

Summary of Contents

Preface . xvii

1. Making a Start with CSS . 1

2. Text Styling and Other Basics . 19

3. CSS and Images . 63

4. Navigation . 89

5. Tabular Data . 139

6. Forms and User Interfaces . 177

7. Cross-browser Techniques . 217

8. Accessibility and Alternative Devices . 255

9. CSS Positioning and Layout . 287

Index . 373

iv

The CSS Anthology: 101 Essential Tips, Tricks & Hacks
by Rachel Andrew

Copyright © 2009 SitePoint Pty Ltd

Managing Editor: Chris Wyness Technical Director: Kevin Yank

Technical Editor: Andrew Tetlaw Cover Design: Alex Walker

Editor: Kelly Steele

Printing History: Latest Update: July 2009

First Edition: November 2004

Second Edition: May 2007

Third Edition: July 2009

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty Ltd, nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty Ltd

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-0-1

Printed and bound in Canada

mailto:business@sitepoint.com
http:www.sitepoint.com

v

About the Author

Rachel Andrew is a director of web solutions provider edgeofmyseat.com and a web developer.

When not writing code, she writes about writing code and is the author of several SitePoint

books, including HTML Utopia: Designing Without Tables Using CSS and Everything You

Know About CSS Is Wrong!, which promote the practical use of web standards alongside

other everyday tools and technologies. Rachel takes a common sense, real world approach

to web standards, with her writing and teaching being based on the experiences she has in

her own company every day.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,

they can often be found wandering around the English countryside hunting for geocaches

and nice pubs that serve Sunday lunch and a good beer.

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. At SitePoint

he is dedicated to making the world a better place through the technical editing of SitePoint

books, kits, articles, and newsletters. He is also a busy father of five, enjoys coffee, and often

neglects his blog at http://tetlaw.id.au/.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for his book, Build Your Own Database Driven Website Using

PHP & MySQL, he also co-authored Simply JavaScript with Cameron Adams and Everything

You Know About CSS Is Wrong! with Rachel Andrew. In addition, Kevin hosts the SitePoint

Podcast and writes the SitePoint Tech Times, a free email newsletter that goes out to over

240,000 subscribers worldwide.

Kevin lives in Melbourne, Australia and enjoys speaking at conferences, as well as visiting

friends and family in Canada. He’s also passionate about performing improvised comedy

theater with Impro Melbourne (http://www.impromelbourne.com.au/) and flying light aircraft.

Kevin’s personal blog is Yes, I’m Canadian (http://yesimcanadian.com/).

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

podcasts, and community forums.

http://www.sitepoint.com/
http:http://yesimcanadian.com
http://www.impromelbourne.com.au
http:http://tetlaw.id.au
http:edgeofmyseat.com

For Bethany

Table of Contents

Preface . xvii

The Book’s Web Site . xx

The SitePoint Forums . xx

The SitePoint Newsletters . xx

The SitePoint Podcast . xxi

Your Feedback . xxi

Acknowledgments . xxi

Conventions Used in This Book . xxii

Who Should Read this Book? . xviii

What’s Covered in this Book? . xviii

Chapter 1 Making a Start with CSS 1

How do I define styles with CSS? . 1

What are CSS Selectors and how do I use them effectively? 7

How does the browser know which styles to apply? 15

Summary . 17

Chapter 2 Text Styling and Other Basics 19

How do I set my text to display in a certain font? 20

Should I use pixels, points, ems, or another unit identifier to set font

sizes? . 22

How do I remove underlines from my links? . 30

How do I create a link that changes color when the cursor moves over

it? . 32

How do I display two different styles of link on one page? 34

How do I style the first item in a list differently from the others? 36

x

How do I add a background color to a heading? 38

How do I remove the large gap between an h1 element and the

How can I remove browsers’ default padding and margins from all

How do I style headings with underlines? . 39

following paragraph? . 41

How do I highlight text on the page? . 43

How do I alter the line height (leading) on my text? 44

How do I justify text? . 45

How do I style a horizontal rule? . 46

How do I indent text? . 48

How do I center text? . 49

How do I change text to all capitals using CSS? . 50

How do I change or remove the bullets on list items? 52

How do I use an image for a list-item bullet? . 54

How do I remove the indented left-hand margin from a list? 55

How do I display a list horizontally? . 56

How do I remove page margins? . 57

elements? . 58

How do I add comments to my CSS file? . 60

Summary . 61

Chapter 3 CSS and Images . 63

How do I add borders to images? . 63

How do I use CSS to remove the blue border around my navigation

images? . 66

How do I set a background image for my page using CSS? 66

How do I control how my background image repeats? 68

How do I position my background image? . 71

xi

How do I fix my background image in place when the page is

scrolled? . 74

Can I set a background image on any element?

Can I create more complex image borders, such as a double

. 76

How do I place text on top of an image? . 80

How do I add more than one background image to my document? . . . 82

How can I use transparency in my pages? . 84

border? . 86

Summary . 88

Chapter 4 Navigation . 89

How do I style a structural list as a navigation menu? 90

How do I use CSS to create rollover navigation without images or

JavaScript? . 94

Can I use CSS and lists to create a navigation system with

subnavigation? . 96

How do I make a horizontal menu using CSS and lists? 101

How do I create button-like navigation using CSS? 105

How do I create tabbed navigation with CSS? . 108

How can I visually indicate which links are external to my site? 116

How do I change the cursor type? . 119

How do I create rollover images in my navigation without using

JavaScript? . 122

How should I style a site map? . 126

Can I create a drop-down menu using only CSS? 130

How can I use CSS to keep image-based navigation clean and

accessible? . 131

Summary . 137

xii

Chapter 5 Tabular Data . 139

How do I ensure that my tabular data is accessible as well as

How do I add a border to a table without using the HTML border

How do I stop spaces appearing between the cells of my table when

How do I display spreadsheet data in an attractive and usable

How do I change a row’s background color when the cursor hovers

How do I lay out spreadsheet data using CSS? . 140

attractive? . 141

attribute? . 145

I’ve added borders using CSS? . 147

way? . 148

How do I display table rows in alternating colors? 152

over it? . 157

How do I display table columns in alternating colors? 160

How do I display a calendar using CSS? . 164

Summary . 176

Chapter 6 Forms and User Interfaces 177

How do I stop my form from creating additional whitespace and line

How do I ensure that users with text-only devices understand how to

How do I lay out a two-column form using CSS instead of a

How do I style form elements using CSS? . 178

How do I apply different styles to fields in a single form? 182

breaks? . 185

How do I make a Submit button look like text? 187

complete my form? . 187

table? . 191

How do I group related fields? . 196

How do I style accesskey hints? . 201

xiii

How do I use different colored highlights in a select menu? 205

How do I style a form with CSS that allows users to enter data as if

into a spreadsheet? . 207

How do I highlight the form field that the user clicks into? 214

Summary . 216

Chapter 7 Cross-browser Techniques 217

In which browsers should I test my site? . 218

How can I test in many browsers when I only have access to one

operating system? . 220

Is there a service that can show me how my site looks in various

browsers? . 224

Can I install multiple versions of Internet Explorer on Windows? 226

How do I decide which browsers should get the full design

experience? . 228

How do I display a basic style sheet for really old browsers? 229

What is quirks mode and how do I avoid it? . 233

How can I specify different styles for Internet Explorer 6 and 7? 236

How do I deal with the most common issues in IE6 and 7 237

How do I achieve PNG image transparency in Internet Explorer 6? . . . 241

How do I ensure my standards-compliant web site displays correctly

in Internet Explorer 8? . 246

What do I do if I think I’ve found a CSS bug? . 248

What do the error and warning messages in the W3C Validator

mean? . 251

Summary . 252

xiv

Chapter 8 Accessibility and Alternative
Devices . 255

What should I be aware of in terms of accessibility when using

Should I add font-size widgets or other style sheet switchers to my

CSS? . 256

How do I test my site in a text-only browser? . 257

How do I test my site in a screen reader? . 260

How do I create style sheets for specific devices? 261

How do I create a print style sheet? . 263

How do I add alternative style sheets to my site? 274

site? . 280

How do I use alternative style sheets without duplicating code? 281

Summary . 286

Chapter 9 CSS Positioning and Layout 287

Can I make an inline element display as if it were block-level, and

How do I create a liquid, two-column layout with the menu on the

How do I decide when to use a class and when to use an ID? 287

vice-versa? . 289

How do margins and padding work in CSS? . 291

How do I wrap text around an image? . 296

How do I stop the next element moving up when I use float? 299

How do I align a site’s logo and slogan to the left and right? 303

How do I set an item’s position on the page using CSS? 307

How do I center a block on the page? . 312

How do I create boxes with rounded corners? . 314

left and the content on the right? . 322

Can I reverse this layout and put the menu on the right? 330

How do I create a fixed-width, centered, two-column layout? 331

xv

How do I create a full-height column? . 345

How do I add a drop shadow to my layout? . 347

How do I create a three-column CSS layout? . 350

How do I add a footer to a liquid layout? . 357

How do I create a thumbnail gallery with CSS? 360

How do I use CSS Tables for Layout? . 366

Summary . 371

Index . 373

Preface

Apart from writing books like this one, I write code. I make my living by building

web sites and applications as, I’m sure, many readers of this book do. I use CSS to

complete jobs every day, and I know what it’s like to struggle to make CSS work

when the project needs to be finished the next morning.

When I talk to designers and developers who avoid using CSS, or use CSS only for

simple text styling, I hear over and over again that they just lack the time to learn

this whole new way of working. After all, tables and spacer GIFs function, they do

the job, and they pay the bills.

I was lucky. I picked up CSS very early in the piece, and started to play with it be

cause it interested me. As a result of that early interest, my knowledge grew as the

CSS techniques themselves were developed, and I can now draw on nine years’

experience building CSS layouts every time I tackle a project.

In this book, I’ve tried to pass on the tricks and techniques that allow me to quickly

and easily develop web sites and applications using CSS.

Pages and pages of theory are nowhere to be found in this book. What you’ll find

are solutions that will enable you to do the cool stuff today, but should also act as

starting points for your own creativity. In my experience, it’s far easier to learn by

doing than by reading, so while you can use this book to find solutions that will

help you get that client web site up and running before the deadline, please exper

iment with these examples and use them as a means to learn new techniques.

The book was designed to let you quickly find the answer to the particular CSS

problem with which you’re struggling at any given point in time. There’s no need

to read it from cover to cover—just grab the technique you need, or that interests

you, and you’re set to go. Along with each solution, I’ve provided an explanation

to help you understand why the technique works. This knowledge will allow you

to expand on, and experiment with, the technique in your own time.

I hope you enjoy this book! It has been great fun to write, and my hope is that it

will be useful as a day-to-day reference, as well as a tool that helps give you the

confidence to explore new CSS techniques.

xviii

Who Should Read this Book?

This book is aimed at people who need to work with CSS—web designers and de

velopers who’ve seen the cool CSS designs out there, but are short on the time to

wade through masses of theory and debate in order to create a site. Each problem

is solved with a working solution that can be implemented as it is or used as a

springboard to creativity.

As a whole, this book isn’t a tutorial; while Chapter 1 covers the very basics of CSS,

and the early chapters cover simpler techniques than those that follow, you’ll find

the examples easier to grasp if you have a basic grounding in CSS.

What’s Covered in this Book?
Chapter 1: Making a Start with CSS

This chapter follows a different format to the rest of the book—it’s simply a

quick CSS tutorial for anyone who needs to brush up on the basics of CSS. If

you’ve been using CSS in your own projects, you might want to skip this chapter

and refer to it on a needs basis, when you want to look into basic concepts in

more detail.

Chapter 2: Text Styling and Other Basics

This chapter covers techniques for styling and formatting text in your documents;

font sizing, colors, and the removal of annoying extra whitespace around page

elements are explained as the chapter progresses. Even if you’re already using

CSS for text styling, you’ll find some useful tips here.

Chapter 3: CSS and Images

Combining CSS and images can create powerful visual effects. This chapter

looks at the ways in which you can do this, covering background images on

various elements, and positioning text with images, among other topics.

Chapter 4: Navigation

We all need navigation and this chapter explains how to create it, CSS-style.

The topics of CSS replacements for image-based navigation, CSS tab navigation,

combining background images with CSS text to create attractive and accessible

xix

menus, and using lists to structure navigation in an accessible way are addressed

in this chapter.

Chapter 5: Tabular Data

While the use of tables for layout should be avoided wherever possible, tables

should be used for their real purpose: the display of tabular data, such as that

contained in a spreadsheet. This chapter will demonstrate techniques for the

application of tables to create attractive and usable tabular data displays.

Chapter 6: Forms and User Interfaces

Whether you’re a designer or a developer, it’s likely that you’ll spend a fair

amount of time creating forms for data entry. CSS can help you to create forms

that are attractive and usable; this chapter shows how we can do that while

bearing the key accessibility principles in mind.

Chapter 7: Cross-browser Techniques

How can we deal with older browsers, browsers with CSS bugs, and alternative

devices? These questions form the main theme of this chapter. We’ll also see

how to troubleshoot CSS bugs—and where to go for help—as well as discussing

the ways you can test your site in as many browsers as possible.

Chapter 8: Accessibility and Alternative Devices

It’s all very well that our pages look pretty to the majority of our site’s visit-

ors—but what about that group of people who rely upon assistive technology,

such as screen magnifiers and screen readers? Or those users who prefer to

navigate the Web using the keyboard rather than a mouse, for whatever reason?

In this chapter, we’ll see how we can make our site as welcoming and accessible

as possible for all users, rather than just able-bodied visitors with perfect vision.

