
THE LINUX
COMMAND LINE

PRAISE FOR THE LINUX COMMAND LINE

“I can honestly say I have found THE beginner’s guide to Linux.”

—LINUX JOURNAL

“The most approachable tome on the subject.”

—LINUX MAGAZINE

“Anyone who reads this book and makes use of the examples provided will

not be able to avoid becoming a UNIX command line pro by the time they’ve

hit the end of the book.”

—ITWORLD

“The ideal guidebook into the world of the Linux (and UNIX and BSD)

command line.”

—DISTROWATCH.COM

“If you would like to start using the command line, improve your existing

skills, or simply want to discover tools that you were never even aware existed,

this book has everything you need, and I wholly recommend it.”

—PHIL BULL, AUTHOR OF THE OFFICIAL UBUNTU DOCUMENTATION

“This is the best introduction to the command line I have read.”

—BEGINLINUX.COM

poche? ner, 2
Seerentts FUT « potters ioe as pho aae

ai
(CS tase WEE Bas ea ah Wa a uke +e

“orl beesmos _
. > Weer WAC TNT

7 9 thew Sire gas heonmen e% ee no
ao. Ory re aero ine tells Badd Moot) =* pare ee stile

7 Sle inetaiyh ylavite Tiga tein com geil. tagtres eat Senet eS

Acard Riese!!! ahs eee Go Ber a

7 ripe wee, bg bcotiteas wihed 4 pee ae Whe aT

THE LINUX
COMMAND LINE

A Complete
Introduction

by William E. Shotts, Jr.

no starch

press

San Francisco

THE LINUX COMMAND LINE. Copyright © 2012 by William E. Shotts, Jr.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the

prior written permission of the copyright owner and the publisher.

Ninth printing

18171615 910111213

ISBN-10: 1-59327-389-4

ISBN-13: 978-1-59327-389-7

Publisher: William Pollock

Production Editor: Serena Yang

Cover Design: Octopod Studios

Developmental Editor: Keith Fancher

Technical Reviewer: Therese Bao

Copyeditor: Ward Webber
Compositors: Serena Yang and Alison Law
Proofreader: Paula L. Fleming

For information on bulk sales, distributors, or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Shotts, William E.
The Linux command line: a complete introduction / William E. Shotts, Jr.

p. cm.
Includes index.
ISBN-13: 978-1-59327-389-7 (pbk.)
ISBN-10: 1-59327-389-4 (pbk.)
1. Linux..2. Scripting Languages (Computer science) 3. Operating systems (Computers) I. Title.
0A76.76.063S5556 2011
005.4'32--dc23

2011029198

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

To Karen

Ww

Digitized by the Internet Archive

in 2022 with funding from

Kahle/Austin Foundation

https://archive.org/details/linuxcommandlineOOO0Oshot_c8v7

BRIEF CONTENTS

Po FN 2 SET ieee tee 6 aR ea ae xxiii

rea Mean Fe NE ects ti es Urey eek das a a concbceonencckanasiohticiey th Cela XXV

PART 1: LEARNING THE SHELL

Beeaetr rr ypOL ine conllt, 2.8. one anwiateten ann uk ot ee eee 3

SRL CURCAI Re 3 ome sae eee Bere eet epee ae an SOREN ts ery. dearer Joya 7

Pesan EXE NONINES MVR AS VEG Discs cck Spee. arcs cauih etre eerste Ke

Rnapter 4: Monipulating Files and Directories.........0cccccessccssessesescsuvesseconsosasveagedenevsceensevteusvacwenay’e 25

MAE PEMD We HITE SCHISM NSA .nc. 5. fan.nse Yo csinssssunedescuysoeld ode vuna\veivanrovncaudecatdeymeacitaeiors 39

MAINO IMSS EMR IIPRCNIEN Ne Ase Sci UMN ne ccd ne sieseie saci deaaitend na Suen aa GNC ROME ee A9

Ber fea) We VY Ore OS the shell S605 If, erc..q-ccs seven seoseneupucsvededvdenteves udienseenelimcreunesss 59

Re PIVONICER RE YDOGIG PICKS: caret tains sere tininde «eens d are EA Wate ao Go 69

SANS Cs ese CLNYAI SSIES ee te sy pnb aa on ute COTES cana Soa eS RRA Sa Rte REE Oat Stet wan Suet ae Vi

NRT Re SMS nee ote aS AE Ba Bate) SO Oe rk eNO ccs sce ee es eae ae 95

PART 2: CONFIGURATION AND THE ENVIRONMENT

Se eavr ict Meso NG EPEY WCTBINO NN 1 saetis nisi races coeiesins ch oso unsascwancsesoesise nabasuapanetdhanhoaiaaegnaluasseteaerasacs 109

Re teatad 2a Pe OG He ENE CIICHONT 10) Via. csi canta cicanasneeetatcaaay apie tg danae as canes pasganePynuacs census 121

Chapler baz Customizing $e. Promph...s.n,se.s-oasscoonasovevnscosnaranseaedsnenneaninsvey at cbse ye-yrsnasanonstageavaces 139

PART 3: COMMON TASKS AND ESSENTIAL TOOLS

Chapter 14: Package Management..........:ccccccsssecseseeeteeceneneetenerseneeseeseeseesseseeesssasseneeasseesenens 149

Chapter 15: Storage Media...........cccssceceeseseneneneneneneeeeeresesseassenenessssssssssnenenessnenevenenensnenenanenss 159

Chapter 16: Networking...cc:...spsccseececsegaeescesessesenetencrcscasasesessvsseversnenenesssnsreresasesnsacnanensenaees 15

Chapter 17: Searching for Files........:.ccscsccsessssssesesseecsescsseesscneeesseserecessecseseesesssesseneneensarensnsssenens 187

Chapter 18: Archiving and BOckup......cccccccscessessneesenessenecseneenenessesssersessseseseeeserssnesnenesnenaenentys 201

Chapter 19: Regular Expressions.........::cccccsssesssesseessecenesenseetcerssccessesesssraseseseserseeeensesenneenaeees Zig

Chapter. 20: Text Processing. ...:cs-enssseernveneversvsnsonenuinyrapnensntsdndehondres aes chad sonossa ea Resdonn taderenmieeie nan

Chapter 21: Formatting OQulPUt......sssssesserevevevnersenrvesncdentcoueserassonesdPurrentnsnasaranaseounnssenhuassosoanaeess 267

Chapter 22y Printing. Aiatescaccoveeew ecmcueescedecnnencsetecsgrassbtssba scnztvaa (oerter salen cals male seataeaanaicwe tars aes 285

Ghapler 23s Compiling’ Programs .i..ccanecese-csvenee<cosse-av<ccanctenearssanixasensts 4/17 fan eepevmedgesarctry Cea 297

PART 4: WRITING SHELL SCRIPTS

Chapten 24: Writing? Your, Pirst Seri pti2.ccc.cscucasaceceryouton-usaedsaesuneto yer ensns ceneceeyettatse alae sana 309

Ghapter25: Starting, C'Pro lech. casaaeccmea. deans coe vactine tis daqde se ances stcnad aati eee 315

Ghapter:2 62 Lop-DOwn! Desig this. -ja vate ox-a-ae uses seaetucaee coccieeclreaereeaa ane wae eese tacit ere aoe 323

Chapter 27 «Flow: Controls Breimchincy witht tteckores saceessucecueceveas aacawest erase aetesae ee eeiee arta senerae eae aaa

Chapter 28: Reading Keyboard: Input cccc.taccdecceseccusscissescscass cousin cedecaess tates heen ieoe ae eeee tama ean 347

Chapier:29:. Flow Control: Looping with while-and Until.cs..cc.,.a<4eueassaneesatacelnceceuseseeees eres Jar,

Chapter’ 30x Troubleshooting: zcdess.tscsaccccsts canes ss-t escheat cavscnnc-caveentety neah casera neste tea nn 363

Chapters) larlow Controls Branching, wit) Caseraccct..cccccrcntesscses nat cares re neste eee S/o

Chapter: 32: Positional Parametets:::.s,:ccrmtcsreccttrece cr ccreresecat tr we Gene ee at eae 381

Chapter'33" Flow Control; leoping with: fortscccen. assets cotanas es tosses ae ee ee 393

Chapter. 34::Strings-and NUMBETS.c.ccct0e nc sacteen te ccrgres tse ee 379

Chapter 35: Array$....iis:.0scssssscs+esteacaceucasevecenstndteaod atte tree Aan ogee a, Ae A415

Chapter.36: Exoficeis.ats. cst stecnsasserdannctsoatsugnsedounrs dlovadesteeke dss ee ae ca a A423

INAOX. .. seninsnsiduinennsineecldnamnssundhanbnenoasobhatnesciacas en ences Genesee due oa ate a a 433

Vili Brief Contents

CONTENTS IN DETAIL

ACKNOWLEDGMENTS XXill

INTRODUCTION xXV

ee ISA NGC OL MAING LINGO rev carventiiniadervanedvillvaveidvivsseedie ile Mlndwencitardeseblitaianniarittelcen A xxvi
rae CBT RMEROME FA LMSRIELL uss eu bed yiieansdienaseeseciva<cltc cca reea Gaceecratiodhl (vcs hikers. el ice ae xxvi
Eres ORES NEHER TABS ELCICICTaL, PUR LARTE CRE Nts Sec ccs tkictev Hse ccansodevvaceecci Zs We acecdnbecavveeicliccsegttee: xxvii
a OTS 2 fee a Rae eo * n r ee eenL Tee yo: xxvii
rire PED. CHS TN PES ROTOR RRR INU aire OG Sa ree nausea eints cesta reueiedives'eaiowetoeiusdceh ve va deteln se covieeiscacestes abana xxviii

PPV G INI cots Sone SON ST RH ies We TRA Reba cnenibvaainwnoveanrninvel ea xxviii

PART 1

LEARNING THE SHELL

1

WHAT IS THE SHELL? 3

METI UANT SOMA RS a ssc nide pny se sevaian ova vd RBE OA Gay Guinea deen aaO RE I ete 3
SINE ENC STR ee ihe open on cpscpudeNineneidionorace nn dhoveddr-teiacee sade OD TEA POOR RT SE sa co as oe 4

BCR PI. ds oe es aadsantd canna coxcnnasdvtin gg Rasa A ee 4

EAN CET IN 2 eh sian ce inttks menanigncdian tanaaiasndinnanaasod tees ai Oana at RO ta ee 4

a MES SWINE KONIG, « oo nasx sen ick iesauredsrsddn ucdctesnbeveesl spine RUPUMM NI ys nce AUN ACM TSA cos cole 5

Bea ted TAL RMA EOIN 5 oso) ialissievp sus cabo daane asst poten ceood annus oabcbuesberosGsceseciveucasasea pues is tener aa 6

2

NAVIGATION 7

MSA) 1G FIRCSY SOM ICC resenodaanneincdidrenod@nesivunsdciconddesasdan saad aren seve unmet ntade Meant RaTeenCE eee t i

RPRERC UTTER VV OFKINICS DIPOCIORY 2.0.59: .0<oresssicami crt onasuioesseclaeon ave lnusinctinkeicuniseneeue-nicachalede MMA Mar dee trace eee 8

Being tne Contents Of G'DITGCIOTY ists s...e. avis venecsscacssanciedesPennbondksotanoessttewesebalsesenswasasete ooh reasons 8

“Changing the Currént Working Directory..........:csscssssssseesescssensensentseassteeeceeeseossvsrssseveressssnasesseseess 9

A bseolutersl ca MGMeSiysacasasadiernctueesnasaddrwagenracsciedeasaaciasditaetontla mets te oder eeaeetras teceeet ee 9

Ra lcttevienP i sMelINGE 4 speandrovappoardorsonsdsicaddroedaasdecousncnd eres een ET FRO OM as eco 9

Someytielpiul. Ghoricuts ttne.crtusscvieesowissap-<onnucksoo-ongitecomieroishsiastverMebsUs odenesgePtsngsseacisn. 10

3
EXPLORING THE SYSTEM 13

More: FU With 18.,..revevervssvvencrtomascedveatatevsunucovvesssntereabea's vasnyds sldnanpax ey seasgat hear Octet anon -egPane nt renee 1s

Options and Arguments.........sssscscsscsressenssnssssssenestessssaseesseseesssssesssssnanesssensennssnssesenes 14

A Longer Look at Long Format........:ccsccscsessesesreeessseessseeesssseerssssscsssesevasesecaneseseenenaeeeesery 15

Determining a File’s Type with file...csccccccsscsscosooseonessessvenersesintsdsesarstsevesenceteatrendparebavensrtaseaceneegs 16

Viewing File Contents With less...........cssssccseossossossovsoeneonssarcstennsencsnsssnessesveonerenscoesssscnacenseuasennnns 17

Pe GGided Tours rss fsccorscesansecssdvosdesns Sbaveuvelyov wen azuvuvidsayapinnnddesenes vowdstespiasent aie te a teeta ata te tee ibe

SyMbOlic: Links hivesestannednvUvsvindoatcocdeevicesetaceadeuenaeaddleininaada aad iateds ail condo eal eet tah ee Water 22

4

MANIPULATING FILES AND DIRECTORIES 25

WY ACCECS acct uit sce taceiatere coice mantel (a testa sa cae usc aac ap eco vo Sg tna a 26
mkdir—-Crecite: Directoniossstssan punctate sa stast date ava bioastidacaneteasicieg ash tare say Passed atone wen ay pear ae 28

Cp—Copy Files and, Directoriesecceracessesactatcs tes ceonesecesetssasaeiserouedvsnateo tual tay sua rune none tena arene age nee 28

mv—Move ancl Rename Flessccta nsec Waccers.czed sa shecta eae cokedgne tows se as ena nada desu sduetan se tney a aerete ae 30
[M—=REMOVE: FUSS CNA LIREClOMS cms, seavave yet acts -avanveuenteoacees Mesias ceanudedeeducaeetes saath ehesanenceet aaet arama 31
Wn==Create Links..ccloptaevrdestcatenevsccasatdessivaacgsestetatisneneesnssqsesecd@de AR Gc 6163 Ac coat eee eee 32

cel eM Sig <i aaa cB pth range ee ty a Cane ae rec A PERO TO AOR ent eter ec, Se see iret Speen, 32
Symbolic: Uaks sak: dace sweadeeshesseetecalo restates vate deus tieandandive deen aumas eet iesanea tee eee er 32

Let's Build a Playground at eert: ce Sava tis shen oom ea tae aca Ace ced cat ae ae oe Be
Creating, Directoriesioii:27sasseesstasccettens sdonecun Set tohssqdaneen ueceeine semanas te tasergts ae ty eee <i

Copying. Biles eRe see ce setesaes cnn ate sascha wslBaieae Sele b es scaly needa any sh es een earn ete Vena 33
Moving and. Renaming, Files satadearasdasateevonsbessnssectunaids ious nantes cous hegav agus ae eee 34

areething lard: Links ice seelweecaws ac svntstsnetian van seewlanodoaenadtenatimeudaiev ened Rooter eRe eae ore <ie)

Creating Symbolic Links tiehadiwsctgisiveccsdraedeeiiayccasaua sen teJuite tonesaneds eRe eee ames ea ae 36

Removing Files.and:Diregho ries jgatere seeeheaticts sai jscvaovewesven~ysicens ue meee eae eneae a a a4
Bab CHL IN cote sce ste csettelateh wach wah ak ens x valent Wa cenanicook Oy (otal aeeow ee caNRyeeanccp eee ne 38

5

WORKING WITH COMMANDS 39

What Exactly Are: Commands $s: <snusinccnccnceaemontinandnornnenenenoresicw-kruncaadiiie See ee eee ee 40
Identifying Commands .cscocteicnucenraseectaherveancertsancesntusoasdaredewircsnineselna scant eae eee een AO

fype—Display a Command's, Typeissccecesunasatsvawsaieeeoy sacerssouc ct eeeuetene hr Henan eeeee eae ane 40

which—Display,an Executable’s LOCctHoON,c..+s.<-..-..38seeelee) Spee eee eee Al
Getting a. Command’ s Documentation... ..:sc..cs<ico<.2<.a004ess4edsasceaeuee sees 4]

help—Get Help. for, Shell. Builtins... svexscanienwsaacaneacusavaceansecsexsesaces coco Ne. eee eae soe Al
--help—Display, Usage. Information.cisc-sccssonsertncouensncunseneaacna ennai Sees eee A2
man—Display a Program's Manval\Page..-sscse-ceetcces enna een ee 42
apropos—Display Appropriate Commands.....--1cser ace cess eee eee 43
whatis—Display a Very Brief Description of a Command............c.ccecceseeseeeseesseeesseesseeseeees 44
info=Display a.Program’s Info: Eniry.2.cseess-eetss ee oe 44

; README and Other Program Documentation! Filess... 1. ssseeeessscel eee eee 45
Creating Your Own Commands With alicsi.....0-.2140e ee tn 46
Revisiting Old Friends... s..2:.csssssesadasundsavesessaeshdeemaesetate ame enn ane 47

X Contents in Detail

6
REDIRECTION 49
MORMON A OUIENIE, CHC) EIQ ca ecansvenisrsiorevsveatvoh Sate LR cl ee 50

Ble escaine SMILES Gea dccirses caste ssrivsiarnsavnssvssavavasatineeQeG a WO aeeceeeN Ne ame 50
RCL CMe ONL RMIAESS EVE sa ecsec sana rat esta tvevccorns sexed bavasiss MC RE A ee I ee |
Redirecting Standard Output and Standard Error to One File.....ccccccccccccececevececececeveveeseseees S2
Disposing ob Unwanted Output cies cmieetins vovsesvi anid UUM ot a ER cso: a2
RSH ney ot cieed INU Wucteats Geen gisncivvivitieal cus ccansdaarsievevsiaoascadeercennsee ee BS)

ieee COA BNE Aordke4s 2 SONS. CIR RR A a i il 54
PRR ated gi hci ROCK Sin eon taku URL ROPE AMIR) SON De JD
inig--Keport or Omit Repeated Linesacicesccctuibvtue ellie Tavte oehins eagles eae esareaeee fie)
Weer mnt ling, Word, and Byte Counts ia scsenesavisaclgute teen a test eee encase eS)
PE Fis LOS. MCHONING G. POG coonctecscsencnrarceruececcrrissdiscanrercasor ME tea IR 56

nacido Print Firah/ Least Part OF EtG Siccucesavccucvecce'soveccnebevterccacecitoccv et Maa ee 56

tee—Read from Stdin and Output to Stdout and Files...........ccccccccecssessessescesseseessenseeeeeeees og
a Wes (aso es oh aOR Sih hE cea Tho Ms gC ER 58

7

SEEING THE WORLD AS THE SHELL SEES IT 59

Beate an espera hash cases nn picactevssohMernre vias es widvvivet Amo E CATR HR aed ENON hc ERR HON MONG ce rs os ow

RoC RMN RS: ERECT STO ger cpiintenncscinn add dustioton dnd icviegnomancrewtinerivaalsentre icc aoe eR 60
IEE, EEN ISIN ot ctor cteietio arn aens vad taaercmenntersea cn cteh se Aieisa gates MON RTOs eee NOM ors Soke 61
Ba RR ERIE Nasco rcs sone O.5nanttsbcccalansrieatco ENON Date eT ath NM Prins co 62
PREM ee MEAS HNN ada cate trimiyres ates e ns teen Ca aT oe ain cee sense RENT RE snc 63

Papeete EXDOMEN ON casas sanerriperissss nan avadsssusta.ghaascnacasascsrdneeettn cdc ates Wee Le eae gg IRS ad tesa 64

CCA VCAIAES CHI TNLON ic siina cuits calpain ilise avid ckatiasarssnehaiednns ia bai ves sheesbix numrmmdeeammee yn tem eee 64
ORE eee trtsrancainey chm-ame susie vas iweb eSNG enna ceva ucaatan cad tack Oe uRcbe st MAE Oot ote Gh REOEIROMN. sss 65

i CNICIAE spac sncninsscs its seanonesacsdietiendooret. AOMR RO ed GE LAE et E eauN s8t cheek 65
POPIEMNA RSME Sct uh Soe cansciacs suhucetagntle voucinea chien emi V nevus ons vias bnalodis Res Melons uD ae eeEE Aer 67
Ee ENTICS SMCS 0 ga sake advice tiie cea aah aniiesgacsw¥ oes ees wun net iar cas eatin mt 67

BNE A ae EG RG Like aos Ain. vas da aentsacin ncn cnamga dvd oho nnsleeae rsa ween dedea aMiorant eewernmoeme 68

8
ADVANCED KEYBOARD TRICKS 69

Spear re earre Leena CATNCNE Settee Sas kta a soy ca sealer ges ant Seoguiansieon ndalon ak to saoeqnes restenqn Macarecaescaee arena 70

RUS OE CIVOINEN eo cg aratia es icaassvcuaiwssensnsdmvancbatncatoremoso or ss.asiene Staite ga imatsthee meres tne 70

INMATE AMP XT oy syne eae cs cle de cece eantenste sua sndinns eaeeenciaeetesilennarsoadeateaasoiueWusgrinrssnan Wiacge 70

Cutting and Pasting (Killing and Yanking) Text..........cccccsceeerenenerensesersseseessetessseeeseens 70

Te TM siete ete aitcgattiet <nsccswssrenesncpeceuccoodedreeoeae -tuntemssraéassbancaurne seo arsnssneussessmegtnds sig 72

SMC LISIOR Venere pte ec-- cee etron epee dessins does deMMte lena se surdarscneoddtanandasatarsedveavaostsennpnassenrdneucenenceroctecensert 73

SVOC MID) FHISHCSEY sce ages eyee cea levi tnce ge cena sus shds tna neudecateneupeotaiensnestopsnastacagpssaseasestsa¥ebnegh 74

History EXpansion..i........sccscscssssccssesssceneensccnseessentecssesssuasesesasesecsseseenseerenseenconsannngses
75

eer cites ee a nates ene ear Secned ccs tencannneanne@dunteonndconernsdttoanom cae sah ethene 76

Contents in Detail Xi

9
PERMISSIONS 77

Owners, Group Members, and Everybody Else..........:c:cccssescerseeerseenereesesesteesseseenseeteeeneeernrcensesy 78

Reading, Writing, and Executing........:cscsccssssssesscseesessseneensersessesectsssssesseasessensanseeneenaeseasieeness ns te

chmod—Change File Mode.........::scsscssscsscsssessssseeessessesessesasonseusesnsesnsesnesnasenansersnsees 81

Setting File Mode with the GUI..........c:cccccesssesseesteeneestreriecreerssensesnsestsespaseeaeessesnaeenneeses 84

ymask—Set Default PermisstOnssassinscinnnnivenvarsssesennernsnblaeahotnn tasty Wendel assistant an altnigheh &:anas'< tty 84

Changing Identities..cc-n.ccveteneisencsasssvensoteconeccensonvanrnirrnnnransoansersnre denkelene=tnditndae Uebteuaenaayeee naam otek 87

su—Run a Shell with Substitute User and Group IDS.....:::..s0t0s-sseesarencenncseetesanaranerenstoverets 87

sudo—Execute a Command as Another User.............srsssssscnscesssernsesessnsassvereeiuenesseseanes 88

chown—Change File Owner and Group........s::sccsssscssesesssserenssteeessssseceesentensacesassercnsrenes 90

chgrp—Change Group Ownership.......sscesernvarssenesenesessdsosassavaseraghsvnoenauaecvavardiererooans 91
EXELCISING) YOUN PiVil@G@Ssiccsercsexesedscacsnaseesnetonqexsossne onnn ct) Memo oot dcCl avd Maslns 2898 Sey patience 91
Ghanging. Your, Password ieadeschicseszsencasasense*+seneviastconennncaeamlan Stones halen sale aaleet = aioe wicoeael aa aaa 93

10

PROCESSES 95

FIO W, CA EFOCESSEVY OF KS sce coc 5 soatva tn teu alec cians hese cep ace gwa tea teeta oes an nh ee a 96
Miswimgterocesses: With, PS.sasaiccenctear dee ttece strate ne tene trae tear ee sneer ae ee 96

Viewing Processes Dynamically With tOp0,c2..c¢accnresenanewceenananareeandeusnaee- seine eee 98
Gontrolling, Processes ehaccceassraailadasote aauieiannamdesagades acuw ad sasiadsactinaenonease sian 932i Maan meee 100

IMfStrUPtinG <CLPROCESS |. h03,ai cae shse.qudaun<s-ign34anselssaeo-eniostann ox seesade ten ose eee eae ee 10]

Puttingsa Process. in, the, Background isc ocseaeesonsospeasetnenanenaneccieae tae aire 101

Returning a! Process to the Foreground... .c<..csacasassssariennosiasneoseasce tanoasttteee eee ned aaa ere 102
Stopping (PAUSING ia: PrOCESS 2) sawicccadevassegeuneahaduvan vocaiey sieduneeasses CeCe Reeeeeee 2 oeeaaen eee ean 102

Siemicls ae een ue he Mh cote ich cay eh dad tsi dinine sbi talunexbeabres eda vamnensdgale ee aS eee ee 103

Sendingsoignalsito; Processes: with: kills. 2.05: .xsanencuacsusesctehacenne=cceseeavaviesnatee seca eeeeeeeaaee 103
Sending Signals to Multiple Processes with killall.............ccccccccccccesseeeessceeessseeeenseseeeeeeeens 106

More-Procese Related Commands. ,aascs-sestessncetasesukeakse vnc pedsncenactetecconbeas'eah seas atte Rane eee 106

PART 2

CONFIGURATION AND THE ENVIRONMENT

11

THE ENVIRONMENT 109

What-'ls-Storediin the-Envirenment? ss sesiiass. cas, cssisutaesy chee tone ce ears eee ee ee 110
Examiningathe,Enviromme nt sate sis.2.Steita....24-ccttadosgsanneia caste sega eecee ee ee eee 110
Some-tnferesting wy .Gnianles dante vathertiry cs cao eek ace om el 11a

Elow ls the Environment Established deta. vai. csc cat see cane ttien eee e eee ess ee 112
Loginand Non-login shells si -@ sees 22 c.casertessacsctec idence ase ee 112
What's in. Startup Piletsaath, cles ere eee ee 3

Xli. Contents in Detail

Rare hibites. Seated Wve Mit yak aeeeay dy ves sunionscnpuncasarauoer iver rer os canoes sthies eaeeecnova ae bie
VESTAS SES Sie sary canadien aed anereaeteah a ested ett ses Sly Set BE A dl ode tel (Ais)
LP LS GEME NY ala 8 eet 0S cena RR AOE ad oe A 116
Bee Maresh es Meh nh aus RRL as vamevoastioven sian hein 118

ee asa ORR Rt aici oye ere osc PUA MSRM RGR Ah 119

12

A GENTLE INTRODUCTION TO VI 121

mere MOOT COT Vicente oe ne eee en ae 122
1 Pa Ral cage! 1s beet ae neme didn lihade ive ia eee ica tea Bb vet bids Whe ma LZ
BEMROE ALD We esters hon ttn ee 122
op TEE WAS 5 [i fenton RR op a Pat ARR el ed tae REREAD Seren dead bt ey 123

Cg Te CLR Let ote rere ot de eel ee ait Mintle el neues, idl biel ih 2, dade tot 124
oe \ cs Tg Cec ments, mallee aan iene rt eee Senay tains Jeanine Rial mani RheR n= stmameic N Ne 124

Bane SPR CLUTSIAE BNNTRURCI RS coe dace cia faart root eoes sation erence Meuron teem 125
Sc MBG IT plese Econ ected earl aah OES Reinet tide A Ree aaeearaI, ato Rnd thc hbpa lA mews, a no 126

Fada DEAS BCs Greta a on ast dead ele baer St aa se Rl eae anh meen den ot 127,
OSS De eh 1 TE et ch ath nailer eet Rehnaa eins. lines Om Abi Rie i eieaiiiabied. a daha. og ener \PZE

eee if EL precctenreamat, p41 vtale sme arene led iets hen commen, ae eal int arene ibe use tENG ACS 128

Umer, <p Mi: ANCL PSHE) POX accteecer rcs cceer apt seeecdesonreetecesaclemere tr weeteninenaea #29

PE PITN AER Gates crea gaat ort er ene see niles s és oatromrac ot aetiore eehatncsteceventcteied eae eae 134

Le ENE ACCS. a a ohn tik Ber geal da te em aR enters Aa Ate median iileateh Sie, antra BuaCE Ton
RPRITCENIKS 0 MPHEP TEN SIC cece at ect Mian See eee Ne teng as aetna he te tet nen ac emensce ee 13]
Rupe me RUAIES ME CNIS Gece he see cae, oa Pan genes tiesens Peune hacen ee 131

Be ear ATR BEPC 5 5 cca a scroxiw ran ote cee sigs ctienellenonunenatnuebuienten rasnetowust tamer se ie?
MRSS IVNUIMI CHE FIGS, ser nccaneyatecanndsvavse pednn<amteciniiy sphiesenasiideniayite nenvtertecsenacuty gh Seems Ae de ie Ree 13

PROM TMNIET ER VVRIGED EOC cg ce cre Fava nse ae meet ec usa tense cavba hc inka (aie acteraen sears seuaaneaartee 134

Openiiey Acomomab Piles for EQN mperscce: occ e sgn cesses nacsse Pout soxec ata censsdur-aehwecnecnaueneasns 134
Conying sontent from One FileInto Another......0:....0s60.0.soneasyatnantatesoassconnetttonreoncauseaeses [35
Vicia are tal 20) CALA ALS Baa, Us cena ha aa nanenr eres SESSSO Epi chest /ie 4 AP EEANS prt 136

SL TTI INIA Gr cote ero ai ies es apie as SPR ene ein Heenan ear man epee aes. He 132

13

CUSTOMIZING THE PROMPT 139

PP PINy Ce Cl PEGI eee ep eects oaind seen pndavverdnanacevarete stececectonateanescentnsucnasnnvernrnnne race gSeneQeesager ster: 139

Trying Some Alternative Prompt Designs.............::cssceseescesseesesrssessstseesesteeneeseeneeeerenerseenneesnecens 14]

ee Ge Pe MRR ee Fe teas s cscs csecanon cate cieecencncntencneutapsaqcsuss cosvnpandtessrsnennisttsnaier sv cues treat 142

Po Vind He CURSOR a ecccgnccecce-teeransmrvayeivsbewavesutarensseeeniesnantArtuoncevoneevenessoncsseabrerasssnenshnanenavaceterseis
144

Seivittl 6 PrOMPhe. css epececcec-s tcscensscssscseecsnamentecncsescacccecsnstirecsenenserserevsrsnspeustaronavananeno¥sheuenstions 146

BREAST ee ed ee ree ee tisantrines oecmale nsenar ue serastunguah@nadanronssercucen cong csatacon ae 146

Contents in Detail xiii

PART 3

COMMON TASKS AND ESSENTIAL TOOLS

14

PACKAGE MANAGEMENT 149

Packaging Systemisitziest ccses.cvtsctevuriatens erin vudeatwediuses dese sv vo¥ asad sve nnt0S nAtued CARO NaNCTey set tem nae Oa 150

How a Package System WOfkS......ctsscccseerecvensvsesstsesenecssentessssentssesseensenavesecsnsesunessaiasdereassatens 150

Package Filasi..c:.rocascssdevevedsstactisarea svsonevencsVenbasdedas alle tela cxaas £28 0 ee te SOR: Rae ea 150

REPOSIFOFSS: | tee deashvavecitesen sucess Weeviw auetvonsa ste dtvauevavdbai¥ viatin lve¥s 250/¥s ouiartagaag Soba geamaLamats 15]

Dependencies csc scvisgreca ses tatecuss oi csusavd izewava4iitva val dated ue Coys be Penr ens anaes 4 caeias ataa tees 151

High>and ‘Low-Level Packdge TOoks 1s sicsucscscicestueyswwsse7s havsesecs was denne) eparak gen pneamer hear 152

Gommon. Package Management [ASkSAase.s27<sn<..essoseusestolnenecncsnasenxt ¥onpesentna? ents sakon sats vasinaaaaaeae 152

Finding a Package: Inia: REpOSitOry. <x. <tacasndesbasanav-astxsed3a0 a 0ceMinadadd da aeaee crane ieee 1dZ

Installing @ Package: from a RepOSiOly/s.cy-eeees ne. c0dsouseoneesdecrse<sdn diendige tome ieee enenta ema 153
Installing a Package from.a Package File......-.<.1./s..0--.0dsc2eaceeert ae Nae apace 153

Removing; a Package se. tient oe cm caeiatnatenaslensacenas skeen tease tenad ayaces Reta ata cate rae me! 154

Updating: Packages froma Repository.s ct. .es:0cc27-2aevsas earatwiaaeadare'au ecules aa 154
Upgradingra, Package trom a Package. File. <c.cuc:sveiieo0s-e0s.asst ene eeniee eee ee 154

lasting Installed Packagesses :actngnccraaduteexexadvQieeeds 10s o0t aie) tess sn tetana eda eae ene 135
Determining Whether a Package’ ls Installed. sscvgccse epsceawads Betgee ieee ae en 155
Displaying Information About an Installed-Package..::.,...24-2-s-.<tss.0.<ta0 agape uae eee 155
Fincing Whieh Package: Installed a-Piles,:ug,<.ssc-22c2¥ey. «0s est eevee eee aoe ee 156

Frimeal Note sssteaetes netomat eater See tears meee a cs Cee wea lau Liha dda GIy A ace a 156

15

STORAGE MEDIA 159

Mounting and 'Unmounting Storage Devices.cc. crs-sc.: 0: nse usloaees tt oy ooh code Rees aoe a 160

Viewing’a Listot Mounted Filesystems..sscsasiesss msn teehee ns mort haere cnt iN cca 161

Determining: Device NAMe@S;ous..stteccysccdsesssuaneedesenasBe can ckeccugascatien cies Oe 164

Creating New Filesystams .g.catoc:auacszaecs ames ik see osaness eae vases save innvagens oneareea yeu sede: cians meee 167

Manioulating iP etttions: Witt fCisk x asarscacds.ecceasnnaheenas cae Ratna ee ee 167
Creating.a New bilesystem. with: mks, sac. ame ta, cts oe sett ecm, easeece Beie ce ean ee 169

Testing: dnd: Repairing: Filesystomsicsccctsccseheaue ie acsenisss advuninn Baslonceseren sac eayate eee eer ae eae ea 170

Formatting Floppy Disks: soin.:c.s.ccs:-acaasasdcssassashonsts:csotescatnhes hone ee ee ee eae eae 171
Moying. Data Directly tovand: from: Devices.-.cyr.sscreaash«co.chac senses dies cae ae eRe eo 171
Creating; CO ROM image set t5.c5.. ce ca7 ace veuntn asnet aadncies wvoheuedl JhcnSegueeee a ets gene ee L72

Creating an Image Copy,ot a CD-ROM: ...c7.ccccssescasatetss-- seen eases eee 172
Creating an, lmage froma Collection of Files... 01-07 172

Writing. CD-ROM Images mas-ssascsaseccsessco¥ee vets reese Satin tte anaenes ti otaceton tee tae ee en 173
Mounting anISO Image Directly. s.c.-cascssrscacccessceroretcag ets cos acento ate ue ane tee 173
Blanking a, Rewritable CD-ROMac,.s.creuc cee: suseeececuestc ene tcee eee te rn 173
Writing ant Imager... ccsacs...esa cue eraenceesacae costa canttnnteute aera een eee eee 173

Extra Credit

XIV Contents in Detail

16
NETWORKING 175
Bee ayever inves CAricE VOM CHING, OF NSIWOEK, os cntcecsdlaracivrarsecsecsscsscesssesssertresitreces coccercce esse 176

ping—Send a Special Packet to a Network Host......c.c.ccccssssescsesssssesssssscecsecsesececeececseees 176
fraceroute—Trace the Path of a Network Packet...........ccscccscssecessscessssssessesscssesseseeseesee WA
netstat—Examine Network Settings and Statistics..........ccccccccssesscssccscessessssseveseusesevevenees 178

BI UES HCN EME PARSON IMENT oy ccv cpr ta sahessperumervgunanreicamanmsiecneversracd iin. 179
ftp—Transfer Files with the File Transfer Protocol..........csccssssssesscsesescscsvscsesvscevevevevevevecees 179
Fi ee MME POM ccaasiaee capes sronasiodc cst acta vanecusraceo sha bss ees casasiarcasdocer meee oe ba: 181
wgel—Non-interactive Network Downloader...........:c0ssvssssonscevtsensesesensevccsuresanvaveseess 18]

Secure Communication with Remote Hosts .isiesiss ..c.sscssneisevassrrannsnsneoneuenet?rarauanssersiemeanssesnettvuseres 182
ssh—Securely Log in 16 Remote Computers...........cccsssissssscosnourecseseccastscsceseceasesenevareres 182
SO ONE Blip OGCULely. TranStOr. FIGS, <,. varcecxcascacscdeoksattanssvonesccatsvoteeni ties eaters nee 185

MA

SEARCHING FOR FILES 187

inte Eee eens EC oc cose au yo cSnsk cas cg v6 cdg shiaada scariest cilscl adoue Gestquaemee e abreeae 188
Bate DANE era aN CS PIERS CH ahd oe Foca ce tiatu a ols decd s stiles Coste chan AN epee 189

Rg te ek Mt acho conch cee na nkaaiared’ssicginoinnyisdpurtcsooanrussenresencade RR AO COR 189

NL, TT GIR AREER cA Se CR ree er Oo ER UIE een i RT ESR PARA cr 194

PAE 'T Th, oh TG a7 11; co ARR Ef I Pn Se rTM +P 198
SPE iia Peete sama Sted ae eee ran wc cv aangntsev ancien deeds vaau'evs surderamakoag eas een 200

18

ARCHIVING AND BACKUP 201

Rea METCRPMIRIEY COMIN ele OES RRO acs praca is ab avcsoge as nner aeauauanséracteqsypcsecres aoiteenatuas ak aere eee 202
CRISP aeRO ERI PBS ee yee sigssc vives Foees'ejoighavoeantsemees sSedaanes «th uso asian SeaageessceMes see 202

bzip2—righer Compression.ahibe Cost of Speed a casccccscnseciqrersnsnestrarrrteamnapzaccrsecessoness 204
Revere AMUN NT 0 Soest creek ea Pee ete? POR ig ceo dao inp os ssvnntobansbiesvenati fue se nek ic yas seturcincveercactaees 205

Pes Be CC CPVAIIED, CUI catra stone nine ovpstnccopna rose nesses ace cannes ceanibenscrs dae innate Na ae eee 205
Piet eRe OIG OOSS FIGS, <font cascmmosvayacoaneins avec ce parsseesg tuna eam Tee coaueem ct 209

Be OMPEIRICY PGR. CHICK LF OCIOM ES cx 50s encloses og nae sot eign doe cest cp xanng <aarongonsenanOins de sce Gaateasne rales Zul
rsync—Remote File and Directory Synchronization..........ccccccccscceeesseeseeeseeeseeeseenseenseeneens 212
Rivaren es yi CVGI-O PCIWOEK yo rarervecncteavtneciaractiiae ren gry useens reed apncingoase cau saiarnngenceatasegse east Z13

19

REGULAR EXPRESSIONS 215

VATE PRG ROCIUIATNE eOTOSSIONS 2a, tec go peqeccare sc nop cy eociga wente pvares cepa /cu pga escansasaer+ssSvacen agar artsy: 216

PS SEEN CI TarOU GH Lex isaerc,--nccyascr)snerteoenrssonansovnesannadcutanevantiomgnnisessonnianevegtovsiieyeonpropeneseseasesese 216

\fgeslenn 1 ysy85' | Laos iN NUS SIS ae eC Re Ee AM IN CA nerenner ena et Aero 2hz

BAR y Conciente cae ca sen cet ves sbicnanivcsae vecsmeu ianens sanantenantesounsuntnssyvutueas sentences his Hagens aneys 216

ea re ee eg cree cere arse ten racine tdst centausBrogelieasiecenerewat Shaveavneteedteneamncaes Z19

Contents in Detail XV

Bracket Expressions and Character Classes.........c:ccccssssseeieeressersersssessessesesenesneeeensensenecesnscesiass 220

Negation, .jacassatenaiiscssesenntestocserevandsedssnensanbdinnssgneid oo toieanensiirras nie iressnasmaaite be Mneriattes gut ot 220

Traditional Character RANGCS........scsescsssssvsrseversesseeestseseasetecesanensstssonnssssnssetereesecesenaas 220

POSIX Chardcter GlaSS0S...coscsrswscenpeucanrstenesccadpppurcncertaxsaaemensne Obs a¢cnier ten ganae oii aeer anos Zi

POSIX Basic vs. Extended Regular Expressions..........s::ssssccssssssesssseennaeecssseesssseseserecsssnssensesensnans 224

AG FTIGTIC isa. cats an trols PRCRd mu PONE NG cach oon acs bona vg epinite Ai xdxene vagina n't cneial da xing ania arcs Wiad aaa cane ee 225

COUCEITIENS proc dated canes vac cst geet artutebeeduscsah radon ee pxaleptts tae ev cxienyrBire VORA aN Pena cex eras marta area a 226

¢—Match an Element Zero Times Or One Time. ccce...scpeernncrerrsreesnccreccneneseseneersusnnnsnienssrad 226

*— Match an Element Zero: OF More TimeS.cccrecithsc..0v-cncanosrsnpnnsonarangtdins sauetmenctscaumes antag 22d.

+—Maich an Elem@nt One Of More Tims. cccscrpcunc-ntesncancccacronsnestnendsscpaannddhyaernas aubaartonens sO H

{\=Match an Element a Specific Number of Times.......cncss-crssrsnesansnnnessauassudessasiersenisrgas 228

Puiting) Requiar Expressions 10. WV OK aseay tcc rn<ode<sunee te cus ssees sneer dnc asnngenias-neneneains inte ees eer asseraes 229

Validating a Phone List Witt) QlOuaresce tee atacesvescc-ateduanica takes cunpanatahs seers: (fe Laae talaee eae 229
Finding Ugly Pilencines Wilt MiG sycsctens secs c-arce-anitsreconveenest sete, taacnrsnastvavauisa catave rienteaaae 230
SEGICHING: fOC CIES WIM IOCCHE2...1e. tr.scylovacecadoeus vrottewoeneassiyaics nd amau stots wale Aeemsente ty menace 230

Sedkoning tor, lExt With less CNG. Vitter. ince cc<ceeaedeoescrencsseroretexxwadetsatrsaact sean geetaae samen 231

RUVCIINGH Ss. ccecche oscaaeccenP cee seco sentnePescasusetoncaetovedeas cccapen su kicires er iets al die mai cele a Meee 232

20

TEXT PROCESSING 233

ADDICTIONS OLN EX reece eotcrnrc: cc antes tances ue taaia ns Coversaeesucmeve ead ten seca cee eee a ee 234
DocUmelalSeeccrrtrents ese tatece eet sacraiie ao Beaeecitt af: Gawacs catcaasne aati ct eeeeee eee 234

WV SDIPCGES ch. terans eaten cad tec tcee adicn, sheceu egies age dee tevvceeeter feek anh cedy Srneacnt once eee a 234

ETC bdr gt On ee meats tie nes oaran,S atct Rac anc acnaname ee ates Wt saetet ame cuie ate ge eee 234
PRIMRGL, QQUTPUT cannes scare das ooSteadesuesasetler « yhadsercchones coeeet eh ass Cena seee eset ese ae en 234

Program Source Code).i.:5..ccsacecssessssoncssesdecteveunsceces cc MRM OR SEA: et Se ee as 235

Revisitingieomed@ lcm rien s., Sc cw asc. ©. <ccncaucensccsceth «Move geseixt avine teu acces gen eeats ae ae 225
cat—Concatenate Files and Print on Standard Output.............ccccccccsssceesssceeeseeeeeeessseeeeees yi be
SOlt—r Olt LINESAOF [EXT FIIGS | wetenarecgaccaue phases ore csc cad race eecechecae oane ce eee at a eee 236
Unig=—-Report Or -Omil Repeated LIneS,.c.c-c2c.tck-tuccnssercess ve skvecyseeuesecaies cae arene ee 242

SUCING, ONG, DICINGemes.teruslewsonsterecerocoerce tsar cet ac poantsdussocent tek Oe ria tere terre ee eee 243
cui=—Remove oections from Each line of Files....-.:<sess..cst-cocccoes ete ecccceseeeece vanes 243
paste=- Merge Lines: OFF lleScmrere Sartecsarcsiotrere eect eau soc ert orca irae Mee ee Ree 246
join—Join Lines-of Two Files on a Common Fleld......0.-c:.cccsartsessessteeccccseee usenet: 247

COMDOTING gL OX rasmrtssc couse tears snes sent eastie vatecvorstecyarupiaede ciety sett as dea cee ce ee Cea eee 249
comm—Compare Two Sorted Files Line by Line.................ccccccssscsssscesscesececeerseensseesrseeens 249
diff—Compare Files Line Dy Lime.ccusccastescsavesncereenteervctssscceee eee ete een ne 250
paich—-Appivia. diff foam Original... -ostcnsuts scconsaeesee eee meee eee 253

Editing on the Flytccc.2..sccteussuerosstrecessperenesersiegeamnsatsacsgs aldose eee ak ek a a cre 254
H—Transliterate of Delete Characterssccss..s.scerctasssucee telus eee 254
sed—Stream Editor for Filtering and Transforming Text...........c:cccceccsssceeeseeseesseasesecseeaes 256
aspell—Interactive Spell Checkety.sccacs cesta ect ct eels ee 263

Final NOt. sisco.steneticssucss-sausesrrcttee tere ccacene case toot sare ce Ue Use ee meee meee ee 266
Exticl Creditvevccttecccuseerste-aecswt entscasenscones croc ternattarte ste teerns en eet ee ae nn 266

XVI Contents in Detail

21
FORMATTING OUTPUT 267
STA RE ae sat MMs crt. eset uisid ovcuciavintsee oossdovsivcaictoccntnccthnccsuciseceeh.: 268

Be EN LG yes eer erescr ch cavities cacieen one Phoccsrtusinnenivousociennn hie 268
fold—Wrap Each Line to a Sneeltied UBOOI cor acnetia aauiier eee Meee 27.
Poles é Sinaia Text Pormotien:..iccscossumuivinurwsenatte mei cae eee 271
aMMeROREBGSE. 1 AKI TON FUMIE cosiaviens cxsmanntshicskach'iadscvunsensviadlensnnsend vayaybiuic@MORORIR eGR matte 274
Bic igileee ck ieee La NICER ccs casiciners<ivnen nrendnnvsnrcnunindieoondth lhc WONG Eu RAR OM 275

Baers OPN GRs rae ties AES VSO OSS a dann dn 0) shy ce cvoniaumiencasivoxbienhn chs eas vwarce can gwssaned eRe EAA 278
BN LOE ROAM, SHINES, LER geteicscs ccs etsy evs oton et onsss wav irsva spear nance REEL oe 279
Bio A. Document. hormating. Syston srcsiosesexiniesescaivecacweiccveel Mie hee to eae INA

NN licen Sine Rea ahaha Ca heh chores Aine’ SALAH eee LO OE ot 283

ae

PRINTING 285

OAS SS ATI ate BROT oh ROI ee ee a le TE MST EEE Pett ar 9 286
SSINTINED: WIDER CHINA INGS 2 hts 04 arr st ns seo ast an code Ried aR a ee 286
htm based PrinterclAOe G., ek Pe. RA he i, ctu aaa 286
Oe ae Bg oT ig Se rad ete ER nN oe AH SER mR PMO ere eS eR RU Ne ich ls 287

SAREE VAPTNG AION ok egados awe vices ocainiienesideeahuecdd Je cunsaceavecietsandostsduvdets Sahn OO Oe 288
See THC TASS: LONE NE ockncs anemia csietanweaarabveritesi Dvveaathalialiomaeene eed ne toe ee ae ea 288

pe—Gonvert text Files for Printings ss sctsexs aucune en csnste nia teaccuulicene seen oon A 288

Rprers inies ih Evian Jar Bes 81 PERN sides ccssecmcssnetite cwtecess en aideasated dee ONE ALD ME Ne Re a once 290
Ine—Priptriles- (berkeley Style) ccneciceu. nate retro et cree tet eee eh ecb Pe Ren Oe tec 290
io—Prmb ries (Systeme V Style) cczecsecencancstaccrajgeseorsthes ccnesieaterdtws iousadee emerge eee 29)
PRIDE A TOME Dacor ciencs secesiakt oer tenn ntits tic encanta ikaetian iat vrdotiy babel haa eens 292

rma te Yes y CULE UTE MITE FINI LOD 60 osetia eras tag geen too ss snc as tateuent as vraag oauutoay geri eee e 294
PTE RSERIAY PEIASY SIGH) SUCHUS coscc tcc ceennan stots idedSaanaslanoserneaba tnneesnetines desldeontehotpnetaaamt 294

de Ds Dhety Printer GlUCUS SIONISH.. iseccs oars ets nonadnedebncas ons nenanst-Caarowe ceius yeas ge pane nae 295

eine concer—C ancel Print JODS.,3 isu. .c se oaveiacondsunsndsweutss ssommnseommmoueonoscaisase esas 296

23
COMPILING PROGRAMS 297

pete ees GRTON a nese ge AN asain eo wed oe Sen 2eus ova tvane racy cups ov aeendilen ance emma oes mmr nsec: 298

i PEE AG PICO S COM PUGOS ce eratage ss wren cavecnestneate sdncanbreonnantirnsusneshaannedatingem soem eehMunaan ved 299

Rempiling .C PROQraM cscs csevensercvnsenconnevene sannsncunpargees coments een opsir sce ghteus pio» sondosbeseiigr ona vngsre'geins 299

SIGIR 1G SOUL CE CODE .cregeeeavnincde ieanssios alien tintonandaadinanesencdsuskivageen sheasesatou bes teas ine 300

Examining the SOUrCE Tee siccse.scsesasitnes doscsvenaseactgoadeeatecvdareodades idtevadedes ted vstenencnsdvanssoen te 30]

Etched AGLI ears ht vans babuncibe assy volotaahvenvovtnsteaassanarayeresates sabatoanatadtavsees teehee ners 302

Installing the Programis...s.0-.00.0.sTrevvsenvsssavescenensencansnaabtenensensbnensovivuansvneschnoenenseneeseeseess 305

Bead NC Seen reece ret cema ayia Riri ehreot ed vancicaLbyytba sala iotistbertaunmnennidscevannenaeseteasp enon bray 306

Contents in Detail XVii

PART 4
WRITING SHELL SCRIPTS

24

WRITING YOUR FIRST SCRIPT 309

What Are Shell Seripts?. sisisesnsssessceseinensanrecrdanreenaanencnontensncrursnder chterddln set s dete Ade Seta abaams Rae Ama sae 309

ow fo. Write a Shell! Scripts iaayecanesdmaceissennsipsprsiserich ineamer ene torinesS00eaite Wes te erste Attn nes dare tnt me a ena 310

Script File Formalivececsncaneaxccers=nneuinssumeons¥aiavniannn dienunstunsient Tend eShedSeeeayn See naman a ae arnt 310

Executcible Permissions .sin-somscnrasnonrevennsenastersangsaceennraacsieclarsienipndee cetch af Mukaae tr aatinee arene 311

Schipt File LOCOHON. .sennaycctencese-aenenpriner-nqeuanancneddup dees ligeolt metas ee metadata reer 50

KO0d. LOCATIONS TOR SOMIOIS sea dan mre tenuomareauduses acre eiauana niece cecaamann maken deg tae ar tants ae a2

More FOrmentiidy IekS,acarnun cosceami seta teetete teen denreranceeune tus ar ce saad teste ape deed ties agate deedeteaee eaten le
Long phomsNGMessy. cries ossnecessncreteise cannon cease nuneenensnnndnaba nthe dn tanna tartans mites coeds 313

Indentation:cinel Lime: @ @ntinUOhOne. pen eeadeanceccr<-¢-teaacarneeyecaasa-nesostcaein sane enee anaes nee by
FNCVCUMIN ORG taco. 22rd caxcesainccuant arse cations dgomenre clades svunaiauccaecode ste se dures rime ti <stta ieee a aoten eee ee 314

25

STARTING A PROJECT 315

Riretotoges Minimal Document s:.27...cttacuse gees eBaae ¢excceatisac oe cersdeeng?esateree dn derkcesys ae 315

Second stage: Adding: a Little Date.2.:nssslshc,cautpaee sssorneananenecanecaseneene coeencdee eee ee Ree ane x RA
Weriablesvand: Comstcnts..7-c.-s-<-.accu tothe @uecs cnasneateusensong<43ceeece tease: Saat apne. alle aan come 318

Creatina’y artables and. Constamts:..0 s¢.s1a+sac-+e.2.26s1¢<cecyesecs 422s: eatgermeteces ace eee 318

Assigning) Values to. Variables anc Constants..:.,,...-.<...0eeeeesaseeeeeeseee ane a eee eee 320
EReSDOCUIMENIS ccceecosnc<casataaseaecise ser sass eeeuees car seuacevecs scudaqueessas<cCUoUARE oe Rees aac Renee Saat eee a24

BCH ING IG set envi tectaan ade tavericn cneaecenatiydaear keen sate tas pias ree wiva se Qtaa teu eens Cee tee Ware

26

TOP-DOWN DESIGN 325

SHSIIFUNCHONS et nner an stcrease eats ciel othe ag uoamneneeacae cot seee ee eee ee 326

LGcaL Vania bles tere ecsc:seancanlccarstttcncds nc iicsiunce taan tae eae MI cee eee eee 328

ESD SOMIDIS IRUPMING 2.15. Aer ecncaakcrcas suman aaaseauen es <cereastas-mame cant ora de aete camer eet ee ae ee 330

FIMGIPINOFG.c.sctetees-carecs<oPunode-+sonnonteeqaces is sdicessanecsvasgaseusecueseneesseacehee eM ae ae a 3O2

27

FLOW CONTROL: BRANCHING WITH IF 333

SH ee acess feeseee. cade wcancacesginen ati casas waetea waste tac etea ce vaceace et mn eee ee 334
EXHSSTHUS ke crt rudt-t dennis (8 whaner sn tateaataeednocsedecttaceseanees octane aloe cote eaten eee 334
Tie I Raat a SunRRA or MRED Sete, PMN RG MR Wee A Py cre Ned ak ee 330

Pile EXPresslONS....'.2-.csurtay scenes a Peerea eee eee eee ene ee 336
olring Expressions 22... 2..5.\..avanceuaceceecenmectea soestaetcteters feed. eee ee 338
Integer Expressions........-s.r-gsueqsuvaussreah oP temmeneese eee area mee eee ne arene eee 340

XVili_ Contents in Detail

A More Modern Version of test..............-..-0--000..., Bide tty, oc on, pee ee 341
BE 6 BFF MGS es sasixcscacs 5 RMN A TAR Rp Radosh Sn BN OBA 342
OUST ot (a Uo OSE a oo eo an PR ar 343
Control Operators: Another Way to Branch ...c.cicscsssscscssscsscsesssasecssssseseseshesssusssesocorssotsessvesecoenees 345
"Ta AU) RR pe er ey OE a me ee lc 346

28

READING KEYBOARD INPUT 347

BORE ROO VOIWES TOM SIONAL IMPUt. ccccascencvacrsssssacscvsvarnsos ea AMOR dull aA MeN eT Ae 348
RMR SEI de ass eaeawASNA Cys vac atehg cogs ase sSo nko e ai he) oes kin tga eR 301
Seeereeier need HAPUE. Fists WILT IE-Sisicsrccsessantevetvans beans caguitencceatearache cosherenarettenet nc eae ne “hoy

BM ete ENN aca ce action asa vans in tee gaviniae ae tanvttns id ua seeceee TE 353
1/0 (Nad Pl a dl i ne a eee cde A dE ree ATL oh ard. “Gels 355
ve ESC capsepalary 2 8 ete et SND ak CRI ern le berm. oo eran TEN 356
BREN Nisa rsd Mc tos aos ec sn ea ra foe sae arty fons db ik shin a vTawensosieka tecee cats «Cae Re OR 356

29

FLOW CONTROL: LOOPING WITH WHILE AND UNTIL 357

ee alae ea ie cts ieee a ch cace ced cnt ate user, taRR op eoncees oe nocnes ear cee ROR 358

NA Feo Da sane sp os sstiinaee eshaes a Gore nics te vnnspuinesce ss MAM pe ARG Et RE es. oo a ae en 358
SOE ST ELI Wel 42°99 A SER OE ope We ee OS a UA ae aN EME Renee 6. MS A Ee ea 360
Ne Bee acer Pe cpp ays Hm hane oct ek oe aOR Ev oc oven valet ns ne WON ECE easton GMT ER Ge EOE 361

BRC MNVCE NINE MORIN LER SENG sce eu scree eee on cp ncirvs cook averni cabs dis ananecitaachoaneiehenthrec ee estan er ane 362
COT EO spel 7 os eae Sa a a Co PE ae Pace PNA HR Pap, pt rere Nr IP sect ONT 362

30

TROUBLESHOOTING 363

Ser POME EVECNG: fev tue Sirah ceive oPe soki veces Gs eSabie vine han cou s'sene Peas ened PHENO NG nests ALTE at CORES COMER nee ORE AMEN eNO 363

IVES SIGE) CSREES A gcpepeoncccnunwasoud va suireotonsben unas ue wesb ihe weetnedetaa gorda asienatiide dunacatna vale dette anne 364

Decanig or Unexpected FOKENS. cnet -.ss use sucet aes ty har tlie aes cee ene eee ee 365
RIMCMM ACI PANES! EXPCISIONS sec c-eepenusenswlcst vies onan ndsandienduissiias sn cenatssnarnanchayat ants tamer uremia reste: 365

PMT NE EMbCi Se Merce ter cope doce en env aves olesusesvnes cise ver castes dt sucess opin bss caver cantante gy coum renee 366
EXPANSIVE, PFOQU CUMIN Gs cnnessanseneaens cvwnatadioesin ou ne dsartateerteanussaarhedes «duke paponabiunsMgaaaee tienes 367

2 VSHEVINIG, WWOULaceecterahectnekds cepenwytenn wonansnnsdacsienacnswos datonesonn date oerat aenianame Rareareancatarsa yes 4+ 368
| ES (TSS eat ae M rc eos a eee a Pere e ee ere ererer a acroesemucn. rem ito yho anon a Paac ae 369

SPOESS Seer ree tak sect Pela na moet rebate Aezg Ti ip thne Ee OA ND Sao se gees Rae Eee AN 369
FERS CIS Gs ame e Hatter in otes ene sees ounce Seo Ceestesics Moet btee dere ape serait cea ar ation noeae man aa aeasteases C8 369

tel She's [590 ete eet eb on ous ee et oe Ren err CePA etchct ic gupecr psureccn arp cae eeet Reena ee 370

PRGING: Hie PIODIOM ALEC ccyre tr vensscanerwh:cctrharonuz se eet eea Wear agtanecenm/acs cnck tasted see amedee scare 370
Uga%al tna ape ee Bebra ae Be ee ee Dn Rr a rece ret oe NSA ee enner nt Ore reenn Nhe Or occ eres nt 27 |

Examining Values During Execution..........cccccceecccsineeesreesnerersneeesnsesesseenssensensneeeeeenaeees 373

Baa cts emer re eo ea ee os eoeattarr er eamat ress este pln Mnruisiteesh ween vert vadisecca lnc censhonymetiedi 373

Contents in Detail Xix

31

FLOW CONTROL: BRANCHING WITH CASE 375

EASE. tect snecticina cosusonyien'neSopestecnuns tne taps vo ov vag roe or oreaina 2A pe Poe cde Ria Sino iCa cence cee ae 376

POO FIiS, sc; ssi Sos oav'esih entten st een unone raaitnrbestrwensepeemrsdie snap vevekalewsnlirolks men ehe tae iamaeeett etree ameter 37

Combining Multiple Patterns............:cssccssscesseesssesssesesseseeesceesseesesscenesosnnssenssenssennsonnee 378

FIG NOVe. fav. cctes tlecctulens ptasters vsnvanr ves sstoeoievalstnttennwduiceobann liane stfave Hh pal ilar sat te mete torn ee I foe

32

POSITIONAL PARAMETERS 381

Accessing the COMMON LING ..csesenose.snecennesenneseonanesranoennhoboadcoulasarpsons ohe pha ate<) nag depinaraledeiadeenaransnat® 381

Determining the Number of Arguments........00.-.<c0vn+rsssonannensnusenradeednenatiecwnasiay to zhip anes agae 382

shitt—Getting Access fo Many Arguments....1...12:2<s0-wsssxnnesenassacnsnnnesensdedenmnntardnnrdenenededsed 383
SimplezADplicctiotisars caters: srawucseeestonucts seen gacceasnmesvbisweuatanasnenel<nesahaannehaanlecand acdsee aaa 384
Using Positional Parametersiwithes nell PUNCHOMS 2. .1..c0;.<10-224-cn+vnratabeseser shade cieasans einen 385

Handtingerositional Parameters. Eni MOSSE, civ: seca: tetessssessutncae dese acts carrie tev edelaaseemungdtes ovedaeas te oneeee 385

AyMore- Complete Applicaton tcctncaceetccttctecd «ott stu-nte<csdnea-senenancnegcogapnna teas eeadaa ineiaa i oe eee 387

Pima INObGactr runs. od-dricce varaeas acne che dati Ml techies cecahdats uate ety aaieb ua’ at se Riear ee eae an 390

33

FLOW CONTROL: LOOPING WITH FOR 393

for LEC ORIEN RON .cceesee=k canst sates notoss cacweins tat alos ac etastcnlt ne ee veut ales ge Sale aos
Horn LOMO UC eu OnI) start x eta een teeta ct coins. ceeilg: wesiceeerr Sale ema tt de eer eee a ae 396
TECHNO tescepameeenects sie a nner, ee Amn ema a rel sR reacts chr acaa gato sdatoedaata tke aaah a a eae eee 397

34

STRINGS AND NUMBERS 399

PCRCIMGTOMEXOCMS ON anaes: 11a nccet as aeguaahlaveeesate mle teatendsore cenuns Ves casts tah gical gee cn ame te ae 379

Basic: P GPCIMGEYS tinea sc cevane c¥e sche adorn. maces con are au asanetangeeseee aos aoratt ae ne seer eae 400

Expansions ou vanage Empty Viciicib les ecg eck ant ee a ae 400

Expansions. lhat ReturmaVaricble INames-.csss-cen,¢ces soneeer ices aesce eee A01
SIFT PETATONS ss ecu thers sts sues asst, rac nae sek mee daiaoe cba exerci cca sr ele ees ne OR 402

UinimietionE Cl UCTON, CVC EXDCINSION:cusaet scene eer. sece dee cotcetea tanta Mee tre niet eee eee a A404
INUMbORBOSES. jocuri cs nksvess s.teaceetca auteur aest ends Gert eae eee e te hate uate ene eae ee 405
UNG DSr HOLS a3. esse cag nt tabrae nares seks chewn oe ene firee Peomcece ae eae eet en nee 405
Simple ArH Meticn, scstsys cute seer areecantatassct Cour schon ccc too aes ee ne ee eee 405
ASSIQNME Dt racgnsssutyeeete crac ctontce ordtemtenteetae aertere ee san (ake eee a eee ee 406
Bui ODEEGHONS 5, 26. cues ocwcdn cease Qua athantetie, sae eehe vcetee hear /a-Pte ke ace eee on eee 408
LOGIC Face seamaa tiie sxepastcnivs soe cont veut siueoace are tees ast sana Eeemrare eerkisaa a rhe dae eee 409

be=-AnrArbitrary-Precision: Calculator Language an. .2s5/0s--s0s orcces sessed eee eee eee Al]
Using: Demeter sisocucentoacratehnecatete ae: 4 ancl reat eae fe eee Ald
Att Example Script cvianmavacigocesssusasaeieatc aaa ears cuca Sastre eel eee 413

Final Note cities Pay Se sciins is. nrarcsnsuaeccaee aloe d atta ieee ar Hee ee ete net Al4
Extra Greif fests. ala tiancutetesncsoonotaseesetical cole Oyen eee te eee ania een ana A414

XX Contents in Detail

35
ARRAYS 415

SM Ca Rr Ma rg cay cavcheancysasina Gases) vba vanes sdaseayenesSioussvneatuseuheie Al5
Se NMDA PNR TOL fe RN Ee ated alc SG Chica co aanke nic ved seve vss navies vmagu vbaviwdé ovsivasnaaceene eek re 416
Re ere Viet, fA CORN PAPE eon cane AUG cE raks th asivinu gy nvvins sedi deea-av bai vcar’oGuvnmedhouaherod em oma: A416
ORE ASUS NG] CY SE ea UBS RS Cy Sy eon ce an a) Oe Pt 417
a Pema scab ge Ne ect ect hh As ec le ios havs ven oy vafodsAdasbievaghntevutevacedl ores CSheO OE: 418

CAnutinG Mec entire Conmionts Gti Arelyicrcccasdisusevecisecetssnsoantuvereaseved vashcealnesveacyconvaveeess 419

Determining the Number of Array Elements...........c:ccccccsssssscssesssecssessssessesssesssesesseeseeens A19
TeNCnel Wa OUMEerINIS User Fy ON Arr ycsirn cucsresuidacices cas oatwenc de nguwtiesuccGeansmeuseacever eeesae 420

Patong Clemens > the Ered Ob cn Array cies <icoscserscereapacdet uutnueeocteairedctuovieereeumecameee 420
IMT CREP ER OD Poser tale suk secs Set xc aceasta as gah aaa ea od v dette et oloaeaeh ease ner? 420

SLR? Be Woh ep nce 2 cP oe eee eer SERS RRP Rr et cy eer Pent ees ay nee Ae 42]
NM ONS SI et celeste Si ccnlces epiphone sans cta bade ube Sec aaatedae HenealecsteleRAR ULE Re Tee CRT 422

36

EXOTICA 423

ce SUC ESSE CAPS Te BRT ey (| [AR ge ee OR ote To MRO ENE Te eae fee A23
PPro nriatney RECHT @CHIOISH feces teach en tatt Re cee tetoey aeian DAE MONE: Ss eatis Aceimodh Ooh. oMbatae waeess sabes A424

BaP os) ee Ree ce Rs oe Ge yao PO cer PER ee re Mi Meine eR CONG A424
ae Nar ele ek cece dens ugen sae nehioaseinene barn -aanistcuveanectrhaner iobontysweMie eee eseneernat A426

Sree Ma EM ICRIS EXER MINEMN wcgh li ane coeur resol yee dunn su asbistie duce aan atiav dnerode ven ey ae tarpeaese tiene /ommeetces 429
AI Fe tg ies Se hats esorreokersees Poununse aaa ai uni ace AuGicisionsie dann tmainann uno Had s aaaeacatesamnaee cae A429

PR eM N Mr anf sete ont way Ssire gh oysP hve saben aaiais eae SShann esa rantctasitaee stesG une Faseiayarase 430
oreo pe Re eked y [esis B q's): Bane gem aeegenie satan as yen Setar eS Prone Seer ncaa Scrran rate tor Romeo. 431
RRsaigy PACIOEL FiOS secede Beco siane has aia sdf Rete ctenend sear coon tga, Serge aat oe 431

ght SUSE Ses ne li ARIE hl ge Sit cies Saciete na oeerrnnern tren romnce Lone ootteeace as ccon 432

INDEX 433

Contents in Detail XXi

aPc'e, Rae

ae ~ ie a

» - ;

efe jaw 4 SD.“ y

9 Pu: ae 8.

ca ~—je*

Geax 2p; ~~

tA - ‘ Se

iy — y = 7

- - ¢

ae
22

7 ae a _~ ws
“ae

We writ ene”
pee ; ee

I> he Sea = : <s :
(ie SST waastace-caicn “> eae - “i

7 at i> eel : ¥ a
we a
de! *

oe

’
¢ eye

_ a 2,

por en ty e7— vee ‘ i

inna ger Tp alreAGAL op
wor A cor: at eat) dither
vf Anh ataht nose

Matedud by ieeeanuia th

mics cantoategeuantat |

rcoltuiilyt wens,
pi yh

ae a ‘és
toe. 2 7.

; P out parte -

=q.° hnecs ‘ a aU piitae SF 6 :

| &erine'| gaily ‘ee

a *»

ACKNOWLEDGMENTS

I want to thank the following people who helped make

this book possible.
First, the people who inspired me: Jenny Watson, Acquisitions Editor

at Wiley Publishing, originally suggested that I write a shell-scripting book.

Though Wiley didn’t accept my proposal, it became the basis of this book.

John C. Dvorak, noted columnist and pundit, gave great advice. In an epis-

ode of his video podcast, “Cranky Geeks,” Mr. Dvorak described the process

of writing: “Hell. Write 200 words a day and in a year, you have a novel.”

This tip led me to write a page a day until I had a book. Dmitri Popov wrote

an article in Free Software Magazine titled “Creating a book template with

Writer,” which inspired me to use OpenOffice.org Writer for composing the

text. As it turned out, it worked wonderfully.

Next, the volunteers who helped me produce the original, freely distrib-

utable version of this book (available at LinuxCommand.org): Mark Polesky

performed an extraordinary review and test of the text. Jesse Becker, Tomasz

Chrzczonowicz, Michael Levin, and Spence Miner also tested and reviewed

portions of the text. Karen M. Shotts contributed a lot of hours editing my

original manuscript.

Next, the good folks at No Starch Press who worked long and hard mak-

ing the commercial version of my book: Serena Yang, Production Manager;

Keith Fancher, my editor; and the rest of the No Starch Press staff.

And lastly, the readers of LinuxCommand.org, who have sent me so

many kind emails. Their encouragement gave me the idea that I was really

on to something!

XXIV Acknowledgments

INTRODUCTION

I want to tell you a story. No, not the story of how,
in 1991, Linus Torvalds wrote the first version of the

Linux kernel. You can read that story in lots of Linux

books. Nor am I going to tell you the story of how,
some years earlier, Richard Stallman began the GNU Project to create a free

Unix-like operating system. That’s an important story too, but most other

Linux books have that one, as well. No, I want to tell you the story of how

you can take back control of your computer.

When I began working with computers as a college student in the late

1970s, there was a revolution going on. The invention of the microprocessor

had made it possible for ordinary people like you and me to actually own a

computer. It’s hard for many people today to imagine what the world was

like when only big business and big government ran all the computers. Let’s

just say you couldn’t get much done.

Today, the world is very different. Computers are everywhere, from tiny

wristwatches to giant data centers to everything in between. In addition to

XXxvi

ubiquitous computers, we also have a ubiquitous network connecting them

together. This has created a wondrous new age of personal empowerment

and creative freedom, but over the last couple of decades something else

has been happening. A single giant corporation has been imposing its con-

trol over most of the world’s computers and deciding what you can and can-

not do with them. Fortunately, people from all over the world are doing

something about it. They are fighting to maintain control of their com-

puters by writing their own software. They are building Linux.

Many people speak of “freedom” with regard to Linux, but I don’t think

most people know what this freedom really means. Freedom is the power to

decide what your computer does, and the only way to have this freedom is to

know what your computer is doing. Freedom is a computer that is without

secrets, one where everything can be known if you care enough to find out.

Why Use the Command Line?
Have you ever noticed in the movies when the “super hacker”—you know,

the guy who can break into the ultra-secure military computer in under 30

seconds—-sits down at the computer, he never touches a mouse? It’s because

movie makers realize that we, as human beings, instinctively know the only

way to really get anything done on a computer is by typing on a keyboard.

Most computer users today are familiar with only the graphical user interface

(GUI) and have been taught by vendors and pundits that the command line

interface (CLI) is a terrifying thing of the past. This is unfortunate, because a

good command line interface is a marvelously expressive way of communi-

cating with a computer in much the same way the written word is for human

beings. It’s been said that “graphical user interfaces make easy tasks easy, while

command line interfaces make difficult tasks possible,” and this is still very

true today.

Since Linux is modeled after the Unix family of operating systems, it

shares the same rich heritage of command line tools as Unix. Unix came into

prominence during the early 1980s (although it was first developed a decade

earlier), before the widespread adoption of the graphical user interface and,

as a result, developed an extensive command line interface instead. In fact,

one of the strongest reasons early adopters of Linux chose it over, say, Win-

dows NT was the powerful command line interface, which made the “diffi-
cult tasks possible.”

What This Book Is About

Introduction

This book is a broad overview of “living” on the Linux command line.
Unlike some books that concentrate on just a single program, such as the
shell program, bash, this book will try to convey how to get along with the
command line interface in a larger sense. How does it all work? What can it
do? What’s the best way to use it?

This is not a book about Linux system administration. While any serious
discussion of the command line will invariably lead to system administration
topics, this book touches on only a few administration issues. It will, how-
ever, prepare the reader for additional study by providing a solid founda-
tion in the use of the command line, an essential tool for any serious system
administration task.

This book is very Linux-centric. Many other books try to broaden their
appeal by including other platforms, such as generic Unix and Mac OS X. In
doing so, they “water down” their content to feature only general topics. This
book, on the other hand, covers only contemporary Linux distributions. Ninety-

five percent of the content is useful for users of other Unix-like systems, but

this book is highly targeted at the modern Linux command line user.

Who Should Read This Book

This book is for new Linux users who have migrated from other platforms.

Most likely you are a “power user” of some version of Microsoft Windows.

Perhaps your boss has told you to administer a Linux server, or maybe you're

just a desktop user who is tired of all the security problems and want to give

Linux a try. That’s fine. All are welcome here.

That being said, there is no shortcut to Linux enlightenment. Learning

the command line is challenging and takes real effort. It’s not that it’s so

hard, but rather it’s so vast. The average Linux system has literally thousands

of programs you can employ on the command line. Consider yourself warned:

Learning the command line is not a casual endeavor.

On the other hand, learning the Linux command line is extremely

rewarding. If you think you’re a “power user” now, just wait. You don’t know

what real power is—yet. And, unlike many other computer skills, knowledge

of the command line is long lasting. The skills learned today will still be use-

ful 10 years from now. The command line has survived the test of time.

It is also assumed that you have no programming experience—not to

worry. We’ll start you down that path as well.

What's in This Book

This material is presented in a carefully chosen sequence, much as though

a tutor were sitting next to you, guiding you along. Many authors treat this

material in a “systematic” fashion, which makes sense from a writer’s per-

spective but can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which

is different from the Windows way of thinking. Along the way, we’ll go ona

few side trips to help you understand why certain things work the way they

do and how they got that way. Linux is not just a piece of software; it’s also

a small part of the larger Unix culture, which has its own language and his-

tory. I might throw in a rant or two, as well.

Introduction XXVii

xxviii

This book is divided into four parts, each covering some aspect of the

command line experience:

Part 1: Learning the Shell starts our exploration of the basic language of

the command line, including such things as the structure of commands,

filesystem navigation, command line editing, and finding help and doc-

umentation for commands.

Part 2: Configuration and the Environment covers editing configuration

files that control the computer’s operation from the command line.

Part 3: Common Tasks and Essential Tools explores many of the ordi-

nary tasks that are commonly performed from the command line. Unix-

like operating systems, such as Linux, contain many “classic” command-

line programs that are used to perform powerful operations on data.

Part 4: Writing Shell Scripts introduces shell programming, an admit-

tedly rudimentary, but easy to learn, technique for automating many

common computing tasks. By learning shell programming, you will

become familiar with concepts that can be applied to many other

programming languages.

How to Read This Book

Start at the beginning of the book and follow it to the end. It isn’t written

as a reference work; it’s really more like a story with a beginning, a middle,

and an end.

Prerequisites

Introduction

To use this book, all you will need is a working Linux installation. You can

get this in one of two ways:

Install Linux on a (not so new) computer. It doesn’t matter which dis-

tribution you choose, though most people today start out with Ubuntu,

Fedora, or OpenSUSE. If in doubt, try Ubuntu first. Installing a modern

Linux distribution can be ridiculously easy or ridiculously difficult,

depending on your hardware. I suggest a desktop computer that is a
couple of years old and has at least 256MB of RAM and 6GB of free
hard disk space. Avoid laptops and wireless networks if at all possible,

as these are often more difficult to get working.

Use a live CD. One of the cool things you can do with many Linux distri-
butions is run them directly from a CD-ROM without installing them
at all. Just go into your BIOS setup, set your computer to “Boot from
CDROM,” insert the live CD, and reboot. Using a live CD is a great way

to test a computer for Linux compatibility prior to installation. The dis-
advantage of using a live CD is that it may be very slow compared to hav-
ing Linux installed on your hard drive. Both Ubuntu and Fedora (among
others) have live CD versions.

Note: Regardless of how you install Linux, you will need to have occasional superuser (i.¢.,
administrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along

with your own computer. Most of the material in this book is “hands on,”
so sit down and get typing!

WHY I DON'T CALL IT “GNU/LINUX”

In some quarters, it’s politically correct to call the Linux operating system the

“GNU/Linux operating system.” The problem with “Linux” is that there is no

completely correct way to name it because it was written by many different people —

in a vast, distributed development effort. Technically speaking, Linux is the name

of the operating system’s kernel, nothing more. The kernel is very important, of

course, since it makes the operating system Bo! on it’s not enough to oo a

complete operating system.

Enter Richard Stallman, the eohlonie who founded the Free

Software movement, started the Free Software Foundation, formed the GNU

Project, wrote the first version of the GNU C Compiler (GCC), created the GNU

General Public License (the GPL), etc., etc. He insists that you calll it “GNU/Linux”
to properly reflect the contributions of the GNU Project. i tile the GNU Pro-

ject predates the Linux kernel and the project’s contributions are extremely

deserving of recognition, placing them in the name is unfair to everyone else

who made significant contributions. Besides, I think “Linux/GNU” would be

more technically accurate since the kernel boots first and everything else runs

on top of it.

In popular usage, “Linux” refers to the kernel and all the other free and

open source software found in the typical Linux distribution—that is, the

entire Linux ecosystem, not just the GNU components. The operating system

marketplace seems to prefer one-word names such as DOS, Windows, Solaris,

Irix, AIX. I have chosen to use the popular format. If, however, you prefer to

use “GNU/Linux” instead, please perform a mental search and replace while

reading this book. I won’t mind.

Introduction XXIX

PART |
LEARNING THE SHELL

FTAAT
J449R2 SAT GBIMRAI.

WHAT IS THE SHELL?

When we speak of the command line, we are really
referring to the shell. The shellis a program that takes
keyboard commands and passes them to the operating

system to carry out. Almost all Linux distributions sup-

ply a shell program from the GNU Project called bash.

The name bash is an acronym for Bourne Again Shell, a
reference to the fact that bash is an enhanced replace-
ment for sh, the original Unix shell program written

by Steve Bourne.

Terminal Emulators

When using a graphical user interface, we need another program called

a terminal emulator to interact with the shell. If we look through our desk-

top menus, we will probably find one. KDE uses konsole and GNOME uses

gnome-terminal, though it’s likely called simply “terminal” on our menu. A

number of other terminal emulators are available for Linux, but they all do

basically the same thing: give us access to the shell. You will probably develop

a preference for one or another based on the number of bells and whistles

it has.

Your First Keystrokes

4 Chapter |

So let’s get started. Launch the terminal emulator! Once it comes up, you

should see something like this:

[me@linuxbox ~]$

This is called a shell prompt, and it appears whenever the shell is ready

to accept input. While it may vary in appearance somewhat, depending on

the distribution, it will usually include your username@machinename, followed

by the current working directory (more about that in a little bit) and a dol-

lar sign.

If the last character of the prompt is a hash mark (#) rather than a dol-

lar sign, the terminal session has superuser privileges. This means that either

we are logged in as the root user or we’ve selected a terminal emulator that

provides superuser (administrative) privileges.

Assuming that things are good so far, let’s try some typing. Enter some

gibberish at the prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell tells us so and gives us

another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History

If we press the up-arrow key, we see that the previous command kaekfjaeifj

reappears after the prompt. This is called command history. Most Linux distri-

butions remember the last 500 commands by default. Press the down-arrow

key, and the previous command disappears.

Cursor Movement

Recall the previous command with the up-arrow key again. Now try the left-
and right-arrow keys. See how we can position the cursor anywhere on the
command line? This makes editing commands easy.

