
GET UNDER THE HOOD OF WORDPRESS!

THE
WORDPRESS
ANTHOLOGY

BY MICK OLINIK &
RAENA JACKSON ARMITAGE

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

Summary of Contents

Preface . xvii

1. Hello World . 1

2. WordPress 101 . 21

3. The Loop and WordPress File System . 55

4. Post Types . 79

5. Plugins . 101

6. Themes . 139

7. Taxonomies . 159

8. Image Galleries and Featured Images . 179

9. The WordPress API . 195

10. Multisite: Rolling Your Own Network . 215

11. Going Global with Themes and Plugins . 241

12. SEO, Marketing, and Goal Conversion . 267

Index . 287

THE WORDPRESS
ANTHOLOGY

BY MICK OLINIK
& RAENA JACKSON ARMITAGE

The WordPress Anthology
by Mick Olinik and Raena Jackson Armitage

Copyright © 2011 SitePoint Pty. Ltd.

Product Manager: Simon Mackie

Technical Editor: Tom Museth

Expert Reviewer: Brad Williams

Indexer: Michele Combs

Editor: Kelly Steele

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by

any means without the prior written permission of the publisher, except in the case of brief quotations included in critical

articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein. However, the information

contained in this book is sold without warranty, either express or implied. Neither the authors and SitePoint Pty. Ltd., nor

its dealers or distributors, will be held liable for any damages caused either directly or indirectly by the instructions contained

in this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an editorial

fashion and to the benefit of the trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street, Collingwood

VIC 3066 Australia

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9871530-0-5 (print)

ISBN 978-0-9871530-5-0 (ebook)

Printed and bound in the United States of America

iv

About Mick Olinik

Mick Olinik is a web developer and business model expert who’s had the luxury and pleasure of watching

the Web grow up over the past 15 years. A partner at Superfast Websites and NinjaDesk Elite Technical Support

& Training, Mick is a WordPress expert who specializes in graphic design, WordPress theme skinning, and

organic search engine optimization. He’s the go-to web development guru for several of the top internet mar-

keting specialists in the world, and a regular contributor to sitepoint.com. A graduate of Michigan State Uni-

versity and member of Phi Gamma Delta, Mick spends his time evenly between Asheville, North Carolina and

Traverse City, Michigan. Aside from an obsessive passion for the ever-evolving technologies that bring the

Web to your local internet browser or phone, Mick enjoys music, outdoor activities, photography, playing

with his dog Lacie, spending time with family, and observing different business models in action. Come and

say hi at his personal site at http://www.mickolinik.com, or follow him on Facebook at http://www.fbmick.com.

About Raena Jackson Armitage

Raena Jackson Armitage is a web developer, trainer, and content management geek. In 2010, Raena co-authored

SitePoint’s Build Your Own Wicked WordPress Themes, and has contributed to the SitePoint blogs and

newsletters. When she’s not pushing bytes around the Internet, you’ll find her on her bike, watching Australian

Rules football, gaming, or tracking down the perfect all-day breakfast.

About Brad Williams

Brad Williams is the co-founder of WebDevStudios.com and the co-author of Professional WordPress (2010)

and Professional WordPress Plugin Development (2011), both published by Wiley. Brad has been developing

websites for more than 15 years, recently focusing on open-source technologies such as WordPress. He is also

one of the organizers of the Philadelphia WordPress Meetup Group and WordCamp Philly. You can find Brad

on Twitter at @williamsba and at his blog at http://strangework.com.

About Tom Museth

Tom Museth first fell in love with code while creating scrolling adventure games in BASIC on his Commodore

64, and usability testing them on reluctant family members. He then spent 16 years as a journalist and production

editor before deciding web development would be more rewarding. He has a passion for jQuery, PHP, HTML5,

and CSS3, is eagerly eyeing the world of mobile dev, and likes to de-stress via a book, a beach, and a fishing

rod.

v

For Claire, Mom, Dad, and Grandma Jo

—Mick

To Mike and Leanne

—Raena

Table of Contents

Preface . xvii

Chapter 1 Hello World . 1

In the Beginning … . 1

A Brief History of WordPress . 2

WordPress.com versus WordPress.org . 3

Core WordPress . 4

WordPress and its License, the GPL . 4

The Main Ingredients: HTML, CSS, JavaScript, PHP, and MySQL 4

Why WordPress? . 5

Installing WordPress . 8

Choose Your Operating System Wisely . 8

Installing WordPress through the Web-Based User Interface 9

Installing WordPress Manually . 13

A Word about Installers . 15

Giving WordPress Its Own Directory . 16

Resources and Learning Tools . 17

The WordPress Codex . 17

Support Forums . 18

WordCamp and Local Meetups . 18

WordPress.tv . 19

Chat Rooms . 19

Google . 19

Ready to Press On . 19

Chapter 2 WordPress 101 . 21

An Overview of Core WordPress . 21

Setting the Mood . 21

The Dashboard . 22

Screen Options . 23

The Admin Menu . 23

General Settings . 25

Themes . 26

Privacy Settings . 27

Automatically Updating . 27

Creating and Managing Text-based Content . 28

Pages . 28

The Content Editor . 29

Meta Boxes . 31

Saving (Your Backside) . 33

Quick Edit and Bulk Edit . 33

Understanding Posts and Categories . 34

Understanding Tags . 35

Creating and Working with Posts . 36

Managing Categories and Tags . 38

Working with the Links Content Type . 39

Permalinks . 40

Alternative Ways to Post Text-based Content . 41

Working with Media and the Media Library . 41

The Media Library . 41

Adding Images into a Page or Post . 42

Modifying Images . 43

Image Manipulation within WordPress . 45

Managing Media Outside of WordPress . 46

Media Settings . 47

Everyone Wants a Say . 47

Managing Comments . 47

Comment Spam . 48

Discussion Settings . 48

Avatars . 49

Additional Display Elements . 49

Managing Custom Menus . 50

Sidebars and Widgets . 51

Extending WordPress through Plugins . 52

x

Import and Export Tools . 52

Users Roles and Permissions . 52

Default User Roles . 53

Extending User Profiles . 54

Now You Know the Basics … . 54

Chapter 3 The Loop and WordPress File System 55

The Standard WordPress File Structure . 55

The Role of Queries and The Loop . 58

The Loop: Exposed! . 59

The Loop and Template Tags . 59

Conditional Tags: is . 64

Let’s Try a Simple loop . 66

Beyond the Default: Custom Queries . 70

Roll Your Own Loop Magic . 74

Fetch Any Posts Matching a Custom Field . 75

Teasers of Future-dated Posts . 76

Any More Queries? . 77

Chapter 4 Post Types . 79

Moving Beyond the Blog . 79

Creating Your First Custom Post Types . 80

The Basics of register_post_type() . 82

Adding Custom Fields to the Edit Screen . 85

Adding Conference Sessions . 88

Custom Taxonomies . 89

Providing Help . 92

Displaying Your Custom Post Types . 95

Showing off Our Conference Sessions and Speakers . 96

Custom Archives . 98

You’re Custom-ready . 100

xi

Chapter 5 Plugins . 101

The Basics . 101

The Upside to Plugins . 102

The Downside to Plugins . 102

Rules to Follow When Using Plugins . 103

Must-use Plugins . 104

Drop-in Plugins . 105

Determining When to Create a New Plugin . 106

Debugging Your Plugin As You Go . 107

The Anatomy of a Plugin . 107

Standard Plugin Packaging . 107

Action Hooks and Filter Hooks . 109

The Power of Paranoia: Data Validation . 112

Dissecting a Plugin: Antelope General Social Media Links . 113

Header and License . 119

Localization Settings . 120

Creating the Menu Item for the Settings Page . 121

Styling the Admin Screen . 124

Formatting for the Settings Page . 125

Getting Output Styles Ready . 127

Widgets 101 . 128

Registering Our Antelope General Widget . 129

Define What the Widget Should Do . 130

Display Logic . 130

Updating the Instance of the Widget . 132

Creating the Form to Change the Title . 132

Load Our Widget into WordPress . 133

Taking Plugins Further . 133

Meta Boxes . 134

Shortcodes . 135

The WordPress Plugin Directory . 136

Plug In All the Way . 137

xii

Chapter 6 Themes . 139

Basic Components of a Theme . 139

Required Elements of a Theme . 140

Nomenclature Hierarchy and Page Templates . 144

Page Templates . 146

Adding Functionality to Your Theme . 147

Adding Custom Menus . 148

Creating Widgetized Areas . 149

Adding Support for Visual Modifications . 150

Adding Support for Custom Headers . 150

Adding Support for a Custom Background . 151

Does My Functionality Belong in a Plugin or Theme? . 152

Defining Functionality . 152

The Difference between Display Logic and Site Functionality 153

A Case Study: ABC Real Estate . 154

My Way of Adding Site Functionality Works for Me! . 155

Breaking the Rules . 156

Looking Good . 157

Chapter 7 Taxonomies . 159

Categories, Tags, and Custom Taxonomies . 160

A Word on Information Hierarchy . 160

Why Custom Taxonomies? . 161

Creating Custom Taxonomies . 165

Registering a New Taxonomy . 165

The $args Array . 166

The Nested Labels Array Argument . 167

Using register_taxonomy() . 168

Using Our Custom Taxonomies . 173

Taxonomy Template File Hierarchy and Nomenclature . 173

Customizing Output with Functions That Must Be Called in The Loop 175

Customizing Taxonomy Output outside of The Loop . 176

Everything in Its Place . 176

xiii

Chapter 8 Image Galleries and Featured Images 179

Revisiting the Media Library and Media Settings . 179

Configuring Image Processing in Media Settings . 180

The [gallery] Shortcode . 182

Common Uses of [gallery] . 183

Specialized Uses of [gallery] . 184

Working with [gallery] in the Content Editor GUI . 185

Firing the [gallery] Shortcode from a Template . 187

Lightboxes . 187

Working with Featured Images . 188

Enabling Support for Post Thumbnails . 188

Sizing Your Post Thumbnails . 190

Adding Different-sized Post Thumbnails . 191

Post Thumbnail Implementation in Themes . 192

Got the Picture? . 193

Chapter 9 The WordPress API . 195

A Quick Review of the APIs Covered So Far . 196

Shortcodes under the Microscope . 197

The Dashboard Widgets API . 200

Removing Dashboard Widgets . 202

The HTTP API . 203

The Database API . 205

The Options API . 205

The Transients API . 206

The Metadata API . 206

The Rewrite API . 207

Other Functions and Tools . 208

register_activation_hook() . 208

wp_schedule_event() . 208

wp_enqueue_script() and wp_register_script() 210

BackPress . 212

A Box Full of Tools . 213

xiv

Chapter 10 Multisite: Rolling Your Own Network 215

A Brief History of Multisite . 216

Enabling Multisite . 216

Multisite in Action . 221

The Network Admin Dashboard . 222

The Sites Submenu . 223

Individual Network Site Settings . 225

The Settings Submenu . 229

The Users Submenu . 235

The Themes Submenu . 235

The Plugins Submenu . 236

The Updates Submenu . 236

Useful Plugins Within Multisite . 237

Troubleshooting Multisite . 237

Enabling Multisite . 238

Routing Issues in Subdirectory Multisite Installations . 238

You’re Multiskilled . 239

Chapter 11 Going Global with Themes and Plugins 241

The Basics of Internationalization and Localization . 242

Anatomy of a Localization Process . 243

GNU gettext Markers Tell Which Strings to Translate . 243

A Function Linking Markers to a File with a Translation Key 243

A File Providing a Translation Key . 244

Putting the Pieces Together . 245

Localizing a Theme . 246

Localizing a Plugin . 248

A Word on .MO File Nomenclature . 250

Introducing Poedit . 250

Creating a .POT File . 251

Translating Our .POT File . 259

Another Way to Generate a .POT File . 263

Is There an Easier Way Than Localization? . 264

xv

Installing WordPress in Your Own Language . 265

World Tour Complete . 266

Chapter 12 SEO, Marketing, and Goal Conversion 267

Why SEO Is So Difficult . 267

SEO Is a Moving Target . 267

The Google Search Algorithm Is Private . 268

Sharks Patrol These Waters . 269

Websites Are Poorly Coded . 269

There’s a Difference Between SEO and SEM . 270

SEO and SEM Require a Team Effort . 270

What’s it all about anyway? . 272

The Big Three Fundamental SEO Components . 272

Semantic Permalinking . 273

Proper <meta> and <title> Tag Inclusion . 275

Proper Header Tag Structure and Implementation . 276

The Anatomy of a Typical Search Engine Spider Visit . 278

Other Important SEO Aspects . 279

Image alt Attributes . 279

Individual Page Privacy Settings . 280

XML Sitemaps . 280

Disclaimers, Terms and Conditions, and Privacy Pages . 281

Proper Use of 301 Redirects and Avoidance of 404s . 281

It’s about GOAL CONVERSIONS! . 282

Metrics and Split Testing . 282

Keywords and Text . 283

Making the Right Offer . 284

Different Visual Layout . 284

Heatmaps . 284

Over to You . 284

Index . 287

xvi

Preface
WordPress is the most widely used website platform and content management system on the Web

today, running on approximately 15% of websites. It is open source and, hence, free, released under

the GNU Public License version 2, or GPL2 for short. Its permissive use and development license,

combined with its ease of use from both a website user’s and developer’s perspective, has helped

WordPress rapidly gain global market share for the past several years. It continues to grow each

month, outpacing other content management systems at a rate of more than two to one. Indeed, in

the eight years since Matt Mullenweg and Mike Little created WordPress as a branch of another

open-source project, WordPress has become big business … and business is good.

Today, WordPress has become something of a hot topic making its way from the sphere of designers

and programmers into the corporate world. Business owners seeking a website often look to build

a WordPress site because they hear that it’s a great platform, and while some of them might be unsure

why WordPress is superior, their intuition is correct: WordPress is an excellent, flexible content

management system with which to build a website. And that means whether you’re a web designer

or web developer (and regardless of your experience), learning to develop websites with WordPress

and bend the platform to your will is a potentially lucrative proposition. Luckily, it’s quite easy to

learn too, and we’re here to help you with that.

So pull up a chair, grab a beverage and a highlighter, and dig in while we show you how this

powerful, flexible, extensively developed, and ever-popular content management system works!

Who Should Read This Book
This book is aimed at beginner to intermediate-level web developers seeking to work with WordPress

on a fundamental level, so as to develop effective websites for clients in the real world. The book

begins by explaining fundamental concepts, and then extends to intermediate and even advanced-

level topics.

While noncoders will be able to glean some useful information from this book, you should at least

have a ground-level knowledge of HTML and PHP to gain the most out of it. There’s certainly no

requirement to be a coding guru, but understanding integral concepts such as if statements, loops,

functions, variables, and the manner in which PHP creates HTML for screen output will go a long

way in helping you comprehend how WordPress does its thing. Solid conceptual appreciation of

functionality are more important than memorizing specific functions and syntax—you can always

look those up easily enough. Other languages and abilities that are useful to have when broadening

your WordPress knowhow include CSS, JavaScript, and web server configuration skills via interfaces

such as cPanel.

What’s in This Book
This book could be divided into three sections. Chapters 1 and 2 serve as a thorough introduction

to WordPress and are appropriate for beginner-level web developers who are just getting their feet

wet with WordPress, as well as experienced developers who are new to the WordPress world and

are looking for a solid primer. While a deep understanding of coding is unnecessary when reading

the opening chapters, it is absolutely recommended for the rest of the book. Chapters 3 to 6 discuss

in detail some of the fundamental aspects of WordPress’s functionality, and how you can manipulate

each one to build a successful WordPress site. Finally, Chapters 7 to 12 cover specific WordPress

topics that are useful for gaining an intricate comprehension of the platform.

Because each chapter builds upon the information presented in previous chapters, you’ll benefit

the most by reading through from start to finish. However, if you’re looking to simply further your

knowledge on a certain concept, the book can also accommodate you. By reading the entire book,

you’ll have a thorough understanding of WordPress’s strengths, weaknesses, and capabilities as a

complete CMS solution as of WordPress version 3.2.

Chapter 1: Hello World

WordPress is really cool. Want to know why? We’ll start with a brief history of the platform,

before introducing you to WordPress 3.2. You’ll also learn which types of projects are appropriate

for WordPress, and which aren’t. And of course, we’ll introduce you to WordPress’s famous

five-minute installation.

Chapter 2: WordPress 101

Before we dig too deeply into how you can make WordPress do handstands at your beck and

call, you’ll want to become acquainted with the core platform. This chapter is your black-tie

guided tour that introduces you to all the menus, functionality, and basic concepts about core

WordPress you’ll need to have down pat before you tackle the code underpinning WordPress.

Chapter 3: The Loop and WordPress File System

The Loop is the beating heart of WordPress, as it controls how content is displayed in any given

installation. In truth, The Loop rules everything in WordPress; it is a fairly simple concept, but

without having a firm understanding of it, you’ll struggle when taking on any sort of serious

development. So we’ll break it down for you right here, along with a solid overview of the file

and folder structure you’ll need to be familiar with when manipulating and writing code for

WordPress.

Chapter 4: Post Types

Creating pages or blog posts is great and all, but sometimes you need the ability to format ele-

ments so that they appear uniform; for instance, items such as recipes, staff listings, or the

product details page in a shopping cart. WordPress offers custom post types to meet this need,

xviii

and in this chapter we’ll explain what they are, how they work, and how you can create your

own.

Chapter 5: Plugins

One of the primary reasons WordPress has become a content management powerhouse is due

to its plugins system, allowing web developers to easily extend functionality beyond core. We’ll

explain everything you need to know about plugins, and how you can quickly and easily install

them. We’ll also create and analyze our own plugin so that you can understand how every line

of code works.

Chapter 6: Themes

Themes make things look awesome—it’s as simple as that. In any modern content management

system there’s a separation of content and design, so you can easily make changes to how a

website looks, and themes are how WordPress addresses this. We’ll talk about the components

of a theme, as well as how you can use the nomenclature hierarchy and page template systems

WordPress provides to create rich visual experiences. We’ll also discuss the difference between

display logic and site functionality.

Chapter 7: Taxonomies

Modern, robust content management systems provide methods to group pieces of similar content

together in meaningful ways; these methods are referred to as taxonomies. In this chapter, we’ll

discuss taxonomies in detail and show you how to create them. We’ll also introduce the notions

of information hierarchy and content wireframes, important tools that help facilitate intelligent

website development.

Chapter 8: Image Galleries and Featured Images

WordPress provides a host of low-level and high-level functions for manipulating images, ranging

from the ability to insert prebuilt galleries into any page or post with ease and flexibility, to

creating custom preset image sizes for use in commercial theme development. Whatever your

skill level, you’re bound to find something in this chapter for you.

Chapter 9: The WordPress API

Knowing the ways of the various application programming interfaces (APIs) made available

within WordPress will lead you to truly mastering the platform. We’ll cover the Plugins and

Shortcode APIs that handle surface functionality, and more fundamental processes found in

the HTTP and Database APIs. We’ll also talk about the best ways to use JavaScript libraries

throughout your themes and plugins, and discuss BackPress, an open-source PHP library that

provides much of the core functionality available in WordPress. This is probably the most ad-

vanced chapter of the book.

Chapter 10: Multisite: Rolling Your Own Network

In addition to being configured for standalone websites, WordPress can be used to run a network

supporting many individual websites off a single installation; this is the Multisite feature. We’ll

xix

explain how to set Multisite up, and take you through a guided tour so that you can try it

yourself.

Chapter 11: Going Global with Themes and Plugins

As WordPress gains global market share, it follows that developers around the world would be

interested in translating it into their native languages. Here we’ll cover the distinction between

internationalization and localization, and explain why you owe it to yourself to ensure your

themes and plugins are properly localized. We’ll finish the chapter by showing you how to install

WordPress in a different language.

Chapter 12: SEO, Marketing, and Goal Conversion

While it’s fun to play with WordPress, the real reason any business owner builds a website re-

volves around making money—and this is where search engines come into play. We’ll conclude

by explaining to you why search engine optimization (SEO) has always been so hard to master,

and explain the difference between search engine optimization and search engine marketing.

We’ll investigate the three most vital SEO components, and introduce you to the importance

of goal conversion.

Where to Find Help
SitePoint has a thriving community of web designers and developers ready and waiting to help you

out if you run into trouble. We also maintain a list of known errata for the book, which you can

consult for the latest updates.

The SitePoint Forums
The SitePoint Forums1 are discussion forums where you can ask questions about anything related

to web development. You may, of course, answer questions too. That’s how a forum site works—some

people ask, some people answer, and most people do a bit of both. Sharing your knowledge benefits

others and strengthens the community. A lot of interesting and experienced web designers and

developers hang out there. It’s a good way to learn new stuff, have questions answered in a hurry,

and generally have a blast.

The Book’s Website
Located at http://www.sitepoint.com/books/wpant1/, the website that supports this book will give

you access to the following facilities:

1 http://www.sitepoint.com/forums/

xx

http://www.sitepoint.com/forums/

The Code Archive
As you progress through this book, you’ll note a number of references to the code archive. This is

a downloadable ZIP archive that contains the example source code printed in this book. If you want

to cheat (or save yourself from carpal tunnel syndrome), go ahead and download the archive.2

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least one or two

mistakes before the end of this one. The Errata page3 on the book’s website will always have the

latest information about known typographical and code errors.

The SitePoint Network
The SitePoint network now features a host of sites dedicated to the latest hot topics in web devel-

opment and design: RubySource4 , DesignFestival5, BuildMobile6, PHPMaster7, and CloudSpring8.

In addition, SitePoint publishes free email newsletters that feature the latest news, product releases,

trends, tips, and techniques for all aspects of web development and design. You can sign up to one

or more SitePoint newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking for web developers

and designers. We discuss the latest web industry topics, present guest speakers, and interview

some of the best minds in the industry. You can catch up on the latest and previous podcasts at

http://www.sitepoint.com/category/podcast/, or subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us for any other

reason, the best place to write is books@sitepoint.com. We have a well-staffed email support system

set up to track your inquiries, and if our support team members can’t answer your question, they’ll

send it straight to us. Suggestions for improvements, as well as notices of any mistakes you may

find, are especially welcome.

2 http://www.sitepoint.com/books/wpant1/code.php
3 http://www.sitepoint.com/books/wpant1/errata.php
4 http://rubysource.com
5 http://designfestival.com
6 http://buildmobile.com
7 http://phpmaster.com
8 http://cloudspring.com

xxi

http://www.sitepoint.com/books/wpant1/code.php
http://www.sitepoint.com/books/wpant1/errata.php
http://rubysource.com
http://designfestival.com
http://buildmobile.com
http://phpmaster.com
http://cloudspring.com
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/category/podcast/

Acknowledgments
Mick Olinik
First, I’d like to thank everyone at SitePoint for their help and support on this project—especially

Tom, Kelly, Lisa, and Brad. You guys were all fabulous, and I enjoyed working with you on the

project. I’d also like to especially thank Jen Sheahan for introducing me to this group in the first

place, and Mark Harbottle for asking me to work on this project; it was truly an honor. Special

mention goes to Jeremy Ferguson for his assistance with some of the code and general research

throughout the book—you saved me a lot of time. Thanks to my wife, Claire, for her initial edits

that made me look good in front of the SitePoint team, and for putting up with me as I wrote it. My

team at Rockstar, especially Zack Fretty, kept all my ducks in a row as we went through this process.

Thanks to James Schramko and Nic Lucas for giving me so many opportunities in Australia; I ap-

preciate working with both of you more than you’ll ever know. Thanks to Jason Silverman, for

giving me that initial kick in the behind to begin writing, and to my father, John Olinik, for giving

me the initial push into both web development and entrepreneurship. And finally, thanks to Trey,

Mike, Page, and Jon for almost 20 years of perpetual inspiration, creativity, and energy … I’m forever

indebted to you. Cheesecake.

Raena Jackson Armitage
Thanks first of all to everyone at SitePoint whose task is to crack the whip and polish my words

into something approximating cleverness—but especially to Louis, Tom, Lisa, Simon, and to Kelly

most of all. A big thanks to Mick, whose enthusiasm and immense knowledge of everything

WordPress is, frankly, kind of staggering. Thanks to my family and friends all over the world. Finally,

thanks to the WordPress community, for being kind and sharing people who make this product

great.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout the book to signify

different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

if (have_posts()) : while (have_posts()) : the_post();
 the_content(); endwhile; endif;

If the code is to be found in the book’s code archive, the name of the file will appear at the top of

the program listing, like this:

xxii

example.php

add_action('save_post',
 'save_conference_speaker_attributes');

If only part of the file is displayed, this is indicated by the word excerpt:

example.php (excerpt)

function check_current_screen() { if(!is_admin())
 return; global $current_screen; print_r($current_screen);
 }

If additional code is to be inserted into an existing example, the new code will be displayed in bold:

function the_author() { new_variable =
 "Hello"; }

Where existing code is required for context, rather than repeat all the code, a vertical ellipsis will

be displayed:

function the_author() { ⋮ return new_variable;
 }

Some lines of code are intended to be entered on one line, but we’ve had to wrap them because of

page constraints. A ➥ indicates a line break that exists for formatting purposes only, and should

be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
 ➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand. Think of them as

extra tidbits of information.

xxiii

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxiv

Chapter1
Hello World
We’re glad you’ve picked this book up, and want to learn about one of the most increasingly popular

pieces of web software on the Internet today: WordPress. WordPress is incredibly simple to install

and use, but it’s a lot like an iceberg; the stuff the vast majority of people will ever see or use rep-

resents just the tip of what’s possible. True WordPress rock stars understand that it’s actually an

elegantly crafted content management system that goes much further below the surface. Our aim

is to show you the fundamentals so that you can harness it to build almost anything you want online.

As you’ll soon see, the power to do whatever you like already exists within WordPress’s core in-

stallation. All you need to do is shape your application to look the way you want it to with a few

simple tools. Let’s dig in, starting with a short history lesson.

In the Beginning …
When the World Wide Web was born and began to become populated with early websites in the

mid-to-late 1990s, website developers used What You See Is What You Get (WYSIWYG) programs

like Microsoft FrontPage and Macromedia Dreamweaver (later purchased by Adobe), or minimalist

hand-coding tools like Notepad to create their HTML files and upload them directly to web servers

via FTP clients. Web pages were generally created and maintained individually, which led to a

whole host of problems (looking back with the benefit of hindsight!). For instance, if you wanted

to change the same item on several web pages in the same website, you typically had to update

each of those pages separately. It was also common for pages to differ slightly from one another on

the same site because of a stray image or some slightly different code, resulting in a hodgepodge

collection of pages that lacked uniformity and appeared rather amateur. Worse yet—and maybe

even worst of all—there was no clear separation of design, functionality, and content. This made

web developers the only people qualified to make content changes to just about any website; addi-

tionally, it often proved to be a tedious, time-consuming process. The result was that building a

website tended to be a high-cost, low return-on-investment proposition that produced mostly frus-

tration for web developers, business owners, and website users alike—not to mention stagnant

websites.

In response to these issues, web developers began to create web-based software that attempted to

allow users to systematically manage content. While rudimentary at first, these content management

systems (or CMSs) developed and became more widespread. However, while new features were

always being introduced and added, they all had their limitations, most notably usability for the

non-technical, content-oriented administrative user.

Over time, three general types of content management systems evolved:

■ commercial
■ open source, or free
■ homegrown (defined as a set of programs developed by a particular web developer or web shop

for their clients’ exclusive use)

While the individualistic, hero mentality of the common coder dictated that homegrown systems

were initially the most common, commercial and open-source CMSs gained momentum. Many

developers found (and continue to find) the open-source world a useful and satisfying way to col-

laborate and build better systems than they’d otherwise create on their own; hence, open-source

projects began to take off like wildfire.

A Brief History of WordPress
Now enters a developer named Michel Valdrini. In 2001, Valdrini added to the open-source com-

munity by launching the b2/cafelog project, an open-source content management system written

in PHP1 and utilizing MySQL2 as its database. While b2/cafelog met with limited success, 2003

saw two new developers, Matt Mullenweg and Mike Little, step in and create a fork of the project—a

legal copy of a piece of software developed to create a distinctly new product, with a different

purpose and direction. The software created as a result of the fork became WordPress.

While b2/cafelog is recognized as the official predecessor to WordPress, it’s still in active develop-

ment itself under the name b2evolution3. In forking b2/cafelog to create WordPress, Mullenweg

and Little sought to develop a blogging system that was more focused on the user experience as

well as web standards, topics that at the time were still very much in flux. Over time, major features

1 http://php.net/
2 http://www.mysql.com/
3 http://b2evolution.net

The WordPress Anthology2

http://php.net/
http://www.mysql.com/
http://b2evolution.net

including plugins, themes, post types, and custom navigation have been added and improved upon,

resulting in an extremely robust web publishing system that continues to evolve.

WordPress itself is actively developed and supported by several core developers—including Mul-

lenweg, Little, and Valdrini—as well as a volunteer team of about 100 key contributors who work

diligently to make it a better piece of software to use. About half of the core contributors work for

Mullenweg’s company Automattic, while the others are from all walks of the WordPress community.

Furthermore, developers around the world continue to build and support new plugins and themes

that are useful for a whole range of purposes, and translators abound to voluntarily interpret plugins,

themes, and WordPress itself into additional languages where demand exists, further increasing

the scope and reach of the project.

Despite coming into the world as blogging software, today WordPress is a full-fledged CMS with

page navigation, user management, blog creation, and management tools. Whilst the word blog is

shorthand for a combination of two words: “web” and “log,” it’s best defined as a collection of in-

formation that you want to categorize. For instance, if you’re a photographer and you want to

showcase your images, you could do so by putting together a blog for your photos. Each post could

comprise one photo, which in turn would combine to create a collection of photos. Similar examples

can be found in a range of topics, from current news and happenings to an online recipe collection.

For this reason, you can view WordPress as both a blog and a full-featured CMS. It’s a piece of web-

based software that lets you create pages, categories, and posts and associate posts with different

categories.

WordPress.com versus WordPress.org
WordPress comes in two flavors: wordpress.com4, and self-hosted WordPress that’s available for

download at wordpress.org5. Wordpress.com is a network of websites supported and hosted by

Automattic. Users can visit wordpress.com, sign up for a free account, and create as many blogs as

they like in a similar fashion to other popular hosted blogging services like typepad.com.6 Each of

the blogs that a user signs up for will have its own URL, and will employ many popular features,

such as the ability to add pages and basic design elements like backgrounds and colors. While a

solid service, this is all we’ll cover on wordpress.com in this book.

On the other hand, self-hosted WordPress is free to download, but no hosting is provided—you

actually need to secure hosting separately. The advantages of self-hosted WordPress are numerous,

including the ability to customize every aspect of your site’s visual appearance through themes,

add additional functionality via plugins, have custom permalink URL structures, and of course

have full access to the source code. In fact, self-hosted WordPress includes an option that enables

multisite functionality, essentially allowing you to create blog networks similar to the one employed

4 http://wordpress.com
5 http://wordpress.org
6 http://typepad.com

3Hello World

http://wordpress.com
http://wordpress.org
http://typepad.com

at wordpress.com (for more information on multisite, flip over to Chapter 10). From here on out,

when we talk about WordPress in this book, we’ll mean self-hosted WordPress unless specifically

otherwise stated.

Core WordPress
When you download WordPress from wordpress.org, you are downloading what is referred to as

core WordPress, or sometimes just core. Core WordPress includes all the fundamental functionality

maintained and honed by the core developers and contributors, and each successive WordPress

release is the next iteration of this primary functionality. Minor releases tend to be security patches

and bug fixes, while major releases introduce new functionality and occasional design changes.

This book is based on the WordPress 3.2 major release, nicknamed Gershwin.

WordPress and its License, the GPL
WordPress is an open-source content management system licensed under the Gnu Public License

(GPL), version 2. The license itself can be found in the license.txt file delivered in every WordPress

installation; however, most people usually ignore it, because they just think of WordPress as open

source, or free. That’s really all you need to know, but if you are interested in how the GPL works,

here’s the deal in a nutshell.

The primary assertion made by the GPL is that all source code for any GPL-licensed software must

be made openly available for anybody to use on any basis, including those with commercial intent.

Furthermore, any modifications made to the GPL-licensed source code must be made freely available

if that software is to be redistributed in any way. For example, if you were going to make a whole

bunch of changes to WordPress’s core code and then use it to run a profitable business selling

oversized lawn darts to outdoor gaming enthusiasts, that’s perfectly fine … and you wouldn’t need

to redistribute your code to do so. However, if you made changes to the core code, renamed it

PhrasePress, and began to distribute it, you’d be required to make your source code freely available

and release your new software under the GPL.

It’s necessary to note that the GPL license employed by WordPress in no way involves content, be-

cause content isn’t derived from the WordPress core. Instead, the content housed on a WordPress

site is distinct from WordPress. This is an important distinction to understand, specifically for

legal professionals concerned about the security and integrity of their client’s intellectual property

rights.

The Main Ingredients: HTML, CSS, JavaScript, PHP, and MySQL
WordPress’s power comes from the simplicity of its system. Its standardized file hierarchy is intu-

itive and easy to understand, and keeps a clean separation between commonly modified components

and the core installation. Additionally, for all but the most novice of developers just starting out,

it’s likely to be unnecessary to learn any new languages or technologies to effectively work with

The WordPress Anthology4

WordPress. Instead, WordPress accepts any flavor of CSS and HTML that you’re comfortable with,

and PHP 5 & MySQL 5 when you need to perform some heavy lifting.

WordPress is truly an easy-entry piece of software, and if you’re intending to just set up a site and

go, there’s no requirement to understand any code at all. As we’ll see in a moment, installing

WordPress is a piece of cake, and from there you can use a free theme or purchase a commercial

one to make your site look awesome. After that, it’s really all about understanding the controls and

figuratively driving the car, and we’ll cover a lot of this functional usage in Chapter 2. Beginner

WordPress developers will need a working knowledge of HTML and CSS to do simple modifications.

Still, there’s no getting around it … if you want to really get your hands dirty and bend WordPress

to your will, you’ll need to be comfortable with PHP, and if you really want to get fancy, some

JavaScript experience will come in handy too. This book is not designed to teach you either of those

things, but if you’d like to broaden your repertoire, there are a number of books from SitePoint that

we can recommend. Build Your Own Website the Right Way Using HTML & CSS7 is a great place

to start in the world of client-side development, while Build Your Own Database Driven Website8

provides a wonderful introduction to PHP, MySQL, and server-side coding. If you’re keen to dive

into more client-side stuff and tackle JavaScript, you could look into Kevin Yank’s excellent

Learnable course, JavaScript Programming for the Web9. Without a functional understanding of

these technologies, you may become a bit confused once you get past Chapter 2.

Why WordPress?
Let’s be honest: as much as anything else, WordPress has become a popular buzzword in the past

few years. Many newbie web developers flock to it immediately without much thought as to why

they might want to use the platform. Experienced web project managers will tell you that there’s a

direct correlation between the ultimate success of a project and your reasons for why you’re selecting

a particular CMS platform, as well as how you intend to utilize it within the scope of the project.

Luckily, WordPress is an exceptionally flexible platform that serves as a fabulous choice for most

applications—but not necessarily all.

Which applications are appropriate for WordPress? Let’s have a look:

Blogs

WordPress started its life as a blogging platform, and it’s arguably the best currently available.

Whether you’re looking to create a topical hobby blog or an authority blog, WordPress is an

excellent selection.

7 http://www.sitepoint.com/books/html3/
8 http://www.sitepoint.com/books/phpmysql4/
9 https://learnable.com/courses/javascript-programming-for-the-web-40

5Hello World

http://www.sitepoint.com/books/html3/
http://www.sitepoint.com/books/phpmysql4/
https://learnable.com/courses/javascript-programming-for-the-web-40

Information-rich websites

Flexibility in handling simple content types like fairly static pages, combined with the custom

menu options and robust blogging capabilities, makes WordPress an awesome platform for

small, mid-sized, or large businesses alike. It’s suitable for just about any informational purpose.

Information marketing and affiliate marketing websites

An industry that exploded in the latter half of the ’00s, information and affiliate marketing has

special needs that blur the line between blogging and ecommerce. Having been banned by most

free blogging platforms, this type of site can find a home with WordPress, offering all of the

required customization, sales functionality, and token passing and tracking in a format that allows

marketers to own their space instead of renting or potentially breaching terms of service else-

where.

Light to medium-level ecommerce

Combined with one of several supported plugins, WordPress can be an extremely robust ecom-

merce platform for physical and digital products, all while offering a simplified, easy-to-use

interface.

Membership sites

Whether you’re seeking a simple membership wall, or selling access to a multiple-tiered mem-

bership program on a single site, there are myriad plugins available that provide solid function-

ality.

Intranets

Core WordPress includes most of the fundamental functionality that IT managers look for in

an intranet. Combine that with WordPress’s standard privacy options, as well as a well-placed

plugin or two that provides solutions to each corporation’s unique needs, and WordPress is

appropriate for many corporate intranets.

Social media

A set of plugins and themes exist that are collectively referred to as BuddyPress. BuddyPress

extends WordPress’s standard functionality to allow registered users to message and interact

with one another, as commonly seen on social media networks. While there are certainly other

options available in this particular area, WordPress is, at a minimum, a viable choice.

Light to medium-level forums

WordPress can also be extended to serve as a forum (also referred to as a bulletin board). There

are several plugin-based solutions that introduce this functionality, the most lauded of which

is bbPress.10 It’s useful to note that while you can technically add forum functionality to a

WordPress installation, it’s typically done as an addendum to other functionality on the same

10 http://bbpress.org/

The WordPress Anthology6

http://bbpress.org/

site. Sites that are fully dedicated to forums often find more fleshed-out functionality in other

solutions.

Blog networks

We’ve already alluded to WordPress providing for what’s called multisite capability, allowing

you to manage either a few websites or thousands of them from a single installation. Multisite

also centralizes the management of network-wide plugin additions, and introduces more

sophisticated, layered user and roll support. For more on multisite, have a look at Chapter 10.

You might think this preceding list covers just about everything, but it really doesn’t. There are a

few more specialized types of sites that the current core release, combined with the selection of

widely available plugins, simply fails to offer a commercially viable solution. Many of these types

of sites are either extremely specialized or incur enterprise-level traffic. Of course, this isn’t to say

that there are no WordPress solutions available for these types of sites; certainly, new plugins are

developed daily that may not have existed or had wide release at the time of writing. Please take

the following list with a grain of salt—but here are a few examples of the kinds of sites we’re talking

about:

Large-scale, specialized forums

Businesses and organizations whose entire business model revolves around extremely large,

robust, and secure forums often opt for more specialized commercial software to suit their

purposes.

Large-scale ecommerce sites

While WordPress does offer excellent ecommerce platforms to work with via premium plugins,

there are still several types of ecommerce functionality you commonly won’t find. In such in-

stances, there are specialized commercial options that can prove to be better solutions for the

high-volume retailer with specific needs. Some functionality that’s currently lacking includes

customized visual product configurations, support for multiple shipping centers based on factors

such as proximity to the purchaser or type of merchandise stocked, or automated RMA (return

merchandise authorization) support.

Photography sales and gallery management

This is a fairly specific one. While there are plenty of WordPress themes and plugins that

manage images and galleries in various ways, there continues to be a gaping hole in the market

for photography professionals who seek to present public and private, password-protected

photo galleries that have full ecommerce integration. These types of sites are usually sought

out by event photography professionals and portrait photography studios. Currently, better

options are found with commercial and SaaS (software as a service; typically cloud-based and

on-demand) solutions.

7Hello World

Customer Relationship Management

CRM solutions do exist for WordPress, but most organizations find that the feature set they re-

quire is better served by one of several popular SaaS CRM solutions.

Web-based project management

Similar to CRMs, solutions do exist for WordPress, but more widely accepted and utilized

project management solutions can be found through popular SaaS options.

Now that we have a good idea of what WordPress is mostly used for, and what you can use it for

(and what you probably shouldn’t use it for), you should now have a better sense of how you’ll

implement it within the context of your project. With all that said, let’s start playing with WordPress

a bit.

Installing WordPress
One of the biggest reasons for WordPress’s mad popularity is its ease of use, beginning with the

famous five-minute installation process it touts … and five minutes is fairly accurate. There are

two primary ways to install WordPress, but before we check them out, let’s take a moment to talk

about your server’s operating system.

Choose Your Operating System Wisely
In very general terms, there are two flavors of web servers commercially available:

■ Linux servers
■ Windows servers

Officially, WordPress runs on both server types, but it runs natively on a Linux server, not a Windows

server. This means that not all of WordPress’s awesome functionality works as intended on a Win-

dows server. For instance, it’s extremely difficult to properly activate Pretty Permalinks (see the

section called “Permalinks” in Chapter 2) on a Windows server (and next to impossible to do without

full root access)—Windows forces the insertion of index.php to make it function. In pragmatic terms,

instead of a precise link like http://www.esquandolas.com/footwear/shoes/running, you are forced

to have the more ponderous http://www.esquandolas.com/index.php/footwear/shoes/running.

While this technically works, it’s a bad solution for a variety of reasons, not the least of which is

search engine optimization. So while you can technically run WordPress on a Windows server, it

doesn’t mean that you should. It is best practice to run your WordPress sites on Linux servers.

Now that we have operating systems covered, let’s jump into the installation process.

The WordPress Anthology8

Installing WordPress through the Web-Based User Interface
There are two accepted ways that most professionals prefer to install WordPress: manually, or via

the web-based interface that WordPress provides. You can use whichever method you like, and

we’ll detail both here, beginning with the web-based interface.

1. Download the current version of WordPress.

Start out by visiting wordpress.org11 and downloading the current version of WordPress. You’ll

end up with a single compression file, either a .zip file or a tarball,12 depending on which version

you choose to download.

2. Upload and extract WordPress.

Upload WordPress to your web server using either your FTP client or the control panel running

on your server, as shown in Figure 1.1.

Figure 1.1. Zipped WordPress package on a cPanel web server

Note that you can extract the WordPress files locally and then upload them to the server indi-

vidually, or you can upload the compressed WordPress file and then extract the files directly

onto the server. The latter method is the way to go if you can do it, because it’s typically faster,

and it minimizes the risk of a corrupted or incomplete upload. You’ll also remove the chance of

an upload timeout that causes some files to not be uploaded at all.

11 http://wordpress.org
12 http://searchenterpriselinux.techtarget.com/definition/tarball

9Hello World

http://wordpress.org
http://searchenterpriselinux.techtarget.com/definition/tarball

The Right Place

Once you extract the files on your server, take care to place the files where you want to install

WordPress. By default, WordPress will extract all its files into a single directory called /wordpress/.

If you want to install WordPress in the root directory that your URL is mapped to, you’ll probably

need to move the files down one directory, out of the /wordpress/ directory.

3. Create your MySQL database

WordPress requires a MySQL database to store essential data, and you’ll have to create it manually.

If you use a hosting control panel like cPanel, you can do this very easily through a visual interface.

Create your database, database user, and password, and then add your user to your database as

shown in Figure 1.2. Be sure to write down all of this information and keep it in a safe place.

Figure 1.2. Add the database user to your new database

4. Point your web browser to your installation.

Now that your files are in place, navigate to where you expect to see your website. You’ll be

greeted by a screen that looks like Figure 1.3, and it will ask you to create a configuration file by

clicking the button. Go ahead and do so.

The WordPress Anthology10

Figure 1.3. The screen you’ll see when pointing your browser to the install location

5. Get your information ready.

Next, WordPress is going to give you a little reminder as to the information it’s about to ask you

for (how thoughtful, eh?), as shown in Figure 1.4. Nothing to be concerned about here; make sure

that you have the database information you just set up, and then click the Let’s go! button to keep

moving.

Figure 1.4. WordPress prompts you for the information you’ll ultimately need

6. Enter your database information.

Now just follow the instructions and enter your database information as per Figure 1.5. Remember,

it’s case-sensitive, so capitalization matters.

11Hello World

Figure 1.5. Inserting your database information

7. Run the installation.

After running a brief check to ensure it can talk to the database with the information you just

provided, WordPress tells you that after a bit more descriptive information on your part, it’s

ready to go. Let’s give it what it wants as in Figure 1.6 … and run the install.

Figure 1.6. Clicking the install button

8. Provide your basic site info.

Now for the really basic stuff. WordPress is ready to set itself up, but it needs a little information

from you about the site you are about to create, as indicated in Figure 1.7. Answer a few questions

here and then push the button to install WordPress. Go ahead. Click it. Feel the power.

The WordPress Anthology12

Figure 1.7. Feeling the power of WordPress

9. And you’re ready to roll!

You’ve just installed WordPress. Easy.

Installing WordPress Manually
If the web-based installer seems a bit tedious, don’t sweat it—you’re in fine company. Especially

when you find yourself installing WordPress often, the whole process can go faster by skipping the

web-based interface altogether and just directly editing the wp-config.php file. The first three steps

are identical to the previous process and then we change it up a bit. Let’s have a look:

1. Download the current version of WordPress.

2. Upload and extract WordPress.

13Hello World

3. Create your MySQL database.

4. Rename and edit wp-config-sample.php.

WordPress relies heavily on a file called wp-config.php to function, and by default provides you

with a template to show you how it works: wp-config-sample.php. Start off by renaming this file

from wp-config-sample.php to wp-config.php, so that WordPress can see it when it starts running.

Open it up in a text editor—you can do this directly on your server if you are so inclined, or on

your local machine if you’re more comfortable that way (but remember to upload the file back

to the server after you’re done editing it). Inside the file, you’ll just have to add your database

name, database user, and user password in the appropriate fields. You’ll also want to make sure

that your authentication unique keys and salts are set up, which exist to increase the security of

your installation. WordPress provides an easy tool to randomly generate these lines of code,13

which you can copy and paste right into your wp-config.php file.

Let’s preview at what the modified portion of the wp-config.com will look like when you finish

editing it:

chapter_01/completed-wp-config-abridged.php

// ** MySQL settings - You can get this info from your web host
 ** //
/** The name of the database for WordPress */
define('DB_NAME', 'sample_esquandolas');

/** MySQL database username */
define('DB_USER', 'sample_marco');

/** MySQL database password */
define('DB_PASSWORD', 'spiteman83');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

/**#@+
 * Authentication Unique Keys and Salts.
 *
 * Change these to different unique phrases!
 * You can generate these using the {@link https://api.➥

13 https://api.wordpress.org/secret-key/1.1/salt/

The WordPress Anthology14

https://api.wordpress.org/secret-key/1.1/salt/

 wordpress.org/secret-key/1.1/salt/ WordPress.org ➥

 secret-key service}
 * You can change these at any point in time to invalidate all➥

 existing cookies. This will force all users to have to log➥

 in again.
 *
 * @since 2.6.0
 */
define('AUTH_KEY', 'QnGRcSzcDG+e+Kv{y+@h7l&Nm>MeGNQzbJ!➥

 7k!-eF*35VG{+E9 6++^M!F@|Gq~|');
define('SECURE_AUTH_KEY', 'EEgr)P13 7tjQ)Hs>h%A8US/BQ20r.2X+]➥

 @~641=S|C%VMq|Ko|zdvp/1W)k@`+&');
define('LOGGED_IN_KEY', 'Y3--2:9a!V+_76{&9d$:UB7i{54ksw*f&$➥

 !i>y&TF3LlcdJgkrnO+UmA:HUx[>3=');
define('NONCE_KEY', 'A-*,KFM%alj6lD,Gri3-z~&-tD`N*t1;➥

 +/*X#fPgtF!q6/2d4oj+-gn^k#Ko>@9&');
define('AUTH_SALT', 'V;bXi_7=M,?}9*t49+2DxKq`DD(v]==N# ➥

 xwicF![UoI:F^S`x,F|,(vrvK#*6kG');
define('SECURE_AUTH_SALT', '*qi`X3#On+rRI2yc~o@cw!OQSm[z+|Qb+➥

 E#!z-BdjT9j2FC`2XeWH>S-3s8Fmszd');
define('LOGGED_IN_SALT', '2UOc--owpM}Sq<@zHv`|G_a:;)2T_B[H+^➥

 nfn<CJi3xMmb<NOAFt%=gEV0*R5]2Z');
define('NONCE_SALT', 'kqpm(x+2j#bS]p-].h|3b5Hw3t6mw2$F-2C➥

 /kiJ;S!OQ^AZh=P)sn-BdK>ItuxgO');

/**#@-*/

5. Provide basic site information and install WordPress.

From here on out, it’s easy sailing (if it wasn’t already). Just point your browser to the installation

location on your server and you’ll be greeted by the “basic site information needed” screen we

saw previously. Fill it out and click Install WordPress, and bada boom—you’re done!

A Word about Installers
Technically, there’s a third method you can use to install WordPress, although we don’t recommend

it. Many hosting companies provide one-click installers like Fantastico or Simple Scripts that you

can use to install a variety of open-source software, including WordPress. On the surface, it sounds

like a great idea—after all, as easy as the aforementioned installation process sounds, why not just

click a button and have it all taken care of for you immediately, right?

Actually, there are a couple of reasons to be wary of installers. First of all, and probably the least

harmful, is the fact that the installer may not install the most recent version of WordPress. WordPress

releases new versions all the time, and it’s important to keep up with them for a variety of reasons,

not the least of which is security. After all, WordPress is an extremely popular piece of software,

and that makes it a target for malicious hackers. WordPress constantly fixes security holes, so many

15Hello World

updates don’t introduce new features, but rather are security patches designed to make sure your

site is as bulletproof as it can be.

You might think that there’s still no real issue to be concerned about with installers—despite the

fact they may not install the current version of WordPress—because of how easy WordPress is to

upgrade automatically. However, some of these installers actually tie themselves into your install-

ation, preventing upgrades unless they occur through their system rather than WordPress’s. This

is distressing on several levels: we need to be certain that the current WordPress version is installed,

and we definitely want to be confident that we’re dealing with a clean, unchanged version of

WordPress.

Lastly, while it seems like a great idea to automate as much as you can, sometimes it can all go

wrong. Especially in situations where the hosting environment hasn’t been accounted for by the

author of an installer, matters can and sometimes do go bump, and you can end up with a WordPress

site that’s installed incorrectly. The point is that it’s very easy to install WordPress—so do yourself

a favor and install it the correct way.

Giving WordPress Its Own Directory
When WordPress is not the only software being run on a particular domain, many developers choose

to give WordPress its own directory on the web server, instead of installing it in the root public

HTML directory you’d like the system to propagate to. So you might physically install WordPress

at http://www.esquandolas.com/wordpress, but actually look to have the website respond properly

at just http://www.esquandolas.com, as indicated in Figure 1.8. This technique is often used when

you need to redevelop an existing website on the same server that the current website is running

on, but don’t want to interrupt the existing website until you are ready to flip the switch and make

it go live. It’s also a handy way to keep the directory structure clean and organized on your web

server, and avoids mixing in other files and directories being used for a purpose outside WordPress.

Figure 1.8. WordPress URL, Site URL, and admin email address in the General Settings page

A Word About Multisite

When you enable multisite, WordPress must be installed in a root directory; it won’t work correctly

if you attempt to use the aforementioned technique. That said, if you are enabling multisite, you’re

likely to not be doing anything else in that server directory space, so it’s barely an issue anyway.

See Chapter 10 for more on multisite.

The WordPress Anthology16

Giving WordPress its own directory is an easy process. Simply install WordPress like you would

normally—but in its own directory. Then, when you want to port it to show up in a different location,

log into your WordPress installation, go to Settings > General, and change the site URL to reflect

where you’d like the site to propagate to. Now save your changes. Finally, copy the index.php and

.htaccess files to the new directory where the new site should actually resolve to and open up the

index.php file. Assuming you’ve installed WordPress into a subdirectory of the directory you’d like

the website stored inside, and called it wordpress as per our example, you’ll need to find this line

in the copied index.php file:

require('./wp-blog-header.php');

And change it to this new line:

require('./wordpress/wp-blog-header.php');

After you save the file, you’re all done, unless you’ve already set up your pretty permalinks (more

on these in the section called “Permalinks” in Chapter 2). If that’s the case, go back into your

WordPress admin dashboard and navigate to Settings > Permalinks; save the existing permalink

structure one more time. This will refresh your permalink structure in the .htaccess file and make

the entire site route properly. For more detailed information on this process, check out the WordPress

Codex page.14

Resources and Learning Tools
What most developers come to appreciate upon digging into the WordPress community is just

that—there’s a real, vibrant, intelligent, and helpful development community that is constantly

building, improving, refining, translating, and otherwise adding to the conversation that is WordPress.

Be it through documentation, forums, local meetups, or chat rooms, you’ll find numerous mediums

to give and receive help within the community. Let’s now look at some of the more popular ways

to become involved and interact with the community.

The WordPress Codex
Although it’s the least interactive of any of the tools we’ll mention here, the WordPress Codex15 is

by far the most powerful resource that the community has to offer. The Codex is WordPress’s online

documentation. It’s a complete resource that is perpetually kept up to date by volunteer contributors

within the community, and may well be the most useful tool available for learning how to use

WordPress from the ground up. It’s also handy for looking up specific functions and processes.

While the Codex is technically a wiki, and as such contains information that is out of date from

14 http://codex.wordpress.org/Giving_WordPress_Its_Own_Directory
15 http://codex.wordpress.org/

17Hello World

http://codex.wordpress.org/Giving_WordPress_Its_Own_Directory
http://codex.wordpress.org/Giving_WordPress_Its_Own_Directory
http://codex.wordpress.org/

time to time, the Codex will teach you much more about understanding how to complete tasks than

simply memorize specific functions (although the more you know, the easier your life will ultimately

be). If you struggle to understand a concept or need clarification on how to use a particular function,

the Codex should always be your first stop. It’s your very best friend.

Support Forums
Interactive places that offer help can be found in any number of support forums on the Web. In

particular, the official WordPress Support Forum16 is a great place to start. Powered by bbPress,

the forum software we discussed earlier, the WordPress Support Forum is especially unique in that

it automatically creates a forum for every plugin listed within the WordPress Plugin Directory, and

includes functionality that allows for plugin developers to mark support questions as resolved.

There are plenty of other WordPress forums to be found across the Web, including SitePoint’s own

WordPress forum.17

WordCamp and Local Meetups
If you are more of a reach-out-and-touch-somebody type of person, have a look to see if there might

be a local group of WordPress developers and enthusiasts that connects on a regular basis.18 Local

meetups tend to draw people from all aspects of the WordPress community, including developers,

designers, entrepreneurs, academics, hobbyists, marketers, and more. They’ve proven extremely

beneficial for both novice and seasoned WordPressers alike. In larger communities, you may find

several groups segmented for more specific purposes, but it really depends on what the general in-

terests are of the people within your community.

Once a group becomes sizeable and there’s enough interest shown, somebody either inside the

group or within the general WordPress community may seek to organize a WordCamp. In any given

locality, WordCamp is an event that often serves as the annual keystone for local meetup groups.

Usually comprising two days, such events are often sponsored by Automattic, encouraging a large

number of local experts to give presentations on WordPress-related topics, along with national and

international experts who introduce new information, ideas, and influences into the local community.

If you’ve never been to a WordCamp and are interested in WordPress and everything that goes along

with it, it’s an event that is well worth your time. Check out the schedule of upcoming WordCamps19

and attend an event near you.

16 http://wordpress.org/support/
17 http://www.sitepoint.com/forums/wordpress-300/
18 http://wordpress.meetup.com/
19 http://central.wordcamp.org/

The WordPress Anthology18

http://wordpress.org/support/
http://www.sitepoint.com/forums/wordpress-300/
http://www.sitepoint.com/forums/wordpress-300/
http://wordpress.meetup.com/
http://central.wordcamp.org/

WordPress.tv
If you’re unable to make it to a WordCamp, but want to see replays of presentations or are looking

for video tutorials and related WordPress video-based content, WordPress.tv is for you.20 Here

you’ll find information pertinent to both self-hosted WordPress and wordpress.com.

Chat Rooms
If you are an IRC (Internet Relay Chat) fan, there are several chat rooms that offer real-time assistance

to your issues. If you’ve never used IRC before, you’ll need an IRC client on your computer to connect

to the service. Once you have your IRC client ready to roll, connect to the Freenode server at

http://webchat.freenode.net/, and have a look at the following chat rooms that cover these topics:

#wordpress This is the main WordPress support channel. If you have general questions,

this is really the best place to hang out.

#wordpress-dev This is the main channel covering discussions about WordPress core devel-

opment. It is best to skip this one if you are looking for general WordPress

assistance. Topics here regard core development only.

#buddypress-dev This channel is for anything and everything related to BuddyPress.

#bbpress The channel for anything and everything related to bbPress.

Google
Look, the truth is that WordPress is pretty darn popular, so to try to create an exhaustive list of

quality WordPress learning tools and resources might literally up take half of this book—not to

mention become out of date quickly because of new resources that continually crop up. As with

anything else, an excellent tactic is to simply use the almighty Google and type in exactly what it

is you’re seeking to learn about. You’ll find tutorials, videos, support forums, and blog posts galore

that touch upon every aspect of WordPress.

People, we have a big, helpful community out there, so make sure you use it. Don’t be afraid to be-

come involved, and remember to give back to help out the next newbie. At the end of the day, we’re

all amateurs; some of us are just a lot more professional about it than others!

Ready to Press On
Well, that’s a whole bunch of stuff we just covered, huh? We looked at a brief history of modern

web development, from its origins through the development of mature content management systems,

as well as how Matt Mullenweg and Mike Little brought WordPress into being. We also covered

20 http://wordpress.tv/

19Hello World

http://wordpress.tv/

the way the WordPress community works due to its core developers and contributors, as well as

the general development community that creates and supports both free and premium plugins and

themes.

We discovered the most common uses for WordPress, the general approaches to take to accomplish

a particular type of project, and when you’re better off looking in a different direction for a solution

to a web application. Finally, you should now have at least one WordPress installation up and

humming along nicely, and an army of resources where you can go to find help. So, with all that

said and your shiny new WordPress site at the ready, let’s jump on in and have a look around, shall

we?

The WordPress Anthology20

Chapter2
WordPress 101
WordPress is a powerful development platform that can scale to handle the simplest of websites,

as well as more robust and complex custom web applications. Before we dig into the nitty-gritty of

code manipulation, it’s useful to return to the beginning and take a look at the functionality provided

by default in every core WordPress installation.

An Overview of Core WordPress
For newbie website administrators, this chapter will serve as a primer on the basics of what you’ll

find within a modern CMS. And if you’re already well-versed in alternative commercial or open-

source content management systems, it will provide a thorough road map that illustrates how content

management concepts apply in the WordPress universe. If either of these descriptions resonate with

you, or if you just feel like reviewing what’s available and possible, we invite you to sit back, relax,

and come along with us on a tour of the core WordPress administrative back end. If this wasn’t a

book, we’d offer refreshments, but sadly you’re out of luck.

Setting the Mood
Like many things in life, it can be helpful to set the stage for whatever it is you’re doing before

jumping into the main event. After all, if you’re planning a romantic dinner for your significant

other, it’s more than just cooking a really nice meal … you’ll want to set the table, light some candles,

dim the lights, and put some Barry White on, right? In the same way, it’s a good idea to have a look

around the WordPress admin back end and configure some basic settings before you launch into

adding content.

The Dashboard
The Dashboard is essentially the home page for the WordPress administrative dashboard, and it’s

what you’ll first encounter every time you log into WordPress. It is designed to give you a visual

overview of some of the key elements going on within the website by utilizing movable Dashboard

widgets. As you can see in Figure 2.1, the Dashboard features several rectangular areas that each

encapsulate a piece of information or functionality.

Figure 2.1. The WordPress Dashboard

Each of these sections are actually self-contained, movable Dashboard widgets that we can arrange

by simply dragging them around into the order and configuration we choose. As soon as we move

a particular Dashboard widget, the new configuration is automatically saved; it’ll always be right

where we left it unless we move it again.

Take It or Leave It

It’s useful to note that you’ll either absolutely love or largely disregard the Dashboard. There’s

nothing on the Dashboard that you won’t find elsewhere within the administrative back end, and

usually with more fleshed-out functionality. Still, a lot of users quite like it, because it allows them

an overview of lots of elements from one vantage.

Core WordPress comes with a bunch of pre-installed Dashboard widgets that you can move around

and play with, but some plugins will introduce additional Dashboard widgets for your use. If you

find yourself using the Dashboard quite a bit but would like to customize its appearance or remove

several widgets that take up too much space, you can have a look at its screen options.

The WordPress Anthology22

Screen Options
Many areas of the administrative back end feature screen options, evident in Figure 2.2. When

screen options exist for a particular WordPress section, you’ll find an appropriately labeled button

in the upper right-hand corner of your screen that will reveal a menu specific to the area you’re

working on.

Figure 2.2. Screen options in the WordPress Dashboard

For the Dashboard, you’ll notice that WordPress provide two types of feature controls: the ability

to show and hide different Dashboard widgets, and vary the number of vertical columns to display

your Dashboard widgets. As a user, this gives you a great deal of flexibility in customizing your

Dashboard.

Keep It Relative

If you are a developer who plans on integrating a Dashboard widget into a plugin, you’ll want to

take the width of a Dashboard widget into account. Keep in mind that your widget could be running

in a relatively wide, one-column environment, or crunched up in a much narrower four-column

environment. Be sure to use relative widths for visual outputs in these instances, and recognize

that you simply lack any control as to how the Dashboard widget will ultimately be viewed.

The Admin Menu
Running along the left-hand side of the back end, you’ll find the main Admin menu used within

WordPress. Over the years, the Admin menu has seen some of the most significant overhauls of any

of the visual aspects within the administrative back end, originating as a top-running horizontal

menu and remaining that way until WordPress 2.7, when the design was shifted to a vertical posi-

tioning. Along with several other administrative visual elements, WordPress 3.2 took it a step further

and made the menu minimal and narrow; a design improvement that does a better job of staying

out of your way, and gives you more workspace on smaller browsers.

Each main section within the core is a top-level menu item in the Admin menu. Moving your cursor

over to the right of each top-level menu label will reveal a drop-down arrow that expands to a

submenu beneath. In Figure 2.3, you’ll notice that the Updates menu item displays a gray circle

with a number one in it, indicating that we have one plugin or theme that has updates available

23WordPress 101

that we can automatically upgrade to. Additionally, the menu highlights the section you’re working

in, pointing to it with a subtle right-handed arrow. Finally, if you want to see less of the menu, you

can always click the Collapse menu link at the bottom of the menu, which will decrease its width

by about 80%. This leaves only the main icons visible, so you still have access to your navigational

controls.

An Ever-expanding Menu

Figure 2.3 shows the default Admin menu when you first install core WordPress, but once you begin

adding plugins to your site, your menu will become more cluttered. When you do install plugins

and look to use your new functionality, understand that its settings page can technically be located

anywhere on this menu, as hooks exist to add to each section (we’ll learn more about hooks later

on in the section called “Action Hooks and Filter Hooks” in Chapter 5). However, you’ll most

commonly find plugin settings pages listed as subitems in either the Settings or Tools menus, or

added as their own top-level menu.

Figure 2.3. The main Admin menu in WordPress

The WordPress Anthology24

General Settings
The next piece we should have a look at is the General Settings screen, seen in Figure 2.4 and located

at Settings > General. General Settings are where you can set the most fundamental variables used

throughout the installation.

Figure 2.4. The General Settings page

Site Title and Tagline are self-explanatory, and many themes use them by default in your website

header and title tags. We’ve already touched upon site addresses in Chapter 1, with the WordPress

address being the physical location where WordPress is installed, while the site address is the URL

that the website should actually propagate and display to (if you are unclear on this, go back and

have a look at the section called “Giving WordPress Its Own Directory” in Chapter 1). The rest of

the options are also self-evident by their names: primary administrative email address, new user

default role, time zone, date format, time format, and what day you want to start your calendar on

if you choose to use the calendar widget that comes standard with core.