Chapter 9: CSS Positioning and Layout

In this chapter, we explore the use of CSS to create beautiful and accessible

pages. We cover a range of different CSS layouts and a variety of techniques,

which can be combined and extended upon to create numerous interesting page

layouts.

xx

The Book’s Web Site
Located at http://www.sitepoint.com/books/cssant3/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.1

The SitePoint Forums
If you’d like to communicate with other designers about this book, you should join

SitePoint’s online community.2 The CSS forum, in particular, offers an abundance

of information above and beyond the solutions in this book, and a lot of fun and

experienced web designers and developers hang out there.3 It’s a good way to learn

new tricks, have questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, includ

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. If nothing else,

you’ll read useful CSS articles and tips, but if you’re interested in learning other

1 http://www.sitepoint.com/books/cssant2/errata.php
2 http://www.sitepoint.com/forums/
3 http://www.sitepoint.com/launch/cssforum/

http://www.sitepoint.com/books/cssant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/cssforum/
http://www.sitepoint.com/launch/cssforum/
http://www.sitepoint.com/launch/cssforum
http://www.sitepoint.com/forums
http://www.sitepoint.com/books/cssant2/errata.php
http://www.sitepoint.com/books/cssant3

xxi

technologies, you’ll find them especially valuable. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. They discuss the latest web industry topics,

present guest speakers, and interview some of the best minds in the industry. You

can catch up on the latest and previous podcasts at http://www.sitepoint.com/pod

cast/ or subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have an

email support system set up to track your inquiries, and friendly support staff

members who can answer your questions. Suggestions for improvements, as well

as notices of any mistakes you may find are especially welcome.

Acknowledgments
Firstly, I’d like to thank the SitePoint team for making this book a reality, and for

being easy to communicate with despite the fact that our respective time zones saw

me going to bed as they started work each day.

To those people who are really breaking new ground in the world of CSS, those

whose ideas are discussed throughout this book, and those who share their ideas

and creativity with the wider community, thank you.

Thanks to Drew for his support and encouragement, for being willing to discuss

CSS concepts as I worked out my examples for the book, for making me laugh when

I was growing annoyed, and for putting up with our entire lack of a social life. Fi

nally, thanks must go to my daughter Bethany, who is very understanding of the

fact that her mother is constantly at a computer, and who reminds me of what’s

important every day. You both make so many things possible, thank you.

http://www.sitepoint.com/newsletter/
mailto:books@sitepoint.com
http://www.sitepoint.com/pod

xxii

Conventions Used in This Book

You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Markup Samples
Any markup—be that HTML or CSS—will be displayed using a fixed-width font

like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the markup forms part of the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {

 background-color: #CCC;

 border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

xxiii

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

⋮
return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Chapter1
Making a Start with CSS
Cascading Style Sheets sound intimidating. The name alone conjures up images of

cryptic code and syntax too difficult for the layperson to grasp. In reality, however,

CSS is one of the simplest and most convenient tools available to web developers.

In this first chapter, which takes a different format than the rest of the book, I’ll

guide you through the basics of CSS and show you how it can be used to simplify

the task of managing a consistently formatted web site. If you’ve already used CSS

to format text on your sites, you may want to skip this chapter and jump straight to

the solutions that begin in Chapter 2.

How do I define styles with CSS?
The basic purpose of CSS is to allow the designer to define style declarations

(formatting details such as fonts, element sizes, and colors), and to apply those

styles to selected portions of HTML pages using selectors—references to an element

or group of elements to which the style is applied.

The CSS Anthology2

Solution
Let’s look at a basic example to see how this is done. Consider the following HTML

document outline:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>A Simple Page</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 </head>

 <body>

<h1>First Title</h1>

 <p>A paragraph of interesting content.</p>

<h2>Second Title</h2>

 <p>A paragraph of interesting content.</p>

<h2>Third title</h2>

 <p>A paragraph of interesting content.</p>

 </body>

</html>

This document contains three headings (in bold above), which have been created

using <h1> and <h2> tags. Without CSS styling, the headings will be rendered using

the browser’s internal style sheet—the h1 heading will be displayed in a large font

size, and the h2 headings will be smaller than the h1, but larger than paragraph text.

The document that uses these default styles will be readable, if a little plain. We

can use some simple CSS to change the look of these elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>A Simple Page</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<style type="text/css">

 h1, h2 {

 font-family: sans-serif;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

3Making a Start with CSS

color: #3366CC;

 }

 </style>

 </head>

 <body>

 <h1>First Title</h1>

 <p>A paragraph of interesting content.</p>

 <h2>Second Title</h2>

 <p>A paragraph of interesting content.</p>

 <h2>Third title</h2>

 <p>A paragraph of interesting content.</p>

 </body>

</html>

All the magic lies between the <style> tags in the head of the document, where we

specify that a light blue, sans-serif font should be applied to all h1 and h2 elements

in the document. Regarding the syntax—I’ll explain it in detail in a moment. It’s

unnecessary to add to the markup itself—changes to the style definition at the top

of the page will affect all three headings, as well as any other headings that might

be added to the page at a later date.

HTML or XHTML?

Throughout this book I’ll use the term HTML to refer generally to web page docu

ments, markup, and code examples. You can take that as meaning HTML and/or

XHTML unless stated otherwise.

Now that you have an idea of what CSS does, let me explain the different ways in

which you can use CSS styles in your HTML documents.

lnline Styles
The simplest method of adding CSS styles to your web pages is to use inline styles.

An inline style is applied to a HTML element via its style attribute, like this:

<p style="font-family: sans-serif; color: #3366CC;">

 Amazingly few discotheques provide jukeboxes.

</p>

The CSS Anthology4

An inline style has no selector; the style declarations are applied to the parent ele

ment—in the above example the <p> tag.

Inline styles have one major disadvantage: it’s impossible to reuse them. For example,

if we wanted to apply the style above to another p element, we’d have to type it out

again in that element’s style attribute. And if the style needed changing further

on, we’d have to find and edit every HTML tag where the style was copied. Addi

tionally, because inline styles are located within the page’s markup, it makes the

code difficult to read and maintain.

Embedded Styles
Another approach you can take to applying CSS styles to your web pages is to use

the style element, as I did in the first example we looked at. Using this method,

you can declare any number of CSS styles by placing them between the opening

and closing <style> tags, as follows:

<style type="text/css">

⋮ CSS Styles…

</style>

The <style> tags are placed inside the head element. The type attribute specifies

the language that you’re using to define your styles. CSS is the only style language

in wide use, and is indicated with the value text/css.

While it’s nice and simple, the <style> tag has one major disadvantage: if you want

to use a particular set of styles throughout your site, you’ll have to repeat those style

definitions within the style element at the top of every one of your site’s pages.

A more sensible alternative is to place those definitions into a plain text file, then

link your documents to that file. This external file is referred to as an external style

sheet.

External Style Sheets
An external style sheet is a file (usually given a .css filename) that contains a web

site’s CSS styles, keeping them separate from any one web page. Multiple pages can

link to the same .css file, and any changes you make to the style definitions in that

5Making a Start with CSS

file will affect all the pages that link to it. This achieves the objective of creating

site-wide style definitions that I mentioned above.

To link a document to an external style sheet (say, styles.css), we simply place a link

element within the document’s head element:

<link rel="stylesheet" type="text/css" href="styles.css" />

Remember our original example in which three headings shared a single style rule?

Let’s save that rule to an external style sheet with the filename styles.css, and link

it to the web page like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>A Simple Page</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="styles.css" />

</head>

<body>

<h1>First Title</h1>

<p>…</p>

<h2>Second Title</h2>

<p>…</p>

<h2>Third Title</h2>

<p>…</p>

</body>

</html>

The value of the rel attribute must be stylesheet and the type must be text/css.

The href attribute indicates the location and name of the style sheet file.

The linked styles.css file contains the style definition:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology6

h1, h2 {

 font-family: sans-serif;

 color: #3366CC;

}

As with an image file, you can reuse this styles.css file in any pages in which it’s

needed. It will save you from re-typing the styles, as well as ensuring that your

headings display consistently across the entire site.

CSS Syntax
A style sheet is a collection of style definitions. Every CSS style definition, or rule,

has two main components:

■	 A list of one or more selectors, separated by commas, define the element or ele

ments to which the style will be applied.
■	 The declaration block, surrounded by curly braces {…}, specifies what the style

actually does.

The declaration block contains one or more style declarations and each one sets

the value of a specific property. Multiple declarations are separated by a semi-colon

(;). A property declaration is made up of the property name and a value, separated

by a colon (:). You can see all of these elements labeled in Figure 1.1.

Figure 1.1. The components of a CSS rule: a list of selectors and a declaration block

Property declarations set the values for fonts, colors, and other settings that should

be applied by the style. The solutions throughout the book focus mainly on the

different properties and the values they can take.

Figure 1.1 also illustrates that a style rule can be written in a single line. Some CSS

authors prefer to indent their style rules to aid readability, while others choose to

7Making a Start with CSS

write their rules on one line to save space. The following shows the same style rule

written both ways:

h1, h2 {

 font-family: sans-serif;

 color: #3366CC;

}

h1, h2 { font-family: sans-serif; color: #3366CC; }

The formatting makes no difference at all; it's totally up to you how you write your

style sheet.

What are CSS Selectors and how do I use
them effectively?
In the following example, the selectors are h1 and h2, which means that the style

should apply to all h1 and h2 elements:

h1, h2 {

 font-family: sans-serif;

 color: #3366CC;

}

Solution
In this section, I’ll describe the basic CSS2.1 selector types that are in common use

today and give you some examples of each.

Type Selectors
The most basic form of selector is a type selector, which we’ve already seen. By

naming a particular HTML element, you can apply a style rule to every occurrence

of that element in the document. Type selectors are often used to set the basic styles

that will appear throughout a web site. For example, the following style rule might

be used to set the default paragraph font for a web site:

The CSS Anthology8

p {

 font-family: Tahoma, Verdana, Arial, Helvetica, sans-serif;

 font-size: 1em;

 color: #000000;

}

Here we set the font, size, and color for all p (paragraph) elements in the document.

Class Selectors
Assigning styles to elements is all well and good, but what happens if you want to

assign different styles to identical elements that occur in various places within your

document? This is where CSS classes come in.

Consider the following style, which turns all the paragraph text blue on a page:

p {

color: #0000FF;

}

Great! But what would happen if you had a sidebar on your page with a blue back

ground? If the text in the sidebar were to display blue as well it would be invisible.

What you need to do is define a class for your sidebar text, then assign a CSS style

to that class.

To create a paragraph of the sidebar class, first add a class attribute to the opening

tag:

<p class="sidebar">This text will be white, as specified by the

 CSS style definition below.</p>

Now we can write the style for this class:

p {

 color: #0000FF;

}

.sidebar {

 color: #FFFFFF;

}

9Making a Start with CSS

This second rule uses a class selector to indicate that the style should be applied

to any element with a class value of the sidebar. The period (.) at the beginning

indicates that we’re naming a class, instead of a HTML element.

Now, what would happen if there were links in your sidebar? By default, they’d be

rendered just like any other links in your page; however, add a class="sidebar"

attribute to the link element, and they’ll turn white, too:

<p class="sidebar">This text will be white, <a class="sidebar"

 href="link.html">and so will this link.</p>

That’s fairly neat, but what if you wanted to make the links stand out a bit more?

Perhaps you want to display them in bold text? Adding the bold text declaration

to the sidebar class style will turn your whole sidebar bold, which defeats the

purpose. You need a CSS selector that selects links of the sidebar class only, and

by combining a type selector with a class selector, you can do exactly that:

p {

color: #0000FF;

}

.sidebar {

 color: #FFFFFF;

}

a.sidebar:link, a.sidebar:visited {

font-weight: bold;

}

Note that we’ve also used the :link and :visited pseudo-classes here—we’ll look

at pseudo-classes in more detail later in this chapter.

If you were to add these style rules to your style sheet and reload the page in your

browser, you’d see that your sidebar links display in a font that’s white and

bold—both of the styles that we defined above for the sidebar class are applied to

our sidebar links. If we were to specify a different color in the third style rule,

however, links would adopt that new color, because the third selector is more spe

cific, and CSS style rules are applied in order of increasing selector specificity.

The CSS Anthology10

Incidentally, the process of applying multiple styles to a single page element is

called cascading, and is where Cascading Style Sheets gained their name. We’ll

learn more about selector specificity and the cascade at the end of this chapter.

ID Selectors
In contrast with class selectors, ID selectors are used to select one particular element,

rather than a group of elements. To use an ID selector, first add an id attribute to

the element you wish to style. It’s important that the ID is unique within the HTML

document:

<p id="tagline">This paragraph is uniquely identified by the ID

 "tagline".</p>

To reference this element by its ID selector, we precede the id with a hash (#). For

example, the following rule will make the above paragraph white:

#tagline {

color: #FFFFFF;

}

ID selectors can be used in combination with other selector types. The following

style, for example, applies to elements with a class of new appearing within the

paragraph that has an id of tagline:

#tagline .new {

 font-weight: bold;

 color: #FFFFFF;

}

The selector in the above example is actually known as a descendant selector, and

we learn about those in the very next section.

Descendant Selectors
If your sidebar consisted of more than just one paragraph of text, you could add the

class to every opening <p> tag in the sidebar. However, it would be much neater to

apply a class of sidebar to a container element, and set the color of every p element

11 Making a Start with CSS

within that container to white, with a single CSS style rule. This is what descendant

selectors are for.

Here’s the new selector:

p {

color: #0000FF;

}

.sidebar p {

 color: #FFFFFF;

}

And here’s the updated HTML:

<div class="sidebar">

 <p>This paragraph will be displayed in white.</p>

 <p>So will this one.</p>

</div>

As you can see, a descendant selector comprises a list of selectors (separated by

spaces) that matches a page element (or group of elements) from the outside in. In

this case, because our page contains a div element that has a class of sidebar, the

descendant selector .sidebar p refers to all p elements inside that div.