A FEW WORDS ABOUT MICE AND FOCUS

While the shell is all about the keyboard, you can also use a mouse with your

terminal emulator. A mechanism built into the X Window System (the under-

lying engine that makes the GUI go) supports a quick copy-and-paste tech-

nique. If you highlight some text by holding down the left mouse button and

dragging the mouse over it (or double-clicking a word), it is copied into a buf-

fer maintained by X. Pressing the middle mouse button will cause the text to be

pasted at the cursor location. Try it.

Don’t be tempted to use crrL-C and CTRL-V to perform copy and paste

inside a terminal window. They don’t work. For the shell, these control codes

have different meanings that were assigned many years before Microsoft Win-

dows came on the scene.

Your graphical desktop environment (most likely KDE or GNOME), in

an effort to behave like Windows, probably has its focus policy set to “click to

focus.” This means for a window to get focus (become active), you need to

click it. This is contrary to the traditional X behavior of “focus follows mouse,”

which means that a window gets focus when the mouse just passes over it. The

window will not come to the foreground until you click it, but it will be able to

receive input. Setting the focus policy to “focus follows mouse” will make using

terminal windows easier. Give it a try. I think if you give it a chance, you will

prefer it. You will find this eee in the configuration program for your win-

dow manager.

Try Some Simple Commands
Now that we have learned to type, let’s try a few simple commands. The first

one is date. This command displays the current time and date:

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2012

A related command is cal, which, by default, displays a calendar of the

current month:

[me@linuxbox ~]$ cal
October 2012

Su Mo Tu We Th Fr Sa

182 SS 45g 5 6

7h 83) 48) alloy kal ip ile

14 15 16 17 18 19 20

D128 23524. 25) 2007,

28 29 30 31

What Is the Shell@ 5

Ending

6 Chapter 1

To see the current amount of free space on your disk drives, enter df:

[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sda1 147764 17370 122765 13% /boot
tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free

command:

[me@linuxbox ~]$ free
total used free shared buffers cached

Mem: 513712 503976 9736 0 5312 122916
-/+ buffers/cache: 375748 137964

Swap: 1052248 104712 947536

a Terminal Session

We can end a terminal session by either closing the terminal emulator win-

dow or entering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

“THE co : GLE BEHIND THE CURTAIN

‘ 2 Even ifw we hav ‘terminal emulator running, several terminal sessions con-—

tinue to run. \d the graphical des' top. Called virtual terminals or virtual
consoles, these sessions can be accessed on most Linux distributions by pressing
CTRL-AL “FL through CTRL-ALT-F6 on most systems. When a session is accessed, it

: presents a login prompt int ich we can enter our username and password. ;
_To switch from one virtual console to another, press ALT and F1-F6. To return’

_ to the gies. ee press ee

NAVIGATION

The first thing we need to learn (besides just typing)

is how to navigate the filesystem on our Linux sys-
tem. In this chapter we will introduce the following
commands:

e pwd—Print name of current working directory.

e cd—Change directory.

e 1s—List directory contents.

Understanding the Filesystem Tree
Like Windows, a Unix-like operating system such as Linux organizes its files

in what is called a hierarchical directory structure. This means that they are organ-

ized in a tree-like pattern of directories (sometimes called folders in other

systems), which may contain files and other directories. The first directory

in the filesystem is called the root directory. The root directory contains files

and subdirectories, which contain more files and subdirectories, and so on.

Note that unlike Windows, which has a separate filesystem tree for each

storage device, Unix-like systems such as Linux always have a single filesystem

tree, regardless of how many drives or storage devices are attached to the

computer. Storage devices are attached (or more correctly, mounted) at vari-

ous points on the tree according to the whims of the system administrator, the

person (or persons) responsible for the maintenance of the system.

The Current Working Directory

Most of us are probably familiar with a graphical

file manager, which represents the filesystem tree,

as in Figure 2-1. Notice that the tree is usually shown

upended, that is, with the root at the top and the

various branches descending below.

However, the command line has no pictures,

so to navigate the filesystem tree, we need to think

of it in a different way.

Imagine that the filesystem is a maze shaped

like an upside-down tree and we are able to stand

in the middle of it. At any given time, we are inside igure #1: Filesystem tree
a single directory and we can see the files contained ee is a. graphical

in the directory and the pathway to the directory :

above us (called the parent directory) and any sub-

directories below us. The directory we are standing in is called the current

working directory. To display the current working directory, we use the pwd

(print working directory) command:

| & GBlost+found

: 6 enlightenment

_ @ GB gnome
: » @®_gnome-desktop

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session),

our current working directory is set to our home directory. Each user account

is given its own home directory, which is the only place the user is allowed
to write files when operating as a regular user.

Listing the Contents of a Directory

8 Chapier 2

To list the files and directories in the current working directory, we use the
ls command:

[me@linuxbox ~]$ 1s
Desktop Documents Music Pictures Public Templates Videos

Actually, we can use the 1s command to list the contents of any direct-
ory, not just the current working directory, and it can do many other fun
things as well. We’ll spend more time with 1s in Chapter 3.

Changing the Current Working Directory
To change your working directory (where we are standing in our tree-
shaped maze) we use the cd command: Type cd followed by the pathname
of the desired working directory. A pathname is the route we take along the
branches of the tree to get to the directory we want. Pathnames can be spe-
cified in one of two ways, as absolute pathnames or as relative pathnames.
Let’s deal with absolute pathnames first.

Absolute Pathnames

An absolute pathname begins with the root directory and follows the tree

branch by branch until the path to the desired directory or file is com-

pleted. For example, there is a directory on your system in which most of

your system’s programs are installed. The pathname of that directory is

/usr/bin. This means from the root directory (represented by the leading

slash in the pathname) there is a directory called usr that contains a direct-

ory called bin.

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls

...Listing of many, many files ...

Now we can see that we have changed the current working directory to

/usr/bin and that it is full of files. Notice how the shell prompt has changed?

As a convenience, it is usually set up to automatically display the name of

the working directory.

Relative Pathnames

Where an absolute pathname starts from the root directory and leads to its

destination, a relative pathname starts from the working directory. To do this,

it uses a couple of special symbols to represent relative positions in the file-

system tree. These special symbols are . (dot) and .. (dot dot).

The . symbol refers to the working directory and the .. symbol refers

to the working directory’s parent directory. Here is how it works. Let’s

change the working directory to /usr/bin again:

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Navigation 9

10 Chapter 2

Okay, now let’s say that we wanted to change the working directory to

the parent of /usr/bin, which is /usr. We could do that two different ways,

either with an absolute pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usY

or with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usY

Two different methods produce identical results. Which one should we

use? The one that requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in

two different ways, either by using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

or with a relative pathname:

[me@linuxbox usr]$ cd ./bin

[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost

all cases, you can omit the ./ because it is implied. Typing

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to some-

thing, the working directory will be assumed.

Some Helpful Shortcuts

In Table 2-1 we see some useful ways the current working directory can be
quickly changed.

Table 2-1: cd Shortcuts

Shortcut . Result

cd Changes the working directory to your home directory.

cd - Changes the working directory to the previous working
directory.

cd “username Changes the working directory to the home directory of
username. For example, cd ~bob changes the directory to
the home directory of user bob.

IMPORTANT FACTS ABOUT FILENAMES

Filenames that begin with a period character are hidden. This only

means that 1s will not list them unless you say 1s -a. When your account

was created, several hidden files were placed in your home directory to

configure things for your account. Later on we will take a closer look at

some of those files to see how you can customize your environment. In

addition, some applications place their configuration and settings files

in your home directory as hidden files.

Filenames and commands in Linux, as in Unix, are case sensitive. The file-

names File/ and /filel refer to different files.

Linux has no concept of a “file extension” like some other operating sys-

tems. You may name files any way you like. The contents and/or purpose

of a file is determined by other means. Although Unix-like operating sys-

tems don’t use file extensions to determine the contents/purpose of files,

some application programs do.

Though Linux supports long filenames that may contain embedded spaces

and punctuation characters, limit the punctuation characters in the names

of files you create to period, dash (hyphen), and underscore. Most impor-

tantly, do not embed spaces in filenames. Embedding spaces in filenames

will make many command line tasks more difficult, as we will discover in

Chapter 7. If you want to represent spaces between words in a filename,

use underscore characters. You will thank yourself later.

Navigation

om =

om)

ine ¢ ie “9 ms Hag

™ me

Sng 3
4

ie

=——@ Ziegny =
ee |

Pe b WET ee cr

; 4

atin, fl way a
Gav

«ty (ceed <=

EXPLORING THE SYSTEM

Now that we know how to move around the filesystem,

it’s time for a guided tour of our Linux system. Before

we start, however, we’re going to learn some more

commands that will be useful along the way:

e 1s—List directory contents.

e file—Determine file type.

e less—View file contents.

More Fun with Is

ls is probably the most used command and for good reason. With it, we can

see directory contents and determine a variety of important file and direct-

ory attributes. As we have seen, we can simply enter 1s to see a list of files

and subdirectories contained in the current working directory:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

14 Chapter 3

Besides the current working directory, we can specify the directory to

list, like so:

me@linuxbox ~]$ ls /usr
bin games kerberos libexec sbin = src
etc include lib local share tmp

or even specify multiple directories. In this example we will list both

the user’s home directory (symbolized by the ~ character) and the /usr

directory:

[me@linuxbox ~]$ ls ~ /usr
/home/me :
Desktop Documents Music Pictures Public Templates Videos
/usr:
bin games kerberos libexec sbin src
etc include lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ 1s -1
total 56
dywxrwxr-X 2 me me 4096 2012-10-26 17:20 Desktop
dywxrwxr-x 2 me me 4096 2012-10-26 17:20 Documents

drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Music

drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Pictures

drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Public
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Templates
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Videos

By adding -1 to the command, we changed the output to the long

format.

Options and Arguments

This brings us to a very important point about how most commands work.

Commands are often followed by one or more options that modify their

behavior and, further, by one or more arguments, the items upon which

the command acts. So most commands look something like this:

command -options arguments

Most commands use options consisting of a single character preceded

by a dash, such as -1. But many commands, including those from the GNU

Project, also support long options, consisting of a word preceded by two dashes.

Also, many commands allow multiple short options to be strung together. In

this example, the 1s command is given two options, the 1 option to produce

long format output, and the t option to sort the result by the file’s modifica-

tion time:

[me@linuxbox ~]$ 1s -lt

We’ll add the long option --reverse to reverse the order of the sort:

[me@linuxbox ~]$ ls -lt --reverse

The 1s command has a large number of possible options. The most
common are listed in Table 3-1.

Table 3-1: Common Is Options

Option

-a

A Longer Look at Long Format

Long

--all

Option

--directory

--classify

--human-readable

“sreoVerse

Description

List all files, even those with names that begin

with a period, which are normally not listed
(i.e., hidden).

Ordinarily, if a directory is specified, 1s
will list the contents of the directory, not the
directory itself. Use this option in conjunction
with the -1 option to see details about the
directory rather than its contents.

This option will append an indicator character

to the end of each listed name (for example, a
forward slash if the name is a directory).

In long format listings, display file sizes in
human-readable format rather than in bytes.

Display results in long format.

Display the results in reverse order. Normally,
1s displays its results in ascending alpha-

betical order.

Sort results by file size.

Sort by modification time.

As we saw before, the -1 option causes Is to display its results in long format.

This format contains a great deal of useful information. Here is the Examples

directory from an Ubuntu system:

-YW-I--I--
-IW-I--I--
-IW-I--I--
-YW-I--I--
-IW-I--I--
-IW-I--I--
-IW-I--I--
-YW-I--I--
-IW-I--I--

a

af

i

al

al

al

1

d

a!

root

root

root

root

root

root

root

root

root

root 3576296

root 1186219

root 47584

root 44355

root 34391

root 32059

root 159744

root 27837

root 98816

2012-04-03

2012-04-03

2012-04-03

2012-04-03

2012-04-03

2012-04-03

2012-04-03

2012-04-03

2012-04-03

Experience ubuntu.ogg
kubuntu- leaflet. png
logo- Edubuntu. png
logo-Kubuntu. png
logo-Ubuntu. png
oo-cd-cover.odf
oo-derivatives.doc
oo-maxwell.odt
oo-trig.xls

Exploring the System 15

-w-r--r-- 1 root root 453764 2012-04-03 11:05 o0o-welcome.odt

-rw-r--r-- 1 root root 358374 2012-04-03 11:05 ubuntu Sax.ogg

Let’s look at the different fields from one of the files and examine their

meanings in Table 3-2.

Table 3-2: Is Long Listing Fields

Field Meaning

-IW-I-1-- Access rights to the file. The first character indicates
the type of file. Among the different types, a leading

dash means a regular file, while a d indicates a
directory. The next three characters are the access

rights for the file’s owner, the next three are for mem-

bers of the file’s group, and the final three are for
everyone else. The full meaning of this is discussed

in Chapter 9.

1 File’s number of hard links. See the discussion of links

at the end of this chapter.

root The user name of the file’s owner.

root : The name of the group that owns the file.

32059 Size A the file in bytes.

2012-04-03 11:05 Date and time of the file’s last modification.

0o-cd-cover.odf Name of the file.

Determining a File’s Type with file

16 Chapter 3

As we explore the system, it will be useful to know what files contain. To

do this, we will use the file command to determine a file’s type. As we dis-

cussed earlier, filenames in Linux are not required to reflect a file’s con-

tents. For example, while a filename like picture.jpg would normally be

expected to contain a JPEG compressed image, it is not required to in

Linux. We can invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the

file’s contents. For example:

[me@linuxbox ~]$ file picture. jpg
picture. jpg: JPEG image data, JFIF standard 1.01

There are many kinds of files. In fact, one of the common ideas in Unix-
like operating systems such as Linux is that “everything is a file.” As we pro-
ceed with our lessons, we will see just how true that statement is.

While many of the files on your system are familiar, for example MP3
and JPEG files, many kinds are a little less obvious, and a few are quite
strange.

Viewing File Contents with less

The less command is a program to view text files. Throughout our Linux

system, there are many files that contain human-readable text. The less pro-

gram provides a convenient way to examine them.

Why would we want to examine text files? Because many of the files that

contain system settings (called configuration files) are stored in this format,

being able to read them gives us insight about how the system works. In

addition, many of the actual programs that the system uses (called scripts)

are stored in this format. In later chapters, we will learn how to edit text

files in order to modify system settings and write our own scripts, but for

now we will just look at their contents.

WHAT IS “TEXT”?

There are many ways to represent information on a computer. All methods

involve defining a relationship between the information and some numbers

that will be used to represent it. Computers, after all, understand only num-

bers, and all data is converted to numeric representation.

Some of these representation systems are very complex (such as com-

pressed video files), while others are rather simple. One of the earliest and

simplest is called ASCII text. ASCII (pronounced “As-Key”) is short for Amer-

ican Standard Code for Information Interchange. This aes oan

scheme was first used on Teletype machines.

Text is a simple one-to-one mapping of characters to numbers. It is very

compact. Fifty characters of text translate to fifty bytes of data. It is not the same

as text in a word processor document such as one created by Microsoft Word or

OpenOffice.org Writer. Those files, in contrast to simple ASCII text, contain

many non-text elements that are used to describe their structure and format-

ting. Plain ASCII text files contain only the characters themselves and a few

rudimentary control codes like tabs, carriage returns, and linefeeds.

Throughout a Linux system, many files are stored in text format, and many

Linux tools work with text files. Even Windows recognizes the importance of

this format. The well-known Notepad program is an editor for plain ASCII text

files.

Exploring the System 17

18 Chapter 3

The less command is used like this:

less filename

Once started, the less program allows you to scroll forward and back-

ward through a text file. For example, to examine the file that defines all

the system’s user accounts, enter the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the
file is longer than one page, we can scroll up and down. To exit less, press

the Q key.
Table 3-3 lists the most common keyboard commands used by less.

Table 3-3: less Commands

PAGE UP or b Scroll back one page.

PAGE DOWN or Scroll forward one page.

Spacebar

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

G Move to the end of the text file.

aGorg Move to the beginning of the text file.

‘/characters Search forward to the next occurrence of characters.

n Scar Search for the next occurrence of the previous search.

i Display help screen.

ow doe Quit ieee

A Guided Tour

Note:

The filesystem layout on your Linux system is much like that found on other
Unix-like systems. The design is actually specified in a published standard
called the Linux Filesystem Hierarchy Standard. Not all Linux distributions con-
form to the standard exactly, but most come pretty close.

Next, we are going to wander around the filesystem ourselves to see
what makes our Linux system tick. This will give you a chance to practice

your navigation skills. One of the things we will discover is that many of the

interesting files are in plain, human-readable text. As we go about our tour,
try the following:

cd into a given directory.

List the directory contents with ls -1.

1

2

3. Ifyou see an interesting file, determine its contents with file.

4 If it looks as if it might be text, try viewing it with less.

Remember the copy-and-paste trick! If you are using a mouse, you can double-click a

filename to copy it and middle-click to paste it into commands.

As we wander around, don’t be afraid to look at stuff. Regular users are

largely prohibited from messing things up. That’s the system administrator’s

job! Ifa command complains about something, just move on to something

else. Spend some time looking around. The system is ours to explore.

Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. Feel free to

try more!

Table 3-4: Directories Found on Linux Systems

Directory Comments |

iA The root directory, fie everything begins.

/bin Contains binaries (programs) that must be aFeseat bos the

system to boot and run.

/ boot Contains the Linux kernel, initial RAM disk image (for

drivers needed at boot time), and the boot loader.

Interesting files:
« /boot/grub/grub.conf or menu.Ist, which are used to

configure the boot loader
» /boot/vmlinuz, the Linux kernel

(continued)

Exploring the System 19

20 Chapter 3

Table 3-4 (continued)

Directory

/dev

Jetc

/home

/lib

/lost+found

/media

/mnt

/opt

Comments

This is a special directory that contains device nodes.
“Everything is a file” also applies to devices. Here is
where the kernel maintains a list of all the devices it

understands.

The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell

scripts that start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,

here are some of my all-time favorites:
e /etc/crontab, a file that defines when automated jobs

will run
« /etc/fstab, a table of storage devices and their

associated mount points

« /etc/passwd, a list of the user accounts

In normal configurations, each user is given a directory
in /home. Ordinary users can write files only in their

home directories. This limitation protects the system from
errant user activity.

Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

Each formatted partition or device using a Linux file-

system, such as ext3, will have this directory. It is used
in the case of a partial recovery from a filesystem cor-
ruption event. Unless something really bad has hap-
pened to your system, this directory will remain empty.

On modern Linux systems the /media directory will

contain the mount points for removable media such
as USB drives, CD-ROMs, etc. that are mounted

automatically at insertion.

On older Linux systems, the /mnt directory contains

mount points for removable devices that have been
mounted manually.

The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

Table 3-4 (continued)

Directory

/proc

/root

/sbin

/tmp

/usr

/usr/bin

/usr/lib

/usr/local

/usr/sbin

/usr/share

/usr/share/doc

Comments —

The /proc directory is special. It’s not a real filesystem in

the sense of files stored on your hard drive. Rather, it is
a virtual filesystem maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

This is the home directory for the root account.

This directory contains “system” binaries. These are
programs that perform vital system tasks that are
generally reserved for the superuser.

The /tmp directory is intended for storage of temporary,

transient files created by various programs. Some con-
figurations cause this directory to be emptied each time
the system is rebooted.

The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files
used by regular users.

/usr/bin contains the executable programs installed

by your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

The shared libraries for the programs in /usr/bin.

The /usr/local tree is where programs that are not
included with your distribution but are intended for
system-wide use are installed. Programs compiled from
source code are normally installed in /usr/local/bin.

On a newly installed Linux system, this tree exists, but it
will be empty until the system administrator puts some-

thing in it.

Contains more system administration programs.

/usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default

configuration files, icons, screen backgrounds, sound

files, etc.

Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find

documentation files organized by package.

(continued)

Exploring the System 21

Table 3-4 (continued)

With the exception of /tmp and /home, the directories
we have looked at so far remain relatively static; that is,

their contents don’t change. The /var directory tree is
where data that is likely to change is stored. Various
databases, spool files, user mail, etc. are located here.

/var/log /var/log contains log files, records of various system
activity. These are very important and should be mon-
itored from time to time. The most useful one is /var/
log/messages. Note that for security reasons on some
systems, you must be the superuser to view log files.

Symbolic Links

22 Chapter 3

As we look around, we are likely to see a directory listing with an entry

like this:

lrwxrwxrwx 1 root root 11 2012-08-11 07:34 libc.so.6 -> libc-2.6.so

Notice how the first letter of the listing is 1 and the entry seems to

have two filenames? This is a special kind of a file called a symbolic link (also

known as a soft link or symlink). In most Unix-like systems it is possible to

have a file referenced by multiple names. While the value of this may not

be obvious now, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource

of some kind contained in a file named foo, but foo has frequent version

changes. It would be good to include the version number in the filename

so the administrator or other interested party could see what version of foo

is installed. This presents a problem. If we change the name of the shared

resource, we have to track down every program that might use it and change

it to look for a new resource name every time a new version of the resource

is installed. That doesn’t sound like fun at all.

Here is where symbolic links save the day. Let’s say we install version 2.6

of foo, which has the filename foo-2.6, and then create a symbolic link simply

called foo that points to foo-2.6. This means that when a program opens the

file foo, it is actually opening the file foo-2.6. Now everybody is happy. The

programs that rely on foo can find it, and we can still see what actual version

is installed. When it is time to upgrade to foo-2.7, we just add the file to our

system, delete the symbolic link foo, and create a new one that points to the

new version. Not only does this solve the problem of the version upgrade,

but it also allows us to keep both versions on our machine. Imagine that
foo-2.7 has a bug (damn those developers!) and we need to revert to the old

version. Again, we just delete the symbolic link pointing. to the new version

and create a new symbolic link pointing to the old version.

The directory listing above (from the /lib directory of a Fedora system)
shows a symbolic link called libc.so.6 that points to a shared library file called
libc-2.6.so. This means that programs looking for libe.so.6 will actually get the
file libc-2.6.s0. We will learn how to create symbolic links in the next chapter.

Exploring the System 23

Heys weet Gi
*}

art ets 208 OSS URE, .

bouke al ae’ reeves,
Sat 1% whee Sen 4 Wh wf, wi gs

cmliyers Une oil ced d eae

‘ Lo

mey ae hat 2 ae

. sdtww Gus ween >
: ~ owe o¢ Dit Gesell - 5

: - : at _ - 4 oe

.
9 ma?

a =
hy Pp

| ® ‘a

é 14 © Gree =

Gu 2\\=— Of Werered
A ~~ 7 i ° aw fa ot “a

zi 4 ne a ons Pak pea
rateul ‘2 (a

oof te 2) (gly Theetit yey

mi wee") aden wee meh

a

MANIPULATING FILES AND

DIRECTORIES

At this point, we are ready for some real work! This

chapter will introduce the following commands:

cp—Copy files and directories.

mv—Move/rename files and directories.

mkdir—Create directories.

rm—Remove files and directories.

1n—Create hard and symbolic links.

These five commands are among the most frequently used Linux com-

mands. They are used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are

more easily done with a graphical file manager. With a file manager, we can

drag and drop a file from one directory to another, cut and paste files,

delete files, and so on. So why use these old command-line programs?

The answer is power and flexibility. While it is easy to perform simple

file manipulations with a graphical file manager, complicated tasks can be

easier with the command-line programs. For example, how could we copy

all the HTML files from one directory to another—but only those that do

not exist in the destination directory or are newer than the versions in the

destination directory? Pretty hard with a file manager. Pretty easy with the

command line:

cp -u *.html destination

Wildcards

26 Chapter 4

Before we begin using our commands, we need to talk about the shell fea-

ture that makes these commands so powerful. Because the shell uses file-

names so much, it provides special characters to help you rapidly specify

groups of filenames. These special characters are called wildcards. Using

wildcards (also known as globbing) allows you to select filenames based on

patterns of characters. Table 41 lists the wildcards and what they select.

Table 4-1: Wildcards

Wildcard = ~— Matches _

4 Any characters

? Any single character

[characters | Any character that is a member of the set characters

[!characters] Any character that is not a member of the set characters

[ifetass? 4 Any character that is a member of the specified class

Table 4-2 lists the most commonly used character classes.

Table 4-2: Commonly Used Character Classes

Character Class Matches

[:alnum:] Any alphanumeric character

[:alpha:] Any alphabetic character

[:digit:] Any numeral

[: lower:] Any lowercase letter

[:upper:] Any uppercase letter

Using wildcards makes it possible to construct very sophisticated selec-
tion criteria for filenames. Table 4-3 lists some examples of patterns and
what they match.

Table 4-3: Wildcard Examples

Pattern

*

g*

b* txt

Data???

[abc]*

BACKUP. [0-9] [0-9] [0-9]

[[:upper:]]*

[![:digit:]]*

*[[: lower:]123]

Matches

All files

Any file beginning with g

Any file beginning with b tollowed by any
characters and ending with .txt

Any file beginning with Data followed by
exactly three characters

Any file beginning with either a, b, or c

Any file beginning with BACKUP. followed by
exactly three numerals

Any file beginning with an uppercase letter

Any file not beginning with a numeral

Any file ending with a lowercase letter or the
numerals 1, 2, or 3

Wildcards can be used with any command that accepts filenames as

arguments, but we’ll talk more about that in Chapter 7.

CHARACTER RANGES

If you are coming from another Unix-like environment or have been reading

some other books on this subject, you may have encountered the [A-Z] or the

[a-z] character range notations. These are traditional Unix notations and

worked in older versions of Linux as well. They can still work, but you have to

be very careful with them because they will not produce the expected results

unless properly configured. For now, you should avoid using them and use

character classes instead.

Manipulating Files and Directories 27

mkdir—Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: In this book, when three periods follow an argument

in the description of a command (as above), it means that the argument can

be repeated; thus, in this case,

mkdir diri

would create a single directory named dir1, while

mkdir diri dir2 dir3

would create three directories named dirl, dir2, and dir3.

cp—Copy Files and Directories
The cp command copies files or directories. It can be used two differ-
ent ways:

cp item1 item2

to copy the single file or directory item] to file or directory item2 and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

28 = Chapter 4

Tables 4-4 and 45 list some of the commonly used options (the short
option and the equivalent long option) for cp.

Table 4-4: cp Options

Option

-a, --archive

-i, --interactive

-rY, --recursive

-u, --update

-V, --verbose

Meaning

Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user per-
forming the copy.

Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, cp will
silently overwrite files.

Recursively copy directories and their contents. This

option (or the -a option) is required when copying
directories.

When copying files from one directory to another, copy
only files that either don’t exist or are newer than the
existing corresponding files in the destination directory.

Display informative messages as the copy is performed.

Table 4-5: cp Examples

Command

cp file1 file2

cp -i file1 file2

ep filei file2 diri

epadirs/ rain 2

cp -r dir1 dir2

Results

Copy file! to file2. If file2 exists, it is overwritten
with the contents of file]. If file2 does not exist, it

is created.

Same as above, except that if file2 exists, the user is

prompted before it is overwritten.

Copy file] and file2 into directory dirl. dir] must

already exist.

Using a wildcard, all the files in dir] are copied into

dir2. dir2 must already exist.

Copy directory dir] (and its contents) to directory
dir2. If directory dir2 does not exist, it is created and
will contain the same contents as directory dir].

Manipulating Files and Directories 29

mv—Move and Rename Files

The mv command performs both file moving and file renaming, depending

on how it is used. In either case, the original filename no longer exists after

the operation. mv is used in much the same way as cp:

mv item1 item2

to move or rename file or directory item] to item2 or

mv item... directory

to move one or more items from one directory to another.

mv shares many of the same options as cp, as shown in Tables 4-6 and 4-7.

Table 4-6: mv Options

Option —sMeaning
-i, --interactive Before overwriting an existing file, prompt the user for

confirmation. If this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, move

only files that either don’t exist in the destination

directory or are newer than the existing corresponding
files in the destination directory.

-v, --verbose Display informative messages as the move is
performed.

Table 4-7: mv Examples

Command Results
mv file1 file2 Move filel to file2. \f file2 exists, it is overwritten

with the contents of file1. If file2 does not exist, it is

created. In either case, file] ceases to exist.

mv -i file1 file2 Same as above, except that if file2 exists, the user is

prompted before it is overwritten.

mv filet file2 dirt Move file] and file2 into directory dir]. dir] must
already exist.

mv dira dir2 Move directory dir] (and its contents) into directory
dir2. If directory dir2 does not exist, create directory

dir2, move the contents of directory dir] into dir2, and

delete directory dir].

30 = Chapter 4

Oe
rm—Remove Files and Directories

The rm command is used to remove (delete) files and directories, like this:

rm item...

where item is the name of one or more files or directories.

Tables 4-8 and 4-9 list some of the common options for rm.

Table 4-8: rm Options

-i, --interactive Before deleting an existing file, prompt the user for
confirmation. If this option is not specified, xm will
silently delete files.

ceotmree rm ANU ALY MRC RHI EHH

-r, --recursive Recursively delete directories. This means that if a

directory being deleted has subdirectories, delete
them too. To delete a directory, this option must be

specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v, --verbose Display informative messages as the deletion is

performed.
a renee ce etc ammestoeseee

Manipulating Files and Directories 31

Table 4-9: rm Examples

Command Results

rm filet Delete file] silently.

rm -i filet Before deleting file], prompt the user for

confirmation.

rm -r file1 dir1 Delete file] and dir] and its contents.

rm -rf filet dir1 Same as above, except that if either file] or dirl

does not exist, rm will continue silently.

In—Create Links

The ln command is used to create either hard or symbolic links. It is used in

one of two ways:

In file link

to create a hard link and

In -s item link

to create a symbolic link where item is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links; symbolic links are

more modern. By default, every file has a single hard link that gives the file

its name. When we create a hard link, we create an additional directory

entry for a file. Hard links have two important limitations:

e Ahard link cannot reference a file outside its own filesystem. This

means a link cannot reference a file that is not on the same disk parti-

tion as the link itself.

e Ahard link cannot reference a directory.

A hard link is indistinguishable from the file itself. Unlike a directory

list containing a symbolic link, a directory list containing a hard link shows

no special indication of the link. When a hard link is deleted, the link is

removed, but the contents of the file itself continue to exist (that is, its space

is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter

them from time to time, but modern practice prefers symbolic links, which

we will cover next.

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Sym-

bolic links work by creating a special type of file that contains a text pointer

32 Chapter 4

to the referenced file or directory. In this regard they operate in much the
same way as a Windows shortcut, though of course they predate the Win-
dows feature by many years. ;-)

A file pointed to by a symbolic link and the symbolic link itself are
largely indistinguishable from one another. For example, if you write some-
thing to the symbolic link, the referenced file is also written to. However,
when you delete a symbolic link, only the link is deleted, not the file itself.

If the file is deleted before the symbolic link, the link will continue to exist

but will point to nothing. In this case, the link is said to be broken. In many

implementations, the ls command will display broken links in a distinguish-
ing color, such as red, to reveal their presence.

The concept of links can seem confusing, but hang in there. We’re

going to try all this stuff and it will, hopefully, become clear.

Let’s Build a Playground

Since we are going to do some real file manipulation, let’s build a safe place

to “play” with our file manipulation commands. First we need a directory to

work in. We'll create one in our home directory and call it playground.

Creating Directories

The mkdir command is used to create a directory. To create our playground

directory, we will first make sure we are in our home directory and then cre-

ate the new directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make playground a little more interesting, let’s create a couple of dir-

ectories inside it called dirl and dir2. To do this, we will change our current

working directory to playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments, allowing

us to create both directories with a single command.

Copying Files

Next, let’s get some data into our playground. We'll do this by copying a

file. Using the cp command, we'll copy the passwd file from the /efc directory

to the current working directory.

[me@linuxbox playground]$ cp /etc/passwd .

Manipulating Files and Directories 33

34 Chapter 4

Notice how we used the shorthand for the current working directory,

the single trailing period. So now if we perform an 1s, we will see our file:

[me@linuxbox playground]$ 1s -1
total 12
drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir1

drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir2

-IW-r--r-- 1 me me 1650 2012-01-10 16:07 passwd

Now, just for fun, let’s repeat the copy using the -v option (verbose) to

see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
~/etc/passwd' -> ~./passwd'

The cp command performed the copy again, but this time it displayed

a concise message indicating what operation it was performing. Notice that

cp overwrote the first copy without any warning. Again, this is a case of cp

assuming that you know what you’re doing. To get a warning, we'll include

the -i (interactive) option:

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite ~./passwd'?

Responding to the prompt by entering a y will cause the file to be over-

written; any other character (for example, n) will cause cp to leave the file

alone.

Moving and Renaming Files

Now, the name passwd doesn’t seem very playful and this is a playground, so
let’s change it to something else:

[me@linuxbox playground]$ mv passwd fun

Let’s pass the fun around a little by moving our renamed file to each of

the directories and back again:

[me@linuxbox playground]$ mv fun dir1

moves it first to directory dirl. Then

[me@linuxbox playground]$ mv dir1/fun dir2

moves it from dirl to dir2. Then

[me@linuxbox playground]$ mv dir2/fun .

finally brings it back to the current working directory. Next, let’s see the
effect of mv on directories. First we will move our data file into dir! again:

[me@linuxbox playground]$ mv fun dir1

and then move dirl into dir2 and confirm it with ls:

[me@linuxbox playground]$ mv dira dir2
[me@linuxbox playground]$ ls -1 dir2
total 4
drwxrwxr-x 2 me me 4096 2012-01-11 06:06 dir1
[me@linuxbox playground]$ ls -1 dir2/dir1
total 4
-Iw-r--r-- 1 me me 1650 2012-01-10 16:33 fun

Note that because dir2 already existed, mv moved dir] into dir2. If

dir2 had not existed, mv would have renamed dir/ to dir2. Lastly, let’s put
everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

Creating Hard Links

Now we'll try some links. First the hard links: We’ll create some links to our

data file like so:

[me@linuxbox playground]$ 1n fun fun-hard
[me@linuxbox playground]$ In fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file fun. Let’s take a look at our

playground directory:

[me@linuxbox playground]$ 1s -1
total 16
drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1

drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2

-Yw-Y--r-- 4 me me 1650 2012-01-10 16:33 fun
-YW-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and

fun-hard both contain a 4, which is the number of hard links that now exist

for the file. You’ll remember that a file will always have at least one link

because the file’s name is created by a link. So, how do we know that fun

and fun-hard are, in fact, the same file? In this case, 1s is not very helpful.

While we can see that fun and fun-hard are both the same size (field 5), our

listing provides no way to be sure they are the same file. To solve this prob-

lem, we’re going to have to dig a little deeper.

Manipulating Files and Directories 35

36 Chapter 4

When thinking about hard links, it is helpful to imagine that files are

made up of two parts: the data part containing the file’s contents and the

name part, which holds the file’s name. When we create hard links, we are

actually creating additional name parts that all refer to the same data part.

The system assigns a chain of disk blocks to what is called an inode, which is

then associated with the name part. Each hard link therefore refers to a spe-

cific inode containing the file’s contents.

The ls command has a way to reveal this information. It is invoked with

the -i option:

[me@linuxbox playground]$ 1s -1i
total 16
12353539 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1

12353540 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2

12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun

12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number, and as

we can see, both fun and fun-hard share the same inode number, which con-

firms they are the same file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard

links: Hard links cannot span physical devices, and hard links cannot refer-

ence directories, only files. Symbolic links are a special type of file that con-

tains a text pointer to the target file or directory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ In -s fun fun-sym
[me@linuxbox playground]$ In -s ../fun dir1/fun-sym
[me@linuxbox playground]$ 1n -s ../fun dir2/fun-sym

The first example is pretty straightforward: We simply add the -s option

to create a symbolic link rather than a hard link. But what about the next

two? Remember, when we create a symbolic link, we are creating a text

description of where the target file is relative to the symbolic link. It’s eas-

ier to see if we look at the 1s output:

[me@linuxbox playground]$ 1s -1 dir1
total 4
-YW-Y--¥-- 4 me me 1650 2012-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2012-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dirl shows that it is a symbolic link by the lead-
ing 1 in the first field and the fact that it points to ../fun, which is correct.
Relative to the location of fun-sym, fun is in the directory above it. Notice
too, that the length of the symbolic link file is 6, the number of characters
in the string ../fun rather than the length of the file to which it is pointing.

When creating symbolic links, you can use either absolute pathnames,
like this:

[me@linuxbox playground]$ In -s /home/me/playground/fun dir1/fun-sym

or relative pathnames, as we did in our earlier example. Using relative path-
names is more desirable because it allows a directory containing symbolic
links to be renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ 1n -s dir1 diri-sym
[me@linuxbox playground]$ 1s -1
total 16

drwxrwxr-X 2 me me 4096 2012-01-15 15:17 dir1

lrwxrwxrwx 1 meme 4 2012-01-16 14:45 diri1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2

-Iw-r--r-- 4 me me 1650 2012-01-10 16:33 fun

-Yw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Removing Files and Directories

As we covered earlier, the rm command is used to delete files and directories.

We are going to use it to clean up our playground a little bit. First, let’s

delete one of our hard links:

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ 1s -1
total 12
drwxrwxr-xX 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 diri1-sym -> dir1
drwxrwxr-X 2 me me 4096 2012-01-15 15:17 dir2
-IW-r--r-- 3 me me 1650 2012-01-10 16:33 fun
lrwxtwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count

shown for fun is reduced from four to three, as indicated in the second

field of the directory listing. Next, we’ll delete the file fun, and just for

enjoyment, we'll include the -i option to show what that does:

[me@linuxbox playground]$ rm -i fun
rm: remove regular file ~fun'?

Enter y at the prompt, and the file is deleted. But let’s look at the out-

put of 1s now. Notice what happened to fun-sym? Since it’s a symbolic link

pointing to a now nonexistent file, the link is broken:

[me@linuxbox playground]$ 1s -1
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 diri-sym -> dir1

drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
lywxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Manipulating Files and Directories 37

Most Linux distributions configure 1s to display broken links. Ona

Fedora box, broken links are displayed in blinking red text! The presence of

a broken link is not in and of itself dangerous, but it is rather messy. If we

try to use a broken link, we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let’s clean up a little. We’ll delete the symbolic links:

[me@linuxbox playground]$ rm fun-sym dir1-sym
[me@linuxbox playground]$ 1s -1
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2

One thing to remember about symbolic links is that most file opera-

tions are carried out on the link’s target, not the link itself. However, rm is

an exception. When you delete a link, it is the link that is deleted, not the

target.
Finally, we will remove our playground. To do this, we will return to our

home directory and use rm with the recursive option (-r) to delete play-

ground and all of its contents, including its subdirectories:

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

: CREATING SYMLINKS WITH THE GUI

agers in both GNOME and KDE provide an easy and automatic
eating symbolic links. With GNOME, holding the crt and sHIFT

. ee while dragging a file will create a link rather than copying (or moving)

the file. In KDE, a small menu appears whenever a file is dropped, offering a

_ choice of copying, moving, or linking the file.

Final Note

38 Chapter 4

We've covered a lot of ground here, and the information may take a while

to fully sink in. Perform the playground exercise over and over until it makes

sense. It is important to get a good understanding of basic file manipulation

commands and wildcards. Feel free to expand on the playground exercise

by adding more files and directories, using wildcards to specify files for vari-

ous operations. The concept of links may be a little confusing at first, but

take the time to learn how they work. They can be a real lifesaver.

WORKING WITH COMMANDS

Up to this point, we have seen a series of mysterious
commands, each with its own mysterious options and
arguments. In this chapter, we will attempt to remove

some of that mystery and even create some of our

own commands. The commands introduced in this
chapter are these:

e type—Indicate how a command name is interpreted.

e which—Display which executable program will be executed.

e man—Display a command’s manual page.

e apropos—Display a list of appropriate commands.

e info—Display a command’s info entry.

e whatis—Display a very brief description of a command.

e alias—Create an alias for a command.

What Exactly Are Commands?
A command can be one of four things:

e An executable program like all those files we saw in /usr/bin. Within this

category, programs can be compiled binaries, such as programs written in

C and G++, or programs written in scripting languages, such as the shell,

Perl, Python, Ruby, and so on.

e Acommand built into the shell itself. bash supports a number of com-

mands internally called shell builtins. The cd command, for example, is a

shell builtin.

e Ashell function. Shell functions are miniature shell scripts incorporated

into the environment. We will cover configuring the environment and

writing shell functions in later chapters, but for now just be aware that

they exist.

e Anatlias. An alias is a command that we can define ourselves, built from

other commands.

Identifying Commands
It is often useful to know exactly which of the four kinds of commands is

being used, and Linux provides a couple of ways to find out.

type—Display a Command’s Type

The type command is a shell builtin that displays the kind of command the

shell will execute, given a particular command name. It works like this:

type command

where command is the name of the command you want to examine. Here are

some examples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to “ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice that the 1s
command (taken from a Fedora system) is actually an alias for the 1s com-
mand with the --color=tty option added. Now we know why the output from
1s is displayed in color!

40 Chapter 5

which—Display an Executable’s Location

Sometimes more than one version of an executable program is installed on
a system. While this is not very common on desktop systems, it’s not unusual
on large servers. To determine the exact location of a given executable, the
which command is used:

[me@linuxbox ~]$ which ls
/bin/1s

which works only for executable programs, not builtins or aliases that
are substitutes for actual executable programs. When we try to use which

on a shell builtin (for example, cd), we get either no response or an error

message:

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/opt/jre1.6.0_03/bin:/usr/lib/qt-3.3/bin:/usr/kerber
oa Ea er PRS ee aT te i ogame ue
/me/bin

This is a fancy way of saying “command not found.”

Getting a Command’s Documentation

With this knowledge of what a command is, we can now search for the docu-

mentation available for each kind of command.

help—Get Help for Shell Builtins

bash has a built-in help facility for each of the shell builtins. To use it, type

help followed by the name of the shell builtin. For example:

[me@linuxbox ~]$ help cd
cd: cd [-L|-P] [dir]
Change the current directory to DIR. The variable $HOME is the default DIR.
The variable CDPATH defines the search path for the directory containing DIR.
Alternative directory names in CDPATH are separated by a colon (:). A null
directory name is the same as the current directory, i.e. ~.'. If DIR begins
with a slash (/), then CDPATH is not used. If the directory is not found, and
the shell option ~cdable vars' is set, then try the word as a variable name.
If that variable has a value, then cd to the value of that variable. The -P
option says to use the physical directory structure instead of following
symbolic links; the -L option forces symbolic links to be followed.

A note on notation: When square brackets appear in the description of

a command’s syntax, they indicate optional items. A vertical bar character

indicates mutually exclusive items. An example is the cd command above:

cd [-L|-P] [dir].

This notation says that the command cd may be followed optionally

by either a -L or a -P and further, optionally followed by the argument dir.

Working with Commands 41

42 Chapter 5

While the output of help for the cd command is concise and accurate, it

is by no means a tutorial, and as we can see, it also seems to mention a lot of

things we haven’t talked about yet! Don’t worry. We’ll get there.

--help—Display Usage Information

Many executable programs support a --help option that displays a descrip-

tion of the command’s supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...

Create the DIRECTORY(ies), if they do not already exist.

-Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options too.

-m, --mode=MODE set file mode (as in chmod), not a=rwx - umask
-p, --parents no error if existing, make parent directories as

needed
-v, --verbose print a message for each created directory

--help display this help and exit
--version output version information and exit

Report bugs to <bug-coreutils@gnu.org>.

Some programs don’t support the --help option, but try it anyway. Often

it results in an error message that will reveal the same usage information.

man—Display a Program’s Manual Page

Most executable programs intended for command-line use provide a formal

piece of documentation called a manual or man page. A special paging pro-

gram called man is used to view them, like this:

man program

where program is the name of the command to view.

Man pages vary somewhat in format but generally contain a title, a syn-

opsis of the command’s syntax, a description of the command’s purpose,

and a listing and description of each of the command’s options. Man pages,

however, do not usually include examples, and they are intended as a refer-

ence, not a tutorial. As an example, let’s try viewing the man page for the 1s

command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all
of the familiar less commands work while displaying the page.

The “manual” that man displays is broken into sections and covers not
only user commands but also system administration commands, program-
ming interfaces, file formats, and more. Table 5-1 describes the layout of
the manual.

Table 5-1: Man Page Organization

Section Contents
1 User commands

Programming interfaces for kernel system calls

Programming interfaces to the C library

Special files such as device nodes and drivers

File formats

Games and amusements such as coeeneever:

Miscellaneous

CpN FO | On| B I WS jf NO System administration commands

Sometimes we need to look in a specific section of the manual to find

what we are looking for. This is particularly true if we are looking for a file

format that is also the name of a command. If we don’t specify a section num-

ber, we will always get the first instance of a match, probably in section 1. To

specify a section number, we use man like this:

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

will display the man page describing the file format of the /etc/passwd file.

apropos—Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based

on a search term. Though crude, this approach is sometimes helpful. Here

is an example of a search for man pages using the search term floppy:

[me@linuxbox ~]$ apropos floppy
create floppy devices (8) - udev callout to create all possible

floppy device based on the CMOS type
fdformat (8) - Low-level formats a floppy disk
floppy (8) - format floppy disks
gfloppy (1) - a simple floppy formatter for the GNOME
mbadblocks (1) - tests a floppy disk, and marks the bad

blocks in the FAT
mformat (1) - add an MSDOS filesystem to a low-level

formatted floppy disk

The first field in each line of output is the name of the man page, and

the second field shows the section. Note that the man command with the -k

option performs exactly the same function as apropos.

Working with Commands 43

44 Chapter 5

whatis—Display a Very Brief Description of a Command

The whatis program displays the name and a one-line description of a man

page matching a specified keyword:

[me@linuxbox ~]$ whatis 1s
ls (1) - list directory contents

info—Display a Program’s Info Entry

The GNU Project provides an alternative to man pages called info pages. Info

pages are displayed with a reader program named, appropriately enough,
info. Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation, Up:
Directory listing

10.1 “ls': List directory contents

The “l1s’ program lists information about files (of any type, including
directories). Options and file arguments can be intermixed arbitrarily, as
usual.

For non-option command-line arguments that are directories, by default ~1s'
lists the contents of directories, not recursively, and omitting files with
names beginning with ~.'. For other non-option arguments, by default ~1s'
lists just the filename. If no non-option argument is specified, ~1s' operates
on the current directory, acting as if it had been invoked with a single
argument of ~.’.

By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top---------- a Se a OF ee Lage ee ee ee

The info program reads injo files, which are tree-structured into indi-
vidual nodes, each containing a single topic. Info files contain hyperlinks
that can move you from node to node. A hyperlink can be identified by its
leading asterisk and is activated by placing the cursor upon it and pressing
the ENTER key.

To invoke info, enter info followed optionally by the name of a pro-
gram. Table 5-2 lists commands used to control the reader while displaying
an info page.

Table 5-2: info Commands

2 Display command help.

PAGE UP or BACKSPACE Display previous page.

PAGE DOWN or Spacebar Display next page.

n Next_Display the next tod ies

p Previcue <Disolay ie rene node.

u Up—Display the parent nade “j the currenity |
displayed node, usually a menu.

ENTER Follow the hyperlink at the cursor location.

q Quit. ve

Most of the command-line programs we have discussed so far are part

of the GNU Project’s coreutils package, so you can find more information

about them by typing

[me@linuxbox ~]$ info coreutils

which will display a menu page containing hyperlinks to documentation for

each program provided by the coreutils package.

README and Other Program Documentation Files

Many software packages installed on your system have documentation files

residing in the /usr/share/doc directory. Most of these are stored in plaintext

format and can be viewed with less. Some of the files are in HTML format

and can be viewed with a web browser. We may encounter some files ending

with a .gz extension. This indicates that they have been compressed with the

gzip compression program. The gzip package includes a special version of

less called zless, which will display the contents of gzip-compressed text

files.

Working with Commands 45

Creating Your Own Commands with alias

46 Chapter 5

Now for our very first experience with programming! We will create a com-

mand of our own using the alias command. But before we start, we need to

reveal a small command-line trick. It’s possible to put more than one com-

mand on a line by separating each command with a semicolon character. It

works like this:

command1; command2; command3...

Here’s the example we will use:

[me@linuxbox ~]$ cd /usr; 1s; cd -
bin games kerberos 1ib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we

change directory to /usr, then we list the directory, and finally we return to

the original directory (by using cd -) so we end up where we started. Now

let’s turn this sequence into a new command using alias. The first thing we

have to do is dream up a name for our new command. Let’s try test. Before

we do that, it would be a good idea to find out if the name test is already

being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

Oops! The name test is already taken. Let’s try foo:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! foo is not taken. So let’s create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; 1s; cd -'

Notice the structure of this command:

alias name='string'

After the command alias we give the alias a name followed immediately
(no whitespace allowed) by an equal sign, which is followed immediately by a
quoted string containing the meaning to be assigned to the name. After we
define our alias, it can be used anywhere the shell would expect a command.

Let’s try it:

[me@linuxbox ~]$ foo
bin games kerberos 1ib64 local share tmp
etc include lib libexec sbin = src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to “cd /usr; 1s; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposely avoided naming our alias with an existing com-

mand name, it is sometimes desirable to do so. This is often done to apply a

commonly desired option to each invocation of a common command. For

instance, we saw earlier how the 1s command is often aliased to add color

support:

[me@linuxbox ~]$ type ls
ls is aliased to “ls --color=tty’'

To see all the aliases defined in the environment, use the alias com-

mand without arguments. Here are some of the aliases defined by default

on a Fedora system. Try to figure out what they all do:

[me@linuxbox ~]$ alias
alias 1.='ls -d .* --color=tty'
alias ll='ls -1 --color=tty'
alias ls='1s --color=tty'

There is one tiny problem with defining aliases on the command line.

They vanish when your shell session ends. In a later chapter we will see how

to add our own aliases to the files that establish the environment each time

we log on, but for now, enjoy the fact that we have taken our first, albeit

tiny, step into the world of shell programming!

Revisiting Old Friends

Now that we have learned how to find the documentation for commands, go

and look up the documentation for all the commands we have encountered

so far. Study what additional options are available and try them out!

Working with Commands 47

REDIRECTION

In this lesson we are going to unleash what may be
the coolest feature of the command line: I/O redirec-

tion. The I/O stands for input/output, and with this

facility you can redirect the input and output of
commands to and from files, as well as connect multiple commands to

make powerful command pipelines. To show off this facility, we will intro-

duce the following commands:

Concatenate files. cat

sort—Sort lines of text.

uniq—Report or omit repeated lines.

wc—Print newline, word, and byte counts for each file.

grep—Print lines matching a pattern.

head—Output the first part of a file.

tail—Output the last part of a file.

tee—Read from standard input and write to standard output and files.

Standard Input, Output, and Error

50 Chapter 6

Many of the programs that we have used so far produce output of some

kind. This output often consists of two types. First, we have the program’s

results; that is, the data the program is designed to produce. Second, we

have status and error messages that tell us how the program is getting along.

If we look at a command like 1s, we can see that it displays its results and its

error messages on the screen.
Keeping with the Unix theme of “everything is a file,” programs such

as ls actually send their results to a special file called standard output (often

expressed as stdout) and their status messages to another file called standard

error (stderr). By default, both standard output and standard error are linked

to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard

input (stdin), which is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input

comes from. Normally, output goes to the screen and input comes from the

keyboard, but with I/O redirection we can change that.

Redirecting Standard Output

I/O redirection allows us to redefine where standard output goes. To

redirect standard output to another file instead of the screen, we use the >

redirection operator followed by the name of the file. Why would we want

to do this? It’s often useful to store the output of a command in a file. For

example, we could tell the shell to send the output of the 1s command to

the file /s-output.txt instead of the screen:

[me@linuxbox ~]$ 1s -1 /usr/bin > 1s-output.txt

Here, we created a long listing of the /usr/bin directory and sent the

results to the file /s-owtput.txt. Let’s examine the redirected output of the

command:

[me@linuxbox ~]$ 1s -1 1s-output.txt
-Iw-Yw-r-- 1 me me 167878 2012-02-01 15:07 ls-output.txt

Good—a nice, large, text file. If we look at the file with less, we will

see that the file /s-owtput.txt does indeed contain the results from our ls

command:

[me@linuxbox ~]$ less 1s-output.txt

Now, let’s repeat our redirection test but this time with a twist. We’ll
change the name of the directory to one that does not exist:

[me@linuxbox ~]$ 1s -1 /bin/usr > 1s-output.txt
ls: cannot access /bin/usr: No such file or directory

We received an error message. This makes sense because we specified
the nonexistent directory /bin/usy, but why was the error message displayed
on the screen rather than being redirected to the file ds-owtput.txt? The answer
is that the 1s program does not send its error messages to standard output.
Instead, like most well-written Unix programs, it sends its error messages to

standard error. Since we redirected only standard output and not standard

error, the error message was still sent to the screen. We’ll see how to redirect

standard error in just a minute, but first, let’s look at what happened to our

output file:

[me@linuxbox ~]$ 1s -1 1s-output.txt
-IW-Iw-r-- 1 me me O 2012-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output

with the > redirection operator, the destination file is always rewritten from

the beginning. Since our 1s command generated no results and only an

error message, the redirection operation started to rewrite the file and then

stopped because of the error, resulting in its truncation. In fact, if we ever

need to actually truncate a file (or create a new, empty file) we can use a

trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it

will truncate an existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting

the file from the beginning? For that, we use the >> redirection operator,

like so:

[me@linuxbox ~]$ 1s -1 /usr/bin >> 1s-output.txt

Using the >> operator will result in the output being appended to the

file. If the file does not already exist, it is created just as though the > oper-

ator had been used. Let’s put it to the test:

s -l1 /usr/bin >> ls-output.txt
s -l /usr/bin >> 1s-output.txt
s -l /usr/bin >> 1s-output.txt
s -1 1s-output.txt
me 503634 2012-02-01 15:45 ls-output.txt

me@linuxbox ~

me@linuxbox ~
]$
]$

me@linuxbox ~]$

}$
e

ee ee
oe me@linuxbox ~

-IW-Iw-r-- 1 Mm

We repeated the command three times, resulting in an output file three

times as large.

Redirecting Standard Error

Redirecting standard error lacks the ease of using a dedicated redirection

operator. To redirect standard error we must refer to its file descriptor. A pro-

gram can produce output on any of several numbered file streams. While

Redirection 51

Note:

52 Chapter 6

we have referred to the first three of these file streams as standard input,

output, and error, the shell references them internally as file descriptors

0, 1, and 2, respectively. The shell provides a notation for redirecting files

using the file descriptor number. Since standard error is the same as file

descriptor 2, we can redirect standard error with this notation:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> 1s-error.txt

The file descriptor 2 is placed immediately before the redirection oper-

ator to perform the redirection of standard error to the file /s-error.txt.

Redirecting Standard Output and Standard Error to One File

There are cases in which we may wish to capture all of the output of a com-

mand to a single file. To do this, we must redirect both standard output and

standard error at the same time. There are two ways to do this. First, here is

the traditional way, which works with old versions of the shell:

[me@linuxbox ~]$ ls -1 /bin/usr > 1s-output.txt 2>81

Using this method, we perform two redirections. First we redirect

standard output to the file /s-output.txt, and then we redirect file descriptor

2 (standard error) to file descriptor 1 (standard output) using the nota-

tion 2>&1.

Notice that the order of the redirections is significant. The redirection of standard error

must always occur after redirecting standard output or it doesn’t work. In the example

above, > I1s-output.txt 2>&1 redirects standard error to the file |s-output.txt, but if

the order is changed to 2>&1 > 1s-output.txt, standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for

performing this combined redirection:

[me@linuxbox ~]$ 1s -1 /bin/usr & 1s-output.txt

In this example, we use the single notation & to redirect both standard

output and standard error to the file /s-owtput. txt.

Disposing of Unwanted Output

Sometimes silence really is golden, and we don’t want output from a com-
mand—we just want to throw it away. This applies particularly to error and
status messages. The system provides a way to do this by redirecting output
to a special file called /dev/null. This file is a system device called a bit bucket,
which accepts input and does nothing with it. To suppress error messages
from a command, we do this:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> /dev/null

Pe ye z

/DEV/NULL IN UNIX CULTURE |
The bit bucket is an ancient Unix concept, and due to its universality i it has
appeared i in many parts of Unix culture. So when someone says he is send-
ing your comments to “dev null,” now you know what it means. For more
examples, see the Wikipedia article at hutp://en.wikipedia.org/wiki/Dev/null,

Redirecting Standard Input

Up to now, we haven’t encountered any commands that make use of stand-

ard input (actually we have, but we’ll reveal that surprise a little bit later), so

we need to introduce one.

cat—Concatenate Files

The cat command reads one or more files and copies them to standard out-

put like so:

cot (file.

In most cases, you can think of cat as being analogous to the TYPE com-

mand in DOS. You can use it to display files without paging. For example,

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file /s-ouwtput.ixt. cat is often used to display

short text files. Since cat can accept more than one file as an argument, it can

also be used to join files together. Say we have downloaded a large file that

has been split into multiple parts (multimedia files are often split this way on

Usenet), and we want to join them back together. If the files were named

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could rejoin them with this command:

[me@linuxbox ~]$ cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be

arranged in the correct order.
This is all well and good, but what does this have to do with standard

input? Nothing yet, but let’s try something else. What happens if we enter

cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens—it just sits there like it’s hung. It may seem that way,

but it’s really doing exactly what it’s supposed to.

If cat is not given any arguments, it reads from standard input, and

since standard input is, by default, attached to the keyboard, it’s waiting

for us to type something!

Redirection 53

Try this:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type crrt-D (i.e., hold down the crru key and press D) to tell cat

that it has reached end-of-file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to

standard output, so we see our line of text repeated. We can use this beha-

vior to create short text files. Let’s say that we wanted to create a file called

lazy_dog.txt containing the text in our example. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Enter the command followed by the text we want to place in the file.

Remember to type CTRL-D at the end. Using the command line, we have

implemented the world’s dumbest word processor! To see our results, we

can use cat to copy the file to standard output again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input in addition to file-

name arguments, let’s try redirecting standard input:

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the < redirection operator, we change the source of standard

input from the keyboard to the file lazy_dog. txt. We see that the result is the

same as passing a single filename argument. This is not particularly useful

compared to passing a filename argument, but it serves to demonstrate

using a file as a source of standard input. Other commands make better

use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several
interesting options.

Pipelines

54 Chapter 6

The ability of commands to read data from standard input and send to
standard output is utilized by a shell feature called pipelines. Using the pipe
operator | (vertical bar), the standard output of one command can be piped
into the standard input of another.

command1 | command2

To fully demonstrate this, we are going to need some commands.
Remember how we said there was one we already knew that accepts stand-
ard input? It’s less. We can use less to display, page by page, the output of

any command that sends its results to standard output:

[me@linuxbox ~]$ 1s -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently
examine the output of any command that produces standard output.

Filters

Pipelines are often used to perform complex operations on data. It is pos-

sible to put several commands together into a pipeline. Frequently, the com-

mands used this way are referred to as filters. Filters take input, change it

somehow, and then output it. The first one we will try is sort. Imagine we

want to make a combined list of all of the executable programs in /bin and

/usr/bin, put them in sorted order, and then view the list:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of 1s

would have consisted of two sorted lists, one for each directory. By including

sort in our pipeline, we changed the data to produce a single, sorted list.

unig—Report or Omit Repeated Lines

The unig command is often used in conjunction with sort. unig accepts a

sorted list of data from either standard input or a single filename argument

(see the uniq man page for details) and, by default, removes any duplicates

from the list. So, to make sure our list has no duplicates (that is, any pro-

grams of the same name that appear in both the /bin and /usr/bin director-

ies) we will add unig to our pipeline:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use unig to remove any duplicates from the output

of the sort command. If we want to see the list of duplicates instead, we add

the -d option to unig like so:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq -d | less

wc—Print Line, Word, and Byte Counts

The we (word count) command is used to display the number of lines,

words, and bytes contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
7902 64566 503634 ls-output.txt

Redirection 55

56 Chapter 6

In this case it prints out three numbers: lines, words, and bytes con-

tained in /s-output.txt. Like our previous commands, if executed without

command-line arguments, wc accepts standard input. The -1 option limits

its output to only report lines. Adding it to a pipeline is a handy way to

count things. To see the number of items we have in our sorted list, we

can do this:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq | we -1
2728

grep—Print Lines Matching a Pattern
grep is a powerful program used to find text patterns within files, like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines con-

taining it. The patterns that grep can match can be very complex, but for

now we will concentrate on simple text matches. We’ll cover the advanced

patterns, called regular expressions, in Chapter 19.

Let’s say we want to find all the files in our list of programs that have the

word zip in the name. Such a search might give us an idea of which programs

on our system have something to do with file compression. We would do this:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | unig | grep zip
bunzip2
bzip2
gunzip

gzip
unzip
zip
zipcloak
zipgrep
Zipinfo
Zipnote
zipsplit

There are a couple of handy options for grep: -i, which causes grep to

ignore case when performing the search (normally searches are case sensit-

ive) and -v, which tells grep to print only lines that do not match the pattern.

head/tail—Print First/Last Part of Files

Sometimes you don’t want all the output from a command. You may want

only the first few lines or the last few lines. The head command prints the

first 10 lines of a file, and the tail command prints the last 10 lines. By
default, both commands print 10 lines of text, but this can be adjusted
with the -n option:

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-IWXI-Xr-xX 1 root root 31316 2011-12-05 08:58 [

-Iwxr-Xr-x 1 root root 8240 2011-12-09 13:39 411 toppm
-Ywxr-xr-x 1 root root 111276 2011-11-26 14:27 a2p
-IwxY-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 1s-output.txt
-Ywxr-xr-x 1 root root 5234 2011-06-27 10:56 znew
-IWxXI-XY-x 1 root root 691 2009-09-10 04:21 zonetab2pot.py
-Iw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyc
sCW=F==r=- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2012-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

tail has an option that allows you to view files in real time. This is use-

ful for watching the progress of log files as they are being written. In the

following example, we will look at the messages file in /var/log. Superuser

privileges are required to do this on some Linux distributions, because the

/var/log/messages file may contain security information.

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1652
seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain

Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on etho to 192.168.1.1 port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1771
seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART Prefailure
Attribute: 8 Seek_Time_ Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user me by
(uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user root by
me(uid=500)

Using the -f option, tail continues to monitor the file and when new

lines are appended, they immediately appear on the display. This continues

until you type crri-C.

tee—Read from Stdin and Output to Stdout and Files

In keeping with our plumbing analogy, Linux provides a command called

tee which creates a “T” fitting on our pipe. The tee program reads standard

input and copies it to both standard output (allowing the data to continue

down the pipeline) and to one or more files. This is useful for capturing a

pipeline’s contents at an intermediate stage of processing. Here we repeat

Redirection 57

one of our earlier examples, this time including tee to capture the entire

directory listing to the file Js.txt before grep filters the pipeline’s contents:

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip

bunzip2
bzip2
gunzip

gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Final Note

58 Cha pter 6

As always, check out the documentation of each of the commands we have

covered in this chapter. We have seen only their most basic usage, and they

all have a number of interesting options. As we gain Linux experience, we

will see that the redirection feature of the command line is extremely useful

for solving specialized problems. Many commands make use of standard

input and output, and almost all command-line programs use standard

error to display their informative messages.

LINUX IS ABOUT IMAGINATION

_ When Tam asked to explain the difference between Windows and Linux, I

often use a toy analogy.

. Windows is like a Game Boy. You go to the store and buy one all shiny new

in the box. You take it home, turn it on, and play with it. Pretty graphics, cute

sounds. After a while, though, you get tired of the game that came with it, so

you go back to the store and buy another one. This cycle repeats over and over.

Finally, you go back to the store and say to the person behind the counter, “I _

want a game that does this!” only to be told that no such game exists because

there is no “market demand” for it. Then you say, “But I only need to change

this one thing!” The person behind the counter says you can’t change it. The

games are all sealed up in their cartridges. You discover that your toy is limited

to the games that others have decided that you need and no more.
Linux, on the other hand, is like the world’s largest Erector Set. You open

‘it up, and it’s just a huge collection of parts—a lot of steel struts, screws, nuts,

gears, pulleys, and motors and a few suggestions on what to build. So you start

to play with it. You build one of the suggestions and then another. After a while

you discover that you have your own ideas of what to make. You don’t ever have

to go back to the store, because you already have everything you need. The

Erector Set takes on the shape of your imagination. It does what you want.
Your choice of toys is, of course, a So thing, so which ye oe rou

find more satisfying? f

SEEING THE WORLD AS

THE SHELL SEES IT

In this chapter we are going to look at some of the

“magic” that occurs on the command line when you
press the ENTER key. While we will examine several
interesting and complex features of the shell, we will
do it with just one new command:

e echo—Display a line of text.

Expansion

Each time you type a command line and press the ENTER key, bash performs

several processes upon the text before it carries out your command. We’ve

seen a couple of cases of how a simple character sequence, for example *,

can have a lot of meaning to the shell. The process that makes this happen

is called expansion. With expansion, you enter something, and it is expanded

into something else before the shell acts upon it. To demonstrate what we

60 Chapter 7

mean by this, let’s take a look at the echo command. echo is a shell builtin

that performs a very simple task: It prints out its text arguments on standard

output.

[me@linuxbox ~]$ echo this is a test
this is a test

That’s pretty straightforward. Any argument passed to echo gets dis-

played. Let’s try another example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

So what just happened? Why didn’t echo print *? As you recall from our

work with wildcards, the * character means “match any characters in a file-

name,” but what we didn’t see in our original discussion was how the shell

does that. The simple answer is that the shell expands the * into something

else (in this instance, the names of the files in the current working direct-

ory) before the echo command is executed. When the ENTER key is pressed,

the shell automatically expands any qualifying characters on the command

line before the command is carried out, so the echo command never saw

the *, only its expanded result. Knowing this, we can see that echo behaved

as expected.

Pathname Expansion

The mechanism by which wildcards work is called pathname expansion. If

we try some of the techniques that we employed in our earlier chapters, we

will see that they are really expansions. Given a home directory that looks
like this:

[me@linuxbox ~]¢ ls
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and

[me@linuxbox ~]$ echo *s
Documents Pictures Templates Videos

or even

[me@linuxbox ~]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

And looking beyond our home directory:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

PATHNAME EXPANSION OF HIDDEN FILES

As we know, filenames that begin with a period character are hidden. Path-
name expansion also respects this behavior. An expansion such as

echo *

does not reveal hidden files. 2

It might appear at first glance that we could include hidden filesin an —

expansion by starting the pattern with a leading period, like this:

echo .*

It almost works. However, if we examine the results brely we will see that

the names . and .. will also appear in the results. Since these names refer to the

current working directory and its parent directory, using this pattern will likely

produce an incorrect result. We can see this if we try the command —

1s -d .* | less

To correctly perform pathname expansion in this situation, we have to _

employ a more specific pattern. This will work correctly:

ls -d .[!.]2*

This pattern expands into every filename that begins with a period, does _

not include a second period, contains at least one additional character, and

may be followed by any other characters.

Tilde Expansion

As you may recall from our introduction to the cd command, the tilde char-

acter (~) has a special meaning. When used at the beginning of a word, it

expands into the name of the home directory of the named user or, if no

user is named, the home directory of the current user:

[me@linuxbox ~]$ echo ~
/home/me

If user foo has an account, then

[me@linuxbox ~]$ echo ~foo
/home/foo

Seeing the World as the Shell Sees It 61

62 Chapter 7

Arithmetic Expansion

The shell allows arithmetic to be performed by expansion. This allows us to

use the shell prompt as a calculator:

[me@linuxbox ~]$ echo $((2 + 2))
4

Arithmetic expansion uses the following form:

$((expression))

where expression is an arithmetic expression consisting of values and arith-

metic operators.

Arithmetic expansion supports only integers (whole numbers, no deci-

mals) but can perform quite a number of different operations. Table 7-1

lists a few of the supported operators.

Table 7-1: Arithmetic Operators

me | Addition

- Subtraction

“ Multiplication

/ Division (But remember, because expansion supports only integer
arithmetic, results are integers.)

% Modulo, which simply means remainder

** Exponentiation

Spaces are not significant in arithmetic expressions, and expressions

may be nested. For example, multiply 5° by 3:

[me@linuxbox ~]$ echo $(($((5**2)) * 3))

75

Single parentheses may be used to group multiple subexpressions. With

this technique, we can rewrite the example above and get the same result

using a single expansion instead of two:

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice
the effect of integer division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

[me@linuxbox ~]$ echo with $((5%2)) left over.
with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With it, you can
create multiple text strings from a pattern containing braces. Here’s an
example:

[me@linuxbox ~]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a

preamble and a trailing portion called a postscript. The brace expression itself

may contain either a comma-separated list of strings or a range of integers

or single characters. The pattern may not contain embedded whitespace.

Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number _2 Number_3 Number_4 Number_5

Here we get a range of letters in reverse order:

echo {Z..A} me@linuxbox ~]$ ec
ie eOer ON Malahat Cae Es Di Gr BEA

Brace expansions may be nested:

[me@linuxbox ~]$ echo a{A{1,2},B{3,4}}b
aAib aA2b aB3b aB4b

So what is this good for? The most common application is to make lists

of files or directories to be created. For example, if we were photographers

and had a large collection of images that we wanted to organize by years and

months, the first thing we might do is create a series of directories named in

numeric year-month format. This way, the directory names will sort in chrono-

logical order. We could type out a complete list of directories, but that’s a lot

of work and it’s error prone too. Instead, we could do this:

[me@linuxbox ~]$ mkdir Pics
[me@linuxbox ~]$ cd Pics
[me@linuxbox Pics]$ mkdir {2009..2011}-0{1..9} {2009..2011}-{10..12}
[me@linuxbox Pics]$ ls
2009-01 2009-07 2010-01 2010-07 2011-01 2011-07

2009-02 2009-08 2010-02 2010-08 2011-02 2011-08

2009-03 2009-09 2010-03 2010-09 2011-03 2011-09

2009-04 2009-10 2010-04 2010-10 2011-04 2011-10
2009-05 2009-11 2010-05 2010-11 2011-05 2011-11
2009-06 2009-12 2010-06 2010-12 2011-06 2011-12

Pretty slick!

Seeing the World as the Shell Sees It 63

64 Chapter 7

Parameter Expansion

We’re only going to touch briefly on parameter expansion in this chapter,

but we’ll be covering it extensively later. It’s a feature that is more useful in

shell scripts than directly on the command line. Many of its capabilities have

to do with the system’s ability to store small chunks of data and to give each

chunk a name. Many such chunks, more properly called variables, are avail-

able for your examination. For example, the variable named USER contains

your username. To invoke parameter expansion and reveal the contents of

USER, you would do this:

[me@linuxbox ~]$ echo $USER
me

To see a list of available variables, try this:

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if you mis-

type a pattern, the expansion will not take place and the echo command will

simply display the mistyped pattern. With parameter expansion, if you mis-

spell the name of a variable, the expansion will still take place but will result

in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~]$

Command Substitution

Command substitution allows us to use the output of a command as an

expansion:

[me@linuxbox ~]$ echo $(1s)
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ ls -1 $(which cp)
~IWxXY-xXr-x 1 root root 71516 2012-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the ls com-

mand, thereby getting the listing of the cp program without having to know
its full pathname. We are not limited to just simple commands. Entire
pipelines can be used (only partial output shown):

[me@linuxbox ~]$ file $(1s /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to ~bzip2'
/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV
), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV

), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to ~../../bin/gunzip'
/usr/bin/gzip: symbolic link to ~../../bin/gzip'
/usr/bin/mzip: symbolic link to ~mtools'

In this example, the results of the pipeline became the argument list of
the file command.

There is an alternative syntax for command substitution in older shell
programs that is also supported in bash, It uses back quotes instead of the dol-
lar sign and parentheses:

[me@linuxbox ~]$ ls -1 “which cp
-IWxXT-Xr-xX 1 root root 71516 2012-12-05 08:58 /bin/cp

Quoting

Now that we’ve seen how many ways the shell can perform expansions, it’s

time to learn how we can control it. For example, take this:

[me@linuxbox ~]$ echo this is a test
this is a test

Or this:

[me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word splitting by the shell removed extra whitespace

from the echo command’s list of arguments. In the second example, para-

meter expansion substituted an empty string for the value of $1 because it

was an undefined variable. The shell provides a mechanism called quoting

to selectively suppress unwanted expansions.

Double Quotes

The first type of quoting we will look at is double quotes. If you place text

inside double quotes, all the special characters used by the shell lose their

special meaning and are treated as ordinary characters. The exceptions are

$ (dollar sign), \ (backslash), and ~ (back tick). This means that word split-

ting, pathname expansion, tilde expansion, and brace expansion are sup-

pressed, but parameter expansion, arithmetic expansion, and command

substitution are still carried out. Using double quotes, we can cope with file-

names containing embedded spaces. Say we were the unfortunate victim of

a file called two words.txt. If we tried to use this on the command line, word

splitting would cause this to be treated as two separate arguments rather

than the desired single argument:

[me@linuxbox ~]$ 1s -1 two words.txt
ls: cannot access two: No such file or directory
ls: cannot access words.txt: No such file or directory

Seeing the World as the Shell Sees It 65

66 Chapter 7

By using double quotes, we stop the word splitting and get the desired

result; further, we can even repair the damage:

[me@linuxbox ~]$ 1s -1 "two words.txt”
-YW-IW-I-- 1 me me 18 2012-02-20 13:03 two words.txt

[me@linuxbox ~]$ mv "two words.txt" two_words.txt

There! Now we don’t have to keep typing those pesky double quotes.

Remember: Parameter expansion, arithmetic expansion, and command

substitution still take place within double quotes:

[me@linuxbox ~]$ echo "$USER $((2+2)) $(cal)"
me 4 February 2012
Su Mo Tu We Th Fr Sa

le say
by) ft} S) altop ali

tp ale} Wal silly alte) aliy7/ silts

TOR20E 21225 25e2 4025

26 27 28 29

We should take a moment to look at the effect of double quotes on

command substitution. First let’s look a little deeper at how word splitting

works. In our earlier example, we saw how word splitting appears to remove

extra spaces in our text:

[me@linuxbox ~]$ echo this is a test
this is a test

By default, word splitting looks for the presence of spaces, tabs, and

newlines (linefeed characters) and treats them as delimiters between words.

This means that unquoted spaces, tabs, and newlines are not considered

to be part of the text. They serve only as separators. Since they separate the

words into different arguments, our example command line contains a com-

mand followed by four distinct arguments. If we add double quotes, how-

ever, word splitting is suppressed and the embedded spaces are not treated

as delimiters; rather, they become part of the argument:

[me@linuxbox ~]$ echo "this is a test"
this is a test

Once the double quotes are added, our command line contains a com-

mand followed by a single argument.

The fact that newlines are considered delimiters by the word splitting

mechanism causes an interesting, albeit subtle, effect on command substitu-

tion. Consider the following:

[me@linuxbox ~]$ echo $(cal)
February 2012 Su Mo Tu We Th Fr Sa 1234567 8 9 10 11 12 13 14 15 16 17
1851952002225 23524252 G22 oe29

[me@linuxbox ~]$ echo "$(cal)"

February 2012
Su Mo Tu We Th Fr Sa

cl) aes hee
Ge 7 8219 10 4%

L2e AA Seo l7 18

LOU 20224 22 (23) 24°25

26 27 28 29

In the first instance, the unquoted command substitution resulted in
a command line containing 38 arguments; in the second, the result was a
command line with 1 argument that includes the embedded spaces and

newlines.

Single Quotes

If we need to suppress all expansions, we use single quotes. Here is a compar-

ison of unquoted, double quotes, and single quotes:

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/1s-output.txt a b foo 4 me
[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me
[me@linuxbox ~]$ echo ‘text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more

expansions are suppressed.

Escaping Characters

Sometimes we want to quote only a single character. To do this, we can pre-

cede a character with a backslash, which in this context is called the escape

character. Often this is done inside double quotes to selectively prevent an

expansion.

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a

character in a filename. For example, it is possible to use characters in file-

names that normally have special meaning to the shell. These would include

$, !,&, (aspace), and others. To include a special character in a filename,

you can do this:

[me@linuxbox ~]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing \\. Note

that within single quotes, the backslash loses its special meaning and is

treated as an ordinary character.

Seeing the World as the Shell Sees It 67

BACKSLASH ESCAPE SEQUENCES

In addition to its role as the escape character, the backslash is also used as part

of a notation to represent certain special characters called control codes. The first

32 characters in the ASCII coding scheme are used to transmit commands to

teletype-like devices. Some of these codes are familiar (tab, backspace, line-

feed, and carriage return), while others are not (null, end-of-transmission,

and acknowledge), as shown in Table 7-2.

Table 7-2: Backslash Escape Sequences

Bell (“alert’—causes the computer to beep)

oo Backspace

i Newline (on Unix-like systems, this produces a linefeed)

i Carriage return

At > Teb :

This table lists some of the common backslash escape sequences. The idea

_ behind using the backslash originated in the C programming language and has

been adopted by many others, including the shell.

_ Adding the -e option to echo will enable interpretation of escape sequences.

You may also place them inside $' '. Here, using the sleep command, a simple

program that just waits for the specified number of seconds and then exits, we

can create a primitive countdown timer.

sleep 10; echo -e "Time's up\a"

We could also do this:

sleep 10; echo "Time's up” $'\a’

Final Note

68 Chapter 7

As we move forward with using the shell, we will find that expansions and

quoting will be used with increasing frequency, so it makes sense to get a
good understanding of the way they work. In fact, it could be argued that
they are the most important subjects to learn about the shell. Without a
proper understanding of expansion, the shell will always be a source of
mystery and confusion, and much of its potential power will be wasted.

ADVANCED KEYBOARD

TRICKS

I often kiddingly describe Unix as “the operating sys-

tem for people who like to type.” Of course, the fact

that it even has a command line is a testament to that.
But command line users don’t like to type that much.
Why else would so many commands have such short
names, like cp, 1s, mv, and rm?

In fact, one of the most cherished goals of the command line is laziness—

doing the most work with the fewest keystrokes. Another goal is never hav-

ing to lift your fingers from the keyboard—never reaching for the mouse. In

this chapter, we will look at bash features that make keyboard use faster and

more efficient.

The following commands will make an appearance:

e clear—Clear the screen.

e history—Display the contents of the history list.

Command Line Editing

bash uses a library (a shared collection of routines that different programs

can use) called Readline to implement command line editing. We have

already seen some of this. We know, for example, that the arrow keys move

the cursor, but there are many more features. Think of these as additional

tools that we can employ in our work. It’s not important to learn all of them,

but many of them are very useful. Pick and choose as desired.

Note: Some of the key sequences below (particularly those that use the ALT key) may be inter-

cepted by the GUI for other functions. All of the key sequences should work properly

when using a virtual console.

Cursor Movement

Table 8-1 lists the keys used to move the cursor.

Table 8-1: Cursor Movement Commands

Key Aion
CTRL-A Move cursor to the beginning of the line.

CTRL-E Move cursor to the end of the line.

CTRL-F Move cursor forward one character; same as the right arrow key.

cTri-B Move cursor backward one character; same as the left arrow key.

ALT-F Move cursor forward one word.

AlT-B Move cursor backward one word.

cTri-L Clear the screen and move the cursor to the top left corner. The

clear command does the same thing.

Modifying Text

Table 8-2 lists keyboard commands that are used to edit characters on the
command line.

Cutting and Pasting (Killing and Yanking) Text

The Readline documentation uses the terms killingand yanking to refer to
what we would commonly call cutting and pasting. Table 8-3 lists the com-
mands for cutting and pasting. Items that are cut are stored in a buffer
called the kill-ring.

70 Chapter 8

Table 8-2: Text Editing Commands

Key Action

cTRL-D Delete the character at the cursor location.

CTRL-T Transpose (exchange) the character at the cursor location with
the one preceding it.

ALT-T Transpose the word at the cursor location with the one pre
ceding it.

ALT-L Convert the characters from the cursor location to the end of

the word to lowercase.

Aut-U Convert the characters from the cursor location to the end of

the word to uppercase.