The only option that may need explanation is Membership, which is where you can indicate who

can sign up to be a user on the website—whether through the automated user registration functions

built into core, or more restricted access with a manual registration of all users. Let’s keep moving,

though; the tour gets better.

25WordPress 101

Themes
When you move into a new house, you only feel comfortable once there’s furniture in your front

room and some artwork on your walls. It doesn’t have to be perfect—just as long as it’s not blank

and bare. The same holds true for your website, and luckily WordPress ships with a default theme

that can be customized. Furthermore, while you can only have one theme activated at a time, you

can add themes to your site to your heart’s content. Pop over to Appearance > Themes and you’ll see

your Manage Themes screen, which will show you all the themes you’ve already loaded to your site.

For each inactive theme, you’ll have three available options: Activate, Preview, and Delete. When

you have content populated in your site, the Preview option is especially nice, as you’ll get a good

idea of what a new theme will look like without having to actually make the change to your live

site.

You can also add new themes from right inside your back end by clicking the Install Themes tab at

the top of your screen, as seen in Figure 2.5. There’s also the option to look for additional themes

through the WordPress Theme Directory if you wish.

Figure 2.5. Some of the theme options in Install Themes

WordPress will let you search themes from the Theme Directory by keyword and visual attribute,

or you can look through featured, recently updated, or brand new themes that have been made

available. Each theme can be previewed and installed right away, giving you plenty of options to

make your website look killer—even if you have no particular graphic design skills. You can also

use the Upload link to install a theme in a .zip file you might have on your local machine.

Since we’re talking about themes, there are a couple more points worth noting. As we’ll see later

in this book, many themes include theme-specific, user-configurable options. In these instances,

The WordPress Anthology26

the theme can act like a plugin, and may add submenu items in the Appearance menu. For instance,

we have WordPress 3.2’s default theme—Twenty Eleven—active in the previous example, which

has in turn added Theme Options, Background, and Header submenu items to our Appearance menu.

If we change to another theme, these menu items will disappear and be replaced with different

options unless the new theme has specifically configured them to be there. An additional tool that

you should be aware (but wary) of is the theme editor, found at Appearance > Editor. This tool gives

you direct access to view and (if you have relaxed enough permissions) make changes to the theme

code directly while it is live. Be very, very careful with this tool: it’s never best practice to make

coding changes in a live environment, since even experts can accidentally miss a semicolon here

or a bracket there, resulting in mayhem.

Finally, while you technically can change your theme easily and as often as you like, if you’re trying

to build a brand for your company or website in general, making frequent theme changes is generally

a bad idea, unless you happen to be the most avant-garde of artists. People can be confused easily,

and visual brand continuity means a lot. Remember that while dressing up your website can be

tons of fun, it isn’t like dressing yourself in the morning—save the frills for what you’re wearing.

Privacy Settings
In what may be the easiest, most straightforward setting in WordPress, Privacy Settings (available by

navigating to Settings > Privacy) determine whether or not you want to add noindex, noarchive, and

nofollow tags to every page on your website. This effectively makes it invisible to search engines,

and hence just about anyone who’s unaware of the direct URL of the website. It’s really handy when

you are rebuilding an existing website in a public location, and want to ensure your timing is right

when relaunching the new one, or if you are looking to run a public corporate intranet, but have

no need for your pages to be indexed by engines. When privacy is set to block search engines, a

message is displayed in the Right Now Dashboard widget, letting you know that search engine logging

is blocked.

Automatically Updating
Finally, WordPress gives users the ability to upgrade conveniently and directly from within the

WordPress administrative back end. Whenever a new release of WordPress is available, you’ll receive

a notification with a corresponding upgrade link at the top of every page in the back end. Click the

link and you’ll be taken to a formal update page, which will give you the option to upgrade Word-

Press, as well as any out-of-date plugins that you have in batch. The automated upgrade utility is

excellent, and makes keeping up with feature updates and security patches a piece of cake.

Back Up, Back Up, Back Up!

While it should genuinely go without saying (and before you actually click the Upgrade button you

must read past a message that reminds you), please, pretty please, with sugar on top … make sure

you have a backup of your website. WordPress core itself has no integrated backup solution for a

27WordPress 101

number of reasons, most notably because of the varied environments that WordPress will run on;

however, if you are doing anything of note with your website and have any long-term care for it at

all, you really owe it to yourself to regularly back up your data. There are two common methods

for backing up and restoring WordPress—either a WordPress backup plugin (and there are several

premium plugins out there that do a great job), or some type of server-based backup option that

covers both your website and your other web-based server data (such as email, DNS and the like).

We won’t dig much more into backup solutions here as it’s beyond the scope of this book, but avoid

making the mistake of overlooking its importance before it’s too late.

Creating and Managing Text-based Content
Now that we’ve covered the background and setup stuff that we need with every WordPress install,

we can finally get down to what this is really all about: working with, organizing, and managing

content. Content can pragmatically be thought of as any piece of information we’re going to be

adding to our website, and commonly describes text, images, videos, and audio files. However,

placed within the context of WordPress, most people tend to refer to text throughout a website as

content, while images, videos, audio files, PDFs, and the like are categorized as media. By definition

it’s all content, but you’ll find people referring to it in different ways. Don’t worry, we’ll cover all

of it, beginning with the text-based stuff.

Pages
In WordPress, the most basic and intuitive form of text-based content is a page. Pages are meant to

be used for static informational content; that is, content that’s only changed infrequently. If you

think about it in terms of the generic small business brochure website, example pages might include

About Us, Map and Directions, or Contact Us. In each of these, the content may need occasional adjust-

ments, but it shouldn’t change all that much.

In order to view all the pages that you have loaded into your site, go to the Pages top-level menu in

the Admin menu, and click on either the main Pages heading or the All Pages submenu item. This

will give you a complete listing of all the pages that have been created, as well as their publishing

status (whether they’re in draft, published, or scheduled to be published—more on this in a bit),

the author who created them, and the date they were created or published. Adding pages is as

simple as clicking the Add New button at the top of the Pages management screen, or the submenu

item of the same name in the Pages section of the Admin menu. Editing existing pages, on the other

hand, can be done by simply locating the page you’d like to edit within the page listing, and clicking

on the name of that page. You’ll then be brought to a screen that looks like Figure 2.6.

Before we jump into the guts of page editing, it’s useful to note that for both the primary types of

text-based content in WordPress—pages and posts—the editing screens are similar. They are divided

into two sections: the content editor, and supporting attributes that are displayed via meta boxes

(see the section called “Meta Boxes”). We’ll examine both sections within the context of pages so

The WordPress Anthology28

that we don’t need to spend as much time on them when we look at posts, which are a little more

complicated conceptually.

Figure 2.6. Editing a page

Upon initial installation, WordPress is good enough to provide a sample page to play with, so that

you can get a feel for how things work; this is what the Edit Page screen looks like for that page. The

main portion is fairly obvious; at the top is the main title for the page—in this instance, it’s Sample

Page. Below the title box is the permalink, which we’ll cover this later on in the chapter, and in

even greater detail in Chapter 12; for now it suffices to understand that if you have Pretty permalinks

enabled, the page’s slug will default to the sanitized version of the page title. Below this is the

content editor: the place where you can actually enter and edit your page content.

The Content Editor
As we’ve described, pages (and posts, covered later) make identical use of the content editor, which

you can think of as a kind of word processing program. After typing or pasting your page copy into

the main content area, you can then format it as you intuitively would do in any commonly used

word processor: through a formatting bar at the top of the content area. This toolbar has the buttons

that provide your most important formatting functionality: highlight a word or phrase and click the

bold, italic, or strikethrough buttons, place your cursor in your text where you want to create bulleted

lists or block quotes, or align your content as you want it—it’s all there. Hovering over each button

will produce a tooltip, in case you need to discover its purpose. When you want to add a link,

highlight the copy where it will be, and click the button that looks like a chain link. This will give

you a dialog box with all the standard hyperlinking options that you’re accustomed to, as well as

additional features that let you search and link to existing content within your site. It’s just as easy

29WordPress 101

to edit an existing link: place your cursor on the link you want to work with and click the same

button. Deleting a link follows the same process, but instead of clicking the button that looks like

a chain link, click the button that looks like a broken chain link. (See what we just did there? Tough

stuff!)

Adding images, video, and audio is done by clicking the appropriate icon next to the Upload/Insert

link above the content editor. This will bring up a dialog screen where you can either upload a file

directly from your computer, or insert one you already have in your media library. We’ll cover this

in more detail in the section called “Working with Media and the Media Library”.

Another essential feature built into the content editor is the ability to flip between visual and HTML

versions of the page you’re working with. To do so, click the appropriate tab in the upper right-

hand corner of the editor to modify your view. Ultimately, keep in mind that everything you build

in WordPress is going to be displayed in an HTML format; therefore, while a visual editor is helpful

in knowing how your page will look, it’s sometimes necessary to look at and make adjustments to

the underlying HTML that will support that content. It’s also an absolute necessity anytime you

need to add a script of some sort to your copy. Companies that provide ready-to-use services for

website owners—such as hosted streaming video players, mailing list services, and even hosted

ecommerce solutions—routinely provide raw HTML or JavaScript code blocks that they require

you to insert into your page copy where you want their service to appear on your web page. This

means you need to have the ability to directly access the underlying HTML of your content copy

through the content editor.

Keep It Plain

If you are pasting in your copy from another source rather than typing it in, be aware of the following.

Although you can paste directly from Microsoft Word to WordPress, or convert copy to plain text

before pasting it, it’s advisable to use a plain text editor such as Notepad or TextEdit instead. This

ensures you are adding it in plain text (rather than rich text), thus avoiding any extraneous

formatting or random characters that can cause display issues within WordPress.

Completing the tour of the content editor is the enhanced fullscreen editing feature commonly re-

ferred to as distraction-free writing. In the top toolbar, click on the menu item with the icon featuring

four arrows that point towards the corners in an expanding fashion. You should see a similar view

as in Figure 2.7.

The WordPress Anthology30

Figure 2.7. Writing without distractions

Introduced with WordPress 3.2, distraction-free, fullscreen writing is a popular feature among

copywriters who spend a lot of time writing directly into WordPress. Upon entering the fullscreen

mode, you are initially shown the pared-down content editing options as displayed in Figure 2.7;

but place your cursor in the content area and start typing, and all those minimal functionality queues

fade away, leaving you with just your thoughts and words on a white screen. It’s a Zen-like feature

that can help the creative process by getting rid of overstimulating clutter, letting you focus on the

content you are writing. Move your cursor again and your minimal navigation pops back up, complete

with the option to leave fullscreen and go back to the normal editing screen.

Meta Boxes
The next major component in the page editing screen is all about the supporting attributes associated

with any given page (or post). These supporting attributes are housed in meta boxes—boxes within

the graphical user interface that compartmentalize information—and display on the right side of

the page editing screen. While plugins or themes will offer you the ability to add custom meta boxes

to the sidebar or beneath the content editor in different ways, the two that you should be aware of

first up involve publishing information and primary page attributes.

At the top of the right-hand sidebar is the Publish meta box, which handles publishing information

for the page. The main attributes that you can change and modify here are:

Status

Pages and posts can be saved in WordPress and marked with the status of Published, Pending

Review, or Draft. Pages that have a status of Draft are just that: they are works in progress, and

unable to be viewed in any manner at the front end of the website. Pages that are Pending Review

are similar to those in Draft, with the exception that website editors with publishing privileges

31WordPress 101

can effectively moderate the content on these pages, making changes prior to publishing. Published

pages are live on the site.

Visibility

Relevant once a page has actually been published, this attribute describes the rules allowing

website visitors to view that particular page. Private pages are available on the front end of the

website only to the creator of the page, while Password Protected pages require a password to

be viewed, which can be set in this location upon selecting the option. Public pages are visible

to all.

Published on

Defaulting to the current time, this attribute allows you to define the specific time a page should

be published to the site. You can backdate the publishing date of a page if you wish, or you can

schedule a page to be published at a date and time in the future. This attribute is more useful

in batch scheduling the publishing of posts rather than pages, but there are cases where

scheduling a page might be appropriate. For instance, a physician’s office might have a page

for each of the doctors working in the office. If a new doctor was hired and scheduled to begin

work several weeks from that date, the person responsible for web content could add that doctor’s

profile page to the site immediately, but not publish it until the day the doctor started work.

Directly underneath the Publish meta box is the Page Attributes meta box, which features these par-

ticularly important attributes:

Parent

Pages have the ability to be built into hierarchical structures; this is extremely useful for organ-

izing your site information and setting up your website permalinks properly (more on permalinks

in the section called “Permalinks”). Pages are structured to have parent-child relationships,

which enable a more specialized version (child information) of a more general version (parent

information) of a particular page. For instance, if we were building a website that revolved

around the topic of energy and fuel, we may have a page for liquid fuel. If we chose to break

out individual pages that detailed different types of liquid fuel—say gasoline, diesel, and jet

fuel—we would seek to create a parent-child relationship within individual pages. After creating

a page for each of these topics, we’d then locate and select the Liquid Fuels page in the drop-

down box on each of the three different fuel type pages (Jet Fuel, Gasoline, and Diesel); this

indicates that each fuel type page are subsets (or children) of the originating page, Liquid Fuel).

Template

Every WordPress theme by definition comes with at least one page template, which is defined

by the index.php file as we’ll learn in Chapter 6; however, you can add as many page templates

as you’d like to any given theme. Page templates can control how any WordPress page appears

and, in some cases, operates.

The WordPress Anthology32

To Be, or Not to Be Seen

Many aspects of WordPress won’t be visible on the screen until you have a need for an option to

be displayed. For instance, when you initially install WordPress, you’ll be provided with one sample

page. If you happen to go looking for the parent drop-down box where you only have one page

loaded to WordPress, you won’t find it; WordPress is smart enough to know that it’s impossible to

have a parent-child relationship if only one page exists. Similarly, in a category listing, a particular

category will remain unseen unless there is actually a post in that category to display. This really

is intuitive information, but when you’re learning how to use the system initially, it can be a bit

confusing. So, as you learn techniques and features of WordPress, always keep in mind that you

may actually need to add content in order to see something work the way you expect it to.

Saving (Your Backside)
The final two elements of note on the page editing screen are the Update button and the Move to

Trash button. The Update button is straightforward: it’s your main save and update button for the

page. If you do try to navigate away from a page before updating, WordPress will try its best to save

your behind: a pop-up notice will ask if you really want to leave the page before saving your work.

If you still decide to move on and end up losing something you really needed—remember, we did

try to warn you.

Publish First

Technically, the Update button will only display if you’ve already published your post or page;

otherwise, it will be replaced with the Publish button, allowing you to publish the page or post to

the site. You’ll have your Save Draft option as well.

The Move to Trash button does just that—moves the page to the trash. This brings up an important

point: WordPress doesn’t just delete stuff—its Trash function is similar to the one you might be fa-

miliar with on your PC or Mac. When you delete a page or a post from your site, WordPress doesn’t

remove it immediately; rather, it throws it into a holding queue that effectively removes it from

view, but holds on to it for 30 days in case you change your mind and decide that you actually need

it. To retrieve it, click on your trash bin in either the Pages or Posts area, restore it, and presto—it’s

back, all shiny and new! There’s WordPress again, doing its best to cover your backside.

Quick Edit and Bulk Edit
A handy feature that both pages and posts share is Quick Edit. Sometimes you may need to change

a page or post attribute in WordPress, but would prefer to avoid loading up the entire page editing

screen to do so. This is often the case when you need to make changes to several pages or posts all

at once. One way to handle this is through the Quick Edit screen, seen in Figure 2.8.

33WordPress 101

Figure 2.8. The Quick Edit Screen

When you go to either the page or post listings page in the back end, a small menu will be revealed

when you move your cursor over any given page or post. This menu will give you four options:

Edit, Quick Edit, Trash, or View. We’ve covered Edit and Trash, and View just shows you what the page

or post looks like on your site. Quick Edit will open up a set of controls inline with your listings as

seen in Figure 2.8. Furthermore, if you need to make the same basic changes to several pages or

posts in your site, WordPress gives you a Bulk Edit feature to work with as well.

In the drop-down menu above the page/post listings, you’ll find a further drop-down that lists Bulk

Actions. Select the pages or posts you need to work with and then select Edit from the Bulk Actions

drop-down. You’ll be presented with the inline screen seen in Figure 2.9, allowing you to make

wholesale changes to entries in your site very quickly.

Figure 2.9. Using the Bulk Edit option

Understanding Posts and Categories
Now let’s learn about posts, the other primary text-based content type in WordPress. From an

editing perspective, posts are similar to pages, as we’ve already seen. The main difference between

posts and pages is that while pages are meant to be stand-alone pieces of information, posts are in-

dividual pieces of content of a dynamic nature that need to be grouped together and categorized in

meaningful ways. The key word to note is dynamic, where content is (or can be) perpetually added

The WordPress Anthology34

to a degree that would make its sheer volume unmanageable without a system. And of course,

WordPress provides a system using categories. Before we look at the how of posts and categories,

let’s make sure we conceptually understand what they are and why they’re structured the way they

are.

Posts and categories can be best illustrated by looking at an example from the offline world. A

classic example can be found in print newspapers. Let’s create a fictitious newspaper that we’ll call

The Mockingbird Gazette. Like most newspapers, The Mockingbird has standard sections: Sports,

Business News, Finance, Lifestyle, and of course the main News section. Within each of these sec-

tions, Mockingbird editors have formed subsections to better organize the articles within the

newspaper, making it easier for readers. In the Lifestyle section, for instance, there might be subsec-

tions for Movies, Music, Books, Community Events, and Food and Drink. Let’s say that the newspaper

printed an article about a trendy microbrewery called The Wedge, which opened up in a cool,

urban, reclamation-style location that sat adjacent to some train tracks. If you were recommending

the article to a friend, you might hand them a copy of The Mockingbird and direct them to the

Lifestyle section. If you wanted to be more specific, you could tell your friend that it was in the

Food and Drink section of the Lifestyle section, making it easier for that person to go and find it.

In WordPress, posts and categories work in the same fashion. Drawing from our example, let’s say

we wanted to ditch the paper aspect of our newspaper altogether, publishing The Mockingbird online

for environmental, economic, and accessibility reasons (sounds familiar, doesn’t it?). We’ll replace

our newspaper sections with what we refer to in WordPress as categories, and write our articles in

the form of posts. The Mockingbird online now has a WordPress website with categories that include

Featured News, Sports, Business News, Finance, and Lifestyle. Furthermore, we’ll divide our Lifestyle

category into subcategories: Movies, Music, Books, Events, and Food and Drink. We can even organize

our posts further, so that when a visitor looks for the article about The Wedge brewery we talked

about earlier, it will be in both the Lifestyle category as well as the more refined Lifestyle > Food and

Drink category. When our visitor has finished reading about the free peanuts on offer while drinking

the top-class beer at The Wedge, and wants to know about the community events going on elsewhere

around town, they can then click over to Lifestyle > Community Events. This method of organizing

posts into categories and subcategories is just one of the ways that WordPress lets you organize in-

formation. Let’s now look at another.

Understanding Tags
What’s really cool about content management systems in general is that you’re able to instantly

extend functionality beyond what you’d ever have been able to do in the bricks-and-mortar world.

Sticking with our example post on The Wedge microbrewery, we know where we can find the article

within the category and subcategory system. We also know that if we were to search for “The Wedge”

in our search box, we’ll find it that way.

35WordPress 101

But what about the other stuff we learned about The Wedge? That it’s a microbrewery in an urban

reclamation-style location. It sits next to active train tracks. Let’s say they also play free movies

there, and it’s dog-friendly. And please, let’s not forget about the free peanuts, okay? All of these

facts are big plusses, so it sure would be cool to find more places with similar characteristics, espe-

cially if you have a dog that you like to take with you when you chill out in town. Tags help make

that a reality.

Tags are predefined keywords that the author or editor of a post can use to describe it; they’re gen-

erally not broad enough to necessitate their own category. For instance, in all but the most niche

markets, it would never make sense to list “dog-friendly” or “free peanuts” as a category to routinely

post to; however, you still might mention this sort of information when it’s relevant. For our example

post on The Wedge, it would be appropriate to add tags such as “microbrewery,” “urban reclamation,”

“train tracks,” “free movies,” “dog friendly,” and, of course, “free peanuts.”

Creating and Working with Posts
Now that we understand how posts are used, let’s return to the WordPress administrative back end

to see how we actually create and apply posts, categories, and tags. Creating a post is much like

creating a page. In the main Admin menu, open the Posts menu and select All Posts; then click the

Add New button above the listing of posts currently saved within the site. Alternatively, click the

Add New submenu item button in the Posts Menu. This will bring you to a page that looks similar

to the Add New Page screen. In fact, almost everything about adding a new post to WordPress is

identical to adding a new page to WordPress, with the exception that individual posts do not have

parent-child relationships with one another (categories do in the form of subcategories, as described

in our example). You’ll also notice several new meta boxes on the right-hand side of the Add New

Post screen, as shown in Figure 2.10.

The WordPress Anthology36

Figure 2.10. New meta boxes in the Add New Post screen

First up is the Format meta box, and it’s being included here because it would be confusing not to

do so. Simply put, this was introduced into core during the WordPress 3.1 release, and its purpose

is to standardize how WordPress conveys the type of information contained within a specific post

to a theme or external blogging tools. As of the time of this writing, it’s not widely utilized, so its

future is unclear in terms of ongoing usage. Furthermore, if the active theme lacks support for post

metadata, this box won’t display. For the most part, it’s fairly safe to just use the standard format

and move right along, but it’s useful to keep this in mind when your usage expectations might shift.

For more information, have a look at post formats on the WordPress Codex.1

Closer to the heart of the matter are the Categories and Post Tags meta boxes that follow Formats.

These are fairly intuitive, with some cool logic integrated. Within the Categories box, you’re

presented with a list of available site categories to choose from; adding your post to a category is

as simple as ticking the adjacent checkbox. Bear in mind that posts can be listed in multiple categor-

ies, which is handy if it’s appropriate, but it’s advisable to use some restraint with this feature. In

1 http://codex.wordpress.org/Post_Formats

37WordPress 101

http://codex.wordpress.org/Post_Formats

situations where you have a multitude of categories, it can be useful to click the Most Used tab and

select from this listing instead. Finally, you can also add new categories on the fly, which is especially

useful in the early stages of site development. In the event that you need to create a category, click

on the Add New Category button and you’ll be able to create it inline. Click the Update button, and

you’re good to go!

Minimize Your Categories

It’s a common mistake among newcomers to WordPress (and the creators of content management

systems in general) to create far too many categories; they subsequently end up with only one or

two posts per category in any given space. The category system quickly loses its effectiveness because

it becomes unclear for your users where anything should be located. So, instead, focus on maintaining

a small, reasonable number of categories that better classifies your data, and rely on tags for more

specific categorization. The exact number of top-level categories for a website is entirely up to the

website administrator, but from an information hierarchy design standpoint, four to eight main

level categories is recommended. Always err on the side that fewer categories is better.

While the Post Tags meta box is equally straightforward in terms of use, it’s important to guard

against doubles or misspellings that ultimately dilute the effectiveness of the tag. For instance, if

you use the tag “dog friendly” on one post, and then the tag “dog-friendly” on another post, you

literally cut the effectiveness of your tags in half. After all, if a user clicks on the tag with a hyphen,

only those posts tagged that way will be visible, with those sans hyphen remaining hidden. This

problem is also common with plural versions of words (“dog” versus “dogs”), as well as words that

are commonly misspelled.

WordPress tries to help by offering an autofill function, revealing available options as you begin to

type tags into the post tag box. So when you type in the characters “do,” you will automatically be

presented with tags already listed in your WordPress site that start this way, such as “doctor’s office,”

“Doppler radar,” “Donald Trump,” and “dog friendly.” Another method is to simply click on the

Choose from the most used tags button, and click the relevant tags. If you do need to add a new tag

to your system for use on the post, you need merely click the Add button. Finish it all up by clicking

the Update button, and you’re all set.

Managing Categories and Tags
It’s great that we can apply tags and categories to a post at the point of adding or editing it, but we

also need some type of central management for both pieces of functionality. WordPress gives this

to us in the form of the Categories and Post Tags management screens. Let’s begin by navigating to

the categories management screen in the Admin menu—as seen in Figure 2.11—by going to Posts >

Categories.

The WordPress Anthology38

Figure 2.11. The Categories management screen

Once inside, you’ll see both your current category structure on the right-hand side, complete with

subdirectories (officially referred to with the same parent-child nomenclature we discussed earlier

regarding pages), as well as the ability to create and organize new categories on the left-hand side

of the screen. Adding new categories is simple, and all that’s required is the name field. Adding a

name will automatically generate the rest of the values within the category and place the new category

in the location where you last created a category. Slugs are particularly important for search engine

optimization when you have pretty permalinks enabled (which is covered in the section called

“Permalinks”). If the category you are creating is meant to be a subcategory, be sure to select the

appropriate category as the parent. Finally, it’s safe to disregard the category description in most

instances; this largely unused field is irrelevant for search engine optimization purposes. Editing

existing categories is equally intuitive: just click on the category you’re looking to modify, make

the changes you need, and click Update.

The Post Tags management page is essentially identical to the Categories management page, except

there is no Parent drop-down option to contend with. Easy peasy.

Working with the Links Content Type
Another content type found within WordPress are links, which you can access in the Admin menu

by clicking on the Links submenu and any of its related submenu items. While they’re less frequently

utilized than other types of WordPress content, links can be useful if you’re looking to display ex-

ternal website links in your footer or on sidebars. Links also share all the same organizational features

of posts and pages. However, they comprise a type of functionality distinct from inserting internal

or external links in your website copy, and many users simply don’t use this content type at all. As

links are a main Admin menu item, they’re still worth mentioning here.

39WordPress 101

Permalinks
So far, we’ve made repeated references to permalinks and slugs. We’ll cover permalinks and their

practical application and configuration in more depth in Chapter 12, which deals with search engine

optimization and marketing. But because we’ve now dug into our basic category types, we have

enough background information to frame a basic explanation. Put simply, permalinks are permanent

URLS associated with any given page, post, category, tag, or other piece of media that can have a

slug attached to it. Slugs are sanitized text strings that are associated with a specific piece of content,

category, or tag, and always form the last component of a URL. Slugs contain only letters, numbers,

and specific characters such as hyphens and underscores. So if we have a page with a slug named

“testimonials,” the permalink for that page might be http://www.esquandolas.com/testimonials.

Permalinking structures are highly configurable within WordPress, and can be modified by navig-

ating to Settings > Permalinks. In the Permalinks Settings screen, you’re able to modify your site’s

permalinking structure to one of your own choosing. WordPress provides you with several commonly

used options, but if none of them suit you, you can create your own here through the creative use

of permalink structure tags. We’ll cover this in more detail inChapter 12, but you can also obtain a

complete listing of structure tags on the WordPress Codex page that discusses permalinks.2

In order for permalinks to work properly (or at all), you must have the correct server permissions

set up and available. This will allow WordPress to write directly to the .htaccess file in the directory

hosting the site URL, as defined in Settings > General. Without the correct permissions, you’ll have

to copy the file input that WordPress provides after setting the permalink structure settings. You’ll

then need to manually add the entry to the .htaccess file before your linking will display.

Where’s My .htaccess?

You’ll notice that we are describing the .htaccess file, which needs to be modified. If your WordPress

installation is running on a Windows server, you won’t be able to do this, because Windows servers

have no .htaccess files. Instead, you’ll need to make modifications directly to IIS, the web server

that manages and runs Windows-based web servers; however, this will literally be impossible unless

you have root access to the server and are able to directly work with IIS.

The reason for this is because WordPress is a PHP-based program, and PHP itself is a scripting

language native to Linux servers rather than Windows servers; the latter have their own server-side

scripting counterpart, ASPX. While it’s technically possible to run WordPress on a Windows server,

that doesn’t mean it’s a good idea; frankly, if you’re running on a Windows server, you’re just doing

it wrong. If you still must use a Windows server and want to use permalinks, feel free to pour over

the help text in the WordPress Codex.

2 http://codex.wordpress.org/Using_Permalinks

The WordPress Anthology40

http://codex.wordpress.org/Using_Permalinks

Alternative Ways to Post Text-based Content
If you’d prefer to not use WordPress’s built-in web-based mechanisms to post new content, there

are other options. Navigate to the Writing Settings page at Settings > Writing, and you’ll find three

methods integrated directly with core WordPress. It’s possible to post via email by creating a ded-

icated email account and giving WordPress access to periodically check it. After selecting a default

category for your posts, each time you send an email to that address, it will automatically post directly

to your site in the specified category. Additionally, API hooks exist that can be activated in this

area, allowing you to post to the site via the RSS-based Atom Publishing Protocol or XML-RPC.

Finally, a few miscellaneous items are located on the Writings Settings page, if and when you need

to take advantage of them. Most notably, the ability to modify the default post category (as well as

post format and link category) are here, as well as the dialog box to add extra pinging services, aside

from the stellar Ping-O-Matic3 tool managed by Automattic. Pinging services notify article directories,

search engines, and other site indexing services that your site has been updated, so they’re useful

for search engine optimization purposes. However, Ping-O-Matic automatically pings all the most

important services available in one fell swoop each time you update your site, eliminating your

need to worry about notifying them individually.

Working with Media and the Media Library
Now that we’ve explored text-based content in detail, it’s time to turn our attention toward the

other forms of content that we’ll work with in WordPress: media. Media is the collective term that

refers to images, video, audio recordings, and other files that you might upload and use within your

website. In order to use any given piece of media within WordPress, that media needs to live on a

web server, so that it can be regularly accessed by the pages and posts trying to display it. WordPress

sports a handy, easy-to-use system called the Media Library that makes managing media a breeze.

The Media Library
Accessed by going to Media > Library within the Admin menu, the Media Library provides a visual

representation of all the images, videos, audio files, and other file types such as PDFs that you upload

to your site. Whether you’re working within a page or a post, if you right-click on the Add New

button in the Media Library—or in the Media submenu of the Admin menu—new media files will

appear here whenever you upload them to WordPress. The Media Library page bears a solid resemb-

lance to the post or page listing pages, giving a quick overview of everything that’s been added to

the system.

3 http://pingomatic.com/

41WordPress 101

http://pingomatic.com/

Adding Images into a Page or Post
To insert an image into a page or post, place your text cursor in the content editor where you want

the image placed. Click on one of the upload media icons above the content editor, as shown in

Figure 2.12.

Figure 2.12. Icons for inserting media

WordPress will display a lightbox, which gives you the option of either uploading an image directly

from your computer, or looking through the Media Library for an image that’s already been loaded.

Whether you upload a new image or use an existing one, you’ll be brought to the Add an Image

dialog box, as in Figure 2.13.

Figure 2.13. Inserting an image

The WordPress Anthology42

This screen gives you a bevy of options and parameters you can set for your image, many of which

are standard image parameters supplied by the HTML tag. The only required parameter is

the Title, which defaults to the filename of the image. Adding in relevant data for all these fields is

a good idea for search engine optimization purposes, but are unnecessary from a functional perspect-

ive. Align the image and indicate whether it’s a small, medium, or large size (an option configurable

in the Media Settings page located at Settings > Media), and click the Insert into Post button. Finally,

be sure to click the Update button to save the page/post and commit the changes to the database.

Modifying Images
Once you add an image, it’s common to want to tweak how it appears in your page or post, or even

delete it altogether. To make these modifications, click on the image in the content editor. This will

highlight and darken the image, causing two icons to appear in its upper left-hand corner, as in

Figure 2.14.

Figure 2.14. Editing or deleting an image

If you want to delete the image from your page, just click on the red circle with a slash through it;

note that this will only remove it from the page, and not from the Media Library. If you just want

to make some sizing or alignment changes, click the button on the left with the small photo in it.

This will bring up the Edit Image dialog box, which by default lets you change the image’s alignment;

it also displays some fairly basic options like Title, Alternate Text, and Caption, which are useful

mostly for search engine optimization. If you click the Advanced Settings tab, you’ll be given more

detailed image display properties to play with, as evident in Figure 2.15.

43WordPress 101

Figure 2.15. Advanced image settings

In this area, you’ll be able to scale and preview the image at various percentage sizes, or add CSS

properties to either the image or a link connected to the image in the content editor. One nice feature

here is the Image Properties settings, which allow you to define inline styles on your image for border,

vertical space, and horizontal space.

What’s the link URL?

Occasionally, some plugins and themes will ask you to provide the link URL for images, in order

to use them for various functions within their own processes. The link URL is nothing more than

the physical location of your image on the web server, and you can always find the unique link

URL for any given image in the Media Library.

The WordPress Anthology44

Image Manipulation within WordPress
It’s worth noting that WordPress provides some basic source image manipulation and editing directly

within the Media Library. Image manipulation differs from modifying how images appear in that

no changes are made directly to the image file when you modify how it appears. Image manipulation,

on the other hand, actually changes the image file. So if you scale an image with image manipulation,

you are making the file physically larger or smaller, (and hence the file size), instead of just changing

the dimensions of how that file is displayed.

In order to make changes to an image, select it in the Media Library, and click the Edit Image button,

which will bring you to a screen like in Figure 2.16.

Figure 2.16. Editing media will affect the file itself, not just how it appears

45WordPress 101

WordPress shows you a working preview of your image, along with a row of tool buttons above it.

The first is a crop tool for trimming the image down. The next two buttons rotate the image 90 degrees

left or right, while the further two invert the image vertically or horizontally. Finally, there are your

standard, handy undo and redo buttons should you make a mistake! To the right of the preview

photo are additional photo manipulation tools that can either scale the image, or modify the

thumbnail settings that are set up and managed by WordPress.

Managing Media Outside of WordPress
There are times when it makes sense to manage your media files outside the scope of WordPress,

even if you plan to display it on the WordPress site itself; it’s actually common practice for audio

and video files. Such files differ from image files in that they require media players that interface

with web or mobile browsers in order to function. Furthermore, different formats of both audio and

video require their own types of players to work properly, and while you can upload audio or video

files to the media library, WordPress has no integrated audio or video players installed with core.

You’ll need to find a solution to be able to play these types of files on your website.

To this end, social media services like YouTube4 and Vimeo5 are extremely popular. Such services

are free, host the media files for you, and provide the benefit of tying into popular social media

platforms that can help publicize and drive traffic back to your website. These types of hosting

services provide you with a chunk of code, which you paste right into the HTML tab of your

page/post’s content editor, and you’re on your way!

Another solution is to use a player that’s configured as a plugin, and then create instances of that

player that refer to the audio or video file on the appropriate pages. It’s a very common way of

handling audio and video, allowing you to upload files directly to WordPress and then reference

them in the player. This is typically triggered through a shortcode—a piece of code used to create

a macro, which is added where you’d like it to show up in the content. However, while you tech-

nically can host your audio and video files in WordPress, you might question whether you really

want to. Audio and video files are often extremely large and tax your web server severely. Websites

with moderate to heavy amounts of traffic can become bogged down and downright slow because

of heavy usage, which can be an issue. Furthermore, if you have particularly large files on your

website, your visitors can consume an inordinate amount of bandwidth by simply viewing and

listening to to such files. Hosting plans are typically priced with bandwidth in mind, so this could

lead to extremely high hosting bills, or even having your website shut down completely until more

bandwidth is purchased and allocated. Either way, situations like this are commonly solved by

utilizing third-party media file hosting providers like the Amazon S3 hosting service.6 In this in-

stance, you can still use all your WordPress video and audio player plugins, but instead of giving

4 http://www.youtube.com/
5 http://vimeo.com/
6 http://aws.amazon.com/s3/

The WordPress Anthology46

http://www.youtube.com/
http://vimeo.com/
http://aws.amazon.com/s3/

the WordPress-hosted link URL found in the media manager, you reference the file to an external

URL provided by your media file hosting service.

A final solution popular amongst many small business owners is to work with a SaaS (software as

a service) platform. This provides large media file hosting, as well as an array of video and audio

players that you can embed anywhere in your website with a small code chunk. Such a solution

cuts the guesswork out of the equation for many website administrators.

Media Settings
As we’ve already touched upon, WordPress provides some miscellaneous media settings that can

be managed by visiting the Media Settings page at Settings > Media. Site-wide defaults for Thumbnail,

Medium, and Large image dimensions can be set here, as well as global settings for the server path

you want to store images in. Global settings for embedding third-party media are available here as

well.

Everyone Wants a Say
When people throw the “Web 2.0” buzzword around, the heart of what they’re talking about is

creating and maintaining conversation. To that end, one of the most powerful aspects of WordPress

is its built-in commenting capabilities. By default, WordPress enables website visitors to post

comments on any of the posts in your website if they’ve had at least one previously approved

comment. Users who are yet to have an approved comment will need their initial comment moderated

and approved by an administrator before it’s published. Once published, the comment becomes

visible to other website visitors, who can then respond to it, as well as to the original post, or the

individual comments that have been posted. In this way, WordPress creates discussion among the

visitors that frequent a particular site.

Managing Comments
WordPress gives administrators several methods to manage comments on a website, but the most

commonly used is the Comments section, seen in Figure 2.17. It is located by clicking on Comments

in the Admin menu.

47WordPress 101

Figure 2.17. The Comments page

From the Comments area in the back end, administrators can view all comments from one location;

a contextual menu is revealed for each comment when moused over. This menu allows administrators

to approve or reject a comment on the fly, reply directly to a comment for display on the front end

of the website, edit the comment, mark it as spam, or trash it. This panel is particularly useful in

situations where all comments on a site are configured to be moderated by an administrator prior

to publishing, a practice that completely eliminates comment spam.

Comment Spam
Comment spam consists of nuisance, unwanted comments that typically promote other services or

websites. It’s a rampant issue plaguing many content management systems including WordPress,

and is most commonly entered into WordPress sites via automated scripts. These scripts locate

WordPress sites and automatically comment on their posts; it’s usually off-topic and never intends

to genuinely engage your real website visitors in an honest, meaningful way. There are a variety of

plugins that provide protection against content spam, notably the Akismet plugin7 that comes

bundled with core WordPress. In order to take advantage of Akismet, you’ll need to create and retrieve

an API Key by setting up an account at http://akismet.com/wordpress/. Once you have your API

Key, it’s as simple as adding it into your plugin settings to verify your identity.

Discussion Settings
The settings that govern how comments are managed can be found in the Discussion Settings page,

located at Settings > Discussion. WordPress offers fairly comprehensive control over how comments

are managed and we won’t cover all the options here, but a few worth mentioning in particular in-

clude the following:

■ Allow people to post comments on new articles: effectively turns the commenting system on and

off for new articles

7 http://akismet.com/

The WordPress Anthology48

http://akismet.com/

■ Comment author must fill out name and email: provides website users with a measure of account-

ability

■ Users must be logged in to comment: ensures that all commenters are registered users of your

website

■ Email me whenever anyone posts a comment: notifies the administrative email address whenever

a new comment is posted

■ Email me whenever a comment is held for moderation: notifies an administrator whenever a comment

is held for moderation

■ Before a comment appears, an administrator must always approve a comment: represents the default

moderation settings that ships with core WordPress

■ Before a comment appears, comment author must have a previously approved comment: the most re-

strictive commenting option available short of disabling altogether

Leaving both Before a comment appears, an administrator must always approve a comment and Before

a comment appears, comment author must have a previously approved comment unchecked effectively

leaves the site wide open to comment spam, and is severely discouraged. It’s also useful to note

that while Discussion Settings manages global settings for use throughout a whole website, commenting

can be turned on and off in individual posts at any time by editing that post and selecting the ap-

propriate option.

For a more thorough description of the Discussion Settings screen, see the Codex.8

Avatars
Avatars are the profile images that are displayed next to a user’s name upon posting a comment on

a site, and tend to add life and personality to any website. Avatars can be turned on or off globally

within the Discussion Settings page, and can be personalized by registered users on that site. By default,

avatars in WordPress are automatically powered by gravatar.com,9 a free service that you can use

to associate an image with any email address you like.

Additional Display Elements
So far in our functional overview of core WordPress, we’ve looked at the two most important

building blocks of WordPress sites: the settings that describe how the site will look and act, and

how we create, manage, and interact with the different types of content on any given website. While

these components are the primary building blocks of any WordPress site, it’s important to explore

8 http://codex.wordpress.org/Settings_Discussion_Screen
9 http://en.gravatar.com/

49WordPress 101

http://codex.wordpress.org/Settings_Discussion_Screen
http://en.gravatar.com/

the smaller yet equally important components that serve as the glue to bring it all together: navigation,

sidebars, and additional functionality that can be added through the creative use of plugins.

Managing Custom Menus
Regardless of the content’s quality, websites that lack thought-out, intuitive navigation to help users

move around easily are dead in the water before they even get started. To this end, WordPress enables

administrators to replace the default menu with their own customized version, which they can

easily create and manage in themes and plugins supporting the feature.

The Menus screen is available via Appearance > Menus, and is frighteningly easy to use. To start,

you’ll need to create a menu by clicking on the Create Menu button and giving it a name. In Fig-

ure 2.18, we’ve gone ahead and created three menus that we can use to intuitively navigate

throughout our site.

Figure 2.18. The Menus screen

Once a menu is created, adding pages or post categories is as simple as ticking the checkbox adjacent

to the option, and then clicking the Add to Menu button to insert the pages in the menu organization

area on the right. Once entries are in this area, you can move them into your desired order, or pull

them slightly to the right so that they indent to create a submenu; you can see this in Figure 2.18

with Sample Page indented underneath Army of …. Once you’ve saved your menu, you can associate

it with your theme and a specifically defined menu area by selecting the location where the menu

should be displayed. This is done from the drop-down menu in the upper left-hand meta box titled

The WordPress Anthology50

Theme Locations. Keep in mind that themes can support multiple menus, as can plugins, which is

a common way to add mobile website functionality to a WordPress installation.

Sidebars and Widgets
Widgets are the figurative Swiss Army knife of the WordPress universe, and are best explained by

first understanding how sidebars operate. In WordPress, whenever you see a sidebar on either side

of a page, or when you notice content such as a Twitter feed or recent comments being displayed

in a footer, chances are that the content is housed within some type of widgetized area. Widgetized

areas are defined locations within WordPress page templates that allow users to easily insert and

organize smaller blocks of functionality known as widgets.

You can work with widgets by navigating to Appearance > Widgets in the Admin menu, as seen in

Figure 2.19, and they’re dead simple to use.

Figure 2.19. The Widgets main page

Core WordPress comes bundled with a variety of useful widgets, and plugins introduce new widgets

all the time, allowing you to add the latest and greatest functionality to the widgetized areas in your

theme at the drop of the hat. To do so, look for widget functionality that interests you in the Available

Widgets area in the center of the screen. Now open the drop-in area on the widgetized sidebar where

you’d like to add the widget by clicking on the drop-down arrow, and drag the available widget

into that area. If there’s more than one widget, you can order them however you like, or distribute

them to other widgetized areas displaying elsewhere on the website.

Many widgets have options that allow them to perform an action differently from other instances

of the same type of widget. For example, WordPress comes bundled with the Text widget, which

lets you add in any plain text or raw HTML or JavaScript to do different tasks. In this way, you

could easily use a Text widget to display simple textual information in a footer, all while using

51WordPress 101

another Text widget in the sidebar to house JavaScript code from a third-party mailing list service,

which creates a newsletter sign-up form on your website.

Extending WordPress through Plugins
We’ve already referenced plugins many times throughout this book and we’re devoting an entire

chapter to them later on (see Chapter 5), but they do deserve a cursory mention in this space. Plugins

are packaged pieces of functionality that can be easily added to any WordPress installation, and

are an essential tool that extends the functionality of WordPress to meet different needs.

From an organizational standpoint in the back end, plugins are set up a lot like themes. Expand the

Plugins submenu in the Admin menu and you’ll find Installed Plugins, which provides a complete

listing of currently installed plugins (both active and inactive); an Add New submenu item, which

takes you to the plugin installation screen; and Editor, which lets you (gulp) directly edit the source

code of both active and inactive plugins.

Leave the Plugins Alone!

It’s never considered best practice to edit active PHP programs. While you probably won’t cause

permanent damage to your website if you have a solid understanding of PHP and remember exactly

what you did to cause a problem, it’s best to make sure you really know what you’re doing before

you even conceive of using the plugin editor to make changes. Remember that there is no undo

function inside the editor. Be afraid. Be very, very afraid.

For a complete, comprehensive look at the good, bad, and ugly of plugins, as well as how you can

use them to help you bend WordPress to your will in the same way that Keanu Reeves bends reality

to his will in The Matrix, have a look at Chapter 5 and get busy with your bad self.

Import and Export Tools
Speaking of plugins, a specific set of them are maintained by the WordPress development community

to assist with importing and exporting page and post content into and out of WordPress. These

plugins can be installed and utilized by visiting the Tools > Import or Tools > Export menu options

in the Admin menu. These tools make it easier to migrate WordPress from server to server, as well

as provide essential links to liquidate older free blogs running on services like Blogger, TypePad,

and LiveJournal, if you want to migrate them to the self-hosted WordPress platform.

Users Roles and Permissions
The final component worth mentioning with core WordPress is the user management system that

comes bundled with it. User roles are the types of user you can expect to find within WordPress;

each user role has its own permissions that dictate different levels of accessibility.

The WordPress Anthology52

Default User Roles
By default, core WordPress comes with five user roles, each with its unique set of permissions.

Let’s have a quick look at what they are and what they can do:

Administrator

has access to all features and functionality across the WordPress site, and is the user role assigned

to the first user created when a WordPress installation is created

Editor

has significantly less authority than an Administrator, but is able to create, manage, and edit

posts, whether or not they belong to other users; Editors also have the ability to approve posts

submitted by users assigned to Contributor roles

Author

has the authority to create, edit, and publish their own posts solely

Contributor

has the authority to create and edit their own posts, but cannot publish them; Contributor articles

must be moderated and published by Editors

Subscriber

can read posts and add and read comments, but has no authority to create post content of any

kind; after the initial Administrator is created during installation, WordPress creates all users

as Subscribers by default unless otherwise configured

Administrator and Subscriber roles are more than sufficient for the vast majority of websites, and

full-blown publishing sites will commonly find the default user roles built into WordPress quite

adequate. Still, a website that seeks to operate as more of a corporate content management system

—able to create new user roles and define customized permissions for each—can find the function-

ality they are looking for through plugins. At the time of writing, there are three plugins in particular

that are useful in managing this process: Members, Role Scoper, and Capability Manager.

Members (http://wordpress.org/extend/plugins/members/)

Members is an exceptional plugin that is frequently updated and extends users and roles; it

also introduces some very useful content management functionality. You can make a site or its

feed entirely private, as well as use shortcodes to determine who has access to specific con-

tent—well worth a look.

Role Scoper (http://wordpress.org/extend/plugins/role-scoper/)

Role Scoper is a killer plugin that allows you to extend user roles in many ways. Aside from

giving you the ability to define groups and assign them specific roles, it also provides the op-

portunity to assign roles and restrictions to specific posts, pages, or categories. Role Scoper is

53WordPress 101

http://wordpress.org/extend/plugins/members/
http://wordpress.org/extend/plugins/role-scoper/

also supported by Multisite (see Chapter 10), and allows you to give Subscribers content editing

privileges.

Capability Manager (http://wordpress.org/extend/plugins/capsman/)

Capability Manager allows you to change the capabilities of any role as well as add new roles,

copying and modifying the existing rules into the new ones. Capability Manager also features

a backup/restore tool, which enables administrators to save current roles and capabilities before

making any changes, and restore them in case problems arise from the role modifications.

Extending User Profiles
Sometimes it’s useful to extend the information in a typical user profile past the bare bones options

provided with core WordPress. There are two specific plugins useful in this purpose:

Cimy User Extra Fields (http://wordpress.org/extend/plugins/cimy-user-extra-fields/)

Cimy User Extra Fields allows you to create additional user fields to your heart’s content,

complete with form validation configurable by an administrator to verify that fields are all

properly filled. It’s also Multisite compliant.

Register Plus (http://wordpress.org/extend/plugins/register-plus/)

Register Plus is a comprehensive plugin that lets you add custom user fields, but also does all

sorts of tasks for you including adding a custom logo, adding Captcha verification on your re-

gistration forms, letting users choose their own passwords when signing up, and much, much

more.

Now You Know the Basics …
We hope you have enjoyed the dime tour through core WordPress, but don’t worry—there’s still

lots in store as we go deeper into the rabbit hole. It’s impossible to really understand what we can

achieve with WordPress without an appreciation for the fundamental processes WordPress supports.

So what did we cover? Well, first we got a feel for the basic functional and visual settings in a

WordPress installation, and then took a look at pages, and how the content editor works. We took

a tasty trip to The Wedge to learn about how WordPress handles posts, categories, and tags, which

helped us better understand the organizational structure of websites and blogs in general.

After that, we talked a bit about images and best practices involved in using audio and video files

on our website. Finally, we finished our trip through the WordPress core with a look at some of the

less sexy but important functions inside the system, including navigation, widgets and widgetized

areas, and user roles and permissions. It’s been a whirlwind trip so far, but take a deep breath and

hold on tight—we’re about to get downright jiggy with the guts of WordPress. So pull out your PHP

manuals and get ready to learn about WordPress’s beating heart—The Loop!

The WordPress Anthology54

http://wordpress.org/extend/plugins/capsman/
http://wordpress.org/extend/plugins/cimy-user-extra-fields/
http://wordpress.org/extend/plugins/register-plus/

Chapter3
The Loop and WordPress File System
While one of the main reasons for the massive popularity of WordPress is the approachable and

simple-to-use GUI it boasts, ultimately it’s nothing more than a piece of software, and as a developer

you’re going to have to get your hands dirty with some code. Not to fear, though; like everything

else WordPress-related, there are systematic rules to follow that help you understand where different

files live. Say hello to the standard WordPress file structure.

The Standard WordPress File Structure
Like most content management systems, WordPress has a standardized way of describing how it’s

put together as a cohesive piece of software by adhering to a standardized file structure. This is

shown in Figure 3.1. This is the standard WordPress file structure shared by every single WordPress

site running on the Web, regardless of what the site looks like or how it operates. It’s powerful be-

cause it’s fairly elegant, simple, and familiar to WordPress coders across the globe. Let’s take a

moment to get familiar with the structure.

Figure 3.1. The standard WordPress file structure

The file structure itself can be cleanly divided into two types of files and folders: system files and

user-manageable files. System files include everything in the wp-admin and wp-includes directories,

as well as all the actual files in the root directory except for wp-config.php. User-manageable files

include everything that’s left: the wp-config.php file, the wp-content directory, and (on most servers)

the .htaccess file. In case you’re curious, here’s a brief description of what everything is and does.

System files and folders

■ These are all the .php files in the root directory, and serve as linchpins of WordPress, initi-

ating the key functions that need to happen in order to make the system work. For example,

index.php initiates the website page serving functionality, while wp-register.php contains all

the logic necessary to initiate the user registration process, and wp-cron.php initiates the

scheduled event functionality within WordPress.

■ wp-admin: All the files and folders within wp-admin comprise all the various tools and inter-

faces necessary to make WordPress run.

The WordPress Anthology56

■ wp-includes: All the files and folders within wp-includes comprise the various pieces of code

that actually execute WordPress and make all the magic happen.

User-manageable files and folders

■ wp-config.php: We’ve already worked with this file quite a bit. wp-config.php begins its life

in a newborn WordPress installation as wp-config-sample.php before being renamed, and

controls all the primary settings and control keys for the installation. This includes defining

the database location and credentials, setting the language being used in the site, and estab-

lishing unique keys that demonstrate authenticity and authority for the installation as a

whole.

■ wp-content: This directory is where just about everything you ever add or modify will live

in your WordPress installation, including plugins, themes, and absolutely every image you

upload to the site.

■ .htaccess: While not visible in our screenshot, the .htaccess file is crucial in determining

routing and general rules for how things operate. .htaccess is a file that can only be created

on Linux and Unix-based servers, and doesn't ship with a typical WordPress installation;

you have to actually make it for yourself, or WordPress will often create it on its own when

you initially set your permalink settings (if the server you’re running WordPress on allows

sufficient permission to do so).

Color Inside the Lines

Unless you really know what you’re doing, it’s never a good idea to change the core WordPress files

outside wp-config.php or the wp-content directory. As we’ve already learned, WordPress has the

ability to update itself at the click of a button, and physically this is accomplished by overwriting

what are considered to be standard system files. If you make changes to any of these files regardless

of where they are, you run the risk of having your file modifications overwritten at some point in

time. For this reason, it’s highly advisable to color inside the lines, and make sure that you make

all your changes either in the wp-config.php file, or in the proper plugin and theme files in wp-content.

If where you hang your hat is where you call home, for the purposes of the WordPress universe,

home may as well have the address of wp-content, as that’s where we’ll keep all our stuff. We’ve

already had a cursory discussion of themes and plugins, but it’s important to realize that whether

we have only a single theme and three plugins or 20 themes and 200 plugins, they’ll all be stored

in either the wp-content/plugins or wp-content/themes directories. Additionally, when you begin to

upload media to your website, the wp-content/uploads directory (or some form of it) will automatically

be created, and will house all the media on your site.

57The Loop and WordPress File System

So there you have it: a brief overview of where you can find just about anything inside a typical

WordPress installation. While now we know where just about everything lives, it’s high time we

rolled up our sleeves and started digging into some PHP code—so hold on to your hats!

The Role of Queries and The Loop
Let’s start out by digging into a theme in our WordPress installation and looking at the code we can

find in the index.php file therein. Now whenever you load that WordPress page, WordPress queries

the database for the posts that need to be shown. The posts that are returned depend, of course, on

what’s been asked for in the code of the page; for example, a request for the home page generally

results in a query asking for the most recent posts. Even the templates for a single post or page query

the database and make a list, albeit a list with only one item. WordPress loads up all these posts

into a posts object.

Once we have that object, we can use a piece of code called The Loop to control how these posts

are treated. The Loop simply runs through the posts that are stored in the object, and defines how

each should behave. We can use a blend of WordPress’s template tags—functions to display post

data—and regular HTML markup to control the appearance of the posts.

If you’re working with templates like the home page, a tag or category listing, a date-based archive,

or a search page, the query to retrieve the posts you need is built right into WordPress; this means

that your only task is to manipulate The Loop. When you want to produce your own custom set of

posts, however, you’ll need to create your own query for a custom loop to work with. In this chapter,

we’ll start by playing with the basic loops, and once we have the hang of that, we’ll move on to

creating custom queries.

What is the default loop doing?

It’s easy enough to find out what sorts of posts are being retrieved in a given page’s loop. In Word-

Press, the query_vars object stores all the different parts of The Loop’s query. See what’s inside

by echoing the query’s query_vars:

<?php
echo "<pre>";
print_r($wp_query->query_vars);
echo "</pre>";
?>

You’ll soon find out a wealth of information about what’s been asked for in each query.

The WordPress Anthology58

The Loop: Exposed!
Because The Loop controls the appearance of a group of posts, you’ll often find yourself working

with it when you’re editing template files. A quick trawl through the WordPress support forums

will reveal that The Loop is, by far, one of the single most popular questions to ask about, and

rightly so—it’s one of the most important parts of the WordPress experience. That has to be one big

and scary bit of code, right?

Actually, it’s fairly lightweight. Stripped back to its basics, The Loop generally looks like this:

<?php if (have_posts()):
?>
 ... anything that should appear before your group of posts
<?php while (have_posts()) : the_post();
?>
 ... instructions for each post
<?php endwhile;
?>
 ... anything after your group of posts
<?php else:
?>
 ... what to show if there were no posts
<?php endif;
?>

What’s going on here? If you’re cosy with PHP, you already know what an if statement is for—it’s

checking to see if we have posts. If so, a while loop kicks in—that’s a piece of code that repeats

based on a given condition. In our case, we repeat this loop once for each post. And if there are no

posts, we’ll do the instructions that follow else.

Of course, this is only as simple as it is because a lot of the hard work has been abstracted away

into different functions: have_posts(), the_post(), and so on. For our purposes in this chapter,

it’s enough to know that they simply work, but if you’re especially keen to find out, the Codex will

explain it all.

The Loop and Template Tags
Of course, the above loop is stripped back to its most basic components, and if you were to go ahead

and put it into your theme right now, you’d see very little indeed. In order to actually see anything

interesting on your page, you’ll need to include some template tags.

As we mentioned earlier, template tags are the functions responsible for showing stuff—generally

it’s information about your WordPress site, or about individual posts. There’s a dizzying array of

these for all kinds of purposes; roughly, you could divide them into simpler approaches, and more

complex ones.

59The Loop and WordPress File System

Some Easy Tags: the_
Simpler tags are those functions that can be used with little or no funny business with PHP. The

easy tags are generally characterized by starting with the word the.

the_title()

This tag generates the post’s title. You’ll often use this within a heading element, in conjunction

with the_permalink(), like so:

<h2>
 <a href="<?php the_permalink();
 ?>">
 <?php the_title(); ?>

</h2>

the_permalink()

This is used to output the URL of the post, or the URL of where the post would always be found,

the latter which is known as permalinking. In our previous code example, we’ve used it to

wrap around the title. You’ll also often find it in themes where a footer is used to provide post

information. We used the_permalink() in the <a> element in our previous example.

the_author()

This is the tag that shows the author’s name. In a user’s WordPress administrator profile screen,

it’s possible to choose how you’d like your name to be displayed—login name, full name, first

name, and so on. By default, the preference you choose is the one that’s shown for this tag:

<p>
Posted by <?php the_author(); ?>
</p>

the_author_meta()

This is to show other kinds of information about the author, and accepts a parameter to define

the information you’d like to show. For example, you can show a post author’s contact details

or website, or different variations on their name:

<p>
<?php the_author_meta(’first_name’); ?>
 has been a member since
<?php the_author_meta(’user_registered’); ?>.
</p>

The WordPress Anthology60

the_time() and the_modified_time()

These tags show the timestamp for when the post was made, or edited, respectively. They accept

four arguments: format, text to show before, text to show after, and whether to echo the date

(true is the default) or simply return it for your own use (false).

The simplest way to call on either the_time() or the_modified_time() is to call it without

arguments; WordPress will display the time that your post was made or updated with the format

you specified in your blog’s time settings. If you want to use it to call a date as well, simply

pass it a format, using the PHP date symbols:1

<p>
Posted on <?php the_time(’jS F Y’); ?>
at <?php the_time(’g:i a’); ?>
</p>

the_date()

the_date() acts a little differently to the_time() in that it only appears once for each day; so

for listing pages, like monthly archives, you can use it as a heading for groups of posts posted

on the same day. As with the_time(), it accepts four parameters: the format, text to show before,

text to show after, and whether to echo or return the text. The following example will put a

date inside a level 2 heading:

<?php the_date("jS F Y", "<h2>", "</h2>"); ?>

the_excerpt()

This displays the text that was entered in a post’s excerpt field. You’ll find that the_excerpt()

is put to good use in magazine-style themes where posts’ descriptions are used. If a post lacks

an excerpt, WordPress will show the first 55 words of a post, with all markup stripped. This

tag takes no parameters, so our example is simply:

<?php the_excerpt(); ?>

the_content()

This tag shows the contents of a post. On the home page or a listing page, if your post contains

the more quicktag (a quicktag is like an HTML formatting tag, but is used solely within Word-

Press), the_content() only shows content up to this point, followed by a link inviting a visitor

to read more. When you’re on a single post’s page, the entire post is shown.

the_content() accepts two parameters: a string that is shown for the Read More link, and a

Boolean to define whether you want to omit the text before the more quicktag—false is the default.

1 http://php.net/manual/en/function.date.php

61The Loop and WordPress File System

http://php.net/manual/en/function.date.php

In this example, we’ll combine the_title() with the_content()’s string (that is, its “read

more”) parameter:

<?php the_content("Continue reading "
 . the_title(’’, ’’, false)); ?>

the_meta()

If you’re making use of WordPress’s custom fields, the_meta() is a quick way to display all the

fields’ keys and values. These keys and values are output in an unordered list, and the function

accepts no parameters.

the_category()

This shows a linked list of the categories that have been selected for this post. It accepts three

parameters: a string to use as a separator, a choice of multiple or single to show parent cat-

egories or just child categories, and a post ID if you were using this outside The Loop. Commonly,

you’ll just pass the separator parameter. In the following example, we’ll receive a list of items

separated by a comma:

<p>We filed it under: <?php
 the_category(’, ’);
 ?>
</p>

By default—that is, when called without a separator parameter—the list of categories is printed

as an unordered list.

the_tags()

Like the_category(), you’d use this tag to show a list of the categories you’ve used for this

post. Unlike the_category(), its parameters are for completely different purposes: text to show

before the tags, a separator, and text to show after. By default, the output is the word Tags:, fol-

lowed by each tag, separated by commas. In this example, we’ll use list items for our tags, so

that they match the default behavior of the_category():

<?php the_tags(’’,’’,’’); ?>

More Tags

We’ve touched on just a few of the functions that are commonly used while you’re inside The

Loop. You can find even more tags, and complete documentation on each, in the WordPress

Function Reference.2

2 http://codex.wordpress.org/Function_Reference

The WordPress Anthology62

http://codex.wordpress.org/Function_Reference
http://codex.wordpress.org/Function_Reference

More Complex Functions: get_
For the most part, our arsenal of the_ template tags will do the job; but sometimes the output that

WordPress provides is less flexible than we’d like. Maybe we’d want to get at the information about

each post, but we’d like to make a few tactical strikes with our PHP before it’s printed.

Fortunately, WordPress provides a number of tags that retrieve, rather than simply print, post and

page information (like our the_ tags). These are generally prefixed with get_. These get_ functions

return strings or arrays that we can stash in a variable and manipulate. For every the_ function,

there’s at least one get_ function that can do a similar job. Let’s look into how to use some of these.

get_the_category()

Imagine that for a post, you want to list each of its categories’ names and descriptions as a

definition list. Using get_the_category(), we can retrieve an object describing each category

associated with the current post:

<dl>
 <?php
 foreach((get_the_category()) as $category) {
 echo "<dt>" . $category->cat_name .
 "</dt>";
 echo "<dd>" . $category_description .
 "</dd>";
 }
 ?>
</dl>

get_the_time()

A common way to manipulate the time of a WordPress post is to use relative timestamps; that

is, a statement like “Last posted 6 hours ago.” In this example, we’ll use get_the_time() and

get_the_modified_time() in conjunction with human_time_diff(), a built-in WordPress

function, to provide a friendly depiction of when content was edited. Of course, if the post has

never been edited after the fact, we have no need to show this section, so we’ll use an if state-

ment to check whether the post’s last edited timestamp is later than its published timestamp.

Here goes:

<?php
 $lastmodified = get_the_modified_time(’U’);
 $posted = get_the_time(’U’);

 if ($lastmodified > $posted) {
 echo "Edited " . human_time_diff(get_the_time(’U’), ➥

 get_the_modified_time(’U’)) .
 " later";
 }
?>

63The Loop and WordPress File System

get_post_custom()

We learned earlier that the_meta() fetches all the custom fields associated with a post. Custom

fields are often used in plugins or for special post types, so it can be impractical to display them

all indiscriminately. Instead, we can use get_post_custom() to retrieve just the fields we want.

