05s

0m8.83s 0m7.66s

This output can be interpreted as the following:

user time system time

Time consumed by shell 0m0.68s 0m2.05s
Time consumed by
commands runfrom shell 0m8.83s 0m7.66s

478 ♦ Appendix E

EXAMPLE

times

0m0.68s 0m2.05s

0m8.83s 0m7.66s

trap Set Action for System Interrupts

SYNTAX

trap [command] [signal]

:Bash: trap [-1] [command] [signal]

USAGE

The trap command is used to take some action when the Shell receives a signal
from the system. This action can be some further commands to be executed or can
be no action at all. Taking no action is like ignoring the signal. In the case of the
Bourne Shell, the signal must be a numeric integer. It should be noted that the
command is scanned once when the trap is set (this of course implies that vari¬
ables will be substituted when the command is scanned—you may need to protect
variables by quoting them) and once when the command is executed after receiv¬
ing the signal. The trap commands are executed in signal-number order. Please
see the kill command for a list of all signals and their related names and numbers.

Please note that it is not possible to trap a signal 11 (memory fault) or a
signal 9 (sure kill). If a Shell ignores a signal then all subshells also ignore that
signal. If, however, a Shell takes some action based on a signal then all subshells
take the default action on that signal. In other words, trap actions are not inher¬
ited by subshells.

If no command is given (as opposed to the null string) then the trap is reset
to the default action for that signal. The default action for all signals is to termi¬
nate the Shell. The only exception to this is that interactive Shells automatically
ignore interrupts and terminate signals.

A command associated with signal 0 is executed when the Shell exits.
Trap with no arguments prints a list of all currently active traps.

Bash

Using the -1 option with the Bash Shell will print a list of signal names and
their corresponding numbers.

Shell Built-in Commands Reference ♦ 479

EXAMPLE

The following trap command placed at the start of a Shell procedure would remove
the file /tmp/caldate and then exit the Shell upon receiving any of the signals listed.

trap "rm -fr /tmp/caldate; exit" 1 2 3 4 5 10 12 15

This next example would ignore the signals listed:

trap "" 123

type Determine Type of Command

SYNTAX

type coitimand_name

Bash: type [-all] [-type I -path] command_name [command_name ...]

USAGE

This command is used to determine if the argument given, command_name, is a
known command and if so what type of command it is. If the command is known
to the system (can be found in your $PATH or is a built-in command or a defined
function) then a pathname is provided, where it applies, as well as a description
of the command. In the case of a function the definition of the function is pro¬
vided. When using the Korn Shell, the type command is set up as an alias for the
whence -v command. The types of commands identified are listed:

♦ Normal command with the full path of the command
♦ A Shell built-in Command
♦ A command that is currently in the hash table due to recent use
♦ A function identified as such followed by the functions definition

If the command if not found, then an error message indicating that it is not found
is produced on the standard output.

For details on additional functioning in the Korn Shell, see the whence
command.

Bash
The Bash Shell provides some nice extensions to the type command. If the
-type option is given, then the Bash Shell prints the type of command given
in command name. The type is one of the following:

Continued

480 ♦ Appendix E

♦ alias - if the command is an alias
♦ keyword - if the command is a shell reserved word
♦ function - if the command is a function
♦ builtin - if the command is a shell builtin
♦ file - if the command name is a command file on disk

The -path option will print the full path of the disk file that would be exe¬
cuted if command_name where executed. The -all option will print a list of
all places that an executable with command_name is found.

EXAMPLE

type cast

cast not found

type cat

cat is /bin/cat

type cd

cd is a shell builtin

typBSCt Set the Type for a Shell Variable

SYNTAX

KSH: typeset [-FLRZefilprtux[n]] [name[=value]..]

Bash: typeset [-frxi] [name[=value]..]

declare [-frxi] [name[=value]..]

USAGE

The typeset command is a Korn or Bash Shell command that allows Shell vari¬
ables to be of special types. The Bash Shell provides the declare command as a
synonym for the typeset command. These types allow special processing to
occur for that variable that has the type assigned. For example, a variable that
has a been assigned an integer type can participate in Shell integer arithmetic
directly without using the expr command. Note when used inside a function that
a new copy of the parameter and its type are created and that this definition lasts
only for the life of the function invocation. After leaving the function the variable
is returned to its original form.

Using a + instead of a - on the option will turn that option off. This is some¬
times useful when trying to control variable assignment.

The following is a list and description of each option available with the
typeset command:

Shell Built-in Commands Reference ♦ 481

Table of Korn Shell Typeset Options

Option Description

-F Provide a UNIX to host-name file mapping on non-UNIX names.
-Ln Left justify the variable and remove leading all leading blanks from the vari¬

able. If a value for n is specified then that becomes the width for the vari¬
able. If no value is provided then the width of the field is determined by the
first assignment. If a value is assigned to the variable and does not entirely
fill the width then the variable is padded on the right with blanks. If the
assignment is too long for the width of the variable then truncation will
occur on the right.

-Rn Right justify the variable and fill with blanks on the left. As with -L option
the length of the variable is determined by the value of n or by the length of
the first assignment. Filling and truncation occur on the left on all subse¬
quent assignments to the variable name.

-Zn The -Z flag is a zero fill indicator. It can be used in conjunction with either
the -R or the -L flag. If used alone then the variable is right justified and
zero filled to the left if the first nonblank character contained in the variable
is a digit. As with -L and -R, the value of n determines the width of the vari¬
able and truncation and padding will occur.

-e Ihg the variable as having an error. This is currently not used in any way by
the Korn Shell but can be set or unset by the user.

-f The -f option is used to indicate that the variables listed in the typeset com¬
mand are actually function names. This allows functions to have properties
assigned and can only be used with the -t, -u, and -x options.

-i[n] The variable is assigned an integer type and can participate in Korn Shell
arithmetic statements directly. The base used for the arithmetic operations
can be set by setting a value for n. Default is determined by the first assign¬
ment. Simply exclude a value for n for normal base 10 arithmetic.

-1 Convert all uppercase character to lowercase characters when assignment
occurs.

-p The output of the command is written to a two-way pipe.
-r The variable named is set to readonly and cannot be changed except by

using the typeset command again to either assign a value to the variable
(name=value) or to turn off the readonly indication (+r).

-t Places a tag on the named parameter. These tags are not used at all by the
Korn Shell. If used in conjunction with the -f(-ft) option the -t sets the
xtrace option for the named function.

-u Convert all lowercase characters to uppercase characters when assignment
takes place. If used with the -f(-fu) option then the named function becomes
undefined.

-x The names provided are marked as automatic export to the Shell environ¬
ment. This is for both variables and functions. To use with function names
the -f variable must be applied.

Table of Bash Shell Typeset Options

Option Description

-f The -f option is used to indicate that the variables listed in the typeset or
declare command are actually function names. This allows functions to have
properties assigned and can only be used with the -t, -u, and -x options.

482 ♦ Appendix E

Table of Bash Shell Typeset Options (Continued)

Option Description

-i The variable is assigned an integer type and can participate in Bash Shell
arithmetic statements directly.

-r The variable named is set to readonly and cannot be changed except by
using the typeset or declare command again to either assign a value to the
variable (name=value) or to turn off the readonly indication (+r).

-x The names provided are marked as automatic export to the Shell environ¬
ment. This is for both variables and functions. To use with function names
the -f variable must be applied.

EXAMPLE

typeset -i counter # set the variable to integer type

declare -i counter # Bash Shell equivalent to the above

typeset -L5 part_number # left justify the part number

and make it have a length of 5

ulimit Set Process limits

SYNTAX

ulimit [-acdfmst] [n]

Bash: ulimit [-SHacdfmstpnuv] [n]

USAGE

The ulimit command is used to impose limits on any process that runs under the
current Shell. In general this means limiting the size of some system resource.
The size is always given by the value of n. The meaning of each value is outlined
in the following tables. If the option is given without a value for n, then the cur¬
rent value of that option is printed.

Bash

Additional resources may be controlled using the Bash Shell. These are
accessed using the -p, -n, -u, and -v option. The Bash Shell version of the
command also supports the concept of a hard limit, a limit set which cannot
be changed once set, and a soft limit. A soft limit may be changed up to the
hard limit. These are set by using the H option for the hard limit and the S
option for the soft limit. If neither H or S is provided then the soft limit is set.

