
Kochan
a aAlVofeye|

- Stephen G
r

IDOdd |

“Pati

€

Digitized by the Internet Archive

in 2022 with funding from

Kahle/Austin Foundation

https ://archive.org/details/unixshellprogram0000koch_i8n1

© Stephen G. Kochan
© Patrick Wood

Unix Shell
Programming

Third Edition

Unix Shell Programming, Third Edition

Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored

in a retrieval system, or transmitted by any means, electronic,

mechanical, photocopying, recording, or otherwise, without

written permission from the publisher. No patent liability is

assumed with respect to the use of the information contained

herein. Although every precaution has been taken in the prepara-

tion of this book, the publisher and author assume no responsibil-

ity for errors or omissions. Nor is any liability assumed for damages

resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32490-3

Library of Congress Catalog Card Number: 2002115932

Printed in the United States of America

First Printing: March 2003

OOP OSHNO4S 08 A oie are ll

Trademarks

All terms mentioned in this book that are known to be trademarks

or service marks have been appropriately capitalized. Sams

Publishing cannot attest to the accuracy of this information. Use of

a term in this book should not be regarded as affecting the validity

of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as

accurate as possible, but no warranty or fitness is implied. The

information provided is on an “as is” basis. The authors and the

publisher shall have neither liability nor responsibility to any

person or entity with respect to any loss or damages arising from

the information contained in this book.

Acquisitions Editor

Katie Purdum

Development Editor

Scott Meyers

Managing Editor

Charlotte Clapp

Copy Editor

Geneil Breeze

Indexer

Erika Millen

Proofreader

Jessica McCarty

Technical Editor

Michael Watson

Interior Designer

Gary Adair

Cover Designer

Gary Adair

Page Layout

Susan Geiselman

Contents at a Glance

LNGHTCO SG RCS SY 8 hey comer ate earlier rey ete ey Pe er na 1

PAG OMICKEREVIGWaO tet CUBA SIGS saccassepeera strate ea toe ean nena aren san sy eee 2)

IVS Tae FS FS be Ube eats iy cae coms eerapeead eee di eka Ws raees fav tees 41

SET SG) Did oC Bye aCe 208 Ameena Rte en SOR Ree Re AR RSM A Re Ea RSA 53

raveks pala b Gh a Cau G18 eats rer tree ene eee Reha Gere Str rar yt ent nme eerie ac eee 99

Can Quote YourOmsl alti? soe eee een SRS cee sa ewes accu eee ee mee a eee eee aS)

Peas Suit eA OUITIOT USI ss hSapan se see aan wae oe ret ae ead Oc ce eRe anesulenle sa de nash aseonncass 133

MECISTONS MIDECISI OMS sss wee seae ce econ eee eee eS IN Ae SENSU TN SORE ERTS 145

BROCCO L ANG KOMI SN COC Sartre sone tetorr ra cuaieie cs obtenaretr edna ners satan sacasrgis 183

Reading ac Priming Datars. ac.cosissas nies ssagsesassh-«oesvains sigsssssesctses Gesasesmnces’ 209

YOU Em van mim Citieercree eect wse catectesd tases nate sannesees seatena se nc cua aes ecesor seen easn 239

IMOTeOMERARATIETEHS teen seers tre cee es eters ta sen eee ceasscc tae: cat neve rete aces stews cia oaets EXO Ji

TSOOS CHETVGS sere meee teers te tren tee ae ectaee caae Aaoeetena anes hm saticavceseunucneuastestauese: 287

ROLGIREVISIFEC genre meteor ee cn cto ee caret crn scdeae 8 Raita dm mou Meso w ances ches Sansdateantireste 307

InteractiverandrNomstamcdardiSellsheatunes messes ce-cctestssesecen secs tens 325

TOYS UGS SOU 10 00 es pepe Oo aeeeceaernne Alin isa sec drnrearscenn bcaadsonancquaugeaoucO © 363

FOm NOS IMTOMMM A ON. scc.ccecccereece er eecees voce cece vowlene nese mon sense seme sosssesnatoneseececee 403

Table of Contents

1 Introduction 1

2 A Quick Review of the Basics 5

Some Basic: Commands. sisiasevcwescevaccsvazeseontesssesnnsosonceacsnacdian Measmandtinsne=asoussanian S

Displaying the Date and Time:

The date Conia de. ie 0 orca Sac oa aon nccees ee eansaeae nada eoeaniaaerneeennne 5

Finding Out Who’s Logged In: The who Command-::-2::00+ 5

Echoing Characters: The echo Command) <..<.j<1ctsesceraceancectonseusaszensaes 6

WOrking WIth PILES. <......00c00ns<ebotaeacyscsubelsdrauahiassilincs tue qaredetatasiala sa A mdteeta owes teenseaa 6

Listing Filess Tne 1S Omang in oo etc ie entre epee rete oer ee 7

Displaying the Contents of a File: The cat Command+. 7

Counting the Number of Words in a File: The wc Command 8

Command OpBons ii 55.0 iis cccotncacecsucacisecacieeescaeestenedipieecadanecemccasenilarnie: 8

Making -a Copy of.a File: The cp Commmatyd) 2.2. 2i5iisscan ceva wanes cuanians 9

Renaming:a: File: The wmv. Command <.cs.tevdcecacasepineetnerteteenaseneatee 9

Removing a Rile; Wine rm Coma aoe crea eng eee 10

WOK WITK DITECLOLIOS 5x <casancasiscdegacaisaiseepacean@ern 1 aignuietenives: maa yeue ene 10

The Home Directory-and Pathnames, <.1..:<ccssnue weet eres 11

Displaying Your Working Directory: The pwd Command 12

Changing Directories: The cd Comment | icy ccc caerulea 13

Morea Ee 1s: COMM ANG 5 Aiecsscdscnc.a-tsvsnsw tenner eterna eee 16

Creating a Dixectory: The mkdir Cominenid <i.exs.cascsasuccasnesncoeevacsenn 18

Copying a File from One Directory to Another:sssssessssses 18

Moving Files Between! Dirertortes™ :.cdks.:.cccdssnnnios deinen 19

Linking Files?) ne lr OGmimn ane ccs. ssccvacsccrcesuse one enna eee cere 20

Removing a Directory: The rmdir Command |csccsccssscnswecspoceasencate 24

Pilemarinre SUDSUPUEROM iccccccsscnseceassaesks ak chnishavecsss staat: ee cceun ree ein ee eee 24

TPRV@ ASTOEISI “ocr cians cas harse ste cet selec ahaa ace aca nce cece ace 24

Matching Sime: Cia taciens)i.acccassasscscescesecacecaneqetbovecuse aero 26

Standard Input/Outputandi/O Reditection <.....c.c...00-oucoe eee 28

standard Input and Stamodard Output ..\.tce.cn esse eee 28
Onitput Redirection: 5 ..iccsscnanusees ecesceovecutatecnt eee ee see 30
Input Redirection

PCH Ske spe ne eS cacy cnn peacoat MON ae MM coaches Seeds Rac bats oe)

SCT ae cL ol SR) tk nA ore ee Pe EERE ee et A: Se oh Se 59

INIOR OTB ONINIINA TAS Gas Be aaisd cane tir feae eeimiaracass Jas esa pomnes aaa 36

Typing More.Than:@ne'Commiand on a Line-rtn........cssencsassseedeee 36

sending a-Command to the: Background) so-h20hcscesovckcarscaeseoeeveene 36

PEMA S COMMA | <acrnoncnaconesctapsuecar MY TAO EIR ca taaele ovate i eganett od a7

COMING A SEMANA LY. oss seion eens eee nh Ce PRE os ceg sas kites Socncrseesee 38

PIE P SG SRM ete vans tans een cg nakd nay dh Sa sag hol atid asda sous MMe aan pect ee 38

3 What Is the Shell? 41

Tine wRermeleaniclt hen tities iene. se Rie RAR A Serta i a Mla viisobceccanneesacont 41

eae RES HVC MM etecias cs axes easca eines ance vs otdcd One eR es acu ohana nd hae pee 42

Hy ping Commaands 1o, thershell ceca: ee ROO EIS ats. ssaveneaendente oe 45

ae Sel SKESPONSIDULMIEIES sos. tesceh onaecteh teac od a ee akicssnaenuonmeyneamencas oe 46

PROQTAND ERE OG so. tisvscs toawintn settee tect es endtes eat wa tas vanseeguneseaspaciseeeeey 46

Variable and-Bilenaine SUDSUHUULION 5.c2...cscescerson cane eccmtere dat sates cotxeoncteee 48

Tf QO) REGIE SCHON cers ucrocaonsenssameenydeste etch aateetate cas sanil avowi eck ad eee 49

BUPC MIME HOO KUO nic pie ccnsnssreeenste cura Gent ctu state oa eutamiaersenavadasaecueaee St

Fuvironment COMMO! cisic.scscessionsheriarasionenn isan dantend there tare easuduatanc tam Sul

Interpreted Programming Languare icciccck. wcewssspscctore Gs cstiecennenstoe SZ

4 Tools of the Trade 53

RESUIAE ERDECSSIONS. <a.tiadbscesscacnnssxarcatnaciwensnadanaindat adh aatanwndbnnns tenadasweanosseanes Se)

Matching: Any Characters Nei Period 4.) cccavdarsevdercrtotoasnaatsseenncnnses 54

Matching the Beginming ofthe Line: The Gare’) ccciaccssoscseereae 55

Matching the End of the Line: The Dollar Sign ($):c.0sc00e 55

Matching a‘Choice of Characters: The [.:.] Construct0....01.0. 57

Matching Zero or More Characters: The Asterisk (*)s:ccceeseee 39

Matching a Precise, Number of:Chiaracters? \{.. iN} eiiieresse.ascnnsnac.coes 62

Saving Matened (Charactenss \(cams)sccescxsessansatetre rete rteasederethenensaranee 64

CUD eeceiteetecsteees owen AoE COO TOO ROC CERED OTOL CeCe DCC DO BDO or po caOENaac pacer eCHeSRen aie 67

Dees ral 2b OT OTIS stiteen. cetepercses orcne eee see csene eran ncet ren ainsenscsespeer re: 69

PASCO@N parse so ceatiee so. cscsacconerseesqacoasaieneencnseaedey eden ooticetdeas-eesaect estos shone ies cs Sue 72

MNS = OPO My tee 2 oat sn asec matsicas Wecsy= tow catmr casts Miers swastannnnngceeauante 73

INCE S, Dt OT ih ase eta te tens estes Co sntes one tree ceca eres ers Ieananensiccvuncasieers 74

SECU ey te ere ent. 2. Avec een Rane cater GED cat cateoanaaseemeaetonsdeastauert ies 74

DN N@ 1A PLO gee eae oece tse tect toaes vate cate ee te <seare ape scd ar seasuistabisuy-ceztbes 76

PMP Pit SS Seo asa cdnsueadanatrnsnadecennescaactexssssearssnnheSakoecnnseasscneencsoc tree 77

UNIX SHELL PROGRAMMING

ET xcs Av testes denodetmne ibe Spevianies se qannan lute udnasiecateoareesedse oad ost tae aren toe ba heenag str sales 78

THe <8 Option0:0...ss0casssnnevesveserssonsuneranacssdunpennronsrsconsooneusasavaasnarennare 81

The <0 OptiOn, .s.cescscssoeedesnecesseesssenasorannrcect atnsnasabelansamersassunawasiodsinaneae 82

QICD. sccsssevsresnessveessasoonessssvsvarssvienctesnsrontrotnedenteousoessaushsssesunsasseuleannasedesanennaseds 83

Regular Expressions and Qrep:cesccseseceseeesseersreceesseessceneneseraneens 86

TRESV Optioriiesacas. 0550. Act his ident eaenen stn taddduet neuen adnan cnnssonsranaabassinhanad 87

They] Opti Oi iveiaisaressbisins ssnesssnessds bd evasbncndbeds Marowavincsiahininenndniaseapekaes 88

THE-N OPTION <ccoove. veces seuserensuseavardaeebees becder timspetenanduternesresesanmer onesies 89

SOEU LS chnasiasyiownvetaed secs pice cares vaies wlesiynchigdencienwsaue renee onceiemleaet Nanitereaderdans <asuaeei 89

THLE FU O PUR 5 dass ocessciencers ssonseseovissaneovsivmeranennehiaraamandtansauaanapiemenecnents 90

The t OpUlOnt -<; 5.1.00 iebnccanavesangewegsndesreseorets queen anda eeaeat temertanrd ieee 90

TES Op tOn) cis cnuessstoet ce Bats sates te eect se ater eae tenceaewceneatreciers 90

Tet Opn wv sccscosiiccsns cccevenasscanedaacanestetaeoen aan taae dest owndnlsameccseretettar 91

Ski pime FIElAS, . scs.coe<epeeee ates ws oe vec dk nasa Poets Said aussi meimnianeteeiee 92

THE -t OPM)... <icsocsisnenchecosiemenetes eaceae teaies ewes adstnlaeewcaladeameunxs sctaodinisinécitas 92

OPER OPTIONS ssn dos cscs d sie ces cxsl tote oan ee eet Va catacaseentnd en aneanear ade 93

UIUC): vissivesssicensiec'sasune'Sedasige se uvssceadastiee denna tess teaamaveds volar eeapeniaeden tach ienadiape-seiieameaaranne 94

PHC = OP THOW atic cag traviax visas snensoaetic tenet eebe metas a a-ak coece tan taccuceams seen 95

Other, OPtOUs » czecges. oonessidannzeseseee a etosswentecd ca hen tesa cniewexeaawiaeastacknaaceek 96

EXOQCISCS ccseas i snSduinassueey scien dass shen chen Rcaenmke Atenas ees MAR ER oes alge eeecesennmat 97

And Away We Go 99

Commie DFS s,s sta caweoecoassteis' 051 Siewssananaacanseeee sbeeeete tee anaee eee neee a eer 99

CONUEIGINES saci Scie anc cea eee ne Re anena eS 102

VATA DIOS, x: ccevtiscesantcastas sa vaeeshna Selorts aaa «2 ao aeats cabis eRe ada Pas secs wwinyn Wosertaneackicoenaes 103

Displaying the Valtescot: Varia es sie es cre ade gees cancas isin escensccctucees 104

A Tre NUE Va eres Sia kav, Ach teak kates secant Ween MER cy ose ccavecs seueasieaeeseue 107

Filename Substitwmior: arid Variamies yctc.scicceehetenssserccthavtceoeneareucens 108

The: Sivariablel Construct sus. ca derek G cana heeiees sen aseneecvedaee puke 110

Built<in, Intemer Ansel iin ether com cash sac icena ntsc a eee ikea seve mamoaenncdntnes 110

EXONCISOS. 5. cnsssznsanesvaye coped doe t RSA RGRER ataaes GRIN eae Meee ok te ee aaa 112

Can | Quote You on That? tis

The Single Quote scsi ces tice cabana aia A ORM oar 115
The DOU DIS, Oimote ccs yncseehscs socthina sh ccars See ete AS cee 119

Ae Backsl ashe. crxcisectcrocoxcencatienescs aug eae ere at Rec nereah ee te aan 121
Using the Backslash for Continuing Linescccccccsccsssseeeeees 122
The Backslash Inside Double Quotes cece Seen cs ee 28

Contents

Sper ad AS Aba SHINEE Os 5 cacao cane ae aA I NEE a ses Re aiasancee 124

NFER ACK 10 LCT os. tnh 2 «at neta dh hen ometmmnemeen le amie Ame iiicse. see ee 124

Dee KOO GAS ICE Segue ces -c-yl eter ne aoe et ode ch encegwdeaovaewssers ZS

AN Glex prGomiaaric pear we pe eee etree seeded aia 129

EGE CUS Sires 255 sees, sec oat sc eeat soe ee Pera a OR ER techs sctissed do Ge sdaabnceasve 131

Passing Arguments 133

SUG SAP at USO ct 2 cites casa le tee ce eared eta Ses Senco clreten cds 134

TRG cS PM at abl ieee cscs tots sncnnectsdenyh wechtes yeni tees shcdevacisdereesaweeesioes 135

A Program to Look Up Someone in the Phone Book:06+ 136

A Program to Add Someone to the Phone Book:::ccceeeeee 138

A Program to Remove Someone from the Phone Book 159

DEE FRB a ean Bey re tcrcca oars a ecard Mae aceon. camnegoaseeash os 141

DG SIMEC OMEN Sates ces dates ad dothtnerhtas eStats ese sacks ascneeenics 141

BX PRCISC SD sok cx Ooi iad, BN Ta eS stasis ch pgplacbaxs cadad en vuasialuahs ROM RMN ots Lorastsctouees 143

Decisions, Decisions 145

PIG SEAUUESH Seger vasasedrecceseT a Rup ntesabu aus eee tec aah RDP Meas acaseateeeatonees 145

RES Varia le: a. 1.3 scie sesh eee th Reet sett direct sncdeeteteosenverdddeiyes 146

Thettest: Command «os: ves teescees cs eens Ge ea WR Aerenied owls Rech csnveszsocersoas 149

Sirus OPELALOIS + 6: cadets cs ss so aes hee eee ods spo cneneacdenepseasasteneees 150

AnrANeniatlve Bor attOmiesticsccataaes not adeiwreti con tisectomceetrcseeeunaes 154

IfeR er MONeLAtOes eres saelsoES se tae Sacgn tah, egnea dv etee vountesvewen tenance 155

FILE OPSLA TOES Pease seta sorasu Ma ttavven aes sap ceo hegsegeee a ras eNewd es ceaeeesdteeg caaiee 157

he LovicaliNegation, Operators! qricc. cities sbi eeessecmanseeeesusevess 158

The Logical: AND: Operator =a. sdstivaieeseNadeeti sium Gi oocscd nds sesestos. 158

Parentheses rivsarsssssaivesceesssececssorawwssnadtin cause sxarcoeecnseestaee ae aeosidas sees Hee)

THER gical OR Operator oO wave sadiese cacedederssh sederenedovsateetvoreerecstoaaets 159

TING CISSt CONSE COW sss u6 caceasdeeshesousenctentteod ER eee Aorta de lide eid ene’ 160

The Gxt Command - seeressssteeceasndees Savecececovs sswedaupeyremeaaeta cadstunesaessevsea@oetccsas 162

A Second Lookat the rem Program... cet dectuctacssas. tavcsnatsn arcveceeeess 163

AP HIE CLI CONISELUICE 2 u; fac. ccsterecers conte uss qionasdes Caeaebogut Ais odgee dari aemnne saartasiveateets 164

Web Aimothete Version OF LEI) aissctacj caus. oto ete taka ksoveddcoswediesvtwcctanes 167

TIVE: CASCs CoOL TATICD ste scslodcen daar duc cscs avancds si ebesas ahyerenetanageenh Qrumseutevans eset toe 169

Special Pattern Matching Charactets: 1.10.20. .0...ites-secsensensrenseensnees L7t

iit =cOptionton Debugging Programs -.,-c2iaiensre see sie snterssesens 7s

BACK: Ort CNCASEs see teeee tao wns sa ac ae neat Ge Lock dacs canta et waane Me cuncciewededans. 175

DT EL@HINUCULE COREL IAI GU ictiece coves sectesi cus cs caopest-sxssbectee taba suo ecb onadnocssnctcatecedswevests WZ,

CEI YOx or aC a Ce ONISER ULC TS iriree acters ccstestovensebstsuzussasnsunadadeeouaressunncedvasestustsuae 17,

TAD ENHETINVESS) dainslan Basse oR OO Gone eGt EGDO SHO ALOH ECU BUGT ROBE EATER OEn CA LOC cR TE Hap ac oeaceaEencnE cccecece 180

vil

viii UNIX SHELL PROGRAMMING

9

10

11

‘Round and ‘Round She Goes

Weta coran @rayacien clots MPmremrrtrrr tr rr ey cre cre reece en

The S@ Variable vicisssessteesttate aa oe es con aaedcesoalbs sna secnzecersnmetalesanPokenoneneens

The for Without the Listes. 252202 sions sec waetesetraeone conaekeromenshadantansane

The while Command ...s:2052.0ssete2-2cbsats apeeseseauaedenedotdecteecesnasnasendaanean

Fhe unitil Command .isdescasisisorsistscecnsscnndsanneettvderaiy vevcesesestaadesanadersuasatoene

MOre'On LOOPS JcsassitiscactincsssatsessosordncssopnuecetssneasesSencuanonsassesmana saapanbanneiannan

Breaking Out Of a LOOp® .isizisss.i:Wrererstees: cast tuehedurc>sonnssenaanascunakosnwasan

Skipping the Remaining Commands in a LOOP::::eeeeeseees

Executing a Loop'in the Background <221..ccc..12 decsscseasstecensntnesuaanaee

I/O Redirection’ OniarlOp ee cyese eseas see katee ee Andehes mo doa racevad see second toe

Piping Data Into’and’/ Out OF aLOOp \ccleesrescccetus ancnsscnsonavacaterseensins

Typing a. LoOopion ‘Ome Line) sissces csvset tees estseecane ete ace cemcecarn ener eeaee

PHe-gétopts-COMmManids zai cocicedariacbekscecleeel etn voce daderbads ott Ramnssuseweccmcmee

EMORCISCSI5. ses ceueoseavsos asses dSevecatotensadvecs senses see decsnaons eyes tuedeemresedenesermerssrecarauveses

Reading and Printing Data

TGS a Coo MATA ss Pseisee ce season Tasca as tee ge ene

A Program to. CopysPules: sisasni ci pak ire cecdsenct eanoecntcgaeaasasencoacentes

Special echo. Escape Characters: cciaeucectatece dace easement tecscoeme snc oteaee

An Improved Version: Of my Cp: 2 ecresce tne eee evan rcie noon ca tokens

A Final Verstony OF yeps iste wets ee erent mares

7 Menu-Driverl Phone: Programivetiycat ceteris eae us ane eee

Thess Variabletand Temporary Piles "egies csc cmaccmnteeeteatees

THe Exit Status ErOm Pes) 6F econ ane pa terterosece na easw sce meneame

Thé prenté Command: cess stectevescs veces tect ee ete catanees ccs een eocesese eee

EXORGISOS stead weicarewtuuciacscitayane romesinns Cesiunes sivas Oot tee Cea geet toa eee ees

Your Environment

LOCAL Vala DIGS: cs :c222 ceccens Anaahat ean eee eee eee eee Geena

SUS TELS sini MACE Sas pte ora sas reat enaee se ee ee

Exported Variables csciisa. cane ceancectseataakanapaa geen ere tem mn eaeeee

SKDOTU-[) 5:iwsirasedatacatewenen sosevnseqsaveactonmee tenses ceccstee rs cok ont bast ear auen ee

PSE GPS + Fiscars d55iscawesiec tach ioe eans REMC RC eee Ree Gotta ee

FROME): Fates ccescishe stares Crecente tite cto rece aoe ote ota eee

Yorut PAT ED sos iad ides Veeuac hth aeeie ene pe anaes ne ats SORE Ce eee len tee
Your Current DiteCtOry ccc eee teerereee resent ee Ree eee

CDPATH BOC OIUGOU CC OOOO OCU OC OCICS OUOO ICO OCIS CO SCOOCIOCOOONOOUCOCCCOOOOSC Orci r iri

12

13

Contents

LY eras CT a PRN G Lo S¥c) | eae gre a en Oe, S62. oan. 2”, eee ee ES:

$US MS OMUNN ATI G de ows texstrca tev nt eNG MOR RRM ese cs ctiosel nestle nti eve 254

i etek (orem Gov ii ashe VeVi Maser earl naan 0.3 Sect £0 ade ae nr 257

RCE) rani lietss\ COnSte Cts cca eee. ee ae ec sctetas ddan secs noeseees 258

AnotherWay to Pass Variablés.to.a Subshell aca08 iith.s.ccascesessee00. 262

MOU ip pro rile Vile ssc Aes toe 3 ed ee ie OA oe cc nnenatioatsens 262

PTE RE RIVENag ADIs. c25s1s:sncveneya er at PMN saci suisnevindegeton nent 264

EE TOUIZ 5 V ALA Cgc ycce toc: Ses Povek SNe cee re Ta Ie MAN OR cathe aeiae 264

EEORCISO Siac cosentcoee tenet to aieal ni edusssnaacactammoaehaseunnded esa Nee Metaetnoaanudeeromactor: 265

More on Parameters 267

Pal IDECEESUDSTLUUGION Wace soticeceiecceaso ae ee ae sews tees 267

S tra MAA SE CE Hr etacams vvoreestie orescence meena cater ai he arene iain 268

S [Pardee VALET Src vee. nun sees eed erences Ae es Ae Addie 268

SD (pL abatnebe rsa val Me peste cna cvcestve Goa evoee evs deeg eaavataavav tases recent eeasereoes 269

SUPALARACLOE AVAIL e Na oct sc caress catecuva ies ax tea eet eqiec tk tenet seve eee 270

SP PALAMIOCeL MAILE} ¥.2.c00-sseecns ecchasesacoetecctssok eouwk saber cee ea coe teeesa teuseces 270

PattermMatching, Constructs: sch rocedcacchocaorackac eRe poe iawinessebdeeaens 270

Di PEViAlsl ADE} Reet ese ance ce stunans teeaeadeeneeck Gee aad oe seca uote een Me omen 273

Mare RYO) Wali gi] 0) (Se aeene ererecer os arr pacer cene tn ceeeuces Sretak nocd ut ockioneecacacacssaeeeecceennee DS

AN AVEO (Cosi MIU ROYCE \Goscashoceneseoassacncnonedencacin: cnearaadecec eanoriane Socconcecnoodepancocntcocas 274

TROP WOME ONY ocd coven Cesich saa wa dae stag atanev Loe sochanscansuedeiteus cedostewnctompdacones 274

SCH WiICHHNOTATOUIMENTUSS, nase-setersccnrer-scnssae cesar emtnctar sce cessese else cteeseae PAYS

Using set to Reassien Positional Parameters sac, tities .cse<ssescccasm 276

ETE O PU OUI cee Foesh cnsceteoesueeis aaawnsaie shay an darned ena snsuecansuoncesaat Ld,

OMe, OOTIONMS: £O,SCL.. jnsinnnnasavtaraon trem ane one see ater Bede aban naeoessiveeecr 280

ERE TES Wa rialol egestas. cays vas scasec ome anubasteensetren sebetacettinte teat oelasniteeavaderene 280

Pe reddonly Conan: 5 visicedecnsecoanthiteanesveMe tase Caseasatie Maenoovanedesta senses 283

PIVEMATISE te CO Tay seesees Hexen eee eae eee ee eremiacsotesecsnte so sgeesenes 284

EXETCISES erteccea cree cette cen oeacac wats eesneca ne seabane deere eeaese aoe atin lading Sea senate sates 284

Loose Ends 287

Mires evals Comma era ceweseee eee ee eos eee eeae en talcvasestwestnseuaseece sss seacses 287

PINGawalt Omani irey..cctescsck ere sense ce tees tare oc roae Wooes Saat yo coweodssenwacndesesenens 289

TIERS AV ATI AD OME cscs tome saetceuavadeck tae eectatetane se id teavedens ton wearecostaneecs 290

TIS trap COmnan dys so. 2).2. csevereccrwssncwutsoncevancieavaassasedtenwssmetsdessoowtvevednessess 290

trap With No Arguments:..cssccccersessecenasetooreeeneeeecontenstaentsoeees 292

Ignoring Signals .s....2...0....scecsssssrecssscesessseeedseseesssesessnesvesssstssensonses 292

RESCCEINS TLADS, Soe io secscccsennccssvercnescssvwnssncgesavsndsenasssowsrdssvusssicostnacscses 293

UNIX SHELL PROGRAMMING

14

15

More O11 /O) jasstscesacavevsevessbietnvceaveosis snanvace stele ddaapelade podenatnienaenaersneseonaaneant> 293

l= AUN > Sis ts vasnvan eetoct on geadevsvecsvessenenenestetevcdcssaeene t= -anateaasaceanvadnospaanses 295

Inline Input RedirectiOncccsceeseceseeeeneeeeeeeetsseeesessessseeeseeeeeneeens 295

SHOEI ATCHIVES vase cexseabaenhadsonsh eb seandcous abe Saipan thoaetanudesdawabianndeennttenrnes 297

FUMiCtinas sagets bodeen gece teetse ils et RE fete Mee ce dancin cma caies 301

Removing a Function Definition::cccccessssecreeeessnrereeeceeenees 304

The return COOMA 5 osi<cstecone ra <tc metioen des deeaepnad ona tee netesitnaop enemas 304

The type: Goma | :cssisiegscossenerczacnnsnanecanevatnestcedebnsde-dacedetes ¢untestiansnaeddas 305

EXOTCISES :5.:srcavecosenasaws savers vecuesdeecas «nus tp tlepnueraak-aus anon ieaesenecnnenalunaamas 305

Rolo Revisited 307

Desigti COnSIGELaH ONS. :< csssses sieuxvenevucontigacrens=-sseetaiaen -hePuerchte Amahatiasrieaasateasaay 307

VOLO: cebu dasnceasdatecuevess unused vakesaa ae aes nnica nes doe UneOae a tate en eternity eee 308

BG ccs ve rst thie cap danctoeealsbasi'ne owen ai eaces d's athe Uastece ole eal a bereaeenen concen oA encanta 311

Ludlics sna dharesa aye weetalegee once visu Sait on cess SNR BB aaa ec eRe as enneedtlaaee enact 312

GIS DI AY ese cnc vsscsnsecenieas aitsousan an sdane coitdxveaeela ents Sie taco eee teca tied dasagendaaneennya ee 313

MQM gepeest «Be Sac te pee te cee Aeon oStin News nai cos ae React a a aaa a es Rae a lpn an case gmeones 314

GHATIGC > sect cvoignscgs tyes sass vaorg daeentseacgb alias ch gas teaseles san eevaptaeeaee ae dessiek nains panini samireeetonts 316

Lie cscs coat cijagd ech aataretReban sands bac nnaig ioe ee sacciae en ona se psoas 318

Sample Qiu yee fees oto ce can aasiensansd cad aneeee eaaee o oe eee oe ade aaa nin 319

EXGVCUSES ds icesiirs 2a wvic es gh suclosiishv toe gale inn eh unica ga cook eee aneeshatti tns mace 323

Interactive and Nonstandard Shell Features 325

Getting the Righty Sle li Gio. coves ge tecee lace es oa elas eenie dente 326

PIR@cEIN Ma Puke. Sissi Sos nc as caw scan le cs ar Perec ee tans ue aemence a geaaaemneteneeam acts 326

Goma Line Big visu. dsc deck cat eimacen each ete eae as ace nese atace a 327

GODIN AIG HISEOIY sj scitac’ cock oyias scmsgunn ges yusuaau cee eae tote meena eciad ieee 327

The-Vi Line Bait: MOdGx x cevesxivs.ccpuseeee terete een ee IE ect ocsictn losin 328

Accessing Commands from, Your History sc. ei i kcsiveccearsccas 330

Tine Diire Edi tt MO 6 50.45 cccusaesvessenrsurncraha teen csisae edececs eee eee cc ecteeeet neuen 332

Accessing Commands from Your HistOryssssscscesssscescseesaces 334
Other Ways to Access Your: HIStOry <.r.xv.cksccossceemeeee eee eee ence eee 336

The history. Comma and ic. ccc. ccvsnocs eee tenet eae bac ee 336
THe: fC Omi an sic sesdahsssniteonchcras eRe ee aL coe 337
NG, FCM aI. astk Laas eaust sk ose NEN ae ome ace a 338

EUPICHONS, x, ss.cs saacinaatQeetcess ciseanes ocneee eee AAR CN IIE REI eee 339
Local, Variables i: ccoccc cupertino oe 339

Contents

TORO N A TRICE CCN C8 oseeanit ouvir, sasenssn tno MORON RI soa eae 340

MALE CIAL Y, ES pa area Ut css caiu a a lgetindg Sater ce RMR eas sae or evn iendeuseees 341

INGMDers TmnDitferent, Bases. <ccnus ners erent irncdhnd.stideekeooeavecees 342

DTS Alig SHC OTA AOS oe evesions unt eus AOE Maeve Cee eR TIIR NG as wccaneescs esac 343

BE PON SANG SOS iki ideccsitns sedan eg meas eR ast Teer cane desea vn centene dee 346

HUGE ANS) cascelsa nec ba unc eebakassqua ners ek aas AMR ROT cere 9, hv anu cawetoleare 346

OT NEOTEL ONE a oa cede vace dca REPO RENTE Rd A te I Recor, une a Soy

Stopped lowsiand: the.fg and bg Commands 905 ecsencsooresriesancsee a)

Pheghestricted Shetas iti... :,.. chm gewn oy wet Wes oh ac eae IOS)

NMSCCUAReCONS Features. ccc ciepiemee | ae AE ao a a07/

Oiber Features of the ed: Cominaate ye 638 GAs ees assnss sce lxsseoe O97

MolClesSUDStiTULiON: scsi. sma eae ae NS che an ca te So/

RACINE ATE) 25525 acriscuit ph ROT RIOR ROO ONES Fr sty cop ekidnse aes earn tucee Sy)

COM PAu DUTY, SUUMRMATY site cava cs sree ete eee i eke es ce cee ep tees ee ehh)

12D, SCY ance uae Se ECeEcr on HE SCRE ER Car neD so cict dct ucete er ar ancceecnoaneee Dee ror aout cne ice rrRe IO: 360

Shell Summary 363

SEDITLI cao Sears cs ngensicaisd anya cdawa esas coebeehetetee hoes sca Rieaietsadhead osanansesacenedednscsusete 363

Grayu nye OR TANG KY scascncantcocceonec coder onbbocc becabbaiccoaeccndvodr cae chiadooncud iiconnnoucded ceuppanooodten 363

OMNI CIES Bese: eas sree See sec cee eae seeaccecna cot Ree Dee eT are oes eeeas SOTTO eneee oe 364

Param etersratGaVanlablesiraeecsscn. ceatcet ee eerene ee eee ote aces emcee enaee eee 364

DY GOR PNV GT ab) (oP man ton orn aekc nnn. coulis BANG maccact oands een EE Raccacer cecasoeeodoes 364

BosttiomalgPavaim tensa. crsccc metre areata he eens oe 365

SPCClal PaLaimMetens: i. -sivecieenaasaded mado tees sets sMdedunsdeadssshoonvaacssacesseacs 365

RATAMetersSUBStIEULI ON. :..ccsteeeeeteee eect at cect es teteee ooseas saveccnaseaseccesee 366

CIAL RE CII ITY acs Seca anaicrensnots tone ee tacta uses tov dee aU ase gunner acon ss vascssesnens 367

AU RVOR Re Bro) anno tha \e lesa meres hao the sak eee. ch oeeconnlean cone ee soccer eSaO IOS 368

VICHING, Ett MOG Sys ccescascccnsase tec rte teehee aie avet ah coaea ves eens oavsnvecnecesness 368

COOP IAN recess cee iriage tars esnadeseas OH chi TN Stat anon csiisea ce witeare cea 370

LAGS SUDStEUEI OM essere ee eee Tees ow ete totic eter comm saanncumeeess Syl

ATIAIMEUG EXPLOSIONS «7. honagcetie trates retin com te ancaers seerenetse+sereeneree orl

HLS ATM eS UDSEUILLO Me tenes scot creceae tome eae te at ae Sete oeseces Suen mee etonamaeasstis o72

TOPFREGILE CEL OMe Sorsnac sees crcas aa eece ce eRe eee Te emt ceed Husa ease dost tases nentcseee S78

Exported Variables and Subshell Execution.:.cssccssesesesereeseeseeees o73

SICA a MOMS UIC eo prensa ees oh. Mn cathe toes is cawaecsvcesearnceinsse 374

PINCH ersat COMSERIICE cs ecacea ve cavcemetenotte ze mete Seite acces senncedesewersensesese 374

MoreronsShell Variablescic case cettttte cote tea toca ts setens owoeestonesneassices 374

UAT CG OTUs ete a et Ne Mei hc Loew easy dadseuseaeenece 374

xil UNIX SHELL PROGRAMMING

JOD: CORON isiessssscesd secs enesseseevasentearsvennadescarted oie eanteeteeh eo eke ieee Dis daaitiratana tae RES

SHU ODS Ai sassivconcansinvesttoniepseaactotaar atid ganeded age aruaocanuancarettannaeeae We

StOPPiNg JODS0ccsscsscosssssssessssvonscsecenarseotsncescessservesssecesssrnaannasnanes 375

COMMANA SUMMALY:ccsscsecccesseeeccscsnreccesenccscsessssneecersseneresesesssssaaeres 376

Maver Oe @reynabasna lemme nr ree Acciccc cay c Gecetca cere ee eee 376

Des He COMMA A woe irre ae co dabtnaiea sau ser sdsuageze tna s ae eeet iawaaviasee a ada 376

MihreraileiiaSs@OmiMlan ditessz.cseeesencrectenacees soaeon-7 oe teee coer ae eaten eeeenaennaeae 397

IN aVeMoye|A Coy aban Ven XG tensa sn pocencar cca cece Ce ra Eee ee Si.

The break: Command iseccaversesaseeereses ete tect ice Mererere oases Seseaacs tensed ae Sas

Thesease:C omnia Cisse shscceessec tte meee reece ee eaten keee oe tee caries 378

TEN CG GOMTITATIG Vea ae Oe tas oe eee ere oe eee res ase peptide se osama 379

AM avewovey erg (Ulam creyaqbartua\e herr snr ct menccrt tenses past eee re epee ee 380

hee chos Command secesvedeccscatan coer tes caret rar ecacae race osseee ene 380

Thee Val. Comma dadsciscaincaceee tere eee ten eccee Renae oe os eens ocacaas 381

TEM exe XE Ce COMM AI se eseccwedssoocsseeacesuereccneceease etree eam ae ea neacmaat agaaeaioe 381

Miherexaty COMM aN Ciigce-ccsctece: cocctasceoseceecee ace rseees eee ease eee 382

Therexpomts Commands, caseesencscascaeeuces teeta: tee eee eae ence 382

MN eradise, Comyvanr digits. §cecccye<cecectucaseoseecsea ae eee 383

CGR C COMIN AIG acess esis onesie excesses co vcteac eee eee eee cae acne 383

[ave seer Clos nab ans Wave Weeecconesbornncceccucecocencrcce coe oS horsemen to! 384

4 Nevers Xeypm @fe) gana sien ale ermneter eet ines none een ie ees ee 384

Serge CO Pit Sx@ Oma Cans ee eae eee eee eens eee 385

dh eahass iG ommariari cle tse eee ee ee ee 387

AN aS it Gro onb nobel aeh cemrenmassre tna reccrmos- Sac aah Eee ee Ree 387

Ub eaiobs; © O1mM a se, 5. eee eee sek etme oe ee ec crn cee 390

he kil C ommend 5. x ocscseasaeei es RR ee ae ats rca an 390

THe NewWO GD: COMIMANG |<<: ccc. Uaeeeeeeeeeeaachemton tee eee cnucne ceann ouaes 391

SEG OW CGE BINCL 5:26. <a chose peat eS Aa sical a 391

‘Le pea: Camm ane niin ienek aa ox: ee a 392

The peadoniy- Command: vcd rekte sar eee ee See 392

Thewetuin: Comiunarid &. sexeteescitt cet oe a 393

eS % Coe ard asks as treecne sk aR eee ie ee es 393

TAG SUE COMIN ai cick het aes ce ee ene 395

Thectest,Comimand) ti) Oe a eke peers eo 396

The: times Command acu. s.c eke Be oe eee 35 eo a ci eee 398

De trey. COmimngind sins cccrssc cee tarnen toca testes te eee ie cee 398

The-trie. Commnand. 2: canna ae eee i i 399

The typesComannl ic ccoasdicaueueaceslene eee nee 8 bo 399

Contents

ae TU Mala aSe@ Oman cca: coe ee eee ea a Sons gwen ee 400

hinesuinsete@ommlannGl wae steers merce eter cece eae eat ebtoeruenta tae ce: 400

Mem eile @OmMmanG Meese eee tee see coe ater Oe eee ae 400

Me Wate OMNIA Tine coos. eee ek cee ee hates acon eer demos csasse Ronee ass 401

hy euwhes ex Onin atl Gans crater t tc dou sant octcie tear tna Rene: caoeenanedotac 402

For More Information 403

Onlin SW oOcwme mn tarry ee cetera ee ec eee tee to tas 403

DOCUNIENTATLOM ONGtIVeaVWVie Dig reec se cereal ere eee eee coerce 403

BOOKS ie es ieee a ee ec eI eR hE et iB an Trae Saree mean nets aaee 404

OReilly pS ASSOCIALGS, sees radaree he saris teasesd dovsascecs een as deamesaeceeuey es 404

Samm spank @ We ewcs as Meee eae es PR ls Si he eee 405

OthemPublishers) Fee See ee ee ee ee 406

xiii

About the Authors

Stephen G. Kochan is the owner of TechFitness, a technology-based fitness

company. Prior to that, he was president and CEO of Pipeline Associates, a company

specializing in color printing software. Mr. Kochan is the author of several best-

selling books on Unix and C programming, including the best-selling Programming in

C. He also acted as Series Editor for the Hayden Unix System Library.

Patrick Wood is the CTO of the New Jersey location of Electronics for Imaging. He

was a member of the technical staff at Bell Laboratories when he met Mr. Kochan in

1985. Together they founded Pipeline Associates, Inc., a Unix consulting firm, where

he was the Vice President. They coauthored Exploring the Unix System, Unix System

Security, Topics in C Programming, and Unix Shell Programming.

Dedication

To my father, Harry Wood

—Patrick Wood

To Gregory, Linda, and Julia for giving meaning to my life

—Stephen G. Kochan

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We

value your opinion and want to know what we’re doing right, what we could do

better, what areas you'd like to see us publish in, and any other words of wisdom

you're willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about

this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,

and that due to the high volume of mail I receive, I might not be able to reply to every

message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or email address. I will carefully review your comments and share

them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Mark Taber

Associate Publisher

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

Reader Services

For more information about this book or others from Sams Publishing, visit our Web
site at ww.samspublishing.com. Type the ISBN (excluding hyphens) or the title of the
book in the Search box to find the book you’re looking for.

1

Introduction

Tes no secret that the Unix operating system has emerged

as a standard operating system. For programmers who have

been using Unix for many years now, this came as no

surprise: The Unix system provides an elegant and efficient

environment for program development. After all, this is

what Dennis Ritchie and Ken Thompson strived for when

they developed Unix at Bell Laboratories in the late 1960s.

One of the strongest features of the Unix system is its wide

collection of programs. More than 200 basic commands

are distributed with the standard operating system. These

commands (also known as tools) do everything from

counting the number of lines in a file, to sending elec-

tronic mail, to displaying a calendar for any desired year.

But the real strength of the Unix system comes not

entirely from this large collection of commands but also

from the elegance and ease with which these commands

can be combined to perform far more sophisticated func-

tions.

To further this end, and also to provide a consistent buffer

between the user and the guts of the Unix system (the

kernel), the shell was developed. The shell is simply a

program that reads in the commands you type and

converts them into a form more readily understood by the

Unix system. It also includes some fundamental program-

ming constructs that let you make decisions, loop, and

store values in variables.

The standard shell distributed with Unix and Linux

systems derives from AT&T's distribution, which evolved

from a version originally written by Stephen Bourne at Bell

Labs. Since then, the IEEE created standards based on the

Bourne shell and the other more recent shells. The current

CHAPTER 1 ‘Introduction

version of this standard as of this revision is the Shell and Utilities volume of IEEE

Std 1003.1-2001, also known as the POSIX standard. This shell is what we propose to

teach you about in this book.

The examples in this book were tested on both SunOS S.7 running on a Sparcstation

Ultra-30 and on Silicon Graphics IRIX 6.5 running on an Octane; some examples

were also run on Red Hat Linux 7.1 and Cygwin. All examples, except some Bash

examples in Chapter 15, were run using the Korn shell, although many were also

run with Bash.

Many Unix systems are still around that have Bourne shell derivatives and utilities

not compliant with the POSIX standard. We’ll try to note this throughout the text

wherever possible; however, there are so many different versions of Unix from so

many different vendors that it’s simply not possible to mention every difference. If

you do have an older Unix system that doesn’t supply a POSIX-compliant shell,

there’s still hope. We’ll list resources at the end of this book where you can obtain

free copies of three different POSIX-compliant shells.

Because the shell offers an interpreted programming language, programs can be

written, modified, and debugged quickly and easily. We turn to the shell as our first

choice of programming language. After you become adept at programming in the

shell, you too may turn to it first.

This book assumes that you are familiar with the fundamentals of the Unix system;

that is, that you know how to log in; how to create files, edit them, and remove

them; and how to work with directories. But in case you haven’t used the Unix

system for a while, we’ll examine the basics in Chapter 2, “A Quick Review of the

Basics.” Besides the basic file commands, filename substitution, I/O redirection, and

pipes are also reviewed in Chapter 2.

Chapter 3, “What Is the Shell?,” reveals what the shell really is. You'll learn about

what happens every time you log in to the system, how the shell program gets

started, how it parses the command line, and how it executes other programs for

you. A key point made in Chapter 3 is that the shell is just a program; nothing more,
nothing less.

Chapter 4, “Tools of the Trade,” provides tutorials on tools useful in writing shell

programs. Covered in this chapter are cut, paste, sed, grep, sort, tr, and unig.

Admittedly, the selection is subjective, but it does set the stage for programs that
we'll develop throughout the remainder of the book. Also in Chapter 4 is a detailed
discussion of regular expressions, which are used by many Unix commands such as
sed, grep, and ed.

Chapters S through 10 teach you how to put the shell to work for writing programs.
You'll learn how to write your own commands; use variables; write programs that
accept arguments; make decisions; use the shell’s for, while, and until looping

Introduction

commands; and use the read command to read data from the terminal or from a file.
Chapter 6, “Can I Quote You on That?,” is devoted entirely to a discussion on one of

the most intriguing (and often confusing) aspects of the shell: the way it interprets
quotes.

By this point in the book, all the basic programming constructs in the shell will have

been covered, and you will be able to write shell programs to solve your particular

problems.

Chapter 11, “Your Environment,” covers a topic of great importance for a real under-

standing of the way the shell operates: the environment. You'll learn about local and

exported variables; subshells; special shell variables such as HOME, PATH, and CDPATH;

and how to set up your .profile file.

Chapter 12, “More on Parameters,” and Chapter 13, “Loose Ends,” tie up some loose

ends, and Chapter 14, “Rolo Revisited,” presents a final version of a phone directory

program called rolo that is developed throughout the book.

Chapter 15, “Interactive and Nonstandard Shell Features,” discusses features of the

shell that either are not formally part of the IEEE POSIX standard shell (but are avail-

able in most Unix and Linux shells) or are mainly used interactively instead of in

programs.

Appendix A, “Shell Summary,” summarizes the features of the IEEE POSIX standard

shell.

Appendix B, “For More Information,” lists references and resources, including the

Web sites where different shells can be downloaded.

The philosophy this book uses is to teach by example. Properly chosen examples do

a far superior job at illustrating how a particular feature is used than ten times as

many words. The old “A picture is worth...” adage seems to apply just as well to

examples. You are encouraged to type in each example and test it on your system,

for only by doing can you become adept at shell programming. You also should not

be afraid to experiment. Try changing commands in the program examples to see the

effect, or add different options or features to make the programs more useful or

robust.

At the end of most chapters you will find exercises. These can be used as assignments

in a classroom environment or by yourself to test your progress.

This book teaches the IEEE POSIX standard shell. Incompatibilities with earlier

Bourne shell versions are noted in the text, and these tend to be minor.

Acknowledgments from the first edition of this book: We'd like to thank Tony

Iannino and Dick Fritz for editing the manuscript. We’d also like to thank Juliann

Colvin for performing her usual wonders copy editing this book. Finally, we’d like to

CHAPTER 1 Introduction

thank Teri Zak, our acquisitions editor, and posthumously Maureen Connelly, our

production editor. These two were not only the best at what they did, but they also

made working with them a real pleasure.

For the first revised edition of this book, we’d like to acknowledge the contributions

made by Steven Levy and Ann Baker, and we’d like to also thank the following

people from Sams: Phil Kennedy, Wendy Ford, and Scott Arant.

For the second revised edition of this book, we’d like to thank Kathryn Purdum, our

acquisitions editor, Charlotte Clapp, our project editor, and Geneil Breeze, our copy

editor.

Z

ge Ciel evie wy Otte pe
Basics | ¢ Working with Directories

| e Filename Substitution

IN THIS CHAPTER

e Some Basic Commands

4p ; ; ¢ Standard Input/Output and
his chapter provides a review of the Unix system, | \/O Redirection

including the file system, basic commands, filename |

substitution, I/O redirection, and pipes. | ¢ Pipes

| e Standard Error

Some Basic Commands | More on Commands

Displaying the Date and Time: P ONe ROM anh Urner.
The date Command e Exercises

The date command tells the system to print the date and

time:

$ date

Sat Jul 20 14:42:56 EDT 2002

$

date prints the day of the week, month, day, time (24-

hour clock, the system’s time zone), and year. Throughout

this book, whenever we use boldface type like this, it’s

to indicate what you, the user, types in. Normal face type

like this is used to indicate what the Unix system prints.

Italic type is used for comments in interactive sequences.

Every Unix command is ended with the pressing of the

Enter key. Enter says that you are finished typing things in

and are ready for the Unix system to do its thing.

Finding Out Who’s Logged In: The who
Command

The who command can be used to get information about

all users currently logged in to the system:

CHAPTER 2. A Quick Review of the Basics

$ who

pat tty29 Jul 19 14:40

ruth tty37 Jul 19 10:54

steve tty25 UUM SoZ

$

Here, three users are logged in: pat, ruth, and steve. Along with each user id, the tty

number of that user and the day and time that user logged in is listed. The tty

number is a unique identification number the Unix system gives to each terminal or

network device that a user has logged into.

The who command also can be used to get information about yourself:

$ who am i

pat tty29 Jul 19 14:40

$

who and who am i are actually the same command: who. In the latter case, the am and

i are arguments to the who command.

Echoing Characters: The echo Command

The echo command prints (or echoes) at the terminal whatever else you happen to

type on the line (there are some exceptions to this that you'll learn about later):

$ echo this is a test

this is a test

$ echo why not print out a longer line with echo?

why not print out a longer line with echo?

$ echo

A blank line is displayed

$ echo one two three four five

one two three four five

$

You will notice from the preceding example that echo squeezes out extra blanks

between words. That’s because on a Unix system, the words are important; the
blanks are merely there to separate the words. Generally, the Unix system ignores
extra blanks (you'll learn more about this in the next chapter).

Working with Files
The Unix system recognizes only three basic types of files:-ordinary files, directory
files, and special files. An ordinary file is just that: any file on the system that

Working with Files

contains data, text, program instructions, or just about anything else. Directories are

described later in this chapter. As its name implies, a special file has a special

meaning to the Unix system and is typically associated with some form of I/O.

A filename can be composed of just about any character directly available from the

keyboard (and even some that aren’t) provided that the total number of characters

contained in the name is not greater than 255. If more than 255 characters are speci-

fied, the Unix system simply ignores the extra characters.'

The Unix system provides many tools that make working with files easy. Here we'll

review many basic file manipulation commands.

Listing Files: The 1s Command

To see what files you have stored in your directory, you can type the 1s command:

$ ls

READ ME

names

tmp

$

This output indicates that three files called READ_ME, names, and tmp are contained in

the current directory. (Note that the output of 1s may vary from system to system.

For example, on many Unix systems 1s produces multicolumn output when sending

its output to a terminal; on others, different colors may be used for different types of

files. You can always force single-column output with the -1 option.)

Displaying the Contents of a File: The cat Command

You can examine the contents of a file by using the cat command. The argument to

cat is the name of the file whose contents you want to examine.

$ cat names

Susan

Jeff

Henry

Allan

Ken

$

~1Modern Unix and Microsoft Windows systems support long filenames; however, some older Unix and

Windows systems only allow much shorter filenames.

CHAPTER 2. A Quick Review of the Basics

Counting the Number of Words in a File: The wc Command

With the wc command, you can get a count of the total number of lines, words, and

characters of information contained in a file. Once again, the name of the file is

needed as the argument to this command:

$ we names

5 5 27 names

The we command lists three numbers followed by the filename. The first number

represents the number of lines contained in the file (5), the second the number of

words contained in the file (in this case also 5), and the third the number of charac-

ters contained in the file (27).

Command Options

Most Unix commands allow the specification of options at the time a command is

executed. These options generally follow the same format:

-letter

That is, a command option is a minus sign followed immediately by a single letter.

For example, to count just the number of lines contained in a file, the option -1

(that’s the letter 1) is given to the wc command:

$ we -1 names

5 names

To count just the number of characters in a file, the -c option is specified:

$ we -c names

27 names

Finally, the -w option can be used to count the number of words contained in the
file:

$ we -w names

5 names

Some commands require that the options be listed before the filename arguments.
For example, sort names -r is acceptable, whereas wc names -1 is not. Let’s general-
ize by saying that command options should precede filenames on the command line.

Working with Files

Making a Copy of a File: The cp Command

To make a copy of a file, the cp command is used. The first argument to the

command is the name of the file to be copied (known as the source file), and

the second argument is the name of the file to place the copy into (known as the

destination file). You can make a copy of the file names and call it saved_names as

follows:

$ cp names saved_names

$

Execution of this command causes the file named names to be copied into a file

named saved_names. As with many Unix commands, the fact that a command

prompt was displayed after the cp command was typed indicates that the command

executed successfully.

Renaming a File: The mv Command

A file can be renamed with the mv command. The arguments to the mv command

follow the same format as the cp command. The first argument is the name of the

file to be renamed, and the second argument is the new name. So, to change the

name of the file saved_names to hold_it, for example, the following command

would do the trick:

$ mv saved_names hold it

$

When executing an mv or cp command, the Unix system does not care whether the

file specified as the second argument already exists. If it does, the contents of the file

will be lost.” For example, if a file called old_names exists, executing the command

cp names old_names

would copy the file names to old_names, destroying the previous contents of

old_names in the process. Similarly, the command

mv names old_names

would rename names to old_names, even if the file old_names existed prior to execu-

tion of the command.

2Assuming that you have the proper permission to write to the file.

CHAPTER 2. A Quick Review of the Basics

Removing a File: The rm Command

To remove a file from the system, you use the rm command. The argument to rm is

simply the name of the file to be removed:

$ rm hold_it

$

You can remove more than one file at a time with the rm command by simply speci-

fying all such files on the command line. For example, the following would remove

the three files wb, collect, and mon:

$ rm wb collect mon

$

Working with Directories
Suppose that you had a set of files consisting of various memos, proposals, and

letters. Further suppose that you had a set of files that were computer programs. It

would seem logical to group this first set of files into a directory called documents,

for example, and the latter set of files into a directory called programs. Figure 2.1

illustrates such a directory organization.

documents programs

plan dact sys.A new.hire noJSK AMG.reply wb collect mon

FIGURE 2.1 Example directory structure.

The file directory documents contains the files plan, dact, sys.A, new.hire, no.JSK,

and AMG.reply. The directory programs contains the files wb, collect, and mon. At

some point, you may decide to further categorize the files in a directory. This can be

done by creating subdirectories and then placing each file into the appropriate

subdirectory. For example, you might want to create subdirectories called memos,

proposals, and letters inside your documents directory, as shown in Figure 2.2.

documents contains the subdirectories memos, proposals, and letters. Each of these
directories in turn contains two files: memos contains plan and dact; proposals
contains sys.A and new.hire; and letters contains no.JSK and AMG. reply.

Although each file in a given directory must have a unique name, files contained in
different directories do not. So, for example, you could have a file in your programs
directory called dact, even though a file by that name also exists in the memos subdi-
rectory.

Working with Directories 11

documents programs

Paha
memos proposals letters wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.2 Directories containing subdirectories.

The Home Directory and Pathnames

The Unix system always associates each user of the system with a particular direc-

tory. When you log in to the system, you are placed automatically into a directory

called your home directory.

Although the location of users’ home directories can vary from one Unix version to

the next, and even one user to the next, let’s assume that your home directory is

called steve and that this directory is actually a subdirectory of a directory called

users. Therefore, if you had the directories documents and programs, the overall

directory structure would actually look something like Figure 2.3. A special directory

known as / (pronounced slash) is shown at the top of the directory tree. This direc-

tory is known as the root.

Whenever you are “inside” a particular directory (called your current working direc-

tory), the files contained within that directory are immediately accessible. If you

want to access a file from another directory, you can either first issue a command to

“change” to the appropriate directory and then access the particular file, or you can

specify the particular file by its pathname.

A pathname enables you to uniquely identify a particular file to the Unix system. In

the specification of a pathname, successive directories along the path are separated

by the slash character /. A pathname that begins with a slash character is known as a

full pathname because it specifies a complete path from the root. So, for example,

the pathname /users/steve identifies the directory steve contained under the direc-

tory users. Similarly, the pathname /users/steve/documents references the direc-

tory documents as contained in the directory steve under users. As a final example,

the pathname /users/steve/documents/letters/AMG. reply identifies the file

AMG.reply contained along the appropriate directory path.

To help reduce some of the typing that would otherwise be required, Unix provides

certain notational conveniences. Pathnames that do not begin with a slash character

are known as relative pathnames. The path is relative to your current working direc-

tory. For example, if you just logged in to the system and were placed into your

home directory /users/steve, you could directly reference the directory documents

CHAPTER 2. A Quick Review of the Basics

simply by typing documents. Similarly, the relative pathname programs/mon could be

typed to access the file mon contained inside your programs directory.

pat steve ruth

documents programs

memos proposals letters wb collect mon

Le olen onl ad on eae
plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.3 Hierarchical directory structure.

By convention, the directory name .. always references the directory that is one

level higher. For example, after logging in and being placed into your home direc-

tory /users/steve, the pathname .. would reference the directory users. And if you

had issued the appropriate command to change your working directory to

documents/letters, the pathname .. would reference the documents directory,

./.. would reference the directory steve, and ../proposals/new.hire would refer-

ence the file new. hire contained in the proposals directory. Note that in this case,

as in most cases, there is usually more than one way to specify a path to a particular

file.

Another notational convention is the single period ., which always refers to the

current directory.

Now it’s time to examine commands designed for working with directories.

Displaying Your Working Directory: The pwd Command

The pwd command is used to help you “get your bearings” by telling you the name

of your current working directory.

Recall the directory structure from Figure 2.3. The directory that you are placed in

after you log in to the system is called your home directory. You can assume from

Figure 2.3 that the home directory for the user steve is /users/steve. Therefore,
whenever steve logs in to the system, he will automatically be placed inside this
directory. To verify that this is the case, the pwd (print working directory) command
can be issued:

$ pwd

/users/steve

$

Working with Directories

The output from the command verifies that steve’s current working directory is

/users/steve.

Changing Directories: The cd Command

You can change your current working directory by using the cd command. This

command takes as its argument the name of the directory you want to change to.

Let’s assume that you just logged in to the system and were placed inside your home

directory, /users/steve. This is depicted by the arrow in Figure 2.4.

You know that two directories are directly “below” steve’s home directory:

documents and programs. In fact, this can be verified at the terminal by issuing the

ls command:

$ ls

documents

programs

$

The 1s command lists the two directories documents and programs the same way it

listed other ordinary files in previous examples.

pat = steve ruth

documents programs

memos proposals letters wb collect mon

Pr polar eee rae
plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.4 Current working directory is steve.

To change your current working directory, issue the cd command, followed by the

name of the directory to change to:

$ cd documents

$

After executing this command, you will be placed inside the documents directory, as

depicted in Figure 2.5.

14 CHAPTER 2. A Quick Review of the Basics

pat steve ruth

—> documents programs

memos proposals letters wb collect mon

fears sl ele" wala
plan dact sys.A new.hire no.wJSK AMG.reply

FIGURE 2.5 cd documents.

You can verify at the terminal that the working directory has been changed by

issuing the pwd command:

$ pwd

/users/steve/documents

$

The easiest way to get one level up in a directory is to issue the command

Cdaer

because by convention .. always refers to the directory one level up (known as the

parent directory; see Figure 2.6).

Sac dime

$ pwd

/users/steve

$

If you wanted to change to the letters directory, you could get there with a single
cd command by specifying the relative path documents/letters (see Figure 2.7):

$ cd documents/letters

$ pwd

/users/steve/documents/letters

$

Working with Directories

users

pat — steve ruth

documents programs

memos proposals letters wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.6 cd

/

|
users

pat steve ruth

documents cae 4 programs

memos proposals PP wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.7 cd documents/letters.

You can get back up to the home directory by using a single cd command to go up

two directories as shown:

SE CUP aia -e

$ pwd

/users/steve

$

Or you can get back to the home directory using a full pathname rather than a rela-

tive one:

$ cd /users/steve

$ pwd

/users/steve

$

CHAPTER 2. A Quick Review of the Basics

Finally, there is a third way to get back to the home directory that is also the easiest.

Typing the command cd without an argument always places you back into your

home directory, no matter where you are in your directory path:

$ cd

$ pwd

/users/steve

$

More on the 1s Command

When you type the 1s command, the files contained in the current working direc-

tory are listed. But you can also use 1s to obtain a list of files in other directories by

supplying an argument to the command. First let’s get back to your home directory:

$ cd

$ pwd

/users/steve

$

Now let’s take a look at the files in the current working directory:

$ 1s

documents

programs

$

If you supply the name of one of these directories to the 1s command, you can get a
list of the contents of that directory. So, you can find out what’s contained in the
documents directory simply by typing the command ls documents:

$ 1s documents

letters

memos

proposals

$

To take a look at the subdirectory memos, you follow a similar procedure:

$ 1s documents/memos

dact

plan

$

Working with Directories

If you specify a nondirectory file argument to the 1s command, you simply get that
filename echoed back at the terminal:

$ 1s documents/memos/plan

documents/memos/plan

$

An option to the 1s command enables you to determine whether a particular file is a

directory, among other things. The -1 option (the letter 1) provides a more detailed

description of the files in a directory. If you were currently in steve’s home directory

as indicated in Figure 2.6, the following would illustrate the effect of supplying the

-1 option to the 1s command:

$ 1s -1

total 2

drwxr-xr-x 5 steve DP3725 8@ Jun 25 13:27 documents

drwxr-xr-x 2 steve DP3725 96 Jun 25 13:31 programs

$

The first line of the display is a count of the total number of blocks (1,024 bytes) of

storage that the listed files use. Each successive line displayed by the 1s -1

command contains detailed information about a file in the directory. The first char-

acter on each line tells whether the file is a directory. If the character is d, it is a

directory; if it is -, it is an ordinary file; finally, if it is b, c, 1, or p, it is a special file.

The next nine characters on the line tell how every user on the system can access the

particular file. These access modes apply to the file’s owner (the first three characters),

other users in the same group as the file’s owner (the next three characters), and

finally to all other users on the system (the last three characters). They tell whether

the user can read from the file, write to the file, or execute the contents of the file.

The ls -1 command lists the link count (see “Linking Files: The 1n Command,” later

in this chapter), the owner of the file, the group owner of the file, how large the file

is (that is, how many characters are contained in it), and when the file was last

modified. The information displayed last on the line is the filename itself.

$ 1s -1 programs

total 4

-PWXr -XP-X 1 steve DP3725 S58 WU Peo eiicro ls collect

-PWXP - XP -X 1 steve DP3725 1219 Jun 25 13:31 mon

-PWxr-Xr-X 1 steve DP3725 89 Jun 25 13:30 wh

$

The dash in the first column of each line indicates that the three files collect, mon,

and wb are ordinary files and not directories.

(7

CHAPTER 2. A Quick Review of the Basics

Creating a Directory: The mkdir Command

To create a directory, the mkdir command must be used. The argument to this

command is simply the name of the directory you want to make. For example,

assume that you are still working with the directory structure depicted in Figure 2.7

and that you want to create a new directory called misc on the same level as the direc-

tories documents and programs. If you were currently in your home directory, typing

the command mkdir misc would achieve the desired effect:

$ mkdir misc

$

Now if you execute an 1s command, you should get the new directory listed:

$ 1s

documents

misc

programs

$

The directory structure now appears as shown in Figure 2.8.

steve

documents programs misc

memos proposals letters wb collect mon

ra aruba teenie
plan dact sys.A new.hire no.JSK AMG.reply

FIGURE 2.8 Directory structure with newly created misc directory.

Copying a File from One Directory to Another

The cp command can be used to copy a file from one directory into another. For
example, you can copy the file wb from the programs directory into a file called wbx
in the misc directory as follows:

$ cp programs/wh misc/wbx

$

Because the two files are contained in different directories, it is not even necessary
that they be given different names:

$ cp programs/wb misc/wb

$

Working with Directories 12)

When the destination file has the same name as the source file (in a different direc-

tory, of course), it is necessary to specify only the destination directory as the second

argument:

$ cp programs/wb misc

$

When this command gets executed, the Unix system recognizes that the second

argument is the name of a directory and copies the source file into that directory.

The new file is given the same name as the source file. You can copy more than one

file into a directory by listing the files to be copied before the name of the destina-

tion directory. If you were currently in the programs directory, the command

$ cp wb collect mon ../misc

$

would copy the three files wo, collect, and mon into the misc directory, under the

Same Names.

To copy a file from another directory into your current one and give it the same

name, use the fact that the current directory can always be referenced as ‘.’:

$ pwd

/users/steve/misc

$ cp ../programs/collect .

$

The preceding command copies the file collect from the directory ../programs into

the current directory (/users/steve/misc).

Moving Files Between Directories

You recall that the mv command can be used to rename a file. However, when the

two arguments to this command reference different directories, the file is actually

moved from the first directory into the second directory. For example, first change

from the home directory to the documents directory:

$ cd documents

$

Suppose that now you decide that the file plan contained in the memos directory is

really a proposal and not a memo. So you want to move it from the memos directory

into the proposals directory. The following would do the trick:

$ mv memos/plan proposals/plan

$

20 CHAPTER 2. A Quick Review of the Basics

As with the cp command, if the source file and destination file have the same name,

only the name of the destination directory need be supplied.

$ mv memos/plan proposals

$

Also like the cp command, a group of files can be simultaneously moved into a

directory by simply listing all files to be moved before the name of the destination

directory:

$ pwd

/users/steve/programs

$ mv wb collect mon ../misc

$

This would move the three files wb, collect, and mon into the directory misc. You

can also use the mv command to change the name of a directory. For example, the

following renames the directory programs to bin.

$ mv programs bin

$

Linking Files: The 1n Command

In simplest terms, the 1n command provides an easy way for you to give more than

one name to a file. The general form of the command is

ln from to

This links the file from to the file to.

Recall the structure of steve’s programs directory from Figure 2.8. In that directory,

he has stored a program called wb. Suppose that he decides that he’d also like to call

the program writeback. The most obvious thing to do would be to simply create a
copy of wb called writeback:

$ cp wh writeback

$

The drawback with this approach is that now twice as much disk space is being
consumed by the program. Furthermore, if steve ever changes wb, he may forget to
make a new copy of writeback, resulting in two different copies of what he thinks is
the same program.

Working with Directories

By linking the file wb to the new name, these problems are avoided:

$ 1n wb writeback

$

Now instead of two copies of the file existing, only one exists with two different

names: wb and writeback. The two files have been logically linked by the Unix

system. As far as you’re concerned, it appears as though you have two different files.

Executing an 1s command shows the two files separately:

$ Is

collect

mon

wb

writeback

$

Look what happens when you execute an 1s -1:

$ 1s -1

total 5

-PWXPr -XP-X 1 steve DP3725 358 Jun 25 13:31 collect

-PWxr-XP-X 1 steve DP3725 1219 Jun 25 13:31 mon

- PWXP -XP-X 2 steve DP3725 89 Jun 25 13:30 wb

-PWXr-XP-X 2 steve DP3725 89 Jun 25 13:30 writeback

$

The number right before steve is 1 for collect and mon and 2 for wb and writeback.

This number is the number of links to a file, normally 1 for nonlinked, nondirectory

files. Because wb and writeback are linked, this number is 2 for these files. This

implies that you can link to a file more than once.

You can remove either of the two linked files at any time, and the other will not be

removed:

$ rm writeback

$ 1s -1

total 4

- PWXP -XP-X imesteve DP3725 358 Jun 25 13:31 collect

-PWxr-Xxr-X 1 steve DP3725 1219 Jun 25 13:31 mon

- PWXP -XP-X 1 steve DP3725 89 Jun 25 13:30 wb

$

Note that the number of links on wb went from 2 to 1 because one of its links was

removed.

21

22 CHAPTER 2. A Quick Review of the Basics

Most often, 1n is used to link files between directories. For example, suppose that pat

wanted to have access to steve’s wb program. Instead of making a copy for himself

(subject to the same problems described previously) or including steve’s programs

directory in his PATH (described in detail in Chapter 11, “Your Environment”), he can

simply link to the file from his own program directory; for example:

$ pwd

/users/pat/bin pat’s program directory

$ 1s -1

total 4

-PWXP-XP-X 1 pat DP3822 1358 Jan 15 11:01 lcat

-PWXP-XP-X 1 pat DP3822 504 Apr 21 18:30 xtr

$ In /users/steve/wb . link wb to pat's bin

$ 1s -1

total 5

-PWXP-XP-X 1 pat DP3822 1358 Jan 15 11:01 lcat

-PWxr-XP-X 2 steve DP3725 89 Jun 25 13:30 wb

-PWXP-XP-X 1 pat DP3822 504 Apr 21 18:30 xtr

$

Note that steve is still listed as the owner of wb, even though the listing came from

pat’s directory. This makes sense, because really only one copy of the file exists—and

it’s owned by steve.

The only stipulation on linking files is that for ordinary links, the files to be linked

together must reside on the same file system. If they don’t, you'll get an error from 1n

when you try to link them. (To determine the different file systems on your system,

execute the df command. The first field on each line of output is the name of a file

system.)

To create links to files on different file systems (or perhaps on different networked

systems), you can use the -s option to the 1n command. This creates a symbolic link.

Symbolic links behave a lot like regular links, except that the symbolic link points to

the original file; if the original file is removed, the symbolic link no longer works.