Child Selectors
The descendant selector matches all elements that are descendants of the parent

element, including elements that are not direct descendants.

Consider the following markup:

<div class="sidebar">

 <p>This paragraph will be displayed in white.</p>

 <p>So will this one.</p>

 <div class="tagline">

 <p>If we use a descendant selector, this will be white too.

 But if we use a child selector, it will be blue.</p>

 </div>

</div>

The CSS Anthology12

In this example, the descendant selector we saw in the previous section, .sidebar

p, would match all the paragraphs that are nested within the div element with the

class sidebar as well as those inside the div with the class tagline. But if instead

you only wanted to style those paragraphs that were direct descendants of the

sidebar div, you’d use a child selector. A child selector uses the > character to

specify a direct descendant.

Here’s the new selector, which sets the text color to white for those paragraphs

directly inside the sidebar div (but not those within the tagline div):

p {

color: #0000FF;

}

.sidebar>p {

color: #FFFFFF;

}

Internet Explorer 6 Doesn’t Support the Child Selector

Unfortunately, IE6 falls short of supporting the child selector, so if this style is

essential to the layout of your page, you’ll need to find an alternative way to target

the element.

Adjacent Selectors
An adjacent selector will only match an element if it’s adjacent to another specified

element. Therefore, if we have HTML:

<h2>This is a title</h2>

<p>This paragraph will be displayed in white.</p>

<p>Ths paragraph will be displayed in black.</p>

And then use the following selector:

p {

color: #000000;

}

h2+p {

color: #FFFFFF;

}

13Making a Start with CSS

Only the first paragraph will be displayed in white. The second p element is not

adjacent to an h2 and therefore its text would be displayed in the black we have

specified for p elements in the first rule.

Internet Explorer 6 Doesn’t Support the Adjacent Selector

Unfortunately, IE6 fails to support the adjacent selector, therefore if the style is

essential to the layout of your page then I’d advise finding another way to target

the element.

Pseudo-class Selectors for Links
The formatting options available for links in HTML—created using the the a, or

anchor element—are more extensive than those on offer for most other elements.

CSS provides a way of setting link styles according to their state—if they’ve been

visited or remain unvisited, if the cursor is hovering over the link, or if the link is

being clicked on. Consider the following example:

a:link { color: #0000FF; }

a:visited { color: #FF00FF; }

a:hover { color: #00CCFF; }

a:active { color: #FF0000; }

The above code contains four CSS style definitions. Each of the selectors uses what

is termed a pseudo-class of the a element. A pseudo-class is one of a small collection

of labels that can be added to selectors to represent the state of the target elements,

and is indicated by the colon (:) at the beginning. Here are the commonly used

pseudo-classes for links:

■	 :link applies to unvisited links only, and specifies that they should be blue.
■	 :visited applies to visited links, and makes them magenta.
■	 :hover overrides the first two definitions by making links light blue when the

cursor moves over them, whether they’ve been visited or not.
■	 :active makes links red when they’re clicked on.

The order in which you specify these pseudo-class selectors in your style sheet is

important; because :active appears last, it overrides the first three selectors, so it

The CSS Anthology14

will take effect regardless of whether the links have been visited or not, or whether

the cursor is over them or not.

The :hover and :active states are officially known as dynamic pseudo-class select

ors, as they only occur when the user interacts in some way with the element, that

is, by clicking on the link or holding the cursor over it.

:hover on Other Elements

The :hover dynamic pseudo-class selector can be used on other elements beside

links, so you can create effects such as highlighting a row in a data table as the

mouse hovers over it. However Internet Explorer 6 and earlier versions only sup

ports this selector for anchor elements.

First Child Pseudo-class Selector
Another example of a pseudo-class is the first child pseudo-class, :first-child.

Where the adjacent element selector matches an element if it’s next to another ele

ment in the document source, the first child pseudo-class selector matches an ele

ment only if it’s the first child element of its parent. So this is essentially the same

as using a child selector except that only the first instance will be matched:

<div class="article">

 <p>

 This is an intro paragraph to be

displayed with a larger font size.

 </p>

 <p>

 Here is a second paragraph of text

displayed at normal text size.

 </p>

</div>

And then use the following CSS:

p {

font-size: 100%

}

15Making a Start with CSS

.article p:first-child {

font-size: 160%;

}

The first paragraph will be displayed in a larger font as it’s the first child of the

parent div element with a class of article. The second paragraph will be displayed

in the font size set for all p elements.

Internet Explorer 6 Doesn’t Support the First Child Selector

Again, IE6 is found wanting in supporting the first child selector, therefore if the

style is essential to the layout of your page then you may need to find an alternate

way to target the element.

How does the browser know which styles
to apply?
So how does the browser understand our intentions? When more than one rule can

be applied to the same element, the browser uses the cascade to determine which

style properties to apply.

Understanding the cascade is important when dealing with CSS, because many CSS

development problems are due to styles being unintentionally applied to an element.

We’ve already presented examples in this chapter where we’ve written a general

style rule focused on paragraph elements, and then a more specific rule aimed at

one or more particular paragraphs. Both style rules target paragraphs, but the more

specific rule overrides the general rule in the case of matching paragraphs.

Solution
There are four factors that the browser uses to make the decision: weight, origin,

specificity, and source order.

The weight of a particular style declaration is determined by the use of the keyword,

!important. When the keyword appears after a property value, that value can’t be

overridden by the same property in another style rule, except in very specific cir

cumstances. Using !important in your style sheets has a huge negative impact on

The CSS Anthology16

maintainability and there’s often little call for it anyway. For these reasons it should

be avoided, as we do in this book. If you’d like to know more you can read about it

in the SitePoint CSS Reference.1

There are three possible style sheet origins: the browser, the author, and the user.

In this book we focus on what are called author style sheets—style sheets written

by the web page creator; that’s you. We’ve mentioned the browser internal style

sheet that provides the default styles for all elements, but styles in author style

sheets will always override styles in the browser default style sheet. The only other

possible origin for style sheets are user style sheets—custom styles written by the

browser users—and even these are overridden by the author style sheet except in

rare circumstances. Again, if you’d like to know more the SitePoint CSS Reference2

has a whole section about it.

The two parts of the cascade that will affect your daily CSS work the most are spe

cificity and source order.

The rule of specificity ensures that the style rule with the most specific selector

overrides any others with less specific selectors. To give you an example of how

this works, consider this simple snippet of HTML markup:

<div id="content">

 <p class="message">

 This is an important message.

 </p>

</div>

Now consider the follow style rules that are to be applied to the HTML above:

p { color: #000000; }

.message { color: #CCCCCC; }

p.message { color: #0000FF; }

#content p.message { color: #FF0000; }

1 http://reference.sitepoint.com/css/importantdeclarations/
2 http://reference.sitepoint.com/css/cascade/

http://reference.sitepoint.com/css/importantdeclarations/
http://reference.sitepoint.com/css/cascade/
http://reference.sitepoint.com/css/cascade
http://reference.sitepoint.com/css/importantdeclarations

17Making a Start with CSS

The four selectors above all match the paragraph element in the example HTML

and set the text color. What color will be applied to the paragraph? If you guessed

#FF0000 or red, you’d be right. The selectors p (any p element) and .message (any

element with class message) have the same amount of specificity; the selector

p.message (any p element with class message), has a higher level of specificity;

but the selector #content p.message (any p element with class message that is a

child of the element with id content) has the highest.

However, longer selectors are not necessarily more specific. An ID selector, for ex

ample, will always have a higher specificity than an element type or class selector.

It becomes trickier the more complex your selectors are, but you should find the

examples in this book simple enough. If you’d like to know the exact formula for

measuring specificity, the SitePoint CSS Reference3 has all the answers.

If, after all of the above have been taken into account, two or more style rules are

still applicable to an element, then the order in which the rules appear—the source

order—is used; the last rule to be declared is applied. In the above example the se

lectors p and .message have the same specificity, so in the absence of any other

applicable rules, the last one declared is used—the rule with the selector .message.

This is also true if you declare more than one style rule with the same selector,

.message for example, in your style sheet; it’ll be the second instance of that rule

that will be applied to the element. As we'll see in later chapters this behavior is

very useful.

Summary
This chapter has given you a taste of CSS and its usage at the most basic level. We’ve

even touched on the sometimes difficult concept of the cascade. If you’re a newbie

to CSS but have an understanding of the concepts discussed in this chapter, you

should be able to start using the examples in this book.

The examples in the early chapters are simpler than those found near the end, so

if you’ve yet to work with CSS, you might want to begin with the earlier chapters.

These will build on the knowledge you gained in this chapter to start you using

and, I hope, enjoying CSS.

3 http://reference.sitepoint.com/css/specificity/

http://reference.sitepoint.com/css/specificity/
http://reference.sitepoint.com/css/specificity

Chapter2
Text Styling and Other Basics
This chapter explores the applications of CSS for styling text and covers a lot of

CSS basics, as well as answering some of the more frequently asked questions about

these techniques. If you’re new to CSS, these examples will introduce you to a

variety of properties and their usages, and will give you a solid foundation from

which to start your own experiments. For those who are already familiar with CSS,

this chapter will serve as a quick refresher in those moments when you’re struggling

to remember how to achieve a certain effect.

The examples I’ve provided here are well supported across a variety of browsers

and versions, though, as always, testing your code in different browsers is important.

While there may be small inconsistencies or a lack of support for these techniques

in older browsers, none of the solutions presented here should cause you any serious

problems.

The CSS Anthology20

How do I set my text to display in a
certain font?
Solution
Specify the typeface that your text will adopt using the font-family property, like

so:

p {

 font-family: Verdana;

}

Discussion
As well as specific fonts, such as Verdana or Times, CSS allows the specification

of some more generic font families:

■ serif

■ sans-serif

■ monospace

■ cursive

■ fantasy

When you specify fonts, it’s important to remember that users are unlikely to have

the fonts you have on your computer. If you define a font that the user lacks, your

text will display according to their browsers’ default fonts, regardless of what you’d

have preferred.

To avoid this eventuality, you can simply specify generic font names and let users’

systems decide which font to apply. For instance, if you want your document to

appear in a sans-serif font such as Arial, you could use the following style rule:

p {

 font-family: sans-serif;

}

21 Text Styling and Other Basics

Now, you’ll probably want to have more control than this over the way your site

displays—and you can. It’s possible to specify both font names and generic fonts

in the same declaration block. Take, for example, the following style rule for the p

element:

p {

 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}

Here, we’ve specified that if Verdana is installed on the system, it should be used;

otherwise, the browser is instructed to see if Geneva is installed; failing that, the

computer will look for Arial, then Helvetica. If none of these fonts are available,

the browser will then use that system’s default sans-serif font.

If a font family name contains spaces then it should be enclosed in quotation marks,

like so:

p {

 font-family: "Courier New", "Andale Mono", monospace;

}

The generic font-family names should always be without quotes and should always

appear last in the list.

Fonts that you can feel fairly confident to use are:

Windows	 Arial, Lucida, Impact, Times New Roman, Courier New, Tahoma, Comic

Sans, Verdana, Georgia, Garamond

Mac	 Helvetica, Futura, Bodoni, Times, Palatino, Courier, Gill Sans, Geneva,

Baskerville, Andale Mono

This list reveals the reason why we chose the fonts we specified in our style rule:

we begin by specifying our first preference, a common Windows font (Verdana),

then list a similar Mac font (Geneva). We then follow up with other fonts that would

be usable if neither of these fonts were available.

The CSS Anthology22

Should I use pixels, points, ems, or
another unit identifier to set font sizes?
You can size text in CSS using the font-size property, like so:

font-size: 12px;

We’ve used pixel sizing here, but the font-size property can take a variety of other

values. Before you can decide which to use, you’ll need to know the relative merits

of each option.

Solution

Sizing Fonts Using Units of Measurement
Table 2.1 identifies the units that you can use to size fonts.

Table 2.1. Units available for setting font size

Corresponding Units Unit Identifier

pointspt

picaspc

pixelspx

emsem

exesex

percentages %

Let’s look at each of these units in turn.

Points and Picas

p {

 font-size: 10pt;

}

You should avoid using points and picas to style text for display on screen. This

unit is an excellent way to set font sizes for print design, as the point measurement

23Text Styling and Other Basics

was created for that purpose. A point has a fixed size of 1/72nd of an inch, while a

pica is one-sixth of an inch. A printed document whose fonts are specified using

these units will appear exactly as you intended—after all, one-sixth of an inch is

the same physical measurement whether you’re printing on an A4 page or a billboard.

However, computers are unable to accurately predict the physical size at which

elements will appear on the monitor, so they guess—and guess badly—at the size

of a point or pica, with results that vary between platforms.

If you’re creating a print style sheet (as we do in “How do I create a print style

sheet?” in Chapter 8) or a document that’s intended for print—rather than on

screen—viewing, points and picas are the units to use. However, a general rule of

thumb indicates that we should avoid them when designing for the Web.

Pixels

p {

 font-size: 12px;

}

Many designers like to set font sizes in pixel measurements, as this unit makes it

easy to achieve consistent text displays across various browsers and platforms.

However, pixel measurements ignore any preferences users may have set in their

own browsers; furthermore, in the case of Internet Explorer, font sizes that the de

signer has dictated in pixels are unable to be resized by users. This limitation

presents a serious accessibility problem for users who need to make text larger in

order to read it clearly.