Continued

Shell Built-in Commands Reference ♦ 483

The Bash Shell also allows a value of unlimited to be supplied for the
value of n. Otherwise the value of n is in 1M increments except for -t which
is in seconds and -p which is in IK increments. The -n and -u are in
unsealed units.

Option Description

-a Display the values of all the limits currently active
-c Limit the size of a core dump output file for the process to n blocks
-d Limit the size of the data area for a running process to n Kilobytes
-f Limit the size of an output file created by a process to n blocks
-m Limit the size of memory used to be n Kilobytes
-t Limit the time of execution for the process to n seconds
-s Limit the size of the stack area to n Kilobytes

Bash Option Description

-a Display the values of all the limits currently active
-c Limit the size of a core dump output file for the process to n blocks
-d Limit the size of the data area for a running process to n Kilobytes
-f Limit the size of an output file created by a process to n blocks
-m Limit the size of memory used to be n Kilobytes
-t Limit the time of execution for the process to n seconds
-s Limit the size of the stack area to n Kilobytes
-p Limit the size of pipe (in 512-byte blocks). Used for display only
-n Limit the maximum number of open file descriptors. Used for display only
-u Limit the maximum number of processes available to a single user
-v Limit the maximum amount of virtual memory available to the Shell

EXAMPLE

ulimit -f # What is the limit on my output

file size ?

4069

ulimit -f 5000 # Increase that limit

ulimit -t # How much time do I have

unlimited

tifTlCLsIc Set or Display File Creation Mask

SYNTAX

umask [rain]

Bash: umask [-S] [nnn]

484 ♦ Appendix E

USAGE

The umask command is used to set the file creation mask. Any time that a file
or directory is created the permissions are controlled by the umask value. The
umask command is used to set the umask value. The setting of a umask value
is often done in a users .profile. The values for the umask can range from 000 to
777 just like a value for setting a file permission. But the behavior of the umask
is different from setting the permissions on a file directly using chmod. Instead
of setting the value of any new file or directory to the value specified in the
umask, the umask value is subtracted from the default file and directory permis¬
sions. For a file, the default is usually 777 and for a directory the value is 666.
Therefore a umask value of 000 when creating a file will yield a file permission
of 777 (read, write, and execute for everyone). This is arrived at by subtracting
the umask value from the default (777 - 000 = 777). Likewise a value of 022 for
the umask would yield a file permission mask of 755 (read, write, and execute
for owner, read and execute for everyone else). This was arrived at by taking 022
(subtract read permissions from group and other) away from the default 777.

If no value is given for nnn in the umask command then the value of the
umask is displayed. Using umask provides a means for creating files and direc¬
tories with consistent and security-minded permissions.

Bash

The -S option provided in the Bash Shell prints the umask value in sym¬
bolic form instead of the default octal form.

EXAMPLE

umask

002

umask 033 #Set file creation mask to read only

for people other than the owner

unalias Remove an Existing Alias

SYNTAX

KSH: unalias alias_name ...

Bash: unalias [-a] [alias_name]

Shell Built-in Commands Reference ♦ 485

USAGE

When using the Korn or Bash Shell, the list of alias names provided in
alias_name is removed from the alias list and is no longer available in the Shell.
See the alias command for details on how to define an alias in the Korn or Bash
Shell.

Bash

The Bash Shell provides a single option, -a, which will remove all alias def¬
initions.

EXAMPLE

Create an alias for the finger command

alias finger='ucb finger'

remove my alias for the finger command

unalias finger

unset Remove a Shell Variable from the Environment

SYNTAX

unset name ...

KSH: unset var_name

unset -f function_name

Bash: unset - v var_name

unset -f function_name

USAGE

The unset command is used to remove variable and function definitions from the
current Shell environment. The variable name and its associated values are no
longer accessible after an unset command has been executed. If using the Bourne
Shell, then both variables and functions are removed in the same way—the unset
command followed by the function or variable name(s). When using the Korn
Shell, since variables and functions are distinguished from each other, the -f
option must be used to remove functions. Also note that when using the Korn or
Bash Shell a variable that has been set to readonly, using the typeset command,

SSmjJ

486 ♦ Appendix E

cannot be unset. In this case use the typeset command to change the variable to
be readable and then unset it.

•

EXAMPLE

unset note_count # Unset the variable note_count

unset -f count_em_up #Unset the function

WCllt Wait for a Job to Finish

SYNTAX

wait [n]

USAGE

The wait command causes the parent Shell procedure to wait for its executing
children processes to finish. If a specific process ID (pid) is specified as a value
for n, then the Shell will wait for that particular process to finish. If no value is
specified for n then the parent Shell waits for all child processes to finish execu¬
tion. While waiting no other Shell statements are executed by the parent Shell.
The return value is the value of the final completed child process.

EXAMPLE

wait 14479 # Wait for process 14479 to complete

wait # Wait for all background processes to finish

whence Describe a Shell Command

SYNTAX

KSH: whence [-v] command_name

USAGE

The whence command is the Korn Shell version of the type command in Bourne
Shell. The -v option places the whence command in verbose mode causing the
Korn Shell to provide greater detail about the command. The output is different
from the Bourne Shell-type command when the -v option is omitted. In this case
the output is brief and can be used as input to other commands. The whence

Shell Built-in Commands Reference ♦ 487

command provides feedback on all types of Shell commands just as the Bourne
Shell type command does. This is shown in the following table:

Command Type whence response whence -v response

Regular UNIX command full pathname of command Additional information
about whether the command
is a tracked alias

Shell built-in command just the command name Additional verbiage indicat¬
ing that the command is
built-in

Function just the function name Additional verbiage indicat¬
ing the name is a function

Alias the value of the alias Additional verbiage indicat¬
ing the command is an alias

Not a command no response Verbiage indicating com¬
mand was not found

EXAMPLE

whence whence ttdescribe the whence command

whence

whence -v whence # tell me more

whence is a built-in command

whence whog #describe the whog command

whog

whence -v whog

whog is a function

whence finger

ucb finger

whence -v finger

finger is an alias for ucb finger

whence -v uncle

uncle not found

whence cat

/bin/cat

whence -v cat

cat is a tracked alias fob /bin/cat

,

.

APPENDIX

Sed Reference

Sed, which stands for stream editor, is a noninteractive editor that is used in
Shell programs to filter Information in a file. It is often used in a pipeline to fil¬
ter information in some way. Sed is modeled after the ed command and they
share a common command set. Ed is the old UNIX line editor which is rarely
used these days, having been replaced by more modern editors like vi and
emacs. But its sibling sed is still a useful tool in Shell programming and
deserves proper coverage.

Sed works much like any other editor with one exception. It takes com¬
mands, like any other editor, and acts on the file being processed based on
those commands, with the exception that the original file is not changed. The
modified data is placed on the standard output as a new file. For this reason
sed is often considered a filter. This exception differentiates it from most edi¬
tors which take action upon the original file and permanently alter it in the
process.

The syntax of the sed command can be summarized as follows:

sed -n ' edit_coimand [input_files...]

sed [-n] [-e edit_command] ...] -f [edit_Bcript_file] [input_files...]

489

490 ♦ Appendix F

with the options defined as follows:

-n suppress printing of result lines

-e Use the edit_commands as the edit script
-f Use the edit commands stored in edit_script_ file as the edit script

Note that in the first form, no -e is needed because only a single-edit command
is provided. If more than a single-edit command is provided, then the -e option,
or better the -f option, is needed to specify each command. It is best to enclose
all sed commands in single quotes because many sed command characters over¬
lap with Shell special and metacharacters.

The sed command operates by reading a line from the input files and
applying the list of edit commands to the line in the order in which they are
written. The edited line is then copied to the standard output automatically.
Since all output is directed to the standard output, the results are often redi¬
rected to a file using >. Don’t, of course, redirect the output to the filename that
you are using for input. If your intention is to replace the original file, then use
a temporary file for the output of sed and copy it over the original when the edit
session is complete.

Sed Commands

Now that we understand how sed works in general, we need to look more closely
at how to form sed commands. A series of sed commands is often referred to as
a script. They instruct sed to perform some editing action. A script has a single¬
edit command per line, each of which has the following syntax:

[line_range] [edit_command] [command_arguments]

where line_range specifies a range of lines (in the form line_numl, line_num2),
relative to the start of the file, which are to have the edit command applied. If
only a single-line number occurs, then the command applies only to that line
number. The line range can also be replaced by a regular expression pattern
(enclosed in /reg_expl/,/reg_exp2/) that is used to match the line. If the line
contains the pattern, then the edit command is applied. If the line does not match
the pattern, then it is placed on the standard output in its original form (as long
as no other edit commands apply). If a pair of regular expressions are provided,
then they define a range of lines from the first line that matches reg_expl to the
next line that matches reg_exp2. It is even possible to mix line numbers and reg¬
ular expressions to define a range of lines. Note that sed supports regular
expressions as outlined in the reference section on regular expressions. If no line
number or match pattern is provided, then, by default, the command is applied
to all lines.