Table 8-3: Cut and Paste Commands

Key Action

CTRL-K Kill text from the cursor location to the end of line.

cTrI-U Kill text from the cursor location to the beginning of the line.

AlT-D Kill text from the cursor location to the end of the current word.

ALT-BACKSPACE Kill text from the cursor location to the beginning of the cur

rent word. If the cursor is at the beginning of a word, kill the

previous word.

CTRLY Yank text from the kill-ring and insert it at the cursor location.

THE META KEY

If you venture into the Readline documentation, which can be found in the

“READLINE” section of the bash man page, you will encounter the term meta

key. On modern keyboards this maps to the ALT key, but it wasn’t always so.

Back in the dim times (before PCs but after Unix) not everybody had their

own computer. What they might have had was a device called a terminal. A ter-

minal was a communication device that featured a text-display screen and a

keyboard and had just enough electronics inside to display text characters and

move the cursor around. It was attached (usually by serial cable) to a larger

computer or the communication network of a larger computer. There were

many different brands of terminals, and they all had different keyboards and

display feature sets. Since they all tended to at least understand ASCII, software

Advanced Keyboard Tricks 71

developers wanting portable applications wrote to the lowest common denom-

inator. Unix systems have a very elaborate way of dealing with terminals and

their different display features. Since the developers of Readline could not be

sure of the presence of a dedicated extra control key, they invented one and

called it meta. While the ALT key serves as the meta key on modern keyboards,

you can also press and release the Esc key to get the same effect as holding

down the ALT key if you’re still using a terminal (which you can still do in

Linux!). :

Completion

72° Chapter 8

Another way that the shell can help you is through a mechanism called com-

pletion. Completion occurs when you press the TAB key while typing a com-

mand. Let’s see how this works. Say your home directory looks like this:

[me@linuxbox ~]$ 1s
Desktop ls-output.txt Pictures Templates Videos
Documents Music Public

Try typing the following but don’t press the ENTER key:

[me@linuxbox ~]$ 1s 1

Now press the TAB key:

[me@linuxbox ~]$ 1s 1s-output.txt

See how the shell completed the line for you? Let’s try another one.
Again, don’t press ENTER:

[me@linuxbox ~]$ ls D

Press TAB:

[me@linuxbox ~]$ 1s D

No completion—just a beep. This happened because D matches more
than one entry in the directory. For completion to be successful, the “clue”
you give it has to be unambiguous. We can go further:

[me@linuxbox ~]$ 1s Do

Then press TAB:

[me@linuxbox ~]$ 1s Documents

The completion is successful.

While this example shows completion of pathnames, which is comple-
tion’s most common use, completion will also work on variables (if the
beginning of the word is a $), usernames (if the word begins with ~), com-
mands (if the word is the first word on the line), and hostnames (if the
beginning of the word is @). Hostname completion works only for host-
names listed in /etc/hosts.

A number of control and meta key sequences are associated with com-
pletion (see Table 8-4).

Table 8-4: Completion Commands

Key Action :

ALT-2 Display list of possible completions. On most systems you can

also do this by pressing the Tas key a second time, which is

much easier.

ALT-* Insert all possible completions. This is useful when you want to

use more than one possible match.

There are quite a few more that I find rather obscure. You can see a list

in the bash man page under the “READLINE” section.

PROGRAMMABLE COMPLETION _

Recent versions of bash have a facility called programmable ¢ ion. Program-

mable completion allows you (or, more likely, your distribution provider) to

add additional completion rules. Usually this is done to add support for specific _

applications. For example, it is possible to add completions for the option hist :

of a command or match particular file types. that an application supports.

Ubuntu has a fairly large set defined by default. Programmable completion is

implemented by shell functions, a kind of mini shell oe at we will cover in

later chapters. If you are curious, try

set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 1, bash maintains a history of commands that

have been entered. This list of commands is kept in your home directory

in a file called .bash_history. The history facility is a useful resource for redu-

cing the amount of typing you have to do, especially when combined with

command-line editing.

Advanced Keyboard Tricks 73

74 Chapter 8

Searching History

At any time, we can view the contents of the history list:

[me@linuxbox ~]$ history | less

By default, bash stores the last 500 commands you have entered. We will

see how to adjust this value in Chapter 11. Let’s say we want to find the com-

mands we used to list /usr/bin. Here is one way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let’s say that among our results we got a line containing an interest-

ing command like this:

88 ls -1 /usr/bin > 1s-output.txt

The number 88 is the line number of the command in the history list.

We could use this immediately with another type of expansion called history

expansion. To use our discovered line, we could do this:

[me@linuxbox ~]$!88

bash will expand !88 into the contents of the 88th line in the history list.

We will cover other forms of history expansion a little later.

bash also provides the ability to search the history list incrementally. This

means that we can tell bash to search the history list as we enter characters,

with each additional character further refining our search. To start an incre-

mental search, enter CTRL-R followed by the text you are looking for. When

you find it, you can either press ENTER to execute the command or press

CTRL-J to copy the line from the history list to the current command line.

To find the next occurrence of the text (moving “up” the history list), press

CTRL-R again. To quit searching, press either CTRL-G or CTRL-C. Here we see
it in action:

[me@linuxbox ~]$

First press CTRL-R:

(reverse-i-search)”':

The prompt changes to indicate that we are performing a reverse incre-
mental search. It is “reverse” because we are searching from “now” to some
time in the past. Next, we start typing our search text, which in this example
is /usr/bin:

(reverse-i-search)*/usr/bin': ls -1 /usr/bin > 1s-output.txt

Immediately, the search returns its result. Now we can execute
the command by pressing ENTER, or we can copy the command to our
current command line for further editing by pressing crri-J. Let’s copy
it. Press CTRL-J:

[me@linuxbox ~]$ 1s -1 /usr/bin > 1s-output.txt

Our shell prompt returns, and our command line is loaded and ready
for action!

Table 8-5 lists some of the keystrokes used to manipulate the history list.

Table 8-5: History Commands

Key Action

CTRL-P Move to the previous history entry. Same action as the up arrow.

CTRL-N Move to the next history entry. Same action as the jet arrow.

ALT-< Move to the beginning (top) of the history list.

ALT-> Move to the end (bottom) of the history list; i.e., the current

command line.

CTRL-R Reverse incremental search. Searches incrementally from the

current command line up the history list.

ALT-P Reverse search, non-incremental. With this key, type the search

string and press ENTER before the search is performed.

ALT-N Forward search, non-incremental.

cTRL-O Execute the current item in the history list and advance to the next

one. This is handy if you are trying to re-execute a sequence of

commands in the history list.

History Expansion

The shell offers a specialized type of expansion for items in the history list

by using the ! character. We have already seen how the exclamation point

can be followed by a number to insert an entry from the history list. There

are a number of other expansion features (see Table 8-6).

I would caution against using the !string and !?string forms unless you

are absolutely sure of the contents of the history list items.

Many more elements are available in the history expansion mechanism,

but this subject is already too arcane and our heads may explode if we con-

tinue. The “HISTORY EXPANSION” section of the bash man page goes into

all the gory details. Feel free to explore!

Advanced Keyboard Tricks 75

Table 8-6: History Expansion Commands

1! Repeat the last command. It is probably easier to press the up

arrow and ENTER.

!number Repeat history list item number.

Istring Repeat last history list item starting with string.

!?string Repeat last history list item containing string.

Final Note

76° Chapter 8

In this chapter we have covered some of the keyboard tricks that the shell
provides to help hardcore typists reduce their workloads. I suspect that as

time goes by and you become more involved with the command line, you

will refer to this chapter to pick up more of these tricks. For now, consider
them optional and potentially helpful.

PERMISSIONS

Operating systems in the Unix tradition differ from

those in the MS-DOS tradition in that they are not
only multitasking systems but also multiuser systems.

What exactly does this mean? It means that more than one person can

use the computer at the same time. While a typical computer will likely have

only one keyboard and monitor, it can still be used by more than one user.

For example, if a computer is attached to a network or the Internet, remote

users can log in via ssh (secure shell) and operate the computer. In fact,

remote users can execute graphical applications and have the graphical out-

put appear on a remote display. The X Window System supports this as part

of its basic design.

The multiuser capability of Linux is not a recent “innovation” but rather

a feature that is deeply embedded into the design of the operating system.

Considering the environment in which Unix was created, this makes perfect

sense. Years ago, before computers were “personal,” they were large, expens-

ive, and centralized. A typical university computer system, for example, con-

sisted of a large central computer located in one building and terminals

located throughout the campus, each connected to the large central com-

puter. The computer would support many users at the same time.

In order to make this practical, a method had to be devised to protect

the users from each other. After all, the actions of one user could not be

allowed to crash the computer, nor could one user interfere with the files

belonging to another user.

In this chapter we are going to look at this essential part of system secu-

rity and introduce the following commands:

e id—Display user identity.

e chmod—Change a file’s mode.

e umask—Set the default file permissions.

e su—Run a shell as another user.

e sudo—Execute a command as another user.

e chown—Change a file’s owner.

e chgrp—Change a file’s group ownership.

e passwd—Change a user’s password.

Owners, Group Members, and Everybody Else

78 = Chapier 9

When we were exploring the system back in Chapter 3, we may have

encountered the following problem when trying to examine a file such

as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not

have permission to read this file.

In the Unix security model, a user may own files and directories. When

a user owns a file or directory, the user has control over its access. Users

can, in turn, belong to a group consisting of one or more users who are given

access to files and directories by their owners. In addition to granting access

to a group, an owner may also grant some set of access rights to everybody,
which in Unix terms is referred to as the world. To find out information

about your identity, use the id command:

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let’s look at the output. When user accounts are created, users are
assigned a number called a user ID, or uid. This is then, for the sake of the
humans, mapped to a username. The user is assigned a primary group ID, or
gid, and may belong to additional groups. The previous example is from a
Fedora system. On other systems, such as Ubuntu, the output may look a lit-
tle different.

[me@linuxbox ~]$ id
uid=1000(me) gid=1000(me)
groups=4(adm) ,20(dialout) ,24(cdrom) ,25(floppy) ,29(audio),30(dip),44(video) , 46(
plugdev) ,108(1padmin) ,114(admin) , 1000(me)

As we can see, the uid and gid numbers are different. This is simply
because Fedora starts its numbering of regular user accounts at 500, while
Ubuntu starts at 1000. We can also see that the Ubuntu user belongs to a lot
more groups. This has to do with the way Ubuntu manages privileges for sys-
tem devices and services.

So where does this information come from? Like so many things in

Linux, it comes from a couple of text files. User accounts are defined in

the /etc/passwd file, and groups are defined in the /etc/group file. When

user accounts and groups are created, these files are modified along with

/etc/shadow, which holds information about the user’s password. For each

user account, the /etc/passwd file defines the user (login) name, the uid,

the gid, the account’s real name, the home directory, and the login shell.

If you examine the contents of /etc/passwd and /etc/group, you will notice

that besides the regular user accounts there are accounts for the superuser

(uid 0) and various other system users.

In Chapter 10, when we cover processes, you will see that some of these

other “users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group

such as users, modern Linux practice is to create a unique, single-member

group with the same name as the user. This makes certain types of permis-

sion assignment easier.

Reading, Writing, and Executing
Access rights to files and directories are defined in terms of read access,

write access, and execution access. If we look at the output of the 1s com-

mand, we can get some clue as to how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ 1s -1 foo.txt
-Yw-Iw-r-- 1 me me 0 2012-03-06 14:52 foo.txt

The first 10 characters of the listing are 006 © 0

the file attributes (see Figure 9-1). The first [rwxfrw-[r- -

of these characters is the file type. Table 9-1

lists the file types you are most likely to see

(there are other, less common types too).

The remaining nine characters of the

file attributes, called the /ftle mode, represent @ World permissions (see Table 9-2)

the read, write, and execute permissions

for the file’s owner, the file’s group owner,

and everybody else.

@ File type (see Table 9-1)

@ Owner permissions (see Table 9-2)

© Group permissions (see Table 9-2)

Figure 9-1: Breakdown of file

attributes

Permissions 79

80 Chapter 9

When set, the r, w, and x mode attributes have certain effects on files

and directories, as shown in Table 9-2.

Table 9-1: File Types

Attribute

d

File Type

A regular file.

A directory.

A symbolic link. Notice that with symbolic links, the remaining file
attributes are always rwxrwxrwx and are dummy values. The real
file attributes are those of the file the symbolic link points to.

A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or modem.

A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or CD-ROM drive.

Table 9-2: Permission Attributes

Attribute

be Allows a file to be opened and read.

Allows a file to be written to or trun-

cated; however, this attribute does not

allow files to be renamed or deleted.

The ability to delete or rename files is
determined by directory attributes.

Allows a file to be treated as a pro-

gram and executed. Program files writ-
ten in scripting languages must also

be set as readable to be executed.

Directories

Allows a directory’s
contents to be listed if

the execute attribute is

also set.

Allows files within a

directory to be created,
deleted, and renamed if

the execute attribute is

also set.

Allows a directory to

be entered; e.g.,
cd directory.

Table 9-3 shows some examples of file attribute settings.

Table 9-3: Permission Attribute Examples

File Attributes | Meaning ;

~IWX------ A regular file that is readable, writable, and executable by
the file’s owner. No one else has any access.

-IYw ~------- A regular file that is readable and writable by the file’s
owner. No one else has any access.

Table 9-3 (continued)

File Attributes Meaning

-IW-r--r-- A regular file that is readable and writable by the file’s
owner. Members of the file’s owner group may read the file.
The file is world readable.

-IWXI-XI-X A regular file that is readable, writable, and executable by
the file's owner. The file may be read and executed by
everybody else.

-IW-Iw---- A regular file that is readable and writable by the file’s
owner and members of the file’s owner group only.

Lrwxrwxrwx A symbolic link. All symbolic links have “dummy” permis-
sions. The real permissions are kept with the actual file
pointed to by the symbolic link.

drwxrwx- -- A directory. The owner and the members of the owner group
may enter the directory and create, rename, and remove

files within the directory.

drwxr-x--- A directory. The owner may enter the directory and create,
rename, and delete files within the directory. Members of the
owner group may enter the directory but cannot create,
delete, or rename files.

chmod—Change File Mode

To change the mode (permissions) of a file or directory, the chmod com-

mand is used. Be aware that only the file’s owner or the superuser can

change the mode of a file or directory. chmod supports two distinct ways of

specifying mode changes: octal number representation and symbolic repres-

entation. We will cover octal number representation first.

Octal Representation

With octal notation we use octal numbers to set the pattern of desired per-

missions. Since each digit in an octal number represents three binary digits,

this maps nicely to the scheme used to store the file mode. Table 9-4 shows

what we mean.

Table 9-4: File Modes in Binary and Octal

Octal Binary —_—‘File Mode
0 000 ae

al 001 aK

2 010 -W- (continued)

Permissions 81

Table 9-4 (continued)

Octal Binary _—File Mode —

3} 011 -WX

4 100 Tere

b) 101 ex

6 110 Iw-

u alla TWX

erals zero through nine plus the let-

A, BG, DE, F,10/11, 12513 -

y (since og dee wes only one oe

ry ae octal, bao ie a :
e oe be e condensed to

By using three octal digits, we can set the file mode for the owner,

group owner, and world.

82 Chapter 9

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ 1s -1 foo.txt
-YW-Iw-r-- 1 me me 0 2012-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt
[me@linuxbox ~]$ 1s -1 foo.txt
-Yw------- 1 me me 0 2012-03-06 14:52 foo.txt

By passing the argument 600, we were able to set the permissions of

the owner to read and write while removing all permissions from the group

owner and world. Though remembering the octal-to-binary mapping may

seem inconvenient, you will usually have to use only a few common ones:

7 (xwx), 6 (xw-), 5 (r-x), 4 (r--), and 0 (---).

Symbolic Representation

chmod also supports a symbolic notation for specifying file modes. Symbolic

notation is divided into three parts: whom the change will affect, which opera-

tion will be performed, and which permission will be set. To specify who is

affected, a combination of the characters u, g, 0, and ais used, as shown in

Table 9-5.

Table 9-5: chmod Symbolic Notation

Symbol Meaning |

u Short for user but means the file or directory owner.

g Group owner.

oO Short for others but means world.

a Short for all; the combination of u, g, and o.

If no character is specified, all will be assumed. The operation may be

a + indicating that a permission is to be added, a - indicating that a permis-

sion is to be taken away, or a = indicating that only the specified permissions

are to be applied and that all others are to be removed.

Permissions are specified with the r, w, and x characters. Table 9-6 lists

some examples of symbolic notation.

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world.

Equivalent to a+x.

(continued)

Permissions 83

84 Cha pter 9

Table 9-6 (continued)

Notation Meaning

O-IW Remove the read and write permissions from anyone besides

the owner and group owner.

go=IwW Set the group owner and anyone besides the owner to have
read and write permission. If either the group owner or world

previously had execute permissions, remove them.

U+X, BO=IX Add execute permission for the owner and set the permissions
for the group and others to read and execute. Multiple speci-

fications may be separated by commas.

Some people prefer to use octal notation; some folks really like the sym-

bolic. Symbolic notation does offer the advantage of allowing you to seta

single attribute without disturbing any of the others.

Take a look at the chmod man page for more details and a list of options.

A word of caution regarding the --recursive option: It acts on both files and

directories, so it’s not as useful as one would hope because we rarely want

files and directories to have the same permissions.

Setting File Mode with the GUI

Now that we have seen how the permis-

sions on files and directories are set, we can

better understand the permission dialogs

in the GUI. In both Nautilus (GNOME)

and Konqueror (KDE), right-clicking a

file or directory icon will expose a prop-

erties dialog. Figure 9-2 is an example

from KDE 3.5.

Here we can see the settings for the

owner, group, and world. In KDE, click-

ing the Advanced Permissions button

brings up another dialog that allows you

to set each of the mode attributes indi-

vidually. Another victory for understand-

ing brought to us by the command line!

umask—Set Default Permissions

The umask command controls the default

permissions given to a file when it is

created. It uses octal notation to express

a mask of bits to be removed from a file’s

mode attributes.

Gl Properties for pws-read- 7 O X

Access Permissions

Owner: Can Read Read & Write |

Group: Forbidden > =

Others: | Forbidden

[X) Is executable

[Advanced Permissions

;- Ownership

User: bshotts

Group: bshotts

(yes OK } (x. Cancel |

Figure 9-2: KDE 3.5 File Properties
dialog

Let’s take a look:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ umask
0002

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -1 foo.txt
-Yw-Yw-r-- 1 me me 0 2012-03-06 14:53 foo.txt

We first removed any existing copy of foo.txt to make sure we were start-

ing fresh. Next, we ran the umask command without an argument to see the

current value. It responded with the value 0002 (the value 0022 is another

common default value), which is the octal representation of our mask. We

then created a new instance of the file foo.txt and observed its permissions.

We can see that both the owner and group get read and write permis-

sions, while everyone else gets only read permission. World does not have

write permission because of the value of the mask. Let’s repeat our example,

this time setting the mask ourselves:

[me@linuxbox ~]$ rm foo.txt
[me@linuxbox ~]$ umask 0000
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -1 foo.txt
-IW-Iw-Iw- 1 me me 0 2012-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the

file is now world writable. To understand how this works, we have to look at

octal numbers again. If we expand the mask into binary and then compare

it to the attributes, we can see what happens:

Original file mode --- IW- IW- IW-

Mask 000 000 000 010

Result sas Gq Tails Tse

Ignore for the moment the leading 0s (we’ll get to those in a minute) and

observe that where the 1 appears in our mask, an attribute was removed—in

this case, the world write permission. That’s what the mask does. Everywhere

a 1 appears in the binary value of the mask, an attribute is unset. If we look

at a mask value of 0022, we can see what it does:

Original file mode fear Ws IW TW

Mask 000 000 010 010

(--- IW- I-- I--
|

Result

Permissions 85

Again, where a | appears in the binary value, the corresponding attrib-

ute is unset. Play with some values (try some 7s) to get used to how this

works. When you’re done, remember to clean up:

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time you won't have to change the mask; the default pro-

vided by your distribution will be fine. In some high-security situations, how-

ever, you will want to control it.

SOME SPECIAL PERMISSIONS

Though we usually see an octal permission mask expressed as a three-digit

number, it is more technically correct to express it in four digits. Why?

Because, in addition to read, write, and execute permissions, there are

some other, less-used permission settings.

The first of these is the setuid bit (octal 4000). When applied to an execut-

able file, it sets the effective user ID from that of the real user (the user actually

running the program) to that of the program’s owner. Most often this is given

to a few programs owned by the superuser. When an ordinary user runs a pro-

gram that is setuid root, the program runs with the effective privileges of the

superuser. This allows the program to access files and directories that an

ordinary user would normally be prohibited from accessing. Clearly, because

this raises security concerns, the number of setuid programs must be held to an

absolute minimum.

_ The second less-used setting is the setgid bit (octal 2000). This, like the setuid

bit, changes the effective group ID from that of the real group ID of the user to that

of the file owner. If the setgid bit is set on a directory, newly created files in the

directory will be given the group ownership of the directory rather the group

ownership of the file’s creator. This is useful in a shared directory when mem-

bers of a common group need access to all the files in the directory, regardless

of the file owner’s primary group.

The third is called the sticky bit (octal 1000). This is a holdover from

ancient Unix, where it was possible to mark an executable file as “not swap-

pable.” On files, Linux ignores the sticky bit, but if applied to a directory, it pre-

vents users from deleting or renaming files unless the user is either the owner

of the directory, the owner of the file, or the superuser. This is often used to

control access to a shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these

special permissions. First, assign setuid to a program:

chmod u+s program

Next, assign setgid to a directory:

chmod g+s dir

86 Chapter 9

Finally, assign the sticky bit to a directory:

chmod +t dir

By viewing the output from 1s, you can determine the special permissions.
Here are some examples. First, a program that is setuid:

~YwST-xYr-xX

Now, a directory that has the setgid attribute:

drwxrwsr-x

Finally, a directory with the sticky bit set:

drwxrwxrwt

Changing Identities

At various times, we may find it necessary to take on the identity of another

user. Often we want to gain superuser privileges to carry out some adminis-

trative task, but it is also possible to “become” another regular user to per-

form such tasks as testing an account. There are three ways to take on an

alternate identity:

e Log out and log back in as the alternate user.

e Use the su command.

e Use the sudo command.

We will skip the first technique because we know how to do it and it

lacks the convenience of the other two. From within your own shell session,

the su command allows you to assume the identity of another user and either

start a new shell session with that user’s ID or issue a single command as that

user. The sudo command allows an administrator to set up a configuration

file called /etc/sudoers and define specific commands that particular users

are permitted to execute under an assumed identity. The choice of which

command to use is largely determined by which Linux distribution you use.

Your distribution probably includes both commands, but its configuration

will favor either one or the other. We'll start with su.

su—Run a Shell with Substitute User and Group IDs

The su command is used to start a shell as another user. The command syn-

tax looks like this:

su [-[1]] [user]

Permissions 87

88 Chapter 9

If the -1 option is included, the resulting shell session is a login shell for

the specified user. This means that the user’s environment is loaded and the

working directory is changed to the user’s home directory. This is usually

what we want. If the user is not specified, the superuser is assumed. Notice

that (strangely) the -1 may be abbreviated as -, which is how it is most often

used. To start a shell for the superuser, we would do this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser’ s pass-

word. If it is successfully entered, a new shell prompt appears indicating that

this shell has superuser privileges (the trailing # rather than a $) and that

the current working directory is now the home directory for the superuser

(normally /root). Once in the new shell, we can carry out commands as the

superuser. When finished, enter exit to return to the previous shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a

new interactive command by using su this way:

su -c ‘command’

Using this form, a single command line is passed to the new shell for

execution. It is important to enclose the command in quotes, as we do not

want expansion to occur in our shell but rather in the new shell:

[me@linuxbox ~]$ su -c ‘ls -1 /root/*'
Password:
-IW------- 1 root root 754 2011-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0

[me@linuxbox ~]$

sudo—Execute a Command as Another User

The sudo command is like su in many ways but has some important addi-

tional capabilities. The administrator can configure sudo to allow an ordin-

ary user to execute commands as a different user (usually the superuser) in

a very controlled way. In particular, a user may be restricted to one or more

specific commands and no others. Another important difference is that the

use of sudo does not require access to the superuser’s password. To authen-

ticate using sudo, the user enters his own password. Let’s say, for example,

that sudo has been configured to allow us to run a fictitious backup program

called backup_script, which requires superuser privileges.

With sudo it would be done like this:

[me@linuxbox ~]$ sudo backup script
Password:
System Backup Starting..

After entering the command, we are prompted for our password (not
the superuser’s), and once the authentication is complete, the specified

command is carried out. One important difference between su and sudo is
that sudo does not start a new shell, nor does it load another user’s environ-

ment. This means that commands do not need to be quoted any differently

than they would be without using sudo. Note that this behavior can be over-

ridden by specifying various options. See the sudo man page for details.

To see what privileges are granted by sudo, use the -1 option to list them:

[me@linuxbox ~]$ sudo -1
User me may run the following commands on this host:

(ALL) ALL

UBUNTU AND SUDO

One of the recurrent problems for regular users is how to perform certain tasks

that require superuser privileges. These tasks include installing and updating

software, editing system configuration files, and accessing devices. In the Win-

dows world, this is often done by giving users administrative privileges. This

allows users to perform these tasks. However, it also enables programs executed

by the user to have the same abilities. This is desirable in most cases, but it also

permits malware (malicious software) such as viruses to have free run of the

computer.

In the Unix world, there has always been a larger division between reg-

ular users and administrators, owing to the multiuser heritage of Unix. The

approach taken in Unix is to grant superuser privileges only when needed.

To do this, the su and sudo commands are commonly used.

Up until a few of years ago, most Linux distributions relied on su for this

purpose. su didn’t require the configuration that sudo required, and having

a root account is traditional in Unix. This introduced a problem. Users were

tempted to operate as root unnecessarily. In fact, some users operated their sys-

tems as the root user exclusively, because it does away with all those annoying

“permission denied” messages. This is how you reduce the security of a Linux

system to that of a Windows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,

Ubuntu disables logins to the root account (by failing to set a password for the

account) and instead uses sudo to grant superuser privileges. The initial user

account is granted full access to superuser privileges via sudo and may grant sim-

ilar powers to subsequent user accounts.

Permissions 89

90 Chapter 9

chown—Change File Owner and Group

The chown command is used to change the owner and group owner of a file

or directory. Superuser privileges are required to use this command. The

syntax of chown looks like this:

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending

on the first argument of the command. Table 9-7 lists some examples.

Table 9-7: chown Argument Examples

Argument __ Results

bob Changes the ownership of the file from its current owner to

user bob.

bob: users Changes the ownership of the file from its current owner to
user bob and changes the file group owner to group users.

:admins Changes the group owner to the group admins. The file owner
is unchanged.

bob: Change the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let’s say that we have two users: janet, who has access to superuser priv-

ileges, and tony, who does not. User janet wants to copy a file from her home

directory to the home directory of user tony. Since user janet wants tony to

be able to edit the file, janet changes the ownership of the copied file from

janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -1 ~tony/myfile.txt
-Iw-Y--r-- 1 root root 8031 2012-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -1 ~tony/myfile.txt
-rw-r--r-- 1 tony tony 8031 2012-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home

directory of user tony. Next, janet changes the ownership of the file from root

(a result of using sudo) to tony. Using the trailing colon in the first argument,

janet also changed the group ownership of the file to the login group of tony,
which happens to be group tony.

Notice that after the first use of sudo, janet was not prompted for her

password? This is because sudo, in most configurations, “trusts” you for sey-

eral minutes (until its timer runs out).

chgrp—Change Group Ownership

In older versions of Unix, the chown command changed only file ownership,
not group ownership. For that purpose a separate command, chgrp, was

used. It works much the same way as chown, except for being more limited.

Exercising Your Privileges

Now that we have learned how this permissions thing works, it’s time to

show it off. We are going to demonstrate the solution to a common problem

—setting up a shared directory. Let’s imagine that we have two users named

billand karen. They both have music CD collections and wish to set up a

shared directory, where they will each store their music files as Ogg Vorbis

or MP3. User bill has access to superuser privileges via sudo.

The first thing that needs to happen is the creation of a group that will

have both billand karen as members. Using GNOME’s graphical user man-

agement tool, dill creates a group called music and adds users bill and karen

to it, as shown in Figure 9-3.

SS Se Te pee

"Wew Group™

Basic Settings

Group name: |music |

Group ID: |2001

Group Members

|M william Shotts i

|) Guest Account 2

|= root

|Z Karen Shotts
{«] ut [>]

Figure 9-3: Creating a new group with GNOME

Next, bill creates the directory for the music files:

[bill@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since Dillis manipulating files outside his home directory, superuser

privileges are required. After the directory is created, it has the following

ownerships and permissions:

[bill@linuxbox ~]$ ls -1d /usr/local/share/Music

drwxr-xr-x 2 root root 4096 2012-03-21 18:05 /usr/local/share/Music

Permissions 91

92 Chapter 9

As we can see, the directory is owned by root and has 755 permissions.

To make this directory shareable, bill needs to change the group ownership

and the group permissions to allow writing:

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ 1s -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2012-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory

/usr/local/share/Music that is owned by root and allows read and write access

to group music. Group music has members bill and karen; thus billand karen

can create files in directory /usr/local/share/Music. Other users can list the

contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and dir-

ectories created within the Music directory will have the normal permissions

of the users b2ll and karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ 1s -1 /usr/local/share/Music
-yw-r--r-- 1 bill bill 0 2012-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is

0022, which prevents group members from writing files belonging to other

members of the group. This would not be a problem if the shared direct-

ory contained only files, but since this directory will store music and music

is usually organized in a hierarchy of artists and albums, members of the

group will need the ability to create files and directories inside directories

created by other members. We need to change the umask used by dill and

karen to 0002 instead.

Second, each file and directory created by one member will be set to the

primary group of the user, rather than the group music. This can be fixed by

setting the setgid bit on the directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ 1s -1d /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2012-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. Dill sets his

umask to 0002, removes the previous test file, and creates a new test file and

directory:

[bill@linuxbox ~]$ umask 0002
[bill@linuxbox ~]$ xm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ 1s -1 /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2012-03-24 20:24 test dir
-Yw-rw-r-- 1 bill music 0 2012-03-24 20:22 test file
[bill@linuxbox ~]$ ‘

——

Both files and directories are now created with the correct permissions
to allow all members of the group music to create files and directories inside
the Music directory.

The one remaining issue is umask. The necessary setting lasts only until

the end of the session and then must be reset. In Chapter 11, we'll look at

making the change to umask permanent.

Changing Your Password

The last topic we’ll cover in this chapter is setting passwords for yourself

(and for other users if you have access to superuser privileges). To set or

change a password, the passwd command is used. The command syntax

looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be

prompted for your old password and your new password:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This

means it will refuse to accept passwords that are too short, are too similar to

previous passwords, are dictionary words, or are too easily guessed:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
New UNIX password:
BAD PASSWORD: it is WAY too short
New UNIX password:
BAD PASSWORD: it is based on a dictionary word

If you have superuser privileges, you can specify a username as an argu-

ment to the passwd command to set the password for another user. Other

options are available to the superuser to allow account locking, password

expiration, and so on. See the passwd man page for details.

Permissions 93

stiew Seca fl dit
7 jo, —

(tema?

wit ul. gets

etna. 0

sed es pet Hs bo Tree Gye" ceateremedi- mines

att Weve ol (ih pitied Wares ih} ode 7 M1, ipscrwenpay 149, spol AL ite. el

icin, wy sone le | ene icky Bare be Oqpeciny
=e oo et Oe se ody eeghied Bee dAs =.»

' » > ooernay Hawatoet | hel
adi io 4 be Bee, (WEY ~ iereauay _

-_ ——: or Nwee thc. 105 patent: Aue Jad

t us ft Ay Dred bs ag? BF
uit tah pave’ eit! WA Yew , PVRs it va Tee 5 ay Ta a im, pe 2gTes ea hee 2 cara Ahared da
a yittha at ah ay ee ? ath et widen \'5° mall Hy nals ateel 4 Y &

we 7 Ae wel, Mawar i he 4, i aD ave sa Tad Pace oa 2

Lie ’ is haponga' 25h ‘aeuserit ie yr ead

aN
:

ms heipeteae Adare) iw hed ind ~ -
i hanee a "RM a iy

a, bis ql? 4 thi bel. 7¢ ai Qian ae. Qag i

' ev bore rie i nie may Gael Ye ated:
er ee eee ee 0 he Sileed ap

; ; sg OY 4FO8 TG pep a
s peNetTaln os Gray af Ot QR bie a

: pe , : = - rs > _
(Oui) & Ad VEO) TUK GA emeie ~bai) | Ore “ies > Sevieit « ing i] % a)

pra) tines fore 06) LAN Vg: aed louie oy Queen alt dr, uht : =
= <P Ee Step _ ni

si j ives pi A Woite sof Wey) wie fi at, tr! wa Th ee

J Hy Vg, tell Dati be i) , oe iit ‘th sehibe Wa ater tw

’ an the8 ei) roca hwee treat

10
PROCESSES

Modern operating systems are usually multitasking,

meaning that they create the illusion of doing more

than one thing at once by rapidly switching from one

executing program to another. The Linux kernel

manages this through the use of processes. Processes

are how Linux organizes the different programs wait-
ing for their turn at the CPU.

Sometimes a computer will become sluggish, or an application will stop

responding. In this chapter, we will look at some of the tools available at the

command line that let us examine what programs are doing and how to ter-

minate processes that are misbehaving.

This chapter will introduce the following commands:

e ps—Report a snapshot of current processes.

e top—Display tasks.

e jobs—List active jobs.

e bg—Place a job in the background.

e g—Place a job in the foreground.

e kill—Send a signal to a process.

e killall—Kill processes by name.

How a Process Works

When a system starts up, the kernel initiates a few of its own activities as pro-

cesses and launches a program called init. init, in turn, runs a series of shell

scripts (located in /etc) called init scripts, which start all the system services.

Many of these services are implemented as daemon programs, programs that

just sit in the background and do their thing without having any user inter-

face. So even if we are not logged in, the system is at least a little busy per-

forming routine stuff.
The fact that a program can launch other programs is expressed in the

process scheme as a parent process producing a child process.

The kernel maintains information about each process to help keep

things organized. For example, each process is assigned a number called a

process ID (PID). PIDs are assigned in ascending order, with init always get-

ting PID 1. The kernel also keeps track of the memory assigned to each

process, as well as the processes’ readiness to resume execution. Like files,

processes also have owners and user IDs, effective user IDs, and so on.

Viewing Processes with ps

The most commonly used command to view processes (there are several)

is ps. The ps program has a lot of options, but in it simplest form it is used

like this:

[me@linuxbox ~]$ ps
PID TTY TIME CMD

5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes: process 5198 and

process 10129, which are bash and ps respectively. As we can see, by default

ps doesn’t show us very much, just the processes associated with the current

terminal session. To see more, we need to add some options, but before we

do that, let’s look at the other fields produced by ps. TTY is short for ‘teletype

and refers to the controlling terminal for the process. Unix is showing its age
here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

96 Chapter 10

If we add an option, we can get a bigger picture of what the system is
doing:

[me@linuxbox ~]$ ps x
PIDPTTY STAT TIME COMMAND

2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server -ac
2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --

15647 ? Ss 0:00 /bin/sh /usr/bin/startkde
T5751) ¢ Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 -pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s -daemon
15793 ? Ss 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running...
15797 ? S 0:00 dcopserver -nosid

and many more...

Adding the x option (note that there is no leading dash) tells ps to show

all of our processes regardless of what terminal (if any) they are controlled

by. The presence of a ? in the TTY column indicates no controlling terminal.

Using this option, we see a list of every process that we own.

Since the system is running a lot of processes, ps produces a long list. It

is often helpful to pipe the output from ps into less for easier viewing. Some

option combinations also produce long lines of output, so maximizing the

terminal emulator window may be a good idea, too.

A new column titled STAT has been added to the output. STAT is short for

state and reveals the current status of the process, as shown in Table 10-1.

Table 10-1: Process States

State § Meaning

R Running. The process is running or ready to run.

S Sleeping. The process is not running; rather, it is waiting for an event,
such as a keystroke or network packet.

D Uninterruptible sleep. Process is waiting for |/O such as a disk drive.

T Stopped. Process has been instructed to stop (more on this later).

Z A defunct or “zombie” process. This is a child process that has
terminated but has not been cleaned up by its parent.

< A high-priority process. It’s possible to grant more importance to a

process, giving it more time on the CPU. This property of a process is
called niceness. A process with high priority is said to be less nice

because it’s taking more of the CPU’s time, which leaves less for

everybody else.

N A low-priority process. A process with low priority (a nice process)

will get processor time only after other processes with higher priority

have been serviced.

Processes 97

98 Chapter 10

The process state may be followed by other characters. These indicate

various exotic process characteristics. See the ps man page for more detail.

Another popular set of options is aux (without a leading dash). This

gives us even more information:

[me@linuxbox ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START = TIME COMMAND
root OO m0 OME 3 Om AA mar Ss Mar0O5 0:31 init
root 2a OVOmnO nO 0 0? S< Mar05 0:00 [kt]
root 3 0.0 0.0 0 (a) % S< Mar05 0:00 [mi]
root AmnO CMOS 0 0 Ong S< Mar05 0:00 [ks]
root SO OMEOLO 0 0? S< Mar0S5 0:06 [wa]
root Gur On OmmO nO 0 Os S< MarOS 0:36 [ev]
root Tan OO RO 0 0? S< Mar05 0:00 [kh]

and many more...

This set of options displays the processes belonging to every user. Using

the options without the leading dash invokes the command with “BSD-style”

behavior. The Linux version of ps can emulate the behavior of the ps pro-

gram found in several Unix implementations. With these options, we get the

additional columns shown in Table 10-2.

Table 10-2: BSD-Style ps Column Headers

USER ake ID. This is the owner of the process.

*CPU CPU usage as a percent.

*MEM Memory usage as a percent.

VSZ Virtual memory size.

RSS Resident Set Size. The emu of physical memory (RAM) the
process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date
is used.

Viewing Processes Dynamically with top

While the ps command can reveal a lot about what the machine is doing, it
provides only a snapshot of the machine’s state at the moment the ps com-
mand is executed. To see a more dynamic view of the machine’s activity, we

use the top command:

[me@linuxbox ~]$ top

The top program displays a continuously updating (by default, every
3 seconds) display of the system processes listed in order of process activity.

Its name comes from the fact that the top program is used to see the “top”
processes on the system. The top display consists of two parts: a system sum-
mary at the top of the display, followed by a table of processes sorted by
CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00

Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, O.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND)

6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd

11071 me 20 O 2304 1092 840R 1.3 0.3 0:00.14 top

6180 me 20 O 2700 1100 772 S 0.7 0.3 0:03.66 dbus-dae
6321 me 20 0 20944 7248 6560S 0.7 2.3 2:51.38 multiloa
4955 root 20 O 104m 9668 5776S 0.3 3.0 2:19.39 Xorg

1 root 20 Ole 9700 520 Ayo SOON Oo2 nO 703.14 71N Lt
2 root A SS 0 0 0S 0.0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 0S 0.0 0.0 0:00.00 migratio
4 root ee es 0 0 0S 0.0 0.0 0:00.72 ksoftirg
5 root RT -5 0 0 0S 0.0 0.0 0:00.04 watchdog
6 root 15a) 0 0 0S 0.0 0.0 0:00.42 events/0
7 root 15 -5 0 0 0S 0.0 0.0 0:00.06 khelper

41 root aD 0 0 0S 0.0 0.0 0:01.08 kblockd/

67 root 1 0 0 0S 0.0 0.0 0:00.00 kseriod
114 root 20°) 0 0 0 0S 0.0 0.0 0:01.62 pdflush

116 root 15 -5 0 0 0S 0.0 0.0 0:02.44 kswapdo

The system summary contains a lot of good stuff; see Table 10-3 for a

rundown.

Table 10-3: top Information Fields

Row Field __ Meaning

1 top Name of the program.

14:59:20 Current time of day.

up 6:30 This is called uptime. It is the amount of time since
the machine was last booted. In this example, the
system has been up for 6¥2 hours.

2 users Two users are logged in.

load average: Load average refers to the number of processes

that are waiting to run; that is, the number of pro-

cesses that are in a runnable state and are sharing
the CPU. Three values are shown, each for a differ-

ent period of time. The first is the average for the
last 60 seconds, the next the previous 5 minutes,

and finally the previous 15 minutes. Values under

1.0 indicate that the machine is not busy.

(continued)

Processes 99

Table 10-3 (continued)

Row Field Meaning

2 Tasks: This summarizes the number of processes and their
various process states.

3 Cpu(s): This row describes the character of the activities
that the CPU is performing.

0.7%us 0.7% of the CPU is being used for user processes.
This means processes outside of the kernel itself.

1.0%sy 1.0% of the CPU is being used for system (kernel)

processes.

0.0%ni 0.0% of the CPU is being used by nice (low-priority)

processes.

98.3%id 98.3% of the CPU is idle.

0.0%wa 0.0% of the CPU is waiting for I/O.

4 Mem: Shows how physical RAM is being used.

= Swap: Shows how swap space (virtual memory) is

being used.

The top program accepts a number of keyboard commands. The two

most interesting are h, which displays the program’s help screen, and q,

which quits top.

Both major desktop environments provide graphical applications that

display information similar to top (in much the same way that Task Manager

in Windows does), but I find that top is better than the graphical versions

because it is faster and consumes far fewer system resources. After all, our

system monitor program shouldn’t add to the system slowdown that we are

trying to track.

Controlling Processes

Now that we can see and monitor processes, let’s gain some control over

them. For our experiments, we’re going to use a little program called xlogo

as our guinea pig. The xlogo program is a sample program supplied with the

X Window System (the underlying engine that makes the graphics on our

display go), which simply displays a resizable window containing the X logo.
First, we'll get to know our test subject:

[me@linuxbox ~]$ xlogo

100 = Chapter 10

Note:

After we enter the command, a small window containing the logo
should appear somewhere on the screen. On some systems, xlogo may
print a warning message, but it may be safely ignored.

If your system does not include the xlogo program, try using gedit or kwrite instead.

We can verify that xlogo is running by resizing its window. If the logo is
redrawn in the new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell

is waiting for the program to finish, just like all the other programs we have

used so far. If we close the xlogo window, the prompt returns.

Interrupting a Process

Let s observe what happens when we run xlogo again. First, enter the xlogo

command and verify that the program is running. Next, return to the termi-
nal window and press CTRL-C.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$

In a terminal, pressing CTRL-C interrupts a program. This means that we

politely asked the program to terminate. After we pressed CTRL-C, the xlogo

window closed and the shell prompt returned.

Many (but not all) command-line programs can be interrupted by using

this technique.

Putting a Process in the Background

Let s say we wanted to get the shell prompt back without terminating the

xlogo program. We ll do this by placing the program in the background.

Think of the terminal as having a foreground (with stuff visible on the sur-

face, like the shell prompt) and a background (with hidden stuff below the

surface). To launch a program so that it is immediately placed in the back-

ground, we follow the command with an ampersand character (8):

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$

After the command was entered, the xlogo window appeared and the

shell prompt returned, but some funny numbers were printed too. This

message is part of a shell feature called job control. With this message, the

shell is telling us that we have started job number | ([{1]) and that it has PID

28236. If we run ps, we Can see Our process:

[me@linuxbox ~]$ ps
PID TTY TIME CMD

10603 pts/1 00:00:00 bash

Processes 101

102 Chapter 10

28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

The shell s job control facility also gives us a way to list the jobs that have

been launched from our terminal. Using the jobs command, we can see the

following list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered 1, that it is running,

and that the command was xlogo &.

Returning a Process to the Foreground

A process in the background is immune from keyboard input, including any

attempt to interrupt it with a CTRL-C. To return a process to the foreground,

use the fg command, as in this example:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1
xlogo

The command fg followed by a percent sign and the job number (called

a jobspec) does the trick. If we have only one background job, the jobspec is

optional. To terminate xlogo, type CTRL-C.

Stopping (Pausing) a Process

Sometimes we Il want to stop a process without terminating it. This is often

done to allow a foreground process to be moved to the background. To stop

a foreground process, type CTRL-Z. Let s try it. At the command prompt, type

xlogo, press the ENTER key, and then type CTRL-Z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$

After stopping xlogo, we can verify that the program has stopped by

attempting to resize the xlogo window. We will see that it appears quite

dead. We can either restore the program to the foreground, using the fg

command, or move the program to the background with the bg command:

[me@linuxbox ~]$ bg %1
[1]+ xlogo &
[me@linuxbox ~]$

As with the fg command, the jobspec is optional if there is only one job.

Moving a process from the foreground to the background is handy if we
launch a graphical program from the command but forget to place it in the
background by appending the trailing &.

Why would you want to launch a graphical program from the com-
mand line? There are two reasons. First, the program you wish to run might
not be listed on the window manager s menus (such as xlogo).

Second, by launching a program from the command line, you might be

able to see error messages that would be invisible if the program were launched

graphically. Sometimes, a program will fail to start up when launched from

the graphical menu. By launching it from the command line instead, we may

see an error message that will reveal the problem. Also, some graphical pro-

grams have many interesting and useful command-line options.

Signals

The kill command is used to kill (terminate) processes. This allows us to

end the execution of a program that is behaving badly or otherwise refuses

to terminate on its own. Here s an example:

[me@linuxbox ~]$ xlogo &
[1] 28401
[me@linuxbox ~]$ kill 28401
{[1]+ Terminated xlogo

We first launch xlogo in the background. The shell prints the jobspec and

the PID of the background process. Next, we use the kill command and spec-

ify the PID of the process we want to terminate. We could also have specified

the process using a jobspec (for example, %1) instead of a PID.

While this is all very straightforward, there is more to it. The kill com-

mand doesn t exactly kill processes; rather it sends them szgnals. Signals

are one of several ways that the operating system communicates with pro-

grams. We have already seen signals in action with the use of cTRL-C and

cTri-Z. When the terminal receives one of these keystrokes, it sends a signal

to the program in the foreground. In the case of cTrL-G, a signal called INT

(Interrupt) is sent; with CTRL-Z, a signal called TSTP (Terminal Stop) is sent.

Programs, in turn, listen for signals and may act upon them as they are

received. The fact that a program can listen and act upon signals allows it

to do things like save work in progress when it is sent a termination signal.

Sending Signals to Processes with kill

The most common syntax for the kill command looks like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (Termi-

nate) signal is sent by default. The kill command is most often used to send

the signals shown in Table 10-4.

Processes 103

Table 10-4: Common Signals

Number Name Meaning

1 HUP Hang up. This is a vestige of the good old days
when terminals were attached to remote computers

with phone lines and modems. The signal is used
to indicate to programs that the controlling ter-
minal has “hung up.” The effect of this signal can
be demonstrated by closing a terminal session.
The foreground program running on the terminal
will be sent the signal and will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means

that when a daemon is sent this signal, it will
restart and reread its configuration file. The

Apache web server is an example of a daemon
that uses the HUP signal in this way.

2 INT Interrupt. Performs the same function as the cTRrI-C

key sent from the terminal. It will usually terminate
a program.

9 KILL Kill. This signal is special. Whereas programs may
choose to handle signals sent to them in different
ways, including by ignoring them altogether, the
KILL signal is never actually sent to the target

program. Rather, the kernel immediately termin-
ates the process. When a process is terminated in
this manner, it is given no opportunity to “clean

up” after itself or save its work. For this reason, the

KILL signal should be used only as a last resort
when other termination signals fail.

15 TERM Terminate. This is the default signal sent by

the kill command. If a program is still “alive”
enough to receive signals, it will terminate.

18 CONT Continue. This will restore a process after a STOP
signal.

19 STOP Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is not
sent to the target process, and thus it cannot be
ignored.

104 Chapter 10

Let’s try out the kill command:

[me@linuxbox ~]$ xlogo &
[1] 13546
[me@linuxbox ~]$ kill -1 13546
[1]+ Hangup xlogo

In this example, we start the xlogo program in the background and then

send it a HUP signal with kill. The xlogo program terminates, and the shell

indicates that the background process has received a hangup signal. You

may need to press the ENTER key a couple of times before you see the mes-

sage. Note that signals may be specified either by number or by name,

including the name prefixed with the letters S/G:

[me@linuxbox ~]$ xlogo &
[1] 13601
[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &
[1] 13608
[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try out the other signals. Remember, you

can alse use jobspecs in place of PIDs.

Processes, like files, have owners, and you must be the owner of a pro-

cess (or the superuser) in order to send it signals with kill.

In addition to the signals listed in Table 10-4, which are most often used

with kill, other signals are frequently used by the system. Table 10-5 lists the

other common signals.

Table 10-5: Other Common Signals

Number Name Meaning

3 QUIT Quit.

1% SEGV Segmentation violation. This signal is sent if a
program makes illegal use of memory; that is, it
tried to write somewhere it was not allowed to.

20 TSTP Terminal stop. This is the signal sent by the terminal

when crri-Z is pressed. Unlike the STOP signal, the

TSTP signal is received by the program but the pro-
gram may choose to ignore it.

28 WINCH Window change. This is a signal sent by the system

when a window changes size. Some programs,

like top and less, will respond to this signal by

redrawing themselves to fit the new window

dimensions.

Processes 105

For the curious, a complete list of signals can be seen with the following

command:

[me@linuxbox ~]$ kill -1

Sending Signals to Multiple Processes with killall

It’s also possible to send signals to multiple processes matching a specified

program or username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name...

To demonstrate, we will start a couple of instances of the xlogo program

and then terminate them:

[me@linuxbox ~]$ xlogo &
[1] 18801
[me@linuxbox ~]$ xlogo &
[2] 18802
[me@linuxbox ~]$ killall xlogo
[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send sig-

nals to processes that do not belong to you.

More Process-Related Commands

106 Chapter 10

Since monitoring processes is an important system administration task,

there are a lot of commands for it. Table 10-6 lists some to play with.

Table 10-6: Other Process-Related Commands

Command _ Description

pstree Outputs a process list arranged in a tree-like pattern showing
the parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including
memory, swap, and disk I/O. To see a continuous display,
follow the command with a time delay (in seconds) for updates

(e.g., vmstat 5). Terminate the output with crRi-C.

xload A graphical program that draws a graph showing system load
over time.

tload Similar to the xload program, but draws the graph in the

terminal. Terminate the output with cTRi-C.

PART 2
CONFIGURATION AND THE

ENVIRONMENT

THE ENVIRONMENT

As we discussed earlier, the shell maintains a body of

information during our shell session called the envi-

ronment. Data stored in the environment is used by

programs to determine facts about our configuration.
While most programs use configuration files to store program settings, some

programs will also look for values stored in the environment to adjust their

behavior. Knowing this, we can use the environment to customize our shell

experience.

In this chapter, we will work with the following commands:

e printenv—Print part or all of the environment.

e set—Set shell options.

e export—Export environment to subsequently executed programs.

e alias—Create an alias for a command.

What Is Stored in the Environment?

110 Chapter 11

The shell stores two basic types of data in the environment, although, with

bash, the types are largely indistinguishable. They are environment variables

and shell variables. Shell variables are bits of data placed there by bash, and

environment variables are basically everything else. In addition to variables,

the shell also stores some programmatic data, namely aliases and shell func-

tions. We covered aliases in Chapter 5, and shell functions (which are related

to shell scripting) will be covered in Part 4.

Examining the Environment

To see what is stored in the environment, we can use either the set built in

bash or the printenv program. The set command will show both the shell and

environment variables, while printenv will display only the latter. Since the

list of environment contents will be fairly long, it is best to pipe the output

of either command into less:

[me@linuxbox ~]$ printenv | less

Doing so, we should get something that looks like this:

KDE_MULTIHEAD=false
SSH_AGENT_PID=6666
HOSTNAME=1inuxbox
GPG_AGENT_INFO=/tmp/gpg-Pd0t7g/S.gpg-agent : 6689:1
SHELL=/bin/bash
TERM=xterm
XDG_MENU_PREFIX=kde-
HISTSIZE=1000
XDG_SESSTON_COOKIE=6d7b05c65846c3eaf3101b0046bd2b00-1208521990.996705-11770561
99
GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/me/.gtkrc-2.0:/home/me/.kde/share/confi
g/gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc: /home/me/.gtkrc:/home/me/.kde/share/config/gtkrc
GS_LIB=/home/me/.fonts
WINDOWID=29360136

QTDIR=/usr/lib/qt-3.3
QTINC=/usr/1lib/qt-3.3/include
KDE_FULL_SESSTON=true
USER=me
LS_COLORS=no=00: f1=00: di=00; 34: 1n=00; 36: pi=40; 33: So=00; 35: bd=40; 33 ;01:cd=40; 33
301: 0r=01305;37;41:mi=01;05;37;41:ex=00; 32:*.cmd=00;32:*.exe:

What we see is a list of environment variables and their values. For
example, we see a variable called USER, which contains the value me. The
printenv command can also list the value of a specific variable:

[me@linuxbox ~]$ printenv USER
me

The set command, when used without options or arguments, will dis-
play both the shell and environment variables, as well as any defined shell
functions.

[me@linuxbox ~]$ set | less

Unlike printenvy, its output is courteously sorted in alphabetical order.
It is also possible to view the contents of a single variable using the echo

command, like this:

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is

aliases. To see them, enter the alias command without arguments:

[me@linuxbox ~]$ alias
alias 1.='ls -d .* --color=tty'
alias ll='ls -1 --color=tty'
alias ls='ls --color=tty'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-
tilde'

Some Interesting Variables

The environment contains quite a few variables, and though your environ-

ment may differ from the one presented here, you will likely see the vari-

ables shown in Table 11-1 in your environment.

Table 11-1: Environment Variables

Variable Contents _

DISPLAY The name of your display if you are running a graphical
environment. Usually this is :0, meaning the first display

generated by the X server.

EDITOR The name of the program to be used for text editing.

SHELL The name of your shell program.

HOME The pathname of your home directory.

LANG Defines the character set and collation order of your language.

OLD_PWD The previous working directory.

PAGER The name of the program to be used for paging output. This is

often set to /usr/bin/less.

PATH A colon-separated list of directories that are searched when you

enter the name of an executable program.

(continued)

The Environment I11

Table 11-1 (continued)

Variable Contents

PS1 Prompt String 1. This defines the contents of your shell prompt.

As we will later see, this can be extensively customized.

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used

with your terminal emulator.

IZ Specifies your time zone. Most Unix-like systems maintain the

computer's internal clock in Coordinated Universal Time (UTC)

and then display the local time by applying an offset specified

by this variable.

USER Your username.

Don’t worry if some of these values are missing. They vary by

distribution.

How Is the Environment Established?

112 Chapter 11

When we log on to the system, the bash program starts and reads a series

of configuration scripts called startup files, which define the default envi-

ronment shared by all users. This is followed by more startup files in our

home directory that define our personal environment. The exact sequence

depends on the type of shell session being started.

Login and Non-login Shells

There are two kinds of shell sessions: a login shell session and a non-login

shell session.

A login shell session is one in which we are prompted for our username and

password; for example, when we start a virtual console session. A non-login

shell session typically occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files, as shown in Table 11-2.

Table 11-2: Startup Files for Login Shell Sessions

File Contents _ |
/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

Table 11-2 (continued)

File — Contents

~/.bash_login If ~/.bash_profile is not found, bash attempts to read this
script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login is found, bash

attempts to read this file. This is the default in Debian-based
distributions, such as Ubuntu.

Non-login shell sessions read the startup files as shown in Table 11-3.

Table 11-3: Startup Files for Non-Login Shell Sessions

File “Contents. oo .

/etc/bash.bashre A global configuration script that applies to all users.

~/.bashre A user's personal startup file. Can be used to extend or

override settings in the global configuration script.

In addition to reading the startup files above, non-login shells inherit

the environment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have.

Remember: Since most of the filenames listed above start with a period

(meaning that they are hidden), you will need to use the -a option when

using ls.

The ~/.bashrc file is probably the most important startup file from the

ordinary user’s point of view, since it is almost always read. Non-login shells

read it by default, and most startup files for login shells are written in such a

way as to read the ~/.bashrc file as well.

What’s in a Startup File?

If we take a look inside a typical .bash_profile (taken from a CentOS system),

it looks something like this:

.bash_profile

Get the aliases and functions

if [| -¢.~/.bashrc.]; then
DASE

fi

User specific environment and startup programs

PATH=$PATH: $HOME/bin
export PATH

The Environment 113

Note:

114) Chapter 11

Lines that begin with a # are comments and are not read by the shell.

These are there for human readability. The first interesting thing occurs

on the fourth line, with the following code:

if [-f ~/.bashre]; then
. ~/.bashre

fi

This is called an if compound command, which we will cover fully when we

get to shell scripting in Part 4, but for now we will translate:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of

.bashrc. The next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we

enter them on the command line? For example, when we enter 1s, the shell

does not search the entire computer to find /bin/Is (the full pathname of

the 1s command); rather, it searches a list of directories that are contained

in the PATH variable.

The PATH variable is often (but not always, depending on the distribu-

tion) set by the /etc/profile startup file and with this code:

PATH=$PATH: $HOME/bin

PATH is modified to add the directory SHOME/bin to the end of the

list. This is an example of parameter expansion, which we touched on in

Chapter 7. To demonstrate how this works, try the following:

[me@linuxbox ~]$ foo="This is some"
[me@linuxbox ~]$ echo $foo
This is some
[me@linuxbox ~]$ foo=$foo" text."
[me@linuxbox ~]$ echo $foo
This is some text.

Using this technique, we can append text to the end of a variable’s
contents.

By adding the string $HOME/bin to the end of the PATH variable’s contents,

the directory BHOME/bin is added to the list of directories searched when a

command is entered. This means that when we want to create a directory

within our home directory for storing our own private programs, the shell
is ready to accommodate us. All we have to do is call it bin, and we’re ready
to go.

Many distributions provide this PATH setting by default. Some Debian-based distribu-
tions, such as Ubuntu, test for the existence of the~/bin directory at login and

dynamically add it to the PATH variable if the directory is found.

Lastly, we have this:

export PATH

The export command tells the shell to make the contents of PATH avail-
able to child processes of this shell.

Modifying the Environment
Since we know where the startup files are and what they contain, we can

modify them to customize our environment.

Which Files Should We Modify?

As a general rule, to add directories to your PATH or define additional envi-

ronment variables, place those changes in .bash_profile (or equivalent,

according to your distribution—for example, Ubuntu uses . profile). For

everything else, place the changes in .bashrc. Unless you are the system

administrator and need to change the defaults for all users of the system,

restrict your modifications to the files in your home directory. It is certainly

possible to change the files in /etc such as profile, and in many cases it would

be sensible to do so, but for now let’s play it safe.

Text Editors

To edit (i.e., modify) the shell’s startup files, as well as most of the other

configuration files on the system, we use a program called a text editor A

text editor is a program that is, in some ways, like a word processor in that

it allows you to edit the words on the screen with a moving cursor. It differs

from a word processor by supporting only pure text, and it often contains

features designed for writing programs. Text editors are the central tool

used by software developers to write code and by system administrators to

manage the configuration files that control the system.

A lot of text editors are available for Linux; your system probably has

several installed. Why so many different ones? Probably because program-

mers like writing them, and since programmers use editors extensively, they

like to express their own desires as to how editors should work.

Text editors fall into two basic categories: graphical and text based.

GNOME and KDE both include some popular graphical editors. GNOME

ships with an editor called gedit, which is usually called Text Editor in

the GNOME menu. KDE usually ships with three, which are (in order of

increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter

are nano, vi, and emacs. The nano editor is a simple, easy-to-use editor designed

as a replacement for the pico editor supplied with the PINE email suite. The

vi editor (on most Linux systems replaced by a program named vim, which is

short for Vi [Mproved) is the traditional editor for Unix-like systems. It is the

The Environment I15

116 Chapter 11

subject of Chapter 12. The emacs editor was originally written by Richard

Stallman. It is a gigantic, all-purpose, does-everything programming environ-

ment. Though readily available, it is seldom installed on most Linux systems

by default.

Using a Text Editor

All text editors can be invoked from the command line by typing the name

of the editor followed by the name of the file you want to edit. If the file

does not already exist, the editor will assume that you want to create a new

file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named

some_file, if it exists.

All graphical text editors are pretty self-explanatory, so we won’t cover

them here. Instead, we will concentrate on our first text-based text editor,

nano. Let’s fire up nano and edit the .bashrc file. But before we do that, let’s

practice some safe computing. Whenever we edit an important configura-

tion file, it is always a good idea to create a backup copy of the file first. This

protects us in case we mess the file up while editing. To create a backup of

the .bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn’t matter what you call the backup file; just pick an understand-

able name. The extensions .bak, .sav, .old, and .orig are all popular ways of

indicating a backup file. Oh, and remember that cp will overwrite existing files
silently.

Now that we have a backup file, we’ll start the editor:

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

User specific aliases and functions

[Read 8 lines]
“G Get Help*O WriteOut*R Read Fil*Y Prev Pag*K Cut Text*C Cur Pos
oXSEXit “J Justify ‘W Where Is*V Next Pag*U UnCut Te*T To Spell

Note:

Note:

If your system does not have nano installed, you may use a graphical editor instead.

The screen consists of a header at the top, the text of the file being
edited in the middle, and a menu of commands at the bottom. Since nano

was designed to replace the text editor supplied with an email client, it is

rather short on editing features.

The first command you should learn in any text editor is how to exit the

program. In the case of nano, you press CTRL-X to exit. This is indicated in

the menu at the bottom of the screen. The notation “X means CTRL-X. This is

a common notation for the control characters used by many programs.

The second command we need to know is how to save our work. With

nano it’s crRL-O. With this knowledge under our belts, we’re ready to do

some editing. Using the down-arrow key and/or the page-down key, move

the cursor to the end of the file, and then add the following lines to the

.bashre file:

umask 0002

export HISTCONTROL=ignoredups
export HISTSIZE=1000
alias l.='ls -d .* --color=auto'
alias ll='1ls -1 --color=auto'

Your distribution may already include some of these, but duplicates won't hurt

anything.

Table 11-4 lists the meanings of our additions.

Table 11-4: Additions to Our .bashrc File

Line | Meaning

Umask 0002 Sets the umask to solve the problem with
shared directories we discussed in

Chapter 9.

export HISTCONTROL=ignoredups Causes the shell’s history recording

feature to ignore a command if the same

command was just recorded.

export HISTSIZE=1000 Increases the size of the command history

from the default of 500 lines to 1000

lines.

alias l.='ls -d .* --color=auto' Creates a new command called 1.,

which displays all directory entries that

begin with a dot.

alias ll='ls -1 -color=auto' Creates a new command called 11,

which displays a long-format directory

listing.

The Environment 117

118 Chapter 11

As we can see, many of our additions are not intuitively obvious, so it

would be a good idea to add some comments to our .bashrc file to help

explain things to the humans. Using the editor, change our additions to

look like this:

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines
export HISTCONTROL=ignoredups
export HISTSIZE=1000

Add some helpful aliases
alias l.='ls -d .* --color=auto'

alias ll='1ls -1 --color=auto'

Ah, much better! With our changes complete, press CTRL-O to save our

modified .bashrc file and CTRL-X to exit nano.

Activating Our Changes

The changes we have made to our .bashrc will not take effect until we close

our terminal session and start a new one, because the .bashrc file is only read

at the beginning of a session. However, we can force bash to reread the mod-

ified .bashre file with the following command:

[me@linuxbox ~]$ source .bashrc

After doing this, we should be able to see the effect of our changes. Try

out one of the new aliases:

[me@linuxbox ~]$ 11

WHY COMMENTS ARE IMPORTANT

Wagaeie: you modify configuration files, it’s a good idea to add some com-

“ments to document your changes. Sure, you will remember what you changed -

tomorrow, but what about s six mc S from. now? Do yourselfafavorandadd

- some comments. While you’ ‘ s not a bad idea to keep a log of what
changes you make. —

Shell scripts and bash startup 2s use a # symbol to begin a comment.

Other configuration files may use other symbols. Most configuration files will

have comments. Use them as a guide. ee -

You will often see lines in configuration files that are commented out to pre-
vent them from being used by the affected program. This i is done to give the

: Sie ey oe possible oe choices or examples a correct

Final Note

In this chapter we learned an essential skill—editing configuration files with
a text editor. Moving forward, as we read man pages for commands, take

note of the environment variables that commands support. There may be a

gem or two. In later chapters we will learn about shell functions, a powerful
feature that you can also include in the bash startup files to add to your

arsenal of custom commands.

¥ : Oe eer St ei The Environment 119

a -

- i Paull ingr nee) a0 Care| ee 4 i? eon iw repel be 6 opgpw’? a@4p 101
; a ie dun 5 WA: Gauge, é ee y ee be oh? Gis lew &

‘ cy <p Po ae . cet Viper. 7 7 ae see q eel = 6

hie ae wih “oF — Wy =?

wil <alty Spaerd Paes Sy ak ; fo Saas
? v

oe =)? ae san
~ wee tm

‘

at

*

. i> :

. a

> =
<4 rl

yi ¢

7
e@

; o)

a & 2 iG Ors
= ‘ -

Sl 7

A GENTLE INTRODUCTION

TO VI

There is an old joke about a visitor to New York City

asking a passerby for directions to the city’s famous
classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?

Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished

pianist, is not something that we pick up in an afternoon. It takes years of

practice. In this chapter, we will introduce the vi (pronounced “vee eye”)

text editor, one of the core programs in the Unix tradition. vi is somewhat

notorious for its difficult user interface, but when we see a master sit down

at the keyboard and begin to “play,” we will indeed be witness to some great

art. We won’t become masters in this chapter, but when we are done, we will

know how to play “Chopsticks” in vi.

Why We Should Learn vi

In this modern age of graphical editors and easy-to-use text-based editors

such as nano, why should we learn vi? There are three good reasons:

e vi is always available. This can be a lifesaver if we have a system with

no graphical interface, such as a remote server or a local system with a

broken X configuration. nano, while increasingly popular, is still not uni-

versal. POSIX, a standard for program compatibility on Unix systems,

requires that vi be present.

e vi is lightweight and fast. For many tasks, it’s easier to bring up vi than it

is to find the graphical text editor in the menus and wait for its multiple

megabytes to load. In addition, vi is designed for typing speed. As we

shall see, a skilled vi user never has to lift his or her fingers from the

keyboard while editing.

e Wedon’t want other Linux and Unix users to think we are sissies.

Okay, maybe two good reasons.

A Little Background
The first version of vi was written in 1976 by Bill Joy, a University of Califor-

nia, Berkeley student who later went on to co-found Sun Microsystems. vi

derives its name from the word visual, because it was intended to allow edit-

ing on a video terminal with a moving cursor. Before visual editors there

were line editors, which operated on a single line of text at a time. To specify

a change, we tell a line editor to go to a particular line and describe what

change to make, such as adding or deleting text. With the advent of video

terminals (rather than printer-based terminals like teletypes), visual editing

became possible. vi actually incorporates a powerful line editor called ex,

and we can use line-editing commands while using vi.

Most Linux distributions don’t include real vi; rather, they ship with an

enhanced replacement called vim (which is short for Vi [Mproved) written by

Bram Moolenaar. vim is a substantial improvement over traditional Unix vi

and is usually symbolically linked (or aliased) to the name vi on Linux sys-
tems. In the discussions that follow, we will assume that we have a program

called vi that is really vim.

Starting and Stopping vi

To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

122 Chapter 12

Note:

_ Editing

A screen like this should appear:

VIM - Vi Improved

version 7.1.138
by Bram Moolenaar et al.

Vim is open source and freely distributable

Sponsor Vim development!
type :help sponsor<Enter> for information

type :q<Enter> to exit
type :help<Enter> or <F1> for on-line help
type :help version7<Enter> for version info

Running in Vi compatible mode
type :set nocp<Enter> for Vim defaults
type :help cp-default<Enter> for info on this

Just as we did with nano earlier, the first thing to learn is how to exit. To

exit, we enter the following command (note that the colon character is part

of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit

(usually because we made a change to a file that has not yet been saved),

we can tell vi that we really mean it by adding an exclamation point to the

command:

:q!

Tf you get “lost” in vi, try pressing the ESC key twice to find your way again.

Modes

Let’s start up vi again, this time passing to it the name of a nonexistent file.

This is how we can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

A Gentle Introduction to vi 123

If all goes well, we should get a screen like this:

"foo.txt" [New File]

The leading tilde characters (~) indicate that no text exists on that line.

This shows that we have an empty file. Do not type anything yet!

The second most important thing to learn about vi (after learning how

to exit) is that vi is a modal editor. When vi starts up, it begins in command

mode. In this mode, almost every key is a command, so if we were to start typ-

ing, vi would basically go crazy and make a big mess.

Entering Insert Mode

In order to add some text to our file, we must first enter insert mode. To do

this, we press the I key (i). Afterward, we should see the following at the bot-

tom of the screen if vim is running in its usual enhanced mode (this will not

appear in vi-compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.

To exit insert mode and return to command mode, press the Esc key.

Saving Our Work

To save the change we just made to our file, we must enter an ex command

while in command mode. This is easily done by pressing the : key. After

doing this, a colon character should appear at the bottom of the screen:

124 Chapter 12

To write our modified file, we follow the colon with aw, then ENTER:

The file will be written to the hard drive, and we should get a confirma-
tion message at the bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

Note: /f you read the vim documentation, you will notice that (confusingly) command mode
as called normal mode and ex commands are called command mode. Beware.

COMPATIBILITY MODE

In the example startup screen shown at the beginning of this section (taken

from Ubuntu 8.04), we see the text Running in Vi compatible mode. This means

that vim will run in a mode that is closer to the normal behavior of vi rather

than the enhanced behavior of vim. For purposes of this chapter, we will want

to run vim with its enhanced behavior. To do this, you have a couple of options:

e Tryrunning vin instead of vi (if that works, consider adding alias vi='vim'

to your .bashrc file).

e Use this command to add a line to your vim configuration file:

echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distribu-

tions install a minimal version of vim by default that supports only a limited set

of vim features. While performing the lessons that follow, you may encounter

missing features. If this is the case, install the full version of vim.

Moving the Cursor Around
While it is in command mode, vi offers a large number of movement com-

mands, some of which it shares with less. Table 12-1 lists a subset.

Table 12-1: Cursor Movement Keys

Key Moves the cursor

L or right arrow Right one character

H or left arrow Left one character

J or down arrow Down one line

K or up arrow Up one line

(continued)

A Gentle Introduction tovi 125

Table 12-1 (continued)

Key

O (zero)

SHIFT-6 (4)

SHIFT-4 ($)

W

SHIFT-W (W)

SHIFT-B (B)

CTRL-F or PAGE DOWN

CTRL-B or PAGE UP

number-sHIFT-G

SHIFT-G (G)

Moves the cursor

To the beginning of the current line

To the first non-whitespace character on the current line

To the end of the current line

To the beginning of the next word or punctuation

character

To the beginning of the next word, ignoring punctu

ation characters

To the beginning of the previous word or punctuation

character

To the beginning of the previous word, ignoring

punctuation characters

Down one page

Up one page

To line number (for example, 1G moves to the first line

of the file)

To the last line of the file

Why are the H, J, K, and L keys used for cursor movement? Because

when vi was originally written, not all video terminals had arrow keys, and

skilled typists could use regular keyboard keys to move the cursor without

ever having to lift their fingers from the keyboard.

Many commands in vi can be prefixed with a number, as with the G

command listed in Table 12-1. By prefixing a command with a number,

we may specify the number of times a command is to be carried out. For

example, the command 5j causes vi to move the cursor down five lines.

Basic Editing

126 Chapter 12

Most editing consists of a few basic operations such as inserting text, delet-

ing text, and moving text around by cutting and pasting. vi, of course, sup-
ports all of these operations in its own unique way. vi also provides a limited
form of undo. If we press the U key while in command mode, vi will undo
the last change that you made. This will come in handy as we try out some
of the basic editing commands.

Appending Text

vi has several ways of entering insert mode. We have already used the i com-
mand to insert text.

Let’s go back to our foo. txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would dis-

cover that the i command will not do it, because we can’t move the cursor

beyond the end of the line. vi provides a command to append text, the sens-

ibly named a command. If we move the cursor to the end of the line and

type a, the cursor will move past the end of the line, and vi will enter insert

mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the Esc key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi

offers a shortcut to move to the end of the current line and start appending.

It’s the A command. Let’s try it and add some more lines to our file.

First, we’ll move the cursor to the beginning of the line using the 0

(zero) command. Now we type A and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the ESC key to exit insert mode.
As we can see, the A command is more useful because it moves the

cursor to the end of the line before starting insert mode.

Opening a Line

Another way we can insert text is by “opening” a line. This inserts a blank

line between two existing lines and enters insert mode. This has two

variants, as shown in Table 12-2.

Table 12-2: Line Opening Keys

to) The line below the current line

0 The line above the current line

A Gentle Introduction to vi 127

Note:

128 Chapter 12

‘Command Deletes

We can demonstrate this as follows: Place the cursor on Line 3 and then

type o.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4

Line 5

A new line was opened below the third line, and we entered insert

mode. Exit insert mode by pressing the Esc key. Type u to undo our change.

Type 0 to open the line above the cursor:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3

Line 4

Line 5

Exit insert mode by pressing the Esc key and undo our change by

typing u.

Deleting Text

As we might expect, vi offers a variety of ways to delete text, all of which

contain one of two keystrokes. First, the X key will delete a character at the

cursor location. x may be preceded by a number specifying how many char-

acters are to be deleted. The D key is more general purpose. Like x, it may

be preceded by a number specifying the number of times the deletion is

to be performed. In addition, d is always followed by a movement command

that controls the size of the deletion. Table 12-3 lists some examples.

Place the cursor on the word It on the first line of our text. Type x

repeatedly until the rest of the sentence is deleted. Next, type u repeatedly

until the deletion is undone.

Real vi supports only a single level of undo. vim supports multiple levels.

Table 12-3: Text Deletion Commands

x The current character

3x The current character and the next two characters

dd The current line

5dd The current line and the next four lines

Table 12-3 (continued)

Command _ Deletes
dw From the current cursor location to the beginning of the

next word

d$ From the current cursor location to the end of the current line

do From the current cursor location to the beginning of the line

d” From the current cursor location to the first non-whitespace
character in the line

dG From the current line fo the end of the file

d20G From the current line to the 20th line of the file

Let’s try the deletion again, this time using the d command. Again,

move the cursor to the word It and type dW to delete the word:

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Type d$ to delete from the cursor position to the end of the line:

The quick brown fox jumped over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Type dG to delete from the current line to the end of the file:

Type u three times to undo the deletions.

Cutting, Copying, and Pasting Text

The d command not only deletes text, it also “cuts” text. Each time we use

the d command, the deletion is copied into a paste buffer (think clipboard)

that we can later recall with the p command to paste the contents of the buf-

fer after the cursor or with the P command to paste the contents before the

cursor.

A Gentle Introduction to vi 129

The y command is used to “yank” (copy) text in much the same way the

d command is used to cut text. Table 12-4 lists some examples combining

the y command with various movement commands.

Table12-4: Yanking Commands

Command Copies

yy The current line

Syy The current line and the next four lines

yW From the current cursor location to the beginning of the

next word

y$ From the current cursor location to the end of the current line

yo Fon the current cursor location to the beginning of the line

y’ From the current cursor location to the first non-whitespace
character in the line

yG From the current line to the end of the file

y20G From the current line to the 20th line of the file

Let’s try some copy and paste. Place the cursor on the first line of the

text and type yy to copy the current line. Next, move the cursor to the last

line (G) and type p to paste the copied line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the ucommand will undo our change. With the cursor

still positioned on the last line of the file, type P to paste the text above the

current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in Table 12-4 and get to know
the behavior of both the p and P commands. When you are done, return the
file to its original state.

130 Chapter 12

Search

Joining Lines

vi is rather strict about its idea of a line. Normally, it is not possible to move
the cursor to the end ofa line and delete the end-of-line character to join

one line with the one below it. Because of this, vi provides a specific com-

mand, J (not to be confused with j, which is for cursor movement), to join

lines together.

If we place the cursor on line 3 and type the J command, here’s what

happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

and Replace

vi has the ability to move the cursor to locations based on searches. It can

do this on either a single line or over an entire file. It can also perform text

replacements with or without confirmation from the user.

Searching Within a Line

The f command searches a line and moves the cursor to the next instance

of a specified character. For example, the command fa would move the

cursor to the next occurrence of the character a within the current line.

After performing a character search within a line, the search may be

repeated by typing a semicolon.

Searching the Entire File

To move the cursor to the next occurrence of a word or phrase, the / com-

mand is used. This works the same way as in the less program we covered in

Chapter 3. When you type the / command, a forward slash will appear at the

bottom of the screen. Next, type the word or phrase to be searched for, fol-

lowed by the ENTER key. The cursor will move to the next location contain-

ing the search string. A search may be repeated using the previous search

string with the n command. Here’s an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type

/Line

A Genile Introduction tovi 131

132 Chapter 12

followed by the ENTER key. The cursor will move to line 2. Next, type n,

and the cursor will move to line 3. Repeating the n command will move the

cursor down the file until it runs out of matches. While we have so far used

only words and phrases for our search patterns, vi allows the use of regular

expressions, a powerful method of expressing complex text patterns. We will

cover regular expressions in some detail in Chapter 19.

Global Search and Replace

vi uses an ex command to perform search-and-replace operations (called

substitution in vi) over a range of lines or the entire file. To change the word

Line to line for the entire file, we would enter the following command:

:4S/Line/line/g

Let’s break this command down into separate items and see what each

one does (see Table 12-5).

Table12-5: An Example of Global Search-and-Replace Syntax

+ 5.

The colon character starts an ex command.

% Specifies the range of lines for the operation. % is a shortcut
meaning from the first line to the last line. Alternatively, the
range could have been specified 1,5 (because our file is five
lines long), or 1,$, which means “from line 1 to the last line in

the file.” If the range of lines is omitted, the operation is
performed only on the current line.

S Specifies the operation—in this case, substitution (search and
replace).

/Line/line/ The search pattern and the replacement text.

g This means global, in the sense that the substitution is per-

formed on every instance of the search string in each line.
If g is omitted, only the first instance of the search string on
each line is replaced.

After executing our search-and-replace command, our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.
line 2
line 3

line 4

line 5

We can also specify a substitution command with user confirmation.
This is done by adding a c to the end of the command. For example:

:%s/line/Line/gc

This command will change our file back to its previous form; however,
before each substitution, vi stops and asks us to confirm the substitution

with this message:

replace with Line (y/n/a/q/1/*E/*Y)?

Each of the characters within the parentheses is a possible response, as
shown in Table 12-6.

Table 12-6: Replace Confirmation Keys

Key Action |

y Perform the substitution.

n Skip this instance of the pattern,

a Perform the substitution Bn iis and all R ieequent
instances of the pattern.

q or ESC Quit substituting.

1 Perform this substitution and then quit. Short for last.

cTRI-E, CTRI-Y Scroll down and scroll up, respectively. Useful for
viewing the context of the proposed substitution.

Editing Multiple Files
It’s often useful to edit more than one file at a time. You might need to

make changes to multiple files, or you may need to copy content from one

file into another. With vi we can open multiple files for editing by specifying

them on the command line:

Vi filet file? file...

Let’s exit our existing vi session and create a new file for editing. Type

:wq to exit vi, saving our modified text. Next, we’ ll create an additional file

in our home directory that we can play with. We’ll create the file by captur-

ing some output from the ls command:

[me@linuxbox ~]$ ls -1 /usr/bin > 1s-output.txt

Let’s edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt 1s-output.txt

A Gentle Introduction to vi 133

vi will start up, and we will see the first file on the screen:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Eines

Switching Between Files

To switch from one file to the next, use this ex command:

7n

To move back to the previous file, use:

While we can move from one file to another, vi enforces a policy that

prevents us from switching files if the current file has unsaved changes. To

force vi to switch files and abandon your changes, add an exclamation point

(!) to the command.