While pixels may seem like the easiest option for setting font sizes, pixel measure

ments should be avoided if another method can be used, particularly for large blocks

of content. If you’re creating a document for print or creating a print style sheet,

you should avoid pixels entirely. Pixels have no meaning in the world of print and,

like the application of points to the on-screen environment, when print applications

are provided with a pixel measurement, they will simply try to guess the size at

which the font should appear on paper—with erratic results.

Ems

The em is a relative font measurement. The name em comes from the world of typo

graphy, where it relates to the size of the capital letter M, usually the widest char

The CSS Anthology24

acter in a font. In CSS 1em is seen to be equal to the user’s default font size, or the

font size of the parent element when it is set to a value other than the default.

If you use ems (or any other relative unit) to set all your font sizes, users will be

able to resize the text, which will comply with the text size preferences they have

set in their browsers. As an example, let’s create a declaration that sets the text

within a p element to display at a size of 1em:

p {

 font-size: 1em;

}

A visitor who uses Internet Explorer 8, in which the text size is set to Medium, will

see the paragraph shown in Figure 2.1 when he or she views the page.

Figure 2.1. Viewing the display when the font-size is set to 1em and text size is Medium

25Text Styling and Other Basics

If the users have set the text size to Largest, the 1em text will display as shown in

Figure 2.2.

Figure 2.2. Viewing the display when the font-size is set to 1em and text size is set to Largest

It’s true that using ems to size text gives you less control over the way users view

the document. However, this approach means that users who need a very large font

size, for instance, can read your content—which, presumably, is the reason why

you’re publishing the text to the page.

Em values can be set using decimal numbers. For example, to display text at a size

10% smaller than the user’s default (or the font size of its parent element), you could

use this rule:

p {

 font-size: 0.9em;

}

The CSS Anthology26

To display the text 10% larger than the default or inherited size, you’d use this rule:

p {

 font-size: 1.1em;

}

Exes

The ex is a relative unit measurement that corresponds to the height of the lowercase

letter x in the default font size. In theory, if you set the font-size of a paragraph

to 1ex, the uppercase letters in the text will display at the height at which the

lowercase letter x would have appeared if the font size had been unspecified (and

the lowercase letters will be sized relative to those uppercase letters).

Unfortunately, modern browsers are yet to support the typographical features needed

to determine the precise size of an ex—they usually make a rough guess for this

measurement. For this reason, exes are rarely used at the time of writing.

Percentages

p {

 font-size: 100%;

}

As with ems and exes, font sizes that are set in percentages will honor users’ text

size settings and can be resized by the user. Setting the size of a p element to 100%

will display your text at users’ default font size settings (as will setting the font size

to 1em). Decreasing the percentage will make the text smaller:

p {

 font-size: 90%;

}

Increasing the percentage will make the text larger:

p {

 font-size: 150%;

}

27Text Styling and Other Basics

Sizing Fonts Using Keywords
As an alternative to using numerical values to set text sizes, you can use absolute

and relative keywords.

Absolute Keywords

We can use any of seven absolute keywords to set text size in CSS:

■ xx-small

■ x-small

■ small

■ medium

■ large

■ x-large

■ xx-large

These keywords are defined relative to each other, and browsers implement them

in different ways. Most browsers display medium at the same size as unstyled text,

with the other keywords resizing text accordingly, as indicated by their names to

varying degrees.

These keyword measurements are considered absolute in that they don’t inherit

from any parent element. Yet, unlike the absolute values provided for height, such

as pixels and points, they do allow the text to be resized in the browser, and will

honor the user’s browser settings. The main problem with using these keywords is

consistency between browsers—x-small-sized text may be perfectly readable in

one browser, and minuscule in another. Internet Explorer 6 in quirks mode, for ex

ample, treats small as being the same size as unstyled text. We discuss quirks mode

in “What is quirks mode and how do I avoid it?” in Chapter 7.

Relative Keywords

Text sized using relative keywords—larger and smaller—takes its size from the

parent element in the same way that text sized with em and % does. Therefore, if

you set the size of your p element to small using absolute keywords, and decide

that you want emphasized text to display comparatively larger, you could add the

following to the style sheet:

The CSS Anthology28

chapter02/relative.css

p {

 font-size: small;

}

em {

 font-size: larger;

}

The following markup would display as shown in Figure 2.3, because the text

between the and tags will display larger than its parent, the p element:

chapter02/relative.html (excerpt)

<p>These stuffed peppers are lovely as a starter or as a

 side dish for a Chinese meal. They also go down well as part of

 a buffet, and even children seem to like them.</p>

Figure 2.3. The emphasized text displaying larger than its containing paragraph

Discussion
When you’re deciding which method of text sizing to use, it’s best to select one that

allows all users to resize the text and ensures that the text complies with the settings

users have chosen within their browsers. Relative font sizing works well as long as

you’re careful of the way the elements inherit sizing. However, in order to achieve

even a basic level of accessibility, enabling users to set fonts to a comfortable level

is necessary.

Designing your layout with resizable text in mind also allows you to avoid an issue

that’s often seen in browsers that do allow the resizing of pixels, on pages where

29Text Styling and Other Basics

designers have assumed that setting font sizes in pixels will allow them to fix the

heights of containers, or place text on top of a fixed-height image. This approach

will work in Internet Explorer, which doesn’t resize text whose size is set in pixels;

it may, however, result in a complete mess of overflowing text in Firefox (versions

prior to 3 or version 3 with Zoom set to zoom text only), where the heights of boxes

containing text is always unknown.

Relative Sizing and Inheritance
When you use any kind of relative sizing, remember that the element you’re consid

ering will inherit its starting size from its parent element, then adjust its size accord

ingly. Be careful, though, when using a relative font size for the parent element as

well—this can become problematic in complex layouts where the parent element

is less obvious. Consider the following markup:

chapter02/nesting.html (excerpt)

<div>

 <p>

 You'll probably be surprised when using

a relative <code>font-size</code>

and nested elements.

 </p>

</div>

Let’s say we wanted to set the font-size of the above text to 130% of the default

size, and we made the mistake of setting it like so:

chapter02/nesting.css (excerpt)

div, p, em, a, code {

 font-size: 130%;

}

The effect of the above style rule is to the make the font-size of the nested elements

progressively bigger—130% of the font-size of the parent element, which is already

130% of the font-size of its parent and so on, as demonstrated in Figure 2.4.

The CSS Anthology30

Figure 2.4. Using relative font sizing within nested elements

How do I remove underlines from my links?
The widely accepted default visual indicator that text on a web page links to another

document is that it’s underlined and displays in a different color from the rest of

the text. However, there may be instances in which you want to remove that under

line.

Solution
We use the text-decoration property to remove the underlines from link text. By

default, the browser will set the text-decoration property of all a elements to un

derline. To remove the underline, simply set the text-decoration property for

the link to none:

text-decoration: none;

The CSS used to create the effect shown in Figure 2.5 is as follows:

chapter02/textdecoration.css

a:link, a:visited {

 text-decoration: none;

}

31 Text Styling and Other Basics

Figure 2.5. Using text-decoration to create links without an underline

Discussion
In addition to underline and none, there are other values for text-decoration that

you can try out:

■ overline

■ line-through

■ blink

It is possible to combine these values. For instance, should you wish to have an

underline and overline on a particular link—as illustrated in Figure 2.6—you’d use

the following style rule:

chapter02/textdecoration2.css

a:link, a:visited {

 text-decoration: underline overline;

}

Figure 2.6. Combining text-decoration values to create links with underlines and overlines

The CSS Anthology32

Avoid Applying Misleading Lines

You can use the text-decoration property to apply underlines to any text,

even if it’s standard unlinked text, but be wary of doing this. The underlining of

links is such a widely accepted convention that users are inclined to think that

any underlined text is a link to another document.

When is removing underlines a bad idea?

Underlining links is a standard convention followed by all web browsers and,

consequently, users expect to see links underlined. Removing the underline from

links that appear within text can make it very difficult for people to realize that

these words are in fact links, rather than just highlighted text. I’d advise against

removing the underlines from links within text. There are other ways in which

you can style links so that they look attractive, and removing the underline is

rarely, if ever, necessary.

Links that are used as part of a menu, or appear in some other situation in which

the text is quite obviously a link—for instance, where the text is styled with CSS

to resemble a graphical button—are a different story. If you wish, you can remove

the underline from these kinds of links, because it should be obvious from their

context that they’re links.

How do I create a link that changes color
when the cursor moves over it?
One attractive link effect changes the color of a link, or otherwise alters its appear

ance when the cursor is moved across it. This effect can be applied to great advantage

on navigation menus created with CSS, but it can also be used on links within reg

ular paragraph text.

Solution
To create this effect, we need to style the :hover and :active dynamic pseudo-

classes of the anchor element differently from its other pseudo-classes.

Let’s look at an example. Here’s a typical style rule that applies the same declarations

to all of an anchor element’s pseudo-classes:

33Text Styling and Other Basics

chapter02/textdecoration3.css

a:link, a:visited, a:hover, a:active {

 text-decoration: underline;

 color: #6A5ACD;

 background-color: transparent;

}

When this style sheet is applied, our links will display in the blue color #6A5ACD

with an underline, as shown in Figure 2.7.

Figure 2.7. Using the same declaration for all of the links’ pseudo-classes

To style our :hover and :active pseudo-classes differently, we need to remove

them from the declaration with the other pseudo-classes and give them their own

separate declaration. In the CSS below, I decided to apply an overline in addition

to the underline. I’ve also set a background color and made the link’s text a darker

color; Figure 2.8 shows how these styles display in a browser:

chapter02/textdecoration4.css

a:link, a:visited {

 text-decoration: underline;

 color: #6A5ACD;

 background-color: transparent;

}

a:hover, a:active {

 text-decoration: underline overline;

 color: #191970;

 background-color: #C9C3ED;

}

The CSS Anthology34

As you’ve probably realized, you can style the anchor’s other pseudo-classes separ

ately, too. In particular, you might like to apply a different style to links that users

have visited. To do so, you’d simply style the :visited pseudo-class separately.

Figure 2.8. Moving the cursor over a link to which a hover style is applied

When styling pseudo-classes, take care that you leave the size or weight (or boldness)

of the text unchanged. Otherwise, you’ll find that your page appears to jiggle, as

the surrounding content has to move to make way for the larger text to display when

your cursor hovers over the link.

Ordering Pseudo-class Declarations

The anchor pseudo-classes should be declared in the following order: :link,

:visited, :hover, :active. Otherwise, you may find that they work differently

to how you intended. One way to remember this order is the mnemonic: LoVeHAte.

How do I display two different styles of
link on one page?
The previous solution explained how to style the different selectors of the anchor

element, but what if you want to use different link styles within the same document?

Perhaps you want to display links without underlines in your navigation menu, yet

make sure that links within the body content are easily identifiable. Or maybe part

of your document has a dark background color, so you need to use a light-colored

link style there.

35Text Styling and Other Basics

Solution
To demonstrate how to create multiple styles for links displayed on one page, let’s

take an example in which we’ve already styled the regular links:

chapter02/linktypes.css (excerpt)

a:link, a:visited {

 text-decoration: underline;

 color: #6A5ACD;

 background-color: transparent;

}

a:hover, a:active {

 text-decoration: underline overline;

 color: #191970;

 background-color: #C9C3ED;

}

These should be taken as the default link styles—they reflect the way links will

normally be styled within your documents. The first rule makes the link blue, so if

an area of our page has a blue background, the links that appear in that space will

be unreadable. We need to create a second set of styles for links in that area.

First, let’s create a class or an id for the element that will contain the differently

colored links. If the container is already styled with CSS, it may already have a

class or id that we can use. Suppose that our document contains the following

markup:

chapter02/linktypes.html (excerpt)

<div class="boxout">

 <p>Visit our online store, for all your

 widget needs.</p>

</div>

The CSS Anthology36

We need to create a style rule that affects any link appearing within an element of

class boxout:

chapter02/linktypes.css (excerpt)

.boxout {

 color: #FFFFFF;

 background-color: #6A5ACD;

}

.boxout a:link, .boxout a:visited {

 text-decoration: underline;

 color: #E4E2F6;

 background-color: transparent;

}

.boxout a:hover, .boxout a:active {

 background-color: #C9C3ED;

 color: #191970;

}

As you can see in Figure 2.9, this rule will display all links in the document as per

the first style except those that appear within the div element with the class

boxout—these links will be displayed in the lighter color.

Figure 2.9. Using two different link styles in one document

How do I style the first item in a list
differently from the others?
Frequently, designers find that we need to style the first of a set of items—be they

list items or a number of paragraphs within a container—differently from the rest

37Text Styling and Other Basics

of the set. One way to achieve this would be to assign a class to the first item, and

style that class differently from other items; however, there’s a more elegant way

to create this effect in modern browsers using the pseudo-class selector first-child.

Solution
Here’s a simple list of items marked up as an unordered list:

chapter02/firstchild.html (excerpt)

 Brie

 Cheddar

 Red Leicester

 Shropshire Blue

Using first-child
To change the color of the first item in the list without affecting its neighbors, we

can use the first-child selector. This allows us to target the first element within

the ul element, as shown in Figure 2.10:

chapter02/firstchild.css (excerpt)

li:first-child {

 color: red;

}

Figure 2.10. Displaying the first list item in red text

Unfortunately :first-child is unsupported by Internet Explorer 6. So, if you still

need to fully support it, until the number of visitors using this browser to view your

The CSS Anthology38

site becomes negligible, you’ll need to find another method to create this effect.

One such method is to use a class selector.

Using a Class Selector
To create this effect in IE6, we add a class or id attribute to the element that we

wish to style differently. For this example, let’s use a class:

chapter02/firstchildwithclass.html (excerpt)

 <li class="unusual">Brie

 Cheddar

 Red Leicester

 Shropshire Blue

Once this in place, we create a style rule to implement the desired effect:

chapter02/firstchildwithclass.css (excerpt)

li.unusual {

 color: red;

}

How do I add a background color
to a heading?
CSS allows us to add a background color to any element, including a heading.