Sed Reference ♦ 491

Specifying Multiple-Edit Commands
in Sed

There are times when you may want to perform several edit commands on each
line of input. In order to do this, you must specify multiple-edit commands in one
of the two following ways:

1. On the sed command line using the -e option before each edit com¬
mand. For example the syntax would be sed -e ‘sed_commandl’ -e
‘sed_command2’. .. filenames

2. In a file listing each command on a separate line. Specify this file to
sed using the -f option. The syntax if this case would be sed -f sed-
script_file filenames

If your script requires several commands or if you will need to run the script sev¬
eral times, it is easiest to use the file option. This makes modifying the sed script
simple and reusable. Each method is demonstrated in the examples provided in
subsequent sections.

Sed Command List

The following table contains the most common sed commands. A brief discus¬
sion of most of the commands follows, complete with examples.

Table of Sed Commands

Command Description

a\append_data

b label
Cchangejdata

d

g
h
iMnsertjdata
1
P

q
ifilejiame
s!reg_expl/new/func

>

Append the appendjiata to the end of each selected line. The
append data is taken to be all data starting with \ to the last
row that does not contain a \

Branch to the command with : label
Change selected lines to changejdata in the same manner that
was discussed in a \

Delete the selected lines and go to the next. No output is pro¬
duced for this line

Replace the current line with the contents of the hold buffer
Copy the current line to the hold buffer
Insert the insertjdata before the selected lines
List the selected line
Print the line (used with the -n option to print only selected
lines). Note that p is not normally needed.

Quit the edit session
Read thefilejiame and place its contents in output
Substitute the pattern specified in the regular expression
reg_expl with the new. Iffunc is specified, then it has the
following values and meaning:

492 ♦ Appendix F

Table of Sed Commands (Cont.)

Command Description

func = g means do a global replace on all occurrences
func = p means to print the occurrence
func = w means to write the occurrence to a file
func = n where n is an integer between 1-512 means replace
the nth occurrence of the regular expression

t label Jump to label if substitution made to the current line. If no tar¬
get is provided, then jump to the end of the script

wfilejiame Write the current line to filefilejiame
x Exchange contents of current line and hold buffer
y/strl/str2 Replace all occurrences of character found in string strl with

characters found in string str2. Note that the length of strl
and str2 must be the same

= Print current input line number on standard output
\sed_cmd Perform the command sed_command only if the current line

does not match the pattern or line range
: label A label definition for b and t commands

U Command grouper—Consider all commands between {} to be a
group

Selecting Using Sed

Sed can be used to select certain lines from a file in a variety of ways. In order to
do this, we utilize the -n option, which suppresses output of each line and instead
outputs only selected lines using the p command. The following example will out¬
put lines 20 through 30 of the input file into the file new_file:

sed -n '20,30p' > new_file

Of course, you can use the -n option in conjunction with the -p to select lines
using a regular expression, as shown in the following example:

sed -n '/A..X/p' filel

which will print all lines in the file that have an X as the third character on the
line. If the regular expression pattern is not clear please refer to the reference sec¬
tion on regular expressions. You might note that this allows sed to act just as grep
does: printing matched lines on the standard output. Any regular expression pat¬
tern can be used, which makes this method of selecting lines very powerful.

Substituting Using Sed

The easiest way to understand sed is to look at some examples. In this section,
we show some examples of using the substitution command in a sed script, fol¬
lowed by a brief description.

Sed Reference ♦ 493

sed 's/korn/Korn/g' chapter5

This statement will replace all occurrences (based on the g option) of the string
korn with the string Korn for all lines in chapter5. Note that without the g option
the substitution will take effect only on the first occurrence in the line. Each line
is output to the standard output.

sed '1,lOs/korn/KORN/g' chapterl chapter2 chapter 3 chapter 4 chapter5

The above sed command will replace all occurrences of korn with KORN in the
first ten lines of each of the files chapterl through chapter5.

sed '/AFILEINFO/s/filename = Z.*\.dat/filename = NONE/'

This sed command uses a regular expression pattern to select lines. Any lines that
start with the string FILEINFO will have the substitution command executed. The
substitution command replaces the first string that matches the string “filename
= Z something .dat” with the string “filename = NONE”. For example, the string
“filename = ZEBRA.dat” would be replaced with the string “filename = NONE”.

sed 's/ */ /g'

This sed command will replace all occurrences of two or more spaces by a single
space on all lines in the file. Likewise, the substitution command can be used to
remove matching characters from a file. For example,

sed -e '/price/s/A...//' -e '/budget/s/A...//'

would remove the first three characters of any line that contained the word price
or the word budget.

Deleting Lines Using Sed

To delete lines using sed, the d command is used in conjunction with a line
range. Each line that matches the line range, which of course may be a regular
expression, is deleted. It is not printed on the standard output and the next line
is read. Here are a few examples of using the delete command:

sed 'l,5d' #delete lines 1 through 5

sed '/A$/d' #remove all blank lines from the file.

sed '/ABEGIN/,/AEND/d' #delete the lines between the line that starts with

BEGIN

#and the next line that starts with END.

sed '/[A-Za-z]/d' #delete all lines that contain any alphabetic char¬

acters

494 ♦ Appendix F

Appending/Inserting Lines Using Sed

In order to append lines after a particular line, we can use the a command. If
we wish to insert lines before a particular line the i command does the job.
They both work in the same way. The data to be appended or inserted is placed
on the next line following the \ character. All lines that follow the \ are consid¬
ered part of the append or insert. If multiple lines are to be part of the append
or insert, then each line, except for the last, must end with a backslash char¬
acter. Lines which are to have data inserted before or appended to are selected
in the normal way using a line range. If no range is specified, then the data is
inserted or appended to all lines as expected. Note that since the appended
lines need to appear on the line following the \, it is easiest to use a file to store
the commands in conjunction with the sed -f option.

cat sedcommand # show the command file

a\

sed -f sedcommand namefile

Ted

Jay

Sam
** *

Will

add a new line *** after each line in name-

file

Writing Lines to a File Using Sed

In addition to writing lines to the standard output, it is also possible to write
selected lines or substituted lines to a particular file using the w command.
Numerous files can be used. Note that in order to write lines that have been sub¬
stituted, we use the w option at the end of the substitute command as shown in
the following examples:

sed -e '/UNITED STATES/w usa.data' \

-e '/UNITED STATES/!w other.data'

This sed command essentially splits the file based on a pattern-matching condi¬
tion. All lines that contain the string “UNITED STATES” are written to the file
usa.data, while all the other lines are written to a file called other.data. Of course

Sed Reference ♦ 495

any line_range specification could be made. All the lines in the file are also
placed on the standard output, as would be expected.

sed 's/UNITED STATES/USA/gw usa.data'

This sed command would read a file and substitute any occurrence of UNITED
STATES with USA and write the substituted line in the file usa.data as well as on
the standard output.

APPENDIX G
Awk Reference

Awk is a general purpose pattern-scanning and processing language that can
handle a wide variety ,of filtering, transforming, and reporting tasks. Not only
can it perform many of the tasks that are done by other UNIX tools, such as grep
and sed, it can also do other, more complex tasks because it is a general-purpose
programming language applicable to a wide range of problems. Many of its con¬
structs are taken from the C language, while other parts of the language seem
much like sed. It is a fairly robust language complete with variables, arrays,
looping commands, and much more. Awk has no specified task, as many other
UNIX tools do, but instead provides a flexible way for you to build a tool that
solves the problem at hand without the complexities of a language like C.

This reference section introduces a large portion of the awk programming
language—enough to make it a useful tool—but will not attempt an exhaustive
survey. Awk comes in two flavors on some UNIX implementations. There is the
original awk and there is a new and improved awk for the future, called nawk.
Nawk provides new features and functions and eventually, will replace awk on
UNIX implementations where both exist. This reference covers awk but does not
cover some of the newer features found in nawk. If you have nawk on your sys¬
tem, you may want to explore its extra features if you are writing larger and

497

498 ♦ Appendix G

more complex awk programs. For more information about awk and nawk see
your manual pages.