In addition to the switching method described above, vim (and some

versions of vi) provides some ex commands that make multiple files easier

to manage. We can view a list of files being edited with the : buffers com-

mand. Doing so will display a list of the files at the bottom of the display:

:buffers
deed etOO SUX toe line 1

2 "1s-output.txt" line 0
Press ENTER or type command to continue

To switch to another buffer (file), type :buffer followed by the number

of the buffer you wish to edit. For example, to switch from buffer 1, which

contains the file foo.txt, to buffer 2, which contains the file /s-owtput.txt, we

would type this:

sbuffer 2

and our screen now displays the second file.

Opening Additional Files for Editing

It’s also possible to add files to our current editing session. The ex com-

mand :e (short for edit) followed by a filename will open an additional file.
Let’s end our current editing session and return to the command line.

Start vi again with just one file:

[me@linuxbox ~]$ vi foo.txt

134 = Chapter 12

Note:

To add our second file, enter:

:e ls-output.txt

and it should appear on the screen. The first file is still present, as we can

verify:

: buffers
1 # SOO. Ext. line 1
2 %a- = "1s-output.txt" line 0

Press ENTER or type command to continue

You cannot switch to files loaded with the :e command using either the :n or :N com-

mand. To switch files, use the :buffer command followed by the buffer number.

Copying Content from One File into Another

Often while editing multiple files, we will want to copy a portion of one file

into another file that we are editing. This is easily done using the usual yank

and paste commands we used earlier. We can demonstrate as follows. First,

using our two files, switch to buffer 1 (foo.txt) by entering

:buffer 1

This should give us the following:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Next, move the cursor to the first line and type yy to yank (copy)

the line.
Switch to the second buffer by entering

buffer 2

The screen will now contain some file listings like this (only a portion is

shown here):

total 343700
-IwWxr-xr-xX 1 root root 31316 2011-12-05 08:58 [
-Ywxr-xr-X 1 root root 8240 2011-12-09 13:39 411toppm
-YwWxr-xr-X 1 root root 111276 2012-01-31 13:36 a2p
-Ywxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec

-YWxr-xr-xX 1 root root 11532 2011-05-04 17:43 aafire

-YwXxr-xr-xX 1 root root 7292 2011-05-04 17:43 aainfo

A Gentle Introduction tovi 135

136 Chapter 12

Move the cursor to the first line and paste the line we copied from the

preceding file by typing the p command:

total 343700
The quick brown fox jumped over the lazy dog.
-Ywxr-Xr-xX 1 root root

-Ywxr-xXr-xX 1 root root

-Ywxr-xr-x 1 root root

-Ywxr-xXr-x 1 root root

-YWXI-Xr-X 1 root root

-Ywxr-Xr-x 1 root root

31316 2011-12-05

8240 2011-12-09

111276 2012-01-31

25368 2010-10-06

11532 2011-05-04

7292 2011-05-04

It was cool.

08:58 [
13:39 411toppm
13:36 a2p
20:16 a52dec

17:43 aafire

17:43 aainfo

Inserting an Entire File into Another

It’s also possible to insert an entire file into one that we are editing. To

see this in action, let’s end our vi session and start a new one with just a

single file:

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again:

total 343700

-YWXI-XI-X 1 root root

-YWXI-Xr-xX 1 root root

-YWXYI-XI-X 1 root root

-YWXI-XIr-X 1 root root

-Ywxr-Xr-X 1 root root

-YWXYI-XI-X 1 root root

31316 2011-12-05

8240 2011-12-09

111276 2012-01-31

25368 2010-10-06

11532 2011-05-04

7292 2011-05-04

08:58 [
13:39 411toppm
13:36 a2p
20:16 a52dec
17:43 aafire

17:43 aainfo

Move the cursor to the third line and then enter the following ex

command:

:r foo.txt

The :r command (short for read) inserts the specified file before the

cursor position. Our screen should now look like this:

total 343700

-YWXI-Xr-xX 1 root root

-YwWXYr-Xr-xX 1 root root

31316 2011-12-05

8240 2011-12-09

The quick brown fox jumped over the lazy dog.
Line 2

Line 3
Line 4

Line 5

-YWXYI-Xr-xX 1 root root

-Ywxr-xXr-xX 1 root root

-Ywxr-xr-x 1 root root

-YWXr-xXr-xX 1 root root

111276 2012-01-31

25368 2010-10-06

11532 2011-05-04

7292 2011-05-04

08:58 [
13:39 411toppm
It was cool.

13:36 a2p
20:16 a52dec
17:43 aafire
17:43 aainfo

Saving Our Work

Like everything else in vi, there are several ways to save our edited files. We

have already covered the ex command :w, but there are some others we may

also find helpful.

In command mode, typing ZZ will save the current file and exit vi. Like-

wise, the ex command :wq will combine the :w and :q commands into one

that will both save the file and exit.

The :w command may also specify an optional filename. This acts like a

Save As command. For example, if we were editing foo.txt and wanted to save

an alternative version called fool.txt, we would enter the following:

:w foo1.txt

Note: While this saves the file under a new name, it does not change the name of the file you

are editing. As you continue to edit, you will still be editing foo.txt, not fool.txt.

A Gentle Introduction tovi 137

CUSTOMIZING THE PROMPT

In this chapter we will look at a seemingly trivial

detail: our shell prompt. This examination will reveal
some of the inner workings of the shell and the ter-
minal emulator program itself.

Like so many things in Linux, the shell prompt is highly configurable,

and while we have pretty much taken it for granted, the prompt is a really

useful device once we learn how to control it.

“Anatomy of a Prompt
Our default prompt looks something like this:

[me@linuxbox ~]$

Notice that it contains our username, our hostname, and our current

working directory, but how did it get that way? Very simply, it turns out. The

prompt is defined by an environment variable named PS1 (short for prompt

string 1). We can view the contents of PS1 with the echo command:

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don't worry if your results are not exactly the same as the example above. Every Linux

distribution defines the prompt string a little differently, some quite exotically.

From the results, we can see that PS1 contains a few of the characters we

see in our prompt, such as the square brackets, the @ sign, and the dollar

sign, but the rest are a mystery. The astute among us will recognize these as

backslash-escaped special characters like those we saw in Table 7-2. Table 13-1

is a partial list of the characters that the shell treats specially in the prompt

string.

Table 13-1: Escape Codes Used in Shell Prompts

asa
\a ASCII bell. This makes the computer beep when it is

encountered.

\d Current date in day, month, date format; for example,

“Mon May 26”

\h Hostname of the local machine minus the trailing domain name

\H Full hostname

\j Number of jobs running in the current shell session

\l Name of the current terminal device

\n A newline character

\r A carriage return

\s Name of the shell program

\t Current time in 24-hour, hours:minutes:seconds format

Ti Current time in 12-hour format

\@ Current time in 12-hour, AmM/PM rididie

\A Current time in 24-hour, hours:minutes format

\u Username of the current user na

\v Version number of the shell |

\V Version and release Aenber of the shell

\w Name of the current working avec

140 Chapter 13

Table 13-1 (continued)

Sequence _Valve Displayed
\w Last part of the current working directory name

\! History number of the current command

\t Number of commands entered during this shell session

\$ This displays a “$” character unless you have superuser
privileges. In that case, it displays a “#” instead.

\[This signals the start of a series of one or more non-printing
characters. It is used to embed non-printing control characters
that manipulate the terminal emulator in some way, such as
moving the cursor or changing text colors.

\] This signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs

With this list of special characters, we can change the prompt to see the

effect. First, we’ll back up the existing string so we can restore it later. To

do this, we will copy the existing string into another shell variable that we

create ourselves:

[me@linuxbox ~]$ ps1_old="$PS1"

We create a new variable called ps1_old and assign the value of PS1 to it.

We can verify that the string has been copied by using the echo command:

[me@linuxbox ~]$ echo $ps1_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal ses-

sion by simply reversing the process:

[me@linuxbox ~]$ PS1="$ps1_old"

Now that we are ready to proceed, let’s see what happens if we have an

empty prompt string:

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt

string at all! The prompt is still there but displays nothing, just as we asked it

to. Since this is kind of disconcerting to look at, we’ll replace it with a min-

imal prompt:

PS1="\$ ”

Customizing the Prompt 141

That’s better. At least now we can see what we are doing. Notice the

trailing space within the double quotes. This provides the space between

the dollar sign and the cursor when the prompt is displayed.

Let’s add a bell to our prompt:

$ PSi="\a\$ "

Now we should hear a beep each time the prompt is displayed. This

could get annoying, but it might be useful if we needed notification when

an especially long-running command has been executed.

Next, let’s try to make an informative prompt with some hostname and

time-of-day information:

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track

of when we perform certain tasks. Finally, we’ll make a new prompt that is

similar to our original:

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try out the other sequences listed in Table 13-1 and see if you can come

up with a brilliant new prompt.

Adding Color

142 Chapter 13

Most terminal emulator programs respond to certain non-printing character

sequences to control such things as character attributes (like color, bold

text, and the dreaded blinking text) and cursor position. We’ll cover cursor

position in a little bit, but first we'll look at color.

TERMINAL CONFUSION
Back in ancient times, when terminals were hooked to remote computers, - .

there were many competing brands of terminals and they all worked differ-
ently. They had different keyboards, and they all had different ways of inter-

_ preting control information. Unix and Unix-like systems have two rather
complex subsystems (called termcap and terminfo) to deal with the babel of ter-

minal control. If you look into the deepest recesses of your terminal emulator _

settings, you may find a setting for the type of terminal emulation. :

In an effort to make terminals speak some sort of common language,
the American National Standards Institute (ANSI) developed ¢ a standard set
of character sequences to control video e ime pos ‘users will
remember the ae SYS file that ‘le interpretation of these
codes,

Character color is controlled by sending the terminal emulator an ANSI
escape code embedded in the stream of characters to be displayed. The con-

trol code does not “print out” on the display; rather it is interpreted by the

terminal as an instruction. As we saw in Table 13-1, the \[and \] sequences

are used to encapsulate non-printing characters. An ANSI escape code begins

with an octal 033 (the code generated by the kEsc key), followed by an optional

character attribute, followed by an instruction. For example, the code to set

the text color to normal (attribute = 0) black text is \033[0;30m.

Table 13-2 lists available text colors. Notice that the colors are divided

into two groups, differentiated by the application of the bold character

attribute (1), which creates the appearance of “light” colors.

Table 13-2: Escape Sequences Used to Set Text Colors

Sequence
\033[0;30m

\033[0; 34m

\033[0;32m

\033[0; 33m

\033[0;34m

\033[0;35m

\033[0; 36m

\033[0;37m

\033[1; 30m

\033[1; 31m

\033[1;32m

\033[1; 33m

\033[1; 34m

\033[1;35m

\033[1; 36m

\033[13;37m

Text Color
Black

Red

Green

Brown

Blue

Purple

Cyan

Light Gray

Dark Gray

Light Red

Light Green

Yellow

Light Blue

Light Purple

Light Cyan

White

Let’s try to make a red prompt (seen here as gray). We'll insert the

escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;341m\]<\u@\h \W>\$ "

<me@linuxbox ~>$

Customizing the Prompt 143

That works, but notice that all the text that we type after the prompt

is also red. To fix this, we will add another escape code to the end of the

prompt that tells the terminal emulator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;34m\]<\u@\h \W>\$\[\033[om\]
<me@linuxbox ~>$

That’s better!

It’s also possible to set the text background color using the codes listed

in Table 13-3. The background colors do not support the bold attribute.

Table 13-3: Escape Sequences Used to Set Background Color

Sequence = —_—_— Background Color

\033[0;40m Black

\033[0;41m Red

acon Green

\033[0:43m Brown

\033[0344m Blue

Ge a | Purple

\033[0;46m Cyan

\033[0;47m Light Gray

We can create a prompt with a red background by applying a simple

change to the first escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[0m\] "

BON

Try out the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may also be given under-

score (4), blinking (5), and inverse (7) attributes. In the interests of good taste, many

terminal emulators refuse to honor the blinking attribute.

Moving the Cursor

144 Chapier 13

Escape codes can be used to position the cursor. This is commonly used
to provide a clock or some other kind of information at a different location
on the screen, such as an upper corner, each time the prompt is drawn.
Table 13-4 lists the escape codes that position the cursor.

Table 13-4: Cursor Movement Escape Sequences

Escape Code
\033[1;cH

\033[nA

\033[nB

\033[nC

\033[nD

\033[2]

\033[K

\033[s

\033[u

Move the cursor to line 1 and column c.

Move the cursor up n lines.

Move the cursor down n lines.

Move the cursor forward n characters.

Move the cursor backward n characters.

Clear the screen and move the cursor to the upper-left corner
(line 0, column 0).

Clear from the cursor position to the end of the current line.

Store the current cursor position.

Recall the stored cursor position.

Using these codes, we'll construct a prompt that draws a red bar at the

top of the screen containing a clock (rendered in yellow text) each time the

prompt is displayed. The code for the prompt is this formidable looking

string:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1; 33m\t\033[0m\033[u\]<\u@\h \W>\$ "

Table 13-5 takes a look at each part of the string to see what it does.

Table 13-5: Breakdown of Complex Prompt String

Sequence

\[

\033[s

\033[0;0H

\033[0;41m

Action

Begins a non-printing character sequence. The real purpose

of this is to allow bash to correctly calculate the size of the

visible prompt. Without this, command line editing features
will improperly position the cursor.

Store the cursor position. This is needed to return to the
prompt location after the bar and clock have been drawn
at the top of the screen. Be aware that some terminal

emulators do not honor this code.

Move the cursor to the upper-left corner, which is line 0,

column 0.

Set the background color to red.

(continued)

Customizing the Prompt 145

Table 13-5 (continued)

Sequence Action

\033[K Clear from the current cursor location (the top-left corner)

to the end of the line. Since the background color is now
red, the line is cleared to that color, creating our bar. Note

that clearing to the end of the line does not change the

cursor position, which remains at the upper-left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element,
we still include it in the non-printing portion of the prompt,

because we don’t want bash to include the clock when
calculating the true size of the displayed prompt.

\033 [0m Turn off color. This affects both the text and the background.

\o33[u Restore the cursor position saved earlier.

\] End the non-printing characters sequence.

<\u@\h \Wo\$ prorat string.

Saving the Prompt

Obviously, we don’t want to be typing that monster all the time, so we'll

want to store our prompt someplace. We can make the prompt permanent

by adding it to our .bashrc file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]<\u@\h \W>\$ "

export PS1

Final Note

Believe it or not, much more can be done with prompts involving shell
functions and scripts that we haven’t covered here, but this is a good start.
Not everyone will care enough to change the prompt, since the default
prompt is usually satisfactory. But for those of us who like to tinker, the
shell provides an opportunity for many hours of trivial fun.

146 Chapter 13

PART 3
COMMON TASKS AND

ESSENTIAL TOOLS

PACKAGE MANAGEMENT

If we spend any time in the Linux community, we
hear many opinions as to which of the many Linux

distributions is “best.” Often, these discussions get
really silly, focusing on such things as the prettiness
of the desktop background (some people won’t use

Ubuntu because of its default color scheme!) and

other trivial matters.
The most important determinant of distribution quality is the packag-

ing system and the vitality of the distribution’s support community. As we

spend more time with Linux, we see that its software landscape is extremely

dynamic. Things are constantly changing. Most of the top-tier Linux distri-

butions release new versions every six months and many individual program

updates every day. To keep up with this blizzard of software, we need good

tools for package management.

Package management is a method of installing and maintaining software

on the system. Today, most people can satisfy all of their software needs by

installing packages from their Linux distributor. This contrasts with the early

days of Linux, when one had to download and compile source code in order

to install software. Not that there is anything wrong with compiling source

code; in fact, having access to source code is the great wonder of Linux. It

gives us (and everybody else) the ability to examine and improve the system.

It’s just that working with a precompiled package is faster and easier.

In this chapter, we will look at some of the command-line tools used

for package management. While all of the major distributions provide

powerful and sophisticated graphical programs for maintaining the system,

it is important to learn about the command-line programs, too. They can

perform many tasks that are difficult (or impossible) to do using their

graphical counterparts.

Packaging Systems

How a

150 Chapter 14

Different distributions use different packaging systems, and as a general rule

a package intended for one distribution is not compatible with another dis-

tribution. Most distributions fall into one of two camps of packaging techno-

logies: the Debian .deb camp and the Red Hat .rpm camp. There are some

important exceptions, such as Gentoo, Slackware, and Foresight, but most

others use one of the two basic systems shown in Table 141.

Table 14-1: Major Packaging System Families

Packaging System Distributions (partial listing)

Debian style (.deb) Debian, Ubuntu, Xandros, Linspire

Red Hat style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, openSUSE,
Mandriva, PCLinuxOS

Package System Works

The method of software distribution found in the proprietary software

industry usually entails buying a piece of installation media such as an

“install disk” and then running an “installation wizard” to install a new

application on the system.

Linux doesn’t work that way. Virtually all software for a Linux system

is found on the Internet. Most of it is provided by the distribution vendor

in the form of package files, and the rest is available in source code form,

which can be installed manually. We’ll talk a little about how to install soft-

ware by compiling source code in Chapter 23.

Package Files

The basic unit of software in a packaging system is the package file. A package
file is a compressed collection of files that comprise the software package.
A package may consist of numerous programs and data files that support
the programs. In addition to the files to be installed, the package file also
includes metadata about the package, such as a text description of the

package and its contents. Additionally, many packages contain pre- and
postinstallation scripts that perform configuration tasks before and after
the package installation.

Package files are created by a person known as a package maintainer,
often (but not always) an employee of the distribution vendor. The package
maintainer gets the software in source code form from the upstream provider
(the author of the program), compiles it, and creates the package metadata
and any necessary installation scripts. Often, the package maintainer will

apply modifications to the original source code to improve the program’s
integration with the other parts of the Linux distribution.

Repositories

While some software projects choose to perform their own packaging and

distribution, most packages today are created by the distribution vendors

and interested third parties. Packages are made available to the users of a

distribution in central repositories, which may contain many thousands of

packages, each specially built and maintained for the distribution.

A distribution may maintain several different repositories for different

stages of the software development life cycle. For example, there will usually

be a testing repository, which contains packages that have just been built and

are intended for use by brave souls who are looking for bugs before the pack-

ages are released for general distribution. A distribution will often have a

development repository where work-in-progress packages destined for inclusion

in the distribution’s next major release are kept.

A distribution may also have related third-party repositories. These

are often needed to supply software that, for legal reasons such as patents

or Digital Rights Management (DRM) anticircumvention issues, cannot

be included with the distribution. Perhaps the best-known case is that of

encrypted DVD support, which is not legal in the United States. The third-

party repositories operate in countries where software patents and anti-

circumvention laws do not apply. These repositories are usually wholly

independent of the distribution they support, and to use them one must

know about them and manually include them in the configuration files for

the package management system.

Dependencies

Programs seldom stand alone; rather, they rely on the presence of other

software components to get their work done. Common activities, such as

input/output for example, are handled by routines shared by many programs.

These routines are stored in what are called shared libraries, which provide

essential services to more than one program. If a package requires a shared

resource such as a shared library, it is said to have a dependency. Modern

package management systems all provide some method of dependency resolu-

tion to ensure that when a package is installed, all of its dependencies are

installed, too.

Package Management 19]

High- and Low-Level Package Tools

Package management systems usually consist of two types of tools: low-level

tools that handle tasks such as installing and removing package files, and

high-level tools that perform metadata searching and dependency resolu-

tion. In this chapter, we will look at the tools supplied with Debian-style sys-

tems (such as Ubuntu and many others) and those used by recent Red Hat

products. While all Red Hat-style distributions rely on the same low-level

program (rpm), they use different high-level tools. For our discussion, we

will cover the high-level program yum, used by Fedora, Red Hat Enterprise

Linux, and CentOS. Other Red Hat-style distributions provide high-level

tools with comparable features (see Table 14-2).

Table 14-2: Packaging System Tools

Distributions ~ Low-Level Tools High-Level Tools

Debian style dpkg apt-get, aptitude

Fedora, Red Hat Enterprise rpm yum
Linux, CentOS

Common Package Management Tasks

152 Chapter 14

Many operations can be performed with the command-line package man-

agement tools. We will look at the most common. Be aware that the low-

level tools also support creation of package files, an activity outside the

scope of this book.

In the following discussion, the term package_name refers to the actual

name of a package, as opposed to package_file, which is the name of the file

that contains the package.

Finding a Package in a Repository

By using the high-level tools to search repository metadata, one can locate a

package based on its name or description (see Table 14-3).

Table 14-3: Package Search Commands

Style : — Command(s)

Debian apt-get update

apt-cache search search string

Red Hat yum search search_string

Example: Search a yum repository for the emacs text editor on a Red Hat
system:

yum search emacs

Installing a Package from a Repository

High-level tools permit a package to be downloaded from a repository and
installed with full dependency resolution (see Table 14-4).

Table 14-4: Package Installation Commands

Style Command(s)

Debian apt-get update

apt-get install package_name

Red Hat yum install package_name

Example: Install the emacs text editor from an apt repository on a

Debian-style system:

apt-get update; apt-get install emacs

Installing a Package from a Package File

If a package file has been downloaded from a source other than a reposit-

ory, it can be installed directly (though without dependency resolution)

using a low-level tool (see Table 14-5).

Table 14-5: Low-Level Package Installation Commands

Style Command

Debian dpkg --install package_file

Red Hat rpm -i package_file

Example: If the emacs-22. 1-7.fc71386.rpm package file has been down-

loaded from a non-repository site, install it on a Red Hat system this way:

rpm -i emacs-22.1-7.fc7-i386.rpm

Note: Since this technique uses the low-level rpm program to perform the installation, no

dependency resolution is performed. If rpm discovers a missing dependency, rpm will

exit with an error.

Package Management 153

154 = Chapter 14

Removing a Package

Packages can be uninstalled using either the high-level or low-level tools.

The high-level tools are shown in Table 14-6.

Table 14-6: Package Removal Commands

Style Command

Debian apt-get remove package_name

Red Hat yum erase package_name

Example: Uninstall the emacs package from a Debian-style system:

apt-get remove emacs

Updating Packages from a Repository

The most common package management task is keeping the system up-to-

date with the latest packages. The high-level tools can perform this vital task

in one single step (see Table 14-7).

Table 14-7: Package Update Commands

Style Command(s)

Debian apt-get update; apt-get upgrade

Red Hat yum update

Example: Apply any available updates to the installed packages on a

Debian-style system:

apt-get update; apt-get upgrade

Upgrading a Package from a Package File

If an updated version of a package has been downloaded from a non-
repository source, it can be installed, replacing the previous version (see
Table 148).

Table 14-8: Low-Level Package Upgrade Commands

Style . Command :

Debian dpkg --install package_file

Red Hat rpm -U package_file

Example: Update an existing installation of emacs to the version con-
tained in the package file emacs-22. 1-7.fe7-i386.rpm on a Red Hat system:

rpm -U emacs-22.1-7.fc7-i386.rpm

Note: dpkg does not have a specific option for upgrading a package versus installing one, as
rpm does.

Listing Installed Packages

The commands shown in Table 14-9 can be used to display a list of all the

packages installed on the system.

Table 14-9: Package Listing Commands

Style Command

Debian dpkg --list

Red Hat rpm -qa

Determining Whether a Package Is Installed

The low-level tools shown in Table 14-10 can be used to display whether a

specified package is installed.

Table 14-10: Package Status Commands

Style Command

Debian dpkg --status package_name

Red Hat rpm -q package_name

Example: Determine whether the emacs package is installed on a Debian-

style system:

dpkg --status emacs

Displaying Information About an Installed Package

If the name of an installed package is known, the commands shown in

Table 14-11 can be used to display a description of the package.

Table 14-11: Package Information Commands

Style _ Command

Debian apt-cache show package_name

Red Hat yum info package_name

Package Management 155

Example: See a description of the emacs package on a Debian-style

system:

apt-cache show emacs

Finding Which Package Installed a File

To determine which package is responsible for the installation of a particu-

lar file, the commands shown in Table 14-12 can be used.

Table 14-12: Package File Identification Commands

Style == = = = Command

Debian dpkg --search file_name

Red Hat rpm -qf file name

Example: See which package installed the /usr/bin/vim file on a Red Hat

system:

rpm -qf /usr/bin/vim

Final Note

156 Chapter 14

In the chapters that follow, we will explore many programs covering a wide

range of application areas. While most of these programs are commonly

installed by default, sometimes we may need to install additional packages.

With our newfound knowledge (and appreciation) of package management,

we should have no problem installing and managing the programs we need.

THE LINUX SOFTWARE INSTALLATION MYTH

People migrating from other platforms sometimes fall victim to the myth that

software is somehow difficult to install under Linux and that the variety of

packaging schemes used by c different distributions is a hindrance. Well, it is :

_ a hindrance, but only to proprietary software vendors who wish to distribute

binary-only versions of their secret software. —

The Linux software ecosystem is based on the idea of open source ue a

a program developer releases source code for a product, it is likely that a per-

x son associated with a distribution will package the product and include it in the

rep ry. This method ensures that the product i is well integrated into the dis-

on and the user is given the convenience of one-stop shopping for soft-_

er than having to search for each product’ s website.

_ Device drivers are handled in much the same way, except that instead

of being separate items in a distribution’ s repository, they become part ofthe

Linux kernel itself. — —- there is no ch Se as a “driver disk” =

* ae 2

in Linux. Either the kernel supports a device or it doesn’t, and the Linux ker-

nel supports a lot of devices. Many more, in fact, than Windows does. Of course,

this is no consolation if the particular device you need is not supported. When

that happens, you need to look at the cause. A lack of driver support is usually

caused by one of three things:

e The device is too new. Since many hardware vendors don’t actively support

Linux development, it falls upon a member of the Linux community to

write the kernel driver code. This takes time.

e The device is too exotic. Not all distributions include every possible device

driver. Each distribution builds its own kernels, and since kernels are very

configurable (which is what makes it possible to run Linux on everything

from wristwatches to mainframes), the distribution may have overlooked

a particular device. By locating and downloading the source code for the

driver, it is possible for you (yes, you) to compile and install the driver your-

self. This process is not overly difficult, but it is rather involved. We'll talk

about compiling software in Chapter 23.

e The hardware vendor is hiding something. It has neither released source

code for a Linux driver, nor has it released the technical documentation

for somebody else to create one. This means that the hardware vendor is

trying to keep the programming interfaces to the device a secret. Since we

don’t want secret devices in our computers, I suggest that you remove the

offending hardware and pitch it into the trash with your other useless items.

Package Management 157

ie : _

>

-

7

-

7

7 _ q*.°

: :
pr
= Pei

(ma) ;

4

eee SNe
o fyb hig (eet ioe Tate Oe eee

D yi 6 1 wie Ss a i _

Aaycstiive + ot ay (anagem
sgt thee yrogreayy ey eal

15
STORAGE MEDIA

In previous chapters we’ve looked at manipulating data

at the file level. In this chapter, we will consider data at
the device level. Linux has amazing capabilities for
handling storage devices, whether physical storage
such as hard disks, network storage, or virtual storage

devices like RAID (redundant array of independent
disks) and LVM (logical volume manager).

However, since this is not a book about system administration, we will

not try to cover this entire topic in depth. What we will do is introduce some

of the concepts and key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive,

a CD-RW disc (for systems equipped with a CD-ROM burner), and a floppy

disk (again, if the system is so equipped).

We will look at the following commands:

e mount—Mount a filesystem.

e umount—Unmount a filesystem.

e fdisk—Partition table manipulator.

e fsck—Check and repair a filesystem.

e fdformat—Format a floppy disk.

e mkfs—Create a filesystem.

e dd—wWrite block-oriented data directly to a device.

e genisoimage (mkisofs)—Create an ISO 9660 image file.

e wodim (cdrecord)—Write data to optical storage media.

e mdS5sum—Calculate an MD5 checksum.

Mounting and Unmounting Storage Devices

160 = Chapter 15

Recent advances in the Linux desktop have made storage device manage-

ment extremely easy for desktop users. For the most part, we attach a device

to our system and it just works. Back in the old days (say, 2004), this stuff

had to be done manually. On non-desktop systems (i.e., servers) this is still

a largely manual procedure, because servers often have extreme storage

needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to

the filesystem tree. This process, called mounting, allows the device to par-

ticipate with the operating system. As we recall from Chapter 2, Unix-like

operating systems, like Linux, maintain a single filesystem tree with devices

attached at various points. This contrasts with other operating systems such

as MS-DOS and Windows that maintain separate trees for each device (for

example C:\, D:\, etc.).

A file named /etc/fstab lists the devices (typically hard disk partitions)

that are to be mounted at boot time. Here is an example /etc/fstab file from

a Fedora 7 system:

LABEL=/12 / ext3 defaults ah gl
LABEL=/home /home ext3 defaults iB
LABEL=/boot /boot ext3 defaults tz
tmpfs /dev/shm tmpfs defaults 00
devpts /dev/pts devpts gid=5,mode=620 0 0
systs /sys sysfs defaults 00
proc /proc proc defaults 00
LABEL=SWAP-sda3 = swap swap defaults 00

Most of the filesystems listed in this example file are virtual and are not

applicable to our discussion. For our purposes, the interesting ones are the

first three:

LABEL=/12 / ext3 defaults ly al
LABEL=/home /home ext3 defaults ay ®
LABEL=/boot /boot ext3 defaults ih

These are the hard disk partitions. Each line of the file consists of six

fields, as shown in Table 15-1.

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of

a device file associated with the physical device,
such as /dev/hdal (the first partition of the master

device on the first IDE channel). But with today’s
computers, which have many devices that are hot

pluggable (like USB drives), many modern Linux
distributions associate a device with a text label
instead. This label (which is added to the storage

medium when it is formatted) is read by the oper-
ating system when the device is attached to the
system. That way, no matter which device file is
assigned to the actual physical device, it can still
be correctly identified.

2 Mount point The directory where the device is attached to the
filesystem tree

3 Filesystem type _ Linux allows many filesystem types to be mounted.
Most native Linux filesystems are ext3, but many
others are supported, such as FAT16 (msdos), FAT32
(vfat), NTFS (ntfs), CD-ROM (is09660), etc.

4 Options Filesystems can be mounted with various options. It
is possible, for example, to mount filesystems as
read only or to prevent any programs from being

executed from them (a useful security feature for

removable media).

5 Frequency A single number that specifies if and when a file-
system is to be backed up with the dump command

6 Order A single number that specifies in what order file-
systems should be checked with the fsck command

Viewing a List of Mounted Filesystems

The mount command is used to mount filesystems. Entering the command

without arguments will display a list of the filesystems currently mounted:

[me@linuxbox ~]$ mount
/dev/sda2 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)

Storage Media 161

162 Chapter 15

devpts on /dev/pts type devpts (xrw,gid=5 ,mode=620)
/dev/sda5 on /home type ext3 (rw)
/dev/sda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
/dev/sdd1 on /media/disk type vfat (xrw,nosuid,nodev,noatime,
uhelper=hal,, uid=500, utf8, shortname=lower)
twin4:/musicbox on /misc/musicbox type nfs4 (xw,addr=192.168.1.4)

The format of the listing is device on mount_point type filesystem_type

(options). For example, the first line shows that device /dev/sda2 is mounted

as the root filesystem, is of type ext3, and is both readable and writable

(the option rw). This listing also has two interesting entries at the bottom.

The next-to-last entry shows a 2-gigabyte SD memory card in a card reader

mounted at /media/disk, and the last entry is a network drive mounted at

/misc/musicbox.

For our first experiment, we will work with a CD-ROM. First, let’s look at

a system before a CD-ROM is inserted:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVoloo on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (xrw,gid=5 ,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS 5 system that is using LVM to create its

root filesystem. Like many modern Linux distributions, this system will

attempt to automatically mount the CD-ROM after insertion. After we

insert the disc, we see the following:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (xw)
devpts on /dev/pts type devpts (rw, gid=5 ,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/hdc on /media/live-1.0.10-8 type iso9660 (ro,noexec ,nosuid, nodev, uid=500)

We see the same listing as before, with one additional entry. At the end

of the listing, we see that the CD-ROM (which is device /dev/hdc on this sys-

tem) has been mounted on /media/live-1.0. 10-8 and is type iso9660 (a CD-

ROM). For the purposes of our experiment, we’re interested in the name
of the device. When you conduct this experiment yourself, the device name
will most likely be different.

Warning: Jn the examples that follow, it is vitally important that you pay close attention to
the actual device names in use on your system and do not use the names used in
this text!

Also, note that audio CDs are not the same as CD-ROMs. Audio CDs do not

contain filesystems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let’s unmount

the disc and remount it at another location in the filesystem tree. To do this,

we become the superuser (using the command appropriate for our system)

and unmount the disc with the umount (notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disc. A mount point

is simply a directory somewhere on the filesystem tree. Nothing special about

it. It doesn’t even have to be an empty directory, though if you mount a

device on a non-empty directory, you will not be able to see the directory’s

previous contents until you unmount the device. For our purposes, we will

create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option

is used to specify the filesystem type:

[root@linuxbox ~]# mount -t iso9660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new

mount point:

[root@linuxbox ~]# cd /mnt/cdrom
[root@linuxbox cdrom]# 1s

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? We cannot unmount a device if the device is being used by

someone or some process. In this case, we changed our working directory to

the mount point for the CD-ROM, which causes the device to be busy. We

can easily remedy the issue by changing the working directory to something

other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Storage Media 163

164 Chapter 15

WHY UNMOUNTING IS IMPORTANT

If you look at the output of the free command, which displays statistics about

memory usage, you will see a statistic called buffers. Computer systems are

designed to go as fast as possible. One of the impediments to system speed

is slow devices. Printers are a good example. Even the fastest printer is extremely

slow by computer standards. A computer would be very slow indeed if it had to

stop and wait for a printer to finish printing a page. In the early days of PCs

(before multitasking), this was a real problem, If you were working on a spread-

sheet or text document, the computer would stop and become unavailable every

time you printed. The computer would send the data to the printer as fast as

the printer could accept it, but it was very slow because printers don’t print very

fast. This problem was solved by the advent of the printer buffer, a device contain-

ing some RAM memory, that would sit between the computer and the printer.

With the printer buffer in place, the computer would send the printer output

to the buffer, and it would quickly be stored in the fast RAM so the computer

could go back to work without waiting. Meanwhile, the printer buffer would

slowly spool the data to the printer from the buffer’s memory at the speed at

which the printer could accept it.

This idea of buffering is used extensively in computers to make them

faster. Don’t let the need to occasionally read or write data to or from slow

devices impede the speed of the system. Operating systems store data that has

been read from, and is to be written to, storage devices in memory for as long

as possible before actually having to interact with the slower device. On a Linux

system, for example, you will notice that the system seems to fill up memory the

longer it is used. This does not mean Linux is “using” all the memory, it means

that Linux is taking advantage of all the available memory to do as much buf-

fering as it can.

This buffering allows writing to storage devices to be done very quickly,

because the writing to the physical device is being deferred to a future time. In

the meantime, the data destined for the device is piling up in memory. From

time to time, the operating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device

so that it can be safely removed. If the device is removed without first being

unmounted, the possibility exists that not all the data destined for the device

has been transferred. In some cases, this data may include vital directory updates,

which will lead to filesystem corruption, one of the worst things that can happen

on a computer.

Determining Device Names

It’s sometimes difficult to determine the ameof a device. Back in the old
days, it wasn’t very hard. A device was always in the same place and didn’t
change. Unix-like systems like it that way. Back when Unix was developed,
“changing a disk drive” involved using a forklift to remove a washing

machine-sized device from the computer room. In recent years, the typi-
cal desktop hardware configuration has become quite dynamic, and Linux

has evolved to become more flexible than its ancestors.

In the examples above, we took advantage of the modern Linux desktop’s
ability to “automagically” mount the device and then determine the name
after the fact. But what if we are managing a server or some other environ-

ment where this does not occur? How can we figure it out?

First, let’s look at how the system names devices. If we list the contents
of the /dev directory (where all devices live), we can see that there are lots

and lots of devices:

[me@linuxbox ~]$ ls /dev

The contents of this listing reveal some patterns of device naming.

Table 15-2 lists a few.

Table 15-2: Linux Storage Device Names

Pattern Device

/dev/fd* Floppy disk drives

/dev/hd* IDE (PATA) disks on older systems. Typical motherboards
contain two IDE connectors, or channels, each with a cable

with two attachment points for drives. The first drive on
the cable is called the master device and the second is

called the slave device. The device names are ordered

such that /dev/hda refers to the master device on the first

channel, /dev/hdb is the slave device on the first channel;

/dev/hdc, the master device on the second channel, and

so on. A trailing digit indicates the partition number on the
device. For example, /dev/hdal refers to the first partition

on the first hard drive on the system while /dev/hda refers to

the entire drive.

/dev/|p* Printers

/dev/sd* SCSI disks. On recent Linux systems, the kernel treats all

disk-like devices (including PATA/SATA hard disks, flash

drives, and USB mass storage devices such as portable music
players and digital cameras) as SCSI disks. The rest of the
naming system is similar to the older /dev/hd* naming

scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners)

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and

/dev/floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount

removable devices, you can use the following technique to determine how

Storage Media 165

Note:

166 Chapter 15

the removable device is named when it is attached. First, start a real-time

view of the /var/log/messages file (you may require superuser privileges

for this):

[me@linuxbox ~]$ sudo tail -f /var/log/messages

The last few lines of the file will be displayed and then pause. Next,

plug in the removable device. In this example, we will use a 16MB flash

drive. Almost immediately, the kernel will notice the device and probe it:

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device using uhci_h
cd and address 2
Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen from 1 choice
Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass Storage dev

Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short (5), using

Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy Disk 1.00 PQ:

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t (eV {=} jo} oO

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t jo) jo) jo)

Jul 23 10:07:59 linuxbox kernel: s
Jul 23 10:07:59 linuxbox kernel: sd 3:0 ie 0: [sdb] Attached SCSI removable disk
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic sg3 type 0

After the display pauses again, press CTRL-C to get the prompt back. The

interesting parts of the output are the repeated references to [sdb], which

matches our expectation of a SCSI disk device name. Knowing this, two lines

become particularly illuminating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI removable disk

This tells us the device name is /dev/sdb for the entire device and

/dev/sdb1 for the first partition on the device. As we have seen, working

with Linux means lots of interesting detective work!

Using the tail -f /var/log/messages technique is a great way to watch what the sys-

tem is doing in near realtime.

With our device name in hand, we can now mount the flash drive:

[me@linuxbox ~]$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdb1 /mnt/flash
[me@linuxbox ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% 7
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sda1 147764 17277 122858 13% /boot
tmpts 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 0 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically

attached to the computer and the computer is not rebooted.

Creating New Filesystems

Warning:

Let’s say that we want to reformat the flash drive with a Linux native file-

system, rather than the FAT32 system it has now. This involves two steps:

first, (optionally) creating a new partition layout if the existing one is not

to our liking, and second, creating a new, empty filesystem on the drive.

In the following exercise, we are going to format a flash drive. Use a drive that con-

tains nothing you care about because it will be erased! Again, make absolutely sure

you are specifying the correct device name for your system, not the one shown in

the text. Failure to heed this warning could result in formatting (i.e., erasing) the

wrong drive!

Manipulating Partitions with fdisk

The fdisk program allows us to interact directly with disk-like devices (such

as hard disk drives and flash drives) at a very low level. With this tool we can

edit, delete, and create partitions on the device. To work with our flash drive,

we must first unmount it (if needed) and then invoke the fdisk program as

follows:

[me@linuxbox ~]$ sudo umount /dev/sdb1
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not

by partition number. After the program starts up, we will see the following

prompt:

Command (m for help):

Entering an m will display the program menu:

Command action
toggle a bootable flag
edit bsd disklabel
toggle the dos compatibility flag
delete a partition
list known partition types
print this menu
add a new partition Sa Sm SO

Storage Media 167

168 Chapter 15

create a new empty DOS partition table
print the partition table
quit without saving changes
create a new empty Sun disklabel
change a partition's system id
change display/entry units
verify the partition table
write table to disk and exit
extra functionality (experts only) eee a ee eee Ss

Command (m for help):

The first thing we want to do is examine the existing partition layout.

We do this by entering p to print the partition table for the device:

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

Device Boot Start End Blocks Id System
/dev/sdb1 2 1008 15608+ b W95 FAT32

In this example, we see a 16MB device with a single partition (1) that

uses 1006 of the available 1008 cylinders on the device. The partition is

identified as a Windows 95 FAT32 partition. Some programs will use this

identifier to limit the kinds of operation that can be done to the disk, but

most of the time changing the identifier is not critical. However, in the

interest of demonstration, we will change it to indicate a Linux partition.

To do this, we must first find out what ID is used to identify a Linux parti-

tion. In the listing above, we see that the ID b is used to specify the existing

partition. To see a list of the available partition types, we refer back to the

program menu. There we can see the following choice:

1 list known partition types

If we enter 1 at the prompt, a large list of possible types is displayed.

Among them we see b for our existing partition type and 83 for Linux.

Going back to the menu, we see this choice to change a partition ID:

t change a partition's system id

We enter t at the prompt and enter the new ID:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

This completes all the changes that we need to make. Up to this point,
the device has been untouched (all the changes have been stored in memory,
not on the physical device), so we will write the modified partition table to
the device and exit.

To do this, we enter w at the prompt:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
[me@linuxbox ~]$

If we had decided to leave the device unaltered, we could have entered

q at the prompt, which would have exited the program without writing the

changes. We can safely ignore the ominous-sounding warning message.

Creating a New Filesystem with mkfs

With our partition editing done (lightweight though it might have been),

it’s time to create a new filesystem on our flash drive. To do this, we will use

mkfs (short for make filesystem), which can create filesystems in a variety of

formats. To create an ext3 filesystem on the device, we use the -t option to

specify the ext3 system type, followed by the name of the device containing

the partition we wish to format:

[me@linuxbox ~]$ sudo mkfs -t ext3 /dev/sdb1
mke2fs 1.40.2 (12-Jul-2012)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:

8193

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

[me@linuxbox ~]$

Storage Media 169

Testing

170 Chapter 15

The program will display a lot of information when ext3 is the chosen

filesystem type. To reformat the device to its original FAT32 filesystem, spe-

cify vfat as the filesystem type:

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdb1

This process of partitioning and formatting can be used anytime addi-

tional storage devices are added to the system. While we worked with a tiny

flash drive, the same process can be applied to internal hard disks and other

removable storage devices like USB hard drives.

and Repairing Filesystems

In our earlier discussion of the /etc/fstab file, we saw some mysterious digits

at the end of each line. Each time the system boots, it routinely checks the

integrity of the filesystems before mounting them. This is done by the fsck

program (short for filesystem check). The last number in each fstab entry spe-

cifies the order in which the devices are to be checked. In our example above,

we see that the root filesystem is checked first, followed by the home and boot

filesystems. Devices with a zero as the last digit are not routinely checked.

In addition to checking the integrity of filesystems, fsck can also repair

corrupt filesystems with varying degrees of success, depending on the amount

of damage. On Unix-like filesystems, recovered portions of files are placed

in the lost+found directory, located in the root of each filesystem.

To check our flash drive (which should be unmounted first), we could

do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdb1
fsck 1.40.8 (13-Mar-2012)
e2fsck 1.40.8 (13-Mar-2012)
/dev/sdb1: clean, 11/3904 files, 1661/15608 blocks

In my experience, filesystem corruption is quite rare unless there is a

hardware problem, such as a failing disk drive. On most systems, filesystem

corruption detected at boot time will cause the system to stop and direct you

to run fsck before continuing.

WHAT THE FSCK?

In Unix culture, fsck is often used in place ofa popular word with which it

shares three letters. This is especially appropriate, given that you will probably —
be uttering the aforementioned nord. if Se find won in a situation where

you are ee to run fsck. -

Formatting Floppy Disks
For those of us still using computers old enough to be equipped with floppy-
disk drives, we can manage those devices, too. Preparing a blank floppy for
use is a two-step process. First, we perform a low-level format on the disk,
and then we create a filesystem. To accomplish the formatting, we use the
dformat program specifying the name of the floppy device (usually /deu/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fdo
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done

Next, we apply a FAT filesystem to the disk with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fdo

Notice that we use the msdos filesystem type to get the older (and

smaller) style file allocation tables. After a disk is prepared, it may be

mounted like other devices.

Moving Data Directly to and from Devices

While we usually think of data on our computers as being organized into

files, it is also possible to think of the data in “raw” form. If we look at a disk

drive, for example, we see that it consists of a large number of “blocks” of

data that the operating system sees as directories and files. If we could treat

a disk drive as simply a large collection of data blocks, we could perform

useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one

place to another. It uses a unique syntax (for historical reasons) and is usu-

ally used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted

to exactly copy the first drive to the second. If we attached both drives to the

computer and they were assigned to devices /dev/sdb and /dev/sdc respect-

ively, we could copy everything on the first drive to the second drive with

the following:

dd if=/dev/sdb of=/dev/sdc

Alternatively, if only the first device were attached to the computer, we

could copy its contents to an ordinary file for later restoration or copying:

dd if=/dev/sdb of=flash_drive. img

Storage Media 171

Warning: The dd command is very powerful. Though its name derives from data definition,

it is sometimes called destroy disk because users often mistype either the if or of

specifications. Always double-check your input and output specifications before

pressing ENTER!

Creating CD-ROM Images
Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two

steps: first, constructing an [SO image file that is the exact filesystem image of

the CD-ROM, and second, writing the image file onto the CD-ROM medium.

Creating an Image Copy of a CD-ROM

If we want to make an ISO image of an existing CD-ROM, we can use dd to

read all the data blocks off the CD-ROM and copy them to a local file. Say

we had an Ubuntu CD and we wanted to make an ISO file that we could

later use to make more copies. After inserting the CD and determining its

device name (we’ll assume /dev/cdrom), we can make the ISO file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well, but it will not work for

audio CDs as they do not use a filesystem for storage. For audio CDs, look

at the cdrdao command.

A PROGRAM BY ANY OTHER NAME...

If you look at online tutorials for creating and burning optical media like CD-

ROMs and DVDs, you will frequently encounter two programs called mkisofs

and cdrecord. These programs were part of a popular package called cdrtools

authored by Jorg Schilling. In the summer of 2006, Mr. Schilling made a

license change to a portion of the cdrtools package that, in the opinion of many

in the Linux community, created a license incompatibility with the GNU GPL.

As a result, a fork of the cdrtools project was started, which now includes replace-

ment programs for cdrecord and mkisofs named wodim and genisoimage, respectively.

Creating an Image from a Collection of Files

To create an ISO image file containing the contents of a directory, we use

the enisoimage program. To do this, we first create a directory containing all

the files we wish to include in the image and then execute the genisoimage

command to create the image file. For example, if we had created a directory

called ~/cd-rom-files and filled it with files for our CD-ROM, we could create

an image file named cd-rom.iso with the following command:

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

172 Chapter 15

The -R option adds metadata for the Rock Ridge extensions, which allow
the use of long filenames and POSIX-style file permissions. Likewise, the -
option enables the Joliet extensions, which permit long filenames in Windows.

Writing CD-ROM Images

After we have an image file, we can burn it onto our optical media. Most of
the commands we discuss below can be applied to both recordable CD-ROM
and DVD media.

Mounting an ISO Image Directly

There is a trick that we can use to mount an ISO image while it is still on

our hard disk and treat it as though it were already on optical media. By

adding the -o loop option to mount (along with the required -t is09660

filesystem type), we can mount the image file as though it were a device and

attach it to the filesystem tree:

mkdir /mnt/iso_image
mount -t iso9660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image

and then mounted the image file zmage.iso at that mount point. After the

image is mounted, it can be treated just as though it were a real CD-ROM

or DVD. Remember to unmount the image when it is no longer needed.

Blanking a Rewritable CD-ROM

Rewritable CD-RW media need to be erased or blanked before being reused.

To do this, we can use wodim, specifying the device name for the CD writer

and the type of blanking to be performed. The wodim program offers several

types. The most minimal (and fastest) is the fast type:

wodim dev=/dev/cdrw blank=fast

Writing an Image

To write an image, we again use wodim, specifying the name of the optical

media writer device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very

large set of options. Two common ones are -v for verbose output and -dao,

which writes the disc in disc-at-once mode. This mode should be used if you

are preparing a disc for commercial reproduction. The default mode for

wodim is track-at-once, which is useful for recording music tracks.

Storage Media 1 73

Extra Credit

174 Chapter 15

It’s often useful to verify the integrity of an ISO image that we have down-

loaded. In most cases, a distributor of an ISO image will also supply a check-

sum file. A checksum is the result of an exotic mathematical calculation

resulting in a number that represents the content of the target file. If the

contents of the file change by even one bit, the resulting checksum will be

much different. The most common method of checksum generation uses

the md5sum program. When you use md5sum, it produces a unique hexadecimal

number:

mdSsum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and com-

pare the results with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use

md5sum to verify newly written optical media. To do this, we first calculate the

checksum of the image file and then calculate a checksum for the medium.

The trick to verifying the medium is to limit the calculation to only the por-

tion of the optical medium that contains the image. We do this by determin-

ing the number of 2048-byte blocks the image contains (optical media is

always written in 2048-byte blocks) and reading that many blocks from the

medium. On some types of media, this is not required. A CD-R written in

disc-at-once mode can be checked this way:

md5sum /dev/cdrom

34e354760f9bb7FbF85c96F6a3f94ece /dev/cdrom

Many types of media, such as DVDs, require a precise calculation of

the number of blocks. In the example below, we check the integrity of the

image file dud-image.iso and the disc in the DVD reader /dev/dvd. Can you
figure out how this works?

mdSsum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s" dvd-image
-iso) / 2048)) | md5sum

16
NETWORKING

When it comes to networking, there is probably noth-
ing that cannot be done with Linux. Linux is used
to build all sorts of networking systems and appli-

ances, including firewalls, routers, name servers, NAS

(network-attached storage) boxes, and on and on.

Just as the subject of networking is vast, so is the number of commands

that can be used to configure and control it. We will focus our attention on

just a few of the most frequently used ones. The commands chosen for exami-

nation include those used to monitor networks and those used to transfer

files. In addition, we are going to explore the ssh program, which is used to

perform remote logins. This chapter will cover the following:

e ping—Send an ICMP ECHO_REQUEST to network hosts.

e traceroute—Print the route packets take to a network host.

e netstat—Print network connections, routing tables, interface statis-

tics, masquerade connections, and multicast memberships.

e ftp—Internet file transfer program.

Note:

e 1ftp—An improved Internet file transfer program.

e weet—Non-interactive network downloader.

e ssh—OpenSSH SSH client (remote login program).

e scp—Secure copy (remote file copy program).

e sftp—Secure file transfer program.

We’re going to assume a little background in networking. In this, the

Internet age, everyone using a computer needs a basic understanding of

networking concepts. To make full use of this chapter, you should be famil-

iar with the following terms:

e IP (Internet protocol) address

e Host and domain name

e URI (uniform resource identifier)

Some of the commands we will cover may (depending on your distribution) require the

installation of additional packages from your distribution’s repositories, and some

may require superuser privileges to execute.

Examining and Monitoring a Network

Note:

176 Chapter 16

Even if you’re not the system administrator, it’s often helpful to examine the

performance and operation of a network.

ping—Send a Special Packet to a Network Host

The most basic network command is ping. The ping command sends a spe-

cial network packet called an ICMP ECHO_REQUEST to a specified host.

Most network devices receiving this packet will reply to it, allowing the net-

work connection to be verified.

It is possible to configure most network devices (including Linux hosts) to ignore these

packets. This is usually done for security reasons, to partially obscure a host from a

potential attacker. It is also common for firewalls to be configured to block ICMP traf-
fia

For example, to see if we can reach hitp://www.linuxcommand.org/ (one

of my favorite sites ;-)), we can use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval
(default is 1 second) until it is interrupted:

[me@linuxbox ~]$ ping linuxcommand.org
PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp seq=1 ttl=43 time=10
7 ms t
> bytes from vhost.sourceforge.net (66.35.250.210): icmp seq=2 ttl=43 time=10

sa byte from vhost.sourceforge.net (66.35.250.210): icmp _seq=3 ttl=43 time=10

sa byte from vhost.sourceforge.net (66.35.250.210): icmp seq=4 ttl=43 time=10

sa bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5 ttl=43 time=10
ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp seq=6 ttl=43 time=10
7 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by the pressing

of crRL-C, ping prints performance statistics. A properly performing network

will exhibit zero percent packet loss. A successful ping will indicate that the

elements of the network (its interface cards, cabling, routing, and gateways)

are in generally good working order.

traceroute—Trace the Path of a Network Packet

The traceroute program (some systems use the similar tracepath program

instead) displays a listing of all the “hops” network traffic takes to get from

the local system to a specified host. For example, to see the route taken to

reach hittp://www.slashdot.org/, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte packets
1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
da *

3 ge-4-13-ur01.rockville.md.bad.comcast.net (68.87.130.9) 14.622 ms 14.885
ms 15.169 ms
4 po-30-ur02.rockville.md.bad.comcast.net (68.87.129.154) 17.634 ms 17.626

ms 17.899 ms
5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992 ms 15.983

ms 16.256 ms
6 po-30-ar01.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835 ms 14.23

3 ms 14.405 ms
7 po-10-ar02.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154 ms 13.600

ms 18.867 ms
8 te-0-3-0-1-cr01.philadelphia.pa.ibone.comcast.net (68.86.90.77) 21.951 ms

21.073 ms 21.557 ms
9 pos-0-8-0-0-cr01.newyork.ny.ibone.comcast.net (68.86.85.10) 22.917 ms 21

.884 ms 22.126 ms
10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms

11 cr1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms cr2-pos-0-0-

3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cr1-pos-0-7-3-1.newyork.sav

vis.net (204.70.195.93) 19.634 ms

Networking 177

178 Chapter 16

12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms 42.843 ms

cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242) 43.115 ms

13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net (204.70.195.122) 44.21

5 ms 41.833 ms 45.658 ms
14 csr1-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms 43.372 ms 4

7.041 ms

15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to hitp://

www.slashdot.org/ requires traversing 16 routers. For routers that provide

identifying information, we see their hostnames, IP addresses, and perform-

ance data, which include three samples of round-trip time from the local

system to the router. For routers that do not provide identifying information

(because of router configuration, network congestion, firewalls, etc.), we see

asterisks as in the line for hop number two.

netstat—Examine Network Settings and Statistics

The netstat program is used to examine various network settings and statis-

tics. Through the use of its many options, we can look at a variety of features

in our network setup. Using the -ie option, we can examine the network

interfaces in our system:

[me@linuxbox ~]$ netstat -ie
etho Link encap:Ethernet HWaddr 00:1d:09:9b:99:67

inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope: Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
TX packets:403217 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
Memory : fdfc0000-fdfe0000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

In the example above, we see that our test system has two network inter-

faces. The first, called etho, is the Ethernet interface; the second, called lo, is

the loopback interface, a virtual interface that the system uses to “talk to itself.”

When performing causal network diagnostics, the important things to

look for are the presence of the word UP at the beginning of the fourth line

for each interface, indicating that the network interface is enabled, and the

presence of a valid IP address in the inet addr field on the second line. For

systems using Dynamic Host Configuration Protocol (DHCP), a valid IP

address in this field will verify that the DHCP is working.

Using the -r option will display the kernel’s network routing table.
This shows how the network is configured to send packets from network
to network:

[me@linuxbox ~]$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192-168.1.0, = 255255 .6255..0 U0 00 0 etho default
192.168.1.1 0.0.0.0 UG 00 0 etho

In this simple example, we see a typical routing table for a client machine

on a local area network (LAN) behind a firewall/router. The first line of the

listing shows the destination 192.168.1.0. IP addresses that end in zero refer

to networks rather than individual hosts, so this destination means any host

on the LAN. The next field, Gateway, is the name or IP address of the gateway

(router) used to go from the current host to the destination network. An

asterisk in this field indicates that no gateway is needed.

The last line contains the destination default. This means any traffic

destined for a network that is not otherwise listed in the table. In our example,

we see that the gateway is defined as a router with the address of 192.168.1.1,

which presumably knows what to do with the destination traffic.

The netstat program has many options, and we have looked at only a

couple. Check out the netstat man page for a complete list.

Transporting Files over a Network

What good is a network unless we know how to move files across it? There

are many programs that move data over networks. We will cover two of them

now and several more in later sections.

ftp—Transfer Files with the File Transfer Protocol

One of the true “classic” programs, ftp gets its name from the protocol it

uses, the File Transfer Protocol. FTP is used widely on the Internet for file

downloads. Most, if not all, web browsers support it, and you often see URIs

starting with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used

to communicate with FTP servers, machines that contain files that can be

uploaded and downloaded over a network.

FTP (in its original form) is not secure, because it sends account names

and passwords in cleartext. This means that they are not encrypted and any-

one sniffing the network can see them. Because of this, almost all FTP done

over the Internet is done by anonymous FTP servers. An anonymous server

allows anyone to log in using the login name anonymous and a meaningless

password.

In the following example, we show a typical session with the ftp pro-

gram downloading an Ubuntu ISO image located in the /pub/cd_images/

Ubuntu-8.04 directory of the anonymous FTP server fileserver.

Networking 1 79

[me@linuxbox ~]$ ftp fileserver
Connected to fileserver.localdomain.
220 (vsFTPd 2.0.1)
Name (fileserver:me): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/cd_images/Ubuntu-8.04
250 Directory successfully changed.
ftp> 1s
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-IW-Iw-Y-- 1 500 500 733079552 Apr 25 03:53 ubuntu-8.04-desktop-
1386.iso
226 Directory send OK.
ftp> lcd Desktop
Local directory now /home/me/Desktop
ftp> get ubuntu-8.04-desktop-i386.iso
local: ubuntu-8.04-desktop-i386.iso remote: ubuntu-8.04-desktop-1386.iso
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for ubuntu-8.04-desktop-i386.iso
(733079552 bytes).
226 File send OK.
733079552 bytes received in 68.56 secs (10441.5 kB/s)
ftp> bye

Table 16-1 gives an explanation of the commands entered during this

session.

Table 16-1: Examples of Interactive ftp Commands

Invoke the ftp program and have it
connect to the FTP server fileserver.

ftp fileserver

anonymous Login name. After the login prompt, a

password prompt will appear. Some
servers will accept a blank password.
Others will require a password in the

form of an email address. In that case,

try something like user@example.com.

cd pub/cd_images/Ubuntu-8.04 Change to the directory on the remote
system containing the desired file. Note
that on most anonymous FTP servers, the
files for public downloading are found
somewhere under the pub directory.

4 List the directory on the remote system.

180 Chapter 16

Table 16-1 (continued)

Change the directory on the local
system to ~/Desktop. In the example,

the ftp program was invoked when the
working directory was ~. This command
changes the working directory to
~/Desktop.

lcd Desktop

get ubuntu-8.04-desktop-i386.iso Tell the remote system to transfer the
file ubuntu-8.04-desktop-i386. iso to
the local system. Since the working
directory on the local system was
changed to ~/Desktop, the file will
be downloaded there.

bye Log off the remote server and end the

ftp program session. The commands

quit and exit may also be used.

Typing help at the ftp> prompt will display a list of the supported com-

mands. Using ftp on a server where sufficient permissions have been granted,

it is possible to perform many ordinary file management tasks. It’s clumsy,

but it does work.

Iftp—A Better ftp

ftp is not the only command-line FTP client. In fact, there are many. One of

the better (and more popular) ones is 1ftp by Alexander Lukyanov. It works

much like the traditional ftp program but has many additional convenience

features, including multiple-protocol support (including HTTP), automatic

retry on failed downloads, background processes, tab completion of path-

names, and many more.

wget—Non-interactive Network Downloader

Another popular command-line program for file downloading is wget. It is

useful for downloading content from both web and FTP sites. Single files,

multiple files, and even entire sites can be downloaded. To download the

first page of http://www.linuxcommand. org/, we could do this:

[me@linuxbox ~]$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php

=> ~index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.

Networking 181

HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/htm1]

kh eS |) 33420 --.--K/s

11:02:51 (161.75 MB/s) - ~index.php' saved [3120]

The program’s many options allow wget to recursively download, down-

load files in the background (allowing you to log off but continue down-

loading), and complete the download of a partially downloaded file. These

features are well documented in its better-than-average man page.

Secure Communication with Remote Hosts

Note:

182 Chapter 16

For many years, Unix-like operating systems have had the ability to be

administered remotely via a network. In the early days, before the general

adoption of the Internet, there were a couple of popular programs used to

log in to remote hosts: the rlogin and telnet programs. These programs,

however, suffer from the same fatal flaw that the ftp program does; they

transmit all their communications (including login names and passwords) in

cleartext. This makes them wholly inappropriate for use in the Internet age.

ssh—Securely Log in to Remote Computers

To address this problem, a new protocol called SSH (Secure Shell) was

developed. SSH solves the two basic problems of secure communication

with a remote host. First, it authenticates that the remote host is who it says

it is (thus preventing man-in-the-middle attacks), and second, it encrypts all

of the communications between the local and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listen-

ing for incoming connections on port 22, while an SSH client is used on the

local system to communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSsH

from the BSD project. Some distributions include both the client and the

server packages by default (for example, Red Hat), while others (such as

Ubuntu) supply only the client. To enable a system to receive remote con-

nections, it must have the OpenSSH-server package installed, configured, and

running, and (if the system is either running or behind a firewall) it must

allow incoming network connections on TCP port 22.

If you don't have a remote system to connect to but want to try these examples, make
sure the OpenSSH-server package is installed on your system and use localhost as the
name of the remote host. That way, your machine will create network connections with
itself.

The SSH client program used to connect to remote SSH servers is
called, appropriately enough, ssh. To connect to a remote host named

remote-sys, we would use the ssh client program like so:

[me@linuxbox ~]$ ssh remote-sys
The authenticity of host 'remote-sys (192.168.1.4)' can't be established.
RSA key fingerprint is 41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7:d9:bb.
Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indi-

cating that the authenticity of the remote host cannot be established. This

is because the client program has never seen this remote host before. To

accept the credentials of the remote host, enter yes when prompted. Once

the connection is established, the user is prompted for a password:

Warning: Permanently added ‘remote-sys,192.168.1.4' (RSA) to the list of known
hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt

from the remote system:

Last login: Tue Aug 30 13:00:48 2011
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit com-

mand at the remote shell prompt, thereby closing the remote connection.

At this point, the local shell session resumes, and the local shell prompt

reappears.
It is also possible to connect to remote systems using a different user-

name. For example, if the local user me had an account named bob on a

remote system, user me could log in to the account bob on the remote system

as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:
Last login: Tue Aug 30 13:03:21 2011
[bob@remote-sys ~]$

As stated before, ssh verifies the authenticity of the remote host. If

the remote host does not successfully authenticate, the following message

appears:

[me@linuxbox ~]$ ssh remote-sys

@MOMAMOOMAMOOOOAMAOMOOOOMOAMAOMOOMOOMOOQOAQOOCOOQOOCQOCOOO
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

MOMAPMOAMOOMOOMOOAMOOCOAAMOACOAOMOOOOOOOOOOCOQOOCOQQOH@OCOOO
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

Networking 183

184 = Chapter 16

The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this message.
Offending key in /home/me/.ssh/known_hosts:1
RSA host key for remote-sys has changed and you have requested strict
checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker

may be attempting a man-in-the-middle attack. This is rare, because every-

body knows that ssh alerts the user to this. The more likely culprit is that

the remote system has been changed somehow; for example, its operating

system or SSH server has been reinstalled. In the interests of security and

safety, however, the first possibility should not be dismissed out of hand.

Always check with the administrator of the remote system when this message

occurs.
After determining that the message is due to a benign cause, it is safe to

correct the problem on the client side. This is done by using a text editor

(vim perhaps) to remove the obsolete key from the ~/.ssh/known_hosts file.

In the example message above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line 1 of the known_hosts file contains the offending

key. Delete this line from the file, and the ssh program will be able to accept

new authentication credentials from the remote system.

Besides opening a shell session on a remote system, ssh also allows us to

execute a single command on a remote system. For example, we can execute

the free command on a remote host named remote-sys and have the results

displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:

total used free shared buffers cached

Mem: 775536 507184 268352 0 110068 154596
-/+ buffers/cache: 242520 533016

Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as this

example in which we perform an ls on the remote system and redirect the

output to a file on the local system:

[me@linuxbox ~]$ ssh remote-sys ‘ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$

Notice the use of the single quotes. This is done because we do not want
the pathname expansion performed on the local machine; rather, we want it
to be performed on the remote system. Likewise, if we had wanted the output

redirected to a file on the remote machine, we could have placed the redir-
ection operator and the filename within the single quotes:

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

TUNNELING WITH SSH

Part of what happens when you establish a connection with a remote host via

SSH is that an encrypted tunnel is created between the local and remote systems. —

Normally, this tunnel is used to allow commands typed at the local system to be _

transmitted safely to the remote system and the results to be transmitted safely 2

back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort o VPN
(virtual private network) between the local and remote systems. oo

Perhaps the most common use of this feature is to allow X Window system Z
traffic to be transmitted. On a system running an X server (that is, a machine oS

displaying a GUI), itis possible to launch and run an X client ‘program: (a graph- ne

ical application) on a remote system and have its display appear on the local

system. It’s easy to do—here’s an example. Let Jir

tem called /inuxbox that is running an X server, and we want to run the xload_

program on a remote system named ene and see 2 the ees S geht

output on our local system. We could do this a ee

[me@linuxbox a ssh x renote-sys
me@remote-sys's password: 7.
Last login: Mon Sep 05 13:23: rh 2011. a
[me@remote-sys ~]$ xload

After the xload comand is oe on the remote system, its window

appears on the local system. On some systems, you Haas need to use te a

option rather than the -X Gee to do this. : :

scp and sftp—Securely Transfer Files

The OpenSSH package also includes two programs that can make use of an SSH-

encrypted tunnel to copy files across the network. The first, scp (secure copy)

is used much like the familiar cp program to copy files. The most notable

difference is that the source or destination pathname may be preceded with

the name of a remote host followed by a colon character. For example, if we

wanted to copy a document named document. txt from our home directory on

the remote system, remote-sys, to the current working directory on our local

system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:

document. txt 100% 5581 5.5KB/s 00:00

[me@linuxbox ~]$

Networking 185

Note:

186 Chapter 16

As with ssh, you may apply a username to the beginning of the remote

host’s name if the desired remote host account name does not match that of

the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp, which, as its name implies,

is a secure replacement for the ftp program. sftp works much like the ori-

ginal ftp program that we used earlier; however, instead of transmitting

everything in cleartext, it uses an SSH-encrypted tunnel. sftp has an impor-

tant advantage over conventional ftp in that it does not require an FTP

server to be running on the remote host. It requires only the SSH server.

This means that any remote machine that can connect with the SSH client

can also be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls
ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-desktop-i386.iso

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

The SFTP protocol is supported by many of the graphical file managers found in

Linux distributions. Using either Nautilus (GNOME) or Konqueror (KDE), we can

enter a URI beginning with sftp:// into the location bar and operate on files stored

on a remote system running an SSH server.

AN SSH CLIENT FOR WINDOWS?
" ees ata a but you need to ee in to your

cf 7 program a your Windows ae ae out There area pnrhce of these. The ©

ie most ae one is probably PuTTY by Simon ule and his team. The PulTY

. ae sep and sftp programs.
| PuTTY i is available at hutp: es chiark. ca org. uk/- Pete Maal

SEARCHING FOR FILES

As we have wandered around our Linux system, one
thing has become abundantly clear: A typical Linux
system has a lot of files! This raises the question “How
do we find things?” We already know that the Linux
filesystem is well organized according to conventions that have been passed

down from one generation of Unix-like systems to the next, but the sheer

number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a

system:

e locate—Find files by name.

e find—Search for files in a directory hierarchy.

We will also look at a command that is often used with file-search com-

mands to process the resulting list of files:

e xargs—Build and execute command lines from standard input.

In addition, we will introduce a couple of commands to assist us in our

explorations:

e touch—Change file times.

e stat—Display file or filesystem status.

locate—Find Files the Easy Way
The locate program performs a rapid database search of pathnames and

then outputs every name that matches a given substring. Say, for example,

we want to find all the programs with names that begin with zp. Since we

are looking for programs, we can assume that the name of the directory

containing the programs would end with bin/. Therefore, we could try to

use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain

the string bin/zip:

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, locate can be combined with

other tools, such as grep, to design more interesting searches:

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usx/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and several
different variants are in common use. The two most common ones found in
modern Linux distributions are slocate and mlocate, though they are usually

188 Chapter 17

accessed by a symbolic link named locate. The different versions of locate
have overlapping options sets. Some versions include regular-expression
matching (which we’ll cover in Chapter 19) and wildcard support. Check
the man page for locate to determine which version of locate is installed.

WHERE DOES THE LOCATE DATABASE COME FROM?

You may notice that, on some distributions, locate fails to work just after he!

system is installed, but if you try again the next day, it works fine. What gives? ay

The locate database is created by another program named updatedb, Usually, it a

run periodically as a cron job; that is, a task performed at regular intervals by the

cron daemon. Most systems equipped with locate run updatedb once a day. Since

the database is not updated continuously, you will notice that very recent files

do not show up when using locate. To overcome this, it’s possible to run the
updatedb program manually by oe the superuser and running So

at the prompt.

find—Find Files the Hard Way
While the locate program can find a file based solely on its name, the find

program searches a given directory (and its subdirectories) for files based

on a variety of attributes. We’re going to spend a lot of time with find because

it has a bunch of interesting features that we will see again and again when

we start to cover programming concepts in later chapters.

In its simplest use, find is given one or more names of directories to

search. For example, it can produce a list of our home directory:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the

list is sent to standard output, we can pipe the list into other programs. Let’s

use wc to count the number of files:

[me@linuxbox ~]$ find ~ | we -1
47068

Wow, we’ve been busy! The beauty of find is that it can be used to

identify files that meet specific criteria. It does this through the (slightly

strange) application of tests, actions, and options. We'll look at the tests first.

Tests

Let’s say that we want a list of directories from our search. To do this, we

could add the following test:

[me@linuxbox ~]$ find ~ -type d | we -1
1695

Searching for Files 189

190 = Chapter 17

Adding the test -type d limited the search to directories. Conversely, we

could have limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | we -l

38737

Table 17-1 lists the common file-type tests supported by find.

Table 17-1: find File Types

File Type Description
b Block special device file

c Character special device file

d Directory

f | | Regular file 7

ie Symbolic link

We can also search by file size and filename by adding some additional

tests. Let’s look for all the regular files that match the wildcard pattern

* JPG and are larger than 1 megabyte:

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | we -1l
840

In this example, we add the -name test followed by the wildcard pattern.

Notice that we enclose it in quotes to prevent pathname expansion by the

shell. Next, we add the -size test followed by the string +1M. The leading plus

sign indicates that we are looking for files larger than the specified number.

A leading minus sign would change the string to mean “smaller than the

specified number.” Using no sign means “match the value exactly.” The

trailing letter M indicates that the unit of measurement is megabytes. The

characters shown in Table 17-2 may be used to specify units.

Table 17-2: find Size Units

Character Unit _ ce

b 512-byte blocks (the default if no unit is specified)

c Bytes

W 2-byte words

k Kilobytes (units of 1024 bytes)

M Megabytes fants of 1,048,576 bytes)

G Gigabytes (units of 1,073,741 824 Eves

find supports a large number of different tests. Table 17-3 provides a
rundown of the common ones. Note that in cases where a numeric argu-
ment is required, the same + and - notation discussed above can be applied.

Table 17-3: find Tests

Test

-cmin n

-cnewer file

-ctime n

-empty

-group name

-iname pattern

-inum n

-mmin n

-mtime n

-name pattern

-newer file

-nouser

-nogroup

_ Description

Match files or directories whose content or attributes were

last modified exactly n minutes ago. To specify fewer than
n minutes ago, use -n; to specify more than n minutes ago,

use +n.

Match files or directories whose contents or attributes were

last modified more recently than those of file.

Match files or directories whose contents or attributes (i.e.,

permissions) were last modified n*24 hours ago.

Match empty files and directories.

Match file or directories belonging to group name. name
may be expressed as either a group name or as a numeric
group ID.

Like the -name test but case insensitive.

Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

Match files or directories whose contents were modified n

minutes ago.

Match files or directories whose contents only were last
modified n*24 hours ago.

Match files and directories with the specified wildcard

pattern.

Match files and directories whose contents were modified
more recently than the specified file. This is very useful
when writing shell scripts that perform file backups. Each
time you make a backup, update a file (such as a log) and
then use find to determine which files have changed since

the last update.

Match file and directories that do not belong to a valid

user. This can be used to find files belonging to deleted

accounts or to detect activity by attackers.

Match files and directories that do not belong to a valid

group.

(continued)

Searching for Files 191

192 Chapter 17

Table 17-3 (continued)

Test is Description —

-perm mode Match files or directories that have permissions set to the

specified mode. mode may be expressed by either octal or

symbolic notation.

-samefile name Similar to the -inum test. Matches files that share the same

inode number as file name.

-size n Match files of size n.

-type c Match files of type c.

-user name Match files or directories belonging to name. name may be

expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators

Even with all the tests that find provides, we may still need a better way to

describe the logical relationships between the tests. For example, what if we

needed to determine if all the files and subdirectories in a directory had

secure permissions? We would look for all the files with permissions that are

not 0600 and the directories with permissions that are not 0700. Fortunately,

find provides a way to combine tests using logical operators to create more

complex logical relationships. To express the aforementioned test, we

could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d -not -perm
0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the opera-

tors are not that complicated once you get to know them (see Table 17-4).

Table 17-4: find Logical Operators

shortened to -a. Note that when no operator is present, -and is
implied by default.

-or Match if a test on either side of the operator is true. May be
shortened to -o.

-not Match if the test following the operator is false. May be
shortened to -!.

Table 17-4 (continued)

ee a

te) Groups tests and operators together to form larger expressions.
This is used to control the precedence of the logical evaluations.
By default, find evaluates from left to right. It is often necessary
to override the default evaluation order to obtain the desired
result. Even if not needed, it is helpful sometimes to include the
grouping characters to improve readability of the command.
Note that since the parentheses characters have special meaning
to the shell, they must be quoted when using them on the command
line to allow them to be passed as arguments to find. Usually
the backslash character is used to escape them.

With this list of operators in hand, let’s deconstruct our find command.

When viewed from the uppermost level, we see that our tests are arranged as

two groupings separated by an -or operator:

(expression 1) -or (expression 2)

This makes sense, since we are searching for files with a certain set of

permissions and for directories with a different set. If we are looking for both

files and directories, why do we use -or instead of -and? Because as find scans

through the files and directories, each one is evaluated to see if it matches

the specified tests. We want to know if it is ethera file with bad permissions

or a directory with bad permissions. It can’t be both at the same time. So if

we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do

that? Actually we don’t. What we will test for is “not good permissions,” since

we know what “good permissions” are. In the case of files, we define good as

0600; for directories, 0700. The expression that will test files for “not good”

permissions is:

-type f -and -not -perm 0600

and the expression for directories is:

-type d -and -not -perm 0700

As noted in Table 17-4, the -and operator can be safely removed, since

it is implied by default. So if we put this all back together, we get our final

command:

find ~ (-type f -not -perm 0600) -or (-type d -not -perm 0700)

However, since the parentheses have special meaning to the shell, we

must escape them to prevent the shell from trying to interpret them. Pre-

ceding each one with a backslash character does the trick.

Searching for Files 193

194 Chapter 17

There is another feature of logical operators that is important to under-

stand. Let’s say that we have two expressions separated bya logical operator:

expr1 -operator expr2

In all cases, expr1 will always be performed; however, the operator will

determine if expr2 is performed. Table 17-5 shows how it works.

Table 17-5: find AND/OR Logic

Results of expr1 Operator expr2 is...

True -and Always performed

False -and Never performed

True -or Never performed

False -or Always performed

Why does this happen? It’s done to improve performance. Take -and,

for example. We know that the expression expr1 -and expr2 cannot be true if

the result of expr1 is false, so there is no point in performing expr2. Likewise,

if we have the expression expr1 -or expr2 and the result of expr1 is true, there

is NO point in performing expr2, as we already know that the expression

expr1 -or expr2 is true.

Okay, so this helps things go faster. Why is this important? Because we

can rely on this behavior to control how actions are performed, as we shall

soon see.

Actions

Let’s get some work done! Having a list of results from our find command

is useful, but what we really want to do is act on the items on the list. Fortu-

nately, find allows actions to be performed based on the search results.

Predefined Actions

There are a set of predefined actions and several ways to apply user-defined

actions. First let’s look at a few of the predefined actions in Table 17-6.

Table 17-6: Predefined find Actions

Action —_—_—_Desscription :

-delete Delete the currently matching file.

-1s Perform the equivalent of 1s -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is specified.

Warning:

Table 17-6 (continued)

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page
for full details.

In our very first example, we did this:

find ~

This command produced a list of every file and subdirectory contained

within our home directory. It produced a list because the -print action is

implied if no other action is specified. Thus, our command could also be
expressed as

find ~ -print

We can use find to delete files that meet certain criteria. For example, to

delete files that have the file extension .BAK (which is often used to desig-

nate backup files), we could use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its sub-

directories) is searched for filenames ending in .BAK. When they are found,

they are deleted.

It should go without saying that you should use extreme caution when using

the -delete action. Always test the command first by substituting the -print action

for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators

affect actions. Consider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (-type f)

whose name ends with .BAK (-name '*.BAK') and will output the relative path-

name of each matching file to standard output (-print). However, the reason

the command performs the way it does is determined by the logical relation-

ships between each of the tests and actions. Remember, there is, by default,

an implied -and relationship between each test and action. We could also

express the command this way to make the logical relationships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at Table 17-7 to see how

the logical operators affect its execution.

Searching for Files 195

196 = Chapter 17

Table 17-7: Effect of Logical Operators

Test/Action Is performed when...

-print -type f and -name '*.BAK' are true.

-name '*.BAK' -type f is true.

-type f ls always performed, since it is the first test/action in an

-and relationship.

Since the logical relationship between the tests and actions determines

which of them are performed, we can see that the order of the tests and

actions is important. For instance, if we were to reorder the tests and actions

so that the -print action was the first one, the command would behave much

differently:

find ~ -print -and -type f -and -name '*.BAK'

This version of the command will print each file (the -print action

always evaluates to true) and then test for file type and the specified file

extension.

User-Defined Actions

In addition to the predefined actions, we can also invoke arbitrary com-

mands. The traditional way of doing this is with the -exec action, like this:

-exec command {} ;

where command is the name of a command, {} is a symbolic representation

of the current pathname, and the semicolon is a required delimiter indicat-

ing the end of the command. Here’s an example of using -exec to act like

the -delete action discussed earlier:

-exec rm ‘{}' °3'

Again, since the brace and semicolon characters have special meaning

to the shell, they must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using

the -ok action in place of -exec, the user is prompted before execution of
each specified command:

find ~ -type f -name 'foo*' -ok 1s -1 '{}' ';'
< 1s ... /home/me/bin/foo > ? y
-IWXY-XI-X 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
< 1s ... /home/me/foo.txt > ? y
-YW-Y--Y-- 1 me me O 2012-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string
foo and execute the command 1s -1 each time one is found. Using the -ok

action prompts the user before the 1s command is executed.

Note:

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified
command each time a matching file is found. There are times when we might
prefer to combine all of the search results and launch a single instance of
the command. For example, rather than executing the commands like this,

ls -1 files
ls -1 file2

we may prefer to execute them this way:

ls -1 file1 file2

Here we cause the command to be executed only one time rather than

multiple times. There are two ways we can do this: the traditional way, using

the external command xargs, and the alternative way, using a new feature in

find itself. We'll talk about the alternative way first.

By changing the trailing semicolon character to a plus sign, we activate

the ability of find to combine the results of the search into an argument

list for a single execution of the desired command. Going back to our

example,

find ~ -type f -name 'foo*' -exec ls -1 '{}' ';'
-IWXI-XI-X 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-Iw-r--r-- 1 me me O 2012-09-19 12:53 /home/me/foo.txt

will execute 1s each time a matching file is found. By changing the com-

mand to

find ~ -type f -name 'foo*' -exec ls -1 '{}' +
-IYWXI-Xr-X 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-IW-I--r-- 1 me me O 2012-09-19 12:53 /home/me/foo.txt

we get the same results, but the system has to execute the 1s command

only once.