Let’s see how symbolic links work with the previous example:

$ rm wb

$ 1s -1

total 4

- PWXP- XP -X 1 pat DP3822 1358 Jan 15 11:01 lcat

-PWXP- XP -X 1 pat DP3822 504 Apr 21 18:30 xtr

$ ln -s /users/steve/wb ./symwb Symbolic link to wb
$ 1s -1 '

Working with Directories

total 5

-PWXP-XP-X 1 pat DP3822 1358 Jan 15 11:01 lcat

lrwxr-xr-x 1 pat DP3822 15 Jul 20 15:22 symwb -> /users/steve/wb

-PWXPr-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr

$

Note that pat is listed as the owner of symwb, and the file type is 1, which indicates a

symbolic link. The size of the symbolic link is 15 (the file actually contains the string

/users/steve/wb), but if we attempt to access the contents of the file, we are

presented with the contents of its symbolic link, /users/steve/wb:

$ we symwb

5 9 89 symwb

The -L option to the 1s command can be used with the -1 option to get a detailed

list of information on the file the symbolic link points to:

$ 1s -L1

total 5

-PWXP-XP-X 1 pat DP3822 1358 Jan 15 11:01 lcat

-PWXP-XP-X 2 steve DP3725 89 Jun 25 13:30 wb

-PWxXr-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr

$

Removing the file that a symbolic link points to invalidates the symbolic link

(because symbolic links are maintained as filenames), although the symbolic link

continues to stick around:

$ rm /users/steve/wb Assume pat can remove this file

$ 1s -1

total 5

-PWXP - XP -X 1 pat DP3822 1358 Jan 15 11:01 lcat

lrwxr -xr-x 1 pat DP3822 15 Jul 20 15:22 wb -> /users/steve/wb

-PWXP-XP-X depart DP3822 504 Apr. 21 18:30 xtr

$ we wb :

Cannot open wb: No such file or directory

$

This type of file is called a dangling symbolic link and should be removed unless you

have a specific reason to keep it around (for example, if you intend to replace the

removed file).

23

24 CHAPTER 2. A Quick Review of the Basics

One last note before leaving this discussion: The 1n command follows the same

general format as cp and mv, meaning that you can link a bunch of files at once into

a directory using the format

ln files directory

Removing a Directory: The rmdir Command

You can remove a directory with the rmdir command. The stipulation involved in

removing a directory is that no files be contained in the directory. If there are files in

the directory when rmdir is executed, you will not be allowed to remove the direc-

tory. To remove the directory misc that you created earlier, the following could be

used:

$ rmdir /users/steve/misc

$

Once again, the preceding command works only if no files are contained in the misc

directory; otherwise, the following happens:

$ rmdir /users/steve/misc

rmdir: /users/steve/misc not empty

$

If this happens and you still want to remove the misc directory, you would first have

to remove all the files contained in that directory before reissuing the rmdir

command.

As an alternate method for removing a directory and the files contained in it, you

can use the -r option to the rm command. The format is simple:

rm -r dir

where dir is the name of the directory that you want to remove. rm removes the indi-
cated directory and all files (including directories) in it.

Filename Substitution

The Asterisk

One powerful feature of the Unix system that is actually handled by the shell is file-
name substitution. Let’s say that your current directory has these files in it:

$ 1s

chapt1

chapt2

Filename Substitution

Chapt3

chapt4

$

Suppose that you want to print their contents at the terminal. Well, you could take

advantage of the fact that the cat command allows you to specify more than one

filename at a time. When this is done, the contents of the files are displayed one

after the other:

$ cat chapti chapt2 chapt3 chapt4

But you can also type in

$ cat *

and get the same results. The shell automatically substitutes the names of all the files

in the current directory for the *. The same substitution occurs if you use * with the

echo command:

$ echo *

chapt1 chapt2 chapt3 chapt4

$

Here the * is again replaced with the names of all the files contained in the current

directory, and the echo command simply displays them at the terminal.

Any place that * appears on the command line, the shell performs its substitution: °

GuECHhON* as a

chapt1 ‘chapt2 chapt3 chapt4 : chapt1 chapt2 chapt3 chapt4

$

The * can also be used in combination with other characters to limit the filenames

that are substituted. For example, let’s say that in your current directory you have

not only chapt1 through chapt4 but also files a, b, and c:

$ ls

a

b

c

chapt1

chapt2

ZS

26 CHAPTER 2. A Quick Review of the Basics

chapt3

chapt4

$

To display the contents of just the files beginning with chapt, you can type in

$ cat chapt*

The chapt* matches any filename that begins with chapt. All such filenames

matched are substituted on the command line.

The * is not limited to the end of a filename; it can be used at the beginning or in

the middle as well:

$ echo *t1

chapt1

$ echo *t*

chapt1 chapt2 chapt3 chapt4

$ echo *x

*X

$

In the first echo, the *t1 specifies all filenames that end in the characters t1. In the

second echo, the first * matches everything up to a t and the second everything

after; thus, all filenames containing a t are printed. Because there are no files ending

with x, no substitution occurs in the last case. Therefore, the echo command simply

displays *x.

Matching Single Characters

The asterisk (*) matches zero or more characters, meaning that x* matches the file x
as well as x1, x2, xabc, and so on. The question mark (?) matches exactly one charac-
ter. So cat ? prints all files with one-character names, just as cat x? prints all files
with two-character names beginning with x.

$ 1s

Filename Substitution

GC

reportt

report2

reports3

$ echo ?

abc

$ echo a?

aa

$ echo ??

aa bb cc

$ echo ??*

aa aax alice bb cc report1 report2 report3

$

In the preceding example, the ?? matches two characters, and the * matches zero or

more up to the end. The net effect is to match all filenames of two or more charac-

ters.

Another way to match a single character is to give a list of the characters to use in

the match inside square brackets []. For example, [abc] matches one letter a, b, or

c. It’s similar to the ?, but it allows you to choose the characters that will be

matched. The specification [0-9] matches the characters 0 through 9. The only

restriction in specifying a range of characters is that the first character must be alpha-

betically less than the last character, so that [z-f] is not a valid range specification.

By mixing and matching ranges and characters in the list, you can perform some

complicated substitutions. For example, [a-np-z]* matches all files that start with

the letters a through n or p through z (or more simply stated, any lowercase letter

but o).

If the first character following the [is a !, the sense of the match is inverted. That is,

any character is matched except those enclosed in the brackets. So

[!a-z]

matches any character except a lowercase letter, and

*[10]

matches any file that doesn’t end with the lowercase letter o.

Table 2.1 gives a few more examples of filename substitution.

27,

28 CHAPTER 2. A Quick Review of the Basics

TABLE 2.1 Filename Substitution Examples

Command Description

echo a* Print the names of the files beginning with a

Catt ic Print all files ending in .c

nay Ses Remove all files containing a period

TSUXe List the names of all files beginning with x

rm * Remove all files in the current directory (Note: Be careful when you use this.)

echo a*b Print the names of all files beginning with a and ending with b

cp ../programs/* . Copy all files from ../programs into the current directory

ls [a-z]*[!0-9] List files that begin with a lowercase letter and don’t end with a digit

Standard Input/Output and I/O Redirection

Standard Input and Standard Output

Most Unix system commands take input from your terminal and send the resulting

output back to your terminal. A command normally reads its input from a place

called standard input, which happens to be your terminal by default. Similarly, a

command normally writes its output to standard output, which is also your terminal

by default. This concept is depicted in Figure 2.9.

standard input t

FIGURE 2.9 Typical Unix command.

Recall that executing the who command results in the display of the currently logged-

in users. More formally, the who command writes a list of the logged-in users to stan-

dard output. This is depicted in Figure 2.10.

If a sort command is executed without a filename argument, the command takes its
input from standard input. As with standard output, this is your terminal by default.

When entering data to a command from the terminal, the Ctl and d keys (denoted
Ctrl+d in this text) must be simultaneously pressed after the last data item has been
entered. This tells the command that you have finished entering data. As an
example, let’s use the sort command to sort the following four names: Tony,

Standard Input/Output and I/O Redirection 29

Barbara, Harry, Dick. Instead of first entering the names into a file, we’ll enter them
directly from the terminal:

$ sort

Tony

Barbara

Harry

Dick

Ctrl+d

Barbara

Dick

Harry

Tony

$

ai ttyO1 Sep 12 07:30
= oko tty86 Sep 12 13:32

who pat tty21 Sep 12 10:10

ruth ity24 Sep 12 13:07
steve tty25 Sep 12 13:03

FIGURE 2.10 who command.

Because no filename was specified to the sort command, the input was taken from

standard input, the terminal. After the fourth name was typed in, the Ctrl and d keys

were pressed to signal the end of the data. At that point, the sort command sorted

the four names and displayed the results on the standard output device, which is

also the terminal. This is depicted in Figure 2.11.

The we command is another example of a command that takes its input from stan-

dard input if no filename is specified on the command line. So the following shows

an example of this command used to count the number of lines of text entered from

the terminal:

$ we -1

This is text that

is typed on the

30 CHAPTER 2. A Quick Review of the Basics

standard input device.

Ctrl+d

3

Tony Barbara

Barbara Dick

Harry Harry

Dick Tony

FIGURE 2.11 sort command.

Note that the Ctrl+d that is used to terminate the input is not counted as a separate

line by the wc command. Furthermore, because no filename was specified to the we

command, only the count of the number of lines (3) is listed as the output of the

command. (Recall that this command normally prints the name of the file directly

after the count.)

Output Redirection

The output from a command normally intended for standard output can be easily

diverted to a file instead. This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output to

standard output, the output of that command will be written to file instead of your

terminal:

$ who > users

$

This command line causes the who command to be executed and its output to be
written into the file users. Notice that no output appears at the terminal. This is
because the output has been redirected from the default standard output device (the
terminal) into the specified file:

$ cat users

oko tty@1 Sep 12 07:30

ai tty15 Sep 12 13:32

ruth tty21 Sep 12 10:10

pat tty24 Sep 12 13:07

Standard Input/Output and I/O Redirection 31

steve tty25 Sep 12 13:03

$

If a command has its output redirected to a file and the file already contains some
data, that data will be lost. Consider this example:

$ echo line 1 > users

$ cat users

line 1

$ echo line 2 >> users

$ cat users

line 1

line 2

$

The second echo command uses a different type of output redirection indicated by

the characters >>. This character pair causes the standard output from the command

to be appended to the specified file. Therefore, the previous contents of the file are

not lost, and the new output simply gets added onto the end.

By using the redirection append characters >>, you can use cat to append the

contents of one file onto the end of another:

$ cat filet

Thais: LS in failed.

$ cat file2

ihis 1s ain) nale2,

$ cat file1 >> file2 Append file1 to file2

$ cat file2

TiLSe hs oun taAle2:

This is in file.

$

Recall that specifying more than one filename to cat results in the display of the

first file followed immediately by the second file, and so on:

$ cat filet

This is sine hailed:

$ cat file2

This is in file2.

$ cat file1 file2

MNLiSh LSet leds

WS aS a) ale,

$ cat file1 file2 > file3 Redirect it instead

32 CHAPTER 2. A Quick Review of the Basics

$ cat file3

This is in filei.

hiss inhale?

$

Now you can see where the cat command gets its name: When used with more than

one file, its effect is to catenate the files together.

Incidentally, the shell recognizes a special format of output redirection. If you type

> file

not preceded by a command, the shell creates an empty (that is, zero character

length) file for you. If file previously exists, its contents will be lost.

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a

command be redirected from a file. And as the greater-than character > is used for

output redirection, the less-than character < is used to redirect the input of a

command. Of course, only commands that normally take their input from standard

input can have their input redirected from a file in this manner.

To redirect the input of a command, you type the < character followed by the name

of the file that the input is to be read from. So, for example, to count the number of

lines in the file users, you know that you can execute the command we -1 users:

$ we -1 users

2 users

Or, you can count the number of lines in the file by redirecting the standard input

of the wc command from the file users:

$ we -l < users

2

Note that there is a difference in the output produced by the two forms of the we
command. In the first case, the name of the file users is listed with the line count;
in the second case, it is not. This points out the subtle distinction between the
execution of the two commands. In the first case, wc knows that it is reading its
input from the file users. In the second case, it only knows that it is reading its

Pipes 33

input from standard input. The shell redirects the input so that it comes from the
file users and not the terminal (more about this in the next chapter). As far as we is
concerned, it doesn’t know whether its input is coming from the terminal or from a
file!

Pipes

As you will recall, the file users that was created previously contains a list of all the

users currently logged in to the system. Because you know that there will be one line

in the file for each user logged in to the system, you can easily determine the number

of users logged in by simply counting the number of lines in the users file:

$ who > users

$ we -1 < users

5

This output would indicate that currently five users were logged in. Now you have a

command sequence you can use whenever you want to know how many users are

logged in.

Another approach to determine the number of logged-in users bypasses the use of a

file. The Unix system allows you to effectively connect two commands together. This

connection is known as a pipe, and it enables you to take the output from one

command and feed it directly into the input of another command. A pipe is effected

by the character |, which is placed between the two commands. So to make a pipe

between the who and wc -1 commands, you simply type who | we -1:

$ who | we -1

5

The pipe that is effected between these two commands is depicted in Figure 2.12.

When a pipe is set up between two commands, the standard output from the first

command is connected directly to the standard input of the second command. You

know that the who command writes its list of logged-in users to standard output.

Furthermore, you know that if no filename argument is specified to the we

command, it takes its input from standard input. Therefore, the list of logged-in

users that is output from the who command automatically becomes the input to the

wc command. Note that you never see the output of the who command at the termi-

nal because it is piped directly into the we command. This is depicted in Figure 2.13.

CHAPTER 2. A Quick Review of the Basics

ai ttyO1

oko tty36

who pat tty21
ruth tty24

steve tty25

‘N 6 ‘
FIGURE 2.12 Pipeline process: who | we -l.

FIGURE 2.13 Pipeline process.

A pipe can be made between any two programs, provided that the first program

writes its output to standard output, and the second program reads its input from

standard input.

As another example of a pipe, suppose that you wanted to count the number of files

contained in your directory. Knowledge of the fact that the 1s command displays

one line of output per file enables you to use the same type of approach as before:

Selsn Worl:

10

Standard Error 35

The output indicates that the current directory contains 10 files.

It is also possible to form a pipeline consisting of more than two programs, with the
output of one program feeding into the input of the next.

Filters

The term filter is often used in Unix terminology to refer to any program that can

take input from standard input, perform some operation on that input, and write the

results to standard output. More succinctly, a filter is any program that can be used

between two other programs in a pipeline. So in the previous pipeline, we is consid-

ered a filter. 1s is not because it does not read its input from standard input. As other

examples, cat and sort are filters, whereas who, date, cd, pwd, echo, rm, mv, and cp

are not.

Standard Error

In addition to standard input and standard output, there is another place known as

standard error. This is where most Unix commands write their error messages. And as

with the other two “standard” places, standard error is associated with your terminal

by default. In most cases, you never know the difference between standard output

and standard error:

$ 1s n* List all files beginning with n

n* not found

$

Here the “not found” message is actually being written to standard error and not

standard output by the 1s command. You can verify that this message is not being

written to standard output by redirecting the 1s command’s output:

$ ls n* > foo

n* not found

$

So, you still get the message printed out at the terminal, even though you redirected

standard output to the file foo.

The preceding example shows the raison d’étre for standard error: so that error

messages will still get displayed at the terminal even if standard output is redirected

to a file or piped to another command.

You can also redirect standard error to a file by using the notation

command 2> file

CHAPTER 2. A Quick Review of the Basics

No space is permitted between the 2 and the >. Any error messages normally

intended for standard error will be diverted into the specified file, similar to the way

standard output gets redirected.

$ 1s n* 2> errors

$ cat errors

n* not found

$

More on Commands

Typing More Than One Command on a Line

You can type more than one command on a line provided that you separate each

command with a semicolon. For example, you can find out the current time and

also your current working directory by typing in the date and pwd commands on the

same line:

$ date; pwd

Sat Jul 20 14:43:25 EDT 2002

/users/pat/bin

$

You can string out as many commands as you want on the line, as long as each

command is delimited by a semicolon.

Sending a Command to the Background

Normally, you type in a command and then wait for the results of the command to

be displayed at the terminal. For all the examples you have seen thus far, this

waiting time is typically short—maybe a second or two. However, you may have to

run commands that require many seconds or even minutes to execute. In those

cases, you'll have to wait for the command to finish executing before you can

proceed further unless you execute the command in the background.

If you type in a command followed by the ampersand character & that command

will be sent to the background for execution. This means that the command will no

longer tie up your terminal, and you can then proceed with other work. The stan-

dard output from the command will still be directed to your terminal; however, in

most cases the standard input will be dissociated from your terminal. If the
command does try to read any input from standard input, it will be stopped and will
wait for you to bring it to the foreground (we’ll discuss this in more detail in
Chapter 15, “Interactive and Nonstandard Shell Features”).

3Note that the capability to stop a command when it reads from standard input may be missing on non-
Unix implementations of the shell or on older shells that do not conform to the POSIX standard. On these
implementations, any read from standard input will get an end-of-file condition as if Ctrl+d were typed.

More on Commands

$ sort data > out & Send the sort to the background

[1] 1258 Process id

$ date Your terminal is immediately available to do other work
Sat Jul 20 14:45:09 EDT 2002

$

When a command is sent to the background, the Unix system automatically displays
two numbers. The first is called the command’s job number and the second the

process id. In the preceding example, 1 was the job number and 1258 the process id.

The job number is used by some shell commands that you'll learn more about in

Chapter 15. The process id uniquely identifies the command that you sent to the

background and can be used to obtain status information about the command. This

is done with the ps command.

The ps Command

The ps command gives you information about the processes running on the system.

ps without any options prints the status of just your processes. If you type in ps at

your terminal, you'll get a few lines back describing the processes you have running:

$ ps

PID TTY TIME COMMAND

195 01 0:21 sh The shell

1353 01 0:00 ps This ps command

1258 Q1 0:10 sort The previous sort

$

The ps command prints out four columns of information: PID, the process id; TTY,

the terminal number that the process was run from; TIME, the amount of computer

time in minutes and seconds that process has used; and COMMAND, the name of the

process. (The sh process in the preceding example is the shell that was started when

you logged in, and it has used 21 seconds of computer time.) Until the command is

finished, it shows up in the output of the ps command as a running process. Process

number 1353 in the preceding example is the ps command that was typed in, and

1258 is the sort from the preceding example.

When used with the -f option, ps prints out more information about your processes,

including the parent process id (PPID), the time the processes started (STIME), and the

command arguments:

$ ps -f

UID PLDs PPID SC STIME TTY TIME COMMAND

steve 195 1 @ 10:58:29 tty01 @:21 -sh

steve 1360 195 43 14:54:48 ttyQ1 0:01 ps -f

CHAPTER 2. A Quick Review of the Basics

steve 1258 195 @ 14:45:04 ttyQ1 3:17 sort data

Command Summary

Table 2.2 summarizes the commands reviewed in this chapter. In this table, file

refers to a file, file(s) to one or more files, dir to a directory, and dir(s) to one or

more directories.

TABLE 2.2 Command Summary — ,

Command Description

cat file(s)

cd dir

Cp files, file:

cp file(s) dir

date

echo args

Nigh path pe TIUCY

ln file(s) dir

ls file(s)

LST OLE CS)

mkdir dir(s)

NV etre she:

mv file(s) dir

ps

pwd

rm file(s)

rmdir dir(s)

sort file(s)

Display contents of file(s) or standard input if not supplied

Change working directory to dir

Gopy filer torr Te:

Copy file(s) into dir

Display the date and time

Display args

Link file, to file,

Link file(s) into dir

List file(s)

List files in dir(s) or in current directory if dir(s) is not specified

Create directory dir(s)

Move file, to file, (simply rename it if both reference the same directory)

Move file(s) into directory dir

List information about active processes

Display current working directory path

Remove files(s)

Remove empty directory dir(s)

Sort lines of file(s) or standard input if not supplied

jani9.02

we file(s) Count the number of lines, words, and characters in file(s) or standard

input if not supplied

who Display who's logged in

Exercises

1. Given the following files in your current directory:

$ ls

feb96

jani2.02

jan26.02

jan5.02

jang5

jang6

jan97

jang8

marg8

memo1

memo1@

memo2

memo2.Sv

$

Exercises

What would be the output from the following commands?

echo *

echo m[a-df-z]*

echo jan*

echo ?277?

echo jan?? feb?? mar??

echo *[!0-9]

echo [A-Z]*

C CHO moray

echo *Q2

echo [fjm][ae][bnr]*

. What is the effect of the following command sequences?

See WC

who | we -l

Seo Cua| MCh el.

who |! sort

cp ,memot

Ieee een,

mv progs/* /users/steve/backup

i ol!

cd; pwd

plotdata 2>errors &

a Te 2 taut orn
. 7

o6 °°") hs Fas ‘*

2S See ae -2 4 ed |

fi

if

ag

3 | IN THIS CHAPTER

What Is the Shell? | * The Kernel and the Utilities

| ¢ The Login Shell

| ¢ Typing Commands to the

| Shell
| Es this chapter you’ll learn what the shell is and what it |
does. ¢ The Shell’s Responsibilities

The Kernel and the Utilities

The Unix system is itself logically divided into two pieces:

the kernel and the utilities (see Figure 3.1).

Oy iy Terre ae a ee oa 1
! 1
! I
1 ; 1 t=
1 Unix 1

I system

kernel I
I

: : I disks
| 1
i ! I l 1 ! I I | ! .

Memory

FIGURE 3.1 The Unix system.

The kernel is the heart of the Unix system and resides in

the computer’s memory from the time the computer is

turned on and booted until the time it is shut down.

The utilities, on the other hand, reside on the computer’s

disk and are only brought into memory as requested.

Virtually every command you know under the Unix

system is classified as a utility; therefore, the program

resides on the disk and is brought into memory only when

you request that the command be executed. So, for

example, when you execute the date command, the Unix

system loads the program called date from the computer’s

disk into memory and initiates its execution.

The shell, too, is a utility program. It is loaded into

memory for execution whenever you log in to the system.

CHAPTER 3. What Is the Shell?

In fact, it’s worth learning the precise sequence of events that occurs when the first

shell on a terminal or window starts up.

The Login Shell

A terminal is connected to a Unix system through a direct wire, modem, or network.

In the first case, as soon as you turn on the terminal (and press the Enter key a

couple of times if necessary), you should get a login: message on your screen. In the

second case, you must first dial the computer’s number and get connected before the

login: message appears. In the last case, you may connect over the network via a

program such as ssh, telnet, or rlogin, or you may use some kind of networked

windowing system (for example, X Window System) to start up a terminal emulation

program (for example, xterm).

For each physical terminal port on a system, a program called getty will be active.

This is depicted in Figure 3.2.

Unix
system

kernel

FIGURE 3.2 The getty process.

The Unix system—more precisely a program called init—automatically starts up a
getty program on each terminal port whenever the system is allowing users to log
in. getty determines the baud rate, displays the message login: at its assigned
terminal, and then just waits for someone to type in something. As soon as someone
types in some characters followed by Enter, the getty program disappears; but before
it goes away, it starts up a program called login to finish the process of logging in
(see Figure 3.3). It also gives login the characters you typed in at the terminal—
characters that presumably represent your login name.

The Login Shell

Unix

system

kernel

FIGURE 3.3 login started on sue’s terminal.

When login begins execution, it displays the string Password: at the terminal and

then waits for you to type your password. After you have typed it, login then

proceeds to verify your login name and password against the corresponding entry in

the file /etc/passwd. This file contains one line for each user of the system. That line

specifies, among other things, the login name, home directory, and program to start

up when that user logs in.’ The last bit of information (the program to start up) is

stored after the /ast colon of each line. If nothing follows the last colon, the standard

shell /usr/bin/sh is assumed by default. The following three lines show typical lines

from /etc/passwd for three users of the system: sue, pat, and bob:

sue:*:15:47::/users/sue:

pat:*:99:7::/users/pat:/usr/bin/ksh

bob: *:13:100::/users/data:/users/data/bin/data_entry

After login checks the password you typed in against the one stored in /etc/shadow,

it then checks for the name of a program to execute. In most cases, this will be

/usr/bin/sh, /usr/bin/ksh, or /bin/bash. In other cases, it may be a special custom-

designed program. The main point here is that you can set up a login account to

automatically run any program whatsoever whenever someone logs in to it. The

shell just happens to be the program most often selected.

‘The file’s name (passwd) derives from a time when encrypted versions of the users’ passwords were stored

in this file along with other user information. The encrypted passwords are no longer stored in

/etc/passwd but for security reasons are now kept in the /etc/shadow file, which is not readable by

normal users.

43

44 CHAPTER 3. What Is the Shell?

So login initiates execution of the standard shell on sue’s terminal after validating

her password (see Figure 3.4).

login: sue
Password:

Welcome.

Unix

system

kernel

FIGURE 3.4 login executes /usr/bin/sh.

According to the other entries from /etc/passwd shown previously, pat gets the

program ksh stored in /usr/bin (this is the Korn shell), and bob gets the program

data_entry (see Figure 3.5).

login: sue
Password:

/usr/bin/sh

login: pat
Password:

Unix

system /ust/bin/ksh

kernel

/usr/data/bin login: bob
/data_entry Password:

FIGURE 3.5 Three users logged in.

The init program starts up other programs similar to getty for networked connec-
tions. For example, sshd, telnetd, and rlogind are started to service logins via ssh,

Typing Commands to the Shell 45

telnet, and rlogin, respectively. Instead of being tied directly to a specific, physical
terminal or modem line, these programs connect users’ shells to pseudo ttys. These
are devices that emulate terminals over network connections. You can see this

whether you're logged in to your system over a network or on an X Windows screen:

$ who

phw pts/0 Jul 20 17:37 Logged in with rlogin

$

Typing Commands to the Shell
When the shell starts up, it displays a command prompt—typically a dollar sign $—

at your terminal and then waits for you to type in a command (see Figure 3.6, Steps

1 and 2). Each time you type in a command and press the Enter key (Step 3), the

shell analyzes the line you typed and then proceeds to carry out your request (Step

4). If you ask it to execute a particular program, the shell searches the disk until it

finds the named program. When found, the shell asks the kernel to initiate the

program’s execution and then the shell “goes to sleep” until the program has

finished (Step 5). The kernel copies the specified program into memory and begins

its execution. This copied program is called a process; in this way, the distinction is

made between a program that is kept in a file on the disk and a process that is in

memory doing things.

If the program writes output to standard output, it will appear at your terminal

unless redirected or piped into another command. Similarly, if the program reads

input from standard input, it will wait for you to type in input unless redirected

from a file or piped from another command (Step 6).

When the command finishes execution, control once again returns to the shell,

which awaits your next command (Steps 7 and 8).

FIGURE 3.6 Command cycle.

46 CHAPTER 3. What Is the Shell?

Note that this cycle continues as long as you’re logged in. When you log off the

system, execution of the shell then terminates and the Unix system starts up a new

getty (or rlogind, and so on) at the terminal and waits for someone else to log in.

This cycle is illustrated in Figure 3.7.

FIGURE 3.7 Login cycle.

It’s important for you to recognize that the shell is just a program. It has no special

privileges on the system, meaning that anyone with the capability and devotion can

create his own shell program. This is in fact the reason why various flavors of the

shell exist today, including the older Bourne shell, developed by Stephen Bourne;

the Korn shell, developed by David Korn; the “Bourne again shell,” mainly used on

Linux systems; and the C shell, developed by Bill Joy.

The Shell’s Responsibilities

Now you know that the shell analyzes each line you type in and initiates execution

of the selected program. But the shell also has other responsibilities, as outlined in

Figure 3.8.

Program Execution

The shell is responsible for the execution of all programs that you request from your
terminal.

Each time you type in a line to the shell, the shell analyzes the line and then deter-
mines what to do. As far as the shell is concerned, each line follows the same basic
format:

program-name arguments

The line that is typed to the shell is known more formally as the command line. The
shell scans this command line and determines the name of the program to be
executed and what arguments to pass to the program.

The Shell’s Responsibilities 47

program

execution

interpreted

programming
language

variable and

filename

substitution

VO

redirection

environment

control

pipeline

hookup

FIGURE 3.8 The shell’s responsibilities.

The shell uses special characters to determine where the program name starts and

ends, and where each argument starts and ends. These characters are collectively

called whitespace characters, and are the space character, the horizontal tab character,

and the end-of-line character, known more formally as the newline character. Multiple

occurrences of whitespace characters are simply ignored by the shell. When you type

the command

mv tmp/mazewars games

the shell scans the command line and takes everything from the start of the line to

the first whitespace character as the name of the program to execute: mv. The set of

characters up to the next whitespace character is the first argument to mv:

tmp/mazewars. The set of characters up to the next whitespace character (known as a

word to the shell)—in this case, the newline—is the second argument to mv: games.

After analyzing the command line, the shell then proceeds to execute the mv

command, giving it the two arguments tmp/mazewars and games (see Figure 3.9).

tmp/mazewars

games

arguments

FIGURE 3.9 Execution of mv with two arguments.

48 CHAPTER 3. What Is the Shell?

As mentioned, multiple occurrences of whitespace characters are ignored by the

shell. This means that when the shell processes this command line:

echo when do we eat?

it passes four arguments to the echo program: when, do, we, and eat? (see

Figure 3.10).

FIGURE 3.10 Execution of echo with four arguments.

Because echo takes its arguments and simply displays them at the terminal, separat-

ing each by a space character, the output from the following becomes easy to under-

stand:

$ echo when do we eat?

when do we eat?

$

The fact is that the echo command never sees those blank spaces; they have been

“gobbled up” by the shell. When we discuss quotes in Chapter 6, “Can I Quote You

on That?,” you’ll see how you can include blank spaces in arguments to programs.

We mentioned earlier that the shell searches the disk until it finds the program you

want to execute and then asks the Unix kernel to initiate its execution. This is true

most of the time. However, there are some commands that the shell knows how to

execute itself. These built-in commands include cd, pwd, and echo. So before the

shell goes searching the disk for a command, the shell first determines whether it’s a

built-in command, and if it is, the shell executes the command directly.

Variable and Filename Substitution

Like any other programming language, the shell lets you assign values to variables.

Whenever you specify one of these variables on the command line, preceded by a
dollar sign, the shell substitutes the value assigned to the variable at that point. This
topic is covered in complete detail in Chapter 5, “And Away We Go.”

The shell also performs filename substitution on the command line. In fact, the shell
scans the command line looking for filename substitution characters *, ?, or [...]

The Shell’s Responsibilities 49

before determining the name of the program to execute and its arguments. Suppose
that your current directory contains the files as shown:

$ 1s

mrs.todd

progt

shortcut

sweeney

$

Now let’s use filename substitution for the echo command:

$ echo * List all files

mrs.todd prog1 shortcut sweeney

$

How many arguments do you think were passed to the echo program, one or four?

Because we said that the shell is the one that performs the filename substitution, the

answer is four. When the shell analyzes the line

echo *

it recognizes the special character * and substitutes on the command line the names

of all files in the current directory (it even alphabetizes them for you):

echo mrs.todd progi shortcut sweeney

Then the shell determines the arguments to be passed to the command. So echo

never sees the asterisk. As far as it’s concerned, four arguments were typed on the

command line (see Figure 3.11).

FIGURE 3.11 Execution of echo.

i/O Redirection

It is the shell’s responsibility to take care of input and output redirection on the

command line. It scans the command line for the occurrence of the special redirec-

tion characters <, >, or >> (also << as you'll learn in Chapter 13, “Loose Ends”).

50 CHAPTER 3. What Is the Shell?

When you type the command

echo Remember to tape Law and Order > reminder

the shell recognizes the special output redirection character > and takes the next

word on the command line as the name of the file that the output is to be redirected

to. In this case, the file is reminder. If reminder already exists and you have write

access to it, the previous contents are lost (if you don’t have write access to it, the

shell gives you an error message).

Before the shell starts execution of the desired program, it redirects the standard

output of the program to the indicated file. As far as the program is concerned, it

never knows that its output is being redirected. It just goes about its merry way

writing to standard output (which is normally your terminal, you'll recall), unaware

that the shell has redirected it to a file.

Let’s take another look at two nearly identical commands:

$ we -l users

5 users

$ we -1 < users

5

In the first case, the shell analyzes the command line and determines that the name

of the program to execute is we and it is to be passed two arguments: -1 and users

(see Figure 3.12).

FIGURE 3.12 Execution of wc -1 users.

When we begins execution, it sees that it was passed two arguments. The first argu-

ment, -1, tells it to count the number of lines. The second argument specifies the
name of the file whose lines are to be counted. So we opens the file users, counts its
lines, and then prints the count together with the filename at the terminal.

Operation of we in the second case is slightly different. The shell spots the input
redirection character < when it scans the command line. The word that follows on
the command line is the name of the file input is to be redirected from. Having
“gobbled up” the < users from the command line, the shell then starts execution of
the we program, redirecting its standard input from the file users and passing it the
single argument -1 (see Figure 3.13).

The Sheli’s Responsibilities S|

FIGURE 3.13 Execution of wc -1 < users.

When we begins execution this time, it sees that it was passed the single argument

-1. Because no filename was specified, wc takes this as an indication that the number

of lines appearing on standard input is to be counted. So we counts the number of

lines on standard input, unaware that it’s actually counting the number of lines in

the file users. The final tally is displayed at the terminal—without the name of a file

because we wasn’t given one.

The difference in execution of the two commands is important for you to under-

stand. If you’re still unclear on this point, review the preceding section.

Pipeline Hookup

Just as the shell scans the command line looking for redirection characters, it also

looks for the pipe character |. For each such character that it finds, it connects the

standard output from the command preceding the | to the standard input of the one

following the |. It then initiates execution of both programs.

So when you type

who | we -l

the shell finds the pipe symbol separating the commands who and we. It connects the

standard output of the former command to the standard input of the latter, and

then initiates execution of both commands. When the who command executes, it

makes a list of who’s logged in and writes the results to standard output, unaware

that this is not going to the terminal but to another command instead.

When the we command executes, it recognizes that no filename was specified and

counts the lines on standard input, unaware that standard input is not coming from

the terminal but from the output of the who command.

Environment Control

The shell provides certain commands that let you customize your environment. Your

environment includes your home directory, the characters that the shell displays to

prompt you to type in a command, and a list of the directories to be searched when-

ever you request that a program be executed. You'll learn more about this in Chapter

11, “Your Environment.”

52 CHAPTER 3. What Is the Shell?

Interpreted Programming Language

The shell has its own built-in programming language. This language is interpreted,

meaning that the shell analyzes each statement in the language one line at a time

and then executes it. This differs from programming languages such as C and

FORTRAN, in which the programming statements are typically compiled into a

machine-executable form before they are executed.

Programs developed in interpreted programming languages are typically easier to

debug and modify than compiled ones. However, they usually take much longer to

execute than their compiled equivalents.

The shell programming language provides features you’d find in most other

programming languages. It has looping constructs, decision-making statements, vari-

ables, and functions, and is procedure-oriented. Modern shells based on the IEEE

POSIX standard have many other features including arrays, data typing, and built-in

arithmetic operations.

4 | IN THIS CHAPTER

Tools of the Trade | ““""™"™
© cut

|

| ° paste

dine chapter provides detailed descriptions of some | eae
commonly used shell programming tools. Covered are cut, eke

paste, sed, tr, grep, uniq, and sort. The more proficient you |

become at using these tools, the easier it will be to write * grep

shell programs to solve your problems. In fact, that goes

for all the tools provided by the Unix system. | ons

| ° unig

Regular Expressions | * Exercises

Before getting into the tools, you need to learn about

regular expressions. Regular expressions are used by several

different Unix commands, including ed, sed, awk, grep, and,

to a more limited extent, vi. They provide a convenient

and consistent way of specifying patterns to be matched.

The shell recognizes a limited form of regular expressions

when you use filename substitution. Recall that the aster-

isk (*) specifies zero or more characters to match, the ques-

tion mark (?) specifies any single character, and the

construct [...] specifies any character enclosed between

the brackets. The regular expressions recognized by the

aforementioned programs are far more sophisticated than

those recognized by the shell. Also be advised that the

asterisk and the question mark are treated differently by

these programs than by the shell.

Throughout this section, we assume familiarity with a line-

based editor such as ex or ed. See Appendix B, “For More

Information,” for more information on these editors.

54 CHAPTER 4 Tools of the Trade

Matching Any Character: The Period (.)

A period in a regular expression matches any single character, no matter what it is.

So the regular expression

t.

specifies a pattern that matches an r followed by any single character.

The regular expression

X.

matches an x that is surrounded by any two characters, not necessarily the same.

The ed command

soem,

searches forward in the file you are editing for the first line that contains any three

characters surrounded by blanks:

$ ed intro

248

1,$p Print all the lines

The Unix operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the Unix system was to create an

environment that promoted efficient program

development.

ae | Look for three chars surrounded by blanks

The Unix operating system was pioneered by Ken

/ Repeat last search

Thompson and Dennis Ritchie at Bell Laboratories

1,$s/p.0/XXX/g Change all p.os to XXX

1,$p Let’s see what happened

The Unix operating system was XXXneered by Ken

ThomxXXXn and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the Unix system was to create an

environment that XXXmoted efficient XXXgram

development.

In the first search, ed started searching from the beginning of the file and found the
characters “ was ” in the first line that matched the indicated pattern. Repeating the

Regular Expressions

search (recall that the ed command / means to repeat the last search), resulted in the
display of the second line of the file because “ and ” matched the pattern. The
substitute command that followed specified that all occurrences of the character p,
followed by any single character, followed by the character o were to be replaced by
the characters XXX.

Matching the Beginning of the Line: The Caret (*)

When the caret character * is used as the first character in a regular expression, it

matches the beginning of the line. So the regular expression

“George

matches the characters George only if they occur at the beginning of the line.

$ ed intro

248

/*the/ Find the line that starts with the

the design of the Unix system was to create an

1,$s/*/>>/ Insert >> at the beginning of each line

1,$p

>>The Unix operating system was pioneered by Ken

>>Thompson and Dennis Ritchie at Bell Laboratories

>>in the late 1960s. One of the primary goals in

>>the design of the Unix system was to create an

>>environment that promoted efficient program

>>development.

The preceding example shows how the regular expression * can be used to match

just the beginning of the line. Here it is used to insert the characters >> at the start of

each line. A command such as

1,$s/*/ /

is commonly used to insert spaces at the start of each line (in this case five spaces

would be inserted).

Matching the End of the Line: The Dollar Sign ($)

Just as the * is used to match the beginning of the line, so is the dollar sign $ used to

match the end of the line. So the regular expression

contents$

matches the characters contents only if they are the last characters on the line. What do

you think would be matched by the regular expression .$?

55

56 CHAPTER 4. Tools of the Trade

Would this match a period character that ends a line? No. This matches any single

character at the end of the line (including a period) recalling that the period matches

any character. So how do you match a period? In general, if you want to match any

of the characters that have a special meaning in forming regular expressions, you

must precede the character by a backslash (\) to remove that special meaning. So the

regular expression

\.$

matches any line that ends in a period, and the regular expression

ae

matches any line that starts with one (good for searching for nroff commands in

your text).

$ ed intro

248

/\.$/ Search for a line that ends with a period

development.

1,$s/$/>>/ Add >> to the end of each line

1,$p
The Unix operating system was pioneered by Ken>>

Thompson and Dennis Ritchie at Bell Laboratories>>

in the late 1960s. One of the primary goals in>>

the design of the Unix system was to create an>>

environment that promoted efficient program>>

development .>>

1,$s/..$// Delete the last two characters from each line

1,$p
The Unix operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the Unix system was to create an

environment that promoted efficient program

development.

It’s worth noting that the regular expression

“$

Regular Expressions

matches any line that contains no characters (such a line can be created in ed by
simply pressing Enter while in insert mode). This regular expression is to be distin-
guished from one such as

~ $

which matches any line that consists of a single space character.

Matching a Choice of Characters: The [...] Construct

Suppose that you are editing a file and want to search for the first occurrence of the

characters the. In ed, this is easy: You simply type the command

/the/

This causes ed to search forward in its buffer until it finds a line containing the indi-

cated string of characters. The first line that matches will be displayed by ed:

$ ed intro

248

/the/ Find line containing the

in the late 1960s. One of the primary goals in

Notice that the first line of the file also contains the word the, except it starts a

sentence and so begins with a capital T. You can tell ed to search for the first occur-

rence of the or The by using a regular expression. Just as in filename substitution, the

characters [and } can be used in a regular expression to specify that one of the

enclosed characters is to be matched. So, the regular expression

[tT]he

would match a lower- or uppercase t followed immediately by the characters he:

$ ed intro

248 ,
/{tT]he/ Look for the or The

The Unix operating system was pioneered by Ken

/ Continue the search

in the late 1960s. One of the primary goals in

/ Once again

the design of the Unix system was to create an

1,$s/[aeiouAEIOU]//g Delete all vowels

1,$p
Th nx prtng systm ws pnrd by Kn

Thmpsn nd Dnns Rtch t Bll Lbrtrs

a7,

CHAPTER 4. Tools of the Trade

n th 1t 1960s. n f th prmry gls n

th dsgn f th nx systm ws t crt n

nvrnmnt tht prmtd ffcnt prgrm

dvlpmnt.

A range of characters can be specified inside the brackets. This can be done by sepa-

rating the starting and ending characters of the range by a dash (-). So, to match any

digit character @ through 9, you could use the regular expression

[0123456789]

or, more succinctly, you could simply write

[0-9]

To match an uppercase letter, you write

[A-Z]

And to match an upper- or lowercase letter, you write

[A-Za-z]

Here are some examples with ed:

$ ed intro

248

/[@-9]/ Find a line containing a digit

in the late 1960s. One of the primary goals in

/*[A-Z]/ Find a line that starts with an uppercase letter

The Unix operating system was pioneered by Ken

/ Again

Thompson and Dennis Ritchie at Bell Laboratories

1,$s/[A-Z]/*/g Change all uppercase letters to *s

1,$p
*he *nix operating system was pioneered by *en

*hompson and *ennis *itchie at *ell *aboratories

in the late 1960s. *ne of the primary goals in

the design of the *nix system was to create an

environment that promoted efficient program

development.

As you'll learn shortly, the asterisk is a special character in regular expressions.
However, you don’t need to put a backslash before the asterisk in the replacement

Regular Expressions

string of the substitute command. In general, regular expression characters such as *,
-, [-.-], $, and * are only meaningful in the search string and have no special

meaning when they appear in the replacement string.

If a caret (*) appears as the first character after the left bracket, the sense of the

match is inverted.' For example, the regular expression

[*A-Z]

matches any character except an uppercase letter. Similarly,

[*A-Za-z]

matches any nonalphabetic character.

$ ed intro

248

1,$s/[*a-zA-Z]//g Delete all nonalphabetic characters

1,$p
TheUnixoperatingsystemwaspioneeredbyKen

ThompsonandDennisRitchieatBellLaboratories

InthelatesOneoftheprimarygoalsin

ThedesignoftheUnixsystemwastocreatean

Environmentthatpromotedefficientprogram

development

Matching Zero or More Characters: The Asterisk (*)

You know that the asterisk is used by the shell in filename substitution to match

zero or more characters. In forming regular expressions, the asterisk is used to match

zero Or more occurrences of the preceding character in the regular expression (which

may itself be another regular expression).

So, for example, the regular expression

X*

matches zero, one, two, three, ... capital X’s. The expression

XX*

matches one or more capital X’s, because the expression specifies a single X followed

by zero or more X’s. A similar type of pattern is frequently used to match the occur-

rence of one or more blank spaces.

~iRecalll that the shell uses the ! for this purpose.

59

60 CHAPTER 4. Tools of the Trade

$ ed lotsaspaces

85

1,$p
This is an example of a

file that contains a lot

of blank spaces Change multiple blanks to single blanks

sce 2/l He)

1,$p
This is an example of a

file that contains a lot

of blank spaces

The ed command

Tsay yf ile

told ed to substitute all occurrences of a space followed by zero or more spaces with a

single space.

The regular expression

*

is often used to specify zero or more occurrences of any characters. Bear in mind that

a regular expression matches the Jongest string of characters that match the pattern.

Therefore, used by itself, this regular expression always matches the entire line of

text.

As another example of the combination of . and *, the regular expression

e.*e

matches all the characters from the first e on a line to the last one.

$ ed intro

248

1,$s/e.*e/+++/

1,$p
Th+++n

Thompson and D+++S

in tht+++ primary goals in

tht++ an

+++nt program

d+++nt.

Regular Expressions 61

Here’s an interesting regular expression. What do you think it matches?

[A-Za-z][A-Za-z]*

That’s right, this matches any alphabetic character followed by zero or more alpha-

betic characters. This is pretty close to a regular expression that matches words.

$ ed intro

248

1,$s/[A-Za-z] [A-Za-z]*/X/g

1,$p

XXX XX X X X

XX XXX XX

X X X 1960X. X X X X X X

VS DS 20 IS IS WORMS 26 OK

X X X X X

X.

The only thing it didn’t match in this example was 1960. You can change the regular

expression to also consider a sequence of digits as a word:

$ ed intro

248

1,$s/[A-Za-z0-9] [A-Za-z0-9]*/X/g

1,$p
KON OX ANT Xe Ke OX

XX X X X X X

KEK PKK XOX OX XXX

) ED Sa) GD SE) SY ED, Ga, GD,

GIDE DIL DE

x

We could expand on this somewhat to consider hyphenated words and contracted

words (for example, don’t), but we’ll leave that as an exercise for you. As a point of

note, if you want to match a dash character inside a bracketed choice of characters,

you must put the dash immediately after the left bracket (and after the inversion

character * if present) or immediately before the right bracket]. So the expression

[-0-9]

matches a single dash or digit character.

62 CHAPTER 4. Tools of the Trade

If you want to match a right bracket character, it must appear after the opening left

bracket (and after the * if present). So

[ja-Z]

matches a right bracket or a lowercase letter.

Matching a Precise Number of Characters: \{...\}

In the preceding examples, you saw how to use the asterisk to specify that one or

more occurrences of the preceding regular expression are to be matched. For

instance, the regular expression

XX*

means match at least one consecutive X. Similarly,

XXX*

means match at least two consecutive X’s. There is a more general way to specify a

precise number of characters to be matched: by using the construct

\{min,max\}

where min specifies the minimum number of occurrences of the preceding regular

expression to be matched, and max specifies the maximum. For example, the regular

expression

X\{1,10\}

matches from one to ten consecutive X’s. As stated before, whenever there is a

choice, the largest pattern is matched; so if the input text contains eight consecutive

x’s at the beginning of the line, that is how many will be matched by the preceding

regular expression. As another example, the regular expression

[A-Za-z]\{4,7\}

matches a sequence of alphabetic letters from four to seven characters long.

$ ed intro

248

1,$s/[A-Za-z]\{4,7\}/X/q

1,$p
The X Xng X was Xed by Ken

Xn and X X at X XX

in the X 1960s. One of the X X in

the X of the X X was to X an

Regular Expressions 63

XX X Xd Xnt X

XX.

A few special cases of this special construct are worth noting. If only one number is
enclosed between the braces, as in

\{10\}

that number specifies that the preceding regular expression must be matched exactly
that many times. So

[a-ZA-Z]\{7\}

matches exactly seven alphabetic characters; and

-\{10\}

matches exactly ten characters (no matter what they are):

$ ed intro

248

1,$s/*.\{10\}// Delete the first 10 chars from each line

1,$p
perating system was pioneered by Ken

nd Dennis Ritchie at Bell Laboratories

e 1960s. One of the primary goals in

of the Unix system was to create an

t that promoted efficient program

ifn

1,$s/.\{5\}$// Delete the last S chars from each line

1,$p
perating system was pioneered b

nd Dennis Ritchie at Bell Laborat

e 1960s. One of the primary goa

of the Unix system was to crea

t that promoted efficient pr

ite

Note that the last line of the file didn’t have five characters when the last substitute

command was executed; therefore, the match failed on that line and thus was left

alone (recall that we specified that exactly five characters were to be deleted).

If a single number is enclosed in the braces, followed immediately by a comma,

then at Jeast that many occurrences of the previous regular expression must be

matched. So

+\{5,\}

64 CHAPTER 4. Tools of the Trade

matches at least five consecutive plus signs. Once again, if more than five exist, the

largest number is matched.

$ ed intro

248

1,$s/[a-zA-Z]\{6,\}/X/g Change words at least 6 letters long to x

1,$p
The Unix X X was X by Ken

X and X X at Bell X

in the late 1960s. One of the X goals in

the X of the Unix X was to X an

X that X X X

Xe,

Saving Matched Characters: \(...\)

It is possible to capture the characters matched within a regular expression by

enclosing the characters inside backslashed parentheses. These captured characters

are stored in “registers” numbered 1 through 9.

For example, the regular expression

iE)

matches the first character on the line, whatever it is, and stores it into register 1. To

retrieve the characters stored in a particular register, the construct \n is used, where n

is from 1-9.

So the regular expression

aN Gen aM)

matches the first character on the line and stores it in register 1. Then the expression

matches whatever is stored in register 1, as specified by the \1. The net effect of this
regular expression is to match the first two characters on a line if they are both the

same character. Go over this example if it doesn’t seem clear.

The regular expression

Nel VS

matches all lines in which the first character on the line (*.) is the same as the last
character on the line (\1$). The .* matches all the characters in-between.

Regular Expressions

Successive occurrences of the \(...\) construct get assigned to successive registers. So
when the following regular expression is used to match some text

Wa ciast Wy) \ Gone \)

the first three characters on the line will be stored into register 1, and the next three

characters into register 2.

When using the substitute command in ed, a register can also be referenced as part

of the replacement string:

$ ed phonebook

114

1,$p
Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Tony Iannino 973-555-1295

1,$s/\(.*\) Wey Waly Switch the two fields

1,$p
973-555-2015 Alice Chebba

201-555-9257 Barbara Swingle

212-555-2298 Liz Stachiw

201-555-7776 Susan Goldberg

973-555-1295 Tony Iannino

The names and the phone numbers are separated from each other in the phonebook

file by a single tab character. The regular expression

\C-4N) C389

says to match all the characters up to the first tab (that’s the character between the)

and the \) and assign them to register 1, and to match all the characters that follow

the tab character and assign them to register 2. The replacement string

Wa

specifies the contents of register 2, followed by a space, followed by the contents of

register 1.

So when ed applies the substitute command to the first line of the file:

Alice Chebba 973-555-2015

65

66 CHAPTER 4. Tools of the Trade

it matches everything up to the tab (Alice Chebba) and stores it into register 1, and

everything after the tab (973-555-2015) and stores it into register 2. Then it substi-

tutes the characters that were matched (the entire line) with the contents of register

2 (973-555-2015) followed by a space, followed by the contents of register 1 (Alice

Chebba):

973-555-2015 Alice Chebba

As you can see, regular expressions are powerful tools that enable you to match

complex patterns. Table 4.1 summarizes the special characters recognized in regular

expressions.

TABLE 4.1 Regular Expression Characters

Notation Meaning Example Matches

: any character ae a followed by any two characters

3 beginning of line “wood wood only if it appears at the beginning

of the line

$ end of line x$ x only if it is the last character on the

line

“INSERTS a line containing just the characters

INSERT

“$ a line that contains no characters

a zero or more xa zero or more consecutive x’ s

occurrences of OCs one or more consecutive x’s

previous regular

expression

a8 zero or more characters

w.*S w followed by zero or more characters

followed by an s

[chars] any character in chars [tT] lower- or uppercase t

[a-z] lowercase letter

[a-zA-Z] lower- or uppercase letter

[*chars] any character [*0-9] any nonnumeric character

not in chars [*a-zA-Z] any nonalphabetic character
\{min, max\} at least min XV, Sy at least 1 and at and at most 5 x’s

and at most max [0-9]\{3,9\} anywhere from 3 to 9 successive digits

occurrences of [0-9]\{3\} exactly 3 digits

previous regular [0-9]\{3, \} at least 3 digits

expressions

cut

TABLE 4.1 Continued

Notation Meaning Example Matches

Ny (Cotes) store characters S\VGEINY) first character on line and stores it in

matched between register 1

parentheses in SNGENOL\G first and second characters on the line

next register (1-9) if they’re the same

cut

This section teaches you about a useful command known as cut. This command

comes in handy when you need to extract (that is, “cut out”) various fields of data

from a data file or the output of a command. The general format of the cut

command is

cut -cchars file

where chars specifies what characters you want to extract from each line of file. This

can consist of a single number, as in -c5 to extract character 5; a comma-separated

list of numbers, as in -c1,13,50 to extract characters 1, 13, and 50; or a dash-

separated range of numbers, as in -c20-50 to extract characters 20 through SO, inclu-

sive. To extract characters to the end of the line, you can omit the second number of

the range; so

cut -c5- data

extracts characters 5 through the end of the line from each line of data and writes

the results to standard output.

If file is not specified, cut reads its input from standard input, meaning that you can

use cut as a filter in a pipeline.

Let’s take another look at the output from the who command:

$ who

root console Feb 24 08:54

steve tty@2 Feb 24 12:55

george tty08 Feb 24 09:15

dawn tty10 Feb 24 15:55

$

67

68 CHAPTER 4. Tools of the Trade

As shown, currently four people are logged in. Suppose that you just want to know

the names of the logged-in users and don’t care about what terminals they are on or

when they logged in. You can use the cut command to cut out just the usernames

from the who command’s output:

$ who | cut -c1-8 Extract the first 8 characters

root

steve

george

dawn

$

The -c1-8 option to cut specifies that characters 1 through 8 are to be extracted

from each line of input and written to standard output.

The following shows how you can tack a sort to the end of the preceding pipeline

to get a sorted list of the logged-in users:

$ who | cut -c1-8 | sort

dawn

george

root

steve

$

If you wanted to see what terminals were currently being used, you could cut out

just the tty numbers field from the who command’s output:

$ who | cut -c10-16

console

ttye2

ttyds8

tty10

$

How did you know that who displays the terminal identification in character posi-
tions 10 through 16? Simple! You executed the who command at your terminal and
counted out the appropriate character positions.”

You can use cut to extract as many different characters from a line as you want.
Here, cut is used to display just the username and login time of all logged-in users:

$ who | cut -c1-8,18-

root Feb 24 08:54

2On some versions of the Unix system, this field starts in character position 12 and not 10.

cut

steve Feb 24 12:55

george Feb 24 09:15

dawn Feb 24 15:55

$

The option -c1-8,18- says “extract characters 1 through 8 (the username) and also
characters 18 through the end of the line (the login time).”?

The -d and -f Options

The cut command as described previously is useful when you need to extract data

from a file or command provided that file or command has a fixed format.

For example, you could use cut on the who command because you know that the

usernames are always displayed in character positions 1-8, the terminal in 10-16,

and the login time in 18-29. Unfortunately, not all your data will be so well orga-

nized! For instance, take a look at the file /etc/passwd:

$ cat /etc/passwd

root:*:0:0:The Super User:/:/usr/bin/ksh

cron:*:1:1:Cron Daemon for periodic tasks:/:

bin:*:3:3:The owner of system files:/:

uucp:*:5:5::/usr/spool/uucp: /usr/1lib/uucp/uucico

asg:*:6:6:The Owner of Assignable Devices:/:

steve: *:203:100::/users/steve: /usr/bin/ksh

other:*:4:4:Needed by secure program: /:

$

/etc/passwd is the master file that contains the usernames of all users on your

computer system. It also contains other information such as your user id number,

your home directory, and the name of the program to start up when you log in.

Getting back to the cut command, you can see that the data in this file does not

align itself the same way who’s output does. So getting a list of all the possible users

of your system cannot be done using the -c option to cut.

One nice thing about the format of /etc/passwd, however, is that fields are delim-

ited by a colon character. So although each field may not be the same length from

one line to the next, you know that you can “count colons” to get the same field

from each line.

The -d and -f options are used with cut when you have data that is delimited by a

particular character. The format of the cut command in this case becomes

cut -ddchar -ffields file

Again, on some systems the login time field starts in column 25.

69

70 CHAPTER 4 Tools of the Trade

where dchar is the character that delimits each field of the data, and fields specifies

the fields to be extracted from file. Field numbers start at 1, and the same type of

formats can be used to specify field numbers as was used to specify character posi-

tions before (for example, -f1,2,8, -f1-3, -f4-).

So to extract the names of all users of your system from /etc/passwd, you could type

the following:

$ cut -d: -f1 /etc/passwd Extract field 1

root

cron

bin

uucp

asg

steve

other

$

Given that the home directory of each user is in field 6, you can associate each user

of the system with his or her home directory as shown:

$ cut -d: -f1,6 /etc/passwd Extract fields 1 and 6

root: /

cron: /

Danie

uucp:/usr/spool/uucp

asg:/

steve: /users/steve

other: /

$

If the cut command is used to extract fields from a file and the -d option is not
supplied, cut uses the tab character as the default field delimiter.

The following depicts a common pitfall when using the cut command. Suppose that
you have a file called phonebook that has the following contents:

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Jeff Goldberg 201-555-3378

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Tony Iannino 973-555-1295

$

cut 71

If you just want to get the names of the people in your phone book, your first
impulse would be to use cut as shown:

$ cut -c1-15 phonebook

Alice Chebba 97

Barbara Swingle

Jeff Goldberg 2

Liz Stachiw 212

Susan Goldberg

Tony Iannino 97

$

Not quite what you want! This happened because the name is separated from the

phone number by a tab character and not blank spaces in the phonebook file. And as

far as cut is concerned, tabs count as a single character when using the -c option. So

cut extracts the first 15 characters from each line in the previous example, giving the

results as shown.

Given that the fields are separated by tabs, you should use the -f option to cut

instead:

$ cut -f1 phonebook

Alice Chebba

Barbara Swingle

Jeff Goldberg

Liz Stachiw

Susan Goldberg

Tony Iannino

$

Much better! Recall that you don’t have to specify the delimiter character with the

-d option because cut assumes that a tab character is the delimiter by default.

But how do you know in advance whether fields are delimited by blanks or tabs?

One way to find out is by trial and error as shown previously. Another way is to type

the command

sed -n 1 file

at your terminal. If a tab character separates the fields, \t will be displayed instead of

the tab:

$ sed -n 1 phonebook

Alice Chebba\t973-555 -2015

Barbara Swingle\t201 -555 -9257

72 CHAPTER 4. Tools of the Trade

Jeff Goldberg\t201 -555 -3378

Liz Stachiw\t212-555-2298

Susan Goldberg\t201 -555-7776

Tony Iannino\t973-555-1295

$

The output verifies that each name is separated from each phone number by a tab

character. sed is covered in more detail shortly.

paste
The paste command is sort of the inverse of cut: Instead of breaking lines apart, it

puts them together. The general format of the paste command is

paste files

where corresponding lines from each of the specified files are “pasted” together to

form single lines that are then written to standard output. The dash character - can

be used in files to specify that input is from standard input.

Suppose that you have a set of names in a file called names:

$ cat names

Tony

Emanuel

Lucy

Ralph

Fred

$

Suppose that you also have a file called numbers that contains corresponding phone
numbers for each name in names:

$ cat numbers

(307) 555-5356

(212) 555-3456

(212) 555-9959

(212) 555-7741

(212) 555-0040

$

You can use paste to print the names and numbers side-by-side as shown:

$ paste names numbers Paste them together
Tony (307) 555-5356

Emanuel (212) 555-3456

paste es

Lucy (212) 555-9959

Ralph (212) 555-7741

Fred (212) 555-0040

$

Each line from names is displayed with the corresponding line from numbers, sepa-
rated by a tab.

The next example illustrates what happens when inore than two files are specified:

$ cat addresses

55-23 Vine Street, Miami

39 University Place, New York

17 E. 25th Street, New York

38 Chauncey St., Bensonhurst

17 E. 25th Street, New York

$ paste names addresses numbers

Tony 55-23 Vine Street, Miami (307) 555-5356

Emanuel 39 University Place, New York (212) 555-3456

Lucy 17 E. 25th Street, New York (212) 555-9959

Ralph 38 Chauncey St., Bensonhurst (212) 555-7741

Fred 17 E. 25th Street, New York (212) 555-0040

$

The -d Option

If you don’t want the fields separated by tab characters, you can specify the -d

option with the format

-dchars

where chars is one or more characters that will be used to separate the lines pasted

together.’ That is, the first character listed in chars will be used to separate lines from

the first file that are pasted with lines from the second file; the second character

listed in chars will be used to separate lines from the second file from lines from the

third, and so on.

If there are more files than there are characters listed in chars, paste “wraps around”

the list of characters and starts again at the beginning.

In the simplest form of the -d option, specifying just a single delimiter character

causes that character to be used to separate all pasted fields:

$ paste -d'+' names addresses numbers

Tony+55-23 Vine Street, Miamit+(307) 555-5356

Emanuel+39 University Place, New York+(212) 555-3456

74 CHAPTER 4_ Tools of the Trade

Lucy+17 E. 25th Street, New York+(212) 555-9959

Ralph+38 Chauncey St., Bensonhurst+(212) 555-7741

Fred+17 E. 25th Street, New York+(212) 555-0040

It’s always safest to enclose the delimiter characters in single quotes. The reason why

will be explained shortly.

The -s Option

The -s option tells paste to paste together lines from the same file, not from alter-

nate files. If just one file is specified, the effect is to merge all the lines from the file

together, separated by tabs, or by the delimiter characters specified with the -d

option.

$ paste -s names Paste all lines from names

Tony Emanuel Lucy Ralph Fred

$ ls | paste -d' ' -s - Paste 1s’s output, use space as delimiter

addresses intro lotsaspaces names numbers phonebook

$

In the preceding example, the output from 1s is piped to paste, which merges the

lines (-s option) from standard input (-), separating each field with a space (-d' '

option). Of course, you'll recall from Chapter 2, “A Quick Review of the Basics,” that

the command

echo *

would have worked just as well (and is certainly more straightforward).

sed

sed is a program used for editing data. It stands for stream editor. Unlike ed, sed
cannot be used interactively. However, its commands are similar. The general form of
the sed command is

sed command file

where command is an ed-style command applied to each line of the specified file. If
no file is specified, standard input is assumed. As sed applies the indicated command
to each line of the input, it writes the results to standard output.

Recall the file intro from previous examples:

$ cat intro

The Unix operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

sed Us

in the late 1960s. One of the primary goals in

the design of the Unix system was to create an

environment that promoted efficient program

development.

$

Suppose that you want to change all occurrences of “Unix” in the text to “UNIX.”
This can be easily done in sed as follows:

$ sed 's/Unix/UNIX/' intro Substitute Unix with UNIX

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

$

For now, get into the habit of enclosing your sed command in a pair of single

quotes. Later, you’ll know when the quotes are necessary and when to use double

quotes instead.

The sed command s/Unix/UNIX/ is applied to every line of intro. Whether or not

the line gets changed by the command, it gets written to standard output all the

same. Note that sed makes no changes to the original input file. To make the

changes permanent, you must redirect the output from sed into a temporary file and

then move the file back to the old one:

$ sed 's/Unix/UNIX/' intro > temp Make the changes

$ mv temp intro And now make them permanent

$

Always make sure that the correct changes were made to the file before you over-

write the original; a cat of temp could have been included between the two

commands shown previously to ensure that the sed succeeded as planned.

If your text included more than one occurrence of “Unix” on a line, the preceding

sed would have changed just the first occurrence on each line to “UNIX.” By

appending the global option g to the end of the s command, you can ensure that

multiple occurrences of the string on a line will be changed. In this case, the sed

command would read

$ sed 's/Unix/UNIX/g' intro > temp

76 CHAPTER 4. Tools of the Trade

Suppose that you wanted to extract just the usernames from the output of who. You

already know how to do that with the cut command:

$ who | cut -c1-8

root

ruth

steve

pat

$

Alternatively, you can use sed to delete all the characters from the first blank space

(that marks the end of the username) through the end of the line by using a regular

expression in the edit command:

$ who | sed ‘s/ .*$//'

root

ruth

steve

pat

$

The sed command says to substitute a blank space followed by any characters up to

the end of the line (.*$) with nothing (//); that is, delete the characters from the

first blank to the end of the line from each line of the input.

The -n Option

We pointed out that sed always writes each line of input to standard output,

whether or not it gets changed. Sometimes, however, you'll want to use sed just to

extract some lines from a file. For such purposes, use the -n option. This option tells

sed that you don’t want it to print any lines unless explicitly told to do so. This is

done with the p command. By specifying a line number or range of line numbers,

you can use sed to selectively print lines of text. So, for example, to print just the

first two lines from a file, the following could be used:

$ sed -n '1,2p' intro Just print the first 2 lines

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

$

If, instead of line numbers, you precede the p command with a string of characters
enclosed in slashes, sed prints just those lines from standard input that contain
those characters. The following example shows how sed can be used to display just
the lines that contain a particular string:

sed

$ sed -n '/UNIX/p' intro Just print lines containing UNIX

The UNIX operating system was pioneered by Ken

the design of the UNIX system was to create an

$

Deleting Lines

To delete entire lines of text, use the d command. By specifying a line number or

range of numbers, you can delete specific lines from the input. In the following

example, sed is used to delete the first two lines of text from intro:

$ sed '1,2d' intro Delete lines 1 and 2

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

$

Remembering that by default sed writes all lines of the input to standard output, the

remaining lines in text—that is, lines 3 through the end—simply get written to stan-

dard output.

By preceding the d command with a string of text, you can use sed to delete all lines

that contain that text. In the following example, sed is used to delete all lines of text

containing the word UNIX:

$ sed '/UNIX/d' intro Delete all lines containing UNIX

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

environment that promoted efficient program

development.

$

The power and flexibility of sed goes far beyond what we’ve shown here. sed has

facilities that enable you to loop, build text in a buffer, and combine many

commands into a single editing script. Table 4.2 shows some more examples of sed

commands.

ESS eS Sl
sed Command Description

sed '5d' Delete line 5

sed '/[Tt]est/d' Delete all lines containing

Test or test

sed -n '20,25p' text Print only lines 20 through 25 from text

78 CHAPTER 4_ Tools of the Trade

TABLE 4.2. Continued

sed Command Description

sed '1,10s/unix/UNIX/g' intro Change unix to UNIX wherever it appears in the first 10 lines

of intro

sed) 7 /jani/s/=1/-57* Change the first -1 to -5 on all lines containing jan

SeduS/aen jm ecava Delete the first three characters from each line of data

sed 's/...$//*+ data Delete the last 3 characters from each line of data

sed -m ‘1! text Print all lines from text, showing nonprinting characters as

\nn (where nn is the octal value of the character), and tab

characters as \t

tr

The tr filter is used to translate characters from standard input. The general form of

the command is

tr from-chars to-chars

where from-chars and to-chars are one or more single characters. Any character in

from-chars encountered on the input will be translated into the corresponding char-

acter in to-chars. The result of the translation is written to standard output.

In its simplest form, tr can be used to translate one character into another. Recall

the file intro from earlier in this chapter:

$ cat intro

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

$

The following shows how tr can be used to translate all letter e’s to x’s:

$ tr e x < intro

Thx UNIX opxrating systxm was pionxxrxd by Kxn

ithe 79

Thompson and Dxnnis Ritchix at Bxll Laboratorixs

in thx latx 1960s. Onx of thx primary goals in

thx dxsign of thx UNIX systxm was to crxatx an

xnvironmxnt that promotxd xfficixnt program

dxvxlopmxnt.

$

The input to tr must be redirected from the file intro because tr always expects its

input to come from standard input. The results of the translation are written to stan-

dard output, leaving the original file untouched. Showing a more practical example,

recall the pipeline that you used to extract the usernames and home directories of

everyone on the system:

$ cut -d: -f1,6 /etc/passwd

root: /

cron: /

bin:/

uucp:/usr/spool/uucp

asg:/

steve: /users/steve

other: /

$

You can translate the colons into tab characters to produce a more readable output

simply by tacking an appropriate tr command to the end of the pipeline:

$ cut -d: -f1,6 /etc/passwd | tr: ' ;

root /

cron /

bin /

uucp /usr/spcool/uucp

asg /

steve /users/steve

other /

$

Enclosed between the single quotes is a tab character (even though you can’t see it—

just take our word for it). It must be enclosed in quotes to keep it from the shell and

give tr a chance to see it.

The octal representation of a character can be given to tr in the format

\nnn

80 CHAPTER 4_ Tools of the Trade

where nnn is the octal value of the character. For example, the octal value of the tab

character is 11. If you are going to use this format, be sure to enclose the character in

quotes. The tr command

we 8 = Nall

translates all colons to tabs, just as in the preceding example. Table 4.3 lists charac-

ters that you'll often want to specify in octal format.

TABLE 4.3 Octal Values of Some ASCII Characters |

Character Octal Value

Bell il

Backspace 10

Tab 11

Newline 12

Linefeed 2

Formfeed 14

Carriage Return 15

Escape 33

In the following example, tr takes the output from date and translates all spaces

into newline characters. The net result is that each field of output from date appears

on a different line.

S date, itr) =< 12° Translate spaces to newlines

Sun

Jul

28

19:13:46

EDT

2002

$

tr can also take ranges of characters to translate. For example, the following shows
how to translate all lowercase letters in intro to their uppercase equivalents:

$ tr '[a-z]' '[A-Z]' < intro

THE UNIX OPERATING SYSTEM WAS PIONEERED BY KEN

THOMPSON AND DENNIS RITCHIE AT BELL LABORATORIES

IN THE LATE 1960S. ONE OF THE PRIMARY GOALS IN

THE DESIGN OF THE UNIX SYSTEM WAS TO CREATE AN

ENVIRONMENT THAT PROMOTED EFFICIENT PROGRAM

DEVELOPMENT.

$

tr 81

The character ranges [a-z] and [A-Z] are enclosed in quotes to keep the shell from
replacing the first range with all the files in your directory named a through z, and
the second range with all the files in your directory named A through Z. (What do
you think happens if no such files exist?)

By reversing the two arguments to tr, you can use it to translate all uppercase letters
to lowercase:

$ tr '[A-Z]' ‘[a-z]' < intro

the unix operating system was pioneered by ken

thompson and dennis ritchie at bell laboratories

in the late 1960s. one of the primary goals in

the design of the unix system was to create an

environment that promoted efficient program

development.

$

The -s Option

You can use the -s option to tr to “squeeze” out multiple occurrences of characters

in to-chars. In other words, if more than one consecutive occurrence of a character

specified in to-chars occurs after the translation is made, the characters will be

replaced by a single character.

For example, the following command translates all colons into tab characters, replac-

ing multiple tabs with single tabs:

Chae Siege ee NII

So one colon or several consecutive colons on the input will be replaced by a single

tab character on the output.

Suppose that you have a file called Lotsaspaces that has the contents as shown:

$ cat lotsaspaces

This is anexample of a

file that contains a lot

of blank spaces.

$

You can use tr to squeeze out the multiple spaces by using the -s option and by

specifying a single space character as the first and second argument:

$ tr -s ' " " " < lotsaspaces

This is an example of a

file that contains a lot

82 CHAPTER 4. Tools of the Trade

of blank spaces.

$

The options to tr in effect say “translate space characters to space characters, replac-

ing multiple spaces in the output by a single space.”