Awk Syntax

The awk command has the following syntax:

awk [-Ffield_sep] 'program' filenames ...

or

awk [-Ffield_sep] -f program_file filenames ...

where program is the actual awk program code andfilenames are the name of
the input files to be processed by the program. In the second form of the com¬
mand, the program can be read from a program file. This is recommended for
more complex awk programs because it allows for reusability and makes modi¬
fication of your awk program simple and straightforward. This syntax is much
like sed syntax with the major difference being what is contained in the program
portion. In sed these were edit commands; in awk they are programming com¬
mands. Commands are introduced in detail in the next section. The -F option is
used to specify a field-separator character. Awk uses this field, if present, as a
means to determine how to divide lines into fields. If it is not present, a space
character is assumed. The meaning of this will become clear as we discuss how
awk works.

Awk Mechanics

The awk command operates by reading a line from the input files and applying
the list of program commands to the line in the order that they are written. Each
program command has the syntax:

[pattern] [{action} ...]

where pattern is a matching pattern and action is some awk command(s) that
get executed when the pattern matches the current line. Each input file is pro¬
cessed in order a line at a time. Note that any action performed does not alter the
original file. The matching pattern and the action are both optional. If a pattern
is not used, then every line of input is considered a match and the corresponding
action is taken. If no action is specified then the line is simply placed on the stan¬
dard output. Although this action is very similar to sed, note that lines are not
automatically placed on the standard output after an awk action is performed.
Awk provides a command called print to allow output of specified information
on the standard output.

Awk Fields

Aw/: Reference ♦ 499

As awk reads input lines from the file list, the line is automatically divided into
fields for more refined processing capabilities. Fields are defined based on the
field-separator character (specified with the -F option) which defaults to a space.
Each field is assigned a field identifier with the names $1, $2, $3 .. . $n. Do not
confuse the $ with the Shell representation for variables. In awk variables are
not preceded by a $; only field names are. Now that the line has been divided into
fields, each field can be used and manipulated independently using awk com¬
mands. The following file presents an example of field assignment.

cat phone_list

Burns,Ted:Denver: 303-747-8976

Hart,George:Seattle: 206-756-8907

Newberry,Sandy:Tippany: 435-356-9345

Groggy,Sam:Los Angeles: 394-987-6390

If our field separator was specified as a colon (-F:), then there would be
three fields created for each line as it was read: $1 would contain the name, $2
would contain a location, and $3 would contain the phone number. In addition,
each time that a line is separated into fields a built-in variable called NF is set to
the number of fields on the line being processed. Another default field action in
awk is the assignment of the entire line to the field identifier $0. Referencing $0
in an action statement references the entire current input line.

We can now access the fields of each line independently as shown in this
simple awk example which would print just the name and phone number from
the file shown previously:

awk -F: '{ print $1 , $3 >' phone_list

Burns,Ted 303-747-89i€

Hart,George 206-756-8907

Newberry,Sandy 435-356-9345

Groggy,Sam 394-987-6390

Selecting Lines for Processing:

Awk Patterns

Line selection in awk is an extension of the regular expression capabilities found
in sed. In addition to being able to match particular lines or ranges of lines using
regular expressions (described in the reference section on regular expressions),
awk provides the ability to compare information found in the fields of the line in
a wide variety of ways. Finally, awk provides two special patterns, BEGIN and
END, which are used for further control. In summary, there are three types of
pattern-matching capabilities in awk:

500 ♦ Appendix G

♦ Regular expression patterns
♦ Relational expression patterns
♦ BEGIN and END patterns

The power of these pattern-matching types is enhanced by the ability to specify
compound patterns using the Boolean operations (&&, ||, !) and range patterns.
These can be summarized as:

pattern_expression && pattern_expression

pattern_expression || pattem_expression

pattem_expression, pattern_expression

[patterns

(compound and)

(compound or)

(range expression)

(not expression)

where pattern_expression is either a regular expression or a relational expression.

Regular Expression Patterns

Regular expression patterns are specified as in sed and ed by enclosing them
between forward slashes:

/regular_expression/

The regular expression is constructed as outlined in the reference section on reg¬
ular expressions. For example, the following awk command would select lines
that contain the string USA from the file geo_data. Note that in this simple form,
awk reproduces the line on standard output and acts like the UNIX egrep filter,
since no action pattern was specified.

awk '/USA/’ geo_data

Of course, all regular expressions are legal as in the following example that
prints all lines that start with the word TOTAL:

awk '/ATOTAL/' geo_data

Relational Expression Patterns

In addition to matching any regular expression patterns found anywhere on a
line, awk also allows matching to portions of the line using fields, variables, and
relational operators. The following example checks to see if field 1 is equal to the
string Chapter 1.

awk '$1 == "Chapter 1"'

If this is true then the line is printed. The relational operators are summarized in
the following table, which shows examples of using the various relational oper¬
ators in a relational expression pattern:

Awk Reference ♦ 501

Table of Awk Relational Operators

Operator Description Example

— Equality operator $1 — “Fred”
$4 != NF

< Less than $1 o$3
<- Less than or equal to $2 <- $1 + NR
> Greater than $10>100
>= Greater than or equal to mycount >= $5 + 1
i- Not equal to $7 != length($1)

Contains regular expressions $4 ~ /LOC/
$9 ~ /[A-Z]/

!~ Does not contain regular expression $9 !~/..[a-z]/

As you can see from the examples, the relational expressions are robust and
can include more than just field names and the relational operators. They can con¬
tain variables, awk built-in commands (such as the length command), constants,
regular expressions, as well as awk expressions (for example, $5 + 1). These
expressions work just like regular expression patterns; if the relational expression
pattern is true, then the line matches and the related awk action is performed.
Clearly these enhanced abilities provide a great deal of power for selecting rows to
be processed in awk. When taken in conjunction with matching regular expres¬
sion patterns, awk provides a very flexible and powerful toolset.

The following example uses relational patterns to select rows in awk; it
prints rows only where the line is not blank and the first field has a value greater
than 100:

awk '($0 !~ /A$/) && ($1 > 100) { print $0 }' dept_stats

The relational expression $0!~r $/ ensures that the line is not blank, while the
($1 > 100) ensures field 1 is greater than 100.

BEGIN and END Patterns

The BEGIN and END patterns are two special patterns in awk that allow actions
to be taken before any lines are processed (BEGIN) and after all the lines have
been processed (END). BEGIN must be the first pattern in the list of patterns and
END must be the last, demonstrated in the following example:

BEGIN { action }

pattern { action)

END {action }

The BEGIN command is often used to set initial values for variables that are
going to be used in your program, to print headings at the top of a report, or to

502 ♦ Appendix G

set the internal field separator (same as -F on the command line). Any type of
setup action can be performed in the BEGIN action. The following example sets
the field separator, stored in the awk variable FS, to a colon (:) and prints an
informational message about the filename being processed using the awk built-
in variable FILENAME.

awk 'BEGIN { FS=":"; print "File name", FILENAME}' filel file2

Likewise, the END performs tasks that are often done after all processing is
complete. This might include things such as final calculations, totals that were
accumulated while processing, or any other chore that must occur after all lines
have been processed. The following example prints the number of records pro¬
cessed. This is stored in the awk variable NR. The example shown here is a sim¬
ple way to count the number of lines in a file much like the wc command in UNIX
shell.

awk 'END { print NR}' geo_data

Performing Tasks in Awk:
Creating Actions

Recall that an awk command has the form:

[pattern] [{action} ...]

Now that we have seen how to specify line matching patterns, we need to
take a closer look at the action portion of the awk command. An awk action con¬
sists of one or more statements. Statements cause some form of action to occur
on the current input line. This could be a very simple action, such as printing the
line as we saw in some examples in the last section, or very complex. Each state¬
ment is separated by a semicolon, new-line, or a right brace. A statement can be
any of the following:

Flow control statements Description

if (conditional) If conditional is true then perform the
{statementJistl } actions specified in the statement listl;
[else {statement_list2}] otherwise perform the actions specified

in statement_list2 if specified.
while(conditional) {statementjist} While conditional expression is true

perform statementjist.
for (int_expr; conditional_expr; ctrl_expr) Perform the initial expression, init_expr,
{ statementjist} then execute statementjist while

conditional_expr is true. After each
execution of statementjist perform
control expression ctrl_expr.

Awk Reference ♦ 503

break

continue

next
exit

Break from the containing loop and
continue with the next statement.