In this example, we’ve used this to retrieve any custom fields with a key of song, and then we’ll

print them into an unordered list. Naturally, if there’s no song field for this post, we’ll display

nothing:

<?php
 $custom_fields = get_post_custom();
 $song = $custom_fields[’song’];

 if (isset($song)) {
 echo "<h3>Songs</h3>";
 echo "";

 foreach ($song as $key => $value)
 echo "" . $value . "";
 echo "";
 }
?>

Conditional Tags: is
Conditional tags are those that answer questions about common conditions, such as whether we’re

viewing a single page, or whether a particular post matches certain criteria. It’s a great way to intro-

duce some simple logic to your loops.

is tags are used in conjunction with if statements in PHP. For example, you may decide that on

your home page a sticky post should display a thumbnail, but a regular post should not. In your

loop, you could simply pop your thumbnail code inside an if statement that checks to see if the

post is sticky, and whether it has a thumbnail in the first place:

<?php while (have_posts()) : the_post();
?>

 <h2><a href="<?php the_permalink() ?>">
 <?php the_title(); ?>
 <?php the_time("jS F"); ?>
 </h2>
 <?php if(is_sticky() && has_post_thumbnail()) {
 the_post_thumbnail();
 }
 ?>
 <p><?php the_excerpt(); ?></p>

The WordPress Anthology64

 <p><?php the_tags("Tagged with: ", " / ", ""); ?></p>

<?php endwhile; ?>

You can pass arguments to conditional tags, too, letting you perform actions at a very granular level.

For example, is_page() will check if you’re on a page, but if you pass it a page ID or a page title,

you can perform those actions only on that page. Here’s a snippet to try:

<?php if(is_page(’About Us’)) { ?>
<div id="gallery">
 <h2>Gallery</h2>

 ⋮

</div>
<?php }?>

Conditional tags are described in detail in the Codex.3

Pagination
Your readers often want to navigate backwards and forwards through pages of posts—especially

on blog- or news-style sites, so remember to include options for pagination in your themes. In

WordPress, there are a few ways to achieve this. posts_nav_link() is a single template tag that

creates a pair of links allowing the user to navigate to the next or previous posts; you can use it in

archive templates or single post templates. If you want to split them up on an archive page, you

can use previous_posts_link() and next_posts_link() to print a link to the previous and next

set of results. To split these links on a single template, previous_post_link() and next_post_link()

print a link to the previous and next single post.

posts_nav_link() accepts three parameters: text to sit between the links, the text for the previous

link, and the text for the next link:

<p><?php posts_nav_link(’ • ’, ’Older posts’, ’Newer posts’);
 ?>.</p>

Used on listing pages, previous_posts_link() and next_posts_link() each accept two parameters:

the link text, and the number of pages on which to show the links. The default for the second

parameter is 0, meaning all pages:

<p><?php next_posts_link(’Go back in time...’, 0); ?></p>

3 http://codex.wordpress.org/Conditional_Tags

65The Loop and WordPress File System

http://codex.wordpress.org/Conditional_Tags

For single posts, previous_post_link() and next_post_link() act a little differently. They accept

four parameters: a format for the link, the text of the link, whether we only want to show a post

from the same category, and any categories from which we don’t want to show posts. In most cases,

you can go ahead and call this without passing any parameters, but if you do have a need to fiddle

with the links, you can use the %title and %link tokens to fine-tune the output. In this example,

we create a link to the previous and next post, and adjust the text output accordingly:

<?php next_post_link(’Older: %link’); ?>
<?php previous_post_link(’Newer: %link’); ?>

That’s Backwards

WordPress considers the next_post_link() function to actually refer to the set of posts that came

previously in time. previous_post_link() refers to the ones that came afterwards.

Find it a bit baffling? It helps if you think of this process as starting from your blog’s home page,

which contains the newest posts, and digging backwards. When you’re working backwards, the

next page is going to have older posts.

Let’s Try a Simple loop
Now that we know what makes up a loop, let’s try filling in some of the blanks. The following ex-

ample is a loop that will show each entry’s title, permalink, linked list of tags, and the excerpt.

We’ll wrap up all those posts in a tidy unordered list, and if there are no posts to show, we’ll include

a friendly message. Here goes:

chapter_03/loop-index.php (excerpt)

<?php if (have_posts()) : ?>
 <h1>Latest Posts</h1>
 <ul class="mini-list">
 <?php while (have_posts()) : the_post(); ?>

 <h2><a href="<?php the_permalink() ?>">
 <?php the_title(); ?>
 <?php the_time("jS F"); ?>
 </h2>
 <p><?php the_excerpt(); ?></p>
 <p><?php the_tags("Tagged with: ", " / ", ""); ?></p>

 <?php endwhile; ?>

<?php else: ?>
<h1>No posts to show</h1>

The WordPress Anthology66

<p>Sorry, we got nada. Nothing. Bupkis. Zippo.
Diddly-squat. Sorry to disappoint.</p>
<?php endif; ?>

Let’s see how that loop looks if we use it in a home page template reminiscent of WordPress’s

Twenty Eleven style. Since it’s on the home page, it’s simply displaying the most recent posts in

reverse chronological order. Figure 3.2 shows us what comes out of this loop.

Figure 3.2. Our compact loop, showing titles, tags, dates, and excerpts

Exciting? Hardly, but it serves to demonstrate how quickly and easily you can have a simple loop

up and running in your templates. Soon we’ll try some prettier examples.

67The Loop and WordPress File System

Counters and The Loop
We often find it’s useful to interrupt The Loop at a certain point, or to treat particular positions

differently. For example, you might want to make the first post in your loop stand out more, or

place an advertisement after the fifth post. You can accomplish this quite easily by introducing a

counter to your loop. Every time The Loop prints out a post, we’ll increment the counter. All you

need is a bit of code to check the value of the counter, and act accordingly.

In the following example, we’ll extend our simple mini loop from the previous section to show the

first post’s full content, and leave the others as excerpts:

chapter_03/loop-index.php (excerpt)

<?php if (have_posts()) : $postcounter = 1; ?>
 <h1>Latest Posts</h1>
 <ul class="mini-list">
 <?php while (have_posts()) : the_post(); ?>

 <h2><a href="<?php the_permalink() ?>">
 <?php the_title(); ?>
 <?php the_time("j M"); ?></h2>
 <p>
 <?php if ($postcounter == 1) {
 the_content();
 } else {
 the_excerpt();
 } ?>
 </p>
 <p><?php the_tags("Tagged with: ", " / ", ""); ?> </p>

<?php $postcounter++; ?>

⋮

You’ll see that we start by creating a variable, postcounter, and at the beginning we assign it a

value of 1. At the end of the while loop, we increment the value of postcounter by 1. And in the

middle of the loop, we check the value of postcounter and decide whether to show the excerpt

(the_excerpt()), or the post’s content (the_content()).

Now, let’s put that same counter to work in the pursuit of cold hard cash: we’ll insert advertising

blocks after every third post. After the end of the list items, we’ll check to see whether the value of

postcounter is divisible by three, and if so, we’ll insert a subtle bit of advertising. The following

example extends further on our previous one:

The WordPress Anthology68

chapter_03/loop-index.php (excerpt)

⋮

<?php
 if (($postcounter % 3) == 0) { ?>
 <li class="break">
 Buy lots of widgets please

<?php }
$postcounter++; ?>

Let’s see how that turned out, in Figure 3.3.

Figure 3.3. Our mini loop, now with ads—we’ll be rich!

Of course, you might have better luck with raking in the cash if you use a more enticing ad from a

reputable ad network, but no doubt you get the drift.

69The Loop and WordPress File System

Rewinding The Loop
If you want to use more than one loop on a page, use the rewind_posts() function to reset The

Loop’s counters to the beginning. If you forget to do so, you might find that you’re missing posts

in your other loops, or experiencing funny behavior in pagination.

Beyond the Default: Custom Queries
It’s all very well to be able to meddle with the default loops, but what about changing them com-

pletely, or even creating your own? Sometimes your project calls for a set of posts from a particular

category or set of tags only. Maybe you’d like to show off your most recent photo attachments in a

sidebar widget. You might want to change your author archives to show the posts in alphabetical

order, instead of reverse chronological order. However you slice it, it’s a certainty that one day

you’ll need to go beyond the safety of those default loops.

Like any CMS, WordPress’s most important job is to retrieve and display posts. Accordingly, there

are a few different methods for querying the database. Let’s look at how these are done and when

you might use each technique.

Manipulating the Default loop: query_posts()
We learned earlier that WordPress, being a helpful type of CMS, sets up its own queries on certain

pages. What happens, though, when you want to alter that behavior ever so slightly? If your goal is

simply to modify what should appear in the main WordPress loop, the query_posts() function4

is for you. It’s a function that overrides the current page’s default loop, and it’s useful whenever

you want to make some quick tweaks to the type of posts that appear.

To use it, simply call on query_posts() before your loop begins, and set up the parameters you

need from the available options. For example, we often find that we want to exclude certain categories

from date-based archives or the home page. We can do this by simply adjusting the query to exclude

those categories’ IDs with a minus sign, like so:

<?php query_posts(’cat=-11,-8,-90’);
if (have_posts()): while (have_posts()) : the_post(); ?>
... continue your loop as normal

To add more parameters, just pass on more of them, separated by ampersands:

<?php query_posts(’cat=-11,-8,-90&post_type=reviews&tag=action’); ?>

4 http://codex.wordpress.org/Template_Tags/query_posts

The WordPress Anthology70

http://codex.wordpress.org/Template_Tags/query_posts

What Parameters Can I Use?

All the available parameters are documented in the WordPress Codex’s WP_Query documentation,5

which is the class that underpins all the functions around fetching content.

Once you start adding more and more criteria, it becomes a little easier to read if you express these

as a longhand-style array, and then pass the array into the query_posts() function:

<?php $args = array(
 ’cat’ => ’-11,-8,-90’,
 ’post_type’ => ’reviews’,
 ’tag’ => ’action’,
 ’posts_per_page’ => 30,
 ’order’ => ’ASC’,
 ’order_by’ => ’rand’
);
 query_posts($args);
?>

When you’ve finished with your customized loop, it’s important to clean up after yourself, and reset

the query back to normal. query_posts() modifies a lot of global variables, many of which are also

in use by plugins and themes; if you neglect to reset your query once you’re done, it could have an

adverse effect on plugins and the elements that assume the query has been left untouched. Over-

coming it is simple—the wp_reset_query() function avoids all the drama:

 ... The Loop
<?php else: ?>
 ... the no posts message
<?php endif;
 wp_reset_query(); ?>

Creating New Customized Loops: get_posts
The query_posts() function is great if you want to modify what happens on any given page’s default

loop. When you have a need to create completely customized loops, however, we have a different

tool at our disposal: get_posts(). 6

We often find ourselves using custom loops when we want to create complex pages. For example,

the ever-popular magazine-style layout frequently makes use of a number of separate loops to

achieve effects such as sliders and featured posts, or formats including topical sections. In this

situation, modifying the existing loop isn’t going to be enough.

5 http://codex.wordpress.org/Class_Reference/WP_Query#Parameters
6 http://codex.wordpress.org/Template_Tags/get_posts

71The Loop and WordPress File System

http://codex.wordpress.org/Class_Reference/WP_Query#Parameters
http://codex.wordpress.org/Template_Tags/get_posts

For example, let’s say that we’re creating a page template that lists a particular series of posts. Each

post in the series is tagged with wordpress and tutorial. We want to show the list of posts in ascending

date order, so that a reader of the page knows which order to read them in.

To set up a loop that works for this scenario, we’ll first need to make a new array with all the

parameters we want to use to retrieve our posts. Then, we’ll use get_posts() to create a new array

of posts, tutorials, and use a foreach loop to iterate through them. By default, we’re unable to

use template tags like the_content in the usual way, so the addition of the setup_postdata()

function takes each post and prepares it for easier use:

chapter_03/get_posts.php

<?php $args = array(
 ’numberposts’ => 30,
 ’tag’ => ’wordpress+tutorial’,
 ’order’ => ’ASC’,
 ’order_by’ => ’date’
);

$tutorials = get_posts($args);
foreach($tutorials as $post) : setup_postdata($post); ?>
 <h2><a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

 </h2>
 <?php the_excerpt(); ?>
<?php endforeach; ?>

setup_postdata() Requires a post

In the above example, each item in the tutorials array is referred to as post. With the

setup_postdata() function, you must always call on each post as post—no other variable will

do.

Post Query Parameters

When we’re building our own queries, we have some incredibly powerful tools at our disposal. As

always, there’s no better place than the Codex7 to learn about all the different parameters and how

to combine them.

As we progress through this book, and cover different techniques and topics, we’ll see how various

parameters and methods help us get those jobs done.

7 http://codex.wordpress.org/Class_Reference/WP_Query

The WordPress Anthology72

http://codex.wordpress.org/Class_Reference/WP_Query

Using the WP_Query Class Directly
The WP_Query class is what’s responsible for returning the posts for a default loop, get_posts(),

and query_posts(), alike; these functions call on the same class, just in different ways. Calling on

it directly gets you a big object with a selection of posts, plus a good deal of information about the

request itself.

If you’re a creature of habit and consistency, a big benefit of this approach is that you can instantiate

a new WP_Query object and treat it just like a regular WordPress loop, but dealing with get_posts()

can be a little more tricky. Most of the techniques and functions are the same as the ones you’d use

when you’re manipulating a regular old loop, so it’s very easy to pick up and use this method right

away. With get_posts(), you’ll find that there are a few caveats: pagination needs extra help,

plugins work differently with a loop made from get_posts(), and so on.

Another benefit of the WP_Query approach is that you’ll often find it in use with plugins, especially

ones that modify the WordPress back end. If you’re an aspiring plugin ninja, it’s likely you’ll deal

with WP_Query often, so some consistency in how you retrieve content is handy to have.

It’s still okay to use get_posts() to grab simpler lists of posts—in fact, it’s been a popular method

for so long that it will probably be around for a little while yet—but the ease of dealing with the

WP_Query object directly makes it a great choice overall. You may find that you never need to worry

about using get_posts() at all!

Let’s look at how easy it is to deal with a WP_Query object. In this example, we’re creating a similar

loop to the one in the previous section, showing our WordPress tutorial series in chronological or-

der—this time, using the WP_Query method. Before we begin, we’ll put the existing query in a new

variable for safekeeping:

chapter_03/WP_Query.php (excerpt)

<?php
$original_query = $wp_query;
$wp_query = null;

$args = array(
 ’numberposts’ => 30,
 ’tag’ => ’wordpress+tutorial’,
 ’order’ => ’ASC’,
 ’order_by’ => ’date’,
 ’paged’ => $paged
);
$wp_query = new WP_Query($args);
?>

73The Loop and WordPress File System

For Pagination, Only $wp_query Will Do

In this example, we’ll be making our own query, but we’ll be copying our original query to another

variable and then naming that variable $wp_query. This is necessary for pagination methods and

their associated tags. They simply fail to work when the query is stored in an object by any other

name. Of course, you’ll only need to concern yourself with this issue when you need pagination.

With us so far? Now that we’ve stashed the old query away and set up our new one, we can start

using the new query in a loop:

chapter_03/WP_Query.php (excerpt)

<?php if ($wp_query->have_posts()): ?>
<?php while ($wp_query->have_posts()) : $wp_query->the_post(); ?>
 <h2><a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

 </h2>
 <?php the_excerpt(); ?>
<?php endwhile; else: ?>
 ... something to show if there were no posts
<?php endif; ?>

When you’re finished playing with your WP_Query object, it’s time to return everything to how you

found it. We’ll put the contents of $original_query back into $wp_query, and ensure everything’s

back to normal by using the wp_reset_postdata() function. This function uses the page’s POST

data to restore the post global variable to its original state:

<?php
 $wp_query = $original_query;
 wp_reset_postdata();
?>

Roll Your Own Loop Magic
With a combination of custom queries, loops, and good old-fashioned HTML elbow grease, you’ll

be able to create some groovy features for your blog. Here are some examples of common techniques,

and how queries and loops are used to achieve them. We’ve touched on a bit of theory in this

chapter, but since The Loop is such an important part of the WordPress experience, you’ll find that

we delve into more interesting aspects of it throughout this book.

For now, let’s just try out a few more examples.

The WordPress Anthology74

Fetch Any Posts Matching a Custom Field
Imagine that you’d like to pull out a series of posts matching a given custom field. For example, if

you’ve been keeping a note of the music you were listening to while you wrote each post, it might

be amusing to pull out links to all the posts matching a given artist. WP_Query provides two custom

field arguments, meta_key and meta_value, to construct a query:

chapter_03/custom-field.php (excerpt)

<?php
$original_query = $wp_query;
$wp_query = null;

$args = array(
 ’meta_key’ => ’artist’,
 ’meta_value’ => ’The Beatles’,
 ’order’ => ’DESC’,
 ’order_by’ => ’date’,
 ’post_count’ => ’10’
);
$wp_query = new WP_Query($args);
?>

Now that we have our arguments and our query in place, we’ll create a loop that shows a heading

and list when there’s matching posts. Since we have no need to show anything here if nothing exists,

we’ll just exit The Loop after our while loop:

chapter_03/custom-field.php (excerpt)

<?php if (have_posts()): ?>
 <h3>This artist also inspired...</h3>

 <?php while (have_posts()) : the_post(); ?>
 <a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

 <?php endwhile; ?>

<?php endif; ?>

As we learned earlier, it’s important to clean up your mess afterwards:

<?php
// Reset post data
wp_reset_postdata();

75The Loop and WordPress File System

// Restore some order
$wp_query = $original_query;
?>

Teasers of Future-dated Posts
If you’re super-organized, you probably have a bunch of future-dated posts waiting to go up. Why

not tease your readers with a taste of what’s to come? In this example, we’ll create a query that re-

trieves future posts, and shows their titles, excerpts, and an idea of how long readers need to wait

till they can see it.

As before, we’ll store away the original query in another object, and create a new WP_Query. In this

case, we’ll use the post_status argument to ask for posts that are set for publication in the future:

chapter_03/future-dated-posts.php (excerpt)

<?php
$original_query = $wp_query;
$wp_query = null;
$args = array(
 ’post_status’ => ’future’,
 ’order’ => ’ASC’,
 ’order_by’ => ’date’,
 ’post_count’ => ’3’
);
$wp_query = new WP_Query($args);
?>

Easy enough so far. Now we’ll show a title, the excerpt, and a human-friendly explanation of how

long our readers will have to bite their nails and wait to read it:

chapter_03/future-dated-posts.php (excerpt)

<?php
if (have_posts()) : while (have_posts()) : the_post(); ?>

<h2><?php the_title(); ?></h2>
<p><?php the_excerpt(); ?></p>
<?php
$now = time(’U’);
$posted = get_the_time(’U’);
echo "Going live in " . human_time_diff($posted, $now) . " time";

?>
<?php endwhile;
else: ?>
 <p>No future posts are planned.</p>
<?php endif; ?>

The WordPress Anthology76

Any More Queries?
There are many different facets to developing a keen understanding of WordPress, but the none of

them will make sense until you understand The Loop and template tags, how they work together,

and where everything lives. In this chapter, we covered the standard WordPress file structure and

described how and where to use The Loop. We went through a few examples of simple versions of

The Loop, and then dug into some more custom manipulations where we created our own queries

and looked at the difference between query_posts(), get_posts(), and WP_Query. On the surface,

The Loop isn’t the sexiest topic in WordPress, but it’s the vital building block required to make

everything else hum. Now let’s start putting our new-found knowledge about template tags and The

Loop into action and delve into the world of custom post types.

77The Loop and WordPress File System

Chapter4
Post Types
One of the factors that elevates WordPress from being a mere blogging tool into a butt-kicking CMS

ready for world domination is its custom post types capability. Custom post types let you go beyond

the concept of a blog post or page, and move into just about any type of content you like. Imagine

creating a recipe or tutorial site, a staff directory, or a portfolio of work.

In this chapter, we’ll learn about why we might want to create our own post types, how to put them

together, and how to create templates for them.

Moving Beyond the Blog
While many of us get along fine with the built-in content types provided in WordPress, sometimes

you just have to stretch the system a little—you want to be able to make up your own content types,

with customized fields, categories, and more.

Before WordPress 2.9, if you wanted to create a custom content type, you’d have to try to combine

pages or posts with categories, tags, custom fields, and some judicious use of theming. While it

achieved the task at hand, it was hardly an ideal solution; a blog post is still a blog post, no matter

how well your theme could dress it up to look like a product page. More adventurous souls would

build plugins and strange hacks that created custom database tables and did other mysterious tricks

behind the scenes, but it was an approach fraught with trouble.

Custom post types, by comparison, give us a straightforward way to extend WordPress’s native

content types beyond the default types. Setting them up is stupendously easy: just a few lines of

configuration and some effort with our templates is all it takes to have intuitive and functional

content types.

What’s in a name?

When we’re talking about post types, what we really mean is content types. The fact that it’s called

a post type in WordPress might make it seem like it’s still intended for blogging, but don’t be dis-

suaded—there’s so much more that can be done with these.

Creating Your First Custom Post Types
Let’s imagine that we’ve found ourselves in charge of creating a website for a small web conference.

Any good conference website needs to have at least two important pieces of information: who is

speaking, and what they are talking about.

This sounds like a great opportunity to explore post types. We can use these to help us describe

each of the speakers and the sessions. We’ll also have information pages and a conference blog,

though we’ll use standard pages and blog entries for these. We’ll start by planning out the types of

information we’d like to express:

Speakers pages

These will be simple enough. They should describe a little bit about each person, including an

image, their business, short and long versions of their bio, and a link to a website. We’ll list all

the speakers on a listing page.

Sessions pages

These will be more complex. They should describe the name of the talk, its location, its date

and time, a description, and a way to upload a slide deck of the talk. They should also have

their own tags, so that a user can check out all the sessions that may be of interest to them. We’ll

be listing sessions on a page, too.

Let’s begin with the speakers. Create a new plugin folder called sitepoint in wp-content/plugins,

and place a new plugin file inside it with the filename sitepoint-custom-types.php. You’ll need to

give your plugin a header, which WordPress will use when initializing your plugin for use:

chapter_04/sitepoint-custom-types.php (excerpt)

<?php
/*
Plugin Name: SitePoint Custom Conference Types
Plugin URI: http://sitepoint.com
Description: This is a plugin that provides the Custom Post Types
 chapter of the WordPress Anthology.
Author: Your Name Here

The WordPress Anthology80

Version: 0.1
Author URI: http://sitepoint.com/
*/
?>

You can define your custom post types in a plugin folder, or in a theme folder’s functions.php

file. So which should you choose?

If your custom content is for wide use, it might be best to present it as a plugin. If you’re working

on a client’s project where you’re fairly sure they’ll stick to using the theme you provided—

whether that’s Twenty Eleven or your own creative choice—perhaps you’ll be safe keeping it

within the functions.php file in that particular theme’s folder (which can be found in

wp-content/themes). The litmus test for where your code belongs is really whether that functionality

can be best described as site functionality or display logic—but for a deeper discussion of this, have

a look at the section called “Does My Functionality Belong in a Plugin or Theme?” in Chapter 6.

When in doubt, it’s usually best to add your functionality in a plugin. If you are concerned that

your client may accidentally turn the plugin off, consider simply making the plugin a must-use

plugin (you can learn more about must-use plugins in Chapter 5).

In this chapter, we’ll work on a plugin—not least because it makes it really easy for you to drop our

example files into your own install. If it sounds like we’re jumping ahead a little, we are. In fact,

plugin development is covered in detail in Chapter 5, specifically in the section called “The Anatomy

of a Plugin” in Chapter 5. We’ll only be touching on the most basic parts of plugin setup here, and

if you’ve been reading cover to cover and are yet to read Chapter 5, these instructions should still

make sense. Of course, if you’re just dying to find out now, feel free to flip ahead—we’ll still be

here when you return.

Head into the WordPress admin area, go to the Plugins submenu, and click on Installed Plugins. There’s

our plugin, listed alongside any others in the wp-content/plugins folder, with all the information

from our header attached to it. Cool, huh? Again, for now, avoid fretting too much about the details

behind this—it’s all going to be fully fleshed out in Chapter 5.

Our plugin, as yet, does absolutely nothing, so you’ll need to activate it in order to see your code

take shape. Go ahead and click Activate. Make sure you keep your Admin panel open in a separate

tab in your browser, too, as we’re going to be coming back to it a lot.

Must-use Plugins Are Active

If you’ve set up your plugin as a must-use plugin, it’s unnecessary to manually activate the plugin.

Must-use plugins are automatically active whenever they are present in the wp-content/mu-plugins

directory. For more information on this, flip forward to the section called “Must-use Plugins” in

Chapter 5.

81Post Types

Now for some action!

The Basics of register_post_type()
The register_post_type() function takes care of telling WordPress about how we define each

new piece of content. Like most things WordPress, it’s described in great detail over at the Codex,1

along with its dizzying array of configuration arguments (See what we did there—array? Okay,

tough crowd …). In this chapter, we’ll just refer to the ones we need.

We’ll wrap all these up in our own function, conference_post_types_register(), and call on

that function whenever the init action occurs:

chapter_04/sitepoint-custom-types.php (excerpt)

function conference_post_types_register() {
 register_post_type('conference_speaker',
 array(
 'labels' => array(
 'name' => __('Speakers'),
 'singular_name' => __('Speaker'),
 'add_new' => __('Add New Speaker'),
 'add_new_item' => __('Add New Speaker'),
 'edit' => __('Edit'),
 'edit_item' => __('Edit Speaker'),
 'new_item' => __('New Speaker'),
 'view' => __('View Speaker'),
 'view_item' => __('View Speaker'),
 'search_items' => __('Search Speakers'),
 'not_found' => __('No speakers'),
 'not_found_in_trash' => __('No speakers in the Trash'),
),
 'hierarchical' => false,
 'public' => true,
 'menu_position' => 25,
 'menu_icon' => plugins_url('icons/user_comment.png' , __FILE__),
 'has_archive' => 'speakers',
 'rewrite' => array('slug' => 'speaker'),
 'supports' => array('title', 'excerpt', 'editor', 'thumbnail'),
 'description' => "A conference speaker page is a page of➥

 information about a person who'll appear at this event."

)
);
}

add_action('init', 'conference_post_types_register');

1 http://codex.wordpress.org/Function_Reference/register_post_type

The WordPress Anthology82

http://codex.wordpress.org/Function_Reference/register_post_type

The labels array takes care of how the custom type is represented in the WordPress back end.

We’ll use the word “speaker” in variations appropriate to the context.

hierarchical tells WordPress whether the post type can have parents and children, like pages.

In this instance, we’ll be saying no.

public helps define whether we’d like this post type to be viewable on the front end, whether

it can be returned in search results, and whether we’d like it to be editable in the back end.

You might wonder why you’d want these to be hidden. In some cases, especially if you’re

automating content creation or want to treat some kinds of content like a private database, you

may want to hide some of these items.

menu_position is a number that represents the place this post type’s menu will occupy in the

Admin menu. 25 will place it below the Comments submenu.

menu_icon looks after the all-important icon that represents this post type in the WordPress

Admin menu. For this example, we’ve used one of the very excellent Silk icons.2 These have

a fairly close resemblance in size and style to the existing WordPress icons, and look about a

million times better than anything we could draw up.

has_archive defines whether the post type has an archive page of its own—that is, a listing

page. We’d like to have a speaker listing page, so the value we pass it is speakers; this is both

saying that we want an archive (true), and also serves as the slug we want to see for our

archive’s permalink.

rewrite looks after what will be used in the permalink rewrite rules for an individual speaker;

in this case, it will be speaker.

supports, tucked away at the end here, might be one of the most important parts of all. It

defines which of the core fields are supported and shown by this post type. The available fields

are:

■ title: text input field to create a post title
■ editor: the main text editing box—the area that forms a blog entry’s post content
■ excerpt: a plain text region for writing a custom excerpt
■ comments or trackbacks: the comments or trackbacks configuration areas, respectively
■ revisions: allows revisions to be made to your post
■ author: displays a pull-down menu for changing the item’s author
■ thumbnail: shows the Featured Image uploading box
■ custom-fields: custom fields input area; you can leave this out, and still store custom

fields—in fact, that’s what we’ll be doing
■ page-attributes: the attributes box for pages, such as the parent post or page template

2 http://www.famfamfam.com/lab/icons/silk/

83Post Types

http://www.famfamfam.com/lab/icons/silk/

We chose just four of the default supports fields: title, editor, excerpt, and thumbnail,

representing the speaker’s name, long bio, short bio, and image, respectively. We’ll use custom

fields to take care of the others later.

Action? What’s that?

Hooks and actions are incredibly important concepts in WordPress hackery. Once more, these are

covered in detail in Chapter 5, so head there for a fuller explanation of what these are and how they

work. For now, just be pleased they’re making your page work beautifully!

And More!

There are even more arguments you can pass with register_post_type(). Explore them all at

the Codex.3

That’s a lot of arguments, but can you believe that this is all you need to create a basic new post

type? It’s true! Save your work and have a look at your WordPress admin screen. You should find

that your menu now contains a new item for Speakers, as seen in Figure 4.1.

Figure 4.1. Creating a new speaker

Neat, hey? But we still need to add some new fields; that’s what will come next.

3 http://codex.wordpress.org/Function_Reference/register_post_type

The WordPress Anthology84

http://codex.wordpress.org/Function_Reference/register_post_type

Adding Custom Fields to the Edit Screen
Our conference speakers’ pages need to include a note about who they work for (even if it’s them-

selves), and their website’s URL and title. Now, you could include these in the text of each page,

if you wanted, but that’s hardly the same as properly structured data.

This problem’s been solved for a long time in the world of WordPress, of course; its custom fields

feature allows you to create metadata about a post. Used properly, custom fields are a deadly weapon

in the hands of an expert WordPress ninja—unfortunately, it also means that our users need to re-

member which field goes with what type of data. For example, you might want certain blog posts

that represent quotations to have a source name and URL, so you’d have to remember to pick the

right label, put the source in, and hope there’s nothing you’ve forgotten. And if you use custom

fields for several types of posts, they’re all shown right there in the Custom Posts pull-down, which

just seems superfluous.

For improved usability, wouldn’t it be better just to fill in a clearly labeled set of fields? Sure it

would—that’s why we’ve hidden that interface element from our posting screen. We’ll write our

own Edit Screen, with our own form fields.

Let’s create a function that reads the values of a number of custom fields, and prints form fields for

each. Here’s a fairly simplistic bit of PHP form creation:

chapter_04/sitepoint-custom-types.php (excerpt)

function conference_speaker_fields (){
 global $post;
 $custom = get_post_custom($post->ID);
 $conference_speaker_business = $custom["conference_speaker_business"][0];
 $conference_speaker_website_name = $custom➥

 ["conference_speaker_website_name"][0];
 $conference_speaker_website_url = $custom["conference_speaker_website_url"]➥

 [0];
 $conference_speaker_location = $custom["conference_speaker_location"][0];
 ?>

 <p>
 <label>Employer/Business Name:</label>

 <input size="45" name="conference_speaker_business"
 value="<?php echo $conference_speaker_business; ?>" />
 </p>
 <p>
 <label>Website Name:</label>

 <input size="45" name="conference_speaker_website_name"
 value="<?php echo $conference_speaker_website_name; ?>" />
 </p>
 <p>
 <label>Website URL:</label>

85Post Types

 <input size="45" name="conference_speaker_website_url"
 value="<?php echo $conference_speaker_website_url; ?>" />
 </p>
 <p>
 <label>Location:</label>

 <input size="45" name="conference_speaker_location"
 value="<?php echo $conference_speaker_location; ?>" /></p>

 <?php
}

Notice that we’ve prefixed every post meta field with conference_speaker_? You never know when

you might install a plugin that has fields that clash with your existing ones. Using a prefix like this

makes it less likely to occur.

How do we place them on the edit screen? add_meta_box() is the function that will help us, and

it accepts seven arguments. The four mandatory arguments are:

■ id: the HTML id of the division that WordPress will insert
■ title: the title we’ll show for this edit screen section
■ callback: the function that prints out the HTML for the edit screen section
■ page: the built-in type or custom post type we want to modify

Optional arguments are:

■ context: being the part of the edit screen we want to put it in; acceptable options are normal,

advanced, or side (side placement is great for small fields)

■ priority: determines the position (importance) of where the boxes should show; the available

options are high, core, default, or low

■ callback_args: any further arguments to pass on to our callback function

Let’s take all that HTML we made before in conference_speaker_fields(), and put it in a new

meta box called conference_speaker_info, with a title of Speaker Details. Naturally, we only want

this to appear in the conference_speaker content type. Here’s a function to create it:

chapter_04/sitepoint-custom-types.php (excerpt)

 function add_conference_speaker_box(){
 add_meta_box(
 "conference_speaker_info",
 "Speaker Details",
 "conference_speaker_fields",

The WordPress Anthology86

 "conference_speaker"
);
}

Here, we’ve only used the four mandatory arguments.

Why meta?

Hey, have you noticed how functions about custom fields always seem to refer to meta this and

meta that? It’s because in the past they were called post meta fields. We now call them custom

fields because this makes more sense, but the functions’ names remain the same.

We’ll also need a function to save them. update_post_meta() is the WordPress function that inserts

values as custom fields. We’ll take the value of each field from the POST variable, and save them in

an appropriately named custom field for the current post:

chapter_04/sitepoint-custom-types.php (excerpt)

function save_conference_speaker_attributes(){
 global $post;
 update_post_meta($post->ID, "conference_speaker_business",➥

 $_POST["conference_speaker_business"]);
 update_post_meta($post->ID, "conference_speaker_website_url",➥

 $_POST["conference_speaker_website_url"]);
 update_post_meta($post->ID, "conference_speaker_website_name",➥

 $_POST["conference_speaker_website_name"]);
 update_post_meta($post->ID, "conference_speaker_location",➥

 $_POST["conference_speaker_location"]);
}

The admin_init action is triggered whenever an admin page is loaded; accordingly, it’s the right

place to call on our function that adds the conference speaker box:

chapter_04/sitepoint-custom-types.php (excerpt)

add_action('admin_init', 'add_conference_speaker_box');

We also want to jump aboard when the save and publish actions happen, so that we can save

what’s in our customized fields:

chapter_04/sitepoint-custom-types.php (excerpt)

add_action('save_post',
'save_conference_speaker_attributes');
add_action('publish_post',
'save_conference_speaker_attributes');

87Post Types

Adding Conference Sessions
Let’s expand on our plugin a little further, and create our conference sessions post type, with a

Sessions submenu in the Admin menu. We have already learned how to set up one of these, so the

following register_post_type() should be reasonably familiar to you:

sitepoint-custom-types.php (excerpt)

register_post_type('conference_session',
 array(
 'labels' => array(
 'name' => __('Sessions'),
 'singular_name' => __('Session'),
 'add_new' => __('Add New Session'),
 'add_new_item' => __('Add New Session'),
 'edit' => __('Edit'),
 'edit_item' => __('Edit Session'),
 'new_item' => __('New Session'),
 'view' => __('View Session'),
 'view_item' => __('View Session'),
 'search_items' => __('Search Session'),
 'not_found' => __('No sessions'),
 'not_found_in_trash' => __('No sessions in the Trash'),
),
 'public' => true,
 'hierarchical' => false,
 'exclude_from_search' => false,
 'menu_position' => 20,
 'menu_icon' => plugins_url('icons/calendar_view_day.png' ,➥

 __FILE__),
 'query_var' => true,
 'can_export' => true,
 'has_archive' => 'sessions',
 'description' => "A conference session is an event: a➥
 workshop, talk, panel, or get-together.",
 'rewrite' => array('slug' => 'sessions'),
 'supports' => array('title', 'excerpt', 'editor', 'thumbnail')
)
);

Again, although it’s relatively long, it’s also fairly straightforward. Each piece of session content

represents an event in our conference, but in many other respects it resembles a regular sort of post:

it’ll have an excerpt, a post body, and a title. We’ll also need some details about where and when

the session will be held, so we’ll add another meta box, like so:

The WordPress Anthology88

sitepoint-custom-types.php (excerpt)

function conference_session_admin(){
 add_meta_box("conference_session_meta", "Session Details",➥

 "conference_session_meta", "conference_session",➥

 "normal", "core");
}

function conference_session_meta (){
 global $post;
 $custom = get_post_custom($post->ID);
 $conference_session_room = $custom["conference_session_room"][0];
 $conference_session_date = $custom["conference_session_date"][0];
 ?>

 <p>
 <label>Room</label>

 <select name="conference_session_room">
 <option value="Grand Ballroom">Grand Ballroom</option>
 <option value="Plenary A">Plenary A</option>
 <option value="Plenary B">Plenary B</option>
 <option value="Theatre">Theatre</option>
 </select>
 </p>

 <p><label>Session date and time</label>

 <input size="45" id="conference_session_date"
 name="conference_session_date"
 value="<?php echo $conference_session_date; ?>" />
 </p>

 <?php
}

In this example, we’ve chosen to use a pull-down for each of the conference session venues, since

they won’t change. The date and time information is open—that makes it easy to insert flexible

statements like “From 8 till late” or “6:30pm for a 7pm start.” So far, so good, and still familiar

territory.

Where our sessions will differ significantly from our earlier efforts will be in how we treat the topic

of, well, topics.

Custom Taxonomies
If you’ve attended a conference lately, you’ll know how tricky it is to decide which sessions to at-

tend—and if it was a really good conference, you would have found yourself spoiled for choice!

It’s helpful to be able to plan your timetable by gaining a sense of which sessions will best suit your

interests and skills. How can we make this easy for our site’s visitors? One way is by creating a

89Post Types

custom taxonomy for our conference sessions. In the general sense, a taxonomy is a scheme of

classification. In the WordPress sense, taxonomies are what we call sets of categories and tags. A

vanilla install of WordPress already comes with three: post tags, categories, and link categories.

Custom taxonomies work like these familiar tags and categories to add more meaning to custom

post types.

Don’t Tax Your Brain Just Yet

Custom taxonomies are discussed in great detail in Chapter 7. Once again, you should look at that

chapter for more information about how it all works. In this section, we’ll just touch on the basics.

In our conference scenario, we’ll be expecting our speakers to hold forth on a number of web-type

topics—such as JavaScript, usability, or WordPress—so it makes sense for our conference session

post types to allow for this. You can create a new taxonomy using the register_taxonomy() func-

tion,4 which accepts three parameters: the name of the taxonomy, the type of content it’s to be used

with, and an array of additional arguments. In the below example, we’ll set up a new taxonomy for

session topics:

1. The first variable will be the name of our taxonomy: conference_topics.

2. The second argument defines which post types it should apply to; conference_session, in our

case.

3. Our third argument is an array of more arguments:

■ hierarchical lets us choose if the taxonomy should allow for a hierarchy, like categories, or

no hierarchy, like tags. In our case, we’ll use a tag-like construction.

■ labels define the names of the taxonomy as seen in the admin area, much like the labels for

new post types we learned about earlier.

■ query_var determines whether the post type is able to be queried—that is, if you can form a

loop with it.

■ People are likely to enter their tags with a comma between each one; update_count_callback()

calls on a function that ensures that WordPress treats these correctly.

■ The rewrite value determines what will be shown in the URL for a post of this type.

We’ll wrap it all up in a function, create_conference_taxonomy(), like so:

4 http://codex.wordpress.org/Function_Reference/register_taxonomy

The WordPress Anthology90

http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy

chapter_04/sitepoint-custom-types.php (excerpt)

function create_conference_taxonomy() {

 $topiclabels = array(
 'name' => 'Topic',
 'singular_name' => 'topic',
 'search_items' => 'Search topics',
 'popular_items' => 'Popular topics',
 'all_items' => 'All topics',
 'parent_item' => null,
 'parent_item_colon' => null,
 'edit_item' => 'Edit topic',
 'update_item' => 'Update topic',
 'add_new_item' => 'Add new topic',
 'new_item_name' => 'New topic name',
 'separate_items_with_commas' => 'Separate topics with commas',
 'add_or_remove_items' => 'Add or remove topics',
 'choose_from_most_used' => 'Choose from common topics',
 'menu_name' => 'Conference topics',
);
 register_taxonomy('conference_topics', 'conference_session',
 array(
 'hierarchical' => false,
 'labels' => $topiclabels,
 'query_var' => true,
 'update_count_callback' => '_update_post_term_count',
 'rewrite' => array('slug' => 'topics')
)
);
}

Avoid These Terms in Your Taxonomy Name

Some special terms are reserved for WordPress’s use, and if you use them to name your taxonomy,

it will result in a cheeky error. Uppercase letters are also a no-no. If you’re being a polite developer,

you probably have little need to worry; after all, you’re already prefixing your custom taxonomies

uniquely, like we talked about earlier, right? Even so, keep an eye out for the reserved names, which

are listed on the Codex.5

Finally, you’ll need to initialize this function—associate it with the init action as follows:

add_action('init', 'create_conference_taxonomy', 0);

5 http://codex.wordpress.org/Function_Reference/register_taxonomy#Reserved_Terms

91Post Types

http://codex.wordpress.org/Function_Reference/register_taxonomy#Reserved_Terms

Once you’ve put all this together, your new taxonomy will be in your administration area, and

should look like Figure 4.2. Since topics are associated with questions, you’ll find them in the Sessions

menu.

Figure 4.2. Our new taxonomy, ready for action

Providing Help
Remember the first time you jumped into WordPress? If you’re anything like us, you would have

found yourself lost among all those different screens in the WordPress administrative interface.

The good news is that on almost every WordPress admin screen, a friendly Help link is there to

guide the way. Clicking it reveals a panel, which can be seen in Figure 4.3. The Help link often

provides relevant links to the Codex or descriptions of each object. The even better news is that, as

a WordPress developer, it’s easy for you to add that same level of help to your own work. It’s also

a great opportunity to encourage users to visit any help pages you might have set up, or let them

know how they can seek support.

The WordPress Anthology92

Figure 4.3. The Help link reveals this handy panel

The add_contextual_help hook provides a simple, nonintrusive way to add or modify help panels,

just like the ones that come with WordPress. It accepts two arguments: the name of the admin screen

that you want to add help to, and some text to add.

Straightforward, right? But hey, wait a minute—how do you know the name of each of the different

WordPress admin screens? The Codex provides a handy way to find out.6 Where do you place this

nifty little piece of code? Navigate to the theme folder that you’re currently using. Right now, we’re

using Twenty Eleven, so our filepath will be wp-content/themes/twentyeleven. In here you’ll find a

functions.php file; this is where you’ll input the following code:

function check_current_screen() {
 if(!is_admin()) return;
 global $current_screen;
 print_r($current_screen);
}
add_action('admin_notices', 'check_current_screen');

This function reveals a few bits of information about the screens you can call up in the admin area.

Go and click on Sessions, and you will see that our print_r() function has output some useful in-

formation in the browser. The only piece of data we’re interested in here is the [id], which will

be the name of the admin screen we’re on. Placing this value in the admin_notices hook means

that it’ll be nice and obvious at the top of each page, just underneath the Help menu. It turns out

6 http://codex.wordpress.org/Function_Reference/add_contextual_help#Finding_the_Screen_Name

93Post Types

http://codex.wordpress.org/Function_Reference/add_contextual_help#Finding_the_Screen_Name

that the page for editing conference sessions is called edit-conference_session, revealed in Fig-

ure 4.4, which is hardly surprising.

Figure 4.4. Our Edit Session page’s name is revealed to be edit-conference_session

Once you have a page’s name, you can hook into its contextual help menu. We’ll bundle up our

add_contextual_help() actions into a function we can call conference_contextual_help(), and

then bring them all in using the admin_init hook. In this example, we’ve truncated the text in our

help menus—normally, you’d want to be more explanatory—but you should have no trouble coming

up with your own appropriately helpful content. Again, put this code into your functions.php file:

function conference_contextual_help() {

 $editspeaker = "From this screen, you can view and update all➥

 your conference's speakers...";
 $addspeaker = "Enter the details of a new speaker...";

 $editsession = "View and edit your conference's sessions...";
 $addsession = "Add a new session ...";

 $editsessiontopics = "Add and edit topics...";

 add_contextual_help('edit-conference_speaker', $editspeaker);
 add_contextual_help('conference_speaker', $addspeaker);

 add_contextual_help('edit-conference_sessions', $editsession);
 add_contextual_help('conference_sessions', $addsession);

The WordPress Anthology94

 add_contextual_help('edit-conference_topics', $editsessiontopics);

}

add_action('admin_init', 'conference_contextual_help');

Okay, Enough Help!

It can be very tempting, when writing contextual help, to try to pack in a full and frank explanation

of everything that needs to happen. After all, that’s what help menus are for, right?

Well, sometimes you can lose the reader’s concentration with too much text—it becomes a bit

overwhelming. If you look around in WordPress land, you’ll see that it’s all kept simple. Check out

the help in WordPress’s default screens, like Media or Settings, where you’ll find a brief overview

of the screen’s functionality, and links to the WordPress Codex for anyone who wants to know

more.

Remember, WordPress is about being easy and fun, not overwhelming and wordy. Try to take a

similar approach to your inline documentation, too.

While you’re poking around in functions.php, remember to remove—or at least disable—your

add_action('admin_notices', 'check_current_screen'); function that we used earlier. It’s

handy for us to know, but your users can do without the unsightly mess on screen. Once you’ve

done this, you should see that your help text appears in the right places whenever you press Help

in any given submenu. Neat!

Displaying Your Custom Post Types
You’ve put together your custom post types, added a custom taxonomy to one of them, and even

given the gift of help. All that’s left now is to think about how your new post types will be displayed.

And if you’ve already jumped ahead a bit and read Chapter 6, you already know just about everything

you need in order to display your nifty new custom post types. It’s true! If you love theming, this

will be the easiest part of the chapter.

WordPress has a structured system to look for template information—it’s called the Template

Hierarchy.7 To display a single item, WordPress will look in a particular theme folder for a template

called single-{post_type}—like single-conference_session or single-conference_speaker. If a file of that

name is not part of our theme, it will look next to single.php, and then to index.php. Similarly, if

we’re showing our custom taxonomy, WordPress has a hierarchy for that, too. It looks for:

■ taxonomy-{taxonomy_name}-{taxonomy-term}.php first, then
■ taxonomy-{taxonomy_name}.php, and finally to

7 http://codex.wordpress.org/Template_Hierarchy

95Post Types

http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Template_Hierarchy

■ taxonomy_name.

The simplest path to cool custom post styles, then, is to create a template that falls into the template

hierarchy of each of our customized features. In our theme folder, we’ll need two PHP files for our

post types: single-conference_speaker.php, and single-conference_session.php. For our purposes, it’s

unnecessary to worry about a separate template for each taxonomy term, so we’ll just go with a

template for all terms: taxonomy-conference_topics.php.

Showing off Our Conference Sessions and Speakers
In this example, we’ll use a child theme for the the Twenty Eleven template. Let’s save ourselves

some extra work, and make a copy of Twenty Eleven’s single.php template; then we’ll rename it

according to the rules of the Template Hierarchy—let’s call it single-conference_speaker.php.

Looking inside the template, we’ll see that there’s a <nav> element containing forward and back

links (remember previous_post_link() and next_post_link()?), a reference to a template part,

and a reference to the comments template. These are all surplus to our requirements, so be merciless

with the delete key! Get rid of this superfluous markup, and you should be left with an empty shell

of a template containing an empty loop:

chapter_04/single-conference_speaker.php (excerpt)

get_header(); ?>

 <div id="primary">
 <div id="content" role="main">

 <?php while (have_posts()) : the_post(); ?>

 <?php endwhile; // end of the loop. ?>

 </div><!-- #content -->
 </div><!-- #primary -->

<?php get_footer(); ?>

That certainly is a big, empty hole in the middle of that template. Let’s fill it with template tags!

For our speakers, we’ll list the speaker’s name (the item’s title), plus the company, website, and

location (all post meta fields). After that, we’ll show the entry’s content. Here’s some markup and

template tags that will help us achieve that effect:

The WordPress Anthology96

chapter_04/single-conference_speaker.php (excerpt)

<?php while (have_posts()) : the_post(); ?>

 <article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <h1 class="entry-title">
 Speaker Profile: <?php the_title(); ?>
 </h1>
 <p class="speaker-meta">
 Works at: <?php echo get_post_meta($post->ID,➥

 'conference_speaker_business', true); ?>
 | Visit <a href="<?php echo get_post_meta($post->ID,➥

 'conference_speaker_website_url', true); ?>">
 <?php echo get_post_meta($post->ID,➥

 'conference_speaker_website_name', true); ?>

 | Comes from: <?php echo get_post_meta($post->ID,➥
 'conference_speaker_location', true); ?>
 </p>
 </header>

 <div class="entry-content">
 <?php the_content(); ?>
 </div><!-- .entry-content -->

 </article>

<?php endwhile; ?>

As you can see, it’s just like theming a single post or page—but this time, we’re making use of those

custom meta fields. It will be similar for our sessions, but we’ll also throw in an if statement that

checks to see if the taxonomy exists. If it does, we’ll use get_the_term_list() to build up a set of

links:

chapter_04/single-conference_session.php (excerpt)

<?php while (have_posts()) : the_post(); ?>

 <article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <h1 class="entry-title"><?php the_title(); ?></h1>
 <div class="session-meta">
 <dl>
 <dt>Where</dt>
 <dd><?php echo get_post_meta($post->ID, 'conference_session_room',➥

 true); ?></dd>
 <dt>When</dt>

97Post Types

 <dd><?php echo get_post_meta($post->ID, 'conference_session_date',➥

 true); ?></dd>
 <?php
 if(taxonomy_exists('conference_topics')) {
 echo get_the_term_list($post->ID, 'conference_topics',➥

 '<dt>Topics</dt><dd>', ', ', '</dd>');
 } ?>
 </dl>
 </div>
 </header>

 <div class="entry-content">
 <?php the_content(); ?>
 </div><!-- .entry-content -->

 </article>
<?php endwhile; ?>

There are very few differences between regular, built-in WordPress content types and your own

custom ones. If you’re a skilled themer, you’ll have no problem showing off your custom types!

Custom Archives
Earlier in this chapter, we talked about how we could specify an archive page for each of our custom

types—the pages that represent each archive will be found at Speakers and Sessions. Now that we’re

digging around in our theme, it’s time to put these archives together. Looking back at our Template

Hierarchy structure, we can see that WordPress will check for a file called archive-{posttype}.php,

so we’ll need two files, archive-conference_session.php and archive-conference_speaker.php.

Once again, we’ll create an archive template by copying the one that comes with Twenty Eleven,

stripping out the unnecessary parts, and enhancing the rest. We can also manipulate The Loop using

our old friend query_posts(). In this example, we’re collecting our conference_session items at

30 items per page, ordered by title:

chapter_04/archive-conference_session.php (excerpt)

$args = array(
 'posts_per_page' => 30,
 'order' => 'ASC',
 'orderby' => 'title',
 'post_type' => 'conference_session'
);
 query_posts($args);

And if we have posts, we’ll display our list. If we happen to have more than 30 events, we’ll paginate.

twentyeleven_content_nav() is a function defined by our parent theme that does the job here:

The WordPress Anthology98

chapter_04/archive-conference_session.php (excerpt)

if (have_posts()) : ?>

<header class="archive-header">
 <h1>
 Sessions
 </h1>
</header>
<p>You'll love our packed timetable! ...</p>

<?php twentyeleven_content_nav('nav-above'); ?>

<?php /* Start the Loop */ ?>
<?php while (have_posts()) : the_post(); ?>

 <article class="session">
 <h2><a href="<?php the_permalink() ?>"><?php the_title();
 ?></h2>
 <div class="session-meta">
 <dl>
 <dt>Where</dt>
 <dd><?php echo get_post_meta($post->ID,➥

 'conference_session_room', true); ?></dd>
 <dt>When</dt>
 <dd><?php echo get_post_meta($post->ID,➥

 'conference_session_date', true); ?></dd>
 <?php if(taxonomy_exists('conference_topics')) {
 echo get_the_term_list($post->ID, 'conference_topics',➥

 '<dt>Topics</dt><dd>', ', ', '</dd>');
 } ?>
 </dl>
 </div>
 <?php the_excerpt(); ?>

 </article>

<?php endwhile; ?>

<?php twentyeleven_content_nav('nav-below'); ?>

If there’s nothing to display, it’s probably because we’re yet to post any sessions, so we’ll show a

message to that effect:

<?php else : ?>

 <article id="post-0" class="post no-results not-found">
 <header class="entry-header">
 <h1 class="entry-title">Watch this space!</h1>

99Post Types

 </header><!-- .entry-header -->

 <div class="entry-content">
 <p>We've yet to post any sessions, but if you
 subscribe to our newsletter you'll be the first
 to find out!</p>
 <?php get_search_form(); ?>
 </div><!-- .entry-content -->
 </article><!-- #post-0 -->

<?php endif; ?>

Once you have your templates sorted, your custom post modifications are complete!

You’re Custom-ready
As WordPress evolved, and as its popularity grew, users found themselves dealing with so much

more than a mere blogging tool. Before we had this kind of support for custom content types, entire

cottage industries grew up around hacking and bending WordPress to a webmaster’s will. Nowadays,

powerful CMS features are well within our reach, and in this chapter we’ve shown you just how

easy it is to start creating your own powerful CMS features.

A huge slice of the world’s most popular websites is WordPress-powered, and a large reason for

that success is down to the fact that developers have let their imaginations grow beyond simple

posts and pages. It’s time for you to do the same!

The WordPress Anthology100

Chapter5
Plugins
WordPress’s core functionality is proven, tested, and thoroughly maintained by the core committers

at Automattic, and throughout the rest of the WordPress community. However, while core WordPress

provides you with the primary tools you need to manage a website—such as adding, modifying and

deleting pages and posts, managing users, and other basic functions for a modern website—most

sites need more functionality to be truly useful to the end user. To meet this need, WordPress offers

plugins, a standard way to introduce additional functionality outside the scope of core WordPress

to extend it for just about any purpose.

In truth, the ease with which users can add plugins to WordPress, along with the simple mechanisms

available to developers for creating plugins, has contributed to making WordPress the most popular

CMS on the Web today. If there’s a task you want to perform on your website that isn’t available

specifically within core WordPress, there’s probably a plugin for it.

The Basics
Plugins are incredibly powerful; they heighten the scope and functionality of any WordPress project,

but they can also cause many of problems on any given site. For that reason, it’s important to cover

some basic information about plugins before we dive deep into the code.

The Upside to Plugins
Plugins are so easy to find and install. From right within the Plugins menu in the admin area, you

can search for, browse, and install plugins that are listed—as seen in Figure 5.1—in the WordPress

Plugin Directory.1

Figure 5.1. The WordPress Plugin Directory

Beware, though, that not all WordPress plugins are listed within the WordPress Plugin Directory,

but as an end user seeking plugins, Google is a great option for you. Many premium, commonly

used plugins like Gravity Forms or Shopp need to be purchased separately and installed into your

WordPress installation through the Upload option.

Aside from their easy installation, there is a bunch of other useful aspects about plugins; for instance:

■ You’ll almost always be able to find a plugin for what you are looking to accomplish.

■ It’s common to be able to find several plugins that perform the same task in a different way,

should you be unhappy with the way a particular plugin works.

■ Plugins provide a certain level of future-proofing insurance for your site, because you’re able to

easily add the latest functionality when new technologies are quickly embraced by the public.

The Downside to Plugins
While the upsides are fairly obvious, there’s a darker side to plugins that’s often overlooked by end

users, but all too apparent to the seasoned developer who’s had to deal with the aftermath. While

core WordPress is developed, maintained, and vetted by a team of trusted developers with core

commit privileges, the plugin space is, in many ways, the equivalent of the Wild West.

1 http://wordpress.org/extend/plugins/

The WordPress Anthology102

http://wordpress.org/extend/plugins/
http://wordpress.org/extend/plugins/

On the most fundamental level, plugins typically comprise nothing more than a few PHP functions

and possibly some supporting JavaScript or CSS. As we’ll demonstrate in just a bit, writing a plugin

and registering it with your WordPress installation is a simple process, but the quality of the code

therein is only as solid and thought-out as the developer chooses to (or is able to) make it. Reality

dictates that there are plugin developers all along the talent spectrum, ranging from beginners to

experts, and, naturally, the products each developer produces directly corresponds to their level

of proficiency. Furthermore, plugins are typically developed by either one developer or a small

team of two to three working on the project. Things can get missed, and everybody has bad days.

In short, there are some poorly coded plugins out there.

While no method is 100% guaranteed, you can largely avoid poorly coded plugins by doing your

homework on them before you install them. Start by looking at the overall star ranking of a plu-

gin—these rankings are subjective, but a large enough sample user base will give you some reasonable

expectations. You can also look at the discussion about the plugin right from the plugin’s comments

section: see if there have been complaints about the plugin (and if you are so inclined, try to make

a judgment as to how relevant those complaints are). Another tried-and-tested way to check out

plugins before installing is to simply google them and see what’s been said about them. And, of

course, even a highly rated plugin can be problematic if it hasn’t been in production for some time,

and was last compatible with an older WordPress version than you happen to be running.

Just what are some of the issues that come up with plugins? There is a litany, but here are a few

common problems:

■ A portion of plugins use deprecated action hooks that either are no longer in use, or are in the

process of being phased out of core WordPress.

■ Some plugins have poor naming conventions that conflict with other active plugins, thus creating

unexpected results on the site.

■ Occasionally, a plugin simply isn’t coded correctly, so it just fails to work.

Another issue with many plugins—especially those in the WordPress Plugin Directory—is that

since most of them are created by non-compensated developers in their spare time, you may not

receive prompt technical support when the need arises; this fact has almost single-handedly driven

the popularity of the premium WordPress plugin market, where tech support is more widespread.

Rules to Follow When Using Plugins
With all of that said, plugins are essential to bending WordPress to your will; it’s just necessary to

keep a few guidelines in mind when using them. As an end user, follow these two tips and you’ll

be fine:

103Plugins

Only use what you need

Every time you add a new plugin to WordPress, you are introducing a new set of PHP functions

that are designed to perform tasks. By definition, adding PHP functions to a website adds pro-

gramming that makes your WordPress installation a little more complex, and creates potential

tripping points for problems to occur down the track. It’s actually a lot like installing and running

software programs on your computer: the more programs you have running at any one time,

the slower your computer may run, especially if some of those programs are poorly put together.

In this way, running superfluous plugins possibly increases your site’s execution time, thus

slowing it down. Given that search engines factor site speed as a part of their ranking algorithms,

that’s potentially a sensitive issue.

Deactivate or delete what’s not being used

It’s a corollary to the rule above, but when unused plugins are kept active, it’s common to see

conflicts crop up later on with other plugins (or themes), should you make a change to them.

Your best practice is to—at the very least—keep unused plugins deactivated.

Must-use Plugins
Worth mentioning as well are must-use plugins, which comprise an underutilized but extremely

useful technique for working with plugins. Must-use plugins are handy for developers who want

to add plugins to a WordPress installation in a way that makes them more difficult for end users to

deactivate. There’s nothing particularly special about must-use plugins themselves—any plugin

can be a must-use plugin. What’s unique is how and where the plugins are installed. Instead of

being downloaded from the WordPress Plugin Directory (or uploaded from your computer system)

into the wp-content/plugins directory, they must be manually installed via FTP or your web host’s

control panel into the wp-content/mu-plugins directory. This directory does not exist by default—you’ll

need to create it—but when WordPress sees that it’s there, it will automatically activate and load

any plugin it finds therein.

Must-use plugins have several special properties in the way that they’re handled by WordPress:

■ You can’t just drop a plugin subdirectory into wp-content/mu-plugins. Must-use plugins either

need to be individual PHP files in the directory, or they need to have a PHP include file pointing

to the subdirectory that the plugin is sitting in.

■ If a plugin is loaded as a must-use plugin, there’s no need to activate it—it’s always on. This is

useful to developers when they want to ensure that a client does not remove a particular plugin.

■ WordPress won’t notify you when a must-use plugin has an update. Instead, you’ll need to

manage updates manually … or not. This can be useful when you want to continue using an

older version of a plugin for any reason.

The WordPress Anthology104

■ Must-use plugins are loaded by PHP before all standard plugins, so API hooks added in a must-

use plugin will apply to all other plugins.

Deactivation Can Be a Solution

When you’re running a website on WordPress and you begin to experience problems, start by

looking at your plugins and use this elimination technique. Deactivate all your plugins, and check

to see whether your problem still exists on the website. If it does, you can be reasonably certain

that the issue is either coming from within your content or within the WordPress core installation

itself (it’s rare, but it does happen).

It’s common, however, for the issue to resolve itself after the deactivation of all your plugins. From

here, reactivate your plugins one by one, starting with the most important plugins necessary for

your site to function properly. Sooner or later, you’ll locate the offending plugin, where you can

then seek an alternate solution to managing that piece of functionality on your site.

Zip It

When you’re troubleshooting WordPress by removing plugins, remember that must-use plugins

won’t show up in the main plugins listing. Unless you physically remove must-use plugins from

the wp-content/mu-plugins directory, those plugins will be active and loading their functions into

your WordPress environment. If you forget to remove them, you can foil your own divide-and-

conquer trouble-shooting technique that we described above. A handy technique is to zip all your

plugins up into a zip file or a tar file on your server for safekeeping, and then delete the runtime

files. Once you’re done troubleshooting, you can restore your zip or tar file, restoring your plugins

to their original state.

Drop-in Plugins
Another special type of plugin is a drop-in plugin. Drop-in plugins replace entire portions of

WordPress core functionality. They are specifically named files that you can create and customize,

and must be located within the wp-content/ directory. A complete listing of drop-in plugins can be

found in Table 5.1, along with the context (single WordPress installation or WordPress Multisite

installation) in which each is appropriate.

105Plugins

Table 5.1. Drop-in plugin availability chart

ContextDescriptionDrop-in Plugin Name

SingleAdvanced caching pluginadvanced-cache.php

SingleCustom database classdb.php

SingleCustom database error messagedb-error.php

SingleCustom installation scriptinstall.php

SingleCustom maintenance messagemaintenance.php

SingleExternal object cacheobject-cache.php

MultisiteAdvanced domain mappingsunrise.php

MultisiteCustom blog deleted messageblog-deleted.php

MultisiteCustom blog inactive messageblog-inactive.php

MultisiteCustom blog suspended messageblog-suspended.php

Determining When to Create a New Plugin
Whether you’re a developer or an end user, ask yourself whether it’s necessary to develop (or contract

out the development of) a plugin before you begin the work. There are literally dozens of ways to

do many common programming tasks within WordPress, and with the prolific use of the platform,

it’s rare that you’d be creating a plugin that nobody else has attempted to do before you. Whether

searching in the WordPress Plugin Directory or Google, you are apt to find several solutions that

meet your needs. In the event that you’re unable to find a suitable plugin solution, sometimes the

creative use of several plugins can accomplish your goal equally as well.

While many of us in the development community cut our teeth on writing every single line of code

ourselves, you’ll often find that others who’ve tackled the same problems before us have created

scripts with more fleshed out and better interfaces than we’d manage—at least, not without a signi-

ficant investment of time and effort on our own. Use the open-source community; it’s there to help

you. If after an exhaustive search you still find that no existing plugin meets your needs, or you

have an extremely specific piece of functionality that’s unique to your application, by all means

knock yourself out!

Can I see your license?

If you choose to modify an existing plugin, you will need to pay attention to the software license

associated with it. If you’re modifying a plugin for the plugin directory, make sure it has a GPLv2

license, which allows any user to modify and reuse code so long as an attribution is given to its

original author.