The -d Option

tr can also be used to delete single characters from a stream of input. The general

format of tr in this case is

tr -d from-chars

where any single character listed in from-chars will be deleted from standard input. In

the following example, tr is used to delete all spaces from the file intro:

$ tr -d ' ' < intro

TheUNIXoperatingSystemwaspioneeredbyKen

ThompsonandDennisRitchieatBellLaboratories

inthelate1960s.Oneoftheprimarygoalsin

thedesignoftheUNIXSystemwastocreatean

environmentthatpromotedefficientprogram

development.

$

Of course, you probably realize that you could have also used sed to achieve the

same results:

$ sed ‘s/ //g' intro

TheUNIXoperatingsystemwaspioneeredbyKen

ThompsonandDennisRitchieatBellLaboratories

inthelate1960s.Oneoftheprimarygoalsin

thedesignoftheUNIXsystemwastocreatean

environmentthatpromotedefficientprogram

development.

$

This is not atypical for the Unix system; there’s almost always more than one
approach to solving a particular problem. In the case we just saw, either approach is
satisfactory (that is, tr or sed); however, tr is probably a better choice in this case
because it is a much smaller program and likely to execute a bit faster.

Table 4.4 summarizes how to use tr for translating and deleting characters. Bear in
mind that tr works only on single characters. So if you need to translate anything

grep 83

longer than a single character (say all occurrences of unix to UNIX), you have to use a
different program such as sed instead.

TABLE 4.4 tr Examples

tr Command Description

th xe Translate all capital X’s to small x’s

LL OS eae Translate all open parens to open braces, all closed parens to closed

braces

ile Yielszal\ SNe Translate all lowercase letters to uppercase

tr '[A-Z]' '[N-ZA-M]' Translate uppercase letters A-M to N-Z, and N-Z to A-M, respectively

thee aes Translate all tabs (character in first pair of quotes) to spaces

pees ee” Translate multiple spaces to single spaces

teed 14: Delete all formfeed (octal 14) characters

tr -d '[Q0-9]' Delete all digits

grep
grep allows you to search one or more files for particular character patterns. The

general format of this command is

grep pattern files

Every line of each file that contains pattern is displayed at the terminal. If more than

one file is specified to grep, each line is also immediately preceded by the name of

the file, thus enabling you to identify the particular file that the pattern was

found in.

Let’s say that you want to find every occurrence of the word she11 in the file ed. cmd:

$ grep shel} ed.cmd

files, and is independent of the shell.

to the shell, just type in aq.

$

This output indicates that two lines in the file ed. cmd contain the word shell.

If the pattern does not exist in the specified file(s), the grep command simply

displays nothing:

$ grep cracker ed.cmd

$

84 CHAPTER 4. Tools of the Trade

You saw in the section on sed how you could print all lines containing the string

UNIX from the file intro with the command

sed -n '/UNIX/p' intro

But you could also use the following grep command to achieve the same result:

grep UNIX intro

Recall the phonebook file from before:

$ cat phone_book

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Jeff Goldberg 201-555-3378

Liz Stachiw 212-555-2298

Susail Goldberg 201-555-7776

Tony Iannino 973-555-1295

$

When you need to look up a particular phone number, the grep command comes in

handy:

$ grep Susan phone_book

Susan Goldberg 201-555-7776

$

The grep command is useful when you have a lot of files and you want to find out

which ones contain certain words or phrases. The following example shows how the

grep command can be used to search for the word shell in all files in the current

directory:

$ grep shell *

cmdfiles:shell that enables sophisticated

ed.cmd:files, and is independent of the shell.

ed.cmd:to the shell, just type in a q.

grep.cmd:occurrence of the word shell:

grep.cmd:$ grep shell *

grep.cmd:every use of the word shell.

$

As noted, when more than one file is specified to grep, each output line is preceded
by the name of the file containing that line.

grep 85

It’s generally a good idea to enclose your grep pattern inside a pair of single quotes to
“protect” it from the shell. For instance, if you want to find all the lines containing
asterisks inside the file stars, typing

grep * stars

does not work as expected because the shell sees the asterisk and automatically
substitutes the names of all the files in your current directory!

$ Is

circles

polka.dots

squares

stars

stripes

$ grep * stars

$

In this case, the shell took the asterisk and substituted the list of files in your current

directory. Then it started execution of grep, which took the first argument (circles)

and tried to find it in the files specified by the remaining arguments, as shown in

Figure 4.1.

FIGURE 4.1. grep * stars.

Enclosing the asterisk in quotes, however, removes its special meaning from the

shell:

$ grep '*' stars

The asterisk (*) is a special character that

KKKKKKKKKEEK

5 * 4 = 20

$

The quotes told the shell to leave the enclosed characters alone. It then started

execution of grep, passing it the two arguments * (without the surrounding quotes;

the shell removes them in the process) and stars (see Figure 4.2).

86 CHAPTER 4. Tools of the Trade

FIGURE 4.2. grep '*' stars.

There are characters other than * that otherwise have a special meaning and must be

quoted when used in a pattern. The whole topic of how quotes are handled by the

shell is fascinating; an entire chapter—Chapter 6, “Can I Quote You on That?”—is

devoted to it.

grep takes its input from standard input if no filename is specified. So you can use

grep on the other side of a pipe to scan through the output of a command for some-

thing. For example, suppose that you want to find out whether the user jim is

iogged in. You can use grep to search through who’s output:

$ whe | grep jim

jim tty16 Feb 20 10:25

$

Note that by not specifying a file to search, grep automatically scans its standard

input. Naturally, if the user jim were not logged in, you simply would get back a new

prompt because grep would not find jim in who’s output:

$ who | grep jim

$

Regular Expressions and grep

Let’s take another look at the intro file:

$ cat intro

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

$

grep allows you to specify your pattern using regular expressions as in ed. Given this
information, it means that you can specify the pattern

[tT]he

to have grep search for either a lower- or uppercase T followed by the characters he.

grep

So here’s how to grep out all the lines containing the characters the or The:

$ grep '[tT]he' intro

The UNIX operating system was pioneered by Ken

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

$

The -i option to grep indicates that upper- and lowercase letters are not to be distin-

guished in the matching process. That is, the command

grep -1 ‘the' intro

tells grep to ignore case when matching the pattern against the lines in intro.

Therefore, lines containing the or The will be printed, as will lines containing THE,

THe, tHE, and so on.

Table 4.5 shows other types of regular expressions that you can specify to grep and

the types of patterns they’ll match.

TABLE 4.5 Some grep Examples

Command Prints

grep ‘[A-Z]' list Lines from list containing a capital letter

grep '[0-9]' data Lines from data containing a number

grep '[A-Z]...[@-9]' list Lines from list containing five-character patterns that start with

a capital letter and end with a digit

grep '\.pic$' filelist Lines from filelist that end in .pic

The -v Option

Sometimes you’re interested not in finding the lines that contain a specified pattern,

but those that don’t. To do this with grep is simple: You use the -v option. In the

next example, grep is used to find all the lines in intro that don’t contain the char-

acters UNIX.

$ grep -v 'UNIX' intro Print all lines that don’t contain UNIX

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

environment that promoted efficient program

development.

$

87

88 CHAPTER 4 Tools of the Trade

The -1 Option

At times, you may not want to see the actual lines that match a pattern but may be

interested in knowing only the names of the files that contain the pattern. For

example, suppose that you have a set of C programs in your current directory (these

filenames end with the characters .c), and you want to know which files use a vari-

able called Move_history. The following example shows one way of finding the

answer:

$ grep ‘Move history' *.c Find Move_history in all C source files

exec.c:MOVE Move _history[200] = {0};

exec.c cpymove(&Move_history[Number_half_moves -1],

exec.c: undo_move(&Move_history[Number_half_moves-1],;

exec.c: cpymove(&last_move,&Move_history[Number_half_moves-1]);

exec.c: convert_move(&Move_history[Number_half_moves-1]),

exec.c convert_move(&Move_history[i-1]),

exec.c: convert_move(&Move_ history[Number_half_moves-1]),

makemove.c: IMPORT MOVE Move_history[];

makemove.c: if (Move_history[j].from != BOOK (i,j,from) OR

makemove.c: Move_history[j] .to != BOOK (i,j,to))

testch.c:GLOBAL MOVE Move _history[100] = {0};

teStChic: Move_history[Number_half_moves-1].from = move.from;

Gest Chace: Move_history[Number_half_moves-1].to = move.to;

$

Sifting through the preceding output, you discover that three files—exec.c,

makemove.c, and testch.c—use the variable.

The -1 option to grep gives you just a list of files that contain the specified pattern,

not the matching lines from the files:

$ grep -1 'Move_history' *.c List the files that contain Move_history

exec.c

makemove.c

testen.c¢

$

Because grep conveniently lists the files one per line, you can pipe the output from
grep -1 into we to count the number of files that contain a particular pattern:

$ grep -1 'Move_history' *.c | we -1

3

sort 89

So the preceding says that precisely three C program files reference the variable
Move_history. (What are you counting if you use grep without the -1 option?)

The -n Option

If the -n option is used with grep, each line from the file that matches the specified

pattern is preceded by its relative line number in the file. From previous examples,

you saw that the file testch.c was one of the three files that referenced the variable

Move_history; the following shows how you can piiipoint the precise lines in the file

that reference the variable:

$ grep -n ‘Move _history' testch.c Precede matches with line numbers

13:GLOBAL MOVE Move history[100] = {0};

WOE Move_history[Number_half_moves-1].from = move.from;

198: Move_history[Number_half_moves-1].to = move.to;

$

As you can see, Move_history is used on lines 13, 197, and 198 in testch.c.

SOFT

You're familiar with the basic operation of sort:

$ sort names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

By default, sort takes each line of the specified input file and sorts it into ascending

order. Special characters are sorted according to the internal encoding of the charac-

ters. For example, on a machine that encodes characters in ASCII, the space character

is represented internally as the number 32, and the double quote as the number 34.

This means that the former would be sorted before the latter. Note that the sorting

order is implementation dependent, so although you are generally assured that sort

will perform as expected on alphabetic input, the ordering of numbers, punctuation,

and special characters is not always guaranteed. We will assume we're working with

the ASCII character set in all our examples here.

90 CHAPTER 4. Tools of the Trade

sort has many options that provide more flexibility in performing your sort. We'll

just describe a few of the options here.

The -u Option

The -u option tells sort to eliminate duplicate lines from the output.

$ sort -u names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

$

Here you see that the duplicate line that contained Tony was eliminated from the

output.

The -r Option

Use the -r option to reverse the order of the sort:

$ sort -r names Reverse sort

Tony

Tony

Ralph

Lucy

Fred

Emanuel

Charlie

$

The -o Option

By default, sort writes the sorted data to standard output. To have it go into a file,
you can use output redirection:

$ sort names > sorted_names

$

Alternatively, you can use the -o option to specify the output file. Simply list the
name of the output file right after the -o:

$ sort names -o sorted_names

$

sort 91

This sorts names and writes the results to sorted_names.

Frequently, you want to sort the lines in a file and have the sorted data replace the
original. Typing

$ sort names > names

$

won't work—it ends up wiping out the names file. However, with the -o option, it is

okay to specify the same name for the output file as the input file:

$ sort names -o names

$ cat names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

The -n Option

Suppose that you have a file containing pairs of (x, y) data points as shown:

$ cat data

5 27
2 12
3 33
23 2
5 11
15 6
14 9
$

Suppose that you want to feed this data into a plotting program called plotdata, but

that the program requires that the incoming data pairs be sorted in increasing value

of x (the first value on each line).

The -n option to sort specifies that the first field on the line is to be considered a

number, and the data is to be sorted arithmetically. Compare the output of sort used

first without the -n option and then with it:

92 CHAPTER 4. Tools of the Trade

$ sort data

-5 11

14 -9

15 6

2 ili

23 2

3 33

5 27

$ sort -n data Sort arithmetically

5 11

2 2

3 33

5 27

14 9

15 6

23 2

$

Skipping Fields

If you had to sort your data file by the y value—that is, the second number in each

line—you could tell sort to skip past the first number on the line by using the

option

+1n

instead of -n. The +1 says to skip the first field. Similarly, +5n would mean to skip the

first five fields on each line and then sort the data numerically. Fields are delimited

by space or tab characters by default. If a different delimiter is to be used, the -t

option must be used.

$ sort +in data Skip the first field in the sort

14 -9

23 2

15 6

5 11

2 a2

5 27

3 33

$

The -t Option

As mentioned, if you skip over fields, sort assumes that the fields being skipped are
delimited by space or tab characters. The -t option says otherwise. In this case, the
character that follows the -t is taken as the delimiter character.

sort

Look at our sample password file again:

$ cat /etc/passwd

root:*:0:0:The super User:/:/usr/bin/ksh

steve: *:203:100::/users/steve:/usr/bin/ksh

bin:*:3:3:The owner of system files:/:

cron:*:1:1:Cron Daemon for periodic tasks:/:

george: *:75:75::/users/george:/usr/lib/rsh

pat:*:300:300::/users/pat: /usr/bin/ksh

uucp:*:5:5::/usr/spool/uucppublic: /usr/lib/uucp/uucico

asg:*:6:6:The Owner of Assignable Devices:/:

sysinfo:*:10:10:Access to System Information: /:/usr/bin/sh

mail:*:301:301::/usr/mail:

$

If you wanted to sort this file by username (the first field on each line), you could

just issue the command

sort /etc/passwd

To sort the file instead by the third colon-delimited field (which contains what is

known as your user id), you would want an arithmetic sort, skipping the first two

fields (+2n), specifying the colon character as the field delimiter (-t:):

$ sort +2n -t: /etc/passwd Sort by user id

root:*:0:@:The Super User:/:/usr/bin/ksh

cron:*:1:1:Cron Daemon for periodic tasks:/:

bin:*:3:3:The owner of system files:/:

uucp:*:5:5::/usr/spool/uucppublic: /usr/1ib/uucp/uucico

asg:*:6:6:The Owner of Assignable Devices:/:

sysinfo:*:10:10:Access to System Information: /:/usr/bin/sh

george:*:75:75::/users/george:/usr/lib/rsh

steve: *:203,:100::/users/steve: /usr/bin/ksh

pat:*:300:300::/users/pat:/usr/bin/ksh

mail:*:301:301::/usr/mail:

$

Here we’ve emboldened the third field of each line so that you can easily verify that

the file was sorted correctly by user id.

Other Options

Other options to sort enable you to skip characters within a field, specify the field

to end the sort on, merge sorted input files, and sort in “dictionary order” (only

93

94 CHAPTER 4. Tools of the Trade

letters, numbers, and spaces are used for the comparison). For more details on these

options, look under sort in your Unix User’s Manual.

uniq

The uniq command is useful when you need to find duplicate lines in a file. The

basic format of the command is

uniq in_file out_file

In this format, uniq copies in_file to out_file, removing any duplicate lines in the

process. uniq’s definition of duplicated lines are consecutive-occurring lines that match

exactly.

If out_file is not specified, the results will be written to standard output. If in_file is

also not specified, unig acts as a filter and reads its input from standard input.

Here are some examples to see how unig works. Suppose that you have a file called

names with contents as shown:

$ cat names

Charlie

Tony

Emanuel

Lucy

Ralph

Fred

Tony

$

You can see that the name Tony appears twice in the file. You can use unig to

“remove” such duplicate entries:

$ uniq names Print unique lines

Charlie

Tony

Emanuel

Lucy

Ralph

Fred

Tony

$

Tony still appears twice in the preceding output because the multiple occurrences are
not consecutive in the file, and thus unigq’s definition of duplicate is not satisfied. To

unig

remedy this situation, sort is often used to get the duplicate lines adjacent to each
other. The result of the sort is then run through uniaq:

$ sort names | unig

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

$

So the sort moves the two Tony lines together, and then unig filters out the dupli-

cate line (recall that sort with the -u option performs precisely this function).

The -d Option

Frequently, you'll be interested in finding the duplicate entries in a file. The -d

option to uniq should be used for such purposes: It tells uniq to write only the dupli-

cated lines to out_file (or standard output). Such lines are written just once, no

matter how many consecutive occurrences there are.

$ sort names | unig -d List duplicate lines

Tony

$

As a more practical example, let’s return to our /etc/passwd file. This file contains

information about each user on the system. It’s conceivable that over the course of

adding and removing users from this file that perhaps the same username has been

inadvertently entered more than once. You can easily find such duplicate entries by

first sorting /etc/passwd and piping the results into uniq -d as done previously:

$ sort /etc/passwd | unig -d Find duplicate entries in /etc/passwd
‘

So there are no duplicate entries. But we think that you really want to find duplicate

entries for the same username. This means that you want to just look at the first

field from each line of /etc/passwd (recall that the leading characters of each line of

/etc/passwd up to the colon are the username). This can’t be done directly through

an option to unig, but can be accomplished indirectly by using cut to extract the

username from each line of the password file before sending it to unig.

$ sort /etc/passwd | cut -f1 -d: | uniq -d Find duplicates

cem

harry

$

95

96 CHAPTER 4. Tools of the Trade

So there are multiple entries in /etc/passwd for cem and harry. If you wanted more

information on the particular entries, you could grep them from /etc/passwd:

$ grep -n ‘cem' /etc/passwd

20:cem:*:91:91::/users/cem:

166:cem:*:91:91::/users/cem:

$ grep -n ‘harry' /etc/passwd

29:harry:*:103:103:Harry Johnson: /users/harry:

79:harry:*:90:90:Harry Johnson: /users/harry:

$

The -n option was used to find out where the duplicate entries occur. In the case of

cem, there are two entries on lines 20 and 166; in harry’s case, the two entries are on

lines 29 and 79.

If you now want to remove the second cem entry, you could use sed:

$ sed '166d' /etc/passwd > /tmp/passwd Remove duplicate

$ mv /tmp/passwd /etc/passwd

mv: /etc/passwd: 444 modey

mv: cannot unlink /etc/passwd

$

Naturally, /etc/passwd is one of the most important files on a Unix system. As such,

only the superuser is allowed to write to the file. That’s why the mv command failed.

Other Options

The -c option to uniq behaves like unig with no options (that is, duplicate lines are

removed), except that each output line gets preceded by a count of the number of

times the line occurred in the input.

$ sort names | uniq -c Count line occurrences

1 Charlie

1 Emanuel

1 Fred

1 Lucy

1 Ralph

2 Tony

Two other options that won’t be described enable you to tell unig to ignore leading
characters/fields on a line. For more information, consult your Unix User’s Manual.

We would be remiss if we neglected to mention the programs awk and perl that can
be useful when writing shell programs. However, to do justice to these programs

Exercises

requires more space than we can provide in this text. We'll refer you to the docu-

ment Awk—A Pattern Scanning and Processing Language, by Aho, et al., in the Unix

Programmer’s Manual, Volume II for a description of awk. Kernighan and Pike’s The

Unix Programming Environment (Prentice Hall, 1984) contains a detailed discussion of

awk. Learning Perl and Programming Perl, both from O'Reilly and Associates, present a

good tutorial and reference on the language, respectively.

Exercises

1. What will be matched by the following regular expressions?

xx [0-9] \{3\}

XX* [@-9]\{3,5\}

XA\ tS NG} [@-9]\{1,3\}, [0-9]\{3\}

x\{5,\} mi\evers

x\{10\} [A-Za-z_][A-Za-z_0-9]*

[0-9] \({[A-Za-z0-9]\{1,\}\)\1

[Q-9]* “Begin$

[@-9][®-9][0-9]} A\ (Calo Wales

2. What will be the effect of the following commands?

who | grep ‘mary'

who | grep ‘*mary'

dreps =] (Udlinix! ich] *

ls -1 | sort +4n

sed '/*$/d' text > text.out

sed 's/\([Uu]nix\)/\1(TM)/g' text > text.out

date | cut -c12-16

date | cut -c5-11,25- | sed ‘s/\([@-9]\{1,2\}\)/\1,/'

3. Write the commands to

a. Find all logged-in users with usernames of at least four characters.

b. Find all users on your system whose user ids are greater than 99.

c. Find the number of users on your system whose user ids are greater

than 99.

d. List all the files in your directory in decreasing order of file size.

cae

iv,

iveanhy,& od wa Ami

~

0S: elect epen) ctod wee, crstacss ponds
MPA OK, ME Iw ACem ayengAA [sews
ee PANT itty styitp jira thes Do in ofieraels wed (habe?
"aes ah Me bh ha TY Ate (ea?] apt Min wt) (erage

4 piel h a eh Gient | rien wt
te vine “ee ipa +i _evial otha oy a ncn torah

‘~-

ee ee
ve j - 6 j yp paay® don tre wt

.)

> % - ; eve ata wr a eto bee a

— Lee) srt df 8 cient

| aie oe
ae . - | “er Pe ual ant “=P Assim : (ie :

ee ~—hod (99 78) eRe ek Ori

— —a ; a
; ~ ae ‘ee “et eS

ae Sea PrAacY
cn ; beter > el es

ah aehce
oo : .

~~ —<
I

|
. ati, on

ap = -
ner iad ‘ nie i

am “dis | wenn pain:
ee acts ty ie bs

whe dm G oF
Lo Ce hea eye, op rpao@ eis Ay) tae 7 pairs

: ‘etme wt ete
pre urent cay) tegen? Ci erred my ey <a rede 7
hie =a (oo Oat eNee® ts raen

Dae ie tins i
he CW kd 190 Ratiy Greaey +i ; iF aie. ‘Dat. z a.

a eta pear \ dy

| Brey » aoe iy) ae
‘ine An be. cabs welensvelt ms ‘i s . {

n
; -

a

; milient ¥ Z

5 | IN THIS CHAPTER

And Away We
 Go | * Command Files

e Variables

¢ Built-in Integer Arithmetic

Based on the discussions in Chapter 3, “What Is the | ¢ Exercises
Shell?,” you should realize that whenever you type some-

thing like

who | we -l

that you are actually programming in the shell! That’s

because the shell is interpreting the command line, recog-

nizing the pipe symbol, connecting the output of the first

command to the input of the second, and initiating execu-

tion of both commands.

In this chapter, you’ll learn how to write your own

commands and how to use shell variables.

Command Files

A shell program can be typed directly at the terminal, as in

$ who | we -l

or it can be first typed into a file and then the file can be

executed by the shell. For example, suppose that you need

to find out the number of logged-in users several times

throughout the day. It’s not unreasonable to type in the

preceding pipeline each time you want the information,

but for the sake of example, let’s type this pipeline into a

file. We’ll call the file nu (for number of users),.and its

contents will be just the pipeline shown previously:

$ cat nu

who | we -l

$

100 CHAPTER 5 And Away We Go

To execute the commands contained inside the file nu, all you now have to do is

type nu as the command name to the shell:'

$ nu

sh: nu: cannot execute

$

Oops! We forgot to mention one thing. Before you can execute a program this way,

you must change the file’s permissions and make it executable. This is done with the

change mode command chmod. To add execute permission to the file nu, you simply

type

chmod +x file(s)

The +x says make the file(s) that follow executable. The shell requires that a file be

both readable and executable by you before you can execute it.

$ 1s -1 nu

-PW-Pw-P- - 1 steve steve 12 Jul 10 11:42 nu

$ chmod +x nu Make it executable

$ 1s -1 nu

- PWXPWX? - xX 1 steve steve 12 Jul 10 11:42 nu

$

Now that you’ve made it executable, try it again:

$ nu

This time it worked.

You can put any commands at all inside a file, make the file executable, and then
execute its contents simply by typing its name to the shell. It’s that simple and that
powerful.

The standard shell mechanisms such as I/O redirection and pipes can be used on
your own programs as well:

$ nu > tally

$ cat tally

8

'Note that the error produced here varies between different shells.

Command Files

Suppose that you’re working on a proposal called sys.caps and that the following
command sequence is needed every time you want to print a new copy of the
proposal:

tbl sys.caps | nroff -mm -Tlp | lp

Once again, you can save yourself some typing by simply placing this command

sequence into a file—let’s call it run—making it executable, and then just typing the

name run whenever you want to get a new copy of the proposal:

$ cat run

tol sys.caps | nroff -mm -Tip | lp

$ chmod +x run

$ run

request id is laser1-15 (standard input)

$

(The request id message is issued by the 1p command.) For the next example,

suppose that you want to write a shell program called stats that prints the date and

time, the number of users logged in, and your current working directory. You know

that the three command sequences you need to use to get this information are date,

who | we -1, and pwd:

$ cat stats

date

who | we -l

pwd

$ chmod +x stats

$ stats Try it out

Wed Jul 10 11:55:50 EDT 2002

13

/users/steve/documents/proposals

$

You can add some echo commands to stats to make the output a bit more informa-

tive:

$ cat stats

echo The current date and time is:

date

echo

echo The number of users on the system is:

who | we -1

echo

101

102 CHAPTER 5 And Away We Go

echo Your current working directory is:

pwd

$ stats Execute it

The current date and time is:

Wed Jul 10 12:00:27 EDT 2002

The number of users on the system is:

13

Your current working directory is:

/users/steve/documents/proposals

$

Recall that echo without any arguments simply skips a line in the display. Shortly,

you'll see how to have the message and the data displayed on the same line, like

this:

The current date and time is: Wed Jul 10 12:00:27 EDT 2002

Comments

The shell programming language would not be complete without a comment state-

ment. A comment is a way for you to insert remarks or comments inside the

program that otherwise have no effect on its execution.

Whenever the shell encounters the special character # at the start of a word, it takes

whatever characters follow the # to the end of the line as comments and simply

ignores them. ? If the # starts the line, the entire line is treated as a comment by the

shell. Here are examples of valid comments:

Here is an entire commentary line

who | we -1 # count the number of users

Test to see if the correct arguments were supplied

a

Comments are useful for documenting commands or sequences of commands whose
purposes may not be obvious or are sufficiently complex so that if you were to look

*Note that the # may be your default erase character. If so, to enter the.character into an editor such as ed
or vi, you'll have to “escape” it by preceding it with a \. Alternatively, you can change your erase character
to something else with the stty command.

Variables 103

at the program again in a week you might forget why they’re there or what they do.
Judicious use of comments can help make shell programs easier to debug and to
maintain—both by you and by someone else who may have to support your

programs.

Let’s go back to the stats program and insert some comments:

$ cat stats

stats -- prints: date, number of users logged on,

e and current working directory

echo The current date and time is:

date

echo

echo The number of users on the system is:

who | we -l

echo

echo Your current working directory is:

pwd

$

The extra blank lines cost little in terms of program space yet add much in terms of

program readability. They’re simply ignored by the shell.

Variables

Like virtually all programming languages, the shell allows you to store values into

variables. A shell variable begins with an alphabetic or underscore (_) character and is

followed by.zero or more alphanumeric or underscore characters.

To store a value inside a shell variable, you simply write the name of the variable,

followed immediately by the equals sign =, followed immediately by the value you

want to store in the variable:

variable=value

For example, to assign the value 1 to the shell variable count, you simply write

count=1

104 CHAPTER 5 And Away We Go

and to assign the value /users/steve/bin to the shell variable my_bin, you simply

write

my_bin=/users/steve/bin

A few important points here. First, spaces are not permitted on either side of the

equals sign. Keep that in mind, especially if you’re in the good programming habit

of inserting spaces around operators. In the shell language, you can’t put those

spaces in.

Second, unlike most other programming languages, the shell has no concept whatso-

ever of data types. Whenever you assign a value to a shell variable, no matter what it

is, the shell simply interprets that value as a string of characters. So when you

assigned 1 to the variable count previously, the shell simply stored the character 1

inside the variable count, making no observation whatsoever that an integer value

was being stored in the variable.

If you’re used to programming in a language such as C or Pascal, where all variables

must be declared, you’re in for another readjustment. Because the shell has no

concept of data types, variables are not declared before they’re used; they’re simply

assigned values when you want to use them.

As you'll see later in this chapter, the shell does support integer operations on shell

variables that contain strings that are also valid numbers through special built-in

operations.

Because the shell is an interpretive language, you can assign values to variables

directly at your terminal:

$ count=1 Assign character 1 to count

$ my_bin=/users/steve/bin Assign /users/steve/bin to my_bin

$

So now that you know how to assign values to variables, what good is it? Glad you
asked.

Displaying the Values of Variables

The echo command is used to display the value stored inside a shell variable. To do
this, you simply write

echo $variable

The $ character is a special character to the shell. If a valid variable name follows the
$, the shell takes this as an indication that the value stored inside that variable is to
be substituted at that point. So, when you type

echo $count

Variables

the shell replaces $count with the value stored there; then it executes the echo
command:

$ echo $count
{

$

Remember, the shell performs variable substitution before it executes the command

(see Figure 5.1).

FIGURE 5.1 echo $count.

You can have the value of more than one variable substituted at a time:

$ echo $my_bin

/users/steve/bin

$ echo $my_bin $count

/users/steve/bin 1

$

In the second example, the shell substitutes the value of my_bin and count and then

executes the echo command (see Figure 5.2).

/users/steve/bin

FIGURE 5.2—echo $my_bin $count.

The values of variables can be used anywhere on the command line, as the next

examples illustrate:

$ 1s $my_bin

mon

nu

testx

$ pwd Where are we?

/users/steve/documents/memos

$ cd $my_bin Change to my bin directory

$ pwd

/users/steve/bin

$ number=99

105

106 CHAPTER 5 And Away We Go

$ echo There are $number bottles of beer on the wall

There are 99 bottles of beer on the wall

$

Here are some more examples:

$ command=sort

$ $command names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$ command=wc

$ option=-1

$ file=names

$ $command $option $file

7 names

So you see, even the name of a command can be stored inside a variable. Because the

shell performs its substitution before determining the name of the program to

execute and its arguments, it scans the line

$command $option $file

and turns it into

we -l names

Then it executes wc, passing the two arguments -1 and names.

Variables can even be assigned to other variables, as shown in the next example:

$ value1=10

$ value2=value1

$ echo $value2

value Didn't do that right
$ value2=$valuet

$ echo $value2

10 That’s better
$

Variables 107

Remember that a dollar sign must always be placed before the variable name when-
ever you want to use the value stored in that variable.

The Null Value

What do you think happens when you try to display the value of a variable that has

no value assigned to it? Try it and see:

$ echo $nosuch Never assigned it a value

You don’t get an error message. Did the echo command display anything at all? Let’s

see whether we can more precisely determine that:

$ echo :$nosuch: Surround its value with colons

So you see no characters were substituted by the shell for the value of nosuch.

A variable that contains no value is said to contain the null value. It is the default

case for variables that you never store values in. When the shell performs its variable

substitution, any values that are null are completely removed from the command line,

without a trace:

$ we $nosuch -1 $nosuch $nosuch names

7 names

The shell scans the command line substituting the null value for the variable nosuch.

After the scan is completed, the line effectively looks like this:

we -l names

which explains why it works.

Sometimes you may want to explicitly set a variable null in a program. This can be

done by simply assigning no value to the variable, as in

dataflag=

Alternatively, you can list two adjacent pairs of quotes after the =. So

dataflag=""

108 CHAPTER 5 And Away We Go

and

dataflag=''

both have the same effect of assigning the null value to dataflag. Be advised that

the assignment

dataflag=" "

is not equivalent to the three previous ones because it assigns a single space character

to dataflag; that’s different from assigning no characters to it.

Filename Substitution and Variables

Here’s a puzzle for you: If you type

x=*

will the shell store the character * into the variable x, or will it store the names of all

the files in your current directory into the variable x? Let’s try it out and see:

$ 1s What files do we have?

addresses

intro

lotsaspaces

names

nu

numbers

phonebook

stat

$ x=*

$ echo $x

addresses intro lotsaspaces names nu numbers phonebook stat

$

There’s a lot to be learned from this small example. Was the list of files stored into
the variable x when

x=*

was executed, or did the shell do the substitution when

echo $x

was executed?

Variables 109

The answer is that the shell does not perform filename substitution when assigning

values to variables. Therefore,

ee

assigns the single character * to x. This means that the shell did the filename substi-

tution when executing the echo command. In fact, the precise sequence of steps that

occurred when

echo $x

was executed is as follows:

1. The shell scanned the line, substituting * as the value of x.

2. The shell rescanned the line, encountered the *, and then substituted the

names of all files in the current directory.

3. The shell initiated execution of echo, passing it the file list as arguments (see

Figure 5.3).

ane
addresses

lotsaspaces

ex ah ccneac| an

arguments

ae

stat

FIGURE 5.3 echo $x.

This order of evaluation is important. Remember, first the shell does variable substi-

tution, then does filename substitution, and then parses the line into arguments.

CHAPTER 5 And Away We Go

The ${variable} Construct

Suppose that you have the name of a file stored in the variable filename. If you

wanted to rename that file so that the new name was the same as the old, except

with an X added to the end, your first impulse would be to type

mv $filename $filenamex

When the shell scans this command line, it substitutes the value of the variable

filename and also the value of the variable filenamex. The shell thinks filenamex is

the full name of the variable because it’s composed entirely of valid variable name

characters. To avoid this problem, you can delimit the end of the variable name by

enclosing the entire name (but not the leading dollar sign) in a pair of curly braces,

as in

${filename}X

This removes the ambiguity, and the mv command then works as desired:

mv $filename ${filename}X

Remember that the braces are necessary only if the last character of the variable

name is followed by an alphanumeric character or an underscore.

Built-in Integer Arithmetic

The POSIX standard shell provides a mechanism for performing integer arithmetic

on shell variables called arithmetic expansion. Note that some older shells do not

support this feature.

The format for arithmetic expansion is

$((expression))

where expression is an arithmetic expression using shell variables and operators. Valid
shell variables are those that contain numeric values (leading and trailing whitespace
is allowed). Valid operators are taken from the C programming language and are
listed in Appendix A, “Shell Summary.”

The result of computing expression is substituted on the command line. For example,

echo $((it+1))

adds one to the value in the shell variable i and prints the result. Notice that the
variable i doesn’t have to be preceded by a dollar sign. That’s because the shell
knows that the only valid items that can appear in arithmetic expansions are

Built-in Integer Arithmetic a

operators, numbers, and variables. If the variable is not defined or contains a NULL
string, its value is assumed to be zero. So if we have not assigned any value yet to the
variable a, we can still use it in an integer expression:

$ echo $a Variable a not set

$

$ echo $((a = a + 1)) Equivalent to a = 0 + 1
1

$ echo $a

1 Now a contains 1

$

Note that assignment is a valid operator, and the value of the assignment is substi-

tuted in the second echo command in the preceding example.

Parentheses may be used freely inside expressions to force grouping, as in

echo $((i = (i + 10) * j))

If you want to perform an assignment without echo or some other command, you

can move the assignment before the arithmetic expansion.

So to multiply the variable i by 5 and assign the result back to i you can write

i=$((i * 5))

Note that spaces are optional inside the double parentheses, but are not allowed

when the assignment is outside them.

Finally, to test to see whether i is greater than or equal to 0 and less than or equal to

100, you can write

result=$((i >= @ && i <= 100))

which assigns result 1 if the expression is true and 0 if it’s false:

$ i=$((100 * 200 / 10))
$ j=$((i < 1000)) If i is < 1000, set j = 0; otherwise 1

$ echo $i $j

2000 0 i is 2000, so j was set to O

$

That concludes our introduction to writing commands and using variables. The next

chapter goes into detail on the quoting mechanisms in the shell.

WN CHAPTER 5 And Away We Go

Exercises

1. Which of the following are valid variable names?

XXXXXX =

12345 HOMEDIR

file.name _date

file name x0-9

filet Slimit

2. Suppose that your HOME directory is /users/steve and that you have subdirec-

tories as shown in the following figure:

pat => steve ruth

documents programs

memos proposals letters wb collect mon

Sele alo a
plan dact sys.A new.hire no.JSK AMG.reply

Assuming that you just logged in to the system and executed the following

commands:

$ docs=/users/steve/documents

$ let=$docs/letters

$ prop=$docs/proposals

$

write the commands in terms of these variables to

a. List the contents of the documents directory.

b. Copy all files from the letters directory to the proposals directory.

c. Move all files whose names contain a capital letter from the letters
directory to the current directory.

d. Count the number of files in the memos directory.

Exercises 113

What would be the effect of the following commands?

a. ls $let/..

b. cat $prop/sys.A >> $let/no.JSK

c. echo $let/*

d. cp $let/no.JSK $progs

e. cd $prop

3. Write a program called nf to display the number of files in your current direc-

tory. Type in the program and test it out.

4. Write a program called whos to display a sorted list of the logged-in users. Just

display the usernames and no other information. Type in the program and test

it out.

ad |
— Pane @d ewe att iniediel ims

~ oe ioe et
ir (OEE, © é-2361,.9r 9 iad.

Oy
7 7 : _ > “— ‘ert weae 6

~ =~ _

ie oul Ma. 081 0908 Ce

“<5 el Ge @eees
a =

re am aon ee cull i Eley stop ear 4
Bs 1 PCE) OBE 6 om ond a -

- < Oem [= ta ance

60 a > /emeno8 ccm Slips Cugging 6 ee 7
at ky > Sr-e1. i« CN hie. ae Of Elie -

. Lae 7
-

~
_

>

7

a ¥

6 | IN THIS CHAPTER

Can I Quote | e The Single Quote

| e The Double Quote

YOU on That? | ¢ The Backslash

| e Command Substitution

46 e Exercises
his chapter teaches you about a unique feature of the

shell programming language: the way it interprets quote

characters. Basically, the shell recognizes four different

types of quote characters:

¢ The single quote character '

¢ The double quote character "

¢ The backslash character \

e The back quote character *

The first two and the last characters in the preceding list

must occur in pairs, whereas the backslash character is

unary in nature. Each of these quotes has a distinct

meaning to the shell. We’ll cover them in separate sections

of this chapter.

The Single Quote
There are several reasons that you might need to use

quotes in the shell. One of these is to keep characters

otherwise separated by whitespace characters together.

Let’s look at an example. Here’s a file called phonebook that

contains names and phone numbers:

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

Tony Iannino 973-555-1295

$

116 CHAPTER 6 Can | Quote You on That?

To look up someone in our phonebook file—which has been kept small here for the

sake of example—you use grep:

$ grep Alice phonebook

Alice Chebba 973-555-2015

$

Look what happens when you look up Susan:

$ grep Susan phonebook

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

$

There are two lines that contain Susan, thus explaining the two lines of output. One

way to overcome this problem would be to further qualify the name. For example,

you could specify the last name as well:

$ grep Susan Goldberg phonebook

grep: can't open Goldberg

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

$

Recalling that the shell uses one or more whitespace characters to separate the argu-

ments on the line, the preceding command line results in grep being passed three

arguments: Susan, Goldberg, and phonebook (see Figure 6.1).

Goldberg

phonebook

FIGURE 6.1 grep Susan Goldberg phonebook.

When grep is executed, it takes the first argument as the pattern and the remaining
arguments as the names of the files to search for the pattern. In this case, grep
thinks it’s supposed to look for Susan in the files Goldberg and phonebook. So it tries
to open the file Goldberg, can’t find it, and issues the error message:

grep: can't open Goldberg

Then it goes to the next file, phonebook, opens it, searches for the pattern Susan, and
prints the two matching lines. The problem boils down to trying to pass whitespace

The Single Quote 117

characters as arguments to programs. This can be done by enclosing the entire argu-
ment inside a pair of single quotes, as in

grep ‘Susan Goldberg' phonebook

When the shell sees the first single quote, it ignores any otherwise special characters
that follow until it sees the closing quote.

$ grep ‘Susan Goldberg’ phonebook

Susan Goldberg 201-555-7776

$

In this case, the shell encountered the first ', and ignored any special characters

until it found the closing '. So the space between Susan and Goldberg, which would

have normally delimited the two arguments, was ignored by the shell. The shell

therefore divided the command line into two arguments, the first Susan Goldberg

(which includes the space character) and the second phonebook. It then executed

grep, passing it these two arguments (see Figure 6.2).

Susan Goldberg

phonebook

FIGURE 6.2. grep ‘Susan Goldberg' phonebook.

grep then took the first argument, Susan Goldberg, and looked for it in the file

specified by the second argument, phonebook. Note that the shell removes the quotes

from the command line and does not pass them to the program.

No matter how many space characters are enclosed between quotes, they are

preserved by the shell.

$ echo one two three four

one two three. four

$ echo ‘one two three four'

one two three four

$

In the first case, the shell removes the extra whitespace characters from the line and

passes echo the four arguments one, two, three, and four (see Figure 6.3).

In the second case, the space characters are preserved, and the shell treats the entire

string of characters enclosed between the quotes as a single argument when execut-

ing echo (see Figure 6.4).

118 CHAPTER 6 Can! Quote You on That?

FIGURE 6.3 echo one two three four.

[oe J<--28222--
FIGURE 6.4 echo’ ‘one two three four'.

As we mentioned, all special characters are ignored by the shell if they appear inside

single quotes. That explains the output from the following:

$ file=/users/steve/bin/prog1

$ echo $file

/users/steve/bin/progl

$ echo '$file' $ not interpreted

$file

$ echo *

addresses intro lotsaspaces names nu numbers phonebook stat

$ echo '*'
*

$iechoul< > Lary desc a
Sep eeal Ve eae
$

Even the Enter key will be ignored by the shell if it’s enclosed in quotes:

$ echo ‘How are you today,

> John'

How are you today,

John

$

After typing the first line, the shell sees that the quote isn’t matched, so it waits for
you to type in the closing quote. As an indication that the shell is waiting for you to
finish typing in a command, it changes your prompt character from $ to >. This is
known as your secondary prompt character and is displayed by the shell whenever it’s
waiting for you to finish typing a command.

The Double Quote 119

Quotes are also needed when assigning values containing whitespace or special char-
acters to shell variables:

$ message='I must say, this sure is fun'

$ echo $message

I must say, this sure is fun

$ text='* means all files in the directory’

$ echo $text

names nu numbers phonebook stat means all files in the directory

$

The quotes are needed in the assignments made to the variables message and text

because of the embedded spaces. In the preceding exampie, you are reminded that

the shell still does filename substitution after variable name substitution, meaning

that the * is replaced by the names of all the files in the current directory before the

echo is executed. There is a way to overcome this annoyance, and it’s through the

use of double quotes.

The Double Quote

Double quotes work similarly to single quotes, except that they’re not as restrictive.

Whereas the single quotes tell the shell to ignore all enclosed characters, double

quotes say to ignore most. In particular, the following three characters are not

ignored inside double quotes:

¢ Dollar signs

¢ Back quotes

e Backslashes

The fact that dollar signs are not ignored means that variable name substitution is

done by the shell inside double quotes.

$ x=*

$ echo $x

addresses intro lotsaspaces names nu numbers phonebook stat

$ echo '$x'

$x

$ echo "$x"
*

$

Here you see the major differences between no quotes, single quotes, and double

quotes. In the first case, the shell sees the asterisk and substitutes all the filenames

120 CHAPTER 6 Can! Quote You on That?

from the current directory. In the second case, the shell leaves the characters

enclosed within the single quotes alone, which results in the display of $x. In the

final case, the double quotes indicate to the shell that variable name substitution is

still to be performed inside the quotes. So the shell substitutes * for $x. Because file-

name substitution is not done inside double quotes, * is then passed to echo as the

value to be displayed.

So if you want to have the value of a variable substituted, but don’t want the shell to

treat the substituted characters specially, you must enclose the variable inside double

quotes.

Here’s another example illustrating the difference between double quotes and no

quotes:

$ address="39 East 12th Street

> New York, N. Y. 10003"

$ echo $address

39 East 12th Street New York, N. Y. 10003

$ echo "$address"

39 East 12th Street

New York, N. Y. 10003

$

It makes no difference whether the value assigned to address is enclosed in single

quotes or double quotes. The shell displays the secondary command prompt in

either case to tell you it’s waiting for the corresponding closed quote.

After assigning the two-line address to address, the value of the variable is displayed

by echo. Notice that the address is displayed on a single line. The reason is the same

as what caused

echo one two three four

to be displayed as

one two three four

Recalling that the shell removes spaces, tabs, and newlines (that is, whitespace char-
acters) from the command line and then cuts it up into arguments, in the case of

echo $address

the shell simply removes the embedded newline character, treating it as it would a
space or tab: as an argument delimiter. Then it passes the nine arguments to echo to
be displayed. echo never gets a chance to see that newline; the shell gets to it first
(see Figure 6.5).

The Backslash 121

39

New

N.

Y.

10003

FIGURE 6.5 echo $address.

When the command

echo "$address"

is used instead, the shell substitutes the value of address as before, except that the

double quotes tell it to leave any embedded whitespace characters alone. So in this

case, the shell passes a single argument to echo—an argument that contains an

embedded newline. echo simply displays its single argument at the terminal; Figure

6.6 illustrates this. The newline character is depicted by the characters \n.

FIGURE 6.6 echo “$address".

Double quotes can be used to hide single quotes from the shell, and vice versa:

$ x="' Hello,' he said"

$ echo $x

'Hello,' he said

$ article=' "Keeping the Logins from Lagging," Bell Labs Record’

$ echo $article

"Keeping the Logins from Lagging," Beli Labs Record

$

The Backslash

Basically, the backslash is equivalent to placing single quotes around a single charac-

ter, with a few minor exceptions. The backslash quotes the single character that

immediately follows it. The general format is

\c

122 CHAPTER 6 Can! Quote You on That?

where c is the character you want to quote. Any special meaning normally attached

to that character is removed. Here is an example:

$ echo >

syntax error: ‘newline or ;' unexpected

$ echo \>

SS

$

In the first case, the shell sees the > and thinks that you want to redirect echo’s

output to a file. So it expects a filename to follow. Because it doesn’t, the shell issues

the error message. In the next case, the backslash removes the special meaning of the

>, so it is passed along to echo to be displayed.

$ x=*

$ echo \$x

$x

$

In this case, the shell ignores the $ that follows the backslash, and as a result, vari-

able substitution is not performed.

Because a backslash removes the special meaning of the character that follows, can

you guess what happens if that character is another backslash? Right, it removes the

special meaning of the backslash:

$ echo \\

\

$

Naturally, you could have also written

$ echo '\'

\

$

Using the Backslash for Continuing Lines

As mentioned at the start of this section, \c is basically equivalent to 'c'. One excep-
tion to this rule is when the backslash is used as the very last character on the line:

$ lines=one'

> 'two Single quotes tell shell to ignore newline
$ echo "$lines" ,
one

two

The Backslash 123

$ lines=one\ Try it with a \ instead
> two

$ echo "$lines"

onetwo

$

The shell treats a backslash at the end of the line as a line continuation. It removes

the newline character that follows and also does not treat the newline as an argu-

ment delimiter (it’s as if it wasn’t even typed). This construct is most often used for

typing long commands over multiple lines.

The Backslash Inside Double Quotes

We noted earlier that the backslash is one of the three characters interpreted by the

shell inside double quotes. This means that you can use the backslash inside these

quotes to remove the meaning of characters that otherwise would be interpreted

inside double quotes (that is, other backslashes, dollar signs, back quotes, newlines,

and other double quotes). If the backsiash precedes any other character inside double

quotes, the backslash is ignored by the shell and passed on to the program:

$ echo "\$x"

$x

$ echo "\ is the backslash character"

\ is the backslash character

$ x=5

$ echo "The value of x is \"$x\""

The value of x is "5"

$

In the first example, the backslash precedes the dollar sign, interpreted by the shell

inside double quotes. So the shell ignores the dollar sign, removes the backslash, and

executes echo. In the second example, the backslash precedes a space, not interpreted

by the shell inside double quotes. So the shell ignores the backslash and passes it on

to the echo command. The last example shows the backslash used to enclose double

quotes inside a double-quoted string.

As an exercise in the use of quotes, let’s say that you want to display the following

line at the terminal:

<<< echo $x >>> displays the value of x, which is $x

The intention here is to substitute the value of x in the second instance of $x, but

not in the first. Let’s first assign a value to x:

$ x=1

$

CHAPTER 6 Can! Quote You on That?

Now try displaying the line without using any quotes:

$ echo <<< echo $x >>> displays the value of x, which is $x

syntax error: '<' unexpected

$

The < signals input redirection to the shell; this is the reason for the error message.

If you put the entire message inside single quotes, the value of x won’t be substituted

at the end. If you enclose the entire string in double quotes, both occurrences of $x

will be substituted. Here are two different ways to do the quoting properly (realize

that there are usually several different ways to quote a string of characters to get the

results you want):

$ echo "<<< echo \$x >>> displays the value of x, which is $x"

<<< echo $x >>> displays the value of x, which is 1

$ echo ‘<<< echo $x >>> displays the value of x, which is' $x

<<< echo $x >>> displays the value of x, which is 1

$

In the first case, everything is enclosed in double quotes, and the backslash is used to

prevent the shell from performing variable substitution in the first instance of $x. In

the second case, everything up to the last $x is enclosed in single quotes. If the vari-

able x might have contained some filename substitution or whitespace characters, a

safer way of writing the echo would have been

echo ‘<<< echo $x >>> displays the value of x, which is' "$x"

Command Substitution

Command substitution refers to the shell’s capability to insert the standard output of a

command at any point in a command line. There are two ways in the shell to
perform command substitution: by enclosing a shell command with back quotes and
with the $(...) construct.

The Back Quote

The back quote is unlike any of the previously encountered types of quotes. Its
purpose is not to protect characters from the shell but to tell the shell to execute the
enclosed command and to insert the standard output from the command at that
point on the command line. The general format for using back quotes is

“command

Command Substitution

where command is the name of the command to be executed and whose output is to
be inserted at that point.'

Here is an example:

$ echo The date and time is: ‘date’

The date and time is: Wed Aug 28 14:28:43 EDT 2002

$

When the shell does its initial scan of the command line, it notices the back quote

and expects the name of a command to follow. In this case, the shell finds that the

date command is to be executed. So it executes date and replaces the ‘date’ on the

command line with the output from the date. After that, it divides the command

line into arguments in the normal manner and then initiates execution of the echo

command.

$ echo Your current working directory is ‘pwd

Your current working directory is /users/steve/shell/ch6

$

Here the shell executes pwd, inserts its output on the command line, and then

executes the echo. Note that in the following section, back quotes can be used in all

the places where the $(...) construct is used.

The $(...) Construct

The POSIX standard shell supports the newer $(...) construct for command substi-

tution. The general format is

$(command)

where, as in the back quoting method, command is the name of the command whose

standard output is to be substituted on the command line. For example:

$ echo The date and time is: $(date)

The date and time is: Wed Aug 28 14:28:43 EDT 2002

$

This construct is better than back quotes for a couple of reasons. First, complex

commands that use combinations of forward and back quotes can be difficult to

"Note that using the back quote for command substitution is no longer the preferred method; however, we

cover it here because of the large number of older, canned shell programs that still use this construct. Also,

you should know about back quotes in case you ever need to write shell programs that are portable to older

Unix systems with shells that don’t support the newer $(...) construct.

125

126 CHAPTER 6 Can | Quote You on That?

read, particularly if the typeface you're using doesn’t have visually different single

quotes and back quotes; second, $(...) constructs can be easily nested, allowing

command substitution within command substitution. Although nesting can also be

performed with back quotes, it’s a little trickier. You’ll see an example of nested

command substitution later in this section.

You are not restricted to executing a single command between the parentheses:

Several commands can be executed if separated by semicolons. Also, pipelines can be

used. Here’s a modified version of the nu program that displays the number of

logged-in users:

$ cat nu

echo There are $(who | wc -1l) users logged in

$ nu Execute it

There are 13 users logged in

$

Because single quotes protect everything, the following output should be clear:

$ echo '$(who | wc -1) tells how many users are logged in'

$(who | wc -1) tells how many users are logged in

$

But command substitution is interpreted inside double quotes:

$ echo "You have $(1ls | we -1) files in your directory"

You have 7 files in your directory

$

(What causes those leading spaces before the 7?) Remember that the shell is responsi-

ble for executing the command enclosed between the parentheses. The only thing

the echo command sees is the output that has been inserted by the shell.

Suppose that you're writing a shell program and want to assign the current date and
time to a variable called now, perhaps to display it later at the top of a report, or log
it into a file. The problem here is that you somehow want to take the output from
date and assign it to the variable. Command substitution can be used for this:

$ now=$(date) Execute date and store the output in now
$ echo $now See what got assigned

Wed Aug 28 14:47:26 EDT 2002

$

When you write

now=$ (date)

Command Substitution WT

the shell realizes that the entire output from date is to be assigned to now. Therefore,

you don’t need to enclose $(date) inside double quotes.

Even commands that produce more than a single line of output can be stored inside

a variable:

$ filelist=$(1s)

$ echo $filelist

addresses intro lotsaspaces names nu numbers phonebook stat

$

What happened here? You end up with a horizontal listing of the files even though

the newlines from 1s were stored inside the filelist variable (take our word for it).

The newlines got eaten up when the value of filelist was substituted by the shell

in processing the echo command line. Double quotes around the variable will

preserve the newlines:

$ echo "$filelist"

addresses

intro

lotsaspaces

names

nu

numbers

phonebook

stat

$

To store the contents of a file into a variable, you can use cat:

$ namelist=$(cat names)

$ echo “$names"

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

If you want to mail the contents of the file memo to all the people listed in the names

file (who we’ll assume here are users on your system), you can do the following:

$ mail $(cat names) < memo

$

128 CHAPTER 6 Can! Quote You on That?

Here the shell executes the cat and inserts the output on the command line so it

looks like this:

mail Charlie Emanuel Fred Lucy Ralph Tony Tony < memo

Then it executes mail, redirecting its standard input from the file memo and passing it

the names of seven users who are to receive the mail.

Notice that Tony receives the same mail twice because he’s listed twice in the names

file. You can remove any duplicate entries from the file by using sort with the -u

option (remove duplicate lines) rather than cat to ensure that each person only

receives mail once:

$ mail $(sort -u names) < memo

$

It’s worth noting that the shell does filename substitution after it substitutes the

output from commands. Enclosing the commands inside double quotes prevents the

shell from doing the filename substitution on this output if desired.

Command substitution is often used to change the value stored in a shell variable.

For example, if the shell variable name contains someone’s name, and you want to

convert every character in that variable to uppercase, you could use echo to get the

variable to tr’s input, perform the translation, and then assign the result back to the

variable:

$ name="Ralph Kramden"

$ name=$(echo $name | tr ‘[a-z]' '[A-Z]') Translate to uppercase

$ echo $name

RALPH KRAMDEN

$

The technique of using echo in a pipeline to write data to the standard input of the
following command is a simple yet powerful technique; it’s used often in shell
programs.

The next example shows how cut is used to extract the first character from the value
stored in a variable called filename:

$ filename=/users/steve/memos

$ firstchar=$(echo $filename | cut -c1)

$ echo $firstchar

/

$

Command Substitution 129

sed is also often used to “edit” the value stored in a variable. Here it is used to

extract the last character from the variable file:

$ file=exec.o

$ lastchar=$(echo $file | sed 's/.*\(.\)$/\1/')
$ echo $lastchar

)

$

The sed command says to replace all the characters on the line with the last one.

The result of the sed is stored in the variable lastchar. The single quotes around the

sed command are important because they prevent the shell from messing around

with the backslashes (would double quotes also have worked?).

Finally, command substitutions can be nested. Suppose that you want to change

every occurrence of the first character in a variable to something else. In a previous

example, firstchar=$(echo $filename | cut -c1) gets the first character from

filename, but how do we use this character to change every occurrence in filename?

A two-step process is one way:

$ filename=/users/steve/memos

$ firstchar=$(echo $filename | cut -c1)

$ filename=$(echo $filename | tr "$firstchar" "*") translate | to *

$ echo $filename

“users*steve*memos

$

Or a single, nested command substitution can perform the same operation:

$ filename=/users/steve/memos

$ filename=$(echo $filename | tr "$(echo $filename | cut -ci)" "*")

$ echo $filename

“users*steve*memos
$

If you have trouble understanding this example, compare it to the previous one:

Note how the firstchar variable in the earlier example is replaced by the nested

command substitution; otherwise, the two examples are the same.

The expr Command

Although the POSIX standard shell supports built-in integer arithmetic operations,

older shells don’t. It’s likely that you may see command substitution with a Unix

program called expr, which evaluates an expression given to it on the command

line:

130 CHAPTER 6 Can Quote You on That?

Suexprmaeda2

3

$

Each operator and operand given to expr must be a separate argument, thus explain-

ing the output from the following:

$ expr 1+2

1+2

$

The usual arithmetic operators are recognized by expr: + for addition, - for subtrac-

tion, / for division, * for multiplication, and % for modulus (remainder).

$ expr 10 + 20 / 2

20

$

Multiplication, division, and modulus have higher precedence than addition and

subtraction. Thus, in the preceding example the division was performed before the

addition.

$ expr 17 * 6

expr: syntax error

$

What happened here? The answer: The shell saw the * and substituted the names of

all the files in your directory! It has to be quoted to keep it from the shell:

Srexpreei7. = 6"

ge 3

$

That’s not the way to do it. Remember that expr must see each operator and operand

as a separate argument; the preceding example sends the whole expression in as a

single argument.

$ expr 17 * 6

102

$

Naturally, one or more of the arguments to expr can be the value stored inside a
shell variable because the shell takes care of the substitution first anyway:

$ i=1

$ expr $i + 1

Exercises 1) 33

This is the older method for performing arithmetic on shell variables. Do the same
type of thing as shown previously only use the command substitution mechanism to
assign the output from expr back to the variable:

$ i=1

$ i=$(expr $i + 1) Add 1 to i

$ echo $i

2

$

In legacy shell programs, you’re more likely to see expr used with back quotes:

$ i= expr $i + 1° Add 1 to i

$ echo $i

3

$

Note that like the shell’s built-in integer arithmetic, expr only evaluates integer

arithmetic expressions. You can use awk or bc if you need to do floating point calcu-

lations. Also note that expr has other operators. One of the most frequently used

ones is the : operator, which is used to match characters in the first operand against

a regular expression given as the second operand. By default, it returns the number

of characters matched.

The expr command

CXP MS pielicrias ay

returns the number of characters stored in the variable file, because the regular

expression .* matches all the characters in the string. For more details on expr,

consult your Unix User’s Manual.

Table A.S in Appendix A summarizes the way quotes are handled by the shell.

Exercises

1. Given the following assignments:

$ x=*

$ y=?

$ z='one

> two

e2 CHAPTER 6 Can! Quote You on That?

> three'

$ now=$(date)

$ symbol='>'

$

and these files in your current directory:

$ echo *

names testi u vv zebra

$

What will the output be from the following commands?

OchomasechnOea. echo) “Is 5a" 49> 1857.

echo $x echo What is your name?

echo $y echo Would you like to play a game?

echo "$y" echo ***

echo $z | we -l echo \$$symbol

echo "$z" | we -l echo $\$symbol

echo ‘'$z*-I we -1 echo **

echo _$now_ echo "\\"

echo hello $symbol out echo \\

echo "\"" echo I don't understand

2. Write the commands to remove all the space characters stored in the shell vari-

able text. Be sure to assign the result back to text. First use tr to do it and

then do the same thing with sed.

3. Write the commands to count the number of characters stored in the shell vari-

able text. Then write the commands to count all the alphabetic characters.

(Hint: Use sed and we.) What happens to special character sequences such as \n
if they’re stored inside text?

4. Write the commands to assign the unique lines in the file names to the shell
variable namelist.

7 | IN THIS CHAPTER

e The shift Command

Passing Arguments
e Exercises

Shell programs become far more useful after you learn

how to process arguments passed to them. In this chapter,

you'll learn how to write shell programs that take argu-

ments typed on the command line. Recall the program run

that you wrote in Chapter 5, “And Away We Go,” to run

the file sys.caps through tbl, nroff, and lp:

$ cat run

tbl sys.caps | nroff -mm -Tlp | lp

$

Suppose that you need to run other files besides sys.caps

through this same command sequence. You could make a

separate version of run for each such file; or, you could

modify the run program so that you could specify the

name of the file to be run on the command line. That is,

you could change run so that you could type

run new.hire

for example, to specify that the file new. hire is to be run

through this command sequence, or

run sys.Caps

to specify the file sys.caps.

Whenever you execute a shell program, the shell automati-

cally stores the first argument in the special shell variable

1, the second argument in the variable 2, and so on. These

special variables—more formally known as positional para-

meters—are assigned after the shell has done its normal

command-line processing (that is, I/O redirection, variable

substitution, filename substitution, and so on).

134 CHAPTER 7 Passing Arguments

To modify the run program to accept the name of the file as an argument, all you do

to the program is change the reference to the file sys.caps so that it instead refer-

ences the first argument typed on the command line:

$ cat run

tbl $1 | nroff -mm -Tlp | lp

$ run new.hire Execute it with new.hire as the argument

request id is laser1-24 (standard input)

$

Each time you execute the run program, whatever word follows on the command

line will be stored inside the first positional parameter by the shell. In the example,

new.hire will be stored in this parameter. Substitution of positional parameters is

identical to substitution of other types of variables, so when the shell sees

tbl $1

it replaces the $1 with the first argument supplied to the program: new. hire.

As another example, the following program, called ison, lets you know if a specified

user is logged on:

$ cat ison

who | grep $1

$ who See who’s on

root console Jul 7 08:37

barney ttyQ3 Jul 8 12:28

fred tty04 Jul 8 13:40

joanne tty@7 Jul 8 09:35

tony tty19 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ ison tony

tony tty19 Jul 8 08:30

$ ison pat

$ Not logged on

The $# Variable

Whenever you execute a shell program, the special shell variable $# gets set to the
number of arguments that were typed on the command line. As you'll see in the
next chapter, this variable can be tested by the program to determine whether
the correct number of arguments was typed by the user.

Passing Arguments 135

The next program called args was written just to get you more familiar with the way
arguments are passed to shell programs. Study the output from each example and
make sure that you understand it:

$ cat args Look at the program

echo $# arguments passed

echosangr lee rSlitrang 20= 8$20"argea = $3:

$ args abc Execute it

3 arguments passed

abgele—tavvarg 29= =b ang) 3

$ args a b Try it with two arguments

2 arguments passed

ahOmip—sediteayge2e=—cbeearg) eu 2s Unassigned args are null

$ args Try it with no arguments

® arguments passed

acdede —saearGee —s5 ang 3 = i:

$ args "a b c" Try quotes

1 arguments passed

anOwie=saebacy arge2, =) 3. argo: =

$ ls x* See what files start with x

xact

xtra

$ args x* Try file name substitution

2 arguments passed

AGC IE=aeXaCtemanGuc.— eXtra alQ io u—s ss

$ my_bin=/users/steve/bin

$ args $my_bin And variable substitution

1 arguments passed

arg 1 = :/users/steve/bin: arg 2 = :: arg 3 = ::

$ args $(cat names) Pass the contents of names

7 arguments passed

arg 1 = :Charlie: arg 2 = :Emanuel: arg3 = :Fred:

$

i] io)

As you can see, the shell does its normal command-line processing even when it’s

executing your shell programs. This means that you can take advantage of the

normal niceties such as filename substitution and variable substitution when specify-

ing arguments to your programs.

The $* Variable

The special variable $* references all the arguments passed to the program. This is

often useful in programs that take an indeterminate or variable number of

CHAPTER 7 Passing Arguments

arguments. You'll see some more practical examples later. Here’s a program that illus-

trates its use:

$ cat args2

echo $# arguments passed

echo they are :$*:

$ args2 abc

3 arguments passed

they are :a bc:

$ args2 one two

2 arguments passed

they are :one two:

$ args2

@ arguments passed

they are ::

$ args2 *

8 arguments passed

they are :args args2 names nu phonebook stat xact xtra:

$

A Program to Look Up Someone in the Phone Book

Here’s the phonebook file from previous examples:

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Susan Topple 212-555 - 4932

Tony Iannino 973-555-1295

$

You know how to look up someone in the file by using grep:

$ grep Cheb phonebook

Alice Chebba 973-555-2015

$

And you know that if you want to look up someone by the full name, you'd better
put quotes around it to keep the argument together:

$ grep "Susan T" phonebook

Susan Topple 212-555 - 4932

$

Passing Arguments 137

It would be nice to write a shell program that you could use to look up someone.
Let’s call the program 1u and have it take as its argument the name of the person to
look up:

$ cat lu

Look someone up in the phone book

grep $1 phonebook

$

Here’s a sample use of 1u:

$ lu Alice

Alice Chebba 973-555-2015

$ lu Susan

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

$ lu "Susan T"

grep: can't open T

phonebook:Susan Goldberg 201-555-7776

phonebook:Susan Topple 212-555-4932

$

In the preceding example, you were careful to enclose Susan T in double quotes; so

what happened? Look again at the grep executed in the lu program:

grep $1 phonebook

Even though enclosing Susan T inside double quotes results in its getting passed to

lu as a single argument, when the shell substitutes this value for $1 on grep’s

command line, it then passes it as two arguments to grep. (Remember we had this

same sort of discussion when we talked about variable substitution—first the shell

substitutes the value of the variable; then it divides the line into arguments.)

You can alleviate this problem by enclosing $1 inside double quotes (why not

single?) in the lu program:

$ cat lu

Look someone up in the phone book -- version 2

grep "$1" phonebook

$

138 CHAPTER 7 Passing Arguments

Now let’s try it again:

$ lu Tony

Tony Iannino 973-555-1295 This still works

$ lu "Susan T" Now try this again

Susan Topple 212-555-4932

$

A Program to Add Someone to the Phone Book

Let’s continue with the development of programs that work with the phonebook file.

You'll probably want to add someone to the file, particularly because our phonebook

file is so small. You can write a program called add that takes two arguments: the

name of the person to be added and the number. Then you can simply write the

name and number, separated from each other by a tab character, onto the end of

the phonebook file:

$ cat add

Add someone to the phone book

echo "$1 $2" >> phonebook

$

Although you can’t tell, there’s a tab character that separates the $1 from the $2 in

the preceding echo command. This tab must be quoted to make it to echo without

getting gobbled up by the shell.

Let’s try out the program:

$ add ‘Stromboli Pizza' 973-555-9478

$ lu Pizza See if we can find the new entry

Stromboli Pizza 973-555-9478 So far, so good

$ cat phonebook See what happened

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Susan Topple 212-555 - 4932

Tony Iannino 973-555-1295

Stromboli Pizza 973-555-9478

$

Passing Arguments 9)

Stromboli Pizza was quoted so that the shell passed it along to add as a single argu-

ment (what would have happened if it wasn’t quoted?). After add finished executing,

lu was run to see whether it could find the new entry, and it did. The cat command

was executed to see what the modified phonebook file looked like. The new entry was

added to the end, as intended. Unfortunately, the new file is no longer sorted. This

won't affect the operation of the lu program, but you can add a sort to the add

program to keep the file sorted after new entries are added:

$ cat add

Add someone to the phonebook file -- version 2

=

echo "$1 $2" >> phonebook

sort -o phonebook phonebook

$

Recall that the -o option to sort specifies where the sorted output is to be written,

and that this can be the same as the input file:

$ add ‘Billy Bach' 201-555-7618

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Billy Bach 201-555-7618

Liz Stachiw 212-555 - 2298

Stromboli Pizza 973-555-9478

Susan Goldberg 201-555-7776

Susan Topple 212-555 - 4932

Tony Iannino 973-555-1295

$

So each time a new entry is added, the phonebook file will get re-sorted.

A Program to Remove Someone from the Phone Book

No set of programs that enable you to look up or add someone to the phone book

would be complete without a program to remove someone from the phone book.

We’ll call the program rem and have it take as its argument the name of the person

to be removed. What should the strategy be for developing the program? Essentially,

you want to remove the line from the file that contains the specified name. The -v

option to grep can be used here because it prints lines from a file that don’t match a

pattern:

140 CHAPTER 7 _ Passing Arguments

$ cat rem

Remove someone from the phone book

grep -v "$1" phonebook > /tmp/phonebook

mv /tmp/phonebook phonebook

$

The grep writes all lines that don’t match into the file /tmp/phonebook.’ After the

grep is done, the old phonebook file is replaced by the new one from /tmp.

$ rem ‘Stromboli Pizza' Remove this entry

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Billy Bach 201-555-7618

Liz Stachiw 212-555-2298

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

Tony Iannino 973-555-1295

$ rem Susan

$ cat phonebook

Alice Chebba 973-555-2015

Barbara Swingle 201-555-9257

Billy Bach 201-555-7618

Liz Stachiw 212-555-2298

Tony TIannino 973-555-1295

$

The first case, where Stromboli Pizza was removed, worked fine. In the second case,

however, both Susan entries were removed because they both matched the pattern.

You can use the add program to add them back to the phone book:

$ add ‘Susan Goldberg' 201-555-7776

$ add 'Susan Topple' 212-555-4932

$

In Chapter 8, “Decisions, Decisions,” you’ll learn how to determine whether more
than one matching entry is found and take some other action if that’s the case. For

'/tmp is a directory on all Unix systems that anyone can write to. It’s used by programs to create “tempo-
rary” files. Each time the system gets rebooted, all the files in /tmp are usually removed.

The shift Command 141

example, you might want to alert the user that more than one match has been

found and further qualification of the name is required. (This can be very helpful,

because most implementations of grep will match everything if an empty string is

passed as the pattern.)

Incidentally, before leaving this program, note that sed could have also been used to

delete the matching entry. In such a case, the grep could be replaced with

sed "/$1/d" phonebook > /tmp/phonebook

to achieve the same result. The double quotes are needed around the sed command

to ensure that the value of $1 is substituted, while at the same time ensuring that the

shell doesn’t see a command line like

sed /Stromboli Pizza/d phonebook > /tmp/phonebook

and pass three arguments to sed rather than two.

${N}
If you supply more than nine arguments to a program, you cannot access the tenth

and greater arguments with $10, $11, and so on. If you try to access the tenth argu-

ment by writing

$10

the shell actually substitutes the value of $1 followed by a @. Instead, the format

${n}

must be used. So to directly access argument 10, you must write

${10}

in your program.

The shift Command

The shift command allows you to effectively left shift your positional parameters. If

you execute the command

shift

whatever was previously stored inside $2 will be assigned to $1, whatever was previ-

ously stored in $3 will be assigned to $2, and so on. The old value of $1 will be irre-

trievably lost.

142 CHAPTER 7 Passing Arguments

When this command is executed, $# (the number of arguments variable) is also auto-

matically decremented by one:

$ cat tshift Program to test the shift

echo $# $*

shift

echo $# $*

shift

echo $# $*

shift

echo $# $*

shift

echo $# $*

shift

echo $# $*

tshift abcde

abcde

becde

cde

de

e

Pe" NWOH A GH

If you try to shift when there are no variables to shift (that is, when $# already

equals zero), you'll get an error inessage from the shell (the error will vary from one

shell to the next):

prog: shift: bad number

where prog is the name of the program that executed the offending shift.

You can shift more than one “place” at once by writing a count immediately after

shift, as in

shift 3

This command has the same effect as performing three separate shifts:

shift

shift

shift

The shift command is useful when processing a variable number of arguments.
You'll see it put to use when you learn about loops in Chapter 9, “’Round and
“Round She Goes.”

Exercises 143

Exercises

1.