Solution
Below, I’ve created a CSS rule for all the level-one headings in a document:

chapter02/headingcolor.css (excerpt)

h1 {

background-color: #ADD8E6;

 color: #256579;

39Text Styling and Other Basics

font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding: 0.2em;

}

The result is shown in Figure 2.11.

Figure 2.11. Displaying a heading with a background color

Make Way for Color!

When you add a background to a heading, you may also want to adjust the padding

so that there’s space between the heading text and the edge of the colored area,

as I’ve done in this example.

How do I style headings with underlines?
Solution
There are two ways in which you can add an underline to your text. The simplest

is to use the text-decoration property that we encountered earlier in this chapter

in “How do I remove underlines from my links?”. This method will allow you to

apply to text an underline that’s the same color as the text itself, as this code and

Figure 2.12, show:

chapter02/headingunderline.css (excerpt)

h1 {

 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

text-decoration: underline;

}

The CSS Anthology40

Figure 2.12. Adding an underline to a heading using text-decoration

You can also create an underline effect by adding a bottom border to the heading.

This solution, which produces the result shown in Figure 2.13, is more flexible in

that it allows you to separate the underline from the heading with the use of padding,

and you can change the color of the underline so that it’s different from that of the

text.

A heading to which this effect is applied is also less likely to be confused with un

derlined link text than is a heading whose underline is created using the

text-decoration property. However, this effect may display with slight inconsist

encies in different browsers, so you’ll need to test it to make sure the effect looks

reasonable on the browsers your visitors may use. Here’s the style rule you’ll need:

chapter02/headingunderline2.css

h1 {

 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding: 0.2em;

border-bottom: 1px solid #AAAAAA;

}

Figure 2.13. Creating an underline effect using a bottom border

41 Text Styling and Other Basics

How do I remove the large gap between an
h1 element and the following paragraph?
By default, browsers render a gap between all heading and paragraph elements. The

gap is produced by default top and bottom margins that browsers apply to these

elements. The margin on the heading shown in Figure 2.14 reflects the default value.

This gap can be removed using CSS.

Figure 2.14. The default heading and paragraph spacing

Solution
To remove all space between a heading and the paragraph that follows it, you must

remove the bottom margin from the heading as well as the top margin from the

paragraph. In modern browsers—including Internet Explorer 7 and above—we can

do this through CSS, using an adjacent selector. However, to achieve the same effect

in older browsers, we need to revert to other techniques that are better supported.

Using an Adjacent Selector
An adjacent selector lets you target an element that follows another element, as long

as both share the same parent. In fact, you can use adjacent selectors to specify an

element that follows several other elements, instead of just one; the element to

which the style is applied is always the last element in the chain. If you’re confused,

be reassured that this concept will become a lot clearer once we’ve seen it in action.

The following style rules remove the top margin from any paragraph that immediately

follows a level-one heading. Note that the top margin is actually removed from the

paragraph that follows the h1—rather than the level-one heading itself:

The CSS Anthology42

chapter02/headingnospace.css (excerpt)

h1 {

 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

 margin-bottom: 0;

}

h1+p {

 margin-top: 0;

}

Figure 2.15 shows the display of the original page once this rule is applied.

Figure 2.15. Using an adjacent selector to change the heading display

As you can see, the first paragraph that follows the h1 no longer has a top margin;

all subsequent paragraphs, however, retain their top margins.

As I mentioned, adjacent selectors only work with newer browsers—for example,

only Internet Explorer version 7 and above include support for the adjacent selector.

In some cases, you might decide that it’s acceptable for users of older browsers to

see a gap between the heading and the text. Alternatively, you may want to remove

the margins from the page that’s seen by users of older browsers, and if that’s what

you’re after, you have a couple of options.

You can make use of class selectors, as we did in “How do I display two different

styles of link on one page?”, to apply a margin of 0 to that class. If you’ve read that

solution, you should find it fairly straightforward to implement this approach. An

other option is to apply a negative margin to the heading, which I’ll explain next.

43Text Styling and Other Basics

Applying a Negative Margin

In CSS, margins can take either a positive or a negative value. Padding, however,

can only take a positive value.

Applying a negative margin to the heading is another way to remove the space

between the heading and the first paragraph. The style rule below produces a

similar effect to the one we saw in Figure 2.15:

h1 {

 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

 margin-bottom: -0.6em;

}

How do I highlight text on the page?
A common feature on many web sites is to highlight an important term on a page,

such as identifying the search terms visitors have used to locate our web page

through a search engine. It’s easy to highlight text using CSS.

Solution
If you wrap the text to be highlighted with tags and add a class attribute,

you can easily add a CSS rule for that class. For example, in the following para

graph, we’ve wrapped a phrase in tags that apply the class hilite:

chapter02/hilite.html (excerpt)

<p>These stuffed peppers are lovely

as a starter or as a side dish for a Chinese meal. They also

 go down well as part of a buffet, and even children seem to

like them.</p>

The CSS Anthology44

The style rule for the hilite class is shown below; the highlighted section will

display as shown in Figure 2.16:

chapter02/hilite.css (excerpt)

.hilite {

 background-color: #FFFFCC;

 color: #B22222;

}

Figure 2.16. Highlighting text with CSS

How do I alter the line height (leading)
on my text?
One of the great advantages that CSS had over earlier web design methods like

 tags is that it gave you far more control over the way text looks on the page.

In this solution, we’ll alter the leading of the text in your document.

Solution
If the default spacing between the lines of text on your page looks a little narrow,

you can change it with the line-height property:

chapter02/leading.css

p {

 font: 1em Verdana, Geneva, Arial, Helvetica, sans-serif;

line-height: 2.0;

}

The result is shown in Figure 2.17.

45Text Styling and Other Basics

Figure 2.17. Altering leading using the line-height property

Easy! Just be careful to avoid spacing the text out so much that it becomes difficult

to read.

No Units?

You’ll notice that we stopped short of specifying any unit of measurement in this

example—the value of 2.0 is a ratio. You can specify a value for line-height

using standard CSS units of measurement, such as ems or pixels, but doing so

breaks the link between the line height and the font size for child elements.

For instance, if the example above contained a span that set a large font-size,

the line height would scale up proportionally and maintain the same ratio, because

the line-height of the paragraph was set to the numerical value 2.0. If, however,

the line-height was set to 2em or 200%, the span would inherit the actual line

height instead of the ratio, and the large font size would have no effect on the line

height of the span. Depending on the effect you’re going for, this may actually be

a desirable result.

How do I justify text?
When you justify text, you alter the spacing between the words so that both the

right and left margins are straight. You can create this effect easily using CSS.

Solution
You can justify paragraph text with the help of the text-align property, like so:

The CSS Anthology46

chapter02/justify.css

p {

text-align: justify;

 font: 1em Verdana, Geneva, Arial, Helvetica, sans-serif;

 line-height: 2.0;

}

Figure 2.18 shows the effect of setting text-align to justify.

Figure 2.18. Justifying text using text-align

Discussion
The other values for text-align are:

right aligns the text to the right of the container

left aligns the text to the left of the container

center centers the text in the container

How do I style a horizontal rule?
For markup generally, you should avoid including elements that are purely

presentational, such as the horizontal rule (hr). A document that is structured se

mantically is easier to maintain, loads faster, and is optimized for search engine

indexing. Applying borders to existing elements can usually achieve a similar effect

produced by the hr element.

47Text Styling and Other Basics

However, there are occasions when using an hr is either the best way to achieve

the desired effect, or is necessary to serve unstyled content to an older browser that

fails to support CSS.

Solution
You can change the color, height, and width of a horizontal rule with CSS. However,

you’ll need to watch out for some inconsistencies between browsers. For instance,

in the example below I’ve used the same values for color and background-color;

that’s because Gecko-based browsers like Firefox color the rule using background-

color, while Internet Explorer uses color:

chapter02/hrstyle.css (excerpt)

hr {

 border: none;

background-color: #256579;

 color: #256579;

 height: 2px;

 width: 80%;

}

The result of this rule can be seen in Figure 2.19.

Figure 2.19. Changing the color, height, and width of a horizontal rule

The CSS Anthology48

How do I indent text?

Solution
To indent text, we apply a rule to its container that sets a padding-left value, like

this:

chapter02/indent.html (excerpt)

<h1>Chinese-style stuffed peppers</h1>

<p class="indent">These stuffed peppers …</p>

chapter02/indent.css (excerpt)

.indent {

 padding-left: 1.5em;

}

You can see the indented paragraph in Figure 2.20.

Figure 2.20. Indenting text using CSS

Discussion
You should avoid using the HTML tag <blockquote> to indent text, unless the text

is actually a quote. This bad habit was a technique encouraged in the past by visual

editing environments such as Dreamweaver. If you’re currently using an editor that

uses <blockquote> tags to indent text, then—apart from switching editors— you

should resist the temptation to use it for this purpose; instead, set up a CSS rule to

indent the appropriate blocks as shown above.

49Text Styling and Other Basics

The <blockquote> tag is designed to mark up a quote, and devices such as screen

readers used by visually impaired users will read this text in a way that helps them

understand that what they’re hearing is a quote. If you use <blockquote> to indent

regular paragraphs, it will be very confusing for users who hear the content read as

a quote.

A One-liner

A related technique enables us to indent just the first line of each paragraph.

Simply apply the CSS property text-indent to the paragraph—or to a class

that’s applied to the paragraphs—that you wish to display in this way:

chapter02/indent2.css

p {

 text-indent: 1.5em;

}

How do I center text?
Solution
You can center text, or any other element, using the text-align property with a

value of center:

chapter02/center.html (excerpt)

<h1>Chinese-style stuffed peppers</h1>

<p class="centered">These stuffed peppers …</p>

chapter02/center.css (excerpt)

.centered {

 text-align: center;

}

The CSS Anthology50

The result of this rule can be seen in Figure 2.21.

Figure 2.21. Centering text using text-align

How do I change text to all capitals
using CSS?
Solution
You can change text to all capitals, and perform other transformations, using the

text-transform property:

chapter02/uppercase.html (excerpt)

<h1>Chinese-style stuffed peppers</h1>

<p class="transform">These stuffed peppers are lovely …</p>

chapter02/uppercase.css (excerpt)

.transform {

 text-transform: uppercase;

}

Note the uppercase text in Figure 2.22.

51 Text Styling and Other Basics

Figure 2.22. Using text-transform to display the text in uppercase letters

Discussion
The text-transform property has other useful values. The value capitalize will

capitalize the first letter of each word, as illustrated in Figure 2.23:

chapter02/capitalize.css (excerpt)

.transform {

 text-transform: capitalize;

}

The other values that the text-transform property can take are:

■ lowercase

■ none (the default)

Figure 2.23. Applying text-transform to capitalize the first letter of every word

The CSS Anthology52

How do I change or remove the bullets
on list items?
Solution
You can change the style of bullets displayed on an unordered list by altering the

list-style-type property. First, here’s the markup for the list:

chapter02/listtype.html (excerpt)

 list item one

 list item two

 list item three

To display square bullets, like the ones shown in Figure 2.24, set the

list-style-type property to square:

chapter02/listtype.css

ul {

 list-style-type: square;

}

Figure 2.24. Using square bullets for list items

53Text Styling and Other Basics

Discussion
Some of the other values that the list-style-type property can take are disc,

circle, decimal-leading-zero, decimal, lower-roman, upper-roman, lower-alpha,

upper-alpha, and none.

You’ll find that some of these values are unsupported by certain browsers; those

browsers that lack support for a particular bullet type will display the default type

instead. You can see the different types, and check the support your browser provides

for them, at the CSS Test Suite for list-style-type. 1 Setting list-style-type to

none will remove bullets from the display, although the list will still be indented

as if the bullets were there, as Figure 2.25 shows:

ul {

 list-style-type: none;

}

Figure 2.25. Displaying a list without bullets

1 http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm

http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm
http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm

The CSS Anthology54

How do I use an image for a
list-item bullet?
Solution
To use an image for a bullet, create your image, then use the list-style-image

property, instead of list-style-type to set your bullets. This property accepts a

URL, which can incorporate the path to your image file as a value:

chapter02/listimage.css

ul {

 list-style-image: url(bullet.gif);

}

Figure 2.26 shows how this effect can be used to spruce up a list.

Figure 2.26. Using an image as a list bullet

Setting Bullets on Individual List Items

The list-style-image property actually applies to the list item (li) elements

in the list. However, if you apply list-style-image to the list as a whole (the

ul or ol element), each individual list item will inherit it. You do, however, have

the option of setting the property on individual list items (by assigning a class

or id to each), giving individual items their own unique bullet images.

55Text Styling and Other Basics

How do I remove the indented left-hand
margin from a list?
If you’ve set list-style-type to none, you may also wish to remove or decrease

the default left-hand margin that the browser sets on a list.

Solution
To remove the indentation entirely and have your list left-aligned so that it lines

up with, for example, a preceding paragraph as shown in Figure 2.27, use a style

rule similar to this:

chapter02/listnomargin.css

ul {

 list-style-type: none;

 padding-left: 0;

 margin-left: 0;

}

Figure 2.27. A list without indentation or bullets

The CSS Anthology56

Discussion
You can apply new indentation values to the list items if you wish. To indent the

content by a few pixels, try this:

chapter02/listsmallmargin.css

ul {

 list-style-type: none;

 padding-left: 5px;

 margin-left: 0;

}

How do I display a list horizontally?
By default, list items display as block elements; therefore, each new item will display

on a new line. However, there may be times when some content on your page is,

structurally speaking, a list, even though you’d prefer to display it in a different

way—a collection of navigation links is a good example. How can you display these

list items horizontally?