We can also use the xargs command to get the same result. xargs accepts

input from standard input and converts it into an argument list for a speci-

fied command. With our example, we would use it like this:

find ~ -type f -name 'foo*' -print | xargs ls -1
-YWXI-Xr-X 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-YW-I--r-- 1 me me O 2012-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs, which, in

turn, constructs an argument list for the 1s command and then executes it.

While the number of arguments that can be placed into a command line ts quite large,

it’s not unlimited. It is possible to create commands that are too long for the shell to

accept. When a command line exceeds the maximum length supported by the system,

xargs executes the specified command with the maximum number of arguments pos-

sible and then repeats this process until standard input is exhausted. To see the max-

imum size of the command line, execute xargs with the --show-limits option.

Searching for Files 197

198 Chapter 17

DEALING WITH FUNNY FILENAMES

Unix-like systems allow embedded spaces (and even newlines!) in filenames.

This causes problems for programs like xargs that construct argument lists for

other programs. An embedded space will be treated as a delimiter, and the

resulting command will interpret each space-separated word as a separate

argument. To overcome this, find and xargs allow the optional use of a null

character as argument separator. A null character is defined in ASCII as the

character represented by the number zero (as opposed to, for example, the

space character, which is defined in ASCII as the character represented by the

number 32). The find command provides the action -printo, which produces

null-separated output, and the xargs command has the --null option, which

a null separated input. Here’s an salute

find” ~ -iname ‘*.jpg' -printo | xargs paid 1s -l

Using this technique, we can ensure that all files, even those containing

embedded spaces in their names, are handled correctly.

A Return to the Playground

It’s time to put find to some (almost) practical use. First, let’s create a play-

ground with lots of subdirectories and files:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10..99},100}/file-{A. .Z}

Marvel in the power of the command line! With these two lines, we cre-

ated a playground directory containing 100 subdirectories, each containing

26 empty files. Try that with the GUI!

The method we employed to accomplish this magic involved a familiar

command (mkdir); an exotic shell expansion (braces); and a new command

touch. By combining mkdir with the -p option (which causes mkdir to create

the parent directories of the specified paths) with brace expansion, we were

able to create 100 directories.

The touch command is usually used to set or update the modification

times of files. However, if a filename argument is that of a non-existent file,

an empty file is created.

In our playground, we created 100 instances of a file named file-A. Let’s

find them:

>

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike 1s, find does not produce results in sorted order. Its
order is determined by the layout of the storage device. We can confirm that
we actually have 100 instances of the file this way:

[me@linuxbox ~]$ find playground -type f -name 'file-A' | we -1
100

Next, let’s look at finding files based on their modification times. This
will be helpful when creating backups or organizing files in chronological
order. To do this, we will first create a reference file against which we will
compare modification time:

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification

time to the current time. We can verify this by using another handy com-

mand, stat, which is a kind of souped-up version of 1s. The stat command

reveals all that the system understands about a file and its attributes:

[me@linuxbox ~]$ stat playground/timestamp
File: ~playground/timestamp'
Sizes 0 Blocks: 0 I0 Block: 4096 regular empty file

Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:15:39.000000000 -0400
Modify: 2012-10-08 15:15:39.000000000 -0400

Change: 2012-10-08 15:15:39.000000000 -0400

If we touch the file again and then examine it with stat, we will see that

the file’s times have been updated:

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp

File: ~playground/timestamp'
saya 10 Blocks: 0 I0 Block: 4096 regular empty file

Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:23:33.000000000 -0400
Modify: 2012-10-08 15:23:33.000000000 -0400

Change: 2012-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files:

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch '{}' ';

This updates all files in the playground that are named /ie-B. Next we'll

use find to identify the updated files by comparing all the files to the refer-

ence file timestamp:

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed

a touch on all the files in the playground that are named /ile-B after we

updated timestamp, they are now “newer” than timestamp and thus can be

identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier

and apply it to playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(-type d

-not -perm 0700 \)

Searching for Files 199

This command lists all 100 directories and 2,600 files in playground (as

well as timestamp and playground itself, for a total of 2,702) because none of

them meets our definition of “good permissions.” With our knowledge of

operators and actions, we can add actions to this command to apply new

permissions to the files and directories in our playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
'{}' '3' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands,

one for the directories and one for the files, rather than this one large

compound command, but it’s nice to know that we can do it this way. The

important point here is to understand how operators and actions can be

used together to perform useful tasks.

Options

Finally, we have the options. The options are used to control the scope of a

find search. They may be included with other tests and actions when con-

structing find expressions. Table 17-8 lists the most commonly used options.

Table 17-8: find Options

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied

when the -delete action is specified.

-maxdepth levels Set the maximum number of levels that find will descend

into a directory tree when performing tests and actions.

-mindepth levels Set the minimum number of levels that find will descend

into a directory tree before applying tests and actions.

-mount Direct find not to traverse directories that are mounted

on other filesystems.

-noleaf Direct find not to optimize its search based on the

assumption that it is searching a Unix-like filesystem.
This is needed when scanning DOS/Windows file-
systems and CD-ROMs.

200 = Chapter 17

18
ARCHIVING AND BACKUP

One of the primary tasks of a computer system’s admin-

istrator is to keep the system’s data secure. One way
this is done is by performing timely backups of the sys-

tem’s files. Even if you’re not a system administrator,
it is often useful to make copies of things and to move
large collections of files from place to place and from

device to device.
In this chapter, we will look at several common programs that are used

to manage collections of files. There are the file compression programs:

e gzip—Compress or expand files.

e bzip2—A block sorting file compressor.

the archiving programs:

e tar—Tape-archiving utility.

e zip—Package and compress files.

and the file synchronization program:

e rsync—Remote file and directory synchronization.

Compressing Files

202 Chapter 18

Throughout the history of computing, there has been a struggle to get the

most data into the smallest available space, whether that space be memory,

storage devices, or network bandwidth. Many of the data services that we

take for granted today, such as portable music players, high-definition tele-

vision, or broadband Internet, owe their existence to effective data compres-

sion techniques.

Data compression is the process of removing redundancy from data.

Let’s consider an imaginary example. Say we had an entirely black picture

file with the dimensions of 100 pixels by 100 pixels. In terms of data storage

(assuming 24 bits, or 3 bytes per pixel), the image will occupy 30,000 bytes

of storage: 100 x 100 x 3 = 30,000.

An image that is all one color contains entirely redundant data. If we

were clever, we could encode the data in such a way as to simply describe

the fact that we have a block of 10,000 black pixels. So, instead of storing a

block of data containing 30,000 zeros (black is usually represented in image

files as zero), we could compress the data into the number 30,000, followed

by a zero to represent our data. Such a data compression scheme, called

run-length encoding, is one of the most rudimentary compression techniques.

Today’s techniques are much more advanced and complex, but the basic

goal remains the same—get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out

the compression) fall into two general categories, lossless and lossy. Lossless

compression preserves all the data contained in the original. This means

that when a file is restored from a compressed version, the restored file is

exactly the same as the original, uncompressed version. Lossy compression,

on the other hand, removes data as the compression is performed, to allow

more compression to be applied. When a lossy file is restored, it does not

match the original version; rather, it is a close approximation. Examples of

lossy compression are JPEG (for images) and MP3 (for music). In our dis-

cussion, we will look exclusively at lossless compression, since most data on

computers cannot tolerate any data loss.

gzip—Compress or Expand Files

The gzip program is used to compress one or more files. When executed, it
replaces the original file with a compressed version of the original. The cor-
responding gunzip program is used to restore compressed files to their ori-
ginal, uncompressed form. Here is an example:

[me@linuxbox ~]$ 1s -l /etc > foo.txt
[me@linuxbox ~]$ 1s -1 foo.*

-Iw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ ls -1 foo.*
-Yw-Y--r-- 1 me me 3230 2012-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt
[me@linuxbox ~]$ ls -1 foo.*
-Yw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt

In this example, we create a text file named /oo. txt from a directory listing.

Next, we run gzip, which replaces the original file with a compressed version

named foo. txt.gz. In the directory listing of foo. *, we see that the original file

has been replaced with the compressed version and that the compressed

version is about one-fifth the size of the original. We can also see that the

compressed file has the same permissions and time stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we

can see that the compressed version of the file has been replaced with the

original, again with the permissions and timestamp preserved.

gzip has many options. Table 18-1 lists a few.

Table 18-1: gzip Options

-C Write output to standard output and keep original files. May also
be specified with --stdout and --to-stdout.

-d Decompress. This causes gzip to act like gunzip. May also be

specified with --decompress or --uncompress.

-f Force compression even if a compressed version of the original file

already exists. May also be specified with --force.

-h Display usage information. May also be specified with --help.

-1 List compression statistics for each file compressed. May also be

specified with --list.

=i If one or more arguments on the command line are directories,

recursively compress files contained within them. May also be

specified with --recursive.

-t Test the integrity of a compressed file. May also be specified with

So iLesis

-V Display verbose messages while compressing. May also be

specified with --verbose.

-number Set amount of compression. number is an integer in the range of 1

(fastest, least compression) to 9 (slowest, most compression). The

values 1 and 9 may also be expressed as --fast and --best,

respectively. The default value is 6.

Archiving and Backup 203

Note:

204 Chapter 18

Let’s look again at our earlier example:

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ gzip -tv foo.txt.gz
foo. txt.gz: OK
[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo. txt with a compressed version named

foo.txt.gz. Next, we tested the integrity of the compressed version, using the

-t and -v options. Finally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ ls -1 /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that file-

names end in the extension .gz, so it’s not necessary to specify it, as long as

the specified name is not in conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we

could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternatively, a program supplied with gzip, called zcat, is equivalent

to gunzip with the -c option. It can be used like the cat command on gzip-

compressed files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

There is azless program, too. It performs the same function as the pipeline above.

bzip2—Higher Compression at the Cost of Speed

The bzip2 program, by Julian Seward, is similar to gzip but uses a different

compression algorithm, which achieves higher levels of compression at the

cost of compression speed. In most regards, it works in the same fashion as

gzip. A file compressed with bzip2 is denoted with the extension .bz2:

[me@linuxbox ~]$ 1s -1 /etc > foo.txt
[me@linuxbox ~]$ 1s -1 foo.txt
-Yw-Y--r-- 1 me me 15738 2012-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt
[me@linuxbox ~]$ ls -1 foo.txt.bz2
-YW-Y--r-- 1 me me 2792 2012-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

As we can see, bzip2 can be used the same way as gzip. All the options
(except for -r) that we discussed for gzip are also supported in bzip2. Note,
however, that the compression level option (-number) has a somewhat differ-
ent meaning to bzip2. bzip2 comes with bunzip2 and bzcat for decompressing
files.

bzip2 also comes with the bzip2recover program, which will try to recover
damaged .bz2 files.

DON'T BE COMPRESSIVE COMPULSIVE

I occasionally see people attempting to compress a file that has already been —
compressed with an effective compression algorithm, by se Se
like this:

$ gzip picture. jpg

Don’t do it. You’re probably just wasting time and space! ifyou aon co PS

pression to a file that is already compressed, you will actually end up with a dar

ger file. This is because all compression techniques involve some overhead that .

is added to the file to describe the compression. If y you try to compre

that already contains no redundant information, the compressic n will

ult in any savings to offset the angie pretend

Archiving Files

A common file-management task used in conjunction with compression is

archiving. Archiving is the process of gathering up many files and bundling

them into a single large file. Archiving is often done as a part of system

backups. It is also used when old data is moved from a system to some type

of long-term storage.

tar—Tape Archiving Utility

In the Unix-like world of software, the tar program is the classic tool for

archiving files. Its name, short for tape archive, reveals its roots as a tool for

making backup tapes. While it is still used for that traditional task, it is

equally adept on other storage devices. We often see filenames that end

with the extension .tar or .tgz, which indicate a “plain” tar archive and a

gzipped archive, respectively. A tar archive can consist of a group of separate

files, one or more directory hierarchies, or a mixture of both. The com-

mand syntax works like this:

tar mode[options] pathname...

where mode is one of the operating modes shown in Table 18-2 (only a partial

list is shown here; see the tar man page for a complete list).

Archiving and Backup 205

Table 18-2: tar Modes

Mode _ Description

c Create an archive from a list of files and/or directories.

x Extract an archive.

r Append specified pathnames to the end of an archive.

t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we ll need some

examples to show how it works. First, let’s re-create our playground from the

previous chapter:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10. .99},100}/file-{A. .Z}

Next, let’s create a tar archive of the entire playground:

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground.tar, which con-

tains the entire playground directory hierarchy. We can see that the mode

and the f option, which is used to specify the name of the tar archive, may

be joined together and do not require a leading dash. Note, however, that

the mode must always be specified first, before any other option.

To list the contents of the archive, we can do this:

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option:

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by

creating a new directory named /oo, changing the directory, and extracting

the tar archive:

[me@linuxbox ~]$ mkdir foo
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ ls
playground

If we examine the contents of ~/foo/playground, we see that the archive

was successfully installed, creating a precise reproduction of the original

files. There is one caveat, however: Unless you are operating as the super-

user, files and directories extracted from archives take on the ownership

of the user performing the restoration, rather than the original owner.

206 = Chapter 18

Another interesting behavior of tar is the way it handles pathnames in
archives. The default for pathnames is relative, rather than absolute. tar
does this by simply removing any leading slash from the pathname when
creating the archive. To demonstrate, we will re-create our archive, this

time specifying an absolute pathname:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the ENTER key, so we will get an absolute pathname for our demonstra-

tion. Next, we will extract the archive as before and watch what happens:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ 1s
home playground
[me@linuxbox foo]$ 1s home
me
[me@linuxbox foo]$ 1s home/me
playground

Here we can see that when we extracted our second archive, it re-created

the directory home/me/playground relative to our current working directory,

~/foo, not relative to the root directory, as would have been the case with an

absolute pathname. This may seem like an odd way for it to work, but it’s

actually more useful this way, as it allows us to extract archives to any loca-

tion rather than being forced to extract them to their original locations.

Repeating the exercise with the inclusion of the verbose option (v) will give

a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action.

Imagine we want to copy the home directory and its contents from one sys-

tem to another and we have a large USB hard drive that we can use for the

transfer. On our modern Linux system, the drive is “automagically” moun-

ted in the /media directory. Let’s also imagine that the disk has a volume

name of BigDisk when we attach it. To make the tar archive, we can do the

following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the

second computer. Again, it is mounted at /media/BigDisk. To extract the

archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to /

so that the extraction is relative to the root directory, since all pathnames

within the archive are relative.

Archiving and Backup 207

208 = Cha pter 18

When extracting an archive, it’s possible to limit what is extracted. For

example, if we wanted to extract a single file from an archive, it could be

done like this:

tar xf archive.tar pathname

By adding the trailing pathname to the command, we ensure that tar will

restore only the specified file. Multiple pathnames may be specified. Note

that the pathname must be the full, exact relative pathname as stored in the

archive. When specifying pathnames, wildcards are not normally supported;

however, the GNU version of tar (which is the version most often found in

Linux distributions) supports them with the --wildcards option. Here is an

example using our previous playground.tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards ‘home/me/playground/
dir-*/file-A'

This command will extract only files matching the specified pathname

including the wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this

example, we will use find to produce a set of files to include in an archive:

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf playground.tar '{

ye!
Here we use find to match all the files in playground named /ile-A and

then, using the -exec action, we invoke tar in the append mode (r) to add

the matching files to the archive playground.tar.

Using tar with find is a good way to create incremental backups of a direct-

ory tree or an entire system. By using find to match files newer than a time-

stamp file, we could create an archive that contains only files newer than

the last archive, assuming that the timestamp file is updated right after each

archive is created.

tar can also make use of both standard input and output. Here is a com-

prehensive example:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-from=- | gzip
> playground.tgz

In this example, we used the find program to produce a list of matching

files and piped them into tar. If the filename - is specified, it is taken to mean

standard input or output, as needed. (By the way, this convention of using - to

represent standard input/output is used by a number of other programs,

too.) The --files-from option (which may also be specified as -T) causes tar

to read its list of pathnames from a file rather than the command line. Lastly,
the archive produced by tar is piped into gzip to create the compressed archive
playground. igz. The .igz extension is the conventional extension given to gzip-
compressed tar files. The extension .targz is also used sometimes.

While we used the gzip program externally to produce our compressed
archive, modern versions of GNU tar support both gzip and bzip2 compres-
sion directly with the use of the z and j options, respectively. Using our pre-
vious example as a base, we can simplify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf playground.tgz -T -

If we had wanted to create a bzip2-compressed archive instead, we could

have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf playground.tbz -T -

By simply changing the compression option from z to j (and changing

the output file’s extension to .tbz to indicate a bzip2-compressed file), we

enabled bzip2 compression.

Another interesting use of standard input and output with the tar com-

mand involves transferring files between systems over a network. Imagine

that we had two machines running a Unix-like system equipped with tar and

ssh. In such a scenario, we could transfer a directory from a remote system

(named remote-sys for this example) to our local system:

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys ‘tar cf - Documents’ | tar xf -
me@remote-sys's password:
[me@linuxbox remote-stuff]$ 1s
Documents

Here we were able to copy a directory named Documents from the remote

system remote-sys to a directory within the directory named remote-stuffon the

local system. How did we do this? First, we launched the tar program on the

remote system using ssh. You will recall that ssh allows us to execute a pro-

gram remotely on a networked computer and “see” the results on the local

system—the standard output produced on the remote system is sent to the

local system for viewing. We can take advantage of this by having tar create

an archive (the c mode) and send it to standard output, rather than a file

(the f option with the dash argument), thereby transporting the archive

over the encrypted tunnel provided by ssh to the local system. On the local

system, we execute tar and have it expand an archive (the x mode) supplied

from standard input (again, the f option with the dash argument).

zip—Package and Compress Files

The zip program is both a compression tool and an archiver. The file format

used by the program is familiar to Windows users, as it reads and writes .zzp

files. In Linux, however, gzip is the predominant compression program with

bzip2 being a close second. Linux users mainly use zip for exchanging files

with Windows systems, rather than performing compression and archiving.

Archiving and Backup 209

In its most basic usage, zip is invoked like this:

zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground

directory (but none of its contents) is stored. Although the addition of the

extension .zip is automatic, we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series

of messages like this:

adding: playground/dir-020/file-Z (stored 0%)
adding: playground/dir-020/file-Y (stored 0%)
adding: playground/dir-020/file-X (stored 0%)
adding: playground/dir-087/ (stored 0%)
adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will

add files to the archive using one of two storage methods: Either it will “store”

a file without compression, as shown here, or it will “deflate” the file, which

performs compression. The numeric value displayed after the storage method

indicates the amount of compression achieved. Since our playground con-

tains only empty files, no compression is performed on its contents.

Extracting the contents of a zip file is straightforward when using the

unzip program:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing

archive is specified, it is updated rather than replaced. This means that the

existing archive is preserved, but new files are added and matching files are

replaced.

Files may be listed and extracted selectively from a zip archive by spe-
cifying them to unzip:

[me@linuxbox ~]$ unzip -1 playground.zip playground/dir-087/file-Z
Archive: ./playground.zip

Length Date Time Name

O 10-05-12 09:25 playground/dir-087/file-Z

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
replace playground/dir-087/file-Z? [y]es, [n]o, [A]11, [NJone, [rJename: y
extracting: playground/dir-087/file-Z

210 Chapter 18

Using the -1 option causes unzip to merely list the contents of the archive
without extracting the file. If no file(s) are specified, unzip will list all files in

the archive. The -v option can be added to increase the verbosity of the list-

ing. Note that when the archive extraction conflicts with an existing file, the

user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its

implementation is somewhat less useful. It is possible to pipe a list of file-

names to zip via the -@ option:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A"

and then pipe the list into zip, which creates the archive /ile-A.zip containing

the selected files.

zip also supports writing its output to standard output, but its use is lim-

ited because very few programs can make use of the output. Unfortunately,

the unzip program does not accept standard input. This prevents zip and

unzip from being used together to perform network file copying like tar.

zip can, however, accept standard input, so it can be used to compress

the output of other programs:

[me@linuxbox ~]$ ls -1 /etc/ | zip ls-etc.zip -
adding: - (deflated 80%)

In this example, we pipe the output of 1s into zip. Like tar, zip inter-

prets the trailing dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when

the -p (for pipe) option is specified:

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip and unzip can do. They

both have a lot of options that add to their flexibility, though some are plat-

form specific to other systems. The man pages for both zip and unzip are pretty

good and contain useful examples.

- Synchronizing Files and Directories

A common strategy for maintaining a backup copy of a system involves keep-

ing one or more directories synchronized with another directory (or direct-

ories) located on either the local system (usually a removable storage device

of some kind) or a remote system. We might, for example, have a local

copy of a website under development and synchronize it from time to time

with the “live” copy on a remote web server.

Archiving and Backup 211

212 Chapter 18

rsync—Remote File and Directory Synchronization

In the Unix-like world, the preferred tool for this task is rsync. This program

can synchronize both local and remote directories by using the rsync remote-

update protocol, which allows rsync to quickly detect the differences between

two directories and perform the minimum amount of copying required to

bring them into sync. This makes rsync very fast and economical to use, com-

pared to other kinds of copy programs.

rsync is invoked like this:

rsync options source destination

where source and destination are each one of the following:

e A local file or directory

e Aremote file or directory in the form of [user@]host:path

e Aremote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-

to-remote copying is not supported.

Let’s try rsync out on some local files. First, let’s clean out our foo directory:

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the playground directory with a corresponding

copy in foo:

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving—causes recursion and

preservation of file attributes) and the -v option (verbose output) to make

a mirror of the playground directory within foo. While the command runs, we

will see a list of the files and directories being copied. At the end, we will see

a summary message like this, indicating the amount of copying performed:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

If we run the command again, we will see a different result:

[me@linuxbox ~]$ rsync -av playgound foo
building file list ... done

sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that
there were no differences between ~/playground and ~/foo/playground, and
therefore it didn’t need to copy anything. If we modify a file in playground
and run rsync again, we see that rsync detected the change and copied only
the updated file.

[me@linuxbox ~]$ touch playground/dir-099/file-Z
[me@linuxbox ~]$ rsync -av playground foo
building file list ... done
playground/dir-099/file-Z
sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

As a practical example, let’s consider the imaginary external hard drive

that we used earlier with tar. If we attach the drive to our system and, once

again, it is mounted at /media/BigDisk, we can perform a useful system backup

by first creating a directory named /backup on the external drive and then

using rsync to copy the most important stuff from our system to the external
drive:

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/
backup

In this example, we copied the /etc, /home, and /usr/local directories

from our system to our imaginary storage device. We included the --delete

option to remove files that may have existed on the backup device that no

longer existed on the source device (this is irrelevant the first time we make

a backup but will be useful on subsequent copies). Repeating the procedure

of attaching the external drive and running this rsync command would be a

useful (though not ideal) way of keeping a small system backed up. Of course,

an alias would be helpful here, too. We could create an alias and add it to

our .bashrc file to provide this feature:

alias backup='sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/bac
kup’

Now all we have to do is attach our external drive and run the backup

command to do the job.

Using rsync over a Network

One of the real beauties of rsync is that it can be used to copy files over a

network. After all, the rin rsync stands for remote. Remote copying can be

done in one of two ways.

The first way is with another system that has rsync installed, along with

a remote shell program such as ssh. Let’s say we had another system on our

local network with a lot of available hard drive space and we wanted to per-

form our backup operation using the remote system instead of an external

drive. Assuming that it already had a directory named /backup where we

could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home /usr/local remote-

sys:/backup

Archiving and Backup 213

214 Chapter 18

We made two changes to our command to facilitate the network copy.

First, we added the --rsh=ssh option, which instructs rsync to use the ssh pro-

gram as its remote shell. In this way, we were able to use an SSH-encrypted

tunnel to securely transfer the data from the local system to the remote

host. Second, we specified the remote host by prefixing its name (in this

case the remote host is named remote-sys) to the destination pathname.

The second way that rsync can be used to synchronize files over a net-

work is by using an rysne server. rsync can be configured to run as a daemon

and listen to incoming requests for synchronization. This is often done to

allow mirroring of a remote system. For example, Red Hat Software main-

tains a large repository of software packages under development for its Fedora

distribution. It is useful for software testers to mirror this collection during

the testing phase of the distribution release cycle. Since files in the repository

change frequently (often more than once a day), it is desirable to maintain a

local mirror by periodic synchronization, rather than by bulk copying of the

repository. One of these repositories is kept at Georgia Tech; we could mirror

it using our local copy of rsync and Georgia Tech’s rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av --delete rsync://rsync.gtlib.gatech.edu/fedora-
linux-core/development/i386/os fedora-devel

In this example, we use the URI of the remote rsync server, which con-

sists of a protocol (rsync://), followed by the remote hostname (rsync.gtlib
.gatech.edu), followed by the pathname of the repository.

19
REGULAR EXPRESSIONS

In the next few chapters, we are going to look at tools

used to manipulate text. As we have seen, text data
plays an important role on all Unix-like systems, such

as Linux. But before we can fully appreciate all of the

features offered by these tools, we have to examine a

technology that is frequently associated with the most

sophisticated uses of these tools—regular expressions.
As we have navigated the many features and facilities offered by the com-

mand line, we have encountered some truly arcane shell features and com-

mands, such as shell expansion and quoting, keyboard shortcuts, and command

history, not to mention the vi editor. Regular expressions continue this “tra-

dition” and may be (arguably) the most arcane feature of them all. This is

not to suggest that the time it takes to learn about them is not worth the

effort. Quite the contrary. A good understanding will enable us to perform

amazing feats, though their full value may not be immediately apparent.

What Are Regular Expressions?
Simply put, regular expressions are symbolic notations used to identify pat-

terns in text. In some ways, they resemble the shell’s wildcard method of

matching file- and pathnames but on a much grander scale. Regular expres-

sions are supported by many command-line tools and by most programming

languages to facilitate the solution of text manipulation problems. However,

to further confuse things, not all regular expressions are the same; they vary

slightly from tool to tool and from programming language to language. For

our discussion, we will limit ourselves to regular expressions as described in

the POSIX standard (which will cover most of the command-line tools), as

opposed to many programming languages (most notably Perl), which use

slightly larger and richer sets of notations.

grep—Search Through Text

216 Chapier 19

The main program we will use to work with regular expressions is our old

pal, grep. The name gyvep is actually derived from the phrase global regular

expression print, so we can see that grep has something to do with regular

expressions. In essence, grep searches text files for the occurrence of a

specified regular expression and outputs any line containing a match to

standard output.

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ 1s /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain

the substring zip.

The grep program accepts options and arguments this way:

grep [options] regex [file...]

where regex is a regular expression.

Table 19-1 lists the commonly used grep options.

Table19-1: grep Options

Option Description —

-i Ignore case. Do not distinguish between upper- and lowercase

characters. May also be specified --ignore-case.

-V Invert match. Normally, grep prints lines that contain a match.

This option causes grep to print every line that does not contain
a match. May also be specified --invert-match.

-c Print the number of matches (or non-matches if the -v option is
also specified) instead of the lines themselves. May also be
specified --count.

Table 19-1 eek dah

Option — _ Description

44 Print the name of each file that contains a match instead of the

lines themselves. May also be specified --files-with-matches.

-L Like the -1 option, but print only the names of files that do not
contain matches. May also be specified --files-without-match.

-n Prefix each matching line with the number of the line within the
file. May also be specified --line-number.

-h For multifile searches, suppress the output of filenames. May
also be specified --no-filename.

In order to more fully explore grep, let’s create some text files to search:

[me@linuxbox ~]$ ls /bin > dirlist-bin.txt
[me@linuxbox ~]$ ls /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ ls /sbin > dirlist-sbin.txt
[me@linuxbox ~]$ ls /usr/sbin > dirlist-usr-sbin.txt
[me@linuxbox ~]$ ls dirlist*.txt
dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

{me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all of the listed files for the string bzip and

finds two matches, both in the file dirlist-bin.txt. If we were interested in only

the files that contained matches rather than the matches themselves, we

could specify the -1 option:

[me@linuxbox ~]$ grep -1 bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted to see a list of only the files that did not con-

tain a match, we could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin.txt
dirlist-usr-bin.txt

dirlist-usr-sbin.txt

Metacharacters and Literals

While it may not seem apparent, our grep searches have been using regular

expressions all along, albeit very simple ones. The regular expression bzip is

Regular Expressions 217

taken to mean that a match will occur only if the line in the file contains at

least four characters and that somewhere in the line the characters 6, z, 2,

and pare found in that order, with no other characters in between. The

characters in the string bzip are all literal characters, in that they match them-

selves. In addition to literals, regular expressions may also include metachar-

acters, which are used to specify more complex matches. Regular expression

metacharacters consist of the following:

sp Se cn a he steal 2 Se

All other characters are considered literals, though the backslash char-

acter is used in a few cases to create metasequences, as well as allowing the

metacharacters to be escaped and treated as literals instead of being inter-

preted as metacharacters.

Note: As we can see, many of the regular-expression metacharacters are also characters that

have meaning to the shell when expansion is performed. When we pass regular expres-

sions containing metacharacters on the command line, it is vital that they be enclosed

in quotes to prevent the shell from attempting to expand them.

The Any Character

218 Chapter 19

The first metacharacter we will look at is the dot or period character, which

is used to match any character. If we include it in a regular expression, it will

match any character in that character position. Here’s an example:

[me@linuxbox ~]$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip

gzip
funzip

gpg-Zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

We searched for any line in our files that matches the regular expres-

sion .zip. There are a couple of interesting things to note about the results.

Notice that the zip program was not found. This is because the inclusion of

the dot metacharacter in our regular expression increased the length of the
required match to four characters; because the name zip contains only three,
it does not match. Also, if any files in our lists had contained the file exten-
sion .zip, they would have been matched, because the period character in
the file extension is treated as “any character,” too.

Anchors

The caret (*) and dollar sign ($) characters are treated as anchors in regular
expressions. This means that they cause the match to occur only if the regular
expression is found at the beginning of the line (*) or at the end of the line ($)s

[me@]inuxbox ~]$ grep -h ‘*zip' dirlist*.txt
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip

gzip
funzip

gpg-zip
preunzip
prezip
unzip
zip
[me@linuxbox ~]$ grep -h '*zip$' dirlist*.txt
zip

Here we searched the list of files for the string zip located at the begin-

ning of the line, the end of the line, and on a line where it is at both the

beginning and the end of the line (i.e., by itself on the line.) Note that the

regular expression “$ (a beginning and an end with nothing in between)

will match blank lines.

A CROSSWORD PUZZLE HELPER |

My wife loves crossword puzzles, and she will sometimes ask me for help with

a particular question. Something like, “What’s a five-letter word whose third

letter is j and last letter is rthat means . . . ?” This kind of question got me

thinking. : a

Did you know that your Linux system contains a dictionary? It does. Take

a look in the /usr/share/dict directory and you might find one, or several. The |

dictionary files located there are just long lists of words, one per line, arranged

in alphabetical order. On my system, the words file contains just over 98,500

words. To find possible answers to the crossword puzzle question above, we

could do this:

[me@linuxbox ~]$ erep -i '*..j.r$' /usr/share/dict/words
Major
major

Using this regular expression, we can find all the words in our dictionary

file that are five letters long and have a jin the third position and an rin the

last position.

Regular Expressions 219

Bracket Expressions and Character Classes

220 = Chapter 19

In addition to matching any character at a given position in our regular

expression, we can also match a single character from a specified set of char-

acters by using bracket expressions. With bracket expressions, we can specify a

set of characters (including characters that would otherwise be interpreted

as metacharacters) to be matched. In this example, using a two-character set,

we match any line that contains the string bzip or gzip:

[me@linuxbox ~]$ grep -h '[bg]zip' dirlist*.txt
bzip2
bzip2recover

gzip

A set may contain any number of characters, and metacharacters lose

their special meaning when placed within brackets. However, there are two

cases in which metacharacters are used within bracket expressions and have

different meanings. The first is the caret (*), which is used to indicate nega-

tion; the second is the dash (-), which is used to indicate a character range.

Negation

If the first character in a bracket expression is a caret (*), the remaining

characters are taken to be a set of characters that must not be present at the

given character position. We do this by modifying our previous example:

[me@linuxbox ~]$ grep -h '[*bg]zip’ dirlist*.txt
bunzip2
gunzip
funzip

8Pg-21p
preunzip
prezip
prezip-bin
unzip
unzipsfx

With negation activated, we get a list of files that contain the string zip

preceded by any character except 0 or g. Notice that the file zp was not

found. A negated character set still requires a character at the given posi-

tion, but the character must not be a member of the negated set.

The caret character invokes negation only if it is the first character

within a bracket expression; otherwise, it loses its special meaning and

becomes an ordinary character in the set.

Traditional Character Ranges

If we wanted to construct a regular expression that would find every file in
our lists whose name begins with an uppercase letter, we could do this:

[me@linuxbox ~]$ grep -h '*[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

It’s just a matter of putting all 26 uppercase letters in a bracket expression.
But the idea of all that typing is deeply troubling, so there is another way:

[me@linuxbox ~]$ grep -h '*[A-Z]' dirlist*.txt
MAKEDEV
ControlPanel

Xorg
MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a 3-character range, we can abbreviate the 26 letters. Any range

of characters can be expressed this way, including multiple ranges such as this

expression, which matches all filenames starting with letters and numbers:

[me@linuxbox ~]$ grep -h '*[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially,

so how do we actually include a dash character in a bracket expression? By

making it the first character in the expression. Consider

[me@linuxbox ~]$ grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an uppercase letter. This, on

the other hand,

[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

will match every filename containing a dash, an uppercase A, or an upper-

case Z.

POSIX Character Classes

The traditional character ranges are an easily understood and effective

way to handle the problem of quickly specifying sets of characters. Unfor-

tunately, they don’t always work. While we have not encountered any prob-

lems with our use of grep so far, we might run into problems using other

programs.
Back in Chapter 4, we looked at how wildcards are used to perform

pathname expansion. In that discussion, we said that character ranges could

be used in a manner almost identical to the way they are used in regular

expressions, but here’s the problem:

[me@linuxbox ~]$ 1s /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWKXYZ] *

/usr/sbin/MAKEFLOPPIES
/usx/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 221

222 Chapter 19

(Depending on the Linux distribution, we will get a different list of files,

possibly an empty list. This example is from Ubuntu.) This command pro-

duces the expected result—a list of only the files whose names begin with

an uppercase letter. But with this command we get an entirely different res-

ult (only a partial listing of the results is shown):

[me@linuxbox ~]$ ls /usr/sbin/[A-Z]*
/usr/sbin/biosdecode
/usr/sbin/chat
/usr/sbin/chgpasswd
/usr/sbin/chpasswd
/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/sbin/console-kit-daemon

Why is that? It’s a long story, but here’s the short version.

Back when Unix was first developed, it only knew about ASCII char-

acters, and this feature reflects that fact. In ASCII, the first 32 characters

(numbers 0-31) are control codes (things like tabs, backspaces, and car-

riage returns). The next 32 (32-63) contain printable characters, including

most punctuation characters and the numerals zero through nine. The next

32 (numbers 64-95) contain the uppercase letters and a few more punctu-

ation symbols. The final 31 (numbers 96-127) contain the lowercase letters

and yet more punctuation symbols. Based on this arrangement, systems

using ASCII used a collation order that looked like this:

ABCDEFGHI JKLMNOPORSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:

aAbBcCdDeEfFgGhHil j JkK1LmMnNoOpPqOrRsStTuUvVWwWxXyYzZ

As the popularity of Unix spread beyond the United States, there grew

a need to support characters not found in US English. The ASCII table was

expanded to use a full 8 bits, adding character numbers 128-255, which

accommodated many more languages. To support this ability, the POSIX

standards introduced a concept called a locale, which could be adjusted to

select the character set needed for a particular location. We can see the lan-

guage setting of our system using this command:

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSTX-compliant applications will use a dictionary

collation order rather than ASCII order. This explains the behavior of the
commands above. A character range of [A-Z], when interpreted in dictionary
order, includes all of the alphabetic characters except the lowercase a—
hence our results.

To partially work around this problem, the POSIX standard includes
a number of character classes, which provide useful ranges of characters.
They are described in Table 19-2.

Table 19-2: POSIX Character Classes

Character Class
[:alnum:]

[:word:]

[:alpha:]

[:blank:]

Pachtnis)

[:digit:]

[:graph:]

[: lower:]

[:punct:]

[:print:]

ee

[:upper:]

[:xdigit:]

Description

The alphanumeric characters; in ASCII, equivalent to
[A-Za-z0-9]

The same as [:alnum:], with the addition of the underscore
character (_)

The alphabetic characters; in ASCII, equivalent to [A-Za-z]

Includes the space and tab characters

The ASCII control codes; includes the ASCII characters O

through 31 and 127

The numerals O through 9

The visible characters; in ASCII, includes characters 33

through 126

The lowercase letters

The punctuation characters; in ASCII, equivalent to
[= "#968! (#4, o/25<=>2@L\\\] {1°

The printable characters; all the characters in [:graph:]

plus the space character

The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed; in ASCIl,

equivalent to [\t\r\n\v\f]

The uppercase characters

Characters used to express hexadecimal numbers; in ASCII,

equivalent to [0-9A-Fa-f]

Even with the character classes, there is still no convenient way to

express partial ranges, such as [A-M].

Using character classes, we can repeat our directory listing and see an

improved result.

[me@linuxbox ~]$ 1s /usx/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 223

Remember, however, that this is not an example of a regular expres-

sion; rather it is the shell performing pathname expansion. We show it here

because POSIX character classes can be used for both.

REVERTING TO TRADITIONAL COLLATION ORDER

You can opt to have your system use the traditional (ASCII) collation order by

changing the value of the LANG environment variable. As we saw in the previous

section, the LANG variable contains the name of the language and character set

used in your locale. This value was originally determined when you selected an

installation language as your Linux was installed.

To see the locale settings, use the locale command:

[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
Bey CTYPE="en | US.UTF-8"
LG ~NUMERIC="en_| US.UTF-8”"

EC ~TIME="en _US.| UTF-8"
LC COLLATE="en | US.UTF-8”"
hee ~MONETARY="en_ US.UTF-8"
LC | ~ MESSAGES=" ene US .UTF-8"
ic? PAPER="en _US.| UTF-8"

LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8”"
cc IDENTIFICATION=“en | US.UTF-8"

LC ALL=

To change the locale to use the traditional Unix behaviors, set the LANG

variable to POSIX:

[me@linuxbox ~]$ export LANG=POSIX

Note that this change converts the system to use US English (more spe-

cifically, ASCII) for its character set, so be sure this is really what you want.

You can make this change permanent by adding this line to your .bashvc file:

export LANG=POSIX

POSIX Basic vs. Extended Regular Expressions

224 Chapter 19

Just when we thought this couldn’t get any more confusing, we discover that
POSIX also splits regular expression implementations into two kinds: basic
regular expressions (BRE) and extended regular expressions (ERE). The features we
have covered so far are supported by any application that is POSIX compli-
ant and implements BRE. Our grep program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metachar-
acters. With BRE, the following metacharacters are recognized: * $. [| |.*
All other characters are considered literals. With ERE, the following meta-
characters (and their associated functions) are added: () { } 24 |

However (and this is the fun part), the characters () {} are treated as
metacharacters in BRE if they are escaped with a backslash, whereas with
ERE, preceding any metacharacter with a backslash causes it to be treated
as a literal.

Since the features we are going to discuss next are part of ERE, we are
going to need to use a different grep. Traditionally, this has been performed
by the egrep program, but the GNU version of grep also supports extended
regular expressions when the -E option is used.

POSIX

During the 1980s, Unix became a very popular commercial operating system,

but by 1988, the Unix world was in turmoil. Many computer manufacturers had

licensed the Unix source code from its creators AT&T, and were supplying vari-

ous versions of the operating system with their systems. However, in their efforts _

to create product differentiation, each manufacturer added proprietary changes _

and extensions. This started to limit the compatibility of the software. As always

with proprietary vendors, each was trying to play a winning game of “lock-i -in’ * with

their customers. This dark time in the history of Unix is known today as the 2

Balkanization.

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the i:

mid-1980s, the IEEE began developing a set of standards that would define how

Unix (and Unix-like) systems would perform. These standards, formally known |

as IEEE 1003, define the application programming interfaces (APIs), the shell and ©

utilities that are to be found on a standard Unix-like system. The name POSIX, ©

which stands for Portable Operating System Interface (with the X added to the end

for extra snappiness), was suggested by Richard Stallman (yes, that Richard

Stallman) and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called

alternation, which is the facility that allows a match to occur from among a

set of expressions. Just as a bracket expression allows a single character to

match from a set of specified characters, alternation allows matches from a

set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a

plain old string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA
[me@linuxbox ~]$ echo "BBB" | grep AAA
[me@linuxbox ~]$

A pretty straightforward example, in which we pipe the output of echo

into grep and see the results. When a match occurs, we see it printed out,

when no match occurs, we see no results.

Regular Expressions 225

Now we'll add alternation, signified by the vertical pipe metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E ‘AAA|BBB'
AAA
[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB
[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

Here we see the regular expression 'AAA|BBB', which means “match

either the string AAA or the string BBB.” Notice that since this is an extended

feature, we added the -E option to grep (though we could have used the egrep

program instead), and we enclosed the regular expression in quotes to pre-

vent the shell from interpreting the vertical pipe metacharacter as a pipe

operator. Alternation is not limited to two choices:

[me@linuxbox ~]$ echo "AAA" | grep -E ‘AAA|BBB|CCC'
AAA

To combine alternation with other regular-expression elements, we can

use () to separate the alternation:

[me@linuxbox ~]$ grep -Eh '*(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with

either bz, gz, or zip. If we leave off the parentheses, the meaning of this

regular expression changes to match any filename that begins with bz or

contains gz or contains zip:

[me@linuxbox ~]$ grep -Eh '*bz|gz|zip' dirlist*.txt

Quantifiers

226 Chapter 19

Extended regular expressions support several ways to specify the number of

times an element is matched.

?—Match an Element Zero Times or One Time

This quantifier means, in effect, “Make the preceding element optional.”

Let’s say we wanted to check a phone number for validity and we considered

a phone number to be valid if it matched either of these two forms, (nnn)

nnn-nnnn or nnn nnn-nnnn, where nis a numeral. We could construct a regular

expression like this:

‘\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

In this expression, we follow the parentheses characters with question
marks to indicate that they are to be matched zero or one time. Again, since
the parentheses are normally metacharacters (in ERE), we precede them
with backslashes to cause them to be treated as literals instead.

Let’s try it:

[me@linuxbox ~]$ echo a Saar eran re
fo-9][o-9]$°]$ echo "(555) 123-4567" | grep -E '*\(?[0-9][0-9][0-9]\)? [0-9]

fone Te ¢
me@linuxbox ~]$ echo "555 123-4567" SE “AN (2hocolToeg] 0-914)? Toe

[0-9][0-9]-[0-9][0-9][0-9][0-9]$' Le (?[0-9][0-9][0-9]\)? [0-9]
cere daca hrys |

me@linuxbox ~]$ echo " 123-4567" LBP AV\anos : Sera:

[0-9][0-9]-[0-9][0-9][0-9][0-9]$" ha (?[0-9][0-9][0-9]\)? [0-9]
[me@linuxbox ~]$

Here we see that the expression matches both forms of the phone num-

ber but does not match one containing non-numeric characters.

*—Match an Element Zero or More Times

Like the ? metacharacter, the * is used to denote an optional item; however,

unlike the ?, the item may occur any number of times, not just once. Let’s

say we want to see if a string is a sentence; that is, it starts with an uppercase

letter, then contains any number of upper- and lowercase letters and spaces,

and ends with a period. To match this (very crude) definition of a sentence,

we could use a regular expression like this:

[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression contain-

ing the [:upper:] character class, a bracket expression containing both the

[:upper:] and [:lower:] character classes and a space, and a period escaped

with a backslash. The second element is trailed with an * metacharacter

so that after the leading uppercase letter in our sentence, any number of

upper- and lowercase letters and spaces may follow it and still match:

[me@linuxbox ~]$ echo "This works." | grep -E '[[:upper:]][[:upper:][:lower:]
]é\a"

This works.
[me@linuxbox ~]$ echo "This Works." | grep -E '[[:upper:]][[:upper:][:lower:]
Vea

This Works.
[me@linuxbox ~]$ echo "this does not" | grep -E '[[:upper:]][[:upper:][:lower:

Pop he
[me@linuxbox ~ 4 $

The expression matches the first two tests, but not the third, since it

lacks the required leading uppercase character and trailing period.

+—Match an Element One or More Times

The + metacharacter works much like the *, except it requires at least one

instance of the preceding element to cause a match. Here is a regular

expression that will match only lines consisting of groups of one or more

alphabetic characters separated by single spaces:

S([[:alpha:]]+ ?)+$

Regular Expressions 227

228 Chapter 19

Let’s try it:

[me@linuxbox ~]$ echo "This that" | grep -E '*([[:alpha:]]+ ?)+$'
This that
[me@linuxbox ~]$ echo "a bc" | grep -E ‘*([[:alpha:]]+ ?)+$'
abc
[me@linuxbox ~]$ echo "a b 9" | grep -E '*([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo “abc d" | grep -E '*([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line "a b 9", because it

contains a non-alphabetic character; nor does it match "abc d", because

more than one space character separates the characters ¢ and d.

{ }—Match an Element a Specific Number of Times

The { and } metacharacters are used to express minimum and maximum

numbers of required matches. They may be specified in four possible ways,

as shown in Table 19-3.

Table 19-3: Specifying the Number of Matches

‘Specifier © | Meaning

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times, but no

more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use

this method of specifying repetitions to simplify our original regular expres-
sion from

‘\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

to

\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Let’s try it:

eee ~]$ echo "(555) 123-4567" | grep -E '*\(?[0-9]{3}\)? [0-9]{3}-[o-
9){4}$'

(555) 123-4567
Peg res ~]$ echo "555 123-4567" | grep -E '*\(?[0-9]{3}\)? [0-9]{3}-[0-9]
4 '

555 123-4567

are ao ~]$ echo "5555 123-4567" | grep -E '*\(?[0-9]{3}\)? [0-9]{3}-[0-9
4 '

[me@linuxbox ~]$

As we can see, our revised expression can successfully validate numbers
both with and without the parentheses, while rejecting those numbers that

are not properly formatted.

Putting Regular Expressions to Work
Let’s look at some of the commands we already know and see how they can
be used with regular expressions.

Validating a Phone List with grep

In our earlier example, we looked at single phone numbers and checked

them for proper formatting. A more realistic scenario would be checking a

list of numbers instead, so let’s make a list. We’ll do this by reciting a magical

incantation to the command line. It will be magic because we have not covered

most of the commands involved, but worry not—we will get there in future

chapters. Here is the incantation:

[me@linuxbox ~]$ for i in {1..10}; do echo "(${RANDOM:0:3}) ${RANDOM:0:3}-$
{RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist.txt containing 10

phone numbers. Each time the command is repeated, another 10 numbers

are added to the list. We can also change the value 10 near the beginning of

the command to produce more or fewer phone numbers. If we examine the

contents of the file, however, we see we have a problem:

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes

because we will use grep to validate them.

One useful method of validation would be to scan the file for invalid

numbers and display the resulting list.

[me@linuxbox ~]$ grep -Ev '*\([0-9]{3}\) [0-9]{3}-[0-9]{4}$' phonelist.txt

(292) 108-518
(129) 44-1379
[me@linuxbox ~]$

Here we use the -v option to produce an inverse match so that we will

output only the lines in the list that do not match the specified expression.

Regular Expressions 229

230 = Chapter 19

The expression itself includes the anchor metacharacters at each end to

ensure that the number has no extra characters at either end. This expres-

sion also requires that the parentheses be present in a valid number, unlike

our earlier phone number example

Finding Ugly Filenames with find

The find command supports a test based on a regular expression. There is

an important consideration to keep in mind when using regular expressions

in find versus grep. Whereas grep will print a line when the line contains a

string that matches an expression, find requires that the pathname exactly

match the regular expression. In the following example, we will use find with

a regular expression to find every pathname that contains any character that

is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and

other potentially offensive characters:

[me@linuxbox ~]$ find . -regex '.*[*-_./0-9a-zA-Z].*'

Due to the requirement for an exact match of the entire pathname, we

use .* at both ends of the expression to match zero or more instances of any

character. In the middle of the expression, we use a negated bracket expres-

sion containing our set of acceptable pathname characters.

Searching for Files with locate

The locate program supports both basic (the --regexp option) and extended

(the --regex option) regular expressions. With it, we can perform many of

the same operations that we performed earlier with our dirlist files:

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

Using alternation, we perform a search for pathnames that contain

either bin/bz, bin/gz, or /bin/zip.

Searching for Text with less and vim

less and vim share the same method of searching for text. Pressing the / key

followed by a regular expression will perform a search. We use less to view
our phonelist.txt file:

[me@linuxbox ~]$ less phonelist.txt

Then we search for our validation expression:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

~

/*\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy

to spot:

(292) 108-518
(129) 44-1379

vim, on the other hand, supports basic regular expressions, so our search

expression would look like this:

/({0-9]\{3\}) [0-9]\{3\}-[0-9]\{4\}

We can see that the expression is mostly the same; however, many of the

characters that are considered metacharacters in extended expressions are

considered literals in basic expressions. They are treated as metacharacters

Regular Expressions 231

only when escaped with a backslash. Depending on the particular configur-

ation of vim on our system, the matching will be highlighted. If not, try the

command-mode command :hlsearch to activate search highlighting.

Note: Depending on your distribution, vim may or may not support text-search highlighting.

Ubuntu, in particular, supplies a very stripped-down version of vim by default. On

such systems, you may want to use your package manager to install a more complete

version of vim.

Final Note

232 Chapter 19

In this chapter, we’ve seen a few of the many uses of regular expressions.

We can find even more if we use regular expressions to search for additional

applications that use them. We can do that by searching the man pages:

[me@linuxbox ~]$ cd /usr/share/man/man1
[me@linuxbox mani]$ zgrep -El 'regex|regular expression’ *.gz

The zgrep program provides a frontend for grep, allowing it to read com-

pressed files. In our example, we search the compressed Section 1 man page

files in their usual location. The result of this command is a list of files con-

taining the string regex or regular expression. As we can see, regular expres-

sions show up in a lot of programs.

There is one feature found in basic regular expressions that we did not

cover. Called back references, this feature will be discussed in the next chapter.

TEXT PROCESSING

All Unix-like operating systems rely heavily on text

files for several types of data storage. So it makes sense
that there are many tools for manipulating text. In

this chapter, we will look at programs that are used
to “slice and dice” text. In the next chapter, we will look at more text pro-

cessing, focusing on programs that are used to format text for printing and

other kinds of human consumption.

This chapter will revisit some old friends and introduce us to some

new ones:

e cat—Concatenate files and print on the standard output.

e sort—Sort lines of text files.

e uniq—Report or omit repeated lines.

e cut—Remove sections from each line of files.

e paste—Merge lines of files.

e join—Join lines of two files on a common field.

e comm—Compare two sorted files line by line.

e diff—Compare files line by line.

e patch—Apply a diff file to an original.

e tr—Translate or delete characters.

e sed—Stream editor for filtering and transforming text.

e aspell—Interactive spell checker.

Applications of Text

234 Chapter 20

So far, we have learned about a couple of text editors (nano and vim), looked

at a bunch of configuration files, and witnessed the output of dozens of com-

mands, all in text. But what else is text used for? Many things, it turns out.

Documents

Many people write documents using plaintext formats. While it is easy to see

how a small text file could be useful for keeping simple notes, it is also pos-

sible to write large documents in text format. One popular approach is to write

a large document in a text format and then use a markup language to describe

the formatting of the finished document. Many scientific papers are written

using this method, as Unix-based text-processing systems were among the

first systems that supported the advanced typographical layout needed by

writers in technical disciplines.

Web Pages

The world’s most popular type of electronic document is probably the

web page. Web pages are text documents that use either HTML (Hypertext

Markup Language) or XML (Extensible Markup Language) as a markup lan-

guage to describe the document’s visual format.

Email

Email is an intrinsically text-based medium. Even non-text attachments are

converted into a text representation for transmission. We can see this for

ourselves by downloading an email message and then viewing it in less. We

will see that the message begins with a header that describes the source of the

message and the processing it received during its journey, followed by the

body of the message with its content.

Printer Output

On Unix-like systems, output destined for a printer is sent as plaintext or, if

the page contains graphics, is converted into a text format page-description

language known as PostScript, which is then sent to a program that generates
the graphic dots to be printed.

Program Source Code

Many of the command-line programs found on Unix-like systems were cre-
ated to support system administration and software development, and text-

processing programs are no exception. Many of them are designed to solve

software development problems. The reason text processing is important

to software developers is that all software starts out as text. Source code, the

part of the program the programmer actually writes, is always in text format.

Revisiting Some Old Friends

Back in Chapter 6, we learned about some commands that are able to accept

standard input in addition to command-line arguments. We touched on

them only briefly then, but now we will take a closer look at how they can

be used to perform text processing.

cat—Concatenate Files and Print on Standard Output

The cat program has a number of interesting options. Many of them are used

to better visualize text content. One example is the -A option, which is used to

display non-printing characters in the text. There are times when we want to

know if control characters are embedded in our otherwise visible text. The

most common of these are tab characters (as opposed to spaces) and car-

riage returns, often present as end-of-line characters in MS-DOS-style text

files. Another common situation is a file containing lines of text with trailing

spaces.

Let’s create a test file using cat as a primitive word processor. To do this,

we’ll just enter the command cat (along with specifying a file for redirected

output) and type our text, followed by ENTER to properly end the line, then

CTRL-D to indicate to cat that we have reached end-of-file. In this example,

we enter a leading tab character and follow the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.

[me@linuxbox ~]$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
4IThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$

As we can see in the results, the tab character in our text is represented

by *I. This common notation means “cTrRt-I,” which, as it turns out, is the

same as a tab character. We also see that a $ appears at the true end of the

line, indicating that our text contains trailing spaces.

Text Processing 235

236 Chapter 20

cat also has options that are used to modify text. The two most promin-

ent are -n, which numbers lines, and -s, which suppresses the output of mul-

tiple blank lines. We can demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt

1 The quick brown fox
2

3 jumped over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo.txt test file, which

contains two lines of text separated by two blank lines. After processing by

cat with the -ns options, the extra blank line is removed and the remaining

lines are numbered. While this is not much of a process to perform on text,
it is a process.

sort—Sort Lines of Text Files

The sort program sorts the contents of standard input, or one or more files
specified on the command line, and sends the results to standard output.
Using the same technique that we used with cat, we can demonstrate pro-
cessing of standard input directly from the keyboard.

[me@linuxbox ~]$ sort > foo.txt
c
b
a
[me@linuxbox ~]$ cat foo.txt
a
b
C

a a

After entering the command, we type the letters c, b, and a, followed

once again by crrt-D to indicate end-of-file. We then view the resulting file

and see that the lines now appear in sorted order.

Since sort can accept multiple files on the command line as arguments
BJ

it is possible to merge multiple files into a single sorted whole. For example,

if we had three text files and wanted to combine them into a single sorted

file, we could do something like this:

sort file1.txt file2.txt file3.txt > final_sorted list.txt

sort has several interesting options. Table 20-1 shows a partial list.

Table 20-1: Common sort Options

Option Long Option

-b --ignore-leading-blanks

-f --ignore-case

-n --numeric-sort

-I --reverse

-k --key=field1[,field2]

-m --merge

-0 --output=file

=t --field-separator=char

Description

By default, sorting is performed on the
entire line, starting with the first char-
acter in the line. This option causes
sort to ignore leading spaces in lines
and calculates sorting based on the first
non-whitespace character on the line.

Makes sorting case insensitive.

Performs sorting based on the numeric
evaluation of a string. Using this
option allows sorting to be performed on

numeric values rather than alphabetic
values.

Sort in reverse order. Results are in

descending rather than ascending

order.

Sort based on a key field located
from field1 to field2 rather than the

entire line.

Treat each argument as the name of a
presorted file. Merge multiple files into
a single sorted result without perform-
ing any additional sorting.

Send sorted output to file rather than to

standard output.

Define the field-separator character. By
default, fields are separated by spaces

or tabs.

Text Processing 237

238 Chapter 20

Although most of the options above are pretty self-explanatory, some

are not. First, let’s look at the -n option, used for numeric sorting. With this

option, it is possible to sort values based on numeric values. We can demon-

strate this by sorting the results of the du command to determine the largest

users of disk space. Normally, the du command lists the results of a summary

in pathname order:

[me@linuxbox ~]$ du -s /usr/share/* | head
252 /usr/share/aclocal
96 /usr/share/acpi-support
8 /usr/share/adduser
196 /usr/share/alacarte
344 /usr/share/alsa
8 /usr/share/alsa-base
12488 /usr/share/anthy
8 /usr/share/apmd
21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the

first 10 lines. We can produce a numerically sorted list to show the 10 largest

consumers of space this way:

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc
197560 /usr/share/fonts
179144 /usr/share/gnome
146764 /usr/share/myspell
144304 /usr/share/gimp
135880 /usr/share/dict

76508 /usr/share/icons

68072 /usr/share/apps
62844 /usr/share/foomatic

By using the -nr options, we produce a reverse numerical sort, with

the largest values appearing first in the results. This sort works because the

numerical values occur at the beginning of each line. But what if we want

to sort a list based on some value found within the line? For example, the

result of 1s -1 looks like this:

[me@linuxbox ~]$ 1s -1 /usr/bin | head
total 152948

-YWxXY-xr-x 1 root root 34824 2012-04-04 02:42 [
-IWXI-xr-x 1 root root 101556 2011-11-27 06:08 a2p
-YWxr-xr-x 1 root root 13036 2012-02-27 08:22 aconnect
-YWxr-xr-x 1 root root 10552 2011-08-15 10:34 acpi
-YWXY-xr-x 1 root root 3800 2012-04-14 03:51 acpi_fakekey
-IWXr-xr-x 1 root root 7536 2012-04-19 00:19 acpi listen
-IWXY-xr-x 1 root root 3576 2012-04-29 07:57 addpart
-IYWXI-xr-x 1 root root 20808 2012-01-03 18:02 addr2line
-IWXI-xr-xX 1 root root 489704 2012-10-09 17:02 adept_batch

Ignoring, for the moment, that ls can sort its results by size, we could

use sort to sort this list by file size, as well.

[me@linuxbox ~]$ 1s -1 /usr/bin | sort -nr -k 5 | head
-YWxr-xXr-x 1 root root 8234216 2012-04-07 17:42 inkscape
-Ywxr-xr-x 1 root root 8222692 2012-04-07 17:42 inkview
-Iwxr-Xr-x 1 root root 3746508 2012-03-07 23:45 gimp-2.4
-YwxI-xr-xX 1 root root 3654020 2012-08-26 16:16 quanta

-IwXI-xr-xX 1 root root 2928756 2012-09-10 14:31 gdb
-IwXI-xr-xX 1 root root 2602236 2012-10-10 12:56 net
-Iwxr-xXr-x 1 root root 2304684 2012-10-10 12:56 rpcclient
-Iwxr-xr-x 1 root root 2241832 2012-04-04 05:56 aptitude

7

1

1

1

-Iwxr-xr-x 1 root root 2928760 2012-09-10 14:31 gdbtui
1

Al

1

1

-Iwxr-xr-xX 1 root root 2202476 2012-10-10 12:56 smbcacls

Many uses of sort involve the processing of tabular data, such as the

results of the 1s command above. If we apply database terminology to the

table above, we would say that each row is a record and that each record con-

sists of multiple frelds, such as the file attributes, link count, filename, file

size and so on. sort is able to process individual fields. In database terms,

we are able to specify one or more key fields to use as sort keys. In the example

above, we specify the n and r options to perform a reverse numerical sort

and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is very interesting and has many features, but first we need

to talk about how sort defines fields. Let’s consider a very simple text file

consisting of a single line containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains

the characters William and the second field contains the characters Shotts,

meaning that whitespace characters (spaces and tabs) are used as delimiters

between fields and that the delimiters are included in the field when sorting

is performed.
Looking again at a line from our 1s output, we can see that a line con-

tains eight fields and that the fifth field is the file size:

-IWxI-Xr-X 1 root root 8234216 2012-04-07 17:42 inkscape

For our next series of experiments, let’s consider the following file con-

taining the history of three popular Linux distributions released from 2006

to 2008. Each line in the file has three fields: the distribution name, the ver-

sion number, and the date of release in MM/DD/YYYY format:

SUSE 1032 12/07/2006
Fedora 10 11/25/2008

SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008

Fedora 8 11/08/2007

SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006

Fedora 7 05/31/2007
Ubuntu on 10/18/2007
Ubuntu 7.04 04/19/2007

SUSE 10.1 05/11/2006

Fedora 6 10/24/2006

Text Processing 239

Fedora 9 05/13/2008

Ubuntu 6.06 06/01/2006

Ubuntu 8.10 10/30/2008

Fedora 5 03/20/2006

Using a text editor (perhaps vim), we'll enter this data and name the

resulting file distros. txt.

Next, we’ll try sorting the file and observe the results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008

Fedora 5 03/20/2006

Fedora 6 10/24/2006

Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008

SUSE Oe 05/11/2006

SUSE 10.2 12/07/2006

SUSE 10.3 10/04/2007

SUSE sage) 06/19/2008
Ubuntu 6.06 06/01/2006

Ubuntu 6.10 10/26/2006

Ubuntu 7.04 04/19/2007

Ubuntu Te) 10/18/2007

Ubuntu 8.04 04/24/2008

Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora

version numbers. Since a | comes before a 5 in the character set, version 10

ends up at the top while version 9 falls to the bottom.

To fix this problem, we have to sort on multiple keys. We want to per-

form an alphabetic sort on the first field and then a numeric sort on the

third field. sort allows multiple instances of the -k option so that multiple

sort keys can be specified. In fact, a key may include a range of fields. If

no range is specified (as has been the case with our previous examples),

sort uses a key that begins with the specified field and extends to the end

of the line.

Here is the syntax for our multikey sort:

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006

Fedora 6 10/24/2006

Fedora 7 05/31/2007

Fedora 8 11/08/2007
Fedora 9 05/13/2008

Fedora 10 11/25/2008

SUSE AIO) 05/11/2006
SUSE 1OR2 12/07/2006

SUSE 10.3 10/04/2007

SUSE al (0) 06/19/2008

Ubuntu 6.06 06/01/2006

Ubuntu 6.10 10/26/2006

Ubuntu 7.04 04/19/2007

Ubuntu Toil) 10/18/2007
Ubuntu 8.04 04/24/2008

Ubuntu 8.10 10/30/2008

240 Chapter 20

Though we used the long form of the option for clarity, -k 1,1 -k 2n
would be exactly equivalent. In the first instance of the key option, we spe-
cified a range of fields to include in the first key. Since we wanted to limit

the sort to just the first field, we specified 1,1, which means “start at field 1

and end at field 1.” In the second instance, we specified 2n, which means

that field 2 is the sort key and that the sort should be numeric. An option

letter may be included at the end of a key specifier to indicate the type of

sort to be performed. These option letters are the same as the global options

for the sort program: b (ignore leading blanks), n (numeric sort), r (reverse

sort), and so on.

The third field in our list contains a date in an inconvenient format for

sorting. On computers, dates are usually formatted in YYYY-MM-DD order

to make chronological sorting easy, but ours are in the American format of

MM/DD/YYYY. How can we sort this list in chronological order?

Fortunately, sort provides a way. The key option allows specification of

offsets within fields, so we can define keys within fields:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008

Ubuntu 8.10 10/30/2008

SUSE 11.0 06/19/2008

Fedora 9 05/13/2008

Ubuntu 8.04 04/24/2008

Fedora 8 11/08/2007

Ubuntu 7<10 10/18/2007

SUSE 10.3 10/04/2007

Fedora ih, 05/31/2007

Ubuntu 7.04 04/19/2007

SUSE 1052 12/07/2006

Ubuntu 6.10 10/26/2006

Fedora 6 10/24/2006

Ubuntu 6.06 06/01/2006

SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7, we instruct sort to use a sort key that begins at the

seventh character within the third field, which corresponds to the start of

the year. Likewise, we specify -k 3.1 and -k 3.4 to isolate the month and day

portions of the date. We also add the n and r options to achieve a reverse

numeric sort. The b option is included to suppress the leading spaces (whose

numbers vary from line to line, thereby affecting the outcome of the sort)

in the date field.

Some files don’t use tabs and spaces as field delimiters; take, for

example, the /etc/passwd file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sy$:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin: /bin/sync
games :x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh

Text Processing 241

Note:

242 Chapter 20

1lp:x:7:7:lp:/var/spool/1pd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news :X:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we

sort this file using a key field? sort provides the -t option to define the field

separator character. To sort the passwd file on the seventh field (the account's

default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,,:/home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false
gdm:x:106:114:Gnome Display Manager: /var/lib/gdm: /bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104: :/home/klog:/bin/false
messagebus :x:108:119: :/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon, ,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on

the seventh field.

uniq—Report or Omit Repeated Lines

Compared to sort, the uniq program is a lightweight. uniq performs a seem-

ingly trivial task. When given a sorted file (including standard input), it

removes any duplicate lines and sends the results to standard output. It is

often used in conjunction with sort to clean the output of duplicates.

While unig is a traditional Unix tool often used with sort, the GNU version of sort

supports a -u option, which removes duplicates from the sorted output.

Let’s make a text file to try this out:

me@linuxbox ~]$ cat > foo.txt [
a
b
c
a
b
c

Remember to type cTrL-D to terminate standard input. Now, if we run
unig on our text file, the results are no different from our original file; the
duplicates were not removed:

me@linuxbox ~]$ uniq foo.txt [
a
b
€
a
b
Cc

For unig to actually do its job, the input must be sorted first:

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
Cc

This is because uniq only removes duplicate lines that are adjacent to
each other.

uniq has several options. Table 20-2 lists the common ones.

Table 20-2: Common unig Options

Option Description

-C Output a list of duplicate lines preceded by the number of times
the line occurs.

-d Output only repeated lines, rather than unique lines.

-fn Ignore n leading fields in each line. Fields are separated by
whitespace as they are in sort; however, unlike sort, uniq has
no option for setting an alternative field separator.

-i Ignore case during the line comparisons.

-s n Skip (ignore) the leading n characters of each line.

-u Do not output any line that has a duplicate.

Here we see uniq used to report the number of duplicates found in our

text file, using the -c option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
Pa

200
Ze

Slicing and Dicing

The next three programs we will discuss are used to peel columns of text out

of files and recombine them in useful ways.

cut—Remove Sections from Each Line of Files

The cut program is used to extract a section of text from a line and output

the extracted section to standard output. It can accept multiple file argu-

ments or input from standard input.

Specifying the section of the line to be extracted is somewhat awkward

and is specified using the options shown in Table 20-3.

Text Processing 243

244 Chapter 20

Table 20-3: cut Selection Options

Option Description

-c char_list Extract the portion of the line defined by char_list.
The list may consist of one or more comma-separated
numerical ranges.

-f field list Extract one or more fields from the line as defined by

field list. The list may contain one or more fields or

field ranges separated by commas.

-d delim char When -f is specified, use delim char as the field delimit-

ing character. By default, fields must be separated by a
single tab character.

--complement Extract the entire line of text, except for those portions
specified by -c and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best

used to extract text from files that are produced by other programs, rather

than text directly typed by humans. We'll take a look at our distros.txt file to

see if it is “clean” enough to be a good specimen for our cut examples. If we

use cat with the -A option, we can see if the file meets our requirements of

tab-separated fields.

[me@linuxbox ~]$ cat -A distros.txt
SUSE*110.2%112/07/2006$
Fedora’110*111/25/2008$
SUSE*I11.0°106/19/2008$
Ubuntu*1I8.04*%104/24/2008$

Fedora’ 18*1I11/08/2007$
SUSE*T10. 3*110/04/2007$
Ubuntu*16.10*110/26/2006$

Fedora*17*105/31/2007$

Ubuntu*I7.10*110/18/2007$
Ubuntu*1I7.04*104/19/2007$

SUSE*110.1*105/11/2006$
Fedora*16*1I10/24/2006$

Fedora*19*105/13/2008$

Ubuntu*1I6.06*%106/01/2006$

Ubuntu*I8.10*110/30/2008¢
Fedora*15*103/20/2006$

It looks good—no embedded spaces, just single tab characters between

the fields. Since the file uses tabs rather than spaces, we'll use the -f option

to extract a field:

[me@linuxbox ~]$ cut -f 3 distros.txt
12/07/2006

11/25/2008

06/19/2008

04/24/2008

11/08/2007

10/04/2007
10/26/2006 -

05/31/2007

10/18/2007

04/19/2007

05/11/2006

10/24/2006

05/13/2008

06/01/2006

10/30/2008

03/20/2006

Because our distros file is tab delimited, it is best to use cut to extract

fields rather than characters. This is because when a file is tab delimited, it

is unlikely that each line will contain the same number of characters, which

makes calculating character positions within the line difficult or impossible.

In our example above, however, we now have extracted a field that luckily

contains data of identical length, so we can show how character extraction

works by extracting the year from each line:

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10
2006

2008

2008

2008

2007

2007

2006

2007

2007

2007

2006

2006

2008

2006

2008

2006

By running cut a second time on our list, we are able to extract charac-

ter positions 7 through 10, which corresponds to the year in our date field.

The 7-10 notation is an example of a range. The cut man page contains a

complete description of how ranges can be specified.

When working with fields, it is possible to specify a different field delim-

iter rather than the tab character. Here we will extract the first field from

the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head

root
daemon
bin
sys
sync
games
man

Text Processing 245

246) Cho pter 20

Using the -d option, we are able to specify the colon character as the

field delimiter.

EXPANDING TABS

Our distros. txt file is ideally formatted for extracting fields using cut. But what if

we wanted a file that could be fully manipulated with cut by characters, rather

than fields? This would require us to replace the tab characters within the file _

with the corresponding number of spaces. Fortunately, the GNU coreutils pack-
age includes a tool for that. Named expand, this program accepts either one or

more file arguments or standard input, and it outputs the modified text to

standard output.
If we process our distros. txt file with expand, we can use the cut -c to extract
any range of characters from the file. For example, we could use the follow-

ing command to extract the year of release from our list by expanding the file

_and using cut to extract every character from the 23rd position to the end of

the line: — "

[me@Linuxbox ~1$ expand distros.txt | cut -c 23-

_ coreutils also provides the unexpand program to substitute tabs for spaces.

paste—Merge Lines of Files

The paste command does the opposite of cut. Rather than extracting a

column of text from a file, it adds one or more columns of text to a file.

It does this by reading multiple files and combining the fields found in

each file into a single stream of standard output. Like cut, paste accepts

multiple file arguments and/or standard input. To demonstrate how paste

operates, we will perform some surgery on our distros. txt file to produce a

chronological list of releases.

From our earlier work with sort, we will first produce a list of distros

sorted by date and store the result in a file called distros-by-date. txt:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > distros-by-
date.txt

Next, we will use cut to extract the first two fields from the file (the dis-

tro name and version) and store that result in a file named distro-versions. txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.txt
[me@linuxbox ~]$ head distros-versions.txt

Fedora 10

Ubuntu 8.10

SUSE tka
Fedora 9

Ubuntu 8.04
Fedora 8

Ubuntu 710

SUSE 10.3
Fedora 7

Ubuntu 7.04

The final piece of preparation is to extract the release dates and store

them a file named distro-dates. txt.

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt

[me@linuxbox ~]$ head distros-dates.txt
11/25/2008

10/30/2008

06/19/2008

05/13/2008

04/24/2008

11/08/2007
10/18/2007

10/04/2007

05/31/2007
04/19/2007

We now have the parts we need. To complete the process, use paste to

put the column of dates ahead of the distro names and versions, thus creat-

ing a chronological list. This is done simply by using paste and ordering its

arguments in the desired arrangement.

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10

10/30/2008 Ubuntu 8.10

06/19/2008 SUSE “Hete(0)

05/13/2008 Fedora 9

04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8

10/18/2007 Ubuntu 7.10

10/04/2007 SUSE 10.3

05/31/2007 Fedora 7

04/19/2007 Ubuntu 7.04
12/07/2006 SUSE O52:

10/26/2006 Ubuntu 6.10

10/24/2006 Fedora 6

06/01/2006 Ubuntu 6.06

05/11/2006 SUSE MO}

03/20/2006 Fedora 5

join—Join Lines of Two Files on a Common Field

In some ways, join is like paste in that it adds columns to a file, but it does so

in a unique way. A join is an operation usually associated with relational data-

bases where data from multiple tables with a shared key field is combined to

Text Processing 247

248 Chapter 20

form a desired result. The join program performs the same operation. It

joins data from multiple files based on a shared key field.

To see how a join operation is used in a relational database, let’s ima-

gine a very small database consisting of two tables, each containing a single

record. The first table, called CUSTOMERS, has three fields: a customer

number (CUSTNUM), the customer’s first name (FNAME), and the cus-

tomer’s last name (LNAME):

LNAME

Smith

CUSTNUM FNAME

John 4681934

The second table is called ORDERS and contains four fields: an order

number (ORDERNUM), the customer number (CUSTNUM), the quantity

(QUAN), and the item ordered (ITEM):

ITEM

Blue Widget

ORDERNUM

3014953305

CUSTNUM QUAN

4681934 1

Note that both tables share the field CUSTNUM. This is important, as it

allows a relationship between the tables.

Performing a join operation would allow us to combine the fields in the

two tables to achieve a uscful result, such as preparing an invoice. Using the

matching values in the CUSTNUM fields of both tables, a join operation

could produce the following:

FNAME

John

LNAME QUAN

Smith 1

ITEM

Blue Widget

To demonstrate the join program, we'll need to make a couple of files

with a shared key. To do this, we will use our distros-by-date. txt file. From this

file, we will construct two additional files. One contains the release dates (which
will be our shared key field for this demonstration) and the release names:

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-key-names
«txt

[me@linuxbox ~]$ head distros-key-names.txt
11/25/2008 Fedora

10/30/2008 Ubuntu

06/19/2008 SUSE
05/13/2008 Fedora
04/24/2008 Ubuntu

11/08/2007 Fedora

10/18/2007 Ubuntu

10/04/2007 SUSE

05/31/2007 Fedora
04/19/2007 Ubuntu

The second file contains the release dates and the version numbers:

[me@1inuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distros-key-
vernums.txt

[me@linuxbox ~]$ head distros-key-vernums.txt
11/25/2008 10

10/30/2008 8.10

06/19/2008 11/0

05/13/2008 9

04/24/2008 8.04

11/08/2007 8

10/18/2007 7.10

10/04/2007 203

05/31/2007 7

04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is

important to point out that the files must be sorted on the key field for join

to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt | head
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10

06/19/2008 SUSE 11.0

05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10

10/04/2007 SUSE 10.3

05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delim-

iter and a single space as the output field delimiter. This behavior can be

modified by specifying options. See the join man page for details.

Comparing Text
It is often useful to compare versions of text files. For system administrators

and software developers, this is particularly important. A system adminis-

trator may, for example, need to compare an existing configuration file to a

previous version to diagnose a system problem. Likewise, a programmer fre-

quently needs to see what changes have been made to programs over time.

comm—Compare Two Sorted Files Line by Line

The comm program compares two text files, displaying the lines that are

unique to each one and the lines they have in common. To demonstrate,

we will create two nearly identical text files using cat:

[me@linuxbox ~]$ cat > file1.txt
a
b

Text Processing 249

250 Chapter 20

me@linuxbox ~]$ cat > file2.txt

o20 oa aM

Next, we will compare the two files using comm:

[me@linuxbox ~]$ comm file1.txt file2.txt
a

b
c
d

e

As we can see, comm produces three columns of output. The first column

contains lines unique to the first file argument; the second column, the lines

unique to the second file argument; and the third column, the lines shared

by both files. comm supports options in the form -n where n is either 1, 2, or 3.

When used, these options specify which column (s) to suppress. For example,

if we wanted to output only the lines shared by both files, we would suppress

the output of columns | and 2:

me@linuxbox ~]$ comm -12 file1.txt file2.txt [
b
G
d

diff—Compare Files Line by Line

Like the comm program, diff is used to detect the differences between files.

However, diff is a much more complex tool, supporting many output for-

mats and the ability to process large collections of text files at once. diff is

often used by software developers to examine changes between different

versions of program source code because it has the ability to recursively

examine directories of source code, often referred to as sowrce trees. One

common use for diff is the creation of diff files or patches that are used by

programs such as patch (which we’ll discuss shortly) to convert one version

of a file (or files) to another version.

If we use diff to look at our previous example files, we see its default

style of output: a terse description of the differences between the two files.

[me@linuxbox ~]$ diff file1.txt file2.txt
1do

een
4a4

>e

In the default format, each group of changes is preceded by a change
command (see Table 20-4) in the form of range operation range to describe
the positions and types of changes required to convert the first file to the
second file.

Table 20-4: diff Change Commands

Change Description

r1ar2 Append the lines at the position r2 in the second file to the
position r2 in the first file.

ricr2 Change (replace) the lines at position r2 with the lines at the

position r2 in the second file.

r1dr2 Delete the lines in the first file at position r1, which would have
appeared at range 12 in the second file

In this format, a range is a comma-separated list of the starting line and

the ending line. While this format is the default (mostly for POSIX compli-

ance and backward compatibility with traditional Unix versions of diff), it

is not as widely used as other, optional formats. Two of the more popular

formats are the context format and the unified format.

When viewed using the context format (the -c option), the output looks

like this:

[me@linuxbox ~]$ diff -c file1.txt file2.txt
AT TT lets Ext 2012-12-23 06:40:13.000000000 -0500

--- file2.txt 2012-12-23 06:40:34.000000000 -0500
KAKAAAAKAKKAK EK
KKK hes! KKK

Dae

The output begins with the names of the two files and their timestamps.

The first file is marked with asterisks, and the second file is marked with dashes.

Throughout the remainder of the listing, these markers will signify their

respective files. Next, we see groups of changes, including the default num-

ber of surrounding context lines. In the first group, we see *** 1,4 ****, which

indicates lines 1 through 4 in the first file. Later we see --- 1,4 ----, which indi-

cates lines 1 through 4 in the second file. Within a change group, lines begin

with one of four indicators, as shown in Table 20-5.

Text Processing 251

Table 20-5: diff Context-Format Change Indicators

Indicator Meaning

(none) A line shown for context. It does not indicate a difference

between the two files.

- A line deleted. This line will appear in the first file but not in the

second file.

7 A line added. This line will appear in the second file but not in

the first file.

| A line changed. The two versions of the line will be displayed,
each in its respective section of the change group.

The unified format is similar to the context format but is more concise.

It is specified with the -u option:

[me@linuxbox ~]$ diff -u file1.txt file2.txt
--- file1.txt 2012-12-23 06:40:13.000000000 -0500

+++ file2.txt 2012-12-23 06:40:34.000000000 -0500

@@ -1,4 +1,4 @@
-a
b

rc:

The most notable difference between the context and unified formats

is the elimination of the duplicated lines of context, making the results of

the unified format shorter than those of the context format. In our example

above, we see file timestamps like those of the context format, followed by

the string @@ -1,4 +1,4 @@. This indicates the lines in the first file and the

lines in the second file described in the change group. Following this are

the lines themselves, with the default three lines of context. As shown in

Table 20-6, each line starts with one of three possible characters.

Table 20-6: diff Unified-Format Change Indicators

Character Meaning | .
(none) This line is shared by both files.

- This line was removed from the first file.

' . This line was added to the first file.