Fee

Modify lu so that it ignores case when doing the lookup.

What happens if you forget to supply an argument to the lu program? What

happens if the argument is null (as in, lu "")?

. The program ison from this chapter has a shortcoming as shown in the follow-

ing example:

$ ison ed

fred ttyd3 Sep 4 14:53

$

The output indicates that fred is logged on, while we were checking to see

whether ed was logged on.

Modify ison to correct this problem.

Write a program called twice that takes a single integer argument and doubles

its value:

$ twice 15

30

$ twice 0

Q

$

What happens if a noninteger value is typed? What if the argument is omitted?

Write a program called home that takes the name of a user as its single argu-

ment and prints that user’s home directory. So

home steve

, would print

/users/steve

if /users/steve is steve’s home directory. (Hint: Recall that the home direc-

tory is the sixth field stored in the file /etc/passwd.)

Write a program called suffix that renames a file by adding the characters

given as the second argument to the end of the name of the file given as the

first argument. So

suffix memo1 .Sv

should rename memo1 to memo1.sv.

144 CHAPTER 7 _ Passing Arguments

7. Write a program called unsuffix that removes the characters given as the

second argument from the end of the name of the file given as the first argu-

ment. So

unsuffix memo1.sv .Sv

should rename memo1.sv to memo1. Be sure that the characters are removed

from the end, so

unsuffix testitest test

should result in testitest being renamed to test1. (Hint: Use sed and

command substitution.)

8 1 on THIS CHAPTER

Decisions, Decisions | ("""
e The else Construct

This chapter introduces a statement that is present in * The exit Command
almost all programming languages: if. It enables you to | ¢ The elif Construct

test a condition and then change the flow of program

execution based on the result of the test. _ ¢ The case Command

The general format of the if command is ¢ The Null Command :

if command,

then

command

command

¢ The && and | | Constructs

e Exercises

fi

where command, is executed and its exit status is tested. If

the exit status is zero, the commands that follow between

the then and the fi are executed; otherwise, they are

skipped.

Exit Status

Whenever any program completes execution under the

Unix system, it returns an exit status back to the system.

This status is a number that usually indicates whether the

program successfully ran. By convention, an exit status of

zero indicates that a program succeeded, and nonzero indi-

cates that it failed. Failures can be caused by invalid argu-

ments passed to the program, or by an error condition

detected by the program. For example, the cp command

returns a nonzero exit status if the copy fails for some

reason (for example, if it can’t create the destination file),

or if the arguments aren’t correctly specified (for example,

wrong number of arguments, or more than two arguments

and the last one isn’t a directory). In the case of grep, an

146 CHAPTER 8 Decisions, Decisions

exit status of zero (success) is returned if it finds the specified pattern in at least one

of the files; a nonzero value is returned if it can’t find the pattern or if an error

occurs (the arguments aren’t correctly specified, or it can’t open one of the files).

In a pipeline, the exit status is that of the last command in the pipe. So in

who | grep fred

the exit status of the grep is used by the shell as the exit status for the pipeline. In

this case, an exit status of zero means that fred was found in who’s output (that is,

fred was logged on at the time that this command was executed).

The $? Variable

The shell variable $? is automatically set by the shell to the exit status of the last

command executed. Naturally, you can use echo to display its value at the terminal.

$ cp phonebook phone2

$ echo $?

Y) Copy “succeeded”

$ cp nosuch backup

cp: cannot access nosuch

$ echo $?

2 Copy “failed”

$ who See who’s logged on

root console Jul 8 10:06

wilma tty@3 Jul 8 12:36

barney tty04 Jul 8 14:57

betty tty15 Jul 8 15:03

$ who | grep barney

barney tty04 Jul 8 14:57

$ echo $? Print exit status of last command (grep)

0 grep “succeeded”

$ who | grep fred

$ echo $?

1 grep “failed”

$ echo $?

) Exit status of last echo

$

Note that the numeric result of a “failure” for some commands can vary from one
Unix version to the next, but success is always signified by a zero exit status.

Let’s now write a shell program called on that tells us whether a specified user is
logged on to the system. The name of the user to check will be passed to the

Exit Status

program on the command line. If the user is logged on, we’ll print a message to that
effect; otherwise we’ll say nothing. Here is the program:

$ cat on

determine if someone is logged on

user="$1"

if who | grep "$user"

then

echo "$user is logged on"

fi

$

This first argument typed on the command line is stored in the shell variable user.

Then the if command executes the pipeline

who | grep "$user"

and tests the exit status returned by grep. If the exit status is zero, grep found user

in who’s output. In that case, the echo command that follows is executed. If the exit

status is nonzero, the specified user is not logged on, and the echo command is

skipped. The echo command is indented from the left margin for aesthetic reasons

only (tab characters are usually used for such purposes because it’s easier to type a

tab character than an equivalent number of spaces). In this case, just a single

command is enclosed between the then and fi. When more commands are

included, and when the nesting gets deeper, indentation can have a dramatic effect

on the program’s readability. Later examples will help illustrate this point.

Here are some sample uses of on:

$ who.

root console Jul 8 10:37

barney tty@3 Jul 8 12:38

fred tty@4 Jul 8 13:40

joanne tty07 Jul 8 09:35

tony tty19 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ on tony We know he’s on

tony tty19 Jul 8 08:30 Where did this come from?

tony is logged on

$ on steve We know he’s not on

147

148 CHAPTER 8 _ Decisions, Decisions

$ on ann Try this one

joanne tty07 Jul 8 09:35

ann is logged on

$

We seem to have uncovered a couple of problems with the program. When the speci-

fied user is logged on, the corresponding line from who’s output is also displayed.

This may not be such a bad thing, but the program requirements called for only a

message to be displayed and nothing else.

This line is displayed because not only does grep return an exit status in the pipeline

who | grep "$user"

but it also goes about its normal function of writing any matching lines to standard

output, even though we’re really not interested in that. We can dispose of grep’s

output by redirecting it to the system’s “garbage can,” /dev/null. This is a special

file on the system that anyone can read from (and get an immediate end of file) or

write to. When you write to it, the bits go to that great bit bucket in the sky!

who | grep "$user" > /dev/null

The second problem with on appears when the program is executed with the argu-

ment ann. Even though ann is not logged on, grep matches the characters ann for the

user joanne. What you need here is a more restrictive pattern specification, which

you learned how to do in Chapter 4, “Tools of the Trade,” where we talked about

regular expressions. Because who lists each username in column one of each output

line, we can anchor the pattern to match the beginning of the line by preceding the

pattern with the character *:

who | grep "*$user" > /dev/null

But that’s not enough. grep still matches a line like

bobby ttyO7 Jul 8 09:35

if you ask it to search for the pattern bob. What you need to do is also anchor the
pattern on the right. Realizing that who ends each username with one or more
spaces, the pattern

" “guser "

now only matches lines for the specified user.

The test Command

Let’s try the new and improved version of on:

$ cat on

determine if someone is logged on -- version 2

user="$4"

if who | grep "“$user " > /dev/null

then

echo "$user is logged on"

fi

$ who

root

barney

fred

joanne

tony

lulu

$ on lulu

lulu is logged on

$ on ann

$ on

$

If no arguments are specified, user will be null. grep will then look through who’s

output for lines that start with a blank (why?). It won’t find any, and so just a

command prompt will be returned. In the next section, you’ll see how to test

whether the correct number of arguments has been supplied to a program and, if

console Jul 8 10

ttye3

ttye4

tty07

tty19

tty23

Jul 8 12

Jul 8 09

Jul 8 08

Jul 8 09

not, take some action.

Who’s on now?

HOT

:38

Jul 8 13:

735

730

BOO

40

Try this again

What happens if we don’t give any arguments?

The test Command

A built-in shell command called test is most often used for testing one or more

conditions in an if command. Its general format is

test expression

where expression represents the condition you're testing. test evaluates expression,

and if the result is true, it returns an exit status of zero; otherwise, the result is false,

and it returns a nonzero exit status.

149

150 CHAPTER 8 _ Decisions, Decisions

String Operators

As an example of the use of test, the following command returns a zero exit status

if the shell variable name contains the characters julio:

test "$name" = julio

The = operator is used to test whether two values are identical. In this case, we’re

testing to see whether the contents of the shell variable name are identical to the char-

acters julio. If it is, test returns an exit status of zero; nonzero otherwise.

Note that test must see all operands ($name and julio) and operators (=) as separate

arguments, meaning that they must be delimited by one or more whitespace charac-

ters.

Getting back to the if command, to echo the message “Would you like to play a

game?” if name contains the characters julio, you would write your if command

like this:

if test "$name" = julio

then

echo "Would you like to play a game?"

ial

(Why is it better to play it safe and enclose the message that is displayed by echo

inside quotes?) When the if command gets executed, the command that follows the

if is executed, and its exit status is tested. The test command is passed the three

arguments $name (with its value substituted, of course), =, and julio. test then tests

to see whether the first argument is identical to the third argument and returns a

zero exit status if it is and a nonzero exit status if it is not.

The exit status returned by test is then tested. If it’s zero, the commands between

then and fi are executed; in this case, the single echo command is executed. If the

exit status is nonzero, the echo command is skipped.

It’s good programming practice to enclose shell variables that are arguments to test
inside a pair of double quotes (to allow variable substitution). This ensures that test
sees the argument in the case where its value is null. For example, consider the
following example:

$ name= Set name null

$ test $name = julio

sh: test: argument expected

$

Because name was null, only two arguments were passed to test: = and julio because
the shell substituted the value of name before parsing the command line into

The test Command

arguments. In fact, after $name was substituted by the shell, it was as if you typed the
following:

test = julio

When test executed, it saw only two arguments (see Figure 8.1) and therefore issued

the error message.

FIGURE 8.1 test $name = julio with name null.

By placing double quotes around the variable, you ensure that test sees the argu-

ment because quotes act as a “placeholder” when the argument is null.

$ test "$name" = julio

$ echo $? Print the exit status

1

$

Even if name is null, the shell still passes three arguments to test, the first one null

(see Figure 8.2).

FIGURE 8.2. test "$name" = julio with name null.

Other operators can be used to test character strings. These operators are summa-

rized in Table 8.1.

Operator Returns TRUE (exit status of 0) if

string, = string, string, is identical to string,.

string, != string, string, is not identical to string,.

string string is not null.

-n string string is not null (and string must be seen by test).

-z string string is null (and string must be seen by test).

151

152 CHAPTER 8 Decisions, Decisions

You’ve seen how the = operator is used. The != operator is similar, only it tests two

strings for inequality. That is, the exit status from test is zero if the two strings are

not equal, and nonzero if they are.

Let’s look at three similar examples.

$ day="monday"

$ test "$day" = monday

$ echo $?

0 True

$

The test command returns an exit status of 0 because the value of day is equal to

the characters monday. Now look at the following:

$ day="monday "

$ test "$day" = monday

$ echo $?

1 False

$

Here we assigned the characters monday—including the space character that immediately

followed—to day. Therefore, when the previous test was made, test returned false

because the characters "monday " were not identical to the characters "monday".

If you wanted these two values to be considered equal, omitting the double quotes

would have caused the shell to “eat up” the trailing space character, and test would

have never seen it:

$ day="monday "

$ test $day = monday

$ echo $?

Q

$ True

Although this seems to violate our rule about always quoting shell variables that are
arguments to test, it’s okay to omit the quotes if you're sure that the variable is not
null (and not composed entirely of whitespace characters).

You can test to see whether a shell variable has a null value with the third operator
listed in Table 8.1:

test "$day"

The test Command 153

This returns true if day is not null and false if it is. Quotes are not necessary here

because test doesn’t care whether it sees an argument in this case. Nevertheless, you

are better off using them here as well because if the variable consists entirely of

whitespace characters, the shell will get rid of the argument if not enclosed in

quotes.

$ blanks=" :

$ test $blanks Is it not null?

$ echo $?

1 False—it’s null

$ test "$blanks" And now?

$ echo $?

0 True—it’s not null

$

In the first case, test was not passed any arguments because the shell ate up the four

spaces in blanks. In the second case, test got one argument consisting of four space

characters; obviously not null.

In case we seem to be belaboring the point about blanks and quotes, realize that this

is a sticky area that is a frequent source of shell programming errors. It’s good to

really understand the principles here to save yourself a lot of programming

headaches in the future.

There is another way to test whether a string is null, and that’s with either of the last

two operators listed previously in Table 8.1. The -n operator returns an exit status of

zero if the argument that follows is not null. Think of this operator as testing for

nonzero length.

The -z operator tests the argument that follows to see whether it is null and returns

an exit status of zero if it is. Think of this operator as testing to see whether the

following argument has zero length.

So the, command

test -n "$day"

returns an exit status of 0 if day contains at least one character. The command

test -z "$dataflag"

returns an exit status of 0 if dataflag doesn’t contain any characters.

154 CHAPTER 8 _ Decisions, Decisions

Be forewarned that both of the preceding operators expect an argument to follow;

therefore, get into the habit of enclosing that argument inside double quotes.

$ nullvar=

$ nonnullvar=abc

$ test -n "$nullvar" Does nullvar have nonzero length?

$ echo $?

1 No

$ test -n "$nonnullvar" And what about nonnullvar?

$ echo $?

0 Yes

$ test -z "$nullvar" Does nullvar have zero length?

$ echo $?

) Yes

$ test -z "$nonnullvar" And nonnullvar?

$ echo $?

1 No

$

Note that test can be picky about its arguments. For example, if the shell variable

symbol contains an equals sign, look at what happens if you try to test it for zero

length:

$ echo $symbol

$ test -z "$symbol"

sh: test: argument expected

$

The = operator has higher precedence than the -z operator, so test expects an argu-

ment to follow. To avoid this sort of problem, you can write your command as

test X"$symbol" = X

which will be true if symbol is null, and false if it’s not. The X in front of symbol
prevents test from interpreting the characters stored in symbol as an operator.

An Alternative Format for test

The test command is used so often by shell programmers that an alternative format
of the command is recognized. This format improves the readability of the
command, especially when used in if commands.

The test Command

You'll recall that the general format of the test command is

test expression

This can also be expressed in the alternative format as

[expression]

The [is actually the name of the command (who said anything about command

names having to be alphanumeric characters?). It still initiates execution of the same

test command, only in this format, test expects to see a closing] at the end of the

expression. Naturally, spaces must appear after the [and before the].

You can rewrite the test command shown in a previous example with this alterna-

tive format as shown:

$ [-z "$nonnullvar"]

$ echo $?

1

$

When used in an if command, this alternative format looks like this:

if ["$name" = julio]

then

echo "Would you like to play a game?"

fi

Which format of the if command you use is up to you; we preter the [...] format, so

that’s what we’ll use throughout the remainder of the book.

integer Operators

test has an assortment of operators for performing integer comparisons. Table 8.2

summarizes these operators.

TABLE 8.2. test Integer Operators -

Operator Returns TRUE (exit status of 0) if

int, -eq int, int, is equal to int,.

int, -ge int, int, is greater than or equal to int,.

int, -gt int, int, is greater than int,.

int, -le int, int, is less than or equal to int,.

int, -1t int, int, is less than int,.

int, -ne int, int, is not equal to int,.

155

156 CHAPTER 8 _ Decisions, Decisions

For example, the operator -eq tests to see whether two integers are equal. So if you

had a shell variable called count and you wanted to see whether its value was equal

to zero, you would write

["$count" -eq 0]

Other integer operators behave similarly, so

[SESCHoOlCey lites |

tests to see whether the variable choice is less than 5; the command

["$index" -ne "$max"]

tests to see whether the value of index is not equal to the value of max; and, finally

{ "SH" -ne Q]

tests to see whether the number of arguments passed to the command is not equal

to zero.

The test command interprets the value as an integer when an integer operator is

used, and not the shell, so these comparisons work regardless of the shell variable’s

type.

Let’s reinforce the difference between test’s string and integer operators by taking a

look at a few examples.

$ x1="005"

$ x2=" 10"

$ ["$x1" = 5] String comparison

$ echo $?

1 False

$ ["$x1" -eq 5] Integer comparison

$ echo $?

Q True

$ ["$x2" = 10] String comparison

$ echo $?

1 False

$ ["$x2" -eq 10] Integer comparison

$ echo $?

Q True

$

The first test

[US Sait =5]

The test Command

uses the string comparison operator = to test whether the two strings are identical.

They’re not, because the first string is composed of the three characters 005, and the

second the single character 5.

In the second test, the integer comparison operator -eq is used. Treating the two

values as integers, 005 is equal to 5, as verified by the exit status returned by test.

The third and fourth tests are similar, only in this case you can see how even a

leading space stored in the variable x2 can influence a test made with a string opera-

tor versus One made with an integer operator.

File Operators

Virtually every shell program deals with one or more files. For this reason, a wide

assortment of operators is provided by test to enable you to ask various questions

about files. Each of these operators is unary in nature, meaning that they expect a

single argument to follow. In all cases, this argument is the name of a file (and that

includes a directory file, of course).

Table 8.3 lists the commonly used file operators.

TABLE 8.3 Commonly Used test File Operators

Operator Returns TRUE (exit status of 0) if

-d file file is a directory.

-e file file exists.

-f file file is an ordinary file.

-r file file is readable by the process.

-s file file has nonzero length.

-w file file is writable by the process.

-x file file is executable.

-L file file is a symbolic link.

The command

[-f /users/steve/phonebook]

tests whether the file /users/steve/phonebook exists and is an ordinary file (that is,

not a directory and not a special file).

The command

[-r /users/steve/phonebook |]

tests whether the indicated file exists and is also readable by you.

158 CHAPTER 8 _ Decisions, Decisions

The command

[-s /users/steve/phonebook]

tests whether the indicated file contains at least one byte of information in it. This is

useful, for example, if you create an error log file in your program and you want to

see whether anything was written to it:

ite [ese SERRRLLES|

then

echo “Errors found:"

cat $ERRFILE

fi

A few more test operators, when combined with the previously described operators,

enable you to make more complex types of tests.

The Logical Negation Operator !

The unary logical negation operator ! can be placed in front of any other test

expression to negate the result of the evaluation of that expression. For example,

[! -r /users/steve/phonebook }

returns a zero exit status (true) if /users/steve/phonebook is not readable; and

[! -f "$mailfile"]

returns true if the file specified by $mailfile does not exist or is not an ordinary file.

Finally,

[! "$x" = "$xo"]

returns true if $x1 is not identical to $x2 and is obviously equivalent to

["$x1" 1= “$x2"]

The Logical AND Operator -a

The operator -a performs a logical AND of two expressions and returns true only if
the two joined expressions are both true. So

{ -f "$mailfile" -a-r "$mailfile"]

returns true if the file specified by $mailfile is an ordinary file and is readable by
you. An extra space was placed around the -a operator to aid in the expression’s
readability and obviously has no effect on its execution.

The test Command

The command

["$count" -ge® -a "$count" -1t 10]

will be true if the variable count contains an integer value greater than or equal to

zero but less than 10. The -a operator has lower precedence than the integer compari-

son operators (and the string and file operators, for that matter), meaning that the

preceding expression gets evaluated as

("$count" -ge @) -a ("$count" -1t 10)

as you would expect.

Parentheses

Incidentally, you can use parentheses in a test expression to alter the order of evalu-

ation; just make sure that the parentheses are quoted because they have a special

meaning to the shell. So to translate the preceding example into a test command,

you would write

[\("$count" -ge @ \) -a \("$count" -1t 10 \)]

As is typical, spaces must surround the parentheses because test expects to see them

as separate arguments.

The Logical OR Operator -o

The -o operator is similar to the -a operator, only it forms a logical OR of two

expressions. That is, evaluation of the expression will be true if either the first expres-

sion is true or the second expression is true.

{ -n "$mailopt" -o -r $HOME/mailfile]

This command will be true if the variable mailopt is not null or if the file

$HOME /mailfile is readable by you.

The -o operator has lower precedence than the -a operator, meaning that the

expression

Deal -eq Q -0 Neh -eq 2 -a "So" -eq 10

gets evaluated by test as

neal -eq 0 -0 ("$b" -eq) -a Ue ot -eq 10)

Naturally, you can use parentheses to change this order if necessary:

159

160 CHAPTER 8 _ Decisions, Decisions

\("$a" -eq @ -o "$b" -eq 2 \) -a "$c" -eq 10

You will see many uses of the test command throughout the book. Table A.11 in

Appendix A, “Shell Summary,” summarizes all available test operators.

The else Construct

A construct known as the else can be added to the if command, with the general

format as shown:

if command,

then

command

command

else

command

command

ipa

Execution of this form of the command starts as before; command, is executed and its

exit status tested. If it’s zero, the commands that follow between the then and the

else are executed, and the commands between the else and fi are skipped.

Otherwise, the exit status is nonzero and the commands between the then and else

are skipped and the commands between the else and fi are executed. In either case,

only one set of commands gets executed: the first set if the exit status is zero, and

the second set if it’s nonzero.

Let’s now write a modified version of on. Instead of printing nothing if the requested
user is not logged on, we’ll have the program print a message to that effect. Here is
version 3 of the program:

$ cat on

determine if someone is logged on -- version 3

user="$1"

if who | grep "“$user " > /dev/null

then

echo "$user is logged on"

else

The else Construct

echo “$user is not logged on"

lie!

If the user specified as the first argument to on is logged on, the grep will succeed

and the message $user is logged on will be displayed; otherwise, the message

$user is not logged on will be displayed.

$ who Who’s on?

root console Jul 8 10:37

barney tty@3 Jul 8 12:38

fred tty@4 Jul 8 13:40

joanne tty07 Jul 8 09:35

8

8

tony tty19 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ on pat

pat is not logged on

$ on tony

tony is logged on

$

Another nice touch when writing shell programs is to make sure that the correct

number of arguments is passed to the program. If an incorrect number is supplied,

an error message to that effect can be displayed, together with information on the

proper usage of the program.

$ cat on

determine if someone is logged on -- version 4

see if the correct number of arguments were supplied

se fl BO ete ay |

then

echo "Incorrect number of arguments"

echo "Usage: on user"

else

user="$1"

if who | grep "*$user " > /dev/null

then

161

162 CHAPTER 8 _ Decisions, Decisions

echo "$user is logged on"

echo "$user is not logged on"

iiyal

Compare this program with the previous version and note the changes that were

made. An additional if command was added to test whether the correct number of

arguments was supplied. If $# is not equal to 1, the program prints two messages;

otherwise, the commands after the else clause are executed. These commands are

the same as appeared in the last version of on: They assign $1 to user and then see

whether user is logged on, printing a message in either case. Note that two fis are

required because two if commands are used.

The indentation used goes a long way toward aiding the program’s readability. Make

sure that you get into the habit of setting and following indentation rules in your

programs.

$ on No arguments

Incorrect number of arguments

Usage: on user

$ on priscilla One argument

priscilla is not logged on

$ on jo anne Two arguments

Incorrect number of arguments

Usage: on user

$

The exit Command

A built-in shell command called exit enables you to immediately terminate execu-
tion of your shell program. The general format of this command is

exit n

where n is the exit status that you want returned. If none is specified, the exit status
used is that of the last command executed before the exit.

Be advised that executing the exit command directly from your terminal will log
you off the system because it will have the effect of terminating execution of your
login shell.

The exit Command 163

A Second Look at the rem Program

exit is frequently used as a convenient way to terminate execution of a shell
program. For example, let’s take another look at the rem program, which removes an
entry from the phonebook file:

$ cat rem

Remove someone from the phone book

grep -v "$1" phonebook > /tmp/phonebook

mv /tmp/phonebook phonebook

$

This program has the potential to do unintended things to the phonebook file. For

example, suppose that you type

rem Susan Topple

Here the shell will pass two arguments to rem. The rem program will end up remov-

ing all Susan entries, as specified by $1.

It’s always best to take precautions with a potentially destructive program like rem

and to be certain as possible that the action intended by the user is consistent with

the action that the program is taking.

One of the first checks that can be made in rem is for the correct number of argu-

ments, as was done before with the on program. This time, we’ll use the exit

command to terminate the program if the correct number of arguments isn’t

supplied:

$ cat rem

Remove someone from the phone book -- version 2

shy [PS Ce

then

echo “Incorrect number of arguments."

echo “Usage: rem name"

exit 1

fel

grep -v "$1" phonebook > /tmp/phonebook

164 CHAPTER 8 Decisions, Decisions

mv /tmp/phonebook phonebook

$ rem Susan Goldberg Try it out

Incorrect number of arguments.

Usage: rem name

$

The exit command returns an exit status of 1, to signal “failure,” in case some other

program wants to check it. How could you have written the preceding program with

an if-else instead of using the exit (hint: look at the last version of on)?

Whether you use the exit or an if-else is up to you. Sometimes the exit is a more

convenient way to get out of the program quickly, particularly if it’s done early in

the program.

The elif Construct

As your programs become more complex, you may find yourself needing to write

nested if statements of the following form:

if command,
then

command

command

else

if command,

then

command

command

else

if command,
then

command

command

else

command

command

ha

ital!

fal

The elif Construct 165

This type of command sequence is useful when you need to make more than just a

two-way decision as afforded by the if-else construct. In this case, a multiway deci-

sion is made, with the last else clause executed if none of the preceding conditions

is satisfied.

As an example, suppose that you wanted to write a program called greetings that

would print a friendly “Good morning,” “Good afternoon,” or “Good evening”

whenever you logged on to the system. For purposes of the example, consider any

time from midnight to noon to be the morning, noon to 6:00 p.m. the afternoon,

and 6:00 p.m. to midnight the evening.

To write this program, you have to find out what time it is. date serves just fine for

this purpose. Take another look at the output from this command:

$ date

Wed Aug 29 10:42:01 EDT 2002

$

The format of date’s output is fixed, a fact that you can use to your advantage when

writing greetings because this means that the time will always appear in character

positions 12 through 19. Actually, for this program, you really only need the hour

displayed in positions 12 and 13. So to get the hour from date, you can write

$ date | cut -c12-13

10

$

Now the task of writing the greetings program is straightforward:

$ cat greetings

Program to print a greeting

hour=$(date | cut -c12-13)

if ["$hour" -ge @ -a "$hour" -le 11]

then

echo "Good morning"

else

if ["$hour" -ge 12 -a "$hour" -le 17]

then

166 CHAPTER 8 _ Decisions, Decisions

echo "Good afternoon"

echo "Good evening"

fale

If hour is greater than or equal to 0 (midnight) and less than or equal to 11 (up to

11:59:59), “Good morning” is displayed. If hour is greater than or equal to 12 (noon)

and less than or equal to 17 (up to 5:59:59 p.m.), “Good afternoon” is displayed. If

neither of the preceding two conditions is satisfied, “Good evening” is displayed.

$ greetings

Good morning

$

As noted, the nested if command sequence used in greetings is so common that a

special elif construct is available to more easily express this sequence. The general

format of this construct is

if command,
then

command

command

elif command,

then

command

command

elif command,

then

command

command

else

command

command

felt

command,, command, ..., command, are executed in turn and their exit statuses
tested. As soon as one returns an exit status of zero, the commands listed after the

The elif Construct

then that follows are executed up to another elif, else, or fi. If none of the
commands returns a zero exit status, the commands listed after the optional else are
executed.

You could rewrite the greetings program using this new format as shown:

$ cat greetings

Program to print a greeting -- version 2

hour=$(date | cut -c12-13)

if ["$hour" -ge @ -a "$hour" -le 11]

then

echo "Good morning"

elif ["Shour" -ge 12 -a "$hour" -le 17]

then

echo "Good afternoon"

else

echo "Good evening"

ipa

$

This version is easier to read, and it doesn’t have the tendency to disappear off the

right margin due to excessive indentation. Incidentally, you should note that date

provides a wide assortment of options. One of these, %H, can be used to get the hour

directly from date:

$ date +%H

10

$

As an. exercise, you should change greetings to make use of this fact.

Yet Another Version of rem

Another way to add some robustness to the rem program would be to check the

number of entries that matched before doing the removal. If there’s more than one

match, you could issue a message to the effect and then terminate execution of the

program. But how do you determine the number of matching entries? One approach

is to do a normal grep on the phonebook file and then count the number of matches

that come out with we. If the number of matches is greater than one, the appropriate

message can be issued.

167

168 CHAPTER 8 _ Decisions, Decisions

$ cat rem

Remove someone from the phone book -- version 3

if 13k" =ne 1]
then

echo "Incorrect number of arguments."

echo "Usage: rem name"

exit 1

iil

name=$1

Find number of matching entries

matches=$(grep "$name" phonebook | we -1)

If more than one match, issue message, else remove it

if [“$matches" -gt 1]

then

echo "More than one match; please qualify further"

elif ["$matches" -eq 1]

then

grep -v "$name" phonebook > /tmp/phonebook

mv /tmp/phonebook phonebook

else

echo "I couldn't find $name in the phone book"

fal

$

The positional parameter $1 is assigned to the variable name after the number of
arguments check is performed to add readability to the program. Subsequently using
$name is a lot clearer than using $1.

The if...elif...else command first checks to see whether the number of matches is
greater than one. If it is, the “More than one match” message is printed. If it’s not, a
test is made to see whether the number of matches is equal to one. If it is, the entry

The case Command 169

is removed from the phone book. If it’s not, the number of matches must be zero, in

which case a message is displayed to alert the user of this fact.

Note that the grep command is used twice in this program: first to determine the

number of matches and then with the -v option to remove the single matching

entry.

Here are some sample runs of the third version of rem:

$ rem

Incorrect number of arguments.

Usage: rem name

$ rem Susan

More than one match; please qualify further

$ rem ‘Susan Topple'

$ rem ‘Susan Topple'

I couldn't find Susan Topple in the phone book She’s history

$

Now you have a fairly robust rem program: It checks for the correct number of argu-

ments, printing the proper usage if the correct number isn’t supplied; it also checks

to make sure that precisely one entry is removed from the phonebook file.

The case Command

The case command allows you to compare a single value against other values and to

execute one or more commands when a match is found. The general format of this

command is

case value in

pat,) command

command

command; ;

pat,) command

command

command; ;

pat,) command

command

command; ;

esac

CHAPTER 8 _ Decisions, Decisions

The word value is successively compared against the values pat,, pat,, ..., pat,, until a

match is found. When a match is found, the commands listed after the matching

value, up to the double semicolons, are executed. After the double semicolons are

reached, execution of the case is terminated. If a match is not found, none of the

commands listed in the case is executed

As an example of the use of the case, the following program called number takes a

single digit and translates it to its English equivalent:

$ cat number

Translate a digit to English

if ["$#" -ne 1]

then

echo "Usage: number digit"

exit 1

fi

case "$1"

in

@) echo zero;;

1) echo one;;

2) echo two;;

3) echo three;;

4) echo four;;

5) echo five;;

6) echo six;;

7) echo seven;;

8) echo eight;;

9) echo nine;;

esac

$

Now to test it:

$ number @

zero

$ number 3

three

$ number Try no arguments

Usage: number digit

The case Command 7A)

$ number 17 Try a two-digit number

$

The last case shows what happens when you type in more than one digit: $1 doesn’t

match any of the values listed in the case, so none of the echo commands is

executed.

Special Pattern Matching Characters

The shell lets you use the same special characters for specifying the patterns in a case

as you can with filename substitution. That is, ? can be used to specify any single

character; * can be used to specify zero or more occurrences of any character; and

[...] can be used to specify any single character enclosed between the brackets.

Because the pattern * matches anything (just as when it’s used for filename substitu-

tion it matches all the files in your directory), it’s frequently used at the end of the

case as the “catchall” value. That is, if none of the previous values in the case

match, this one is guaranteed to match. Here’s a second version of the number

program that has such a catchall case.

$ cat number

Translate a digit to English -- version 2

iff) "$#e =ne 1 |

then

echo "Usage: number digit"

exit 1

iat

case "$1"

in :

) echo zero;;

) echo one;;

) echo two; ;

\RECHOMENRE es,

) echo four;;

5) echo five;;

6) echo six;;

7) echo seven; ;

8) echo eight; ;

9) echo nine; ;

*) echo "Bad argument; please specify a single digit";;

esac

722. CHAPTER 8 _ Decisions, Decisions

$ number 9

nine

$ number 99

Bad argument; please specify a single digit

$

Here’s another program called ctype that prints the type of the single character

given as an argument. Character types recognized are digits, uppercase letters, lower-

case letters, and special characters (anything not in the first three categories). As an

added check, the program makes sure that just a single character is given as the argu-

ment.

$ cat ctype

Classify character given as argument

ag; [| 83) Si ab 4

then

echo Usage: ctype char

exit 1

ia

Ensure that only one character was typed

char="$1"

numchars=$(echo "$char" | we -c)

if ["$numchars" -ne 1]

then

echo Please type a single character

exit 1

Fi

Now classify it

case "$char"

in

The case Command

[®@-9]) echo digit;;

[a-z]) echo lowercase letter;;

[A-Z]) echo uppercase letter;;

*) echo special character; ;

esac

$

Some sample runs:

$ ctype a

Please type a single character

$ ctype 7

Please type a single character

$

The -x Option for Debugging Programs

Something seems to be amiss. The counting portion of our program doesn’t seem to

be working properly. This seems like a good point to introduce the shell’s -x option.

You can trace the execution of any program by typing sh -x followed by the name

of the program and its arguments. This starts up a new shell to execute the indicated

program with the -x option enabled. In this mode, commands are printed at the

terminal as they are executed, preceded by a plus sign. Let’s try it out.

$ sh -x ctype a Trace execution

fl ei one | $# equals 1

+ char=a Assignment of $1 to char

+ echo a

+ we -c

+ numchars= 2 we returned 2???

| 2 -ne 1] That’s why this test succeeded

+ echo please type a single character

please type a single character

+ exit 1

$

The trace output indicates that we returned 2 when

echo "$char" | we -c

was executed. But why? There seemed to be only one character in we’s input. The

truth of the matter is that two characters were actually given to we: the single charac-

ter a and the “invisible” newline character that echo automatically prints at the end

of each line. So the program really should be testing for the number of characters

equal to two: the character typed plus the newline added by echo.

173

174 CHAPTER 8 _ Decisions, Decisions

Go back to the ctype program and replace the if command that reads

if ["$numchars" -ne 1]

then

echo Please type a single character

exit 1

Fi

with

if ["$numchars" -ne 2]

then

echo Please type a single character

exit 1

fal

and try it again.

$ ctype a

lowercase letter

$ ctype abc

Please type a single character

$ ctype 9

digit

$ ctype K

uppercase letter

$ ctype :

special character

$ ctype

Usage: ctype char

$

Now it seems to work just fine. (What do you think happens if you use ctype *

without enclosing the * in quotes?)

In Chapter 12, “More on Parameters,” you'll learn how you can turn this trace

feature on and off at will from inside your program.

Before leaving the ctype program, here’s a version that avoids the use of we and
handles everything with the case:

$ cat ctype

Classify character given as argument -- version 2

The case Command 175

if [$# -ne 1]

then

echo Usage: ctype char

exit |

fi

Now classify char, making sure only one was typed

char=$1

case "$char"

in

[@-9]) echo digit;;

[a-z]) echo lowercase letter;;

[A-Z]) echo uppercase letter;;

th) echo special character;;

2) echo Please type a single character;;

esac

$

The ? matches any single character. If this pattern is matched, the character is a

special character. If this pattern isn’t matched, more than one character was typed,

so the catchall case is executed to print the message.

$ ctype u

lowercase letter

$ ctype '>'

special]. character

$ ctype xx

Please type a single character

$

Back to the case

The symbol | has the effect of a logical OR when used between two patterns. That is,

the pattern

pat, | pat,

specifies that either pat, or pat, is to be matched. For example,

bitule last

176 CHAPTER 8 _ Decisions, Decisions

matches either the value -1 or -list, and

dmd | 5620 | tty5620

matches either dmd or 5620 or tty5620.

The greetings program that you saw earlier in this chapter can be rewritten to use a

case statement rather than the if -elif. Here is such a version of the program. This

time, we took advantage of the fact that date with the +%H option writes a two-digit

hour to standard output.

$ cat greetings

Program to print a greeting -- case version

hour=$(date +%H)

case "$hour"

in

@? | 1[01]) echo "Good morning"; ;

1[2-7]) echo "Good afternoon";;

*) echo "Good evening"; ;

esac

$

The two-digit hour obtained from date is assigned to the shell variable hour. Then

the case statement is executed. The value of hour is compared against the first

pattern:

@? | 1[01]

which matches any value that starts with a zero followed by any character (midnight
through 9:00 a.m.), or any value that starts with a one and is followed by a zero or
one (10:00 or 11:00 a.m.).

The second pattern

1[2-7]

matches a value that starts with a one and is followed by any one of the digits two
through seven (noon through 5:00 p.m.).

The last case, the catchall, matches anything else (6:00 pie through 11:00 p.m.).

$ date

Wed Aug 28 15:45:12 EDT 2002

The && and || Constructs 177

$ greetings

Good afternoon

$

The Null Command :

This seems about as good a time as any to talk about the shell’s built-in null

command. The format of this command is simply

and the purpose of it is—you guessed it—to do nothing. So what good is it? Well, in

most cases it’s used to satisfy the requirement that a command appear, particularly in

if commands. Suppose that you want to make sure that the value stored in the vari-

able system exists in the file /users/steve/mail/systems, and if it doesn’t, you want

to issue an error message and exit from the program. So you start by writing some-

thing like

if grep "“$system" /users/steve/mail/systems > /dev/null

then

but you don’t know what to write after the then because you want to test for the

nonexistence of the system in the file and don’t want to do anything special if the

grep succeeds. Unfortunately, the shell requires that you write a command after

the then. Here’s where the null command comes to the rescue:

if grep "“$system" /users/steve/mail/systems > /dev/null

then

else

echo "$system is not a valid system"

,exit 1

fi ,

So if the system is valid, nothing is done. If it’s not valid, the error message is issued

and the program exited.

Remember this simple command when these types of situations arise.

The && and | | Constructs

The shell has two special constructs that enable you to execute a command based on

whether the preceding command succeeds or fails. In case you think this sounds

similar to the if command, well it is. It’s sort of a shorthand form of the if.

CHAPTER 8 _ Decisions, Decisions

If you write

command, && command,

anywhere where the shell expects to see a command, command, will be executed, and

if it returns an exit status of zero, command, will be executed. If command, returns an

exit status of nonzero, command, gets skipped.

For example, if you write

sort bigdata > /tmp/sortout && mv /tmp/sortout bigdata

then the mv command will be executed only if the sort is successful. Note that this

is equivalent to writing

if sort bigdata > /tmp/sortout

then

mv /tmp/sortout bigdata

sel

The command

[-z "$EDITOR"] && EDITOR=/bin/ed

tests the value of the variable EDITOR. If it’s null, /bin/ed is assigned to it.

The || construct works similarly, except that the second command gets executed

only if the exit status of the first is nonzero. So if you write

grep "$name" phonebook || echo "Couldn't find $name"

the echo command will get executed only if the grep fails (that is, if it can’t find

$name in phonebook, or if it can’t open the file phonebook). In this case, the equiva-

lent if command would look like

if grep "$name" phonebook

then

else

echo "Couldn't find $name"

ape

You can write a pipeline on either the left- or right-hand sides of these constructs.
On the left, the exit status tested is that of the last command in the pipeline; thus

who | grep "*$name " > /dev/null || echo "$name's not logged on"

The && and || Constructs

causes execution of the echo if the grep fails.

The && and || can also be combined on the same command line:

who | grep "*$name " > /dev/null && echo "$name's not logged on" \

|| echo "$name is logged on"

(Recall that when \ is used at the end of the line, it signals line continuation to the

shell.) The first echo gets executed if the grep succeeds; the second if it fails.

These constructs are also often used in if commands:

if validsys "$sys" && timeok

then

sendmail "$user@$sys" < $message

fi

If validsys returns an exit status of zero, timeok is executed. The exit status from

this program is then tested for the if. If it’s zero, then the sendmail program is

executed. If validsys returns a nonzero exit status, timeok is not executed, and this

is used as the exit status that is tested by the if. In that case, sendmail won’t be

executed.

The use of the && operator in the preceding case is like a “logical AND”; both

programs must return an exit status of zero for the sendmail program to be executed.

In fact, you could have even written the preceding if as

validsys "$sys" && timeok && sendmail "$user@$sys" < $message

When the || is used in an if, the effect is like a “logical OR”:

if endofmonth || specialrequest

then

sendreports

a

If endofmonth returns a zero exit status, sendreports is executed; otherwise,

specialrequest is executed and if its exit status is zero, sendreports is executed. The

net effect is that sendreports is executed if endofmonth or specialrequest return an

exit status of zero.

In Chapter 9, “’Round and ’Round She Goes,” you'll learn about how to write loops

in your programs. However, before proceeding to that chapter, try the exercises that

follow.

179

180 CHAPTER 8 Decisions, Decisions

Exercises

1. Write a program called valid that prints “yes” if its argument is a valid shell

variable name and “no” otherwise:

$ valid foo_bar

yes

$ valid 123

no

$

(Hint: Define a regular expression for a valid variable name and then enlist the

aid of grep or sed.)

. Write a program called t that displays the time of day in a.m. or p.m. notation

rather than in 24-hour clock time. Here’s an example showing t run at night:

$ date

Wed Aug 28 19:34:01 EDT 2002

$t

7:21 pm

$

Use the shell’s built-in integer arithmetic to convert from 24-hour clock time.

Then rewrite the program to use a case command instead. Rewrite it again to

perform arithmetic with the expr command,

. Write a program called mysed that applies the sed script given as the first argu-

ment against the file given as the second. If the sed succeeds (that is, exit

status of zero), replace the original file with the modified one. So

mysed '1,10d' text

will use sed to delete the first 10 lines from text, and, if successful, will replace

text with the modified file.

. Write a program called isyes that returns an exit status of 0 if its argument is
“a yes,” and 1 otherwise. For purposes of this exercise, consider y, yes, Yes, YES,
and Y all to be valid “yes” arguments:

$ isyes yes

$ echo $?

Q

$ isyes no

$ echo $?

1

$

Exercises

Write the program using an if command and then rewrite it using a case

command. This program can be useful when reading yes/no responses from the

terminal (which you'll learn about in Chapter 10, “Reading and Printing

Data”).

. Use the date and who commands to write a program called conntime that prints

the number of hours and minutes that a user has been logged on to the system

(assume that this is less than 24 hours).

181

Sra” ©. Om..4 | Sian;

~,

ae Ces 1 AN Fern ites nor : ip npr 10 We
At TO? Crgeaciug ey ar ’

rT eats Pas rr y om a oe ni

janie, tot Elio Wl, wager rs wens y OTe le r . COUTTS WHY FY iyi and yy] cot p08 9 Feet conien imp Gh hie vas 5
Oe 168 r asii fei si pee ian

= ; a,

(sore >

|

9 | IN THIS CHAPTER

e The for Command

‘Round and ‘Round e The until Command

She Goes | e More on Loops

e The getopts Command

I ¢ Exercises

n this chapter you'll learn how to set up program loops.

These loops will enable you to execute repeatedly a set of

commands either a specified number of times or until

some condition is met. The three built-in looping

commands are

e for

e while

e until

You'll learn about each one of these loops in separate

sections of this chapter.

The for Command

The for command is used to execute a set of commands a

specified number of times. Its basic format is as shown:

for var in word, word, ... word,

do

command

command

done

The commands enclosed between the do and the done

form what’s known as the body of the loop. These

commands are executed for as many words as you have

listed after the in. When the loop is executed, the first

word, word,, is assigned to the variable var, and the body of

the loop is then executed. Next, the second word in the

184 CHAPTER 9 ‘Round and ‘Round She Goes

list, word,, is assigned to var, and the body of the loop is executed. This process

continues with successive words in the list being assigned to var and the commands

in the loop body being executed until the last word in the list, word,, is assigned to

var and the body of the loop executed. At that point, no words are left in the list,

and execution of the for command is then finished. Execution then continues with

the command that immediately follows the done. So if there are n words listed after

the in, the body of the loop will have been executed a total of n times after the loop

has finished.

Here’s a loop that will be executed a total of three times:

WO At ai a] Be

do

echo $i

done

To try it out, you can type this in directly at the terminal, just like any other shell

command:

SS iene el sh 4s)

> do

> echo $i

> done

Pon —

While the shell is waiting for the done to be typed to close off the for command, it

displays your secondary command prompt. When it gets the done, the shell then
proceeds to execute the loop. Because three words are listed after the in (1, 2, and 3),
the body of the loop—in this case a single echo command—will be executed a total
of three times.

The first time through the loop, the first word in the list, 1, is assigned to the vari-
able i. Then the body of the loop is executed. This displays the value of i at the
terminal. Then the next word in the list, 2, is assigned to i and the echo command
re-executed, resulting in the display of 2 at the terminal. The third word in the list,
3, is assigned to i the third time through the loop and the echo command executed.
This results in 3 being displayed at the terminal. At that point, no more words are
left in the list, so execution of the for command is then complete, and the shell
displays your command prompt to let you know it’s done.

Recall the run program from Chapter 7, “Passing Arguments,” that enabled you to
run a file through tbl, nroff, and lp:

The for Command 185

$ cat run

tbl $1 | nroff -mm -Tlp | 1p

$

If you wanted to run the files memo1 through memo4 through this program, you could
type the following at the terminal:

$ for file in memoi memo2 memo3 memo4

> do

> run $file

> done

request id is laser1-33 (standard input)

request id is laser1-34 (standard input)

)

)

h- request id is laser1-35 (standard input

request id is laser1-36 (standard input

$

The four words memo1, memo2, memo3, and memo4 will be assigned to the variable file

in order, and the run program will be executed with the value of this variable as the

argument. Execution will be just as if you typed in the four commands:

$ run memo1

request id is laser1-33 (standard input)

$ run memo2

request id is laser1-34 (standard input)

$ run memo3

request id is laser1-35 (standard input)

$ run memo4

request id is laser1-36 (standard input)

$

Incidentally, the shell permits filename substitution in the list of words in the for,

meaning that the previous loop could have also been written this way:

for file in memo[1-4]

do

run $file

done

And if you wanted to run all the files in your current directory through run, you

could type

TOR Tae an)

do

CHAPTER 9 ‘Round and ‘Round She Goes

run $file

done

If the file filelist contains a list of the files that you want to run through run, you

can type

files=$(cat filelist)

for file in $files

do

run $file

done

to run each of the files, or, more succinctly,

for file in $(cat filelist)

do

run $file

done

If you found that you were using the run program often to process several files at

once, you could go inside the run program and modify it to allow any number of

files to be passed as arguments to the program.

$ cat run

process files through nroff -- version 2

for file in $*

do

tbl $file | nroff -rom -Tlp | lp

done

Recall that the special shell variable $* stands for all the arguments typed on the
command line. So if you executed the new version of run by typing

run memol memo2 memo3 memo4

the $* in the for’s list would be replaced by the four arguments memo1, memo2, memo3,
and memo4. Of course, you could also type

run memo[1-4]

to achieve the same results.

The for Command 187

The $@ Variable

While we’re on the subject of $*, let’s look at it in a bit more detail. We'll write a
program called args that displays all the arguments typed on the command line, one
per line.

$ cat args

echo Number of arguments passed is $#

for arg in $*

do

echo $arg

done

$

Now to try it:

$ args abc

Number of arguments passed is 3

a

b

Cc

$ args 'ab'c

Number of arguments passed is 2

a

b

c

$

In the second case, even though a b was passed as a single argument to args, the $*

in the for command was replaced by the shell with a b c, which is three words.

Thus the loop was executed three times.

Whereas the shell replaces the value of $* with $1, $2, ..., if you instead use the

special shell variable "$@" it will be replaced with "$1", "$2", The double

quotes are necessary around $@ because without them this variable behaves just

like $*.

Go back to the args program and replace the $* with "$@":

$ cat args

echo Number of arguments passed is $#

for arg in "$@"

do

echo $arg

188 CHAPTER 9 ‘Round and ‘Round She Goes

done

Now try it:

$ args abc

Number of arguments passed is 3

$ args 'ab'c

Number of arguments passed is 2

ab

G

$ args Try it with no arguments

Number of arguments passed is 0

$

In the last case, no arguments were passed to the program. So the variable "$@" was

replaced by nothing. The net result is that the body of the loop was not executed

at all.

The for Without the List

A special notation is recognized by the shell when writing for commands. If you

write

for var

do

command

command

done

(note the absence of the in), the shell automatically sequences through all the argu-
ments typed on the command line, just as if you had written

for var in "$@"

do

command

command

done

The for Command

Here's the third and last version of the args program:

$ cat args

echo Number of arguments passed is $#

for arg

do

echo $arg

done

$ args abc

Number of arguments passed is 3

a

b

Cc

$ args ‘a b'c

Number of arguments passed is 2

ab

Cc

$

The while Command

The second type of looping command to be described in this chapter is the while.

The format of this command is

while command,

do

command

command

done

command, is executed and its exit status tested. If it’s zero, the commands enclosed

between the do and done are executed. Then command, is executed again and its exit

status tested. If it’s zero, the commands enclosed between the do and done are once

again executed. This process continues until command, returns a nonzero exit status.

At that point, execution of the loop is terminated. Execution then proceeds with the

command that follows the done.

Note that the commands between the do and done might never be executed if

command, returns a nonzero exit status the first time it’s executed.

Here’s a program called twhile that simply counts to S:

189

190 CHAPTER 9 ‘Round and ‘Round She Goes

$ cat twhile

i=1

while ["$i" -le 5]

do

echo $i

12$((i-+-1))

done

$ twhile Run it
{

2

3

4

5

$

The variable i is used as the counting variable and is initially set equal to 1. Then

the while loop is entered. It continues execution as long as i is less than or equal to

5. Inside the loop, the value of i is displayed at the terminal. Then it is incremented

by one.

The while loop is often used in conjunction with the shift command to process a

variable number of arguments typed on the command line. The next program, called

prargs, prints each of the command-line arguments one per line.

$ cat prargs

Print command line arguments one per line

while ["$#" -ne @]

do

echo "$1"

shift

done

$ prargs abc

a

b

C

$ prargs 'ab' c

a b

C

$ prargs *

The until Command 191

addresses

intro

lotsaspaces

names

nu

numbers

phonebook

stat

$ prargs No arguments

$

While the number of arguments is not equal to zero, the value of $1 is displayed and

then a shift executed. Recall that this shifts down the variables (that is, $2 to $1, $3

to $2, and so on) and also decrements $#. When the last argument has been

displayed and shifted out, $# will equal zero, at which point execution of the while

will be terminated. Note that if no arguments are given to prargs (as was done in

the last case), the echo and shift are never executed because $# is equal to zero as

soon as the loop is entered.

The until Command

The while command continues execution as long as the command listed after the

while returns a zero exit status. The until command is similar to the while, only it

continues execution as long as the command that follows the until returns a

nonzero exit status. As soon as a zero exit status is returned, the loop is terminated.

Here is the general format of the until:

until command,

do

command

command

done

Like the while, the commands between the do and done might never be executed if

command, returns a zero exit status the first time it’s executed.

The until command is useful for writing programs that wait for a particular event to

occur. For example, suppose that you want to see whether sandy is logged on

because you have to give her something important. You could send her electronic

mail, but you know that she usually doesn’t get around to reading her mail until late

in the day. One approach is to use the on program from Chapter 8, “Decisions,

Decisions,” to see whether sandy’s logged on:

ez, CHAPTER 9 ‘Round and ‘Round She Goes

$ on sandy

sandy is not logged on

$

You could execute this program periodically throughout the day, until sandy eventu-

ally logs on, or you could write your own program to continually check until she

does. Let’s call the program mon and have it take a single argument: the name of the

user you want to monitor. Instead of having the program continually check for that

user logging on, we’ll have it check only once every minute. To do this, you have to

know about a command called sleep that suspends execution of a program for a

specified number of seconds. So the Unix command (this isn’t a shell built-in)

sleep n

suspends execution of the program for n seconds. At the end of that interval, the

program resumes execution where it left off—with the command that immediately

follows the sleep.

$ cat mon

Wait until a specified user logs on

if ["$#" -ne 1]

then

echo "Usage: mon user"

exit 1

fi

user="$1"

Check every minute for user logging on

until who | grep "“$user " > /dev/null

do

sleep 60

done

When we reach this point, the user has logged on

The until Command 193

echo "$user has logged on"

$

After checking that one argument was provided, the program assigns $1 to user.
Then an until loop is entered. This loop will be executed until the exit status
returned by grep is zero; that is, until the specified user logs on. As long as the user

isn’t logged on, the body of the loop—the sleep command—is executed. This

command suspends execution of the program for one minute (60 seconds). At the

end of the minute, the pipeline listed after the until is re-executed and the process
repeated.

When the until loop is exited—signaling that the monitored user has logged on—a

message is displayed at the terminal to that effect.

$ mon sandy Time passes

sandy has logged on

$

Using the program as shown here is not very practical because it ties up your termi-

nal until sandy logs on. A better idea is to run mon in the background so that you can

use your terminal for other work:

$ mon sandy & Run it in the background

[1] 4392 Job number and process id

$ nroff newmemo Do other work

sandy has logged on Happens sometime later

So now you can do other work and the mon program continues executing in the

background until sandy logs on, or until you log off the system.’

Because mon only checks once per minute for the user’s logging on, it won’t hog the

system’s resources while it’s running (an important consideration when submitting

programs to the background for execution).

Unfortunately, after the specified user logs on, there’s a chance you might miss that

one-line message (you may be cating a file and might not even notice it come and

go right off your screen). Also if you’re editing a file with a screen editor such as vi

when the message comes, it may turn your screen into a mess, and you still might

miss the message. A better alternative to writing the message to the terminal might

be to mail it instead. Actually, you can let the user select his or her preference by

adding an option to the program that, if selected, indicates that the message is to be

mailed. If the option is not selected, the message can be displayed at the terminal.

1A your processes are automatically terminated when you log off the system. If you want a program to

continue executing after you've logged off, you can run it with the nohup command, or schedule it to run

with at or from the cron. Consult your Unix User’s Manual for more details.

194 CHAPTER 9 ‘Round and ‘Round She Goes

In the version of mon that follows, a -m option has been added for this purpose:

$ cat mon

Wait until a specified user logs on -- version 2

fi eee Silene ee Ne

then

mailopt=TRUE

shift

else

mailopt=FALSE

nah

Lie [ore a eqhOr 0) ore -Gtele|

then

echo "Usage: mon [-m] user"

echo" -m means to be informed by mail"

exit 1

fi

user="$1"

Check every minute for user logging on

until who | grep "*$user " > /dev/null

do

sleep 60

done

When we reach this point, the user has logged on

if ["$mailopt" = FALSE]

then

echo "$user has logged on"

else

echo "$user has logged on" | mail steve
fal

$

The until Command

The first test checks to see whether the -m option was supplied. If it was, the charac-
ters TRUE are assigned to the variable mailopt, and shift is executed to “shift out”

the first argument (moving the name of the user to be monitored to $1 and decre-

menting $#). If the -m option wasn’t specified as the first argument, the characters

FALSE are assigned to mailopt.

Execution then proceeds as in the previous version. However, this time when the

loop is exited a test is made to see whether the -m option was selected. If it wasn’t,

the message is written to standard output; otherwise, it’s mailed to steve.

$ mon sandy -m

Usage: mon [-m] user

-m means to be informed by mail

$ mon -m sandy &

[1] 5435

$ vi newmemo Work continues

you have mail

$ mail

From steve Wed Aug 28 17:44:46 EDT 2002

sandy has logged on

2d

$

Of course, we could have written mon to accept the -m option as either the first or

second argument, but that goes against the recommended command syntax stan-

dard, which specifies that all options should precede any other types of arguments

on the command line.”

Also note that the old version of mon could have been executed as follows:

$ mon sandy | mail steve &

Pur ss22

$

to achieve the same net result as adding the -m option.

Two last points before leaving the discussion of mon: First, you'll probably always

want to run this program in the background. It would be nice if mon itself could take

care of that. Later you’ll see how to do it.

~ 2The command syntax standard consists of a set of rules as outlined in the Utility Argument Syntax section

of the POSIX standard.

196 CHAPTER 9 ‘Round and ‘Round She Goes

Second, the program always sends mail to steve; not very nice if someone else wants

to run it. A better way is to determine the user running the program and then send

him or her the mail if the -m option is selected. But how do you do that? One way is

to execute the who command with the am i options and get the user name that

comes back. This tells you who’s logged on to the terminal that the program was run

from. You can then use cut to extract the username from who’s output and use that

name as the recipient of the mail. All this can be done in the last if command of

mon if it’s changed to read as shown:

if | “$#" eq 1]
then

echo "$user has logged on"

else

runner=$(who am i | cut -c1-8)

echo "$user has logged on" | mail $runner

fi

Now the program can be run by anyone, and the mail will be properly sent.

More on Loops

Breaking Out of a Loop

Sometimes you may want to make an immediate exit from a loop. To just exit from

the loop (and not from the program), you can use the break command, whose

format is simply

break

When the break is executed, control is sent immediately out of the loop, where
execution then continues as normal with the command that follows the done.

The Unix command true serves no purpose but to return an exit status of zero. The
command false also does nothing but return a nonzero exit status. If you write

while true

do

done

the while loop will theoretically be executed forever because true always returns a
zero exit status. By the way, the : command also does nothing but return a zero exit
status, so an “infinite” loop can also be set up with

More on Loops

while :

do

done

Because false always returns a nonzero exit status, the loop

until false

do

done

will theoretically execute forever.

The break command is often used to exit from these sorts of infinite loops, usually

when some error condition or the end of processing is detected:

while true

do

cmd=$(getcmd)

if ["$cmd" = quit]

then

break

else

processcmd "$cmd"

fa

done

Here the while loop will continue to execute the getcmd and processcmd programs

until cmd is equal to quit. At that point, the break command will be executed, thus

causing the loop to be exited.

If the break command is used in the form

break n

the n innermost loops are immediately exited, so in

for file

do

while ["$count" -1t 10]

do

197

198 CHAPTER 9 ‘Round and ‘Round She Goes

te (eat eo

then

break 2

fel

done

done

both the while and the for loops will be exited if error is nonnull.

Skipping the Remaining Commands in a Loop

The continue command is similar to break, only it doesn’t cause the loop to be

exited, merely the remaining commands in the loop to be skipped. Execution of the

loop then continues as normal. Like the break, an optional number can follow the

continue, so

continue n

causes the commands in the innermost n loops to be skipped; but execution of the

loops then continues as normal.

for file

do

fe emote]

then

echo "$file not found! "

continue

iat

Process the file

done

Each value of file is checked to make sure that the file exists. If it doesn’t, a message
is printed, and further processing of the file is skipped. Execution of the loop then
continues with the next value in the list. Note that the preceding example is equiva-
lent to writing

for file

do

ae |b gh Ge WG spalsies!

More on Loops

then

echo "$file not found!"

else

Process the file

fal

done

Executing a Loop in the Background

An entire loop can be sent to the background for execution simply by placing an

ampersand after the done:

$ for file in memo[1-4]

> do

> run $file

> done & Send it to the background

[1] 9932

$

request id is laser1-85 (standard input)

request id is laser1-87 (standard input)

request id is laser1-88 (standard input)

request id is laser1-92 (standard input)

1/O Redirection on a Loop

You can also perform I/O redirection on the entire loop. Input redirected into the

loop applies to all commands in the loop that read their data from standard input.

Output redirected from the loop to a file applies to all commands in the loop that

write to standard output:

CS Gio)peble ety) Sled eh

> do

> echo $i

> done > loopout Redirect loop’s output to loopout

$ cat loopout
{

A BW PP

1)

200 CHAPTER 9 ‘Round and ‘Round She Goes

You can override redirection of the entire loop’s input or output by explicitly redi-

recting the input and/or output of commands inside the loop. To force input or

output of a command to come from or go to the terminal, use the fact that /dev/tty

always refers to your terminal. In the following loop, the echo command's output is

explicitly redirected to the terminal to override the global output redirection applied

to the loop:

for file

do

echo "Processing file $file" > /dev/tty

done > output

echo’s output is redirected to the terminal while the rest goes to the file output.

Naturally, you can also redirect the standard error output from a loop, simply by

tacking on a 2> file after the done:

while ["$endofdata" -ne TRUE]

do

done 2> errors

Here output from all commands in the loop writing to standard error will be redi-

rected to the file errors.

Piping Data Into and Out of a Loop

A command's output can be piped into a loop, and the entire output from a loop

can be piped into another command in the expected manner. Here’s a highly manu-

factured example of the output from a for command piped into we:

Safon iene ie2ica4

> do

> echo $i

> done | we -1

4

$

Typing a Loop on One Line

If you find yourself frequently executing loops directly at the terminal, you'll want
to use the following shorthand notation to type the entire loop on a single line: Put
a semicolon after the last item in the list and one after each command in the loop.
Don’t put a semicolon after the do.

The getopts Command 201

Following these rules, the loop

ile ak ay al Bose

do

echo $i

done

becomes

for iin 1 2 3 4; do echo $i; done

And you can type it in directly this way:

$ for i in 1 2 3 4; do echo $i; done

1

ff

The same rules apply to while and until loops.

if commands can also be typed on the same line using a similar format:

$ if [1 = 1]; then echo yes; fi

yes

$ if [1 = 2]; then echo yes; else echo no; fi

no

$

Note that no semicolons appear after the then and the else.

The getopts Command

Let’s extend our mon program further. We’ll add a -t option to it that specifies the

time interval, in seconds, to perform the check. Now our mon program takes both -m

and -t options. We'll allow it to take these options in any order on the command

line, provided that if they are used, they appear before the name of the user that

we’re monitoring. So valid mon command lines look like this:

mon ann

mon -m ann

mon -t 60@ ann

mon -m -t 600 ann

mon -t 6@@ -m ann

202 CHAPTER 9 ‘Round and ‘Round She Goes

and invalid ones look like this:

mon Missing user name

mon -t6@@ ann Need a space after -t

mon ann -m Options must appear first

mon -t ann Missing argument after -t

If you start writing the code to allow this sort of flexibility on the command line,

you will soon discover that it can start to get a bit complex. Luckily, the shell

provides a built-in command called getopts that exists for the express purpose of

processing command-line arguments. The general format of the command is

getopts options variable

The getopts command is designed to be executed inside a loop. Each time through

the loop, getopts examines the next command line argument and determines

whether it is a valid option. This determination is made by checking to see whether

the argument begins with a minus sign and is followed by any single letter

contained inside options. If it does, getopts stores the matching option letter inside

the specified variable and returns a zero exit status.

If the letter that follows the minus sign is not listed in options, getopts stores a ques-

tion mark inside variable before returning with a zero exit status. It also writes an

error message to standard error.

If no more arguments are left on the command line or if the next argument doesn’t

begin with a minus sign, getopts returns a nonzero exit status.

Suppose that you want getopts to recognize the options -a, -i, and -r fora

command called foo. Your getopts call might look like this:

getopts air option

Here the first argument—air—specifies the three acceptable options to the
command, and option specifies the variable that getopts will use as previously
described.

The getopts command permits options to be “stacked” together on the command
line. This is done by following a single minus sign with one or more consecutive
options letters. For example, our foo command can be executed like this:

foo -a -r -i

or like this:

foo -ari

using this stacking feature.

The getopts Command 203

The getopts command also handles the case where an option must be followed by

an argument. For example, the new -t option to be added to the mon command

requires a following argument. To handle options that take arguments, getopts

requires that at least one whitespace character separate the option from the argu-

ment. Furthermore, such options cannot be stacked.

To indicate to getopts that an option takes a following argument, you write a colon

character after the option letter on the getopts command line. So our mon program,

which takes -m and -t options, should call getopts like this:

getopts mt: option

If getopts doesn’t find an argument after an option that requires one, it stores a

question mark inside the specified variable and writes an error message to standard

error. Otherwise, it stores the actual argument inside a special variable called OPTARG.

One final note about getopts: Another special variable called OPTIND is used by the

command. This variable is initially set to one and is updated each time getopts

returns to reflect the number of the next command-line argument to be processed.

Here is the third version of mon that uses the getopts command to process the

command-line arguments. It also incorporates the previously noted change to send

mail to the user running the program.

$ cat mon

Wait until a specified user logs on -- version 3

Set up default values

mailopt=FALSE

interval=60

process command options

while getopts mt: option

do

case "$option"

in

m) mailopt=TRUE; ;

t) interval=$OPTARG; ;

\?) echo "Usage: mon [-m] [-t n] user"

echo " -m means to be informed by mail"

echo " -t means check every n secs."

204 CHAPTER 9 ‘Round and ‘Round She Goes

exaitieniisi

esac

done

Make sure a user name was specified

if ["$OPTIND" -gt "$#"]

then

echo "Missing user name!"

exit 2

fiat

shiftcount=$((OPTIND - 1))

shift $shiftcount

user=$1

Check for user logging on

until who | grep "*$user " > /dev/null

do

sleep $interval

done

When we reach this point, the user has logged on

if ["$mailopt" = FALSE]

then

echo "$user has logged on"

else

runner=$(who am i | cut -c1-8)

echo "$user has logged on" | mail $runner

iil

$ mon -m

Missing user name!

$ mon -x fred Illegal option
mon: illegal option -- x

Exercises 205

Usage: mon [-m] [-t n] user

-m means to be informed by mail

-t means check every n secs.

$ mon -m -t 600 ann & Check every 10 min. for ann
{1] 5792

$

When the line

mon -m -t 60@ ann &

is executed, the following occurs inside the while loop in mon: getopts is executed,

and it stores the character m inside the variable option, sets OPTIND to two, and

returns a zero exit status. The case command is then executed to determine what

was stored inside option. A match on the character m indicates that the “send mail”

option was selected, so mailopt is set to TRUE. (Note that the ? inside the case is

quoted. This is to remove its special meaning as a pattern-matching character from

the shell.)

The second time getopts is executed, getopts stores the character t inside option,

stores the next command-line argument (600) inside OPTARG, sets OPTIND to three,

and returns a zero exit status. The case command then matches the character t

stored inside option. The code associated with that case copies the value of 600 that

was stored in OPTARG into the variable interval.

The third time getopts is executed, getopts returns a nonzero exit status, indicating

the end of options. The program then checks the value of OPTIND against $# to make

sure that the username was typed on the command line. If OPTIND is greater than $#,

then no more arguments remain on the command line and the user forgot the user-

name argument. Otherwise, the shift command is executed to move the username

argument into $1. The actual number of places to shift is one less than the value of

OPTIND.

The rest of the mon program remains as before; the only change is the use of the

interval variable to specify the number of seconds to sleep.

Exercises

1. Modify the prargs program to precede each argument by its number. So typing

prargs a 'bc' d

should give the following output:

206 CHAPTER 9 ‘Round and ‘Round She Goes

2. Modify the mon program to also print the tty number that the user logs on to.

That is, the output should say

sandy logged onto tty13

if sandy logs on to tty13.

. Adda -f option to mon to have it periodically check for the existence of a file

(ordinary file or directory) instead of for a user logging on. So typing

mon -f /usr/spool/uucppublic/steve/newmemo &

should cause mon to periodically check for the existence of the indicated file

and inform you when it does (by displaying a message or by mail if the -m

option is also selected).

. Add a -n option to mon that inverts the monitoring function. So

mon -n sandy

checks for sandy logging off the system, and

mon -n -f /tmp/dataout &

periodically checks for the removal of the specified file.

. Write a program called collect that runs in the background and counts the

number of users logged in at the end of each interval and also the number of

processes run during that interval. Allow the interval to be specified with a -t

option (see the previous exercise), with the default 10 minutes. Use the fact

that the special shell variable $! is set to the process number of the last

command executed in the background and that

ac

runs a null command in the background. Also make sure that the program
correctly handles the case where the process number loops back around to 1
after the maximum is reached.

So

collect -t 900 > stats &

should start up collect to gather the desired statistics every 15 minutes and
write them into the file stats.

Exercises 207

6. Write a shell program called wgrep that searches a file for a given pattern, just

as grep does. For each line in the file that matches, print a “window” around

the matching line. That is, print the line preceding the match, the matching

line, and the line following the match. Be sure to properly handle the special

cases where the pattern matches the first line of the file and where the pattern

matches the last line of the file.

7. Modify wgrep to take an optional -w option that specifies the window size; so

wgrep -w 3 UNIX text

should print three lines before and after each line from text that contains the

pattern UNIX.

8. Modify wgrep to take a variable number of filenames as arguments. Precede

each output line with the name of the file in which the match occurs (as grep

does).

(‘=m AP gts tet Wie:

ies ee es ee, whl Pua Hi) a2) et ho ae é

7. eee

ee

ii!) co@ey OG A Agi» wiw@y eeigt

hem ny lth, Pini eign att ofS il all Gam
Ah U cites: 61 viia ae ealad | Lip Old GUM Ao al

er ee en Preah 0) rpg
inet taty mane im ra ul yj oe ariel a a Reg

: thet hi wl fae Gt

ag a yMie = " : se ee 4 re rap eu as
“eer Foye rg

et? 2 any Mery iy ' - ~~ ithe Geet! ll) exh
| wo = ¢ x, vie

Lel\s mame)

~ lem a M 4
'-uee d= er Sy

DD ye oemrwiesme & relkgeon aking © CO

- Bo 6s ny Fare gt,

—, -_

_ e - : = =e

o *, 7 cine

: “oo TY gutted a ee Oana
ae CN Be s Ve 1s WSs av

7 ; : oe © me fs gunn ee 7

De <= yyltes 10 GES

- =7)6

‘ =>? e

=

6 |e 4 Le =p

: o

T 0 | IN THIS CHAPTER

e The read Command

Reading and > ,
: - e The printf Command

Printing Data | -txerises

lf this chapter you'll learn how to read data from the

terminal or from a file using the read command and how

to print formatted data to standard output using the printf

command.

The read Command

The general format of the read command is

read variables

When this command is executed, the shell reads a line from

standard input and assigns the first word read to the first

variable listed in variables, the second word read to the

second variable, and so on. If there are more words on the

line than there are variables listed, the excess words get

assigned to the last variable. So for example, the command

read x y

reads a line from standard input, storing the first word

read in the variable x, and the remainder of the line in the

variable y. It follows from this that the command

read text

reads and stores an entire line into the shell! variable text.

A Program to Copy Files

Let’s put the read command to work. We'll write a simpli-

fied version of the cp command that will be a bit more

user friendly than the standard Unix one. We'll call it

210 CHAPTER 10 Reading and Printing Data

mycp, and we'll have it take two arguments: the source file and the destination file. If

the destination file already exists, we’ll tell the user and then ask him (or her) if he

wants to proceed with the copy. If the answer is “yes,” we’ll go ahead with it; other-

wise, we won't.