Go to the next iteration of the containing
loop without executing the remaining
statements in the loop.

Skip remaining patterns on this input line.
Skip the rest of-the input and go to the

END pattern if one exists. Then exit the
awk program.

Print control statements Description

print [expressionjist] [>filename]

printf format [, expressionjist] [>filename]

Print the expression list on standard
output unless redirected to filename.
Printed variables must be separated by
a comma to ensure that the output
field separator is used.

Like the C programming language printf
statement. Allows printed output to be
formatted. Printed on standard out
unless otherwise redirected to filename.

Assignment statement Description

variable = awk_expression Assign variable the value of the awk_expression.

Awk statements contain expressions which assume string or numeric val¬
ues and are composed of awk variables combined with the operators, awk built-
in functions and built-in variables, as well as string and numeric constants.

Awk Variables

Awk allows for the definition of variables. This provides a great deal of power
and flexibility in the awk language. Variable names are formed with letters,
numbers, and the underscore character. An alphabetic character must be the first
character in the variable name. The variables can be of either string or numeric
types. The type is implied from its usage as is done in the UNIX Shell. If you use
the assignment operator to assign a string to a variable, then the type of that
variable is an implied string type. If you assign a number, then the variable is
assumed numeric. Note that there is no $ preceding awk variables. You can use
variables, as in any other programming language, to hold information that you
will need for processing later. This might be previous values of fields or a sum of
fields over a range of lines.

As an example, consider the following awk program, which—like the UNIX
Shell uniq command—reads a file and eliminates duplicate adjacent lines from
the file. This is done by storing the value of the line in a variable named prev,
which is then compared to the next line.

504 ♦ Appendix G

cat awk_prog

BEGIN {prev=""}

{ if ($0 != prev) {print $0}}

{prev=$0}

To run the program we use the following command:

awk -f awk_prog geo_data

The output lines will be all the unique lines in the file geo_data.

Built-in Variables in Awk

Awk provides a number of built-in variables that store a wide range of informa¬
tion while your program is executing. We have already been introduced to sev¬
eral of these variables. The variable FS holds the field separator character that is
used by awk to divide the input line into fields. The NR variable holds the num¬
ber of lines that have been processed by the current awk program. These vari¬
ables can be accessed and changed by your awk program as needed. The
following table lists all of the awk built-in variables and the values they contain.

Table of Built-in Awk Variables

Variable name Description

FS Field separator character for input lines. This value defaults to tab
and space if not set.

NR Number of input lines processed by program.
NF Number of fields in the current input line.
FILENAME Name of the current input file.
OFMT Default format for output numbers.
OFS Output field separator. When fields are output by awk, this value

is used to separate them. The default is a space.
ORS Output record separator. Value used to separate records when output

by awk. This value defaults to a new-line character.
RS Input line separator. The value used to identify new lines on the

input file. The default value for this is a new-line character.

Field Names as Variables

Fields are assigned to numeric field numbers $1 . .. $n. The $ is used in awk to
define field names, which are a special form of variables. Field variables can be
used just like any other type of variable in awk. They can be assigned values,
used in expressions, and created. Using fields as variables is a very powerful
feature of awk. It allows fields to be added or removed from input lines or just
simply rearranged. If a new field is created, when the line is output, its default
position is at the end of the line.

The following example shows how a new field can be added to a line. In
addition, the fields $2 and $3 have their position rearranged. The file contains
the following fields: the account number, the number of phones at the company
location, a company name, the type of phones used, and the number of employ¬
ees. The field separator is a colon (:). We want to add two new fields. First, we
wish to add a salesperson to each account. This is based on the first letter of the
account number. Second, we want to add an indicator field that shows whether
the account may be in need of new phones. If the number of employees is less
than the number of phones, then we set the indicator to “Y”. Finally, the com¬
pany name and the number of phones fields have the position swapped. Our file
looks like this before we start:

cat account_list

C13789:38:BIGNAME PRODUCTIONS:STANDARD:29

C67890:110:BIGSHOT OIL:SLICK:150

E45890:76:NEAR ECSTACY:STANDARD:37

E23789:200:WAYOUT WILLIE BURGERS:PORTABLE:139

E34278:10:CLYDE BASS GUITARS:STANDARD:15

G22410: 4-.SECOND HAND BAGELS: PORTABLE : 23

G44890:310:SPACE WALKS INC:RED:110

The awk program to accomplish the tasks just outlined is shown next. Comment
lines are placed in awk programs by using the # character to indicate the start of
the comment.

cat awkprog

Assign the input and output field separators

BEGIN {{FS=":"}; {OFS=":"}}

#Next three action statements assign the sales person

{ if ($1 ~/AC/) {$6="ALFRED"}}

{ if ($1 -/AE/) {$6 = "MAGGIE11 } }

{ if ($1 ~/AG/) {$6 ="DAWN"}}

{ if ($1 !-/A[C,E,G]/) {$6 ="UNKNOWN"}}

#Now let's determine if our potential sales indicator should be set

{ if ($2 < $5) {$7="Y"} else {$7="N"}}

#Output the fields in the desired order, commas cause fields to separate by

OFS

{print $1,$3,$2,$4,$5,$6,$7}

After running the awk program the file has been transformed as shown:

awk -f awkprog account_list

C13789 : BIGNAME PRODUCTIONS : 38 : STANDARD-.29: ALFRED:N

C67890:BIGSHOT OIL:110:SLICK:150:ALFRED:Y

E45890:NEAR ECSTACY:76:STANDARD:37:MAGGIE:N

E23789:WAYOUT WILLIE BURGERS:200:PORTABLE:139:MAGGIE:N

E34278:CLYDE BASS GUITARS:10:STANDARD:15:MAGGIE:Y

G22410iSECOND HAND BAGELS:4:PORTABLE:23:DAWN:Y

G44890:SPACE WALKS INC:310:RED:110:DAWN:N

uBmgy

506 ♦ Appendix G

Array Variables in Awk

Awk provides one-dimensional arrays to improve the language’s flexibility and
processing power. Arrays do not need to be declared in any special way. To uti¬
lize arrays in awk, you simply assign a value to an array element. Elements of
arrays are referenced by using the syntax:

array_name[index]

where index may be either numeric or string. The values contained in array ele¬
ments can be either numeric or string data. There is no set size for an array in
awk. The size of an array is limited only by the amount of memory on your
machine. It continues to grow as new elements are assigned.

Array elements can be accessed directly by using the index to the array ele¬
ment or sequentially by using a modified version of the for loop. The syntax is:

for (var_name in array_name) statement_list

where varjiame is a valid awk variable name and array jiame is the name used
when assigning values to the array elements. All statements contained in state -
mentjist are executed in order. Each array index (not the element) is assigned
to varjiame until the end of the array is reached.

The following example shows a simple array populated for use as a verifi¬
cation check. For each line read, the fourth field is checked to assure that it con¬
tains a value stored in the verification array. A running total of the number of
each type of phone found is also kept and printed at the end.

cat awkprog

Assign the input field separator and array variables

BEGIN {{FS=":"}

phone["STANDARD"]

phone["SLICK"]

phone["PORTABLE"] }

#Check each input and assure that the phone type is found in the array

phone

#If the type is not valid then print an error message

If the line matches a valid type then count the number of occurrences

{ found = 0 }

{ for (type in phone) { if ($4 == type) {print $0; found=l;

phone[type]++}}}

{ if (found != 1) {print "Line",NR,"has and invalid phone type", $4} }

#Print the occurrences of each phone type

END{ for (type in phone) print "Type", type, "had", phone[type],

"occurrences"}

Running this against the account file from the last example yields the following:

Awk Reference ♦ 507

awk -f awkprog2 account_list

C13789:38:BIGNAME PRODUCTIONS:STANDARD:29

C67890:110:BIGSHOT OIL:SLICK:150

E45890:76:NEAR ECSTACY:STANDARD:37

E23789:200:WAYOUT WILLIE BURGERS:PORTABLE:139

E34278:10:CLYDE BASS GUITARS:STANDARD:15

G22410:4:SECOND HAND BAGELS:PORTABLE:23

Line 7 has and invalid phone type RED

Type PORTABLE had 2 occurrences

Type SLICK had 1 occurrences

Type STANDARD had 3 occurrences

Awk Operators

The relational operators were presented previously and the remaining operators
are shown in the following table. Note that many of the operators are taken
directly from the C language.