252 Chapter 20

patch—Apply a diff to an Original

The patch program is used to apply changes to text files. It accepts output
from diff and is generally used to convert older version of files into newer

versions. Let’s consider a famous example. The Linux kernel is developed

by a large, loosely organized team of contributors who submit a constant

stream of small changes to the source code. The Linux kernel consists of

several million lines of code, while the changes that are made by one con-

tributor at one time are quite small. It makes no sense for a contributor to

send each developer an entire kernel source tree each time a small change

is made. Instead, a diff file is submitted. The diff file contains the change
from the previous version of the kernel to the new version with the contrib-

utor’s changes. The receiver then uses the patch program to apply the change

to his own source tree. Using diff/patch offers two significant advantages:

e The diff file is very small, compared to the full size of the source tree.

e The diff file concisely shows the change being made, allowing reviewers

of the patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It

would be equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation sug-

gests using diff as follows:

diff -Naur old file new_file > diff_file

where old_file and new_file are either single files or directories containing

files. The r option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file

into the new file:

patch < diff_file

We’ll demonstrate with our test file:

[me@linuxbox ~]$ diff -Naur filei.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt
patching file file1.txt

[me@linuxbox ~]$ cat file1.txt

ool a oS

In this example, we created a diff file named patch/file.txt and then used

the patch program to apply the patch. Note that we did not have to specify a

target file to patch, as the diff file (in unified format) already contains the

filenames in the header. Once the patch is applied, we can see that file1. txt

now matches /ftle2. txt.

Text Processing 253

Editing

254 Chapter 20

patch has a large number of options, and additional utility programs

can be used to analyze and edit patches.

on the Fly

Our experience with text editors has been largely interactive, meaning that

we manually move a cursor around and then type our changes. However,

there are non-interactive ways to edit text as well. It’s possible, for example,

to apply a set of changes to multiple files with a single command.

tr—Transliterate or Delete Characters

The tr program is used to transliterate characters. We can think of this as a

sort of character-based search-and-replace operation. Transliteration is the

process of changing characters from one alphabet to another. For example,

converting characters from lowercase to uppercase is transliteration. We can

perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input and outputs its results on

standard output. tr accepts two arguments: a set of characters to convert

from and a corresponding set of characters to convert to. Character sets may

be expressed in one of three ways:

e An enumerated list; for example, ABCDEFGHIJKLMNOPORSTUVWXYZ.

e Acharacter range; for example, A-Z. Note that this method is sometimes

subject to the same issues as other commands (due to the locale colla-

tion order) and thus should be used with caution.

e POSIX character classes; for example, [:upper:].

In most cases, the character sets should be of equal length; however, it is

possible for the first set to be larger than the second, particularly if we wish

to convert multiple characters to a single character:

[me@linuxbox ~]$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted
from the input stream. Earlier in this chapter, we discussed the problem of
converting MS-DOS text files to Unix-style text. To perform this conversion,
carriage return characters need to be removed from the end of each line.
This can be performed with tr as follows:

tr -d “\r<, des file> unix file

where dos_file is the file to be eomuérted and unix_file is the result. This
form of the command uses the escape sequence \r to represent the carriage
return character. To see a complete list of the sequences and character
classes tr supports, try

[me@linuxbox ~]$ tr -help

ROT13: THE NOT-SO-SECRET DECODER RING

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial

type of encryption based on a simple substitution cipher. Calling ROT13 encryp-

tion is being generous; text obfuscation is more accurate. It is used sometimes on

text to obscure potentially offensive content. The method simply moves each

character 13 places up the alphabet. Since this is halfway up the possible 26_

characters, performing the algorithm a second time on the text restores it to

its original form. To perform this encoding with tr:

echo “secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M

secret text

A number of email programs and Usenet news readers support ROT13

puneaees Wikipedia contains a ee anes on the subject: hitp://en.wikipedia

org/wiki/ROT13.

tr can perform another trick, too. Using the -s option, tr can “squeeze”

(delete) repeated instances of a character:

[me@linuxbox ~]$ echo "aaabbbccc” | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying

the set ab to tr, we eliminate the repeated instances of the letters in the set,

while leaving the character that is missing from the set (c) unchanged. Note

that the repeating characters must be adjoining. If they are not, the squeez-

ing will have no effect:

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab

abcabcabc

Text Processing 255

256 Chapter 20

sed—Stream Editor for Filtering and Transforming Text
The name sed is short for stream editor. It performs text editing on a stream

of text, either a set of specified files or standard input. sed is a powerful and

somewhat complex program (there are entire books about it), so we will not

cover it completely here.

In general, the way sed works is that it is given either a single editing

command (on the command line) or the name of a script file containing

multiple commands, and it then performs these commands upon each line

in the stream of text. Here is a very simple example of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and

pipe it into sed. sed, in turn, carries out the instruction s/front/back/ upon

the text in the stream and produces the output back as a result. We can also

recognize this command as resembling the substitution (search and replace)

command in vi.

Commands in sed begin with a single letter. In the example above, the

substitution command is represented by the letter s and is followed by the

search and replace strings, separated by the slash character as a delimiter.

The choice of the delimiter character is arbitrary. By convention, the slash

character is often used, but sed will accept any character that immediately

follows the command as the delimiter. We could perform the same com-

mand this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back_'
back

When the underscore character is used immediately after the command,

it becomes the delimiter. The ability to set the delimiter can be used to

make commands more readable, as we shall see.

Most commands in sed may be preceded by an address, which specifies

which line(s) of the input stream will be edited. If the address is omitted, then

the editing command is carried out on every line in the input stream. The

simplest form of address is a line number. We can add one to our example:

[me@linuxbox ~]$ echo "front" | sed '1s/front/back/'
back

Adding the address 1 to our command causes our substitution to be

performed on the first line of our one-line input stream. We can specify

another number:

[me@linuxbox ~]$ echo "front" | sed '2s/front/back/'
front

Now we see that the editing is not carried out, because our input stream

does not have a line 2.

Addresses may be expressed in many ways. Table 20-7 lists the most
common ones.

Table 20-7: sed Address Notation

Address

n

$

/regexp/

addr1,addr2

first~step

addr1,+n

addr!

We’ll demonstrate different kinds of addresses using the distros. txt file

Description

A line number where n is a positive integer

The last line

Lines matching a POSIX basic regular expression. Note that the
regular expression is delimited by slash characters. Optionally,
the regular expression may be delimited by an alternate char-
acter, by specifying the expression with \cregexpc, where c is
the alternate character.

A range of lines from addr1 to addr2, inclusive. Addresses may
be any of the single address forms above.

Match the line represented by the number first and then each

subsequent line at step intervals. For example, 1~2 refers to
each odd-numbered line, and 5~5 refers to the fifth line and

every fifth line thereafter.

Match addr1 and the following n lines.

Match all lines except addr, which may be any of the forms above.

from earlier in this chapter. First, a range of line numbers:

[me@linuxbox ~]$ sed -n '1,5p' distros.txt
SUSE
Fedora

SUSE
Ubuntu

Fedora

10.2 12/07/2006

10 11/25/2008

i120 06/19/2008

8.04 04/24/2008

8 11/08/2007

In this example, we print a range of lines, starting with line 1 and con-

tinuing to line 5. To do this, we use the p command, which simply causes

a matched line to be printed. For this to be effective, however, we must

include the option -n (the no autoprint option) to cause sed not to print

every line by default.

Text Processing 257

Next, we'll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006

SUSE 11.0 06/19/2008

SUSE 10.3 10/04/2007

SUSE 1051 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able

to isolate the lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the

address:

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008

Ubuntu 8.04 04/24/2008

Fedora 8 11/08/2007

Ubuntu 6.10 10/26/2006

Fedora 7 05/31/2007

Ubuntu 7.10 10/18/2007

Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006

Fedora 9 05/13/2008

Ubuntu 6.06 06/01/2006

Ubuntu 8.10 10/30/2008

Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the

ones matched by the regular expression.

So far, we’ve looked at two of the sed editing commands, s and p.

Table 20-8 is a more complete list of the basic editing commands.

Table 20-8: sed Basic Editing Commands

Command Description

= Output current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every line

and edits only lines that match a specified address
within the file. The default behavior can be over-
ridden by specifying the -n option.

q Exit sed without processing any more lines. If the -n
option is not specified, output the current line.

258 Chapter 20

Table 20-8 (continued)

Command = =—_—__sOeescription.

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever

regexp is found. replacement may include the special

character &, which is equivalent to the text matched
by regexp. In addition, replacement may include the

sequences \1 through \9, which are the contents of
the corresponding subexpressions in regexp. For

more about this, see the following discussion on
back references. After the trailing slash following
replacement, an optional flag may be specified to
modify the s command's behavior.

y/set1/set2 Perform transliteration by converting characters from
set1 to the corresponding characters in set2. Note
that unlike tr, sed requires that both sets be of the
same length.

The s command is by far the most commonly used editing command.

We will demonstrate just some of its power by performing an edit on our

distros. txt file. We discussed before how the date field in distros.txt was not in

a “computer-friendly” format. While the date is formatted MM/DD/YYYY,

it would be better (for ease of sorting) if the format were YYYY-MM-DD. To

perform this change on the file by hand would be both time consuming and

error prone, but with sed, this change can be performed in one step:

[me@linuxbox ~]$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\ ([0-9] \{4\}\)$/\3-\1

-\2/' distros.txt
SUSE 10.2 2006-12-07

Fedora 10 2008-11-25

SUSE 110 2008-06-19
Ubuntu 8.04 2008-04-24

Fedora 8 2007-11-08

SUSE 1053 2007-10-04

Ubuntu 6.10 2006-10-26

Fedora 7 2007-05-31

Ubuntu Tire h9) 2007-10-18

Ubuntu 7.04 2007-04-19

SUSE 10.1 2006-05-11

Fedora 6 2006-10-24

Fedora 9 2008-05-13

Ubuntu 6.06 2006-06-01

Ubuntu 8.10 2008-10-30

Fedora 5 2006-03-20

Wow! Now that is an ugly-looking command. But it works. In just one

step, we have changed the date format in our file. It is also a perfect example

of why regular expressions are sometimes jokingly referred to as a “write-only”

Text Processing 259

260 Chapter 20

medium. We can write them, but we sometimes cannot read them. Before

we are tempted to run away in terror from this command, let’s look at how

it was constructed. First, we know that the command will have this basic

structure:

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the

date. Since it is in MM/DD/YYYY format and appears at the end of the line,

we can use an expression like this:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

which matches two digits, a slash, two digits, a slash, four digits, and the end

of line. So that takes care of regexp, but what about replacement? ‘To handle that,

we must introduce a new regular expression feature that appears in some

applications that use BRE. This feature is called back references and works like

this: If the sequence \n appears in replacement where n is a number from one

to nine, the sequence will refer to the corresponding subexpression in the

preceding regular expression. To create the subexpressions, we simply

enclose them in parentheses like so:

([o-9]{2})/([0-9]{2})/(L0-9] {4})$

We now have three subexpressions. The first contains the month, the

second contains the day of the month, and the third contains the year. Now

we can construct replacement as follows:

\3-\1-\2

which gives us the year, a dash, the month, a dash, and the day.

Now, our command looks like this:

sed 's/([0-9]{2})/([0-9]{2})/([0-9]{4})$/\3-\1-\2/' distros.txt

We have two remaining problems. The first is that the extra slashes in

our regular expression will confuse sed when it tries to interpret the s com-

mand. The second is that since sed, by default, accepts only basic regular

expressions, several of the characters in our regular expression will be taken

as literals, rather than as metacharacters. We can solve both these problems

with a liberal application of backslashes to escape the offending characters:

sed 's/\([0-9]\{2\}\)\/\([0-9] \{2\}\) \/\ ([0-9]\{4\}\) $/\3-\1-\2/" dis
tros.txt

And there you have it!

Another feature of the s command is the use of optional flags that may
follow the replacement string. The most important of these is the g flag, which
instructs sed to apply the search and replace globally to a line, not just to the
first instance, which is the default.

Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed but only to the first instance

of the letter b, while the remaining instances were left unchanged. By adding

the g flag, we are able to change all the instances:

[me@linuxbox ~]$ echo “aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have given sed single commands only via the command line.

It is also possible to construct more complex commands in a script file using

the -f option. To demonstrate, we will use sed with our distros.txt file to build

a report. Our report will feature a title at the top, our modified dates, and

all the distribution names converted to uppercase. To do this, we will need

to write a script, so we'll fire up our text editor and enter the following:

sed script to produce Linux distributions report

1 i\
:"
Linux Distributions Report\

s/\([0-9] \{2\}\)\/\([0-9] \{2\}\)\/\ ([0-9] \{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPORSTUVWXYZ/

We will save our sed script as distros.sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07

FEDORA 10 2008-11-25

SUSE 11.0 2008-06-19

UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08

SUSE 10.3 2007-10-04

UBUNTU 6.10 2006-10-26

FEDORA ih 2007-05-31

UBUNTU 7.10 2007-10-18

UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11

FEDORA 6 2006-10-24

FEDORA 9 2008-05-13

UBUNTU 6.06 2006-06-01

UBUNTU 8.10 2008-10-30

FEDORA 5 2006-03-20

Text Processing 261

Note:

262 Chapter 20

As we can see, our script produces the desired results, but how does it do

it? Let’s take another look at our script. We'll use cat to number the lines.

[me@linuxbox ~]$ cat -n distros.sed
1 # sed script to produce Linux distributions report

al aN
\
Linux Distributions Report\

s/\([0-9]\{2\}\)\/\ [0-9 J\{2\}\)\Z\ ([0-9] \{4\ FN) $/\3-\1-\27
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPORSTUVWXYZ/ ON OUP WN

Line 1 of our script is a comment. As in many configuration files and

programming languages on Linux systems, comments begin with the # char-

acter and are followed by human-readable text. Comments can be placed

anywhere in the script (though not within commands themselves) and are

helpful to any humans who might need to identify and/or maintain the

script.
Line 2 is a blank line. Like comments, blank lines may be added to

improve readability.

Many sed commands support line addresses. These are used to specify

which lines of the input are to be acted upon. Line addresses may be expressed

as single line numbers, line-number ranges, and the special line number $,

which indicates the last line of input.

Lines 3 through 6 contain text to be inserted at the address 1, the first

line of the input. The i command is followed by the sequence backslash—

carriage return to produce an escaped carriage return, or what is called a

line-continuation character. This sequence, which can be used in many circum-

stances including shell scripts, allows a carriage return to be embedded in

a stream of text without signaling the interpreter (in this case sed) that the

end of the line has been reached. The i command and the commands a

(which appends text) and c (which replaces text) allow multiple lines of

text, providing that each line, except the last, ends with a line-continuation

character. The sixth line of our script is actually the end of our inserted text

and ends with a plain carriage return rather than a line-continuation char-

acter, signaling the end of the i command.

A line-continuation character is formed by a backslash followed immediately by a car-

nage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by

an address, each line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase

letters. Note that unlike tr, the y command in sed does not support charac-
ter ranges (for example, [a-z]), nor does it support POSIX character classes.
Again, since the y command is not preceded by an address, it applies to
every line in the input stream.

PEOPLE WHO LIKE SED ALSO LIKE...

sed is a very capable program, able to perform fairly complex editing tasks to

streams of text. It is most often used for simple, one-line tasks rather than long

scripts. Many users prefer other tools for larger tasks. The most popular of

these are awk and perl. These go beyond mere tools like the programs covered

here and extend into the realm of complete programming languages. per], in

particular, is often used in place of shell scripts for many system-management

and administration tasks, as well as being a very popular medium for web devel-

opment. awk is a little more specialized. Its specific strength is its ability to manipu-

late tabular data. It resembles sed in that awk programs normally process text

files line by line, using a scheme similar to the sed concept of an address fol-

lowed by an action. While both awk and perl are outside the scope of this book,

they are very good tools for the Linux command line user.

aspell—Interactive Spell Checker

The last tool we will look at is aspell, an interactive spellchecker. The aspell

program is the successor to an earlier program named ispell, and it can be

used, for the most part, as a drop-in replacement. While the aspell program

is mostly used by other programs that require spellchecking capability, it can

also be used very effectively as a stand-alone tool from the command line. It

has the ability to intelligently check various type of text files, including HTML

documents, C/C++ programs, email messages, and other kinds of special-

ized texts.

To spellcheck a text file containing simple prose, aspell could be used

like this:

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s

create a simple text file named /oo.txt containing some deliberate spelling

errors:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jimped over the laxy dog.

Next we’ll check the file using aspell:

[me@linuxbox ~]$ aspell check foo.txt

As aspell is interactive in the check mode, we will see a screen like this:

The quick brown fox over the laxy dog.

1) jumped 6) wimped

2) gimped 7) camped

Text Processing 263

264 Chapter 20

3) comped 8) humped

4) limped 9) impede

5) pimped 0) umped

i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add 1) Add Lower
b) Abort x) Exit

?

At the top of the display, we see our text with a suspiciously spelled

word highlighted. In the middle, we see 10 spelling suggestions numbered

0 through 9, followed by a list of other possible actions. Finally, at the very

bottom, we see a prompt ready to accept our choice.

If we enter 1, aspell replaces the offending word with the word jumped

and moves on to the next misspelled word, which is /axy. If we select the

replacement lazy, aspell replaces it and terminates. Once aspell has

finished, we can examine our file and see that the misspellings have been

corrected:

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumped over the lazy dog.

Unless told otherwise via the command-line option --dont-backup, aspell

creates a backup file containing the original text by appending the exten-

sion .bak to the filename.

Showing off our sed editing prowess, we'll put our spelling mistakes back

in so we can reuse our file:

[me@linuxbox ~]$ sed -i 's/lazy/laxy/; s/jumped/jimped/' foo.txt

The sed option -i tells sed to edit the file “in place,” meaning that rather

than sending the edited output to standard output, it will rewrite the file

with the changes applied. We also see the ability to place more than one

editing command on the line by separating them with a semicolon.

Next, we’ll look at how aspell can handle different kinds of text files.

Using a text editor such as vim (the adventurous may want to try sed), we will
add some HTML markup to our file:

<html>
<head>

<title>Mispelled HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

Now, if we try to spellcheck our modified file, we run into a problem. If
we do it this way:

[me@linuxbox ~]$ aspell check foo.txt

we'll get this:

<>
<head>

<title>Mispelled HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add 1) Add Lower
b) Abort x) Exe

?

aspell will see the contents of the HTML tags as misspelled. This prob-

lem can be overcome by including the -H (HTML) checking-mode option,

like this:

[me@linuxbox ~]$ aspell -H check foo.txt

Our result is this:

<html>
<head>

<title> RRR) HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

1) Mi spelled
2) Mi-spelled
3) Misspelled
4) Dispelled
5) Spelled
i) Ignore
r) Replace
a) Add
b) Abort

med

6) Misapplied
7) Miscalled
8) Respelled
9) Misspell
0) Misled
I) Ignore all
R) Replace all
1) Add Lower
0) Pah

The HTML is ignored, and only the non-markup portions of the file

are checked. In this mode, the contents of HTML tags are ignored and not

checked for spelling. However, the contents of ALT tags, which benefit from

checking, are checked in this mode.

Text Processing 265

Note: By default, aspell will ignore URLs and email addresses in text. This behavior can be

overridden with command-line options. It is also possible to specify which markup tags

are checked and skipped. See the aspell man page for details.

Final Note

In this chapter, we have looked at a few of the many command-line tools that

operate on text. In the next chapter, we will look at several more. Admit-

tedly, it may not seem immediately obvious how or why you might use some

of these tools on a day-to-day basis, though we have tried to show some semi-

practical examples of their use. We will find in later chapters that these tools

form the basis of a tool set that is used to solve a host of practical problems.

This will be particularly true when we get into shell scripting, where these

tools will really show their worth.

Extra Credit

There are a few more interesting text-manipulation commands worth invest-

igating. Among these are split (split files into pieces), csplit (split files into

pieces based on context), and sdiff (side-by-side merge of file differences).

266 = Chapier 20

2]
FORMATTING OUTPUT

In this chapter, we continue our look at text-related
tools, focusing on programs that are used to format

text output rather than change the text itself. These

tools are often used to prepare text for printing, a
subject that we will cover in the next chapter. The

programs that we will cover in this chapter include
the following:

nl—Number lines.

fold—Wrap each line to a specified length.

fmt—A simple text formatter.

pr—Format text for printing.

printf—Format and print data.

groff—A document formatting system.

Simple Formatting Tools

We'll look at some of the simple formatting tools first. These are mostly

single-purpose programs, and a bit unsophisticated in what they do, but

they can be used for small tasks and as parts of pipelines and scripts.

nl—Number Lines

The nl program is a rather arcane tool used to perform a simple task: It

numbers lines. In its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
TeSUSE 10n2 12/07/2006

2 Fedora 10 11/25/2008

3 SUSE 11.0 06/19/2008
4 Ubuntu 8.04 04/24/2008

5 Fedora 8 11/08/2007
GuesUSE AI(0},.3} 10/04/2007

7 Ubuntu 6.10 10/26/2006
8 Fedora 7 05/31/2007

9 Ubuntu 7.10 10/18/2007
10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple filenames as command-line argu-

ments or standard input. However, nl has a number of options and supports

a primitive form of markup to allow more complex kinds of numbering.

nl supports a concept called logical pages when numbering. This allows

nl to reset (start over) the numerical sequence when numbering. Using

options, it is possible to set the starting number to a specific value and, to a

limited extent, set its format. A logical page is further broken down into a

header, body, and footer. Within each of these sections, line numbering may

be reset and/or be assigned a different style. If nl is given multiple files, it

treats them as a single stream of text. Sections in the text stream are indi-

cated by the presence of some rather odd-looking markup added to the

text, as shown in Table 21-1.

Table 21-1: nl Markup

Markup : Meaning

Ws Start of logical-page header

ANS Start of logical-page body

\ Start of logical-page footer

Each of the markup elements in Table 21-1 must appear alone on its
own line. After processing a markup element, nl deletes it from the text
stream.

268 = Chapter 21

Table 21-2 lists the common options for nl.

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
e a Number alll lines.

e t Number only non-blank lines. This is the default.
e n_ None.

e pregexp Number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

-i number Set page numbering increment to number. Default is 1.

-n format Set numbering format to format, where format is one of the
following:
e 1n_ left justified, without leading zeros.

e xn_ Right justified, without leading zeros. This is the default.
e xz_ Right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-s string Add string to the end of each line number to create a separator.

Default is a single tab character.

-v number Set first line number of each logical page to number. Default is 1.

-w width Set width of the line number field to width. Default is 6.

Admittedly, we probably won’t be numbering lines that often, but we

can use nl to look at how we can combine multiple tools to perform more

complex tasks. We will build on our work in the previous chapter to pro-

duce a Linux distributions report. Since we will be using n1, it will be useful

to include its header/body/footer markup. To do this, we will add it to the

sed script from the last chapter. Using our text editor, we will change the

script as follows and save it as distros-nl. sed:

sed script to produce Linux distributions report

iM
WEEE
\
Linux Distributions Report\

\
Name Ver. Released\

ANS
s/\([0-9]\{2\}\) \V/\([0-9] \{2\ F\) \/\ ([0-9] \{4\\) $/\3-\4-\2/

Formatting Output 269

$ a\
WBN
\
End Of Report

The script now inserts the nl logical-page markup and adds a footer at

the end of the report. Note that we had to double up the backslashes in our

markup, because sed normally interprets them as escape characters.

Next, we’ll produce our enhanced report by combining sort, sed, and n1:

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.sed | nl

Linux Distributions Report

Name Ver. Released

1 Fedora 5 2006-03-20

2 Fedora 6 2006-10-24
3 Fedora 7 2007-05-31

4 Fedora 8 2007-11-08
5 Fedora 9 2008-05-13

6 Fedora 10 2008-11-25

7 SUSE AO) al 2006-05-11

8 SUSE TORZ 2006-12-07

9 SUSE 10.3 2007-10-04

10 SUSE iO 2008-06-19
11 Ubuntu 6.06 2006-06-01

12 Ubuntu 6.10 2006-10-26

13 Ubuntu 7.04 2007-04-19

14 Ubuntu 7.10 2007-10-18

15 Ubuntu 8.04 2008-04-24

16 Ubuntu 8.10 2008-10-30

End Of Report

Our report is the result of our pipeline of commands. First, we sort the

list by distribution name and version (fields 1 and 2), and then we process

the results with sed, adding the report header (including the logical page

markup for nl) and footer. Finally, we process the result with nl, which, by

default, numbers only the lines of the text stream that belong to the body

section of the logical page.

We can repeat the command and experiment with different options for
nl. Some interesting ones are

nl -n rz

and

re ay) 3} ae YY

270 Chapter 21

fold—Wrap Each Line to a Specified Length
Folding is the process of breaking lines of text at a specified width. Like our
other commands, fold accepts either one or more text files or standard input.
If we send folda simple stream of text, we can see how it works:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12

The quick br
own fox jump
ed over the
lazy dog.

Here we see fold in action. The text sent by the echo command is broken

into segments specified by the -w option. In this example, we specify a line

width of 12 characters. If no width is specified, the default is 80 characters.

Notice that the lines are broken regardless of word boundaries. The addi-

tion of the -s option will cause fold to break the line at the last available

space before the line width is reached:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12 -s
The quick
brown fox
jumped over
the lazy
dog.

fmt—A Simple Text Formatter

The fmt program also folds text, plus a lot more. It accepts either files or

standard input and performs paragraph formatting on the text stream.

Basically, it fills and joins lines in text while preserving blank lines and

indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt

info page:

~fmt' reads from the specified FILE arguments (or standard input if none
are given), and writes to standard output.

By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced on

output.

~fmt' prefers breaking lines at the end of a sentence, and tries to avoid
line breaks after the first word of a sentence or before the last word of a
sentence. A "sentence break" is defined as either the end of a paragraph or a
word ending in any of ~.?!', followed by two spaces or end of line, ignoring

any intervening parentheses or quotes. Like TeX, “fmt ' reads entire

"paragraphs" before choosing line breaks; the algorithm is a variant of that

given by Donald E. Knuth and Michael F. Plass in “Breaking Paragraphs Into

Lines", ~Software--Practice & Experience’ 11, 11 (November 1981), 1119-1184.

Formatting Output 271

We'll copy this text into our text editor and save the file as fmt-info. txt.

Now, let’s say we wanted to reformat this text to fit a 50-character-wide col-

umn. We could do this by processing the file with fmt and the -w option:

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
~fmt' reads from the specified FILE arguments
(or standard input if

none are given), and writes to standard output.

By default, blank lines, spaces between words,
and indentation are

preserved in the output; successive input lines
with different indentation are not joined; tabs

are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text,

since it explains what’s going on:

By default, blank lines, spaces between words, and indentation are

preserved in the output; successive input lines with different indent-
ation are not joined; tabs are expanded on input and introduced
on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt

provides an option to correct this:

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt
~fmt' reads from the specified FILE arguments

(or standard input if none are given), and writes
to standard output.

By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

*fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A “sentence break"
is defined as either the end of a paragraph
or a word ending in any of ~.?!', followed

by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like Tex,
“fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
~Software--Practice & Experience’ 11, 11
(November 1981), 1119-1184.

Much better. By adding the -c option, we now have the desired result.

272 = Chapter 21

fmt has some interesting options, as shown in Table 21-3.

Table 21-3: fmt Options

Option - Description

-C Operate in crown margin mode. This preserves the indentation

of the first two lines of a paragraph. Subsequent lines are aligned
with the indentation of the second line.

-p string Format only those lines beginning with the prefix string. After

formatting, the contents of string are prefixed to each reformat:
ted line. This option can be used to format text in source code

comments. For example, any programming language or config-
uration file that uses a # character to delineate a comment could
be formatted by specifying -p '# ' so that only the comments
will be formatted. See the example below.

-s Splitonly mode. In this mode, lines will be split only to fit the
specified column width. Short lines will not be joined to fill
lines. This mode is useful when formatting text, such as code,

where joining is not desired.

-u Perform uniform spacing. This will apply traditional “typewriter-
style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful
for removing justification, that is, forced alignment to both the
left and right margins.

-w width Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

The -p option is particularly interesting. With it, we can format selected

portions of a file, provided that the lines to be formatted all begin with the

same sequence of characters. Many programming languages use the hash

mark (#) to indicate the beginning of a comment and thus can be format-

ted using this option. Let’s create a file that simulates a program that uses

comments:

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This line is a comment.
Followed by another comment line.
And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Formatting Output 273

274 Chapter 21

Our sample file contains comments, which begin with the string # (a #

followed by a space), and lines of “code,” which do not. Now, using fmt, we

can format the comments and leave the code untouched:

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another line of code.

And another.

Notice that the adjoining comment lines are joined, while the blank

lines and the lines that do not begin with the specified prefix are preserved.

pr—Format Text for Printing

The pr program is used to paginate text. When printing text, it is often desir-

able to separate the pages of output with several lines of whitespace to pro-

vide a top and bottom margin for each page. Further, this whitespace can be

used to insert a header and footer on each page.

We'll demonstrate pr by formatting our distros. txt file into a series of very

short pages (only the first two pages are shown):

[me@linuxbox ~]$ pr -1 15 -w 65 distros.txt

2012-12-11 18:27 distros.txt Page 1

SUSE 10R2 12/07/2006

Fedora 10 11/25/2008

SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008

Fedora 8 11/08/2007

2012-12-11 18:27 distros.txt Page 2

SUSE 10.3 10/04/2007

Ubuntu 6.10 10/26/2006

Fedora il 05/31/2007

Ubuntu 7.10 10/18/2007

Ubuntu 7.04 04/19/2007

In this example, we employ the -1 option (for page length) and the -w
option (page width) to define a “page” that is 65 characters wide and 15 lines
long. pr paginates the contents of the distros. txt file, separates each page with
several lines of whitespace, and creates a default header containing the file
modification time, filename, and page number. The pr program provides
many options to control page layout. We’ll take a look at more of them in

Chapter 22.

printf—Format and Print Data

Unlike the other commands in this chapter, the printf command is not used

for pipelines (it does not accept standard input), nor does it find frequent

application directly on the command line (it’s used mostly in scripts). So

why is it important? Because it is so widely used.

printf (from the phrase print formatted) was originally developed for the

C programming language and has been implemented in many program-

ming languages, including the shell. In fact, in bash, printf is a built-in.

printf works like this:

printf "format" arguments

The command is given a string containing a format description, which

is then applied to a list of arguments. The formatted result is sent to stan-

dard output. Here is a trivial example:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

The format string may contain literal text (like I formatted the string:);

escape sequences (such as \n, a newline character); and sequences begin-

ning with the % character, which are called conversion specifications. In the

example above, the conversion specification %s is used to format the string

foo and place it in the command’s output. Here it is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %s conversion specification is replaced by the string

foo in the command’s output. The s conversion is used to format string data.

There are other specifiers for other kinds of data. Table 21-4 lists the com-

monly used data types.

Table 21-4: Common printf Data-Type Specifiers

Specifier Description —

d Format a number as a signed decimal integer.

f Format and output a floating point number.

(continued)

Formatting Output 275

276 = Chapter 21

Table 21-4 (continued)

Specifier Description

0 Format an integer as an octal number.

s Format a string.

x Format an integer as a hexadecimal number using lowercase a-f

where needed.

X Same as x, but use uppercase letters.

% Print a literal % symbol (i.e., specify “%%").

We’ll demonstrate the effect each of the conversion specifiers on the

string 380:

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380 380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six

arguments for printf to process. The six results show the effect of each

specifier.

Several optional components may be added to the conversion specifier

to adjust its output. A complete conversion specification may consist of the

following:

4 flags |[width][.precision|conversion_ specification

Multiple optional components, when used, must appear in the order spe-

cified above to be properly interpreted. Table 21-5 describes each component.

Table 21-5: printf Conversion-Specification Components

Component _ Description

flags There are five different flags:

e # Use the alternate format for output. This varies by data
type. For o (octal number) conversion, the output is prefixed
with 0 (zero). For x and X (hexadecimal number) conversions,

the output is prefixed with ox or 0X respectively.

e 0(zero) Pad the output with zeros. This means that the field
will be filled with leading zeros, as in 000380.

e - (dash) Leftalign the output. By default, printf rightaligns
output.

e (space) Produce a leading space for positive numbers.
¢ +(plus sign) Sign positive numbers. By default, printf signs

only negative numbers.

Table 21-5 (continued)

width

- precision

Description

A number specifying the minimum field width

For floating-point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to

output.

Table 21-6 lists some examples of different formats in action.

Table 21-6: print Conversion Specification Examples

Argument

380

380

380

380

380

380

380

abcdefghijk

abcdefghijk

Format _ Result Notes

"hd" 380 Simple formatting of an integer

"%Hx" Ox17¢ Integer formatted as a hexa-

decimal number using the
alternate format flag

"%05d" 00380 Integer formatted with leading
zeros (padding) and a minimum
field width of five characters

"%05.5f" 380.00000 Number formatted as a floating-
point number with padding and
5 decimal places of precision.
Since the specified minimum
field width (5) is less than the

actual width of the formatted
number, the padding has no

effect.

"%010.5f" 0380.00000 Increasing the minimum field
width to 10 makes the padding
visible.

"bed" +380 The + flag signs a positive
number.

"%-d" 380 The - flag left-aligns the
formatting.

"%58" abcedfghijk A string is formatted with a
minimum field width.

"%.55" abcde By applying precision to a
string, it is truncated.

Formatting Output 277

Again, printf is used mostly in scripts, where it is employed to format

tabular data, rather than on the command line directly. But we can still

show how it can be used to solve various formatting problems. First, let’s

output some fields separated by tab characters:

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" str1 str2 str3
str1 str2 str3

By inserting \t (the escape sequence for a tab), we achieve the desired

effect. Next, some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071 3.14156295

32589
Line: 01071 3.142 Result: +32589

This shows the effect of minimum field width on the spacing of the

fields. Or how about formatting a tiny web page?

[me@linuxbox ~]$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n\t</head>
\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</html>\n" "Page Title" "Page Content”
<html>

<head>
<title>Page Title</title>

</head>
<body>

<p>Page Content</p>
</body>

</html>

Document Formatting Systems

So far, we have examined the simple text-formatting tools. These are good

for small, simple tasks, but what about larger jobs? One of the reasons that

Unix became a popular operating system among technical and scientific

users (aside from providing a powerful multitasking, multiuser environment

for all kinds of software development) is that it offered tools that could be

used to produce many types of documents, particularly scientific and aca-

demic publications. In fact, as the GNU documentation describes, docu-

ment preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was

sitting around Bell Labs. In 1971 the developers wanted to get a
PDP-11 for further work on the operating system. In order to justify

the cost for this system, they proposed that they would implement
a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of Mclllroy’s roff,
written by J.F. Ossanna.

278 = Chapter 21

Note:

The roff Family and TEX

Two main families of document formatters dominate the field: those descended
from the original roff program, including nroff and troff, and those based
on Donald Knuth’s TEX (pronounced “tek”) typesetting system. And yes,
the dropped “E” in the middle is part of its name.

The name roffis derived from the term run offas in, “I'll run off a

copy for you.” The nroff program is used to format documents for output

to devices that use monospaced fonts, such as character terminals and

typewriter-style printers. At the time of its introduction, this included nearly

all printing devices attached to computers. The later troff program formats

documents for output on typesetters, devices used to produce “camera-ready”

type for commercial printing. Most computer printers today are able to sim-

ulate the output of typesetters. The roff family also includes some other pro-

grams that are used to prepare portions of documents. These include eqn

(for mathematical equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to

some degree, displaced troff as the tool of choice for typesetter output. We

won't be covering TEX here, due both to its complexity (there are entire

books about it) and to the fact that it is not installed by default on most

modern Linux systems.

For those interested in installing TEX, check out the texlive package, which can be

found in most distribution repositories, and the LyX graphical content editor.

groff—A Document Formatting System

groff is a suite of programs containing the GNU implementation of troff.

It also includes a script that is used to emulate nroff and the rest of the roff

family as well.
While roff and its descendants are used to make formatted documents,

they do it in a way that is rather foreign to modern users. Most documents

today are produced using word processors that are able to perform both the

composition and layout of a document in a single step. Prior to the advent

of the graphical word processor, documents were often produced in a two-

step process involving the use of a text editor to perform composition and a

processor, such as troff, to apply the formatting. Instructions for the format-

ting program were embedded in the composed text through the use of a

markup language. The modern analog for such a process is the web page,

which is composed using a text editor of some kind and then rendered by

a web browser using HTML as the markup language to describe the final

page layout.

We’ re not going to cover groff in its entirety, as many elements of its

markup language deal with rather arcane details of typography. Instead we

will concentrate on one of its macro packages that remains in wide use. These

macro packages condense many of its low-level commands into a smaller set

of high-level commands that make using groff much easier.

Formatting Output 279

For a moment, let’s consider the humble man page. It lives in the

/usr/share/man directory as a gzip-compressed text file. If we were to exam-

ine its uncompressed contents, we would see the following (the man page

for ls in section | is shown):

[me@linuxbox ~]$ zcat /usr/share/man/mani1/1s.1.gz | head
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.35.
.TH LS "1" "April 2008" "GNU coreutils 6.10" "User Commands"
~SH NAME
ls \- list directory contents
~SH SYNOPSIS
al} ils
[\fIOPTION\fR]... [\FIFILE\FR]...
.SH DESCRIPTION
.\" Add any additional description here
.PP

Compared to the man page in its normal presentation, we can begin to

see a correlation between the markup language and its results:

[me@linuxbox ~]$ man ls | head
LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

This is of interest because man pages are rendered by groff, using the

mandoc macro package. In fact, we can simulate the man command with this

pipeline.

[me@linuxbox ~]$ zcat /usr/share/man/mani/1ls.1.gz | groff -mandoc -T ascii |

ees User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS
Is [OPTION :ocee | FLLE) a.

Here we use the groff program with the options set to specify the mandoc

macro package and the output driver for ASCII. groff can produce output
in several formats. If no format is specified, PostScript is output by default:

[me@linuxbox ~]$ zcat /usr/share/man/mani/1s.1.gz | groff -mandoc | head
%!PS-Adobe-3.0
*aCreator: groff version 1.18.1
*ACreationDate: Thu Feb 2 13:44:37 2012
“#ADOCumentNeededResources: font Times-Roman

280 Chapter 21

44+ font Times-Bold
het font Times-Italic
**DOCumentSuppliedResources: procset grops 1.18 1
mePages: 4
*sPageOrder: Ascend
*kOrientation: Portrait

PostScript is a page-description language that is used to describe the
contents of a printed page to a typesetter-like device. We can take the out-
put of our command and store it to a file (assuming that we are using a

graphical desktop with a Desktop directory):

steele ~]$ zcat /usr/share/man/mani1/1s.1.gz | groff -mandoc > ~/Desktop
/foo.ps

An icon for the output file should appear on the desktop. By double-

clicking the icon, a page viewer should start up and reveal the file in its

rendered form (Figure 21-1).

f: of [re Page wath >]
epee eared cell ainersre ceceecvepnen <a ec omen cca een emu ite cpesngeton

LS) User Commands LS(1)

NAME
Is — list directory contents

SYNOPSIS
Is (OPTION)... (FILE)...

DESCRIPTION
List information about the PILEs (the current directory by default). Sort entries alphabetically if none of

-cfluySUX nor —sort.

Mandatory arguments to long options are mandatory for short options too,

—a, —all

do not ignore entries starting with

-A, —almost-all

do not list implied . and ..

—~author

with -I, print the author of each file

—b, —escape

print ovtal escapes for nongraphic characters

—block-size=S/ZE
use SIZE-byte blocks

—B, —ignore—backups

do not list implied entries ending with ~

-c with -It; sort by, and show, ctime (time of last modification of file status information) with —:

show ctime and sort by name otherwise: sort by ctime

-C list entries by columns

—color|=WHEN]

control whether color is used to distinguish file types. WHEN may be ‘never’, ‘always’, or “auto?

—dA_——Airectorn

Figure 21-1: Viewing PostScript output with a page viewer in GNOME

What we see is a nicely typeset man page for 1s! In fact, it’s possible to

convert the PostScript file into a PDF (Portable Document Format) file with this

command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/1s.pdf

The ps2pdf program is part of the ghostscript package, which is installed

on most Linux systems that support printing.

Formatting Output 281

Note: Linux systems often include many command line-programs for file-format conversion.

282 Chapter 21

They are often named using the convention format2format. Try using the command

Is /usr/bin/*[[:alpha:]]2[[:alpha:]]* to identify them. Also try searching for pro-

grams named formattoformat.

For our last exercise with groff, we will revisit our old friend distros. txt.

This time, we will use the tbl program, which is used to format tables, to

typeset our list of Linux distributions. To do this, we are going to use our

earlier sed script to add markup to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary requests that

tbl requires. Using a text editor, we will change distros.sed to the following:

sed script to produce Linux distributions report

1 i\
SSN
center box;\
cb s s\
cb cb cb\
nec
Linux Distributions Report\
=
Name Version Released\

s/\([0-9]\{2\}\)\/\ [0-9] \{2\}\)\/\ ([0-9] \{4\ }\) $/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see

that the words Name Version Released are separated by tabs, not spaces. We’ll

save the resulting file as distros-tbl.sed. tbl uses the .TS and .TE requests to

start and end the table. The rows following the .TS request define global

properties of the table, which, for our example, are centered horizontally

on the page and surrounded by a box. The remaining lines of the definition

describe the layout of each table row. Now, if we run our report-generating

pipeline again with the new sed script, we’ll get the following :

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | grotf
-t -T ascii 2>/dev/null

tenn cnn n nnn nn ee ------------- +

| Linux Distributions Report |
Ho 2-3-2 ------------------------ +

| Name = Version Released |
t------------------------------ +

|Fedora 5 2006-03-20 |
|Fedora 6 2006-10-24 |
|Fedora 7 2007-05-31 |
|Fedora 8 2007-11-08 |
|Fedora 9 2008-05-13 |
|Fedora 10 2008-11-25 |
| SUSE 10.1 2006-05-11 |
| SUSE 10), 2 2006-12-07 |
| SUSE 10.3 2007-10-04 |
| SUSE 11.0 2008-06-19 |
|Ubuntu 6.06 2006-06-01 |

|Ubuntu 6.10 2006-10-26 |
|Ubuntu 7.04 2007-04-19 |
|Ubuntu 7.10 2007-10-18 |
|Ubuntu 8.04 2008-04-24 |
|Ubuntu 8.10 2008-10-30 |

Adding the -t option to groff instructs it to preprocess the text stream
with tbl. Likewise, the -T option is used to output to ASCII rather than to
the default output medium, PostScript.

The format of the output is the best we can expect if we are limited to
the capabilities of a terminal screen or typewriter-style printer. If we specify

PostScript output and graphically view the resulting output, we get a much
more satisfying result (see Figure 21-2).

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | groff
-t > ~/Desktop/foo.ps

File Edit View Go Help

1 | of 1 | 150% 2

Thumbnails ES]
: fi | Linux Distributions Report

Name Version Released

Fedora 5 2006-03-20

; Fedora 6 2006-10-24

Fedora 7 2007-05-31

| Fedora 8 2007-11-08

H Fedora 9 2008-05-13

| Fedora 10 2008-11-25

SUSE 10.1 2006-05-11

SUSE 10.2 2006-12-07
SUSE 10.3 2007-10-04

SUSE 11.0 2008-06-19

Ubuntu 6.06 2006-06-01

Ubuntu 6.10 2006-10-26

Ubuntu 7.04 2007-04-19

Ubuntu 7.10 2007-10-18

Ubuntu 8.04 2008-04-24

| Ubuntu 8,10 2008-10-30

L a = = —

Figure 21-2: Viewing the finished table

Final Note

Given that text is so central to the character of Unix-like operating systems,

it makes sense that there would be many tools that are used to manipulate

and format text. As we have seen, there are! The simple formatting tools like

fmt and pr will find many uses in scripts that produce short documents, while

groff (and friends) can be used to write books. We may never write a tech-

nical paper using command-line tools (though many people do!), but it’s

good to know that we could.

Formatting Output 283

Pa

PRINTING

After spending the last couple of chapters manipulat-
ing text, it’s time to put that text on paper. In this chap-

ter, we'll look at the command-line tools that are used

to print files and control printer operation. We won’t be
looking at how to configure printing, as that varies from distribution to distri-

bution and is usually set up automatically during installation. Note that we will

need a working printer configuration to perform the exercises in this chapter.

We will discuss the following commands:

e pr—Convert text files for printing.

e lpr—Print files.

e 1p—Print files (System V).

e a2ps—Format files for printing on a PostScript printer.

e lpstat—Show printer status information.

e 1pq—Show printer queue status.

e lprm—Cancel print jobs.

e cancel—Cancel print jobs (System V).

A Brief History of Printing

286 = Chapter 22

To fully understand the printing features found in Unix-like operating sys-

tems, we must first learn some history. Printing on Unix-like systems goes way

back to the beginning of the operating system itself. In those days, printers

and how they were used were much different from how they are today.

Printing in the Dim Times

Like the computers themselves, printers in the pre-PC era tended to be large,

expensive, and centralized. The typical computer user of 1980 worked at

a terminal connected to a computer some distance away. The printer was

located near the computer and was under the watchful eyes of the com-

puter’s operators.
When printers were expensive and centralized, as they often were in the

early days of Unix, it was common practice for many users to share a printer.

To identify print jobs belonging to a particular user, a banner page displaying

the name of the user was often printed at the beginning of each print job.

The computer support staff would then load up a cart containing the day’s

print jobs and deliver them to the individual users.

Character-Based Printers

The printer technology of the ’80s was very different in two respects. First,

printers of that period were almost always impact printers. /mpact printers use

a mechanical mechanism that strikes a ribbon against the paper to form

character impressions on the page. Two of the popular technologies of that

time were daisy-wheel printing and dot-matrix printing.

The second, and more important, characteristic of early printers was

that they used a fixed set of characters that were intrinsic to the device itself.

For example, a daisy-wheel printer could print only the characters actually

molded into the petals of the daisy wheel. This made the printers much like

high-speed typewriters. As with most typewriters, they printed using mono-

spaced (fixed-width) fonts. This means that each character has the same

width. Printing was done at fixed positions on the page, and the printable

area of a page contained a fixed number of characters. Most printers prin-

ted 10 characters per inch (CPI) horizontally and 6 lines per inch (LPI) ver-

tically. Using this scheme, a US-letter sheet of paper is 85 characters wide
and 66 lines high. Taking into account a small margin on each side, 80 char-
acters was considered the maximum width of a print line. This explains why

terminal displays (and our terminal emulators) are normally 80 characters
wide. It provides a WYSIWYG (What You See Is What You Get) view of printed
output, using a monospaced font.

Data is sent to a typewriter-like printer in a simple stream of bytes con-
taining the characters to be printed. For example, to print an a, the ASCII
character code 97 is sent. In addition, the low-numbered ASCII control codes
provided a means of moving the printer’s carriage and paper, using codes

for carriage return, line feed, form feed, and so on. Using the control codes,
it’s possible to achieve some limited font effects, such as boldface, by having
the printer print a character, backspace, and print the character again to get
a darker print impression on the page. We can actually witness this if we use
nroff to render a man page and examine the output using cat -A:

[me@linuxbox ~]$ zcat /usr/share/man/man1/1s.1.gz | nroff -man | cat -A | head
LS(1) User Commands LS(1)

$
$
N*HNA*HAM*HME “HE $

ls - list directory contents$
$
S*HSY*HYN*HNO“HOP“HPS“HSI“HIS*HS$

I*H1s*Hs [_*HO_“HP_*HT_SHI_*HO_*HN]... [_SHF “HI “HL *HE]...$

The “H (cTRL-H) characters are the backspaces used to create the bold-

face effect. Likewise, we can also see a backspace/underscore sequence used

to produce underlining.

Graphical Printers

The development of GUIs led to major changes in printer technology.

As computers moved to more picture-based displays, printing moved from

character-based to graphical techniques. This was facilitated by the advent

of the low-cost laser printer, which, instead of printing fixed characters, could

print tiny dots anywhere in the printable area of the page. This made print-

ing proportional fonts (like those used by typesetters), and even photo-

graphs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme

presented a formidable technical challenge. Here’s why: The number of

bytes needed to fill a page using a character-based printer can be calculated

this way (assuming 60 lines per page, each containing 80 characters): 60 x 80

= 4,800 bytes.

In comparison, a 300-dot-per-inch (DPI) laser printer (assuming an

8-by-10-inch print area per page) requires (8 x 300) x (10 x 300) +8 =

900,000 bytes.

Many of the slow PC networks simply could not handle the nearly

1 megabyte of data required to print a full page on a laser printer, so it

was clear that a clever invention was needed.

That invention turned out to be the page-description language. A page-

description language (PDL) is a programming language that describes the con-

tents of a page. Basically it says, “Go to this position, draw the character ain

10-point Helvetica, go to this position. . . .” until everything on the page is

described. The first major PDL was PostScript from Adobe Systems, which is

still in wide use today. The PostScript language is a complete programming

language tailored for typography and other kinds of graphics and imaging.

It includes built-in support for 35 standard, high-quality fonts, plus the ability

Printing 287

to accept additional font definitions at runtime. At first, support for Post-

Script was built into the printers themselves. This solved the data transmission

problem. While the typical PostScript program was verbose in comparison

to the simple byte stream of character-based printers, it was much smaller

than the number of bytes required to represent the entire printed page.

A PostScript printer accepted a PostScript program as input. The printer

contained its own processor and memory (oftentimes making the printer a

more powerful computer than the computer to which it was attached) and

executed a special program called a PostScript interpreter, which read the incom-

ing PostScript program and rendered the results into the printer’s internal

memory, thus forming the pattern of bits (dots) that would be transferred

to the paper. The generic name for this process of rendering something

into a large bit pattern (called a bitmap) is raster image processor, or RIP.

As the years went by, both computers and networks became much

faster. This allowed the RIP to move from the printer to the host computer,

which, in turn, permitted high-quality printers to be much less expensive.

Many printers today still accept character-based streams, but many

low-cost printers do not. They rely on the host computer’s RIP to provide a

stream of bits to print as dots. There are still some PostScript printers, too.

Printing with Linux

Modern Linux systems employ two software suites to perform and manage

printing. The first, CUPS (Common Unix Printing System), provides print

drivers and printjob management; the second, Ghostscript, a PostScript

interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues.

As we discussed in our brief history lesson, Unix printing was originally

designed to manage a centralized printer shared by multiple users. Since

printers are slow by nature, compared to the computers that are feeding

them, printing systems need a way to schedule multiple print jobs and keep

things organized. CUPS also has the ability to recognize different types of
data (within reason) and can convert files to a printable form.

Preparing Files for Printing

288 = Chapter 22

As command line users, we are mostly interested in printing text, though it
is certainly possible to print other data formats as well.

pr—Convert Text Files for Printing

We looked at pr a little in the previous chapter. Now we will examine some of
its many options used in conjunction with printing. In our history of printing,
we saw that character-based printers use monospaced fonts, resulting in

fixed numbers of characters per line and lines per page. pr is used to adjust

text to fit on a specific page size, with optional page headers and margins.

Table 22-1 summarizes the most commonly used options.

Table 22-1: Common pr Options

Option

+first[:last]

-columns

-d

-D format

-f

-h header

-1 length

-n

-o offset

-w width

_ Description

Output a range of pages starting with first and, optionally,
ending with last.

Organize the content of the page into the number of columns
specified by columns.

By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

Double-space output.

Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

Use form feeds rather than carriage returns to separate pages.

In the center portion of the page header, use header rather the
name of the file being processed.

Set page length to length. Default is 66 lines (US letter at

6 lines per inch).

Number lines.

Create a left margin offset characters wide.

Set page width to width. Default is 72 characters.

pr is often used in pipelines as a filter. In this example, we will produce

a directory listing of /usr/bin and format it into paginated, three-column

output using pr:

[me@linuxbox ~]$

2012-02-18 14:00

[
411toppm
a2p
a2ps
a2ps-lpr-wrapper

ls /usr/bin | pr -3 -w 65 | head

Pag

apturl bsd-write
ar bsh
arecord btcflash
arecordmidi bug- buddy
ark buildhash

@ il

Printing 289

Sending a Print Job to a Printer

Note:

290 = Chapter 22

The CUPS printing suite supports two methods of printing historically used

on Unix-like systems. One method, called Berkeley or LPD (used in the

Berkeley Software Distribution version of Unix), uses the lpr program; the

other method, called SysV (from the System V version of Unix), uses the lp

program. Both programs do roughly the same thing. Choosing one over the

other is a matter of personal taste.

Ipr—Print Files (Berkeley Style)

The lpr program can be used to send files to the printer. It may also be used

in pipelines, as it accepts standard input. For example, to print the results of

our multicolumn directory listing above, we could do this:

[me@linuxbox ~]$ 1s /usr/bin | pr -3 | lpr

The report would be sent to the system’s default printer. To send the

file to a different printer, the -P option can used like this:

lpr -P printer_name

where printer_name is the name of the desired printer. To see a list of print-

ers known to the system:

[me@linuxbox ~]$ lIpstat -a

Many Linux distributions allow you to define a “printer” that outputs files in PDF,

rather than printing on the physical printer. This is very handy for experimenting

with printing commands. Check your printer configuration program to see if it sup-

ports this configuration. On some distributions, you may need to install additional

packages (such as cups-pdf) to enable this capability.

Table 22-2 shows some of the common options for lpr.

Table 22-2: Common Ipr Options

Option Description

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system's default printer is used.

-I Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

SIO

Ip—Print Files (System V Style) |

Like lpr, 1p accepts either files or standard input for printing. It differs from
Ipr in that it supports a different (and slightly more sophisticated) option

set. Table 22-3 lists the common options.

Table 22-3: Common Ip Options

Option | Description

-d printer Set the destination (printer) to printer. If no d option

is specified, the system default printer is used.

-n number Set the number of copies to number.

-o landscape Set output to landscape orientation.

-o fitplot Scale the file to fit the page. This is useful when

printing images, such as JPEG files.

-o scaling=number Scale file to number. The value of 100 fills the page.

Values less than 100 are reduced, while values

greater than 100 cause the file to be printed across
multiple pages.

-o cpi=number Set the output characters per inch to number. Default

is 10.

-o lpi=number Set the output lines per inch to number. Default is 6.

-o page-bottom=points Set the page margins. Values are expressed in

-o page-left=points points, a unit of typographic measurement. There

-O page-right=points are 72 points to an inch.

-O page-top=points

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range—for
example 1,3,5,7-10.

We'll produce our directory listing again, this time printing 12 CPI and

8 LPI with a left margin of one-half inch. Note that we have to adjust the pr

options to account for the new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -1 88 | lp -o page-left=36 -o cpi=

12 -o lpi=8

This pipeline produces a four-column listing using smaller type than the

default. The increased number of characters per inch allows us to fit more

columns on the page.

Printing 291

292 Chapter 22

Another Option: a2ps

The a2ps program is interesting. As we can surmise from its name, it’s a

format conversion program, but it’s also much more. Its name originally

meant ASCII to PostScript, and it was used to prepare text files for printing

on PostScript printers. Over the years, however, the capabilities of the pro-

gram have grown, and now its name means Anything to PostScript. While its

name suggests a format-conversion program, it is actually a printing pro-

gram. It sends its default output, rather than standard output, to the sys-

tem’s default printer. The program’s default behavior is that of a “pretty

printer,” meaning that it improves the appearance of output. We can use

the program to create a PostScript file on our desktop:

[me@linuxbox ~]$ 1s /usr/bin | pr -3 -t | a2ps -o ~/Desktop/1s.ps -L 66
[stdin (plain): 11 pages on 6 sheets]
[Total: 11 pages on 6 sheets] saved into the file ~/home/me/Desktop/1s.ps'

Here we filter the stream with pr, using the -t option (omit headers and

footers) and then, with a2ps, specifying an output file (-o option) and 66 lines

per page (-L option) to match the output pagination of pr. If we view the

resulting file with a suitable file viewer, we will see the output shown in
Figure 22-1.

File Edit View Go Help :

See e of 6 Fit Page Width’ + |

z Ses east ON Se

Thumbnails + @ i

Fab 22 09 7:19 Page 4/11 Feb 22,09 719

ack
fleppycontrel

5

asp
‘Sunday February 22, 2009

Figure 22-1: Viewing a2ps output

As we can see, the default output layout is “two up” format. This causes
the contents of two pages to be printed on each sheet of paper. a2ps applies
nice page headers and footers, too.

a2ps has a lot of options. Table 22-4 summarizes them.

Table 22-4: a2ps Options

Option

--center-title=text

--columns=number

--footer=text

--guess

--left-footer=text

--left-title=text

--line-numbers=interval

--list=defaults

--list=topic

--pages=range

--right-footer=text

--right-title=text

--rows=number

-B

-b text

-f size

-1 number

Description

Set center page title to text.

Arrange pages into number columns. Default is 2.

Set page footer to text.

Report the types of files given as arguments. Since

a2ps tries to convert and format all types of data,
this option can be useful for predicting what a2ps
will do when given a particular file.

Set left-page footer to text.

Set left-page title to text.

Number lines of output every Perv! lines.

Display default settings.

Display settings for topic, where topic is one of
the following: delegations (external programs that

will be used to convert data), encodings, features,

variables, media (paper sizes and the like), ppd
(PostScript printer descriptions), printers, prologues

(portions of code that are prefixed to normal
output), stylesheets, or user options.

Print pages in range.

Set right-page footer to text.

Set right-page title to text.

Arrange pages into number rows. Default is 1.

No page headers.

Set page header to text.

Use size point font.

Set characters per line to number. This and the -L
option (below) can be used to make files pagi-
nated with other programs, such as pr, fit correctly

on the page.

(continued)

Printing 293

Note: a2ps is still in active development. During my testing, I noticed different behavior on

Table 22-4 (continued)

Option

-L number

-M name

-n number

-o file

-P printer

-R

-r

-T number

-u text

Description

Set lines per page to number.

Use media name—for example, A4.

Output number copies of each page.

Send output to file. If file is specified as -, use

standard output.

Use printer. If a printer is not specified, the system

default printer is used.

Portrait orientation

Landscape orientation

Set tab stops to every number characters.

Underlay (watermark) pages with text.

This is just a summary. a2ps has several more options.

a Be Zeca

various distributions. On CentOS 4, output always went to standard output by default.

On CentOS 4 and Fedora 10, output defaulted to A4 media, despite the program being

configured to use letter-size media by default. I could overcome these issues by explicitly

specifying the desired option. On Ubuntu 8.04, a2ps performed as documented.

Also note that there is another output formatter that is useful for converting text

into PostScript. Called enscript, it can perform many of the same kinds of formatting

and printing tricks, but unlike a2ps, it accepts only text input.

Monitoring and Controlling Print Jobs

294 Chapter 22

As Unix printing systems are designed to handle multiple print jobs from

multiple users, CUPS is designed to do the same. Each printer is given a

print queue, where jobs are parked until they can be spooled to the printer.

CUPS supplies several command-line programs that are used to manage

printer status and print queues. Like the lpr and 1p programs, these man-

agement programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat—Display Print System Status

The Ipstat program is useful for determining the names and availability of
printers on the system. For example, if we had a system with both a physical

printer (named printer) anda PDF virtual printer (named PDF), we could
check their status like this:

[me@linuxbox ~]$ lpstat -a
PDF accepting requests since Mon 05 Dec 2011 03:05:59 PM EST
printer accepting requests since Tue 21 Feb 2012 08:43:22 AM EST

Further, we could determine a more detailed description of the print

system configuration this way:

[me@linuxbox ~]$ lpstat -s
system default destination: printer
device for PDF: cups-pdf:/
device for printer: ipp://print-server:631/printers/printer

In this example, we see that printer is the system’s default printer and

that it is a network printer using Internet Printing Protocol (ipp://)

attached to a system named print-server.

The commonly used options are described in Table 22-5.

Table 22-5: Common Ipstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note
that this is the status of the printer queue’s ability to
accept jobs, not the status of the physical printers. If no
printers are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no
printers are specified, all printers are shown.

-r Display the status of the print server.

-S Display a status summary.

=i Display a complete status report.

Ipq—Display Printer Queve Status

To see the status of a printer queue, the lpq program is used. This allows

us to view the status of the queue and the print jobs it contains. Here is an

example of an empty queue for a system default printer named printer:

[me@linuxbox ~]$ lpq
printer is ready
no entries

Printing 295

296 = Chapter 22

If we do not specify a printer (using the -P option), the system’s default

printer is shown. If we send a job to the printer and then look at the queue,

we will see it listed:

[me@linuxbox ~]$ ls *.txt | pr -3 | lp
request id is printer-603 (1 file(s))
[me@linuxbox ~]$ lpq
printer is ready and printing
Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

Iprm and cancel—Cancel Print Jobs

CUPS supplies two programs used to terminate print jobs and remove them

from the print queue. One is Berkeley style (1prm), and the other is System V

(cancel). They differ slightly in the options they support but do basically the

same thing. Using our print job above as an example, we could stop the job

and remove it this way:

[me@linuxbox ~]$ cancel 603

[me@linuxbox ~]$ lpq
printer is ready
no entries

Each command has options for removing all the jobs belonging to a

particular user, particular printer, and multiple job numbers. Their respec-

tive man pages have all the details.

COMPILING PROGRAMS

In this chapter, we will look at how to build programs

by compiling source code. The availability of source

code is the essential freedom that makes Linux possible.
The entire ecosystem of Linux development relies on

free exchange between developers. For many desktop
users, compiling is a lost art. It used to be quite common, but today, distri-

bution providers maintain huge repositories of precompiled binaries, ready

to download and use. At the time of this writing, the Debian repository (one

of the largest of any of the distributions) contains almost 23,000 packages.

So why compile software? There are two reasons:

e Availability. Despite the number of precompiled programs in distribu-

tion repositories, some distributions may not include all the desired

applications. In this case, the only way to get the desired program is

to compile it from source.

e Timeliness. While some distributions specialize in cutting-edge ver-

sions of programs, many do not. This means that in order to have the

very latest version of a program, compiling is necessary.

Compiling software from source code can become very complex and

technical, well beyond the reach of many users. However, many compiling

tasks are quite easy and involve only a few steps. It all depends on the pack-

age. We will look at a very simple case in order to provide an overview of

the process and as a starting point for those who wish to undertake further

study.

We will introduce one new command:

e make—Utility to maintain programs.

What Is Compiling?

298 Chapter 23

Simply put, compiling is the process of translating source code (the human-

readable description of a program written by a programmer) into the native

language of the computer’s processor.

The computer’s processor (or CPU) works at a very elemental level,

executing programs in what is called machine language. This is a numeric

code that describes very small operations, such as “add this byte,” “point to

this location in memory,” or “copy this byte.” Each of these instructions is

expressed in binary (ones and zeros). The earliest computer programs were

written using this numeric code, which may explain why programmers who

wrote it were said to smoke a lot, drink gallons of coffee, and wear thick

glasses.

This problem was overcome by the advent of assembly language, which

replaced the numeric codes with (slightly) easier to use character mnemonics

such as CPY (for copy) and MOV (for move). Programs written in assembly

language are processed into machine language by a program called an

assembler. Assembly language is still used today for certain specialized pro-

gramming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They

are called this because they allow the programmer to be less concerned

with the details of what the processor is doing and more with solving the

problem at hand. The early ones (developed during the 1950s) included

FORTRAN (designed for scientific and technical tasks) and COBOL (designed

for business applications). Both are still in limited use today.

While there are many popular programming languages, two predomi-

nate. Most programs written for modern systems are written in either C or

C++. In the examples to follow, we will be compiling a C program.

Programs written in high-level programming languages are converted

into machine language by processing them with another program, called a

compiler. Some compilers translate high-level instructions into assembly lan-

guage and then use an assembler to perform the final stage of translation
into machine language.

A process often used in conjunction with compiling is called linking.
Programs perform many common tasks. Take, for instance, opening a file.

Many programs perform this task, but it would be wasteful to have each pro-
gram implement its own routine to open files. It makes more sense to have
a single piece of programming that knows how to open files and to allow all
programs that need it to share it. Providing support for common tasks is

accomplished by what are called libraries. They contain multiple routines,

each performing some common task that multiple programs can share. If we

look in the /liband /usr/lib directories, we can see where many of them live.

A program called a linker is used to form the connections between the out-

put of the compiler and the libraries that the compiled program requires.

The final result of this process is the executable program file, ready for use.

Are All Programs Compiled?

No. As we have seen, some programs, such as shell scripts, do not require

compiling but are executed directly. These are written in what are known as

scripting or interpreted languages. These languages, which have grown in pop-

ularity in recent years, include Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an inter-

preter. An interpreter inputs the program file and reads and executes each

instruction contained within it. In general, interpreted programs execute

much more slowly than compiled programs. This is because each source

code instruction in an interpreted program is translated every time it is car-

ried out, whereas with a compiled program, a source code instruction is

translated only once, and this translation is permanently recorded in the

final executable file.

So why are interpreted languages so popular? For many programming

chores, the results are “fast enough,” but the real advantage is that it is gen-

erally faster and easier to develop interpreted programs than compiled pro-

grams. Programs are usually developed in a repeating cycle of code, compile,

test. As a program grows in size, the compilation phase of the cycle can

become quite long. Interpreted languages remove the compilation step

and thus speed up program development.

Compiling a C Program

Let’s compile something. Before we do that, however, we’re going to need

some tools like the compiler, the linker, and make. The C compiler used almost

universally in the Linux environment is called gcc (GNU C Compiler), ori-

ginally written by Richard Stallman. Most distributions do not install gcc by

default. We can check to see if the compiler is present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Compiling Programs 299

Note: Your distribution may have a metapackage (a collection of packages) for software

Note:

300 Chapter 23

development. If so, consider installing it if you intend to compile programs on your

system. If your system does not provide a metapackage, try installing the gcc and make

packages. On many distributions, they are sufficient to carry out the exercise below.

Obtaining the Source Code

For our compiling exercise, we are going to compile a program from the

GNU Project called diction. This handy little program checks text files for

writing quality and style. As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our

source code named s7c and then download the source code into it using ftp:

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src
[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:me): anonymous
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd gnu/diction
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-IW-I--I-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-IW-I--I-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-IW-I--I-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz
226 Directory send OK.
ftp> get diction-1.11.tar.gz
local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for diction-1.11.tar.gz (141062
bytes).
226 File send OK.
141062 bytes received in 0.16 secs (847.4 kB/s)
ftp> bye
221 Goodbye.
[me@linuxbox src]$ 1s
diction-1.11. tar.gz

Since we are the maintainer of this source code while we compile it, we will keep it in

~/src. Source code installed by your distribution will be installed in /usr/src, while

source code intended for use by multiple users is usually installed in /usr/local/src.

As we can see, source code is usually supplied in the form of a com-
pressed tar file. Sometimes called a tarball, this file contains the source tree,
or hierarchy of directories and files that compose the source code. After
arriving at the FTP site, we examine the list of tar files available and select
the newest version for download. Using the get command within ftp, we
copy the file from the FTP server to the local machine.

Note:

Once the tar file is downloaded, it must be unpacked. This is done with
the tar program:

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz
[me@linuxbox src]$ ls
diction-1.11 diction-1.11. tar.gz

The diction program, like all GNU Project software, follows certain standards for

source code packaging. Most other source code available in the Linux ecosystem also

follows this standard. One element of the standard is that when the source code tar

file is unpacked, a directory will be created that contains the source tree and that this

directory will be named project-x.xx, thus containing both the project’s name and its

version number. This scheme allows easy installation of multiple versions of the same

program. However, it is often a good idea to examine the layout of the tree before unpack-

ing it. Some projects will not create the directory but instead will deliver the files directly

into the current directory. This will make a mess in your otherwise well-organized src

directory. To avoid this, use the following command to examine the contents of the

tar file:

tar tzvf tarfile | head

Examining the Source Tree

Unpacking the tar file results in the creation of a new directory, named

diction-1.11. This directory contains the source tree. Let’s look inside:

[me@linuxbox src]$ cd diction-1.11
[me@linuxbox diction-1.11]$ ls
config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config. sub diction. spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.in
de en_GB misc.c style.c
de.po en_GB.po misc.h test
diction.1.in getopti.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project,

as well as many others, will supply the documentation files README, INSTALL,

NEWS, and COPYING. These files contain the description of the program,

information on how to build and install it, and its licensing terms. It is always

a good idea to carefully read the README and INSTALL files before attempt-

ing to build the program.

The other interesting files in this directory are the ones ending with .c

and .h:

[me@linuxbox diction-1.11]$ ls *.c
diction.c getopti.c getopt.c misc.c sentence.c style.c

[me@linuxbox diction-1.11]$ ls *.h

getopt.h getopt_int.h misc.h sentence.h

Compiling Programs 301

302 Chapter 23

The .c files contain the two C programs supplied by the package (style

and diction), divided into modules. It is common practice for large programs

to be broken into smaller, easier-to-manage pieces. The source code files are

ordinary text and can be examined with less:

[me@linuxbox diction-1.11]$ less diction.c

The .h files are known as header files. These, too, are ordinary text. Header

files contain descriptions of the routines included in a source code file or

library. In order for the compiler to connect the modules, it must receive a

description of all the modules needed to complete the entire program.

Near the beginning of the diction.c file, we see this line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source

code in diction.c in order to “know” what’s in getopt.c. The getopt.c file sup-

plies routines that are shared by both the style and diction programs.

Above the include statement for getopt.h, we see some other include state-

ments such as these:

#include <regex.h>
#include <stdio.h>

#include <stdlib.h>

#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live

outside the current source tree. They are supplied by the system to support

the compilation of every program. If we look in /usr/include, we can see them:

[me@linuxbox diction-1.11]$ ls /usr/include

The header files in this directory were installed when we installed the
compiler.

Building the Program

Most programs build with a simple, two-command sequence:

-/configure
make

The configure program is a shell script that is supplied with the source

tree. Its job is to analyze the build environment. Most source code is designed
to be portable. That is, it is designed to build on more than one kind of Unix-
like system. But in order to do that, the source code may need to undergo
slight adjustments during the build to accommodate differences between
systems. configure also checks to see that necessary external tools and com-
ponents are installed.

Let’s run configure. Since configure is not located where the shell nor-
mally expects programs to be located, we must explicitly tell the shell its loc-
ation by prefixing the command with ./. This indicates that the program is
located in the current working directory:

[me@linuxbox diction-1.11]$./configure

configure will output a lot of messages as it tests and configures the

build. When it finishes, the output will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required
configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]$

What’s important here is that there are no error messages. If there

were, the configuration would have failed, and the program would not

build until the errors are corrected.

We see configure created several new files in our source directory. The

most important one is Makefile. Makefile is a configuration file that instructs

the make program exactly how to build the program. Without it, make will

refuse to run. Makefile is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]$ less Makefile

The make program takes as input a makefile (which is normally named

Makefile), which describes the relationships and dependencies among the

components that compose the finished program.

The first part of the makefile defines variables that are substituted in

later sections of the makefile. For example, we see the line

CC= gcc

which defines the C compiler to be gcc. Later in the makefile, we see one

instance where it gets used:

diction: diction.o sentence.o misc.o getopt.o getopti.o
$(CC) -o $@ $(LDFLAGS) diction.o sentence.o misc.o \
getopt.o getopt1.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc

at runtime.

Most of the makefile consists of lines, which define a target—in this

case the executable file diction—and the files on which it is dependent. The

Compiling Programs 303

304 Chapter 23

remaining lines describe the command(s) needed to create the target from

its components. We see in this example that the executable file diction (one

of the final end products) depends on the existence of diction.o, sentence.o,

misc.o, gelopt.o, and getoptl.o. Later on, in the makefile, we see definitions of

each of these as targets.

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h
getopt1.o: getopti.c getopt.h getopt_int.h
misc.0: misc.c config.h misc.h
sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled

by a general target, earlier in the file, that describes the command used to

compile any .c file into a .o file:

-C.0-;

$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to

compile the parts and be done with it? The answer will become clear in a

moment. In the meantime, let’s run make and build our programs:

[me@linuxbox diction-1.11]$ make

The make program will run, using the contents of Makefile to guide its

actions. It will produce a lot of messages.

When it finishes, we will see that all the targets are now present in our

directory:

[me@linuxbox diction-1.11]$ ls
config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
contig. log diction.1.in en_GB.po misc.c style
config.status diction.c getopti.c misc.h style.1
config.sub diction.o getopt1.o misc.o style.1.in
configure diction. pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test
de diction.texi getopt.o nl.po
de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out
to build. Congratulations are in order! We just compiled our first programs
from source code!

But just out of curiosity, let’s run make again:

[me@linuxbox diction-1.11]$ make
make: Nothing to be done for ~all'.

It produces only this strange message. What’s going on? Why didn’t
it build the program again? Ah, this is the magic of make. Rather than simply
build everything again, make builds only what needs building. With all of
the targets present, make determined that there was nothing to do. We can
demonstrate this by deleting one of the targets and running make again to
see what it does.

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.11]$ make

We see that make rebuilds getopt.o and relinks the diction and style

programs, since they depend on the missing module. This behavior also

points out another important feature of make: It keeps targets up-to-date.

make insists that targets be newer than their dependencies. This makes per-

fect sense, as a programmer will often update a bit of source code and then

use make to build a new version of the finished product. make ensures that

everything that needs building based on the updated code is built. If we use

the touch program to “update” one of the source code files, we can see this

happen:

[me@linuxbox diction-1.11]$ 1s -1 diction getopt.c
-IWXI-XI-X 1 me me 37164 2009-03-05 06:14 diction
=IW-k-=T==" 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.11]$ touch getopt.c
[me@linuxbox diction-1.11]$ 1s -1 diction getopt.c
-IWXI-XI-X 1 me me 37164 2009-03-05 06:14 diction
-IW-F--r-— de me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]$ make

After make runs, we see that it has restored the target to being newer

than the dependency:

[me@linuxbox diction-1.11]$ 1s -1 diction getopt.c
-IWXI-XI-X 1 me me 37164 2009-03-05 06:24 diction
-Iw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a

great benefit to programmers. While the time savings may not be apparent

with our small project, it is significant with larger projects. Remember, the

Linux kernel (a program that undergoes continuous modification and

improvement) contains several million lines of code.

Installing the Program

Well-packaged source code often includes a special make target called install.

This target will install the final product in a system directory for use. Usu-

ally, this directory is /usr/local/bin, the traditional location for locally built

software. However, this directory is not normally writable by ordinary users,

so we must become the superuser to perform the installation:

[me@linuxbox diction-1.11]$ sudo make install

Compiling Programs 305

After we perform the installation, we can check that the program is

ready to go:

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]$ man diction

And there we have it!

Final Note

306 Chapter 23

In this chapter, we have seen how three simple commands—. /configure,

make, make install—can be used to build many source code packages. We

have also seen the important role that make plays in the maintenance of pro-

grams. The make program can be used for any task that needs to maintain a

target/dependency relationship, not just for compiling source code.

PART 4
WRITING SHELL SCRIPTS

24
WRITING YOUR FIRST SCRIPT

In the preceding chapters, we have assembled an
arsenal of command-line tools. While these tools can

solve many kinds of computing problems, we are still

limited to manually using them one by one on the
command line. Wouldn’t it be great if we could get the shell to do more of

the work? We can. By joining our tools together into programs of our own

design, the shell can carry out complex sequences of tasks all by itself. We

enable it to do this by writing shell scripts.

What Are Shell Scripts?

In the simplest terms, a shell script is a file containing a series of commands.

The shell reads this file and carries out the commands as though they have

been entered directly on the command line.

The shell is distinctive, in that it is both a powerful command-line inter-

face to the system and a scripting language interpreter. As we will see, most

of the things that can be done on the command line can be done in scripts,

and most of the things that can be done in scripts can be done on the com-

mand line.

We have covered many shell features, but we have focused on those fea-

tures most often used directly on the command line. The shell also provides

a set of features usually (but not always) used when writing programs.

How to Write a Shell Script

310 Chapter 24

To successfully create and run a shell script, we need to do three things:

1. Write a script. Shell scripts are ordinary text files. So we need a text

editor to write them. The best text editors will provide syntax highlight-

ing, allowing us to see a color-coded view of the elements of the script.

Syntax highlighting will help us spot certain kinds of common errors.

vim, gedit, kate, and many other editors are good candidates for writing

scripts.

2. Make the script executable. The system is fussy about not letting any old

text file be treated as a program, and for good reason! We need to set

the script file’s permissions to allow execution.

3. Put the script somewhere the shell can find it. The shell automatically

searches certain directories for executable files when no explicit path-

name is specified. For maximum convenience, we will place our scripts

in these directories.

Script File Format

In keeping with programming tradition, we'll create a “hello world” pro-

gram to demonstrate an extremely simple script. So let’s fire up our text

editors and enter the following script:

#!/bin/bash

This is our first script.

echo ‘Hello World!'

The last line of our script is pretty familiar, just an echo command with

a string argument. The second line is also familiar. It looks like a comment

that we have seen in many of the configuration files we have examined and

edited. One thing about comments in shell scripts is that they may also

appear at the ends of lines, like so:

echo ‘Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.

Like many things, this works on the command line, too:

[me@linuxbox ~]$ echo ‘Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

The first line of our script is a little mysterious. It looks as if it should be
a comment, since it starts with #, but it looks too purposeful to be just that.
The #! character sequence is, in fact, a special construct called a shebang. The
shebang is used to tell the system the name of the interpreter that should be
used to execute the script that follows. Every shell script should include this

as its first line.

Let’s save our script file as hello_world.

Executable Permissions

The next thing we have to do is make our script executable. This is easily
done using chmod:

[me@linuxbox ~]$ 1s -1 hello world
-Yw-Y--r-- 1 me me 63 2012-03-07 10:10 hello world
[me@linuxbox ~]$ chmod 755 hello world
[me@linuxbox ~]$ ls -1 hello world
-IWXI-XI-X 1 me me 63 2012-03-07 10:10 hello world

There are two common permission settings for scripts: 755 for scripts

that everyone can execute and 700 for scripts that only the owner can

execute. Note that scripts must be readable in order to be executed.

Script File Location

With the permissions set, we can now execute our script:

[me@linuxbox ~]$./hello world
Hello World!

In order for the script to run, we must precede the script name with an

explicit path. If we don’t, we get this:

[me@linuxbox ~]$ hello _world
bash: hello world: command not found

Why is this? What makes our script different from other programs? As

it turns out, nothing. Our script is fine. Its location is the problem. Back in

Chapter 11, we discussed the PATH environment variable and its effect on how

the system searches for executable programs. To recap, the system searches

a list of directories each time it needs to find an executable program, if no

explicit path is specified. This is how the system knows to execute /bin/ls when

we type 1s at the command line. The /bin directory is one of the directories

that the system automatically searches. The list of directories is held within

an environment variable named PATH. The PATH variable contains a colon-

separated list of directories to be searched. We can view the contents of PATH:

[me@linuxbox ~]$ echo $PATH '

/home/me/bin:/usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr

/games

Writing Your First Script 311

Note:

Here we see our list of directories. If our script were located in any of

the directories in the list, our problem would be solved. Notice the first

directory in the list, /home/me/bin. Most Linux distributions configure the

PATH variable to contain a bin directory in the user’s home directory to allow

users to execute their own programs. So if we create the bin directory and

place our script within it, it should start to work like other programs:

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]$ hello world
Hello World!

If the PATH variable does not contain the directory, we can easily add it by

including this line in our .bashic file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal ses-

sion. To apply the change to the current terminal session, we must have the

shell reread the .bashrc file. This can be done by “sourcing” it:

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the source command, a shell

builtin that reads a specified file of shell commands and treats it like input

from the keyboard.

Ubuntu automatically adds the~/bin directory to the PATH variable if the~/bin

directory exists when the user’s .bashre file is executed. So, on Ubuntu systems, if we

create the~/bin directory and then log out and log in again, everything works.

Good Locations for Scripts

The ~/bin directory is a good place to put scripts intended for personal use.

If we write a script that everyone on a system is allowed to use, the traditional

location is /usr/local/bin. Scripts intended for use by the system administrator

are often located in /usr/local/sbin. In most cases, locally supplied software,

whether scripts or compiled programs, should be placed in the /usr/local
hierarchy and not in /bin or /usr/bin. These directories are specified by the
Linux Filesystem Hierarchy Standard to contain only files supplied and
maintained by the Linux distributor.

More Formatting Tricks

312 Chapter 24

One of the key goals of serious script writing is ease of maintenance; that is,
the ease with which a script may be modified by its author or others to be
adapted to changing needs. Making a script easy to read and understand is
one way to facilitate easy maintenance.