The WordPress Anthology106

Debugging Your Plugin As You Go
None of us are perfect, and experienced plugin developers will testify that debugging your plugin

as you develop it is just a fact of life. While there are several techniques you can use to debug your

code, the most fundamental is to go into your wp-config.php file in your sandbox WordPress install-

ation and ensure you’ve enabled WP_DEBUG, so that it appears in your code as follows:

define('WP_DEBUG', true);

This will automatically make WordPress spit out any PHP warnings or notices that you’ll need to

be aware of in order to correct, displaying them in real time as they happen. Furthermore, if you’re

going to be modifying any of WordPress’s built-in JavaScript, make sure you enable SCRIPT_DEBUG

as well, so that it appears in wp-config.php as follows:

define('SCRIPT_DEBUG', true);

In the same way as WP_DEBUG, SCRIPT_DEBUG will display JavaScript issues in real time as they occur.

Now that we’ve addressed the basics of what plugins are, how they’re installed, what to be careful

of when you use them, and when to actually create one yourself, let’s get our hands dirty and pick

them apart. Upwards and onwards!

The Anatomy of a Plugin
Conceptually, every plugin is broken up into two basic pieces:

■ the wrapper, or packaging, which tells WordPress that it is, indeed, a valid plugin
■ the scripting that makes the plugin actually perform a useful task

Let’s investigate the wrapper component of a plugin first.

Standard Plugin Packaging
WordPress provides us with a standardized place to keep all the plugins within a particular

WordPress installation: the wp-content/plugins directory. Because all plugins are stored in the same

location, your plugin must have a unique name, lest it cause an error as WordPress attempts to

initialize it upon running. This unique name should be built right into the main PHP file for the

plugin that will live in the wp-content/plugins directory, or in the name of the directory that will

house the primary plugin PHP file. While technically all a plugin needs to function is just one

properly formatted PHP file, it’s generally considered best practice to give each plugin its own dir-

ectory, storing all files associated with the plugin within subdirectories therein. At the very top of

our primary PHP file for our plugin, we’ll add a standard identifying WordPress plugin header. We

107Plugins

introduced the concept of the plugin header briefly back in the section called “Creating Your First

Custom Post Types” in Chapter 4, but it’s worth going into more detail here:

chapter_05/standard-header.php

<?php
/*
Plugin Name: The Name of Your Plugin Here
Plugin URI: Link to the Home page for the Plugin
Description: Brief descriptive text for the Plugin
Version: What Version is the Plugin
Author: Author Name
Author URI: Author Home page
*/

The only required line in this header is the Plugin Name, but the rest of the information is extremely

important, and WordPress will use the information within this header when initializing your plugin

for use. Aside from verifying that it is a valid WordPress plugin file, WordPress gathers the inform-

ation about the plugin in this header for your users to view in the Manage Plugins screen, as shown

in Figure 5.2.

Figure 5.2. The Manage Plugins screen

Making sure that you include correct, up-to-date information about who the plugin is written by

and where users can go for updates ensures its usefulness over time. Additionally, you should make

sure to include licensing information about the plugin. Most plugins are GPL-compatible, and indeed

must be so if they are to be included within the WordPress Plugin Directory (more on that in the

section called “The WordPress Plugin Directory”). Licensing information should directly follow

your header information. Standard GPL licensing (with dummy text inserted for copyright year,

plugin author name, and plugin author email) looks like this:

chapter_05/standard-gpl-license.php

<?php
/* Copyright YEAR PLUGIN_AUTHOR_NAME(email : PLUGIN AUTHOR EMAIL)

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

The WordPress Anthology108

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public
 License along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 02110-1301 USA
*/

While it is customary to insert the plugin license directly underneath the plugin header, it’s also a

nice idea to include it in a text file called license.txt within the plugin directory. An additional (and

completely optional) step is to include a readme.txt file with your plugin, to provide any basic in-

formation or frequently asked questions to your plugin users that you might deem useful, but that’s

entirely up to you.

That’s pretty much all we need to do in order to set up a plugin in the correct format so that

WordPress can recognize it. Now’s when the fun begins, and we can actually start doing something

genuinely useful.

Action Hooks and Filter Hooks
We know that WordPress is a collection of PHP scripts that executes functions in a specific order,

creating an end result that essentially comprises our website. One way to visualize the way core

WordPress works is to think of it as a conveyor belt that moves through a specific process to get

from point A to point B, producing a website as its end product. There’s no black magic here, but

rather an assembly line of PHP functions that moves information in different directions, depending

on a set of predefined rules.

When we write plugins, what we are really doing is introducing new PHP functions that add to the

predetermined rules WordPress has already given us. To make that happen, WordPress has been

good enough to create a special set of PHP functions that give us the ability to connect with that

conveyor belt in the specific place it is appropriate to do so. These functions are called hooks, and

they are the essential tools we need to be able to take our great new ideas and latch them into

WordPress in a way that makes them useful to our users. Two hooks exist: Action hooks and filter

hooks.

Action hooks are used when specific events take place within WordPress’s execution process. For

instance, if you’d like to add some inline CSS code into the header of a page template, you could

use the wp_head() action hook to do so, executing your function to create the appropriate lines of

code when the wp_head() function is run in the standard assembly line of WordPress core functions.

A properly formatted action hook call follows this format:

109Plugins

<?php add_action(hook, function, priority, accepted_arguments); ?>

Where the parameters are equivalent to:

■ hook (string): the action hook to use (required)

■ function (string): the name of your function to add (required)

■ priority (arguments): the priority in which the function should be run (optional, and defaults

to 10)

■ accepted_arguments (arguments): the number of arguments the defined function can accept

(optional, and defaults to 1)

Let’s consider our simple CSS insertion example above, and see what that code might look like:

action-example.php

<?php

function inline_css() { ?>
<style type="text/css" >
 .mockingbird {padding-top:15px;}
 .mockingbird .famous {display:block;padding:1em;}
 .mockingbird .famous p.label_title {font-size:12px;font-weight:bold;
 display:block;margin-bottom:5px;}
 .mockingbird .famous label.no_bold {font-weight:normal;}
</style>

<?php }

add_action('wp_head', 'inline_css');
?>

Easy stuff, right? We’ve just created a short function called inline_css() containing some CSS

code that defines styles for a class called mockingbird, as well as a subclass that defines what a

famous mockingbird might look like. Then, using our add_action() function, we employ the

wp_head() action hook to add the code in this function to the header of our WordPress page; this

is when events occur that are associated with the wp_head action hook.

There are many action hooks available to latch into our WordPress assembly line process where

we want to, but here are some that are more commonly used:

■ wp_head: triggered in the <head> section of the loaded theme

■ wp_footer—triggered in the footer of the loaded theme

The WordPress Anthology110

■ init—triggered after WordPress has finished loading, but before any headers are sent; excellent

place to intercept $_GET and $_POST HTML requests

■ admin_init—same as init, but runs only on admin Dashboard pages

■ admin_head—triggered in the <head> section of the admin Dashboard

■ user_register—triggered whenever a new user is registered

■ publish_post—triggered whenever a new post is published

■ comment_post—triggered whenever a new comment is posted

Where action hooks are used to execute functions at a certain time during the WordPress assembly

line process, filter hooks, are used when you want to modify information before saving it to a

database or outputting it to a browser; they’re typically used when modifying text in some way,

shape, or form. The classic example of a filter would be in censoring out profane language that your

users might try to add to pages or posts on your site. In this instance, you might apply a PHP function

to a specific filtering hook such as the_content, so that you can remove words such as putz, dumdum

head, or dimwit with a standard phrase like [mean name]. Let’s take a peek at what an example of

the PHP function and the associated filter might look like in this instance:

chapter_05/filter-example.php

<?php
function play_nice($content) {
 $mean_words = array("putz","dumdum head","dimwit");
 $content=str_ireplace($mean_words,'[mean name]',$content);
 return $content;
}

add_filter ('the_content', 'play_nice');
?>

Here, we’ve written a little function that identifies and replaces words that we want to omit. Then,

we’ve added our filter, instructing WordPress to run everything that goes through the_content (our

filter hook) through our function, thus ensuring nobody can call anybody else a dimwit.

You Say Po-TAY-to, I Say Po-TAH-to

Did you notice that the syntax of the filter hook in our example above looks a whole lot like the

syntax for a properly formatted action hook? There’s good reason: while filter hooks and action

hooks serve very different purposes, the add_action() and add_filter() functions have

identical syntaxes and take parameters in identical ways. In truth, you can really view the

add_filter() function as a mechanism to keep concepts straight in your mind, and keep yourself

111Plugins

(and other programmers working on your code) sane when trying to figure out exactly what and

how it works.

The Power of Paranoia: Data Validation
As much as we all like to be trusting, the truth is that every room has a shadow or two, and sometimes

bad things lurk in the shadows. And if we have a user who tries to call another user a dumdum

head on our public website for all to see, maybe they’ll want to do worse! There’s power in paranoia,

kids, and for this reason you always need to be certain to validate and sanitize your data.

Much like brushing your teeth and (we trust) showering with soap every morning, data validation

and sanitization should be treated as a habit every time you either output to a browser or save to

your database. Essentially, what you want to do here is scrub every piece of data you can that is

coming from a location external to your own code, as it may have illegal characters or genuine

malicious intent.

WordPress gives us a standardized set of escaping functions we can use to scrub our data and ensure

it’s safe for our use. Consider Figure 5.3, which describes the WordPress escaping API.

Figure 5.3. WordPress escaping API

In this diagram, we see that there are three components to the function set, as described following:

1. esc: the prefix for the escaping function

2. attr: the context being escaped, with possible values including:

attr—HTML attribute scrubbing■

■ js—JavaScript scrubbing
■ html: HTML character scrubbing such as <, >, ', and "

■ sql—MySQL query scrubbing
■ url—URL scrubbing
■ url_raw: URL scrubbing before saving to a database

3. _e: an optional translation suffix, with possible values including:

__: returns a translated value■

■ _e: echoes a translated value

For example, in order to remove any HTML tags from a text string, you would use this format:

The WordPress Anthology112

<?php esc_html($text); ?>

Alternatively, if you were looking to escape any illegal characters from within an HTML attribute,

you might code this:

<input type=”text” name=”name” value=”<?php echo esc_attr($text); ?>”>

For more information on data validation, take a look at the WordPress Codex.2

Leave It Till Last

When you are validating and sanitizing your data, make sure you do it as late as you possibly can

before outputting it or saving it to your database. Running your validation too early will leave your

data susceptible to any errors or vulnerabilities introduced in code that’s run after the validation

has been complete, potentially causing issues. And nobody wants that.

Okay, we’ll avoid acting like a parent here and beating this into the ground, but seriously: don’t be

an ingrate, remember to validate!

Dissecting a Plugin: Antelope General
Social Media Links
For the purpose of illustrating how all the pieces of any given plugin work in practice, we’ll use an

example of a fictitious plugin created especially for you and this book: Antelope General Social

Media Links (or AGSocialMedia, for short). AGSocialMedia is a simple plugin that will show us

how to do some basic but useful tasks, such as:

■ create a plugin settings screen inside WordPress that lets us update and manage links to our

four favorite social media sites: Facebook, Twitter, YouTube, and LinkedIn

■ add a Settings link in the plugin management screen that takes us directly to the aforementioned

plugin settings page

■ add a simple widget that lets us integrate our social media links wherever and however we want

on our WordPress site

Of course, it’s not really a fictitious plugin; in actuality, it works quite well and you can feel free

to use it or extend it for yourself. After all, it’s being presented to you by us under the GPL license,

and you can find the code in this book’s code archive.

2 http://codex.wordpress.org/Data_Validation

113Plugins

http://codex.wordpress.org/Data_Validation

Keeping Our Eye on the Prize

The purpose of this section is not to teach you how to code PHP—we’ll assume you have a working

knowledge of that. Rather, the purpose of this demonstration is to illustrate how your PHP code

will interact with the various hooks and filters that connect your script to WordPress and make all

the magic happen.

We’ll begin our examination of AGSocialMedia by looking at the code for the entire plugin, and

then pick it apart limb by limb:

chapter_05/AGSocialMedia/antelope-social-media-links.php

<?php
/*
Plugin Name: Antelope General Social Media Links
Plugin URI: http://mickolinik.com/plugins/antelope-social-media-links
Description: Easily add links to your social media profiles
Version: 1.0
Author: Mick Olinik
Author URI: http://www.mickolinik.com
*/

/* Copyright 2011 Mick Olinik (email : mick@rockstarcoding.com)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

//load textdomain for localization settings
load_plugin_textdomain('agsml', false, basename(dirname(__FILE__)) .➥

 '/languages');

add_action('admin_menu', 'agsml_create_menu');

function agsml_create_menu() {

 //create new top-level menu
 add_options_page('Antelope General Social Media Links',➥

The WordPress Anthology114

 'AG Social Media Links', 'manage_options', __FILE__, 'agsml_settings_page');
 add_filter("plugin_action_links", "agsml_settings_link", 10, 2);
 //call register settings function
 add_action('admin_init', 'agsml_register_settings');
}

//add settings link to plugins list
function agsml_settings_link($links, $file) {
 static $this_plugin;
 if (!$this_plugin) $this_plugin = plugin_basename(__FILE__);
 if ($file == $this_plugin){
 $settings_link = '<a href="options-general.php?page=AGSocialMedia/➥

 antelope-social-media-links.php">'.__("Settings", "agsml_social_media").➥

 '';
 array_unshift($links, $settings_link);
 }
 return $links;
 }

function agsml_register_settings() {
 //register our settings
 register_setting('antelope_social_group', 'agsml_facebook');
 register_setting('antelope_social_group', 'agsml_twitter');
 register_setting('antelope_social_group', 'agsml_youtube');
 register_setting('antelope_social_group', 'agsml_linkedin');
}

//create css for admin screen
function agsml_admin_css() { ?>
<style type="text/css" >

.agsml_social_list {padding-top:15px;}

.agsml_social_list .setting {display:block;padding:1em;}

.agsml_social_list .setting p.label_title {font-size:12px;font-weight:bold;
 display:block;margin-bottom:5px;}
.agsml_social_list .setting label.no_bold {font-weight:normal;}
.agsml_social_list .setting label span.slim {width:200px;float:left;
 display:block;margin: 1px;padding: 3px;}
.agsml_social_list .setting p.desc {font-size:10px;font-style:italic;
 text-indent:10px; text-align:left;}
</style>

<?php }
add_action('admin_head', 'agsml_admin_css');

//html for settings form
function agsml_settings_page() { ?>

<div class="wrap agsml_social_list">

115Plugins

 <h2>Antelope General Social Media Links</h2>

 <form method="post" action="options.php">
 <?php settings_fields('antelope_social_group'); ?>

 <div class="setting">

 <p class="label_title"><?php _e('Facebook Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_facebook">
 <?php _e('Facebook URL', 'agsml')
 ?>
 <input name="agsml_facebook" type="text" id="agsml_facebook"
 value="<?php form_option('agsml_facebook'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your Facebook profile.')
 ?></p>

 <p class="label_title"><?php _e('Twitter Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_twitter">
 <?php _e('Twitter URL', 'agsml')
 ?>
 <input name="agsml_twitter" type="text" id="agsml_twitter"
 value="<?php form_option('agsml_twitter'); ?>" /></label>
 </p>
 <p class="desc"><?php _e('Enter the URL to your Twitter profile.')
 ?></p>

 <p class="label_title"><?php _e('YouTube Profile URL:', 'agsml')
 ?></p>
 <p><label class="no_bold" for="agsml_youtube">
 <?php _e('YouTube URL', 'agsml') ?>
 <input name="agsml_youtube" type="text" id="agsml_youtube"
 value="<?php form_option('agsml_youtube'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your YouTube profile.')
 ?></p>

 <p class="label_title"><?php _e('LinkedIn Profile URL:', 'agsml')
 ?></p>
 <p><label class="no_bold" for="agsml_linkedin">
 <?php _e('LinkedIn URL', 'agsml') ?>
 <input name="agsml_linkedin" type="text" id="agsml_linkedin"
 value="<?php form_option('agsml_linkedin'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your LinkedIn profile.',➥

 'agsml') ?></p>

 <p class="setting">
 <input type="submit" class="button-primary" value="<?php _e➥

 ('Save Social Media Links', 'agsml') ?>" />
 </p>

The WordPress Anthology116

 </div>

 </form>

</div>

<?php }

function agsml_enqueue_styles() {

 // url to stylesheet
 $agsml_css_url= WP_PLUGIN_URL . '/' . plugin_basename(dirname(__FILE__)) .➥

 '/agsml-widget.css';

 //register and enqueue stylesheet
 wp_register_style('agsml_styles', $agsml_css_url);
 wp_enqueue_style('agsml_styles');

}

add_action('wp_print_styles', 'agsml_enqueue_styles');

/* Register the widget */
function agsml_register_widget() {
 register_widget('Antelope_Widget');
}

/* Begin Widget Class */
class Antelope_Widget extends WP_Widget {

/* Widget setup */
function Antelope_Widget() {
 $widget_ops = array('classname' => 'agsml_widget', 'description' => ➥

 __('Your Social Media Links', 'agsml'));
 // The actual widget code goes here
 parent::WP_Widget(false, $name = 'AG Social Media Links', $widget_ops);
}

/* Display the widget */
function widget($args, $instance) {

 //get widget arguments
 extract($args);
 //get widget title from instance variable
 $title = apply_filters('widget_title', $instance['title']);

 //insert before widget markup
 echo $before_widget;

 //if theres a title, echo it.

117Plugins

 if($title)
 echo $before_title . $title . $after_title;

 //start list
 $social_list .= '';

 // define list
 if (get_option('agsml_facebook')){
 $social_list .= '<li class="facebook"><a href="'. ➥

 get_option('agsml_facebook').'">' . __('Friend us on Facebook', 'agsml') .➥

 '';
 }
 if (get_option('agsml_twitter')){
 $social_list .= '<li class="twitter"><a href="'.➥

 get_option('agsml_twitter').'">' . __('Follow us on Twitter', 'agsml') .➥

 '';
 }
 if (get_option('agsml_linkedin')){
 $social_list .= '<li class="linkedin"><a href="'. ➥

 get_option('agsml_linkedin').'">' . __('Link us on LinkedIn', 'agsml') .➥

 '';
 }
 if (get_option('agsml_youtube')){
 $social_list .= '<li class="youtube"><a href="'.➥

 get_option('agsml_youtube').'">' . __('Watch us on Youtube', 'agsml') .➥

 '';
 }
 // end list
 $share_content .= '';

 //display assembled list
 echo $social_list;

 //insert before widget markup
 echo $after_widget;

}

/* Update the widget settings, just the title in this case */
function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance['title'] = strip_tags($new_instance['title']);
 return $instance;
}

//form to display in widget settings. Allows user to set
//title of widget.
function form($instance) {
 $title = esc_attr($instance['title']);
 ?>

The WordPress Anthology118

 <p>
 <label for="<?php echo $this->get_field_id('title'); ?>">
 <?php _e('Title:'); ?></label>
 <input class="widefat" id="<?php echo $this->get_field_id('title');
 ?>" name="<?php echo $this->get_field_name('title'); ?>"
 type="text" value="<?php echo $title; ?>" />
 </p>
 <?php
}
}

/* Load the widget */
add_action('widgets_init', 'agsml_register_widget');
?>

This is the meat of the plugin. The AGSocialMedia folder also includes several other directories and

files, including an external CSS file to provide essential styles for the widget output, an /images

directory for the social media icons we’ll use in our plugin, and a /languages directory with a .pot

file for localization purposes. We’ll touch on some of these files in other areas of the book; for now,

let’s just focus on the actual plugin file doing all the work.

Header and License
Let’s take a look at that first chunk of code:

chapter_05/AGSocialMedia/agsml_header_license.php

<?php
/*
Plugin Name: Antelope General Social Media Links
Plugin URI: http://mickolinik.com/plugins/antelope-social-media-links
Description: Easily add links to your social media profiles
Version: 1.0
Author: Mick Olinik
Author URI: http://www.mickolinik.com
*/

/* Copyright 2011 Mick Olinik (email : mick@rockstarcoding.com)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

119Plugins

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

Nothing too exciting’s going on here, but there’s stuff we need to take care of anyway. We have our

standard WordPress header detailing exactly what the name of the plugin is, what it’s for, the version,

who wrote it, and so on. We’re also telling people what the terms of use are—will your end users

need to promise you their firstborn child to use this thing, or are the terms of use easy like the

summer breeze? Let the good people know whether it’s GPL or commercial.

Version Control

WordPress queues plugin data in the plugin repository based on the information you provide

within the header of your plugin. If you list your plugin in the Plugin Directory and forget to update

the version number, WordPress installations running your plugin won’t be prompted that there’s

an update available. Nobody wants to see your efforts wasted like that.

Localization Settings
Next comes the code for our localization settings:

chapter_05/AGSocialMedia/agsml_localization.php

//load textdomain for localization settings
load_plugin_textdomain('agsml', false, basename(dirname(__FILE__)) .➥

 '/languages');

Before we really do anything in our plugin, we should check to see whether we have a language

translation file that matches the language that has been set in wp-config.php. WordPress is brought

to you in English by default, and most plugins are as well, but if we have localized our plugin (and

we have), we enable our users the ability to extend the plugin themselves by translating it into a

language of their choice. Consider the function load_plugin_textdomain(), which takes the three

parameters described below:

load_plugin_textdomain($domain, $abs_rel_path, $plugin_rel_path)

■ $domain—a unique identifier assigned to your custom translatable strings

■ $abs_rel_path—an optional, deprecated function as of WordPress 2.7. Default it to false or just

omit it; it’s nothing to worry about

The WordPress Anthology120

■ $plugin_rel_path—the relative path to your translation key file. If you fail to define this path,

it will default to the root directory that the file is in. While this is by definition an optional

parameter, it’s best practice to keep your language translation files separate from your logic files,

so you’ll usually want to specify a value here.

A more detailed explanation of localization can be found in Chapter 11, but for our purposes here,

we’re looking in the /languages directory of our plugin to see if there’s a language translation file

that matches the language we’re running WordPress in (if we’re not running it in English already).

If we find a match, load_plugin_textdomain() will grab all the translated text strings and swap

them out for their counterparts; these counterparts are defined within the plugin’s code as it executes

and outputs to the screen.

Creating the Menu Item for the Settings Page
Now matters become interesting. Let’s look at this next code block and break it down into pieces:

chapter_05/AGSocialMedia/agsml_createadmin.php

add_action('admin_menu', 'agsml_create_menu');

function agsml_create_menu() {

 //create new top-level menu
 add_options_page('Antelope General Social Media Links',➥

 'AG Social Media Links', 'manage_options', __FILE__, 'agsml_settings_page');
 add_filter("plugin_action_links", "agsml_settings_link", 10, 2);
 //call register settings function
 add_action('admin_init', 'agsml_register_settings');
}

//add settings link to plugins list
function agsml_settings_link($links, $file) {
 static $this_plugin;
 if (!$this_plugin) $this_plugin = plugin_basename(__FILE__);
 if ($file == $this_plugin){
 $settings_link = '<a href="options-general.php?page=AGSocialMedia/➥

 antelope-social-media-links.php">'.__("Settings", "agsml_social_media").➥

 '';
 array_unshift($links, $settings_link);
 }
 return $links;
}

function agsml_register_settings() {
 //register our settings
 register_setting('antelope_social_group', 'agsml_facebook');
 register_setting('antelope_social_group', 'agsml_twitter');

121Plugins

 register_setting('antelope_social_group', 'agsml_youtube');
 register_setting('antelope_social_group', 'agsml_linkedin');
}

In full, what we’re doing here is laying the groundwork for working with our plugin inside the

WordPress admin area. Let’s start by looking at the top code block:

chapter_05/AGSocialMedia/agsml_createadmin1.php

add_action('admin_menu', 'agsml_create_menu');

function agsml_create_menu() {

 //create new top-level menu
 add_options_page('Antelope General Social Media Links',➥

 'AG Social Media Links', 'manage_options', __FILE__, 'agsml_settings_page');
 add_filter("plugin_action_links", "agsml_settings_link", 10, 2);
 //call register settings function
 add_action('admin_init', 'agsml_register_settings');
}

We start by first using an action hook, requesting that the Admin menu run the agsml_create_menu()

function. And what does that function do? It utilizes the add_options_page() function to add the

Antelope General Social Media Links plugin and label it AG Social Media Links. The other para-

meter of interest in the add_options_page() function is agsml_settings_page, which defines the

callback function to be used that displays the contents of the page within the link. We’ll cover this

function further on in our explanation.

It’s a Wrap

WordPress provides easy wrapper functions that allow developers to add sublevel menu items to

the primary top-level administrative menu items such as Dashboard, Posts, Media, Appearance, Settings,

and so on. For more information as to how to add them, have a look at the WordPress Codex.3

The next line is an example of a filter hook, whereby we are calling plugin_action_links() and

running it through the agsml_settings_link() function that we’ll explore in a moment. This filter

serves to insert the function that creates the link to our plugin settings page directly within the

Manage Plugins listing page, which is utilized by many of the nicer plugins.

Finally, we use another action hook to initialize the agsml_register_settings() function, which

we’ll use to save our data directly to the wp_options table in our WordPress database. More on this

shortly.

3 http://codex.wordpress.org/Administration_Menus#Using_Wrapper_Functions

The WordPress Anthology122

http://codex.wordpress.org/Administration_Menus#Using_Wrapper_Functions

Let’s look at our next function:

chapter_05/AGSocialMedia/agsml_createadmin2.php

//add settings link to plugins list
function agsml_settings_link($links, $file) {
 static $this_plugin;
 if (!$this_plugin) $this_plugin = plugin_basename(__FILE__);
 if ($file == $this_plugin){
 $settings_link = '<a href="options-general.php?page=AGSocialMedia/➥

 antelope-social-media-links.php">'.__("Settings",➥

 "simple-social-sharing").'';
 array_unshift($links, $settings_link);
 }
 return $links;
}

This little code block just defines the PHP code we’ll use to actually create the link and label that

we’ll insert into our plugin settings page. This will be placed directly within the Manage Plugins

listing page, as described previously in the filter hook in the agsml_create_menu() function. This

is really just PHP code, and there’s not much here that involves WordPress.

Next up comes our agsml_register_settings() function:

chapter_05/AGSocialMedia/agsml_createadmin3.php

function agsml_register_settings() {
 //register our settings
 register_setting('antelope_social_group', 'agsml_facebook');
 register_setting('antelope_social_group', 'agsml_twitter');
 register_setting('antelope_social_group', 'agsml_youtube');
 register_setting('antelope_social_group', 'agsml_linkedin');
}

Here we go, back to WordPress functions. This is a useful spot to discuss database considerations

when dealing with WordPress plugins.

When you are working with WordPress plugins, you’ll almost always need to save your data to the

database at some point. There are generally two ways to do this:

■ Save your data to the wp_options table within your WordPress database.
■ Create a new table within your WordPress database and save your data there.

Space doesn’t allow us to cover the creation of new tables for plugin data storage in the context of

this chapter; however, bear in mind that when you go in this direction, there’ll be several consider-

ations you’ll need to keep in mind including initially setting the table up, ensuring that there are

no naming conflicts, and developing a mechanism to safely remove the table upon uninstall. With

123Plugins

that said, unless your plugin is extremely specialized and complex, and requires you to save an

extensive quantity of data, you’ll typically use the first method and store your data in the wp_options

table.

The register_setting() function is useful for defining the data you want to save for your plugin,

and takes the following parameters:

register_setting($option_group, $option_name, $sanitize_callback)

■ $option_group (string): a settings group name, typically used to identify your plugin (required)

■ $option_name (string): the name of an option to sanitize and save (required)

■ $sanitize_callback (string): a callback function that sanitizes the option’s value (optional)

In our case, our intent is quite simple. We only really have four values we want to save with this

plugin, so we register each of these with its own unique name and tag it back to a unique group

name: antelope_social_group. Once we’ve done this, we have our framework in place and we’re

off to the races … what’s next?

Styling the Admin Screen
Check out the CSS file in the AGSocialMedia folder:

chapter_05/AGSocialMedia/agsml-widget.css

/* Antelope General Social Media Links */
.agsml_widget {
 overflow: hidden;
 padding: 0;
}

.agsml_widget ul {
 list-style-type:none;
 margin:0;
 padding:5px 0;
}

.agsml_widget ul li a{
 padding: 5px 10px 5px 20px;
 line-height:18px;
 margin:0;
}

.agsml_widget ul li {
 padding-bottom:5px;
}

The WordPress Anthology124

.agsml_widget ul li.twitter a {
 background:url(images/mini_twitter.png) no-repeat left;
 margin:0;
}

.agsml_widget ul li.facebook a {
 background:url(images/mini_facebook.png) no-repeat left;
 margin:0;
}

.agsml_widget ul li.linkedin a {
 background:url(images/mini_linkedin.png) no-repeat left;
 margin:0;
}

.agsml_widget ul li.youtube a {
 background:url(images/mini_youtube.png) no-repeat left;
 margin:0;
}

Again, not a whole lot to see here aside from demonstrating the addition of internal CSS styles

within a plugin. We’re just creating a function, inlaying some CSS for the purpose of styling our

Admin page to make it look pretty, and then adding the function in to run with the admin_head action

hook. At this point in the game, we’ve seen this stuff before; let’s keep moving.

Formatting for the Settings Page
Following this comes a chunk of form-building HTML:

chapter_05/AGSocialMedia/agsml_settingspage.php

//html for settings form
function agsml_settings_page() { ?>

<div class="wrap agsml_social_list">
 <h2>Antelope General Social Media Links</h2>

 <form method="post" action="options.php">
 <?php settings_fields('antelope_social_group'); ?>

 <div class="setting">

 <p class="label_title"><?php _e('Facebook Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_facebook">
 <?php _e('Facebook URL', 'agsml') ?>
 <input name="agsml_facebook" type="text" id="agsml_facebook"
 value="<?php form_option('agsml_facebook'); ?>" /></label></p>

125Plugins

 <p class="desc"><?php _e('Enter URL to your Facebook profile.') ?></p>

 <p class="label_title"><?php _e('Twitter Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_twitter">
 <?php _e('Twitter URL', 'agsml') ?>
 <input name="agsml_twitter" type="text" id="agsml_twitter"
 value="<?php form_option('agsml_twitter'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your Twitter profile.') ?></p>

 <p class="label_title"><?php _e('YouTube Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_youtube">
 <?php _e('YouTube URL', 'agsml') ?>
 <input name="agsml_youtube" type="text" id="agsml_youtube"
 value="<?php form_option('agsml_youtube'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your YouTube profile.') ?></p>

 <p class="label_title"><?php _e('LinkedIn Profile URL:', 'agsml') ?></p>
 <p><label class="no_bold" for="agsml_linkedin">
 <?php _e('LinkedIn URL', 'agsml') ?>
 <input name="agsml_linkedin" type="text" id="agsml_linkedin"
 value="<?php form_option('agsml_linkedin'); ?>" /></label></p>
 <p class="desc"><?php _e('Enter the URL to your LinkedIn profile.',➥

 'agsml') ?>
 </p>

 <p class="setting">
 <input type="submit" class="button-primary"
 value="<?php _e('Save Social Media Links', 'agsml') ?>" />
 </p>

 </div>

 </form>

</div>

<?php }

There are three main points in this code block worth noting. First, we see our definition of our

agsml_settings_page() function, which we last referenced as the callback function in our

add_options_page() function further back in the code. In other words, it’s this function that defines

the instructions for displaying all the code for our actual Settings page in the Admin menu.

Secondly, since this is the administrative settings page output, it follows that we have text strings

here being displayed to our users. Because we are thoughtful developers and want to make sure

that folks all over the world are able to use our plugin in their own native language, we need to

prepare our text strings for localization. This means that instead of just typing in an output string

like this:

The WordPress Anthology126

<p class="label_title">LinkedIn Profile URL:</p>

We’ve added our _e() wrapper tags around each of our strings to produce results that look more

like this:

<p class="label_title"><?php _e('LinkedIn Profile URL:', 'agsml') ?></p>

You’ll notice here that we’ve defined both the string to be translated (in this instance, 'LinkedIn

Profile URL:') as well as the unique domain namespace we’ve created for our localization at the

top of our code (agsml). Again, for more on localization, have a look at Chapter 11.

Finally, notice that we’ve taken care to sanitize the data here before committing anything to our

database. Here, we’ve used form_option() to output our social media values. form_option() runs

these values through esc_attr() to sanitize them, ensuring that they are safe for our use.

Getting Output Styles Ready
This next piece of code is an example of the proper and safe way to insert an external CSS sheet

into your plugin:

chapter_05/AGSocialMedia/agsml_enqueuestyles.php

function agsml_enqueue_styles() {

 // url to stylesheet
 $agsml_css_url= WP_PLUGIN_URL . '/' . plugin_basename(dirname(__FILE__)) .➥

 '/agsml-widget.css';

 //register and enqueue stylesheet
 wp_register_style('agsml_styles', $agsml_css_url);
 wp_enqueue_style('agsml_styles');

}

add_action('wp_print_styles', 'agsml_enqueue_styles');

We create a function called agsml_enqueue_styles(), and then define the URL to the CSS for our

widget to be displayed on the front end of our website, but the next two functions are really worth

taking note of. Rather than just injecting the link to the CSS sheet directly into the <head> section

of your WordPress site, enqueueing a WordPress CSS file allows you to specify dependencies that

tell WordPress your CSS depends on another CSS file, and should be loaded afterwards. While the

wp_register_style() function essentially serves as a helper function to prepare your data for

wp_enqueue_style(), wp_enqueue_style() is where all the magic happens. Our example is a very

simplified form of wp_enqueue_style(), and so in the situation of AGSocialMedia we’re really in-

cluding it for proper form, and to prepare to extend the plugin later on if we so choose.

127Plugins

Don’t Force Your Design on Users

It’s common to see plugin authors try to help people out by providing styles within the context of

their plugins, essentially forcing user plugins to look a certain way. While the thought is usually

well-intentioned, it can be a real pain in the behind for WordPress site developers trying to use

your plugin on their own sites, especially when their visual style differs markedly to what you’ve

supplied. Instead of creating a bevy of styles for your users choose from when using your plugin,

make the choice to go minimal. Particularly if you are planning on releasing your plugin into the

WordPress Plugin Directory, ask yourself this important question: “What’s the least amount of CSS

I can supply for this functionality to display properly?” When you come up with an answer, add

only that styling, and try to err on the side of less is more. If you were to put a Do and a Don’t list

together for this, think of it this way: Do provide easy-to-use classes that designers can grab to style

your plugin to suit their own needs. Don’t try to force your own perception of how your plugin

should appear onto your end users.

Widgets 101
Before we further continue tearing apart our Antelope General Social Media Links plugin, let’s take

a moment to talk about widgets and how they work.

Useful for dragging different pieces of functionality around to sidebars, footers, and other widgetized

areas on a WordPress site, widgets extend the functionality of a plugin by allowing users to place

it in an appropriate place on their websites. They’re not appropriate to add to all plugins, but in

the case of our AGSocialMedia plugin, they are, as the entire purpose of the plugin is to display

icons and links to our four most used social media sites: Facebook, Twitter, LinkedIn, and YouTube.

Thanks to the widget API that WordPress gives us, creating and using widgets isn’t as difficult as

it could be. There are three basic steps to creating and using a widget in your plugin, broken down

as follows:

1. registering your widget using the register_widget() function

2. defining the widget via the WordPress-provided widget class, which we’ll touch on more in a

moment

3. loading the widget via the widgets_init action hook

To further understand how widgets work, let’s look briefly at the basic structure of the widget class

in WordPress:

chapter_05/AGSocialMedia/widgetclass.php

<?php
class Antelope_Widget extends WP_Widget {
 function Antelope_Widget() {

The WordPress Anthology128

 // actual widget code that contains the function logic
 }

 function widget($args, $instance) {
 // display the widget on website
 }

 function update($new_instance, $old_instance) {
 // save widget options
 }

 function form($instance) {
 // form to display widget settings in WordPress admin
 }

}
?>

As you can see, the widget class contains four basic components:

■ declaration of the widget name that extends the WP_Widget object and the subsequent initialization

of the function of the same name (in this case, Antelope_Widget)

■ logic that actually outputs the widget coding to the website as desired

■ functionality that allows you to create and save instances of the widget

■ a form that allows users to make changes to the widget if the developer has made them available

in the Widgets management screen

Widgets Extend Classes

If you are fairly new to programming and have never dealt with objects and instances before, widgets

might throw you a bit. Here’s a layman’s version of what you need to understand. When you are

registering a widget, you’re essentially creating an object, which can be thought of for our purposes

as a template framework for how that particular widget should function and appear. Any given

working example of that widget would then be referred to as an instance of the widget. Therefore,

when we talk about widgets, we are really discussing two different aspects: initializing the template

for how it will work (the object), and creating and outputting individual instances that you actually

see and use. This may seem as clear as mud. It’ll get easier.

Let’s build upon these definitions and take up our AGSocialMedia plugin code where we left off:

setting up the widget to output our links.

Registering Our Antelope General Widget
Check out our first piece of widget-related code:

129Plugins

chapter_05/AGSocialMedia/agsml_registerwidget.php

/* Register the widget */
function agsml_register_widget() {
 register_widget('Antelope_Widget');
}

The first piece here is super-easy, and it’s our first step in creating and using a widget for our

Antelope General Social Media Links plugin. We’re just going to register our widget so that WordPress

knows we have a new one coming, and it’s called Antelope_Widget. Easy peasy.

Define What the Widget Should Do
Now we jump into step two of creating our widget, which is really step one of its own four-step

process: defining the widget class functionality:

chapter_05/AGSocialMedia/agsml_widgetlogic.php

/* Begin Widget Class */
class Antelope_Widget extends WP_Widget {

 //* Widget setup */
 function Antelope_Widget() {
 $widget_ops = array('classname' => 'agsml_widget', 'description' =>➥

 __('Your Social Media Links', 'agsml'));

 // The actual widget code goes here
 parent::WP_Widget(false, $name = 'AG Social Media Links', $widget_ops);
 }

In the code, you can see that we begin by extending the WP_Widget object with the Antelope_Widget

class, thus extending it and creating a namespace for ourselves to work with. After that, we create

a basic localized array (note the double underscore wrapper that encompasses the string 'Your

Social Media Links' and which denotes the unique domain namespace we’ve created earlier in

'agsml') and toss it all into a variable. Then we utilize the widget API to create a new object for

our actual widget, which we’ll be able to find in the Appearance > Widgets menu area within

WordPress. Notice that we have a label for our widget here ('AG Social Media Links'), and we’re

also passing our array in as well, so we have our object’s data handy for use.

Display Logic
The second piece of the widget class involves actually outputting the instance of a given widget to

the browser:

The WordPress Anthology130

chapter_05/AGSocialMedia/agsml_widgetdisplay.php

/* Display the widget */
function widget($args, $instance) {

 //get widget arguments
 extract($args);
 //get widget title from instance variable
 $title = apply_filters('widget_title', $instance['title']);

 //insert before widget markup
 echo $before_widget;

 //if theres a title, echo it.
 if($title)
 echo $before_title . $title . $after_title;

 //start list
 $social_list .= '';

 // define list
 if (get_option('agsml_facebook')){
 $social_list .= '<li class="facebook"><a href="'.➥

 get_option('agsml_facebook').'">' . __('Friend us on Facebook', 'agsml') .➥

 '';
 }
 if (get_option('agsml_twitter')){
 $social_list .= '<li class="twitter"><a href="'.➥

 get_option('agsml_twitter').'">' . __('Follow us on Twitter', 'agsml') .➥

 '';
 }
 if (get_option('agsml_linkedin')){
 $social_list .= '<li class="linkedin"><a href="'.➥

 get_option('agsml_linkedin').'">' . __('Link us on LinkedIn', 'agsml') .➥

 '';
 }
 if (get_option('agsml_youtube')){
 $social_list .= '<li class="youtube"><a href="'.➥

 get_option('agsml_youtube').'">' . __('Watch us on Youtube', 'agsml') .➥

 '';
 }
 // end list
 $share_content .= '';

 //display assembled list
 echo $social_list;

 //insert before widget markup

131Plugins

 echo $after_widget;

}

Because we’ve passed the object’s data to the instance of the widget as just described, the first step

is to extract the $args so that we can use them. The AGSocialMedia widget has the capacity to

create a custom title on an instance-by-instance basis as we’ll see in a moment, so one of the first

items here is the extraction and sanitization of the title string from our array, after which we drop

it into the $title variable.

You may notice that there are several variables sprinkled throughout this code block that we aren’t

defining: $before_title, $after_title, $before_widget, and $after_widget. These tags are

provided to you by the widget API, and are available to theme designers to manipulate in different

ways, so that they can add code to make their websites look pretty. Make sure the tags stay as posi-

tioned, so those designers avoid running into any unforeseen and unexpected surprises.

Aside from that, the rest of this code is fairly self-explanatory. Because we’re outputting to the

browser here, we once again have strings that are being localized in the same format as before; it

doesn’t bear any more explanation, but when you are writing your own plugins, you will want to

remember this important detail. Spread the WordPress love by localizing—have you noticed this

as a recurring theme yet? We should make bumper stickers: “Be Wise and Localize!”

Updating the Instance of the Widget
The third piece of the widget class is the nearest we have to a standardized component, and it’s

very simple to see what’s happening:

chapter_05/AGSocialMedia/agsml_widgetupdate.php

/* Update the widget settings, just the title in this case */
function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance['title'] = strip_tags($new_instance['title']);
 return $instance;
}

All we are doing here is sanitizing the only input we have for our widget—in this case the customized

title—and saving it as a new instance, replacing the old instance if it existed.

Creating the Form to Change the Title
The final component of the widget class provides the logic for the form, which is necessary to update

the title of the instance of the widget:

The WordPress Anthology132

chapter_05/AGSocialMedia/agsml_widgetform.php

//form to display in widget settings. Allows user to set title of widget.
function form($instance) {
 $title = esc_attr($instance['title']);
?>
<p>
 <label for="<?php echo $this->get_field_id('title'); ?>"><?php _e('Title:');
 ?></label>
 <input class="widefat" id="<?php echo $this->get_field_id('title'); ?>"
 name="<?php echo $this->get_field_name('title'); ?>" type="text"
 value="<?php echo $title; ?>" />
</p>
<?php
}
}

Here we find a very simple form with just one label (that includes our now all-too-familiar localized

string) and its corresponding input field, which autopopulates with the existing title, if one has

been previously set.

Load Our Widget into WordPress
The final touches on our Antelope General Social Media Links plugin are finally within our grasp:

chapter_05/AGSocialMedia/agsml_loadwidget.php

/* Load the widget */
add_action('widgets_init', 'agsml_register_widget');
?>

Now all we need to do is use widgets_init to load up our agsml_register_widget() function.

After this function fires, we’re home, and while most antelopes run out of control, our antelope is

running with all the controlled precision we could possibly hope for!

Taking Plugins Further
While we’ve pieced together an entire plugin bit by bit, we’ve only begun to touch on what you can

do with plugins. In truth, the only limit to what you can accomplish with a plugin is your imagin-

ation, as there are thousands of hooks to work with, and even more standardized tools that you can

use to continue to push the envelope with WordPress. While it made no sense to include them

within the context of the Antelope General Social Media Links plugin example, there are two pieces

of functionality commonly implemented within plugins that we should cover: meta boxes and

shortcodes. We won’t go into nearly as much depth on either piece of functionality, but we’ll look

at them so that you’ll at least be able to use them. Let’s start with a basic discussion of meta boxes.

133Plugins

Meta Boxes
In many plugins, you’ll want to give your end users the ability to add information in a standardized

way right on the page or post editing screen. One way to accomplish this is to utilize meta boxes,

which we looked at back in the section called “Meta Boxes” in Chapter 2. If you recall, meta boxes

are customized dialog boxes you can insert on administrative editing screens, seen in Figure 5.4.

Figure 5.4. Custom meta boxes

Meta boxes are added using a standard function that takes seven parameters, as shown below:

add_meta_box($id, $title, $callback, $page, $context, $priority, $callback_args)

Each of the parameters is defined as follows:

■ $id (string): CSS id attribute for the meta box (required)

■ $title (string): the title displayed within the header of the meta box (required)

■ $callback (string): the name of the function that displays the meta box information (required)

■ $page (string): the type of page that you want the meta box displayed on; for example, post,

page, link, or custom_post_type, where custom_post_type is the custom post type slug (re-

quired)

The WordPress Anthology134

■ $context (string): the specific area within the edit screen of where you want the meta box dis-

played, such as normal, advanced, or side (optional)

■ $priority (string): the priority within the context where the meta box should be displayed,

such as high, core, default, or low (optional)

■ $callback_args (array): arguments to pass into your callback function (optional)

The add_meta_box() function is typically used in conjunction with the admin_init action hook,

which you can use to create your custom meta box within page types associated with your plugin.

While most of the parameters that add_meta_box() takes are self-explanatory, there’s a couple of

really cool ones that make this a particularly flexible function. Notably, the $page parameter queues

up the type of page that your meta box can be displayed on; because it ties into custom post types,

it gives you an additional level of control when morphing WordPress into the specialized CMS you

envision for your website, as described in Chapter 4. The $context parameter is equally useful,

giving you control over exactly where that meta box will show up on the page type editing screen.

This is sexy stuff that lets you carve out WordPress to make it look and function however you see

fit.

Shortcodes
Another extremely useful concept to dig into is shortcodes. Shortcodes are essentially sanitized

placeholders for PHP functions that are either initialized by core WordPress, from within a plugin,

or even from within the functions.php file of your theme. They can accept parameters that make

them perform tasks, and are very useful when you want to insert fairly complicated code into a

page or post without actually inserting that code. Instead, you can think of a shortcode as a place-

holder that WordPress will identify when outputting your website, replacing it with the appropriate

code associated with the shortcode. They are formatted with opening and closing brackets that look

like this: [my_super_awesome_shortcode].

Shortcodes are easy to create, and for the most part you can embed any functionality you want into

them. WordPress gives us the following standard function to use when we want to create one:

add_shortcode('shortcode-name', 'shortcode-function-name')

Here, the parameters are straightforward, with the name of the shortcode (the text we insert in our

brackets) being defined within the first string parameter, and the associated function that calls the

PHP function we’ll be executing where the shortcode is inserted in our page. Let’s take a look at a

very simple example of a shortcode in action:

135Plugins

chapter_05/shortcode-example.php

<?php

function thank_you() {
 return 'You can feel good about Hood.';
}

add_shortcode('mrminer', 'thank_you');
?>

Here, we have defined an extremely simple shortcode named mrminer, which makes reference to

a function called thank_you(). While you can be extremely creative and intricate with the function-

ality you’d like to introduce in your shortcode, we’ve kept it very simple here to illustrate the process.

In our example, we can add the shortcode [mrminer] to any post or page, and it’ll print out “You

can feel good about Hood.” in that space.

Return, Don’t Echo

A common mistake that many plugin developers make when they are beginning to work with

shortcodes is to try to echo the results of a shortcode, rather than return the response. Don’t sweat

it, though … now that you’ve read this tip, you’ll avoid this pitfall!

The WordPress Plugin Directory
All right, so let’s say you’ve created a plugin and you want to give back to the community by sharing

your creation with the world. One of the easiest and most effective ways of doing that is to submit

it to the WordPress Plugin Directory on WordPress.org. There are several really cool things that

result from listing your plugin in the directory, most notably that it instantly becomes accessible

to anybody who’s running a WordPress installation. With just a few clicks and the right search,

your plugin can come up in the plugin search and be added to anyone’s WordPress site in just a

few minutes. Additionally, when you update your plugin inside the directory, your users will be

immediately notified and prompted to upgrade from right within their WordPress admin back end

… and that just feels so cool the first time you ever see it happen with one of your plugins. Finally,

WordPress.org also gives you access to statistics, so you’ll be able to see exactly how many people

have downloaded your plugin and the ratings they’ve given it, as well as view and respond to

comments.

You’ll need to adhere to several blanket terms and conditions if you want your plugin to be listed

in the directory, namely:

■ Your plugin should have a license that is GPL-compatible.
■ Your plugin can’t do anything illegal, or be morally offensive in any way.
■ You’ll need to host the plugin using the WordPress.org subversion repository.

The WordPress Anthology136

■ You’ll need a valid readme.txt file for your plugin.
■ Your plugin can’t embed an external link to the author’s site without giving the user an option

to easily remove it.

If you choose to submit your plugin to the WordPress Plugin Directory, it’s an easy process, even

though it’s not immediate. You’ll need to be a WordPress.org registered user, and then you submit

your plugin at http://www.WordPress.org/extend/plugins/add/. Upon adding your plugin, it will

need to be reviewed and approved by the staff managing WordPress; it’s a process that can take

some time, as it is manual.

Upon having your plugin approved, you will be given access to the WordPress.org Subversion re-

pository, where you’ll commit the uncompressed plugin to the SVN repository, along with a valid

readme.txt file that describes the information needed for listing a plugin in the directory. A sample

readme.txt file can be found at http://wordpress.org/extend/plugins/about/readme.txt, and a readme

validator that will help you determine whether you’ve added the required elements for a listing is

available at http://www.WordPress.org/extend/plugins/about/validator/.

Some Food for Thought

Few things are worse in the WordPress community than a poorly supported plugin, especially if it

starts off with a head of steam and gains a following. Such plugins are one of the reasons why

WordPress earned a bad name in the past, so we encourage you to give some thought to how com-

fortable you are in providing a reasonable level of support to others using your plugin. When you

submit a plugin to the WordPress Plugin Directory, you really are making a loose, implied agreement

to provide a basic level of support to others who may use your plugin; otherwise, releasing it into

the directory makes little sense outside of satisfying your ego. Submitting your plugin to the directory

is a choice that you as the developer can make—it’s not a requirement.

Plug In All the Way
Plugins are powerful pieces of functionality, and are essential in extending the functionality of any

WordPress website. Poorly coded or out-of-date plugins are one of the most common reasons why

WordPress websites occasionally have problems, so the easiest place to begin troubleshooting is to

turn off all your plugins.

If you are a developer, you can make WordPress do backflips with the creative use of plugins (all

right, maybe not backflips, but you could probably make it order pizza for you). Mastering action

hooks and filter hooks are essential to making your plugins hum, but you’ll need a solid foundation

in PHP to make anything really go. Just remember, if you can dream it, you can do it with plugins

in WordPress!

137Plugins

Chapter6
Themes
Well-designed content management systems seek to create a separation between design, content,

and functionality, and WordPress is no exception. So far in this book, we’ve covered the fundamental

building blocks of WordPress that primarily manage functionality: The Loop, post types, and plugins.

Themes, on the other hand, comprise the structural CSS, HTML, and JavaScript code that handle

the overall design, layout, and visual user experience of a website. In other words, themes are all

about making your website look really good, and less about the programming that does all the heavy

lifting in the background. There are plenty of considerations that muddy these waters, though, as

we’ll learn later in the chapter, but for the time being, let’s focus on the basics of what goes into a

theme.

Basic Components of a Theme
At their core, themes are really nothing more than the HTML code to create a structure that describes

where different components will live on a website, and the CSS code that describes what those

components will look like. For the purposes of this chapter, we’ll assume you have a solid under-

standing of both HTML and CSS, and that you understand the fundamental components necessary

to construct a successful web page. It’s vital that you understand how all those pieces work together

within a WordPress theme.

Just like with plugins, WordPress provides us with a standardized place to store our themes within

a particular WordPress installation: the wp-content/themes directory. Although only one theme can

be activated at any given time, WordPress does let you store as many themes as you like to activate

and deactivate at your leisure. Keeping with the same pattern we saw with plugins, themes must

have unique names and be stored in their own unique directories within the wp-content/themes

directory. So far, so good.

Required Elements of a Theme
Now that we know where to save the files within our theme, we need to start building those files.

While we’ll probably end up creating several more files, we technically only require two files to

set up a valid theme:

■ styles.css

■ index.php

The styles.css file is the more crucial of the two, and is the first file that WordPress will look for

when it gathers information about your theme prior to activation. Similar to the way in which it

recognizes plugins, WordPress searches for a standardized header at the very top of the styles.css

file to gather pertinent information about your theme. Since we won’t be creating our own full-

blown theme here within this chapter, let’s take a look at how the team over at WordPress.org has

done it with their latest and greatest theme, Twenty Eleven:

chapter_06/twenty-eleven-styles-header.php

/*
Theme Name: Twenty Eleven
Theme URI: http://wordpress.org/extend/themes/twentyeleven
Author: the WordPress team
Author URI: http://wordpress.org/
Description: The 2011 theme for WordPress is sophisticated, lightweight, and
 adaptable. Make it yours with a custom menu, header image, and background --
 then go further with available theme options for light or dark color scheme,
 custom link colors, and three layout choices. Twenty Eleven comes equipped
 with a Showcase page template that transforms your front page into a showcase
 to show off your best content, widget support galore (sidebar, three footer
 areas, and a Showcase page widget area), and a custom "Ephemera" widget to
 display your Aside, Link, Quote, or Status posts. Included are styles for
 print and for the admin editor, support for featured images (as custom header
 images on posts and pages and as large images on featured "sticky" posts), and
 special styles for six different post formats.
Version: 1.0
License: GNU General Public License
License URI: license.txt
Tags: dark, light, white, black, gray, one-column, two-columns, left-sidebar,
 right-sidebar, fixed-width, flexible-width, custom-background, custom-colors,
 custom-header, custom-menu, editor-style, featured-image-header,
 featured-images, full-width-template, microformats, post-formats,
 rtl-language-support, sticky-post, theme-options, translation-ready
*/

The WordPress Anthology140

As you can see, this is fairly standard fare. What’s important to remember is that no two themes

loaded in the same WordPress installation can have the same name; so if you are building a theme

by copying an existing theme and making modifications from there, make sure you change the

header information here to your own unique values.

The remainder of the styles.css file is just standard CSS. You can use it to create all the cool styles

you’ll utilize to make your theme look awesome.

The index.php file, on the other hand, is the initial page that a browser will fire upon visiting your

site, and serves as the key file to describe the layout of the main page (and potentially the entire

site, as we’ll discuss in a moment). We can place whatever HTML we want our theme to display

inside this file, but since our goal here is to output our WordPress content via our theme, we’ll take

a more structured approach. Let’s take a look at a stripped down index.php file we might commonly

see in a theme:

chapter_06/basic-index.php

<?php

// Insert the header.php file to begin the page output
get_header();

// Add in page logic via the Loop
if (have_posts()) :
 while (have_posts()) :
 the_post();
 the_content();
 endwhile;
endif;

// Insert the sidebar.php file to include widgetized sidebars
get_sidebar();

// Insert the footer.php file to complete the page output
get_footer();

?>

Right away, you’ll notice that this index.php file is broken up into four sections:

■ header area
■ the location to add The Loop, which will define our page logic
■ sidebar area
■ footer area

Just by looking at the comments in the code, we can deduce that get_header() grabs and inserts

the header.php file, while get_sidebar() and get_footer() perform the same function with

141Themes

sidebar.php and footer.php, respectively. Fairly easy, right? There’s no need to define the specific

names of those files; WordPress assumes that you’ll follow its nomenclature (a recurring theme, as

we’ll see here in a moment). We’ve already covered The Loop in detail in Chapter 3, so we should

already be able to see where the content is going to be added. However, this does introduce three

more files that we’ll need to add to our theme:

■ header.php

■ sidebar.php

■ footer.php

These files aren’t vital, but you’ll find almost every theme makes use of them. And just to keep you

on your toes, they won’t necessarily include what you think they might if you try to interpret them

literally. For instance, the header.php file will contain all the display code required to create the

code of a given page right up to where the content code is added into the outputted source code.

This includes the <DOCTYPE> information for your outputted page, all the typical components you’d

need in any <head> code such as meta information and links to your stylesheets, and the opening

<body> tag to begin your display code. With all that said, there are two tasks you must include when

creating your header.php file that will break WordPress without their presence:

■ Reference the styles.css file you’ve set up to initialize your theme.
■ Add the wp_head() function in the <head> code to initialize WordPress and ensure that all core

functions work properly.

Similarly, the footer.php file can cover all the outputted source code from the bottom of the content

block to the end of the file, although, in our example, we’ve inserted our sidebar.php file in this

space, which serves to include logic for our widgetized areas. Typically, the footer contains the

</body> and </html> tags, and must contain wp_footer() to allow core WordPress functions to

manage footer settings as required; without it, unexpected results will occur when WordPress uses

your theme.

Tying It All Together

If you were paying close attention in Chapter 5, you’ll recall that two of our most common action

hooks were the wp_head and wp_footer action hooks. The functions that we’ve just discussed

above—wp_head() and wp_footer()—are the functions that actually trigger each of these action

hooks, respectively. Nothing like tying it together with a nice little bow, right?

Let’s stop for a moment and draw an analogy to illustrate this point further, using a hamburger (or

a veggie burger if you prefer) as an example. Now, the way that we prefer our burgers may well be

different from the way you prefer yours. While a lot of people prefer to put their pickles, mustard,

and ketchup underneath the meat, with the cheese, lettuce, and tomato on top, we choose to have

nothing underneath our burger, instead having all toppings between the meat and the top bun.

Other people may choose to skip the mustard and ketchup, favoring mayonnaise as their only

The WordPress Anthology142

condiment. Whatever your preference, what we all have in common on our burger is the fact that

there’s a top bun, a bottom bun, and the meat in the middle—what you add to the burger is really

up to you.

In the same way, themes are really all about visual flavors and preferences. We all have stuff on the

top (a header), stuff on the bottom (a footer), and meat in the middle (the content being added by

The Loop). Other than that, as designers we like to be creative and make our themes uniquely our

own, much like we do when we prepare our burgers. Consider Figure 6.1.

Figure 6.1. index.php structure dressed up like a hamburger

What the burger-maker has done here is change the very nature of the meal. It’s no longer a ham-

burger, but a double cheeseburger, and we’ll need to manage some options that deal with the cheese.

Bringing the analogy back to the index.php file within our theme, we’ll call these places where we

need to manage options sidebars, and we can move them around however we like. In our initial

example, we’d already added one sidebar between The Loop and the footer, but now we have to

manage two sidebars that may have different options. The easiest way to do this is to create a left

and a right sidebar, which we can do by passing the correct standard parameter to the get_sidebar()

function, as is done in the revised example:

chapter_06/dual-sidebar-index.php

<?php

// Insert the header.php file to begin the page output
get_header();

// Add in page logic via The Loop
if (have_posts()) :
 while (have_posts()) :
 the_post();
 the_content();
 endwhile;

143Themes

endif;

// Insert both widgetized sidebars
get_sidebar('left');
get_sidebar('right');

// Insert the footer.php file to complete the page output
get_footer();

?>

We’re cooking with gas now, except … wait. We’ve added two sidebars to our theme, but we only

have one sidebar.php file. What gives?

Easy—get_sidebar() takes one optional parameter, a name that corresponds directly to a standard

nomenclature with sidebar.php. So when you use get_sidebar('left'), get_sidebar('right'),

or even get_sidebar('footer'), WordPress will seek out sidebar_left.php, sidebar_right.php, or

sidebar_footer.php, respectively. Nomenclature, in fact, plays a very big role in determining how

WordPress parses out template files within your theme, as we are about to find out.

Nomenclature Hierarchy and Page Templates
We now have a handle on the fundamental components you can use to assemble your web pages

within your WordPress theme. This is great, but what about extending those styles and changing

your theme depending on where you are in your website? After all, it’s quite common to make your

home page appear different from your internal pages, and you just might want to have a distinct

look for a 404 page that pops up when a user tries to visit a place on your site that doesn’t actually

exist. Regardless, WordPress has you covered in two ways:

■ the template nomenclature hierarchy
■ page templates

Let’s tackle the nomenclature hierarchy first.

By default, WordPress requires that you only create one template file within your theme: index.php.

If you create no other template files aside from index.php, WordPress will simply default to this

visual styling for everything it needs to display on your website. However, WordPress provides us

with a specific nomenclature system that provides a handy way for theme designers to automatically

display templates for a particular type of page output, or even for a page, post, or category. All you

need to do is make a copy of your index.php file, rename it to match up with the type of content

you’ll display, and then make your template modifications within that file. Consider the WordPress

Template Hierarchy in Figure 6.2.

The WordPress Anthology144

Figure 6.2. A simplified version of the WordPress template hierarchy structure

This simplified hierarchy structure describes the process; it helps to think of it like a funnel, with

a URL working top-down through the hierarchy. At the top of the structure, there are templates

used to describe the most specific forms of content types we could have. If a template file exists for

a specific slug or post ID, that template is used. If no slug or ID template file exists, WordPress

would look for the next template file in the linear hierarchy and use the first available, defaulting

to index.php if no file is found until that point.

For example, let’s say that you would like to create a page template to manage the appearance of

all your pages, but you’d like to give your About Us page its own look and feel. You could accomplish

this by creating a template named page.php to handle all the pages within your theme, but then

create a second file named page-about.php with the specialized display logic (assuming that “about”

is the slug for that particular page).

The most common templates modified by theme designers, aside from index.php, are colored in

blue in Figure 6.2. Here’s what each of them modify:

■ single.php manages all display formatting for individual posts

145Themes

■ page.php manages all display formatting for individual pages

■ home.php manages all display formatting for the home page (called from the is_home() function,

rather than the is_front_page() function, which is managed by the front-page.php display

template)

■ archive.php manages all display formatting for post-listing pages (those that typically display

post excerpts)

■ 404.php manages all display formatting for any pages not found (this can be useful for improving

your visitors’ experience by giving them helpful navigation tips, since you can safely deduce

that they’re experiencing what they didn’t expect on your site)

But Wait—There’s More

Figure 6.2 lists only some of the most common page template types used by theme designers. For

a more complete listing, have a look at the diagram provided by WordPress.1

The archive.php template is its own special case as well, as it is the root controlling template file

for a variety of templates, including categories, tags, and several others such as taxonomies, which

aren’t pictured here. Other than this, the archive.php template works just like the others. For example,

let’s say that you’re running a sports website about the Olympics, and you have a particular interest

in swimming events. Working from the bottom up, you could create a specialized display template

for posts about Olympic swimming by creating a file called category-swimming.php. However, you

may also want to post about sports unrelated to swimming that have no need for a distinct appear-

ance, so you could create a second template called category.php that serves this catch-all category.

Finally, since you’ll be doing this over the course of several Olympic Games, you may want to display

older, less relevant posts differently; you could then use another display template for archived

posts. Shockingly, this would be named archive.php!

Page Templates
The other way to create distinct layouts in WordPress is to use page templates. It’s no surprise to

find that you can only use page templates with individual pages, but they’re useful for giving your

end user an easy way to change the appearance of a page within the page editing screen.

Creating a new page template is easy as pie. Just copy an existing template you have within your

theme and give it a unique name. There’s no requirement to follow a nomenclature for filenames

of page templates as it is with the template hierarchy; in fact, you’ll want to make sure that you

avoid naming your page templates one of the template names, as it will cause it to behave in a way

you don’t want. Instead, you register your page templates with WordPress in what should now be

1 http://codex.WordPress.org/Template_Hierarchy

The WordPress Anthology146

http://codex.WordPress.org/Template_Hierarchy

a very familiar way: having a standardized comment format at the top of your template file, as de-

scribed here:

chapter_06/page-template-registration.php

<?php
/*
Template Name: Antelope General Special Sales Page Template
*/
?>

As the required Template Name: label suggests, the name of your custom page template is defined

here, and once saved, you’ll find it immediately in the page templates drop-down on your page

editing screen. Nothing to it, as Figure 6.3 shows.

Figure 6.3. Page Templates dialog box

Adding Functionality to Your Theme
So far, we’ve talked in detail about how themes work and are structured, which is all well and good,

but sooner or later you’ll want to make your theme sing and dance, and that means adding some

theme-specific functionality. For this reason, an important file that you’ll find in most themes is

the functions.php file. A file that WordPress automatically searches for when it loads a theme,

functions.php is essentially treated as a theme-specific plugin. There are plenty of appropriate uses

for it (and inappropriate uses, as we’ll discuss in a bit); what’s important to remember is that

147Themes

functions.php is where you’ll want to place custom PHP functions that make sense to use within the

context of your theme, and your theme alone. Let’s take a look at some of the more common uses

of functions.php.