Solution
You can set a list to display horizontally by altering the display property of the li

element to inline, like so:

chapter02/listinline.html (excerpt)

<ul class="horiz">

 Big Widgets

 Small Widgets

 Short Widgets

 Tall Widgets

57Text Styling and Other Basics

chapter02/listinline.css

ul.horiz li {

 display: inline;

}

The result of this style rule is depicted in Figure 2.28.

Figure 2.28. Displaying a list horizontally

How do I remove page margins?
The default styles of most browsers add margin or padding between the browser

chrome and the page content; this is so that text in an unstyled page stops short of

the edge of the browser window. You’ll probably want to remove this gap or dictate

the size of it, rather than leave it up to the browser.

Solution
To remove all margin and padding around your content use the following style

rules, which have been defined for the body element:

body {

 margin: 0;

 padding: 0;

}

The result is shown in Figure 2.29.

The CSS Anthology58

Figure 2.29. Removing the default margins and padding from the page body

How can I remove browsers’ default padding
and margins from all elements?
The display that you see in a browser when you view an unstyled document is the

result of the browser’s internal style sheet. Often, the differences that arise in the

way various browsers display an unstyled page occur because those browsers have

slightly different internal style sheets.

Solution
One way to solve this problem is to remove the default margins and padding from

all elements before you create your styles.

The following rule will set the padding and margins on all elements to zero. It will

have the effect of causing every element on the page—paragraphs, headings, lists,

59Text Styling and Other Basics

and more—to display without leaving any space between itself and its neighbors,

as Figure 2.30 demonstrates:

chapter02/zeropagemargin.css (excerpt)

* {

 margin: 0;

padding: 0

}

Figure 2.30. Removing the default margins and padding from all elements on a page

Discussion
This style rule uses the universal selector—*—to remove the margins and padding

from everything, a technique known as performing a global whitespace reset.2 If

2 http://leftjustified.net/journal/2004/10/19/global-ws-reset/

http://leftjustified.net/journal/2004/10/19/global-ws-reset/
http://leftjustified.net/journal/2004/10/19/global-ws-reset

The CSS Anthology60

you’re working on a particularly complex design, this may well be the best way to

start.

However, once you’ve done it, you’ll need to go back and add margins and padding

to every element that you use. This is particularly important for some form elements,

which may be rendered unusable by this style rule!

For simpler designs, removing the whitespace from every element is usually overkill,

and will simply generate more work; you’ll need to go back and add padding and

margins to elements such as paragraphs, blockquotes, and lists. A viable alternative

is to remove the margins and padding from a select set of elements only. The follow

ing style rule shows how this works, removing whitespace from heading and list

elements:

h1, h2, h3, h4, h5, h6, ul, ol {

 margin: 0;

 padding: 0;

}

How do I add comments to my CSS file?
You can, and should, add comments to your CSS file, though for very simple files

with just a few rules for text styling purposes—for instance—they may be unneces

sary. However, once you start to use a large number of style rules and multiple style

sheets on a site, comments come in very handy! Without them, you can spend a lot

of time hunting around for the right classes, pondering which class does what, and

trying to find the style sheet in which it lives.

Solution
CSS supports comments split over multiple lines, just like JavaScript. So, to comment

out an area, use the following sequence of characters:

/*

⋮ Many useful comments in here…

*/

At the very least, you should add a comment at the top of each style sheet to explain

what’s in that style sheet, like so:

61 Text Styling and Other Basics

/* This is the default style sheet for all text on the site */

Summary
This chapter has covered some of the more common questions asked by those who

are relatively new to CSS—questions that relate to styling and manipulating text

on the page. By combining these techniques, you can create attractive effects that

will degrade appropriately for browsers that fail to support CSS.

Chapter3
CSS and Images
The Web is filled with sites featuring beautiful, rich graphic design that take advant

age of the power of CSS. To work with images in CSS requires just a few simple

skills—once you’ve learned them, they can be combined to create countless inter

esting effects. The solutions in this chapter demonstrate the basic concepts of

working with images while answering some common questions. We’ll be using

images more in the other chapters, but, as with most of the solutions in this book,

feel free to experiment to see what unique effects you can create.

How do I add borders to images?
Photographic images, which might be used to illustrate an article or be displayed

in a photo album, look neat when they’re bordered with a thin line. However, it’s

a time-consuming process to open each image in a graphics program in order to add

borders, and if you ever need to change that border’s color or thickness, you’ll be

required to go through the same arduous process all over again. Fortunately, CSS

makes this chore a whole lot easier.

The CSS Anthology64

Solution
Adding a border to an image is a simple procedure using CSS. There are two images

in the document displayed in Figure 3.1.

Figure 3.1. Displaying images in a web browser

The following rule adds a single black border to our images:

img {

 border-width: 1px;

 border-style: solid;

 border-color: #000000;

}

The rule could also be written in shortened form, like this:

chapter03/borderbasic.css (excerpt)

img {

 border: 1px solid #000000;

}

Figure 3.2 shows the effect this rule has on the images.

65CSS and Images

Figure 3.2. Applying a CSS border to make the images look neater

Now, this is all well and good, but your layout probably contains other images to

which you don’t want to apply a permanent black border. The solution is to create

a CSS class for the border and apply it to selected images as required:

chapter03/borderclass.css (excerpt)

.imgborder {

 border: 1px solid #000000;

}

chapter03/borderclass.html (excerpt)

If you’re displaying a selection of images—such as a photograph album—on the

page, you could set borders on all the images within a particular container, such as

an unordered list that has a unique ID:

chapter03/borderalbum.css (excerpt)

#album img {

 border: 1px solid #000000;

}

The CSS Anthology66

chapter03/borderalbum.html (excerpt)

<ul id="album">

This approach will save you from having to add the class to each individual image

within the container.

How do I use CSS to remove the blue
border around my navigation images?
If you use images in your site’s navigation links you may notice an ugly blue border,

just like the underline on text-based links. So how do you remove it using CSS?

Solution
Just as you can create a border, so you can remove one. Adding a rule with the

border property set to none will remove those borders:

chapter03/bordernone.css (excerpt)

img {

 border: none;

}

How do I set a background image for my
page using CSS?
The CSS background-image property applied to the body element can be used to

set a background image for a web page.

Solution
This style rule adds the image background-norepeat.jpg as a background to any page

to which this style sheet is attached:

67CSS and Images

chapter03/backgrounds.css (excerpt)

body {

 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;

 background-color: #D2D7E4;

 color: #000000;

background-image: url(background-norepeat.jpg);

 background-repeat: no-repeat;

}

The effects of this style are shown in Figure 3.3.

Figure 3.3. Displaying an image as a background image

Discussion
The CSS property background-image enables you to specify within the style sheet

the location of a background image. To apply a background to the entire document,

The CSS Anthology68

we’d set this property for the body element, but, as we’ll see in a solution later in

this chapter, a background image can be applied to any element on the page.

By default, the background will tile, repeating both vertically and horizontally to

fill the space required for the content. The effect shown in Figure 3.3 was achieved

using the image in Figure 3.4, with the background property set to no-repeat.

How do I control how my background
image repeats?
By default, the background will tile, repeating both vertically and horizontally to

fill the space required for the content. However, the background-repeat property

can be used to control this behavior.

Solution
The effect shown in Figure 3.3 above was achieved using the image in Figure 3.4,

with the background-repeat property set to no-repeat.

Figure 3.4. Creating a background effect using a rather wide image set to no-repeat

The image is only 400 pixels tall—shorter than a typical web page—so I’ve given

the page a background color that’s the same as the bottom row of pixels in the

69CSS and Images

gradient image. In this way, the gradient merges seamlessly into the background

color.

There is a better way to achieve this effect, though—using a smaller and faster-

loading background image. All we need to do is take a thin slice of our gradient

image, like the one shown in Figure 3.5.

Figure 3.5. A slice of the larger background image

By setting the background-repeat property for this new image to repeat-x, we can

achieve exactly the same visual effect that we saw in the first example while using

a much smaller image file. Again, we specify a background color that matches the

bottom of the gradient image, to ensure that the gradient effect covers the whole of

the area exposed in the user’s browser.

The CSS Anthology70

If the gradient ran from left to right, rather than from top to bottom, we could use

the same approach to create the background—we’d simply need to rotate the effect

by 90 degrees. Taking a horizontal slice of the image and setting the

background-repeat to repeat-y causes our gradient to repeat down the page, as

Figure 3.6 shows.

Figure 3.6. A gradient image set to repeat-y

71 CSS and Images

How do I position my background image?

By default, if you add a single, non-repeating background image to the page, it will

appear in the top-left corner of the viewport. If you’ve set the background to tile in

any direction, the first image will appear at that location and will tile from that

point. However, it’s also possible to display the image at other locations on the page.

Solution
We use the CSS property background-position to position the image on the page:

chapter03/backgroundposition.css (excerpt)

#content {

 margin: 2em 4em 2em 4em;

 background-color: #FFFFFF;

 padding: 1em 1em 40px 1em;

 background-image: url(tick.gif);

 background-repeat: no-repeat;

background-position: bottom right;

}

The above style rule will display a tick graphic at the bottom right of the white

content area, as shown in Figure 3.7. To prevent the text in this container from

overlapping the image, I’ve applied some padding to the container.

Discussion
The background-position property can take as its value keywords, percentage

values, or values in units, such as pixels.

The CSS Anthology72

Figure 3.7. Using the background-position property to position the image

Keywords
In the example above, we used keywords to specify that the background image

should be displayed at the bottom right of the content div:

chapter03/backgroundposition.css (excerpt)

 background-position: bottom right;

You can use any of these keyword combinations:

■ top left

■ top center

■ top right

■ center left

■ center center

73CSS and Images

■ center right

■ bottom left

■ bottom center

■ bottom right

If you only specify one of the values, the other will default to center:

background-position: top;

So, the style declaration above is the same as:

background-position: top center;

Percentage Values
To achieve more accurate image placement, you can specify the values as percent

ages. This approach is particularly useful in a layout where other page elements are

specified in percentages, so that they resize in accordance with the user’s screen

resolution and dimensions (this is also referred to as a liquid layout, as we’ll see in

Chapter 9):

background-position: 30% 80%;

The first of the percentages included here refers to the background’s horizontal

position; the second dictates its vertical position. Percentages are taken from the

top-left corner of the display, with 0% 0% placing the top-left corner of the image

against the top-left corner of the browser window, and 100% 100% placing the bottom-

right corner of the image against the bottom-right corner of the window.

As with keywords, a default percentage value comes into play if you only specify

one value. That default is 50%. Take a look at the following declaration:

background-position: 30%;

The above style declaration creates the same effect as:

background-position: 30% 50%;

The CSS Anthology74

Unit Values
You can set positioning values using any CSS units, such as pixels or ems:

background-position: 20px 20px;

As with percentages, the first of the specified values dictates the horizontal position,

while the second dictates the vertical. But unlike percentages, the measurements

directly control the position of the top-left corner of the background image.

You can mix units with percentages and, if you only specify one value, the second

will default to 50%.

How do I fix my background image in place
when the page is scrolled?
You’ve probably seen sites on which the background image stays static while the

content scrolls over it. This effect is achieved using the background-attachment

property.

Solution
We can use the background-attachment property with a value of fixed to fix the

background so that it remains stationary while the content moves:

chapter03/backgroundfixed.html (excerpt)

body {

 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;

 background-color: #D2D7E4;

 color: #000000;

 background-image: url(background-repeatx.jpg);

 background-repeat: repeat-x;

 background-attachment: fixed;

}

This is illustrated in Figure 3.8.

75CSS and Images

Figure 3.8. A fixed background image stays put when scrolling the content

Discussion
In this solution, we’re using several CSS properties to add our image to the back

ground, position it, and dictate how it behaves when the document is scrolled.

Alternatively, we could use a shorthand method to supply this information—the

CSS background property. This property allows you to declare background-color,

background-image, background-repeat, background-attachment, and

background-position in a single property declaration. Take, for example, the CSS

rule shown below:

chapter03/backgroundfixed.css (excerpt)

body {

 background-color: #D2D7E4;

 background-image: url(background-repeatx.jpg);

 background-repeat: repeat-x;

The CSS Anthology76

background-attachment: fixed;

 background-position: 0 0;

}

These declarations could be written more succinctly as follows:

body {

 background: #D2D7E4 url(background-repeatx.jpg) repeat-x fixed 0 0;

}

A final note on background-attachment: fixed. As is often the case with CSS

styles, support for this declaration is limited among the Internet Explorer family.

From version 7, Internet Explorer implements it correctly, unlike earlier versions

of the browser. Though workarounds involving JavaScript are available, they may

be more trouble than they’re worth.1 By default, users of older versions of Internet

Explorer that lack support for background-attachment: fixed will see a scrolling

background image—an outcome that’s generally considered an acceptable comprom

ise (and may even entice these users to upgrade their browsers).

Can I set a background image on
any element?
In this chapter, we’ve already looked at setting background images for the document

and for the main content area of the page. However, background images can be used

on other elements, too.

Solution
This style rule creates the effect that displays on the Ingredients box in the recipe

featured in Figure 3.9:

chapter03/backgrounds2.css (excerpt)

#smallbox {

 background-image: url(boxbg.gif);

 background-repeat: repeat-x;

1 http://www.howtocreate.co.uk/fixedBackground.html

http://www.howtocreate.co.uk/fixedBackground.html
http://www.howtocreate.co.uk/fixedBackground.html

77CSS and Images

float: left;

 margin-right: 20px;

 width: 220px;

 border:1px solid #D2D7E4;

}

The gradient background on the Ingredients box (shown in Figure 3.9) uses a very

similar background image to what I used for the body text’s background, except that

the Ingredients box coloring graduates from light blue to white. I’ve also added a

border that’s the same color as the darkest part of the gradient.