Long Option Names

Many of the commands we have studied feature both short and long option
names. For instance, the 1s command has many options that can be expressed
in either short or long form. For example:

[me@linuxbox ~]$ ls -ad

and

[me@linuxbox ~]$ 1s --all --directory

are equivalent commands. In the interests of reduced typing, short options are

preferred when entering options on the command line, but when writing

scripts, long options can improve readability.

Indentation and Line Continuation

When employing long commands, readability can be enhanced by spread-

ing the command over several lines. In Chapter 17, we looked at a particu-

larly long example of the find command:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
"{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

This command is a little hard to figure out at first glance. In a script,

this command might be easier to understand if written this way:

find playground \
Ga

-type f \
-not -perm 0600 \
-exec chmod 0600 '{}' ';' \

Nah
-or \
VGN

-type d \
-not -perm 0700 \
-exec chmod 0700 '{}' ';' \

\)

Through the use of line continuations (backslash-linefeed sequences)

and indentation, the logic of this complex command is more clearly described

to the reader. This technique works on the command line, too, though it is

seldom used as it is very awkward to type and edit. One difference between

a script and the command line is that a script may employ tab characters to

achieve indentation, whereas the command line cannot because tabs are

used to activate completion.

Writing Your First Script 313

CONFIGURING VIM FOR SCRIPT WRITING

The vim text editor has many, many configuration settings. Several common

options can facilitate script writing.

:syntax on turns on syntax highlighting. With this setting, different elements

of shell syntax will be displayed in different colors when viewing a script. This

is helpful for identifying certain kinds of programming errors. It looks cool,

too. Note that for this feature to work, you must have a complete version of vim

installed, and the file you are editing must have a shebang indicating the file is

a shell script. If you have difficulty with :syntax on, try :set syntax=sh instead.

:set hlsearch turns on the option to highlight search results. Say we search

for the word echo. With this option on, each instance of the word will be high-

lighted.

:set tabstop=4 sets the number of columns occupied by a tab character.

The default is eight columns. Setting the value to 4 (which is a common prac-

tice) allows long lines to fit more easily on the screen.

-tset autoindent turns on the auto indent feature. This causes vim to indent a

new line the same amount as the line just typed. This speeds up typing on many

kinds of programming constructs. To stop indentation, type crri-D.

These changes can be made permanent by adding thes¢ commands (with-

out the leading colon characters) to your ~/.vimre file.

Final Note

314 Chapter 24

In this first chapter about scripting, we have looked at how scripts are writ-

ten and made to easily execute on our system. We also saw how we can use

various formatting techniques to improve the readability (and thus, the
maintainability) of our scripts. In future chapters, ease of maintenance will
come up again and again as a central principle in good script writing.

STARTING A PROJECT

Starting with this chapter, we will begin to build a pro-
gram. The purpose of this project is to see how various
shell features are used to create programs and, more
importantly, create good programs.

The program we will write is a report generator. It will present various statis-

tics about our system and its status, and it will produce this report in HTML

format so we can view it with a web browser.

Programs are usually built up in a series of stages, with each stage adding

features and capabilities. The first stage of our program will produce a very

minimal HTML page that contains no system information. That will come later.

First Stage: Minimal Document

The first thing we need to know is the format of a well-formed HTML docu-

ment. It looks like this:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>

316 Chapter 25

</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

If we enter this into our text editor and save the file as foo. html, we can

use the following URL in Firefox to view the file: file:///home/username/

foo.html.

The first stage of our program will be able to output this HTML file to

standard output. We can write a program to do this pretty easily. Let’s start

our text editor and create a new file named ~/bin/sys_info_page:

[me@linuxbox ~]$ vim ~/bin/sys_info_page

And we’ll enter the following program:

#!/bin/bash

Program to output a system information page

echo "<HTML>"
echo " <HEAD>"
echo " <TITLE>Page Title</TITLE>"
echo " </HEAD>"
echo " <BODY>"
echo " Page body."
echo " </BODY>"
echo "</HTML>"

Our first attempt at this problem contains a shebang; a comment (always

a good idea); and a sequence of echo commands, one for each line of out-

put. After saving the file, we’ll make it executable and attempt to run it:

[me@linuxbox ~]$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document

displayed on the screen, because the echo commands in the script send their

output to standard output. We’ll run the program again and redirect the out-

put of the program to the file sys_info_page.html, so that we can view the result

with a web browser:

[me@linuxbox ~]$ sys_info_page > sys _info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.

When writing programs, it’s always a good idea to strive for simplicity

and clarity. Maintenance is easier when a program is easy to read and under-

stand, not to mention that the program is easier to write when we reduce

the amount of typing. Our current version of the program works fine, but it

could be simpler. We could combine all the echo commands into one, which

would certainly make it easier to add more lines to the program’s output.
So, let’s change our program to this:

#!/bin/bash

Program to output a system information page

echo "<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>"

A quoted string may include newlines and, therefore, contain multiple

lines of text. The shell will keep reading the text until it encounters the clos-

ing quotation mark. It works this way on the command line, too:

me@linuxbox ~]$ echo "<HTML>
<HEAD>

<TITLE>Page Title</TITLE>

<BODY>
Page body.

</BODY>

[
>
>
> </HEAD>

>
>
>
> </HTML>"

The leading > character is the shell prompt contained in the PS2 shell

variable. It appears whenever we type a multiline statement into the shell.

This feature is a little obscure right now, but later, when we cover multiline

programming statements, it will turn out to be quite handy.

Second Stage: Adding a Little Data
Now that our program can generate a minimal document, let’s put some

data in the report. To do this, we will make the following changes:

#!/bin/bash

Program to output a system information page

echo "<HTML>
<HEAD>

<TITLE>System Information Report</TITLE>
</HEAD>

<BODY>
<H1>System Information Report</H1>

</BODY>
</HTML>"

We added a page title and a heading to the body of the report.

Starting a Project 317

Variables and Constants

318 Chapter 25

There is an issue with our script, however. Notice how the string System

Information Report is repeated? With our tiny script it’s not a problem, but

let’s imagine that our script was really long and we had multiple instances

of this string. If we wanted to change the title to something else, we would

have to change it in multiple places, which could be a lot of work. What if we

could arrange the script so that the string appeared only once and not mul-

tiple times? That would make future maintenance of the script much easier.

Here’s how we could do that:

#!/bin/bash

Program to output a system information page

title="System Information Report"

echo "<HTML>

<HEAD>

<TITLE>$title</TITLE>

</HEAD>

<BODY>

<Hi>$title</H1>

</BODY>
</HTML>"

By creating a variable named title and assigning it the value System

Information Report, we can take advantage of parameter expansion and

place the string in multiple locations.

Creating Variables and Constants

So, how do we create a variable? Simple, we just use it. When the shell

encounters a variable, it automatically creates it. This differs from many pro-

gramming languages in which variables must be explicitly declared or defined

before use. The shell is very lax about this, which can lead to some problems.

For example, consider this scenario played out on the command line:

[me@linuxbox ~]$ foo="yes"
[me@linuxbox ~]$ echo $foo
yes
[me@linuxbox ~]$ echo $fool

$ [me@linuxbox ~ er

We first assign the value yes to the variable foo and then display its value

with echo. Next we display the value of the variable name misspelled as fool

and get a blank result. This is because the shell happily created the variable
fool when it encountered it and then gave it the default value of nothing,

or empty. From this, we learn that we must pay close attention to our spell-
ing! It’s also important to understand what really happened in this example.
From our previous look at how the shell performs expansions, we know
that the command

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in

[me@linuxbox ~]$ echo yes

On the other hand, the command

[me@linuxbox ~]$ echo $fool

expands into

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with

commands that require arguments. Here’s an example:

[me@linuxbox ~]$ foo=foo.txt
[me@linuxbox ~]$ foo1=foo1.txt
[me@linuxbox ~]$ cp $foo $fool
cp: missing destination file operand after ~foo.txt'
Try “cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp

but misspell the name of the second argument. After expansion, the cp

command is sent only one argument, though it requires two.

There are some rules about variable names:

e Variable names may consist of alphanumeric characters (letters and

numbers) and underscore characters.

e The first character of a variable name must be either a letter or an

underscore.

e Spaces and punctuation symbols are not allowed.

The word variable implies a value that changes, and in many applica-

tions, variables are used this way. However, the variable in our application,

title, is used as a constant. A constant is just like a variable in that it has a

name and contains a value. The difference is that the value of a constant

does not change. In an application that performs geometric calculations,

we might define PI as a constant and assign it the value of 3.1415, instead

of using the number literally throughout our program. The shell makes no

distinction between variables and constants; these terms are mostly for the

Starting a Project 319

Note:

320 Chapter 25

programmer’s convenience. A common convention is to use uppercase let-

ters to designate constants and lowercase letters for true variables. We will

modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
<HEAD>

<TITLE>$TITLE</TITLE>

</HEAD>

<BODY>

<H1>$TITLE</H1>

</BODY>

</HTML>"

We also took the opportunity to jazz up our title by adding the value of

the shell variable HOSTNAME. This is the network name of the machine.

The shell actually does provide a way to enforce the immutability of constants, through

the use of the declare built-in command with the -r (read-only) option. Had we

assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely

used, but it exists for very formal scripts.

Assigning Values to Variables and Constants

Here is where our knowledge of expansion really starts to pay off. As we

have seen, variables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some

other programming languages, the shell does not care about the type of

data assigned to a variable; it treats them all as strings. You can force the

shell to restrict the assignment to integers by using the declare command

with the -i option, but, like setting variables as read-only, this is rarely done.

Note that in an assignment, there must be no spaces between the vari-

able name, the equal sign, and the value. So what can the value consist of?

Anything that we can expand into a string.

a=Z # Assign the string “z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d=$(1s -1 foo.txt) # Results of a command.

e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly

braces {}. This is useful in cases where a variable name becomes ambiguous

due to its surrounding context. Here, we try to change the name of a file
from my/ile to myfile1, using a variable:

[me@linuxbox ~]$ filename="myfile"
[me@linuxbox ~]$ touch $filename
[me@linuxbox ~]$ mv $filename $filename1
mv: missing destination file operand after ~myfile'
Try “mv --help' for more information.

This attempt fails because the shell interprets the second argument of

the mv command as a new (and empty) variable. The problem can be over-

come this way:

[me@linuxbox ~]$ mv $filename ${filename}1

By adding the surrounding braces, we ensure that the shell no longer

interprets the trailing 1 as part of the variable name.

We'll take this opportunity to add some data to our report, namely the

date and time the report was created and the username of the creator:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT _TIME=$(date +"%x %r %Z")
TIME STAMP="Generated $CURRENT_ TIME, by $USER"

echo "<HTML>
<HEAD>

<TITLE>$TITLE</TITLE>

</HEAD>

<BODY>
<H1>$TITLE</H1>

<P>$TIME_STAMP</P>
</BODY>

</HTML>"

Here Documents

We’ve looked at two different methods of outputting our text, both using

the echo command. There is a third way called a here document or here script. A

here document is an additional form of I/O redirection in which we embed

Starting a Project 321

322 Chapter 25

a body of text into our script and feed it into the standard input of a com-

mand. It works like this:

command << token
text
token

where command is the name of a command that accepts standard input and

token is a string used to indicate the end of the embedded text. We'll

modify our script to use a here document:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT TIME, by $USER"”

cat << _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>

</BODY>
</HTML>
EOE

Instead of using echo, our script now uses cat and a here document. The

string EOF_ (meaning end-of-file, a common convention) was selected as the

token and marks the end of the embedded text.. Note that the token must

appear alone and that there must not be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as

echo, except that, by default, single and double quotes within here documents

lose their special meaning to the shell. Here is a command-line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo

> "$foo"
> '$foo'
> \$foo
> _EOF_
some text

"some text"

"some text'
$foo

As we can see, the shell pays no attention to the quotation marks. It treats
them as ordinary characters. This allows us to embed quotes freely within a
here document. This could turn out to be handy for our report program.

Here documents can be used with any command that accepts standard
input. In this example, we use a here document to pass a series of commands
to the ftp program in order to retrieve a file from a remote FTP server:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl. debian. org
FTP_ PATH= /debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian- cd_info.tar.gz

ftp -n << _EOF
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOE:
ls -1 $REMOTE FILE

If we change the redirection operator from << to <<-, the shell will

ignore leading tab characters in the here document. This allows a here

document to be indented, which can improve readability:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl. debian. org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF
open $FTP_SERVER
user anonymous me@]inuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOE

Is -1 $REMOTE FILE

Final Note

In this chapter, we started a project that will carry us through the process of

building a successful script. We introduced the concept of variables and con-

stants and how they can be employed. They are the first of many applications

we will find for parameter expansion. We also looked at how to produce out-

put from our script and various methods for embedding blocks of text.

Starting a Project 323

TOP-DOWN DESIGN

As programs get larger and more complex, they

become more difficult to design, code, and maintain.

As with any large project, it is often a good idea to break

large, complex tasks into a series of small, simple tasks.

Let’s imagine that we are trying to describe a common, everyday task—

going to the market to buy food—to a person from Mars. We might describe

the overall process as the following series of steps:

1 Get incear: 6

2. Drive to market. i

Park car. 8

Enter market. 9

Sa aa Purchase food.

Return to car.

Drive home.

Park car.

Enter house.

However, a person from Mars is likely to need more detail. We could

further break down the subtask “Park car” into another series of steps.

1. Find parking space. 4. Set parking brake.

Drive car into space. 5, Ratt care

3. ‘Turn off motor. 6.) Lock car

The “Turn off motor” subtask could further be broken down into steps

including “Turn off ignition,” “Remove ignition key,” and so on, until every

step of the entire process of going to the market has been fully defined.

This process of identifying the top-level steps and developing increas-

ingly detailed views of those steps is called top-down design. This technique

allows us to break large, complex tasks into many small, simple tasks. Top-

down design is a common method of designing programs and one that is

well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our

report-generator script.

Shell Functions

326 Cho pter 26

Our script currently performs the following steps to generate the HTML

document:

1. Open page. 6. Output page heading.

2. Open page header. 7. Output timestamp.

3. Set page title. 8. Close page body.

4. Close page header. 9. Close page.

3. Open page body.

For our next stage of development, we will add some tasks between

steps 7 and 8. These will include:

e System uptime and load. This is the amount of time since the last shut-
down or reboot and the average number of tasks currently running on
the processor over several time intervals.

e Disk space. The overall use of space on the system’s storage devices.

e Home space. The amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our
script simply through command substitution:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

CURRENT _TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT TIME, by $USER"

cat e< EOF)
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(xreport_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
FOF

We could create these additional commands two ways. We could write

three separate scripts and place them in a directory listed in our PATH, or we

could embed the scripts within our program as shell functions. As we have

mentioned before, shell functions are “miniscripts” that are located inside

other scripts and can act as autonomous programs. Shell functions have two

syntactic forms. The first looks like this:

function name {
commands

return

}

where name is the name of the function and commands is a series of commands

contained within the function. The second looks like this:

name () {
commands
return

}

Both forms are equivalent and may be used interchangeably. Below we

see a script that demonstrates the use of a shell function:

1 #!/bin/bash
2

3 # Shell function demo
4
5 function funct {
6 echo "Step 2"
7 return

8 }
g)

10 # Main program starts here
a1

2 echo “Step 1"
13 funct
14 echo "Step 3”

As the shell reads the script, it passes over lines 1 through 11, as those

lines consist of comments and the function definition. Execution begins at

Top-Down Design 327

line 12, with an echo command. Line 13 calls the shell function funct, and the

shell executes the function just as it would any other command. Program con-

trol then moves to line 6, and the second echo command is executed. Line 7

is executed next. Its return command terminates the function and returns

control to the program at the line following the function call (line 14), and

the final echo command is executed. Note that in order for function calls to

be recognized as shell functions and not interpreted as the names of external

programs, shell function definitions must appear in the script before they

are called.

We'll add minimal shell function definitions to our script:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT _TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk_space () {
return

}

report_home_space () {
return

}

Gate<<GaEORe
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
BEORS

Shell-function names follow the same rules as variables. A function must
contain at least one command. The return command (which is optional) sat-
isfies the requirement.

Local Variables

In the scripts we have written so far, all the variables (including constants) have
been global variables. Global variables maintain their existence throughout
the program. This is fine for many things, but it can sometimes complicate

328 Chapter 26

the use of shell functions. Inside shell functions, it is often desirable to have
local variables. Local variables are accessible only within the shell function
in which they are defined, and they cease to exist once the shell function
terminates.

Having local variables allows the programmer to use variables with
names that may already exist, either in the script globally or in other shell
functions, without having to worry about potential name conflicts.

Here is an example script that demonstrates how local variables are
defined and used:

#!/bin/bash

local-vars: script to demonstrate local variables

foo=-0 # global variable foo

Funct :2 ()°{

local foo # variable foo local to funct_1

foo=1
echo "funct_1: foo = $foo"

}

funct_2 () {

local foo # variable foo local to funct_2

foo=2
echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable

name with the word local. This creates a variable that is local to the shell

function in which it is defined. Once the script is outside the shell function,

the variable no longer exists. When we run this script, we see the results:

[me@linuxbox ~]$ local-vars
global: foo
funct_1: foo
global: foo
funct_2: foo
global: foo ONORFR OW, YN UU he

We see that the assignment of values to the local variable foo within

both shell functions has no effect on the value of foo defined outside the

functions.

This feature allows shell functions to be written so that they remain

independent of each other and of the script in which they appear. This is

Top-Down Design 329

very valuable, as it helps prevent one part of a program from interfering

with another. It also allows shell functions to be written so that they can

be portable. That is, they may be cut and pasted from script to script, as

needed.

Keep Scripts Running

330 Cha pter 26

While developing our program, it is useful to keep the program in a run-

nable state. By doing this, and testing frequently, we can detect errors early

in the development process. This will make debugging problems much easier.

For example, if we run the program, make a small change, run the program

again, and find a problem, it’s very likely that the most recent change is the

source of the problem. By adding empty functions, called stubs in program-

mer-speak, we can verify the logical flow of our program at an early stage.

When constructing a stub, it’s a good idea to include something that provides

feedback to the programmer that shows the logical flow is being carried out.

If we look at the output of our script now, we see that there are some blank

lines in our output after the timestamp, but we can’t be sure of the cause.

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>

<TITLE>System Information Report For twin2</TITLE>
</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2012 04:02:10 PM EDT, by me</P>

</BODY>
</HTML>

We can change the functions to include some feedback:

report_uptime () {
echo "Function report_uptime executed."
return

}

report_disk_space () {
echo "Function report_disk_space executed."
return

}

report_home_space () {
echo "Function report_home space executed."
return

And then we run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2012 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.

</BODY>
</HTML>

We now see that, in fact, our three functions are being executed.

With our function framework in place and working, it’s time to flesh out

some of the function code. First, the report_uptime function:

report_uptime () {
cat <<- _EOF_

<H2>System Uptime</H2>
<PRE>$(uptime)</PRE>
BEORS

return

It’s pretty straightforward. We use a here document to output a section

header and the output of the uptime command, surrounded by <PRE> tags to

preserve the formatting of the command. The report_disk_space function is

similar:

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
BEORS

return

This function uses the df -h command to determine the amount of disk

space. Lastly, we’ll build the report_home_space function:

report_home_space () {
cat <<- _EOF_

<H2>Home Space Utilization</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

return

Top-Down Design 331

We use the du command with the -sh options to perform this task. This,

however, is not a complete solution to the problem. While it will work on

some systems (Ubuntu, for example), it will not work on others. The reason

is that many systems set the permissions of home directories to prevent them

from being world readable, which is a reasonable security measure. On these

systems, the report_home_space function, as written, will work only if our script

is run with superuser privileges. A better solution would be to have the script

adjust its behavior according to the privileges of the user. We will take this

up in Chapter 27.

Final Note

In this chapter, we have introduced a common method of program design
called top-down design, and we have seen how shell functions are used to
build the stepwise refinement that it requires. We have also seen how local
variables can be used to make shell functions independent from one another
and from the program in which they are placed. This makes it possible for
shell functions to be written in a portable manner and to be reusable by
allowing them to be placed in multiple programs—a great time saver.

332 Chapter 26

27
FLOW CONTROL:

BRANCHING WITH IF

In the last chapter, we were presented with a problem.

How can we make our report-generator script adapt to
the privileges of the user running the script? The solu-

tion to this problem will require us to find a way to
“change directions” within our script, based on the
results of a test. In programming terms, we need the

program to branch.
Let’s consider a simple example of logic expressed in pseudocode, a simu-

lation of a computer language intended for human consumption:

Ne=

Lie Ne athens

Say “X equals 5.”

Otherwise:

Say “X is not equal to 5.”

This is an example of a branch. Based on the condition “Does X = 5?”

do one thing: “Say ‘X equals 5.’” Otherwise do another thing: “Say "X is not
”

equal to 5.

Using if
Using the shell, we can code the logic above as follows:

x=5

if [$x = 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

Or we can enter it directly at the command line (slightly shortened):

[me@linuxbox ~]$ x=5
[me@linuxbox ~]$ if [$x = 5]; then echo "equals 5"; else echo "does not equal
ety ae
equals 5
[me@linuxbox ~]$ x=0
[me@linuxbox ~]$ if [$x
oe fi

does not equal 5

5]; then echo "equals 5"; else echo "does not equal

In this example, we execute the command twice. Once, with the value

of x set to 5, which results in the string equals 5 being output, and the

second time with the value of x set to 0, which results in the string does

not equal 5 being output.

The if statement has the following syntax:

if commands; then
commands

[elif commands; then
commands... |

[else
commands |

fi

where commands is a list of commands. This is a little confusing at first glance.

But before we can clear this up, we have to look at how the shell evaluates

the success or failure of a command.

Exit Status

Commands (including the scripts and shell functions we write) issue a value
to the system when they terminate, called an exit status. This value, which is
an integer in the range of 0 to 255, indicates the success or failure of the
command’s execution. By convention, a value of 0 indicates success, and

334 Chapter 27

any other value indicates failure. The shell provides a parameter that we can
use to examine the exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0

[me@linuxbox ~]$ 1s -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

In this example, we execute the 1s command twice. The first time, the

command executes successfully. If we display the value of the parameter $?,

we see that it is 0. We execute the 1s command a second time, producing an

error, and examine the parameter $? again. This time it contains a 2, indi-

cating that the command encountered an error. Some commands use differ-

ent exit-status values to provide diagnostics for errors, while many commands

simply exit with a value of 1 when they fail. Man pages often include a sec-

tion entitled “Exit Status,” which describes what codes are used. However, a

0 always indicates success.

The shell provides two extremely simple built-in commands that do

nothing except terminate with either a 0 or | exit status. The true com-

mand always executes successfully, and the false command always executes

unsuccessfully:

me@linuxbox ~]$ true
me@linuxbox ~]$ echo $?

me@linuxbox ~]$ false
me@linuxbox ~]$ echo $?

[
[
0
[
[
1

We can use these commands to see how the if statement works. What

the if statement really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi

Gese sues
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command follow-

ing if executes successfully, and it is not executed when the command fol-

lowing if does not execute successfully. Ifa list of commands follows if, the

last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo “It's truesas atl

liteSeeLuUel. mie +e

[me@linuxbox ~]$ if true; false; then echo “It’s true. ; fi

[me@linuxbox ~]$

Flow Control: Branching with if 335

Using test

By far, the command used most frequently with if is test. The test com-

mand performs a variety of checks and comparisons. It has two equivalent

forms:

test expression

and the more popular

[expression |

where expression is an expression that is evaluated as either true or false.

The test command returns an exit status of 0 when the expression is true

and a status of 1 when the expression is false.

File Expressions

The expressions in Table 27-1 are used to evaluate the status of files.

Table 27-1: test File Expressions

‘Expression s true if... 7

file1 -ef file2 | filet and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

file1 -nt file2 file1 is newer than file2.

files is file2 filet is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists. |

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

-k file file exists and has its "sticky bit” set.

-L file file exists and is a aymibelte link.

-0 file file exists and is owned by the etleckve in ID.

-p file file arise and is a named pipe.

-r file file exists and is readable (has readable Seapdes rete
| the effective user).

-s file file exists and has a length greater than mie

336 Chapter 27

Table 27-1 (continued)

-S file

-t fd

-u file

-w file

-x file

sae et

Is true if...

file exists and is a network socket.

fd is a file descriptor directed to/from the terminal. This
can be used to determine whether standard input/output/
error is being redirected.

file exists and is setuid.

file exists and is writable (has write permission for the
effective user).

file exists and is executable (has execute/search per-
mission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashre

if [-e "$FILE"]; then
if [-f "$FILE"]; then

pee
if

fi
if

a
Ge

fi
if

fi

else

[-d

[+z

[-w

[-x

echo "$FILE is a regular file."

"$FILE"]; then
echo "$FILE is a directory."

"$FILE"]; then
echo "$FILE is readable."

"¢PILE Js then
echo "$FILE is writable."

"$FILE" |; then
echo "$FILE is executable/searchable."

echo "$FILE does not exist"

exit 1

fi

exit

The script evaluates the file assigned to the constant FILE and displays its

results as the evaluation is performed. There are two interesting things to

note about this script. First, notice how the parameter $FILE is quoted within

the expressions. This is not required, but it is a defense against the parameter

being empty. If the parameter expansion of $FILE were to result in an empty

value, it would cause an error (the operators would be interpreted as non-

null strings rather than operators). Using the quotes around the parameter

Flow Control: Branching with if 337

338 Chapter 27

ensures that the operator is always followed by a string, even if the string is

empty. Second, notice the presence of the exit commands near the end of

the script. The exit command accepts a single, optional argument, which

becomes the script’s exit status. When no argument is passed, the exit status

defaults to 0. Using exit in this way allows the script to indicate failure if $FILE

expands to the name of a nonexistent file. The exit command appearing on

the last line of the script is there as a formality. When a script runs off the end

(reaches end-of-file), it terminates with an exit status of 0 by default, anyway.

Similarly, shell functions can return an exit status by including an

integer argument to the return command. If we were to convert the script

above to a shell function to include it in a larger program, we could replace

the exit commands with return statements and get the desired behavior:

test_file () {

test-file: Evaluate the status of a file

FULE=e/.ibashre

if [-e "$FILE"]; then
tae |) np STEMS? 5 Tantei

echo "$FILE is a regular file."
ral
if) (ed SELLE Sel ssthen

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
‘fl
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if | 2xec$FILeSaite ether

echo "$FILE is executable/searchable."
fal

else

echo "$FILE does not exist"
return 1

ipl

}

String Expressions

The expressions in Table 27-2 are used to evaluate strings.

Table 27-2: test String Expressions

Expression Is true if...

string string is not null.

-n string The length of string is greater than zero.

Warning

Table 27-2 (continued)

Expression — — Istrue if...
-z string The length of string is zero.

string1 = string2 string1 and string2 are equal. Single or double
string1 == string2 equal signs may be used, but the use of double equal

signs is greatly preferred.

string1 != string2 string1 and string2 are not equal.

string1 > string2 string1 sorts after string2.

string1 < string2 string1 sorts before string2.

The > and < expression operators must be quoted (or escaped with a backslash) when

used with test. If they are not, they will be interpreted by the shell as redirection oper-

ators, with potentially destructive results. Also note that while the bash documentation

states that the sorting order conforms to the collation order of the current locale, it does

not. ASCII (POSIX) order is used in versions of bash up to and including 4.0.

Here is a script that incorporates string expressions:

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then
echo "There is no answer." >&2

exit 1

me

if ["$ANSWER" = "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" = "no"]; then
echo "The answer is NO."

elif ["$ANSWER"” = "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

In this script, we evaluate the constant ANSWER. We first determine if the

string is empty. If it is, we terminate the script and set the exit status to 1.

Notice the redirection that is applied to the echo command. This redirects

the error message “There is no answer.” to standard error, which is the

“proper” thing to do with error messages. If the string is not empty, we

evaluate the value of the string to see if it is equal to either “yes,” “no,” or

“maybe.” We do this by using elif, which is short for else 7: By using elif, we

are able to construct a more complex logical test.

Flow Control: Branching with if 339

Integer Expressions

The expressions in Table 27-3 are used with integers.

Table 27-3: test Integer Expressions

Expression Is true if...

integer1 -eq integer2 integer1 is equal to integer2.

integer1 -ne integer2 integer1 is not equal to integer2.

integer1 -le integer2 integer1 is less than or equal to integer2.

integer1 -lt integer2 integer1 is less than integer2.

integer1 -ge integer2 integer1 is greater than or equal to integer2.

integer1 -gt integer2 integer1 is greater than integerz.

Here is a script that demonstrates them:

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2
exalitam

yal

if [$INT -eq 0]; then
echo "INT is zero."

else

if [$INT -1t 0]; then
echo "INT is negative."

else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0 J; then

echo "INT is even."
else

echo "INT is odd."
fi

ira

The interesting part of the script is how it determines whether an integer
is even or odd. By performing a modulo 2 operation on the number, which
divides the number by 2 and returns the remainder, it can tell if the number
is odd or even.

340 Chapter 27

A More Modern Version of test

Recent versions of bash include a compound command that acts as an
enhanced replacement for test. It uses the following syntax:

[[expression }]

where expression is an expression that evaluates to either a true or false result.
The [[]] command is very similar to test (it supports all of its expressions)

but adds an important new string expression:

string1 =~ regex

which returns true if string1 is matched by the extended regular expression

regex. This opens up a lot of possibilities for performing such tasks as data

validation. In our earlier example of the integer expressions, the script would

fail if the constant INT contained anything except an integer. The script needs

a way to verify that the constant contains an integer. Using [[]] with the =~

string expression operator, we could improve the script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ *-?[0-9]+$]]; then
if [$INT -eq 0 J; then

echo "INT is zero."

else
if [$INT -lt 0]; then

echo "INT is negative."
else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0 J; then

echo "INT is even."
else

echo "INT is odd."
ipa

ipl!
else

echo "INT is not an integer." >&2
exit 1

Fi

By applying the regular expression, we are able to limit the value of INT to

only strings that begin with an optional minus sign, followed by one or more

numerals. This expression also eliminates the possibility of empty values.

Flow Control: Branching with if 341

Another added feature of [[]] is that the == operator supports pattern

matching the same way pathname expansion does. For example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file- and pathnames.

(())—Designed for Integers

342 Chapter 27

In addition to the [[]] compound command, bash also provides the (())

compound command, which is useful for operating on integers. It supports

a full set of arithmetic evaluations, a subject we will cover fully in Chapter 34.

(()) is used to perform arithmetic truth tests. An arithmetic truth test

results in true if the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~]$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

test-integer2a: evaluate the value of an integer.

INT=-5

if [["SINT" =~ *-?[0-9]+$]]; then
if ((INT == 0)); then

echo "INT is zero."
else

if ((INT < 0)); then
echo "INT is negative."

else
echo "INT is positive."

fi
if ((((INT % 2)) == 0)); then

echo “INT is even."
else

echo "INT is odd."
it

Fi
else

echo "INT is not an integer." >&2
exit 1

fl

Notice that we use less-than and greater-than signs and that == is used to
test for equivalence. This is a more natural-looking syntax for working with

integers. Notice too, that because the compound command ((_)) is part of

the shell syntax rather than an ordinary command, and it deals only with inte-

gers, it is able to recognize variables by name and does not require expansion
to be performed.

Combining Expressions

It’s also possible to combine expressions to create more complex evalu-

ations. Expressions are combined by using logical operators. We saw these

in Chapter 17, when we learned about the find command. There are three

logical operations for test and [[]]. They are AND, OR, and NOT. test

and [[]] use different operators to represent these operations, as shown

in Table 27-4.

Table 27-4: Logical Operators

Operation test [Hand (())
AND -a &&

OR -0 ||

NOT l |

Here’s an example of an AND operation. The following script deter-

mines if an integer is within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a

specified range of values.

MIN VAL=1
MAX VAL=100

INT=50

if [["$INT" =~ *-?[0-9]+$]]; then
if [[INT -ge MIN VAL && INT -le MAX_VAL]]; then

echo "$INT is within $MIN VAL to $MAX_VAL."
else

echo "$INT is out of range."

fi
else

echo "INT is not an integer." >&2

exit 1
fi

Flow Control: Branching with if 343

344 Chapter 27

In this script, we determine if the value of integer INT lies between

the values of MIN VAL and MAX_VAL. This is performed by a single use of [[]],

which includes two expressions separated by the && operator. We could have

also coded this using test:

if [$INT -ge $MIN VAL -a $INT -le $MAX_VAL]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

ua

The ! negation operator reverses the outcome of an expression. It

returns true if an expression is false, and it returns false if an expression is

true. In the following script, we modify the logic of our evaluation to find

values of INT that are outside the specified range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN VAL=4
MAX VAL=100

INT=50

if [["$INT" =~ 4-?[0-9]+$]]; then
if [[! (INT -ge MIN VAL && INT -le MAX_VAL)]]; then

echo "$INT is outside $MIN VAL to $MAX_VAL."
else

echo "$INT is in range."
Fi

else
echo "INT is not an integer." >&2
Gxaitaed

ie

We also include parentheses around the expression for grouping. If

these were not included, the negation would apply to only the first expres-
sion and not the combination of the two. Coding this with test would be
done this way:

if [! \($INT -ge $MIN_VAL -a $INT -le $MAX_VAL \)]; then
echo "$INT is outside $MIN VAL to $MAX VAL."

else a
echo "$INT is in range."

sl

Since all expressions and operators used by test are treated as com-
mand arguments by the shell (unlike [[]] and (())), characters that have
special meaning to bash, such as <, >, (, and), must be quoted or escaped.

Seeing that test and [[]] do roughly the same thing, which is preter-
able? test is traditional (and part of POSIX), whereas [[]] is specific to
bash. It’s important to know how to use test, since it is very widely used, but
[{]] is clearly more useful and is easier to code.

PORTABILITY IS THE HOBGOBLIN OF LITTLE MINDS

If you talk to “real” Unix people, you quickly discover that many of them don’t

like Linux very much. They regard it as impure and unclean. One tenet of

Unix followers is that everything should be portable. This means that any script

you write should be able to run, unchanged, on any Unix-like system.

Unix people have good reason to believe this. Having seen what proprie-

tary extensions to commands and shells did to the Unix world before POSIX,

they are naturally wary of the effect of Linux on their beloved OS.

But portability has a serious downside. It prevents progress. It requires that

things are always done using “lowest common denominator” techniques. In the

case of shell programming, it means making everything compatible with sh, the

original Bourne shell.

This downside is the excuse that proprietary vendors use to justify their

proprietary extensions, only they call them “innovations.” But they are really

just lock-in devices for their customers.

The GNU tools, such as bash, have no such restrictions. They encourage

portability by supporting standards and by being universally available. You can

install bash and the other GNU tools on almost any kind of system, even Win-

dows, without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way to Branch

bash provides two control operators that can perform branching. The &&

(AND) and || (OR) operators work like the logical operators in the [[]]

compound command. This is the syntax:

command1 && command2

and

command1 || command2

It is important to understand the behavior of these. With the && oper-

ator, command1 is executed and commana is executed if, and only if, command1 is

successful. With the || operator, command1 is executed and command? is exe-

cuted if, and only if, command1 is unsuccessful.
>

Flow Control: Branching with if 345

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current

working directory will be changed to temp. The second command is attempted

only if the mkdir command is successful. Likewise, a command like

[me@linuxbox ~]$ [-d temp] || mkdir temp

will test for the existence of the directory temp, and only if the test fails will

the directory be created. This type of construct is very handy for handling

errors in scripts, a subject we will discuss more in later chapters. For

example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp, and it does not exist, then the

script will terminate with an exit status of 1.

Final Note

346 Chapter 27

We started this chapter with a question. How could we make our sys_info_page

script detect whether or not the user had permission to read all the home

directories? With our knowledge of if, we can solve the problem by adding

this code to the report_home_space function:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
BEOhE

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
BEOhe

fi
return

We evaluate the output of the id command. With the -u option, id out-
puts the numeric user ID number of the effective user. The superuser is
always zero, and every other user is a number greater than zero. Knowing
this, we can construct two different here documents, one taking advantage
of superuser privileges and the other restricted to the user’s own home
directory.

We are going to take a break from the sys_info_page program, but don’t
worry. It will be back. In the meantime, we’ll cover some topics that we'll

need when we resume our work.

READING KEYBOARD INPUT

The scripts we have written so far lack a feature com-

mon to most computer programs—interactivity, the

ability of the program to interact with the user. While

many programs don’t need to be interactive, some pro-
grams benefit from being able to accept input directly

from the user. Take, for example, this script from the

previous chapter:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ *-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

Tie eM oUN ete On i then
echo "INT is negative."

else
echo "INT is positive."

il
if [$((INT % 2)) -eq 0 J; then

echo "INT is even."
else

echo “INT is odd."
fi

ue
elise

echo "INT is not an integer.” >&2
exie

fi

Each time we want to change the value of INT, we have to edit the script.

The script would be much more useful if it could ask the user for a value.

In this chapter, we will begin to look at how we can add interactivity to our

programs.

read—Read Values from Standard Input

348 Chapter 28

The read built-in command is used to read a single line of standard input.

This command can be used to read keyboard input or, when redirection is

employed, a line of data from a file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed in Table 28-1 and

variable is the name of one or more variables used to hold the input value.

If no variable name is supplied, the shell variable REPLY contains the line

of data.

Table 28-1: read Options

Option 4 Description

-a array Assign the input to array, starting with index zero. We will

cover arrays in Chapter 35.

-d delimiter The first character in the string delimiter is used to indicate
end of input, rather than a newline character.

-e Use Readline to handle input. This permits input editing in
the same manner as the command line.

-n num Read num characters of input, rather than an entire iia.

-p prompt Display a prompt for input using the sind P omot “i

-r Raw mode. Do not interpret backslash characters as ne

Table 28-1 (continued)

ie : <3 on, — Option Description

-s Silent mode. Do not echo characters to the display as they
are typed. This is useful when inputting passwords and
other confidential information.

-t seconds Timeout. Terminate input after seconds. read returns a non-

zero exit status if an input times out.

-u fd Use input from file descriptor fd, rather than standard input.

Basically, read assigns fields from standard input to the specified vari-

ables. If we modify our integer evaluation script to use read, it might look
like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ *-?[0-9]+$]]; then
if [$int -eq 0]; then

echo "$int is zero."

else
if [$int -lt 0]; then

echo "$int is negative."
else

echo "$int is positive."
ial
if [$((int % 2)) -eq 0 J; then

echo "$int is even."
else

echo "$int is odd."
fF

fi
else

echo "Input value is not an integer." >&2
exit 1

iL

We use echo with the -n option (which suppresses the trailing newline on

output) to display a prompt and then use read to input a value for the vari-

able int. Running this script results in this:

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.
5 is odd.

Reading Keyboard Input 349

350 Chapter 28

read can assign input to multiple variables, as shown in this script:

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n “Enter one or more values >

read vari var2 var3 var4 var5

echo "vari = ‘$var1'"
echo "var2 = ‘$var2'"
echo "var3 = ‘$var3'"

echo "var4 = ‘$var4'"
echo "var5 = ‘$var5'"

In this script, we assign and display up to five values. Notice how read

behaves when given different numbers of values:

[me@linuxbox ~]$ xread-multiple
Enter one or more values > abcde

vari = ‘a
Var2="_b)
Valse
Wend 2 oa
WER) = @

[me@linuxbox ~]$ read-multiple
Enter one or more values > a
vari
var2
var3
var4
var5

[me@linuxbox ~]$ read-multiple
Enter one or more values >abcdefg

TE ALS aa TT

Varl =a
Val2e= De
Wain a "Ee
Wen = “Gal
var5 = ‘e f g'

If read receives fewer than the expected number, the extra variables are

empty, while an excessive amount of input results in the final variable con-
taining all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY,

will be assigned all the input:

#!/bin/bash

read-single: read multiple values into default variable

echo -n "Enter one or more values >
read

echo = REPLY =—$REPILY 7

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > abcd
REPLY"= Uaeb ca‘

Options

read supports the options shown previously in Table 28-1.
Using the various options, we can do interesting things with read. For

example, with the -p option, we can provide a prompt string:

#!/bin/bash

read-single: read multiple values into default variable

read -p "Enter one or more values >

echo "REPLY = '$REPLY'"

With the -t and -s options we can write a script that reads “secret” input

and times out if the input is not completed in a specified time:

#!/bin/bash

read-secret: input a secret passphrase

"secret_pass; then
UT)

if read -t 10 -sp "Enter secret passphrase >
echo -e "\nSecret passphrase = '$secret_pass

else
echo -e "\nInput timed out" >&2
Ge: a

ti

The script prompts the user for a secret passphrase and waits 10 seconds

for input. If the entry is not completed within the specified time, the script

exits with an error. Since the -s option is included, the characters of the

passphrase are not echoed to the display as they are typed.

Separating Input Fields with IFS

Normally, the shell performs word splitting on the input provided to read.

As we have seen, this means that multiple words separated by one or more

spaces become separate items on the input line and are assigned to separate

variables by read. This behavior is configured by a shell variable named IFS

(for Internal Field Separator). The default value of IFS contains a space, a

tab, and a newline character, each of which will separate items from one

another.

We can adjust the value of IFS to control the separation of fields input to

read. For example, the /etc/passwd file contains lines of data that use the colon

character as a field separator. By changing the value of IFS to a single colon,

Reading Keyboard Input 351

352 Chapter 28

we can use read to input the contents of /etc/passwd and successfully separate

fields into different variables. Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

read -p “Enter a username > " user_name

file info=$(grep "*$user_name:" $FILE) ®

if [-n "$file_info"]; then
IFS=":" read user pw uid gid name home shell <<< "$file_info" ©
echo "User = "guser'"
echo "UID = "$uid'"
echo "GID = "$gid'"
echo "Full Name = '$name'”

echo "Home Dir. = '$home'"
echo "Shell = "$shell'"

else
echo "No such user '$user_name'" >&2
exit 1

jit

This script prompts the user to enter the username of an account on

the system and then displays the different fields found in the user’s record

in the /etc/passwd file. The script contains two interesting lines. The first,

at @, assigns the results of a grep command to the variable file_info. The

regular expression used by grep ensures that the username will match only

a single line in the /etc/passwd file.

The second interesting line, at @, consists of three parts: a variable

assignment, a read command with a list of variable names as arguments, and

a strange new redirection operator. We’ll look at the variable assignment
first.

The shell allows one or more variable assignments to take place imme-

diately before a command. These assignments alter the environment for

the command that follows. The effect of the assignment is temporary, only

changing the environment for the duration of the command. In our case,

the value of IFS is changed to a colon character. Alternatively, we could have

coded it this way:

OLD_IFS="$IFS"
IFS="3"
read user pw uid gid name home shell <<< "$file info"
IFS="$0LD_IFS" a.

where we store the value of IFS, assign a new value, perform the read com-
mand, and then restore IFS to its original value. Clearly, placing the variable
assignment in front of the command is a more concise way of doing the
same thing.

The <<< operator indicates a here string. A here string is like a here doc-
ument, only shorter, consisting of a single string. In our example, the line
of data from the /etc/passwd file is fed to the standard input of the read
command. We might wonder why this rather oblique method was chosen
rather than

echo "$file info" | IFS=":" read user pw uid gid name home shell

Well, there’s areason...

YOU CAN'T PIPE READ

While the read command normally takes input from aa input, yous cannot

do this:

echo “foo" | read

We would expect this to work, but it does not. The command will appear

to succeed, but the REPLY variable will always be empty. _ Why i is this?

The explanation has to do with the way the shell handles pipelines. In bash

(and other shells such as sh), pipelines create subshells. These are copies of ihe

shell and its environment that are used to execute the command i in 1 the pipe-

line. In our previous example, read is executed in a subshell.

Subshells in Unix-like systems create copies of the environment for the

processes to use while they execute. When the processes finish, the copy of the

environment is destroyed. This means that a subshell can never alter the environ-

ment of its parent process. read assigns variables, which then become part of the

environment. In the example above, read assigns the value foo to the variable

REPLY in its subshell’s environment, but when the command exits, the subshell

and its environment are destroyed, and the effect of the assignment is lost.

Using here strings is one way to work around this behavior. Another

method is discussed in Chapter 36.

Validating Input
With our new ability to have keyboard input comes an additional program-

ming challenge: validating input. Very often the difference between a well-

written program and a poorly written one lies in the program’s ability to

deal with the unexpected. Frequently, the unexpected appears in the form

of bad input. We did a little of this with our evaluation programs in the pre-

vious chapter, where we checked the values of integers and screened out

empty values and non-numeric characters. It is important to perform these

kinds of programming checks every time a program receives input to guard

against invalid data. This is especially important for programs that are shared

by multiple users. Omitting these safeguards in the interests of economy

might be excused if a program is to be used once and only by the author to

Reading Keyboard Input 353

perform some special task. Even then, if the program performs dangerous

tasks such as deleting files, it would be wise to include data validation, just

in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash

read-validate: validate input

invalid input () {
echo “Invalid input '$REPLY'" >&2
xual

}

read -p "Enter a single item > "

input is empty (invalid)
[[-z $REPLY]] && invalid input

input is multiple items (invalid)
(($(echo $REPLY | wc -w) > 1)) && invalid input

is input a valid filename?
if [[$REPLY =~ *[-[:alnum:]\._]+$]]; then

echo "'$REPLY' is a valid filename."
if [[-e $REPLY |]; then

echo "And file '$REPLY' exists.”
else

echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?
if [[$REPLY =~ 4-2[[:digit:]]*\.[[:digit:]]+$]]; then

echo "'$REPLY' is a floating point number."
else

echo "'$REPLY' is not a floating point number."
ah

is input an integer?
if [[$REPLY =~ *-?[[:digit:]]+$]]; then

echo "'$REPLY' is an integer."
else

echo "'$REPLY' is not an integer."
fi

else
echo "The string '$REPLY' is not a valid filename."

fi

This script prompts the user to enter an item. The item is subsequently
analyzed to determine its contents. As we can see, the script makes use of
many of the concepts that we have covered thus far, including shell func-
tions, [[]], (()), the control operator &&, and if, as well as a healthy dose
of regular expressions.

354 = Chapter 28

Menus

A common type of interactivity is called menu driven. In menu-driven pro-
grams, the user is presented with a list of choices and is asked to choose one.
For example, we could imagine a program that presented the following:

Please Select:

. Display System Information

. Display Disk Space

. Display Home Space Utilization
- Quit OWN FR

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can

construct a menu-driven program to perform the tasks on the above menu:

#!/bin/bash

read-menu: a menu driven system information program

clear

echo "

Please Select:

Display System Information
Display Disk Space
Display Home Space Utilization
Quit OWNPR sian a BP”

read -p "Enter selection [0-3] >

if [[$REPLY =~ “[0-3]$]]; then
if [[$REPLY == 0 }]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

it
if [{ $REPLY == 2°]]; then

df -h
exit

ii
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi

Reading Keyboard Input 355

else
echo "Invalid entry." >&2
extend

fi

This script is logically divided into two parts. The first part displays the

menu and inputs the response from the user. The second part identifies

the response and carries out the selected action. Notice the use of the exit

command in this script. It is used here to prevent the script from executing

unnecessary code after an action has been carried out. The presence of mul-

tiple exit points in a program is generally a bad idea (it makes program

logic harder to understand), but it works in this script.

Final Note

In this chapter, we took our first steps toward interactivity, allowing users to

input data into our programs via the keyboard. Using the techniques pre-

sented thus far, it is possible to write many useful programs, such as special-

ized calculation programs and easy-to-use frontends for arcane command-

line tools. In the next chapter, we will build on the menu-driven program

concept to make it even better.

Extra Credit

356 = Chapter 28

It is important to study the programs in this chapter carefully and have a com-

plete understanding of the way they are logically structured, as the programs

to come will be increasingly complex. As an exercise, rewrite the programs
in this chapter using the test command rather than the [[]] compound com-

mand. Hint: Use grep to evaluate the regular expressions, and then evaluate
its exit status. This will be good practice.

FLOW CONTROL: LOOPING

WITH WHILE AND UNTIL

In the previous chapter, we developed a menu-driven
program to produce various kinds of system informa-

tion. The program works, but it still has a significant

usability problem. It executes only a single choice
and then terminates. Even worse, if an invalid selection is made, the pro-

gram terminates with an error, without giving the user an opportunity to try

again. It would be better if we could somehow construct the program so that

it could repeat the menu display and selection over and over, until the user

chooses to exit the program.

In this chapter, we will look at a programming concept called looping,

which can be used to make portions of programs repeat. The shell provides

three compound commands for looping. We will look at two of them in this

chapter and the third in Chapter 33.

358

Looping

while

Chapter 29

Daily life is full of repeated activities. Going to work each day, walking the

dog, and slicing a carrot are all tasks that involve repeating a series of steps.

Let’s consider slicing a carrot. If we express this activity in pseudocode, it

might look something like this:

Get cutting board.

Get knife.

Se NSE Place carrot on cutting board.

Lift knife.

Advance carrot.

Slice carrot.

Bu PY te If entire carrot sliced, then quit, else go to step 4.

Steps 4 through 7 form a loop. The actions within the loop are repeated

until the condition, “entire carrot sliced,” is reached.

bash can express a similar idea. Let’s say we wanted to display five numbers

in sequential order from 1 to 5. A bash script could be constructed as follows:

#!/bin/bash

while-count: display a series of numbers

count=1

while [$count -le 5]; do
echo $count

count=$((count + 1))
done

echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
Al

2

3
4

5
F inished.

The syntax of the while command is:

while commands; do commands; done

Like if, while evaluates the exit status of a list of commands. As long as
the exit status is 0, it performs the commands inside the loop. In the script
above, the variable count is created and assigned an initial value of 1. The
while command evaluates the exit status of the test command. As long as the
test command returns an exit status of 0, the commands within the loop are

executed. At the end of each cycle, the test command is repeated. After five

iterations of the loop, the value of count has increased to 6, the test com-

mand no longer returns an exit status of 0, and the loop terminates. The

program continues with the next statement following the loop.

We can use a while loop to improve the read-menu program from Chap-

ter 28:

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while [[$REPLY != 0]]; do
clear
cat <<= S EOF

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
oO. Quit

EOF
read -p “Enter selection [0-3] >

if [[$REPLY =~ *[0-3]$]]; then
if [[SREPLY == 1 |T; ‘then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY

fi
if { $REPEY @= 2 [1]; then

df -h
sleep $DELAY

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0 J]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

a
sleep $DELAY

vil
else

echo "Invalid entry."
sleep $DELAY

1H
done
echo "Program terminated."

Flow Control: Looping with while and until 359

By enclosing the menu in a while loop, we are able to have the program

repeat the menu display after each selection. The loop continues as long as

REPLY is not equal to 0 and the menu is displayed again, giving the user the

opportunity to make another selection. At the end of each action, a sleep

command is executed so the program will pause for a few seconds to allow

the results of the selection to be seen before the screen is cleared and the

menu is redisplayed. Once REPLY is equal to 0, indicating the “quit” selection,

the loop terminates and execution continues with the line following done.

Breaking out of a Loop

360 Chapter 29

bash provides two built-in commands that can be used to control program

flow inside loops. The break command immediately terminates a loop, and

program control resumes with the next statement following the loop. The

continue command causes the remainder of the loop to be skipped, and pro-

gram control resumes with the next iteration of the loop. Here we see a ver-

sion of the while-menu program incorporating both break and continue:

#!/bin/bash

while-menu2: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do
clear
(Cae <= _|e0)F_

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ “[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY
continue

fi
if | [eSREPLY == 2. 1] = then

df -h
sleep $DELAY
continue

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else

echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY
continue

itl
if [[$REPLY == 0]]; then

break
fi

else
echo "Invalid entry."
sleep $DELAY

iia?
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never ter-

minates on its own) by using the true command to supply an exit status to

while. Since true will always exit with a exit status of 0, the loop will never end.

This is a surprisingly common scripting technique. Since the loop will never

end on its own, it’s up to the programmer to provide some way to break out

of the loop when the time is right. In this script, the break command is used

to exit the loop when the 0 selection is chosen. The continue command has

been included at the end of the other script choices to allow for more effi-

cient execution. By using continue, the script will skip over code that is not

needed when a selection is identified. For example, if the 1 selection is

chosen and identified, there is no reason to test for the other selections.

until

The until command is much like while, except instead of exiting a loop

when a non-zero exit status is encountered, it does the opposite. An wntil

loop continues until it receives a 0 exit status. In our while-count script, we

continued the loop as long as the value of the count variable was less than or

equal to 5. We could get the same result by coding the script with until:

#!/bin/bash

until-count: display a series of numbers

count=1

until [$count -gt 5]; do
echo $count
count=$((count + 1))

done

echo "Finished."

By changing the test expression to $count -gt 5, until will terminate

the loop at the correct time. Deciding whether to use the while or until

loop is usually a matter of choosing the one that allows the clearest test

to be written.

Flow Control: Looping with while and until 361

362

Reading Files with Loops
while and until can process standard input. This allows files to be processed

with while and until loops. In the following example, we will display the con-

tents of the distros.txt file used in earlier chapters:

#!/bin/bash

while-read: read lines from a file

while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

¢$distro \
$version \
$release

done < distros.txt

To redirect a file to the loop, we place the redirection operator after the

done statement. The loop will use read to input the fields from the redirected

file. The read command will exit after each line is read, with a 0 exit status

until the end-of-file is reached. At that point, it will exit with a non-zero

exit status, thereby terminating the loop. It is also possible to pipe standard

input into a loop:

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done

Here we take the output of the sort command and display the stream of

text. However, it is important to remember that since a pipe will execute the

loop in a subshell, any variables created or assigned within the loop will be

lost when the loop terminates.

Final Note

Chapter 29

With the introduction of loops and our previous encounters with branching,
subroutines, and sequences, we have covered the major types of flow control
used in programs. bash has some more tricks up its sleeve, but they are refine-
ments on these basic concepts.

TROUBLESHOOTING

As our scripts become more complex, it’s time to take
a look at what happens when things go wrong and they

don’t do what we want. In this chapter, we’ll look at
some of the common kinds of errors that occur in

scripts and describe a few techniques that can be used
to track down and eradicate problems.

' Syntactic Errors
One general class of errors is syntactic. Syntactic errors involve mistyping

some element of shell syntax. In most cases, these kinds of errors will lead

to the shell refusing to execute the script.

In the following discussions, we will use this script to demonstrate com-

mon types of errors:

#!/bin/bash

trouble: script to demonstrate common errors

364 Chapter 30

number=1

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

As written, this script runs successfully:

[me@linuxbox ~]$ trouble
Number is equal to 1.

Missing Quotes

Let’s edit our script and remove the trailing quote from the argument fol-

lowing the first echo command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1.

else
echo "Number is not equal to 1."

ce
al

Watch what happens:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 10: unexpected EOF while looking for matching ~"'
/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported are

not where the missing quote was removed but rather much later in the pro-

gram. We can see why if we follow the program after the missing quote. bash

wili continue looking for the closing quote until it finds one, which it does

immediately after the second echo command. bash becomes very confused

after that, and the syntax of the if command is broken because the fi state-

ment is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an

editor with syntax highlighting will help. If a complete version of vim is
installed, syntax highlighting can be enabled by entering the command:

:syntax on

Missing or Unexpected Tokens

Another common mistake is forgetting to complete a compound command,
such as if or while. Let’s look at what happens if we remove the semicolon
after the test in the if command.

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1] then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

The result is this:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 9: syntax error near unexpected token “else'
/home/me/bin/trouble: line 9: ~else’

Again, the error message points to a error that occurs later than the

actual problem. What happens is really pretty interesting. As we recall, if

accepts a list of commands and evaluates the exit code of the last command

in the list. In our program, we intend this list to consist of a single command,

[, asynonym for test. The [command takes what follows it as a list of argu-

ments—in our case, four arguments: $number, =, 1, and]. With the semicolon

removed, the word then is added to the list of arguments, which is syntac-

tically legal. The following echo command is legal, too. It’s interpreted as

another command in the list of commands that if will evaluate for an exit

code. The else is encountered next, but it’s out of place, since the shell

recognizes it as a reserved word (a word that has special meaning to the shell)

and not the name of a command. Hence the error message.

Unanticipated Expansions

It’s possible to have errors that occur only intermittently in a script. Some-

times the script will run fine, and other times it will fail because of the results

of an expansion. If we return our missing semicolon and change the value of

number to an empty variable, we can demonstrate:

#!/bin/bash

trouble: script to demonstrate common errors

number=

Troubleshooting 365

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the

second echo command. The problem is the expansion of the number variable

within the test command. When the command

[$number = 1 |

undergoes expansion with number being empty, the result is this:

[=1]

which is invalid, and the error is generated. The = operator is a binary oper-

ator (it requires a value on each side), but the first value is missing, so the

test command expects a unary operator (such as -z) instead. Further, since

the test failed (because of the error), the if command receives a non-zero

exit code and acts accordingly, and the second echo command is executed.

This problem can be corrected by adding quotes around the first argu-

ment in the test command:

["$number" = 1]

Then when expansion occurs, the result will be this:

een
which yields the correct number of arguments. In addition to being used

with empty strings, quotes should be used in cases where a value could

expand into multiword strings, as with filenames containing embedded
spaces.

Logical Errors

366 Chapter 30

Unlike syntactic errors, logical errors do not prevent a script from running.

The script will run, but it will not produce the desired result due to a prob-

lem with its logic. There are countless numbers of possible logical errors,

but here are a few of the most common kinds found in scripts:

e Incorrect conditional expressions. It’s easy to incorrectly code an
if/then/else statement and have the wrong logic carried out. Some-
times the logic will be reversed, or it will be incomplete.

e “Off by one” errors. When coding loops that employ counters, it is pos-
sible to overlook that the loop may require that the counting start with
0, rather than 1, for the count to conclude at the correct point. These
kinds of errors result in either a loop “going off the end” by counting
too far, or else missing the last iteration of the loop by terminating one
iteration too soon.

e Unanticipated situations. Most logical errors result from a program
encountering data or situations that were unforeseen by the program-
mer. These can also include unanticipated expansions, such as a filename

that contains embedded spaces that expands into multiple command
arguments rather than a single filename.

Defensive Programming

It is important to verify assumptions when programming. This means a care-

ful evaluation of the exit status of programs and commands that are used by

a script. Here is an example, based on a true story. An unfortunate system

administrator wrote a script to perform a maintenance task on an important

server. The script contained the following two lines of code:

cd $dir_name
rm *

There is nothing intrinsically wrong with these two lines, as long as the

directory named in the variable, dir_name, exists. But what happens if it does

not? In that case, the cd command fails, and the script continues to the next

line and deletes the files in the current working directory. Not the desired

outcome at all! The hapless administrator destroyed an important part of

the server because of this design decision.
Let’s look at some ways this design could be improved. First, it might be

wise to make the execution of rm contingent on the success of cd:

cd $dir_name && xm *

This way, if the cd command fails, the rm command is not carried out.

This is better, but it still leaves open the possibility that the variable, dir_name,

is unset or empty, which would result in the files in the user’s home direc-

tory being deleted. This could also be avoided by checking to see that dir_name

actually contains the name of an existing directory:

[{ -d $dir_name]] && cd $dir_name && rm *

Often, it is best to terminate the script with an error when an situation

such as the one above occurs:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *

Troubleshooting 367

else iT
echo "cannot cd to '$dir_name'" >8&2
exit 1

fi
else

echo "no such directory: ‘$dir_name'" >&2
Cuahe wt

fi

Here, we check both the name, to see that it is that of an existing direc-

tory, and the success of the cd command. If either fails, a descriptive error

message is sent to standard error, and the script terminates with an exit

status of | to indicate a failure.

Verifying Input

A general rule of good programming is that if a program accepts input,

it must be able to deal with anything it receives. This usually means that

input must be carefully screened to ensure that only valid input is accepted

for further processing. We saw an example of this in the previous chapter

when we studied the read command. One script contained the following

test to verify a menu selection:

[{ $REPLY =~ *[0-3]$]]

This test is very specific. It will return a 0 exit status only if the string

returned by the user is a numeral in the range of 0 to 3. Nothing else will

be accepted. Sometimes these sorts of tests can be very challenging to write,

but the effort is necessary to produce a high-quality script.

DESIGNISA FUNCTION OF TIME

When I was a college student studying industrial design, a wise professor stated

that the degree of design on a project was determined by the amount of time

given to the designer. If you were given 5 minutes to design a device that kills

flies, you designed a flyswatter. Ifyou were given 5 months, you might come up

_ with a laser-guided “anti-fly system” instead.

The same principle applies to programming. Sometimes a “quick-and- _

dirty” script will do if it’s going to be used only once and only by the program-

_ mer. That kind of script is common and should be developed quickly to make
the effort economical. Such scripts don’t need a lot of comments and defensive
checks. On the other hand, if a script is intended for production use, that is, a
script that will be used over and over for an important task or by multiple users,
it needs much more careful Can aes

368 Chapter 30

Testing

Testing is an important step in every kind of software development, includ-
ing scripts. There is a saying in the open source world, “release early, release
often,” that reflects this fact. By releasing early and often, software gets more
exposure to use and testing. Experience has shown that bugs are much easier
to find, and much less expensive to fix, if they are found early in the devel-
opment cycle.

Stubs

In a previous discussion, we saw how stubs can be used to verify program

flow. From the earliest stages of script development, they are a valuable

technique to check the progress of our work.

Let’s look at the previous file-deletion problem and see how this could

be coded for easy testing. Testing the original fragment of code would be

dangerous, since its purpose is to delete files, but we could modify the code
to make the test safe:

if [[-d $dir_name]]; then
if cd $dir_name; then

echo rm * # TESTING
else

echo "cannot cd to '$dir_name'" >&2
ex 1!

fi
else

echo "no such directory: '$dir_name'" >&2
rane al

fi
exit # TESTING

Since the error conditions already output useful messages, we don’t

have to add any. The most important change is placing an echo command

just before the rm command to allow the command and its expanded argu-

ment list to be displayed, rather than executed. This change allows safe exe-

cution of the code. At the end of the code fragment, we place an exit com-

mand to conclude the test and prevent any other part of the script from

being carried out. The need for this will vary according to the design of

the script.

We also include some comments that act as “markers” for our test-

related changes. These can be used to help find and remove the changes

when testing is complete.

Test Cases

To perform useful testing, it’s important to develop and apply good test cases.

This is done by carefully choosing input data or operating conditions that

Troubleshooting 369

reflect edge and corner cases. In our code fragment (which is very simple), we

want to know how the code performs under three specific conditions:

e dir_name contains the name of an existing directory.

e dir name contains the name of a nonexistent directory.

e dir_name is empty.

By performing the test with each of these conditions, good test coverage is

achieved.
Just as with design, testing is a function of time, as well. Not every script

feature needs to be extensively tested. It’s really a matter of determining

what is most important. Since it could be very destructive if it malfunctioned,

our code fragment deserves careful consideration during both its design

and its testing.

Debugging

370 Chapter 30

If testing reveals a problem with a script, the next step is debugging. “A

problem” usually means that the script is, in some way, not performing to

the programmer’s expectations. If this is the case, we need to carefully

determine exactly what the script is actually doing and why. Finding bugs

can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defen-

sively to detect abnormal conditions and provide useful feedback to the user.

Sometimes, however, problems are strange and unexpected, and more

involved techniques are required.

Finding the Problem Area

In some scripts, particularly long ones, it is sometimes useful to isolate the

area of the script that is related to the problem. This won’t always be the

actual error, but isolation will often provide insights into the actual cause.
One technique that can be used to isolate code is “commenting out” sec-
tions of a script. For example, our file-deletion fragment could be modified
to determine if the removed section was related to an error:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *

else

echo "cannot cd to ‘$dir name'" >&2
exit 1 4

fi
else

echo "no such directory: ‘$dir_name'" >&2
exit 1

ita

By placing comment symbols at the beginning of each line in a logical
section of a script, we prevent that section from being executed. Testing can
then be performed again to see if the removal of the code has any impact
on the behavior of the bug.

Tracing

Bugs are often cases of unexpected logical flow within a script. That is, por-
tions of the script are either never executed or are executed in the wrong
order or at the wrong time. To view the actual flow of the program, we use a
technique called tracing.

One tracing method involves placing informative messages in a script

that display the location of execution. We can add messages to our code
fragment:

echo “preparing to delete files" >&2
if [[-d $dir_name]]; then

if cd $dir_name; then
echo "deleting files" >&2

miner
else

echo "cannot cd to '$dir_name'" >&2
xt sd

fi
else

echo "no such directory: '$dir_name'" >&2
(Drege)

fi
echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal

output. We also do not indent the lines containing the messages, so it is

easier to find when it’s time to remove them.

Now when the script is executed, it’s possible to see that the file dele-

tion has been performed:

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files
file deletion complete
[me@linuxbox ~]$

bash also provides a method of tracing, implemented by the -x option

and the set command with the -x option. Using our earlier trouble script,

we can activate tracing for the entire script by adding the -x option to the

first line:

#!/bin/bash -x

trouble: script to demonstrate common errors

number=1

Troubleshooting 371

372 Chapter 30

if [$number = 1]; then
echo "Number is equal to 1."

else
echo “Number is not equal to 1."

fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble
+ number=1
ae |e tie ail ah

+ echo ‘Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions

applied. The leading plus signs indicate the display of the trace to distinguish

them from lines of regular output. The plus sign is the default character for

trace output. It is contained in the PS4 (prompt string 4) shell variable. The

contents of this variable can be adjusted to make the prompt more useful.

Here, we modify it to include the current line number in the script where the

trace is performed. Note that single quotes are required to prevent expan-

sion until the prompt is actually used:

[me@linuxbox ~]$ export PS4='$LINENO + '
[me@linuxbox ~]$ trouble
5 + number=1
Pee le he a Yl

8 + echo ‘Number is equal to 1.'
Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the

entire script, we can use the set command with the -x option:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

We use the set command with the -x option to activate tracing and the
+x option to deactivate tracing. This technique can be used to examine mul-
tiple portions of a troublesome script.

Examining Values During Execution

It is often useful, along with tracing, to display the content of variables to
see the internal workings of a script while it is being executed. Applying
additional echo statements will usually do the trick:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable num-

ber and mark the added line with a comment to facilitate its later identifica-

tion and removal. This technique is particularly useful when watching the

behavior of loops and arithmetic within scripts.

Final Note

In this chapter, we looked at just a few of the problems that can crop up

during script development. Of course, there are many more. The tech-

niques described here will enable finding most common bugs. Debugging

is an art that can be developed through experience, both in avoiding bugs

(testing constantly throughout development) and in finding bugs (effective

use of tracing).

Troubleshooting 373

vrei) X

3]
FLOW CONTROL:

BRANCHING WITH CASE

In this chapter, we will continue to look at flow con-
trol. In Chapter 28, we constructed some simple menus
and built the logic used to act on a user’s selection. To
do this, we used a series of if commands to identify

which of the possible choices had been selected. This
type of construct appears frequently in programs, so
much so that many programming languages (includ-

ing the shell) provide a flow-control mechanism for

multiple-choice decisions.

case

376 = Chapter 31

The bash multiple-choice compound command is called case. It has the fol-

lowing syntax:

case word in
[pattern [| pattern]...) commands ;;]...

esac

If we look at the read-menu program from Chapter 28, we see the logic

used to act on a user’s selection:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo '

Please Select:

. Display System Information

. Display Disk Space

. Display Home Space Utilization

. Ouit OWNPR

read -p "Enter selection [0-3] > "

if [[$REPLY =~ *[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[> $REPLY == 1 }] >" then

echo "Hostname: $HOSTNAME"™
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else

echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

1h
else

echo "Invalid entry." >&2
exit 1

fi

Using case, we can replace this logic with something simpler:

#!/bin/bash

case-menu: a menu driven system information program

clear

echo "

Please Select:

. Display System Information

. Display Disk Space
- Display Home Space Utilization
- Quit OWN PR

read -p “Enter selection [0-3] > "

case $REPLY in

0) echo "Program terminated."
exit

33
ath. echo "Hostname: $HOSTNAME”

uptime

33
2) df -h

33
3) if [[$(id -u) -eq 0]]; then

echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi

5
*) echo “Invalid entry” >&2

exit 1

35
esac

The case command looks at the value of word—in our example, the value

of the REPLY variable—and then attempts to match it against one of the speci-

fied patterns. When a match is found, the commands associated with the spe-

cified pattern are executed. After a match is found, no further matches are

attempted.

Patterns

The patterns used by case are the same as those used by pathname expan-

sion. Patterns are terminated with a) character. Table 31-1 shows some valid

patterns.

Flow Control: Branching with case of7

378 Chapter 31

Table3 1-1: case Pattern Examples

Pattern Description | a

a) Matches if word equals a.

[[:alpha: }]) Matches if word is a single alphabetic character.

2???) Matches if word is exactly three characters long.

* txt) Matches if word ends with the characters .txt.

*) Matches any value of word. It is good practice to include
this as the last pattern in a case command to catch any
values of word that did not match a previous pattern; that
is, to catch any possible invalid values.

Here is an example of patterns at work:

#!/bin/bash

read -p “enter word >

case $REPLY in

[[:alpha:]]) echo "is a single alphabetic character." ;;
[ABC][0-9]) echo "is A, B, or C followed by a digit." ;;
2???) echo "is three characters long.” ;;
A cX tb) echo "is a word ending in '.txt'" ;;
2) echo "is something else." ;;

esac

Combining Multiple Patterns

It is also possible to combine multiple patterns using the vertical pipe charac-

ter as a separator. This creates an “or” conditional pattern. This is useful for

such things as handling both upper- and lowercase characters. For example:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo

Please Select:

- Display System Information
- Display Disk Space
- Display Home Space Utilization
- Quit OaAnLY

read -p "Enter selection [A, B, C or Q] > "

case $REPLY in

q|Q) echo "Program terminated."
exit

+)

a|A) echo "Hostname: $HOSTNAME"
uptime

blB) df -h

c|C) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else

echo "Home Space Utilization ($USER)"
du -sh $HOME

ii

>
=) echo "Invalid entry" >&2

exit 1

s)
esac

Here, we modify the case-menu program to use letters instead of digits for

menu selection. Notice that the new patterns allow for entry of both upper-

and lowercase letters.

Final Note

The case command is a handy addition to our bag of programming tricks.

As we wili see in the next chapter, it’s the perfect tool for handling certain

types of problems.

Flow Control: Branching with case 379

32
POSITIONAL PARAMETERS

One feature that has been missing from our pro-

grams is the ability to accept and process command-

line options and arguments. In this chapter, we will
examine the shell features that allow our programs

to get access to the contents of the command line.

Accessing the Command Line

The shell provides a set of variables called positional parameters that contain

the individual words on the command line. The variables are named 0

through 9. They can be demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "

\$o = $0
NST =9$1
\$2 = $2

Note:

382 Chapter 32

\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9

This very simple script displays the values of the variables $0 through $9.

When executed with no command-line arguments:

[me@linuxbox ~]$ posit-param

/home/me/bin/posit-param

+A uw

a

Even when no arguments are provided, $0 will always contain the first

item appearing on the command line, which is the pathname of the pro-

gram being executed. When arguments are provided, we see the results:

[me@linuxbox ~]$ posit-param a b c d

/home/me/bin/posit-param
a
b
€
d Tf a=

Ce eT TTASST STE TI

You can actually access more than nine parameters using parameter expansion. To

specify a number greater than nine, surround the number in braces; for example,

${10}, {55}, ${211}, and so on.

Determining the Number of Arguments

The shell also provides a variable, $#, that yields the number of arguments
on the command line:

#!/bin/bash

posit-param: script to view command line parameters

echo
Number of arguments: $#
\$0 = $0

\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7" =. $7
\$8 = $8
\$9 = $9

The result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4
$0 = /home/me/bin/posit-param

a
b
Cc
d

Pras wi

A OD Se ee Pe ie ee

shift—Getting Access to Many Arguments

But what happens when we give the program a large number of arguments

such as this:

[me@linuxbox ~]$ posit-param *

Number of arguments: 82
$0 = /home/me/bin/posit-param
$1 = addresses. ldif
$2 = bin
$3 = bookmarks. html
$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz
$8 = Desktop
$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments.

How can we process that many? The shell provides a method, albeit a

clumsy one, to do this. The shift command causes each parameter to

“move down one” each time it is executed. In fact, by using shift, it is pos-

sible to get by with only one parameter (in addition to $0, which never

changes).

Positional Parameters 383

384 = Chapter 32

#t!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do
echo “Argument $count = $1
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of

$3 is moved to $2, and so on. The value of $# is also reduced by 1.

In the posit-param2 program, we create a loop that evaluates the number

of arguments remaining and continues as long as there is at least one. We

display the current argument, increment the variable count with each itera-

tion of the loop to provide a running count of the number of arguments

processed, and, finally, execute a shift to load $1 with the next argument.

Here is the program at work:

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1
Argument 2
Argument 3
Argument 4 fes fo) lop tsh)

Simple Applications

Even without shift, it’s possible to write useful applications using positional

parameters. By way of example, here is a simple file-information program:

#!/bin/bash

file_info: simple file information program

PROGNAME=$(basename $0)

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1

echo -e "\nFile Status:"
stat $1

else

echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command)
and the file status (from the stat command) of a specified file. One interest-
ing feature of this program is the PROGNAME variable. It is given the value that
results from the basename $0 command. The basename command removes the

leading portion of a pathname, leaving only the base name of a file. In our
example, basename removes the leading portion of the pathname contained
in the $0 parameter, the full pathname of our example program. This value
is useful when constructing messages such as the usage message at the end
of the program. When it’s coded this way, the script can be renamed, and
the message automatically adjusts to contain the name of the program.

Using Positional Parameters with Shell Functions
Just as positional parameters are used to pass arguments to shell scripts, they
can also be used to pass arguments to shell functions. Te demonstrate, we
will convert the file_info script into a shell function:

file info () {

file_info: function to display file information

if [[-e $1]]; then
echo -e "\nFile Type:”
file $1

echo -e "\nFile Status:"

stat $1
else

echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1

fi

Now, if a script that incorporates the file_info shell function calls the

function with a filename argument, the argument will be passed to the

function.

With this capability, we can write many useful shell functions that can

be used not only in scripts but also within the .bashic file.

Notice that the PROGNAME variable was changed to the shell variable

FUNCNAME. The shell automatically updates this variable to keep track of the

currently executed shell function. Note that $0 always contains the full path-

name of the first item on the command line (i.e., the name of the program)

and does not contain the name of the shell function as we might expect.

‘Handling Positional Parameters En Masse

It is sometimes useful to manage all the positional parameters as a group. For

example, we might want to write a wrapper around another program. This

means that we create a script or shell function that simplifies the execution

of another program. The wrapper supplies a list of arcane command-line

options and then passes a list of arguments to the lower-level program.

The shell provides two special parameters for this purpose. They both

expand into the complete list of positional parameters but differ in rather

subtle ways. Table 32-1 describes these parameters.

Positional Parameters 385

386 = Chapter 32

Table 32-1: The * and @ Special Parameters

Parameter Description egal has: ne)

3 Expands into the list of positional parameters, starting with 1.

When surrounded by double quotes, it expands into a double-

quoted string containing all the positional parameters, each

separated by the first character of the IFS shell variable (by

default a space character).

$@ Expands into the list of positional parameters, starting with 1.

When surrounded by double quotes, it expands each posi-
tional parameter into a separate word surrounded by double

quotes.

Here is a script that shows these special parameters in action:

#!/bin/bash

posit-params3 : script to demonstrate $* and $@

print_params () {
echo "\$1 = $1

echo “\$2 = $2”

echo "\$3 = $3"
echo "\$4 = $4"

}

pass params () {
echo -e "\n" '$* :'; print_params $*
echos-ea \n" ee $eea se ei printaparamsers)—
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass params "word" "words with spaces"

In this rather convoluted program, we create two arguments, word and

words with spaces, and pass them to the pass_params function. That function,
in turn, passes them on to the print_params function, using each of the four
methods available with the special parameters $* and $@. When executed,

the script reveals the differences:

[me@linuxbox ~]$ posit-param3

ane
$1 = word
$2 = words

$3 = with
$4 = spaces

neo :

$1 = word words with spaces
$2 =

tA w

tou $4

$@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

"$0" :
$1 = word
$2 = words with spaces
$3 =
$4 =

With our arguments, both $* and $@ produce a four-word result: word,

words, with, and spaces. "$*" produces a one-word result: word words with
spaces. "$@" produces a two-word result: word and words with spaces.

This matches our actual intent. The lesson to take from this is that even

though the shell provides four different ways of getting the list of positional

parameters, "$@" is by far the most useful for most situations, because it pre-

serves the integrity of each positional parameter.

A More Complete Application
After a long hiatus, we are going to resume work on our sys_info_page pro-

gram. Our next addition will add several command-line options to the pro-

gram as follows:

e Output file. We will add an option to specify a name for a file to contain

the program’s output. It will be specified as either -f file or --file file.

e Interactive mode. This option will prompt the user for an output file-

name and will determine if the specified file already exists. If it does,

the user will be prompted before the existing file is overwritten. This

option will be specified by either -i or --interactive.

e Help. Either -h or --help may be specified to cause the program to out-

put an informative usage message.

Here is the code needed to implement the command-line processing:

usage () { apy rt
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]
return

}

process command line options

interactive=
filename=

while [[-n $1]]; do
case $1 in

Positional Parameters 387

-f | --file) shift
filename=$1

a3
-i | --interactive) interactive=1

7)
-h | --help) usage

exit

3
#) usage >&2

exit 1

”
esac
shift

done

First, we add a shell function called usage to display a message when the

help option is invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the posi-

tional parameter $1 is not empty. At the bottom of the loop, we have a shift

command to advance the positional parameters to ensure that the loop will

eventually terminate.

Within the loop, we have a case statement that examines the current

positional parameter to see if it matches any of the supported choices. Ifa

supported parameter is found, it is acted upon. If not, the usage message

is displayed, and the script terminates with an error.

The -f parameter is handled in an interesting way. When detected, it

causes an additional shift to occur, which advances the positional param-

eter $1 to the filename argument supplied to the -f option.

We next add the code to implement the interactive mode:

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Yly) break

d+)

Q|q) echo "Program terminated."
exit

a3
+) continue

3
esac

elif [[-z $filename]]; then
continue

else
break

Re
done

afl

388 Chapter 32

If the interactive variable is not empty, an endless loop is started, which
contains the filename prompt and subsequent existing file-handling code.
If the desired output file already exists, the user is prompted to overwrite,
choose another filename, or quit the program. If the user chooses to over-
write an existing file, a break is executed to terminate the loop. Notice that
the case statement detects only if the user chooses to overwrite or quit. Any
other choice causes the loop to continue and prompts the user again.

In order to implement the output filename feature, we must first con-
vert the existing page-writing code into a shell function, for reasons that will
become clear in a moment:

write _html_page () {
cat <<=SMEOre
<HTML>

<HEAD>

<TITLE>$TITLE</TITLE>
</HEAD>

<BODY>
<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

ia!
else

write _html_page
fi

The code that handles the logic of the -f option appears at the end of

the listing shown above. In it, we test for the existence of a filename, and, if

one is found, a test is performed to see if the file is indeed writable. To do

this, a touch is performed, followed by a test to determine if the resulting file

is a regular file. These two tests take care of situations where an invalid path-

name is input (touch will fail), and, if the file already exists, that it’s a regu-

lar file.

As we can see, the write html_page function is called to perform the

actual generation of the page. Its output is either directed to standard out-

put (if the variable filename is empty) or redirected to the specified file.

Positional Parameters 389

Final Note

With the addition of positional parameters, we can now write fairly functional

scripts. For simple, repetitive tasks, positional parameters make it possible to

write very useful shell functions that can be placed in a user’s .bashrc file.

Our sys_info_page program has grown in complexity and sophistication.