Keep It Functional

Functions defined and written into functions.php are automatically loaded whenever the theme is

in use; therefore, it’s useful to keep in mind that long, unwieldy functions.php files can actually

slow your website down.

Adding Custom Menus
While you can literally add any functions you’d like to the functions.php file, one of the most common

functions theme designers use involve setting up custom menus for extended navigation on the

site. WordPress gives us an exceptionally easy method for creating as many menus as we’d like,

which is useful for producing top header menus, footer menus, contextual menus, and any other

type you can dream up. In order to create our menus, we’ll need to register them within our

functions.php file using the register_nav_menus() function, which takes an array of menu slugs

and descriptive names as its argument. Let’s have a look at it in use:

chapter_06/functions-php-menus.php

<?php

if (function_exists('register_nav_menus')) {
 register_nav_menus(
 array(
 'header_menu' => 'Header Menu',
 'footer_menu' => 'Footer Menu',
 'mobile_menu' => 'Mobile Menu'
)
);
}

As is fairly plain to see, we’ve registered the availability of three new menu files in this example—a

header menu, a footer menu, and a mobile menu. With this code saved to our functions.php, we’ll

now have these menu options available to us when we navigate to the Menus screen in the Dashboard

at Appearance > Menus; here we can make modifications to our heart’s content. However, we still

need to place them in our theme, and to do this we need only use the wp_nav_menu() function in

the desired location within our theme, which looks like this in action:

<?php wp_nav_menu('header_menu'); ?>

The WordPress Anthology148

Working Backwards

The custom WordPress menu system was introduced in WordPress 3.0. If you want to make sure

that your theme is compatible with WordPress versions older than 3.0, use the conditional if (

function_exists (‘register_nav_menus()’) code as described in our recent example.

Choose Your Format

While the standard usage of wp_nav_menu() is fairly basic, you can do all sorts of formatting tricks

with it. Have a look in the WordPress Codex2 for the range of parameters you can pass to the function

to extend your custom menus.

Creating Widgetized Areas
Aside from adding customized menus, functions.php is often utilized to extend WordPress’s func-

tionality, creating additional widget-ready areas for use within your theme. Consider the following

code:

chapter_06/register-widgetized-area.php

<?php

// Register Antelope Featured Widgetized Area so it exists and we can use it
if (function_exists('register_sidebar'))
register_sidebar(array(
 'name' => 'Antelope Featured Widgetized Area',
 'before_widget' => '',
 'after_widget' => '',
 'before_title' => '<h2>',
 'after_title' => '</h2>',
));

?>

Nothing to this, really. Here, we’re just letting WordPress know that we have a new widgetized area

called Antelope Featured Widgetized Area that we’ll want to use. WordPress will respond by creating

a namespace for you to work with; so now when you go to the Appearance > Widgets area within

the admin area, you’ll see a new sidebar named Antelope Featured Widgetized Area. Go ahead and

fill it up with whatever widget functionality you’d like, and then we’ll move on to the next (and

final) step so that we can actually reap the benefits of our efforts.

Since we’ve just registered a new widgetized area, let’s follow through and add it to our theme in

a useful location for our purposes. Widgetized areas can be added anywhere in a theme, but they’re

2 http://codex.wordpress.org/Function_Reference/register_nav_menus

149Themes

http://codex.wordpress.org/Function_Reference/register_nav_menus

commonly added within sidebar.php templates (or derivatives thereof). Just locate the place in your

code where you want to add your new widgetized area, and drop in the following PHP code:

chapter_06/display-widgetized-area.php

<?php

// Output Antelope Featured Widgetized Area in our theme
if (!function_exists('dynamic_sidebar') || !dynamic_sidebar➥

 ("Antelope Featured Widgetized Area")) : ?>

<!-- Default formatting code here -->

<?php endif; ?>

We promised we’d avoid delving too deeply into PHP here, but this shouldn’t be too scary. Here

we are just being responsible and making sure that our theme has no issues; for example, if the

theme is unable to find either the dynamic_sidebar function (highly unlikely, as it’s a core function)

or the widgetized area we just registered in our functions.php file (more likely, since everybody is

prone to human error). In the event that the theme runs into an issue here, it’ll just display the

output code we’ve specified—in this case, a descriptive comment. However, so long as we have

coded our widgetized area correctly and added widgets to it, we should see a useful addition here.

Adding Support for Visual Modifications
The other types of functions most commonly added to functions.php involve giving your users the

ability to make visual changes to the theme from directly within the admin Dashboard.

Adding Support for Custom Headers
It’s typical that users with a particular theme on their website will want to change the header to

one of their own creations, and WordPress gives us a really easy, standardized method of doing so.

In order to make this happen, WordPress provides us with a set of code additions that we’ll need

to build our functions.php file:

chapter_06/functions-php-custom-header.php

<?php

// Four constants that must be defined in order for the custom image
// header to work properly
define('HEADER_TEXTCOLOR', 'ffffff');
define('HEADER_IMAGE', get_bloginfo('styesheet_directory') .➥

 '/images/default_header.jpg');
define('HEADER_IMAGE_WIDTH', 900);
define('HEADER_IMAGE_HEIGHT', 150);

The WordPress Anthology150

// Include the header within the theme
function header_style() {
 ?><style type="text/css">
 #header {
 background: url(<?php header_image(); ?>);
 }
 </style><?php
}

// Include the header within the admin interface
function admin_header_style() {
 ?><style type="text/css">
 #headimg {
 width: <?php echo HEADER_IMAGE_WIDTH; ?>px;
 height: <?php echo HEADER_IMAGE_HEIGHT; ?>px;
 background: no-repeat;
 }
 </style><?php
}

// Enabling the custom image header
add_custom_image_header('header_style', 'admin_header_style');

You’ll notice that there are four basic blocks of code: the first defines four constants; the second

adds the header to the front end of the theme; the third adds the header to the administrative portion

of the theme; and the last actually enables it all within WordPress. From an editing perspective,

it’s important to pay attention as a theme developer to the first code block where we define our

constants. Make sure to input the header dimensions accurately, as well as describe the location of

the header image, and the color of any text that is added to the header. Without these constants,

the custom header will simply fail to work.

Following the constants definition, the remaining three code blocks comprise pretty much our

standard WordPress magic. First, we’ll create a function that will load with the wp_head action hook

that adds the header image and its attributes into your theme. The next code block loads the header

to the admin Dashboard, followed by our activation function in add_custom_image_header(),

which specifically calls the two functions we’ve just defined.

Adding Support for a Custom Background
In what may be the granddaddy of easy functionality to add to any theme, WordPress has a simple

method that gives your users the ability to add a custom background to their themes. In your

functions.php file, add the following line of code:

<?php add_custom_background(); ?>

151Themes

Doing this will automatically add a set of functionality to your theme that will allow the website

administrator to see the existing background image of the theme, upload a background to replace

the old one, and tweak several of the commonly modified attributes of the background. Take a look

at Figure 6.4.

Figure 6.4. Adding a custom background

If you were expecting a more complicated process, don’t knock it. Every once in a while you’re

given a gift, and this is one of them!

Does My Functionality Belong in a Plugin or Theme?
While you can technically add functionality wherever you like in your theme, the question of where

it’s appropriate to do so can be a bit murky when considering both the flexibility of WordPress and

the divergent intentions of different web developers. Before we examine these nuances, though,

let’s first define exactly what we mean by functionality.

Defining Functionality
The term functionality is a common buzzword that is thrown around fairly loosely these days by

developers, designers, and clients alike, but exactly what are we talking about when we reference

it? For the most part, just about anybody involved would agree that it’s a general term describing

a specific feature set that has been introduced into a system. Within WordPress, almost all types of

functionality can be broken down into four primary categories:

The WordPress Anthology152

■ core WordPress functionality

■ functionality that enhances existing feature sets within core WordPress

■ functionality that introduces entirely new feature sets unavailable within core WordPress (in-

cluding third-party application integration; for example, Twitter)

■ functionality that aids a specific theme in handling variables from a design and layout perspective

Whether you’re looking to add a real-time feed of Tweets to your sidebar or a jQuery image gallery

on your home page, or just to set up your site to be ranked better in search engines, the categories

listed should cover just about anything you want to throw at WordPress. If we assert that all func-

tionality in WordPress falls within one of these four categories, and consider that WordPress provides

a logical location to house operations, we can project whether a specific piece of functionality belongs

within a plugin or within a theme.

Core WordPress functionality is included within WordPress, and should never be directly edited

at any time (if you do, bad stuff can happen; think “removing random pieces of your engine just to

see what happens”). Functionality that either enhances existing WordPress core features or introduces

brand new features typically belongs as plugins, so that they can be added and removed as necessary.

Likewise, functionality that aids a theme belongs within that theme, but it’s useful to note that it’s

scripting that helps display specific pieces of content rather than add or extend functions. In this

way, the intent of the scripting is different; it’s more about display logic than it is about site func-

tionality, and it’s probably the most important distinction to make in determining where to place

your site’s custom functionality.

The Difference between Display Logic and Site Functionality
Almost all functionality in WordPress is written in one of two languages: PHP or JavaScript. After

all, whether you’re creating a custom jQuery script to add a behavior to a slide show or modifying

The Loop to add the three most recent posts in the Featured category to the front page, you are really

working on the site’s functionality. Right?

Sort of.

The truth is that while you are, indeed, working with functional pieces of scripting on your site,

you should be able to squarely place any scripting into one of two categories. The script either adds

to or enhances the actual features of your WordPress site (site functionality), or assists you in dis-

playing that information to your audience (display logic). We all have a reasonable idea of what

site functionality is, but display logic has everything to do with how we actually display useful

data within the context of the theme. Common examples of display logic include:

■ registering sidebars and widgetized areas
■ registering new WordPress menus

153Themes

■ inserting custom conditional logic into The Loop
■ using post thumbnail scripting references such as TimThumb3

Incorporating prefabricated site functionality via the plugin system by customizing a theme’s display

logic is the most common form of WordPress development performed by the typical WordPress

developer, as most of us spend our time finding slicker and more effective ways of integrating ex-

isting tools across the Web to create client solutions. Often, the difference between good and poor

coding practices is in recognizing the difference between actual site functionality and display logic,

and coding each in the appropriate location.

A Case Study: ABC Real Estate
So if this is all as clear as mud, let’s take a look at a practical example. Suppose that we have a new

client—ABC Real Estate—who’d like us to develop a new website built upon WordPress with the

following functionality requests:

■ some form of event management system, as it will be running regular seminars

■ that each property be displayed in a constant, intuitive way with space for multiple photos (to

vary per house listing)

■ six featured properties in a specific format to be selected for the home page

■ site integration of Facebook comments so that visitors can easily share potential homes with

their friends

Each of these requests seems more than reasonable and intuitive for a real estate website, but let’s

sort out exactly where we’d add each piece of functionality listed.

Some Form of Event Management System
This one is relatively simple. Because WordPress lacks an event management system in its core,

we’ll need to add one via the plugin system. Could we write our own and add it directly to the

theme itself? Technically, we could, but it would make little sense, as there are already so many

event management systems available to try in a heartbeat. Furthermore, if we were absolutely bent

on writing our own system, it would be easiest to contain all the files necessary in their own place

to keep it tidy. Sounds like a plugin.

Each Property Displayed in a Constant, Intuitive Way
This one is a touch more complex, and a bit of a trick question. Since we’re talking about how ele-

ments are displayed, you might think we’re immediately in the realm of display logic. However,

WordPress 3.0 introduced the notion of post types, which allows for developers to create a certain

3 http://code.google.com/p/timthumb/

The WordPress Anthology154

http://code.google.com/p/timthumb/

display format for a specific type of post. You can collect a discrete set of data within the WordPress

admin for each record within the post type, and then output that record to a post template inside

the theme, allowing the post to be output to the screen in a unique way. Because of the particular

way that post types operate, you are essentially forced to create both display logic as well as site

functionality when you work with them. We’ll go over this in a bit more detail further on in this

chapter.

Six Featured Properties in a Specific Format for the Home Page
This is display logic. We’re adding nothing new here at all, but rather picking specific pieces of

stored content from the database. This is always done directly within the theme.

Site Integration of Facebook Comments
Third-party application integration—in this case, Facebook. Piece of cake; we’ll add one of the

myriad Facebook commenting plugins available for WordPress and integrate it appropriately.

My Way of Adding Site Functionality Works for Me!
And to that we say: we completely understand where you’re coming from, but allow us to make a

few compelling points that just might change your mind.

First of all, if you are developing site functionality yourself, you’re likely to find it more useful to

do so within the context of a plugin for purposes of portability, rather than directly within the

theme. After all, even after a job has been completed and the site launched, a large percentage of

developers retain the intellectual property rights of programs that they develop and utilize within

sites they work on; sooner or later there is a need to reuse the same code (or a version of it) for an-

other project. Plugins make this site functionality portable and easy to install, saving quite a bit of

time in the long run.

Because WordPress plugins are structured to maintain all their files in separate directories away

from other plugins and core WordPress features, they inherently provide order to the functions

written throughout the site. For instance, if you are having an issue with the meta description on

the home page and you know you are using an SEO plugin that handles that function (easily looked

up by referencing the active plugin listing in the WordPress admin), you’ll know exactly where to

begin investigating the source of the issue, even if you weren’t the original developer. In this way,

plugins can actually provide a loose form of documentation in and of themselves, giving developers

reasonable clues as to where certain functions might live, even in the poorest-documented of sites.

Troubleshooting is another fabulous reason to maintain site functionality within plugins rather

than embed it directly into the theme. Adding new features to a WordPress site can occasionally

cause conflicts and break a website, causing any number of display or performance issues that need

to be corrected. When such issues go bump in the night, most seasoned developers begin examining

existing plugins to see where scripting plugins may be happening. Using WordPress’s plugin system

155Themes

to activate and deactivate plugins provides a handy way to eliminate active scripts running on the

site, and then bring them back one by one to determine which are the offending scripts. Without

the ability to turn plugins on and off, a developer can be stuck trying to sort out exactly which

scripts are conflicting with one another and causing a buggy result to the end user.

Finally, don’t underestimate the importance of flexibility in your website functionality. The more

of the site’s core functionality that is directly built into the theme, the more difficult it becomes to

make design changes to that theme, or even swap it out entirely. It may sound clichéd, but the Web

is constantly shifting, and, ultimately, so will your site’s needs. Hard-coding site functionality into

a theme can lead to time-consuming edits, changes, and overhauls in the long term (and often the

short term) as you realize that what you thought was crucial yesterday—basing your entire site de-

velopment on it—is entirely obsolete next week. Honestly, it has happened to the best of us.

Breaking the Rules
“All right,” we hear you say. “That’s fine, but I have a good reason to deviate …” Every subjective

argument like this has solid reasoning to go your own way, and it’s useful to point out a few here.

Reason #1: Post Types
In our case study, we discussed putting together a customized post type to handle the display format

for a property listing. Pragmatically, this involves putting two pieces of code together: an array

initializing the data for the post type, and the post template to handle the display within the context

of the theme. While the second component here is clearly an issue of display logic, the array initial-

izations are a bit more fuzzy. This function is commonly defined within the theme’s functions.php

file, but it’s important to note that it could be defined with a functions file initialized within the

plugin system. In many ways, this makes a touch more sense as it keeps a clean separation between

site functionality and design components, and would ensure that the site’s functionality was retained

if you were to swap themes out down the track. As of this writing, initializing the array within the

theme’s functions.php file is clearly the most common practice, but it’s certainly a gray area.

Reason #2: Specialized Page Templates
Occasionally, it becomes important to create a page on a WordPress site that performs a particular

function. Perhaps you’re framing an item from another site, or pulling in some type of custom

functionality that isn’t really conducive to working within the constructs of the standard WordPress

page template and content editor. When this is the case, a usual practice is to register a new page

template with the standard WordPress syntax in the template file, and then include the functionality

directly within that page. In this instance, the functionality is not portable to other sites at all, but

often it is done in a situation where that is unnecessary.

The WordPress Anthology156

Reason #3: Protecting the Client from Themselves
As much as we’d all like to believe that WordPress is a bulletproof system that clients are unable

to break, we know that’s inaccurate. Occasionally there is a good reason to hardcode. For example,

let’s say you have a client who has to edit the sidebar on their website, but continually adds to or

edits the wrong item. In this instance, it can be useful to hardcode simple elements into the sidebar

that you’re reasonably sure the clients themselves will never need to update, guarding against the

possibility of accidentally deleting it. Examples of what might be hardcoded include an email opt-

in box or social media connection buttons.

Reason #4: Specialized Products for a Specific Industry
There are many theme developers out there who build targeted WordPress themes tailored to certain

industries. These themes lack a certain amount of flexibility, but the upshot is that for the target

market they serve, the additional flexibility is unnecessary. Examples of this include real estate-

specific themes, product review themes, or question-and-answer aggregation themes.

Reason #5: Time and Budget Considerations
Point blank, it’s sometimes faster to code directly into a theme than to make it modular and use a

plugin. When time is a factor or your client has a tight budget, a legitimate reason exists to cut

corners and code site functionality directly into the theme. It’s important to note that this is certainly

not a best practice, but it’s a reason to do what you need to do to get the job done.

Looking Good
Ultimately, themes are all about making your site look pretty, and it’s easy to do if you keep in mind

a few points:

■ Themes revolve around moving template tags into different positions within your page templates.

For the most part, every template will have a header and a footer, inserting page logic in the

middle via our trusted friend and ally, The Loop.

■ There are some linear rules for determining how to name your template files, so that they auto-

matically style the types of content you want them to.

■ You can use page templates to allow users greater control in the page editing screen over how

certain pages appear.

We also learned how to add functionality such as widgetized areas in a theme’s functions.php file,

and discussed the difference between site functionality and display logic. We’ve made the case that

the best practice for adding functionality is to code display logic directly into the theme, while

creating site functionality within the plugin system.

157Themes

Chapter7
Taxonomies
So far within this book, we’ve touched upon the primary components that comprise the main content

and operational functions of WordPress: the core WordPress installation; The Loop that handles

WordPress’s main content display logic; post types, which provide for extended flexibility in dis-

playing different types of content; plugins, which add entirely new functionality at the drop of a

hat; and themes, which determine how the site will look. While each of these elements are essential

in creating the ability to add, manipulate, and display information differently, it is the ability to

organize our content into intuitive, searchable groupings that ultimately makes WordPress a useful

tool. To this end, WordPress employs taxonomies, which are defined as methods of grouping sim-

ilar individual instances of content together in meaningful ways.

Before we dig deep into taxonomies as they are applied in WordPress, let’s have a look at an example

of how taxonomies are used in the real world. When you walk into any library, you know that there

are thousands of publications to choose from. Most of those publications are books, but some are

magazines, periodicals, compact discs, DVDs, or—if the library is really old-school—microfiche.

While we know that these forms of media are usually kept in different places, imagine how confusing

it would be if that was the only form of organization our library gave us! After all, could you imagine

throwing an outdoor party and being forced to rifle through thousands of books trying to find the

right one on barbecuing sausages? Instead, we have whole sections devoted to specific topics, in-

cluding one on cooking, and then within it a subsection on barbecuing, and within that a subsection

on barbecuing sausages. All the organization and suborganization that you find in any library is an

excellent example of taxonomy at work in the real, physical world … and with the help of a real-

life librarian or the Dewey Decimal System (google it, kids) you even have a built-in search function.

Now that we’ve covered a good example of what a taxonomy might look like in real life, let’s dig

into taxonomies as they are applied in WordPress.

Categories, Tags, and Custom Taxonomies
In WordPress, taxonomies are used to add a relational dimension to how you group elements together.

Categories and tags are both used to group posts together, and indeed define the taxonomy for any

given post once assigned. Core WordPress includes three taxonomies by default: categories, tags,

and link categories. Each time you create a new category, tag, or link category, you are creating a

term of that taxonomy. For instance, a category called Neighborhoods would be a term of the category

taxonomy, while a tag named Fiji would be a term of the tag taxonomy.

While we’ve already talked about categories and tags at length in Chapter 2, what’s important to

recognize is that categories are hierarchical in nature. Individual categories can have subcategories,

and then those subcategories can have their own subcategories, and so forth. Tags, on the other

hand, are not hierarchical but merely labels that you apply to any given post, regardless of which

category the post is nested in. In this way, you can think of categories as buckets that are used to

group posts together, whereas tags provide a much looser relationship between posts.

Link Categories

Link categories—the third taxonomy type that WordPress includes—are not necessarily a deprecated

topic in WordPress, but are not particularly relevant for our discussion on taxonomies. What’s more

important is to recognize that they are officially a separate taxonomy type that happen to be included

with core which you might see referenced in documentation from time to time. For more information

on link categories, have a look in the Codex.1

Understanding the relationship between categories and tags in the context of taxonomy is central

to developing a solid information structure for your website’s content. The more thoroughly you

plan how your WordPress site should function from the standpoint of content and information

structure, the more successful your site will ultimately be.

A Word on Information Hierarchy
One of the most common mistakes made by both beginners and seasoned web developers alike

when building a new website, WordPress or otherwise, is the lack of foresight to plan out the site’s

information structure and hierarchy. Especially when you are starting out, there’s the romantic

notion of sitting on a barstool somewhere, having a bright idea for a site, and then sketching ideas

on a napkin for the next million-dollar online business model. Undoubtedly, this happens from

time to time, but it’s the exception to the rule. Ultimately, many of us become far too caught up in

1 http://codex.wordpress.org/Taxonomies#Link_Category

The WordPress Anthology160

http://codex.wordpress.org/Taxonomies#Link_Category

the graphic design of a site, and then wonder why we end up with a watered-down product that

fails to work as we intended.

Most effective websites are planned from an information hierarchy perspective, rather than from a

design perspective. For our purposes, we’ll define information hierarchy (or information structure)

as the overall planned organization of the content on a given website. An effective information

hierarchy takes various factors into account and puts them together to form a cohesive structure.

These factors include the actual site content topics and how content should be presented. Will you

be using pages and subpages for some types of content, or will it be posts added to categories and

subcategories? What types of content should be searchable? Should some content be searchable on

its own, without search entries from posts or pages elsewhere on the website? All these variables

combine to create the information hierarchy of a given website.

When you begin putting together a site (or working with a client to put together their site), it’s per-

fectly fine to ask questions about what the site should look like. However, it’s far more important

to ask what the site should do. What information is going to be on the site? How should users be

able to interact with that information? Should the information be clustered together in one area of

the site, or do we need more structure? Understand that there are no right or wrong answers to these

questions, but it’s important you ask them and seek genuine responses.

What you should attempt to end up with is a content wireframe for your website. Unlike layout

wireframes, which show the overall design layout of a web page’s basic components prior to it being

fleshed out by a graphic designer, a content wireframe offers a comprehensive plan for your site’s

information hierarchy. We’ll show you some examples of developed content wireframes in just a

bit, but for now consider your responses to these basic considerations carefully. Take your time

and be specific with your responses, and remember that regardless of how awesome WordPress or

any other web development tool you happen to be using is, it’s ultimately up to you to build your

website intelligently.

Why Custom Taxonomies?
Part of your plan for the information hierarchy for your website is sorting out which content will

be filtered into categories and posts, and which will be set up as pages. Organizationally, you’ll

also seek to figure out what you can label and cross-reference as tags. In truth, you can do a lot with

WordPress pages, posts, categories, and custom post types, but using custom taxonomies is a fairly

easy technique that provides more flexibility in how you organize your content. Using custom tax-

onomies is also more professional, as it provides the type of polish that clients tend to recognize

and respect.

Throughout this chapter, we’ll use a common example to highlight how to use custom taxonomies,

and why they might be useful. We’ll put together a WordPress site for a real estate company named

Rutherford Real Estate, which wants to display properties organized by neighborhoods in several

regions. Furthermore, Rutherford Real Estate has many sales agents working for it, all of whom

161Taxonomies

represent multiple properties in any given region or neighborhood. If Rutherford Real Estate sells

property in three regions—each of which have several neighborhoods—and agents can sell properties

in any region or neighborhood they choose, let’s have a look at what a visual representation of the

business might look like, in Figure 7.1.

Figure 7.1. Regions and neighborhoods for Rutherford Real Estate

It’s plain to see we’re dealing with two types of information: hierarchical and nonhierarchical, with

neighborhoods being hierarchical subsets of regions, and sales agents acting as free radicals that

can attach to whatever they please. In WordPress terms, this means that we should be able to safely

use categories for regions and neighborhoods, and tags for the agents. Now let’s reframe our chart

into a content wireframe that explains the information hierarchy for this business model in our

website, in Figure 7.2.

The WordPress Anthology162

Figure 7.2. Content wireframe with category tags

That’s more like it. Our taxonomy is starting to take shape. We’ve established that our three regions

will be set up as categories, each having several related subcategories to handle the respective

neighborhoods. Subsequently, individual posts will be used to handle individual properties, giving

us a nice way to categorize our property listings for Rutherford Real Estate. We’ve also established

that we’ll be using tags to handle sales agents, as individual agents can sell properties in different

regions, and there may be instances when several agents team up to represent one property in par-

ticular. Functionally, this should work well, and many developers will choose to simply stop here

and proceed with development. However, with a bit of further planning, you’ll be able to further

customize WordPress functionality for Rutherford Real Estate. In the absence of this, a common

default permalinking taxonomy that may be configured for Rutherford Real Estate might look like

this:

/%category%/%postname%/

If we configured the site as described previously, this might render a permalink for a property titled

“Farmhouse” in Traverse City to look like this:

http://www.esquandoloas.com/category/midwest/traverse-city/farmhouse

That’s not bad. It certainly includes the category and post slugs that describe what the content is

all about (a farmhouse in Traverse City that’s located in the Midwest), but we could do even better

from an SEO perspective. Custom taxonomies allow us to create a separate hierarchical structure

with a more descriptive permalink that increases the relevance for search engines like Google,

producing higher rankings. Consider a situation where we set up a custom taxonomy for our prop-

erties that could create a permalink that looked like this:

http://www.esquandoloas.com/properties-for-sale/midwest/traverse-city/farmhouse

163Taxonomies

This is semantically a much better permalink, as it instantly establishes to both search engines and

real users that the content on this link is a property that’s for sale, located in the Midwest (Traverse

City, to be exact), and a farmhouse. Furthermore, if we set this up as a custom taxonomy, we create

a whole new taxonomy to work with, leaving our original category taxonomy untouched and intact,

which can be used for other purposes on the website—say blogging about news and events that

support Rutherford Real Estate’s sales efforts. By adding a custom taxonomy to handle properties,

the new content wireframe might look like Figure 7.3.

Figure 7.3. Our full content wireframe

Now we’re cooking with gas. We have our custom taxonomy set up to work in a hierarchical manner,

and we’ve also created a place to use our normal categories and tags for marketing purposes. In

addition, we fully expect to set up our permalink taxonomies to reflect two different structures.

For our properties, we’ll have permalinks that look like:

http://www.esquandoloas.com/properties-for-sale/midwest/traverse-city/farmhouse, while for our

news and events, we’ll have taxonomies that look like:

http://www.esquandoloas.com/category/events/marcos-crazy-estate-blowout-sale. Aren’t we fancy?

There are two other really cool aspects of custom taxonomies: extensible functionality requirements

and custom searching. Custom searching is fairly straightforward. Using custom taxonomies allows

us to delineate content so we can create custom searching restrictions. Therefore, if we want to

search the website and only return properties, we can restrict the parameters of the search to only

pull from that taxonomy type (more on that in a bit). And when we consider custom taxonomies

as a tool we can plug in at any time, we realize that we can extend WordPress in almost any direction

we want, even if the site we’re looking to extend is already in place and filled to the brim with ex-

isting content. We need do nothing more than establish the new type of content that we want to

log within the site, create our taxonomies, and begin to use them.

The WordPress Anthology164

Creating Custom Taxonomies
Now that we’ve discussed what custom taxonomies are and why we’d want to use them, let’s go to

the real heart of the matter: creating them and using them to our advantage.

Registering a New Taxonomy
Creating new taxonomies in WordPress is a relatively simple process, and WordPress provides us

with a function that accomplishes the job: register_taxonomy(). You should always use the init

action hook when calling register_taxonomy(), or else you will incur fatal errors, and nobody

likes anything that includes the word “fatal”, do they?

register_taxonomy() takes one required parameter and two optional but extremely useful para-

meters:

register_taxonomy($taxonomy, $object_type, $args);

The $taxonomy parameter is required; it is simply the name of the taxonomy being used, and must

exclude capital letters and spaces. It’s extremely important to ensure that the name of the taxonomy

is unique so that it avoids conflicts with plugins. Drawing from our Rutherford Real Estate example,

when naming the taxonomy for sales agents, we’d be better served using “Rutherford-sales-agents”

instead of “agents.”

The $object_type parameter must be defined as either a predefined object that is built into core

WordPress, or the slug name of a given custom post type that has already been created in the install-

ation. The parameter is technically optional, but leaving it out (or explicitly setting it to null) will

register the taxonomy without associating it with any objects. Therefore, the taxonomy will be un-

available for administration within the WordPress back end, and you’ll have to manually register

it using the taxonomy parameter (passed through $args) when registering a custom post type with

register_post_type() or register_taxonomy_for_object_type().

WordPress built-in post types that can be passed in as a valid value for the $object_type parameter

are as follows:

■ post

■ page

■ mediapage

■ attachment

■ revision

■ nav_menu_item

The most commonly used of these built-in post types with custom taxonomies are post or page.

165Taxonomies

The $args parameter is an associative array of arguments that define and describe the taxonomy.

While it is technically an optional parameter, the functions and switches that are managed within

this array are essential for shaping taxonomies and making them do what you want. In fact, it’s

such an important aspect of understanding and managing taxonomies that we should delve deeper

into this array.

The $args Array
The $args array (or arguments array, as we’ll refer to it here) takes up to 12 different arguments,

one of which is not recommended for use by core developers (the _builtin argument—see the

Codex2, which states it’s just for documentation purposes). Each argument is optional, and individu-

ally handles important functionality switches for taxonomy registration, which can be useful for a

variety of reasons. Let’s look at them in detail.

label

This is a plural descriptive name for the taxonomy marked for translation that is overridden by

$labels->name by default.

labels

This is an associative nested array of labels that define the text used within the taxonomy in

and of itself. This nested array is important so we’ll refer to it as the nested labels array argument,

and cover this in more detail in the section of the same name.

public

This is a Boolean that describes whether or not the taxonomy should be exposed within the

WordPress administrative back end; set to true by default.

show_in_nav_menus

This is a Boolean that describes whether or not the taxonomy should be made available for se-

lection in the navigation menus in the WordPress administrative back end. It defaults to the

value set in the public argument.

show_ui

This is a Boolean that describes whether or not to display a user interface to manage different

aspects of the taxonomy in the WordPress administrative back end. It defaults to the value set

in the public argument.

show_tagcloud

This is a Boolean that describes whether or not to allow the Tag Cloud Widget (which ships

with core WordPress) to use information set within the taxonomy. It defaults to the value set

in the show_ui argument.

2 http://codex.wordpress.org/Function_Reference/register_taxonomy

The WordPress Anthology166

http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy

hierarchical

This is a Boolean that describes whether or not the taxonomy will be hierarchical, and defaults

to false. It’s a principal argument, as it is the master switch that defines whether a custom tax-

onomy should work like a category or like a tag.

update_count_callback

This is a function name that’s used to update the count of the associated $object_type when

it is updated.

query_var

This defaults to the $taxonomy parameter value, and can be used to take either a string (as per

the $taxonomy value) or a Boolean, which will often be false to prevent any queries. It’s refer-

enced in the next argument, rewrite.

rewrite

Relatively advanced, this parameter can be passed either a Boolean or an array. It defaults to

true, but you can pass a false value to prevent rewriting per the mod_rewrite module in Apache.

If you pass the argument an array, these values can be passed:

■ slug: prepends posts with a custom slug, defaulting to the taxonomy’s name

■ with_front: a Boolean that allows permalinks to be prepended, defaulting to true

■ hierarchical: a Boolean that allows hierarchical URLS

capabilities

This array allows for user-group control by providing the ability to describe the exact capabilities

that have access to use functions of the taxonomy. It is useful in determining who can use the

taxonomy in the WordPress administrative back end. By default, users of roles with the man-

age_categories capability can manage, edit, and delete terms in a taxonomy; users with roles

with the edit_posts capability can assign terms of a taxonomy to a post.

This sums up the arguments array, but as we noted earlier, we need to discuss the labels argument

further.

The Nested Labels Array Argument
The array used for the labels argument is important for providing the text used throughout the

WordPress administrative back end for all your taxonomy terms. These labels can and should be

set up to be localized for eventual translation (see Chapter 11 for an explanation of localization).

Let’s have a look at what’s available to be configured:

name The general name for the post type, which is typically plural and overrid-

den by post_type_object->label. When internationalizing this string

167Taxonomies

in preparation for localization, it’s best to use the gettext context

matching your post type. For more information on context translation

with gettext, go to the Codex.3

singular_name The name of one object of the post type, which defaults to the value of

name. Using the gettext context translation type is useful here as well,

and is described in the Codex.

add_new The text used for adding a new term, and the default value is Add New

for both hierarchical and nonhierarchical content types. This is another

instance where it’s worth using the gettext context translation type (and

yes, you can refer to the Codex).

all_items The all items text used in the menu, which defaults to the name label.

add_new_item The text used when adding a new item to the taxonomy, which defaults

to Add New Post or Add New Page.

edit_item The edit item text whose default is Edit Post or Edit Page.

new_item The new item text whose default is New Post or New Page.

view_item The view item text whose default is View Post or View Page.

search_item The search item text whose default is Search Posts or Search Pages.

not_found The not found text whose default is No Posts Found or No Pages Found.

not_found_in_trash The not found in trash text whose default is No Posts Found in Trash or No

Pages Found in Trash.

parent_item_colon The parent text, which is only used on hierarchical content types. This

defaults to Parent Page or Parent Post.

menu_name The menu name text, which defaults to the value of name.

That’s all there is to register_taxonomy(), which frankly is an awful lot. Yet register_taxonomy()

is really just a function that defines a lot about how we want our taxonomy to work. This is best

understood by looking at a real-life example, so let’s revisit Rutherford Real Estate.

Using register_taxonomy()
We’ve already set up the content wireframes for Rutherford Real Estate that define their information

hierarchies. As you may recall, we want to create a new taxonomy to handle locations (regions and

3 http://codex.wordpress.org/I18n_for_WordPress_Developers#Disambiguation_by_context

The WordPress Anthology168

http://codex.wordpress.org/I18n_for_WordPress_Developers#Disambiguation_by_context

neighborhoods), as well as a separate taxonomy to handle sales agents who represent the properties

in different regions. The locations taxonomy needs to be hierarchical, as specific neighborhoods

(Chicago, East Lansing, and Traverse City) are subsets of the regions they are situated in (Midwest).

Conversely, a sales agent named Palmer may represent a property in several neighborhoods, and

in more than one region, so there is no hierarchical relationship with sales agents. The taxonomy

that handles sales agents should therefore be loose in structure and act similarly to tags. Let’s see

what our code should look like to register our new taxonomies:

chapter_07/register-taxonomy.php

<?php
//hook into the init action and call create_property_taxonomies
add_action('init', 'create_property_taxonomies', 0);

//create two taxonomies, locations and sales agents
function create_property_taxonomies()
{
 // Add new taxonomy locations, make it hierarchical (like categories)
 $labels = array(
 'name' => _x('Locations', 'taxonomy general name'),
 'singular_name' => _x('Location', 'taxonomy singular name'),
 'search_items' => __('Search Locations'),
 'all_items' => __('All Locations'),
 'parent_item' => __('Parent Location'),
 'parent_item_colon' => __('Parent Location:'),
 'edit_item' => __('Edit Location'),
 'update_item' => __('Update Location'),
 'add_new_item' => __('Add New Location'),
 'new_item_name' => __('New Location Name'),
 'menu_name' => __('Locations'),
);

 register_taxonomy('location', post, array(
 'hierarchical' => true,
 'labels' => $labels,
 'show_ui' => true,
 'query_var' => true,
 'rewrite' => array('slug' => 'location'),
));

 // Add new taxonomy for sales agents, NOT hierarchical (like tags)
 $labels = array(
 'name' => _x('Sales Agents', 'taxonomy general name'),
 'singular_name' => _x('Sales Agent', 'taxonomy singular name'),
 'search_items' => __('Search Sales Agents'),
 'popular_items' => __('Prolific Agents'),
 'all_items' => __('All Sales Agents'),
 'parent_item' => null,
 'parent_item_colon' => null,

169Taxonomies

 'edit_item' => __('Edit Sales Agent'),
 'update_item' => __('Update Sales Agent'),
 'add_new_item' => __('Add New Sales Agent'),
 'new_item_name' => __('New Sales Agent'),
 'separate_items_with_commas' => __('Separate agents with commas'),
 'add_or_remove_items' => __('Add or remove agents'),
 'choose_from_most_used' => __('Choose from the most prolific sales agents'),
 'menu_name' => __('Sales Agents'),
);

 register_taxonomy('agent','post',array(
 'hierarchical' => false,
 'labels' => $labels,
 'show_ui' => true,
 'update_count_callback' => '_update_post_term_count',
 'query_var' => true,
 'rewrite' => array('slug' => 'agent'),
));
}
?>

This pulls together all that we’ve just covered on the register_taxonomy() function quite nicely—so

let’s pick it apart. First of all, we’re creating a function called create_property_taxonomies(),

which we’re adding with the init action hook. Our new function begins by defining a $labels

variable that consists of the nested labels array we discussed, and establishes all the text for the

location taxonomy we’ll define in our first register_taxonomy() function call. Notice that in

keeping with standard coding practices throughout this book, we have set up the values in our labels

array to be localized if required. Additionally, in the register_taxonomy() function we’ve defined

the hierarchical parameter to be true, ensuring that locations will work similarly to categories.

Immediately after our first register_taxonomy() function call, we have reset the information in

the $labels variable by adding a new array similar to the first, this time inserting the internation-

alized text variables that focus on the sales agents. We use the previous technique in pulling this

array into the register_taxonomy() function that defines sales agents; however, notice that this

time our hierarchical parameter is set to false, allowing the agents to operate as tags. We’ve also

added the option update_count_callback with a string value of _update_post_term_count to our

register_taxonomy() function. This ensures that the taxonomy behaves like a tag, and in instances

where you add multiple items to the taxonomy separated by commas, the items are saved as separated

values as intended, rather than one long, single item that makes no sense.

Where Do I Register?

You can register new taxonomies anywhere you like, so long as you call it with the init action

hook, but it’s probably mainly called from a theme’s functions.php file. While this technically works,

seriously consider whether this makes the most sense for your users. If you tie your custom taxonomy

The WordPress Anthology170

directly to the functions.php file in your theme, you essentially tie your clients’ hands if they lack

the technical awareness or available expertise to port the taxonomy registration into the subsequent

functions.php file of the new theme. While every website has its own unique situations and circum-

stances, custom taxonomies should be viewed as a feature of the website’s permalinking structure,

not a feature of the current theme that is active on the site. Therefore, taxonomy registrations should

be housed in a must-use plugin, ensuring that they stay with the website itself, regardless of

whether or not the theme is swapped out at a later date.

Notice that in the screenshots and the previous code example, we’re associating our new taxonomies

with generic posts. In many instances (especially a real estate property), you may be looking to as-

sociate the taxonomy with a custom post type instead of a generic content type. In this case, you’d

actually want to call the name of the custom post type or an array of instances of that post type in

a hierarchical situation, as seen in this code chunk:

chapter_07/register-taxonomy-custom-post-type.php

<?php

// Associating the $object_type with an array of instances of custom post type
 register_taxonomy('location',array('property'), array(
 'hierarchical' => true,
 'labels' => $labels,
 'show_ui' => true,
 'query_var' => true,
 'rewrite' => array('slug' => 'location'),
));

// Associating the $object_type with a single instance of a custom post type
 register_taxonomy('agent','property',array(
 'hierarchical' => false,
 'labels' => $labels,
 'show_ui' => true,
 'update_count_callback' => '_update_post_term_count',
 'query_var' => true,
 'rewrite' => array('slug' => 'agent'),
));

Regardless of how you set up your taxonomy, you’ll see it in your WordPress administrative back

end once it’s registered, and thus have the ability to begin managing content therein. For Rutherford

Real Estate, we have chosen to just associate our taxonomies with regular old posts. As a result,

you can find our two new taxonomy types on the Posts submenu panel, as shown in Figure 7.4.

171Taxonomies

Figure 7.4. Locations taxonomy

Notice that the locations taxonomy management page looks identical to the categories management

page; were we to have a look at the sales agents taxonomy page, we’d see an interface that likewise

mimics that tag management page. Furthermore, since we’ve associated our new taxonomies with

posts, when we go to add a new post or edit an existing post, we’ll now see the appropriate meta

boxes in the right-hand column, as seen in Figure 7.5.

Figure 7.5. Locations and Sales Agents meta boxes

The WordPress Anthology172

We can use these meta boxes to mark our property’s neighborhood—as well as the sales agents

representing it—in the same way we utilize categories and tags. Overall, it’s intuitive, easy-to-use

stuff!

Using Our Custom Taxonomies
Once our custom taxonomies have been set up for Rutherford Real Estate and we’ve begun to put

up properties on the site, we’ll want to actually use the data and make it available for public con-

sumption. There are several ways to integrate the data on your website, and it’s all about creatively

using the functions and techniques that WordPress provides you. Let’s have a look at some of these

methods now as we’d apply them to Rutherford Real Estate.

Take a look back at Figure 7.3 and that final wireframe we ended up with. When we begin coding

our theme for Rutherford Real Estate, we’ll set the menu up to manage Home as a standard static

page, and both News and Events as standard categories that can be routinely linked to with standard

nomenclature. Our three regions and their subsequent categories (as well as our Agents taxonomy),

however, can be managed in several ways, and you’re probably going to need some modifications

to The Loop in order to make the magic happen. Technically, you could go into your index.php or

archive.php template file and begin structuring The Loop with some complex conditional logic to

get things moving in the right direction, or you could take advantage of WordPress’s template

hierarchy nomenclature as it applies to custom taxonomies.

Taxonomy Template File Hierarchy and Nomenclature
We’ve already discussed the notion of WordPress template hierarchies and nomenclature at length

in Chapter 6, but WordPress does give us a template hierarchy nomenclature dedicated to custom

taxonomies. This is seen in Figure 7.6.

173Taxonomies

Figure 7.6. Custom taxonomy template hierarchy structure

Using this template hierarchy system automatically tells WordPress which visual blueprint should

be used for any given taxonomy. This automatically simplifies the process of deciding which

functional display logic we’ll use for each of our taxonomy types by removing the conditional logic

for us. At this point, the taxonomy nomenclature should be fairly straightforward, but let’s review

it briefly, just to be sure.

The most specific taxonomy template file is the top one, which in our example might look like

taxonomy-location-firenze.php. If this file was created and populated, it would be the default file that

WordPress would utilize when displaying information for the “Firenze” neighborhood. However,

The WordPress Anthology174

if we were comfortable with all the neighborhoods and regions having display logic that worked

in exactly the same way, we could add that display logic to the taxonomy-location.php file. Similarly,

if we wanted our display logic for neighborhoods and agents to act the same way, we’d be fine using

a file named taxonomy.php. From there, the nomenclature defaults into the general system, with

archive.php and then index.php being the final defaults in that order. It’s easy to see how this can

allow you to customize the appearance of WordPress in conjunction with taxonomies (especially

if you choose to work with custom post types as well), but exactly what type of functions are

available in the context of these template files? We’re glad you asked …

Customizing Output with Functions That Must Be Called in The
Loop
Yes, we’re back to the meat of WordPress again; after all, who doesn’t love The Loop? We know

that The Loop is the beating heart of WordPress, and in order to customize the display output and

functionality it’s often necessary to roll your sleeves up and plunge into the template files that

manage logic in The Loop. With respect to custom taxonomies, there are several functions you can

utilize to change the way The Loop pulls in post information.

query_posts()

Back in Chapter 3, we mentioned that you can use wp_query() to handle just about any queries

you want within The Loop, but if you really want to customize your queries and pull from just

a subset of all posts, in some instances you may need to use query_posts() instead. This is

one of those instances. Let’s say you would like to display a post for a specific taxonomy term.

In our example, this may be a situation where you wanted to display all the properties that are

being listed by our sales agent named Tela. In this instance, you could create a template called

taxonomy-agent-tela.php and use the function call <?php query_posts(array('agent' =>

'tela')); ?> to list all properties that are currently being represented by Tela. You can ac-

tually pass in an array of parameters to define this as specifically as you’d like. For more inform-

ation as to the parameters that are available to be passed into the query_posts() function, look

in the Codex.4 For more information on query_posts(), see this Codex page.5

get_the_term_list()

get_the_term_list() needs to be echoed in order to print to the screen, and returns an HTML

string of the terms associated with a given taxonomy. For instance, in a situation where we

might want to list all the individual properties located in our East Lansing neighborhood, using

the function call <?php echo get_the_term_list($post->ID, ‘east-lansing’, ‘Properties

in East Lansing:’, ‘ ‘, ‘’); ?> would generate a listing of all the properties we’re looking

for. For more information on using get_the_term_list(), see the relevant page in the Codex.6

4 http://codex.wordpress.org/Class_Reference/WP_Query#Parameters
5 http://codex.wordpress.org/Function_Reference/query_posts
6 http://codex.wordpress.org/Function_Reference/get_the_term_list

175Taxonomies

http://codex.wordpress.org/Class_Reference/WP_Query#Parameters
http://codex.wordpress.org/Function_Reference/query_posts
http://codex.wordpress.org/Function_Reference/get_the_term_list

get_terms()

In a situation where you need to retrieve an array of your custom taxonomy values to manipulate

them in other ways, you can use the get_terms() function. In this way, get_terms() is very

much a utility function with a wide variety of potential programmable uses. For more details

and ideas on using this function, check out the Codex.7

Customizing Taxonomy Output outside of The Loop
The most useful and common way to customize the display of your taxonomy output outside of

The Loop is through the use of the wp_tag_cloud() function. This core function creates a Tag Cloud,

and one of the parameters it will take is a taxonomy parameter. Therefore, if we decided that we

wanted to create a Tag Cloud which listed all our agents and then insert that tag cloud into our

sidebar, we could place the function call <? wp_tag_cloud(array(‘taxonomy’ => ‘agents’)

); ?> into the appropriate location, either in a widget or within the code for our sidebar display.

As you can see, custom taxonomies are useful features that are hidden in the depths of core Word-

Press, and using them to your advantage can really provide the polish that makes your work super-

ior to your competitors. It’s not that hard to use custom taxonomies; it’s more a case of understanding

how to register them and then utilize the template hierarchy and a few loop functions to make all

the pieces come together nicely.

Everything in Its Place
WordPress employs taxonomies to manage content loaded inside it. Taxonomies are methods of

grouping similar individual instances of content together in meaningful ways. By default, WordPress

comes with three types of taxonomies: categories, tags, and link categories. Categories are hierarch-

ical by nature, while tags can be applied to any given piece of content, regardless of where it sits

in the content structure, as a label to provide a relational categorization element to the content.

WordPress also gives you the ability to create custom taxonomies, and there are several reasons

you might set them up, namely to:

■ better organize the content on your website

■ increase the search engine optimization of the permalinks throughout your website

■ give the website a more professional, polished look and feel

■ segment content so that it can be easily queried on its own

■ institute entirely new functional requirements that a client may have for the website

7 http://codex.wordpress.org/Function_Reference/get_terms

The WordPress Anthology176

http://codex.wordpress.org/Function_Reference/get_terms

We illustrated custom taxonomies by looking at a practical example of setting up a taxonomy that

could be used in managing properties for a fictional real estate company. We started out by explaining

the process of creating a content wireframe to outline an intuitive information hierarchy for content

in the site. We then implemented the ideas in that wireframe by registering what we felt was an

intelligent taxonomy design in a must-use plugin. Afterwards, we discussed creating specialized

page templates that took advantage of the WordPress template hierarchy structure and nomenclature

to simplify our conditional logic. We then introduced The Loop functions that could be used to

manipulate your new taxonomy data. Like anything else, taxonomies are easy to work with when

you know how!

177Taxonomies

Chapter8
Image Galleries and Featured Images
Working with images draws many first-time users to content management systems. After all,

everybody wants to be able to change text on their posts and pages, so users just learning what

content management is all about are keen to know how they can work with images on their website.

To this end, just about every modern content management system has some sort of mechanism in

place to address images and image galleries, and WordPress is no exception. Let’s have a look at

some of the more advanced image manipulation tools that WordPress makes available to us.

Revisiting the Media Library and Media Settings
To briefly review what we discussed about images in WordPress in Chapter 2, users are able to

upload images to WordPress in various locations. In the WordPress administrative back end, you

can navigate to the Media subpanel and add new images by clicking on Media > Add New, or by

editing a new or existing post or page and adding an image directly from the content editor. Either

way, the image is uploaded into WordPress’s media management area, known as the Media Library.

The Media Library therefore provides you direct access to view and manage all images, audio files,

videos, and additional media file types that have been uploaded directly to your WordPress install-

ation. If you need to view or modify the metadata for any image that has been loaded to the site,

you can do so in the Media Library.

Once an image has been uploaded into WordPress and thus the Media Library, it can then be inserted

either into a post or page with specific formatting and sizing parameters. The formatting parameters

are fairly straightforward—you can align images left or right, or center them, and you can also

provide different values for vertical and horizontal spacing—but one element that even seasoned

professionals can miss is that WordPress allows you to insert a large, medium, or thumbnail version

of the image. What’s notable about this is that WordPress isn’t just offering to apply an inline HTML

or CSS style to your image to make it display in a particular dimension; it’s actually a modified

version of the image that has been scaled down by WordPress’s image processing features. Let’s

explore image processing a bit deeper.

Configuring Image Processing in Media Settings
If you have been a web developer for more than five years, you have probably run into the situation

more than once where clients wanted to upload images straight from their digital camera to their

website, and such images were routinely way too large. Teaching clients to use image-resizing

software is a task in itself that none of us necessarily signed up for, so ultimately it’s preferable for

the problem to be solved by the CMS you’re using. Like many other content management systems,

WordPress fixes this problem by actually processing the image upon its initial upload to the Media

Library. What happens is that when an image is uploaded, WordPress assesses its dimensions and

matches it against the sizing parameters that have been defined in the Media Settings subpanel,

located at Settings > Media Settings and seen in Figure 8.1.

Figure 8.1. Setting image sizes

There are three different sizing parameters that you can set, and they are defined as follows:

Thumbnail size

The thumbnail is a cropped version of the original image, and you can set it to be cropped to

specific sizes. By their very nature, thumbnails are not necessarily meant to include the entire

image, but rather a portion of it that represents the image as a whole. Thumbnails are often

clickable, and WordPress’s gallery shortcode (which we’ll discuss in a bit) uses thumbnails by

default to build image galleries.

The WordPress Anthology180

Medium size

A medium-size image is the full image that has been downsized to meet a uniform image size.

WordPress will take the larger of the image’s width or height and scale the image proportionally

to the medium image setting’s Max Width or Max Height.

Large size

This is identical to the medium-size image, with the predictable exception that the Max Width

and Max Height dimensions are larger but still designed to fit within the context of the website

design.

WordPress then creates the appropriate new, smaller images that relate to the originating image. In

instances where the original image being uploaded is smaller than one of the medium or large image

sizes defined, that particular large or medium sizing is simply not created. For example, let’s say

you are uploading an image named anna.jpg with dimensions of 1,000 pixels by 1,500 pixels. In

this instance, and assuming we used the settings in the screenshot, WordPress would ultimately

store four versions of the image for eventual use on the site:

■ anna.jpg (original)
■ anna-150x150.jpg (thumbnail size)
■ anna-200x300.jpg (medium size)
■ anna-682x1024.jpg (large size)

However, were we to upload a different image named readicculus.jpg whose original dimensions

were 376 pixels by 126 pixels, only three versions of the image would be stored for eventual use:

■ readicculus.jpg (original)
■ readicculus-150x126.jpg (thumbnail size)
■ readicculus-300x100.jpg (medium size)

In this instance, there’s no need to have a large image created, as the large size dimensions are in-

herently bigger than the original image. Note also that because the original image’s height of 126

pixels is smaller than the default thumbnail height of 150 pixels, the thumbnail height size just

defaults to 126 pixels. WordPress makes no attempt to add additional pixels in order to make an

image fit.

Finally, it’s important to reiterate that WordPress only runs image processing upon the initial upload

of the image. This means that if you have a bunch of images loaded out to the Media Library and

decide to change the dimensions of your thumbnails (perhaps to facilitate a theme change), the

thumbnails won’t be automatically reprocessed to match your new settings. To do this, you’ll either

need to re-upload your images with the new settings applied (which is an unattractive option), or

you can use a plugin to assist you in regenerating your specifically sized images. There are plenty

181Image Galleries and Featured Images

of plugins available within the WordPress Plugin Directory that do this for you, but one that’s worth

looking at in particular is AJAX Thumbnail Rebuild.1

AJAX Thumbnail Rebuild is a handy utility because it will let you rebuild all the set size images

(thumbnails, medium-size, and large-size) on your site at the same time in a resource-efficient way.

Many thumbnail rebuilding plugins will run off a single script that tells the server to resize the

images all at once, and in situations where you have a lot of images to resize, the script may time

out on some servers. For this reason, AJAX Thumbnail Rebuild is useful as it fires the script indi-

vidually for each photo, thus keeping the script execution time to a minimum.

The [gallery] Shortcode
For all the cool functionality that can be built into shortcodes (see Chapter 5 or Chapter 9), it’s

mildly surprising that WordPress core developers fail to make more use of them to introduce en-

hanced functionality within the system. That said, core WordPress comes preloaded with exactly

one shortcode: [gallery]. The gallery shortcode is often overlooked by developers because, quite

frankly, many of us are yet to realize it’s there and available to use. There is a multitude of popular

image gallery plugins out there and in heavy use, but the gallery shortcode institutes some really

cool functionality right out of the box, and is a hidden gem in the WordPress toolkit.

As is implied by its name, the gallery shortcode can be used to insert a photo gallery directly into

a post or a page where the [gallery] tag is added in the content editor. The shortcode itself fires

a core WordPress PHP script that constructs the gallery for you, and pulls all the images that are

either embedded within the post or page, or are otherwise attached to the post or page. This is an

important distinction, as it is entirely possible to “attach” images to a particular post or page without

actually embedding them directly in the content. In order to do this, go to the Media Library, click

open the Screen Options at the top of the screen, and make sure to check the Attached to checkbox,

as seen in Figure 8.2.

1 http://wordpress.org/extend/plugins/ajax-thumbnail-rebuild/

The WordPress Anthology182

http://wordpress.org/extend/plugins/ajax-thumbnail-rebuild/

Figure 8.2. Attaching images

This will show you what page or post any given image is attached to for the purpose of your image

galleries, and will let you select a page/post if the image is unattached. Using the Media Library in

this instance is an easy way to manage which images are located within which image galleries on

any given post or page.

Common Uses of [gallery]
Simply inserting the [gallery] shortcode into a page or post will automatically grab all the images

attached to that page/post and create an image gallery, which is formatted into three rows using the

thumbnail as the clickable link to view a larger version of the image. You can control these default

gallery characteristics by passing the shortcode options, which is done similarly to passing parameters

to a PHP function. The syntax of any shortcode (and thus the [gallery] shortcode) is the following:

[gallery option1=“parameter1” option2=“parameter2” option3=“parameter3”]

Therefore, you can control the gallery’s appearance and output by working with the several built-

in options. Like many functions, several of these are frequently used, while others are for more

specialized purposes. Let’s have a look at the most popularly used options:

columns

This option determines the number of columns that should be built into the image gallery by

triggering the insertion of a break tag at the appropriate location. This option defaults to 3.

id

This specifies the ID of the post, and defaults to the current post ID that the shortcode is inserted

into. This is useful if you want to insert the image gallery from a different page or post onto

183Image Galleries and Featured Images

your current post; for instance, if you were editing a post with an ID of 42, and you wanted to

insert the image gallery from a post with an ID of 84, you would use this option.

size

By default, the image that is used for display within the gallery itself is the thumbnail image.

However, if you want to use a different image for gallery display, you can choose the size setting

with this option. Values for this option are limited to thumbnail (which is the default), medium,

large, and full.

Pulling all this together, let’s say we were looking to insert a two-column image gallery for all the

images in post 197, and we wanted to use the medium-sized images for the gallery thumbnails. In

this instance, we’d insert a shortcode that looks like this:

[gallery columns="2" id="197" size="medium"]

Piece of cake, right? You’ll rarely need to use any other options with the [gallery] shortcode, but

there are a few more tricks you can do with it. Let’s look at some of its more advanced uses.

The Psychology Behind ID

Wondering what we mean when we’re talking about ID? If you’re unsure, don’t sweat it … it’s not

insanely intuitive. In WordPress, every post, page, and piece of media is given a unique ID that

identifies it from everything else inside WordPress. IDs start with the number 1, and increase se-

quentially. You can find out what a given page or post ID is when you’re in the WordPress back

end by rolling your cursor over the link to edit the post and looking at the trailing numerical value,

or by actually clicking to edit a post and looking for the value in the same location. Alternately, if

for some reason you don’t have pretty permalinks enabled, the ID will be the number listed in the

link of your post or page. Likewise, when you go to the Media Library and roll over or click on a

given piece of media, you’ll be able to find the attachment_id the same way.

Specialized Uses of [gallery]
There are eight more options at your disposal to play with when you tinker with the [gallery]

shortcode. Let’s have a look at them now.

orderby This option lets you specify the item used to sort the display thumbnails. It defaults

to menu_order, but also takes ID and RAND (which means random) as values.

order This option lets you specify the sort order used to display thumbnails, and takes

ASC or DESC (ascending or descending) as values.

itemtag This is the name of the tag used to enclose each item in the gallery, and it defaults

to dl.

The WordPress Anthology184

icontag This is the tag used to enclose each thumbnail icon in the gallery, defaulting to dt.

captiontag This tag is used to enclose each caption in the gallery, and defaults to dd.

link This option can be set to file if you like, which will cause each image to default

directly to the image file rather than the attachment’s permalink; this will essentially

give the attachment its own page on your site.

include This option is used to provide a list of comma-separated attachment IDs, which

means that the gallery will explicitly only include the images specified. This option

cannot be used in conjunction with the exclude option, and its format looks like:

[gallery include=“42,89,229”]

exclude This option provides a list of comma-separated attachment IDs, but this time the

gallery will explicitly exclude the images specified. This option cannot be used in

conjunction with the include option, and the format looks like:

[gallery exclude=“55,72,111”]

Taking all these options into account and looking at how to use them together, let’s say that we

wanted to change the gallery markup to use <div>, , and <p> tags. We’ll specifically exclude

several files from our gallery, which we’d like to be five columns wide. In this instance, we’d use

the following implementation of the shortcode:

[gallery columns="5" itemtag="div" icontag="span" captiontag="p" exclude="4,12,19"]

For the most part, this is all fairly intuitive stuff once you realize that the [gallery] shortcode is

around and available to be worked with at all. However, what’s also kind of cool is that WordPress

has a built-in visual editor to manage [gallery] shortcode options.

Working with [gallery] in the Content Editor GUI
After you insert the [gallery] shortcode into the visual content editor and save your post or page,

the visual editor will no longer display the shortcode (although you’ll still be able to work with it

via the HTML view of the content editor). In the visual editor, you’ll find a large light blue box that

denotes the existence of the gallery. If you roll your cursor over this box, you’ll see two buttons

show up in the upper left-hand corner of the box in much the same way you see them when looking

to edit an existing image. The box on the right can be used to delete the gallery, but clicking on the

box to the left will bring up a lightbox with options for working with and managing the gallery. The

screenshot seen in Figure 8.3 shows the images we’re using for our sample gallery, and gives us

185Image Galleries and Featured Images

plenty of options to work with them. We’ll now briefly go through the visual options describing

what you can do here.

Figure 8.3. Content editor graphical user interface

At the top of the dialog box you’ll see a visual representation of all the images in the gallery. Here,

you can either numerically change their order by changing the numbers in the boxes on the right,

or you can just drag and drop them into your preferred order (which is a whole lot easier and a bit

more rewarding). You can also click the Show button to display and modify the characteristics of

any given image. Clicking the Show button will also allow you to remove an image from your gallery,

The WordPress Anthology186

or make it the featured image for your page or post. Furthermore, at the bottom of the dialog box

are controls to change what the thumbnails link to, decide how you want to order your images, and

govern the number of columns you want the shortcode to create on your behalf. When you finish

making your modifications, be sure to save your gallery settings and changes, as well as your page

or post to ensure that the gallery changes you’ve made are actually committed.

Firing the [gallery] Shortcode from a Template
If you are a theme developer and like the idea of the [gallery] shortcode, but would like to harness

it with a little more control, you may choose to fire it directly from within the template. A simple

way of doing this is to echo the shortcode with the do_shortcode() function directly within a page

template inside your theme like this:

<?php echo do_shortcode('[gallery columns="4"]'); ?>

Obviously you can use whatever [gallery] shortcode options you’d prefer for your theme. If you

want to make the gallery a bit more dynamic, perhaps because you’re actually looking to create a

series of galleries throughout your theme, you could also use a filter hook to add appropriate galleries

with code similar to the following:

chapter_08/dynamic-galleries.php

<?php
 $gallery_shortcode_feature = '[gallery id="' . intval($post->post_parent) .➥

 '"]';
 print apply_filters('the_content', $gallery_shortcode_feature);
?>

Lightboxes
All right, let’s be honest: galleries are cool and all, but WordPress’s default options of either viewing

an image in an attachment page, or viewing it in its raw format on its own … well, they’re a bit

vanilla. To this end, lightboxes have become a popular solution as a mechanism to scroll through

image galleries without leaving the thumbnail area. A lightbox is an overlay that darkens everything

on a site (usually with some amount of translucency that allows you to still make out the site in

the background) and displays an element on top of the site. Usually lightboxes are used to display

images, but you can display almost anything with them—videos, opt-in boxes, external HTML

pages, whatever you want.

In general, lightboxes are crowd-pleasers. They’re easy to implement, and garner a lot of “oohs and

aahs” from your clientele, but it’s typically a good idea to ensure that you really want to use them.

How about a quick pros and cons list?

187Image Galleries and Featured Images

The pros list is obvious. First and foremost, a lightbox makes it much easier for most of your users

to view your galleries. They can click on an image, which instantly pops up in a handy inline screen

right in the browser. Well-constructed lightbox scripts also have solid, intuitive, and easy-to-use

navigation, which makes it easy for your user to flip through an entire gallery quickly and with

style. And of course, let’s not forget that last word, style. Simply put, lightboxes are just really sexy,

and an easy way to add a bit of bling to any website.

As for the cons, the biggest one is that lightboxes are built in JavaScript. While it’s becoming more

rare, occasionally you’ll find a user who’s deactivated JavaScript in the browser for some reason,

and the gallery just fails to work in that instance. Of course, you could make the counterargument

that users who choose to deactivate JavaScript should be used to such situations, but that’s really

a different discussion altogether. Furthermore, you may want to consider the user experience of

flipping through photo galleries on mobile devices. Where the screen is very small, lightboxes may

be a poor choice. However, some scripts have solid deprecation that handle mobile devices well.

Overall, you want to be certain that any lightbox script you choose avoids overriding mobile device

default image handling.