Table of Awk Operators

+

/
%
-H-

+=,*=,/=,%=

No operator

Binary arithmetic addition
Binary arithmetic subtraction
Binary arithmetic multiplication
Integer division
Remainder operator - provides the remainder after division
Unary increment. var++ is the same as (var + 1)
Unary decrement, var— is the same as (var - 1)
Assignment operator. Each of these is equal to var = var op expression

where operator is +,*,/,%
String concatenation

Several examples of the awk operators have appeared in previous exam¬
ples. These operators should be familiar to anyone who knows the C program¬
ming language. The only operator that is not somewhat standard and deserves
attention is the string concatenation operator (which is really no operator). This
is useful for creating or appending to strings. The following example would con¬
catenate the string “DATE:" with the field $3 and assign the results to the vari¬
able dateprint.

dateprint = "DATE:"$3

Awk Constants

Awk constants are straightforward. Numeric constants are simply specified as
numbers where needed, just as one would expect. The following example sets
the variable s equal to 100:

508 ♦ Appendix G

awk 'BEGIN {s = 100}'

String constants are specified by enclosing the constant in double quotes.
The following sets string 1 to a constant value:

awk 'BEGIN {stringl = "BEAUTIFUL VALLEY"}

Awk Built-in Commands

In addition to variables and operators, awk provides a number of built-in func¬
tions that can be used in awk expressions. These functions perform some spe¬
cific task and return. The built-in functions are listed in the following table along
with a description of what each function does.

Table of Awk Built-in Functions

cos(awk_expr)
exp(awk_expr)

index (strl, str2)

length (str)
sin(awk_expr)
sprintf(frmt, awk_expr)
substr(str, start, length)

Returns the cosine of awk_expr
Return the value exponential of awk_expr as in e raised to

the awk_expr power. gawk-expr
Returns the starting position of str2 in strl. If str2 is not

present in strl, then 0 is returned
Returns the length of string str
Returns the sine of awk_expr
Returns the value of awk_expr formatted as defined by frmt
Returns a substring of the string str starting at position

start for length characters

The following example shows the use of the awk built-in command length.
Here we verify that a field contains only alphabetic characters and that the length
of the field is 6.

awk '{if (($3 -/[A-Z]*/) && (length($3) == 6)) print $0}'

Bibliography

Aho, A. V., R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools.
Reading: Addison:Wesley, 1985.

Aho, A. V., B. W. Kernighan, P. J. Weinberger. The AWK Programming Language.
Reading: Addison-Wesley, 1988.

Akima, Noboru and Fusatake Ooi. “Industrializing Software Development: A
Japanese Approach,” IEEE Software (March 1989).

Appleton, Daniel S. “Data-Driven Prototyping,” Datamation (Nov. 1983).

Arthur, Lowell Jay. Measuring Programmer Productivity and Software Quality.
New York: Wiley, 1985.

-. Software Evolution—The Software Maintenance Challenge. New York:
Wiley, 1988.

-. Rapid Evolutionary Development. New York: Wiley, 1992.

AT&T. The Bell System Technical Journal, 57(6), part 2 (1978).

Bateson, Gregory. Mind and Nature. New York: Bantam, 1979.

Bateson, Gregory and Mary Catherine. Angels Fear. New York: Bantam, 1987.

509

510 ♦ Bibliography

Belady, L. A. and M. M. Lehman. “A Model of Large Program Development,” IBM
Sys. /., no. 3 (1976), pp. 225-252.

Bell, C. Gordon. “The Fewer Engineers per Project, the Better,” IEEE Spectrum
(Feb. 1989).

Boar, Bernard. Application Prototyping. New York: Wiley, 1984.

Boehm, Barry. “Industrial Software Metrics Top 10 List,” IEEE Software (Sept.
1987) .

Boehm, B. W., et al. “A Software Development Environment for Improving
Productivity,” IEEE Computer (June 1984), pp. 30-34.

Brooks, Frederick. The Mythical Man Month. Reading: Addison-Wesley, 1975.

-. “No Silver Bullet,” IEEE Software (1988).

Clason, George S. The Richest Man in Babylon. New York: Signet, 1988.

Cobb, Richard H. and Harlan D. Mills. “Engineering Software under Statistical
Quality Control,” IEEE Software (Nov. 1990).

Covey, Steven R. The Seven Habits of Highly Effective People. New York: Simon
and Schuster, 1989.

Cox, Brad. “Planning the Software Industrial Revolution,” IEEE Software (Nov.
1990) .

Cureton, Bill. “The Future of Unix in the CASE Renaissance,” IEEE Software
(March 1988).

Cusumano, Michael A. “The Software Factory: A Historical Interpretation,” IEEE
Software (March 1989).

Davis, Alan M., et al. “A Strategy for Comparing Alternative Software
Development Life Cycle Models,” IEEE Trans. Soft. Eng., SE 14(10) (Oct.
1988) .

DeMarco, Tom. “Software Development: State of the Art vs. State of the Practice,”
ACM Sigsoft, 1989.

-. “Making a Difference in the Schools,” IEEE Software (Nov. 1990).

Drucker, Peter E. Innovation and Entrepreneurship. New York: Harper & Row,
1986.

Ernst & Young. “The Landmark MIT Study: Management in the 1990s,”
Cleveland: Ernst & Young, 1989.

Fagan, Michael E. “Advances in Software Inspections,” IEEE Trans. Soft. Eng.,
SE 12(7) (July 1986), pp. 744-751.

Gaffney. “Estimating the Number of Faults in Code,” IEEE Trans. Soft. Eng., SE
10(4) (July 1984).

Grady, Robert and Deborah Caswell. Software Metrics: Establishing a Company-
Wide Metrics Program. Englewood Cliffs: Prentice Hall 1987.

Gross, Neil. “Now Software Isn’t Safe from Japan,” Business Week (Feb. 11,
1991) , p. 84.

Bibliography ♦ 511

Gruman, Galen, ed. “Early Reuse Practice Lives Up to Its Promise,” IEEE Soft¬
ware (Nov. 1988).

Guaspari, John. I Know It When I See It. AMA, 1985.

Heider, John. The Tao of Leadership. New York: Bantam, 1985.

Hekmatpour, Sharam. “Experience with Evolutionary Prototyping in a Large
Software Project,” ACMSigsoftEng. Notes, 12(1) (Jan. 1987).

Hix, Deborah. “Generations of User-Interface Management Systems,” IEEE Soft¬
ware (Sept. 1990).

Humphrey, Watts S. “Characterizing the Software Process: A Maturity Frame¬
work,” IEEE Software (March 1988).

-. Managing the Software Process. Reading: Addison-Wesley, 1989.

Humphrey, Watts S. and D. H. Kitson. “Preliminary Report on Conducting SEI-
Assisted Assessments of Software Engineering Capability,” Tech. Report,
SEI-87-TR-16, Software Eng. Inst., Pittsburgh, PA (July 1987).

International Technophobia, Inc. Magazine (Feb. 1991), p. 77.

John, Roger and Peter McWilliams. Lfe 101. Los Angeles: Prelude Press, 1990.

Kernighan, B. W. and P. J. Plauger. Software Tools. Reading: Addison-Wesley, 1976.

Kraushaar, James and L. Shirland. “Prototyping Information Systems on Micro¬
computers: A Design Philosophy for Engineering Management,” Engineering
Management International, 3 (1985), pp. 73-84.

Kuhn, T. The Structure of Scientific Revolutions. Chicago: Univ. of Chicago Press,
1962.

Laborde, Genie Z. Irfluencing with Integrity. Palo Alto: Syntony, 1984.

-. 90 Days to Communication Excellence. Palo Alto: Syntony, 1985.

Lakoff, George and Mark Johnson. Metaphors We Live By. Chicago: Univ. of Chi¬
cago Press, 1980.

Lewis, Ted G. and Paul W. Oman. “The Challenge of Software Development,”
IEEE Software (Nov. 1990).

Lind, Randy K. and K. Vairavan. “An Experimental Investigation of Software
Metrics and Their Relationship to Software Development Effort,” IEEE
Trans. Soft. Eng., 15(5) (May 1989).

Luqi. “Software Evolution through Rapid Prototyping,” IEEE Computer (May
1989).

McCabe, T. J. “A Complexity Measure,” IEEE Trans. Soft. Eng., 2(4) (Dec. 1976),
pp. 308-320.

McEachron, Norman B. and H. S. Javitz. “Quality in Research and Development,”
SRI International, Report no. 750 (1987).