Here is a complete listing, with the most recent changes highlighted:

#!/bin/bash

sys info page: program to output a system information page

PROGNAME=$(basename $0)
TITLE="System Information Report For $HOSTNAME”
CURRENT TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT TIME, by $USER"

report_uptime () {
Calc aE Ob

<H2>System Uptime</H2>
<PRE>$(uptime)</PRE>
EOF

return

i

report_disk_space () {
CateccoeeEOke

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
BEOEm

return

}

report home space () {
if [[$(id -u) -eq 0 J]; then

cake <K= _180F_

<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
nEOES

else
Caiun<< Se EORS

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
mEORE

fal
return

}

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>

390 Chapter 32

<TITLE>$TITLE</TITLE>
</HEAD>

<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>

$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>

EOF

return

}

process command line options

interactive=

filename=

while [[-n $1]]; do
case $1 in

-f | --file)

-i | --interactive)

-h | --help)

et

esac
shift

done

interactive mode

if [[-n $interactive]]; then
while true; do

shift
filename=$1

3
interactive=1

>3
usage
exit

3)
usage >&2
exit 1
ee
+)

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] >
case $REPLY in

Yly)

Q\q)

*)

esac
elif [[-z $filename]];

continue

else
break

fi
done

fi

break

33
echo "Program terminated."
exit

are
continue

7)

then

Positional Parameters 391

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write _html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write _html_page
fi

Our script is pretty good now, but we’re not quite done. In the next

chapter, we will add one last improvement to our script.

392 Chapter 32

33
FLOW CONTROL:

LOOPING WITH FOR

In this final chapter on flow control, we will look at
another of the shell’s looping constructs. The for loop
differs from the while and until loops in that it provides
a means of processing sequences during a loop. This
turns out to be very useful when programming. Accord-
ingly, the for loop is a very popular construct in bash
scripting.

A for loop is implemented, naturally enough, with the for command. In

modern versions of bash, for is available in two forms.

for: Traditional Shell Form

The original for command’s syntax is as follows:

for variable [in words]; do
commands

done

394 Chapter 33

where variable is the name of a variable that will increment during the exe-

cution of the loop, words is an optional list of items that will be sequentially

assigned to variable, and commands are the commands that are to be executed

on each iteration of the loop.

The for command is useful on the command line. We can easily demon-

strate how it works:

me@linuxbox ~]$ for i in A B C D; do echo $i; done [
A
B
c
D

In this example, for is given a list of four words: A, B, C, and D. With a

list of four words, the loop is executed four times. Each time the loop is exe-

cuted, a word is assigned to the variable i. Inside the loop, we have an echo

command that displays the value of i to show the assignment. As with the

while and until loops, the done keyword closes the loop.

The really powerful feature of for is the number of interesting ways we

can create the list of words. For example, we can use brace expansion:

me@linuxbox ~]$ for i in {A..D}; do echo $i; done [
A
B
C
D

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

or command substitution:

#!/bin/bash

longest-word : find longest string in a file

while [[-n $1]]; do
if; [[v-n $2] lstthen

max_word=
max_len=0
for i in $(strings $1); do

len=$(echo -n $i | we -c)
if ((len > max_len)); then

max_len=$len
max_word=$i

fi

done

echo "$1: '$max_word' ($max_len characters)"
i

shift
done

In this example, we look for the longest string found within a file. When
given one or more filenames on the command line, this program uses the
strings program (which is included in the GNU binutils package) to gener-
ate a list of readable text “words” in each file. The for loop processes each
word in turn and determines if the current word is the longest found so far.
When the loop concludes, the longest word is displayed.

If the optional in words portion of the for command is omitted, for
defaults to processing the positional parameters. We will modify our
longest-word script to use this method:

#!/bin/bash

longest-word2 : find longest string in a file

+Or 1° do

if [{ -r $i]]; then
max_word=
max_len=0
for j in $(strings $i); do

len=$(echo -n $j | we -c)
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

As we can see, we have changed the outermost loop to use for in place

of while. Because we omitted the list of words in the for command, the posi-

tional parameters are used instead. Inside the loop, previous instances of

the variable i have been changed to the variable j. The use of shift has also

been eliminated.

WHY I?

You may have noticed that the variable i was chosen for each of the for loop —

examples above. Why? No specific reason actually, besides tradition. The vari-

able used with for can be any valid variable, but i is the most common, followed _

by j and k.

The basis of this tradition comes from the Fortran programming language.

In Fortran, undeclared variables starting with the letters J, /, K, L, and M are auto-

matically typed as integers, while variables beginning with any other letter are

typed as rea (numbers with decimal fractions). This behavior led programmers

Flow Control: Looping with for 395

to use the variables I, J, and kK for loop seridbies: since it was ie ay to we

them when a temporary variable (as a loop variable often was) was needed.

It also led to re following Fortran-based witticism: “GOD is sages unless

declared integer.”

for: C Language Form

396 Chapter 33

Recent versions of bash have added a second form of for-command syntax,

one that resembles the form found in the C programming language. Many

other languages support this form, as well.

for ((expression1; expression2; expression3)); do
commands

done

where expression1, expression2, and expression3 are arithmetic expressions

and commands are the commands to be performed during each iteration of

the loop.

In terms of behavior, this form is equivalent to the following construct:

((expression1))
while ((expression2)); do

commands
((expression}))

done

expression1 is used to initialize conditions for the loop, expression2 is used

to determine when the loop is finished, and expression} is carried out at the

end of each iteration of the loop.

Here is a typical application:

#!/bin/bash

simple_counter : demo of C style for command

TOT (iiz0je1<5s ei =i+1 8) ado
echo $i

done

When executed, it produces the following output:

me@linuxbox ~]$ simple counter [
0

Al

2

3
4

In this example, expression1 initializes the variable i with the value of 0,
expression2 allows the loop to continue as long as the value of i remains less
than 5, and expression3 increments the value of i by J each time the loop
repeats.

The C-language form of for is useful anytime a numeric sequence is
needed. We will see several applications of this in the next two chapters.

Final Note

With our knowledge of the for command, we will now apply the final
improvements to our sys_info_page script. Currently, the report_home_space
function looks like this:

report_home_ space () {
if [[$(id -u) -eq 0]]; then

cat <<- EOF

<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
BEOES

else
cal=<<- —EORS

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
SEOES

fi
return

Next, we will rewrite it to provide more detail for each user’s home

directory and include the total number of files and subdirectories in each:

report_home_space () {

local format="%8s%10s%10s\n"
local i dir list total files total_dirs total_size user_name

if [[$(id -u) -eq 0 J]; then
dir_list=/home/*
user_name="All Users"

else
dir list=$HOME
user_name=$USER

Fa.

echo "<H2>Home Space Utilization ($user_name)</H2>"

for i in $dir_list; do

total files=$(find $i -type f | we -1)
total _dirs=$(find $i -type d | we -1)
total_size=$(du -sh $i | cut -f 1)
echo "<H3>$i</H3>"
echo "<PRE>"
printf "$format" "Dirs" "Files" "Size"

printf “Stomat™ "--=-")°=-<=- eager

printf "$format" $total_dirs $total files $total_size

echo "</PRE>"

non

Flow Control: Looping with for 397

This rewrite applies much of what we have learned so far. We still test

for the superuser, but instead of performing the complete set of actions as
part of the if, we set some variables used later in a for loop. We have added

several local variables to the function and made use of printf to format some

of the output.

398 Chapter 33

STRINGS AND NUMBERS

Computer programs are all about working with data.

In past chapters, we have focused on processing data
at the file level. However, many programming prob-

lems need to be solved using smaller units of data
such as strings and numbers.

In this chapter, we will look at several shell features that are used to

manipulate strings and numbers. The shell provides a variety of parameter

expansions that perform string operations. In addition to arithmetic expan-

sion (which we touched upon in Chapter 7), there is a common command-

line program called bc, which performs higher-level math.

Parameter Expansion

Though parameter expansion came up in Chapter 7, we did not cover it in

detail because most parameter expansions are used in scripts rather than on

the command line. We have already worked with some forms of parameter

expansion; for example, shell variables. The shell provides many more.

400 Chapter 34

Basic Parameters

The simplest form of parameter expansion is reflected in the ordinary use

of variables. For example, $a, when expanded, becomes whatever the vari-

able a contains. Simple parameters may also be surrounded by braces, such

as ${a}. This has no effect on the expansion, but it is required if the variable

is adjacent to other text, which may confuse the shell. In this example, we

attempt to create a filename by appending the string _file to the contents

of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a_file"

If we perform this sequence, the result will be nothing, because the

shell will try to expand a variable named a_file rather than a. This problem

can be solved by adding braces:

[me@linuxbox ~]$ echo "${a} file"
foo file

We have also seen that positional parameters greater than 9 can be

accessed by surrounding the number in braces. For example, to access the

11th positional parameter, we can do this: ${11}.

Expansions to Manage Empty Variables

Several parameter expansions deal with nonexistent and empty variables.

These expansions are handy for handling missing positional parameters

and assigning default values to parameters. Here is one such expansion:

${parameter: -word}

If parameter is unset (i.e., does not exist) or is empty, this expansion

results in the value of word. If parameter is not empty, the expansion results
in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar
Rago ete ~]$ echo ${foo:-"substitute value if unset"}
ar
[me@linuxbox ~]$ echo $foo
bar

Here is another expansion, in which we use the equal sign instead of
a dash:

${parameter:=word}

Note:

If parameter is unset or empty, this expansion results in the value of word.
In addition, the value of word is assigned to parameter. If parameter is not empty,
the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:="default value if unset" }
default value if unset
[me@linuxbox ~]$ echo $foo
default value if unset
{me@linuxbox ~]$ foo=bar
gr at ~]$ echo ${foo:="default value if unset"}
ar
[me@linuxbox ~]$ echo $foo
bar

Positional and other special parameters cannot be assigned this way.

Here we use a question mark:

${parameter: ?word}

If parameter is unset or empty, this expansion causes the script to exit

with an error, and the contents of word are sent to standard error. If parameter

is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty
[me@linuxbox ~]$ echo $?
iz

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar
[me@linuxbox ~]$ echo $?
0

Here we use a plus sign:

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If

parameter is not empty, the value of word is substituted for parameter; however,

the value of parameter is not changed.

[me@linuxbox ~]$ foo= ,

[me@linuxbox ~]$ echo ${foo:+"substitute value if set }

[me@linuxbox ~]$ foo=bar ¥

[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

substitute value if set

Expansions That Return Variable Names

The shell has the ability to return the names of variables. This feature is

used in some rather exotic situations.

Strings and Numbers 401

402 Chapter 34

${ ! prefix*}
${! prefix@}

This expansion returns the names of existing variables with names

beginning with prefix. According to the bash documentation, both forms

of the expansion perform identically. Here, we list all the variables in the

environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}
BASH BASH ARGC BASH ARGV BASH_COMMAND BASH_COMPLETION BASH_COMPLETION DIR

BASH_LINENO BASH SOURCE BASH_SUBSHELL BASH _VERSINFO BASH VERSION

String Operations

There is a large set of expansions that can be used to operate on strings. Many

of these expansions are particularly well suited for operations on pathnames.

The expansion

${#parameter}

expands into the length of the string contained by parameter. Normally,

parameter is a string; however, if parameter is either @ or *, then the expansion

results in the number of positional parameters.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
‘This string is long.' is 20 characters long.

${parameter: offset}
${parameter: offset: length}

This expansion is used to extract a portion of the string contained in

parameter. The extraction begins at offset characters from the beginning of the

string and continues until the end of the string, unless the length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${fo00:5}
string is long.
[me@linuxbox ~]$ echo ${fo00:5:6}
string

If the value of offset is negative, it is taken to mean it starts from the
end of the string rather than the beginning. Note that negative values must
be preceded by a space to prevent confusion with the ${parameter: -word}
expansion. length, if present, must not be less than 0.

If parameter is @, the result of the expansion is length positional paramet-
ers, starting at offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}
long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

${parameter#tpattern}
${parameter##pattern}

These expansions remove a leading portion of the string contained in
parameter defined by pattern. pattern is a wildcard pattern like those used in
pathname expansion. The difference in the two forms is that the # form
removes the shortest match, while the ## form removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo#*. }
txt.zip
[me@linuxbox ~]$ echo ${foo##*. }
zip

${parameterxpattern}
${parameterxxpattern}

These expansions are the same as the # and ## expansions above, except

they remove text from the end of the string contained in parameter rather

than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo%.*}
file.txt
[me@linuxbox ~]$ echo ${f00%%.*}
file

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/xpattern/string}

This expansion performs a search and replace upon the contents of

parameter. If text is found matching wildcard pattern, it is replaced with the

contents of string. In the normal form, only the first occurrence of pattern is

replaced. In the // form, all occurrences are replaced. The /# form requires

that the match occur at the beginning of the string, and the /% form requires

the match to occur at the end of the string. /string may be omitted, which

causes the text matched by pattern to be deleted.

[me@linuxbox ~]$ foo=JPG.IPG
[me@linuxbox ~]$ echo ${foo/JPG/jpg}
jpg-JPG
[me@linuxbox ~]$ echo ${foo0//JPG/jpg}

jpg - jJps
[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg. JPG
[me@linuxbox ~]$ echo ${fo0/%IPG/ jpg}
IPG. jpg

Parameter expansion is a good thing to know. The string-manipulation

expansions can be used as substitutes for other common commands such as

sed and cut. Expansions improve the efficiency of scripts by eliminating the

use of external programs. As an example, we will modify the longest-word

program discussed in the previous chapter to use the parameter expansion

Strings and Numbers 403

${#j} in place of the command substitution $(echo $j | we -c) and its result-

ing subshell, like so:

#!/bin/bash

longest-word3 : find longest string in a file

TOLL G0
if [i =m $i |); then

max_word=
max_len=0
for j in $(strings $i); do

len=${#j}
if ((len > max_len)); then

max_len=$len
max_word=$}

1
done
echo "$i: '$max_word' ($max_len characters)"

+i
done

Next, we will compare the efficiency of the two versions by using the

time command:

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: '‘scrollkeeper-get-extended-content-list' (38 characters)

real Om3.618s
user om1.544s
sys Om1.768s
[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38 characters)

real OmO0.060s

user Om0.056s

sys Om0.008s

The original version of the script takes 3.618 seconds to scan the

text file, while the new version, using parameter expansion, takes only

0.06 seconds—a very significant improvement.

Arithmetic Evaluation and Expansion

We looked at arithmetic expansion in Chapter 7. It is used to perform vari-

ous arithmetic operations on integers. Its basic form is

$((expression))

where expression is a valid arithmetic expression.

This is related to the compound command ((_)) used for arithmetic

evaluation (truth tests) we encountered in Chapter 27.

In previous chapters, we saw some of the common types of expressions
and operators. Here, we will look at a more complete list.

404 Chapter 34

Number Bases

Back in Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16)
numbers. In arithmetic expressions, the shell supports integer constants in
any base. Table 34-1 shows the notations used to specify the bases.

Table 34-1: Specifying Different Number Bases

Notation Description

Number By default, numbers without any notation are treated as
decimal (base 10) integers.

Onumber In arithmetic expressions, numbers with a leading zero are
considered octal.

Oxnumber Hexadecimal notation

baset#number number is in base.

Some examples:

[me@linuxbox ~]$ echo $((Oxff))
255
[me@linuxbox ~]$ echo $((2#11111111))
255

In these examples, we print the value of the hexadecimal number ff

(the largest two-digit number) and the largest eight-digit binary (base 2)

number.

Unary Operators

There are two unary operators, the + and the -, which are used to indicate if

a number is positive or negative, respectively.

Simple Arithmetic

The ordinary arithmetic operators are listed in Table 34-2.

Table 34-2: Arithmetic Operators

Operator _ Description

+ Addition

a Subtraction

* Multiplication

/ Integer division

** Exponentiation

% Modulo (remainder)

Strings and Numbers 405

406 Chapter 34

Most of these are self-explanatory, but integer division and modulo

require further discussion.

Since the shell’s arithmetic operates on only integers, the results of divi-

sion are always whole numbers:

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation

more important:

[me@linuxbox ~]$ echo $((5 % 2))
Al

By using the division and modulo operators, we can determine that 5

divided by 2 results in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be

performed at specified intervals during the loop’s execution. In the example

below, we display a line of numbers, highlighting each multiple of 5:

#!/bin/bash

modulo : demonstrate the modulo operator

foe (((¢iee Ole <i? Ore = alee) SLO
remainder=$((i % 5))
if ((remainder == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<O>M 125354 5<5 > 6a 782 9) <105n 14 120381 4e SS ioeiged od OEcoO>

Assignment

Although its uses may not be immediately apparent, arithmetic expressions
may perform assignment. We have performed assignment many times,
though in a different context. Each time we give a variable a value, we are
performing assignment. We can also do it within arithmetic expressions:

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ if ((foo = 5));then echo "It is true."; fi
ihe iS weU A,
[me@linuxbox ~]$ echo $foo
5

Note:

In the example above, we first assign an empty value to the variable foo
and verify that it is indeed empty. Next, we perform an if with the com-
pound command ((foo = 5)). This process does two interesting things:
(1) it assigns the value of 5 to the variable foo, and (2) it evaluates to true
because the assignment was successful.

It is important to remember the exact meaning of the = in the expression above. A single
= 5 says, “Make foo equal to 5.” A double == evaluates

equivalence: foo == 5 says, “Does foo equal 5?” This can be very confusing because
the test command accepts a single = for string equivalence. This is yet another reason

to use the more modern [[]] and (()) compound commands in place of test.

= performs assignment: foo

In addition to =, the shell provides notations that perform some very

useful assignments, as shown in Table 343.

Table 34-3: Assignment Operators

Notation

parameter =

parameter +=

parameter -=

parameter *=

parameter /=

parameter %=

parameter++

parameter--

++parameter

--parameter

value

value

value

value

Description

Simple assignment. Assigns value to parameter.

Addition. Equivalent to parameter = parameter +

value.

Subtraction. Equivalent to parameter = parameter —
value.

Multiplication. Equivalent to parameter = parameter x

value.

Integer division. Equivalent to parameter = parameter ~

value.

Modulo. Equivalent to parameter = parameter % value.

Variable postincrement. Equivalent to parameter =

parameter + 1. (However, see the following

discussion.)

Variable post-decrement. Equivalent to parameter =

parameter - |.

Variable pre-increment. Equivalent to parameter =

parameter + |.

Variable pre-decrement. Equivalent to parameter =

parameter - |.

These assignment operators provide a convenient shorthand for many

common arithmetic tasks. Of special interest are the increment (++) and

decrement (--) operators, which increase or decrease the value of their

parameters by 1. This style of notation is taken from the C programming

Strings and Numbers 407

408 Chapier 34

language and has been incorporated by several other programming lan-

guages, including bash.

The operators may appear either at the front of a parameter or at the

end. While they both either increment or decrement the parameter by 1, the

two placements have a subtle difference. If placed at the front of the param-

eter, the parameter is incremented (or decremented) before the parameter

is returned. If placed after, the operation is performed after the parameter is

returned. This is rather strange, but it is the intended behavior. Here isa

demonstration:

me@linuxbox ~]$ foo=1
me@linuxbox ~]$ echo $((foo++))

me@linuxbox ~]$ echo $foo
NoRor

If we assign the value of | to the variable foo and then increment it with

the ++ operator placed after the parameter name, foo is returned with the

value of 1. However, if we look at the value of the variable a second time, we

see the incremented value. If we place the ++ operator in front of the param-

eter, we get this more expected behavior:

me@linuxbox ~]$ foo=1
me@linuxbox ~]$ echo $((++fo00))

me@linuxbox ~]$ echo $foo

[
[
2
[
2

For most shell applications, prefixing the operator will be the most

useful.

The ++ and -- operators are often used in conjunction with loops. We

will make some improvements to our modulo script to tighten it up a bit:

#!/bin/bash

modulo2 : demonstrate the modulo operator

Fora((i r= 059i) <2) 20 ati)))) ado
if (((i % 5) == 0))3 then

printt “<4d> 7" $7
else

printf "%d " $i
pal

done

orci ~ Wale

Bit Operations

One class of operators manipulates numbers in an unusual way. These oper-
ators work at the bit level. They are used for certain kinds of low-level tasks,
often involving setting or reading bit flags. Table 34-4 lists the bit operators.

Table 34-4: Bit Operators

Operator Description
~

Bitwise negation. Negate all the bits in a number.

<< Left bitwise shift. Shift all the bits in a number to the left.

»> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two numbers.

Bitwise XOR. Perform an exclusive OR operation on all the bits in
two numbers.

Note that there are also corresponding assignment operators (for

example, <<=) for all but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left

bitwise shift operator:

me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done [
4
2
4

Logic

As we discovered in Chapter 27, the ((_)) compound command supports a

variety of comparison operators. There are a few more that can be used to

evaluate logic. Table 34-5 shows the complete list.

Table 34-5: Comparison Operators

Operator Description

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

zk Equal to

(continued)

Strings and Numbers 409

410 Chapter 34

Table 34-5 (continued)

Operator Description

l= Not equal to

8& Logical AND

|| Logical OR

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1

evaluates to be non-zero (arithmetic true) then expr2,

else expr3.

When used for logical operations, expressions follow the rules of arith-

metic logic; that is, expressions that evaluate as 0 are considered false, while

non-zero expressions are considered true. The ((_)) compound command

maps the results into the shell’s normal exit codes:

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This oper-

ator (which is modeled after the one in the C programming language)

performs a standalone logical test. It can be used as a kind of if/then/else

statement. It acts on three arithmetic expressions (strings won’t work), and

if the first expression is true (or non-zero), the second expression is per-

formed. Otherwise, the third expression is performed. We can try this on

the command line.

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
ak

[me@linuxbox ~]$ ((a<1?++a:--a))

[me@linuxbox ~]$ echo $a

Here we see a ternary operator in action. This example implements a
toggle. Each time the operator is performed, the value of the variable a

switches from 0 to 1 or vice versa.

Please note that performing assignment within the expressions is not
straightforward. When this is attempted, bash will declare an error:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?a+=1:a-=1))
Po a<l?at=1:a-=1: attempted assignment to non-variable (error token is
mi

This problem can be mitigated by surrounding the assignment expres-
sion with parentheses:

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

Next, we see a more comprehensive example of using arithmetic opera-
tors in a script that produces a simple table of numbers:

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0
a=0

printf “a\ta**2\ta**3\n"
printf “=\t====\t====\n"

until ((finished)); do
b=$((a**2))

c=$((a**3))
printf "%d\tzd\t%d\n" $a $b $c
((a<10?++a: (finished=1)))

done

In this script, we implement an until loop based on the value of the

finished variable. Initially, the variable is set to 0 (arithmetic false), and we

continue the loop until it becomes non-zero. Within the loop, we calculate

the square and cube of the counter variable a. At the end of the loop, the

value of the counter variable is evaluated. If it is less than 10 (the maximum

number of iterations), it is incremented by 1, else the variable finished is

given the value of 1, making finished arithmetically true and thereby ter-

minating the loop. Running the script gives this result:

[me@linuxbox ~]$ arith-loop
a ea at*3

0 0 0

1 1 1

2 4 8

3 9 Pa
4 16 64

5 25 t2)
6 36 216

7 49 343
8 64 512

9 81 729
10 100 1000

be—An Arbitrary-Precision Calculator Language

We have seen that the shell can handle all types of integer arithmetic, but

what if we need to perform higher math or even just use floating-point num-

bers? The answer is, we can’t. At least not directly with the shell. To do this,

Strings and Numbers 411

we need to use an external program. There are several approaches we can

take. Embedding Perl or AWK programs is one possible solution but, unfor-

tunately, outside the scope of this book.

Another approach is to use a specialized calculator program. One such

program found on most Linux systems is called bc.

The be program reads a file written in its own C-like language and exe-

cutes it. A bc script may be a separate file, or it may be read from standard

input. The bc language supports quite a few features, including variables,

loops, and programmer-defined functions. We won’t cover bc entirely here,

just enough to get a taste. bc is well documented by its man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2:

/* A very simple bc script */

ap 2

The first line of the script is a comment. bc uses the same syntax for

comments as the C programming language. Comments, which may span

multiple lines, begin with /* and end with */.

Using bc

If we save the bc script above as foo.bc, we can run it this way:

[me@linuxbox ~]$ be foo.bc
bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation,
Inc.

This is free software with ABSOLUTELY NO WARRANTY.
For details type “warranty'.
4

If we look carefully, we can see the result at the very bottom, after the

copyright message. This message can be suppressed with the -q (quiet)
option.

bc can also be used interactively:

[me@linuxbox ~]$ be -q
2+ 2

4
quit

When using bc interactively, we simply type the calculations we wish to
perform, and the results are immediately displayed. The bc command quit
ends the interactive session.

It is also possible to pass a script to be via standard input:

[me@linuxbox ~]$ be < foo.be
4

412 Chapter 34

The ability to take standard input means that we can use here docu-
ments, here strings, and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ be <<< "242"
4

An Example Script

As a real-world example, we will construct a script that performs a common
calculation, monthly loan payments. In the script below, we use a here docu-
ment to pass a script to be:

#!/bin/bash

loan-calc : script to calculate monthly loan payments

PROGNAME=$(basename $0)

usage () {
cat <<- EOF

Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

Where:

PRINCIPAL is the amount of the loan.

INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF

}

if (($# != 3)); then
usage
exit 1

fi

principal=$1
interest=$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12

p = $principal
n = $months

meron CL iy en) ye (CL yen = 1))
print a, "\n"

EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180

1270.7222490000

This example calculates the monthly payment for a $135,000 loan at

7.75% APR for 180 months (15 years). Notice the precision of the answer.

This is determined by the value given to the special scale variable in the bc

Strings and Numbers 413

script. A full description of the bc scripting language is provided by the bc

man page. While its mathematical notation is slightly different from that

of the shell (bc more closely resembles C), most of it will be quite familiar,

based on what we have learned so far.

Final Note

In this chapter, we have learned about many of the little things that can be

used to get the “real work” done in scripts. As our experience with scripting

grows, the ability to effectively manipulate strings and numbers will prove

extremely valuable. Our loan-calc script demonstrates that even simple

scripts can do some really useful things.

Extra Credit

414 Chapter 34

While the basic functionality of the loan-calc script is in place, the script is

far from complete. For extra credit, try improving the loan-calc script with

the following features:

e =©Full verification of the command-line arguments

e Acommand-line option to implement an “interactive” mode that

will prompt the user to input the principal, interest rate, and term

of the loan

e A better format for the output

ARRAYS

In the last chapter, we looked at how the shell can
manipulate strings and numbers. The data types we

have looked at so far are known in computer science

circles as scalar variables, that is, variables that contain

a single value.
In this chapter, we will look at another kind of data structure called an

array, which holds multiple values. Arrays are a feature of virtually every pro-

gramming language. The shell supports them, too, though in a rather lim-

ited fashion. Even so, they can be very useful for solving programming

problems.

What Are Arrays?

Arrays are variables that hold more than one value at a time. Arrays are

organized like a table. Let’s consider a spreadsheet as an example. A spread-

sheet acts like a two-dimensional array. It has both rows and columns, and an

individual cell in the spreadsheet can be located according to its row and

column address. An array behaves the same way. An array has cells, which

are called elements, and each element contains data, An individual array ele-

ment is accessed using an address called an index or subscript.

Most programming languages support multidimensional arrays. A spread-

sheet is an example of a multidimensional array with two dimensions, width

and height. Many languages support arrays with an arbitrary number of

dimensions, though two- and three-dimensional arrays are probably the

most commonly used.

Arrays in bash are limited to a single dimension. We can think of them

as a spreadsheet with a single column. Even with this limitation, there are

many applications for them. Array support first appeared in bash version 2.

The original Unix shell program, sh, did not support arrays at all.

Creating an Array

Array variables are named just like other bash variables and are created auto-

matically when they are accessed. Here is an example:

[me@linuxbox ~]$ a[1]=foo
[me@linuxbox ~]$ echo ${a[1]}
foo

Here we see an example of both the assignment and access of an array

element. With the first command, element | of array a is assigned the value

foo. The second command displays the stored value of element 1. The use of

braces in the second command is required to prevent the shell from

attempting pathname expansion on the name of the array element.

An array can also be created with the declare command:

[me@linuxbox ~]$ declare -a a

Using the -a option, this example of declare creates the array a.

Assigning Values to an Array

416 = Chapter 35

Values may be assigned in one of two ways. Single values may be assigned
using the following syntax:

name [subscript]=value

where name is the name of the array and subscript is an integer (or arith-
metic expression) greater than or equal to 0. Note that the first element of
an array is subscript 0, not 1. value is a string or integer assigned to the array
element.

Multiple values may be assigned using the following syntax:

name=(value1 value2 ...)

where name is the name of the array and value1 value2 ... are values assigned
sequentially to elements of the array, starting with element 0. For example,

if we wanted to assign abbreviated days of the week to the array days, we
could do this:

[me@linuxbox ~]$ days=(Sun Mon Tue Wed Thu Fri Sat)

It is also possible to assign values to a specific element by specifying a
subscript for each value:

[me@linuxbox ~]$ days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu [5]=Fri [6]=Sat)

Accessing Array Elements

So what are arrays good for? Just as many data-management tasks can be

performed with a spreadsheet program, many programming tasks can

be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We

will construct a script that examines the modification times of the files in a

specified directory. From this data, our script will output a table showing at

what hour of the day the files were last modified. Such a script could be used

to determine when a system is most active. This script, called hours, produces

this result:

[me@linuxbox ~]$ hours .
Hour Files Hour Files

00 0 12 14)

01 1 13 7

02 0 14 1

03 10) 15 7

04 1 16 6

05 1 17 5

06 6 18 4
07 3 19 4

08 a 20 at

09 14 Pelt 0

10 2 22 0

“Hs 5 Pig: 0

Total files = 80

We execute the hours program, specifying the current directory as the

target. It produces a table showing, for each hour of the day (0-23), how

many files were last modified. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () { :

; echo “usage: $(basename $0) directory” >8&2

}

Arrays 417

Check that argument is a directory
if [[!-d $2 |]; then

usage
exit 1

fi

Initialize array
for i in {0..23}; do hours[i]=0; done

Collect data
for i in $(stat -c %y "$1"/* | cut -c 12-13); do

j=${i/#0}
((++hours[j]))
((++count))

done

Display data
echo -e "Hour\tFiles\tHour\tFiles"
echo -e "----\t----- \t----\t----- :
fOred neOeed tse

j=$((i + 12))
printf "%02d\t%d\t%o2d\t%d\n" $i ${hours[i]} $j ${hours[j]}

done
printf "\nTotal files = %d\n" $count

The script consists of one function (usage) and a main body with four

sections. In the first section, we check that there is a command-line argu-

ment and that it is a directory. If it is not, we display the usage message

and exit.

The second section initializes the array hours. It does this by assigning

each element a value of 0. There is no special requirement to prepare arrays

prior to use, but our script needs to ensure that no element is empty. Note

the interesting way the loop is constructed. By employing brace expansion

({0..23}), we are able to easily generate a sequence of words for the for

command.

The next section gathers the data by running the stat program on each

file in the directory. We use cut to extract the two-digit hour from the result.

Inside the loop, we need to remove leading zeros from the hour field, since

the shell will try (and ultimately fail) to interpret values 00 through 09 as

octal numbers (see Table 34-2). Next, we increment the value of the array

element corresponding with the hour of the day. Finally, we increment a

counter (count) to track the total number of files in the directory.

The last section of the script displays the contents of the array. We first

output a couple of header lines and then enter a loop that produces four

columns of output. Lastly, we output the final tally of files.

Array Operations

There are many common array operations. Such things as deleting arrays,

determining their size, sorting, and so on have many applications in scripting.

418 Chapter 35

Outputting the Entire Contents of an Array
The subscripts * and @ can be used to access every element in an array. As
with positional parameters, the @ notation is the more useful of the two.
Here is a demonstration:

[me@linuxbox ~]$ animals=("a dog" "a cat" "a fish")
[me@linuxbox ~]$ for i in ${animals[*]}; do echo $i; done
a
dog
a
cat
a
fish

[me@linuxbox ~]$ for i in ${animals[@]}; do echo $i; done
a
dog
a
cat

a
fish

[me@linuxbox ~]$ for i in "${animals[*]}"; do echo $i; done
a dog a cat a fish
[me@linuxbox ~]$ for i in "${animals[@]}"; do echo $i; done
a dog
a cat

a fish

We create the array animals and assign it three two-word strings. We then

execute four loops to see the effect of word-splitting on the array contents.

The behavior of notations ${animals[*]} and ${animals[@]} is identical until

they are quoted. The * notation results in a single word containing the array’s

contents, while the @ notation results in three words, which matches the

array’s “real” contents.

Determining the Number of Array Elements

Using parameter expansion, we can determine the number of elements in

an array in much the same way as finding the length of a string. Here is an

example:

me@linuxbox ~]$ a[100]=foo
me@linuxbox ~]$ echo ${#a[@]} # number of array elements
[
[
1

[me@linuxbox ~]$ echo ${#a[100]} # length of element 100

5

We create array a and assign the string foo to element 100. Next, we use

parameter expansion to examine the length of the array, using the @ nota-

tion. Finally, we look at the length of element 100, which contains the string

foo. It is interesting to note that while we assigned our string to element 100,

bash reports only one element in the array. This differs from the behavior of

some other languages, in which the unused elements of the array (elements

0-99) would be initialized with empty values and counted.

Arrays 419

420 Chapter 35

Finding the Subscripts Used by an Array

As bash allows arrays to contain “gaps” in the assignment of subscripts, it is

sometimes useful to determine which elements actually exist. This can be

done with a parameter expansion using the following forms:

${!array[*]}

${!array[@]}

where array is the name of an array variable. Like the other expansions that

use * and @, the @ form enclosed in quotes is the most useful, as it expands

into separate words:

me@linuxbox ~]$ foo=([2]=a [4]=b [6]=c)
me@linuxbox ~]$ for i in "${foo[@]}"; do echo $i; done
[
[
a
b
c
[me@linuxbox ~]$ for i in "${!foo[@]}"; do echo $i; done
2

4
6

Adding Elements to the End of an Array

Knowing the number of elements in an array is no help if we need to append

values to the end of an array, since the values returned by the * and @ nota-

tions do not tell us the maximum array index in use. Fortunately, the shell

provides us with a solution. By using the += assignment operator, we can

automatically append values to the end of an array. Here, we assign three

values to the array foo, and then append three more.

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
abc
[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcde f

Sorting an Array

Just as with spreadsheets, it is often necessary to sort the values in a column
of data. The shell has no direct way of doing this, but it’s not hard to do with
a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f1e dice bia)
echo "Original array: ${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))
echo "Sorted array: ${a_sorted[@]}"

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: fedcba
Sorted array: abcdef

The script operates by copying the contents of the original array (a)
into a second array (a_sorted) with a tricky piece of command substitution.
This basic technique can be used to perform many kinds of operations on
the array by changing the design of the pipeline.

Deleting an Array

To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c de f)
[me@linuxbox ~]$ echo ${foo[@]}
abe de ft
[me@linuxbox ~]$ unset foo
[me@linuxbox ~]$ echo ${foo[@]}

[me@linuxbox ~]$

unset may also be used to delete single array elements:

[me@linuxbox ~]$ foo=(a b c de f)
[me@linuxbox ~]$ echo ${foo[@] }
abcdef
[me@linuxbox ~]$ unset 'foo[2]'
[me@linuxbox ~]$ echo ${foo[@]}
abde f

In this example, we delete the third element of the array, subscript 2.

Remember, arrays start with subscript 0, not 1! Notice also that the array

element must be quoted to prevent the shell from performing pathname

expansion.
Interestingly, the assignment of an empty value to an array does not

empty its contents:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo[@]}
D erdive ct

Any reference to an array variable without a subscript refers to element 0

of the array:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
ay DRerdse nt
[me@linuxbox ~]$ foo=A
[me@linuxbox ~]$ echo ${foo[@]}
IN (3) © Ch a5

Arrays 42]

Final Note

422 Chapter 35

If we search the bash man page for the word array, we find many instances

in which bash makes use of array variables. Most of these are rather obscure,

but they may provide occasional utility in some special circumstances. In

fact, the entire topic of arrays is rather underutilized in shell programming,

largely because the traditional Unix shell programs (such as sh) lacked any

support for arrays. This lack of popularity is unfortunate, because arrays are

widely used in other programming languages and provide a powerful tool

for solving many kinds of programming problems.

Arrays and loops have a natural affinity and are often used together.

The following form of loop is particularly well suited to calculating array

subscripts:

for ((expr1; expr2; expr3))

36
EXOTICA

In this, the final chapter of our journey, we will look at
some odds and ends. While we have certainly covered

a lot of ground in the previous chapters, there are many

bash features that we have not covered. Most are fairly
obscure and useful mainly to those integrating bash into a Linux distribu-

tion. However, there are a few that, while not in common use, are helpful

for certain programming problems. We will cover them here.

’ Group Commands and Subshells

bash allows commands to be grouped together. This can be done in one of

two ways: either with a group command or with a subshell. Here are examples

of the syntax of each.

Group command:

{ command1; command2; [command3; ...] }

Subshell:

(command1; command2; [command3;...])

424 Chapter 36

The two forms differ in that a group command surrounds its commands

with braces and a subshell uses parentheses. It is important to note that, due

to the way bash implements group commands, the braces must be separated

from the commands by a space and the last command must be terminated

with either a semicolon or a newline prior to the closing brace.

Performing Redirections

So what are group commands and subshells good for? While they have an

important difference (which we will get to in a moment), they are both used

to manage redirection. Let’s consider a script segment that performs redir-

ections on multiple commands:

ls -1 > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward: three commands with their output

redirected to a file named output.txt. Using a group command, we could

code this as follows:

{ ls -]; echow"Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar:

(1s -1; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique, we have saved ourselves some typing, but where a

group command or subshell really shines is with pipelines. When construct-

ing a pipeline of commands, it is often useful to combine the results of sev-

eral commands into a single stream. Group commands and subshells make
this easy:

{ Is*-1;, echo “Listing, of foo.txt!; cat foo.txt; .} .|. Ipr

Here we have combined the output of our three commands and piped

them into the input of lpr to produce a printed report.

Process Substitution

While they look similar and can both be used to combine streams for
redirection, there is an important difference between group commands
and subshells. Whereas a group command executes all of its commands
in the current shell, a subshell (as the name suggests) executes its com-
mands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell
exits, the copy of the environment is lost, so any changes made to the
subshell’s environment (including variable assignment) are lost as well.

Therefore, in most cases, unless a script requires a subshell, group com-
mands are preferable to subshells. Group commands are both faster and
require less memory.

We saw an example of the subshell environment problem in Chapter 28,
when we discovered that a read command in a pipeline does not work as we
might intuitively expect. To recap, when we construct a pipeline like this:

echo "foo" | read
echo $REPLY

the content of the REPLY variable is always empty, because the read command

is executed in a subshell and its copy of REPLY is destroyed when the subshell

terminates.

Because commands in pipelines are always executed in subshells, any

command that assigns variables will encounter this issue. Fortunately, the

shell provides an exotic form of expansion called process substitution that can

be used to work around this problem.

Process substitution is expressed in two ways: for processes that produce

standard output:

<(list)

or for processes that intake standard input:

>(list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution

like this:

read < <(echo "foo")
echo $REPLY

Process substitution allows us to treat the output of a subshell as an

ordinary file for purposes of redirection. In fact, since it is a form of expan-

sion, we can examine its real value:

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output

of the subshell is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an

example of a read loop that processes the contents of a directory listing cre-

ated by a subshell:

#!/bin/bash

pro-sub : demo of process substitution

while read attr links owner group size date time filename; do

Exotica 425

Traps

426 Chapter 36

cat <<- EOF
Filename: $filename

Size: $size

Owner: Sowner

Group: $group
Modified: $date $time

Links: $links
Attributes: $attr

EOF

done < <(1s -1 | tail -n +2)

The loop executes read for each line of a directory listing. The listing

itself is produced on the final line of the script. This line redirects the out-

put of the process substitution into the standard input of the loop. The tail

command is included in the process substitution pipeline to eliminate the

first line of the listing, which is not needed.

When executed, the script produces output like this:

[me@linuxbox ~]$ pro-sub | head -n 20
Filename: addresses.ldif
Size: 14540
Owner: me

Group: me
Modified: 2012-04-02 11:12

Links: ‘i

Attributes: -rw-r--r--

Filename: bin

Size: 4096
Owner: me

Group: me
Modified: 2012-07-10 07:31
Links: 2

Attributes: drwxr-xr-x

Filename: bookmarks.html

Size: 394213

Owner: me

Group: me

In Chapter 10, we saw how programs can respond to signals. We can add

this capability to our scripts, too. While the scripts we have written so far

have not needed this capability (because they have very short execution

times and do not create temporary files), larger and more complicated

scripts may benefit from having a signal-handling routine.

When we design a large, complicated script, it is important to consider
what happens if the user logs off or shuts down the computer while the
script is running. When such an event occurs, a signal will be sent to all
affected processes. In turn, the programs representing those processes can
perform actions to ensure a proper and orderly termination of the program.
Let’s say, for example, that we wrote a script that created a temporary file

during its execution. In the course of good design, we would have the script
delete the file when the script finishes its work. It would also be smart to
have the script delete the file if a signal is received indicating that the pro-
gram was going to be terminated prematurely.

bash provides a mechanism for this purpose known as a trap. Traps are
implemented with the appropriately named built-in command trap. trap
uses the following syntax:

trap argument signal [signal...]

where argument is a string that will be read and treated as a command, and

signal is the specification of a signal that will trigger the execution of the

interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo : simple signal handling demo

trap "echo ‘I am ignoring you.'" SIGINT SIGTERM

FOr 1 in {1:-5}7 do
echo "Iteration $i of 5"
sleep 5

done

This script defines a trap that will execute an echo command each time

either the SIGINT or SIGTERM signal is received while the script is running.

Execution of the program looks like this when the user attempts to stop the

script by pressing CTRL-C:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5
Iteration 2 of 5
I am ignoring you.
Iteration 3 of 5
I am ignoring you.
Iteration 4 of 5
Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program,

the message is printed instead.

Constructing a string to form a useful sequence of commands can be

awkward, so it is common practice to specify a shell function as the com-

mand. In this example, a separate shell function is specified for each signal

to be handled:

#!/bin/bash

trap-demo2 : simple signal handling demo

exit_on_signal_ SIGINT () {
echo "Script interrupted." 2>81

exit 0

Exotica 427

exit_on _signal_ SIGTERM () {
echo "Script terminated." 2>81
exit 0

}

trap exit_on_ signal SIGINT SIGINT
trap exit_on signal SIGTERM SIGTERM

Tele ah aa) Glahoo Sas tale
echo "Iteration $i of 5"

sleep 5
done

This script features two trap commands, one for each signal. Each trap,

in turn, specifies a shell function to be executed when the particular signal

is received. Note the inclusion of an exit command in each of the signal-

handling functions. Without an exit, the script would continue after com-

pleting the function.

When the user presses CTRL-C during the execution of this script, the

results look like this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
Script interrupted.

TEMPORARY FILES

One reason signal handlers are included in scripts is to remove temporary files

that the script may create to hold intermediate results during execution. There

is something of an art to naming temporary files. Traditionally, programs on

Unix-like systems create their temporary files in the /tmp directory, a shared

directory intended for such files. However, since the directory is shared, this

poses certain security concerns, particularly for programs running with super-

user privileges. Aside from the obvious step of setting proper permissions for

files exposed to all users of the system, it is important to give temporary files
non-predictable filenames. This avoids an exploit known as a temp race attack.

One way to create a non-predictable (but still descriptive) name is to do some- —

thing like this: =

tempfiles/ tmp/$(basename $0) .$$.$RANDOM

This will create a filename consisting of the program’s name, followed by

its process ID (PID), followed by a random integer. Note, however, that the

$RANDOM shell variable returns a value only in the range of 1 to 32767, which is
not a very large range in computer terms, so a single instance of th 2 variable a

is not sufficient to overcome a determined attacker. -

__ A better way is to use the mktemp program (not to be confused with the
ktm standard a ae to both name e and create the temporary ‘file,

428 Chapter 36

The mktemp program accepts a template as an argument that is used to build
the filename. The template should include a series of X characters, which are
replaced by a corresponding number of random letters and numbers, The
longer the series of X characters, the longer the series of random characters.
Here is an example:

tempfile=$(mktemp /tmp/foobar .$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The X characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded value —

of the special parameter $$ to obtain the PID) might be something like

/tmp/foobar .6593 .UOZuvM6654

While the mktemp man page § states that mktemp makes a tema filename,

mktemp also creates the file as well. 2

For scripts that are executed by regular users, it may be wise to avoid the

use of the /tmp directory and create a directory for temporary files within the

user’s home directory, with a line of code such as this:

[[-d $HOME/tmp]] || mkdir SHOME /émp

Asynchronous Execution
It is sometimes desirable to perform more than one task at the same time.

We have seen that all modern operating systems are at least multitasking if

not multiuser as well. Scripts can be constructed to behave in a multitasking

fashion.

Usually this involves launching a script that, in turn, launches one or

more child scripts that perform an additional task while the parent script

continues to run. However, when a series of scripts runs this way, there can

be problems keeping the parent and child coordinated. That is, what if the

parent or child is dependent on the other, and one script must wait for the

other to finish its task before finishing its own?

bash has a built-in command to help manage asynchronous execution such

as this. The wait command causes a parent script to pause until a specified

process (i.e., the child script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two

scripts. Here is the parent script:

#!/bin/bash

async-parent : Asynchronous execution demo (parent)

echo "Parent: starting..."

Exotica 429

echo "Parent: launching child script..."

async-child &
pid=$!
echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..
wait $pid

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

And here is the child script:

#!/bin/bash

async-child : Asynchronous execution demo (child)

echo "Child: child is running..."
sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is very simple. The real

action is being performed by the parent. In the parent script, the child script

is launched and put into the background. The process ID of the child script is

recorded by assigning the pid variable with the value of the $! shell param-

eter, which will always contain the process ID of the last job put into the

background.

The parent script continues and then executes a wait command with

the PID of the child process. This causes the parent script to pause until the

child script exits, at which point the parent script concludes.

When executed, the parent and child scripts produce the following
output:

[me@linuxbox ~]$ async-parent
Parent: starting...
Parent: launching child script...
Parent: child (PID= 6741) launched.
Parent: continuing...
Child: child is running...
Parent: pausing to wait for child to finish...
Child: child is done. Exiting.
Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes

430 Cha pter 36

In most Unix-like systems, it is possible to create a special type of file called

a named pipe. Named pipes are used to create a connection between two pro-
cesses and can be used just like other types of files. They are not that popu-
lar, but they’re good to know about.

There is a common programming architecture called client/server, which
can make use of a communication method such as named pipes, as well as
other kinds of interprocess communication such as network connections.

The most widely used type of client/server system is, of course, a web
browser communicating with a web server. The web browser acts as the cli-
ent, making requests to the server, and the server responds to the browser
with web pages.

Named pipes behave like files but actually form first-in, first-out (FIFO)
buffers. As with ordinary (unnamed) pipes, data goes in one end and emerges
out the other. With named pipes, it is possible to set up something like this:

process1 > named_pipe

and

process2 < named_pipe

and it will behave as if

processi1 | process2

Setting Up a Named Pipe

First, we must create a named pipe. This is done using the mkfifo command:

[me@linuxbox ~]$ mkfifo pipet
[me@linuxbox ~]$ ls -1 pipet
prw-r--r-- 1 me me 0 2012-07-17 06:41 pipet

Here we use mkfifo to create a named pipe called pipe1. Using 1s, we

examine the file and see that the first letter in the attributes field is p, indi-

cating that it is a named pipe.

Using Named Pipes

To demonstrate how the named pipe works, we will need two terminal win-

dows (or, alternatively, two virtual consoles). In the first terminal, we enter a

simple command and redirect its output to the named pipe:

[me@linuxbox ~]$ ls -1 > pipet

After we press ENTER, the command will appear to hang. This is because

there is nothing receiving data from the other end of the pipe yet. When

this occurs, it is said that the pipe is blocked. This condition will clear once we

attach a process to the other end and it begins to read input from the pipe.

Using the second terminal window, we enter this command:

[me@linuxbox ~]$ cat < pipet

The directory listing produced from the first terminal window appears

in the second terminal as the output from the cat command. The ls com-

mand in the first terminal successfully completes once it is no longer

blocked.

Exotica 431

Final Note

432 Chapter 36

Well, we have completed our journey. The only thing left to do now is prac-

tice, practice, practice. Even though we covered a lot of ground in our trek,

we barely scratched the surface as far as the command line goes. There are

still thousands of command-line programs left to be discovered and enjoyed.

Start digging around in /usr/bin and you'll see!

INDEX

Symbols

--help option, 42

$*, 386

$@, 386

${ !array[*]}, 420

${!array[@]}, 420

${! prefix*}, 402

${!prefix@}, 402

${#parameter}, 402

${parameter:=word}, 400

${parameter: -word}, 400

${parameter:+word}, 401

${parameter: ?word}, 401

${parameter//pattern/string}, 403

${parameter/#pattern/string}, 403

${parameter/zpattern/string}, 403

${parameter/pattern/string}, 403

${parameter##pattern}, 403

${parameter#pattern}, 403

${parameter%mpattern}, 403

${parameterzpattern}, 403

$1, 430

$#, 382

$((expression)), 404

$0, 385

./configure, 302

.bash_history, 73

.bash_login, 113

.bash_profile, 112

bashre, 113, 115,312, 332, 385

profile, 113

.ssh/known_hosts, 184

Fa 9

/bin, 19

/boot, 19

/boot/grub/grub.conf, 19

/boot/vmlinuz, 19

/dev, 20

/dev/cdrom, 165

/dev/dud, 165

/dev/floppy, 165

/dev/null, 52

/etc, 20

/etc/bash.bashre, 113

/etc/crontab, 20

/etc/fstab, 20, 160, 170

/etc/group, 79

/etc/passwd, 20, 79, 241, 245, 352

/etc/profile, 112, 114

/etc/shadow, 79

/etc/sudoers, 87

/lib, 20

/lost+found, 20

/media, 20

/mnt, 20

/opt, 20

/proc, 21

/root, 21, 88

/sbin, 21

/tmp, 21, 429

/usr, 21

Jusr/bin, 21

Jusr/lib, 21

/usr/local, 21

/usr/local/bin, 21, 307, 312

/usr/local/sbin, 312

J/usr/sbin, 21

434 Index

/usr/share, 21

/usr/share/dict, 219

/usr/share/doc, 21, 45

/var, 22

/var/log, 22

/var/log/messages, 22, 57, 166

(()) compound command, 404, 409

[command, 365

A

a2ps command, 292

absolute pathnames, 9

alias command, 46, 111

aliases, 40, 46, 110

American National Standards

Institute (ANSI), 142

American Standard Code for

Information Interchange.

See ASCII

anchors, 219

anonymous FTP servers, 179

ANSI (American National Standards

Institute), 142

ANSI escape codes, 143

ANSI SYS, 142

Apache web server, 104

apropos command, 43

apt-cache command, 152

apt-get command, 152

aptitude command, 152

archiving, 205

arithmetic expansion, 62, 65-66, 321,

399, 404

arithmetic expressions, 62, 396, 404,

406, 416

arithmetic operators, 62, 405

arithmetic truth tests, 342, 404

arrays

appending values to the end, 420

assigning values, 416

creating, 416

deleting, 421

determining number of

elements, 419

finding used subscripts, 420

index, 416

multidimensional, 416

reading variables into, 348

sorting, 420

subscript, 416

two-dimensional, 415

ASCII (American Standard Code for

Information Exchange),17,

68, 71, 198, 222, 292

bell character, 140

carriage return, 236

collation order, 222, 224, 339

control codes, 68, 222, 286

groff output driver, 280

linefeed character, 236

null character, 198

printable characters, 222

text, 17

aspell command, 263

assembler, 298

assembly language, 298

assignment operators, 407

asynchronous execution, 429

audio CDs, 163, 172

AWK programming language,

263, 412

back references, 232, 260

backslash escape sequences, 68

backslash-escaped special

characters, 140

backups, incremental, 208

basename command, 385

bash (shell) 3, 110

man page, 44

basic regular expressions, 224, 231,

257, 260, 269

be command, 412

Berkeley Software Distribution

(BSD), 290

bg command, 102

binary, 81-82, 85, 298, 405

bit mask, 84

bit operators, 409

Bourne, Steve, 3

brace expansion, 63, 65, 394

branching, 333

break command, 360, 389

broken links, 37

BSD (Berkeley Software

Distribution), 290

BSD-style behavior, 98

buffering, 164

bugs, 369-373

build environment, 302

bzip2 command, 204

C

C programming language, 298,

396, 407, 410

C++ programming language, 298

cal command, 5

cancel command, 296

carriage return, 17, 68, 140,

222-223, 235, 262, 289

case compound command, 376

cat command, 53, 235

cd command, 9-10

cdrecord command, 172

CD-ROMs, 162-163, 172

cdrtools package, 172

character classes, 26—27, 220-224,

221,205,202

character ranges, 27, 220-221, 262

chgrp command, 91

child process, 96

chmod command, 81, 92, 311

chown command, 90, 92

chronological sorting, 241

cleartext, 179, 182

client-server architecture, 431

COBOL programming language, 298

collation order, 111, 222, 224,

254, 339

ASCII, 224, 339

dictionary, 222

traditional, 224

comm command, 249

command history, 4, 73

command line

arguments, 382

editing, 4, 70

expansion, 59

history, 4, 74

interfaces, 26, 28

command options, 14

command substitution, 64-65, 394

commands

arguments, 14, 382

determining type, 40

documentation, 41

executable program files, 40, 299

executing as another user, 87

long options, 14

options, 14

comments, 114, 118, 262, 310, 371

Common Unix Printing System

(CUPS), 288

comparison operators, 409

compiling, 298

completions, 72
compound commands

(()), 342, 354, 404

[[]], 341, 354

case, 376

for, 393

if, 334

until, 361

while, 358

compression algorithms, 202

conditional expressions, 366

configuration files, 17, 20, 109

configure command, 302

constants, 319

continue command, 360

control characters, 141, 235

control codes, 68, 222

control operators

&%, 345, 354

||, 345

controlling terminal, 96

COPYING (documentation file), 301

copying and pasting

on the command line, 70

in vim, 129

with X Window System, 5

coreutils package, 42, 44-45, 246

counting words in a file, 55

Index 435

436 Index

cp command, 28, 33, 116, 185

CPU, 95, 298

cron job, 189

crossword puzzles, 219

csplit command, 266

CUPS (Common Unix Printing

System), 288

current working directory, 8

cursor movement, 70

cut command, 243, 403

daemon programs, 96, 104

data compression, 202

data redundancy, 202

data validation, 341]

date command, 5

date formats, 241

dd command, 171

Debian, 150

debugging, 330, 370

defensive programming, 367, 370

delimiters, 66, 239, 241

dependencies, 151, 305

design, 368, 370

device drivers, 156, 298

device names, 164

device nodes, 20

df command, 6, 331

DHCP (Dynamic Host Configuration

Protocol), 178

diction program, 300

dictionary collation order, 222

diff command, 250

Digital Rights Management

(DRM), 151

directories

archiving, 205

changing, 9

copying, 28

creating, 28, 33

current working, 8

deleting, 31, 37

hierarchical, 7

home, 20, 79, 332

listing, 13

moving, 30, 35

navigating, 7

OLD PWD variable, 111

parent, 8

PATH variable, 111

PWD variable, 112

removing, 31, 37

renaming, 30, 35

root, 7

shared, 91

sticky bit, 86

synchronizing, 211

transferring over a network, 211

viewing contents, 8

disk partitions, 161

DISPLAY variable, 111

Dolphin, 28

dos2unix command, 236

double quotes, 65

dpkg command, 152

DRM (Digital Rights

Management), 151

du command, 238, 332

Dynamic Host Configuration

Protocol (DHCP), 178

echo command, 60, 111, 316

-e option, 68

-n option, 349

edge and corner cases, 370

EDITOR variable, 111

effective group ID, 86

effective user ID, 86, 96

elif statement, 339

email, 234

embedded systems, 298

empty variables, 400

encrypted tunnels, 185

encryption, 255

endless loop, 361

end-of-file, 54, 322

enscript command, 294

environment, 88, 109, 353

aliases, 110

establishing, 112

examining, 110

login shell, 112

shell functions, 110

shell variables, 110

startup files, 112

subshells, 424

variables, 110

eqn command, 279

executable programs, 40, 299, 303

determining location, 41

PATH variable, 111

exit command, 6, 338, 356

exit status, 334, 338

expand command, 246

expansions, 59

arithmetic, 62, 65-66, 321,

399, 404

brace, 63, 65, 394

command substitution,

64-65, 394

delimiters, 66

errors resulting from, 365

history, 74-76

parameter, 64, 65-66, 319,

323, 399

pathname, 60, 65, 394

tilde, 61, 65

word splitting, 65

expressions

arithmetic, 62, 396, 404, 406, 416

conditional, 366

ext3 filesystem, 169

extended regular expressions, 224

Extensible Markup Language

(XML), 234

F

false command, 335

fdformat command, 171

fdisk command, 167

fg command, 102

FIFO (first-in, first-out), 431

file command, 16

file descriptor, 51

File Transfer Protocol (FTP), 179

filenames, 198

case sensitive, 1]

embedded spaces in, 11, 232

extensions, 11

hidden, 11

files

access, 78

archiving, 205, 209

attributes, 79

block special, 80

block special device, 190

changing file mode, 81

changing owner and group

owner, 90

character special, 80

character special device, 190

compression, 202

configuration, 17, 109, 234

copying, 28, 33

copying over a network, 179

creating empty, 51

.deb, 150

deleting, 31, 37, 195

determining contents, 16

device nodes, 20

execution access, 79

expressions, 336, 338, 340

finding, 187

hidden, 11

ISO image, 172-173

listing, 8, 13

mode, 79

moving, 30, 34

owner, 81

permissions, 78

read access, 79

regular, 190

removing, 31, 37

renaming, 30, 34—35

rpm, 150

shared library, 20

startup, 112

sticky bit, 86

symbolic links, 190

synchronizing, 211

temporary, 428

Index 437

438 Index

files (continued)

text, 17

transferring over a network, 179,

209, 211

truncating, 51

type, 79

viewing contents, 17

write access, 79

filesystem corruption, 164

filters, 55

find command, 189, 208

firewalls, 176

first-in, first-out (FIFO), 431

floppy disks, 159, 165, 171

flow control

branching, 333

case compound command, 376

elif statement, 339

endless loop, 361

for compound command, 393

for loop, 393

function statement, 327

if compound command, 334

looping, 357

menu-driven, 355

multiple-choice decisions, 375

reading files with while and until

loops, 362

terminating a loop, 360

traps, 427

until loop, 361

while loop, 359

fmt command, 271

focus policy, 5

fold command, 271

for compound command, 393

for loop, 393

Foresight, 150

Fortran programming language,

298, 395

free command, 6, 164

Free Software Foundation, xxix

fsck command, 170

FTP (File Transfer Protocol), 179

ftp command, 179, 186, 300, 323

FTP servers, 179, 323

FUNCNAME variable, 385

function statement, 327

G
gcc (compiler), 299

gedit command, 101, 115

genisoimage command, 172

Gentoo, 150

Ghostscript, 288

gid (primary group ID), 78

global variables, 328

globbing, 26

GNOME, 3, 28, 38, 84, 115, 186

gnome-terminal, 3

GNU binutils package, 395

GNU C Compiler, 299

GNU coreutils package, 42,

44-45, 246

GNU Project, 14, 29, 300-301

info command, 44-45

GNU/Linux, 29

graphical user interface (GUI), xxvi,

Dao Une L

grep command, 56, 216, 352

groff command, 279

group commands, 423

groups, 78

effective group ID, 86

primary group ID, 78

GUI (graphical user interface), xxvi,

5, 28, 38, 70, 84, 112

gunzip command, 202

gzip command, 45, 202

hard disks, 159

hard links, 23, 32, 35

creating, 35

listing, 36

head command, 56

header files, 302

“hello world” program, 310

help command, 41

here documents, 321

here strings, 353

hexadecimal, 82, 405

hidden files, 11, 61

hierarchical directory structure, 7

high-level programming

languages, 298

history

expansion, 74-76

searching, 74

history command, 74

home directories, 8, 10, 20, 61,

88, 111

/etc/passwd, 79

root account, 21

HOME variable, 111

hostname, 140

HTML (Hypertext Markup

Language), 234, 263, 279,

315, 326

ICMP ECHO REQUEST, 176

id command, 78

IDE, 165

if compound command, 114,

365,375

IFS (Internal Field Separator)

variable, 351

incremental backups, 208

info files, 45

init program, 96

init scripts, 96

inodes, 36

INSTALL (documentation file), 301

installation wizard, 150

integers

arithmetic, 62, 411

division, 62, 405

interactivity, 347

Internal Field Separator (IFS)

variable, 351

interpreted languages, 299

interpreted programs, 299

interpreter, 299

I/O redirection, 49. See also

redirection

ISO images, 172-173

iso9660 (device type), 162, 173

J

job control, 101

job numbers, 101, 296

jobspec, 102

join command, 247

Joliet extensions, 173

Joy, Bill, 122

K

kate command, 115

KDE, 3, 28, 38, 84, 115, 186

kedit command, 115

kernel, xxv, xxix, 19, 43, 95, 104, 157,

1655:253,-305

device drivers, 156

key fields, 239

kill command, 103

killall command, 106

killing text, 70

Knuth, Donald, 279

Konqueror, 28, 84, 186

konsole (terminal emulator), 3

kwrite command, 101, 115

L

LANG variable, 111, 222, 224

less command, 17, 55, 211, 231

1ftp command, 181

libraries, 299

line editors, 122

line-continuation character, 262, 313

linker (program), 299

linking (process), 298

links

broken, 37

creating, 32

hardie23no2

symbolic, 22, 33

index 439

440 Index

Linux community, 149

Linux distributions, 149

CentOS, 150, 294

Debian, 150, 297

Fedora, xxviii, 79, 150, 294

Foresight, 150

Gentoo, 150

Linspire, 150

Mandriva, 150

OpenSUSE, xxviii, 150

packaging systems, 149

PCLinuxOS, 150

Red Hat Enterprise Linux, 150

Slackware, 150

Ubuntu, xxviii, 149-150, 294

Xandros, 150

Linux Filesystem Hierarchy Standard,

19, 312

Linux kernel, xxv, xxix, 19, 43, 95,

104, 157, 165, 253, 305

device drivers, 156

literal characters, 218

In command, 32, 35

local variables, 329

locale, 222, 224, 254, 339

locale command, 224

localhost, 182

locate command, 188, 230

logical errors, 366

logical operators, 192-193, 343

logical relationships, 192, 195

logical volume manager (LVM),

159, 162

login prompt, 6, 180

login shell, 79, 88, 112

long options, 14

loopback interface, 178

looping, 357

loops, 367, 406, 408, 422, 425

lossless compression, 202

lossy compression, 202

lp command, 291

lpq command, 295

lpr command, 290

lprm command, 296

lpstat command, 294

1s command, 8, 13

long format, 15

viewing file attributes, 79

Lukyanov, Alexander, 181

LVM (logical volume manager),

149; 162

machine language, 298

maintenance, 312, 316, 318, 325

make command, 303

Makefile, 303

man command, 42

man pages, 42, 280

markup languages, 234, 279

memory

assigned to each process, 96

displaying free, 6

RSS (Resident Set Size), 98

segmentation violation, 105

usage, 98, 106

virtual, 98

menu-driven programs, 355

meta key, 72

metacharacters, 218

metadata, 150, 152

metasequences, 218

mkdir command, 28, 33

mkfifo command, 431

mkfs command, 169, 171

mkisofs command, 172

mktemp command, 428

mnemonics, 298

modal editor, 124

monospaced fonts, 288

Moolenaar, Bram, 122

mount command, 161, 173

mount points, 20, 161, 163

mounting, 160

MP3 files, 91

multiple-choice decisions, 375

multitasking, 77, 95, 429

multiuser systems, 77

mv command, 30, 34

named pipes, 430

nano command, 122

Nautilus, 28, 84, 186

netstat command, 178

networking, 175

anonymous FTP servers, 179

default route, 179

Dynamic Host Configuration

Protocol (DHCP), 178

encrypted tunnels, 185

examining network settings and

statistics, 178

File Transfer Protocol (FTP), 179

firewalls, 176

local area network (LAN), 179

loopback interface, 178

man-in-the-middle attacks, 182

routers, 178

secure communication with

remote hosts, 182

testing whether a host is alive, 176

tracing the route to a host, HZ

transferring files, 211

transporting files, 179

virtual private network, 185

newline characters, 66, 140

NEWS (documentation file), 301

nl command, 268

nroff command, 279

null character, 198

number bases, 405

0
octal, 82, 405, 418

Ogg Vorbis files, 91

OLD PWD variable, 111

OpenOffice.org Writer, 17

OpenSSH, 182

operators

arithmetic, 62, 405

assignment, 407

binary, 366

comparison, 409

ternary, 410

owning files, 78

P

package files, 150

package maintainers, 151

package management, 149
Debian style (.deb), 150

finding packages, 152

high-level tools, 152

installing packages, 153

low-level tools, 152

package repositories, 151

Red Hat style (.rpm), 150

removing packages, 154

updating packages, 154

packaging systems, 149

page-description language, 234,

281, 287

PAGER variable, 111

pagers, 18

parameter expansion, 64, 65-66,

319, 323, 399

parent process, 96

passwd command, 93

passwords, 93

paste command, 246

PATA hard drives, 165

patch command, 253

patches, 250

PATH variable, 111, 114, 311, 327

pathname expansion, 60, 65, 394

pathnames, 230

absolute, 9

completion, 72

relative, 9

PDF (Portable Document Format),

281, 290

Perl programming language, 40, 216,

200,200,402

permissions, 310

PHP programming language, 299

ping command, 176

pipelines, 54, 095, 429

in command substitution, 64

portability, 304, 332, 345

Portable Document Format (PDF),

PAM G48

Index 441

442 Index

Portable Operating System Inter-

face (POSIX). See POSIX

(Portable Operation System

Interface)

positional parameters, 381, 400-402

POSIX (Portable Operating Sys-

tem Interface), 222,

224-225, 345

character classes, 26, 221,

223-224, 227, 255, 262

PostScript, 234, 280, 287, 292

pr command, 274, 288

primary group ID (gid), 78

printable characters, 222

printenv command, 64, 110

printers, 164

buffering output, 164

control codes, 286

daisy-wheel, 286

device names, 165

drivers, 288

graphical, 287

impact, 286

laser, 287

printf command, 275, 398

printing

determining system status, 294

history of, 286

Internet Printing Protocol, 295

monospaced fonts, 286

preparing text, 288

pretty, 292

proportional fonts, 287

queues, 294, 295-296

spooling, 294

terminating print jobs, 296

viewing jobs, 295
process ID, 96

process substitution, 425

processes, 95

background, 101

child, 96

controlling, 100

foreground, 101-102

interrupting, 101

job control, 101

killing, 103

nice, 97

parent, 96

process ID, 96

SIGINT, 427

signals, 103

SIGTERM, 427

sleeping, 97

state, 97

stopping, 102

viewing, 96, 98

zombie, 97

production use, 368

programmable completion, 73

ps command, 96

PS1 variable, 112, 140

PS2 variable, 317

ps2pdf command, 281

PS4 variable, 372

pseudocode, 333, 358

pstree command, 106

PuTTY, 186

pwd command, 8

PWD variable, 112

Python programming language, 299

Q

quoting, 65

double quotes, 65

escape character, 67

missing quote, 364

single quotes, 67

RAID (redundant array of

independent disks), 159

raster image processor (RIP), 288

read command, 348-351, 362,

368, 425

Readline, 70

README (documentation file),

45, 301

redirection

blocked pipe, 431

group commands and

subshells, 424

here documents, 321

here strings, 353

standard error, 51

standard input, 53, 323

standard output, 50

redirection operators

&, 52

>, 50

> 51

>(list), 425

<, 54

<<, 322-323

<<-, 323

<<<, 353

<(list), 425

|, 54

redundant array of independent disks

(RAID), 159

regular expressions, 56, 215, 259,

341, 352

anchors, 219

back references, 232, 259-260

basic, 224, 231-232, 257, 260, 269

extended, 224

relational databases, 247

relative pathnames, 9

“release early, release often,” 369

removing duplicate lines in a file, 55

REPLY variable, 348, 425

report generator, 315

repositories, 151

return command, 328, 338

RIP (raster image processor), 288

rlogin command, 182

rm command, 31

Rock Ridge extensions, 173

roff command, 279

ROT13 encoding, 255

rpm command, 152

rsync command, 212

rsync remote-update protocol, 212

Ruby programming language, 299

S
scalar variables, 415

Schilling, Jorg, 172

scp command, 185

script command, 76

scripting languages, 40, 299

sdiff command, 266

searching a file for patterns, 56

searching history, 74

Secure Shell (SSH), 182

sed command, 256, 282, 403

set command, 110, 371

setuid, 86, 337

Seward, Julian, 204

sftp command, 186

shared libraries, 20, 151

shebang, 311

shell builtins, 40

shell functions, 40, 110, 327, 385

shell prompts, 4, 9, 75, 88, 101, 112,

139, 183, 317

shell scripts, 309

SHELL variable, 111

shell variables, 110

shift command, 383, 388

SIGINT signal, 427

signals, 426

single quotes, 67

Slackware, 150

sleep command, 360

soft link, 22

sort command, 55, 236

sort keys, 239

source code, 150, 156, 235, 297

source command, 118, 312

source tree, 300

special parameters, 385, 401

split command, 266

SSH (Secure Shell), 182

ssh program, 77, 183, 209

Stallman, Richard, xxv, xxix, 116,

225, 299

standard error, 50

disposing of, 52

redirecting to a file, 51
standard input, 50, 323, 348

redirecting, 53
standard output, 50

appending to a file, 51

disposing of, 52

Index 443

444 Index

standard output (continued)

redirecting standard error to, 52

redirecting to a file, 50

startup files, 112

stat command, 199

sticky bit, 86

storage devices, 159

audio CDs, 163, 172

CD-ROMs, 162-163, 172

creating filesystems, 167

device names, 164

disk partitions, 161

FAT32 9167

floppy disks, 165, 171

formatting, 167

LVM, 162

mount points, 161, 163

partitions, 167

reading and writing directly, 171

repairing filesystems, 170

unmounting, 163

USB flash drives, 171

stream editor, 256, 282, 403

strings

${parameter:offset}, 402

${parameter: offset: length}, 402

extract a portion of, 402

length of, 402

perform search and replace

upon, 403

remove leading portion of, 403

remove trailing portion of, 403

strings command, 395

stubs, 330, 369

style (program file), 302

su command, 87

subshells, 353, 423

sudo command, 87—89

Sun Microsystems, 122

superuser, 4, 79, 88, 106

symbolic links, 22, 33, 36

creating, 36, 38

listing, 36

syntax errors, 363

syntax highlighting, 310, 314

T

tables, 247

tabular data, 239, 278

tail command, 56

tape archive, 205

tar command, 205

tarballs, 300

targets, 303

Task Manager, 100

Tatham, Simon, 186

tbl command, 279, 282

tee command, 57

teletype, 96

telnet command, 182

TERM variable, 112

terminal emulators, 3

terminal sessions

controlling the terminal, 96

effect of .bashrc, 312

environment, 88

exiting, 6

login shell, 88, 112

with remote systems, 77

TERM variable, 112

using named pipes, 431

virtual, 6

terminals, 71, 77, 142, 279

ternary operator, 410

test cases, 369

test command, 336, 341, 359, 366

test coverage, 370

testing, 369-370

TEX, 279

text, 7

adjusting line length, 271

ASCII, 17

carriage return, 236

comparing, 249

converting MS-DOS to Unix, 254

counting words, 55

cutting, 243

deleting duplicate lines, 242

deleting multiple blank lines, 236

detecting differences, 250

displaying common lines, 249

displaying control characters, 235 tilde expansion, 61, 65
DOS format, 236 tload command, 106
EDITOR variable, 111 top command, 98
expanding tabs, 246 top-down design, 326
files, 17 Torvalds, Linus, xxv
filtering, 55 touch command, 198-199, 213,
folding, 271 305, 389
formatting, 268 tr command, 254
formatting for typesetters, 279 traceroute command, 177

formatting tables, 282 tracing, 371

joining, 247 transliterating characters, 254
linefeed character, 236 traps, 427

lowercase to uppercase troff command, 279

conversion, 254 true command, 335

numbering lines, 236, 268 TTY (field), 96

paginating, 274 type command, 40

pasting, 246 typesetters, 279, 287

preparing for printing, 288 TZ variable, 112

removing duplicate lines, 55

rendering in PostScript, 280 U

ROT13 encoded, 255

searching for patterns, 56

sorting, 55, 236

spell checking, 263

substituting, 259

substituting tabs for spaces, 246

tab delimited, 245 message), 366

unary operators, 405

Ubuntu, 79, 89, 149, 222, 312

umask command, 84, 92

umount command, 163

unalias command, 47

unary operator expected (error

transliterating characters, 254

Unix format, 236

viewing with less, 17, 55

text editors, 115, 234, 254 uniq ORE ITE 55, 242
Unix, xxvi

Unix System V, 290

unix2dos command, 236

unexpand command, 246

unexpected tokens, 365

emacs, 116

gedit, 115, 310

interactive, 254
kate. 115. 310 unset command, 421

until compound command, 361
kedit, 115
poitt 115 until loop, 361

ae 199 unzip command, 210

ae 115. 122 updatedb command, 189

sie 115 upstream providers, 151

aed 256 ee 326 eet
‘shlighting, 310, 314 uptime command,

Tie ge USB flash drives, 159, 171
vi,

vim, 115, 310, 314 emake cane mae
‘sual, 122 USER variable, 110, 112

visual,

for writing shell scripts, 310

index 445

446 Index

users

/etc/passwd, 79

Jetc/shadow, '79

accounts, 78

changing identity, 87

changing passwords, 93

effective user ID, 86, 96

home directory, 79

identity, 78

password, 79

setuid, 86

superuser, 79, 81, 86-87, 93

V

validating input, 353

variables, 64, 318, 400

assigning values, 320, 406

constants, 319

declaring, 318, 320

environment, 110

global, 328

local, 329

names, 319, 401

scalar, 415

shell, 110

vfat filesystem, 170

vi command, 121

vim command, 232, 314

virtual consoles, 6

virtual private network (VPN), 185

virtual terminals, 6

visual editors, 122

vmstat command, 106

VPN (virtual private network), 185

W

wait command, 429

we command, 55

web pages, 234

weet command, 181

What You See Is What You Get

(WYSIWYG), 286

whatis command, 44

which command, 41

while compound command, 358

wildcards, 26, 53, 60, 216, 221

wodim command, 173

word splitting, 65-67

world, 78

WYSIWYG (What You See Is What

You Get), 286

X

X Window System, 5, 77, 185

xargs command, 197

xload command, 106

xlogo command, 100

XML (Extensible Markup

Language), 234

Y

yanking text, 70

yum command, 152

Z

zgrep command, 232

zip command, 209

zless command, 45

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to

ensure that the rights and freedoms we enjoy are enhanced —

rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security

researchers to publish their findings without fear of legal challenges.

eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten

technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and

use over-the-air television broadcasts any way you choose. eff.org/|P/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools

to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,

privacy or digital consumer rights. eff.org/global

EFF is a member-supported organization. Join Now! WwWw.eff.org/support

The Linux Command Line was written using OpenOffice.org Writer on a Dell

Inspiron 530N, factory configured with Ubuntu 8.04. The fonts used in this

book are New Baskerville, Futura, TheSansMono Condensed, and Dogma.

The book was typeset in LibreOffice Writer.

This book was printed and bound at Edwards Brothers Malloy in Ann

Arbor, Michigan. The paper is #60 Husky Opaque, which is certified by the

Sustainable Forestry Initiative (SFI).

The book uses a RepKover binding, in which the pages are bound

together with a cold-set, flexible glue and the first and last pages of the

resulting book block are attached to the cover with tape. The cover is not

actually glued to the book’s spine, and when open, the book lies flat and

the spine doesn’t crack.

UPDATES
Visit hitp://nostarch.com/tlel. htm for updates, errata, and other information.

More no-nonsense books from

HOW LINUX WORKS,
2ND EDITION
What Every Superuser Should Know

' by BRIAN WARD
NOVEMBER 2014, 392 pp., $39.95

ISBN 978-1-59327-567-9

THE BOOK OF

ahead DE

THE BOOK OF AUDACITY
Record, Edit, Mix, and Master with

the Free Audio Editor
by CARLA SCHRODER

MARCH 2011, 384 pP., $34.95

ISBN 978-1-59327-270-8

NO STARCH PRESS

PYTHON

PYTHON FOR KIDS
A Playful Introduction to Programming
by JASON R. BRIGGS

DECEMBER 2012, 344 PP., $34.95

ISBN 978-1-59327-407-8

full color

THE BOOK OF GIMP
A Complete Guide to Nearly Everything
by OLIVIER LECARME and KARINE DELVARE

JANUARY 2013, 676 PP., $49.95

ISBN 978-1-59327-383-5

full color

PHONE:

800.420.7240 OR

415.863.9900

-FLOQUENT:
JAVASCRIPT

SECOND EDITION

AModera introduction
to Programming

ELOQUENT JAVASCRIPT,
2ND EDITION
A Modern Introduction to Programming
by MARIJN HAVERBEKE
DECEMBER 2014, 472 pP., $39.95
ISBN 978-1-59327-584-6

THE |

ART OF R
PROGRAMMING © |

She
THE ART OF R PROGRAMMING
A Tour of Statistical Software Design
by NORMAN MATLOFF
OCTOBER 2011, 400 pp., $39.95

ISBN 978-1-59327-384-2

EMAIL:

SALES@NOSTARCH.COM

WEB:

WWW.NOSTARCH.COM

The Linux Command Line was written using OpenOffice.org Writer on a Dell

Inspiron 530N, factory configured with Ubuntu 8.04. The fonts used in this

book are New Baskerville, Futura, TheSansMono Condensed, and Dogma.

The book was typeset in LibreOffice Writer.

This book was printed and bound at Edwards Brothers Malloy in Ann

Arbor, Michigan. The paper is 60# Husky Offset Smooth, which is certified

to the Sustainable Forestry Initiative® (SFI®) standard.

The book uses a RepKover binding, in which the pages are bound

together with a cold-set, flexible glue and the first and last pages of the

resulting book block are attached to the cover with tape. The cover is not

actually glued to the book’s spine, and when open, the book lies flat and

the spine doesn’t crack.

BANISH YOUR
MOUSE

You've experienced the shiny, point-and-click surface

of your Linux computer—now dive below and explore

its depths with the power of the command line.

The Linux Command Line takes you from your very first

terminal keystrokes to writing full programs in Bash, the

most popular Linux shell. Along the way you'll learn

the timeless skills handed down by generations of

gray-bearded, mouse-shunning gurus: file navigation,

environment configuration, command chaining, pattern

matching with regular expressions, and more.

In addition to that praetical knowledge, author William

Shotts reveals the philosophy behind these tools and

the rich heritage that your desktop Linux machine has

inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily

digestible chapters, you'll learn how to:

* Create and delete files, directories, and symlinks

e Administer your system, including networking,

package installation, and process management

nostarch J
press é

J. ; LA S FI Certified Sourcing |
(<5) eee \ | 4 J

} SFI-00453 _
o

——————
=

‘

|

——

LINUX COMMAND LINE

¢ Use standard input and output, redirection, and

pipelines
x

© Edit files with Vi, the world’s most popular text editor

¢ Write shell scripts to automate common or boring tasks

* Slice and dice text files with cut, paste, grep, patch,

and sed

Once you overcome your initial “shell shock,” you'll

find that the command line is a natural and expressive

way to communicate with your computer. Just don’t be

surprised if your mouse starts to gather dust.

ABOUT THE AUTHOR

William E. Shotts, Jr., has been a software professional

and avid Linux user for more than 15 years. He has an

extensive background in software development, including

technical support, quality assurance, and documentation.

He is also the creator of LinuxCommand.org, a Linux

education and advocacy site featuring news, reviews,

and extensive support for using the Linux command line.

D7
1-59327-389-4

978-1-59327-389-7

|
ARAMA
2901593273896

=NI JATIHS
USED vy

SHOTTS 4
XMNI1/S4aLNdWOd

i esos ell Ee

SROs usaf MS 94 He cided | 0