$ cat mycp

Copy a file

if [| “$#" -ne 2]

then

echo "Usage: mycp from to"

exited

fi

from="$1"
10 ued)

See if the destination file already exists

fi ee Sto |
then

echo "$to already exists; overwrite (yes/no) ?"

read answer

if ["$answer" != yes]

then

echo "Copy not performed"

exit 0

ial

fal

Either destination doesn't exist or "yes" was typed

cp $from $to # proceed with the copy

$

The read Command

And now for the test:

$ 1s What files are around?
addresses

intro

lotsaspaces

mycp

names

nu

numbers

phonebook

stat

$ mycp No arguments

Usage: mycp from to

$ mycp names names2 Make a copy of names

$ 1s -1 names* Did it work?

-PW-P--P-- 1 steve steve 43 Jul 20 11:12 names

-PW-P--P-- 1 steve steve 43 Jul 21 14:16 names2

$ mycp names numbers Try to overwrite an existing file

numbers already exists; overwrite (yes/no)?

no

Copy not performed

$

To complete the test cases, try answering yes and ensuring that the program proceeds

with the copy.

There are a few things worthy of mention with the mycp program. First, if the file

already exists, the echo command that prompts for the yes/no response is executed.

The read command that follows causes the shell to wait for you to type something

in. Note that the shell does not prompt you when it’s waiting for you to enter data;

it’s up to you to add your own prompt message to the program.

The data that is typed is stored in the variable answer and is then tested against the

characters “yes” to determine whether the copy is to proceed. The quotes around

answer in the test

["$answer" != yes]

are necessary in case the user just presses the Enter key without typing any data. In

that case, the shell would store a null value in answer, and test would issue an error

message if the quotes were omitted.

al

212 CHAPTER 10 Reading and Printing Data

Special echo Escape Characters

A slight annoyance with mycp is that after the echo command is executed to alert the

user that the file already exists, the response that is typed by the user appears on the

next line. This happens because the echo command always automatically displays a

terminating newline character after the last argument.

This can be suppressed if the last two characters given to echo are the special escape

characters \c. This tells echo to leave the cursor right where it is after displaying the

last argument and not to go to the next line. So if you changed the echo command

in mycp to read like this:

echo "$to already exists; overwrite (yes/no)? \c"

the user’s input would be typed right after the message on the same line. Bear in

mind that the \c is interpreted by echo and not by the shell, meaning that it must

be quoted so that the backslash makes it to echo.

echo interprets other special characters. These must each be preceded by a backslash.

They’re summarized in Table 10.1.

TABLE 10.1 echo Escape Characters

Character Prints

\b Backspace

\c The line without a terminating newline

\f Formfeed

\n Newline

\r Carriage return

Nic Tab character

\\ Backslash character

\@nnn The character whose ASCII value is nnn, where nnn is a one- to three-digit octal

number

An Improved Version of mycp

Suppose that you have a program called prog1 in your current directory and you
want to copy it into your bin directory directly below. Take another look at the mycp
program and determine what happens if you type in

mycp prog1 bin

The -e test on bin will succeed (because -e tests for existence of a file), and mycp will
display the “already exists” message and wait for a yes/no answer.

The read Command 213

If the second argument is a directory, mycp should check to see whether the from file
exists inside this directory. The next version of mycp performs this check. It also has

the modified echo command that includes the \c to suppress the terminating

newline.

$ cat mycp

Copy a file -- version 2

$

Iifiele biomes can

then

echo "Usage: mycp from to"

exit 1

fa

from="$1"
to="$2 u

See if destination file is a directory

if it <d “$to* j
then

to="$to/$(basename $from) "

(fia!

See if the destination file already exists

ities CusStOs |

then

echo "$to already exists; overwrite (yes/no)? \c"

read answer

if ["$answer" != yes]

then

echo "Copy not performed"

exit 0

fi

fi

214 CHAPTER 10 Reading and Printing Data

Either destination doesn't exist or ''yes'' was typed

cp $from $to # proceed with the copy

$

If the destination file is a directory, the program changes the variable to to more

precisely identify the file inside the directory as $to/$(basename $from). This ensures

that the following test on the existence of the ordinary file $to will be done on the

file in the directory, not on the directory itself as the previous version of mycp did.

The basename command gives the base filename of its argument (for example,

basename /usr/bin/troff gives troff; basename troff gives troff). This ensures

that the copy is made to the correct place. (For example, if mycp /tmp/data bin is

typed, where bin is a directory, you want to copy /tmp/data into bin/data and not

into bin/tmp/data.)

Here’s some sample output. Note the effect of the \c escape characters.

$ ls Check out current directory

bin

prog

$ 1s bin Look inside bin

lu

nu

prog1

$ mycp progi prog2 Simple case

$ mycp prog1 bin Copy into directory

bin/prog1 already exists; overwrite (yes/no)? yes

$

A Final Version of mycp

The last modification to mycp makes the program virtually equivalent to the standard
Unix cp command by allowing a variable number of arguments. Recall that any
number of files can precede the name of a directory, as in

cp progi prog2 greetings bin

To modify mycp to accept any number of files, you can use this approach:

1. Get each argument but the last from the command line and store it in the shell
variable filelist. ;

The read Command

2. Store the last argument in the variable to.

3. If $to is not a directory, there must be exactly two arguments

4. For each file in $filelist, check whether the file already exists. If it does, ask

the user whether the file should be overwritten. If the answer is “yes,” or if the

file doesn’t already exist, add the file to the variable copylist.

5. If copylist is nonnull, copy the files in it to $to.

If this algorithm seems a bit fuzzy, perhaps the program, followed by a detailed

explanation, will help clear things up. Note the modified command usage message.

$ cat mycp

Copy a file -- final version

numargs=$# # save this for later use

filelist=

copylist=

Process the arguments, storing all but the last in filelist

while ["$#" -gt 1]
do

filelist="$filelist $1"

shift

done

£O= $4 "

If less than two args, or if more than two args and last arg

is not a directory, then issue an error message

if ["$numargs" -1t 2 -o “$numargs" -gt 2 -a ! -d “$to" |

then

echo "Usage: mycp file1 file2"

echo " mycp file(s) dir"

exit 1

at

215

CHAPTER 10 Reading and Printing Data

Sequence through each file in filelist

for from in $filelist

do

See if destination file is a directory

nae fl stel Meio)

then

tofile="$to/$(basename $from) "

else

tofile="$to"

fi

Add file to copylist if file doesn't already exist

or if user says it's okay to overwrite

Life leces socOn lel]

then

echo "$tofile already exists; overwrite (yes/no)? \c"

read answer

if ["$answer" = yes]

then

copylist="$copylist $from"

ial

else

copylist="$copylist $from"

fi

done

Now do the copy -- first make sure there's something to copy

if [-n "$copylist"]

then

cp $copylist $to # proceed with the copy
iia

$

The read Command

Let's look at some sample output before getting into the explanation.

$ 1s

bin

lu

names

prog 1

prog2

$ ls bin

lu

nu

prog1

$ mycp

Usage:

$ mycp

Usage:

$ mycp

mycp file1 file2

mycp file(s) dir

names prog1 prog2

mycp filet file2

mycp file(s) dir

names prog1 prog2 lu bin

See what’s around

And what’s in bin?

No arguments

Last arg isn’t a directory

Legitimate use

bin/prog1 already exists; overwrite (yes/no)? yes

bin/lu already exists; overwrite (yes/no)? no

$ ls -1 bin

total 5

[e= = rw:
-rw-
we
-rw-
-rw- ee OD ae: | AED ' ' ' ' Phi Td: Mee oo ane. ' ' ' ' ' ' ' ' ' ' ek eak Eee oak yee

steve

steve

steve

steve

steve

steve

steve

steve

steve

steve

See what happened

543 Jul 19 14:10 lu

949 Jul 21 17:11 names

38 Jul 19 09:55 nu

498 Jul 21 17:11 progt

498 Jul 21 17:11 prog2

In the last case, prog1 was overwritten and lu wasn’t, as per the user’s request.

When the program starts execution, it saves the number of arguments in the variable

numargs. This is done because it’s changed later in the program by the shift

command.

Next a loop is entered that is executed as long as the number of arguments is greater

than one. The purpose of this loop is to get the last argument on the line. While

doing this, the loop stashes away the first argument into the shell variable filelist,

which contains a list of all the files to be copied. The statement

filelist="$filelist $1"

P2\\7L

218 CHAPTER 10 Reading and Printing Data

says to take the previous value of filelist, add on a space followed by the value of

$1, and then store the result back into filelist. Then the shift command is

executed to “move” all the arguments over by one. Eventually, $# will be equal to

one, and the loop will be exited. At that point, filelist will contain a space-

delimited list of all the files to be copied, and $1 will contain the last argument,

which is the destination file (or directory). To see how this works, consider execution

of the while loop when the command is executed as

mycp names prog1 prog2 lu bin

Figure 10.1 depicts the changing values of the variables through each iteration of the

loop. The first line shows the state of the variables before the loop is entered.

$# $1 $2 $3 $4 $5 filelist

5 mames prog1 prog2 lu bin null

4 prog1 prog2 lu bin names

3 prog2 lu bin names prog

2a Lu bin names prog1 prog2

i aay names prog1 prog2 lu

FIGURE 10.1 Processing command-line arguments.

After the loop is exited, the last argument contained in $1 is stored in the variable

to. Next, a test is made to ensure that at least two arguments were typed on the

command line and if more than two were typed, that the last argument is a direc-

tory. If either condition isn’t satisfied, usage information is displayed to the user, and

the program exits with a status of 1.

Following this, a for loop is entered for the purpose of individually examining each

file in the list to see whether it already exists. If it does, the user is prompted as

before. If the user wants to overwrite the file, or if the file doesn’t already exist, the

file is added to the shell variable copylist. The technique used here is the same used

to accumulate the arguments inside filelist.

When the for loop is exited, copylist contains a list of all the files to be copied.
This list can be null if each of the destination files exists and the user types “no” for
each one. So a test is made to ensure copylist is nonnull, and if it is, the copy is
performed.

Take some time to review the logic of the final version of mycp; it does a good job at
illustrating many of the features you’ve learned so far in this book. Some exercises at
the end of this chapter will help test your understanding of this program.

The read Command 219

A Menu-Driven Phone Program

One nice thing about the read command is that it enables you to write menu-driven

shell programs. As an example, we’ll return to our phone book programs add, lu, and

rem and gather their execution together under one program, which we'll call rolo

(for rolodex program). rolo will display a list of choices to the user and then execute

the appropriate program depending on the selection. It will also prompt for the

proper arguments to the program. Here, then, is the program:

$ cat rolo

=

rolo - rolodex program to look up, add, and

remove people from the phone book

Display menu

echo '

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): \c'

Read and process selection

read choice

echo

case "$choice"

in

1) echo "Enter name to look up: \c"

read name

lu "$name"; ;

2) echo "Enter name to be added: \c"

read name

echo "Enter number: \c"

read number

220 CHAPTER 10 Reading and Printing Data

add "$name" "$number"; ;

3) echo "Enter name to be removed: \c

read name

rem "$name"; ;

*) echo "Bad choice";;

A single echo command is used to display the menu at the terminal, taking advan-

tage of the fact that the quotes preserve the embedded newline characters. Then the

read command is executed to get the selection from the user and store it in the vari-

able choice.

A case statement is next entered to determine what choice was made. If choice 1

was selected, the user wants to look up someone in the phone book. In that case, the

user is asked to enter the name to be looked up, and the lu program is called,

passing it the name typed in by the user as the argument. Note that the double

quotes around name in

lu "$name"

are necessary to ensure that two or more words typed in by the user are handed over

to lu as a single argument.

A similar sequence occurs if the user selects menu items 2 or 3.

The programs lu, rem, and add are from earlier chapters (lu is from page 137 rem

from page 167, and add from page 138).

Here are some sample runs of rolo:

$ rolo

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 2

Enter name to be added: El Coyote

Enter number: 212-555-3232

$ rolo Try it again

Would you like to:

The read Command

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 1

Enter name to look up: Coyote

El Coyote 212-555-3232

$ rolo Once again

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 4

Bad choice

$

When an invalid choice is entered, the program simply displays Bad choice and then

terminates. A friendlier approach would be to reprompt the user until a proper

choice is made. This can be done by enclosing the entire program inside an until

loop that will be executed until a valid selection is made. To determine when a valid

choice has been made, we can test a variable in the until that won’t be assigned a

value in the program until either 1, 2, or 3 is selected by the user.

Another change to make to rolo involves the way it will be used. Because the most

common operation performed will be one of lookup, there will probably be a

tendency on the part of the user to avoid typing rolo, then making selection 1, and

then typing the name to be found when instead he or she can still type in

lu name —

directly. Given all this, it might be a good idea to allow rolo to take command-line

arguments. If any arguments are typed, rolo can assume that a lookup is being

requested and just call 1u directly. So if the user wants to perform a quick lookup, he

or she can type rolo followed by the name. On the other hand, if the user wants to

see the menu, typing just rolo causes the program to dispiay its menu and prompt

for a choice.

The preceding two changes (looping until a valid choice is selected and doing a

quick lookup) were added to version 2 of rolo that is shown next.

221

222 CHAPTER 10 Reading and Printing Data

$ cat rolo

rolo - rolodex program to look up, add, and

remove people from the phone book -- version 2

If arguments are supplied, then do a lookup

if ["S#" -ne Q@]

then
lu "$a"

exit

fi

validchoice="" # set it null

Loop until a valid selection is made

until [-n "$validchoice" }

do

Display menu

echo '

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): \c'

Read and process selection

read choice

The read Command

echo

case "$choice"

in

1) echo "Enter name to look up: \c"

read name

lu "$name"

Validchoice=TRUE; ;

2) echo "Enter name to be added: \c"

read name

echo "Enter number: \c"

read number

add "$name" "$number"

validchoice=TRUE; ;

3) echo "Enter name to be removed: \c"

read name

rem "$name"

validchoice=TRUE; ;

*) echo "Bad choice";;

esac

If $# is nonzero, 1u is called directly with the arguments typed on the command

line. Then the program exits. Otherwise, the until loop is executed until the vari-

able validchoice is nonnull. The only way it can ever become nonnull is if the

command

validchoice=TRUE

is executed inside the case on selection of either 1, 2, or 3. Otherwise, the program

continues to loop until one of these three choices is made.

$ rolo Bill Quick lookup

Billy Bach 201-555-7618

$ rolo Let’s have the menu this time

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 4

Bad choice

223

224 CHAPTER 10 Reading and Printing Data

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): @

Bad choice

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 1

Enter name to look up: Tony

Tony Iannino 973-555-1295

$

The $$ Variable and Temporary Files

If two or more people on your system use the rolo program at the same time, a

potential problem may occur. Look at the rem program and see whether you can spot

it. The problem occurs with the temporary file /tmp/phonebook that is used to create

a new version of the phone book file.

grep -v "$name" phonebook > /tmp/phonebook

mv /tmp/phonebook phonebook

If more than one person uses rolo to remove an entry at the same time, there’s a

chance that the phone book file can get messed up because the same temporary file

will be used by all rolo users.' Naturally, the chances of this happening (that is, the

preceding two commands being executed at the same time by more than one user)

are rather small, but, nevertheless there still is that chance. Anyway, it brings up an

important point when dealing with temporary files in general.

‘Actually, it depends on the users’ default file creation mask (known as umask). If one person has created
/tmp/ phonebook and it’s not writable by anyone else, the next person who comes along and tries to create
it will get an error message from the shell. The net result is that the first user’s file will get properly updated,
and the second user’s won't; neither file will get corrupted.

The read Command 225

When writing shell programs to be run by more than one person, make your tempo-
rary files unique. One way is to create the temporary file in the user’s home direc-
tory, for example. Another way is to choose a temporary filename that will be

unique for that particular process. To do this, you can use the special $$ shell vari-

able, which contains the process id number (PID) of the current process:

$ echo $$

4668

$ ps

PID TTY TIME COMMAND

4668 co 0:09 sh

6470 co 0:03 ps

As you can see, $$ is equal to the process id number of your login shell. Because each

process on the Unix system is given a unique process id number, using the value of

$$ in the name of a file minimizes the possibility of another process using the same

file. So you can replace the two lines from rem with these

grep -v "$name" phonebook > /tmp/phonebook$$

mv /tmp/phonebook$$ phonebook

to circumvent any potential problems. Each person running rolo will run it as a

different process, so the temporary file used in each case will be different.

The Exit Status from read

read always returns an exit status of zero unless an end of file condition is detected

on the input. If the data is coming from the terminal, this means that Ctrl+d has

been typed. If the data is coming from a file, it means that there’s no more data to

read from the file.

Knowing about the exit status returned by read makes it easy to write a loop that

will read any number of lines of data from a file or from the terminal. The next

program, called addi, reads in lines containing pairs of integers. Each pair of

numbers is summed, and the result written to standard output.

$ cat addi

add pairs of integers on standard input

226 CHAPTER 10 Reading and Printing Data

while read n1 n2

do

echo $((n1 + n2))

done

$

The while loop is executed as long as the read command returns an exit status of

zero; that is, as long as there’s still data to be read. Inside the loop, the two values

read from the line (presumably integers—no error checking is done here) are

summed and the result written to standard output by echo.

$ addi

10 25

35

-5 12

7

12353

126

Ctrl+d

$

It goes without saying that standard input for addi can be redirected, as can standard

output:

$ cat data

1234 7960

593 -595

395 304

3234 999

-394 -493

$ addi < data > sums

$ cat sums

9194

The following program, called number, is a simplified version of the standard Unix nl
command: It takes one or more files given as arguments and displays them preceded
by line numbers. If no arguments are supplied, it uses standard input instead.

$ cat number

The read Command

Number lines from files given as argument or from

standard input if none supplied

lineno=1

cat $* |

while read line

do

echo "$lineno: $line"

lineno=$((lineno + 1))

done

The variable lineno—the line number count—is initially set to 1. Then the argu-

ments typed to number are given to cat to be collectively written to standard output.

If no arguments are supplied, $* will be null, and cat will be passed no arguments.

This will cause it to read from standard input.

The output from cat is piped into the while loop. For each line read by read, the

line is echoed at the terminal, preceded by the value of lineno, whose value is then

incremented by one.

$ number phonebook

1: Alice Chebba 973-555-2015

2: Barbara Swingle 201-555-9257

3: Billy Bach 201-555-7618

4: El Coyote 212-555 -3232

5: Liz Stachiw 212-555-2298

6: Susan Goldberg 201-555-7776

7: Teri Zak 201-555-6000

8: Tony Iannino 973-555-1295

$ who | number Try from standard input

1: root console Jul 25 97:55

2: pat tty03 Jul 25 09:26

3: steve ttydo4 Jul 25 10:58

4: george tty13 Jul 25 08:05

$

Note that number won’t work too well for lines that contain backslashes or leading

whitespace characters. The following example illustrates this point.

$ number

Here are some backslashes: \ *

1: Here are some backslashes: *

227

228 CHAPTER 10 Reading and Printing Data

$

Leading whitespace characters are removed from any line that’s read. The backslash

characters are also interpreted by the shell when it reads the line. You can use the -r

option to read to prevent it from interpreting the backslash character. If we

change the

while read line

in number to

while read -r line

the output will look better:

$ number

Here are some backslashes: \ *

1: Here are some backslashes: \ *

$

In Chapter 12, “More on Parameters,” you'll learn how to preserve the leading

whitespace characters and also how to have some control over the parsing of the

input data.

The printf Command

Although echo is adequate for displaying simple messages, sometimes you'll want to

print formatted output: for example, lining up columns of data. Unix systems provide

the printf command. Those of you familiar with the C programming language will

notice many similarities.

The general format of the printf command is

printf “format” arg] arg2 ...

where format is a string that describes how the remaining arguments are to be
displayed. (Note that the format string is a single argument, so it’s a good idea to get
into the habit of enclosing it in quotes because it often contains whitespace.)
Characters in the format string that are not preceded by a percent sign (%) are
written to standard output. One or more characters preceded by a percent sign are
called conversion specifications and tell printf how the corresponding argument
should be displayed. So, for each percent sign in the format string there should be a
corresponding argument, except for the special conversion specification %%, which
causes a single percent sign to be displayed.

The printf Command

Here’s a simple example of printf:

$ printf "This is a number: %d\n" 10

This is a number: 10

$

printf doesn’t add a newline character to its output like echo; however, printf

understands the same escape characters that echo does (refer to Table 10.1 earlier in

this chapter), so adding \n to the end of the format string causes the prompt to

appear on the next line.

Although this is a simple case that could easily be handled by echo, it helps to illus-

trate how the conversion specification (%d) is interpreted by printf: When the

format string is scanned by printf, it outputs each character in the string without

modification until it sees the percent sign; then it reads the d and recognizes that the

%d should be replaced by the next argument, which must be an integer number. After

that argument (10) is sent to standard output, printf sees the \n and outputs a

newline.

Table 10.2 summarizes the different conversion specification characters.

TABLE 10.2 printf Conversion Specification Characters

Character Use for Printing

Integers

Unsigned integers

Octal integers

Hexadecimal integers, using a-f

Hexadecimal integers, using A-F

Single characters

Literal strings

ow TT Oe) ops toe Ke fol Strings containing backslash escape characters

oe Percent signs

The first five conversion specification characters are all used for displaying integers.

%d displays signed integers, and %u displays unsigned integers; su can also be used to

display the positive representation of a negative number (note that the result is

machine dependent). By default, integers displayed as octal or hexadecimal numbers

do not have a leading 0 or @x, but we’ll show you how to enable this later in this

section.

Strings are printed using %s or %b. %s is used to print strings literally, without any

processing of backslash escape characters; %b is used to force interpretation of the

backslash escape characters in the string argument.

29

230 CHAPTER 10 Reading and Printing Data

Here are a few printf examples:

$ printf "The octal value for %d is %o0\n" 20 20

The octal value for 20 is 24

$ printf "The hexadecimal value for %d is %x\n" 30 30

The hexadecimal value for 3@ is le

$ printf "The unsigned value for %d is %u\n" -1000 -1000

The unsigned value for -1000 is 4294966296

$ printf "This string contains a backslash escape: %s\n" "test\nstring"

This string contains a backslash escape: test\nstring

$ printf "This string contains an interpreted escape: %b\n" “test\nstring"

This string contains an interpreted escape: test string

$ printf "A string: %s and a character: %c\n" hello A

A string: hello and a character: A

$

In the last printf, %c is used to display a single character. If the corresponding argu-

ment is longer than one character, only the first is displayed:

$ printf "Just the first character: %c\n" abc

a

$

The general format of a conversion specification is

%|[flags] [width] [.precision] type

The type is the conversion specification character from Table 10.2. As you can see,

only the percent sign and type are required; the other parameters are called modifiers

and are optional. Valid flags are -, +, #, and the space character. - left justifies the

value being printed; this will make more sense when we discuss the width modifier.
+ causes printf to precede integers with a + or - sign (by default, only negative inte-
gers are printed with a sign). # causes printf to precede octal integers with @ and
hexadecimal integers with @x or OX for %#x or %#X, respectively. The space character
causes printf to precede positive integers with a space and negative integers
with a -

The printf Command

$ printf "%+d\n%s+d\n%+d\n" 10 -10 20

+10

-10

+20

$ printf "% d\n% d\n% d\n" 10 -10 20

10

-10

20

$ printf "%#o %#x\n" 100 200

0144 Oxc8

$

As you can see, using + or space as the flag lines up columns of positive and negative

numbers nicely.

The width modifier is a positive number that specifies the minimum field width for

printing an argument. The argument is right justified within this field unless the -

flag is used:

$ printf "%20s%20s\n" stringi string2

string1 string2

$ printf "%-20s%-20s\n" string1 string2

string! string2

$ printf "%5d%5d%5d\n" 1 10 100

1 10 160

$ printf "%5d%5d%5d\n" -1 -10 -100

-1 -10 -100

$ printf "%-5d%-5d%-5d\n" 1 10 100

1 10 100

$

The width modifier can be useful for lining up columns of text or numbers (note that

signs for numbers and leading @, ®x, and @X characters are counted as part of the

argument’s width). The width specifies a minimum size for the field; if the width of an

argument exceeds width, it is not truncated.

The .precision modifier is a positive number that specifies a minimum number of

digits to be displayed for %d, %u, %0, %x, and %X. This results in zero padding on the left

of the value:

$ printf "%.5d %.4X\n" 10 27

00010 001B

$

P33

232 CHAPTER 10 Reading and Printing Data

For strings, the . precision modifier specifies the maximum number of characters to be

printed from the string; if the string is longer than precision characters, it is truncated

on the right:

$ printf "%.5s\n" abcdefg

abcde

$

A width can be combined with . precision to specify both a field width and zero

padding (for numbers) or truncation (for strings):

$ printf ":%#10.5x:%5.4x:%5.4d\n" 1 10 106

Qx00001: 00a: 0100

$ printf ":%9.5s:\n" abcdefg

abcde:

$ printf ":%-9.5s:\n" abcdefg

:abcde

$

Finally, if a * is used in place of a number for width or precision, the argument preced-

ing the value to be printed must be a number and will be used as the width or preci-

sion, respectively. If a * is used in place of both, two integer arguments must precede

the value being printed and are used for the width and precision:

$ printf "%*s%*.*s\n" 12 "test one" 10 2 “test two"

test one te

$ printf "%12s%1@.2s\n" "test one" "test two"

test one te

As you can see, the two printfs in this example produce the same results. In the first

printf, 12 is used as the width for the first string, 10 as the width for the second

string, and 2 as the precision for the second string. In the second printf, these

numbers are specified as part of the conversion specification.

Table 10.3 summarizes the various conversion specification modifiers.

TABLE 10.3 printf Conversion Specification Modifiers

Modifier ‘Meaning

flags

Left justify value.

+ Precede integer with + or -

(space) Precede positive integer with space character.

Precede octal integer with @, hexadecimal integer with @x or @Xx.

Exercises 233

TABLE 10.3 Continued

Modifier Meaning

width Minimum width of field; * means use next argument as width.

precision Minimum number of digits to display for integers; maximum number of characters to

display for strings; * means use next argument as precision.

Here’s a simple example that uses printf to align two columns of numbers from a

file:

$ cat align

Align two columns of numbers

(works for numbers up to 12 digits long, including sign)

cat $* |

while read number1 number2

do

printf "%12d %12d\n" $number1 $number2

done

$ cat data

1234 7960

593 -595

395 304

3234 999

-394 -493

$ align data

1234 7960

593 -595

395 304

3234 999

394 -493

$

In Chapters 12, 14, and 15 you’ll see more uses for printf. But first try your hand at

the following exercises.

Exercises
1. What happens to mycp if one or more of the files to be copied doesn’t exist?

Can you make any suggestions to better handle the situation?

2. What happens to mycp if one of the filenames contains a character that has a

special meaning to the shell such as ; or |?

234 CHAPTER 10 Reading and Printing Data

10.

Write a program called mymv that does with the mv command what mycp does

with the cp command. How many changes did you have to make to mycp to

produce this new program?

Modify mycp to prompt for arguments if none are supplied. A typical execution

of the modified version should look like this:

$ mycp

Source file name? voucher

Destination file name? voucher.sv

$

Make sure that the program allows one or both of the files to be specified with

filename substitution characters.

Add a -n option to mycp that suppresses the normal check for the existence of

the destination files.

Modify mycp to use sed instead of the while loop to process the arguments

typed on the command line.

Modify the rem program used by rolo so that if multiple entries are found, the

program will prompt the user for the entry to be removed.

Here’s a sample session:

$ rolo

Please select one of the above (1-3): 3

Enter name to be removed: Susan

More than one match; please select the one to remove:

Susan Goldberg Remove (y/n)? n

Susan Topple Remove (y/n)? y

$

Modify rolo so that the menu is redisplayed after each selection is made and
processed. To allow the user to get out of this, add another selection to the
menu to exit from the program.

What happens to the rolo program if just an Enter is given as the name for the
add, look up, or remove options?

Modify lu to use printf to print the name and phone number so that they
line up in columns for names up to 40 characters in length (Hint: use cut -f
and the fact that the fields in the phonebook are separated by tabs).

1 1 | IN THIS CHAPTER

e Local Variables

Your Environment ©
¢ Exported Variables

e PS1 and PS2

Wen you log on to the system, you're effectively given | — ° HOME, James
your own copy of the shell program. This shell maintains

what’s known as your environment—an environment that is |
distinct from other users on the system. This environment | _* Your Current Directory
is maintained from the moment you log on until the |

moment you log off. In this chapter you'll learn about this

environment in detail, and you'll see how it relates to | ¢ Your .profile File
writing and running programs.

|e Your PATH

e¢ More on Subshells

e The TERM Variable

Local Variables | * The TZ Variable

Type the following program called vartest into your

computer:

e Exercises

$ cat vartest

echo :$x:

$

vartest consists of a solitary echo command that displays

the value of the variable x, surrounded by colons. Now

assign any value you want to the variable x from your

terminal:

$ x=100

Here we chose 100. Question: What do you think will be

displayed when vartest is now executed? Answer:

$ vartest

$

vartest doesn’t know about the value of x. Therefore, its

value is null. The variable x that was assigned the value

100 in the login shell is known as a /ocal variable. The

reason why it has this name will become clear shortly.

236 CHAPTER 11 Your Environment

Here’s another example. This program is called vartest2:

$ cat vartest2

x=50

echo :$x:

$ x=100

$ vartest2 Execute it

150:

$

Now the question is: What’s the value of x?

$ echo $x

100

$

So you see that vartest2 didn’t change the value of x that you set equal to 100 in your

login shell.

Subshells

The behavior exhibited by vartest and vartest2 is due to the fact that these two

programs are run as subshells by your login shell. A subshell is, for all intents and

purposes, an entirely new shell executed by your login shell to run the desired

program. So when you ask your login shell to execute vartest, it starts up a new

shell to execute the program. Whenever a new shell runs, it runs in its own environ-

ment, with its own set of local variables. A subshell has no knowledge of local variables

that were assigned values by the login shell (the “parent” shell). Furthermore, a subshell

cannot change the value of a variable in the parent shell, as evidenced by vartest2.

Let’s review the process that goes on here. Before executing vartest2, your login

shell has a variable called x that has been assigned the value 100 (assume for now

that this is the only variable defined in the shell). This is depicted in Figure 11.1.

: : x = 100
login local variables “cM jpaeuainietaal lacie

FIGURE 11.1 Login shell with x=100.

When you ask to have vartest2 executed, your login shell starts up a subshell to run
it, giving it an empty list of local variables to start with (see Figure 11.2).

Exported Variables 237

loc.]

she = ise =

FIGURE 11.2 Login shell executes vartest2.

After the first command in vartest2 is executed (that assigns 50 to x), the local vari-

able x that exists in the subshell’s environment will have the value 50 (see Figure 11.3).

Note that this has no relation whatsoever to the variable x that still maintains its

value of 100 in the login shell.

vartest2

(subshell)

FIGURE 11.3 vartest2 executes x=50.

When vartest2 finishes execution, the subshell goes away, together with any variables

assigned values.

Exported Variables
There is a way to make the vaiue of a variable known to a subshell, and that’s by

exporting it with the export command. The format of this command is simply

export variables

where variables is the list of variable names that you want exported. For any

subshells that get executed from that point on, the value of the exported variables

will be passed down to the subshell.

238 CHAPTER 11. Your Environment

Here’s a program called vartest3 to help illustrate the difference between local and

exported variables:

$ cat vartest3

echo x = $x

echo y = $y

$

Assign values to the variables x and y in the login shell, and then run vartest3:

$ x=100

$ y=10

$ vartest3

X=

y

$

x and y are both local variables, so their values aren’t passed down to the subshell

that runs vartest3. Now let’s export the variable y and try it again:

$ export y Make y known to subshells

$ vartest3

X=

y = 10

$

This time, vartest3 knew about y because it is an exported variable. Conceptually,

whenever a subshell is executed, the list of exported variables gets “copied down” to

the subshell, whereas the list of local variables does not (see Figure 11.4).

variables login variables ee ee eee

; copied

local

variables vartest3 variables

pita >| (subshell) F< ---- >

HT Ly
FIGURE 11.4 Execution of vartest3.

Exported Variables 239)

Now it’s time for another question: What do you think happens if a subshell changes
the value of an exported variable? Will the parent shell know about it after the
subshell has finished? To answer this question, here’s a program called vartest4:

$ cat vartest4

x=50

y=5

$

We'll assume that you haven’t changed the values of x and y, and that y is still

exported.

$ vartest4

$ echo $x $y

100 10

$

So the subshell couldn’t even change the value of the exported variable y; it merely

changed the copy of y that was passed to its environment when it was executed (see

Figure 11.5). Just as with local variables, when a subshell goes away, so do the values

of the exported variables. There is no way to change the value of a variable in a parent

shell from within a subshell.

y= 10 exported local

variables login variables aoe) pes >| snot [<5 >
|
I
!
I
i

exported local 50
variables vartest4 variables

Seed | pune deal

FIGURE 11.5 Execution of vartest4.

In the case of a subshell executing another subshell (for example, the rolo program

executing the lu program), the process is repeated: The exported variables from the

subshell are copied to the new subshell. These exported variables may have been

exported from above, or newly exported from within the subshell.

After a variable is exported, it remains exported to all subshells subsequently executed.

240 CHAPTER 11. Your Environment

Consider a modified version of vartest4:

$ cat vartest4

x=50

y=5

z=1

export Z

vartest5

$

and also consider vartest5:

$ cat vartest5

echo x = $x

echo y = $y

echo z = $z

$

When vartest4 gets executed, the exported variable y will be copied into the

subshell’s environment. vartest4 sets the value of x to 50, changes the value of y to

5, and sets the value of z to 1. Then it exports z. This makes the value of z accessible

to any subshell subsequently run by vartest4. vartests is such a subshell, and

when it is executed, the shell copies into its environment the exported variables

from vartest4: y and z. This should explain the following output:

vartest4 $

Xx

y=5

z

$

This entire operation is depicted in Figure 11.6.

To summarize the way local and exported variables work:

1. Any variable that is not exported is a local variable whose existence will not be
known to subshells.

2. Exported variables and their values are copied into a subshell’s environment,

where they may be accessed and changed. However, such changes have no
effect on the variables in the parent shell.

3. Exported variables retain this characteristic not only for directly spawned
subshells, but also for subshells spawned by those subshells (and so on down
the line).

4. A variable can be exported any time before or after it is assigned a value.

PS1 and PS2 241

exported local
variables login variables

eee pie
=a
eee

!
I

exported local
variables vartest4 variables

= = Pl (cubshel) Ee ee |

I
e re e I e @ @

! copied

exported Y local

variables vartest5 variables

Tae (subshell) F< ---- >

eee e@ @ @

FIGURE 11.6 Subshell execution.

expert -p

If you simply type export -p, you'll get a list of the variables and their values

exported by your shell:

$ export -p

export LOGNAME=steve

export PATH=/bin:/usr/bin:.

export TIMEOUT=600

export TZ=ESTS5EDT

export y=10

$

As you can see, there are actually more exported variables here than you were

initially led to believe. Note that y shows up on the list, together with other variables

that were exported when you logged on.

Note that the variables listed include those that have been inherited from a parent

shell.

PS1 and PS2

The characters that the shell displays as your command prompt are stored in the

variable PS1. You can change this variable to be anything you want. As soon as you

change it, it’ll be used by the shell from that point on.

242 CHAPTER 11 Your Environment

$

UE

$ PS1="==> "

==> pwd

/users/steve

==> PS1="I await your next command, master:

I await your next command, master: date

Wed Sep 18 14:46:28 EDT 2002

I await your next command, master: PS1="$ "

$ Back to normal

echo :$PS1:

Your secondary command prompt, normally >, is kept in the variable PS2, where you

can change it to your heart’s content:

$ echo :$PS2:

bese

$ P§2="=======> "

Satyr scaly We

Like any other shell variables, after you log off the system, the values of those vari-

ables go with it. So if you change PS1, the shell will use the new value for the

remainder of your login session. Next time you log in, however, you'll get the old

value again. You can make the change yourself every time you log in, or you can

have the change made automatically by adding it to your .profile file (discussed

later in this chapter).

HOME, James

Your home directory is where you're placed whenever you log on to the system. A
special shell variable called HOME is also automatically set to this directory when you
log on:

$ echo $HOME

/users/steve

$

Your PATH 243

This variable can be used by your programs to identify your home directory. It’s also
used by the cd command whenever you type just cd with no arguments:

$ pwd Where am I?

/usr/src/lib/libc/port/stdio

$ cd

$ pwd

/users/steve There’s no place like home

$

You can change your HOME variable to anything you want, but be warned that doing

so may affect the operation of any programs that rely on it:

$ HOME=/users/steve/book Change it

$ pwd

/users/steve

$ cd

$ pwd See what happened

/users/steve/book

$

Your PATH

Return for a moment to the rolo program from Chapter 10, “Reading and Printing

Data”:

$ rolo Liz

Liz Stachiw 212-555-2298

$

Let’s see what directory this program was created in:

$ pwd

/users/steve/bin

$

Okay, now change directory to anywhere you want:

$ cd Go home

$

And now try to look up Liz in the phone book:

$ rolo Liz

sh: rolo: not found

$

244 CHAPTER 11 Your Environment

Unless you already know where this discussion is leading, you are likely to get the

preceding results.

Whenever you type in the name of a program to be executed, the shell searches a list

of directories until it finds the requested program.! When found, it initiates its

execution. This list of directories is contained in a special shell variable called PATH.

This variable is automatically set for you when you log on to the system. See what

it’s set to now:

$ echo $PATH

(DUM US Dani.

$

Chances are that your PATH has a slightly different value. As noted, the PATH specifies

the directories that the shell searches to execute a command. These directories are

separated from one another by colons (:). In the preceding example, three directo-

ties are listed: /bin, /usr/bin, and . (which, you’ll recall, stands for the current

directory). So whenever you type in the name of a program, say for example rolo,

the shell searches the directories listed in PATH from left to right until it finds an

executable file called rolo. First it looks in /bin, then in /usr/bin, and finally in the

current directory for an executable file called rolo. As soon as it finds rolo, the shell

executes it; if the shell doesn’t find rolo, the shell issues a “not found” message.

The path

/bin:.:/usr/bin

specifies to search /bin, followed by the current directory, followed by /usr/bin. To

have the current directory searched first, you put the period at the start of the path:

.:/bin:/usr/bin

For security reasons, it’s generally not a good idea to have your current directory

searched before the system ones.’

The period for specifying the current directory is optional; for example, the path

:/bin:/usr/bin

‘Actually, the shell is a bit more intelligent, because it keeps track of where it finds each command you
execute. When you re-execute one of these commands, the shell remembers where it was found and doesn’t
go searching for it again. This feature is known as hashing.

’This is to avoid the so-called Trojan horse problem: Someone stores her own version of a command such
as su (the command that changes you to another user) in a directory she can write into and waits for
another user to change to that directory and run su. If the PATH specifies that the current directory be
searched first, then the horsed version of su will be executed. This version will get the password that is
typed and then print out Sorry. The user will think he just typed the wrong password.

Your PATH

is equivalent to the previous one; however, throughout this text we’ll specify the
current directory with a period for clarity.

You can always override the PATH variable by specifying a path to the file to be
executed. For example, if you type

/bin/date

the shell goes directly to /bin to execute date. The PATH in this case is ignored, as it

is if you type in

SO aMy Leh

Or

./rolo

This last case says to execute the program rolo in the current directory.

So now you understand why you couldn’t execute rolo from your HOME directory:

/users/steve/bin wasn’t included in your PATH, and so the shell couldn’t find rolo.

This is a simple matter to rectify. You can simply add this directory to your PATH:

$ PATH=/bin:/usr/bin:.:/users/steve/bin

$

Now any program in /users/steve/bin can be executed by you from anywhere:

$ pwd Where am I?

/users/steve

$ rolo Liz

grep: can't open phonebook

$

This time the shell finds rolo and executes it, but grep can’t find the phonebook file.

Look back at the rolo program, and you'll see that the grep error message must be

coming from iu. Take another look at lu:

$ cat /users/steve/bin/lu

Look someone up in the phone book -- version 3

age HL MAP ete a

then

echo "Incorrect number of arguments"

245

246 CHAPTER 11. Your Environment

echo "Usage: lu name"

exit 1

ipa

grep "$name" phonebook

$

grep is trying to open the phonebook file in the current directory, which is

/users/steve (that’s where the program is being executed from—the current direc-

tory has no relation to the directory in which the program itself resides).

The PATH only specifies the directories to be searched for programs to be executed,

and not for any other types of files. So phonebook must be precisely located for lu.

There are several ways to fix this problem—a problem which, by the way, exists with

the rem and add programs as well. One approach is to have the lu program change

directory to /users/steve/bin before it does the grep. That way, grep finds

phonebook because it exists in the current directory:

cd /users/steve/bin

grep "$1" phonebook

This approach is a good one to take when you're doing a lot of work with different

files in a particular directory: simply cd to the directory first and then you can

directly reference all the files you need.

A second approach is to simply list a full path to phonebook in the grep command:

grep "$1" /users/steve/bin/phonebook

But suppose that you want to let others use your rolo program (and associated 1u,

add, and rem programs). You can give them each their own copy, and then you'll

have several copies of the identical program on the system—programs that you'll

probably have to maintain. And what happens if you make a small change to rolo?
Are you going to update all their copies as well? A better solution might be to keep
just one copy of rolo but to give other users access to it.

If you change all the references of phonebook to explicitly reference your phone book,
everyone else who uses your rolo program will be using your phone book, and not
his own. One way to solve the problem is to require that everyone have a phonebock

*This can be done by giving them execute permission on all the directories leading to rolo, as well as read
and execute permissions on the programs themselves. They can always copy your programs at that point
but you won't have to maintain them.

Your PATH

file in his home directory; this way, if the program references the file as
$HOME / phonebookw, it will be relative to the home directory of the person running
the program.

Let’s try this approach: Define a variable inside rolo called PHONEBOOK and set it to

$HOME / phonebook. If you then export this variable, lu, rem, and add (which are

executed as subshells by rolo) can use the value of PHONEBOOK to reference the file.

One advantage of this is if in the future you change the location of the phonebook

file, all you’ll have to do is change this one variable in rolo; the other three

programs can remain untouched.

Here is the new rolo program, followed by modified lu, add, and rem programs.

$ cd /users/steve/bin

$ cat rolo

rolo - rolodex program to look up, add, and

remove people from the phone book

Set PHONEBOOK to point to the phone book file

and export it so other progs know about it

=

PHONEBOOK=$HOME / phonebook

export PHONEBOOK

if [! -f "$PHONEBOOK"]

then

echo "No phone book file in $HOME!"

exit 1

fil

If arguments are supplied, then do a lookup

if ["$#" -ne 0]

then

lu "$@"

exit

tf

validchoice="" # set it null

247

248 CHAPTER 11 Your Environment

Loop until a valid selection is made

until [-n "$validchoice"]

do

Display menu

echo '

Would you like to:

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): \c'

3

Read and process selection

read choice

echo

case "$choice"

in

1) echo "Enter name to look up: \c"

read name

lu "$name"

validchoice=TRUE; ;

Neo

2) echo “Enter name to be added: \c"

read name

echo "Enter number: \c"

read number

add "$name" "$number"

validchoice=TRUE; ;

3) echo "Enter name to be removed:

read name

rem "$name"

validchoice=TRUE; ;

Your PATH

*) echo "Bad choice";;

esac

done

$ cat add

Program to add someone to the phone book file

s

if pese" ene 2°)
then

echo "Incorrect number of arguments"

echo “Usage: add name number"

exit 1

if

echo "$1 $2" >> $PHONEBOOK

sort -o $PHONEBOOK $PHONEBOOK

$ cat lu

Look someone up in the phone book

if [| "S#" -ne 1]

then

echo "Incorrect number of arguments"

echo "Usage: lu name"

exit 1

i

name=$1

grep "$name" $PHONEBOOK

if [$? -ne O]

then

echo "I couldn't find $name in the phone book"

yal

$ cat rem

Remove someone from the phone book

if ["$#" -ne1]

249

250 CHAPTER 11 Your Environment

then

echo "Incorrect number of arguments"

echo "Usage: rem name"

yaks

if

name=$1

Find number of matching entries

&

matches=$(grep "$name" $PHONEBOOK | we -1)

If more than one match, issue message, else remove it

if ["$matches" -gt 1]

then

echo "More than one match; please qualify further"

elif [“$matches" -eq 1]

then

grep -v "$name" $PHONEBOOK > /tmp/phonebook$$

mv /tmp/phonebook$$ $PHONEBOOK

else

echo "I couldn't find $name in the phone book"

if

$

(In an effort to be more user-friendly, a test was added to the end of lu to see

whether the grep succeeds; if it doesn’t, a message is displayed to the user.)

Now to test it:

$ cd Return home

$ rolo Liz Quick lookup

No phonebook file in /users/steve! Forgot to move it

$ mv /users/steve/bin/phonebook .

$ rolo Liz Try again

Liz Stachiw 212-555-2298

$ rolo Try menu selection

Would you like to:

Your Current Directory

1. Look someone up

2. Add someone to the phone book

3. Remove someone from the phone book

Please select one of the above (1-3): 2

Enter name to be added: Teri Zak

Enter number: 201-555-6000

$ rolo Teri

Teri Zak 201 -555 -6000

$

rolo, lu, and add seem to be working fine. rem should also be tested to make sure

that it’s okay as well.

If you still want to run lu, rem, or add standalone, you can do it provided that you

first define PHONEBOOK and export it:

$ PHONEBOOK=$HOME / phonebook

$ export PHONEBOOK

$ lu Harmon

I couldn't find Harmon in the phone book

$

If you do intend to run these programs standalone, you’d better put checks in the

individual programs to ensure that PHONEBOOK is set to some value.

Your Current Directory
Your current directory is also part of your environment. Take a look at this small

shell program called cdtest:

$ cat cdtest

cd /users/steve/bin

pwd

$

The program does a cd to /users/steve/bin and then executes a pwd to verify that

the change was made. Let’s run it:

$ pwd Get my bearings

/users/steve

$ cdtest

/users/steve/bin

$

251

252 CHAPTER 11 Your Environment

Now for the $64,000 question: If you execute a pwd command now, will you be in

/users/steve or /users/steve/bin?

$ pwd

/users/steve

$

The cd executed in cdtest had no effect on your current directory. Because the

current directory is part of the environment, when a cd is executed from a subshell,

the current directory of that subshell is altered. There is no way to change the current

directory of a parent shell from a subshell.

When cd is invoked, it sets the PWD shell variable to the full pathname of the new

current directory, so the command

echo $PWD

produces the same output as the pwd command:

$ pwd

/users/steve

$ echo $PWD

/users/steve

$ cd bin

$ echo $PWD

/users/steve/bin

$

cd also sets OLDPWD to the full pathname of the previous current directory.

Incidentally, cd is a shell built-in command.

CDPATH

The CDPATH variable works like the PATH variable: It specifies a list of directories to be
searched by the shell whenever you execute a cd command. This search is done only
if the specified directory is not given by a full pathname and if CDPATH is not null
(obviously). So if you type in

cd /users/steve

the shell changes your directory directly to /users/steve; but if you type

cd memos

More on Subshells 253

the shell looks at your CDPATH variable to find the memos directory. And if your
CDPATH looks like this:

$ echo $CDPATH

.:/users/steve: /users/steve/docs

$

the shell first looks in your current directory for a memos directory, and if not found
then looks in /users/steve for a memos directory, and if not found there tries

/users/steve/docs in a last ditch effort to find the directory. If the directory that it

finds is not relative to your current one, the cd command prints the full path to the

directory to let you know where it’s taking you:

$ cd /users/steve

$ cd memos

/users/steve/docs/memos

$ cd bin

/users/steve/bin

$

Like the PATH variable, use of the period for specifying the current directory is

optional, so

:/users/steve:/users/steve/docs

is equivalent to

.:/users/steve:/users/steve/docs

Judicious use of the CDPATH variable can save you a lot of typing, especially if your

directory hierarchy is fairly deep and you find yourself frequently moving around in

it (or if you’re frequently moving around into other directory hierarchies as well).

Unlike the PATH, you’ll probably want to put your current directory first in the

CDPATH list. This gives you the most natural use of CDPATH (because you’re used to

doing a cd x to switch to the subdirectory x). If the current directory isn’t listed first,

you may end up in an unexpected directory.

More on Subshells

It’s important for you to understand the way subshells work and how they interact

with your environment. You know now that a subshell can’t change the value of a

variable in a parent shell, nor can it change its current directory. Suppose that you

254 CHAPTER 11 Your Environment

want to write a program to set values for some variables that you like to use when-

ever you log on. For example, assume that you have the following file called vars:

$ cat vars

BOOK=/users/steve/book

UUPUB=/usr/spool/uucppublic

DOCS=/users/steve/docs/memos

DB=/usr2/data

$

You know that if you execute vars, the values assigned to these variables will not be

accessible by you after this program has finished executing because vars will be run

in a subshell:

$ vars

$ echo $BO0K

The . Command

Luckily, there is a shell built-in command called . (pronounced “dot”) whose general

format is

ne

and whose purpose is to execute the contents of file in the current shell. That is,

commands from file are executed by the current shell just as if they were typed at

that point. A subshell is not spawned to execute the program. The shell uses your

PATH variable to find file, just like it does when executing other programs.

$. vars Execute vars in the current shell

$ echo $BOOK

/users/steve/book Hoorah!

$

Because a subshell isn’t spawned to execute the program, any variable that gets
assigned a value stays even after execution of the program is completed. It follows
then that if you have a program called db that has the following commands in it:

$ cat db

DATA=/usr2/data

RPTS=$DATA/rpts

BIN=$DATA/bin

More on Subshells 255

cd $DATA

$

executing db with the “dot” command

$. db

$

defines the three variables DATA, RPTS, and BIN in the current shell and then changes

you to the $DATA directory.

$ pwd

/usr2/data

$

This last example brings up an interesting point of discussion. If you’re one of those

Unix users who have to support a few different directory hierarchies, you can create

programs like db to execute whenever you have to work on one of your directories.

In that program, you can also include definitions for other variables; for example,

you might want to change your prompt in PSi to something like DB—to let you

know that your database variables have been set up. You may also want to change

your PATH to include a directory that has programs related to the database and your

CDPATH variable so that directories in the database will be easily accessible with the

cd command. You can even change HOME so that a cd without any arguments returns

you directly to your database directory.

If you make these sorts of changes, you’ll probably want to execute db in a subshell

and not in the current shell because doing the latter leaves all the modified variables

around after you’ve finished your work on the database. The trick to doing it right is

to start up a new shell from inside the subshell, with all the modified variables

exported to it. Then, when you're finished working with the database, you can “log

off” the new shell by pressing Ctrl+d. Let’s take a look at how this works. Here is a

new version of db:

$ cat db

.

Set up and export variables related to the data base

HOME=/usr2/data

BIN=$HOME /bin

RPTS=$HOME/rpts

DATA=$HOME / rawdata

256 CHAPTER 11 Your Environment

PATH=$PATHS$BIN

CDPATH=: $HOME : $RPTS

PS1="DB:) ©

export HOME BIN RPTS DATA PATH CDPATH PS1

Start up a new shell

/usr/bin/sh

$

The HOME directory is set to /usr2/data, and then the variables BIN, RPTS, and DATA

are defined relative to this HOME (a good idea in case you ever have to move the direc-

tory structure somewhere else: all you’d have to change in the program is the vari-

able HOME).

Next, the PATH is modified to include the database bin directory, and the CDPATH vari-

able is set to search the current directory, the HOME directory, and the RPTS directory

(which presumably contains subdirectories).

After exporting these variables (which as you recall must be done to put the values

of these variables into the environment of subsequently spawned subshells), the

standard shell, /usr/bin/sh, is started. From that point on, this new shell processes

commands typed in from the terminal. When Ctrl+d is typed to this shell, control

returns to db, which in turn returns control to your login shell.

$ db Run it

DB: echo $HOME

/usr2/data

DB: cd rpts Try out CDPATH

/usr2/data/rpts Tt works

DB: ps See what processes are running

PID TTY TIME COMMAND

123 13 0:40 sh Your login shell

761 13 @:01 sh Subshell running db

765 13 @:01 sh New shell run from db
769 13 0:03 ps

DB: Ctrl+d Done for now

$ echo $HOME

/users/steve Back to normal

$

More on Subshells

The execution of db is depicted in Figure 11.7 (where we’ve shown only the exported
variables of interest, not necessarily all that exist in the environment).

exported

variables login

Srl OR egeii

HOME=/users/steve

PATH=/bin:/usr/bin:/users/steve/bin::

r
|

exported

aoe feo PATH=/bin: /usr/bin: /users/steve/bin::/usr2/data/bin

PS1=DB:

RPTS=/usr2/data/rpts

1

PATH=/bin:/usr/bin:/users/steve/bin::/usr2/data/bin

FIGURE 11.7 Executing db.

exported

variables
——— — — /usr/bin/sh

The exec Command

After you started up the new shell from db, you weren’t interested in doing anything

further after the shell finished, as evidenced by the fact that no commands followed

/usr/bin/sh in the program. Instead of having db wait around for the new shell to

finish, you can use the exec command to replace the current program (db) with the new

one (/usr/bin/sh). The general format of exec is

exec program

where program is the name of the program to be executed. Because the exec’ed

program replaces the current one, there’s one less process hanging around; also,

startup time of an exec’ed program is quicker, due to the way the Unix system

executes processes.

ZO)

258 CHAPTER 11. Your Environment

To use exec in the db program, you simply replace the last line with

exec /usr/bin/sh

As noted, after this gets executed, db will be replaced by /usr/bin/sh. This means

that it’s pointless to have any commands follow the exec because they'll never be

executed.

exec can be used to close standard input and reopen it with any file that you want

to read. To change standard input to file, you use the exec command in the form

exec < file

Any commands that subsequently read data from standard input will read from file.

Redirection of standard output is done similarly. The command

exec > report

redirects all subsequent output written to standard output to the file report. Note

here that exec is not used to start up execution of a new program as previously

described; here it is used to reassign standard input or standard output.

If you use exec to reassign standard input and later want to reassign it someplace

else, you can simply execute another exec. To reassign standard input back to the

terminal, you would write

exec < /dev/tty

The same discussion applies to reassignment of standard output.

The (...) and { ...; } Constructs

Sometimes you may want to group a set of commands together for some reason. For
example, you may want to send a sort followed by execution of your plotdata
program into the background for execution. You can group a set of commands
together by enclosing them in a set of parentheses or braces. The first form causes
the commands to be executed by a subshell, the latter form by the current shell.

Here are some examples to illustrate how they work:

$ x=50

$ (x=100) Execute this in a subshell

$ echo $x

50 Didn't change

$ { x=100; } Execute this in the current shell
$ echo $x

More on Subshells 259

100

$ pwd Where am I?

/users/steve

$ (cd bin; 1s) Change to bin and doan 1s

add

greetings

lu

number

phonebook

rem

rolo

$ pwd

/users/steve No change

$ { cd bin; } This should change me

$ pwd

/users/steve/bin

$

If the commands enclosed in the braces are all to be typed on the same line, a space

must follow the left brace, and a semicolon must appear after the last command.

As the example

(cd bin; ls)

shows, the parentheses are useful for doing some commands without affecting your

current environment. You can also use them for other purposes:

$ (sort 20@2data -o 2002data; plotdata 200@2data) &

[1] 3421

$

The parentheses group the sort and plotdata commands together so that they can

both be sent to the background for execution, with their order of execution

preserved.

Input and output can be piped to and from these constructs, and I/O can be redi-

rected. In the next example, a

Ai

nroff command (for double-spaced output) is effectively tacked to the beginning of

the file memo before being sent to nroff.

$ { echo ".1ls 2"; cat memo; } | nroff -Tlp | 1p

260 CHAPTER 11 Your Environment

In the command sequence

$ { prog1; prog2; prog3; } 2> errors

all messages written to standard error by the three programs are collected into the

file errors.

As a final example, let’s return to the mon program from Chapter 9, “’Round and

‘Round She Goes.” As you'll recall, this program periodically checked for a user

logging on to the system. One of the comments we made back then is that it would

be nice if the program could somehow automatically “send itself” to the background

for execution because that’s how it’s really meant to be run. Now you know how to

do it: You simply enclose the until loop and the commands that follow inside

parentheses and send it into the background:

$ cat mon

Wait until a specified user logs on -- version 4

Set up default values

mailopt=FALSE

interval=60

process command options

while getopts mt: option

do

case "$option"

in

m) mailopt=TRUE; ;

t) interval=$0PTARG; ;

\?) echo "Usage: mon [-m] [-t n] user"

echo" -m means to be informed by mail"

echo" -t means check every n secs."

Gyae 7H

esac

done

Make sure a user name was specified

if ["SOPTIND" -gt "$#"]

then

echo "Missing user name!"

More on Subshells

exit 2

fe

shiftcount=$((OPTIND - 1))

shift $shiftcount

user=$1

Send everything that follows into the background

Check for user logging on

until who | grep "*$Suser " > /dev/null

do

sleep $interval

done

=

When we reach this point, the user has logged on

=

if ["$mailopt" = FALSE]

then

echo "$user has logged on"

else

runner=$(who am i | cut -c1-8)

echo "$user has logged on" | mail $runner

fi

) &

The entire program could have been enclosed in parentheses, but we arbitrarily

decided to do the argument checking and parsing first before sending the remainder

to the background.

$ mon fred
$ Prompt comes back so you can continue working

fred has logged on

261

262 CHAPTER 11. Your Environment

Note that a process id number is not printed by the shell when a command is sent to

the background within a shell program.

Another Way to Pass Variables to a Subshell

If you want to send the value of a variable to a subshell, there’s another way to do it

besides setting the variable and then exporting it. On the command line, you can

precede the name of the command with the assignment of as many variables as you

want. For example,

DBHOME=/uxn2/data DBID=452 dbrun

places the variables DBHOME and DBID, and their indicated values, into the environ-

ment of dbrun and then dbrun gets executed. These variables will not be known to

the current shell; they’re created only for the execution of dbrun. In fact, execution

of the preceding command behaves identically to typing

(DBHOME=/uxn2/data; DBID=452; export DBHOME DBID; dbrun)

Here’s a short example:

$ cat fool

echo :$x:

F002

$ cat foo2

echo :$x:

$ fool

ue x not known to foo1 or foo2

$ x=10@ foot Try it this way

:100: x is known to foot

:100: and to its subshells

$ echo :$x:

aye Still not known to current shell

$

So variables defined this way otherwise behave as normal exported variables to the
subshell.

Your .profile File

In Chapter 3, “What Is the Shell?,” you learned about the login sequence. This
sequence is completed when your shell displays your command prompt and waits
for you to type your first command. Just before it does that, however, your login

Your .profile File 263

shell executes two special files on the system. The first is /etc/profile. This file is

set up by the system administrator and usually does things like checking to see

whether you have mail (Where do you think the “You have mail.” message comes

from?), setting your default file creation mask (your umask), assigning values to some

standard exported variables, and anything else that the administrator wants to have

executed whenever a user logs in.

The second file that gets automatically executed is . profile in your home directory.

Your system administrator may have given you a default . profile file when you got

your account. See what’s in it now:

$ cat $HOME/.profile

PATH="/bin:/usr/bin:/usr/lbin:.:"

export PATH

$

Here you see a small .profile file that simply sets the PATH and exports it.

You can change your .profile file to include any commands that you want

executed whenever you log in. You can even put commands in your . profile file

that override settings (usually environment variables) made in /etc/profile. Note

that the commands in /etc/profile and .profile are executed by your login shell

(as if you typed in

$. /etc/profile

$. .profile

$

as soon as you logged in), which means that changes made to your environment

remain after the programs are executed.

Here’s a sample .profile that sets your PATH to include your own bin, sets your

CDPATH, Changes your primary and secondary command prompts, changes your erase

character to a backspace (Ctrl+h) with the stty command, and prints a friendly

message using the greetings program from Chapter 8, “Decisions, Decisions”:

$ cat $HOME/.profile

PATH=/bin:/usr/bin:/usr/lbin:$HOME/bin:.:

CDPATH=. :$HOME: $HOME/misc:$HOME/documents

export PATH CDPATH PS1 PS2

264 CHAPTER 11. Your Environment

stty echoe erase CTRL+h

echo

greetings

$

Here’s what a login sequence would look like with this . profile:

login: steve

Password:

Good morning Output from greetings

=> New PS1

The TERM Variable

If you tend to use more than one type of terminal, the . profile is a good place to

put some code to prompt for the terminal type and then set the TERM variable

accordingly. This variable is used by screen editors such as vi and other screen-based

programs.

A sample section of code from a .profile file to prompt for the terminal type might

look like this:

echo "What terminal are you using (xterm is the default)? \c"

read TERM

ap | see

then

TERM=xterm

fel:

export TERM

Based on the terminal type entered, you may also want to do things such as set up

the function keys or the tabs on the terminal.

Even if you always use the same terminal type, you should set the TERM variable in

your .profile file.

The TZ Variable

The TZ variable is used by the date command and some Standard C library functions
to determine time zone information. The simplest setting for TZ is a time zone name
of three or more alphabetic characters followed by a number that specifies the
number of hours that must be added to the local time to arrive at Coordinated

Exercises 265

Universal Time, also known as Greenwich Mean Time. This number can be positive

(local time zone is west of 0 longitude) or negative (local time zone is east of 0 longi-

tude). For example, Eastern Standard Time can be specified as

TZ=EST5

The date command calculates the correct time based on this information and also

uses the time zone name in its output:

$ TZ=EST5 date

Wed Sep 18 15:24:09 EST 2002

$ TZ=xyz3 date

Wed Sep 18 17:24:28 xyz 2002

$

A second time zone name can follow the number; if this time zone is specified,

daylight savings time is assumed to apply (date automatically adjusts the time in

this case when daylight saving is in effect) and is assumed to be one hour earlier

than standard time. If a number follows the daylight saving time zone name, this

value is used to compute the daylight savings time from the Coordinated Universal

Time in the same way as the number previously described.

So, the following TZ settings are quivalent:

TZ=EST5EDT

TZ=EST5EDT6

The TZ variable is usually set in either the /etc/profile file or your .profile file. If

not set, an implementation-specific default time zone is used, typically Coordinated

Universal Time.

Exercises

1. Write a program called myrm that takes as arguments the names of files to be

removed. If the global variable mAxFILEs is set, take it as the maximum number

of files to remove without question. If the variable is not set, use 10 as the

maximum. If the number of files to be removed exceeds this count, ask the

user for confirmation before removing the files:

$ 1s | we -1

25

$ myrm * Remove them all

Remove 25 files (y/n)? n

files not removed

266 CHAPTER 11 Your Environment

$ MAXFILES=100 myrm *

$ 1s

$ All files removed

If MAXFILES is set to zero, the check should be suppressed.

2. Here are two programs called prog1 and prog2:

$ cat prog1

e1=100

export e1

€2=200

€3=300 prog2

$ cat prog2

echo $e1 $e2 $e3 $e4

$

What output would you expect after typing the following:

$ e2=20; export e2

$ e4=4@ prog!

3. Modify rolo from this chapter so that a person running the program can keep

his or her phone book file in any directory and not just in the home directory.

This can be done by requiring that the user set an exported variable called

PHONEBOOK to the name of the phone book file before executing rolo. Check to

make sure that this variable is set to a valid file. If the variable is not set, have

the program assume that the phone book file is in the user’s home directory as

before.

Here are some examples:

$ PHONEBOOK=/users/steve/personal lu Gregory

Gregory 973-555 - 0370

$ PHONEBOOK=/users/pat/phonebook lu Toritos

El Toritos 973 -555 -2236

$

In the preceding example, we assume that the user steve has been granted
read access to pat’s phone book file.

1 2 | IN THIS CHAPTER

| ¢ Parameter Substitution

More on Parameters
e The $@ Variable

e The set Command

ls this chapter, you'll learn some more about parameters. | —* ‘The IFS Variable
Technically, parameters include the arguments passed to a |

program (the positional parameters), the special shell vati- |

ables such as $# and $?, and ordinary variables, also | ¢ The unset Command
known as keyword parameters. |

e The readonly Command

e Exercises

Positional parameters cannot be assigned values directly;

however, they can be reassigned values with the set

command. Keyword parameters are assigned values simply

by writing

variable=value

The format is a bit more general than that shown; actually,

you can assign several keyword parameters at once using

the format

variable=value variable=value ...

as the following example illustrates:

$ x=100 y=260 z=50

$ echo $x $y $z

100 200 50

$

Parameter Substitution

In the simplest form, to have the value of a parameter

substituted, you simply precede the parameter with a

dollar sign, as in $i or $9.

268 CHAPTER 12. More on Parameters

${parameter}

If there’s a potential conflict caused by the characters that follow the parameter

name, you can enclose the name inside curly braces, as in

mv $file ${file}x

This command would add an x to the end of the filename specified by $file and

could not be written as

mv $file $filex

because the shell would substitute the value of filex for the second argument.

As mentioned in Chapter 7, “Passing Arguments,” to access positional parameters 10

and above, you must enclose the number inside the curly braces, as in ${11}.

${parameter:-value}

This construct says to substitute the value of parameter if it is not null, and to substi-

tute value otherwise. For example, in the command line

echo Using editor ${EDITOR: -/bin/vi}

the shell substitutes the value of EDITOR if it’s not null, and the value /bin/vi other-

wise. It has the same effect as writing

if [ene SEDITORS |]

then

echo Using editor $EDITOR

else

echo Using editor /bin/vi

fal

The command line

${EDITOR: -/bin/ed} /tmp/edfile

starts up the program stored in the variable EDITOR (presumably a text editor), or
/bin/ed if EDITOR is null.

Here’s a simple test of this construct from the terminal:

$ EDITOR=/bin/ed

$ echo ${EDITOR: -/bin/vi}

/bin/ed

$ EDITOR= Set it null

Parameter Substitution 269

$ echo ${EDITOR: -/bin/vi}
/bin/vi
$

${parameter:=value}

This version is similar to the last, only if parameter is null; not only is value used, but

it is also assigned to parameter as well (note the = in the construct). You can’t assign

values to positional parameters this way (that means that parameter can’t be a

number).

A typical use of this construct would be in testing to see whether an exported vari-

able has been set and, if not, setting it to a default value, as in

${PHONEBOOK : =$HOME / phonebook}

This says that if PHONEBOOK is set to some value, leave it alone; otherwise, set it to

$HOME / phonebook.

Note that the preceding example could not stand alone as a command because after

the substitution was performed the shell would attempt to execute the result:

$ PHONEBOOK=

$ ${PHONEBOOK:=$HOME / phonebook}

sh: /users/steve/phonebook: cannot execute

$

To use this construct as a standalone command, the null command is often

employed. If you write

: $ {PHONEBOOK: =$HOME / phonebook}

the shell still does the substitution (it evaluates the rest of the command line), yet

executes nothing (the null command).

$ PHONEBOOK=

$: ${PHONEBOOK:=$HOME / phonebook}

$ echo $PHONEBOOK See if it got assigned

/users/steve/phonebook

$: ${PHONEBOOK:=foobar} Shouldn’t change it

$ echo $PHONEBOOK

/users/steve/phonebook It didn’t

$

270 CHAPTER 12 More on Parameters

${parameter:? value}

If parameter is not null, the shell substitutes its value; otherwise, the shell writes value

to standard error and then exits (don’t worry—if it’s done from your login shell, you

won’t be logged off). If value is omitted, the shell writes the message

prog: parameter: parameter null or not set

Here’s an example from the terminal:

$ PHONEBOOK=

$: ${PHONEBOOK:?"No PHONEBOOK file!"}

No PHONEBOOK file!

$: ${PHONEBOOK: ?} Don’t give a value

sh: PHONEBOOK: parameter null or not set

$

With this construct, you can easily check to see whether a set of variables needed by

a program are all set and not null, as in

: ${TOOLS:?} ${EXPTOOLS:?} ${TOOLBIN:?}

${parameter:+value}

This one substitutes value if parameter is not null; otherwise, it substitutes nothing.

$ traceopt=T

$ echo options: ${traceopt:+"trace mode"}

options: trace mode

$ traceopt=

$ echo options: ${traceopt:+"trace mode"}

options:

$

The value part for any of the constructs in this section can be a command substitu-
tion; it’s executed by the shell only if its value is to be used. In

WORKDIR=${DBDIR: -$(pwd) }

WORKDIR is assigned the value of DBDIR if it’s not null; otherwise, the pwd command is
executed and the result assigned to WORKDIR. pwd is executed only if DBDIR is null.

Pattern Matching Constructs

The POSIX standard shell provides four parameter substitution constructs that
perform pattern matching. Note that some older shells do not support this feature.

Parameter Substitution ZA

In each case, the construct takes two arguments: a variable name (or parameter

number) and a pattern. The shell searches through the contents of the specified vari-

able to match the supplied pattern. If the pattern is matched, the shell substitutes

the value of the variable on the command line, with the matching portion of the pattern

deleted. If the pattern is not matched, the entire contents of the variable are substi-

tuted on the command line. In any case, the contents of the variable remain

unchanged.

The term pattern is used here because the shell allows you to use the same pattern

matching characters that it accepts in filename substitution and case values: * to

match zero or more characters, ? to match any single character, [...] to match any

single character from the specified set, and [!...] to match any single character not

in the specified set.

When you write the construct

${variable*pattern}

the shell looks inside variable to see whether it ends with the specified pattern. If it

does, the contents of variable are substituted on the command line with the shortest

matching pattern removed from the right.

If you use the construct

${variablex*pattern}

the shell once again looks inside variable to see whether it ends with pattern. This

time, however, it removes the longest matching pattern from the right. This is rele-

vant only if the * is used in pattern. Otherwise, the % and %% behave the same way.

The # is used in a similar way to force the pattern matching to occur on the left

rather than the right. So, the construct.

${variable#pattern}

tells the shell to substitute the value of variable on the command line, with pattern -

removed from the left.

Finally, the shell construct

${variable##pattern}

works like the # form, only the longest occurrence of pattern is removed from the

left.

Remember that in all four cases, no permanent changes are made to the variable

itself; you are affecting only what gets substituted on the command line. Also,

CHAPTER 12 More on Parameters

remember that the pattern matches are anchored. In the case of the % and %%

constructs, the variables must end with the specified pattern; in the case of the # and

constructs, the variable must begin with it.