So if you are sold on the concept of using a lightbox for your galleries at this point, the next question

is naturally about how to do it. You have two options here: you can either code a script right into

your theme using the wp_enqueue_script() function (see Chapter 9 for more information as to its

usage), or you can adopt the easier route of just using one of several readily available plugins. Note

that if you are a theme developer, you’ll probably want to pass on using a plugin and build your

script into your theme. However, if you are just setting up a site for a client or for yourself, a plugin

is often the easiest and most flexible way to go. There are tons of them available in the WordPress

Plugin Directory.

Working with Featured Images
Playing with galleries is lots of fun for end users, but if you are a theme developer and are looking

to make use of WordPress’s built-in image-handling functions to your advantage, you’re probably

a lot more interested in working with featured images. The featured image functionality that’s built

into WordPress allows you to use an image to represent each page or post for use somewhere on

the website. Often the image is just displayed in a cropped format next to the post’s excerpt, but it

could be displayed anywhere, and theme developers find it quite handy.

Enabling Support for Post Thumbnails
The first point you want to realize about featured images is that they are synonymous in the

WordPress world with the term post thumbnail. Originally introduced in WordPress version 2.9,

post thumbnails are now more commonly referred to as featured images. So while we refer to them

as featured images, all the WordPress function documentation refers to them as post thumbnails,

which is only a little bit confusing.

The WordPress Anthology188

Post thumbnails are actually a theme feature defined in WordPress, so they need to be activated

within the theme to gain access to their full functionality and user interfaces. Hence, the first step

is to add theme support for post thumbnails by adding the following code to your functions.php file:

chapter_08/add-theme-support.php

<?php

if (function_exists('add_theme_support')) {
 add_theme_support('post-thumbnails');
}

?>

As you can see, in this code we’ve ensured that our theme will remain compatible with WordPress

installations older than 2.9 by checking to see if the function add_theme_support() exists before

we go ahead and initiate it. Afterwards, simply adding the post thumbnail support as we’ve done

here is enough to add the post thumbnail user interface for both page and post content types. If, for

whatever reason, you only want to add post thumbnail support for either pages or posts, replace

the add_theme_support() function with the appropriate selection as listed in this code:

chapter_08/add-theme-support-posts-OR-pages.php

<?php

add_theme_support('post-thumbnails', array('post'));
 // Add support individually for posts
add_theme_support('post-thumbnails', array('page'));
 // Add support individually for pages

?>

Once you have your theme supporting post thumbnails, you have a whole set of template tags and

other functions available to use in your theme’s template files. These include functions and tags

such as:

■ has_post_thumbnail()

■ the_post_thumbnail()

■ get_the_post_thumbnail()

■ set_the_post_thumbnail_size()

We’ll talk about some of these functions shortly, but if you’d like to read more about what’s available

to you as a theme developer in reference to post thumbnails, have a look at the Codex.2

2 http://codex.wordpress.org/Post_Thumbnails

189Image Galleries and Featured Images

http://codex.wordpress.org/Post_Thumbnails

Functions Are Fine

Throughout this book, we focus heavily on choosing the correct location to code any functionality

into your site. In most situations, we suggest that you should be placing your site’s functionality

in plugins to keep it independent of the theme, so that the site doesn’t break if you change your

theme. However, in this particular case all your code can quite comfortably be embedded into your

functions.php file, as post thumbnail support tends to be much more about display logic than it is

about general site logic. There are instances where you can make the case that this isn’t so, and

that’s when it’s permissible to embed the functionality in a must-use plugin, but functions.php will

often work just fine for these purposes.

Sizing Your Post Thumbnails
Once you’ve enabled post thumbnails in your theme, you’ll need to determine what size you want

the post thumbnails to be wherever you happen to be using them in your theme. You have two

options here: you can either choose to use the default thumbnail size as specified within the Media

Settings screen in the back end, or you can go your own way and fix the size for your own purposes

at that location in your theme. While keeping the size editable in WordPress may seem like a good

idea at first, from the perspective of a theme developer, we’d like to keep as much of the theme’s

functionality as bulletproof as possible. Therefore, it’s typically wiser to grab the post thumbnail

size right inside the code and work from there. To do this, you’ll use the set_post_thumbnail_size()

function, which takes the following parameters:

<?php set_post_thumbnail_size($width, $height, $crop); ?>

These parameters are equivalent to:

$width the post thumbnail width in pixels

$height the post thumbnail height in pixels

$crop A Boolean that determines if the image will be cropped. This defaults to false, meaning

that by default your image won’t be cropped, but rather resized proportionately to fit

inside the size set in the first two parameters.

What’s important to note here is that you essentially have two choices for how you display featured

images. If you omit the $crop parameter or explicitly set it to false, your image will be resized

proportionately to fit inside that space. Therefore, if you have a thumbnail size of 150 pixels wide

by 150 pixels tall, but your featured image actually has a dimension of 200 pixels wide by 300 pixels

tall, your image will be displayed with a width of 100 pixels and a height of 150 pixels. On the

positive side, you’ll be able to see the whole image, but it may not necessarily look uniform with

the rest of your post thumbnails. Your other option here is to set the $crop parameter as true, which

The WordPress Anthology190

will simply chop the appropriate amount from the left and right sides, or from the top and bottom

of the image, ensuring a uniform look with all featured images on the website.

Adding Different-sized Post Thumbnails
Another handy tool you can use in relation to post thumbnails is to actually add your own custom

thumbnail types with their own respective sizing. This can be useful in slightly complex theme

designs where you may want to use several sizes of the post thumbnail in different places across

the site. For example, you may like to use a large, uncropped featured image for the first two posts

in your post listing pages, and then have smaller, cropped post thumbnails for the remaining eight

posts on that page. To make this happen, use the add_image_size() function, which takes the fol-

lowing parameters:

<?php add_image_size($name, $width, $height, $crop); ?>

The parameters are equivalent to:

$name the new image size name, which can be called as a handle by the_post_thumbnail()

$width the post thumbnail width in pixels

$height the post thumbnail height in pixels

$crop A Boolean that determines if the image will be cropped. This defaults to false, meaning

that by default your image won’t be cropped but rather resized proportionately to fit

inside the size set in the first two parameters.

If we wanted to automatically create these custom image sizes for the larger featured image (we’ll

call it featured-image in our function) and our smaller cropped versions (we’ll call those small-

crops), we could use the following code in our functions.php file to make it happen:

chapter_08/custom-image-sizes.php

<?php

add_image_size('featured-image', 424, 9999);
 // uncropped featured image fixed to 424 pixels wide with no height restriction
add_image_size('small-crops', 150, 100 , true);
 // cropped image fixed to 150 x 100 pixels wide

?>

Remember, thumbnail images are only created during the initial image upload, so be sure to take

account of that fact. Finally, when we want to use either of our new custom image sizes in our

theme, we can call the_post_thumbnail() and pass it the image size handle like this:

191Image Galleries and Featured Images

<?php the_post_thumbnail('featured-image'); ?>

All of which brings us to the fun part: actually implementing our featured images in our themes.

Post Thumbnail Implementation in Themes
Once we have everything prepped and ready to go with our post thumbnails, actually implementing

them in our custom themes is a breeze. To do this, we’ll make use of two functions:

has_post_thumbnail() and the_post_thumbnail(). Both these functions should be used in your

theme’s template files within The Loop in order to work correctly.

has_post_thumbnail() is a simple Boolean function that’s used in a conditional PHP loop, returning

a value that describes whether or not a post has a post thumbnail associated with it. If it does, you

can use the the_post_thumbnail() function to display the thumbnail in that location. Let’s look

at a simple version of this script in action:

chapter_08/if-post-thumbnail.php

<?php

if(has_post_thumbnail()) { // Does the post have a thumbnail?
 the_post_thumbnail(); // If a thumbnail exists, display it
} else {
 // Do something else here in place of a post thumbnail
 }

?>

This is just a simple if/else statement that degrades gracefully to whatever action you’d like it to

in the event that a post thumbnail is absent. When it’s present, using the_post_thumbnail() you

can either print it out directly to the screen, or you can pass it back to your PHP code to perform a

task with it using get_the_post_thumbnail(). The functions are very similar, so we’ll take a brief

look at each one beginning with the_post_thumbnail(), which takes the following parameters:

<?php the_post_thumbnail($size, $attr); ?>

The parameters are defined as:

$size This is the image size that you want to use in the thumbnail, with acceptable values being

thumbnail, medium, large, full, or the name of the handle that you create with the

add_image_size() function. Alternately, you can pass in an array to describe the size you

want; for example, the_post_thumbnail(array(150, 150)).

The WordPress Anthology192

$attr This is an array of attributes most commonly used to assign alignment classes. For more

information on available attributes, see the Codex.3

By simply adding this function in your conditional logic, you’ll be able to print out your post

thumbnails where you want them. However, if you need to pass the thumbnail to another PHP

script, you’ll use the get_the_post_thumbnail() function, which takes the following parameters:

<?php get_the_post_thumbnail($id, $size, $attr); ?>

The parameters are defined as:

$id This is the post ID for the post or page of the thumbnail you’re looking to retrieve, and is

a required value.

$size This is the image size that you want to use in the thumbnail, with valid values being

thumbnail, medium, large, full, or the name of the handle that you create with the

add_image_size() function.

$attr This is an array of attributes most commonly used to assign alignment classes. For more

information on available attributes, see the Codex.4

Note that because you can pass in an $id parameter, you can use get_the_post_thumbnail() outside

The Loop, if you wish. With this type of flexibility available, the creative use of these two functions

will allow you to do practically whatever you’d like to do with the featured image functionality in

WordPress.

Got the Picture?
There are a lot of opportunities for advanced image manipulation in WordPress, and we covered a

substantial amount in this chapter. We started off by revisiting the notion of uploading images to

a central Media Library in your WordPress installation, and explained why that matters in the context

of working with WordPress galleries. We also revisited the Media Settings section of the WordPress

administrative back end, discussing what the different image sizes are all about, and how (and

when) they are used. In addition, we noted that while WordPress does process images to create the

image sizes that are defined within the Media Settings area, this image processing is only done upon

the initial upload of the image. If you want to resize images that have already been uploaded to the

Media Library, you’ll need to make use of one of any number of available plugins found in the

WordPress Plugin Directory.

After that, we moved on to talk about the sole shortcode that core WordPress gives us to play with:

the [gallery] shortcode. Because it’s the only shortcode that comes pre-rolled in WordPress, it’s

3 http://codex.wordpress.org/Function_Reference/the_post_thumbnail#Parameters
4 http://codex.wordpress.org/Function_Reference/get_the_post_thumbnail#Parameters

193Image Galleries and Featured Images

http://codex.wordpress.org/Function_Reference/the_post_thumbnail#Parameters
http://codex.wordpress.org/Function_Reference/get_the_post_thumbnail#Parameters

commonly overlooked by both novice and seasoned WordPress developers alike, but you can do

all sorts of cool stuff with it. We covered all the basic options for WordPress galleries, as well as

how to change them both manually within the context of the shortcode and via the graphical user

interface that appears once you save a gallery in a page or post.

Addressing the needs of professional theme developers, we talked a bit about how to effectively

fire both individual and dynamic galleries directly from your page templates, before discussing the

use of lightboxes as mechanisms to create a better viewing experience for users looking through

your galleries. Finally, we talked about featured images, which are the same thing as post thumbnails

(in WordPress, the two terms are synonyms). Post thumbnails are really easy to use, and need to

be enabled as a theme feature in the functions.php file. We discussed using built-in image sizes, as

well as creating new ones for customized purposes, before going into a brief explanation about how

to actually display post thumbnails in your theme, or pass them into your PHP logic for use in a

script.

In a way, you could say that all the post thumbnail functionality integrated into WordPress is a

form of application programming interface. This leads us quite nicely into our next chapter—

WordPress APIs!

The WordPress Anthology194

Chapter9
The WordPress API
Learning how to intimately work with the most fleshed-out portions of WordPress can be a detailed,

arduous task, but as you get pretty hardcore with some of the handstands you’d like WordPress to

perform on your behalf, you may well find the need to go to the most low-level functions WordPress

has to offer. To this end, the WordPress API offers some avenues to really fine-tune your installation.

Developers differ in their ideas of what an API is because, in practice, it’s often presented as a tool

that performs a very specific function. Since most of us pick up new concepts as we go on an as-

needed basis, we tend to learn how to work with a particular API, and then assume that all APIs

are used for that particular purpose. Usually, the term API is used in relation to providing an interface

within a particular software program that other external programs can use to form a common language

and communicate data between one another. When you make your website talk to Facebook, for

example, you are mainly using the Facebook API. Likewise, providing an interface for websites to

use a particular merchant account vendor is often done using the API terminology. Whether this is

your exposure to APIs, or otherwise, you probably already have a fair idea of its definition.

While most of us know that the acronym API stands for Application Programming Interface, in

reality it is a catch-all term that describes a group of ideas rather than a single function. The term

can be used to refer to an entire interface, a single function, or a set of complete interfaces that serve

different functions. Therefore, the term API is defined by the context of its use. APIs can be language-

dependent, making them more convenient to use in an environment where the language is constant,

or language-independent, where their functionality can be accessed by a variety of programming

languages; the latter is more appropriate for web services and hence, more common for what we

need to do. In fact, the WordPress API itself is defined as “the plugin/theme/add-on interface created

by the entire WordPress project.” Put that way, you could make the case that everything we have

already covered in this book—as well as anything you’ll ever find in the Codex—is all the WordPress

API, but that’s a little too broad. So let’s now ask the million-dollar question: what exactly is the

WordPress API, aside from everything?

Glad you asked. There’s actually a page on the WordPress API in the Codex.1 For our purposes,

we’re going to be talking about the WordPress API in terms of these more specialized, compartment-

alized aspects of WordPress that you can individually tap into and manipulate to fine tune different

aspects of your WordPress website. We’re also going to extend the conversation a little bit with

some other functions that, while not officially listed here within the WordPress API, enable you to

do all sorts of really cool and interesting things. Seriously, this is the stuff that separates the figur-

ative men from the boys in the WordPress world. Let’s get it on!

A Quick Review of the APIs Covered So Far
So if you’ve been paying attention, you probably remember seeing the term API thrown around in

several places throughout this book already. We’ve already covered some of the more commonly

used APIs in detail in Chapter 5, so we’ll just review them here. If you want to learn more about

how any of them work, flip back to Chapter 5 and have a look. Otherwise, jump ahead and start

digging into the new stuff.

Widgets API

The Widgets API is the collected set of PHP functions that manage the creation, registration

and usage of functions of sidebars (or widgetized areas) and widgets inside WordPress. Within

any given WordPress installation, the Widgets API can be located in wp-includes/widgets.php.

An additional detailed explanation of the Widgets API can be found in the Codex.2

Plugins API

The Plugins API essentially deals with actions hooks and filter hooks. For the most part, it’s a

safe bet to assume that the entirety of Chapter 5 in and of itself documents the Plugins API,

minus the areas that specifically discuss the Widgets API and Shortcodes, which we’ll talk

about next. For additional information on the Plugin API, take a look in the Codex.3

Shortcode API

The Shortcode API is the collected set of PHP functions that create macro codes, which can be

used to insert complex functionality inside post content, and we call these macro codes short-

codes. As heavily documented in Chapter 8, WordPress includes one major shortcode that adds

photo gallery functionality to any given post or page —[gallery]—but we can make our own

1 http://codex.wordpress.org/WordPress_API's
2 http://codex.wordpress.org/Widgets_API
3 http://codex.wordpress.org/Plugin_API

The WordPress Anthology196

http://codex.wordpress.org/WordPress_API's
http://codex.wordpress.org/Widgets_API
http://codex.wordpress.org/Plugin_API

quite easily. We briefly discussed shortcodes in general in Chapter 5, but we’ll study them in

detail now.

Shortcodes under the Microscope
Shortcodes are written in a format very similar in appearance to WordPress filters where we add

and name a shortcode, and then associate it with a handler function that actually executes the logic

being called within the shortcode:

add_shortcode('shortcode-name', 'shortcode-handler-function');

Shortcode handler functions commonly accept two parameters (and for some very rare uses, a third

that we won’t discuss as it’ll just confuse the notion):

■ $atts: an array of attributes
■ $content: content enclosed within the opening and closing tags

As the second parameter above suggests, there are actually two different forms in which you can

create shortcodes—enclosing shortcodes, and self-closing shortcodes. The [gallery] shortcode is

an example of a self-closing shortcode. In this form, the shortcode’s functionality is entirely self-

contained, and merely adding the shortcode and any of its necessary parameter values will cause

the shortcode to properly function when added to post content. For instance, let’s take this self-

enclosed shortcode as an example:

[gallery id="55" columns="4"]

If we inserted this shortcode into the post content of any given post or page, WordPress would

automatically go out and grab all of the images associated with posts with the numerical ID of 55

and add them to a gallery that is set up to display in four vertical columns.

Enclosing shortcodes, on the other hand, require the use of an opening and closing tag in order to

work properly. Let’s look at a fictitious example of an enclosing shortcode:

[helping-friendly-shortcode]We want you to be happy.[/helping-friendly-shortcode]

In the instance of enclosing shortcodes, we are taking a particular text string (in this instance, We

want you to be happy.) and planning on placing code on either side of it to encapsulate it in the

final output HTML that will be read by a browser. Let’s look at some actual code examples to see

how all this works in practice. We can begin by looking at the code for a simple self-closing shortcode;

the same shortcode that we looked at in Chapter 5:

197The WordPress API

chapter_09/shortcode-example.php

<?php

function thank_you_mr_miner() {
 return 'You can feel good about Hood.';
}

add_shortcode('mrminer', 'thank_you_mr_miner');
?>

In this example, we’re creating a shortcode that can be called by typing [mrminer] into any post or

page. When WordPress parses out the content, it’ll fire the shortcode’s handler function and output

the text You can feel good about Hood. where the shortcode is added. Simple stuff, right?

Return, Don’t Echo

A common mistake made with shortcodes is attempting to output your shortcode results using an

echo instead of a return. Keep in mind that anything that is echoed will be output to your browser,

but it won’t be displayed in the correct location you intend it to. Returning the value will produce

the desired results.

Now let’s take it a step further, and investigate enclosing shortcodes:

chapter_09/enclosed-shortcode-example.php

<?php

function readicculus($atts, $content = null) {
 return '' . $content . '';
}

add_shortcode('helping-friendly-shortcode', 'readicculus');
?>

All right … so this is a little bit more complicated, but not too bad really. The first thing you’ll note

is that our handler function now has two parameters being passed into it: $atts and $content =

null. At the moment, we haven’t defined any attributes to be passed into the handler function, so

it’s blank. However, $content = null essentially acts like a switch to let WordPress know that this

shortcode is designed to act as an enclosed shortcode rather than as a standalone self-closing

shortcode. The return code is actually a string that concatenates the $content we have encapsulated

within our shortcode tags in-between the opening and closing text strings we have hard coded here.

Now let’s look at what this shortcode does:

[helping-friendly-shortcode]We want you to be happy.[/helping-friendly-shortcode]

The WordPress Anthology198

Were we to add this shortcode into a post or page, the HTML output in association with it would

look like this:

We want you to be happy."

We’re making some headway here; however, let’s say we wanted to pass an attribute into this

shortcode now, giving us the ability to modify our CSS or JavaScript behaviors depending on the

class being referenced in the tag. We’d need to create an array that contained a default value

for each attribute our shortcode can receive; that way, if we don’t pass the attribute in with the

shortcode, the shortcode itself still has all the information it needs to operate correctly. Consider

the following code block:

chapter_09/enclosed-shortcode-attribute-example.php

<?php

function readicculus($atts, $content = null) {
 extract(shortcode_atts(array(
 'class' => 'helping-friendly-book',
), $atts));

 return '' . $content . '';
}

add_shortcode('helping-friendly-shortcode', 'readicculus');
?>

We’ve now given ourselves the ability to pass in an attribute for class. If we choose not to do so,

our output will be exactly as we saw above, defaulting to the helping-friendly-book class. However,

let’s say we use the following form of the shortcode in our post or page:

[helping-friendly-shortcode class="magazine"]We want you to be happy.➥

 [/helping-friendly-shortcode]

In this instance, we’ve replaced the default helping-friendly-book attribute with our new one,

magazine, causing a new output when rendered to HTML:

We want you to be happy.

All in all, it’s fairly simple when you break it down into bite-sized pieces.

One last point is that the shortcode parser uses a single pass on post content, which means that by

default you cannot fire separate shortcodes inside of enclosed shortcodes. Like anything else though,

there is a workaround if you feel you need to give yourself the ability to do this. The solution is to

encapsulate your $content tag with the do_shortcode() function, as shown below:

199The WordPress API

chapter_09/doshortcode-enclosed-shortcode-attribute-example.php

<?php

function readicculus($atts, $content = null) {
 extract(shortcode_atts(array(
 'class' => 'helping-friendly-book',
), $atts));

 return '' . do_shortcode($content) .➥

 '';
}

add_shortcode('helping-friendly-shortcode', 'readicculus');
?>

By structuring your shortcodes in this way, you’ll essentially be able to fire shortcodes within

shortcodes, should the need arise.

do Us a Favor

The do_shortcode() function is an extremely useful function. Using this function, you can easily

execute any shortcode you like from directly within any of your theme’s template files. For more

information on the specifics of its usage, check it out in the Codex.4

As you can see, shortcodes can be extremely powerful, and you can use them in innovative ways

to increase the usability and functionality of your WordPress installation. For more detail on the

Shortcode API, have a look in the Codex.5 Now let’s move on and look at some genuinely new stuff

in the WordPress API.

The Dashboard Widgets API
First up to the plate is the Dashboard Widgets API, a great place for us to start because of its simil-

arity to action hooks, filter hooks, and the way in which we interact with the Shortcode API. We

briefly touched on the use of Dashboard widgets in Chapter 2, but the Dashboard Widgets API gives

you the facility to easily register your own. Let’s have a look.

The main new function we’ll be playing with here is wp_add_dashboard_widget(), which takes

three required parameters and one optional parameter:

wp_add_dashboard_widget($widget_id, $widget_name, $callback,➥

 $control_callback = null)

4 http://codex.wordpress.org/Function_Reference/do_shortcode
5 http://codex.wordpress.org/Shortcode_API

The WordPress Anthology200

http://codex.wordpress.org/Function_Reference/do_shortcode
http://codex.wordpress.org/Shortcode_API

Here’s how the parameters are defined:

$widget_id an identifying slug for your widget, which can be used as the CSS

class and the key in the array of Dashboard widgets

$widget_name the actual name the Dashboard widget will display in its heading

$callback the name of the function you create, which will display the actual

contents of the Dashboard widget

$control_callback = null

(optional)

the name of the function you create, which will handle submission

of widget form options

Furthermore, in order to run the function, you’ll need to call it with the wp_dashboard_setup action

hook, telling WordPress to initiate your widget functionality into the Dashboard. Therefore, the

complete code for a simple Dashboard widget might look like the following:

chapter_09/dashboard-widget.php

<?php

// Create the function to output the contents of our Dashboard Widget
function underoverground() {
 // Display whatever it is you want to show
 echo "Don't forget to turn the Earth so both sides get their share of➥

 darkness and of light.";
}

// Create the function used in the action hook
function add_underoverground() {
 wp_add_dashboard_widget('not_so_fast', 'Not So Fast', 'underoverground');
}

// Hook into the 'wp_dashboard_setup'
add_action('wp_dashboard_setup', 'add_underoverground');

Working from the bottom up, we’ve used the wp_dashboard_setup action hook to call our new

function add_underoverground(), which invokes the necessary wp_add_dashboard_widget()

function to create the actual Dashboard widget instance. And what goes in that instance? The code

that is fired by our referenced function—underoverground(). Therefore, the code above will result

in a Dashboard Widget being installed with a heading of Not So Fast and the text-based contents of

Don’t forget to turn the Earth so both sides get their share of darkness and of

light. Pretty cool, huh?

201The WordPress API

Removing Dashboard Widgets
The Dashboard API does a few other actions that we have no room to cover here, but one topic that

comes up rather often in the development community is how to customize the Dashboard experience

for users by default. Users can, of course, always navigate up to Screen Options in the upper right-

hand corner of the Dashboard and uncheck any Dashboard widgets they want to remove from view;

however, sometimes users have no business seeing some of the types of Dashboard widgets available

by default in a standard WordPress installation. If this pretty well describes your situation, then

don’t fear: the Dashboard Widgets API has your back, providing a method to remove default Dash-

board widgets you don’t want to see. Here’s how you do it.

You’ll be working with the remove_meta_box() function, which you can read about in more detail

in the Codex.6

First of all, recognize that your default widgets are named in the following manner:

Main column

■ $wp_meta_boxes['dashboard']['normal']['core']['dashboard_right_now']

■ $wp_meta_boxes['dashboard']['normal']['core']['dashboard_recent_comments']

■ $wp_meta_boxes['dashboard']['normal']['core']['dashboard_incoming_links']

■ $wp_meta_boxes['dashboard']['normal']['core']['dashboard_plugins']

Side column

■ $wp_meta_boxes['dashboard']['side']['core']['dashboard_quick_press']

■ $wp_meta_boxes['dashboard']['side']['core']['dashboard_recent_drafts']

■ $wp_meta_boxes['dashboard']['side']['core']['dashboard_primary']

■ $wp_meta_boxes['dashboard']['side']['core']['dashboard_secondary']

What you’ll want to do is tap into the wp_dashboard_setup action hook and create a new function

that removes the Dashboard widgets of your choice. Just mimic the pattern following to remove

whatever Dashboard widgets you need to. Your code might look like this:

6 http://codex.wordpress.org/Function_Reference/remove_meta_box

The WordPress Anthology202

http://codex.wordpress.org/Function_Reference/remove_meta_box

chapter_09/remove-dashboard-widget.php

<?php

// Create the function to remove default Dashboard widgets
function peace_out_dashboard_widgets() {
 remove_meta_box('dashboard_right_now', 'dashboard', 'normal');
 remove_meta_box('dashboard_incoming_links', 'dashboard', 'normal');
 remove_meta_box('dashboard_quick_press', 'dashboard', 'side');
 remove_meta_box('dashboard_recent_drafts', 'dashboard', 'side');
}

// Hook into the 'wp_dashboard_setup' action
add_action('wp_dashboard_setup', 'peace_out_dashboard_widgets');

This code stops four default Dashboard widgets from displaying within a WordPress installation:

the Right Now widget, the Incoming Links widget, the Quick Press widget, and the Recent Drafts widget.

For more information as to how work with the finer points of the Dashboard Widgets API, have a

look in the Codex.7

The HTTP API
If you are an experienced PHP coder, you’ve no doubt come across situations that have required

you to make an HTTP request in PHP. You may have used cURL8 or fopen()9 or something else, but

what you’re bound to have noticed is that there’s more than one way to make an HTTP request in

PHP. And what makes the game fun is that not all servers support the same methods—occasionally,

some servers don’t support any methods at all (gotta love that!). HTTP requests can range from

simple GET requests that are looking to poll the latest tweets from Twitter to slightly more advanced

POST requests where you might need to pass a few parameters like a username and password to re-

trieve the most recent Facebook status of a particular user.

WordPress officially recognizes five methods to send an HTTP request in PHP, and refers to them

collectively as transports. The HTTP API was developed specifically to support all these transports,

providing a universal method of handling them within WordPress. In this way, WordPress is able

to assess which transports are available on any given server, and automatically use the most appro-

priate one when making its general HTTP requests.

WordPress provides four helper functions that retrieve URLs in different ways, which you can use

to interface directly with the HTTP API classes located in wp-includes/http.php. These functions

and their uses are as follows:

7 http://codex.wordpress.org/Dashboard_Widgets_API
8 http://curl.haxx.se/
9 http://au.php.net/manual/en/function.fopen.php

203The WordPress API

http://codex.wordpress.org/Dashboard_Widgets_API
http://curl.haxx.se/
http://au.php.net/manual/en/function.fopen.php

wp_remote_get()

retrieves a URL using the GET HTTP method

wp_remote_post()

retrieves a URL using the POST HTTP method

wp_remote_head()

retrieves a URL using the HEAD HTTP method

wp_remote_request()

retrieves a URL using either the default GET or a custom HTTP method that you specify; this is

useful when you need to send basic authentication headers with a URL request

All these functions return a WP_Error class upon failure, so you need to check for WordPress errors

after using them.

chapter_09/error-check.php

<?php

$whatchutalkinboutwillis = wp_remote_get('http://esquandolas.com');

if(is_wp_error($whatchutalkinboutwillis))
 // Deal with your error here

?>

Other helper functions that work with the HTTP API deal with retrieving only specific portions of

a response, and in this instance the functions actually do the error testing on your behalf:

wp_remote_retrieve_body()

retrieves only the body from a given response

wp_remote_retrieve_header()

retrieves a single HTTP header from a given response

wp_remote_retrieve_headers()

retrieves all HTTP headers from a given response

wp_remote_retrieve_response_code()

gives you the number code for a given HTTP response; positive responses should be 200, but

failed responses could be within the 300-400 range

wp_remote_retrieve_response_message()

retrieves the response message based upon the response code

The WordPress Anthology204

Finally, these functions are stackable within themselves, so the following is perfectly acceptable;

it will return only the body of the URL http://esquandolas.com, checking for WordPress errors along

the way:

$whatchutalkinboutwillis = wp_remote_retrieve_body(wp_remote_get➥

 ('http://esquandolas.com'));

For more detailed information on the HTTP API, look in the Codex.10

The Database API
The Database API is actually a collection of three APIs that combine to manage the plugin, theme,

and add-on interactions with WordPress’s database and the stored values within. These APIs include

the Options API, the Transients API, and the Metadata API. Let’s look at each one in turn.

The Options API
The Options API is composed of a set of functions that provide a standardized way to create, access,

update, and delete options and values within the database, without the need to utilize SQL state-

ments, which may become obsolete in later versions of WordPress or MySQL (WordPress’s database

of choice). All the data managed through the Options API is stored in the wp_options table within

the database.

The Options API’s four functions provide a fairly predictable functionality:

add_option()

adds a new option to the database for use throughout the installation via the get_option()

function; it takes no action if an option of the same name has already been added

delete_option()

removes an existing named option and its associated value from the wp_options table in the

database

get_option()

returns an existing option from the database if it exists

update_option()

updates a named option and its associated value, and adds it if the option is yet to exist

For more detailed information on the Options API, look in the Codex.11

10 http://codex.wordpress.org/HTTP_API
11 http://codex.wordpress.org/Options_API

205The WordPress API

http://codex.wordpress.org/HTTP_API
http://codex.wordpress.org/Options_API

The Transients API
The Transients API is very similar to the Options API, with the exception that the Transients API

allows you to store data in the database temporarily that will expire and be deleted after a set period

of time. This allows WordPress a mechanism to store cached data in the database, although caching

plugins have the ability to force WordPress to store transient values in memory rather than in the

database, inherently speeding up any WordPress installation. For this reason, you should never

assume that transient data is automatically stored within the database, and hence permanent data

should never be stored with the Transients API at all.

The Transients API offers functions that imitate the Options API, with the exception that the add

and update functions are traded out for a set function as described here:

set_transient() sets or updates the value of a transient

get_transient() returns an existing transient value if it exists

delete_transient() deletes a transient value

For more detailed information on the Transients API, look in the Codex.12

The Metadata API
The Metadata API provides a standardized mechanism for storing, retrieving and manipulating

metadata such as custom fields on posts for various WordPress object types in the wp_commentmeta,

wp_postmeta, or wp_usermeta tables. This essentially makes it possible to add and manipulate custom

data to comments, posts, or users at will.

The Metadata API offers four functions which mimic the Options API functions exactly, assume

that a dedicated MySQL table exists for the $meta_type you specify as listed above, and are described

below:

add_metadata() allows for metadata to be added to any kind of WordPress object

delete_metadata() deletes metadata for a particular object

get_metadata() returns the existing metadata from the database for a specific object if it

exists

update_metadata() updates the metadata of a certain object within the database and adds it if

it doesn’t exist

For more detailed information on the Metadata API, look in the Codex.13

12 http://codex.wordpress.org/Transients_API
13 http://codex.wordpress.org/Metadata_API

The WordPress Anthology206

http://codex.wordpress.org/Transients_API
http://codex.wordpress.org/Metadata_API

The Rewrite API
The Rewrite API is an advanced API and should be dealt with and used with caution. It is a set of

four functions that essentially helps WordPress developers tap into the WP_Rewrite class to pro-

grammatically specify new, custom rewrite rules for use with WordPress’s pretty permalinks. It is

dependent upon the availability of the mod_rewrite Apache module, meaning that its usage is neces-

sarily predicated upon the installation being run on a Linux platform. Each function that makes up

the Rewrite API is typically called within the init hook, meaning they are run during WordPress’s

initialization process. Furthermore, permalinks will usually need to be refreshed within the Settings

> Permalinks page in the WordPress back end before the rewrite changes will take effect. The code

for the Rewrite API is housed in wp-includes/rewrite.php. Let’s take a look at these functions:

add_rewrite_tag()

This is used to make WordPress aware of custom querystring variables in conjunction with

add_rewrite_rule(). It takes two required parameters—a tag name, and a regular expression

to parse the tag name for use in the rewrite URL. The function call must be made on init or

earlier, otherwise the tags are not available for use by add_rewrite_rule(). There are a lot of

advanced tasks you can do with add_rewrite_tag(), but they’re beyond the scope of this book.

For more information on using add_rewrite_tag(), see its page in the Codex.14

add_rewrite_rule()

Commonly used in conjunction with add_rewrite_tag(), add_rewrite_rule() searches for

custom rewrite tags and uses them to insert individual values into a particular rewritten URL.

For example, if a page employing a custom page template about veterinary records took two

custom rewrite variables—pet type and pet name—as defined by add_rewrite_tag(), a requested

URL that looked like http://esquandolas.com/vetrecords/dog/mcgrupp could be interpreted to

actually mean http://esquandolas.com/index.php?p=42&pettype=dog&petname=mcgrupp. Like

add_rewrite_tag(), there are a lot of advanced actions you can complete with

add_rewrite_rule() that are beyond the scope of this book. For more information on using

add_rewrite_rule(), see its page in the Codex.15

add_rewrite_endpoint()

This is used to add custom endpoints to the end of your URLs in a format like /trackback/.

add_feed()

This is used to add new feed types.

14 http://codex.wordpress.org/Rewrite_API/add_rewrite_tag
15 http://codex.wordpress.org/Rewrite_API/add_rewrite_rule

207The WordPress API

http://codex.wordpress.org/Rewrite_API/add_rewrite_tag
http://codex.wordpress.org/Rewrite_API/add_rewrite_rule

For more detailed information on the Rewrite API, look in the Codex.16 Additionally, you’ll find a

wealth of information and resources by looking at the page on WP_Rewrite, WordPress’s class for

managing rewrite rules. The WP_Rewrite class documentation is located in the Codex.17

Other Functions and Tools
This concludes our discussion of the WordPress API as defined in the Codex, but take note that

there are several other APIs described in the Codex worth exploring. For now, we’re going to move

on to some interesting, useful functions and tools that you should aim to really understand.

register_activation_hook()
The register_activation_hook() function allows you to register a custom activation hook when

you activate a plugin, and is useful when your plugin needs to take a specific action upon activation.

The function takes two required parameters:

register_activation_hook ($file, $function);

The parameters are defined as follows:

$file the path to the main plugin file inside the wp_content/plugins directory

$function the function to be called within the plugin file when the plugin is activated

A corresponding function exists that reverses the process in register_deactivation_hook(). We’ll

take a closer look at the register_activation_hook() and register_deactivation_hook()

functions in action with our next noteworthy function that handles the regular scheduling of events.

wp_schedule_event()
If you are familiar with Linux, you’ll no doubt be familiar with cron. In Linux, cron is a program

that allows you to schedule scripts to run automatically on a schedule. It’s a handy tool that essen-

tially gives you the ability to automate just about any routine task you’d like such as backing up a

directory, sending emails in batch, or anything else you can dream up. WordPress provides us with

a series of functions that could probably be referred to as the Cron API, but for our purposes we’ll

focus on the wp_schedule_event() function.

wp_schedule_event() utilizes cron-like functionality to fire events on a regular schedule within

WordPress themes, plugins, and core files. In fact, WordPress makes use of this function to check

for plugin and general WordPress updates once every 12 hours, as well as publish scheduled posts.

While wp_schedule_event() doesn’t utilize cron itself, it’s located within the wp-includes/cron.php

16 http://codex.wordpress.org/Rewrite_API
17 http://codex.wordpress.org/Function_Reference/WP_Rewrite

The WordPress Anthology208

http://codex.wordpress.org/Rewrite_API
http://codex.wordpress.org/Function_Reference/WP_Rewrite

file, and there’s actually a function within that file named wp_cron which does most of the heavy

lifting.

Most developers regularly use wp_schedule_event() in their plugins, and the function works by

scheduling a hook to be executed by WordPress at a specific interval that you as the developer

define. The action triggers whenever a user visits the site if the initial scheduled time has passed,

and takes three required parameters and one optional parameter:

wp_schedule_event($timestamp, $recurrence, $hook, $arg);

The parameters are defined as follows:

$timestamp the first time that you want the event to occur in a UNIX timestamp format

$recurrence the frequency in which the event should occur, where possible values are

hourly, twice daily, or daily

$hook the name of the action hook that should be executed

$args (optional) any arguments that should be passed to the hook functions

To see the wp_schedule_event() function in action, let’s consider the code that we’ll add to a

plugin file:

chapter_09/schedule-event-plugin.php

<?php

// Register our custom activation hook
register_activation_hook(__FILE__, 'roggae_activation');

// Add custom action hook and call our custom function
add_action('hourly_turning_event', 'hourly_earth_turn');

// Define the function associated with our custom action hook
function roggae_activation() {
 wp_schedule_event(time(), 'hourly', 'hourly_turning_event');
}

// Define our function that will do something on a scheduled basis
function hourly_earth_turn() {
 // code that turns the Earth every hour
}

// Clean scheduler upon plugin deactivation
register_deactivation_hook(__FILE__, 'roggae_deactivation');

function roggae_deactivation() {
 wp_clear_scheduled_hook('hourly_turning_event');
}

209The WordPress API

Firstly, take note that we are telling WordPress to register our custom action hook upon the activation

of our custom plugin by using the register_activation_hook() function we discussed before.

Notice that at the bottom of the code block, we clear out the values of the hook so that we can

eliminate it altogether when we deactivate the same plugin.

As you can see, our scheduled event is written to allow WordPress to turn the Earth ever so slightly

every hour, on the hour. We do this by creating a function in our plugin (roggae_activation(),

in this case), which calls wp_schedule_event() and provides it with the necessary parameters. In

our example, we’re telling WordPress we’d like to execute the hourly_turning_event action hook

(which fires the functionality we’ve defined in our hourly_earth_turn() function) every hour, on

the hour. This is beginning from the exact timestamp that was created when we initially activated

our plugin. After all, it’s incumbent on us to ensure that every portion of the Earth receives its fair

share of darkness and light, and it would become tiresome to try to remember to do all that on our

own!

In all seriousness, wp_schedule_event() and its similar supporting functions are incredibly

powerful, and for the most part rather underutilized. To learn more about it and other cron-type

functions in WordPress, have a look at the Codex page.18

wp_enqueue_script() and wp_register_script()
We all know that JavaScript is an extremely popular client-side scripting language that gives us

easy access to insanely cool GUI elements that make our websites visually stunning. However, if

you’ve ever tried to manually work with different JavaScript libraries on the same website, you’re

acutely aware that, despite their inherent sexiness, JavaScript libraries rarely play nicely with one

another. Just go ahead and try to load out jQuery and script.aculo.us on the same site; it might work,

and, then again, it might not. Still, all too often you’ll find theme developers hardcoding JavaScript

libraries into the <head> code of their websites to make their interface elements work as intended.

This is just fine for the initial theme developer, but what about plugin developers who want to use

different JavaScript libraries, or even if the same theme developer finds it handy to use another

version of the same library in other locations on the same site? As usual, WordPress comes to the

rescue with a useful and shockingly underused pair of functions: wp_enqueue_script() and

wp_register_script().

By using wp_register_script(), you can safely register and save JavaScript libraries to be called

by wp_enqueue_script() later on when needed. wp_register_script() is always called with an

init action, and takes one required parameter as well as four optional parameters:

wp_register_script($handle, $src, $deps, $ver, $in_footer);

The parameters are defined as follows:

18 http://codex.wordpress.org/Category:WP-Cron_Functions

The WordPress Anthology210

http://codex.wordpress.org/Category:WP-Cron_Functions

$handle This is the unique name of the script that will be later used when

called by wp_enqueue_script().

$src (optional) This is the URL to the script, a required parameter when not using a

default script that ships with core WordPress (see the Codex for a

listing of scripts that are included with core WordPress).19

$deps (optional) This is an array of dependencies the script has, which defaults to false

if the script has none. This parameter is required only where Word-

Press does not ship with the script.

$ver (optional) This is a string defining the version number of the script, if it has one.

$in_footer (optional) Scripts are normally loaded into the <head> section of the code, but

if you need the script to be queued with wp_footer(), this Boolean

can optionally be set to true.

Once a script has a registered handle as defined by wp_register_script(), it can then be utilized

by wp_enqueue_script() for use in a plugin or theme (or core function). wp_enqueue_script()

queues scripts in the proper order based on their explicit dependencies, and thus allows you to use

any of WordPress’s built-in script libraries or external scripts you need to manually load.

wp_enqueue_script() takes the same required parameter and four optional parameters that

wp_register_script() takes:

wp_enqueue_script($handle, $src, $deps, $ver, $in_footer);

The parameters are defined as follows:

$handle It’s the unique name of the script defined by wp_register_script().

$src (optional) This is the URL to the script, a required parameter when not using a

default script that ships with core WordPress (see the Codex for a

listing of scripts that are included with core WordPress).

$deps (optional) This is an array of dependencies the script has, which defaults to false

if the script has no dependencies. It’s a parameter that’s required only

where WordPress does not ship with the script.

$ver (optional) This is a string defining the version number of the script, if it has one.

19 http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress

211The WordPress API

http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress

$in_footer (optional) Scripts are normally loaded into the <head> section of the code, but

if you need the script to be queued with the wp_footer(), this Boolean

can optionally be set to true.

wp_enqueue_script() is added to the init action hook, and should only be called when needed

(that is, wrapped in an if (!is_admin()) {} statement so that it doesn’t interfere with adminis-

trative scripts if it’s meant to be used for the outwardly facing areas of the website). Likewise, if the

script is being used for a plugin admin screen, it can (and should) be restricted to only being shown

on that particular section of the admin area.

Avoid Script Clashes

It’s vital to remember that you should only run scripts where they’re necessary. If you run scripts

in the background where they’re unnecessary, you can find yourself experiencing incompatibilities

and collisions with other libraries. A script that you actually need to use could be found to be

competing with the JavaScript library you have carelessly left running in the background, causing

all sorts of unanticipated issues on the page.

For more information on how wp_register_scripts()20 and wp_enqueue_script()21 work, look

at the relevant sections in the Codex.

A corresponding set of functions to wp_register_scripts() and wp_enqueue_script() exist

dealing with stylesheets. For these purposes, \wp_register_style()22 and wp_enqueue_style()23

work to manage stylesheets in exactly the same way that scripts can be managed, although the sly

functions are more commonly used to ensure that stylesheets are not loaded before any necessary

dependencies are loaded. For more information on these two functions, reference the section called

“Dissecting a Plugin: Antelope General Social Media Links” in Chapter 5, or check the Codex.

BackPress
Last but certainly not least, let’s say you’re looking to build a brand new web application independent

of WordPress, but would love to take advantage of many of the tools and feature sets included

within core WordPress. If this sounds interesting to you, BackPress may just be what you’re been

looking for.

Licensed under the GPL2 license, BackPress24 is the WordPress code back end presented as a PHP

library, which allows you to build scalable web applications independent of the WordPress CMS.

20 http://codex.wordpress.org/Function_Reference/wp_register_script
21 http://codex.wordpress.org/Function_Reference/wp_enqueue_script
22 http://codex.wordpress.org/Function_Reference/wp_register_style
23 http://codex.wordpress.org/Function_Reference/wp_enqueue_style
24 http://backpress.org

The WordPress Anthology212

http://codex.wordpress.org/Function_Reference/wp_register_script
http://codex.wordpress.org/Function_Reference/wp_enqueue_script
http://codex.wordpress.org/Function_Reference/wp_register_style
http://codex.wordpress.org/Function_Reference/wp_enqueue_style
http://backpress.org

While you need to roll your own database and implementations for the code, BackPress provides

you with access to many of the valuable features WordPress provides, including:

■ logging
■ user roles and capabilities
■ database connections
■ HTTP transactions
■ object caching
■ formatting
■ XSS and SQL injection protection
■ taxonomies
■ options management

If you are a web developer looking for a fabulous framework to begin your web application devel-

opment with, remember to say please and thank you to the kind folks at backpress.org.

A Box Full of Tools
The WordPress API is a set of compartmentalized functions that serve to provide programmable

interfaces into different aspects of core WordPress. After reviewing the Widgets API and Plugin

API, and providing a bit more detail on the Shortcode API (all of which we explored in detail in

Chapter 5) we explored the majority of the remainder of the WordPress API. This includes the

Dashboard Widgets API, the HTTP API, the Database API (itself a set of three APIs managing

WordPress’s database layer—the Options API, the Transients API, and the Metadata API), and the

Rewrite API.

We also looked at some really useful functions not officially listed within the WordPress API, but

essential when seeking to unveil sophisticated functionality within WordPress. Notably, we covered

the wp_schedule_event() function, which creates a mechanism in WordPress to automate the

processing of routine tasks like batch email functionality, as well as the wp_enqueue_script() and

wp_register_script() functions, which allow us to safely load and use different JavaScript libraries

in our plugins and themes. Finally, we took a brief look at BackPress, a PHP library available with

the GPL2 license that allows you to utilize much of WordPress’s core functionality in your own

separate web applications

213The WordPress API

Chapter10
Multisite: Rolling Your Own Network
So far in this book, we’ve delved deep into the WordPress universe and pulled back the curtain to

show how the most fundamental elements of the core WordPress installation are put together and

operate. Now, we’re going to look at one of the newest and most exciting additions to core: Multisite.

Its capabilities allow you to extend the CMS in a way that will let you host and manage your own

centralized network of WordPress websites, much in the same way that Automattic manages the

free wordpress.com service. So you can literally leverage a single WordPress installation to managing

dozens, hundreds, or even thousands of individual WordPress websites. It’s one of the most popular

up-and-coming features within core, and well worth the effort of learning.

Once you understand and master it, Multisite has a host of practical purposes. For individual de-

velopers and marketers who handle a large number of WordPress sites, Multisite can save significant

time and aggravation by centralizing plugin management in particular; after all, if you have a

thousand websites and need to upgrade the same plugin on each one, it’s a lot easier and faster to

do it once than a thousand times, right? Communities can also find Multisite helpful by enabling

their users to manage their own blogs themselves, much like wordpress.com does. Finally, there

are several examples of business models that use Multisite to target specific industry vertical markets,

and provide valuable syndicated content services in any number of creative ways. The notion of a

self-hosted multisite concept is still in the early stages of development when compared to other

content management concepts in the web development community, but like anything else, its uses

are much more dependent upon the imagination of the developers working with it than any tech-

nical limitations.

A Brief History of Multisite
Before we examine the specifics of Multisite, it’s a good idea to investigate its background so that

you have a better understanding of its functionality. In the early days of WordPress, there were two

distinct projects that were actively maintained: WordPress, and WordPressµ. Pronounced “WordPress

M-YOU,” µ was also called WordPress Multi-user; it was built to be a standalone version of Word-

Press that featured the ability to create multiple blogs, which could be accessed by many users with

different administrative privileges. While µ shared much of the same codebase as core WordPress,

it was ultimately far less popular, so when changes were made to core WordPress, they weren’t

necessarily added immediately to µ. This resulted in a feature set that was perpetually lacking and

generally behind the curve, causing µ to have a reputation as a dodgy framework that worked as

expected only some of the time.

In order to correct the situation with µ, the powers that be wisely chose to discontinue the standalone

project and instead factor its functionality into core WordPress, beginning with the major release

of WordPress 3.0 in March 2010. Since that time, Multisite, as it came to be known, has been actively

developed within the core WordPress feature set, although it is deactivated by default in a standard

WordPress installation. The point you should understand is that Multisite doesn’t need to be in-

stalled, but merely enabled within an existing core WordPress installation. Let’s take a look at how.

Change Is Good

It’s pertinent to note that Multisite is a WordPress feature that is truly in an evolutionary development

cycle within core WordPress at this time. As this book is based upon WordPress 3.2, the Multisite

functionality discussed within this chapter reflects the 3.2 implementation. While conceptually

the same as its previous iterations, the visual presentation and functionality of Multisite as imple-

mented in 3.2 is significantly different from its implementation in 3.1, which was similarly different

from the 3.0 implementation. While it’s unclear how much the implementation will shift in future

major releases, it’s a reasonable assumption that the implementation in future releases will continue

to be augmented and refined.

Enabling Multisite
For the amount of functionality that you are instantly afforded, it’s surprisingly easy to enable

Multisite in WordPress. The trickiest part is that because you’re creating individual websites that

each need to operate as a unique entity, you’ll have to create a specific namespace for each one to

operate in. Multisite offers you two methods of doing this: creating sites via subdomains, or via

subdirectories. Utilizing one of these will give you a clean website installation in its own unique

namespace that looks like one of these examples:

■ subdomain namespace: http://marco.esquandolas.com
■ subdirectory namespace: http://www.esquandolas.com/marco

The WordPress Anthology216

Now you might be thinking that this is all well and good, but you’re better off avoiding namespaces

that look like either format; you want a unique domain to be used here instead of a subdomain or

subdirectory. Never fear, there’s a plugin to help you do that, but we need to walk through the initial

process first.

Location, Location

While it’s common among many web developers to give WordPress its own directory as a matter

of rule, Multisite precludes you from this practice because of the routing it needs to define and

manage for its network sites. Therefore, in order for Multisite to operate at all, WordPress itself

must be installed in the public HTML directory the website propagates to. Put differently, the site

URL and the WordPress URL as defined in Settings > General must be set to the same location in

order to use Multisite.

Enabling Multisite can be up to a four-step process, with several of the steps being optional or

skipped altogether, depending on whether you’re setting up the site from scratch or converting an

existing site to Multisite, as well as whether or not you’re going to be using subdomains. Let’s have

a look at the process.

Step 1: Back up WordPress

Understand that when you set up a network with Multisite, by definition you’ll be updating

your WordPress files. At the risk of losing your data, it’s a wise idea to back up your WordPress

installation before you begin any work, especially if you’re going to be enabling Multisite on

an existing live WordPress site. If you’re enabling Multisite on a fresh WordPress install, this

is an unnecessary step.

Step 2: Set up wildcard subdomains if you’ll be using a subdomain namespace with Multisite

If you are setting up Multisite to create new sites in subdirectories instead of on subdomains,

you can skip this step and move straight to step 3.

In order to set up Multisite to create new network websites on unique subdomains, you’ll first

need to have a cursory knowledge of DNS, as well as the confidence and the necessary server

permissions required to make a few changes to the DNS records that manage your web server.

DNS is an acronym that stands for Domain Name Service, and in this context consists of a set

of text-based rules that reside on your web server. These rules direct types of traffic that are

associated with your domain name, such as email, web service, file transfer protocols, and the

like, and serve as a master record that describes everything about where information physically

goes and how it acts in relation to your domain name. If you’ve never been introduced to DNS

before and it sounds like a serious topic, your intuition is serving you well—it’s heavy-duty

stuff, and not something you want to mess with unless you genuinely feel comfortable doing

so. If the whole notion scares the living esquandolas out of you, go talk to your server adminis-

trator to see if they’ll help you out, or find another qualified individual to perform these

modifications.

217Multisite: Rolling Your Own Network

In order for Multisite to work properly, we need to create a wildcard entry for subdomains.

Wildcard subdomains are domains that haven’t been specifically defined within the DNS tables,

and setting them up alleviates the need to make individual DNS entries for each subdomain

that Multisite creates. There are a couple of ways to set up wildcard subdomains, and it’s a two-

step process. On your Linux web server, you’ll first need to be certain that Apache (the software

that enables web serving capabilities) is configured to accept wildcards. To do this, open up

the httpd.conf file or the include file containing the VHOST entry for your web account, and

add in the following line:

ServerAlias *.esquandolas.com

It should go without saying, but you need to replace the domain name with your own. After

this, you’ll want to add the following DNS record to your server:

A *.esquandolas.com

It’s worth mentioning that many hosting providers offer their clients one of several standardized

control panels to assist them in managing their Linux web servers, and these control panels

have their own steps and processes that users must go through in order to make modifications.

Arguably, the most widespread of these control panels is cPanel, as seen in Figure 10.1.

Figure 10.1. Creating your wildcard subdomain in cPanel

cPanel boasts the easiest method by far of enabling subdomains for Multisite; all you need to

do is add a subdomain entry named “*" on the domain you’re enabling Multisite on, and ensure

that you point the subdomain to where your wp-config.php file is located. For a more detailed

The WordPress Anthology218

explanation of how to similarly enable subdomain Multisite with other common control panels,

take a look at the Codex page.1

Check Your Plan

Be careful to take note that many cheap hosting providers do not allow their clients to set up

wildcard DNS entries like we’ve just done. If you’re uncertain whether this applies to you and

your hosting plan, contact your hosting provider before you attempt this step.

Step 3: Allow Multisite in wp-config.php

Next, open up your wp-config.php file in a text editor, and where it says /* That’s all, stop

editing! Happy blogging. */, add the following line of code above it:

define('WP_ALLOW_MULTISITE', true);

This line of code is all that’s needed to let WordPress know you plan to enable Multisite. It

creates a new submenu item called Network Setup in the Tools subpanel of the Admin menu in

the WordPress administrative back end.

Step 4: Install a network

Now that we’ve allowed Multisite on our WordPress install, it’s time to go ahead and create a

network. Be certain to deactivate all your plugins before you activate Multisite, or you’ll receive

an error telling you that all plugins must be deactivated before proceeding. So long as you’re

all set and good to go on the plugin front, navigate to Tools > Network Setup and you’ll see the

Create a Network of WordPress Sites screen, as shown in Figure 10.2.

1 http://codex.wordpress.org/Create_A_Network#Specific_Configurations

219Multisite: Rolling Your Own Network

http://codex.wordpress.org/Create_A_Network#Specific_Configurations

Figure 10.2. Creating a network of WordPress Sites

This is the place where we’ll define whether we’ll be using subdomains or subdirectories

within Multisite, as well as name our network and provide an admin email address. Once you

are satisfied with your entries, click the Install button … WordPress will do its thing, and then

display a new screen providing a set of three instructions, as displayed below in Figure 10.3.

The WordPress Anthology220

Figure 10.3. Customizing a directory for your network

As described by the onscreen instructions, you’ll need to manually create a blogs.dir directory

in the wp-content directory that is writable by the server, and then manually copy the code

blocks provided into your wp-config.php and .htaccess files, respectively. Complete this step,

and then log out of WordPress. Congratulations; you’ve just enabled Multisite in WordPress!

Multisite in Action
Now that we have successfully enabled Multisite in our WordPress installation, let’s log back in

and have a look around. Upon logging into WordPress with Multisite enabled and running, you’ll

initially not notice much difference at all, with the exception that there is now a My Sites submenu

item listed in the Dashboard submenu panel. However, something else has changed, and that is the

introduction of a new user role—a super administrator (which we’ll also refer to as a super admin

or a network admin). A super admin is an administrator who looks after all the network management

systems and processes on a given WordPress Multisite installation. As the user who initially created

the Multisite installation, you are granted super admin status (although you’ll be able to spread this

out to additional users later on if you so choose).

Logged into WordPress now as a super admin, some further investigation will yield a new menu

item in the drop-down menu listed next to your name in the upper right-hand corner of the screen,

as evident in Figure 10.4.

221Multisite: Rolling Your Own Network

Figure 10.4. Now you’re a network admin!

The key factor to recognize here is that with Multisite enabled, WordPress will provide you with

two entirely separate administrative control panels to work with: the Site Admin, and the Network

Admin. The Site Admin control panel looks almost identical to the WordPress you have come to know

and love, and is designed to provide all the management functionality necessary for a website in-

stalled on the network. The main difference is the My Sites submenu item in the Dashboard subpanel,

which gives you options to navigate to the Site Admin Dashboards that you have administrator access

to within the network. You’ll notice that the Network Admin, on the other hand, has a variety of

options that a network administrator can work with. Go ahead and click on the Network Admin link

and have a look around.

The Network Admin Dashboard
You’ll notice in Figure 10.5 that the Network Admin area appears similar to the Site Admin, but there

are several visual clues you can latch onto that will confirm you’re in the right place.

Figure 10.5. Your new Network Admin dashboard

Your main indicator is the name of the network that you created; in this instance, the Esquandolas

Network, which differs from the Antelope General website that we installed the network onto. A

subtle color change might be a suitable visual cue to remind the administrator that the area they’re

The WordPress Anthology222

operating in is, indeed, an administration area entirely separate from the Site Admin area. Then

again, as we’ve previously stated, Multisite is a feature set in evolutionary development, and it’s

reasonable to think that this distinction might be made clearer in the future.

In addition to the network name at the top of every screen in the Network Admin area, you’ll also

notice a slightly different Admin menu layout. We’ve expanded each of the top-level menus in our

screenshot, and you’ll see that they collectively hold a significant amount of new functionality that

is essential for managing Multisite. Before we dig into each area one by one, notice that the Dashboard

in the Network Admin area does include a new widget that you won’t find on the Site Admin screen,

giving you quick links to create new sites and new users, as well as search for existing sites and

users (which become quite handy as the volume of sites and users grow in your network).

The Sites Submenu
The Sites submenu is fairly straightforward, as you can see in Figure 10.6, provides the All Sites and

the Add New submenu items.

Figure 10.6. Adding a new site as the network admin

Clicking on the Add New submenu item brings you to the Add New Site screen. In the screenshot

above, you’ll notice we are using the subdomain method of creating new websites within our network.

In order to create a new site, you’ll need to define only three parameters:

1. the subdomain zone that the site will be created on (or the name of the subdirectory if you have

selected subdirectory installation)

2. the title of the website

3. the primary administrative email

Here we’ve created a site called the Doniac Schvice, a sample network site that we’ll be referring

to for the duration of this illustration. Click on the Install Site button, and you’ll see the new site

loaded when you click the All Sites submenu option, as in Figure 10.7.

223Multisite: Rolling Your Own Network

Figure 10.7. Our new site in the All Sites submenu

There are several points to take note of here. First of all, the label for the network site you just created

is the name of the subdomain (or subdirectory) you just provided. Secondly, a new user with the

same subdomain (or subdirectory) name has been automatically created for you. In this instance,

Multisite has created schvice for us, associating the email address of mike@esquandolas.com that

we provided while adding the site. This user is given the role of administrator by default, although

it’s pertinent to note that they are only able to administer settings on the site that they have been

added to, in this instance schvice. Finally, rolling over an individual network site reveals a contex-

tual menu similar to those we’ve seen elsewhere in WordPress. However, what you may find inter-

esting are some of the submenu items that seem more likely to be found in posts rather than in

network site administration. The Edit, Dashboard, Delete, and Visit options are all self-explanatory

(and we’ll dig much deeper into Edit in a moment), but Deactivate, Archive and Spam require a bit

more explanation.

As we’ll see in more detail in the Network Admin Settings menu, Multisite gives us the ability to

create network websites in a manner that has shades of WordPress’s built-in commenting system.

Depending upon how Multisite is configured, new blog sites can actually be set up automatically

without the intervention of an administrator. While this practice has relevant uses, it carries with

it the inherent danger of automated splog (or “spam blog”) creation. Splogs are unwanted blogs

created either manually or by means of an automated script, and are typically packed full of content

or affiliate links designed to fool search engines into providing a higher ranking to a particular

website. Splogs are every bit the problem that comment spam can be on individual blogs themselves,

and to this end Multisite gives you the ability to mark a particular network site instance as Spam,

deactivating and removing it from the WordPress installation.

The final options in the contextual submenu in All Sites are Archive and Deactivate. Archiving and

deactivating network site instances are very similar, and both are reversible (deleting a network

website is not a reversible action). Either archiving or deactivating a network website will cause

the website to no longer be outwardly visible on the Web, but deactivating a website will cause the

site to no longer be accessible or manageable by site administrators either. Archived sites can be

The WordPress Anthology224

managed by administrators. Network administrators have the sole ability to reactivate deactivated

sites, while site administrators can unarchive their sites to make them once again visible on the

Web. Plenty of tricky fun to be had here, right? Just wait … we’re about to learn that there’s a whole

lot more than meets the eye to what at first seems to be some fairly light functionality.

Individual Network Site Settings
Every network site truly is its own individual entity, complete with its own content and privacy

rules, visual design, and user base. When you click on the Edit submenu item in the contextual

menu we’ve just described (or click on the name of the site you want to edit), you’ll be greeted by

a screen that says Edit Site:, and then the name of the site you are working on. In our case, it reads

Edit Site: schvice.esquandolas.com/ as seen in Figure 10.8.

Figure 10.8. Editing the settings for an individual site

It’s useful to note that these are some of the most low-level settings offered for direct manipulation

within WordPress, and as such none of them are to be toyed with.

The High and the Low

If you are new to low-level/high-level terminology, here’s a quick description. It’s reasonably well

understood that the higher-level a particular feature is, the more is being automatically done for

you in the background. High-level functionality is designed to take the guesswork out of whatever

it is you are doing, and typically caters to tasks that can be completed quickly by batching certain

repetitive processes, or to less-experienced users who don’t have the knowledge base to do certain

things. Examples of high-level functionality include the visual editor provided within WordPress,

or the WordPress administrative back end itself. Low-level functionality, on the other hand, involves

functionality that’s happening deeper within the code, closer to where the logic is actually being

executed. Low-level functionality affords more options and a higher level of flexibility in how you

225Multisite: Rolling Your Own Network

can make something happen, but it’s also much, much easier to permanently break things with low-

level tools, so it’s worth offering you a firm warning before you wade too deeply into anything with

those characteristics. Don’t be afraid to look around, but proceed with caution and respect.

In the Network Admin area, the Edit Site: screen is broken up into four tabs, beginning with the Info

tab. There’s no good reason to modify the Info tab in any way, but it’s useful for understanding

when the site was registered and last created. Matters become a bit more interesting when you click

on the Users tab, as you’ll see in Figure 10.9.

Figure 10.9. Editing individual site users

The Users tab looks much like the standard Users screen in the regular Site Admin area, but you’ll

notice that there are actually two ways to add users to a network site. Because we’re working

within the context of a website network, users who have already been registered on a different

website within the network can be added here as well, and assigned any role of your choosing.

Perhaps enacted as a security feature, WordPress doesn’t provide a username input box here that

is smart enough to pull from an Ajaxed list of users already defined within the database, but rather

forces you to input a specific username upon adding the user. There are, of course, plugins available

that modify this default functionality, but it’s worthwhile mentioning the basic way it works here.

The second way to add users reflects the way users are added and managed throughout the rest of

WordPress, enabling you to create new users and assign roles as you would anywhere else.