Figure 3.9. Using a background image to create a gradient behind the Ingredients box

The CSS Anthology78

Discussion
Background images can be applied to any page element, including headings, as

Figure 3.10 shows. You can see I’ve used a repeated image to display a dotted border

beneath the heading. The image is positioned at the bottom left of the heading, and

I’ve given the heading six pixels of bottom padding so that the text avoids appearing

as if it’s sitting on top of the background image:

chapter03/backgrounds2.html (excerpt)

<h1>Chinese-style stuffed peppers</h1>

chapter03/backgrounds2.css (excerpt)

h1 {

 background-image: url(dotty.gif);

 background-repeat: repeat-x;

 background-position: bottom left;

 padding: 0 0 6px 0;

 color: #41667F;

 font-size: 160%;

 font-weight: normal;

 background-color: transparent;

}

You can even apply backgrounds to links, enabling you the ability to create some

interesting effects, as Figure 3.11 shows:

chapter03/backgrounds2.css (excerpt)

a:link, a:visited {

 color: #41667F;

 background-color: transparent;

 padding-right: 10px;

}

a:hover {

 background-image: url(arrow.gif);

 text-decoration: none;

 background-position: center right;

 background-repeat: no-repeat;

}

79CSS and Images

Figure 3.10. Applying a background image to the heading to create an underline

Figure 3.11. Applying a background image to the link on hover

The CSS Anthology80

How do I place text on top of an image?
In the bad old pre-CSS days, the only way to overlay text on an image was to add

the text via your graphics program! CSS provides far better means to achieve this

effect.

Solution
The easiest way to layer text over of an image is to set the image as a background

image. The image that appears beneath the heading on the Ingredients box in Fig

ure 3.12 was added using the following style rule:

Figure 3.12. Applying a background image to the Ingredients box heading

81 CSS and Images

chapter03/backgrounds3.css (excerpt)

#smallbox h2 {

 margin: 0;

 padding: 0.2em;

 background-image: url(boxheaderbg.jpg);

 background-repeat: no-repeat;

 color: #FFFFFF;

 background-color: red;

 font-size: 140%;

 font-weight: normal;

}

Discussion
Using CSS to place text on top of an image offers many advantages distinct from

simply adding text to the image through a graphics program.

First, it’s harder to change text that’s part of a graphic; to do so, you need to find

the original graphic, re-edit it in a graphics program, and upload it again every time

you want to change the text.

Second, text is far more accessible if it’s included on the page as text content rather

than as part of an image. Browsers that lack support for images will be able to read

text that has been added using CSS, and such text can also be resized by the user.

Including image text via CSS can also benefit your search engine rankings; though

search engines are unable to index text that’s part of an image, they can see regular

text that has been placed on top of an image, and index it accordingly.

Check Your Contrast!

If you’re going to overlay a background image with light-colored text (as I’ve done

in Figure 3.12), be sure also to give the area a dark background color. This way,

the text will remain readable against the background if the user has disabled images

in the browser, or is browsing on a connection over which the images are slow to

load.

The CSS Anthology82

How do I add more than one background
image to my document?
Although it’s detailed in the CSS2 specification, Apple’s Safari browser is currently

the only browser in which it’s possible to apply more than one background image

to your document. So, what should you do if you want to add two images to the

document—for example, one that repeats, and one that stands alone?

Solution
It’s possible to give the effect of multiple background images by applying different

backgrounds to various nested elements, such as the html and body elements:

chapter03/backgrounds4.css (excerpt)

html {

 background-image: url(background-repeatx.jpg);

 background-repeat: repeat-x;

 background-color: #D2D7E4;

}

body {

 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;

 color: #000000;

 background-image: url(recipes.gif);

 background-repeat: no-repeat;

 background-position: 98% 2%;

 margin: 0;

 padding: 46px 0 0 0;

}

The effects of these styles can be seen in Figure 3.13.

83CSS and Images

Figure 3.13. Applying background images to the html and body elements

Discussion
This simple example can form the basis of more complex effects using multiple

background images. As you’ve seen through the examples in this chapter, a back

ground image can be applied to any element on the page. The careful and creative

use of images in this way can achieve many interesting visual effects while main

taining the accessibility of the document (as the background images causes no inter

ference with the document’s structure).

Many of the entries in the CSS Zen Garden site rely on such careful use of back

ground images to achieve their layouts.2

2 http://www.csszengarden.com/

http://www.csszengarden.com/
http:http://www.csszengarden.com

The CSS Anthology84

How can I use transparency in my pages?

Achieving real transparency using images is possible with the PNG image format;

by saving your images as a 24-bit PNG, you can achieve opacity and true transpar

ency. While GIF images also support transparency, the format requires us to use a

matte—a color that’s similar to the background upon which the image will be

placed—when we save a transparent GIF image.

This technicality means that creating a transparent

GIF image that spans differently colored back

grounds is very difficult. It often involves chopping

the image in two, saving each part separately, then

reassembling the image pieces on the page—a pro

cess that reeks of old-school methods, and one we

usually try to avoid in CSS-based layouts. Using

the GIF format for an image that will scroll over a

fixed background results in an ugly “halo effect.”

While the transparency is effective in Figure 3.14,

upon scrolling, the undesirable halo effect is appar

ent.

Solution
The example in Figure 3.15 uses two PNG images. The first replaces the white

background of #content with a ten-pixel PNG image. I developed this image in

Photoshop by creating a new transparent image, then placing a solid white layer

over the top of the transparent background. I then reduced the opacity of this layer

to 40% and saved the file as a 24-bit PNG, giving it the name opaque.png.

The second image is a replacement for the background image recipes.gif; it’s a 24

bit PNG with a transparent background. I’d like to fix the image in the top right of

the viewport (using background-attachment: fixed), so that it remains in that

location when the user scrolls the page. If I were to use a GIF image (with a dark

blue as the matte), we’d see the halo effect mentioned above when the background

moves and the image appears above the lighter page background.

Here’s the CSS that creates the effect shown in Figure 3.15:

Figure 3.14. The ugly “halo effect”

85CSS and Images

chapter03/background5.css (excerpt)

body {

 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;

 color: #000000;

 background-image: url(recipes.png);

 background-repeat: no-repeat;

 background-position:98% 2%;

 background-attachment:fixed;

 margin: 0;

 padding: 46px 0 0 0;

}

#content {

 margin: 0 4em 2em 4em;

 background-image: url(opaque.png);

 padding: 1em 50px 40px 1em;

}

Figure 3.15. Displaying an opaque background without the halo effect on the Recipes image

Discussion
PNG images can be used to create unique and attractive effects. Unfortunately Inter

net Explorer 6 lacks the level of support required to render transparent PNGs.

The CSS Anthology86

However, as long as you think through your layout carefully, it’s often possible to

include this kind of effect in your pages for visitors using other modern browsers,

such as Firefox, Safari, Opera, and Internet Explorer version 7 and up. Another al

ternative is to use JavaScript to work around this limitation of Internet Explorer 6

and earlier. I’ll outline a method for doing this in Chapter 7.

Can I create more complex image borders,
such as a double border?
If you want to display photographs to best effect then you may want to add more

than the simple borders that we explored earlier in this chapter. We can combine

background images and borders to create some stunning effects, all using CSS. Once

again, this will save you needing to process images in Photoshop to add the border

effects.

Solution
In Figure 3.16 we have a photograph displayed as a feature element on a page, or

as part of an album. The simplest double border effect combines adding a background

color and some padding to our image; the color of the background becomes the first

border and the actual border the second one:

chapter03/doubleborder.css (excerpt)

img.doubleborder {

 border: 1px solid #333;

 padding: 5px;

 background-color: #EEEEEE;

}

87CSS and Images

Figure 3.16. A simple double border effect using only CSS

We can create more complex effects by including a background image. The following

CSS uses a small background tile repeated behind the photo to create the effect

shown in Figure 3.17:

chapter03/doubleborder-bg.css (excerpt)

img.doubleborder {

 border: 5px solid #8E787B;

 padding: 20px;

 background-image: url(doubleborder-bg.gif);

}

Figure 3.17. A double border effect using a background image

The CSS Anthology88

Discussion
Both of the above effects work by creating padding around the image. This creates

space between the edge of the image and the border. The padding will be the color

of the background or show the background image, and we can use this to create at

tractive double border effects without needing to wrap the image in another element.

Summary
This chapter has explained the answers to some common image-related questions.

We’ve concentrated mainly on background images, as these really are the building

blocks with which we create image-rich design in CSS. Keeping images in the

background enables you to more easily offer alternative style sheets and change the

look of your pages, as well as to create interesting effects.

There will, of course, be image-related questions all through this book. In particular,

Chapter 9 will explore the positioning of images along with other elements on the

page, and the use of images in more complex layouts than the ones we’ve seen in

this chapter.

Chapter4
Navigation
Unless you limit yourself to one-page web sites, you’ll need to design navigation.

In fact, navigation is among the most important parts of any web design, and requires

a great deal of thought if visitors are to move around your site easily.

Making site navigation easy is one area in which CSS really comes into its own.

Older methods of creating navigation tended to rely on lots of images, nested tables,

and JavaScript—all of which can seriously affect the usability and accessibility of

a site. If your site cannot be navigated using a device that lacks JavaScript support,

for example, you risk blocking users who have turned JavaScript off, as well as

locking out text-only devices such as screen readers and search engine robots—they’ll

never penetrate past your home page to index the content of your site. If your design

clients seem unconcerned about accessibility, tell them their clunky menu is stopping

them from achieving a decent search engine ranking!

CSS allows you to create attractive navigation that, in reality, is no more than

text—text that can be marked up in such a way as to ensure that it’s both accessible

and understandable by all those who are unable to physically see your design, but

still want to access your content. In this chapter, we’ll look at a variety of solutions

The CSS Anthology90

for creating CSS-based navigation. Some are suited to implementation on an existing

site, to make it load more quickly and boost its accessibility by replacing an old-

fashioned, image-based navigation. Others are more suited to incorporation within

a pure CSS layout.

How do I style a structural list
as a navigation menu?
Navigation is essentially a list of places to visit on your site, so marking up navigation

menus as lists makes sense semantically and we can hook our CSS styles to the list

elements themselves. However, we want to avoid our navigation looking like a

standard bulleted list as rendered by the browser’s internal style sheet.

Solution
The navigation in Figure 4.1 is marked up as a list and styled using CSS, as you can

see here.

Figure 4.1. Creating navigation by styling a list

Here’s the markup required to create the navigation list:

chapter04/listnav1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Lists as navigation</title>

 <meta http-equiv="content-type" content="text/html;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

91 Navigation

charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="listnav1.css" />

 </head>

 <body>

 <div id="navigation">

 Recipes

 Contact Us

 Articles

 Buy Online

 </div>

 </body>

</html>

Here’s the complete CSS that transforms our dull unordered list into an attractive

menu:

chapter04/listnav1.css

#navigation {

 width: 200px;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

}

#navigation li a:link, #navigation li a:visited {

 font-size: 90%;

 display: block;

 padding: 0.4em 0 0.4em 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 background-color: #B51032;

 color: #FFFFFF;

 text-decoration: none;

}

The CSS Anthology92

Discussion
To create navigation based on an unordered list—first create your list, placing each

navigation link inside a li element:

chapter04/listnav1.html (excerpt)

 Recipes

 Contact Us

 Articles

 Buy Online

Next, wrap the list in a div with an appropriate ID:

chapter04/listnav1.html (excerpt)

<div id="navigation">

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

As Figure 4.2 shows, this markup looks fairly ordinary with the browser’s default

styles applied.

Figure 4.2. A very basic, unstyled list

The first job we need to do is style the container in which the navigation sits—in

this case, navigation:

93Navigation

chapter04/listnav1.css (excerpt)

#navigation {

 width: 200px;

}

I’ve given navigation a width. If this navigation system were part of a CSS page

layout, I’d probably add some positioning information to this ID as well.

Next, we style the list:

chapter04/listnav1.css (excerpt)

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

As Figure 4.3 illustrates, the above rule removes list bullets and the indented margin

that browsers apply, by default, when displaying a list.

Figure 4.3. Viewing the list after indentation and bullets are removed

The next step is to style the li elements within navigation, to give them a bottom

border:

chapter04/listnav1.css (excerpt)

#navigation li {

 border-bottom: 1px solid #ED9F9F;

}

Finally, we style the link itself:

The CSS Anthology94

chapter04/listnav1.css (excerpt)

#navigation li a:link, #navigation li a:visited {

 font-size: 90%;

 display: block;

 padding: 0.4em 0 0.4em 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 background-color: #B51032;

 color: #FFFFFF;

 text-decoration: none;

}

Most of the work is done here, creating CSS rules to add left and right borders, re

moving the underline, and so on. The first property declaration in this rule sets the

display property to block. This causes the link to display as a block element,

meaning that the whole area of each navigation “button” is active when you move

the cursor over it—the same effect you’d see if you used an image for the navigation.

How do I use CSS to create rollover
navigation without images or JavaScript?
Site navigation often features a rollover effect: when a user holds the cursor over a

menu button, a new button image displays, creating a highlighting effect. To achieve

this effect using image-based navigation, you need to use two images and JavaScript.

Solution
Using CSS to build your navigation makes the creation of attractive rollover effects

far simpler than it would be if you used images. The CSS rollover is created using

the :hover pseudo-class selector—the same selector you’d use to style a hover state

for your links.

Let’s take the above list navigation example and add the following rule to create a

rollover effect:

95Navigation

chapter04/listnav2.css (excerpt)

#navigation li a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

Figure 4.4 shows what the menu looks like when the cursor is positioned over the

first menu item.