Here are some simple examples to show how these constructs work:

$ var=testcase

$ echo $var

testcase

$ echo ${var%e} Remove e from right

testcas

$ echo $var Variable is unchanged

testcase

$ echo ${var%s*e} Remove smallest match from right

testca

$ echo ${var%%s*e} Remove longest match

te

$ echo ${var#?e} Remove smallest match from left

stcase

$ echo ${var#*s} Remove smallest match from left

tcase

$ echo ${var##*s} Remove longest match from left

e

$ echo ${var#test} Remove test from left

case

$ echo ${var#teas} No match

testcase

$

There are many practical uses for these constructs, even though these examples don’t
seem to show it. For example, the following tests to see whether the filename stored
inside the variable file ends in the two characters .o:

if [${file%.o} != $file]

then

file ends in .o

ipl

As another example, here’s a shell program that works just like the Unix system's
basename command:

$ cat mybasename

echo ${1##*/}

$

The $@ Variable 273

The program displays its argument with all the characters up to the last / removed:

$ mybasename /usr/spool/uucppublic

uucppublic

$ mybasename $HOME

steve

$ mybasename memos

memos

$

${#variable}

This construct gives you the ability to count the number of characters stored inside a

variable. For example,

$ text='The shell'

$ echo ${#text}

9

$

Note that some older shells do not support this feature.

Each of the parameter substitution constructs described in this section is summarized

in Table A.3 in Appendix A, “Shell Summary.”

The $0 Variable

Whenever you execute a shell program, the shell automatically stores the name of

the program inside the special variable $0. This can be used to advantage when you

have two or more programs that are linked under different names and you want to

know whick one was executed. It’s also useful for displaying error messages because

it removes the dependency of the filename from the program. If the name of the

program is referenced by $0, subsequently renaming the program will not require the

program to be edited:

$ cat lu

Look someone up in the phone book

Iifee leotards)

then

echo "Incorrect number of arguments"

echo "Usage: $0 name"

274 CHAPTER 12 More on Parameters

exit 1

fi

name=$1

grep "$name" $PHONEBOOK

if [$? -ne @]

then

echo "I couldn't find $name in the phone book"

fi

$ PHONEBOOK=$HOME / phonebook

$ export PHONEBOOK

$ lu Teri

Teri Zak 201 -555 -6000

$ lu Teri Zak

Incorrect number of arguments

Usage: lu name

$ mv lu lookup Rename it

$ lookup Teri Zak See what happens now

Incorrect number of arguments

Usage: lookup name

$

The set Command

The shell’s set command is a dual-purpose command: it’s used both to set various

shell options as well as to reassign the positional parameters $1, $2, and so forth.

The -x Option

This option turns on trace mode in the shell. It does to the current shell what the

command

sh -x ctype a

did for the execution of the ctype program in Chapter 8, “Decisions, Decisions.”

From the point that the

set -X

command is executed, all subsequently executed commands will be printed to stan-
dard error by the shell, after filename, variable, and command substitution and I/O
redirection have been performed. The traced commands are preceded by plus signs.

The set Command 275

$ x=*

$ set -x Set command trace option
$ echo $x

+ echo add greetings lu rem rolo

add greetings lu rem rolo

$ cmd=we

+ cmd=wce

$ 1s | $cmd -1

+ 1s

+ we -l

iS

$

You can turn off trace mode at any time simply by executing set with the +x option:

$ set +x

+ set +x

$ 1s | we -1

5 Back to normal

$

You should note that the trace option is not passed down to subshells. But you can

trace a subshell’s execution either by running the shell with the -x option followed

by the name of the program to be executed, as in

sh -x rolo

or you can insert a set -x command inside the file itself. In fact, you can insert any

number of set -x and set +x commands inside your program to turn trace mode on

and off as desired.

set with No Arguments

If you don’t give any arguments to set, you'll get an alphabetized list of all the vari-

ables that exist in your environment, be they local or exported:

$ set Show me all variables

CDPATH=: /users/steve: /usr/spool

EDITOR=/bin/vi

HOME=/users/steve

IFS=

LOGNAME=steve

MAIL=/usr/spool/mail/steve

276 CHAPTER 12. More on Parameters

MAILCHECK=600

PATH=/bin:/usr/bin: /users/steve/bin:.:

PHONEBOOK=/users/steve/phonebook

PS1=$

PS2=>

PWO=/users/steve/misc

SHELL=/usr/bin/sh

TERM=xterm

TMOUT=0

TZ=EST5EDT

cmd=wec
x=*

$

Using set to Reassign Positional Parameters

There is no way to directly assign a value to a positional parameter; for example,

1=100

does not work. These parameters are initially set on execution of the shell program.

The only way they may be changed is with the shift or the set commands. If words

are given as arguments to set on the command line, those words will be assigned to

the positional parameters $1, $2, and so forth. The previous values stored in the posi-

tional parameters will be lost forever. So

set abc

assigns a to $1, b to $2, and c to $3. $# also gets set to 3.

$ set one two three four

$ echo $1:$2:$3:$4

one: two: three: four

$ echo $# This should be 4
4

$ echo $* What does this reference now?

one two three four

$ for arg; do echo $arg; done

one

The set Command

So after execution of the set, everything seems to work consistently: $#, $*, and the
for loop without a list.

set is often used in this fashion to “parse” data read from a file or the terminal.
Here’s a program called words that counts the number of words typed on a line
(using the shell’s definition of a “word”):

$ cat words

Count words on a line

read line

set $line

echo $#

$ words Run it

Here's a line for you to count.
7

$

The program stores the line read in the shell variable line and then executes the

command

set $line

This causes each word stored in line to be assigned to the positional parameters. The

variable $# is also set to the number of words assigned, which is the number of

words on the line.

The -- Option

Try typing in a line to words that begins with a - and see what happens:

$ words ' _

-1+5=4

words: -1: bad option(s)

$

After the line was read and assigned to line, the command

set $line

was executed. After the shell did its substitution, the command line looked like this:

S6 Caleta OU ..4

277

278 CHAPTER 12 More on Parameters

When set executed, it saw the - and thought that an option was being selected,

thus explaining the error message.

Another problem with words occurs if you give it a line consisting entirely of white-

space characters, or if the line is null:

$ words
Just Enter is pressed

CDPATH=.:/users/steve:/usr/spool

EDITOR=/bin/vi

HOME=/users/steve

IFS=

LOGNAME=steve

MAIL=/usr/spool/mail/steve

MAILCHECK=600

PATH=/bin:/usr/bin:/users/steve/bin:.

PHONEBOOK=/users/steve/phonebook

PS1=$

PS2=>

PWD=/users/steve/misc

SHELL=/usr/bin/sh

TERM=xterm

TMOUT=0

TZ=EST5EDT

cmd=wc
x=*

0

$

To protect against both of these problems occurring, you can use the -- option to

set. This tells set not to interpret any subsequent arguments on the command line

as options. It also prevents set from displaying all your variables if no other argu-

ments follow, as was the case when you typed a null line.

So the set command in words should be changed to read

set -- $line

With the addition of a while loop and some integer arithmetic, the words program
can be easily modified to count the total number of words on standard input, giving
you your own version of we -w:

$ cat words

The set Command

Count all of the words on standard input

count=0

while read line

do

set -- $line

count=$((count + $#))

done

echo $count

$

After each line is read, the set command is executed to take advantage of the fact

that $# will be assigned the number of words on the line. The - - option is supplied

to set just in case any of the lines read begins with a - or consists entirely of white-

space characters.

The value of $# is then added into the variable count, and the next line is read.

When the loop is exited, the value of count is displayed. This represents the total

number of words read.

$ words < /etc/passwd

567

$ we -w < /etc/passwd Check against we

567

$

(Our version is a lot slower than we because the latter is written in C.)

Here’s a quick way to count the number of files in your directory:!

$ set *

$ echo $#

8

$

This is much faster than

Ils | we -l

"This technique may not work on very large directories because you may exceed the limit on the length of

the command line (the precise length varies between Unix systems). Working with such directories may

cause problems when using filename substitution in other commands as well, such as echo * or for file

anes

20g

280 CHAPTER 12 More on Parameters

because the first method uses only shell built-in commands. In general, your shell

programs run much faster if you try to get as much done as you can using the shell’s

built-in commands.

Other Options to set

set accepts several other options, each of them enabled by preceding the option

with a -, and disabled by preceding it with a +. The -x option that we have described

here is perhaps the most commonly used. Others are summarized in Table A.9 in

Appendix A.

The IFS Variable

There is a special shell variable called IFS, which stands for /nternal Field Separator.

The shell uses the value of this variable when parsing input from the read

cominand, output from command substitution (the back-quoting mechanism), and

when performing variable substitution. If it’s typed on the command line, the shell

treats it like a normal whitespace character (that is, as a word delimiter).

See what it’s set to now:

$ echo "$IFS"

Well, that wasn’t very illuminating! To determine the actual characters stored in

there, pipe the output from echo into the od (octal dump) command with the -b

(byte display) option:

$ echo "$IFS" | od -b

0000000 040 011 012 012

0000004

$

The first column of numbers shown is the relative offset from the start of the input.
The following numbers are the octal equivalents of the characters read by od. The
first such number is 040, which is the ASCII value of the space character. It’s followed
by 011, the tab character, and then by 012, the newline character. The next character
is another newline; this was written by the echo. These characters for IFS come as no
surprise; they’re the “whitespace” characters we've talked about throughout the
book.

You can change your IFS to any character or characters you want. This is useful
when you want to parse a line of data whose fields aren’t delimited by the normal

The IFS Variable

whitespace characters. For example, we noted that the shell normally strips any
leading whitespace characters from the beginning of any line that you read with the
read command. You can change your IFS to just a newline character before the read

is executed, which has the effect of preserving the leading whitespace (because the

shell won’t consider it a field delimiter):

$ read line Try it the “old” way

Here's a line

$ echo "$line"

Here's a line

$ IFS="
Beye Set it to a just a newline

$ read line Try it again

Here's a line

$ echo "$line"

Here's a line Leading spaces preserved

To change the IFS to just a newline, an open quote was typed, followed immediately

by the pressing of the Enter key, followed by the closed quote on the next line. No

additional characters can be typed inside those quotes because they'll be stored

inside IFS and then used by the shell.

Now let’s change the IFS to something more visible, like a colon:

$ IFS=:

$ read x yz

123:345:678

$ echo $x

123

$ echo $z

678

$ list="one:two: three"

$ for x in $list; do echo $x; done

one

two

three

$ var=a:b:c

$ echo "$var"

a:b:c

$

Because the IFS was changed to a colon, when the line was read, the shell divided

the line into three words: 123, 345, and 678, which were stored into the three

281

282 CHAPTER 12 More on Parameters

variables x, y, and z, respectively. In the next to last example, the shell used the IFS

when substituting the value of list in the for loop. The last example shows that the

shell doesn’t use the IFS when performing variable assignment.

Changing the IFS is often done in conjunction with execution of the set command:

$ line="Micro Logic Corp.:Box 174:Hackensack, NJ 07602"

$ IFS=:

$ set $line

$ echo $# How many parameters were set?

3

$ for field; do echo $field; done

Micro Logic Corp.

Box 174

Hackensack, NJ 07602

$

This technique is a powerful one; it uses all built-in shell commands, which also

makes it very fast. (An alternative approach might have been to echo the value of

$line into the tr command, where all colons could have been translated into

newlines, an approach that would have been much slower.) This technique is used in

a final version of the rolo program that’s presented in Chapter 14, “Rolo Revisited.”

The following program, called number2, is a final version of the line numbering

program presented in Chapter 10, “Reading and Printing Data.” This program faith-

fully prints the input lines to standard output, preceded by a line number. Notice the

use of printf to right-align the line numbers.

$ cat number2

Number lines from files given as argument or from

standard input if none supplied (final version)

Modify the IFS to preserve leading whitespace on input

IFS='

; # Just a newline appears between the quotes

lineno=1

cat $* |

while read -r line

do

The readonly Command 283

printf "%5d:%s\n" $lineno "$line"

lineno=$((lineno + 1))

done

Here’s a sample execution of number:

$ number2 words

1:#

:# Count all of the words on standard input

t#

:while read line

:do

set -- $line

9: count=$((count + $#))

1@:done

late

12:echo $count

2

3

ase

5: count=0

6

7

8

Because the IFS has an influence on the way things are interpreted by the shell, if

you're going to change it in your program, it’s usuaily wise to save the old value first

in another variable (such as OIFS) and then restore it after you’ve finished the opera-

tions that depend on the changed IFS.

The readonly Command

The readonly command is used to specify variables whose values cannot be subse-

quently changed. For example,

readonly PATH HOME

makes the PATH and HOME variables read-only. Subsequently attempting to assign a

value to these variables causes the shell to issue an error message:

$ PATH=/bin:/usr/bin:.:

$ readonly PATH

$ PATH=$PATH: /users/steve/bin

sh: PATH: is read-only

$

Here you see that after the variable PATH was made read-only, the shell printed an

error message when an attempt was made to assign a value to it.

284 CHAPTER 12 More on Parameters

To get a list of your read-only variables, type readonly -p without any arguments:?

$ readonly -p

readonly PATH=/bin:/usr/bin:.:

$

unset removes both exported and local shell variables.

You should be aware of the fact that the read-only variable attribute is not passed

down to subshells. Also, after a variable has been made read-only in a shell, there is

no way to “undo” it.

The unset Command

Sometimes you may want to remove the definition of a variable from your environ-

ment. To do so, you type unset followed by the names of the variables:

$ x=100

$ echo $x

100

$ unset x Remove x from the environment

$ echo $x

You can’t unset a read-only variable. Furthermore, the variables IFS, MAILCHECK,

PATH, PS1, and PS2 cannot be unset. Also, some older shells do not support the unset

command.

Exercises

1. Given the following variable assignments:

$ EDITOR=/bin/vi

$ DB=

$ EDITFLAG=yes

$ PHONEBOOK=

$

“By default, Bash produces output of the form declare -r variable. To get POSIX-compliant output, you
must run Bash with the -posix command-line option or run the set command with the -o posix option.

Exercises 285

What will be the results of the following commands?

echo ${EDITOR} echo ${DB:=/users/pat/db}

echo ${EDITOR: -/bin/ed} echo ${PHONEBOOK: ?}

echo ${DB: -/users/pat/db} ed=${EDITFLAG:+${EDITOR: - /bin/ed}}

. Rewrite the home program from Exercise 5 in Chapter 7 to use the set

command and the IFS to extract the home directory from /etc/passwd. What

happens to the program if one of the fields in the file is null, as in

steve: *:203:100::/users/steve:/usr/bin/ksh

Here the fifth field is null (::).

. Using the fact that the shell construct ${#var} gives the number of characters

stored in var, rewrite we in the shell. Be sure to use integer arithmetic! (Notes:

Change your IFS variable to just a newline character so that leading whitespace

characters on input are preserved, and also use the -r option to the shell’s read

command so that terminating backslash characters on the input are ignored.)

. Write a function called rightmatch that takes two arguments as shown:

rightmatch value pattern

where value is a sequence of one or more characters, and pattern is a shell

pattern that is to be removed from the right side of value. The shortest match-

ing pattern should be removed from value and the result written to standard

output. Here is some sample output:

$ rightmatch test.c .c

test

$ rightmatch /usr/spool/uucppublic '/*'

/usr/spool

$ rightmatch /usr/spool/uucppublic o

/usr/spool/uucppublic

$

The last example shows that the rightmatch function should simply echo its

first argument if it does not end with the specified pattern.

. Write a function called leftmatch that works similarly to the rightmatch

function developed in Exercise 4. Its two arguments should be as follows:

leftmatch pattern value

286 CHAPTER 12 More on Parameters

Here are some example uses:

$ leftmatch /usr/spool/ /usr/spool/uucppublic

uucppublic

$ leftmatch s. s.main.c

main.c

$

. Write a function called substring that uses the leftmatch and rightmatch

functions developed in Exercises 4 and 5 to remove a pattern from the left and

right side of a value. It should take three arguments as shown:

$ substring /usr/ /usr/spool/uucppublic /uucppublic

spool

$ substring s. S.main.c .c

main

$ substring s. s.main.c .o Only left match

main.c

$ substring x. s.main.c .0 No matches

S.main.c

$

. Modify the substring, leftmatch, and rightmatch functions developed in the

previous exercises to take options that allow you to remove the /argest possible

matches of the specified pattern from the left or right side of the specified
value.

13

Loose Ends

Were put commands and features into this chapter

that for one reason or another did not logically fit into

earlier chapters. There’s no particular rationale for their

order of presentation.

The eval Command

This section describes another of the more unusual

commands in the shell: eval. Its format is as follows:

eval command-line

where command-line is a normal command line that you

would type at the terminal. When you put eval in front of

it, however, the net effect is that the shell scans the

command line twice before executing it.’ For the simple

case, this really has no effect:

$ eval echo hello

hello

$

But consider the following example without the use of

eval:

$ pipe="|"

$ 1s $pipe we -1

|: No such file or directory

we: No such file or directory

-1: No such file or directory

$

7 ‘Actually, what happens is that eval simply executes the command passed

to it as arguments; so the shell processes the command line when passing

the arguments to eval, and then once again when eval executes the

command. The net result is that the command line is scanned twice by the

shell.

IN THIS CHAPTER

¢ The eval Command

¢ The wait Command

¢ The trap Command

¢ More on I/O

e Functions

e The type Command

e Exercises

288 CHAPTER 13 Loose Ends

Those errors come from 1s. The shell takes care of pipes and I/O redirection before

variable substitution, so it never recognizes the pipe symbol inside pipe. The result is

that the three arguments |, wc, and -1 are passed to 1s as arguments.

Putting eval in front of the command sequence gives the desired results:

$ eval 1s $pipe we -1

16

The first time the shell scans the command line, it substitutes | as the value of pipe.

Then eval causes it to rescan the line, at which point the | is recognized by the shell

as the pipe symbol.

The eval command is frequently used in shell programs that build up command

lines inside one or more variables. If the variables contain any characters that must

be seen by the shell directly on the command line (that is, not as the result of substi-

tution), eval can be useful. Command terminator (;, |, &), I/O redirection (<, >), and

quote characters are among the characters that must appear directly on the

command line to have any special meaning to the shell.

For the next example, consider writing a program last whose sole purpose is to

display the last argument passed to it. You needed to get at the last argument in the

mycp program in Chapter 10, “Reading and Printing Data.” There you did so by shift-

ing all the arguments until the last one was left. You can also use eval to get at it as

shown:

$ cat last

eval echo \$$#

$ last one two three four

four

Salas Get the last file

zoo_report

$

The first time the shell scans

echo \$$#

the backslash tells it to ignore the $ that immediately follows. After that, it encoun-
ters the special parameter $#, so it substitutes its value on the command line. The
command now looks like this:

echo $4

The wait Command 289

(the backslash is removed by the shell after the first scan). When the shell rescans
this line, it substitutes the value of $4 and then executes echo.

This same technique could be used if you had a variable called arg that contained a
digit, for example, and you wanted to display the positional parameter referenced by
arg. You could simply write

eval echo \$$arg

The only problem is that just the first nine positional parameters can be accessed
this way; to access positional parameters 10 and greater, you must use the ${n}

construct:

eval echo \${$arg}

Here’s how the eval command can be used to effectively create “pointers” to vari-

ables:

$ x=100

$ ptrx=x

$ eval echo \$$ptrx Dereference ptrx

100

$ eval $ptrx=50 Store 50 in var that ptrx points to

$ echo $x See what happened

50

$

The wait Command

If you submit a command line to the background for execution, that command line

runs in a subsheil independent of your current shell (the job is said to run asynchro-

nously). At times, you may want to wait for the background process (also known as a

child process because it’s spawned from your current shell—the parent) to finish

execution before proceeding. For example, you may have sent a large sort into the

background and now want to wait for the sort to finish because you need to use the

sorted data.

The wait command is for such a purpose. Its general format is

wait process-id

where process-id is the process id number of the process you want to wait for. If

omitted, the shell waits for all child processes to complete execution. Execution of

your current shell will be suspended until the process or processes finish execution.

You can try the wait command at your terminal:

290 CHAPTER 13 _ Loose Ends

$ sort big-data > sorted_data & Send it to the background

{1] 3423 Job number & process id from the shell

$ date Do some other work

Wed Oct 2 15:05:42 EDT 2002

$ wait 3423 Now wait for the sort to finish

$ When sort finishes, prompt is returned

The $! Variable

If you have only one process running in the background, then wait with no argu-

ment suffices. However, if you’re running more than one command in the back-

ground and you want to wait on a particular one, you can take advantage of the fact

that the shell stores the process id of the last command executed in the background

inside the special variable $!. So the command

wait $!

waits for the last process sent to the background to complete execution. As

mentioned, if you send several commands to the background, you can save the value

of this variable for later use with wait:

prog1 &

pid1=$!

prog2 &

pid2=$!

wait $pid1 # wait for progi to finish

wait $pid2 # wait for prog2 to finish

The trap Command

When you press the Delete’ or Break key at your terminal during execution of a shell

program, normally that program is immediately terminated, and your command
prompt returned. This may not always be desirable. For instance, you may end up
leaving a bunch of temporary files that won’t get cleaned up.

The pressing of the Delete key at the terminal sends what's known as a signal to the
executing program. The program can specify the action that should be taken on
receipt of the signal. This is done with the trap command, whose general format is

?Some Unix systems use Ctrl+c rather than the Delete key for this purpose. You can determine which key
sequence is used with the stty command.

The trap Command 291

trap commands signals

where commands is one or more commands that will be executed whenever any of

the signals specified by signals is received.

Numbers are assigned to the different types of signals, and the more commonly used

ones are summarized in Table 13.1. A more complete list is given under the trap

command in Appendix A, “Shell Summary.”

Signai Generated for

0 Exit from the shell

1 Hangup

2 Interrupt (for example, Delete, Ctri+c key)

15 Software termination signal (sent by kill by default)

As an example of the trap command, the following shows how you can remove

some files and then exit if someone tries to abort the program from the terminal:

trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 2

From the point in the shell program that this trap is executed, the two files work1$$

and dataout$$ will be automatically removed if signal number 2 is received by the

program. So if the user interrupts execution of the program after this trap is

executed, you can be assured that these two files will be cleaned up. The exit that

follows the rm is necessary because without it execution would continue in the

program at the point that it left off when the signal was received.

Signal number 1 is generated for hangup: Either someone intentionally hangs up the

line or the line gets accidentally disconnected. You can modify the preceding trap to

also remove the two specified files in this case by adding signal number 1 to the list

of signals:

trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 1 2

Now these files will be removed if the line gets hung up or if the Delete key gets

pressed.

The commands specified to trap must be enclosed in quotes if they contain more

than one command. Also note that the shell scans the command line at the time

that the trap command gets executed and also again when one of the listed signals

is received. So in the preceding example, the value of WORKDIR and $$ will be substi-

tuted at the time that the trap command is executed. If you wanted this substitution

292 CHAPTER 13 Loose Ends

to occur at the time that either signal 1 or 2 was received (for example, WORKDIR may

not have been defined yet), you can put the commands inside single quotes:

trap ‘rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit’ 1 2

The trap command can be used to make your programs more user friendly. In the

next chapter, when we revisit the rolo program, the signal generated by the Delete

key is caught by the program and brings the user back to the main menu. In this

way, this key can be used to abort the current operation without exiting from the

program.

trap with No Arguments

Executing trap with no arguments results in the display of any traps that you have

changed.

$ trap ‘echo logged off at $(date) >>$HOME/logoffs' @

$ trap List changed traps

trap - ‘echo logged off at $(date) >>$HOME/logoffs' EXIT

$ Ctrl+d Log off

login: steve Log back in

Password:

$ cat $HOME/logoffs See what happened

logged off at Wed Oct 2 15:11:58 EDT 2002

$

A trap was set to be executed whenever signal 0 was received by the shell. This signal

is generated whenever the shell is exited. Because this was set in the login shell, the

trap will be taken when you log off. The purpose of this trap is to write the time you

logged off into the file $HOME/1logoffs. The command is enclosed in single quotes to

prevent the shell from executing date when the trap is defined.

The trap command is then executed with no arguments, which results in the display
of the changed action to be taken for signal 0 (EXIT). Next, steve logs off and then
back on again to see whether the trap works. Displaying the contents of

$HOME / logoffs verifies that the echo command was executed when steve logged off.

Ignoring Signals

If the command listed for trap is null, the specified signal will be ignored when
received. For example, the command

pee,

More on I/O 293

specifies that the interrupt signal is to be ignored. You might want to ignore certain

signals when performing some operation that you don’t want interrupted.

Note that the first argument must be specified for a signal to be ignored and is not

equivalent to writing the following, which has a separate meaning of its own:

trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an

action to be taken on receipt of a signal, all subshells will still take the default action

on receipt of that signal. For the signals we’ve described, this means that the

subshells will be terminated.

Suppose that you execute the command

trap nu 2

and then execute a subshell, which in turn executes other shell programs as

subshells. If an interrupt signal is then generated, it will have no effect on the shells

or subshells that are executing because they will all ignore the signal.

If instead of executing the previous trap command you execute

trap : 2

and then execute your subshells, then on receiving the interrupt signal the current

shell will do nothing (it will execute the null command), but all active subshells will

be terminated (they will take the default action—termination).

Resetting Traps

After you've changed the default action to be taken on receipt of a signal, you can

change it back again with trap if you simply omit the first argument; so

trap 1 2

resets the action to be taken on receipt of signals 1 or 2 back to the default.

More on 1/O

You know about the standard constructs <, >, and >> for input redirection, output

redirection, and output redirection with append, respectively. You also know that

you can redirect standard error from any command simply by writing

command 2> file

294 CHAPTER 13 Loose Ends

Sometimes you may want to explicitly write to standard error in your program. You

can redirect the standard output for a command to standard error by writing

command >& 2

The notation >& specifies output redirection to a file associated with the file descriptor

that follows. File descriptor 0 is standard input, descriptor 1 is standard output, and

descriptor 2 is standard error. Note that no space is permitted between the > and

the &.

So to write an error message to standard error, you write

echo "Invalid number of arguments" >& 2

Frequently, you may want to collect the standard output and the standard error

output from a program into the same file. If you know the name of the file, this is

straightforward enough:

command >foo 2>>foo

Here, both the standard output and the standard error output from command will be

written to foo.

You can also write

command >foo 2>&1

to achieve the same effect; standard output is redirected to foo, and standard error is

redirected to standard output (which has already been redirected to foo). Note that

because the shell evaluates redirection from left to right on the command line, the

last example cannot be written

command 2>81 > foo

because this would first redirect standard error to standard output (your terminal by
default) and then standard output to foo.

You recall that you can also dynamically redirect standard input or output in a
program using the exec command:

exec < datafile

redirects standard input from the file datafile. Subsequent commands executed that
read from standard input will read from datafile instead. The command

exec > /tmp/output

More on |/O 295

does the same thing with standard output: All commands that subsequently write to
standard output will write to /tmp/output (unless explicitly redirected elsewhere).
Naturally, standard error can be reassigned this way as well:

exec 2> /tmp/errors

Here, ail output to standard error will go to /tmp/errors.

<&- and >&-

The characters >&- have the effect of closing standard output. If preceded by a file

descriptor, the associated file is closed instead. So writing (the impractical)

Is >&-

causes the output from 1s to go nowhere because standard output is closed by the

shell before 1s is executed.

The same thing applies for input using <&-.

$ we <&-

® oO 0

Inline Input Redirection

If the << characters follow a command in the format

command <<word

the shell uses the lines that follow as the standard input for command, until a line

that contains just word is found. Here’s a small example at the terminal:

$ we -1 <<ENDOFDATA Use lines up to ENDOFDATA as standard input

> here's a line

> and another
> and yet another

> ENDOFDATA

3

Here the shell fed every line typed into the standard input of we until it encountered

the line containing just ENDOFDATA.

Inline input redirection is a powerful feature when used inside shell programs. It lets

you specify the standard input to a command directly in the program, thus

296 CHAPTER 13 ___Loose Ends

obviating the need to write it into a separate file first, or to use echo to get it into the

standard input of the command.

$ cat mailmsg

mail $* <<END-OF-DATA

Attention:

Our monthly computer users group meeting

will take place on Friday, October 4, 2002 at

8am in Room 1A-308. Please try to attend.

END -OF -DATA

$

To execute this program for all members of the group that are contained in the file

users_list, you could write

mailmsg $(cat users list)

The shell performs parameter substitution for the redirected input data, executes

back-quoted commands, and recognizes the backslash character. However, any other

special characters, such as *, |, and ", are ignored. If you have dollar signs, back

quotes, or backslashes in these lines that you don’t want interpreted by the shell,

you can precede them with a backslash character. Alternatively, if you want the shell

to leave the input lines completely untouched, you can precede the word that

follows the << with a backslash.

$ cat <<FOOBAR

> $HOME

> KKK

> \$foobar

> ‘date’

> FOOBAR Terminates the input

/users/steve
KKKKK

$foobar

Wed Oct 2 15:23:15 EDT 2002

$

Here the shell supplies all the lines up to FOOBAR as the input to cat. It substitutes
the value for HOME but not for foobar because it’s preceded by a backslash. The date
command is also executed because back quotes are interpreted.

More on 1/O 297

$ cat <<\FOOBAR

> \\\\

> ‘date

> $HOME

> FOOBAR

\\\\

“date-

$HOME

$

The backslash before FOOBAR tells the shell to leave the following lines alone. So it

ignores the dollar signs, backslashes, and back quotes.

Use care when selecting the word that follows the <<. Generally, just make sure that

it’s weird enough so that the chances of it accidentally appearing in the following

lines are remote.

If the first character that follows the << is a dash (-), leading tab characters in the

input will be removed by the shell. This is useful for visually indenting the redirected

text

$ cat <<-END

> Indented lines

> So there you have it

> END

Indented lines

So there you have it

$

Shell Archives

One of the best uses of the inline input redirection feature is for creating shell archive

files. With this technique, one or more related shell programs can be put into a

single file and then shipped to someone else using the standard Unix mail

commands. When the archive is received, it can be easily “unpacked” by simply

running the shell on it.

For example, here’s an archived version of the lu, add, and rem programs used by

rolo:

$ cat rolosubs

Archived programs used by rolo.

echo Extracting lu

298 CHAPTER 13 Loose Ends

cat >lu <<\THE-END-OF-DATA

Look someone up in the phone book

if ["$#* -ne 1]
then

echo "Incorrect number of arguments"

echo "Usage: lu name"

exit 1

fal

name=$1

grep "$name" $PHONEBOOK

if [$? -ne @]

then

echo "I couldn't find $name in the phone book"

fa

THE - END -OF -DATA

echo Extracting add

cat >add <<\THE-END-OF-DATA

Program to add someone to the phonebook file

if ["$#" -ne 2]

then

echo "Incorrect number of arguments"

echo "Usage: add name number"

exit 1

fi

echo "$1 $2" >> $PHONEBOOK

sort -o $PHONEBOOK $PHONEBOOK

THE-END-OF -DATA

echo Extracting rem

cat >rem <<\THE-END-OF-DATA

Remove someone from the phone book

More on 1/O

Tastee ne: 1a)

then

echo "Incorrect number of arguments"

echo "Usage: rem name"

exit 1

fi

name=$1

Find number of matching entries

matches=$(grep "$name" $PHONEBOOK | we -1)

If more than one match, issue message, else remove it

if ["$matches" -gt 1]

then

echo "More than one match; please qualify further"

elif ["$matches" -eq 1]

then

grep -v "$name" $PHONEBOOK > /tmp/phonebook

mv /tmp/phonebook $PHONEBOOK

else

ecno "I couldn't find $name in the phone book"

fs

THE -END-OF-DATA

$

To be complete, this archive should probably include rolo as well, but we didn’t here

to conserve space.

Now you have one file, rolosubs, that contains the source for the three programs lu,

add, and rem, which can be sent to someone else using mail:

$ mail tony@aisystems.com < rolosubs Mail the archive

$ mail tony@aisystems.com Mail tony a message

Tony,

J2e}2)

300 CHAPTER 13 Loose Ends

I mailed you a shell archive containing the programs

lu, add, and rem. rolo itself will be sent along shortly.

Pat

Ctrl+d

$

When tony receives the file in his mail, he can extract the three programs simply by

running the shell on the file (after having first removed some header lines that mail

sticks at the beginning of the file):

$ sh rolosubs

Extracting lu

Extracting add

Extracting rem

$ ls lu add rem

add

lu

The shar program used to create the rolosubs archive file is simple:

$ cat shar

Program to create a shell archive

from a set of files

echo "#"

echo '"# To restore, type sh archive"

echo "#"

for file

do

echo

echo "echo Extracting $file"

echo "cat >$file <<\THE-END-OF-DATA

cat $file

echo "THE-END-OF -DATA"

done

Refer to the contents of the rolosubs file when studying the operation of this shar
program. Remember, shar actually creates a shell program.

Functions 301

More sophisticated archiving programs allow entire directories to be archived and
also check to make sure that no data is lost in the transmission (see Exercises 2 and 3

at the end of this chapter). The Unix sum command can be used to generate a check-

sum for a program. This checksum can be generated on the sending end for each file

in the archive, and then commands included in the shell archive can verify the sum

on the receiving end. If they don’t match, an error message can be displayed.

Functions

The POSIX standard shell supports the concept of functions; note that older shells

may not support this feature.

To define a function, you use the general format:

name () { command; ... command; }

where name is the name of the function, the parentheses denote to the shell that a

function is being defined, and the commands enclosed between the curly braces

define the body of the function. These conimands will be executed whenever the

function is executed. Note that at least one whitespace character must separate the {

from the first command, and that a semicolon must separate the last command from

the closing brace if they occur on the same line.

The following defines a function called nu that displays the number of logged-in

users:

nu () { who | we -1; }

You execute a function the same way you execute an ordinary command: simply by

typing its name to the shell:

$ nu

22

Arguments listed after the function on the command line are assigned to the posi-

tional parameters $1, $2, ..., just as with any other command. Here’s a function

called nrrun that runs tbl, nroff, and 1p on the file given as its argument:

$ nrrun () { tbl $1 | nroff -mm -Tlp | 1p; }

$ nrrun memot1 Run it on memo

request id is laser1-33 (standard input)

$

Functions exist only in the shell in which they’re defined; that is, they can’t be

passed down to subshells. Further, because the function is executed in the current

302 CHAPTER 13. Loose Ends

shell, changes made to the current directory or to variables remain after the function

has completed execution:

$ db () {
> PATH=$PATH: /uxn2/data

> PS1=DB:

> cd /uxn2/data

> }
$ db Execute it

DB:

As you see, a function definition can continue over as many lines as necessary. The

shell displays your secondary command prompt until you close the definition with

the }.

You can put definitions for commonly used functions inside your .profile so that

they'll be available whenever you log in. Alternatively, you can group the definitions

in a file, say myfuncs, and then execute the file in the current shell by typing

. myfuncs

This has the effect of causing any functions defined inside myfuncs to be read in and

defined to the current shell.

The following function, called mycd, takes advantage of the fact that functions are

run in the current environment. It mimics the operation of the Korn shell’s cd

command, which has the capability to substitute portions of the current directory’s

path with something else (see the discussion of cd in Chapter 15, “Interactive and

Nonstandard Shell Features,” for more details).

$ cat myfuncs See what’s inside

i

new cd function:

mycd dir Switches dir

mycd old new Substitute new for old in current directory's path

mycd ()

{
Lp lsh = lea)

then

normal case -- 0 or 1 argument

cd $1

elif [$# -eq 2]

then

special case -- substitute $2 for $1

Functions

cd $(echo $PWD | sed "s|$1|$2|")

else

cd can't have more than two arguments

echo mycd: bad argument count

exit 1

ja

$. myfuncs

$ pwd

/users/steve

$ mycd /users/pat

$ pwd

/users/pat

$ mycd pat tony

$ pwd

/users/tony

$

Read in definition

Change directory

Did it work?

Substitute tony for pat

After a function has been defined, its execution will be faster than an equivalent

shell program file. That’s because the shell won’t have to search the disk for the

program, open the file, and read its contents into memory.

Another advantage of functions is the capability to group all your related shell

programs in a single file if desired. For example, the add, lu, and rem programs from

Chapter 11, “Your Environment,” can be defined as functions inside rolo. The

template for such an approach is shown:

$ cat rolo

rolo program written in function form

Function to add someone to the phonebook file

add () {
put commands from add program here

Function to look someone up in the phone book

303

304 CHAPTER 13. Loose Ends

lu () {
put commands from lu program here

Function to remove someone from the phone book

rem () {

put commands from rem program here

fi

rolo - rolodex program to look up, add, and

remove people from the phone book

put commands from rolo here

$

None of the commands inside the original add, lu, rem, or rolo programs would

have to be changed. These first three programs are turned into functions by includ-

ing them inside rolo, sandwiched between the function header and the closing curly

brace. Note that defining them as functions this way now makes them inaccessible

as standalone commands.

Removing a Function Definition

To remove the definition of a function from the shell, you use the unset command

with the -f option. This is the same command you use to remove the definition of a

variable to the shell.

$ unset -f nu

$ nu

sh: nu: not found

$

The return Command

If you execute an exit command from inside a function, its effect is not only to
terminate execution of the function but also of the shell program that called the

Exercises 305

function. If you instead want to just terminate execution of the function, you can

use the return command, whose format is

return n

The value n is used as the return status of the function. If omitted, the status

returned is that of the last command executed. This is also what gets returned if you

don’t execute a return at all in your function. The return status is in all other ways

equivalent to the exit status: You can access its value through the shell variable $7?,

and you can also test it in if, while, and until commands.

The type Command

When you type in the name of a command to execute, it’s frequently useful to know

where that command is coming from. In other words, is the command actually

defined as a function? Is it a shell program? Is it a shell built-in? Is it a standard Unix

command? This is where the type command comes in handy. The type command

takes one or more command names as its argument and tells you what it knows

about it. Here are some examples:

$ nu () { who | we -1; }

$ type pwd

pwd is a shell builtin

$ type troff

troff is /usr/bin/troff

$ type cat

cat is /bin/cat

$ type nu

nu is a function

$

Exercises

1. Using eval, write a program called recho that prints its arguments in reverse

order. So

recho one two three

should produce

three two one

Assume that more than nine arguments can be passed to the program.

306 CHAPTER 13 Loose Ends

2. Modify the shar program presented in this chapter to handle directories. shar

should recognize input files from different directories and should make sure

that the directories are created if necessary when the archive is unpacked. Also

allow shar to be used to archive an entire directory.

$ 1s rolo

lu

add

rem

rolo

$ shar rolo/lu rolo/add rolo/rem > rolosubs.shar

$ shar rolo > rolo.shar

In the first case, shar was used to archive three files from the rolo directory.

In the last case, shar was used to archive the entire rolo directory.

. Modify shar to include in the archive the character count for each file and

commands to compare the count of each extracted file against the count of the

original file. If a discrepancy occurs, an error should be noted, as in

add: expected 345 characters, extracted 343.

|

¢ Design Considerations

1 4 IN THIS CHAPTER

Rolo Revisited —

Design Considerations * Sample Output
A more practical type of rolodex program would permit

more than just the names and numbers to be stored in the

phone book. You’d probably want to keep addresses

(maybe even electronic mail addresses) there as well. The

new rolo program allows entries in the phone book to

consist of multiple lines. For example, a typical entry

might be

| e rolo

| e add

|

Bras chapter presents a final version of the rolo program. | st
This version is enhanced with additional options and also | ° display

allows for more general types of entries (other than just

names and numbers). The sections in this chapter discuss | e rem
the individual programs in rolo, starting with rolo itself. | 3

f i | change
At the end of this chapter, sample output is shown. |

| * listall

H

i
e Exercises

Steve's Ice Cream

444 6th Avenue

New York City 10003

212-555-3021

To increase the flexibility of the program, we’re allowing

an individual eritry to contain as many lines as desired. So

another entry in the phone book might read

YMCA

(201) 555-2344

To logically separate one entry from the next inside the

phone book file, each entry is “packed” into a single line.

This is done by replacing the terminating newline charac-

ters in an entry with a special character. We arbitrarily

chose the caret *. The only restriction here is that this

character not be used as part of the entry itself.

308 CHAPTER 14 Rolo Revisited

Using this technique, the first entry shown would be stored in the phone book

file as

Steve's Ice Cream*444 6th Avenue*New York City 10003°212-555-3021*

and the second entry shown as

YMCA* (201) 555-2344"

You’ll shortly see how convenient it becomes to process the entries when they're

stored in this format. Now we'll describe each program written for the rolodex

program.

rolo - rolodex program to look up, add,

remove and change entries from the phone book

Set PHONEBOOK to point to the phone book file

and export it so other progs know about it

if it's set on entry, then leave it alone

: ${PHONEBOOK : =$HOME / phonebook}

export PHONEBOOK

if [! -e "$PHONEBOOK"]

then

echo "$PHONEBOOK does not exist!"

echo "Should I create it for you (y/n)? \c"

read answer

if ["$answer" != y]

then

exit 1

ipl

> $PHONEBOOK || exit 1 # exit if the creation fails
fel

rolo 309

If arguments are supplied, then do a lookup

a

if ["$#" -ne @ }

then

lu "$@"

exit

ital’

Set trap on interrupt (DELETE key) to continue the loop

trap "continue" 2

Loop until user selects ‘exit'

a

while true

do

Display menu

echo '

Would you like to:

. Look someone up

. Add someone to the phone book

. Remove someone from the phone book

. Change an entry in the phone book

List all names and numbers in the phone book

Exit this program aoa FWD —

Please select one of the above (1-6): \c'

A

Read and process selection

read choice

310 CHAPTER 14 Rolo Revisited

done

Instead of requiring that the user have a phone book file in his or her home direc-

tory, the program checks on startup to see whether the variable PHONEBOOK has been

set. If it has, it’s assumed that it contains the name of the phone book file. If it

hasn’t, it’s set to $HOME/phonebook as the default. In either case, the program then
checks to see whether the file exists, and if it doesn’t, instead of immediately exiting,
asks the user whether he would like to have an initial fite created. This was added so
that first-time users of rolo can have an empty phone book file created for them by

echo

case "$choice"

in

1) echo "Enter name to look up: \c"

5)
6)
a,

esac

the program.

read name

if [-z "$name"]

then

echo "Lookup ignored"

else

lu "$name"

fi;
add; ;

echo "Enter name to remove: \c"

read name

if [-z "$name"]

then

echo "Removal ignored"

else

rem "$name"

fij;
echo “Enter name to change: \c"

read name

if [-z "$name"]

then

echo "Change ignored"

else

change "$name"

#45;
Stade

exit 0;;

echo "Bad choice\a";;

add

This version of rolo also has a couple of new items added to the menu. Because indi-

vidual entries can be rather long, an editing option has been added to allow you to

edit a particular entry. Formerly, the only way to change an entry was to first remove

it and then add a new one, a strategy that was perfectly acceptable when the entries

were small.

Another option allows for listing of the entire phone book. With this option, just the

first and last lines of each entry are displayed. This assumes that the user follows

some convention such as putting the name on the first line and the number on the

last.

The entire menu selection process was placed inside a while loop so that rolo will

continue to display menus until the “exit” option is picked from the menu.

A trap command is executed before the loop is entered. This trap specifies that a

continue command is to be executed if signal number 2 is received. So if the user

presses the Delete key in the middle of an operation (such as listing the entire phone

book), the program won’t exit but will abort the current operation and simply

continue with the loop. This will result in the redisplay of the menu.

Because entries can now span as many lines as desired, the action performed when

add is selected has been changed. Instead of asking for the name and number, rolo

executes the add program to get the entry from the user.

For the lookup, change, and remove options, a check is made to ensure that the user

doesn’t simply press the Enter key when asked to type in the name. This avoids the

RE error that grep issues if it’s given a null first argument.

Now let’s look at the individual programs that rolo executes. Each of the original

programs has been changed to accommodate the new entry format and also to be

more user friendly.

add

Program to add someone to the phonebook file

echo "Type in your new entry"

echo "When you're done, type just a single Enter on the line."

first=

entry=

while true

do

311

312 CHAPTER 14 Rolo Revisited

done

echo

sort

echo

echo

echo ">> \c"

read line

if? | =n’ glanes >]

then

entry="$entry$line*"

ity |f ora Meee |

then

first=$line

ity

else

break

fi

"Sentry" >> $PHONEBOOK

-0 $PHONEBOOK $PHONEBOOK

"$first has been added to the phone book"

This program adds an entry to the phone book. It continually prompts the user to

enter lines until a line with just an Enter is typed (that is, a null line). Each line that

is entered is concatenated to the variable entry, with the special * character used to

logically separate one line from the next.

When the while loop is exited, the new entry is added to the end of the phone

book, and the file is sorted.

lu

Look someone up in the phone book

name=$1

grep "$name" $PHONEBOOK > /tmp/matches$$

if [! -s /tmp/matches$$]

then

display Bille

echo "I can't find $name in the phone book"

else

Display each of the matching entries

while read line

do

display "$line"

done < /tmp/matches$$

iat

rm /tmp/matches$$

This is the program to look up an entry in the phone book. The matching entries are

written to the file /tmp/matches$$. if the size of this file is zero, no match was

found. Otherwise, the program enters a loop to read each line from the file (remem-

ber an entry is stored as a single line in the file) and then display it at the terminal.

A program called display is used for this purpose. This program is also used by the

rem and change programs to display entries at the terminal.

display

=

Display entry from the phonebook

entry=$1
IFS= WA it

set Sentry

for line in "$1" "$2" "$3" "$4" "$5" "$6"
do

printf "| %-34.34s |\n" $line

done

echo "| 0) f°)

Rollo. Nace oroe So ece CS Lo oro ua See ane oC

echo

314 CHAPTER 14 Rolo Revisited

As noted, this program displays an entry passed as its argument. To make the output

more aesthetically pleasing, the program actually “draws” a rolodex card. So typical

output from display would look like this:

| Steve's Ice Cream |

| 444 6th Avenue

| New York City 10003 |

| 212-555-3021

|
|
|

After skipping a line and then displaying the top of the card, display changes IFS to

“ and then executes the set command to assign each “line” to a different positional

parameter. For example, if entry is equal to

Steve's Ice Cream*444 6th Avenue*New York City 10003°212-555-3021*

executing the set command assigns Steve's Ice Cream to $1, 444 6th Avenue to $2,

New York City 10003 to $3, and 212-555-3021 to $4.

After executing the set, the program enters a for loop that will be executed exactly

six times, no matter how many lines are contained in the entry (this ensures unifor-

mity of our rolodex cards—the program can be easily modified to “draw” larger-sized

cards if needed). If the set command was executed on Steve's Ice Cream as shown

previously, $5 and $6 would be null, thus resulting in two blank lines to “fill out”

the bottom of the card.

The printf command displays a line exactly 38 characters wide: the leading |

followed by a space followed by the first 34 characters of $line followed by a space
anda |.

rem

Remove someone from the phone book

name=$1

rem

Get matching entries and save in temp file

4

grep "$name" $PHONEBOOK > /tmp/matches$$

if [! -s /tmp/matches$$]

then

echo "I can't find $name in the phone book"

exit 1

fil

Display matching entries one at a time and confirm removal

while read Line

do

display "$line"

echo "Remove this entry (y/n)? \c"

read answer < /dev/tty

if ["$answer" = y]

then

break

fe:

done < /tmp/matches$$

rm /tmp/matches$$

if ["$answer" = y]

then

if grep -v "*$line$" $PHONEBOOK > /tmp/phonebook$$

then

my /tmp/phonebook$$ $PHONEBOOK

echo "Selected entry has been removed"

else

echo "Entry not removed"

fi

fi

The rem program collects all matching entries into a temporary file. If the size of the

file is zero, no match was found and an appropriate message is issued. Otherwise, for

Bis

316 CHAPTER 14 Rolo Revisited

each matching entry, the program displays the entry and asks the user whether that

entry is to be removed. This provides reassurance to the user that the entry the user

intends to remove is the same one that the program intends to remove, even in the

single match case.

After a y has been typed to the program, a break command is executed to exit from

the loop. Outside the loop, the program tests the value of answer to determine how

the loop was exited. If its value is not equal to y, then the user doesn’t want to

remove an entry after all (for whatever reason). Otherwise, the program proceeds

with the removal by greping out all lines but the desired one (and here the pattern

specified to grep is made to match only entire lines by anchoring it to the start and

end of the line).

change

Change an entry in the phone book

name=$1

Get matching entries and save in temp file

B

grep "$name" $PHONEBOOK > /tmp/matches$$

if [! -s /tmp/matches$$]

then

echo "I can't find $name in the phone book"

exit 1

feat

Display matching entries one at a time and confirm change

while read line

do

display "$line"

echo "Change this entry (y/n)? \c"

read answer < /dev/tty

change

if ["S$answer" = y]

then

break

tel

done < /tmp/matches$$

rm /tmp/matches$$

if ["$answer" != y]

then

exit

fi

Start up editor on the confirmed entry

echo "$line\c" | tr '*' '\Q@12' > /tmp/ed$$

echo "Enter changes with ${EDITOR:=/bin/ed}"

Rap ekewec # don't abort if DELETE hit while editing

$EDITOR /tmp/ed$$

Remove old entry now and insert new one

grep -v "*$line$" $PHONEBOOK > /tmp/phonebook$$

{ tr '\@12' '*' < /tmp/ed$$; echo; } >> /tmp/phonebook$$

last echo was to put back trailing newline translated by tr

sort /tmp/phonebcok$$ -o $PHONEBOOK

rm /tmp/ed$$- /tmp/phonebook$$

The change program allows the user to edit an entry in the phone book. The initial

code is virtually identical to rem: it finds the matching entries and then prompts the

user to select the one to be changed.

The selected entry is then written into the temporary file /tmp/ed$$, with the * char-

acters translated to newlines. This “unfolds” the entry into separate lines for conve-

nient editing. The program then displays the message

echo "Enter changes with ${EDITOR:=/bin/ed}"

317

318 CHAPTER 14 Rolo Revisited

which serves a dual purpose: It tells the user what editor will be used to make the

change while at the same time setting the variable EDITOR to /bin/ed if it’s not

already set. This technique allows the user to use his or her preferred editor by

simply assigning its name to the variable EDITOR and exporting it before executing

rolo:

$ EDITOR=vi; export EDITOR; rolo

The signal generated by the Delete key (2) is ignored so that if the user presses this

key while in the editor, the change program won’t abort. The editor is then started to

allow the user to edit the entry. After the user makes his changes, writes the file, and

quits the editor, control is given back to change. The old entry is then removed from

the phone book with grep, and the modified entry is converted into the special

internal format with tr and tacked onto the end. An extra newline character must

be added here to make sure that a real newline is stored in the file after the entry.

This is done with an echo with no arguments.

The phone book file is then sorted, and the temporary files removed.

listall

list all of the entries in the phone book

IFS='*' # to be used in set command below

COMO 2 ai aa iam eke a aw aie rim inion Siem wie a= Se :

while read line

do

Get the first and last fields, presumably names and numbers

set $line

display 1st and last fields (in reverse order!)

eval printf "\"%-40.40s %s\\n\"" "\"$1\"" “\"\S{SF}\""

done < $PHONEBOOK
echo Wisse ats eCayat- =) sua,)asaice fa erste: 7a (tm (ate) el Sate Tae ae RE ee ee en "

Sample Output 39)

The listall program lists all entries in the phone book, printing just the first and
last lines of each entry. The internal field separator characters (IFS) is set to a *, to be
used later inside the loop. Each line from the phone book file is then read and

assigned to the variable line. The set command is used to assign each field to the

positional parameters.

The trick now is to get the value of the first and last positional parameters because

that’s what we want to display. The first one is easy because it can be directly refer-

enced as $1. To get the last one, you use eval as you saw in Chapter 13, “Loose

Ends.” The command

eval echo \${$#}

has the effect of displaying the value of the last positional parameter. The command

eval printf "\"%-40.40s %-s\\n\"" "\"$1\"" "\"\${S#}\""

gets evaluated to

printf "%-40.40s %-s\n" "Steve's Ice Cream" "${4}"

using the entry shown previously as the example, and then the shell rescans the line

to substitute the value of ${4} before executing printf.

Sample Output
Now it’s time to see how rolo works. We’ll start with an empty phone book and add

a few entries to it. Then we'll list all the entries, look up a particular one, and change

one (using the default editor ed—remember that the variable EDITOR can always be

set to a different editor and then exported). To conserve space, we’ll show only the

full menu that rolo displays the first time.

$ PHONEBCOK=/users/steve/misc/book

$ export PHONEBOOK

$rolo. . Start it up

/users/steve/misc/book does not exist!

Should I create it for you (y/n)? y

Would you like to:

Look someone up

Add someone to the phone book

Remove someone from the phone book

Change an entry in the phone book Bh wOND —

320 CHAPTER 14 Rolo Revisited

5. List all names and numbers in the phone book

6. Exit this program

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.

>> Steve's Ice Cream

>> 444 6th Avenue

>> New York City 10003

>> 212-555-3021

>>

Steve's Ice Cream has been added to the phone book

Would you like to:

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.

>> YMCA

>> 973-555-2344

>>

YMCA has been added to the phone book

Would you like to:

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.

>> Maureen Connelly

>> Hayden Book Companu

>> 10 Mulholland Drive

>> Hasbrouck Heights, N.J. 07604

>> 201-555-6000

Maureen Connelly has been added to the phone book

Would you like to:

Sample Output

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.

>> Teri Zak

>> Hayden Book Company

>> (see Maureen Connelly for address)

>> 201-555-6060

Teri Zak has been added to the phone book

Would you like to:

Please select one of the above (1-6): 5

Maureen Connelly 201 -555 -6000

Steve's Ice Cream 212-555 -3021

Teri Zak 201 -555 -6060

YMCA 973-555 - 2344

Would you like to:

Please select one of the above (1-6): 1

Enter name to look up: Maureen

| Maureen Connelly

| Hayden Book Companu

| 10 Mulholland Drive

| Hasbrouck Heights, NJ 07604

| 201-555-6000

|

321

322 CHAPTER 14 Rolo Revisited

| Teri Zak

| Hayden Book Company

| (see Maureen Connelly for address) |

| 201-555-6060

Would you like to:

Please select one of the above (1-6): 4

Enter name to change: Maureen

| Maureen Connelly

| Hayden Book Companu

| 10 Mulholland Drive

| Hasbrouck Heights, NJ 07604

| 201-555-6000

|

Change this person (y/n)? y

Enter changes with /bin/ed

101

1,$p
Maureen Connelly

Hayden Book Companu

1@ Mulholland Drive

Hasbrouck Heights, NJ 07604

201 -555 -6000

2s/anu/any

Hayden Book Company

7

101

q

Would you like to:

Please select one of the

Change the misspelling

above (1-6): 6

Exercises

The only function not tested here is removal of an entry.

Hopefully this example has given you some insight on how to develop larger shell

programs, and how to use the many different programming tools provided by the

system. Other than the shell built-ins, rolo relies on tr, grep, an editor, sort, and

the standard file system commands such as mv and rm to get the job done. The

simplicity and elegance that enable you to easily tie all these tools together account

for the deserved popularity of the Unix system.

See Appendix B for more information on downloading the rolo programs.

Chapter 15, “Interactive and Nonstandard Shell Features,” introduces you to interac-

tive features of the shell and two shells that have some nice features not found in

the POSIX standard shell.

Exercises

1. Modify rolo so that upper- and lowercase letters are not distinguished when

doing a lookup in the phone book.

2. Add a -m command-line option to rolo to send mail to the person who follows

on the command line. Have rolo look up the person in the phone book and

then look for the string mail:mailaddr in the matching entry, where mailaddr is

the person’s mail address. Then start up an editor (as in change mode) to allow

the user to enter the mail message. When the editing is complete, mail the

message to the user. If no mail address is found in the phone book, prompt

for it.

Also add a mail option to the menu so that it can be selected interactively.

Prompt for the name of the person to send mail to.

3. After adding the -m option, add a -f option to specify that the mail message is

to be taken from the file that follows on the command line. So

rolo -m tony -f memo

should look up tony and mail him the contents of the file memo.

4. Can you think of other ways to use rolo? For example, can it be used as a small

general-purpose database program (for example, for storing recipes or employee

data)?

5. Modify rolo to use the following convention instead of the exported PHONEBOOK

variable: the file .rolo in each rolo user’s home directory contains the path-

name to that user’s phone book file, for example:

$ cat $HOME/.rolo

/users/steve/misc/phonebook

$

323

324 CHAPTER 14 Rolo Revisited

Then add an option to rolo to allow you to look up someone in another user's

phone book (provided that you have read access to it). This option should be

added to the command line (as a -u option) as well as to the menu. For

example,

$ rolo -u pat Pizza

would look up Pizza in pat's phone book, no matter who is running rolo. The

program can find pat’s phone book by looking at .rolo in pat’s home directory.

. What happens with rolo if the user adds an entry containing a * or [character?

. Add a -s (send) option to rolo to mail a rolodex entry to a specified user. So

$ rolo -s tom pizza

should send the rolodex card entry for pizza to the user tom.

1 5 | IN THIS CHAPTER

¢ Getting the Right Shell

IMTS TAGELY Chat lcle emer tea
Nonstandard Shell | ¢ Command-Line Editing

Features | * Command History

© The vi Line Edit Mode

e The emacs Line Edit Mode

In this chapter you'll learn about shell features that are ¢ Other Ways to Access Your

either useful to interactive users or not part of the POSIX | History

shell standard. These features are available in Bash and the

Korn shell, the two most commonly available POSIX- | @ Functions
compliant shells. * Integer Arithmetic

The Korn shell was developed by David Korn of AT&T Bell

Laboratories. It was designed to be “upward compatible” |

with the System V Bourne shell and the POSIX standard | e Arrays

shell. It is available in the standard Unix distributions from

Sun, HP, and IBM, and is the default shell on MIPS work-

e The alias Command

© Job Control

stations. | The Restricted Shell rsh

Bash (short for Bourne-Again Shell) was developed by | ° Miscellaneous Features

Brian Fox for the Free Software Foundation. It was also |

designed to be upward compatible with the System V _ © Compatibility Summary
Bourne shell and the POSIX standard shell, and also

contains many extensions from the Korn and C shells.

Bash is the standard shell on Linux systems.

e Exercises

Except for a few minor differences, Bash and the Korn

shell provide all the POSIX standard shell’s features, as well

as many new ones. To give you an idea of the compatibil-

ity of these shells with the POSIX standard, all shell

programs in the previous chapters work under both Bash

and the Korn shell.

We’ll note any nonstandard features that we discuss in this

chapter, and Table 15.4 at the end of this chapter lists the

features supported by the different shells.

326 CHAPTER 15. Interactive and Nonstandard Shell Features

Getting the Right Shell
Most shells follow a convention that allows you to select a specific program to run a

file. If the first two characters on the first line of a file are #!, the remainder of the

line specifies an interpreter for the file. So

#!/usr/bin/ksh

specifies the Korn shell and

#!/usr/bin/bash

specifies Bash. If you use constructs specific to one shell, you can use this feature to

force that shell to run your programs, avoiding compatibility problems.

Note that you can put any program you want here, so a Perl program beginning with

#!/usr/bin/perl

forces the shell to execute /usr/bin/perl on it.

You have to use this feature with caution, however, because many programs, such as

Perl, don’t reside in a standard place on every Unix system. Also, this is not a feature

specified by the POSIX standard, even though it’s found in every modern shell we’ve

seen and is even implemented at the operating system level on many Unix versions.

The ENV File

When you start the shell, one of the first things it does is look in your environment

for a variable called ENV. If it finds it, the file specified by ENV will be executed, much

like the profile is executed when logging in. The ENV file usually contains

commands to set up the shell’s environment. Throughout this chapter, we'll

mention various things that you may want to put into this file.

If you do decide to have an ENV file, you should set and export the ENV variable

inside your .profile file:

$ cat .profile

ENV=$HOME/.alias

export ENV

For Bash users, the ENV file is read only when Bash is invoked with the name sh or
with the --posix command-line option, or after set -o posix is executed (all of
which force POSIX standard compliance). By default, when a noninteractive Bash

Command History 327

shell is started (for exampie, when you run a shell program), it reads commands
from the file specified by the BASH_ENV environment variable, and when an interac-
tive Bash shell is started (for example, by typing bash at the command prompt), it
doesn’t.

You should also set and export inside your . profile file a variable called SHELL.

$ cat .profile

SHELL=/usr/bin/ksh

export SHELL

This variable is used by certain applications (such as vi) to determine what shell to

start up when you execute a shell escape. In such cases, you want to make sure that

each time you start up a new shell, you get the shell you want and not an older

Bourne shell.

Command-Line Editing

Line edit mode is a feature of the shell that allows you to edit a command line using

built-in commands that mimic those found in two popular screen editors. The

POSIX standard shell provides the capability to mimic vi; however, both Bash and

the Korn shell also support an emacs line edit mode. We list the complete set of vi

commands in Table A.4 in Appendix A, “Shell Summary.”

If you’ve used either of these screen editors, you'll find that the built-in line editors

in the shell are faithful reproductions of their full-screen counterparts. If you’ve

never used a screen editor, don’t be intimidated. This capability is one of the most

useful features in the shell. In fact, after learning how to use one of the shell’s built-

in editors, you’ll be able to learn vi or emacs with little effort.

To turn on a line edit mode, you use the set command with the -o mode option,

where mode is either vi or emacs:

$ set -o vi Turn on vi mode

Note that you can put this in your .profile or ENV file to automatically start up the

shell with one of the edit modes turned on.

Command History

As we said before, the shell keeps a history of previously entered commands. Each

time you press the Enter key to execute a command, that command gets added to

328 CHAPTER 15 Interactive and Nonstandard Shell Features

the end of this history list. This command list is actually stored inside a file, which

means that you can access previously entered commands across login sessions. By

default, the history list is kept in a file in your home directory under the name

.sh_history (.bash_history for Bash, unless it is started with the --posix option).

You can change this filename to anything you want by setting the variable HISTFILE

to the name of your history file. This variable can be set and exported in your

.profile file.

Naturally, there is a limit to the number of commands the shell records. The default

value of this limit varies by implementation, but the POSIX standard requires it to be

at least 128; the default value for the Korn shell is 128; the default value for Bash is

500. Each time you log in, the shell automatically truncates your history file to this

length.

You can control the size of your history file through the HISTFILE variable. You may

find that the default size isn’t adequate for your needs, in which case you may want

to set the HISTFILE variable to a larger value, such as 500 or 1000. The value you

assign to HISTSIZE can be set and exported in your .profile file:

$ cat .profile

HISTSIZE=500

export HISTSIZE

Be reasonable about the values that you assign to HISTSIZE. The larger the value, the

more disk space you will need to store the history file, and the longer it will take the

shell to search through the entire history file.

The vi Line Edit Mode

After turning on the vi line editor, you will be placed in input mode. You probably
won't even notice anything different about input mode because you can type in and
execute commands almost the same as before you started the vi line editor:

$ set -o vi

$ echo hello

hello

$ pwd

/users/pat

$

To make use of the line editor, you must enter command mode by pressing the
ESCAPE or Esc key, usually in the upper-left corner of the keyboard. When you enter

The vi Line Edit Mode

command mode, the cursor moves to the left one space, to the last character typed
in. The current character is whatever character the cursor is on; we’ll say more about
the current character in a moment. When in command mode, you can enter vi

commands. Note that vi commands are not followed by an Enter.

One problem often encountered when typing in long commands is that you may

notice an error in a command line after you finish typing it in. Invariably, the error

is at the beginning of the line. In command mode, you can move the cursor around

without disturbing the command line. After you’ve moved the cursor to the place

where the error is, you can change the letter or letters to whatever you want.

In the following examples, the underline (_) represents the cursor. A command line

will be shown, followed by one or more keystrokes, followed by what the line looks

like after applying the keystrokes:

before keystrokes after

First, let’s look at moving the cursor around. The H key moves the cursor to the left

and the L key moves it to the right. Try this out by entering command mode and

pressing the H and L keys a few times. The cursor should move around on the line. If

you try to move the cursor past the left or right side of the line, the shell “beeps”

at you.

$ mary had a little larb_ Esc $ mary had a little larb

$ mary had a little larb h $ mary had a little larb

$ mary had a little larb h $ mary had a little larb

$ mary had a little larb Ht $ mary had a little larb

After the cursor is on the character you want to change, you can use the x command

to delete the current character (“X” it out).

$ mary had a little larb x $ mary had a little lab

Note that the b moved to the left when the r was deleted and is now the current

character.

To add characters to the command line, you can use the i and a commands. The i

command inserts characters before the current character, and the a command adds

characters after the current character. Both of these commands put you back into

input mode; you must press Esc again to go back to command mode.

$ mary had a little lab im $ mary had a little lamb

$ mary had a little lamb m $ mary had a little lammb

$ mary had a little lammb Esc $ mary had a little lammb

$ mary had a little lammb X $ mary had a little lamb

$ mary had a little lamb a $ mary had a little lamb_

$ mary had a little lamb_ da $ mary had a little lambda_

329

330 CHAPTER 15 Interactive and Nonstandard Shell Features

If you think that moving the cursor around by repeatedly pressing h and 1 is slow,

you're right. The h and 1 commands may be preceded by a number that specifies the

number of spaces to move the cursor.

$ mary had a little lambda__ Esc $ mary had a little lambda

$ mary had a little lambda 10h $ mary had a little lambda

$ mary had a little lambda 13h $ mary had a little lambda

$ mary had a little lambda 5x $ had a little lambda

As you can see, the x command can also be preceded by a number to tell it how

many characters to delete.

You can easily move to the end of the line by typing the $ command:

$ had a little lambda $ $ had a little lambda

To move to the beginning of the line, you use the @ (that’s a zero) command:

$ had a little lambda Q $ had a little lambda

Two other commands useful in moving the cursor are the w and b commands. The w

command moves the cursor forward to the beginning of the next word, where a

word is a string of letters, numbers, and underscores delimited by blanks or punctua-

tion. The b command moves the cursor backward to the beginning of the previous

word. These commands may also be preceded by a number to specify the number of

words to move forward or backward.

$ had a little lambda W $ had a little lambda

$ had a little lambda 2w $ had a little lambda

$ had a little lambda 3b $ had a little lambda

At any time you can press Enter and the current line will be executed as a command.

$ had a little lambda Hit Enter

ksh: had: not found

$

After a command is executed, you are placed back in input mode.

Accessing Commands from Your History

So far, you’ve learned how to edit the current line. You can use the vi commands k
and j to retrieve commands from your history. The k command replaces the current
line on your terminal with the previously entered command, putting the cursor at
the beginning of the line. Let’s assume that these commands have just been entered:

$ pwd

/users/pat

The vi Line Edit Mode

$ cd /tmp

$ echo this is a test

this is a test

$

Now go into command mode and use k to access them:

Se Esc k $ echo this is a test

Every time k is used, the current line is replaced by the previous line from the

command history.

$ echo this is a test k $ cd /tmp

$ cd /tmp k $ pwd

To execute the command being displayed, just press the Enter key.

$ pwd Hit Enter

/tmp

se

The j command is the reverse of the k command and is used to display the next

command in the history.

The / command is used to search through the command history for a command

containing a string. If the / is entered, followed by a string, the shell searches back-

ward through its history to find the most recently executed command that contains

that string anywhere on the command line. The command will then be displayed. If

no line in the history contains the string, the shell “beeps” the terminal. When the /

is entered, the current line is replaced by a /.

/tmp

$ Escu/test “/ tests

The search is begun when the Enter key is pressed.

/test_ Enter $ echo this is a test

To execute the command that results from the search, Enter must be pressed again.

$ echo this is a test Hit Enter again

this ws a test

$

If the command that’s displayed isn’t the one you’re interested in, you can continue

the search through the command history by simply typing / and pressing Enter. The

331

332 CHAPTER 15 Interactive and Nonstandard Shell Features

shell uses the string that you entered the last time you executed the search

command.

When you’ve found the command in the history (either by k, j, or /), you can edit

the command using the other vi commands we've already discussed. Note that you

don’t actually change the command in the history: That command cannot be

changed after it is entered. Instead, you are editing a copy of the command in the

history, which will itself be entered in the history when you press Enter.

Table 15.1 summarizes the basic vi line edit commands.

TABLE 15.1 Basic vi Line Edit Commands:

Command Meaning

h Move left one character.

1 Move right one character.

b Move left one word.

w Move right one word.

) Move to start of line.

$ Move to end of line.

x Delete character at cursor.

dw Delete word at cursor.

rc Change character at cursor to c.

a Enter input mode and enter text after the current character.

i Enter input mode and insert text before the current character.

k Get previous command from history.

j Get next command from history.

/ string Search history for the most recent command containing string; if string is null, the

previous string will be used.

The Line Edit Mode

After turning on the emacs line editor, you probably won’t even notice anything
different because you can type in and execute commands the same way as before:

$ set -o emacs

$ echo hello

hello

$ pwd

/users/pat

$

To use the line editor, you enter emacs commands. emacs commands are either control
characters—that is, characters typed in by holding down the Ctrl key and pressing

The Line Edit Mode

another character—or they are characters preceded by the ESCAPE or Esc key. You
may enter emacs commands anytime you want; there are no separate modes like the
vi line editor. Note that emacs commands are not followed by an Enter. We cover only a
few of them here; for a complete list of commands, refer to the documentation for

Bash or the Korn shell.

First, let’s look at moving the cursor around. The Ctrl+b command moves the cursor

to the left, and the Ctrl+f command moves it to the right. Try this out by pressing

Ctrl+b and Ctrl+f a few times. The cursor should move around on the line. If you try

to move the cursor past the left or right side of the line, the shell simply ignores you.

$ mary had a little larb_ Ctrl+b $ mary had a little larb

$ mary had a little larb Ctrl+b $ mary had a little larb

$ mary had a little larb Ctrl+b $ mary had a little larb

$ mary had a little larb Ctrl+f $ mary had a little larb

After the cursor is on the character you want to change, you can use the Ctrl+d

command to delete the current character.

$ mary had a little larb Ctrl+d $ mary had a little lab

Note that the b moved to the left when the r was deleted and is now the current

character.

To add characters to the command line, you simply type them in. The characters are

inserted before the current character.

$ mary had a little lab m $ mary had a little lamb

$ mary had a little lamb m $ mary had a little lammb

$ mary had a little lammb Ctrl+h $ mary had a little lamb

Note that the current erase character (usually either # or Ctrl+h) will always delete

the character to the left of the cursor.

The Ctrl+a and Ctrl+e commands may be used to move the cursor to the beginning

and end of the command line, respectively.

$ mary had a little lamb Ctrl+a $ mary had a little lamb

$ mary had a little lamb Ctrl+e $ mary had a little lamb_

Note that the Ctrl+e command places the cursor one space to the right of the last

character on the line. (When you’re not in emacs mode, the cursor is always at the

end of the line, one space to the right of the last character typed in.) When you're at

the end of the line, anything you type will be appended to the line.