The WordPress Anthology226

Next up is the Themes tab, and marks our first introduction in Multisite to the notion of something

being network enabled. Let’s take a moment to explain this concept. Both themes and plugins can

be defined as network enabled, which means that they are automatically available for use by any

given site administrator within every single website throughout the network. However, themes and

plugins differ in that network administrators are able to upload individual themes to the network

and then enable them for specific sites within the network. Plugins that are uploaded to the network

must either be network enabled or inactive altogether. Furthermore, once Multisite is enabled,

plugins can only be installed in the Network Admin area, which by definition means that the only

users who can actually install new plugins are super admins. Site administrators, therefore, cannot

upload new plugins themselves, but can activate and deactivate plugins that have been made

available for use on their site. If you are a bit confused, don’t sweat it—this one is a bit of a mind

bender, but Figure 10.10 below might help you understand it better.

Figure 10.10. Editing themes within the individual sites

In the Themes tab, we see two themes that are available for us to work with: Twenty Eleven and

Twenty Ten. We’ve enabled Twenty Eleven here, which won’t actually activate the theme on the

http://schvice.esquandolas.com network site, but rather makes the theme available to the individual

site administrator to activate and make live on their network site. Furthermore, notice the line of

text above the themes which states that “Network enabled themes are not shown on this screen.”

This lets us know that while we’ve enabled Twenty Eleven for use on schvice.esquandolas.com,

we very well may see other options that we choose to use for our theme as well. For instance, if our

network administrator has marked two other themes—Twenty Twelve and Twenty Thirteen—as

network enabled, then ultimately the site administrator for schvice.esquandolas.com will have three

themes available to work with: Twenty Eleven, Twenty Twelve, and Twenty Thirteen.

227Multisite: Rolling Your Own Network

After you have read the above paragraph a few times and stopped your head from spinning, you

may find yourself asking the question: “Okay, so where do the themes come from that I’m seeing

in the Themes tab?” It’s a great question, and the answer is that the themes that are made available

to you within the Themes tab are the disabled themes that have been loaded into the Network Admin

Themes Manager, as seen in Figure 10.11.

Figure 10.11. Themes that have been installed in your network

If this all seems like a long, strange, winding road, we’re here to tell you that yeah, it is. Have we

mentioned that Multisite is in an evolutionary development cycle?

Finally, we can click on the Settings tab, depicted in Figure 10.12, which provides extremely low-

level access to the specific features set up for each network site.

The WordPress Anthology228

Figure 10.12. Editing the settings in an individual site

The options and parameters that are available to be set correspond directly to the record for the

network site, as listed in the installation’s database, and you’ll notice that some of the options listed

here are actually Booleans (where 0 equals no or false, and 1 equals yes or true). If you feel com-

fortable playing around in here, you can use this screen to quickly override some global Multisite

settings, which brings us to the Settings subpanel of the Admin menu in the Network Admin area.

The Settings Submenu
Although it’s not the next option sequentially in the Admin menu, if you look towards the bottom

of the Admin menu and expand the Settings panel, you’ll see two options: Network Settings and

Network Setup. Network Setup is there for reference purposes only, and is the same screen that we

saw when initially enabling Multisite in our WordPress installation; this asked us to create a blogs.dir

directory in wp-content, and install specific code chunks into both wp-config.php and your .htaccess

file. Network Settings, however, is the primary screen that controls most of the master settings

functionality for the entire Multisite installation. This is a screen with many options, but we’ll

break each down for you here in Figure 10.13, complete with screenshots, starting with Operational

Settings.

229Multisite: Rolling Your Own Network

Figure 10.13. Operational settings for your network

This defines the name of the network as well as the network administrative email. This is fairly

straightforward, so let’s move down to Registration Settings, seen in Figure 10.14, where things get

a bit more interesting.

Figure 10.14. Registration settings for your network

Registration Settings defines who can create a new user or new site, and where those sites can be

created. While it looks harmless, it’s really one of the most crucial aspects of Multisite configuration.

Let’s break down each option, one by one:

Allow new registrations deals specifically with who can create new users and websites via the front-

facing public portal of the Multisite installation. It refers to users who are visiting and interacting

with the network, rather than site administrators.

■ Registration is disabled essentially locks down the Multisite installation. Any existing sites or

users that have been created are allowed to remain intact, but under no circumstances can any-

body create new user accounts or network sites while this option is selected. It’s ideal if you’re

paranoid about security, spam, and splogs.

The WordPress Anthology230

■ User accounts may be registered allows new users to register themselves but not necessarily create

new sites. This option is good if you want to allow users to register and interact with one another

via WordPress’s built-in commenting system on existing websites within the network.

■ Logged in users may register new sites allows users who are logged in to create their own sites, but

does not necessarily give users the ability to register on the network themselves. This is an ex-

cellent option to use where you want to define a set of users that you as an administrator trust

with creating websites, but want to stop short at opening your site registration to the public.

■ Both sites and user accounts can be registered is almost identical to the way the website network

on wordpress.com is run, and opens up the front-end registration page that would be accessible

at http://esquandolas.com/wp-signup.php. Users have the ability to register themselves, and

then create new site/s that they can manage. This is obviously the most permissive of all the

different user and site creation options, and has the potential to be exploited if not configured

and monitored properly.

Registration notification is a checkbox that sends the network admin an email notification every time

a user registers a site or email account. This is a handy tool to use in the early stages of populating

a network with users and sites, but can become unwieldy as the volume increases.

Add New Users is a checkbox that allows site administrators to add new users within their own Site

Admin area by navigating to Users > Add New. Again, this is a useful switch that you can flip on or

off depending largely upon how much you trust the site administrators working within your network.

Every network is different, and don’t be afraid to make security restrictions that you deem appro-

priate to your particular situation.

Banned Names refers specifically to subdomains or subdirectories that you will under no circum-

stances allow to be created in your network. WordPress lists the defaults that you will probably

want to make sure are listed, but you may find that there are others that you want to add as well.

For example, due to the combination of the method that permalinking structures are set up with in

WordPress as well as the very nature of Multisite, routing collisions can occur when you create a

page on your primary site and then and allow a network site of the same name to be created.

To better understand the potential problem here, let’s look at an example. Consider a situation

where you use a Multisite network configured to work with subdirectories to create a network

website called running. The URL for that website might be called http://esquandolas.com/running,

which is all well and good; however, what if we already had a Running with the Antelopes page on

the primary directory that already had a slug entitled running. This would create a permalink col-

lision, and in this instance the network site would be given routing priority and actually override

the page originating within the primary site, creating a situation where people just can’t find out

how to run with the antelopes … and nobody wants that.

231Multisite: Rolling Your Own Network

The solution to this is to be sure to take care to add the individual slugs of pages within your primary

site to the Banned Names box, thus avoiding the possibility of anybody using one of those names in

the first place. Who knows—in the future, maybe Multisite will be smart enough to be able to at

least give us the option to dynamically pick up the page slug listing from the primary site and

automatically restrict the ability to create network sites in those namespaces.

In the event that you’re happy to allow site registrations from anybody who uses an email address

with a particular domain name, you can just add the domain name in the Limited Email Registrations

dialog box, and you’ll be set to go. This is useful, for example, if you are an organization with your

own domain name and want to allow only your employees with a corporate email address to create

their own sites. In this instance, you’d just add your corporate domain name (or domain names, if

you use several for your corporation). Subsequently, users who registered on the network under

their corporate email addresses would have site creation authority, while other users would not.

Banned Email Domains have the exact opposite effect as Limited Email Registrations do. Using Banned

Email Domains, an administrator can specifically restrict the authority to create new network sites

from users who are using specific domain names. This is a useful option if you’d like to restrict

users who create a veil of anonymity by originating from free email hosting services.

New Site Settings, as seen in Figure 10.15, are next to the plate, and supply the verbiage templates

that users will see upon initially registering as both a user as well as creating a new site. Network

administrators who are sensitive to the ambience and sense of community they want to create and

nurture among the members of their network are well advised to pay attention to this area in partic-

ular, as the tone and content of the verbiage provided in this space provides the initial impression

your user will receive of your network as a whole. After all, networks are typically put together for

one of two reasons: either to consolidate the management of a set of websites and make things

easier for technical staff, or to create and nurture an online community. If your intent falls within

the community side of things, then you’ll find that this is one of those “separating-the-men-from-

the-boys” type of aspects that many organizations fall completely flat on. Pay attention to this—it’s

a detail, to be sure, but it’s an awfully big detail.

The WordPress Anthology232

Figure 10.15. Verbiage templates that you can modify to suit your needs

In this screenshot, we’ve included the default text associated with each of the templates. You can

(and should) make changes to all of them, adding your own text to personalize your user’s experience.

As you’ll note in First Post, HTML is allowed here.

Most of these templates should be self-explanatory, but we’ll give you a heads-up on the nuances

of each. Welcome Email is, of course, the email that will be sent out to the site admin email address

any time a new site is registered. Notice that the email includes the variables SITE_NAME, BLOG_URL,

USERNAME, and PASSWORD. If you’ve ever worked with Mail Merge inside word processors, hosted

233Multisite: Rolling Your Own Network

newsletter services, or other programs of the sort, you’ll recognize these types of variables as tags

that will be replaced by actual user information. It’s unnecessarily to include them, but your user

will probably appreciate it if you do. You’ll find similar variables in the Welcome User Email (sends

out a welcome email to a user), as well as First Post, which defines the text for the initial post on

the website.

First Page, First Comment, and First Comment Author are all left blank. WordPress has default content

that it inserts into these spaces; however, your own entries here will trump WordPress. Finally,

First Comment URL is just the slug that’s associated with the first comment, and defaults to comment-1.

The last section of the Network Settings page contains Upload Settings and Menu Settings, and can be

seen in Figure 10.16.

Figure 10.16. Upload Settings and Menu Settings

The Media upload buttons checkbox options do nothing more than display the different icons that

provide a visual cue as to the different types of media that can be uploaded. However, if you have

played with the media upload and media library functionality within WordPress at any length, you

know that these buttons actually all go to the same upload screen, and what is far more important

is that Upload file types text box listed further on within the same section. The file types are based

upon the file extension associated with each file, and delineated from one another by a single space

between each one. While you can technically add new file types to your heart’s content, the ones

that are added by default are generally a pretty good indication of what is appropriate. If you value

having a running, non-compromised web server, do yourself a favor and try to stay away from .exe,

.doc, and .docx files as a rule of thumb.

Site upload space and Max upload file size are handy controls to pay attention to as well. Uploaded

files are almost always media files, and media files can get pretty big, eating up space on your web

server and slowing your system down. It’s generally considered a poor practice to expand either of

these values too high, or uncheck the Site upload space parameter altogether.

The WordPress Anthology234

Finally, Menu Settings deals solely with whether or not you want to allow site administrators the

ability to activate or deactivate plugins that have been approved for use and made available to indi-

vidual sites by network administrators. It’s important to note that site administrators never have

the ability to add, delete or modify plugins on their own, and this authority must instead be managed

strictly by a network administrator.

The Users Submenu
Well, that was a mouthful, huh? There really is a lot to Multisite, but the good news is that we’ve

covered the bulk of the menu options. From here on, the rest of the configurable options in the

Network Admin area are fairly self-explanatory, with the exception of a few items that are worth

pointing out. Let’s start by clicking on the All Users submenu item in the Users subpanel seen in

Figure 10.17.

Figure 10.17. Looking into All Users

In general, users look, act, and feel very similar to users within the context of a typical standalone

WordPress site. Aside from the notion of a network administrator (or super admin as denoted in

Figure 10.17), the roles are identical in the core installation. What is useful to point out, however,

is that users are not automatically added to every site, but rather are associated with individual sets

within the network. In the Users screen, columns exist that list all of the sites a particular user is

associated with, as well as the date that the user was initially registered on the network.

The Themes Submenu
The Themes subpanel predictably deals with themes that have been uploaded to the network. We’ve

already discussed themes in detail in the context of Multisite, but for a theme to be initially available

within any given network site, it must first be uploaded into the Themes subpanel by clicking on

the Add New submenu item in the menu, or at the top of the Themes listing page. Once installed,

any given theme can be network-enabled, which means that it’s available for use by default

throughout every site on the network. Themes that aren’t network-enabled can still be made available

235Multisite: Rolling Your Own Network

on a site by visiting the Themes tab of that site’s Edit Site: screen, accessible in the Sites > All Sites

listing.

For a more comprehensive discussion of themes within Multisite, refer back to the the section called

“Individual Network Site Settings” on the Themes tab of the Edit Site: screen earlier in this chapter.

The Plugins Submenu
In the context of Multisite, plugins are similar to themes in that they can be installed and network-

enabled, thus becoming available to site administrators throughout the network. The Plugins screen

can be seen in Figure 10.18.

Figure 10.18. Network plugins

By network-enabling a plugin, network administrators can effectively determine which plugins are

suitable for use within the network; however, it’s worth noting that not all plugins will work when

network-enabled. If a plugin is coded incorrectly, it can run into problems when used in conjunction

with Multisite.

It’s useful to note that just as they are with standard WordPress, must-use and drop-in plugins are

also available for use within Multisite, enabling the ability to force the use of specific plugins

throughout the network as well as the firing of specific scripts at specified times during the loading

of Multisite in general. For more information on these types of plugins, refer back to the section

called “Must-use Plugins” in Chapter 5 and the section called “Drop-in Plugins” in Chapter 5.

The Updates Submenu
Last but not least in the Network Admin area is the Updates subpanel. Arguably the most useful aspect

of Multisite in general, the functionality controlled in this subpanel is the figurative engine that

drives Multisite from a functional perspective. It’s also the main reason you might be interested in

The WordPress Anthology236

using it if you are looking to centralize the management of a multitude of WordPress sites rather

than attempting to build a community.

Updates is essentially a two-step process. Clicking on the Available Updates submenu item will list

all the available theme, plugin, and core WordPress updates that are available to be downloaded

and used. When you’re ready to make your upgrades, click on the Update Network submenu item

that will bring you to a screen with an Update Network button. This function works by calling the

update script of each site individually and automatically, so that the individual network sites update

themselves one by one.

As always, save yourself a headache and have some mechanism to back your sites up before you

touch this with a 10-foot pole.

Useful Plugins Within Multisite
We’ve covered the basics of Multisite functionality as included with core WordPress, but there are

several notable plugins that add useful functionality, making Multisite more relevant in the real

world. While not an exhaustive list by any stretch of the imagination, here’s a few that support

Multisite and are worth taking a look at:

WordPress MU Domain Mapping2

Allows users to map their subdomain or subdirectory network nomenclatures to specific domain

nomenclatures. In this way, you can take a specific domain and map it to any given network

site, permanently altering your root permalinks to reflect unique domain names instead of

subdomains or subdirectories.

Role Scoper3

Role Scoper is a killer plugin that allows you to extend user roles in many different ways. Aside

from giving you the ability to define groups and assign them specific roles, it also gives you the

opportunity to assign roles and restrictions to specific posts, pages, or categories.

Cimy User Extra Fields4

Cimy User Extra Fields allows you to create additional user fields to your heart’s content,

complete with form validation that’s configurable by an administrator to verify that fields are

all properly filled.

Troubleshooting Multisite
As we’ve previously mentioned, Multisite is a WordPress feature set that has recently been the

subject of a rapid evolutionary development cycle, and chances are that this will continue with

2 http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/
3 http://wordpress.org/extend/plugins/role-scoper/
4 http://wordpress.org/extend/plugins/cimy-user-extra-fields/

237Multisite: Rolling Your Own Network

http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/
http://wordpress.org/extend/plugins/role-scoper/
http://wordpress.org/extend/plugins/cimy-user-extra-fields/

new major WordPress releases. As a result, there are nuances worth paying attention to. While by

no means comprehensive, this next section should give you a general idea as to some of the more

common issues.

Enabling Multisite
While enabling Multisite is easy enough in an ideal environment, it’s not quite the painless, foolproof

process that installing WordPress is. We’ve already covered a few situations where enabling

Multisite is not possible, but there are several others. If you find yourself having issues, chances

are that one of these reasons may be the culprit, so you’ll need to circle the wagons and come up

with a different approach.

Multisite has no support on subdomains in instances where the WordPress URL is defined as:

■ localhost
■ IP address, as opposed to a domain name

Multisite is not supported in subdirectories in the following circumstances:

■ WordPress is installed on a non-Linux server that does not support .htaccess and mod_rewrite.

■ Due to issues with the way that the permalinking system is set up, a WordPress installation has

been set up for a time span that covers more than a single month (this is an issue that is slated

to be corrected in a subsequent release).

Routing Issues in Subdirectory Multisite Installations
The other place where we tend to see issues crop up as a result of Multisite in subdirectory install-

ations is in permalink routing collisions between the primary site hosting the network functionality

and the network site themselves. Let’s look at the two most common ones.

■ On the primary site, an extra taxonomy label of /blog/ is automatically created to avert routing

collisions in subdirectory Multisite installations. This only pertains to the category and post

structure, and not pages. However, if you create a page with a slug of blog on the main site, you’ll

find an issue where the page is superseded and fails to display due to the inherent permalink

collision. As of the time of writing, there is no solution for this permalinking collision issue,

aside from being aware of it and simply avoiding it.

■ We touched on this earlier within the chapter, but there’s also the issue of creating named pages

whose slugs are labelled identically to network sites within the installation. To avoid this issue,

be sure to manually add the individual slugs of pages within your primary site to the Banned

Names box in the Network Settings screen. This is accessible via Settings > Network Settings, and

will avoid the possibility of anybody using one of those names in the first place.

The WordPress Anthology238

You’re Multiskilled
Multisite enables you to consolidate the management of multiple WordPress sites into a single in-

stallation, and is an extremely useful tool that appeals to two primary user groups: people who

want to streamline the management of multiple WordPress sites, and people who are interested in

developing diverse communities of blogs the way Automattic maintains on wordpress.com.

Beginning its life as a separate project in the WordPress universe, Multisite was merged into the

WordPress core as of the major 3.0 release. While an incredibly feature-rich set of functionality,

Multisite is currently in a heavy stage of development as a core WordPress component, and is not

enabled by default in any given WordPress installation. However, if you are willing to roll up your

sleeves and get dirty with Multisite, its benefits are potentially extremely rewarding.

239Multisite: Rolling Your Own Network

Chapter11
Going Global with Themes and Plugins
With the worldwide success of WordPress, it's easy to understand why it's useful to be able to

seamlessly translate plugins, themes and WordPress itself into other languages. However, that

doesn't necessarily make it easily adopted, and for good reason. Localization (or internationalization,

as it is sometimes referred to) is not a new concept, nor is the notion of doing business internationally.

However, what we're beginning to see now amounts to a perfect storm for WordPress.

Initially a blogging platform popular among a niche of independent amateur journalists, WordPress’

growth has been fueled by its widespread adoption within the SME (small to medium-sized enter-

prises) market in the past few years. As of the time of writing, WordPress is being run by roughly

14.5% of all websites on the Internet, easily outpacing its closest competitors, Drupal and Joomla.

The reasons for this are varied:

■ Since the social media explosion of the late 2000s, being online has become a way of life for

professionals throughout the world. Online services and software that are functional and easy

to use have exploded in popularity, and WordPress is arguably the easiest CMS available to

nontech people.

■ WordPress is painfully easy to set up. Like many other CMSs, WordPress can be installed via a

one-click installer like Fantastico or SimpleScripts. However, if you want to install WordPress

manually, your time investment won’t be more than five minutes or so.

■ WordPress is incredibly flexible, as we’ve seen with plugins that are easy to use and install, es-

sentially future-proofing the system. This has caused the typically frugal SME market to gain

confidence and feel comfortable investing time and financial resources in WordPress websites.

■ We’re seeing a shift in the business climate, with many parts of the world decentralizing and

moving away from a typical corporate structure. This is fueling a more independent-thinking

SME market.

■ When properly set up and configured, WordPress has shown itself to be extremely attractive to

search engines, often gaining organic ranking with ease where other CMSs fail (more on this in

Chapter 12).

Understandably, localization has been the source of confusion for many a WordPress developer.

After all, we’re web developers, not linguistic experts, and it’s a lot easier to just apply labels to

fields in our programs in plain English. Plus, the idea of trying to figure out how to translate text

strings into other languages on our own (much less having somebody else do it for us) might induce

mild nausea in even seasoned developers who’ve never had the need or inclination to do so before.

But trust me, it’s really not all that bad, and it can significantly increase the usefulness as well as

the user base of your custom WordPress plugins and themes. Let’s break it down into bite-sized

pieces, starting with the foundations.

The Basics of Internationalization and Localization
Let’s examine that aforementioned development nausea just a bit. The way many of us learned to

code, keeping language considerations in mind when coding a PHP program was, at best, rather

academic. The majority of commercial coding projects have targeted scopes with defined audiences,

so it’s often been reasonable to assume we can proceed without regard to translation. However,

since WordPress plugins and themes ultimately become more functional when a user can employ

them in their own language, we need a systematic way to correct this issue.

Enter i18n—another fun acronym to tuck under your belt. Named for the fact that there are 18 letters

between the i and the n in the word internationalization, i18n describes the notion of creating

software systems that are designed to be translated into other languages. The process of actually

translating that software into a specific language is referred to as localization or L10n (can you guess

how many letters are between the L and the n in the word localization?).1 WordPress utilizes a

specific framework to handle i18n called GNU gettext—the de facto standard system that is used

in nearly all open-source software. GNU gettext is really just a library of PHP helper functions.

Since it is coded right into core, WordPress has the hooks necessary to allow you as a developer to

define text string variables in your themes and plugins, as well as a standardized system to provide

translations for each string in an unlimited number of languages.

1 The “L” in L10n is generally upper-cased to distinguish it from “i,” which, when upper-cased, looks almost exactly the

same.

The WordPress Anthology242

Anatomy of a Localization Process
In general terms, the localization process is fairly straightforward. Conceptually, there are three key

components to the process for either a theme or a plugin:

■ GNU gettext markers in your theme or plugin that tell WordPress which strings to translate

■ a function linking the markers in your theme or plugin to a file that provides a translation key

■ a file that provides a translation key, essentially creating a one-to-one relationship between

translatable strings, and what the translation should be for a given string

Let’s talk in a bit more detail as to what each of these three components do.

GNU gettext Markers Tell Which Strings to Translate
In this first component, we need to let WordPress know which strings we want to translate. This

is done directly in the output code of your theme or plugin by wrapping a specific string with a

PHP function that identifies the type of localization you want, and then running your original string

through a filter that will return the correct version. While there are an array of functions that exist

within gettext that allow you to define or output localized strings in different ways (you can see a

more thorough description of them in the Codex2), there are really only two localization functions

you’ll use the majority of the time:

__('string', $domain) This is a double underscore, and returns a localized string.

_e('string', $domain) This is an underscore “e” that prints out a localized string directly

to the browser.

Note that both __() and _e() take two parameters, a string and a domain. In this context, a domain

is strictly a unique identifier; the label that is attached to a specific translation file (many developers

commonly recommend that this be the unique plugin name). This relationship is defined in the

second component.

A Function Linking Markers to a File with a Translation Key
Secondly, within your theme or plugin, you’ll need to create a relationship between the strings you

want to translate and a translation file that provides a key for the string translation. This is done

using the PHP function load_theme_textdomain() for themes, or load_plugin_textdomain() for

plugins.

In the case of theme localization, you'll use load_theme_textdomain() in your functions.php file.

The function takes two parameters, which follows:

2 http://codex.wordpress.org/I18n_for_WordPress_Developers#Marking_Strings_for_Translation

243Going Global with Themes and Plugins

http://codex.wordpress.org/I18n_for_WordPress_Developers#Marking_Strings_for_Translation

load_theme_textdomain($domain, $path)

■ $domain: a unique identifier assigned to your custom translatable strings
■ $path: the path to your translation key file within the theme

Theme localization is connected to the WPLANG constant in wp-config.php, but we'll discuss this in

more detail in a bit.

Plugin localization works very similarly to theme localization, but with a few differences. Set

within the core PHP files of the i18n-enabled plugin, load_plugin_textdomain() takes three

parameters:

load_plugin_textdomain($domain, $abs_rel_path, $plugin_rel_path)

■ $domain: a unique identifier assigned to your custom translatable strings

■ $abs_rel_path: an optional, deprecated function as of WordPress 2.7, which you can default

to false or just omit—it’s nothing to worry about

■ $plugin_rel_path: the relative path to your translation key file. If you fail to define this path,

it will default to the root directory that the file is in. While this is by definition an optional

parameter, it’s best practice to keep your language translation files separate from your logic files,

so you’ll usually want to specify a value here.

In both these instances, $domain is the unique identifier that we referred to in the first component.

It serves only to define a relationship between the strings in the code that require translation, and

the third component, the translation key.

A File Providing a Translation Key
In this third component, GNU gettext offers us a systematic way of providing a mechanism to create

one-to-one string translation relationships between individual default strings and their respective

translations, and then feeding those various string translations to WordPress in an efficient manner.

This is done through .PO and .MO files.

A .PO file is a file that provides a human-readable and editable translation key for a specific language.

For instance, if your theme or plugin was written in English and you had translations readily

available for French, German, and Pirate English, you would have three corresponding .PO files—one

for each of the languages. When a specific string translation is made, it happens in this file.

While .PO files are human friendly and easily editable, they are not ideal for WordPress to use while

processing translation in practice. Instead, WordPress will use an .MO file for its actual translation.

.MO files are compiled files that can be automatically generated for you when you use helper tools

The WordPress Anthology244

like Poedit (see the section called “Introducing Poedit”). Each .PO file has a corresponding .MO file

that is updated each time the .PO file is updated.

The final file pertinent file type is the .POT file, or .PO Template file. A .POT file is an exact copy of

any of the .PO files in a localization instance, with the exception that it is void of any translations.

Making .POT files available to translators allows them to easily create translations for your themes

and plugins into their own native language using helper tools.

Putting the Pieces Together
So now that we know the main components in a localization process, let’s have a visual look at

how they work together in WordPress. Consider the diagram in Figure 11.1.

Figure 11.1. Localization in action

We’ll start with the program’s source code. When a browser initially moves to call a specific page,

the translation process is initiated when it recognizes the __() and _e() functions in the source

code wrapping text strings. WordPress recognizes these functions because GNU gettext is built into

its core, and automatically seeks to translate them. Your functions.php file has already been loaded

here, and WordPress is able to use the load_plugin_textdomain() or load_theme_textdomain()

functions in the functions.php file to identify and connect the strings to a library location (depicted

in Step 1 in Figure 11.1). load_plugin_textdomain() or load_theme_textdomain() then retrieve

the locale information from the WPLANG constant set in wp-config.php (Step 2 in Figure 11.1) and

retrieve the proper .MO file associated with the locale (Step 3 in the Figure 11.1). If the properly

245Going Global with Themes and Plugins

named .MO file exists, the functions output the translated strings to the browser (Step 4 in Fig-

ure 11.1). If a properly named .MO file does not exist, or for any strings that do not have translated

entries within the .MO file, the default verbiage is instead output to the browser. Finally, the .MO

file is a compiled version of a .PO file, which is human editable. Likewise, .PO files have template

files that allow translators to easily modify strings in your program into other languages.

Now let’s dig a little deeper and take a look at some real code, shall we?

Localizing a Theme
When you are localizing a theme, you’ll usually only be addressing text strings that appear in dif-

ferent places of your theme. Let’s have a look at some basic HTML code that has a few strings in it:

chapter_11/html-unlocalized-example1.php

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Localization Sample</title>
</head>

<body>
 <p>My name is Mick.</p>
 <p>I have a dog named Lacie.</p>
 <p>My dog's name is Lacie, but we call her Bug.</p>
 <p>Sometimes, we call her Buggers.</p>
 <p>Lacie has a black coat.</p>

</body>
</html>

Not much to see here, really. We just have five different strings of text entered into an HTML docu-

ment in a pretty generic way. However, we can localize this page by simply wrapping each of the

strings with the _e() function:

chapter_11/html-localization-example1.php

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Localization Sample</title>
</head>

<body>
 <p><?php _e('My name is Mick.', 'our-very-unique-domain'); ?></p>
 <p><?php _e('I have a dog named Lacie.', 'our-very-unique-domain'); ?></p>

The WordPress Anthology246

 <p><?php _e('My dog\'s name is Lacie, but we call her Bug.',➥

 'our-very-unique-domain'); ?></p>
 <p><?php _e('Sometimes, we call her Buggers.', 'our-very-unique-domain');➥

 ?></p>
 <p><?php _e('Lacie has a black coat.', 'our-very-unique-domain'); ?></p>

</body>
</html>

This is a bit more interesting now. We’ve wrapped each text string with _e() and set our textdomain

constant for the localization. Note that we use a constant called our-very-unique-domain. It really

doesn’t matter what you call this domain so long as it’s unique to you, and that you initialize the

relationship with the same unique name.

Be Consistent

You absolutely must use the same domain throughout the context of your theme or plugin in order

for the localization process to work. Mismatched names will break the link, causing the translation

to not work correctly (or at all).

How do we initialize the relationship within functions.php? Let's look at the code:

chapter_11/initialize-functions-dot-php-localization.php

<?php
load_theme_textdomain('our-very-unique-domain', TEMPLATEPATH.'/languages');

$locale = get_locale();
$locale_file = TEMPLATEPATH."/languages/$locale.php";
if (is_readable($locale_file))
 require_once($locale_file);
?>

As you can see, on line one we’ve fired up load_theme_textdomain() and specified that our language

translation files will live in the languages folder of our theme. So far, so good, but now we see bunch

of stuff that talks about locale. Theme localization depends on the WPLANG constant in wp-config.php

that defines the locale. The locale is a combination of both a country and a language code specified

by the GNU gettext framework—you can look up country and language abbreviations in the gettext

manual3. Open up your wp-config.php file and look to see if you have a custom WordPress locale

defined; if you don’t, go ahead and define it now. For example, if you are using German as the main

language for your site, you would see (or manually add) a line in your wp-config.php file like this:

define ('WPLANG', 'de_DE');

3 http://www.gnu.org/software/gettext/manual/

247Going Global with Themes and Plugins

http://www.gnu.org/software/gettext/manual/
http://www.gnu.org/software/gettext/manual/

With the WordPress locale set, (in this case de_DE), our code above will now seek to find a German

localization file called de_DE.mo in the languages directory of our theme. Therefore, the files in our

sample theme directory might ultimately have a structure that looks like Figure 11.2.

Figure 11.2. Theme-localized file structure

Localizing a Plugin
Localizing a plugin is similar to localizing a theme. Let’s take it from the top by looking at a simple

plugin that is yet to be localized:

chapter_11/plugin-unlocalized-example1.php

<?php
/*
Plugin Name: Our Sample Plugin
Plugin URI: http://www.sitepoint.com/our-sample-plugin
Description: Sample localization code demonstration
Version: 1
Author: Mick Olinik
Author URI: http://www.sitepoint.com
License: GPL2
*/

add_action('init', 'olin_osp_init');
function olin_osp_init() {
 add_action('admin_menu', 'olin_osp_menu');
}

function olin_osp_menu() {
 add_options_page('Our Sample Plugin Options', 'Our Sample Plugin',➥

 'manage_options', 'our-sample-plugin', 'olin_osp_settings');
}

function olin_osp_settings() {
?>
<div class='wrapper'>
 <h1>Our Sample Plugin Settings</h1>
 <!-- Imagine there is some really exciting functionality happening here -->

The WordPress Anthology248

</div>
<?php
}
?>

Again, there’s little to see here. We’re simply registering our plugin with WordPress, creating an

Admin menu for our users, and then adding an Admin page to modify the settings of our sample

plugin. However, when we move to localize the plugin, we’ll want to make some key changes. Let’s

look at the same plugin with correctly localized code:

chapter_11/plugin-localization-example1.php

<?php
/*
Plugin Name: Our Sample Plugin
Plugin URI: http://www.sitepoint.com/our-sample-plugin
Description: Sample localization code demonstration
Version: 1
Author: Mick Olinik
Author URI: http://www.sitepoint.com
License: GPL2
*/

add_action('init', 'olin_osp_init');
function olin_osp_init() {
 add_action('admin_menu', 'olin_osp_init');
 load_plugin_textdomain('our-very-unique-domain', false, dirname➥

 (plugin_basename(__FILE__)) . '/languages/');
}

function olin_osp_menu() {
 add_options_page(sprintf(__('%s Options', 'our-very-unique-domain'),➥

 'Our Sample Plugin'), 'Our Sample Plugin', 'manage_options',➥

 'our-sample-plugin', 'olin_osp_settings');
}

function olin_osp_settings() {
?>
<div class='wrapper'>
 <h1><?php _e('Our Sample Plugin Settings', 'our-very-unique-domain'); ?>
 </h1>
 <!-- Imagine there is some really exciting functionality happening here -->
</div>
<?php
}
?>

Our first task is to initialize the localization, and it’s conceptually the same for plugins as it is for

themes. In the init action we are using within our plugin, we’ll add the load_plugin_textdomain()

249Going Global with Themes and Plugins

function. As you can see, we’re identifying our unique textdomain as well as the location of the

translation files—in this case the languages folder within the plugin. Then, we can go about our

business as usual preparing strings to be localized within our code, just as in the case of themes.

The files for Our Sample Plugin might ultimately look like Figure 11.3.

Figure 11.3. Plugin localization file structure

A Word on .MO File Nomenclature
In looking at Figure 11.3, you may notice that the nomenclature for our .MO files has changed

within a plugin as opposed to how we labeled it in our theme. When looking for compiled .MO

translation files, WordPress looks for a different syntax for theme localizations than it does for

plugin localizations. With theme localizations, you’ll want to name your .MO file in the format of

locale.mo. For example, in translating your theme to German, your theme translation file in the

languages directory within your theme should be named de_DE.mo. On the other hand, if you’re

localizing a plugin, WordPress will seek the translation file in your specified languages directory

within your plugin in the format of pluginname-locale.mo. In this instance, the plugin name corres-

ponds directly to the textdomain you assigned to the localization in your plugin. Keeping with the

previous examples, our translation file would thus be named our-very-unique-domain-de_DE.mo if

we were translating that plugin into German.

Introducing Poedit
Poedit is a popular open-source tool that you can download and install on your Windows, Apple,

or Linux computer to help you create and maintain all the files you’ll need. Poedit will automatically

sort through all the source code you have in your plugin or theme, and return all strings that you’ve

defined to be localizable through the _e() or __() functions. Then, it’s just a matter of going through

each string and providing a translation for a specific language. Let’s get started by downloading

and installing Poedit.4

4 http://www.poedit.net/download.php

The WordPress Anthology250

http://www.poedit.net/download.php

Creating a .POT File
To localize our own plugin or theme, we’ll need to create a .POT file. To refresh your memory, a

.POT file is just a .PO file that doesn’t have any definitions—it merely defines the strings that need

to be translated. By default, Poedit looks for .POT files to open and work off of when a translator

first seeks to localize our code, but since we don't have one yet we’ll need to make it first. To do

this, fire up Poedit, click File and then select New catalog as in Figure 11.4.

Figure 11.4. Creating a new catalog in Poedit

When creating a new catalog, the first place you’ll be brought to is the Project info tab, as seen in

Figure 11.5. You can fill this in as completely as you like, but all that is really required is to give

our new catalog a project name. Give it a name, and then click on the Paths tab.

251Going Global with Themes and Plugins

Figure 11.5. Project info in Poedit

Now we need to create the path to our translation file. This path is relative to the file or files being

translated. Since we consider it best practice to create a separate directory for your language trans-

lations, we prefer adding ../ for the path as we’ve done in Figure 11.6. Once you have your path set,

click the Keywords tab to continue on.

The WordPress Anthology252

Figure 11.6. Defining a path in Poedit

In the Keywords tab, we need only to define the GNU gettext elements that we used to prepare our

strings for localization within our code. Again, __ and _e are the most common gettext functions

that are used, but if you happened to use _n, _x, or any other gettext functions, you will need to

define them all here. It’s good to remove the functions you don't need, and so we'll remove each of

the functions we’re not using, as in Figure 11.7.

253Going Global with Themes and Plugins

Figure 11.7. Configuring keywords in Poedit

This is a standard Keywords configuration that will suit the purposes of our discussion very well.

We’ve added only __ and _e because these are the functions being called in our code. Make your

additions and then click OK, as shown in Figure 11.8.

The WordPress Anthology254

Figure 11.8. Adding keywords in Poedit

Upon clicking OK, we’ll be prompted to save our configuration as a new .PO file. Before you save

your file, be sure to navigate to the correct location according to what you set in the Paths tab of

your catalog. Poedit will use the location you save your file to as a point of reference when it searches

for the files to which you’ve added your localization strings. In our example, we’ve added a path

of ../, so we’ll want to save the new .PO file in a subdirectory where our files are located. While any

subdirectory will do, it’s best to be descriptive by using labels such as languages or lang. Save the

.PO file with a name appropriate to your purpose. Just to be creative, we used appropriate-name.po,

as you can see in Figure 11.9.

255Going Global with Themes and Plugins

Figure 11.9. Creating a new .PO file in Poedit

Upon saving the file, Poedit uses the path parameter that you set to find and index any files it sees.

At this point, Poedit checks all of the files available against the list of gettext functions you defined

in the Keywords tab and returns a list of translatable strings to you. Figure 11.10 shows a short list

of strings revolving around me (Mick Olinik) and my dog, Lacie. Click OK, and you have a blank

.PO file with a few string definitions.

The WordPress Anthology256

Figure 11.10. Translatable strings in Poedit

This is the tricky part—and essential for creating a .POT file with Poedit. Before you do anything

else here, save the file a second time. The reason this is necessary is that when Poedit initially

creates the .PO file, it saves the file first and then imports the translatable strings. If you fail to save

the file a second time and close it, you'll end up with a blank .PO file that has no translatable strings,

thus defeating the purpose. Once you save your .PO file a second time as in Figure 11.11 (with your

translatable strings added), close the file and quit Poedit. Don't worry—we’ll be right back.

257Going Global with Themes and Plugins

Figure 11.11. Saving the file a second time

Now navigate to your directory structure where you’ve saved your .PO file. You’ll notice you actually

have two files available: a .PO file that you created, and an .MO file that Poedit automatically compiled

for you when you saved the .PO file. Because we first want to create a template file, we don’t need

the .MO file—go ahead and delete it. Then, just rename the .PO file to a .POT file. When you’re done,

you’ll end up with just one .POT file in your languages directory as highlighted by the arrow in

Figure 11.12.

The WordPress Anthology258

Figure 11.12. .POT file in Poedit

Translating Our .POT File
If all you are aiming to do is to set up your theme or plugin so that it can be easily localized by

others, congratulations! At this point, you are all set, and you can move on with your life. So long

as you include your shiny new .POT file in the correct directory, anybody will be able to work with

and translate your theme or plugin into an infinite number of languages. That said, let’s assume

you want to actually do a few translations. Get started by firing Poedit back up and instead of select-

ing New catalog, select New catalog from POT file, as in Figure 11.13.

259Going Global with Themes and Plugins

Figure 11.13. Creating a new catalog from .POT file

Go ahead and find the .POT file you just created, open it, and then click OK to the subsequent catalog

settings (they are the exact same ones you set yourself). Poedit will then ask you what you’d like

to save your new .PO file as. Give it an appropriate name and save it as shown in Figure 11.14.

The WordPress Anthology260

Figure 11.14. Saving your new .PO files

It’s clear sailing from here on. Just click on the string you’d like to translate in Poedit, and type a

translation into the box on the bottom of the Poedit window as shown in Figure 11.15.

261Going Global with Themes and Plugins

Figure 11.15. Translating your strings

We’ll wash, rinse, and repeat this procedure until all the strings have been translated. Editing strings

is just as easy … click on the string you want to edit, as in Figure 11.16, and make your modifications.

Remember, each time you save a .PO file, a new .MO file will be compiled for you. It is the .MO

file—not the .PO file—that WordPress will actually use when doing translations.

The WordPress Anthology262

Figure 11.16. Translations for all our strings

Another Way to Generate a .POT File
Tools like Poedit are really useful, but if you are planning on submitting your plugin to the Wordpress

Plugin Directory, there’s an easier way to create a .POT file. Instead of going through all the hassle

involved in saving and resaving a file in Poedit, you can choose to have your .POT file created

automatically after your plugin has been accepted into the directory. Simply log in as an adminis-

trator for your plugin, and click the Get POT button underneath Committers, and a .POT file will be

generated for you to download. Since this is only useful if you’re submitting your plugin to the

directory, we’ve included it here, as seen in Figure 11.17, as an extra way to get the job done, not

the only way.

263Going Global with Themes and Plugins

Figure 11.17. Plugin Admin screen showing a Get POT button

Is There an Easier Way Than Localization?
Funny you should ask that. There’s a pretty cool tool that’s been in development for some time now

called WPML.5 It’s a premium plugin and well worth the investment. WPML greatly reduces the

amount of time and effort it takes to localize your theme or plugin, at least within the context of a

single website. All you need to do is identify your localization strings properly within your plugin

or your theme by wrapping them in __() or _e() tags. Once you make your string identifications,

WPML takes over, eliminating the hassle of setting up .PO, .MO and .POT files and sorting out how

to add them to your files and themes.

When you initially run WPML on your WordPress site, WPML acts like Poedit and scans through

all your theme and plugin files in search of translatable strings. Upon creating a list of strings,

WPML asks which languages the website should be translatable to and automatically creates the

5 http://wpml.org

The WordPress Anthology264

http://wpml.org

necessary .PO and .MO files needed to support each. After that, WPML provides a really slick interface

inside the WordPress backend that gives you options to translate strings as well as whole posts and

pages. Even better, it creates unique, translated permalinks so that your posts and pages can be in-

dexed in multiple languages by default! Finally, WPML integrates a translator management system.

This lets you hire professional translators to do translation work directly on your site. Alternately,

you can use WPML’s management system to assign specific members of your own staff to do

translation in a particular language.

Of course, WPML isn’t the only game in town; as with most types of functionality in WordPress,

there are several other plugins that you can use to accomplish the same purpose. At the time of this

writing, the biggest competitor to WPML is qTranslate,6 and it has quite a solid following. While

we won’t get into a feature comparison of the two, qTranslate is worth looking into, and is the

translation plugin of choice for several popular plugins such as Google XML Sitemaps, which has

released a specialized version to work with qTranslate, aptly named Google XML Sitemaps With

qTranslate Support.

Installing WordPress in Your Own Language
So far we’ve discussed localizing themes and plugins in detail, but what if that’s more than you’re

looking for, and you instead want to know how to install WordPress itself in a different language?

After all, it’s good to be able to localize themes and plugins, but it sure would be useful if we could

make WordPress display in the language of our choosing, right? Well, there’s a good reason that

we’ve waited until now to talk about this, as we’ll be able to utilize the localization concepts we’ve

already covered to help it all make sense.

Thanks to the widespread use of WordPress across the globe, WordPress has already been translated

into many languages for you, so you don’t have to mess around with the heavy lifting. For your

convenience, a complete listing of available languages and links to their repositories is available

within the WordPress Codex.7 As for installing the language of your choice, you can either install

it manually, or you can look to see if the language translation team has a separate set of instructions

that may be easier to work with (in some instances, you may be able to install WordPress with your

preferred language already loaded and preconfigured). For our purposes here, we’ll show you how

to do it manually from a regular old English installation:

1. Download the .MO file for your language of choice. Again, you can find links to these files in the

Codex.8

2. Next, open up your wp-config.php file in a text editor and locate define('WPLANG', '');, replacing

the second parameter with the extension defined by your .MO file. For instance, if you were

6 http://www.qianqin.de/qtranslate/
7 http://codex.WordPress.org/WordPress_in_Your_Language
8 http://codex.WordPress.org/WordPress_in_Your_Language

265Going Global with Themes and Plugins

http://www.qianqin.de/qtranslate/
http://codex.WordPress.org/WordPress_in_Your_Language
http://codex.WordPress.org/WordPress_in_Your_Language

looking to use the British variant of English and downloaded the en-GB.mo file, you’d change

this to define ('WPLANG', 'en-GB');. Conversely, if you were looking to translate WordPress

to German and downloaded the de_DE.mo translation file, you’d change the line to read define

('WPLANG', 'de_DE');.

3. Once you have modified your define ('WPLANG', ''); appropriately, save wp-config.php.

4. Now navigate to either wp-content or wp-includes and create a new folder called languages. So

long as you create the languages directory in one of these two locations, WordPress will recognize

it and look for your translation file there. Can you take a wild guess at what comes next?

5. If you guessed that we’ll need to add our .MO translation file to the languages folder, congratula-

tions—you win the gold star!

That’s all there is to it. Next time you log in to your WordPress admin area, you’ll find it all pretty

and new in the language you’ve enabled. Very cool stuff!

World Tour Complete
With WordPress’s continued increase in popularity and representation throughout the world, you’re

fooling yourself as a developer if you don’t consider localization in everything you create for and

with WordPress. In this chapter, we’ve touched on several aspects of localization, including:

■ why localization is now more important than it ever has been, and why you should care

■ the difference between internationalization and localization

■ an explanation of how the process works, in theory as well as in practice

■ a description of the three main types of files you’re going to deal with in the process: .MO, .PO,

and .POT files

■ a detailed breakdown of how to use Poedit to create .POT files

■ a walk-through of how to translate text strings with Poedit and save them as your own .PO files

■ a description of plugins that can be used to help the localization process in your WordPress

sites

■ an overview of the process involved in running WordPress in languages other than English

With the global market we now have available to us, it’ll be fun to dig into marketing and search

engine optimization with WordPress in our next chapter. After all, we have so many new locations

to explore!

The WordPress Anthology266

Chapter12
SEO, Marketing, and Goal Conversion
Since the inception of the World Wide Web in the mid 1990s, search engine marketing has often

proved to be a confusing, expensive, frustrating, and ultimately disappointing endeavor for many

web developers, search engine marketers, and business owners. While well-intentioned developers

and search engine marketers have done their best to provide solid onsite and offsite search engine

optimization (SEO) solutions to business owners, results have been sporadically successful, frequently

poor, or entirely nonexistent. It’s a problem that has perpetuated itself repeatedly over the course

of the history of the Web, creating a quagmire of frustration among business owners and developers

alike. So why has it been so difficult to find a reliable solution?

Why SEO Is So Difficult
A qualified search engine professional would be able to talk to you for hours explaining why search

engine optimization and marketing services have historically been hit-or-miss, but we’ll boil it

down for you.

SEO Is a Moving Target
SEO is really all about gaining organic search rankings (naturally occurring, “free” rankings gained

for a specific keyword) in search engines like Google (and henceforth in this chapter, we’ll just refer

to all of these engines as “Google”.) Google uses numerical formulae called algorithms to compute

the relevance (and hence the ranking) of any given web page publicly available on the Web. What’s

pertinent to realize here is that Google is a private company; while its public image tends to be

rather altruistic, its existence is predicated upon exactly one motive: making money. Google does

this by ensuring its users receive the most relevant results possible to any given query based upon

an extremely complex set of criteria. If you follow the logic through, the more relevant the search

results, the more trusted Google becomes and hence the more commercially valuable advertisement

space is on its SERPs, or Search Engine Results Pages. Therefore, when Google identifies a way to

hone its search algorithms to provide results that are more relevant to its users, it’s financially in-

duced to make the relevant refinement. And Google is very good at identifying and implementing

refinements. Because of this, SEO tactics that worked on a given website last month or last week

may not necessarily work today, and what works today will almost certainly not be as effective in

the future.

The Google Search Algorithm Is Private
Here’s where the real fun starts. While it’s totally understandable that Google would do everything

in its power to increase the financial value of its primary asset in search relevancy, it’s also obvious

that ranking very high in those search results for a specific set of keywords is extremely valuable

for our clients as well (after all, isn’t that why you are even reading this chapter?). The financial

rewards associated with ranking on the first page for lucrative keywords can be astounding and

literally make or break the economic success of many different types of business. It’s because of

this indisputable fact that the search engine marketing industry exists at all, and the volume of

money in play within the marketplace has driven the industry to become fiercely competitive.

Early on in the search engine marketing game, the methodology that search engines used to rank

web pages wasn’t necessarily a closely guarded secret, even if they weren’t officially made public.

Engines that lacked manual submission and ranking processes by definition relied on a formulaic

algorithm that could be easily manipulated if you understood the weighting of the formula. This

resulted in the development of black-hat search engine techniques that were specifically designed

to trick search engines into providing higher rankings for specific web pages by unfairly stacking

the deck in their own favor through continued exploitation of various search engine algorithms.

As a direct result of this threat, search engines such as Google began to closely guard the secrecy

of their algorithms, and now rarely provide straight answers as to the weight of the relevancy

granted to any given factor of the equation—or whether something is, indeed, a factor at all. The

search engines securing the privacy of their search algorithms, combined with frequently modifying

their makeup has been a massive win for the consumer; returning highly relevant search results

makes the Web a more useful tool for users across the globe. However, it’s also introduced and

perpetuated a cloudy haze concerning exactly how you go about achieving high rankings for any

given web page. This ever-lingering mystery is the root of much of the confusion and consternation

associated with search engine optimization and marketing.

The WordPress Anthology268

Shades of Gray

The notion of black-hat tactics has over time come to refer to the negative end of the appropriateness

and legality of all common search engine marketing techniques, with obviously clean and appropriate

techniques being labeled white-hat, and techniques that fall somewhere in the middle of appropriate

and shady acquiring the moniker of gray-hat.

Sharks Patrol These Waters
As consumers in the Information Age, we have come to expect and demand answers to the most

pressing of questions at the drop of a hat. After all, anybody can “google” something and instantly

have dozens of answers at their fingertips.1 Sure, those answers are often entirely wrong, but it’s

easy enough to read through the results to gain an understanding of what something means.

The problem is that because Google doesn’t actually publish its search algorithm (and for good

reason), no concrete answer exists to the question of how to give a web page a high ranking for a

particular keyword. Because of the ambiguity inherent in the marketplace, search engine marketers

are forced to operate with a measure of conjecture when working with clients, and this conjecture

opens the door to unscrupulous behavior. While not all search engine marketers engage in this type

of behavior, there is certainly a subset of organizations and individuals within the profession that

use black hat and gray hat techniques to attempt to game the system and unfairly acquire high

rankings for their customers. Even more prevalent are those who play upon the inherent ambiguity

of the system to sell entirely inaccurate information to unknowing individuals for their own personal

gain. These unsavory types have combined to disseminate information throughout the marketplace

that is often inaccurate, out-of-date, and just plain wrong.

The good news is that while there is no specific formula you can just plug into that will guarantee

you 100% success with your search engine marketing endeavors, there are fundamental principles

you can implement and consistently rely on that will serve you well and provide you with useful,

targeted website traffic.

Websites Are Poorly Coded
Search engine optimization (or SEO) is defined as the set of actions you can implement structurally

within the code of your website to boost your organic search engine rankings. SEO focuses on the

on-page characteristics that affect your organic rankings in the SERPs. Simply put, there are a lot

of poorly coded websites out there from an SEO perspective, and many are websites that organizations

have paid substantial sums of money for.

1 It says something about Google’s ubiquitousness that searching for information online has come to be accepted as simply

“googling.”

269SEO, Marketing, and Goal Conversion

While very beautiful to look at with sleek, creative navigation favored by many, Flash-based websites

are obvious examples of poorly coded sites from an SEO standpoint because they almost always

have their content locked into a single file with no hope of anything being indexed by engines.

However, with Flash sites becoming less popular due to the lack of Flash support on many mobile

devices, websites that instead simply lack the proper coding elements implemented in a systematic

way have become the more common issue. What’s sad is that, aside from lack of education, there’s

really no excuse to be delivering websites that are not suitably optimized, and yet it’s more often

the rule than the exception. Luckily for you, the bulk of this chapter will cover these on-page op-

timization principles.

There’s a Difference Between SEO and SEM
Let’s be honest here: much like graphic design, web development is a relatively easy field to enter

for aspiring professionals. If you’re looking to get started professionally in the industry, there are

many tools available (WordPress being one of them) to help you with the more technical aspects

of development. Clients, however, usually can’t comprehend the difference between those just

starting out and more seasoned professionals with a higher level of expertise; they just look to the

developers they’ve hired to build the site and “ensure it ranks on the first page of Google.”

This can lead to a situation where the client is leaning on a developer for expertise, and the developer

simply doesn’t know what they don’t know. It’s for this reason that the terms search engine optim-

ization and search engine marketing are typically interchanged as if they are the same—but guess

what … they aren’t!

While search engine optimization handles the on-page aspects that relate to site rankings, search

engine marketing (or SEM) can be defined as the set of techniques you can employ outside the

context of your site to increase the ranking of a given web page. Search engine marketing is all about

creating quality backlinks to websites, and employing Pay-Per-Click (PPC) and AdWords campaigns,2

placing banner ads, employing remarketing services (where a site displays ads to users who’ve

visited previously), and utilizing a score of other available techniques to drive traffic to a given

page. Aside from recognizing that SEO and SEM are different sides of the same coin, the distinction

is that while SEO is something you can simply do one time on your website (and quite effectively

if you create a systematic approach for subsequent content to automatically be properly SEO’d

while it’s being added to a site), SEM is an ongoing marketing process which will have no definitive

end and requires a decent budget to do well.

SEO and SEM Require a Team Effort
A healthy search engine marketing budget is all well and good, but many a frustrated business

owner will tell you that they’ve spent far more money than they’d care to admit on PPC, AdWords,

banner ads, and any number of techniques that have been promised to be the right solution. These

2 http://www.google.com/adwords

The WordPress Anthology270

http://www.google.com/adwords

business owners have probably even been patient—as many developers and marketers preach—but

still see inadequate results, and find themselves hemorrhaging time, money, and sanity just by

trying to coax people to their website. The reasons for these types of issues are varied: incomplete

research, poor websites, inadequate search engine marketing campaigns, a lack of interest in the

product or topic in general, or more usually a combination of these factors. However, when you

initiate a search engine marketing campaign, it’s crucial to recognize that its success or failure de-

pends on the overall quality of the on-page SEO that you’ve set up throughout your website. Without

these two distinct components coordinating to convey the same message, it’s of little consequence

how well each one is done; your website’s rankings won’t be going anywhere useful anytime soon.

To help explain the relationship between on-page and off-site optimization, let’s examine a quick

analogy to help us illustrate the interactions the two of them have. Visualize yourself standing on

a beach with two kites, one of which is absolutely top-of-the-line, aerodynamic, light, and built to

collect and utilize wind in the most efficient way possible, maximizing its potential for flight. The

second kite, on the other hand, is literally a brick attached to a paper airplane that you tied a string

around and proudly decided to attempt to fly. If we were to set both kites down on the sand and

observe, we’d likely find that while we may not have much control as to the direction it’s headed,

the well-crafted kite would naturally be picked up by even a light wind and go somewhere on its

own. The brick-on-a-string, however, would sit in the sand without a hope of meaningful flight.

It should be fairly obvious here that we’re drawing a correlation between a kite’s aerodynamic ca-

pacity with the quality of a web page’s on-page SEO. Furthermore, a web page with content that’s

actually in demand will be afforded a basic level of organic search engine ranking for relevant

keyword searches—even if that doesn’t necessarily place it on the first page of Google. So where

does search engine marketing fit in? Well, if a kite’s already up and flying on the wind that’s naturally

blowing in off the ocean, search engine marketing works to artificially crank that wind up a notch

or two. When harnessed and wielded by a skilled search engine marketer, that kite can use the extra

wind to fly higher and do all sorts of precise tricks to yield specific results. In this way, effective

search engine marketing can enhance properly set-up websites, turning them into profit centers for

business.

Sadly, our brick-on-a-string is still out of luck, and no amount of wind short of a hurricane is likely

to move it so much as an inch. Even when it does, it’s just as likely to become buried in the sand

as it is to take flight in any reasonable way, and control is something that you can just forget about.

The point here is that without solid on-page SEO, successful search engine marketing campaigns

are inherently doomed from the start. In this way, WordPress itself won’t win you rankings on the

first page of Google, but when properly implemented will at least give you the aerodynamic kite

you need to have a fighting chance.

271SEO, Marketing, and Goal Conversion

What’s it all about anyway?
The urgency that website developers and business owners feel in driving as much traffic to their

websites as possible badly misses the point. Getting traffic is nice, and receiving a large quantity

of traffic is to be proud of, but regardless of the amount of traffic you drive to your website, it’s a

high goal conversion rate that is genuinely sexy.

But doesn’t everybody want millions of unique visitors on their website? Yes, but what’s vital to

understand is that when business owners say they want traffic, they usually mean they want money.

After all, unless you are building a site for altruistic purposes, it’s more useful to have only a few

hundred people visit your site who actually do what you want them to do, than a few thousand

show up who promptly leave without doing anything at all. This means that every page on your

website has to have a concrete purpose, and not just a generalized “save-the-world” kind of purpose

akin to corporate mission statements; it needs to be specific, measurable, and real. We’ll call them

goals.

A website with a high goal conversion rate is one that convinces its users to take the action it want

them to take. It’s the dirty little secret that so many professionals miss, which ultimately creates

the defining difference between a successful and unsuccessful website development project.

We’ll cover goal conversion further on in this chapter, but as this is a book about WordPress, we’ll

focus more on SEO as it relates to WordPress, rather than SEM and goal conversion in general. (For

those interested in the latter, SitePoint has published The SEO Business Guide,3 which gives a good

overview of this subject.) Search engine marketing is a complex field whose best professionals are

often not advanced programmers, in the same way that expert coders are not typically entirely up

to speed with the intricacies of the latest Google algorithm updates and modifications. Let’s focus

on being the best WordPress developers that we can be.

The Big Three Fundamental SEO Components
Now that we have a basic understanding as to why generating search engine rankings and traffic is

a little touch-and-go, let’s see how we can tune up WordPress and make it a veritable search engine

optimization workhorse for us. While there are lots of tweaks you can do to fine-tune your website’s

performance, there are what we’ll refer to as the Big Three primary SEO components.

The Big Three fundamental SEO components are:

■ semantic permalinking
■ proper <meta> tag and <title> tag inclusion
■ proper <header> tag structure and implementation

3 http://www.sitepoint.com/kits/seo-business-guide/

The WordPress Anthology272

http://www.sitepoint.com/kits/seo-business-guide/

As long as you pay attention to these Big Three SEO components and keep in mind that absolutely

nothing is a substitute for quality, relevant content that’s actually of interest to your visitors, you’ll

be sitting pretty regardless of what SEM strategy you choose to move forward with. We’ll discuss

the importance of relevant content further on in this chapter, but for the time being understand that

it simply makes no difference how well you optimize your web page content if nobody is interested

in reading it anyway. Therefore, it’s vital that you make sure there’s an audience who is genuinely

interested in what you have to say on a particular topic before you invest any time authoring and

optimizing it. With that said, let’s now look at the Big Three in depth.

Semantic Permalinking
The importance of semantic permalinking cannot be overstated, and yet it is one of the most over-

looked and underutilized aspects of basic search engine optimization. As we all know, each web

page on the Internet has its own web address (or URL), and that URL can take a lot of different

forms. The permanent form of this link is called a permalink. When we talk about semantic

permalinking, we are talking about the extent to which that permalink is semantic; that is, the extent

to which the permalink describes that content that exists on the page. To illustrate the point, let’s

look at a few examples of possible links to a page that discusses the biography and resume of Dr.

Marco, a member of the antelope veterinarian team at a large animal hospital named Esquandolas.

There are a lot of ways that the URL for this link could be constructed, some of which are more se-

mantic than others.

Example 1: http://www.esquandolas.com/index.php?p=311

This link is not semantic at all. Sure, we have the name of the animal hospital in the domain name

itself, but it gives us no indication as to what is actually on the page, and the domain itself gives

no reference to an animal hospital. The domain issue is a common one and not that big of a deal,

but you can rest assured that taken as a whole the URL lacks meaning for either a human reading

it or a search engine spider looking to index it. Overall, it’s a very poor choice for SEO purposes,

providing almost no SEO value whatsoever.

Example 2: http://www.esquandolas.com/about.html

Although it’s uncommon to use this type of a link with WordPress (although it is possible by using

the permalink rule /%postname%.html), it’s a typical format for many websites. While this link is

a touch more semantic in that it tells us this is “about” whatever is on esquandolas.com, both humans

and search engines are still left wondering exactly what that might be. After all, unless you happen

to know that esquandolas.com is an animal hospital, this will mean little to you, and trust us—Google

won’t necessarily know by looking at the URL either.

Example 3: http://www.esquandolas.com/about-dr-marco

273SEO, Marketing, and Goal Conversion

All right, this is more semantic, but still has much room for improvement. While we’re yet to

comprehend what esquandolas.com is all about, we do know that this page is designed to be some

form of biography on a doctor named Dr. Marco. This is enough to give both humans and search

engines some clue as to what’s on the page, but we could still do better. Let’s see how …

Example 4: http://www.esquandolas.com/veterinary-staff/antelope-specialists/about-dr-marco

Bingo! Here we have a very semantic link. We now can tell that esquandolas.com has veterinary

staff, of which some are antelope specialists. It’s easy then to deduce that we must be talking about

a sizeable animal hospital of sorts, or some type of large animal breeding center. We also know that

the page in question will be about Dr. Marco, an antelope specialist on the veterinary staff at esquan-

dolas.com. In other words, both humans and search engines can reasonably infer what the content

of the page in question is just by looking at the link. If you get this portion of your SEO correct, you

have a great base to work with in your SEO endeavors.

We’ve already discussed actually setting up your semantic permalinking in WordPress, but to review,

you can navigate to Settings > Permalinks to create the basic permalinking rules for the built-in posts

and categories system, as well as tags. Managing these options will create the permalinking structures

that your posts will ultimately be attached to, with each post being differentiated by their unique

slug—which is appended to the end of the permalink structure. A slug is typically a URL-friendly

version of a post’s title, but you can customize it to be anything you like. Therefore, if the permalink

structure on the site previous was /%category%/%postname%/ as in Figure 12.1, the permalink

for a post entitled What is a band without saxophone? might look like

http://www.esquandolas.com/featured-news/what-is-a-band-without-saxophone/, where

featured-news is the category and what-is-a-band-without-saxophone is the post’s slug. Again, slugs

can be customized for SEO purposes on an individual basis, so if you decided that this post would

be better served from an SEO perspective if the slug was the-importance-of-saxophones-in-bands,

you could make that modification as well.

The WordPress Anthology274

Figure 12.1. Setting your permalinks

Creating permalinks for your pages is easy. In WordPress, page permalinking is tied to parent-child

relationships between pages. For instance, if we assumed that we were using pages in our example

for http://www.esquandolas.com/veterinary-staff/antelope-specialists/about-dr-marco, there would

be three pages tied to this permalink with slugs of veterinary-staff, antelope-specialists, and

about-dr-marco. The page with the slug of veterinary-staff would have the page with the slug of

antelope-specialists as its child page, which would in turn have the page with the slug of

about-dr-marco as its child page. Again, easy stuff once you know how it works.

Finally, the mere fact that WordPress includes the ability to create custom taxonomies adds an en-

tirely new, dynamic aspect to how you can bend WordPress to your SEO needs. Essentially, there’s

no limitation as to how you can utilize the system to generate linking structures for your content

that makes intuitive sense to humans and search engines alike. Remember that the relevancy and

consistency of your message is key, and for more information on using custom taxonomies, look

back to Chapter 7.