Miller, George A. “The Magical Number Seven, Plus or Minus Two: Some limits
on Our Capacity for Processing Information,” The Psychological Review,
63(2) (March 1956).

512 ♦ Bibliography

Miller, James Grier. Living Systems. Princeton: McGraw-Hill, 1978.

Mills, Harlan D., Michael Dyer, and Richard C Linger. “Cleanroom Software En¬
gineering,” IEEE Software (Sept. 1987).

Misra, Santosh K. and Paul J. Jalics. “Third-Generation versus Fourth-Generation
Software Development,” IEEE Software (1988).

Moad, Jeff. “The Software Revolution,” Datamation (Feb. 15, 1990), pp. 22-30.

Parnas, David L., Paul C. Clements, and David M. Weiss. “The Modular Structure
of Complex Systems,” IEEE Trans. Soft. Eng., SE 11(3) (March 1985), pp.
259-266.

Peters, Tom. “Do It Badly, Do It Quickly, Make It Better, and Then Say You
Planned It,” Rocky Mountain News (Dec. 4, 1990), p. B14.

Potosnak, Kathleen. “Modular Implementation Benefits Developers, Users,” IEEE
Software (May 1989).

Prieto-Diaz, Ruben and P. Freeman. “Classifying Software for Reuse,” IEEE Soft¬
ware (Jan. 1987).

Rifkin, G. and J. A. Savage. “Is U.S. Ready for Japan’s Software Push?” Com-
puterWorld (May 8, 1989), pp. 1, 114-116.

Rockart, John F. and David W. DeLong. Executive Support Systems. Dow Jones-
Irwin, 1988.

Ross, Niall. “Using Metrics in Quality Management,” IEEE Software (July 1990).

Royce, W. W. “Managing the Development of Large Software Systems: Concepts
and Techniques,” Proceedings (WESCON) (Aug. 1970).

Shaw, Mary. “Prospects for an Engineering Discipline of Software,” IEEE Soft¬
ware (Nov. 1990).

Shmucker, K. J. “MacApp: An Application Framework,” Byte (Aug. 1986).

Stevens, W. P. “How Data Flow Can Improve Application Development Produc¬
tivity,” IBMSyst. /., 21(2) (1982).

Thomas, Lewis. The Lives of a Cell. New York: Bantam, 1975.

Withrow, Carol. “Error Density and Size in Ada Software,” IEEE Software (Jan.
1990).

Zultner, Richard. “The Deming Approach to Software Quality Engineering,”
Quality Progress (Nov. 1988).

INDEX

119, 131-132, 138
., 51, 434
;, 48, 138
’, 128-129
/, 58
\, 48, 130-131
~, 44-45
#, 47, 431
$, 54
A, 53
*, 40, 54-55
+, 58
", 129-130
?, 40-41, 58
: null operation, 433
\t, 82, 224
[...], 41-43, 51-53
!!, 138
!=, 133, 136
(...}, 46, 55-56, 138, 431
II, 1, 58, 138
$#,185
$*,187-188
$@, 187-188
&&, 138
(),56, 138,431
.cshrc, 161
.login, 162, 298
.logout, 162
.profile, 108, 159, 434
#ifdef, 357
/etc/profile, 159
/usr/bin, 199

A
adb, 360
admin, 364
alias, 435

apropos, 38
ar, 250, 358-359
arguments, 36, 185
arithmetic operators, 255
at, 179
awk, 89, 100, 234-236, 239, 247-248, 250,

379,418,497-508
array variables, 506
BEGIN, 501
built-in commands, 508
control statements, 502
END, 501
fields, 499
operators, 507
regular expressions and, 500
relational operators, 500-501
selecting lines, 499
syntax, 247, 498
variables, 503-504

B
background procedures, 178
Bash Shell:

command editing, 175-178
dirs, 73-76
filename, 44-46
history, 170
popd,73-76
prompt strings, 117
PS1, 71, 117
pushd, 73-76
readling, 177-178
redirection, 63
select, 149-151

be,258-259
Berkeley, 8
bg, 180, 182, 435
bind, 177, 436

513

break, 150, 430, 437
builtin, 438
built-in commands, 104-107, 433-487
buttons, 25

C
case, 5, 141-144, 189,430
case sensitivity, 60
cat, 59, 65, 77-78, 204, 240, 287
cb, 351
cc, 355
cd, 72-73, 202, 439
CD PATH, 110, 202
cflow, 352
CGI, 284
change control, 363
chmod, 77, 101-104, 184, 295
C language:

CFLAGS, 357
coding commands (table), 354
compiling, 353-354
debugging, 359
link editing, 354-355
make, 355-356
preprocessors, 353
prototype, 378, 425-426
testing, 359-361

clear, 230
command(s):

built-in, 104-107, 195-199, 301, 433^187
C language, 354
column, 86-88
control structures, 114, 137
data selection, 244-247
default action, 392
directory, 70-77
editing, 171-178
editors, 97
file, 77-82
filters, 59-61
finding, 105, 199-202
function, 440
help, 37-38
history, 165-171
interpretation, 36-37
line editing, 11
line/row, 83-86
loop,158,163-165
merge, 91-93
metacharacters, 39-47
printing, 98-100
SCCS, 356
selection, 82-86
sort, 90-91
substitution, 119
syntax, 34-35, 429^32

comments, 47, 431
compiling, 353

configuration management, 356
continue, 430, 441
control structures, 114, 137
cp, 78
cpio, 250
cron, 409, 414
C Shell:

alias, 435
built-in commands, 301
control, 304

esplit, 81
ctrace, 361
cut, 86-87, 246

and paste, 29
cxref, 352

D
data:

combination, 4
input, 227-230
selection, 4, 244-247

dbx, 360
dc, 258
DEBUG, 214-215
debugging, 211-215
decisions, 5

syntax, 429^132
declare, 253
default actions, 392
delimiter, 224
df, 417
diff, 362
directory:

CDPATH, 110, 202
commands, 76-77
current, 19
find, 151-153, 163-164, 418

dirs, 73-76, 442
dump, 407

E
echo, 105, 241, 287, 443
EDITOR, 172
editors:

ed, 97
emacs, 97, 174
se, 97
vi, 97

efficiency, 400-402
egrep, 92
emacs, 97, 174
enable, 444
ENV, 160
environment variables, 116
error conditions, 206-211
eval, 195, 295, 445
exec, 196, 446
exit, 150, 267, 430, 447

Index ♦ 515

export, 107, 269, 448
expr, 10, 135-137, 235, 252

F
fault handling, 394-395
fc, 166-168, 450
FCEDIT, 169
fg, 180-182, 451
file(s):

admin, 408-409
commands, 77-82
descriptors, 60
find, 18, 151-152, 163-164, 418
form, 17
input/output redirection to, 10, 33,

61-64
setup, 159
special, 20
splitting commands, 81
system, 8.18
transformers, 93-96
types, 410

filter(s), 59-62
Internet, 61

find,151-152, 163-164, 418
for, 144-146, 164, 429
foreach, 306-307
foreground procedures, 178
FORM (HTML), 284, 289

get, 291
mail to, 290
put, 291-293

FPATH, 264
fsck, 409
ftp, 252
functions, 10, 262

arguments, 268
declaring, 263-264
execution, 266-267
Korn autoload, 263
recursive, 274-275
removing, 266
reusable, 273-274
scope, 268

G
get, 356, 366
GET (HTML), 284
getopts, 34, 189-193, 207, 452
GNU, 9
Graphical User Interface (GUI), 24-27

xterm, 27-30
X windows, 26-27

grep, 60, 84-85, 128, 206, 245, 404

H
hash, 453
head,72,83

help, 37-38, 454
history, 165-171, 455
HOME, 19, 158, 200
HTML, 280

checkbox, 293
format, 281
option, 294
radio button, 293
textarea, 294

I
icon, 25
if-then-else, 139-141,431
init, 409
innovation, 324
input/output redirection, 10, 33, 61-64,

431
Bash, 63
C Shell, 302
Internet, 284
Korn Shell, 63
operators, 62

interfaces, 250-252
Internet:

address, 283
body, 283
CGI, 284
form, 279, 284
graphics, 283
head,282
Home page, 279
ISINDEX, 284
pages, 280
photos, 283
queries, 279
reuse catalog, 344-346
security, 295
variables, 286-287

J
job control:

Bash, 180-183
Bourne, 179-180
C Shell, 180, 309
Korn,180-183

jobs, 456
join, 226

K
kill, 179, 182, 457
Korn Shell:

arithmetic operators, 255
command editing, 171-175
history, 166-170
ksh,24
pathname, 94-95
test, 134
whence, 109