$ mary had a little lamb_ da $ mary had a little lambda_

333

334 CHAPTER 15__ Interactive and Nonstandard Shell Features

Two other commands useful in moving the cursor are the Esc f and Esc b

commands. The Esc f command moves the cursor forward to the end of the current

word, where a word is a string of letters, numbers, and underscores delimited by

blanks or punctuation. The Esc b command moves the cursor backward to the

beginning of the previous word.

mary had a little lambda__ Esc

mary had a little lambda Esc

$ a mary had a little lambda

$ a

$ mary had a little lambda Esc

$ a

$ a

mary had a little lambda

mary had a little lambda

mary had a_little lambda

mary had a little_lambda

mary had a little lambda ESC

mary had a_little lambda Esc Shy hee oa PA PH AH £6

At any time you can press the Enter key and the current line will be executed as a

command.

$ mary had a little lambda Hit Enter; enter command

ksh: mary: not found

$

Accessing Commands from Your History

So far, you’ve learned how to edit the current line. As we said before, the shell keeps

a history of recently entered commands. To access these commands, you can use the

emacs commands Ctrl+p and Ctrl+n. The Ctrl+p command replaces the current line

on your terminal with the previously entered command, putting the cursor at the

end of the line. Let’s assume that these commands have just been entered:

$ pwd

/users/pat

$ cd /tmp

$ echo this is a test

this is a test

$

Now use Ctrl+p to access them:

$ Ctrl+p $ echo this is a test_

Every time Ctrl+p is used, the current line is replaced by the previous line from the
command history.

$ echo this is a test_ Ctrl+p $ cd /tmp_

$ cd /tmp_ Ctrl+p $ pwd_

The Line Edit Mode

To execute the command being displayed, just press Enter.

$ pwd_ Hit Enter

/tmp

ae

The Ctrl+n command is the reverse of the Ctrl+p command and is used to display the

next command in the history.

The Cfrl+r command is used to search through the command history for a command

containing a string. The Ctrl+r is entered followed by the string to search for,

followed by the Enter key. The shell then searches the command history for the most

recently executed command that contains that string on the command line. If

found, the command line is displayed; otherwise, the shell “beeps” the terminal.

When the Ctrl+r is typed, the shell replaces the current line with *R:

$ Ctrl+r test $ “Rtest_

The search is initiated when Enter is pressed.

$ *Rtest_ Enter $ echo this is a test_

To execute the command that is displayed as a result of the search, Enter must be

pressed again.

$ echo this is a test_ Hit Enter again

this is a test

=

To continue the search through the command history, you simply type Ctrl+r

followed by an Enter.

Bash handles Ct7l+r a little differently. When you type Ctrl+r, Bash replaces the

current line with (reverse-i-search)°':

Sak — Ctrl+r (reverse-i-search) ': _

As you type text, the line is updated inside the *' with the text you type, and the

rest of the line is updated with the matching command:

(reverse-i-search)*': _ c (reverse-i-search)'c': echo this is a test

(reverse-i-search)'c': echo this is a test d (reverse-i-search) cd': cd /tmp

Note how Bash highlights the matching part of the command by placing the cursor

on it. As with the Korn shell, the command is executed by pressing Enter.

335

336 CHAPTER 15 Interactive and Nonstandard Shell Features

When you've found the command in the history (either by Ctrl+p, Ctrl+n, or Ctrl+r),

you can edit the command using the other emacs commands we’ve already discussed.

Note that you don’t actually change the command in the history: That command

cannot be changed after it is entered. Instead, you are editing a copy of the

command in the history, which will itself be entered in the history when you press

Enter.

Table 15.2 summarizes the basic line edit commands.

TABLE 15.2. Basic emacs Line Edit Commands

Command Meaning

Ctri+b Move left one character

Ctri+f Move right one character

Esc+f Move forward one word

Esc+b Move back one word

Ctri+a Move to start of line

Ctri+e Move to end of line

Ctrl+d Delete current character

Esc+d Delete current word

erase char (User-defined erase character, usually # or Ctrl+h), delete previous character

Ctrl+p Get previous command from history

Ctrl+n Get next command from history

Ctrl+r string Search history for the most recent command line containing string

Other Ways to Access Your History
There are several other ways to access your command history that are worth noting.

The history Command

The operation of the history command differs between the Korn shell and Bash
because it is not part of the POSIX standard.

The Korn shell history command writes your last 16 commands to standard output:

$ history

507 cd shell

508 cd chi15

509 vi int

510 ps

511. echo $HISTSIZE

512 cat $ENV

513 cp int int.sv

514 history

Other Ways to Access Your History

5 Dae Xa

516 cd shell

Sliven Coe chié

Sli Ayal, GUL

519 run -nd all

520 ps

521 lpr all.out

522 history

The numbers to the left are simply relative command numbers (command number 1

would be the first, or oldest, command in your history).

Without any arguments, the Bash history command lists your entire history (as

specified by the HISTSIZE variable) to standard output. If you just want to see the

last few commands, you must specify the number of commands to display as an

argument:

$ history 10

Sis eplant ant.sv

514 history

DLO eee XaKt

516 cd shell

517 ed chiié

Byles) Waheeulil

519 run -nd all

520 ps

521 lpr all.out

522 history 10

The fc Command

The fc command allows you to start up an editor on one or more commands from

your history or to simply write a list of history commands to your terminal. In the

latter form, which is indicated by giving the -1 option to fc, it is like typing in

history, only more flexible (you can specify a range of commands to be listed or can

get fewer or more than the last 16 commands listed). For example, the command

fC ead SilONsi'5

writes commands 510 through 515 to standard output, whereas the command

fe -n -l -20

writes the last 20 commands to standard output, not preceded by line numbers (-n).

Suppose that you’ve just executed a long command line and then decide that it

337,

338 CHAPTER 15. Interactive and Nonstandard Shell Features

would be nice to turn that command line into a shell program called runx. You can

use fc to get the command from your history and I/O redirection to write that

command to a file:

TC) -n) ==) > RUnx

(That’s the letter 1 followed by the number -1.) fc is described in full detail in

Appendix A.

The r Command

A simple Korn shell command allows you to re-execute previous commands using

even a fewer number of keystrokes than described. If you simply type in the r

command, the Korn shell re-executes your last command:

$ date
Thu Oct 24 14:24:48 EST 2002

$r Re-execute previous command

date

Thu Oct 24 14:25:13 EST 2002

$

When you type in the r command, the Korn shell redisplays the previous command

and then immediately executes it.

If you give the r command the name of a command as an argument, the Korn shell

re-executes the most recent command line from your history that begins with the

specified argument:

$ cat docs/planA

$ pwd

/users/steve

$ r cat Rerun last cat command

cat docs/planA

$

Once again, the Korn shell redisplays the command line from its history before auto-
matically re-executing it.

The final form of the r command allows you to substitute the first occurrence of one
string with the next. To re-execute the last cat command on the file planB instead of
planA, you could type:

$ r cat planA=planB

cat docs/planB

or even more simply, you could have typed:

Functions 339

$ r cat A=B

cat docs/planB

Bash has the ! built-in command; !! re-executes the previous command, and ! string
re-executes the most recent command line from your history that begins with string:

$ 1!

cat docs/planB

$!d

date

Thu Oct 24 14:39:40 EST 2002

$

Note that no spaces can exist between ! and string.

The fc command can be used with the -s option to do the same thing with any

POSIX-compliant shell (the r command is actually an alias to the fc command in

the Korn shell—more on that later in this chapter):

$ fc -s cat

cat docs/planB

$ fc -s B=C

cat docs/planC

Functions

Bash and the Korn shell both have function features not available in the POSIX stan-

dard shell:

Local Variables

Bash and Korn shell functions can have local variables, making recursive functions

possible. They are defined with the typeset command, as in

typeset i j

If a variable of the same name as a local function variable exists, it is saved when the

typeset is executed and restored when the function exits. Note that the typeset

command is not part of the POSIX standard shell.

340 CHAPTER 15 Interactive and Nonstandard Shell Features

After using the shell for a while, you may develop a set of functions that you like to

use during your interactive work sessions. A good place to define such functions is

inside your ENV file so that they will be defined whenever you start up a new shell.

Automatically Loaded Functions

The Korn shell allows you to set up a special variable called FPATH that is similar to

your PATH variable. If you try to execute a function that is not yet defined, the Korn

shell searches the colon-delimited list of directories in your FPATH variable for a file

that matches the function name. If it finds such a file, it executes it in the current

shell. Presumably, somewhere inside the file will be a definition for the specified

function.

Integer Arithmetic
Both Bash and the Korn shell support evaluating arithmetic expressions without

arithmetic expansion. The syntax is similar to $((...)) but without the dollar sign.

Because expansion is not performed, the construct can be used without variable

assignment or the colon operator:

$ x=10

Sax =exe tee)

$ echo $x

120

$

The real value of this construct is that it allows arithmetic expressions to be used

rather than test in if, while, and until commands. The comparison operators set

the exit status to a nonzero value if the result of the comparison is false and to a zero

value if the result is true. So writing

(C= 190°)

has the effect of testing i to see whether it is equal to 100 and setting the exit status
appropriately. This knowledge makes integer arithmetic ideal for inclusion in if
commands:

if ((1 == 100))

then

Viel

The ((i == 100)) returns an exit status of zero (true) if i equals 100 and one
(false) otherwise, and has the same effect as writing

Integer Arithmetic 341

if ["$i" -eq 100]

then

felt

One advantage of using ((...)) rather than test is the capability to perform arith-
metic as part of the test:

if ((i / 10 !=@))
then

fal

Here the comparison returns a true if i divided by 10 is not equal to zero.

while loops can also benefit from integer arithmetic. For example,

x=0

while ((x++ < 100))

do

commands

done

executes commands 100 times. (Note that some older versions of the Korn shell and

Bash do not support the ++ and -- operators.)

Integer Types

The Korn shell and Bash both support an integer data type. You can declare variables

to be integers by using the typeset command with the -i option

typeset -i variables

where variables are any valid shell variable names. Initial values can be assigned to

the variables at the time they are declared.

Arithmetic performed on integer variables with the ((...)) construct is slightly faster

than on noninteger ones because the shell internally stores the value of an integer

variable as a binary number and not as a character string.

An integer variable cannot be assigned anything but an integer value or an integer

expression. If you attempt to assign a noninteger to it, the message bad number is

printed by the Korn shell:

$ typeset -i i

$ i=hello

ksh: i: bad number

342 CHAPTER 15 Interactive and Nonstandard Shell Features

Bash simply ignores any strings that don’t contain numeric values and generates an

error for anything that contains both numbers and other characters:

$ typeset -i i

$ i=hello

$ echo $i

Q

$ i=1hello

bash: thello: value too great for base (error token is "thello")

$ i=10+15

$ echo $i

25

$

The preceding example shows that integer-valued expressions can be assigned to an

integer variable, without even having to use the ((...)) construct. This holds true for

both Bash and the Korn shell.

Numbers in Different Bases

The Korn shell and Bash allow you to perform arithmetic in different bases. To write

a number in a different base with these shells, you use the notation

base#number

For example, to express the value 100 in base 8 (octal) you write

8#100

You can write constants in different bases anywhere an integer value is permitted. To

assign octal 100 to the integer variable i, you can write

typeset -1i 1=8#100

Note that with the Korn shell the base of the first value assigned to an integer vari-
able fixes the base of all subsequent substitutions of that variable. In other words, if
the first value you assign to the integer variable i is an octal number, each time you
subsequently substitute the value of i on the command line, the Korn shell substi-
tutes the value as an octal number using the notation 8#value.

$ typeset -i i=8#100

$ echo $i

8#100

$ i=50

$ echo $i

8#62

The alias Command 343

$ ((i = 16#a5 + 16#120))
$ echo $i

8#705

$

Because the first value assigned to i in this example is an octal number (8#100), all
further substitutions of i will be in octal. When the base 10 value of 50 is next
assigned to i and then i is subsequently displayed, we get the value 8462, which is
the octal equivalent of 50 in base 10.

In the preceding example, the ((...)) construct is used to add together the two hexa-

decimal values aS and 120. The result is then displayed, once again in octal.

Bash uses both the base#number syntax for arbitrary bases and the C language syntax

for octal and hexadecimal numbers—octal numbers are preceded by 0 (zero), and

hexadecimal numbers are preceded by 0x:

$ typeset -i i=0100

$ echo $i

64

$ i=0x80

$ echo $i

128

$ i=2#1101001

$ echo $i

105

$ ((i = 16#a5 + 164120))
$ echo $i

453

$

Unlike the Korn shell, Bash doesn’t keep track of the variable’s base; integer variables

are displayed as decimal numbers. You can always use printf to print integers in

octal of hexadecimal format.

As you can see, with Bash and the Korn shell it’s easy to work with different bases.

This makes it possible to easily write functions to perform base conversion and arith-

metic, for example.

The alias Command

An alias is a shorthand notation provided by the shell to allow customization of

commands. The shell keeps a list of aliases that is searched when a command is

entered. If the first word of a command line is an alias, it is replaced by the text of

the alias. An alias is defined by using the alias command. The format is

alias name=string

344 CHAPTER 15. Interactive and Nonstandard Shell Features

where name is the name of the alias, and string is any string of characters. For

example,

alias ll='1s -1'

assigns 1s -1 to the alias 11. Now when the alias 11 is typed in, the shell replaces it

with 1s -1. You can type arguments after the alias name on the command line, as in

Tak Ks)

which looks like this after alias substitution has been performed:

Ls=d Fkc

The shell performs its normal command-line processing both when the alias is set

and when it is used, so quoting can be tricky. For example, recall that the shell keeps

track of your current working directory inside a variable called PWD:

$ cd /users/steve/letters

$ echo $PWD

/users/steve/letters

$

You can create an alias called dir that gives you the base directory of your current

working directory by using the PWD variable and one of the parameter substitution

constructs described in an earlier section of this chapter:

alias dir="echo ${PWD##*/}"

Let’s see how this alias works:

$ alias dir="echo ${PWD##*/}" Define alias

$ pwd Where are we?

/users/steve

$ dir Execute alias

steve

$ cd letters Change directory

$ dir Execute the alias again

steve

$ cd /usr/spool One more try

$ dir

steve

$

It seems that no matter what the current directory is, the dir alias prints out steve.
That’s because we weren’t careful about our quotes when we defined the dir alias.

The alias Command

Recalling that the shell performs parameter substitution inside double quotes, the
shell evaluated

${PWD##* / }

at the time the alias was defined. This means, that for all intents and purposes, the
dir alias was defined as though we typed in the following:

$ alias dir="echo steve"

The solution is to use single rather than double quotes when defining the dir alias

to defer the parameter substitution until the time the alias is executed:

$ alias dir='echo ${PWD##*/}' Define alias

$ pwd Where are we?

/users/steve

$ dir Execute alias

steve

$ cd letters Change directory

$ dir Execute alias again

letters

$ cd /usr/spool One more try

$ dir

spool

$

Now the alias works just fine.

If an alias ends with a space, the word following the alias is also checked for alias

substitution. For example:

alias nohup="/bin/nohup "

nohup 11

causes the shell to perform alias checking on the string 11 after replacing nohup with

/bin/nohup.

Quoting a command prevents alias substitution. For example:

$ ' ll 1

ksh: 11: command not found

$

The format

alias name

causes the value of the alias name to be listed, and the alias command without

arguments causes all aliases to be listed.

345

346 CHAPTER 15 Interactive and Nonstandard Shell Features

The following aliases are automatically defined when the Korn shell starts up:

autoload='typeset -fu'

functions='typeset -f'

history='fc -l'

integer='typeset -i'

local=typeset

nohup='nohup '

r="f¢ -e —"

suspend='kill -STOP $$'

Note from the preceding example that r is actually an alias for the fe command with

the -e option, and history is an alias for fc -1. Bash doesn’t automatically define

any aliases by default.

Removing Aliases

The unalias command is used to remove aliases from the alias list. The format is

unalias name

which removes the alias name and

unalias -a

which removes all aliases.

This concludes this section on aliases. If you develop a set of alias definitions that

you like to use during your login sessions, you may want to define them inside your

ENV file so that they will always be available for you to use.

Arrays

The Korn shell and Bash provide a limited array capability (arrays are not a part of

the POSIX standard shell). Bash arrays may contain an unlimited number of

elements (subject to memory limitations); Korn shell arrays are limited to 4096

elements. Array indexing in both shells starts at zero. An array element is accessed

with a subscript, which is an integer-valued expression enclosed inside a pair of

brackets. You don’t declare the maximum size of a shell array; you simply assign
values to elements as you need them. The values that you can assign are the same as
for ordinary variables.

$ arr[0]=hello

$ arr[1]="some text"

$ arr[2]=/users/steve/memos

$

Arrays 347

To retrieve an element from an array, you write the array name followed by the
element number, enclosed inside a pair of brackets as before. The entire construct
must be enclosed inside a pair of curly braces, which is then preceded by a dollar
sign.

$ echo ${array[0]}

hello

$ echo ${array[1]}

some text

$ echo ${array[2]}

/users/steve/memos

$ echo $array

hello

$

As you can see from the preceding example, if no subscript is specified, element zero

is used.

If you forget the curly braces when performing the substitution, here’s what

happens:

$ echo $array[1]

hello[1]

$

In the preceding example, the value of array is substituted (hello—the value inside

array{0]) and then echoed along with [1]. (Note that because the shell does filename

substitution after variable substitution, the shell would attempt to match the pattern

hello[1] against the files in your current directory.)

The construct [*] can be used as a subscript to substitute all the elements of the

array on the command line, with each element delimited by a single space character.

$ echo ${array[*]}

hello some text /users/steve/memos

$

The construct ${#array[*]} can be used to substitute the number of elements in the

array array.

$ echo ${#array[*]}

3

$

Note that the number reported here is the actual number of values stored inside the

array, not the largest subscript used to store an element inside the array.

348 CHAPTER 15. Interactive and Nonstandard Shell Features

$ array[10]=foo

$ echo ${array[*]} Display all elements

hello some text /users/steve/memos foo

$ echo ${#array[*]} Number of elements

4

$

You can declare an array of integers to the shell simply by giving the array name to

typeset -1:

typeset -i data

Integer calculations can be performed on array elements using the ((...)) construct:

$ typeset -i array

$ array[0]=100

$ array[1]=50

$ ((array[2] = array[®] + array[1]))

$ echo ${array[2]}

150

$ i=1

$ echo ${array[i]}

50

$ array[3]=array[0]+array[2]

$ echo ${array[3]}

250

$

Note that not only can you omit the dollar signs and the curly braces when referenc-

ing array elements inside double parentheses, you also can omit them outside when

the array is declared to be of integer type. Also note that dollar signs are not needed

before variables used in subscript expressions.

The following program, called reverse, reads in up to 4096 lines from standard input
and then writes them back out to standard output in reverse order:

$ cat reverse

read lines to array buf

typeset -i line=0

while ((line < 4096)) && read buf[line]

do

((line = line + 1))

done

now print the lines in reverse order

while ((line > @)) do

((line = line - 1)
echo "${buf[line]}"

done

$ reverse

line one

line two

line three

Ctrl+d

line three

line two

line one

$

Arrays

The first while loop executes as long as 4096 or fewer lines have been read and there

is more data to be read from standard input (recall the && described at the end of

Chapter 8, “Decisions, Decisions”).

The following function, cdh, changes the current directory like cd but uses an array

to keep a history of previous directories. It allows the user to list the directory history

and change back to any directory in it:

$ cat cdh

CDHIST[0]=$PWD

cdh ()

{
typeset

if [$#

then

fel!

| cdlen=${#CDHIST[*]}

-i cdlen i

-eq 2 | #

set -- $HOME

case "$@" in

-1)

-[0-9]|-

i=0

while ((i < cdlen))

do

printf "%3d %s\n"

(Gi = mee oer)

done

return 5;

[0-9][0-9]) #
i=${1#-} #

initialize CDHIST[Q]

default to HOME with no arguments

number of elements in CDHIST

print directory list

$i ${CDHIST[i] }

fa) 420) bie ain Lies

remove leading '

349

350 CHAPTER 15 Interactive and Nonstandard Shell Features

cd ${CDHIST[i]} ;;

3) # cd to new dir

cd $@ ;;

esac

CDHIST[cdlen]=$PWD

The CDHIST array stores each directory visited by cdh, and the first element,

CDHIST[0], is initialized with the current directory when the cdh file is run:

$ pwd

/users/pat

$. cdh Define cdh function

$ cdh /tmp

$ cdh -1

@ /users/pat

1 /tmp

$

When the cdh file was run, CDHIST[@] was assigned /users/pat, and the cdh func-

tion was defined; when cdh /tmp was executed, cdlen was assigned the number of

elements in CDHIST (one), and CDHIST[1] was assigned /tmp. The cdh -1 caused

printf to display each element of CDHIST (on this invocation, cdlen was set to 2,

because elements O and 1 of CDHIST contained data).

Note that the if statement at the beginning of the function sets $1 to $HOME if no
arguments are passed. Let’s try that out:

$ cdh

$ pwd

/users/pat

$ cdh -1

® /users/pat

1 /tmp

2 /users/pat

$

Well, it worked, but now /users/pat shows up twice in the list. One of the exercises
at the end of this chapter asks you to remedy this.

Okay, the most useful feature of cdh is the -n option, which causes it to change the
current directory to the one specified in the list:

$ cdh /usr/spool/uucppublic

$ cdh -1

® /users/pat

Arrays

1 /tmp

2 /users/pat

3 /usr/spool/uucppublic

$ cdh -1

$ pwd

/tmp

$ cdh -3

$ pwd

/usr/spool/uucppublic

$

We can make cdh replace our cd command by using the fact that alias lookup is

performed before built-in commands are executed. So if we create a cd alias to cdh,

we can have an enhanced cd. In that case, we have to quote every use of cd in the

cdh function to prevent recursion:

$ cat cdh

CDHIST[@]=$PWD

alias cd=cdh

SS initialize CDHIST[Q]

cdh ()

{
typeset -i cdlen i

if [$# -eq Q] # default to HOME with no arguments

then

set -- $HOME

fi

cdlen=${#CDHIST | *] } # number of elements in CDHIST

case "$@" in

-1) # print directory list

1=0

while ((i < cdlen))

do

printf "%3d %s\n" $i ${CDHIST[i]}

G(2, = dott))
done

RECUEN 55

-[@-9]|-[0-9][@-9])) ol Wo) blip aly) Laie

i=${1#-} # remove leading '-'

‘cd’ ${CDHIST[i]} 3;
2) # cd to new dir

351

B52 CHAPTER 15 Interactive and Nonstandard Shell Features

nOfale GAG Ee

esac

CDHIST[cdlen]=$PWD

}
$. cdh Define cdh function and cd alias

$ cd /tmp

$ cd -1

@ /users/pat

1 /tmp

$ cd /usr/spool

$ cd -l

@ /users/pat

1 /tmp

2 /usr/spool

$

Table 15.3 summarizes the various array constructs in the Korn shell and Bash.

TABLE 15.3 Array Constructs

Construct Meaning

${array[i}} Substitute value of element /

$array Substitute value of first element (array[0])

${array[*]} Substitute value of all elements

${#array[*]} Substitute number of elements

array{ij=val Store val into array[i]

Job Control

The shell provides facilities for controlling jobs. A job is any command sequence. For
example:

who | we

When a command is started in the background (that is, with &), the shell prints out

the job number inside brackets ([]) as well as the process number:

$ who | we &

[1] 832

$

Job Control 353

When a job finishes, the shell prints the message

ales sequence

where 1 is the job number of the finished job, and sequence is the text of the
command sequence used to create the job.

The jobs command may be used to print the status of jobs that haven’t yet finished.

$ jobs

[3] + Running make ksh &

[2] - Running monitor &

[1] Running pic chapt2 | troff > aps.out &

The + and - after the job number mark the current and previous jobs, respectively.

The current job is the last job sent to the background, and the previous job is the

next-to-the-last job sent to the background. Several built-in commands may be given

a job number or the current or previous job as arguments.

The shell’s built-in kill command can be used to terminate a job running in the

background. The argument to it can be a process number or a percent sign (%)

followed by a job number, a + (current job), a - (previous job), or another % (also

current job).

$ pic chapt1 | troff > aps.out &

[1] 886

$ jobs

[i] + Running pic chapt1 | troff > aps.out &

$ kill %1

[1] Done pic chapt1 | troff > aps.out &

$

The preceding kill could have used %+ or %% to refer to the same job.

The first few characters of the command sequence can also be used to refer to a job;
for example, kill %pic would have worked in the preceding example.

Stopped Jobs and the fg and bg Commands

If you are running a job in the foreground (without an &) and you want to suspend

it, you can press the Ctrl+z key. The job stops executing, and the shell prints the

message

[Nn] + Stopped (SIGTSTP) Sequence

The stopped job is made the current job. To have it continue executing, you must

use the fg or bg command. The fg command with no arguments causes the current

job to resume execution in the foreground, and bg causes the current job to resume

execution in the background. You can also use a job number, the first few characters

354 CHAPTER 15 Interactive and Nonstandard Shell Features

of the pipeline, a +, a -, or a % preceded by a to specify any job to the fg and bg

commands. These commands print out the command sequence to remind you what

is being brought to the foreground or sent to the background.

$ troff memo | photo

Ctrl+z

[1] + Stopped (SIGTSTP) troff memo | photo

$ bg

[1] troff memo | photo &

$

The preceding sequence is one of the most often used with job control: sending a

job mistakenly started in the foreground to the background.

If a job running in the background tries to read from the terminal, it is stopped, and

the message

[Mm] - Stopped (SIGTTIN) sequence

is printed. It can then be brought to the foreground with the fg command. After

entering input to the job, it can be stopped (with the Ctrl+z) and returned to the

background until it again requests input from the terminal.

Output from a background job normally goes directly to the terminal. The command

stty tostop

causes any background job that attempts to write to the terminal to be stopped and

the message

[nN] - Stopped (SIGTTOU) sequence

to be printed. (Note that Bash generates slightly different messages than the ones

shown here.)

The following shows how job control might be used:

$ stty tostop

$ rundb Start up data base program

2??? find green red Find green and red objects

Ctrl+z This may take a while

[1] + Stopped rundb

$ bg So put it in the background
[1] rundb &

une Do some other stuff

$ jobs

[1] + Stopped(tty output) rundb &

$ fg Bring back to foreground

The Restricted Shell rsh 355

rundb

1973 Ford Mustang red

1975 Chevy Monte Carlo green

1976 Ford Granada green

1980 Buick Century green

1983 Chevy Cavalier red

2??? find blue Find blue objects

Ctrl+z Stop it again
[1] + Stopped rundb

$ bg Back to the background

[1] rundb &

Pa Keep working until it’s ready

The Restricted Shelli rsh

Although the restricted shell is not part of the POSIX standard, it is supported by

every Bourne shell variant we know of.

The restricted shell is almost the same as the regular shell, but it’s designed to restrict

a user’s Capabilities by disallowing certain actions that the standard shell allows. This

allows an administrator to let users who should not have complete access to the

system use the shell. It is usually found in /usr/lib/rsh and is started as the login

shell for a user who should not have full capabilities on a system—for example, a

game user or data-entry clerk. The list of actions disallowed is very short:

¢ Cannot change directory (cd)

e Cannot change PATH, ENV, or SHELL variables

¢ Cannot specify a path to a command

* Cannot redirect output (> and >>)

* Cannot exec programs

These restrictions are enforced after the .profile is executed when logging in, and
the user is logged off if he presses Break or Delete while the .profile is being inter-

preted.

These simple restrictions allow the writer of a restricted user’s .profile to have

control over what commands that user can use. The following example shows a

simple setup for a restricted environment:

$ cat .profile User restrict's .profile

PATH=/usr/rbin:/users/restrict/bin

export PATH
SHELL=/usr/lib/rsh Some commands use SHELL variable

export SHELL

cd /users/restrict/restdir Don't leave user in HOME directory

356 CHAPTER 15 Interactive and Nonstandard Shell Features

$ ls -1 .profile Restricted user shouldn't own his .profile

-rw-r--r-- 1 pat group1 179 Sep 14 17:50 .profile

$ 1s /usr/rbin Directory of restricted commands

cat Harmless commands

echo

ls

mail Let them send us mail

red Restricted editor

write

$ ls /users/restrict/bin restrict's command directory

adventure Lots of games

backgammon

chess

hearts

poker

rogue

$

Here we have a restricted environment for a user. When this user logs in, his PATH is

changed to search just the directories /usr/rbin and /users/restrict/bin. He can run

only commands found in these two directories. Any other command will get a

command: not found response. The user is effectively bottled up in the directory

/users/restrict/restdir and cannot cd out of it. The .profile is owned by a user

other than the restricted one, and the permissions are such that only the owner can

change the file. (Don’t let a restricted user alter his or her .profile because the

.profile is executed before any restrictions are applied.)

One quick note about the commands in /usr/rbin: They were simply copied from

the /bin and /usr/bin directories. You can put almost any command from /bin and

/usr/bin in /usr/rbin; just use common sense in choosing the commands you

allow restricted users to use. For example, don’t give them access to the shell, a

compiler, or chmod because these may be used to bypass the restricted shell. The mail

and write commands are safe even though they have shell escapes because the shell

looks at the SHELL variable and runs restricted if the first character of its name is “r.”

The restricted editor red is the same as ed, except it doesn’t allow shell escapes, and
it only allows editing of files in the current directory.

Note that most restricted shells are not really very secure. They should not be used

to contain hostile users. Even though some restricted shells are more secure than

others, if you give a restricted user certain commands (such as env), he will be able

to break out into a nonrestricted shell.

If you can’t find the restricted shell on your system, you can copy or link your Bash,
Korn shell, or even old Bourne shell to any filename that begins with “r” and make
that file the login shell of the restricted user. When the shell starts up, it checks the
first letter of the command name that was used to invoke it; if that letter is “ Pent
will be a restricted shell.

Miscellaneous Features 357

Miscellaneous Features

Other Features of the cd Command
The - argument to cd always means “the previous directory.”

$ pwd

/usr/src/cmd

$ cd /usr/spool/uucp

$ pwd

/usr/spool/uucp

$ cd - cd to previous directory

/usr/src/cmd cd prints out name of new directory
$ cd -

/usr/spool/uucp

$

As you can see, cd - can be used to toggle between two directories with no effort
at all.

The Korn sheil’s cd command has the capability to substitute portions of the current

directory’s path with something else. (Bash and the POSIX standard shell do not
support this feature.) The format is

cd old new

cd attempts to replace the first occurrence of the string old in the current directory’s
path with the string new.

$ pwd

/usr/spool/uucppublic/pat

$ cd pat steve Change pat to steve and cd

/usr/spool/uucppublic/steve cd prints out name of new directory

$ pwd Confirm location

/usr/spool/uucppublic/steve

$

Tilde Substitution

If a word on a command line begins with the tilde (~) character, the shell scans the

rest of the word and performs the following substitutions: If the tilde is the only
character in the word or if the character following the tilde is a slash (/),the value of

the HOME variable is substituted:

$ echo ~

/users/pat

$ grep Korn ~/shell/chapter9/ksh

The Korn shell is a new shell developed

358 CHAPTER 15 Interactive and Nonstandard Shell Features

by David Korn at AT&T

for the Bourne shell would also run under the Korn

the one on System V, the Korn shell provides you with

idea of the compatibility of the Korn shell with Bourne's,

the Bourne and Korn shells.

The main features added to the Korn shell are:

$

If the rest of the word up to a slash is a user’s login name in /etc/passwd, the tilde

and the user’s login name are substituted with the HOME directory of that user.

$ echo ~steve

/users/steve

$ echo ~pat

/users/pat

$ grep Korn -pat/shell/chapter9/ksh

The Korn shell is a new shell developed

by David Korn at AT&T

for the Bourne shell would also run under the Korn

the one on System V, the Korn shell provides you with

idea of the compatibility of the Korn shell with Bourne's,

the Bourne and Korn shells.

The main features added to the Korn shell are:

$

In the Korn shell and Bash, if the ~ is followed by a + ora -, the value of the variable

PWD or OLDPWD is substituted, respectively. PWD and OLDPWD are set by cd and are the

full pathnames of the current and previous directories, respectively. ~+ and ~- are

not supported by the POSIX standard shell.

$ pwd

/usr/spool/uucppublic/steve

$ cd

$ pwd

/users/pat

$ echo ~+

/users/pat

$ echo ~-

/usr/spool/uucppublic/steve

$

In addition to the preceding substitutions, the shell also checks for a tilde after a
colon (:) and performs tilde substitution on that as well (for PATH interpretation).

Compatibility Summary 359

Order of Search

It’s worthwhile listing the order of searching the shell uses when you type a
command name:

1. The shell first checks to see whether the command is a reserved word (such as

for and do).

. If it’s not a reserved word and is not quoted, the shell next checks its alias list,

and if it finds a match, performs the substitution. If the alias definition ends in

a space, it attempts alias substitution on the next word. The final result is then

checked against the reserved word list, and if it’s not a reserved word, the shell

proceeds to step 3.

Next, the shell checks the command against its function list and executes it if

found.

The shell checks to see whether the command is a built-in command (such as

cd and pwd).

Finally, the shell searches the PATH to locate the command.

If the command still isn’t found, a “command not found” error message is

issued.

Compatibility Summary

Table 15.4 summarizes the compatibility of the POSIX standard shell, the Korn shell,

and Bash with the features described in this chapter. In this tabie, an “X” denotes a

supported feature, “UP,” an optional feature in the POSIX shell (these are also known

as “User Portability” features in the POSIX shell specification), and “POS,” a feature

supported only by Bash when it is invoked with the name sh or with the - -posix

command-line option, or after set -o posix is executed.

TABLE .15.4 POSIX Shell, Korn Shell, and Bash Compatibility _ :

POSIX Shell Korn Shell Bash

ENV file X X POS

vi line edit mode xm X xX

emacs line edit mode X X

fc command X X X

r command X

1! X

! string X

Functions X X X

local variables X X

autoload via FPATH x

360 CHAPTER 15 Interactive and Nonstandard Shell Features

TABLE 15.4 Continued

POSIX Shell Korn Shell Bash

Integer expressions with ((...)) X X

Integer data type X X

integers in different bases X X

@xhexnumber, ®octalnumber X

Aliases UP X Xx

Arrays X X

Job control UP Xx X

cd - Xx Xx Xx

cd old new Xx

~username, ~/ X X X

a x X

Exercises

1. Using only shell built-in commands, write a function that prints all filenames

in a specified directory hierarchy. Its output should be similar to the output of

the find command:

$ myfind /users/pat

/users/pat

/users/pat/bin

/users/pat/bin/ksh

/users/pat/bin/1f

/users/pat/bin/pic

/users/pat/chapt1

/users/pat/chapt1/intro

/users/pat/rje

/users/pat/rje/filet

(Hint: Bash and Korn shell functions can be recursive.)

2. Write a shell function called octal that converts octal numbers given as
command-line arguments to decimal numbers and prints them out, one per
line:

$ octal 10 11 12

8

9

10

$

Exercises 361

(Hint for Korn shell users: If you assign a decimal number to a variable when
it’s declared—for example, typeset -i d=1040—assignments to this variable
from other bases are converted to decimal first.)

3. Modify the cdh function to filter out multiple occurrences of the same direc-
tory; for example:

$ cdh -1

@ /users/pat

$ cdh

$ cdh

$ cdh -1

@ /users/pat

$

4. Modify the cdh function to set the prompt (PS1) to show the current directory;

for example:

/users/pat: cdh /tmp

/tmp: cdh

/users/pat:

5. Modify the cdh function to allow the user to specify a partial name of a direc-

tory in the history file preceded by a dash:

/etc: cdh -1

@ /users/pat

1 /tmp

/users/steve

/usr/spool/uucppublic

/usr/local/bin

5 /etc

/etc: cdh -pub

/usr/spool/uucppublic: cdh -bin

/usr/local/bin:

& WwW PD

6. (Bash users only) Add the Korn shell’s cd old new feature to the cdh function.

pod shape co-vantinnsy 45 ie 6 oqaae iene

2, Cea eS L Se es) Pipa & Oa

- : ie 7

— tty?’ om ect aed ahah @

—— Tea are
okt 7

er to eh es ee 8 headed i)
; a he oT ap el nee

& 7 ee

viii af, ar is
~
—

— =

ae

DB) \@ tmaay [SSH ji a on awd wiolahe SL ae
ah pin ah Care Wt oy eae *

~ . _——— 2 ee
Sp _ — servetem):5
— ay)? 7 a

= eo 6) 0 ries 7 _ .

eee el | : _
ithe). =

we &-

oe, Se cg |
036 Ge Aj teen Gee ee

= y as ; wi
7 ’ m=.) of

Ure 4 qe se eet:

A

Shell Summary

IN THIS APPENDIX

¢ Startup

e Commands

¢ Comments

e Parameters and Variables This appendix summarizes the main features of the stan-

dard POSIX shell as per IEEE Std 1003.1-2001. * Command Re-entry

| * Quoting
Startup |

: e Filename Substitution
The shell can be given the same options on the command

line as can be specified with the set command. In addi- | * |/O Redirection

tion, the following options can be specified: :
e Exported Variables and

-c commands commands are executed. Subshell Execution

-i The shell is interactive. Signals 2, 3, e Functions

and 15 are ignored.
¢ Job Control

-s Commands are read from standard

input. e Command Summary

Commands

The general format of a command typed to the shell is

command arguments

where command is the name of the program to be

executed, and arguments are its arguments. The command

name and the arguments are delimited by whitespace char-

acters, normally the space, tab, and newline characters

(changing the variable IFS affects this).

Multiple commands can be typed on the same line if

they’re separated by semicolons (;).

Every command that gets executed returns a number

known as the exit status; zero is used to indicate success,

and nonzero indicates a failure.

364 APPENDIX A _ Shell Summary

The pipe symbol | can be used to connect the standard output from one command

to the standard input of another, as in

who | we -1

The exit status is that of the last command in the pipeline. Placing a ! at the begin-

ning of the pipeline causes the exit status of the pipeline to be the logical negation

of the last command in the pipeline.

If the command sequence is terminated by an ampersand character (&),it is run asyn-

chronously in the background. The shell displays the process id number and job id

of the command at the terminal.

Typing of a command can continue to the next line if the last character on the line

is a backslash character (\).

The characters && cause the command that follows to be executed only if the preced-

ing command returns a zero exit status. The characters | | cause the command that

follows to be executed only if the preceding command returns a nonzero exit status.

As an example, in

who | grep "fred" > /dev/null && echo "fred's logged on"

the echo is executed only if the grep returns a zero exit status.

Comments

If a word begins with the character #, the shell treats the remainder of the line as a

comment and simply ignores it.

Parameters and Variables

There are three different “types” of parameters: shell variables, special parameters,

and positional parameters.

Shell Variables

A shell variable name must start with an alphabetic or underscore (_) character, and
can be followed by any number of alphanumeric or underscore characters. Shell vari-
ables can be assigned values on the command line by writing:

variable=value variable=value ...

Filename substitution is not performed on value.

Parameters and Variables 365

Positional Parameters

Whenever a shell program is executed, the name of the program is assigned to the
variable $0 and the arguments typed on the command line to the variables $1, $2,
and ..., respectively. Positional parameters can also be assigned values with the set
command. Parameters 1 through 9 can be explicitly referenced. Parameters greater
than nine must be enclosed inside braces, as in ${10}.

Special Parameters

Table A.1 summarizes the special shell parameters.

Parameter Meaning

$# The number of arguments passed to the program; or the number of parameters set

by executing the set statement

$* Collectively references all the positional parameters as $1, $2, ...

$a Same as $*, except when double-quoted (“$@”) collectively references all the posi-

tional parameters as “$1”, “$2”,

$0 The name of the program being executed

$$ The process id number of the program being executed

$! The process id number of the last program sent to the background for execution

$? The exit status of the last command not executed in the background

$- The current option flags in effect (see the set statement)

In addition to these parameters, the shell has some other variables that it uses. Table

A.2 summarizes the more important of these variables.

TABLE A.2 Other Variables Used by the Shell

Variable Meaning

CDPATH The directories to be searched whenever cd is executed without a full path as argu-

ment.

ENV The name of a file that the shell executes in the current environment when started

interactively.

FCEDIT The editor used by fc. If not set, ed is used.

HISTFILE If set, it specifies a file to be used to store the command history. If not set or if the file

isn’t writable, $HOME/.sh_history is used.

HISTSIZE If set, specifies the number of previously entered commands accessible for editing.

The default value is at least 128.

HOME The user’s home directory; the directory that cd changes to when no argument is

supplied.

366 APPENDIX A _ Shell Summary

TABLE A.2 Continued any an

Variable Meaning

IFS The Internal Field Separator characters; used by the shell to delimit words when

parsing the command line, for the read and set commands, when substituting the

output from a back-quoted command, and when performing parameter substitution.

Normally, it contains the three characters space, horizontal tab, and newline.

LINENO Set by the shell to the line number in the script it is executing. This value is set

before the line gets executed and starts at 1.

MAIL The name of a file that the shell periodically checks for the arrival of mail. If new mail

arrives, the shell displays a You have mail message. See also MAILCHECK and

MAILPATH.

MAILCHECK The number of seconds specifying how often the shell is to check for the arrival of

mail in the file in MAIL or in the files listed in MAILPATH. The default is 600. A value of

0 causes the shell to check before displaying each command prompt.

MAILPATH A list of files to be checked for the arrival of mail. Each file is delimited by a colon

and can be followed by a percent sign (%) and a message to be displayed when mail

arrives in the indicated file. (You have mail is often the default.)

PATH A colon-delimited list of directories to be searched when the shell needs to find a

command to be executed. The current directory is specified as :: or :.: (if it heads

or ends the list, : suffices).

PPID The process id number of the program that invoked this shell (that is, the parent

process).

PS1 The primary command prompt, normally “$ ”.

PS2 The secondary command prompt, normally “> “.

PS4 Prompt used during execution trace (-x option to shell or set -x). Default is “+ ”.

PWD Pathname of the current working directory.

Parameter Substitution

In the simplest case, the value of a parameter can be accessed by preceding the para-
meter with a dollar sign ($). Table A.3 summarizes the different types of parameter
substitution that can be performed. Parameter substitution is performed by the shell
before filename substitution and before the command line is divided into argu-
ments.

The presence of the colon after parameter in Table A.3 indicates that parameter is to
be tested to see whether it’s set and not null. Without the colon, a test is made to
check whether parameter is set only.

TABLE A.3 _ Parameter Substitution

Parameter

Command Re-entry 367 |

Meaning

$parameter or ${ parameter}

${parameter: - value}

${ parameter - value}

${ parameter: =value}

${parameter=value}

${ parameter: ?value}

${ parameter? value}

${ parameter: +value}

${parameter+ value}

${#parameter}

${parameter#pattern}

${ parameter## pattern}

${parameterxpattern}

${parameters%spattern}

Substitute the value of parameter.

Substitute the vaiue of parameter if it’s set and non-null; otherwise,

substitute value.

Substitute the value of parameter if it’s set; otherwise, substitute value.

Substitute the value of parameter if it’s set and non-null; otherwise,

substitute value and also assign it to parameter.

Substitute the value of parameter if it’s set; otherwise, substitute value

and also assign it to parameter.

Substitute the value of parameter if it’s set and non-null; otherwise,

write value to standard error and exit. If value is omitted, write para-

meter: parameter null or not set instead.

Substitute the value of parameter if it’s set; otherwise, write value to

standard error and exit. If value is omitted, write parameter:

parameter null or not set instead.

Substitute value if parameter is set and non-null; otherwise, substitute

null.

Substitute value if parameter is set; otherwise, substitute null.

Substitute the length of parameter. If parameter is * or @, the result is

not specified.

Substitute the value of parameter with pattern removed from the left

side. The smallest portion of the contents of parameter matching

pattern is removed. Shell filename substitution characters (*, ?, [...],

!, and @) may be used in pattern.

Same as #pattern except the largest matching pattern is removed.

Same as #pattern except pattern is removed from the right side.

Same as ##pattern except the largest matching pattern is removed

from the right side.

Command Re-entry
The shell keeps a list, or history, of recently entered commands. The number of

commands available is determined by the HISTSIZE variable (default at least 128),

and the file in which the history is kept is determined by the HISTFILE variable

(default $HOME/.sh_history). Because the command history is stored in a file, these

commands are available after you log off and back on.

There are three ways you can access the command history.

368 APPENDIX A_ Shell Summary

The fc Command

The built-in command fc allows you to run an editor on one or more commands in

the command history. When the edited command(s) is written and you leave the

editor, the edited version of the command(s) is executed. The editor is determined

by the FCEDIT variable (default ed). The -e option may be used with fc to specify the

editor rather than FCEDIT.

The -s option causes commands to be executed without first invoking an editor. A

simple editing capability is built in to the fc -s command; an argument of the form

old=new

may be used to change the first occurrence of the string old to the string new in the

command(s) to be re-executed.

vi Line Edit Mode

The shell has a built-in implementation of the vi screen editor, scaled down to work

on single lines. When vi mode is turned on, you are by default placed in a state

similar to vi’s input mode. Commands can be typed just the same as when vi mode

is off. At any time, however, you can press the Esc key to be placed in edit mode. At

this point, most vi commands will be interpreted by the shell. The current

command line can be edited, as can any of the lines in the command history.

Pressing Enter at any point in either command or input mode causes the command

being edited to be executed.

Table A.4 lists all the editing commands in vi mode. Note: [count] is any integer and

may be omitted.

TABLE A.4__ vi Editing Commands

Input Mode Commands

Command Meaning

erase (Erase character, usually Ctr/+h or #); delete previous character.

Ctrl+w Delete the previous blank-separated word.

kill (Line kill character, normally Ctr/+u or @); delete the entire current line.

eof (End-of-file character, normally Ctri+d); terminate the shell if the current line is

empty.

Ctrl+v Quote next character; editing characters and the erase and kill characters may

be entered in a command line or in a search string if preceded by a Ctrl+v.

Enter Execute the current line.

Esc Enter edit mode.

Command Re-entry

Edit Mode Commands

Command Meaning

[count]k Get previous command from history.

[count] - Get previous command from history.

[count] j Get next command from history.

[count]+ Get next command from history.

[count]G Get the command number count from history; the default is the oldest stored

command.

/ string Search history for the most recent command containing string; if string is null,

the previous string will be used (string is terminated by an Enter or a Ctrl+); if

string begins with *, search for line beginning with string.

?string Same as / except that the search will be for the least recent command.

n Repeat the last / or ? command.

N Repeat the last / or ? command but reverse the direction of the search.

[count]1 or Move cursor right one character.

[count]space

[count]w Move cursor right one alphanumeric word.

[count]w Move cursor right to next blank-separated word.

[count]e Move cursor to end of word.

[count]E Move cursor to end of current blank-separated word.

[count]h Move cursor left one character.

[count] Move cursor left one word.

[count]B Move cursor left to previous blank-separated word.

) Move cursor to start of line.

s Move cursor to first nonblank character.

$ Move cursor to end of line.

[count] | Move cursor to column count; 1 is default.

[count] fc Move cursor right to character c.

[count] Fc Move cursor left to character c.

[count]tc , Same as fc followed by h.

[count]Tc Same as Fc followed by 1.

; Repeat the last f, F, t, or T command.

: Reverse of ;.

a Enter input mode and enier text after the current character.

A Append text to the end of the line; same as $a.

[count]c motion

C

Ss)

[count]d motion

Delete current character through character specified by motion and enter input

mode; if motion is c, the entire line is deleted.

Delete current character through end of line and enter input mode.

Same as cc.

Delete current character through the character specified by motion; if motion is

d, the entire line is deleted.

Delete current character through the end of line; same as d$.

369

370 APPENDIX A_ Shell Summary

TABLE A.4 Continued

Edit Mode Commands

Command Meaning

il Enter input mode and insert text before the current character.

I Enter input mode and insert text before the first word on the line.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

[count]y motion Copy current character through character specified by motion into buffer used

by p and P; if motion is y, the entire line is copied.

Vf Copy current character through the end of line; same as yS.

R Enter input mode and overwrite characters on the line.

[count]rc Replace the current character with c.

[count]x Delete current character.

[count]x Delete preceding character.

[count]. Repeat the previous text modification command.

~ Invert the case of the current character and advance the cursor.

[count] _ Append the count word from the previous command and enter input mode; the

last word is the default.

: Attempt filename generation on the current word; if a match is found, replace

the current word with the match and enter input mode.

= List files that begin with current word.

\ Complete pathname of current word; if current word is a directory, append a /;

if current word is a file, append a space.

u Undo the last text modification command.

U Restore the current line to its original state.

@letter Soft function key—if an alias of the name _Jetter is defined, its value will be

executed.

[count]v Execute vi editor on line count; if count is omitted, the current line is used.

Ctri+l Linefeed and print current line.

L Reprint the current line.

Ctrl+j Execute the current line.

Ctrl+m Execute the current line.

Enter Execute the current line.

Insert a # at the beginning of the line and enter the line into the command

history (same as I#Enter).

Quoting
Four different types of quoting mechanisms are recognized. These are summarized in
Table A.5.

Quoting

TABLE A.5 Summary of Quotes

Quote Description

Removes special meaning of all enclosed characters

Removes special meaning of ail enclosed characters except $, >, and \

\c Removes special meaning of character c that follows; inside double quotes

removes special meaning of $, °, ", newline, and \ that follows, but is otherwise

not interpreted; used for line continuation if appears as last character on line

(newline is removed)

“command~ or Executes command and inserts standard output at that point

$(command)

Tilde Substitution

Each word and shell variable on a command line is checked to see whether it begins

with an unquoted ~. If it does, the rest of the word or variable up to a / is considered

a login name and is looked up in a system file, typically /etc/passwd. if that user

exists, his home directory replaces the ~ and his login name. If that user doesn’t

exist, the text is unchanged. A ~ by itself or followed by a / is replaced by the HOME

variable.

Arithmetic Expressions

General Format: $((expression))

The shell evaluates the integer arithmetic expression. expression can contain constants,

shell variables (which don’t have to be preceded by dollar signs), and operators. The

operators, in order of decreasing precedence, are

unary minus

~ bitwise NOT

! logical negation

* / % multiplication, division, remainder

ae addition, subtraction

<< >> left shift, right shift

ES SE eS comparison

== |= equal, not equal

& bitwise AND

Cs bitwise exclusive OR

bitwise OR

371

372 APPENDIX A _ Shell Summary

&& logical AND

| | logical OR

expr, ? expr, : expr, conditional operator

= Bey ea assignment

$=! cee. Sak 1S=

Parentheses may be used to override operator precedence.

The exit status is zero (true) if the last expression is nonzero and one (false) if the

last expression is zero.

The C operators sizeof, ++, and -- may be available in your shell implementation

but are not required by the standard.

Exaniples

y=$((22 * 33))

Filename Substitution

After parameter substitution (and command substitution) is performed on the

command line, the shell looks for the special characters *, ?, and [. If they’re not

quoted, the shell searches the current directory, or another directory if preceded by a

/, and substitutes the names of all files that match (these names are first alphabet-

ized by the shell). If no match is found, the characters remain untouched.

Note that filenames beginning with a . must be explicitly matched (so echo * won't

display your hidden files; echo .* will).

The filename substitution characters are summarized in Table A.6.

TABLE A.6 . Filename Substitution Characters

Character(s) : Meaning

? Matches any single character.

is Matches zero or more characters.

[chars] Matches any single character in chars; the format C,-C, can be used to match any

character in the range C through C,, inclusive (for example, [A-Z] matches any

uppercase letter).

[! chars] Matches any single character not in chars; a range of characters may be specified
previously.

Exported Variables and Subsheil Execution B73

1/O Redirection

When scanning the command line, the shell looks for the special redirection charac-
ters < and >. If found, they are processed and removed (with any associated argu-
ments) from the command line. Table A.7 summarizes the different types of I/O
redirection that the shell supports.

TABLE A.7 1/0 Redirection

Construct Meaning

< file Redirect standard input from file.

> file Redirect standard output to file; file is created if it doesn’t exist and zeroed if it does.

>| file Redirect standard output to file; file is created if it doesn’t exist and zeroed if it does;

the noclobber (-C) option to set is ignored.

>> file Like >, only output is appended to file if it already exists.

<< word Redirect standard input from lines that follow up until a line containing just word; para-

meter substitution occurs on the lines, and back-quoted commands are executed and

the backslash character interpreted; if any character in word is quoted, none of this

processing occurs and the lines are passed through unaltered; if word is preceded by

a -, leading tabs on the lines are removed.

<& digit Standard input is redirected from the file associated with file descriptor digit.

>& digit Standard output is redirected to the file associated with file descriptor digit.

<&- Standard input is closed.

>&- Standard output is closed.

<> file Open file for both reading and writing.

Note that filename substitution is not performed on file. Any of the constructs listed

in the first column of the table may be preceded by a file descriptor number to have

the same effect on the file associated with that file descriptor.

The file descriptor 0 is associated with standard input, 1 with standard output, and 2

with standard error.

Exported Variables and Subshell Execution
Commands other than the shell’s built-in commands are normally executed in a

“new” shell, called a subshell. Subshells cannot change the values of variables in

the parent shell, and they can only access variables from the parent shell that

were exported to them—either implicitly or explicitly—by the parent. If the sub-

shell changes the value of one of these variables and wants to have its own subshells

know about it, it must explicitly export the variable betore executing the subshell.

When the subshell finishes execution, any variables that it may have set are inacces-

sible by the parent.

374 APPENDIX A_ Shell Summary

The (...) Construct

If one or more commands are placed inside parentheses, those commands will be

executed in a subshell.

The { ...; } Construct

If one or more commands are placed inside curly braces, those commands will be

executed by the current shell.

With this construct and the (...) construct, I/O can be redirected and piped into and

out of the set of enclosed commands, and the set can be sent to the background for

execution by placing an & at the end. For example,

(prog1; prog2; prog3) 2>errors &

submits the three listed programs to the background for execution, with standard

error from all three programs redirected to the file errors.

More on Shell Variables

A shell variable can be placed into the environment of a command by preceding the

command name with the assignment to the parameter on the command line, as in

PHONEBOOK=$HOME/misc/phone rolo

Here the variable PHONEBOOK will be assigned the indicated value and then placed in

rolo’s environment. The environment of the current shell remains unchanged, as if

(PHONEBOOK=$HOME/misc/phone; export PHONE BOOK; rolo)

had been executed instead.

Functions

Functions take the following form:

name () compound-command

where compound-command is a set of commands enclosed in (...), {...} or can be a
for, case, until, or while command. Most often, the function definition takes this
form:

name () { command; command; ...command; }

where name is the name of the function defined to the current shell (functions can’t
be exported). The function definition can span as many lines as necessary. A return

Job Control 375

command can be executed to cause execution of the function to be terminated
without also terminating the shell (see the return command description).

For example,

he (Oy) Se SS || AG ale

defines a function called nf to count the number of files in your current directory.

Job Control

Shell Jobs

Every command sequence run in the background is assigned a job number, starting

at one. The lowest available number not in use is assigned. A job may be referred to

by a job_id, which is a % followed by the job number, %+, %-, %%, % followed by the

first few letters of the pipeline, or %?string. The following built-in commands may be

given a job_id as an argument: kill, fg, bg, and wait. The special conventions %+

and %- refer to the current and previous jobs, respectively; %% also refers to the

current job. The current job is the most recent job placed in the background or

the job running in the foreground. The previous job is the previous current job. The

convention «string refers to the job whose name begins with string; «?string refers to

the job whose name contains string. The jobs command may be used to list the

status of all currently running jobs.

If the monitor option of the set command is turned on, the shell prints a message

when each job finishes. If you still have jobs when you try to exit the shell, a

message is printed to alert you of this. If you immediately try to exit again, the shell

exits. The monitor option is enabled by default for interactive shells.

Stopping Jobs

If the shell is running on a system with job control, and the monitor option of the

set command is turned on, jobs that are running in the foreground may be placed

in the background and vice versa. Normally, Ctrl+z stops the current job. The bg

command puts a stopped job in the background. The fg command brings a back-

ground or stopped job to the foreground.

Whenever a job in the background attempts to read from the terminal, it is stopped

until it is brought to the foreground. Output from background jobs normally comes

to the terminal. If stty tostop is executed, output from background jobs is disabled,

and a job writing to the terminal is stopped until it is brought to the foreground.

When the shell exits, all stopped jobs are killed.

376 APPENDIX A_ Shell Summary

Command Summary

This section summarizes the shell’s built-in commands. Actually, some of these

commands (such as echo and test) may not be built in to the shell but must be

provided as a utility by a POSIX-compliant system. They are built in to Bash and the

Korn shell and are so often used in shell scripts that we decided to list them here

anyway.

The following commands are organized alphabetically for easy reference.

The : Command

General Format: :

This is essentially a null command. It is frequently used to satisfy the requirement

that a command appear.

Example

if who | grep jack > /dev/null

then

else

echo "jack's not logged in"

fi

The : command returns an exit status of zero.

The . Command

General Format: . file

The “dot” command causes the indicated file to be read and executed by the shell,

just as if the lines from the file were typed at that point. Note that file does not have

to be executable, only readable. Also, the shell uses the PATH variable to find file.

Example

. progdefs Execute commands in progdefs

The preceding command causes the shell to search the current PATH for the file
progdefs. When it finds it, it reads and executes the commands from the file.

Note that because file is not executed by a subshell, variables set and/or changed
within file remain in effect after execution of the commands in file is complete.

Command Summary 377

The alias Command

General Format: alias name=string [namez=string ...]

The alias command assigns string to the alias name. Whenever name is used as a
command, the shell substitutes string, performing command-line substitution after
string is in place.

Examples

alias ll='ls -1'

alias dir='basename $(pwd) '

If an alias ends with a blank, the word following the alias is also checked to see

whether it’s an alias.

The format

alias name

causes the alias for name to be printed out.

alias with no arguments lists all aliases.

alias returns an exit status of zero unless a name is given (as in alias name) for

which no alias has been defined.

The bg Command

General Format: bg job_id

If job control is enabled, the job identified by job_id is put into the background. If no

argument is given, the most recently suspended job is put into the background.

Example

bg %2

The break Command

General Format: break

Execution of this command causes execution of the innermost for, while, or until

loop to be immediately terminated. Execution continues with the commands that

immediately follow the loop.

If the format

break n

378 APPENDIX A _ Shell Summary

is used, where n is an integer greater than or equal to 1, execution of the m inner-

most loops is automatically terminated.

The case Command

General Format:

case value in

pat,) command

command

command; ;

pat,) command

command

command; ;

pat,) command

command

command; ;

esac

The word value is successively compared against pat, pat,, ..., pat, until a match is

found. The commands that appear immediately after the matching pattern are then

executed until a double semicolon (; ;) is encountered. At that point, execution of

the case is terminated.

If no pattern matches value, none of the commands inside the case are executed. The

pattern * matches anything and is often used as the last pattern in a case as the

“catchall” case.

The shell metacharacters * (match zero or more characters), ? (match any single

character), and [...] (match any single character enclosed between the brackets) can

be used in patterns. The character | can be used to specify a logical ORing of two

patterns, as in

pat, | pat,

which means to match either pat, or pat,.

Examples

case $1 in

-1) lopt=TRUE;;

-w) wopt=TRUE; ;

Command Summary

-C) COpt=TRUE; ;

*) echo "Unknown option"; ;

esac

case $choice in

{1-9]) valid=TRUE;;

*) echo "Please choose a number from 1-9";;

esac

The cd Command

General Format: cd directory

Execution of this command causes the shell to make directory the current directory. If

directory is omitted, the shell makes the directory specified in the HOME variable the

current directory.

If the shell variable CDPATH is null, directory must be a full directory path (for

example, /users/steve/documenis) or relative to the current directory (for example,

documents, ../pat).

If CDPATH is non-null and directory is not a full path, the shell searches the colon-

delimited directory list in CDPATH for a directory containing directory.

Examples

$ cd documents/memos Change to documents/memos directory

$ cd Change to HOME directory

An argument of - causes the shell to make the previous directory the current direc-

tory. The pathname of the new current directory is printed out.

Examples

$ pwd

/usr/lib/uucp

Sicd./

$ cd -

/usr/1lib/uucp

$

The cd command sets the shell variable PWD to the new current directory, and OLDPWD

to the previous directory.

379

380 APPENDIX A_ Shell Summary

The continue command

General Format: continue

Execution of this command from within a for, while, or until loop causes any

commands that follow the continue to be skipped. Execution of the loop then

continues as normal.

If the format

continue n

is used, the commands within the n innermost loops are skipped. Execution of the

loops then continue as normal.

The echo Command

General Format: echo args

This command causes args to be written to standard output. Each word from args is

delimited by a blank space. A newline character is written at the end. If args is

omitted, the effect is to simply skip a line.

Certain backslashed characters have a special meaning to echo as shown in

Table A.8.

Character Prints

\a Alert

\b Backspace

\c The line without a terminating newline

ie Formfeed

\n Newline

\r Carriage return

Wie Tab character

\v Vertical tab character

\\ Backslash character

\Onnn The character whose ASCII value is nnn, where nnn is a one- to three-digit octal

number that starts with a zero

Remember to quote these characters so that the echo command interprets them and
not the shell.

Examples

$ echo * List all files in the current directory
bin docs mail mise src

Command Summary

$ echo Skip a line

$ echo 'X\tY' Print X and Y, separated by a tab
X ¥

$ echo "\n\nSales Report" Skip two lines before displaying Sales Report

Sales Report

$ echo "Wake up!!\a" Print message and beep terminal

Wake up!!

$

The eval Command

General Format: eval args

Execution of this command causes the shell to evaiuate args and then execute the

results. This is useful for causing the shell to effectively “double-scan” a command

line.

Example

$ x='abe def'

$ y='$x' Assign $x to y

$ echo $y

$x

$ eval echo $y

abc def

$

The exec Command

General Format: exec command args

When the shell executes the exec command, it initiates execution of the specified

command with the indicated arguments. Unlike other commands executed as a new

process, command replaces the current process (that is, no new process is created).

After command starts execution, there is no return to the program that initiated the

exec.

If just I/O redirection is specified, the input and/or output for the shell is accordingly

redirected.

Examples

exec /bin/sh Replace current process with sh

exec < datafile Reassign standard input to datafile

381

382 APPENDIX A_ Shell Summary

The exit Command

General Format: exit n

Execution of exit causes the current shell program to be immediately terminated.

The exit status of the program is the value of the integer n, if supplied. If n is not

supplied, the exit status is that of the last command executed prior to the exit.

An exit status of zero is used by convention to indicate “success,” and nonzero to

indicate “failure” (such as an error condition). This convention is used by the shell

in evaluation of conditions for if, while, and until commands, and with the && and

| | constructs.

Examples

who | grep $user > /dev/null

exit Exit with status of last grep

exit 1 Exit with status of 1

if finduser If finduser returns an exit status of zero then...

then

vil

Note that executing exit from a login shell has the effect of logging you off.

The export Command

General Format: export variables

The export command tells the shell that the indicated variables are to be marked as
exported; that is, their values are to be passed down to subshells.

Examples

export PATH PS1

export dbhome x1 y1 date

Variables may be set when exported using the form

export variable=value...

So lines such as

PATH=$PATH: $HOME/bin; export PATH

CDPATH=.:$HOME: /usr/spool/uucppublic; export CDPATH

Command Summary 383

can be rewritten as

export PATH=$PATH:$HOME/bin CDPATH=. :$HOME: /usr/spool/uucppublic

The output of export with a -p argument is a list of the exported variables and their
values in the form

export variable=value

Or

export variable

if variable has been exported but not yet set.

The false Command

General Format: false

The false command simply returns a nonzero exit status.

The fc Command

General Format: fc -e editor -1nr first last

fc -s old=new first

The fc command is used to edit commands in the command history. A range of

commands is specified from first to last, where first and last can be either command

numbers or strings; a negative number is taken as an offset from the current

command number; a string specifies the most recently entered command beginning

with that string. The commands are read into the editor and executed upon exit

from the editor. If no editor is specified, the value of the shell variable FCEDIT is

used; if FCEDIT is not set, ed is used.

The -1 option lists the commands from first to last (that is, an editor is not invoked).

If the -n option is also selected, these commands are not preceded by command

numbers.

The -r option to fc reverses the order of the commands.

If last is not specified, it defaults to first. If first is also not specified, it defaults to the

previous command for editing and to -16 for listing.

The -s option causes the selected command to be executed without editing it first.

The format

fc -s old=new first

384 APPENDIX A _ Shell Summary

causes the command first to be re-executed after the string old in the command is

replaced with new. If first isn’t specified, the previous command is used, and if

old=new isn’t specified, the command is not changed.

Examples

fe -1 List the last 16 commands

fc -e vi sed Read the last sed command into vi

fc 100 110 Read commands 100 to 110 into $FCEDIT

fees Re-execute the previous command

fc -s abc=def 104 Re-execute command 104, replacing abc with def

The fg Command

General Format: fg job_id

If job control is enabled, the job specified by job_id is brought to the foreground. If

no argument is given, the most recently suspended job, or the job last sent to the

background is brought to the foreground.

Example

fg %2

The for Command

General Format:

for var in word, word, ... word,

do

command

command

done

Execution of this command causes the commands enclosed between the do and done

to be executed as many times as there are words listed after the in.

The first time through the loop, the first word—word—is assigned to the variable var
and the commands between the do and done executed. The second time through the
loop, the second word listed—word,—is assigned to var and the commands in the
loop executed again. This process continues until the last variable in the list—

Command Summary

word,—is assigned to var and the commands between the do and done executed. At
that point, execution of the for loop is terminated. Execution then continues with
the command that immediately follows the done.

The special format

for var

do

done

indicates that the positional parameters “$1”, “$2”, ... are to be used in the list and is
equivalent to

for var in "$a@"

do

done

Example

nroff all of the files in the current directory

On filesin: *

do

nroff -Tlp $file | lp

done

The getopts Command

General Format: getopts options var

This command processes command-line arguments. options is a list of valid single

letter options. If any letter in options is followed by a :, that option takes a following

argument on the command line, which must be separated from the option by at

least one whitespace character.

Each time getopts is called, it processes the next command-line argument. If a valid

option is found, getopts stores the matching option letter inside the specified vari-

able var and returns a zero exit status.

If an invalid option is specified (that is, one not listed in options), getopts stores a ?

inside var and returns with a zero exit status. It also writes an error message to stan-

dard error.

If an option takes a following argument, getopts stores the matching option letter

inside var and stores the following command-line argument inside the special

385

386 APPENDIX A _ Shell Summary

variable OPTARG. If no arguments are left on the command line, getopts stores a ?

inside var and writes an error message to standard error.

If no more options remain on the command line (that is, if the next command-line

argument does not begin with a -), getopts returns a nonzero exit status.

The special variable OPTIND is also used by getopts. It is initially set to 1 and is

adjusted each time getopts returns to indicate the number of the next command-

line argument to be processed.

The argument - - can be placed on the command line to specify the end of the

command-line arguments.

getopts supports stacked arguments, as in

repx -iau

which is equivalent to

repx -i -a -u

Options that take following arguments may not be stacked.

If the format

getopts options var args

is used, getopts parses the arguments specified by args rather than the command-line

arguments.

Example

usage="Usage: foo [-r] [-O outfile] infile"

while getopts ro: opt

do

case "$opt"

in

r) rflag=1;;

0) oflag=1

Of ile=$OPTARG; ;

\?) echo "$usage"

Oxa bie

esac

done

if [SOPTIND -gt $#]

Command Summary

then

echo "Needs input file!"

echo "$usage"

exit 2

wi

shift $((OPTIND - 1))
ifile=$1

The hash Command

General Format: hash commands

This command tells the shell to look for the specified commands and to remember

what directories they are located in. If commands is not specified, a list of the hashed

commands is displayed.

If the format

hash -r

is used, the shell removes all commands from its hash list. Next time any command

is executed, the shell uses its normal search methods to find the command.

Examples

hash rolo whog Add rolo and whog to hash list

hash Print hash list

hash -r Remove hash list

The if Command

General Format:

if command,

then

command

command

at

387

388 APPENDIX A _ Shell Summary

command, is executed and its exit status tested. If it is zero, the commands that

follow up to the fi are executed. Otherwise, the commands that follow up to the fi

are skipped.

Example

if grep $sys sysnames > /dev/null

then

echo "$sys is a valid system name"

if

If the grep returns an exit status of zero (which it will if it finds $sys in the file

sysnames), the echo command is executed; otherwise it is skipped.

The built-in command test is often used as the command following the if.

Example

if [$# -eq Q]

then

echo "Usage: $0 [-1] file ..."

exit 1

lick

An else clause can be added to the if to be executed if the command returns a

nonzero exit status. In this case, the general format of the if becomes

if command,

then

command

command

else

command

command

her

If command, returns an exit status of zero, the commands that follow up to the else
are executed, and the commands between the else and the fi are skipped.
Otherwise, command, returns a nonzero exit status and the commands between the
then and the else are skipped, and the commands between the else and the fi are
executed.

Command Summary 389

Example

Ieee line |

then

echo "I couldn't find $name"

else

echo "$line"

ez

In the preceding example, if line has zero length, the echo command that displays

the message I couldn't find $name is executed; otherwise, the echo command that

displays the value of line is executed.

A final format of the if command is useful when more than a two-way decision has

to be made. Its general format is

if command,

then

command

command

elif command,

then

command

command

elif command,

then

command

command

else

command

command

fi

command, command, ..., command, are evaluated in order until one of the commands

returns an exit status of zero, at which point the commands that immediately follow

the then (up to another elif, else, or fi) are executed. If none of the commands

returns an exit status of zero, the commands listed after the else (if present) are

executed.

390 APPENDIX A _ Shell Summary

Example

It ochouce. =a]

then

add $*

elif ["$choice" =d]

then

delete $*

elif ["$choice" = 1]

then

list

else

echo "Bad choice!"

error=TRUE

yal

The jobs Command

General Format: jobs

The list of active jobs is printed. If the -1 option is specified, detailed information

about each job, including its process id, is listed as well. If the -p option is specified,

only process ids are listed.

If an optional job_id is supplied to the jobs command, just information about that

job is listed.

Example

$ sleep 100 &

[1] 1104

$ jobs

[1] + Running Sleep 100 &

$

The kill Command

General Format: kill -signal job

The kill command sends the signal signal to the specified process, where job is a
process id number or job_id, and signal is a number or one of the signal names speci-
fied in <signal.h> (see the description of trap later in the chapter). kill -1 lists
these names. A signal number supplied with the -1 option lists the corresponding
signal name. A process id used with the -1 option lists the name of the signal that
terminated the specified process (if it was terminated by a signal).

Command Summary

The -s option can also be used when a signal name is supplied, in which case the
dash before the name is not used (see the following example).

If signal isn’t specified, TERM is used.

Examples

kill -9 1234

kill -HUP %2

kill -s TERM %2

kill %1

Note that more than one process id can be supplied to the kill command on the

command line.

The newgrp Command

General Format: newgrp group

This command changes your real group id (GID) to group. If no argument is specified,

it changes you back to your default group.