Proper <meta> and <title> Tag Inclusion
The next component of the Big Three is by far the oldest and most widely discussed aspect of search

engine optimization: <meta> and <title> tags. Web developers and website owners have known

about the importance of using these two tools correctly since the early days of the Web. Therefore,

rather than beat the drum and go over in painstaking detail the basics of <meta> and <title> tags,

we’ll say simply that in a <meta> tag’s name attribute, “description” refers to small text which

talks about what is on the page, and “keywords” are essentially tags that describe what the basic

topics of the page are. The <title> tag is just that—the title that is applied to the page, and in some

275SEO, Marketing, and Goal Conversion

browsers is actually displayed on top of the browser window outside the viewable area. <meta>

tags are important, cannot be overlooked, and need to be unique for each page on your site. Luckily,

there are a pair of excellent WordPress plugins that you can download and use to manage these

(and many other) aspects of your on-page SEO efforts in WordPress:

WordPress SEO by Yoast4

WordPress SEO by Yoast is probably the gold standard in on-page search engine optimization

WordPress plugins. WordPress SEO lets you set templates for titles and <meta> descriptions

and keywords for all types of pages and posts so that they automatically generate themselves

when you initially post them. It also offers a handy Snippet Preview feature that shows you what

your page will look like when it is found in Google SERPs. There’s a bevy of other features that

we’ll talk about later on in this chapter including meta robots settings, canonical settings, and

XML sitemaps, to name a few.

All in One SEO Pack5

The other trusted, time-tested favorite search engine optimization WordPress plugin is All in

One SEO Pack. All in One is the most downloaded plugin of all time, and while it lacks the

complete feature set that WordPress SEO has, it’s sometimes better to go with a tool that does

one task very well. When it comes to on-page SEO, All in One does one task extremely well—it

generates unique <meta> descriptions, keywords, and <title> tags.

There are other plugins out there that also do a good job of handling <meta> and <title> tags, and

you can find several themes that offer built-in support in this fashion as well. Whatever method

you choose, the most important point is to make sure you address this aspect of your site’s SEO

efforts.

Proper Header Tag Structure and Implementation
The last but certainly not least component of the Big Three is proper header tag structure and im-

plementation within the actual context of the page or post. This can only be automated to a certain

extent, but getting it right is crucial to having a successful SEO experience on any given page.

Header tags are sometimes referred to as <h1> or <h2> tags, and when used correctly serve to

identify with more accuracy the important keywords and phrases within a given post or page. Search

engines use these tags to sort out what you as the website owner believe are the central points of

the content within the page, but they are often misused or not used at all because by default,

header tags have formatting that makes the text within them appear bigger and bolder than regular

text. For this reason, inexperienced users (both web developers and site owners) will sometimes

use header tags to simply bold any given line, thinking of it as a visual formatting tool more than

a content indexing tool. For the same reason, they may choose to not use them at all, which is a

truly tragic choice. To better understand header tags, let’s imagine a newspaper.

4 http://wordpress.org/extend/plugins/wordpress-seo/
5 http://wordpress.org/extend/plugins/all-in-one-seo-pack/

The WordPress Anthology276

http://wordpress.org/extend/plugins/wordpress-seo/
http://wordpress.org/extend/plugins/all-in-one-seo-pack/

You might scan through a regular old newspaper by simply looking at the headlines. If you see

something that catches your fancy, you might continue and will often see a subheadline. The main

headline might read something like “Huge Storm Headed for the East Coast” with a subheadline in

a smaller font that adds something pertinent to the basis of the story, like “Residents board up

homes and evacuate to get out of storm’s path.” Following the two headlines, there would typically

be a paragraph or two of text that discusses the central points of the story, reinforcing the main

headline and the subheadline. Once those paragraphs are complete, there may be a new, smaller

headline that talks about a more detailed aspect of the story with several paragraphs that follow,

discussing the point. This pattern continues on and on to the end of the article, providing an organ-

ized, concise view of the information being presented. When implemented correctly, this same

pattern holds true for how header tags should be used in the context of a post or page. Have a look

at The Mockingbird Gazette in Figure 12.2.

Figure 12.2. The Mockingbird Gazette

We’ve taken a standard newspaper layout with various headlines and subheadlines, and superim-

posed their proper header tag equivalents. For instance, the main headline of any given page or

post should always be an <h1> tag, denoting to search engines that this is the central thesis of the

post, and that anything within the rest of the post will relate to it. The primary subheadline is noted

as an <h2> tag, which keys to the search engines that the information therein is also important, but

not necessarily the central topics of the post. After that we see two sets of <h3> tags that can be used

to tip off search engines about what we as the website owners and authors find pertinent about the

277SEO, Marketing, and Goal Conversion

subsequent paragraphs. We can continue using <h3> tags throughout the rest of the post until we

finish it up.

Also important to note here is that while it’s crucial to make use of header tags, it’s even more so

to ensure you actually make your header tags keyword-packed and entirely relevant. For instance,

having an <h1> tag that is nothing more than the words “Home” or “Welcome to our website” may

be syntactically correct, but it’s not relevant in any way, shape or form and will not help you gain

traffic. However, an <h1> tag that consists of “Huge storm headed for the East Coast” is extremely

relevant and descriptive, and is a quality choice so long as the rest of the post discusses and supports

the topic of the storm that is hitting the east coast.

Header tags can, to some degree, be systematically implemented in WordPress. Often, the post or

page title is output in a theme as an <h1>, giving you an instant search engine anchor to describe

what the page is about. However, further on-page SEO as it pertains to header tags really depends

on the user entering in content from that point forward. Theme designers can (and should) create

custom <h2>, <h3>, and <h4> styles to match content stylings inside their themes, but it is still up

to the users to understand how to use them. Furthermore, because most WordPress sites are con-

stantly being updated, it’s not really something that you can do in one pass to officially “SEO a

website,” but rather a habit your authors and editors need to learn.

The Anatomy of a Typical Search Engine Spider Visit
Now that we’ve gone through each component of the Big Three, let’s take a look at the decision-

making process of a typical search engine spider as it views and indexes a given post or page on

the site. Understand that this is a very simplified version of how your web pages are ranked and

indexed; it’s also not the entire story, as there are a number of off-page factors that contribute to

any given page’s ultimate ranking at a specific point in time. With that said, consider the following

scenario:

At http://www.esquandolas.com/veterinary-staff/antelope-specialists/about-dr-marco, a search

engine spider arrives and immediately logs the URL. Inside the URL, it sees that there are keywords

it can understand and make associations with: veterinary staff, antelope specialists, and Dr. Marco.

We’ll assume that the <title> tags and <meta> tags that are built into the page back that information

up. Then when the spider begins to parse the content on the page, it will hopefully find an <h1>

tag that says something to the effect of “About Dr. Marco Pisgah, Antelope Veterinarian Extraordin-

aire”. An <h2>-tagged line of text reading “World Famous Antelope Disease Researcher from Michigan

State University” provides additional pertinent information about the central topic—Dr. Marco

Pisgah. Assuming that the next few paragraphs of paragraph text support those two initial assump-

tions and then build upon the topic with subsequent header tags and paragraph text, we’ll see that

this page has a high base ranking which can be positively augmented by external search engine

marketing efforts. In this way, all of the Big Three SEO components work together to drive traffic

The WordPress Anthology278

when traffic is there to drive, which of course comes back to the notion of relevancy and demand

for the targeted keyword and content area.

While these components are what you mainly need to pay attention to in order to have a chance at

ranking well, there are a few caveats. First of all, the operative phrase in the previous sentence is

“to have a chance at ranking well.” As in life, there are never any guarantees other than you have

to be in it to win it. Correctly making use of the Big Three merely gains you entry into the search

engine game, giving you the opportunity to compete with everybody else. In many markets, the

mere fact that you are set up correctly is enough to grab you traffic and rankings, but that’s a phe-

nomenon that will undoubtedly fade in effectiveness over time. Secondly, if you use any of these

incorrectly (which is to say you mismatch the content on your site with your semantic permalinks

and <meta> tags, etc) you run the risk of being slapped down in the search engines anyway. Keep

in mind that search engines are not public but rather private entities, and they aim for relevancy.

If your permalink indicates that a page is all about children’s toys and in truth it is actually about

trading stocks and bonds, your content mix will be off and your rankings likely will be too. The

most important thing is to use your head, be relevant, and above all else do not try to game the

system—ultimately, you’ll lose every time.

Other Important SEO Aspects
What else can you do to really make the difference between a reasonably optimized site and a site

that’s akin to a race car cruising along in high gear? This is where the intricate changes in the search

engine algorithms really come into play. The importance of any of the following tools and techniques

will likely change over time with new techniques coming into play every week, so it’s never a bad

idea to consult with a reputable search engine marketing professional to find out about current

trends. Paying attention to the following aspects of SEO will also help you quite a bit.

Image alt Attributes
A really easy way to increase any page’s SEO is to properly optimize the images in the content of

the page or post by setting descriptive alt attributes on your images (within the tag). alt at-

tributes are designed to provide a text-based alternative to describe what an image actually represents

in situations where the image is unable to be displayed. For instance, in a situation where a search

button that displays a magnifying glass is unable to be displayed, appropriate alt text might be

search or find. Conversely, in a situation where an image displays a photo of a lighthouse in a

story on coastal North Carolina, appropriate alt text might be a coastal lighthouse in North

Carolina. The important point is that search engines can see that an image is supposed to be em-

bedded on the page, but if it’s without the benefit of alt attributes, they have absolutely no idea

what that image is. Adding the tag can give a search engine valuable information

to better understand and create a relevancy ranking for any given post or page on your site.

279SEO, Marketing, and Goal Conversion

In terms of actually implementing image alt attributes in WordPress, navigate to the Media Library

and click on the Edit button of any given image to manage its characteristics. Underneath the Title

field is the Alternate Text field. Simply fill in a value for the image in this field and click the Update

Media button—you’ve added an alt attribute to your image.

Individual Page Privacy Settings
While usually you’ll want to make an entire website readily visible and available to search engines,

there are a variety of situations where it’s desirable to have finer control over exactly how the engines

treat your content. For times like this, the noindex, nofollow, and noarchive attribute values

within the <meta> tag are available. These attribute values can be introduced in any combination

with one another, and are used in the following situations:

noindex This attribute value is used in situations where you do not want a particular page

indexed by a search engine in any way. This essentially makes the page invisible as

far as search engines are concerned.

nofollow This attribute value is used when you want to have a certain page indexed, but you

do not want search engine crawlers to follow any pages that may exist on a certain

page.

noarchive This attribute value is used when you do not want a search engine to store a cached

version of your page, and would prefer that users always go back to retrieve a fresh

version of the page instead.

Your entire WordPress site will have noindex and nofollow values applied to it when you choose

to make your website invisible to search engines in the WordPress administrative back end at Settings

> Privacy. There is, however, a wide variety of plugins and themes that will give you greater control

of these settings on individual pages and posts if you wish.

XML Sitemaps
XML Sitemaps are XML files that describe the complete, updated structure of your WordPress site

at any given time. Each time search engines start indexing your site, they look for an XML Sitemap

first to gain the overall lay of the land, to find out exactly what is on the site so that nothing is

missed. In this way, XML Sitemaps are simple but crucial elements of SEO, and can be easily utilized

to better improve the effectiveness of any search engine’s indexing efforts.

There are several excellent XML Sitemap tools and plugins available for WordPress, one of which

is the WordPress SEO by Yoast plugin we discussed in the section called “Proper <meta> and

<title> Tag Inclusion”. Quality WordPress XML Sitemap plugins generate a new copy of the

Sitemap every time you make a content change to your site, as well as pay attention to the noindex,

nofollow, and noarchive rules you set on any given page or post. Furthermore, quality plugins

also notify all major search engines every time you create a new post or page.

The WordPress Anthology280

Disclaimers, Terms and Conditions, and Privacy Pages
While this has little do to with SEO in particular, it has been repeatedly demonstrated that many

search engines will tend to place a negative mark against websites that do not include pages which

address their disclaimers, terms and conditions, and privacy policies. As a general rule, if you are

running a commercial website that is collecting money, it’s a good practice to maintain these pages

and make them visible on your site and in your XML sitemap.

Proper Use of 301 Redirects and Avoidance of 404s
Finally, it’s rather common to find people migrating from other content management systems or

static HTML sites to WordPress. In just about any instance where you are migrating your website

from one platform to another, your permalinks will usually change too. Since most pre-existing

websites have some form of traction in search engines, the question of what to do about these old

links often arises.

Simply put, if a web page has been indexed in a search engine and then ceases to exist, the entry

in the search engine itself still remains. Subsequently, when visitors click on the old link, they’ll

receive a 404 page not found error, an adverse consequence that may cause SEO traction issues

on your site. While it’s actually a rather hotly debated topic as to whether the mere existence of

404s negatively affects search engine rankings for a given site, almost all search engine marketing

professionals will recommend the implementation of 301 redirects in situations where you are

migrating posts and pages from one permalinking structure to another. 301 redirects are permanent

one-to-one relationships that are established between the URL of the old version of a web page and

the new web page’s URL. In this way, when a user clicks on a search engine result that yields an

older, nonexistent page, the user is immediately directed to the new version of the page in a trans-

parent way. You can either hardcode direct linear relationships from page to page when establishing

301 redirects, or you can use regular expressions to create dynamic patterns that automatically push

old links to their newer counterparts.

There are two primary ways to add 301 redirects to your site in WordPress: by directly editing the

.htaccess file to hardcode individual 301s or 301 patterns, or through the use of a plugin. A really

great plugin to use that handles all your 301 WordPress—by directly editing the .htaccess file to

hard code individual 301s or 301 patterns, or through the use of a plugin. A really great plugin to

use which handles all of your 301 redirection needs is appropriately named Redirection6. In addition

to handling 301 redirects, Redirection also keeps track of 404 errors, so you can see if and where

you have recurring 404 issues on your site. It also allows you to handle all your manual 301 reduc-

tions right inside the plugin without the need to edit your .htaccess file. Overall, a very handy tool

to have at your disposal.

6 http://wordpress.org/extend/plugins/redirection/

281SEO, Marketing, and Goal Conversion

http://wordpress.org/extend/plugins/redirection/

It’s about GOAL CONVERSIONS!
As we noted earlier, grabbing as much traffic as you can handle is nice, but the big boys will laugh

at you when you assert that somehow generating a ton of traffic will make your website successful.

The need many developers feel to generate as much traffic as possible misses the point of why we’ve

brought our website to the party in the first place—to generate a specific result. As we’ve already

described, this consists of the process of setting tangible, specific goals for your website’s perform-

ance, and measuring the success of your website against how well you meet your goals on a consistent

basis. If there’s no goal in mind for your website, you’ve already wasted your time and financial

resources.

Let’s consider a simple example. Two separate window treatment companies are each running

websites with the same goal: to generate a list of people who are interested in the different ways

that window treatments can increase the value of their home and ultimately make their lives better.

The list itself is extremely valuable, as it allows each company to develop relationships with qual-

ified consumers who may be interested in purchasing their products; the end goal ultimately is to

sell these qualified consumers services on a recurring basis. In other words, it’s essentially Permission

Marketing 101, and it’s a common strategy employed as the primary goal on many authority-type

websites.

If the first window treatment company manages to secure 50,000 visits in a single month, but only

has a goal conversion success rate of 0.5%, they’ll have netted just 250 people on their mailing list.

If the second company manages only 20,000 visits in that same period, but has a higher goal con-

version rate of 4% (which is still a very conservative number), they’ll end up with 800 people on

their mailing list. Therefore, the second company has more than tripled the success and effectiveness

of their campaign compared to their competitor, doing it with less than half the traffic. This is a

scenario that plays out in businesses around the world every day, with the main point being that

it’s not about the quantity of traffic you receive or not, but how well you convert the traffic you

bring to your website. For this reason, organic ranking is usually enough, especially in unique,

noncompetitive search keyword niches. If your organization is operating in one of these niches and

you think you’re doing everything right, but seeing a diminishing margin of results, consider

working on your goal conversion techniques and rates, rather than attempting to drive more traffic.

The next natural question is: how can we increase our goal conversion rates? While this isn’t a book

on search engine marketing and goal conversion per se, it’s important to be asking the right questions

so you can dig deeper into the topic. Therefore, let’s cover a few of the more important aspects of

goal conversion and the tools you can use to tighten up your results.

Metrics and Split Testing
First and foremost, if we want to be looking for goal conversion rates, we need to keep track of them

with metrics. Metrics is a generic term for using tools to track the number of times that people visit

The WordPress Anthology282

any given page and take certain actions. Probably the most commonly used metrics system is Google

Analytics, a free service that you can integrate into any website to track who is visiting a given page,

where they are coming from, what their path is through the website, how long they stay on any

given web page in particular as well as the website as a whole, and much more. Many other systems

exist that assist you with tracking, compiling, and parsing web page usage statistics in useful ways;

the trick is in figuring out which systems work for you, so that you can track your own website goal

conversion pages in the way you’d prefer.

However you set up your metrics systems, your next step is to set up mechanisms to figure out

which methods are more effective than others. The most common way to do this is through split

testing. Also referred to as A/B testing, split testing is as easy as coming up with two different versions

of a web page or web page component, serving them up randomly to a suitable number of people

representing a reasonable sample of your audience, and seeing which one does better overall. By

using split testing over and over again on the same page, you can refine your presentation factors,

including your page’s layout and written content, and optimally increase your goal conversion

rates. It’s as simple as asking a group of your potential buyers which one they like—option A or

option B. And best of all, since the pages are being served up randomly, your visitors have no idea

that they’re being polled; they just react genuinely. Split testing is truly an elegant solution to

finding out what works and what doesn’t.

Now that we are numerically tracking things and understand how to test different concepts, what

are the variables we can test to increase our goal conversion rates? In truth, there are as many vari-

ables as your imagination can come up with. After all, anything that could even remotely affect

your users’ experience while visiting your site is a potential location to split test something in order

to create a more favorable outcome for yourself. However, there are a few common variables we

can outline.

Keywords and Text
In marketing, the substance of an offer is rarely as important as the actual wording used to convey

that offer. It’s for this reason that the saying is “people don’t buy the product, they buy the salesper-

son.” As a whole, people tend to want make an emotional connection with an item before they are

moved to take an action or make a purchase. For this reason, marketers often choose to split test

different copy to see which performs better. For example, if you are split testing a web page selling

a diet pill, you may choose to test whether the headline “Feel better about yourself in your bathing

suit this summer” performs better than “We can help you squeeze back into your bathing suit in

time for summer.” Both headlines say essentially the same thing, but one of them will more than

likely test out better than the other in split testing. Once you find out which one works better, you

can split test that against another sample to further hone your presentation.

283SEO, Marketing, and Goal Conversion

Making the Right Offer
To generate higher goal conversions, work out whether or not you are making the right offer to your

target audience. Let’s say you’re attempting to boost membership on your website’s mailing list. A

simple test could be to look at whether or not people are more likely to subscribe to the list if you

offer the option to join the list for free product updates and sales specials, or if conversion rates are

higher when you also offer to give them a free downloadable ebook. If the ebook opt-in tends to do

better, a follow-up test might be to see whether a free ebook creates higher conversion rates than a

free mp3 of the same content, or even a package deal that contains the ebook and the mp3 in one

zip file. The possibilities are limited only by your imagination.

Different Visual Layout
Another common test that often yields eye-popping results is to compare individual layouts of the

same page with different combinations of visual elements. Does an opt-in convert at a higher rate

when it’s on the upper-left or on the upper-right corner of the screen? Does it help if there’s a video

that urges visitors to claim that free ebook by filling out their information in the opt-in? And does

it make any difference if the video automatically begins playing when you reach the page, or if you

have to actually click the Play button to make it start? The answers to these questions will almost

always differ depending on who your target audience is, and it’s a fabulous topic to split test to

achieve better results.

Heatmaps
Finally, there are tools and services you can use that actually keep track of where people click their

mouse on a web page. This information is then translated into heatmaps, a graphical format that

shows where people are actually clicking to take some form of action on any given page. Heatmaps

are excellent for gaining additional insight as to how your users understand the different pages on

your website, and can reveal problems and trends that you simply can’t extrapolate by merely

looking at the raw numbers coming in from the site metrics.

Over to You
We’ve only just scratched the surface of the various types of techniques you can use to increase

your goal conversion rates, but the most important aspect to keep in mind is that while traffic gen-

eration is an excellent topic to study and implement, high goal conversion levels will ultimately

determine the success or failure of your website.

Search engine optimization has traditionally been one of those “black magic” type topics in web

development that business owners are fiercely concerned about and many web developers routinely

duck or provide far too simplistic a solution to. In this chapter, we defined the difference between

SEO and SEM, explained the primary reasons why it’s all a moving target that’s really tough to

master, and explained that ultimately there is absolutely no substitute for quality, relevant content.

The WordPress Anthology284

Following our introductory discussion on SEO and SEM, we tackled the meat of on-page SEO and

introduced the Big Three fundamental SEO components: semantic permalinking, proper <meta>

and <title> tag inclusion, and proper header tag structure and implementation. Afterwards, we

put all three components together and offered a simplified explanation as to how they work in

tandem (or against one another) when a search engine spider pays a visit to any given page or post.

Afterwards, we finished up our discussion on SEO by examining a few additional items that are

worth paying attention to when tweaking our search engine rankings and performance.

Finally, we unveiled the dirty little secret that while search engine optimization is nice, it’s hardly

the most important aspect in creating a successful site—a myth that’s been forged by almost two

decades of bad information. Instead, the real holy grail of website success can be found through

goal conversions, a topic that deals specifically with identifying concrete, tangible, measurable

goals for any given web page, and seeking to increase them through trial-and-error testing techniques.

We then went on to discuss some of these techniques, and offered a basic path forward in learning

more about creating successful websites.

Folks, it’s truly been a fun ride, and we hope you’ve enjoyed reading this book as much as we’ve

enjoyed putting it together for you. Until next time, so long … and thanks for all the fish! Be well.

285SEO, Marketing, and Goal Conversion

Index

Symbols
#bbpress IRC, 19

#buddypress-dev IRC, 19

#wordpress IRC, 19

#wordpress-dev IRC, 19

$_GET requests, 111, 203

$_POST requests, 111, 203

$abs_rel_path parameter, 120, 244

$after_title tag, 132

$after_widget tag, 132

$args array, 166–167, 209

$attr parameter, 193

$atts parameter, 197, 198

$before_title tag, 132

$before_widget tag, 132

$callback parameter, 134, 201

$callback_args parameter, 135

$content parameter, 197, 198

$context parameter, 135

$control_callback parameter, 201

$crop parameter, 190–191

$deps parameter, 211

$domain parameter, 120, 243, 244

$file parameter, 208

$function parameter, 208

$handle parameter, 211

$height parameter, 190, 191

$hook parameter, 209

$id parameter, 134, 193

$in_footer parameter, 211, 212

$meta_type parameter, 206

$name parameter, 191

$object_type parameter, 165

$page parameter, 134

$path parameter, 244

$plugin_rel_path parameter, 121, 244

$priority parameter, 135

$recurrence parameter, 209

$size parameter, 192, 193

$src parameter, 211

$taxonomy parameter, 165

$timestamp parameter, 209

$title parameter, 134

$ver parameter, 211

$widget_id parameter, 201

$widget_name parameter, 201

$width parameter, 190, 191

$wp_query variable, 74

%link token, 66

%title token, 66

301 redirects, 281

404 redirects, 281

404.php template, 146

[] brackets, 135

__() function, 243, 245, 253

_e() function, 243, 245, 246, 253

A
A/B testing, 283

$abs_rel_path parameter, 120, 244

action hooks, 109–111

actions, 84

Add New Post screen, 36–38

add_action() function, 82, 110, 111, 122

add_contextual_help hook, 93–95

add_custom_background() function, 151

add_custom_image_header() function, 151

add_feed() function, 207

add_filter() function, 111

add_image_size() function, 192

add_meta_box() function, 86–87, 134–135

add_metadata() function, 206

add_new label, 168

add_new_item label, 168

add_option() function, 205

add_options_page() function, 122

add_post_type_support() function, 83

add_rewrite_endpoint() function, 207

add_rewrite_rule() function, 207

add_rewrite_tag() function, 207

add_shortcode() function, 135

Admin menu, 23–24, 223

Admin screen, 124–125

admin screen names, 93, 94

admin_head hook, 111, 125

admin_init action, 87

admin_init hook, 94, 111, 135

admin_notices hook, 93

Administrator role, 53

advanced-cache.php plugin, 106

AdWords, 270

$after_title tag, 132

$after_widget tag, 132

AJAX Thumbnail Rebuild, 182

Akismet plugin, 48

alignment classes, 179, 193

All in One SEO Pack plugin, 276

All Sites submenu, 224

all_items label, 168

alt attribute, 279–280

Apache, 218

API Key, 48

APIs

Cron, 208

Dashboard (see Dashboard API)

HTTP, 203–205

Metadata, 206

Options, 205

Plugins, 196

Rewrite, 207–208

Shortcode, 196

(see also shortcodes)

Transients, 206

Widgets, 196

WordPress, 195–196

Appearance menu, 27

apply_filters() function, 187

archive templates, 98–100

archive.php template, 146

archive-{posttype}.php, 98

archiving

noarchive attribute, 280

pages, 83

sites, 224

arguments array ($args), 166–167, 209

Atom Publishing Protocol, 41

$attr parameter, 193

attributes

HTML, 112, 113

page, 32

$atts parameter, 197, 198

audio, 30, 46–47

author field, 83

Author role, 53

author, displaying, 60

Automattic, 3

Available Widgets area, 51

avatars, 49

B
b2/cafelog, 2–3

b2evolution, 2

backgrounds, custom, 151–152

BackPress, 212–213

backups, 27, 217

banned names, 231–232, 238

#bbpress IRC, 19

$before_title tag, 132

$before_widget tag, 132

black-hat SEO, 268, 269

blog networks, 7

blog-deleted.php plugin, 106

blog-inactive.php plugin, 106

blogs

about, 3

archiving/deactivating, 224

suspending/deleting, 106, 281

288

in WordPress, 5

blogs.dir directory, 221

blog-suspended.php plugin, 106

brackets [], 135

#buddypress-dev IRC, 19

Bulk Actions button, 34

C
caching plugins, 106, 206

calendar widget, 25

callback argument, 86

$callback parameter, 134, 201

$callback_args parameter, 135

callback_args argument, 86

capabilities array, 167

Capability Manager plugin, 54

Captcha verification, 54

captiontag option, 185

catalogs (see .POT files)

categories

about, 34–35

adding posts to, 37

adding to menu, 50

creating, 38

displaying, 62, 63

grouping (see taxonomies)

managing, 38–39

setting default, 41

tags vs, 160

templates for, 146

Categories management screen, 38–39

Categories meta box, 37

category.php template, 146

chat rooms, 19

Cimy User Extra Fields plugin, 54, 237

CMS (content management systems), 2, 3

Codex, 17

columns parameter, 183

comment_post hook, 111

comments

about, 47

avatars for, 49

comment_post hook, 111

disabling, 49

discussion settings, 48–49

managing, 47–48

spam, 48, 49

comments field, 83

Comments page, 47, 48

conditional tags, 64–65

content

dynamic (see posts)

static (see pages)

content editor, 29–31

content management systems (CMS), 2, 3

$content parameter, 197, 198

content types (see post types)

content wireframe, 161, 163, 164

context argument, 86

$context parameter, 135

Contributor role, 53

$control_callback parameter, 201

Core WordPress, 4, 153, 216

counters, 68–70

cPanel, 9, 218

CRM (customer relationship management), 8

Cron API, 208

cron.php file, 208

$crop parameter, 190–191

CSS

in plugins, 124–125, 127–128

for themes, 140–141

versions supported, 5

custom fields, 62, 64, 83, 85–87, 237

custom searching, 164

customer relationship management (CRM), 8

custom-fields field, 83

D
Dashboard

about, 22

adding widgets, 200–201

289

Network Admin, 222–223

removing widgets, 202–203

Right Now widget, 27

screen options, 23

show/hide widgets, 23

Site Admin, 222

sizing widgets, 23

data validation, 112–113, 127

Database APIs, 205–206

database plugins, 106, 123–124

databases, 10–12, 123–124

date format, 25

date, displaying, 61

db.php plugin, 106

db-error.php plugin, 106

deactivation, site, 224

dead links, 281

delete_metadata() function, 206

delete_option() function, 205

delete_transient() function, 206

$deps parameter, 211

directory structure, 10, 16–17, 56

disclaimers, 281

Discussion Settings page, 48–49

display logic, 153–154

distraction-free writing, 30–31

DNS (Domain Name Service), 217–219

do_shortcode() function, 187, 199–200

domain mapping, 106, 237

$domain parameter, 120, 243, 244

Draft status, 31

drop-in plugins, 105–106

Drupal, 241

dynamic content (see posts)

dynamic_sidebar function, 150

E
_e() function, 243, 245, 246, 253

echo, vs return, 136, 198

ecommerce sites, 6, 7

Edit Image button, 45

Edit Page screen, 28–29

Edit screen, customizing, 85–87

edit_item label, 168

editor field, 83

Editor role, 53

else statement, 59

email address, setting, 25

email, posting via, 41

enqueueing, 127, 188

escaping (data), 112, 127

event management system, 154

events, scheduling, 56

excerpt field, 83

excerpts, 61, 76

exclude option, 185

exporting content, 52

F
Facebook, 155

featured images (see post thumbnails)

$file parameter, 208

file structure, 4

filter hooks, 111–112, 187

Flash, 270

footer.php template, 142

foreach loop, 72

fork, 2

form, 54

form validation, 54

Format meta box, 37

formatting text, 29

forms, 85

forums, 6, 7, 18

front-page.php template, 146

fullscreen editing, 30–31

$function parameter, 208

functionality

about, 152–153

display logic vs, 153–154

hardcoding, 157

low-level vs high-level, 225

290

in page templates, 156

plugin vs theme, 81, 154–157

specialty, 157

functions.php file

about, 147–148

contextual help, 93

custom backgrounds, 151–152

custom headers, 150–151

custom menus, 148–149

enabling post thumbnails, 189

localization functions, 243–244, 247

plugins vs, 81

widgetized areas, 149–150

G
gallery shortcode

about, 182–183

adding to templates, 187

configuring, 183–185

editing with GUI, 185–187

GUI editor, 186

General Settings page, 16, 17, 25

Gershwin, 4

GET method, 204

$_GET requests, 111, 203

get_ functions, 63–64

get_metadata() function, 206

get_option() function, 205

get_post_custom() function, 64

get_posts() function, 71–72, 73

get_sidebar() function, 143–144

get_terms() function, 176

get_the_category() function, 63

get_the_modified_time() function, 63

get_the_post_thumbnail() function, 193

get_the_term_list() function, 97, 175

get_the_time() function, 63

get_transient() function, 206

gettext, 168, 242–243, 253, 254

Gnu Public License (GPL), 4

goal conversion, 272, 282

Google, 267–269

Google Analytics, 283

GPL (Gnu Public License), 4

gravatar.com, 49

H
<h#> tags, 276–278

hamburger analogy, 142–143

$handle parameter, 211

has_archive argument, 83

has_post_thumbnail() function, 192

have_posts() function, 59

HEAD method, 204

header tags, 276–278

header.php file, 142

headers, custom, 150–151

heatmaps, 284

$height parameter, 190, 191

help panels, 92–95

hierarchical argument, 83, 90, 167

home.php template, 146

$hook parameter, 209

hooks

about, 84, 109

action, 109–111

add_contextual_help, 93–95

Admin menu and, 24

admin_head, 111, 125

admin_init, 94, 111, 135

admin_notices, 93

comment_post, 111

deactivating, 208

fiction, 111

filter, 111–112, 187

init, 82, 111

publish_post, 111

registering, 208, 210

user_register, 111

widgets_init, 128, 133

wp_dashboard_setup, 201, 202

wp_footer, 110

291

wp_head, 109–110, 151

hosting options, 3–4

.htaccess file

about, 57

enabling Multisite, 221

enabling permalinks, 40

installing, 17

HTML

for image galleries, 184–185

scrubbing, 112–113

versions supported, 5

HTTP API, 203–205

HTTP response codes, 204

httpd.conf file, 218

human_time_diff() function, 63

I
i18n, 242

icontag option, 185

id

Edit page, 86

post, 183, 184

$id parameter, 134, 193

if statements, 59, 64

IIS, 40

image galleries (see gallery shortcode)

Image Properties settings, 44

images

adding, 182

adding to page, 30

alt attribute, 279–280

attaching, 183

deleting, 43

featured (see post thumbnails)

formatting, 179

inserting, 42–43

lightbox view, 187–188

link URL, 44

manipulating, 45–46

modifying, 43–44

setting parameters, 43, 47

sizing parameters, 180–182, 184

uploading, 179, 234

user icons, 49

images directory, 119

 tag, 279

importing content, 52

$in_footer parameter, 211, 212

include files, 57

include option, 185

index.php file

installing, 17

location of, 56

template hierarchy, 95

The Loop and, 58

theme configuration, 141–142, 143

information hierarchy, 160–161

init hook, 82, 111

install.php plugin, 106

installation, Wordpress

directory structure, 10, 16–17

in other languages, 265–266

manually, 13–15

using installers, 15–16

using web interface, 9–13

installers, 15–16

internationalization, 242

Internet Relay Chat (IRC), 19

intranets, 6

IRC (Internet Relay Chat), 19

is tags, 64–65

is_front_page() function, 146

is_home() function, 146

is_page tag, 65

itemtag parameter, 184

J
JavaScript, 5, 112, 188, 210–212

Joomla, 241

292

K
keywords, 283

L
L10n, 242

label argument, 166

labels array, 83, 90, 166, 167–168

language translation (see localization)

language, specifying, 120–121

languages directory, 119, 121, 250, 266

layout wireframe, 161

license.txt, 109

licensing, 4

lightboxes, 187–188

link categories, 160

link option, 185

%link token, 66

link URL, 44

links

content type, 39

dead, 281

in posts, 29

permanent (see permalinks)

Linux OS, 8, 40, 57, 207, 218, 238

Little, Mike, 2

load_plugin_textdomain() function, 120–121,

244, 245, 249

load_theme_textdomain() function, 243–244, 245

locale, 247

localization

about, 242–243

gettext, 242–243

internationalization vs, 242

managing files (see Poedit)

of WordPress itself, 265–266

plugin, 120–121, 126–127, 244, 248–250

reasons for, 241–242

summary, 245–246

taxonomy, 167

theme, 243–244, 246–248

translation files, 243–244, 250, 252, 253

translation keys, 244–245

with WPML, 264–265

loops (see The Loop)

M
maintenance.php plugin, 106

Manage Plugins screen, 108

Manage Themes screen, 26

marketing sites, 6

media

(see also images)

about, 41

directory structure, 57

file types, 234

hosting options, 46–47

inserting, 42–43

setting parameters, 43, 47

upload settings, 234

Media Library, 41, 45–46, 179, 280

media players, 46–47

Media Settings page, 43, 47, 180–182, 190

meetups, 18

Members plugin, 53

Membership setting, 25

membership sites, 6

menu settings, 234, 235

menu_icon argument, 83

menu_name label, 168

menu_position argument, 83

menus

custom, 50–51, 148–149

pull-down, 89

Menus screen, 50–51

meta boxes

adding, 86–87, 134–135

Categories, 37

Dashboard, 202

Format, 37

page, 31–32

in plugins, 134

293

post, 36–37

Post Tags, 38

taxonomy, 172

meta fields, 87

<meta> tag, 275–276, 280

meta_key, 75–76

$meta_type parameter, 206

meta_value, 75–76

Metadata API, 206

metadata tables, 206

metrics, 282–283

migration, site, 52

.MO files, 244, 245, 250, 258, 265–266

mobile devices, 188

more quicktag, 61

Move to Trash button, 33

Mullenweg, Matt, 2

Multisite

about, 215

adding users, 226

archiving sites, 224

banning names, 231–232, 238

creating network, 220, 221

creating sites, 223–224

creating z network, 219–221

deactivating sites, 224

enabling, 16, 216–219, 238

history of, 216

operational settings, 230

plugins in, 106, 219, 227, 234, 235, 236, 237

registration messages, 232–234

registration settings, 230–232

routing collisions, 231–232, 238

site settings, 225–229

spam blogs, 224

themes, 227–228, 235–236

unsupported, 238

updating sites, 236–237

upload settings, 234

viewing users, 235

widgets, 223

mu-plugins directory, 104, 105

must-use plugins, 81, 104–105, 236

MySQL, 5, 112

N
name attribute, 275

name label, 167

$name parameter, 191

namespaces, 216–217

<nav> element, 96

navigation

custom menus, 148–149

customizing, 50–51

pagination, 65–66, 74, 98

nested labels array argument, 166, 167–168

Network Admin Dashboard, 222–223

network admin role, 221, 222, 224

network settings, 229–235

network, site (see Multisite)

new_item label, 168

next_post_link() function, 65, 66, 96

next_posts_link() function, 65

noarchive attribute, 27, 280

nofollow attribute, 27, 280

noindex attribute, 27, 280

nomenclature hierarchy

.MO files, 250

themes, 144–146

not_found label, 168

not_found_in_trash label, 168

O
$object_type parameter, 165

object-cache.php plugin, 106

off-site optimization, 271

on-page optimization, 271

operating systems, 8, 40, 207, 238

operational settings, 230

Options API, 205

order option, 184

294

orderby option, 184

organic search rankings, 267

P
page argument, 86

Page Attributes meta box, 32

"Page not found" errors, 281

"Page not found" template, 146

$page parameter, 134

page ranking (see search engine optimization

(SEO))

page status, 31

page templates, 32, 146–147, 156

page titles, 275–276

page visibility, 32

page.php template, 146

page-attributes field, 83

pages

about, 28

adding, 28

archiving, 83, 98–100

attributes, 32

bulk editing, 34

deleting, 33

displaying, 154–155

editing, 28–31

formatting, 146–147

layout, 284

listing, 28, 33

<meta> tag, 275–276, 280

naming, 231–232, 238

posts vs, 34

previewing, 30

privacy settings, 27, 280

publishing, 31–32

quick editing, 33, 34

restoring, 33

saving, 33

<title> tag, 275–276

visibility, 32

pagination, 65–66, 74, 98

parent_item_colon label, 168

parent-child relationship

categories, 36, 39

pages, 32

posts, 36

taxonomies, 168

Password Protected pages, 32

passwords, 54

$path parameter, 244

Pay-Per-Click (PPC), 270

Pending Review status, 31

permalinks

about, 40

altering, 237

creating, 40

enabling, 40

id parameter, 184

in Multisite, 231–232, 238

outputting, 60

prepending, 167

pretty, 8, 17, 29, 39, 207–208

Rewrite API, 207–208

search engine optimization, 273–275

semantic, 273–275

settings, 274, 275

taxonomy and, 163–164

translating, 265

permissions, user, 52–54

photo galleries, 7

photography sales sites, 7

PHP 5, 5

.php files, location of, 56

pinging services, 41

Ping-O-Matic, 41

plain text, vs. rich text, 30

plugin directory, 102

plugin header, 80, 108, 119–120

plugin_action_links() function, 122

$plugin_rel_path parameter, 121, 244

plugins

(see also hooks)

295

about, 52

API, 196

benefits of, 102, 155–156

caching, 206

creating, 80–82, 106

CSS in, 124–125

debugging, 105, 107

directory structure, 57, 102, 107

drawbacks of, 102–103

drop-in, 105–106, 236

editing, 52

guidelines for, 103–104

header, 108, 119–120

image resizing, 181–182

for import/export, 52

installing, 104

licensing, 106, 108–109, 119–120

lightbox, 188

for localization, 264–265

localizing, 120–121, 126–127, 244, 248–250

managing, 24

media management, 46

meta boxes in, 134–135

in Multisite, 106, 227, 234, 235, 236, 237

Multisite and, 219

must-use, 81, 104–105, 236

naming, 107

post types as, 81

readme.txt file, 137

for SEO, 276, 280

setting up, 107–109

Settings page, 121–123, 125–127

sharing, 136–137

shortcodes, 135–136

spam prevention, 48

styling output, 127–128

taxonomies and, 170

themes as, 27

themes vs, 153, 154–157, 170

troubleshooting, 105, 155

updating, 23, 104, 120

user profile, 54

user role, 53–54

version control, 120

widgets and, 128

WP_Query and, 73

Plugins API, 196

plugins directory, 57, 107

Plugins submenu, 52, 236

.PO files

about, 244

creating with Poedit, 255–256, 261

creating with WPML, 265

templates, 246

Poedit

about, 250

creating .POT files, 251–259

creating a catalog, 251–252, 259, 260

.MO files, 258

translating .POT files, 259–263

post ID, 62

POST method, 204

$_POST requests, 111, 203

Post Tags management screen, 39

Post Tags meta box, 38

post thumbnails

about, 188

enabling, 188–190

sizing, 190–192

in themes, 192–193

post types

about, 79–80

archiving, 83, 98–100

arguments, 82–83

creating, 80–82, 88–89

custom fields, 85–87

custom help, 92–95

defining, 82–84

displaying, 154–155

labeling, 167–168

taxonomies for, 89–92, 165, 171

templates, 95–100

296

theme vs plugin, 156

post variable, 72, 74

posts

(see also pages)

about, 34–35

adding categories, 37

adding images, 179, 182

adding tags, 38

attaching images, 183

comments (see comments)

creating, 36–37

creating remotely, 41

customizing (see post types)

displaying author information, 60

displaying categories, 62, 63

displaying content, 61

displaying excerpts, 61, 83

displaying tags, 62

displaying time/date, 61, 63

formatting, 145

id parameter, 183, 184

metadata for, 85–87

pages vs, 34

permalinking, 60, 274

previous/next, 65–66

retrieving (see queries)

setting default format, 41

teasers, 76

thumbnails for (see post thumbnails)

titling, 60

posts object, 58

posts_nav_link() function, 65

.POT files

about, 119, 245

creating automatically, 263–264

creating with Poedit, 251–259

translating, 259–263

PPC (Pay-Per-Click), 270

prefixes, 86

pretty permalinks, 8, 17, 29, 39, 207–208

previous_post_link() function, 65, 66, 96

previous_posts_link() function, 65

priority argument, 86

$priority parameter, 135

privacy settings, 27, 280

Private pages, 32

profiles, user, 54

project management, 8

public argument, 83, 166

publish action, 87

Publish meta box, 31–32

publish_post hook, 111

Published status, 31

pull-down menus, 89

Q
qTranslate plugin, 265

queries

about, 58

creating, 71–72

enabling, 90

matching a field, 75–76

matching by status, 76

modifying, 70–71

parameters, 71, 72

scrubbing, 112

WP_Query class, 71, 73–74

query_posts() function, 70–71, 175

query_var argument, 90, 167

query_vars object, 58

Quick Edit button, 33, 34

quicktags, 61

R
Read More link, 61

readme.txt file, 137

$recurrence parameter, 209

redirects, 281

Register Plus plugin, 54

register_activation_hook() function, 208, 210

register_deactivation_hook() function, 208

297

register_nav_menus() function, 148–149

register_post_type() function, 82–84, 88, 165

register_settings() function, 123, 124

register_taxonomy() function

about, 165–166

arguments array, 166–167

example of, 168–173

nested labels array, 167–168

parameters, 90

register_taxonomy_for_object_type() function,

165

register_widget() function, 128, 129

registration messages, 232–234

registration settings, 230–232

remove_meta_box() function, 202

response codes, HTTP, 204

return, vs echo, 136, 198

revisions field, 83

rewind_posts() function, 70

Rewrite API, 207–208

rewrite argument, 83, 90, 167

rich text, vs. plain text, 30

Right Now widget, 27

Role Scoper plugin, 53, 237

roles, user, 25, 52–54, 167, 221, 222, 224, 237

routing collisions, 231–232, 238

RSS, 41

S
SaaS (software as a service), 47

save action, 87

scheduling events, 56, 208–210

screen options, 23

script libraries, 210–212

search algorithms, 267–269

search engine marketing (SEM), 270–271

search engine optimization (SEO)

algorithm issues, 267–269

coding issues, 269–270

dead links, 281

goal conversion, 272, 282

header tags, 276–278

heatmaps, 284

image attributes, 279–280

images and, 43

keywords, 283

layout, 284

<meta> tag, 275–276, 280

metrics, 282–283

on-site vs off-page, 271

permalinks, 273–275

privacy settings, 27, 280

SEM issues, 270–271

sitemaps, 280

slugs and, 39

special offers, 284

spiders, 278–279

taxonomies, 275

terms and conditions, 281

<title> tag, 275–276

traffic and, 272, 282

search_item label, 168

searching, custom, 164

self-hosting, 3

SEM (search engine marketing), 270–271

semantic permalinks, 273–275

SEO (search engine optimization) (see search

engine optimization (SEO))

separator, 62

set_post_thumbnail_size() function, 190–191

set_transient() function, 206

Settings page, 121–123

Settings Page, 125–127

Settings submenu, 229–235

setup_postdata(), 72

Shortcode API, 196

shortcodes

(see also gallery shortcode)

about, 46, 135–136

adding to templates, 187

creating, 197

enclosing vs self-closing, 197–198

298

nesting, 199–200

parameters, 197–199

show_in_nav_menus argument, 166

show_tagcloud argument, 166

show_ui argument, 166

sidebar.php template, 142, 150

sidebars, 51, 143–144, 149–150

single.php template, 95, 145

single-{post_type} template, 95

singular_name label, 168

Site Admin Dashboard, 222

site functionality (see functionality)

site settings, 225–229

Site Title, 25

site URL, 217

sitemaps, 280

Sites submenu, 223–225

size parameter, 184

slugs

about, 40, 274

pretty permalinks and, 29

search engine optimization and, 39

social media sites, 6

software as a service (SaaS), 47

spam blogs, 224

spam, in comments, 48, 49

special offers, 284

spiders, 278–279

split testing, 283

splogs, 224

sql queries, scrubbing, 112

$src parameter, 211

static content (see pages)

status, page, 31

style headers, 140

styles.css file, 140–141

subcategories, 36, 39

subdirectories, in Multisite, 220, 221, 231–232,

237, 238

subdirectory namespaces, 216

subdomain namespaces, 216

subdomains, 217–219, 220, 221, 223–224, 231–

232, 237, 238

submenus, 50, 121–123

Subscriber role, 53

sunrise.php plugin, 106

super admin role, 221, 222, 224

support

chat rooms, 19

forums, 18

meetups, 18

for plugins, 137

WordPress Codex, 17

WordPress.tv, 19

supports argument, 83

system files, 56–57

T
Tag Cloud Widget, 166

tag clouds, 176

Tagline, 25

tags

about, 35–36

adding to post, 38

categories vs, 160

comma-separated, 90

conditional, 64–65

displaying, 62

grouping (see taxonomies)

managing, 38–39

templates, 146

taxonomies

about, 159–160

configuring, 166–167

creating, 89–92, 165–166

custom, 161–164

customizing output, 175–176

default, 160

designing, 162, 163, 164

labeling, 167–168

localization, 167

permalinking, 163–164

299

registering, 168–173

SEO and, 275

templates, 95, 146, 173–175

theme vs plugin, 170

$taxonomy parameter, 165

taxonomy.php template, 96, 175

taxonomy-{taxonomy_name}.php template, 95,

175

taxonomy-{taxonomy_name}-{taxonomy-

term}.php template, 95, 174

teasers, 76

template hierarchy

post type, 95

taxonomy, 173–175

template tags

about, 58

get_ functions, 63–64

the_ functions, 60–62

templates

adding shortcodes, 187

archive, 98–100

nomenclature hierarchy, 144–146

page, 146–147

.PO file, 246

post type, 95–98

registration messages, 232–234

taxonomy, 95

terms and conditions, 281

Text widget, 51

textdomain constant, 247, 250

The Loop

about, 59

basic, 66–67

conditional logic, 64–65

counters, 68–69

customizing, 71–72

modifying, 70–71

pagination with, 65–66, 74

queries and, 58

taxonomies and, 175–176

template tags and, 59

using multiple, 70

the_ functions, 60–62

the_author() function, 60

the_author_meta() function, 60

the_category() function, 62

the_content() function, 61

the_date() function, 61

the_excerpt() function, 61

the_meta() function, 62

the_modified_time() function, 61

the_permalink() function, 60

the_post_thumbnail() function, 192–193

the_tags() function, 62

the_time() function, 61

the_title() function, 60

theme editor, 27

themes

about, 139–140

associating menus with, 50

configuring, 141–142

custom backgrounds, 151–152

custom headers, 150–151

custom menus, 148–149

directory structure, 57, 139, 248

editing, 27

for custom post types, 95–98

as hamburgers, 142–143

installing, 26–27

limitations of, 156

localizing, 243–244, 246–248

in Multisite, 227–228, 235–236

naming, 141

page templates, 147

as plugins, 27

plugins vs, 153, 154–157, 170

post thumbnails in, 192–193

styling, 140–141

taxonomies and, 170

widgetized areas, 149–150

themes directory, 57, 139, 248

Themes submenu, 235–236

300

third-party applications, 155

thumbnail field, 83

thumbnails, 47, 180, 182

(see also post thumbnails)

time format, 25

time zone, 25

time, displaying, 61, 63

$timestamp parameter, 209

title argument, 86

title field, 83

$title parameter, 134

<title> tag, 275–276

%title token, 66

trackbacks field, 83

traffic, 272, 282–283

Transients API, 206

translation (see localization)

translation files, 243–244, 250, 252, 253

translation keys, 244–245

transports, 203

trash bin, 33

troubleshooting, 105, 155

tutorials, 19

twentyeleven_content_nav() function, 98

U
Update button, 33

update_count_callback() function, 90, 167

update_metadata() function, 206

update_option() function, 205

update_post_meta() function, 87

Updates submenu, 236–237

updating

multiple sites, 236–237

plugins, 23, 104, 120

widgets, 132

WordPress, 27–28

wp-config.php and, 57

upload settings, 234

uploads directory, 57

URLs

(see also permalinks)

permanent (see permalinks)

retrieving, 203–204

scrubbing, 112

semantic, 273–275

setting, 16

site, 217

user fields, 237

user profiles, 54

user registration, 25, 56

user roles, 25, 52–54, 167, 221, 222, 224, 237

user_register hook, 111

user-manageable files, 56, 57

users

adding, 224, 226

registration settings, 231

roles (see user roles)

viewing, 235

Users submenu, 235

V
Valdrini, Michel, 2

$ver parameter, 211

video, 30, 46–47

video tutorials, 19

view_item label, 168

Vimeo, 46

visibility, page, 32

W
web crawlers, 278–279

web servers, 8, 40, 207, 238

welcome emails, 233

while loop, 59

widget class, 129

$widget_id parameter, 201

$widget_name parameter, 201

widgetized areas, 51, 149–150

301

widgets

about, 51–52, 128–129

changing title, 132–133

Dashboard, 22, 23

defining, 130

displaying, 130–132

loading, 133

Multisite, 223

registering, 129–130

in themes, 149–150

updating, 132

Widgets API, 196

widgets_init hook, 128, 133

$width parameter, 190, 191

wildcard subdomains, 217–219

Windows OS, 8, 40, 57, 207, 238

wireframes, 161, 163, 164

WordPress

back end code, 212–213

backing up, 27, 217

benefits of, 241–242

components of, 4–5

configuring, 57

creating site, 13

development team, 3

directory structure, 55–58, 217

file structure, 56

history of, 2–3

hosting options, 3–4

in other languages, 265–266

installing (see installation, Wordpress)

licensing, 4

migrating a site, 52

misuses of, 7–8

resources (see support)

setting URLs, 217

updating, 27–28, 57

usage statistics, 241

uses for, 5–7

Windows vs Linux, 8, 40, 57, 207, 238

WordPress API, 195–196

(see also APIs)

WordPress Codex, 17

WordPress Core, 4, 153, 216

#wordpress IRC, 19

WordPressµ, 216

WordPress MU Domain Mapping plugin, 237

WordPress network (see Multisite)

WordPress Plugin Directory, 136–137, 263

WordPress SEO plugin, 276, 280

wordpress.com, 3

wordpress.org, 3

WordPress.tv, 19

#wordpress-dev IRC, 19

wp_add_dashboard_widget() function, 200–201

WP_ALLOW_MULTISITE, 219

wp_cron function, 209

wp_dashboard_setup hook, 201, 202

wp_enqueue_script() function, 188, 211–212

wp_enqueue_style() function, 127, 212

WP_Error class, 204

wp_footer hook, 110

wp_footer() function, 142

wp_head hook, 109–110, 151

wp_head() function, 142

wp_nav_menu() function, 148, 149

WP_Query class

about, 71

matching a field, 75–76

matching status, 76

uses of, 73–74

$wp_query variable, 74

wp_register_script() function, 210–211

wp_register_style() function, 127, 212

wp_remote_get() function, 204

wp_remote_head() function, 204

wp_remote_post() function, 204

wp_remote_request() function, 204

wp_remote_retrieve_body() function, 204

wp_remote_retrieve_header() function, 204

wp_remote_retrieve_headers() function, 204

302

wp_remote_retrieve_response_code() function,

204

wp_remote_retrieve_response_message() func-

tion, 204

wp_reset_postdata() function, 74

WP_Rewrite class, 207

wp_schedule_event() function, 208–210

wp_tag_cloud() function, 176

wp-admin directory, 56

wp-config.php file

about, 57

enabling debugging, 107

enabling Multisite, 219, 221

installation, Wordpress, 13–15

language setting, 120

updates and, 57

WPLANG constant, 244, 245, 247–248, 265

wp-content directory, 57, 105, 266

wp-cron.php file, 56

wp-includes directory, 57, 266

WPLANG constant, 244, 245, 247–248, 265

WPML plugin, 264–265

wp-register.php file, 56

Writing Settings page, 41

X
XML sitemaps, 280

XML-RPC, 41

Y
Yank, Kevin, 5

YouTube, 46

303

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun
US $39.95 CAN $39.95

WEB DEVELOPMENT
ISBN PRINT: 978-0-9871530-0-5

ISBN EBOOK: 978-0-9871530-5-0

WHAT’S COVERED?

The WordPress Anthology offers an extensive array of solutions,
putting you in the driver’s seat of this powerful and flexible
open-source CMS. Jam-packed with proven tips and techniques
for web developers, discover how to effectively use WordPress
in your own projects.

It’s the only WordPress book you’ll ever need.

Learn how to:

 Undertake a thorough exploration of the WordPress GUI

 Conquer WordPress mechanics, with structuring, custom
 post types, and taxonomies

 Extend your projects with plugins, themes, and APIs

 Manage a network of sites using Multisite capabilities

 Launch your application globally using internationalization and
 localization

 Maximize your exposure through SEO best practices

 And much more …

MAKE THE WORLD’S MOST
VERSATILE CMS WORK FOR YOU

GET UNDER THE HOOD

CUSTOMIZE AND EXTEND

UNDERSTAND THE NUTS AND BOLTS

Delve into the inner mechanics of WordPress with
custom post types, structuring, and taxonomies.

Add extra horsepower and soup up your projects
with plugins, themes, and APIs.

Learn the basics of installing and using this
versatile and popular CMS.

Mick Olinik is a partner at Superfast Websites and NinjaDesk Elite

Technical Support & Training. As a WordPress expert who specializes

in graphic design, WordPress theme skinning, and organic search

engine optimization, he’s the go-to web development guru for several

of the top internet marketing specialists in the world. Mick is a regular

contributor to sitepoint.com.

mickolinik.com

Mick OLINIK
twitter.com/#!/raena

Raena JACKSON ARMITAGE
Raena Jackson Armitage is a web developer, trainer, and content
management geek. In 2010, Raena co-authored SitePoint’s Build Your
Own Wicked WordPress Themes, and has contributed to the SitePoint
blogs and newsletters. When she’s not pushing bytes around the

gaming, or tracking down the perfect all-day breakfast.

Visit us on the Web at sitepoint.com or for sales and support, email books@sitepoint.com

	Cover
	Summary of Contents
	The WordPress Anthology
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Network
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Mick Olinik
	Raena Jackson Armitage

	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Hello World
	In the Beginning …
	A Brief History of WordPress
	WordPress.com versus WordPress.org
	Core WordPress
	WordPress and its License, the GPL
	The Main Ingredients: HTML, CSS, JavaScript, PHP, and MySQL
	Why WordPress?

	Installing WordPress
	Choose Your Operating System Wisely
	Installing WordPress through the Web-Based User Interface
	Installing WordPress Manually
	A Word about Installers
	Giving WordPress Its Own Directory

	Resources and Learning Tools
	The WordPress Codex
	Support Forums
	WordCamp and Local Meetups
	WordPress.tv
	Chat Rooms
	Google

	Ready to Press On

	WordPress 101
	An Overview of Core WordPress
	Setting the Mood
	The Dashboard
	Screen Options
	The Admin Menu
	General Settings
	Themes
	Privacy Settings
	Automatically Updating

	Creating and Managing Text-based Content
	Pages
	The Content Editor
	Meta Boxes
	Saving (Your Backside)
	Quick Edit and Bulk Edit
	Understanding Posts and Categories
	Understanding Tags
	Creating and Working with Posts
	Managing Categories and Tags
	Working with the Links Content Type
	Permalinks
	Alternative Ways to Post Text-based Content

	Working with Media and the Media Library
	The Media Library
	Adding Images into a Page or Post
	Modifying Images
	Image Manipulation within WordPress
	Managing Media Outside of WordPress
	Media Settings

	Everyone Wants a Say
	Managing Comments
	Comment Spam
	Discussion Settings
	Avatars

	Additional Display Elements
	Managing Custom Menus
	Sidebars and Widgets
	Extending WordPress through Plugins
	Import and Export Tools

	Users Roles and Permissions
	Default User Roles
	Extending User Profiles

	Now You Know the Basics …

	The Loop and WordPress File System
	The Standard WordPress File Structure
	The Role of Queries and The Loop
	The Loop: Exposed!
	The Loop and Template Tags
	Some Easy Tags: the_
	More Complex Functions: get_

	Conditional Tags: is
	Pagination

	Let’s Try a Simple loop
	Counters and The Loop
	Rewinding The Loop

	Beyond the Default: Custom Queries
	Manipulating the Default loop: query_posts()
	Creating New Customized Loops: get_posts
	Using the WP_Query Class Directly

	Roll Your Own Loop Magic
	Fetch Any Posts Matching a Custom Field
	Teasers of Future-dated Posts

	Any More Queries?

	Post Types
	Moving Beyond the Blog
	Creating Your First Custom Post Types
	The Basics of register_post_type()
	Adding Custom Fields to the Edit Screen
	Adding Conference Sessions
	Custom Taxonomies

	Providing Help
	Displaying Your Custom Post Types
	Showing off Our Conference Sessions and Speakers
	Custom Archives

	You’re Custom-ready

	Plugins
	The Basics
	The Upside to Plugins
	The Downside to Plugins
	Rules to Follow When Using Plugins
	Must-use Plugins
	Drop-in Plugins
	Determining When to Create a New Plugin
	Debugging Your Plugin As You Go

	The Anatomy of a Plugin
	Standard Plugin Packaging
	Action Hooks and Filter Hooks
	The Power of Paranoia: Data Validation

	Dissecting a Plugin: Antelope General Social Media Links
	Header and License
	Localization Settings
	Creating the Menu Item for the Settings Page
	Styling the Admin Screen
	Formatting for the Settings Page
	Getting Output Styles Ready
	Widgets 101
	Registering Our Antelope General Widget
	Define What the Widget Should Do
	Display Logic
	Updating the Instance of the Widget
	Creating the Form to Change the Title
	Load Our Widget into WordPress

	Taking Plugins Further
	Meta Boxes
	Shortcodes
	The WordPress Plugin Directory

	Plug In All the Way

	Themes
	Basic Components of a Theme
	Required Elements of a Theme

	Nomenclature Hierarchy and Page Templates
	Page Templates

	Adding Functionality to Your Theme
	Adding Custom Menus
	Creating Widgetized Areas

	Adding Support for Visual Modifications
	Adding Support for Custom Headers
	Adding Support for a Custom Background

	Does My Functionality Belong in a Plugin or Theme?
	Defining Functionality
	The Difference between Display Logic and Site Functionality
	A Case Study: ABC Real Estate
	Some Form of Event Management System
	Each Property Displayed in a Constant, Intuitive Way
	Six Featured Properties in a Specific Format for the Home Page
	Site Integration of Facebook Comments

	My Way of Adding Site Functionality Works for Me!
	Breaking the Rules
	Reason #1: Post Types
	Reason #2: Specialized Page Templates
	Reason #3: Protecting the Client from Themselves
	Reason #4: Specialized Products for a Specific Industry
	Reason #5: Time and Budget Considerations

	Looking Good

	Taxonomies
	Categories, Tags, and Custom Taxonomies
	A Word on Information Hierarchy
	Why Custom Taxonomies?

	Creating Custom Taxonomies
	Registering a New Taxonomy
	The $args Array
	The Nested Labels Array Argument
	Using register_taxonomy()

	Using Our Custom Taxonomies
	Taxonomy Template File Hierarchy and Nomenclature
	Customizing Output with Functions That Must Be Called in The Loop
	Customizing Taxonomy Output outside of The Loop

	Everything in Its Place

	Image Galleries and Featured Images
	Revisiting the Media Library and Media Settings
	Configuring Image Processing in Media Settings

	The [gallery] Shortcode
	Common Uses of [gallery]
	Specialized Uses of [gallery]
	Working with [gallery] in the Content Editor GUI
	Firing the [gallery] Shortcode from a Template
	Lightboxes

	Working with Featured Images
	Enabling Support for Post Thumbnails
	Sizing Your Post Thumbnails
	Adding Different-sized Post Thumbnails
	Post Thumbnail Implementation in Themes

	Got the Picture?

	The WordPress API
	A Quick Review of the APIs Covered So Far
	Shortcodes under the Microscope

	The Dashboard Widgets API
	Removing Dashboard Widgets

	The HTTP API
	The Database API
	The Options API
	The Transients API
	The Metadata API

	The Rewrite API
	Other Functions and Tools
	register_activation_hook()
	wp_schedule_event()
	wp_enqueue_script() and wp_register_script()
	BackPress

	A Box Full of Tools

	Multisite: Rolling Your Own Network
	A Brief History of Multisite
	Enabling Multisite
	Multisite in Action
	The Network Admin Dashboard
	The Sites Submenu
	Individual Network Site Settings
	The Settings Submenu
	The Users Submenu
	The Themes Submenu
	The Plugins Submenu
	The Updates Submenu

	Useful Plugins Within Multisite
	Troubleshooting Multisite
	Enabling Multisite
	Routing Issues in Subdirectory Multisite Installations

	You’re Multiskilled

	Going Global with Themes and Plugins
	The Basics of Internationalization and Localization
	Anatomy of a Localization Process
	GNU gettext Markers Tell Which Strings to Translate
	A Function Linking Markers to a File with a Translation Key
	A File Providing a Translation Key

	Putting the Pieces Together
	Localizing a Theme
	Localizing a Plugin
	A Word on .MO File Nomenclature

	Introducing Poedit
	Creating a .POT File
	Translating Our .POT File
	Another Way to Generate a .POT File

	Is There an Easier Way Than Localization?
	Installing WordPress in Your Own Language
	World Tour Complete

	SEO, Marketing, and Goal Conversion
	Why SEO Is So Difficult
	SEO Is a Moving Target
	The Google Search Algorithm Is Private
	Sharks Patrol These Waters
	Websites Are Poorly Coded
	There’s a Difference Between SEO and SEM
	SEO and SEM Require a Team Effort
	What’s it all about anyway?

	The Big Three Fundamental SEO Components
	Semantic Permalinking
	Proper <meta> and <title> Tag Inclusion
	Proper Header Tag Structure and Implementation
	The Anatomy of a Typical Search Engine Spider Visit

	Other Important SEO Aspects
	Image alt Attributes
	Individual Page Privacy Settings
	XML Sitemaps
	Disclaimers, Terms and Conditions, and Privacy Pages
	Proper Use of 301 Redirects and Avoidance of 404s

	It’s about GOAL CONVERSIONS!
	Metrics and Split Testing
	Keywords and Text
	Making the Right Offer
	Different Visual Layout
	Heatmaps

	Over to You

	Index
	Back Cover