516 ♦ Index

L
let, 256-257, 459-461
lex, 353
line, 83, 206
Linux, 8
list, 351
local, 461
logging in, 22-24
logout, 462
loop(-ing):

commands, 158, 163-165
for, 144-146, 164, 429
foreach, 306
until, 148-159
while, 137, 146-148, 165, 186-187, 189,

252-253,307,430-434
Is, 40, 71-72

M
m4, 353
mail, 161, 420

setup, 161
maintainability, 396-399
make, 355-356
Makefile prototype, 427
man, 39, 70
man page template (figure), 428
menus, 230-232

pulldown, 25
merge, 91-92
metacharacters, 33-46
MIME, 287
mkdir, 77
mknod, 66, 410
more, 98, 204
mv, 78

N
network configuration (figure), 413
newgrp, 462
news, 420
nice, 178
nl, 351
noclobber, 298
nohup, 178, 357
nroff, 99

HTML and, 281
numbers, 252-260

O
od, 362
onintr, 300
online help, 403
open systems architecture, 328
options, 34-35, 185

P
password, 21-22
paste, 88-89, 227

PATH, 105-106, 161, 199-200
relative, 20

pathnames, 19
metacharacters and, 39-47

pg, 98, 204
pipe:

definition, 8, 64-66
named pipes, 10, 66-67

popd, 73-76, 463
popen, 295
portability, 402
POSIX, 370
pr, 99, 204, 249
print, 464
printing commands, 98-100
procedures:

background,178-179
foreground, 178-179
inline, 163
looping, 163-165

productivity, 3
keys to, 383
prof, 362

programming:
arguments, 36, 185
C Shell, 378
debugging, 211-215
interactive Shell usage, 162-163
option, 34-35, 185
testing Shell programs, 211-216

C Shell, 359-361
programs, 288, 316

data input, 227-230
data selection, 243-247
database update, 240-243
reporting, 223-224
screen input, 230-236
screen output, 236-237
screen query, 237-240
system interfaces, 250-252
testing, 211-216

prompt, 9
proto, 350
prototyping, 5, 158

benefits, 314-316
metaphors, 319-321
online systems, 326
process, 321-325
rapid, 314, 316-319, 376

ps, 24
PS1, 71, 117
pushd, 73-76
pwd, 70, 467

Q
quality, 3
Query_string, 126, 285
quoting, 126-132

backslash (\), 130-131

Index ♦ 517

backquote ('), 131-132
double quote ("), 129-130
single quote, 127-128

R
Rapid Evolutionary Development,

317
read, 197-198, 467-469
readonly, 469-471
regular expression(s), 49

awk extensions, 57-58
metacharacters, 41—43
operators (table), 50

relational database, 223
reliability, 92
repeat, 151-153, 307
restricted shells, 419
return, 267, 471
reusability, 16, 399
Reuse, 332-346

catalog, 342-346
code, 423
data, 337-338
documentation, 341
modules, 340-341
parts, 334
problems, 345
process, 334
processing, 339
repositories, 336, 342
tools, 341

rlogin, 252
rm, 79
rmdir, 77
rules, 5

S
sees, 363-365

commands (table), 363
SCO, 8
sdb,360-361
Security:

ensuring, 418
levels of, 101-104
permissions, 102

se (97 sed), 65, 83, 93-95, 242, 286-287,
489-495

select, 11, 149-151
selection commands, 82-86
send, 252
set, 11, 162, 139-195,268, 472^175
setenv, 297-298
setup,158-162
Shell(s):

Admin, 409-410
Bash, 11
Bourne, 9
C, 10
code, reusable, 373-374

functions (table), 10
Korn, 11
restricted, 419
syntax, 429-432
variables, 107, 114-115
when to use, 12

Shell programs:.
adduser, 411
browser, 387-388
build_db, 388
builder, 387
cadd, 364
calculate, 274
cedit, 365
center_lines, 232
center_text, 231
chist, 366
clist, 351
esave, 354
deluser, 412
dirsearch, 204
diskbackup, 416
file_restore, 416
getdoc, 193
hacker check, 149
helpme, 420
localhelp, 404
Page, 205
proto, 350
status, 205
sum_em, 275
time_data, 236
time_screen, 233
today, 206
trs_query, 237
trs_screen, 243
whois, 211

shift, 186, 475-476
signals (table), 208-211, 458
sleep, 178
software cockpit, 330-331
software evolution, 317, 323
sort, 86, 90-91, 241
special characters, 47

command separator (;), 48
comment (#), 47
quote ("), 48

split, 81
stderr, 138, 162
stdin, 59-62, 162, 284
stdout, 138, 162, 284
stop, 180
SunOS, 8
suspend, 476
switch, 305-306, 379-380
syntax, 33
system(s):

command, 352
integration, 371-373

518 ♦ Index

system(s) (Continued):
interfaces, 250-252
strategic, 373-376

system administrator, 407
commands, 410
daily administration, 410
diagnosing and fixing problems, 417
directories and files, 408-410
routine maintenance, 415
shutdown, 415
startup, 415

T
tab character, 82
tail, 83
tar, 250
tbl, 99
tee, 66
telnet, 252
test, 10, 132-135, 234, 476
testing and debugging, 211-216

C Shell, 359-361
tilde character, 84
time, 362
times, 472
timex, 362
tool(s):

application generators 385
change management, 363, 385
communication, 384
configuration management, 363-365,

385
database management systems, 386
documentation 383
editing, 384
kits, 386
project management, 385
Shell, 386-389

tput, 230-232
tr, 95-96, 242, 286
trap, 208-211,300, 478
type, 108, 201, 479
typeset, 122, 125, 253-257, 263-265, 269,

480-482

U
ulimit, 482
umask, 77, 101-104, 419, 483
unalias, 484
uncompress, 81

unset, 485
uniq, 86, 92, 241, 244
UNIX:

files, 17
kernel, 16

unset, 118, 266
until, 148-149
Usability, 403
uucp, 252
uux, 417

V
variable(s), 193-195

array, 122-124
assigning types, 124-125
C Shell, 299-300
environmental, 115-116
exporting, 10
global, 10
Internet, 126, 286-289
name expansion, 121
program, 118
Shell, 107, 114
special, 115
syntax, 431

vi, 97, 173
executing Shell commands, 184, 216

volcopy, 15, 416

W
wait, 179, 198, 486
wall, 420
wc, 85, 95
what, 367
whence, 109, 201-202, 486^487
while, 137, 146-148, 165, 186-187, 189,

252-253, 307, 430, 434
who, 85, 203
windows, 25
wordprocessing, 101

X
xargs, 151-153, 165
Xenix, 8
xlib, 26
xterm, 27-30
X window, 26-27

Y
yacc, 353

Networking/UNIX $39.99 USA
S5B.5D CAN

Completely revised and updated to include the latest developments in Internet and business applications,

UNIX Shell Programming, Fourth Edition provides comprehensive coverage of Bourne, Korn, C, and BASH

shells. Using a specially developed three-step process, this invaluable guide takes you through the entire

universe of UNIX shell, from simple commands and programming to the world of software developers and

system administrators.

Using this comprehensive book, you'll be able to choose the shell that's right for you—whatever your

needs or background.

UNIX Shell Programming, Fourth Edition gives you:

■ Practical guidance on how to create CGI scripts, object warehouses, and reuse catalogs

■ Everything on shell extensions for management of distributed environments

■ A special shell reference appendix containing real-life examples that you can use right now

Lowell Jay Arthur is a principal of Quantum Improvement, a software process and quality consulting firm.

He has over 21 years of experience maintaining software in IBM, UNIX, and PC environments and is the

author of many well-known books on software engineering. Ted Burns has been building softwi sims

for over 13 years and is currently a member of the technical staff at Invesco Mutual Funds. an

MS degree in computer science. zH

Visit the book's companion Web site at www.wiley.com/compbooks/unixshell V1*

01i===

7 0992 16894

Wiley Computer Publishing

John Wiley 5 Sans, Inc.

Professional, Reference and Trade Group

G05 Third Avenue, New York, N.Y. I0I58-DQI2

New York ■ Chichester • Weinheim

Brisbane ■ Singapore ■ Toronto

Cover Design: Watts Design?
Cover Illustration: © Dob Colvin/SIS

ISBN 0-47 1-Ibflm-?
5 3999

9 78047 68942