Examples

newgrp shbook Change to group shbook

newgrp Change back to default group

If a password is associated with the new group, and you are not listed as a member of

the group, you will be prompted to enter it.

newgrp -1 changes you back to your login group.

The pwd Command

General Format: pwd

This command tells the shell to print your working directory, which is written to

standard output.

Examples

$ pwd

/users/steve/documents/memos

$ cd

$ pwd

/users/steve

$

391

392 APPENDIX A _— Shell Summary

The read Command

General Format: read vars

This command causes the shell to read a line from standard input and assign succes-

sive whitespace-delimited words from the line to the variables vars. If fewer variables

are listed than there are words on the line, the excess words are stored in the last

variable.

Specifying just one variable has the effect of reading and assigning an entire line to

the variable.

The exit status of read is zero unless an end-of-file condition is encountered.

Examples

$ read hours mins

10 19

$ echo “$hours:$mins"

10:19

$ read num rest

39 East 12th Street, New York City 10003

$ echo "$num\n$rest"

39

East 12th Street, New York City 10003

$ read line

Here is an entire line \r

$ echo "$line"

Here is an entire line r

$

Note in the final example that any leading whitespace characters get “eaten” by the

shell when read. You can change IFS if this poses a problem.

Also note that backslash characters get interpreted by the shell when you read the
line, and any that make it through (double backslashes will get through as a single
backslash) get interpreted by echo if you display the value of the variable.

A -r option to read says to not treat a \ character at the end of a line as line contin-
uation.

The readonly Command

General Format: readonly vars

Command Summary 393

This command tells the shell that the listed variables cannot be assigned values.
These variables may be optionally assigned values on the readonly command line. If
you subsequently try to assign a value to a readonly variable, the shell issues an error

message.

readonly variables are useful for ensuring that you don’t accidentally overwrite the

value of a variable. They’re also good for ensuring that other people using a shell

program can’t change the values of particular variables (for example, their HOME direc-

tory or their PATH). The readonly attribute is not passed down to subshells.

readonly with a -p option prints a list of your readonly variables.

Example

$ readonly DB=/users/steve/database Assign value to DB and make it readonly

$ DB=foo Try to assign it a value

sh: DB: is read-only Error message from the shell

$ echo $DB But can still access its value

/users/steve/database

$

The return Command

General Format: return n

This command causes the shell to stop execution of the current function and imme-

diately return to the caller with an exit status of n. If n is omitted, the exit status

returned is that of the command executed immediately prior to the return.

The set Command

General Format: set options args

This command is used to turn on or off options as specified by options. it is also used

to set positional parameters, as specified by args.

Each single letter option in options is enabled if the option is preceded by a minus

sign (-), or disabled if preceded by a plus sign (+). Options can be grouped, as in

set -fx

which enables the f and x options.

Table A.9 summarizes the options that can be selected.

394 APPENDIX A_ Shell Summary

TABLE A.9 set Options

Meaning Option

Don’t treat subsequent args preceded by a - as options. If there are no arguments,

the positional parameters are unset.

-a Automatically export all variables that are subsequently defined or modified.

If supported by the implementation, cause the shell to notify you when background

jobs finish.

-C Don’t allow output redirection to overwrite existing files. >| can still be used to force

individual files to be overwritten even if this option is selected.

-e Exit if any command that gets executed fails or has a nonzero exit status.

-f Disable filename generation.

-h Add commands inside functions to the hash list as they are defined, and not as they

are executed.

m Turn on the job monitor.

-n Read commands without executing them (useful for checking for balanced

do...dones, and if...fis).

+0 Write current option mode settings in command format.

-o m Turn on option mode m (see Table A.10).

-u Issue an error if a variable is referenced without having been assigned a value or if a

positional parameter is referenced without having been set.

“Vv Print each shell command line as it is read.

-X Print each command and its arguments as it is executed, preceded by a +.

Shell modes are turned on or off by using the -o and to options, respectively,

followed by an option name. These options are summarized in Table A.10.

TABLE A.10 Shell Modes

Mode Meaning

allexport Same as -a.

errexit Same as -e.

ignoreeof The exit command must be used to leave the shell.

monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Don’t put function definitions in the history.

nounset Same as -u.

verbose Same as -v.

vi The inline editor is set to vi.

xtrace Same as -x.

Command Summary

The command set -o without any following options has the effect of listing all shell

modes and their settings.

The shell variable $- contains the current options setting.

Each word listed in args is set to the positional parameters $1, $2, ..., respectively. If

the first word might start with a minus sign, it’s safer to specify the - - option to set

to avoid interpretation of that value.

If args is supplied, the variable $# will be set to the number of parameters assigned

after execution of the command.

Examples

set -Vx Print all command lines as they are read,

and each command and its arguments as

it is executed

set "$name" "$address" "$phone" Set $1 to $name, $2 to $address, and $3 to

$phone

set -- -1 Set $1 to -1

set -0 vi Turn on vi mode

set +o verbose -o noglob Turn verbose mode off, noglob on

The shift Command

General Format: shift

This command causes the positional parameters $1, $2, ..., $n to be “shifted left”

one place. That is, $2 is assigned to $1, $3 to $2, ..., and $n to $n-1. $# is adjusted

accordingly.

If the format

shift n

is used instead, the shift is to the left n places.

Examples

$ set abcd

$ echo "$#\n$*"
4

aeDecnG

S})5)

396 APPENDIX A _ Shell Summary

shift

echo "$#\n$*"

cud

shift 2

echo "$#\n$*"

Pra PfPAnroe WDA @

The test Command

General Format:

test condition

or

{ condition |

The shell evaluates condition and if the result of the evaluation is TRUE, returns a

zero exit status. If the result of the evaluation is FALSE, a nonzero exit status is

returned. If the format [condition] is used, a space must appear immediately after

the [and before the }.

condition is composed of one or more operators as shown in Table A.11. The -a oper-

ator has higher precedence than the -o operator. In any case, parentheses can be

used to group subexpressions. Just remember that the parentheses are significant to

the shell and so must be quoted. Operators and operands (including parentheses)

must be delimited by one or more spaces so that test sees them as separate argu-

ments.

test is often used to test conditions in an if, while, or until command.

Examples

see if perms is executable

if test -x /etc/perms

then

fi

see if it's a directory or a normal file that's readable

if [-d $file -o \(-f $file -a -r $file \)]

then

pal

TABLE A.11

Operator

Command Summary

test Operators
er oe pane roar r eae

File Operators

-b file

-c file

-d file

-e file

-f file

-g file

-h file

-k file

-L file

-p file

-r file

-S file

-s file

-t fd

-u file

-w file

-x file

String Operators

string

-n string

-z string

string, = string,

string, |= string,

file is a block special file

file is a character special file

file is a directory

file exists

file is an ordinary file

file has its set group id (SGID) bit set

file is a symbolic link

file has its sticky bit set

file is a symbolic link

file is a named pipe

file is readable by the process

file is a socket

file has nonzero length

fd is open file descriptor associated with a terminal (1 is default)

file has its set user id (SUID) bit set

file is writable by the process

file is executable

string is not null

string is not null (and string must be seen by test)

string is null (and string must be seen by test)

string, is identical to string,

string, is not identical to string,

Integer Comparison Operators

int, -eq int,

int, -ge int,

int, -gt int,

int, -1e int,

int, -1t int,

int, -ne int,

Boolean Operators

! expr

expr, -a expr,

expr, -0 expr2

int, is equal to int,

int, is greater than or equal to int,

int, is greater than int,

int, is less than or equal to int,

int, is less than int,

int, is not equal to int,

expr is FALSE; otherwise, returns TRUE

expr, is TRUE, and expr, is TRUE

expr, is TRUE, or expr, is TRUE

397,

398 APPENDIX A_ Shell Summary

The times Command

General Format: times

Execution of this command causes the shell to write to standard output the total

amount of time that has been used by the shell and by all its child processes. For

each, two numbers are listed: first the accumulated user time and then the accumu-

lated system time.

Note that times does not report the time used by built-in commands.

Example

$ times Print time used by processes

im5s 2m9s 1 min., 5 secs. user time, 2 mins., 9 secs. system time

8m22.23s 6m22.01s Time used by child processes

$

The trap Command

General Format: trap commands signals

This command tells the shell to execute commands whenever it receives one of the

signals listed in signals. The listed signals can be specified by name or number.

trap with no arguments prints a list of the current trap assignments.

If the first argument is the null string, as in

trap "" signals

the signals in signals are ignored when received by the shell.

If the format

trap signals

is used, processing of each signal listed in signals is reset to the default action.

Examples

trap "echo hangup >> $ERRFILE; exit" 2 Log message and exit on hangup

trap "rm $TMPFILE; exit" 1 2 15 remove $TMPFILE on signals I, 2, or 15

trap." "22 Ignore interrupts

trap 2 Reset default processing of interrupts

Command Summary 399

Table A.12 lists values that can be specified in the signal list.

TABLE A.12_ Signal Numbers and Names for trap

Signal # Signal Name Generated for

0 EXIT Exit from the shell

1 HUP Hangup

2 INT Interrupt (for example, Delete key, Ctr/+c)

3 QUIT Quit

6 ABRT Abort

9 KILL Kill

14 ALRM Alarm timeout

15 TERM Software termination signal (sent by kill by default)

The shell scans commands when the trap command is encountered and again when

one of the listed signals is received. This means, for example, that when the shell

encounters the command

trap “echo $count lines processed >> $LOGFILE; exit" HUP INT TERM

it substitutes the value of count at that point, and not when one of the signals is

received. You can get the value of count substituted when one of the signals is

received if you instead enclose the commands in single quotes:

trap ‘echo $count lines processed >> $LOGFILE; exit' HUP INT TERM

The true Command

General Format: true

This command returns a zero exit status.

The type Command

General Format: type commands

This command prints information about the indicated commands.

Examples

$ type troff echo

troff is /usr/bin/troff

echo is a shell builtin

$

400 APPENDIX A _ Shell Summary

The umask Command

General Format: umask mask

umask sets the default file creation mask to mask. Files that are subsequently created

are ANDed with this mask to determine the mode of the file.

umask with no arguments prints the current mask. The -S option says to produce

symbolic output.

Examples

$ umask Print current mask

0002 No write to others

$ umask @22 No write to group either

$

The unalias Command

General Format: unalias names

The alias’s names are removed from the alias list. The -a option says to remove all

aliases.

The unset Command

General Format: unset names

This causes the shell to erase definitions of the variables or functions listed in names.

Read-only variables cannot be unset. The -v option to unset specifies that a variable

name follows, whereas the -f option specifies a function name. If neither option is

used, it is assumed that variable name(s) follow.

Example

unset dblist files Remove definitions of variables dblist and files

The until Command

General Format:

until command,
do

command

command

done

Command Summary 401

command, is executed and its exit status tested. If it is nonzero, the commands

enclosed between the do and done are executed. Then command, is executed again

and its status tested. If it is nonzero, the commands between the do and done are

once again executed. Execution of command, and subsequent execution of the

commands between the do and done continues until command, returns a zero exit

status, at which point the loop is terminated. Execution then continues with the

command that follows the done.

Note that because command, gets evaluated immediately on entry into the loop, the

commands between the do and done may never be executed if it returns a zero exit

status the first time.

Example

sleep for 6@ seconds until jack logs on

until who | grep jack > /dev/null

do

sleep 60

done

echo jack has logged on

The preceding loop continues until the grep returns a zero exit status (that is, finds

jack in who’s output). At that point, the loop is terminated, and the echo command

that follows is executed.

The wait Command

General Format: wait job

This command causes the shell to suspend its execution until the process identified

as job finishes executing. Job can be a process id number or a job_id. If job is not

supplied, the shell waits for all child processes to finish executing. If more than one

process id is listed, wait will wait for them all to complete.

wait is useful for waiting for processes to finish that have been sent to the back-

ground for execution.

Example

sort large file > sorted_file & sort in the background

iG 3 Continue processing

wait Now wait for sort to finish

plotdata sorted_file

The variable $! can be used to obtain the process id number of the last process sent

to the background.

402 APPENDIX A _ Shell Summary

The while Command

General Format:

while command,

do

command

command

done

command, is executed and its exit status tested. If it is zero, the commands enclosed

between the do and done are executed. Then command, is executed again and its

status tested. If it is zero, the commands between the do and done are once again

executed. Execution of command, and subsequent execution of the commands

between the do and done continues until command, returns a nonzero exit status, at

which point the loop is terminated. Execution then continues with the command

that follows the done.

Note that because command, gets evaluated immediately on entry into the loop, the

commands between the do and done may never be executed if it returns a nonzero

exit status the first time.

Example

fill up the rest of the buffer with blank lines

while [$lines -le $maxlines]

do

echo >> $BUFFER

lines=$((lines + 1))

done

B IN THIS APPENDIX

¢ Online Documentation

For More Information
e Documentation on the Web

¢ Books

Maes sources of information on the Unix system are

available; however, we have selectively listed some titles

and Web sites here of particular value to shell program-

mers. All Web sites and URLs are valid as of the publica-

tion of this book, but as is often the case on the Internet,

some may not be available by the time you read this.

There is one reference that you cannot do without. This is

the Unix documentation for your particular system. It

gives detailed descriptions on the syntax and various

options for each of the commands.

Online Documentation

If a printed version of your system’s documentation isn’t

available, you can use the man command to get informa-

tion (referred to as the “man pages” by Unix users) about

any specific Unix command. The format is

man command

Some systems have an interactive documentation

command called info. To invoke it, simply type info. After

it starts up, just type h for a tutorial.

Note that some smaller systems may not have online docu-

mentation due to disk space limitations. However, almost

all this information is also available on the Web and in

printed form.

Documentation on the Web

The authors of this book maintain the Web site at

www. kochan-wood.com. You can download the rolo program;

get answers to the exercises; and find out more about

Unix, the C programming language, and shell program-

ming there.

404 APPENDIX B_ For More Information

The best place on the Web for information on the POSIX standard is at

www.unix.org. This site is maintained by The Open Group, an international consor-

tium that worked with the IEEE to create the current POSIX specification. The

complete specification is available on its Web site. You must register first to read it,

but registration is free. The URL for accessing the documentation is

www.unix.org/online.html. You can also purchase for download a printable copy of

the Open Group Unix documentation at ww.opengroup.org/pubs/catalog/un.htm.

(The standards publications are only available for download or on CD-ROM,

although you may still be able to find some older, out-of-print hard-copy versions at

Amazon.com.)

The Free Software Foundation maintains online documentation for a variety of Unix

utilities, including Bash, at ww. fsf.org/manual.

David Korn, the developer of the Korn shell, maintains ww.kornshell.com. It

contains documentation, downloads, information on books on the Korn shell, and

links to information on other shells.

If you want to experiment with the Korn shell, or you’re using a system that doesn’t

have a POSIX compliant shell, you can download the Korn shell executable for a

variety of Unix systems for free from ww. research. att.com/sw/download/.

If you only have access to Microsoft Windows systems but still want to try your

hand at shell programming, or you just want to get a taste of Unix, install the

Cygwin package from ww.cygwin.com. The base system includes Bash, and you can

also download other shells such as zsh. The total feel of the system is remarkably like

Unix, even though it’s running on Windows. There’s even an X Window System

available to enhance the Unix look and feel. Best of all, the entire Cygwin package is

EDeGy

Books

O'Reilly & Associates

One of the best sources of books on Unix-related topics is O’Reilly and Associates
(www.ora.com). Their books cover a wide variety of subjects and are available from
their Web site, from booksellers online, and in book stores. Their Web site also has

many useful articles on Unix and Linux.

Two good references on Unix and Linux, respectively:

Unix in a Nutshell: System V Edition, 3rd Edition, A. Robbins, O’Reilly & Associates,
1999 (ISBN 1565924274).

Linux in a Nutshell, 3rd Edition, E. Siever, $. Spainhour, J. P. Hekman, and S. Figgins,

Books

O’Reilly & Associates, 2000 (ISBN 0596000251).

Four good books on Perl programming, from beginner to advanced:

Learning Perl, 3rd Edition, R. L. Schwartz and T. Phoenix, O’Reilly & Associates, 2001

(ISBN 0596001320).

Perl in a Nutshell, 2nd Edition, S. Spainhour, E. Siever, and N. Patwardhan, O'Reilly &

Associates, 2002 (ISBN 0596002416).

Programming Perl, 3rd Edition, L. Wall, T. Christiansen, and J. Orwant, O’Reilly &

Associates, 2000 (ISBN 0596000278).

Advanced Perl Programming, S. Srinivasan, O’Reilly & Associates, 1997 (ISBN

1565922204).

A good book covering both the POSIX standard versions of awk and sed as well as the

GNU versions:

Sed & Awk, 2nd Edition, D. Dougherty and A. Robbins, O’Reilly & Associates, 1997

(ISBN 1565922255).

Sams and Que

Learn the essentials of Unix shell programming from the ground up:

Sams Teach Yourself Shell Programming in 24 Hours, 2nd Edition, Sriranga

Veeraraghaven, Sams Publishing, 2002 (ISBN 0672323583).

A good book for learning Unix and programming in C and Perl on a Unix system:

Sams Teach Yourself Unix in 24 Hours, 3rd Edition, Dave Taylor, Satas Publishing, 2001

(ISBN 0672321270).

This book offers a series of lectures written by several! Unix experts who have years of

experience to share with their audience:

Unix Unleashed, Robin Anderson and Andy Johnston, Sams Publishing, 2001 (ISBN

067232251X).

This book offers detailed information on a broad range of Red Hat Linux topics, from

installation to multimedia:

Red Hat Linux 8 Unleashed, Billy Ball, Sams Publishing, 2002 (ISBN 067232458X).

Learn how to efficiently install Red Hat Linux 8 and then get the most out of your

system:

Sams Teach Yourself Red Hat Linux 8.0 in 24 Hours, Aron Hsiao, Sams Publishing, 2003

405

406 APPENDIX B_ For More Information

(ISBN 067232475X).

This title offers a broad range of FreeBSD-related topics. It is detailed in its approach

and offers information not found anywhere else:

FreeBSD Unleashed, Michael Urban and Brian Tiemann, Sams Publishing, 2001 (ISBN

0672322064).

Learn FreeBSD from the ground up. This book is the only beginning level tutorial

that offers all the ins and outs of the FreeBSD operating system:

Sams Teach Yourself FreeBSD in 24 Hours, Michael Urban and Brian Tiemann, 2002

(ISBN 0672324245).

Other Publishers

This is the set of standard documentation for System V, Release 4 produced by AT&T.

Although thorough, this two-book set dates from the early 1990s:

User’s Reference Manual/System Administrator’s Reference Manual, Prentice Hall, 1992

(ISBN 0139513108).

The following book contains complete coverage of the Korn shell, and is coauthored

by its creator:

The New KornShell Command and Programming Language, 2nd Edition, D. Korn and M.

Bolsky, Prentice Hall, 1995 (ISBN 0131827006).

An in-depth reference to the C shell:

The Unix C Shell Field Guide, G. Anderson and P. Anderson, Prentice Hall, 1986 (ISBN

013937468X).

A complete description of the awk language authored by its creators:

The AWK Programming Language, A. V. Aho, B. W. Kernighan, and P. J. Weinberger,

Addison-Wesley, 1988 (ISBN 020107981X).

An advanced Unix programming book:

The Unix Programming Environment, B. W. Kernighan and R. Pike, Prentice Hall, 1984
(ISBN 013937681X).

An advanced Linux programming book:

Advanced Linux Programming, M. Mitchell, J. Oldham, and A. Samuel, New Riders
Publishing, 2001 (ISBN 0735710430).

Index

Symbols

& (ampersand), 177-179, 364

* (asterisk), 24-26, 59-62, 171, 370-372

* (backquote), 124-125, 371

\ (backslash), 121-122, 371

backslash inside double quotes,
123-124

line continuation character, 122-123

{} (braces), 347

[] (brackets), 27, 372

* (caret), 55, 148, 369

: (colon), 177, 376

, (comma), 369

... construct, 64-66

[*] construct, 347

[...] construct, 57-59, 171

{...} construct, 62-64

{...;} construct, 258-262, 374

(...) construct, 258-262, 374

((...)) construct, 348

$(...) construct, 125-129, 371

&& construct, 177-179, 364

Il construct, 177-179, 364

#! construct, 326

$ (dollar sign), 45, 55-57, 267,
330-332, 369

“ (double quotes), 119-121, 371

= (equal sign), 103, 151, 370

\\ escape characters, 212, 380

- (hyphen), 232

- option (cd command), 357

--option (set command), 277-280,
394

! operator, 158

408 != operator

!= operator, 151

() (parentheses), 159

% (percent sign), 228, 375

. (period), 54-557, 376

. command, 254-257, 376

. pathname, 12

.. pathname, 12

| (pipe symbol), 51, 176-177, 364

pattern matching, 175

Il construct, 177-179

+ (plus sign), 232

(pound sign), 102, 232, 271-272,
364, 370

? (question mark), 26-27, 171, 372

> redirection operator, 373

>& redirection operator, 294, 373

>&- redirection operator, 295, 373

>> redirection operator, 373

< redirection operator, 373

<& redirection operator, 373

<&- redirection operator, 295, 373

<< redirection operator, 295-297, 373

<> redirection operator, 373

; (semicolon), 363, 369

‘ (single quote), 115-119, 371

/ (slash), 11, 357-358, 370-371

_ (underscore), 103, 329

$! variable, 290, 365

$# variable, 134-135, 365

$$ variable, 225, 365

$* variable, 135-136, 186, 365

$- variable, 365

$? variable, 146-149, 365

$@ variable, 187-188, 365

$0 variable, 273-274, 365

${n} variable, 141

0 command (vi), 330-332, 369

0 exit status, 145

0 signal number, 291, 399

1 signal number, 291, 399

2 signal number, 291, 399

3 signal number, 399

6 signal number, 399

9 signal number, 399

14 signal number, 399

15 signal number, 291, 399

A

a command (vi), 329, 332, 369

\a escape character, 380

-a (logical AND) operator, 158-159

-a option (set command), 394

ABRT signal, 399

access modes, 17

accessing command history, 368

fc command, 337-338

history command, 336-337

tr command, 338-339

active jobs, printing list of, 390

add program, 138-139, 311-312

addi program, 225-226

Advanced Linux Programming, 406

Advanced Perl Programming, 405

alias command, 343-346, 377

aliases

defining, 343-346

removing, 346

allexport shell mode, 394

ALRM signal, 399

ampersand (&), 177-179, 364

AND operator, 158-159

apostrophe (’), 115-119, 371

archive files, 297-301

args program, 135, 187-189

arguments

functions, 301

passing, 133-134

$# variable, 134-135

$* variable, 135-136

${n} variable, 141

phonebook file example, 136-141

shift command, 141-142

positional parameters

defined, 133, 365

left shifting, 141-142

reassigning values to, 267,
276-277

arithmetic

arithmetic expansion, 110-111

arithmetic operators, 371-372

arithmetically sorting files, 91-92

integer arithmetic

arithmetic bases, 342-343

arithmetic expressions, 340-341

integer types, 341-342

arithmetic expansion, 110-111

arithmetic expressions, 371-372

arithmetic operators, 371-372

$array construct, 352

${#array[i}} construct, 352

${array[*}} construct, 352

${array[i}} construct, 352-353

array[i]=val construct, 352

books 409

arrays, 346-352

assigning elements to, 346

retrieving elements from, 347

subscripts, 346

asterisk (*), 24-26, 59-62, 171, 370-372

asynchronous execution, 289

automatically loaded functions, 340

awk command, 96

The AWK Programming Language, 406

B

b command (vi), 330-332

b conversion specification character,
229

\b escape character, 212, 380

-b option (set command), 394

background

background processes, waiting for,
289-290

executing jobs in, 199, 377, 353

sending commands to, 36-37

backquote (>), 124-125, 371

backslash (\), 121-122, 364, 370-371

backslash inside double quotes,
123-124

line continuation character, 122-123

bases (arithmetic), 342-343

Bash shell, 325

beginning of line, matching, 55

bg command, 353-355, 377

books

Advanced Linux Programming, 406

Advanced Perl Programming, 405

The AWK Programming Language, 406

How can we make this index more useful? Email us at indexes@samspublishing.com

410 books

FreeBSD Unleashed, 406 C

Learning Perl, 97, 405

Linux in a Nutshell, 404 C command (vi), 369
The New Korn Shell Command and c conversion specification character,

Programming Language, 406 229
Perl in a Nutshell, 405 \c escape character, 212, 380

Programming Perl, 97, 405 -c option

Red Hat Linux 8 Unleashed, 405 sh command, 363
Sams Teach Yourself FreeBSD in 24 uniq command, 96
Hours, 406 wc command, 8

Sams Teach Yourself Red Hat Linux 8.0 -C option (set command), 394
in 24 Hours, 405

Sams Teach Yourself Shell
Programming in 24 Hours, 405

caret (*), 55, 148

case command, 220, 378-379

pattern matching characters,
ie Teach Yourself Unix in 24 Hours, 171-173

Sed & Awk, 405 * (asterisk), 171

The Unix C Shell Field Guide, 406 DAS wesley oe i
Unix in a Nutshell: System, V Edition, [...] construct, 171
404 ll construct, 177-179

Unix Programmer’s Manual, Volume II, && construct, 177-179

7 pipe symbol (1), 175-177
ie ae Programming Environment, syntax, 169-171

cat command, 7, 139
Unix Unleashed, 405

cd command, 13-16, 252, 357, 379
User’s Reference Manual/System
Administrator’s Reference Manual, cdh function, 349-352
406 CDPATH variable, 252-253, 365

Bourne shell, 1 cdtest program, 251
Bourne, Stephen, 1, 46 change program, 316-318
braces ({}), 347 changing
brackets ([]), 27, 372 command prompt, 241-242
break command, 196-198, 316, directories, 13-16
377-378

groups, 391
Break key, 290

breaking loops, 196-198, 377-378

characters

extracting from files, 67-72

matching

multiple characters, 24-26

single characters, 26-27

newline characters, 47

pattern matching

any character, 54-55

beginning of line, 55

end of line, 55-57

grep command, 83-89

parameter substitution constructs,
270-273, 366-367

precise number of characters,
62-64

saving matched characters, 64-66

specific characters, 57-59

summary of regular expressions,
66-67

zero or more characters, 59-62

repeating, 6

translating from standard input,
78-83

whitespace characters, 47

child processes, 289

closing standard input/output, 295

comma (,), 369

command files, 99-100

comments, 102-103

creating, 99-100

examples, 100-102

execute permissions, 100

passing arguments to, 133-134

$# variable, 134-135

$* variable, 135-136

${n} variable, 141

commands 411

phonebook file example, 136-141

shift command, 141-142

command history, 327-328. See also
edit modes

accessing, 368

fc command, 337-338

history command, 336-337

r command, 338-339

editing, 383-384

file location, 367

size of, 328, 367

command line, 46

command-line editing, 327

command-line tools. See commands

command prompt, changing, 241-242

command substitution

* (backquote), 124-125, 371

$(.) construct, 125-129, 371

expr command, 129-131

commands, 363-364. See also com-
mand files; programs

: (colon), 376

. (period), 254-257, 376

alias, 343-346, 377

aliases, 343-346

awk, 96

bg)23535=395; 977

break, 196-198, 316, 377-378

case, 378-379

pattern matching characters,
171-173

pipe symbol (I), 175-177

syntax, 169-171

Cats 7 7 139

cd} 13-16, 7252; 3577579

How can we make this index more useful? Email us at indexes@samspublishing.com

commands

command cycle, 45

command history, 327-328

accessing 336-339, 368

editing, 383-384

file location, 367

size of, 328, 367

command options, 8

command substitution

* (backquote), 124-125, 371

$(...) construct, 125-129, 371

expr command, 129-131

continue, 198-199, 380

continuing to next line, 364

ep, 7, 18-19

cut

examples, 67-69

options, 69-72

syntax, 67

date, 5, 265

echo, 6, 138, 212, 220, 380-381

emacs line edit mode, 336

entering, 36, 45-46

eval, 287-289, 381

GxeG 2976256,7501

executing, 46-48

asynchronous execution, 289

background execution, 36-37, 364

exit, 162-164, 382

exit status, 363

export, 241, 382-383

expr, 129-131

false, 383

fc, 337-338, 368, 383-384

fg, 353-355, 384

for, 384-385

$* variable, 186

$@ variable, 187-188

examples, 184-186

for without the list, 188-189

syntax, 183-184

general format of, 363

getopts, 201-205, 385-387

grep, 136-137

examples, 83-87

options, 87-89

syntax, 83

grouping, 258-262, 374

hash, 387

history, 336-337

if, 387-390

&& construct, 177-179

ll construct, 177-179

elif construct, 164-167

else construct, 160-162

exit status, 145-149

syntax, 145

testing conditions in, 149,
155-160

info, 403

jobs, 375, 390

kill, 353, 390-391

In, 20-24

ls, 7, 16-17

man, 403

mkdir, 18

multiple commands, entering on
one line, 363

mv

moving files, 19-20

renaming files, 9

newgrp, 391

null command (:), 177

paste, 72

examples, 72-73

options, 73-74

perl, 96

printf, 314

conversion specification
characters, 229

conversion specification
modifiers, 232-233

examples, 229-233

syntax, 228

printing information about, 399

ps, 37-38

pwd, 12-14, 252, 391

rt, 338-339

read, 209, 225-228,-392

readonly, 283-284, 392-393

return, 304-305, 393

returning information about, 37-38,
305

rm, 10

rmdir, 24

scanning twice before execution,
287-289

sed

examples, 74-78

options, 76-77

sending to background, 36-37, 364

commands 413

set, 267, 274, 280, 314, 393-395

-- option, 277-280

executing without arguments,
275-276

reassigning positional parameters
with, 276-277

-x option, 274-275

shel 73375

shift, 141-142, 395-396

sort, 89-90

+In option, 92

-n option, 91-92

-O option, 90-91

-r option, 90

-t option, 92-93

-u option, 90

summary of, 38

test, 396-397

alternative format, 154-155

file operators, 157-158

integer operators, 155-157

logical AND operator, 158-159

logical negation operator, 158

logical OR operator, 159-160

parentheses, 159

string operators, 150-154

syntax, 149

times, 398

tr

examples, 78-83

options, 81-82

syntax, 78

How can we make this index more useful? Email us at indexes@samspublishing.com

414 commands

trap, 398-399

executing without arguments, 292

ignoring signals, 292-293

resetting traps, 293

signal numbers, 291

syntax, 290

true, 399

type 305)399

umask, 400

unalias, 346, 400

uniq

examples, 94-95

options, 95-96

syntax, 94

unset, 284, 400

until, 400-401

examples, 191-196

syntax, 191

vi line edit mode, 368-370

$, 330-332

j, 391-332

0, 330-332

ait 27 aoe

b, 330-332

dw, 332

h, 329-332

Be PALA fee Py

j, 330-332

k, 330-332

1, 329-332

fo32

w, 330-332

X, 329-332

wait, 289-290, 401

while, 189-191, 402

who, 5-6

wy, 8

comments, 102-103, 364

comparing values (case command)

command syntax, 169-171

pattern matching characters,
171-173

pipe symbol (|), 175-177

compatibility of shells, 359-360

contents of files, displaying, 7

continuation character, 364

continue command, 198-199, 380

conversion specification characters,
229, 232-233

Coordinated Universal Time, 265

copying

files

checking destination files,
212-214

cp command, 9, 18-19

echo escape characters, 212

final code listing, 215-218

initial code listing, 209-211

read command, 211

lines, 94-96

[count]+ command (vi), 369

[count]- command (vi), 369

[count]. command (vi), 370

[count]/ command (vi), 369

[count]_ command (vi), 370

[count]B command (vi), 369

[count]d motion command (vi), 369

[count]E command (vi), 369

[count]F command (vi), 369

[count]Fc command (vi), 369

[count]h command (vi), 369

[count]j command (vi), 369

[count]k command (vi), 369

[count]l command (vi), 369

[count]rc command (vi), 370

[count]tc command (vi), 369

[count]v command (vi), 370

[count]}W command (vi), 369

[count]x command (vi), 370

counting words in files, 8

cp command, 9, 18-19

Ctrl+j command (vi), 370

Ctrl+l command (vi), 370

Ctrl+m command (vi), 370

Ctrl+v command (vi), 368

Ctrl+w command (vi), 368

curly braces ({}), 347

current program, replacing with new
program, 257-258

current working directory, 251-252

changing, 13-16

defined, 11

displaying, 12-13

printing, 391

cut command

examples, 67-69

options, 69-72

syntax, 67

Cygwin Web site, 404

destination files

D

D command (vi), 369

d conversion specification character,
229

-d operator, 157

-d option

cut command, 69-72

paste command, 73-74

sed command, 77

tr command, 82

uniq command, 95-96

dangling symbolic links, 23

data types, 104, 341-342

date command, 5, 265

date/time, displaying, 5

defining

aliases, 343-346

functions, 301

Delete key, 290

deleting

aliases, 346

directories, 24

duplicate lines, 90

files, 10

tunction definitions, 304

lines of text, 77

phone book entries, 139-141,
163-164, 167-169, 314-316

variable definitions, 284

delimiter characters, 92-93

design of rolodex program, 307-308

destination files, 9, 212-214

How can we make this index more useful? Email us at indexes@samspublishing.com

415

416 directories

directories, 6, 10. See also files

changing, 13-16

copying files between, 18-19

creating, 18

current working directory, 251-252

changing, 13-16

defined, 11

displaying, 12-13

printing, 391

deleting, 24

directory structure, 11-12

home directory, 11, 242-243

listing files in, 16-17

moving files between, 19-20

parent directories, 14

pathnames

. pathname, 12

.. pathname, 12

full pathnames, 11

relative pathnames, 11

root directory, 11

disabling trace mode, 275

display program, 313-314

displaying

current working directory, 12-13

date/time, 5

file contents, 7

list of files, 7, 16-17

list of variables, 275-276

logged-in users, 5-6

phone book entries, 312-314

traps, 292

variable values, 104

documentation

man pages, 403

tutorials, 403

Web sites, 403-404

dollar sign ($), 45, 55-57, 267

double quotes (”), 119-121, 371

downloading Korn shell, 404

duplicate lines, deleting, 90

duplicating. See copying

dw command (vi), 332

E

-e operator, 157

-e option

fc command, 368

set command, 394

echo command, 6, 138, 212, 220,
380-381

edit mode commands (vi), 369-370

edit modes

emacs, 332-336

commands, 336

cursor, 333

vi, 328-330

command mode, 328

commands, 329-332

input mode, 328

editing

command history, 383-384

command-line editing, 327

files, 74-78

phone book entries, 316-318

editors, stream editor (sed)

examples, 74-78

options, 76-77

syntax, 74

elements of arrays

assigning, 346

retrieving, 347

elif construct, 164-167

else construct, 160-162

emacs line edit mode, 332-336

commands, 336

cursor, 333

enabling trace mode, 274-275

end of line, matching, 55-57

Enter command (vi), 368-370

entering

commands, 45-46, 363

loops on one line, 200-201

entries (phone book)

adding, 311-312

deleting, 163-164, 167-169, 314-316

displaying, 313-314

editing, 316-318

listing, 318-319

looking up, 312-313

rolo program listing, 308-311

ENV files, 326-327

ENV variable, 326, 365

environment. See also variables

defined, 235

ENV file, 326-327

environmental control, 51

subshells, 236-237

environmental control, 51

exiting 417

eof command (vi), 368

-eq operator, 155

equal sign (=), 103, 151, 370

erase command (vi), 368

errexit shell mode, 394

errors, standard error, 35-36

ESC command (vi), 368

escape characters, 212, 380

eval command, 287-289, 381

evaluating expressions, 129-131

exec command, 257-258, 381

execute permissions, 100

executing

commands, 46-48

asynchronous execution, 289

background execution, 364

scanning twice before execution,
287-289

file contents in current shell,
254-257

functions, 301-305

jobs

background execution, 353, 377

foreground execution, 354, 384

loops, 199

exit command, 162-164, 382

EXIT signal, 399

exit status, 363

$? variable, 146-149

nonzero values, 145

read command, 225-228

zero, 145

exiting

loops, 196-198

programs, 382

How can we make this index more useful? Email us at indexes@samspublishing.com

418 expansion

expansion, arithmetic, 110-111

export command, 241, 382-383

exporting variables, 237-241, 373,
382-383

expressions

arithmetic expressions, 340-341,
371-372

evaluating, 129-131

regular expressions, 53

... construct, 64-66

[...] construct, 57-59

{...} construct, 62-64

asterisk (*), 59-62

Catet (4),-d9

dollar sign ($), 55-57

grep command, 83-89

period (.), 54-55

summary Of, 66-67

extracting characters from files, 67-72

F

\f escape character, 212, 380

F command (vi), 370

-f operator, 157

f option

cut command, 69-72

set command, 394

false command, 383

fc command, 337-338, 368, 383-384

FCEDIT variable, 365, 368

fg command, 353-355, 384

fields

Input Field Separator (IFS) variable,
280-283

skipping during sorts, 92

file descriptors, 294

file operators, 157-158

filename substitution, 48-49, 372

* (asterisk), 24-26

[] (brackets), 27

? (question mark), 26-27

examples, 27-28

multiple character matching, 24-26

single character matching, 26-27

variables, 108-109

files. See also directories

archive files, 297-301

command files

comments, 102-103

creating, 99-100

examples, 100-102

execute permissions, 100

command history file, 327-328

accessing, 336-338, 368

editing, 383-384

file location, 367

size of, 328, 367

copying

checking destination files,
212-214

cp command, 9, 18-19

echo escape characters, 212

final code listing, 215-218

initial code listing, 209-211

read command, 211

counting words in, 8

deleting, 10

destination files, 9

displaying contents of, 7

duplicating lines in, 94-96

editing, 74-78

ENV files, 326-327

executing contents in current shell,
254-257

extracting characters from, 67-72

file descriptors, 294

file operators, 157-158

filename substitution, 48-49, 372

* (asterisk), 24-26

[] (brackets), 27

? (question mark), 26-27

examples, 27-28

multiple character matching,
24-26

single character matching, 26-27

variables, 108-109

filenames, 7

linking

dangling symbolic links, 23

In command, 20-24

symbolic links, 22-23

listing, 7, 16-17

moving between directories, 19-20

ordinary files, 6

paths

CDPATH variable, 252-253, 365

PATH variable, 243-251, 366

foreground 419

phonebook file

adding entries to, 138-139

deleting entries from, 139-141

looking up entries, 136-138

.profile, 262-264

reading, 209, 376

renaming, 9

searching, 83-89

sorting, 89-90

arithmetic sorts, 91-92

delimiter characters, 92-93

duplicate lines, 90

reversing sort order, 90

skipped fields, 92

writing sorted data to standard
output, 90-91

source files, 9

special files, 6

temporary files, 224-225

filters, 35

finding

home directories, 242-243

phone book entries, 136-138,
312-313

for command, 384-385

$* variable, 186

$@ variable, 187-188

examples, 184-186

for without the list, 188-189

syntax, 183-184

foreground, executing jobs in, 354,
384

How can we make this index more useful? Email us at indexes@samspublishing.com

420 formatted output

formatted output, printing, 228-233

command syntax, 228

conversion specification characters,
229

conversion specification modifiers,
232-233

examples, 229-233

Fox, Brian, 325

FPATH variable, 340

Free Software Foundation Web site,
404

FreeBSD Unleashed, 406

full pathnames, 11

functions, 339, 374-375

advantages, 303-304

arguments, 301

automatically loaded functions, 340

cdh, 349-352

defining, 301

deleting, 304

executing, 301-302

mycd function, 302-303

recursive functions, 339-340

stopping execution of, 393

terminating execution of, 304-305

G

-ge operator, 155

getopts command, 201-205, 385-387

getty program, 42

Greenwich Mean Time, 265

grep command, 136-137

examples, 83-87

options

-] option, 88-89

-n option, 89

-v option, 87

syntax, 83

grouping commands, 258-262, 374

groups, changing, 391

-gt operator, 155

H

h command (vi), 329-332

-h option (set command), 394

hash command, 387

hierarchical directory structure, 11-12

HISTFILE variable, 365-367

history command, 336-337

history file. See command history

HISTSIZE variable, 365-367

home directory, 11, 242-243

HOME variable, 242-243, 365

HUP signal, 399

hyphen (-), 232

- option (cd command), 357

-- option (set command), 277-280,
394

i command (vi), 329, 332, 370

-i option (sh command), 363

1/O (input/output), 294-295

filters, 35

formatted output

conversion specification charac-
ters, 229

conversion specification
modifiers, 232

printing, 228-233

input redirection, 32-33, 49-51,
199-200, 295-301, 373

creating archives with, 297-301

example, 295-297

output redirection, 30-32, 49-51,
199-200, 373

pipes, 33-35,.51

standard error, 35-36

redirecting, 293

writing to, 294

standard input, 28-30

closing, 295

translating characters from, 78-83

standard output, 28-30

closing, 295

writing sorted data to, 90-91

stream editor (sed)

-n examples, 74-78

options, 76-77

syntax, 74

IDs

job_ids, 375

PIDs (process ids), 37

PPIDs (parent process ids), 37

if command, 387-390

&& construct, 177-179

ll construct, 177-179

elif construct, 164-167

integer expansion 421

else construct, 160-162

exit status

$? variable, 146-149

nonzero values, 145

zero values, 145

syntax, 145

testing conditions in, 149

file operators, 157-158

integer operators, 155-157

logical AND operator, 158-159

logical negation operator, 158

logical OR operator, 159-160

parentheses, 159

string operators, 150-154

test command syntax, 149,
154-155

IFS variable, 280-283, 366

ignoreeof shell mode, 394

ignoring signals, 292-293

in-line input redirection, 32-33, 49-51,
199-200, 295-301, 373

creating archives with, 297-301

example, 295-297

info command, 403

init program, 42-44

Input Field Separator (IFS) variable,
280-283

input mode commands (vi), 368

input/output. See 1/O

inserting phone book entries, 311-312

INT signal, 399

integer arithmetic

arithmetic bases, 342-343

arithmetic expressions, 340-341

integer types, 341-342

integer expansion, 110-111

How can we make this index more useful? Email us at indexes@samspublishing.com

422 integer operators

integer operators, 155-157

interpreted programming languages,
52

interrupt signals

ignoring, 292-293

sending, 290

signal numbers, 291

trapping, 290-292

ison program, 134

J
j command (vi), 330-332

job_ids, 375

job numbers, 37

jobs. See also processes

active jobs, printing list of, 390

defined, 352

job_ids, 375

killing, 353, 390-391

messages, 375

running in background, 353, 377

running in foreground, 354, 384

status of, 353

stopping, 353-355, 375

suspending, 353-355

terminating, 353

jobs command, 375, 390

Joy, Bill, 46

K

k command (vi), 330-332

kernel, 1, 41

keys

Break, 290

Delete, 290

keyword parameters, 267

kill command, 353, 368, 390-391

KILL signal, 399

killing jobs, 353, 390-391

Korn shell, 325, 404

Korn, David, 46, 325

L

| command (vi), 329-332, 370

-| option

grep command, 88-89

wc command, 8

-L operator, 157

-le operator, 155

Learning Perl, 97, 405

left shifting positional parameters,
141-142

@letter command (vi), 370

line continuation character, 122-123

line numbering program, 282-283

LINENO variable, 366

lines (of text), 94

deleting, 77

duplicate lines, deleting, 90

duplicating, 94-96

line numbering program, 282-283

pasting together, 72-74

pattern matching

beginning of line, 55

end of line, 55-57

sorting, 89-90

arithmetic sorts, 91-92

delimiter characters, 92-93

duplicate lines, 90

reversing sort order, 90

skipped fields, 92

writing sorted data to standard
output, 90-91

linking files

In command, 20-24

symbolic links, 22-23

Linux in a Nutshell, 404

listall program, 318-319

listing

files,.7,,16-17

phone book entries, 318-319

variables, 275-276

+In option (sort command), 92

In command, 20-24

local variables, 235-236

logged-in users, displaying, 5-6

logical AND operator (-a), 158-159

logical negation operator (!), 158

logical OR operator (-0), 159-160

login program, 42-44

login shell, 42-45

getty program, 42

init program, 42-44

logins

login cycle, 46

login program, 42-44

login shell, 42-45

getty program, 42

init program, 42-44

.profile file, 262-264

man command 423

looking up phone book entries,
136-138, 312-313

loops, 183

breaking, 196-198, 377-378

executing in background, 199

for command

$* variable, 186

$@ variable, 187-188

examples, 184-186

for without the list, 188-189

syntax, 183-184

1/O redirection, 199-200

piping data into and out of, 200

shorthand notation, 200-201

skipping commands in, 198-199,
380

terminating, 377-378

typing on one line, 200-201

until command

examples, 191-196

syntax, 191

while command, 189-191

ls command, 7, 16-17

-It operator, 155

lu program, 137-138, 312-313

M

-m option (set command), 394

MAIL variable, 366

MAILCHECK variable, 366

MAILPATH variable, 366

man command, 403

How can we make this index more useful? Email us at indexes@samspublishing.com

424 man pages

man pages, 403

matching patterns, 171-173

SCASVCLIS Ny b7 L

[...) construct, 171

&& construct, 177-179

Il construct, 177-179

? (question mark), 171

any character, 54-55

beginning of line, 55

end of line, 55-57

grep command

examples, 83-87

options, 87-89

syntax, 83

parameter substitution constructs,
270-273, 366-367

precise number of characters, 62-64

saving matched characters, 64-66

specific characters, 57-59

summary of regular expressions,
66-67

zero Or more characters, 59-62

menu-driven phone program. See
rolodex program

messages, job messages, 375

mkdir command, 18

modes, 394-395

access modes, 17

emacs, 332-336

commands, 336

cursor, 333

trace mode

disabling, 275

enabling, 274-275

vi, 368-370

command mode, 328

commands, 329-332

input mode, 328

mon program, 192-196, 201-205

monitor shell mode, 394

moving files, 19-20

multiple characters, matching, 24-26

multiple commands

entering, 36

entering on one line, 363

mv command

moving files, 19-20

renaming files, 9

mycd function, 302-303

mycp program

destination files, checking, 212-214

echo escape characters, 212

final code listing, 215-218

initial code listing, 209-211

read command, 211

N

N command (vi), 369

\n escape character, 212, 380

-n option

grep command, 89

sed command, 76-77

set command, 394

sort command, 91-92

${n} variable, 141

naming conventions

filenames, 7-9

pathnames

. pathname, 12

.. pathname, 12

full pathnames, 11

relative pathnames, 11

variables, 103

-ne operator, 155

negation operators

logical AND operator (-a), 158-159

logical negation operator (!), 158

logical OR operator (-0), 159-160

The New Korn Shell Command and
Programming Language, 406

newgrp command, 391

newline characters, 47

nnn escape characters, 212

noclobber shell mode, 394

noexec shell mode, 394

noglob shell mode, 394

nolog shell mode, 394

nonzero exit status, 363

nounset shell mode, 394

null command (:), 177

null values, 107-108

number program, 226-227

number2 program, 282-283

numbers

exit status

$? variable, 146-149

nonzero values, 145

zero, 145

job numbers, 37

parameter substitution 425

line numbering program, 282-283

signal numbers, 291, 399

O

o conversion specification character,
229

-0 (logical OR) operator, 159-160

+0 option (set command), 394

-o option

set command, 394

sort command, 90-91

O'Reilly and Associates, 404-405

operators, 371-372

file operators, 157-158

integer operators, 155-157

logical AND operator (-a), 158-159

logical negation operator (!), 158

logical OR operator (-0), 159-160

string operators, 150-154

options (command), 8

OR operator (-0), 159-160

ordinary files, 6

output. See I/O (input/output)

P

P command (vi), 370

-p option (export command), 241

parameter substitution, 267, 270-273,
366

${parameter} construct, 268, 367

${#parameter} construct, 367

How can we make this index more useful? Email us at indexes@samspublishing.com

426 parameter substitution

${parameter#pattern} construct, 367

${parameter##pattern} construct, 367

${parameter%pattern} construct, 367

aaa alae construct,

${parameter+value} construct, 367

${parameter-value} construct, 367

$ {parameter=value} construct, 367

${parameter?value} construct, 367

Spa eretg erate construct, 270,

${parameter:-value} construct,
268-269, 367

${parameter:=value} construct, 269,
367

${parameter:?value} construct, 270,
367

${#variable} construct, 273

parameters, 267, 364. See also argu-
ments; variables

keyword parameters, 267

parameter substitution, 267, 366-367

${parameter} construct, 268, 367

${#parameter} construct, 367

${parameter#pattern} construct,
367

${parameter##pattern} construct,
367

${parameter%pattern} construct,
367

${parameter%%pattern} construct,
367

${parameter+value} construct, 367

${parameter-value} construct, 367

${parameter=value} construct, 367

${parameter?value} construct, 367

${parameter:+value} construct, 270,
367

${parameter:-value} construct,
268-269, 367

${parameter:=value} construct, 269,
367

${parameter:?value} construct, 270,
367

${#variable} construct, 273

positional parameters, 267, 276-277

parent directories, 14

parent process ids (PPIDs), 37

parent processes, 289

parentheses, 159

passing

arguments, 133-134

$# variable, 134-135

$* variable, 135-136

${n} variable, 141

phonebook file example, 136-141

shift command, 141-142

variables to subshells, 262, 374

paste command

examples, 72-73

options, 73-74

syntax, 72

pasting lines, 72-74

PATH variable, 243-251, 366

pathnames

. pathname, 12

.. pathname, 12

full pathnames, 11

relative pathnames, 11

paths

CDPATH variable, 252-253, 365

FPATH variable, 340

PATH variable, 243-251, 366

pathnames

. pathname, 12

.. pathname, 12

full pathnames, 11

relative pathnames, 11

pattern matching, 171-173

* (asterisk), 171

[..<] CONStEU et 11 7.1:

&& construct, 177-179

ll construct, 177-179

? (question mark), 171

any character, 54-55

beginning of line, 55

end of line, 55-57

grep command

examples, 83-87

options, 87-89

syntax, 83

parameter substitution contructs,
270-273, 366-367

precise number of characters, 62-64

saving matched characters, 64-66

specific characters, 57-59

ae of regular expressions,

zero or more characters, 59-62

percent sign (%), 228, 375

period (.), 54-55

. command, 254-257, 376

. pathname, 12

.. pathname, 12

positional parameters 427

perl command, 96

Perl in a Nutshell, 405

permissions, 100

phone book (rolodex program)

design considerations, 307-308

entries

adding, 311-312

deleting, 163-164, 167-169,
314-316

displaying, 313-314

editing, 316-318

listing, 318-319

looking up, 312-313

rolo program listing, 308-311

sample program output, 319-323

phonebook file

adding entries, 311-312

deleting entries, 163-164, 167-169,
314-316

displaying entries, 313-314

editing, 316-318

listing entries, 318-319

looking up entries, 312-313

PHONEBOOK variable, 247-251

PIDs (process ids), 37

pipe symbol (I), 33-35, 176-177, 364

ll construct, 177-179

pattern matching, 175

pipeline hookup, 51

piping data into loops, 200

plus sign (+), 232

pointers to variables, 289

positional parameters

defined, 133, 365

left shifting, 141-142

reassigning values to, 267, 276-277

How can we make this index more useful? Email us at indexes@samspublishing.com

428 POSIX standard

POSIX standard, 2, 404

pound sign (#), 102, 232, 271-272,
364, 370

PPID variable, 366

PPIDs (parent process ids), 37

precise number of characters,
matching, 62-64

precision modifier, 231

printf command, 228-233, 314

conversion specification characters,
229, 252-239

examples, 229-233

syntax, 228

printing

command information, 399

formatted output

command syntax, 228

conversion specification
characters, 229, 232-233

examples, 229-233

job status, 353

list of active jobs, 390

working directory, 391

process ids (PIDs), 37

processes. See also jobs

background processes, waiting for,
289-290

child processes, 289

defined, 45

parent processes, 289

PIDs (process ids), 37

pipeline processes, 33-35

PPIDs (parent process ids), 37

returning status of, 37-38

-profile file, 262-264

program loops. See loops

Programming Perl, 97, 405

programs. See also commands

add, 138-139, 311-312

addi, 225-226

args, 135, 187-189

cdtest, 251

change, 316-318

display, 313-314

exit status

$? variable, 146-149

nonzero values, 145

zero, 145

exiting, 382

getty, 42

init, 42, 44

interrupt signals

ignoring, 292-293

sending, 290

signal numbers, 291

trapping, 290-292

ison, 134

listall, 318-319

login, 42-44

lu, 137-138, 312-313

mon, 192-196, 201-205

mycp

destination files, checking,
212-214

echo escape characters, 212

final code listing, 215-218

initial code listing, 209-211

read command, 211

number, 226-227

number2, 282-283

passing arguments to, 133-134

$# variable, 134-135

$* variable, 135-136

${n} variable, 141

phonebook file example, 136-141

shift command, 141-142

rem, 139-141, 163-164, 167-169,
314-316

replacing current program with new
program, 257-258

reverse, 349

rolo, 219-223, 308-311

case statement, 220

echo command, 220

sample runs, 220-221

rolodex, 307

add program, 311-312

change program, 316-318

design considerations, 307-308

display program, 313-314

listall program, 318-319

lu program, 312-313

PHONEBOOK variable, 247-251

rem program, 163-164, 167-169,
314-316

rolo program, 219-223, 308-311

sample output, 319-323

temporary files, 224-225

twhile, 189-190

vartest, 235

vartest2, 236

-r option 429

vartest3, 238

vartest4, 239-240

vartest5, 240

ps command, 37-38

PS1 variable, 241-242, 366

PS2 variable, 241-242, 366

PS4 variable, 366

pseudo ttys, 45

pwd command, 12-14, 252, 391

PWD variable, 366

Q

question mark (?), 26-27, 171, 372

quote characters, 115

back quote (>), 124-125, 371

backslash (\), 121-122, 371

backslash inside double quotes,
123-124

line continuation character,
122-1238

double quotes (“), 119-121, 371

single quote (‘), 115-119, 371

R

\r escape character, 212, 380

r command, 332, 338-339

-r operator, 157

-r option (sort command), 90

How can we make this index more useful? Email us at indexes@samspublishing.com

430 read command

read command, 392

exit status, 225-228

syntax, 209

read-only variables, 283-284, 392-393

reading files, 209, 376

readonly command, 283-284, 392-393

reassigning values to positional
parameters, 267, 276-277

recommended reading. See books

recursive functions, 339-340

Red Hat Linux 8 Unleashed, 405

redirection

input redirection, 32-33, 49-51,
295-301, 373

creating archives with, 297-301

example, 295-297

loops, 199-200

output redirection, 30-32, 49-51, 373

standard error, 293

regular expressions, 53

* (asterisk), 59-62

... construct, 64-66

[...] construct, 57-59

{...} construct, 62-64

PR CATEL) 150)

$ (dollar sign), 55-57

. (period), 54-55

grep command

examples, 83-87

options, 87-89

syntax, 83

summary of, 66-67

relative pathnames, 11

rem program, 139-141, 163-164,
167-169, 314-316

removing. See deleting

renaming files, 9

repeating characters, 6

replacing current program with new
program, 257-258

resetting traps, 293

restricted shell (rsh), 355-356

return command, 304-305, 393

reverse program, 349

reversing sort order, 90

rm command, 10

rmdir command, 24

rolo program, 219-223, 308-311

case statement, 220

echo command, 220

sample runs, 220-221

rolodex program

add program, 311-312

change program, 316-318

design considerations, 307-308

display program, 313-314

listall program, 318-319

lu program, 312-313

PHONEBOOK variable, 247-251

rem program, 163-164, 167-169,
314-316

rolo program, 219-221, 223, 308-311

case statement, 220

echo command, 220

sample runs, 220-221

sample output, 319-323

temporary files, 224-225

root directories, 11

rsh (restricted shell), 355-356

run command file, 101, 134

running. See executing

S

S command (vi), 369

s conversion specification character,
229

-S operator, 157

-s option

fc command, 368

paste command, 74

sh command, 363

tr command, 81-82

Sams Teach Yourself FreeBSD in 24 Hours,
406

Sams Teach Yourself Red Hat Linux 8.0 in
24 Hours, 405

Sams Teach Yourself Shell Programming
in 24 Hours, 405

Sams Teach Yourself Unix in 24 Hours,
405

saving matched characters, 64-66

search order, 359

searching. See also pattern matching

files, 83-89

phone book entries, 136-138,
312-313

search order, 359

secondary prompts, 118

Sed & Awk, 405

sed command, 74-75

selecting shells, 326

semicolon (;), 363, 369

sending commands to background,
36-37

shift command 431

set command, 267, 280, 314, 393-395

-- option, 277-280

-x option, 274-275

executing without arguments,
275-276

reassigning positional parameters
with, 276-277

sh command, 173-175

shell archive files, 297-301

shell variables. See variables

shells, 1-2, 41-42

Bash, 325

command execution, 46-48

compatibility summary, 359-360

defined, 1

entering commands in, 45-46

environmental control, 51

filename substitution, 48-49

input redirection, 49-51

Korn, 325

login shell, 42-45

getty program, 42

init program, 42-44

output redirection, 49-51

pipeline hookup, 51

restricted shell (rsh), 355-356

selecting, 326

shell modes, 274-275, 394-395

starting up, 363

subshells, 236-237, 253-254, 373

shift command, 141-142, 395-396

How can we make this index more useful? Email us at indexes@samspublishing.com

432 signals

signals

ignoring, 292-293

sending to programs, 290

signal numbers, 291, 399

trapping, 290-292, 398-399

single characters, matching, 26-27

single quote (‘), 115-119, 371

sizing command history, 328, 367

skipping

commands in loops, 198-199, 380

fields, 92

slash (/), 11

sort command, 89-90

+In option, 92

-n option, 91-92

-o option, 90-91

-t option, 90

-t option, 92-93

-u option, 90

sorting files, 89-90

arithmetic sorts, 91-92

delimiter characters, 92-93

duplicate lines, 90

reversing sort order, 90

skipped fields, 92

writing sorted data to standard
output, 90-91

source files, 9

special files, 6

special variables. See also variables

$! special variable, 290, 365

$# special variable, 134-135, 365

$$ special variable, 225, 365

$* special variable, 135-136, 186,
365

$- special variable, 365

$? special variable, 146-149, 365

$@ special variable, 187-188, 36S

$0 special variable, 273-274, 365

${n} special variable, 141

${variable} construct, 110

standard error, 35-36

redirecting, 293

writing to, 294

standard input, 28-30

closing, 295

translating characters from, 78-83

standard output, 28-30

closing, 295

writing sorted data to, 90-91

starting shell, 363

status

exit status, 145-146, 363

$? variable, 146-149

nonzero values, 145

read command, 225-228

zero, 145

job status, 353

process status, 37-38

stopping

function execution, 393

jobs, 353-355, 375

loops, 377-378

stream editor (sed)

examples, 74-78

option, 76-77

syntax, 74

string operators, 150-154

subscripts, 346

subshells, 236-237, 253-254, 262,
373-374

substitution

command substitution

~ (backquote), 124-125, 371

$(...) construct; 125-129-371

expr command, 129-131

filename substitution, 48-49, 372

* (asterisk), 24-26

[] (brackets), 27

? (question mark), 26-27

examples, 27-28

multiple character matching,
24-26

single character matching, 26-27

variables, 108-109

parameter substitution, 267, 366-367

${parameter} construct, 268, 367

${#parameter} construct, 367

${parameter#pattern} construct,
367

${parameter##pattern} construct,
367

${parameter%pattern} construct,
367

${parameter%%pattern} construct,
367

${parameter+value} construct, 367

${parameter-value} construct, 367

${parameter=value} construct, 367

${parameter?value} construct, 367

test command 433

${parameter:+value} construct, 270,
367

${parameter:-value} construct,
268-269, 367

${parameter:=value} construct, 269,
367

${parameter:?value} construct, 270,
367

${#variable} construct, 273

tilde substitution, 357-358, 371

variable substitution, 105

summary of commands, 38

suspending jobs, 353-355

symbolic links, 22-23

Tt

\t escape character, 212, 380

-t option (sort command), 92-93

temporary files, 224-225

TERM signal, 399

TERM variable, 264

terminal type, 264

terminating

function execution, 304-305

{ODS O00

loops, 377-378

test command, 396-397

alternative format, 154-155

file operators, 157-158

integer operators, 155-157

logical AND operator (-a), 158-159

How can we make this index more useful? Email us at indexes@samspublishing.com

434 test command

logical negation operator (!), 158

logical OR operator (-0), 159-160

parentheses, 159

string operators, 150-154

syntax, 149

testing conditions in if commands

file operators, 157-158

integer operators, 155-157

logical AND operator (-a), 158-159

logical negation operator (!), 158

logical OR operator (-0), 159-160

parentheses, 159

string operators, 150-154

test command syntax, 149, 154-155

text

characters

sorting, 89-93

writing sorted data to standard
output, 90-91

pattern matching

any character, 54-55

beginning of line, 55

end of line, 55-57

grep command, 83-89

parameter substitution constructs,
270-273

precise number of characters,
62-64

saving matched characters, 64-66

specific characters, 57-59

summary of regular expressions,
66-67

zero or more characters, 59-62

extracting from files, 67-72

matching, 24-27

newline characters, 47

pattern matching, 54-59, 62-67,
83-89, 270-273, 366-367

repeating, 6

translating from standard input,
78-83

whitespace characters, 47

editing, 74-78

lines

deleting, 77

duplicate lines, deleting, 90

duplicating, 94-96

line numbering program, 282-283

pasting together, 72-74

pattern matching, 55-57

searching, 83-89

tilde (~), 370, 357-358, 371

tilde substitution, 357-358, 371

time/date

displaying, 5

recording time used, 398

TZ variable, 264-265

times command, 398

tools. See commands

tr command

examples, 78-83

options, 81-82

syntax, 78

trace mode

disabling, 275

enabling, 274-275

translating characters from standard
input, 78-83

trap command, 290-292, 398-399

executing without arguments, 292

ignoring signals, 292-293

resetting traps, 293

signal numbers, 291

syntax, 290

traps

creating, 290-292, 398-399

displaying, 292

resetting, 293

signal numbers, 291

true command, 399

tutorials, 403

twhile program, 189-190

type command, 305, 399

types (data), 104, 341-342

TZ variable, 264-265

U

U command (vi), 370

u conversion specification character,
229

-u option

set command, 394

sort command, 90

umask command, 400

unalias command, 346, 400

underscore (_), 103, 329

values 435

uniq command

examples, 94-95

options, 95-96

syntax, 94

The Unix C Shell Field Guide, 406

Unix in a Nutshell: System V Edition, 404

ae Programmer’s Manual, Volume II,

The Unix Programming Environment, 97,
406

Unix Unleashed, 405

unset command, 284, 400

until command, 400-401

examples, 191-196

syntax, 191

User’s Reference Manual/System
Administrator’s Reference Manual, 406

users, displaying, 5-6

utilities. See commands

V

\v escape character, 380

-v option

grep command, 87

set command, 394

values

aa to keyword parameters,

assigning to variables, 48, 103-104

comparing with case command

command syntax, 169-171

pattern matching characters,
T7175

pipe symbol (|), 175-177

How can we make this index more useful? Email us at indexes@samspublishing.com

436 values

displaying, 104

null values, 107-108

reassigning to positional parameters,
2OTj 2 Onal es

${variable} construct, 110

${#variable} construct, 273

variables, 103, 364-366

arithmetic expansion, 110-111

assigning to other variables, 106

assigning values to, 48, 103-104

CDPATH, 252-253, 365

displaying values of, 104

ENV, 326, 365

exainples, 105-106

exporting, 237-241, 373, 382-383

FCEDIT, 365, 368

filename substitution, 108-109

FPATH, 340

HISTFILE, 365-367

HISTSIZE, 365-367

HOME, 242-243, 365

IFS, 280-283, 366

LINENO, 366

listing, 275-276

local variables, 235-236

MAIL, 366

MAILCHECK, 366

MAILPATH, 366

naming conventions, 103

null values, 107-108

passing to subshells, 262, 374

PATH, 243-251, 366

PHONEBOOK, 247-251

pointers, 289

positional parameters

defined, 133, 365

left shifting, 141-142

PPID, 366

PS1, 241-242, 366

PS2, 241-242, 366

PS4, 366

PWD, 366

read-only variables, 283-284,
392-393

removing from environment, 284

special variables

$! special variable, 290, 365

$# special variable, 134-135, 365

$$ special variable, 225, 365

$* special variable, 135-136, 186,
365

$- special variable, 365

$? special variable, 146-149, 365

$@ special variable, 187-188, 365

$0 special variable, 273-274, 365

${n} special variable, 141

${variable} construct, 110

TERM, 264

TZ, 264-265

unsetting, 284, 400

variable substitution, 105

vartest program, 235

vartest2 program, 236

vartest3 program, 238

vartest4 program, 239-240

vartestS program, 240

verbose shell mode, 394

vi line edit mode, 328-330, 368-370,
394

command mode, 328

commands, 368-370

$, 330-332

[, SS 148352

0, 330-332

ZG VAS Pam Pe

b, 330-332

dw, 332

h,, 329-332

1 329;.332

j, 330-332

k, 330-332

[329-332

ee 4

w, 330-332

x, 329-332

input mode, 328

WwW

w command (vi), 330-332

-w operator, 157

-w option (wc command), 8

wait command, 401

$! variable, 290

example, 289

syntax, 289

waiting for processes, 289-290

wc command, 8

Web sites, 403-404

zero (0) exit status

while command, 189-191, 402

whitespace characters, 47

who command, 5-6

words, counting, 8

working directory, 251-252

changing, 13-16

defined, 11

displaying, 12-13

printing, 391

writing

to standard error, 294

to standard output, 90-91

X-Z

x command (vi), 329-332

X conversion specification character,
2

-x operator, 157

-x option

set command, 274-275, 394

sh command, 173-175

xtrace shell mode, 394

Y command (vi), 370

zero (0) exit status, 145, 363

How can we make this index more useful? Email us at indexes@samspublishing.com

437

Ge 01 Al Py eee olitiwl
1.¢@ (1 iio meeretidn Exuniog ~). Cirumvenantal . ih islaaiieiheied 7 YAS TES aaah yortdiew! ed y Oe) AiRanats> i by & De woedret) © es An

= ee
7 ft et

aa °= = as RL IrETy
ok

- vain
pay vESo 1} ae Eaas Wome Bhpied Rance wo ’/- =
id bs Ti at

ont

|
Y :

.
|

=<
e Pa

A

“8

betes RENEE Gy liuatenoe "MIB BOD uti LONE ores hcxe is
mers, 5. bel (mitaeeye
ene a athesea
: shea . onsen? Ul

Dien te - ALCP tacancn >

it sre) Onertneg ¥

SEP" serene Ape (0) ons : '

Ce
7 ad s

we

>
Aelia’ Se

a ina oe Y pal =< aad

= 24° Nags :
a <4 ah, ; Nese tte

itt a LU
jheent wate

;
i) + seg ae) (arid a

Ce ae) —_ a on AS crv wesley SUES 4*°@ iy ae

7 ee
~o? Ak:
wri, 146-16) a

opr \e

inl
bY qwGrd sare s¥ \ i ye sLrmulle

Pa 26s

is
|

i aor
— =?e

“inte

Wouldn't it be great
it the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?
POWERED BY

Online BOOKS safari

They have. Introducing

InformlT Online Books

powered by Safari.

Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you

relevance-ranked results in a matter of seconds.

«= Immediate results.

With Informit Online Books, you can select the book you

want and view the chapter or section you need immediately.

= Cut, paste, and annotate.

Paste code to save time and eliminate typographical errors.

Make notes on the material you find useful and choose

whether or not to share them with your workgroup.

Customized for your enterprise.
Customize a library for you, your department, or your entire

organization. You pay only for what you need.

informit.com/onlinebooks Get your first 14 days FREE!
InformIT Online Books is offering its members a 10-book subscription risk free

for 14 days. Visit http://www.informit.com/onlinebooks for details.

Your Guide
to Computer
Technology

Sams has partnered with InformIT.com to bring technical information

to your desktop. Drawing on Sams authors and reviewers to provide

additional information on topics you’re interested in, InformIT.com has

free, in-depth information you won't find anywhere else.

ARTICLES

Kees your edge with thousands of tee arte. in-depth featdres interviews,

and information technology reference recommendations—all written by

experts you know and trust.
POWERED BY

ONLINE BOOKS Safari

Answers in an instant thot InformIT Online Books’ 600+ on searchable

online books. Sign up now and get your first 14 days free.

CATALOG

Revie online Sian ahapien sad author bingieehies to choose exatthy the

right book from a selection of more than 5,000 titles.

SAMS www.samspublishing.com

Bialine

eliateya

_ Unix Shell Programming is a thoroughly updated

revision of the classic book on shell programming.

Following the methodology of the original text,

Unix Shell Programming, Third Edition focuses on the

POSIX standard shell, and teaches you how to develop

programs in this useful programming environment,

taking full advantage of the underlying power of the

Unix operating system.

After a quick review of Unix utilities, the book’s

authors take you step-by-step through the process

of building shell scripts, debugging them, and

understanding how they work within the shell’s

environment. All major features of the shell are

covered, and the large number of practical examples

make it easy for you to build shell scripts for your

particular applications. The book also describes the

major features of the Korn and Bash shells, two of

the most popular Unix shells in use today.

Stephen G. Kochan is the owner of TechFitness,

a technology-based fitness company. Prior to that,

he was president and CEO of Pipeline Associates, a

company specializing in color printing software. Mr.

Kochan is the author of several best-selling books on

Unix and C programming, including Programming in C.

He also acted as series editor for the Hayden Unix

System Library.

Patrick Wood is the CTO of the New Jersey location

of Electronics for Imaging. He was a member of the

technical staff at Bell Laboratories when he met

Mr. Kochan in 1985. Together they founded Pipeline

Associates, Inc., a Unix consulting firm, where he was

vice president. They coauthored Exploring the Unix

System, Unix System Security, Topics in C Programming

and Unix Shell Programming.
,

Category: Unix/Programming

$29.99 USA
$46.99 CAN SAMS

www.samspublishing.com

LEARN HOW TO...

Take advantage of the many utilities

provided in the Unix system

Write powerful shell scripts

Use the shell’s built-in decision-making

and looping constructs

Use the shell’s powerful quoting

mechanisms

Make the most of the shell’s built-in

history and command editing

capabilities

Take advantage of the special ay

of the Korn and Bash shells

Learn the major differences between

versions of the shell language

Customize the way your Unix system

responds to you

Use regular expressions with Unix

commands

Set up your shell environment

Make use of functions

Debug scripts

ISBN 0-672-32490-3

| | {| iI
£21.99 Net UK 7 52063"3 5 9 °780672°324901" ™ |