Figure 4.4. The CSS navigation showing a rollover effect

Discussion
The CSS we’ve used to create this effect is very simple. You can create hover states

for heavily styled links just as you can for standard links. In this example, I simply

changed the background color to make it the same as the left-hand border; however,

you could alter the background, text, and border color to create interesting effects

for the navigation.

The CSS Anthology96

Hover Here? Hover There!

In modern browsers, including Internet Explorer 7, you can apply the :hover

pseudo-selector to any element you like, but in Internet Explorer 6 and below,

you can apply it only to links.

Older versions of Internet Explorer allow only the anchor text to be made clickable,

because the link fails to expand to fill its container (in this case, the list item).

This means that the user is forced to click on the text, rather than the red back

ground, to select the menu item.

One way to rectify this issue is to use a CSS hack that expands the width of the

link—but only in Internet Explorer version 6 and earlier. Here’s the rule that does

just that:

* html #navigation li a {

 width: 100%;

}

Of course, you may decide that leaving the links as is and avoiding the hack is an

acceptable compromise. We’ll cover cross-browser techniques in more detail in

Chapter 7.

Can I use CSS and lists to create a
navigation system with subnavigation?
The examples we’ve seen so far in this chapter have assumed that you only have

one navigation level to display. Sometimes, more than one level is necessary—but

is it possible to create multi-leveled navigation using styled lists in CSS?

Solution
The perfect way to display subnavigation within a navigation system is to create a

sublist within a list. The two levels of navigation will be easy to understand when

they’re marked up in this way—even in browsers that lack support for CSS.

97Navigation

To produce multilevel navigation, we can edit the example we saw in Figure 4.4,

adding a nested list and styling the colors, borders, and link properties of the new

list’s items:

chapter04/listnav_sub.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Lists as navigation</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="listnav_sub.css" />

</head>

<body>

<div id="navigation">

 Recipes

 Starters

 Main Courses

 Desserts

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology98

chapter04/listnav_sub.css

#navigation {

 width: 200px;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

}

#navigation li a:link, #navigation li a:visited {

 font-size: 90%;

 display: block;

 padding: 0.4em 0 0.4em 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 background-color: #B51032;

 color: #FFFFFF;

 text-decoration: none;

}

#navigation li a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

#navigation ul ul {

 margin-left: 12px;

}

#navigation ul ul li {

 border-bottom: 1px solid #711515;

 margin:0;

}

#navigation ul ul a:link, #navigation ul ul a:visited {

 background-color: #ED9F9F;

 color: #711515;

}

#navigation ul ul a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

The result of these additions is shown in Figure 4.5.

99Navigation

Figure 4.5. The CSS list navigation containing subnavigation

Discussion
Nested lists are a perfect way to describe the navigation system that we’re working

with here. The first list contains the main sections of the site, while the sublist under

Recipes shows the subsections within the Recipes category. Even without any CSS

styling, the structure of the list is still clear and comprehensible, as you can see in

Figure 4.6.

Figure 4.6. The navigation remaining logical without the CSS

The HTML that we use to mark up this list simply nests the sublist inside the li

element of the appropriate main item:

The CSS Anthology100

chapter04/listnav_sub.html

<div id="navigation">

 Recipes

 Starters

 Main Courses

 Desserts

 Contact Us

 Articles

 Buy Online

</div>

With this HTML, and without any changes to the CSS, the menu will display as

shown in Figure 4.7 on the left, where the li elements inherit the styles of the main

menu.

Let’s add a style rule for the nested list to communicate visually that it’s a submenu,

distinct from the main navigation:

chapter04/listnav_sub.css (excerpt)

#navigation ul ul {

 margin-left: 12px;

}

This rule will indent the nested list so that it’s in line with the right edge of the

border for the main menu, as demonstrated in Figure 4.7 on the right.

101 Navigation

Figure 4.7. The sublist taking on the styles of the main navigation and the indented version

Let’s add some simple styles to the li and a elements within the nested list to

complete the effect:

chapter04/listnav_sub.css (excerpt)

#navigation ul ul li {

 border-bottom: 1px solid #711515;

 margin: 0;

}

#navigation ul ul a:link, #navigation ul ul a:visited {

 background-color: #ED9F9F;

 color: #711515;

}

#navigation ul ul a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

How do I make a horizontal menu using
CSS and lists?
All the examples we’ve seen in this chapter have dealt with vertical navigation—the

kind of navigation that will most likely be found in a column to the left or right of

a site’s main content area. However, site navigation is also commonly found as a

horizontal menu close to the top of the document.

The CSS Anthology102

Solution
As Figure 4.8 shows, this type of menu can be created using styled lists in CSS. The

li elements must be set to display inline to avoid that line break between list items.

Figure 4.8. Using CSS to create horizontal list navigation

Here’s the HTML and CSS that creates this display:

chapter04/listnav_horiz.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Lists as navigation</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="listnav_horiz.css" />

</head>

<body>

<div id="navigation">

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

chapter04/listnav_horiz.css

body {

 padding: 1em;

}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

103 Navigation

#navigation {

 font-size: 90%;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 padding-top: 1em;

}

#navigation li {

 display: inline;

}

#navigation a:link, #navigation a:visited {

 padding: 0.4em 1em 0.4em 1em;

color: #FFFFFF;

 background-color: #B51032;

 text-decoration: none;

 border: 1px solid #711515;

}

#navigation a:hover {

 color: #FFFFFF;

 background-color: #711515;

}

Discussion
To create the horizontal navigation, we start with a list that’s identical to the one

we created for our vertical list menu:

chapter04/listnav_horiz.html (excerpt)

<div id="navigation">

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

We style the #navigation container to apply some basic font information, as we

did with the vertical navigation. In a CSS layout, this ID would probably also contain

some additional styles that determine the navigation’s position on the page:

The CSS Anthology104

chapter04/listnav_horiz.css (excerpt)

#navigation {

 font-size: 90%;

}

In styling the ul element, we remove the list bullets and default indentation applied

to the list by the browser:

chapter04/listnav_horiz.css (excerpt)

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 padding-top: 1em;

}

The property that transforms our list from a vertical to a horizontal display is applied

to the li element. After we set the display property to inline, the list looks like

Figure 4.9:

chapter04/listnav_horiz.css (excerpt)

#navigation li {

 display: inline;

}

Figure 4.9. Displaying the list menu horizontally

All that’s left for us to do is to style the links for our navigation:

105 Navigation

chapter04/listnav_horiz.css (excerpt)

#navigation a:link, #navigation a:visited {

 padding: 0.4em 1em 0.4em 1em;

color: #FFFFFF;

 background-color: #B51032;

 text-decoration: none;

 border: 1px solid #711515;

}

#navigation a:hover {

 color: #FFFFFF;

 background-color: #711515;

}

If you’re creating boxes around each link—as I have here—remember that, in order

to make more space between the text and the edge of its container, you’ll need to

add more left and right padding to the links. To create more space between the

navigation items, add left and right margins to the links.

How do I create button-like navigation
using CSS?
Navigation that appears to be composed of clickable buttons is a feature of many

web sites. This kind of navigation is often created using images to which effects are

applied to make the edges look beveled and button-like. Often, some JavaScript

code is used to swap in another image, so the button appears to depress when the

user holds the cursor over it or clicks on the image.

This brings up the question: Is it possible to create such button-like navigation

systems using only CSS? Absolutely!

Solution
Creating a button effect like that shown in Figure 4.10 is possible, and fairly

straightforward, using CSS. The effect’s success hinges on your use of the CSS

border properties.

The CSS Anthology106

Figure 4.10. Building button-like navigation with CSS

Here’s the code you’ll need:

chapter04/listnav_button.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Lists as navigation</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="listnav_button.css"

 />

</head>

<body>

<div id="navigation">

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

chapter04/listnav_button.css

#navigation {

 font-size:90%

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 padding-top: 1em;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

107 Navigation

}

#navigation li {

 display: inline;

}

#navigation a:link, #navigation a:visited {

 margin-right: 0.2em;

 padding: 0.2em 0.6em 0.2em 0.6em;

 color: #A62020;

 background-color: #FCE6EA;

 text-decoration: none;

 border-top: 1px solid #FFFFFF;

 border-left: 1px solid #FFFFFF;

 border-bottom: 1px solid #717171;

 border-right: 1px solid #717171;

}

#navigation a:hover {

 border-top: 1px solid #717171;

 border-left: 1px solid #717171;

 border-bottom: 1px solid #FFFFFF;

 border-right: 1px solid #FFFFFF;

}

Discussion
To create this effect, we’ll use the horizontal list navigation described in “How do

I make a horizontal menu using CSS and lists?”. However, to create the button look,

we’ll use different colored borders at the top and left than we use for the bottom

and right sides of each button. By giving the top and left edges of the button a

lighter colored border than we assign to the button’s bottom and right edges, we

create a slightly beveled effect:

The CSS Anthology108

chapter04/listnav_button.css (excerpt)

#navigation a:link, #navigation a:visited {

 margin-right: 0.2em;

 padding: 0.2em 0.6em 0.2em 0.6em;

 color: #A62020;

 background-color: #FCE6EA;

 text-decoration: none;

 border-top: 1px solid #FFFFFF;

 border-left: 1px solid #FFFFFF;

 border-bottom: 1px solid #717171;

 border-right: 1px solid #717171;

}

We reverse the border colors for the hover state, which creates the effect of the

button being pressed:

chapter04/listnav_button.css (excerpt)

#navigation a:hover {

 border-top: 1px solid #717171;

 border-left: 1px solid #717171;

 border-bottom: 1px solid #FFFFFF;

 border-right: 1px solid #FFFFFF;

}

Try using heavier borders and changing the background images on the links, to

create effects that suit your design.

How do I create tabbed navigation
with CSS?
Navigation that appears as tabs across the top of the page is a popular navigation

choice. Many sites create tabs using images. However, this can be less accessible

and also problematic if your navigation is created using a Content Management

System, with users of that system being able to add tabs or change the text in the

tabs. However, it’s possible to create a tab effect by combining background images

and text styled with CSS.

109 Navigation

Solution

The tabbed navigation shown in Figure 4.11 can be created by styling a horizontal

list.

Figure 4.11. Using CSS to create tabbed navigation

Here’s the HTML and CSS that creates this effect:

chapter04/tabs.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Lists as navigation</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="tabs.css" />

</head>

<body id="recipes">

<div id="header">

 <li class="recipes">Recipes

 <li class="contact">Contact Us

 <li class="articles">Articles

 <li class="buy">Buy Online

</div>

<div id="content">

<h1>Recipes</h1>

<p>Lorem ipsum dolor sit amet, … </p>

</div>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology110

chapter04/tabs.css

body {

 font: .8em/1.8em verdana, arial, sans-serif;

 background-color: #FFFFFF;

 color: #000000;

 margin: 0 10% 0 10%;

}

#header {

 float: left;

 width: 100%;

 border-bottom: 1px solid #8DA5FF;

 margin-bottom: 2em;

}

#header ul {

 margin: 0;

 padding: 2em 0 0 0;

 list-style: none;

}

#header li {

 float: left;

 background-image: url("images/tab_left.gif");

 background-repeat: no-repeat;

 margin: 0 1px 0 0;

 padding: 0 0 0 8px;

}

#header a {

 float: left;

 display: block;

 background-image: url("images/tab_right.gif");

 background-repeat: no-repeat;

 background-position: right top;

 padding: 0.2em 10px 0.2em 0;

 text-decoration: none;

 font-weight: bold;

 color: #333366;

}

#recipes #header li.recipes,

#contact #header li.contact,

111 Navigation

#articles #header li.articles,

#buy #header li.buy {

 background-image: url("images/tab_active_left.gif");

}

#recipes #header li.recipes a,

#contact #header li.contact a,

#articles #header li.articles a,

#buy #header li.buy a {

 background-image: url("images/tab_active_right.gif");

 background-color: transparent;

 color:#FFFFFF;

}

Discussion
The tabbed navigation approach I’ve used here is a basic version of Douglas Bow

man’s Sliding Doors of CSS method, which is a tried and tested technique for creating

a tabbed interface.1 The structure that I’ve given to the navigation menu is the same

kind of simple unordered list that we’ve worked with throughout this chapter, except

that each list item is assigned a class attribute that describes the link it contains.

We’ve also wrapped the entire list in a div with an id of header. The technique

takes its name from the two images used to implement it—one overlaps the other,

and the images slide apart as the text size increases.

You’ll need four images to create this effect: two to create the regular tab color, and

two to use when the tab is the currently selected (highlighted) tab. The images I’ve

used in this example are shown in Figure 4.12. As you can see, they’re far wider

and taller than would generally be necessary for a tab—this provides plenty of space

for the tab to grow if the user’s browser is configured to display text at a very large

size.

1 http://www.alistapart.com/articles/slidingdoors/

http://www.alistapart.com/articles/slidingdoors/
http://www.alistapart.com/articles/slidingdoors

The CSS Anthology112

Figure 4.12. The image files used to create the tabs

Here’s the basic list of navigation items:

chapter04/tabs.html (excerpt)

<div id="header">

 <li class="recipes">Recipes

 <li class="contact">Contact Us

 <li class="articles">Articles

 <li class="buy">Buy Online

</div>

The first step is to style the container that surrounds the navigation. We’re going to

give our header a simple bottom border for the purposes of this exercise, but on a

real, live web site this container may hold other elements in addition to our tabs

(such as a logo or search field):

#header {

 float: left;

 width: 100%;

 border-bottom: 1px solid #8DA5FF;

 margin-bottom: 2em;

}

113 Navigation

As you’ll have noticed, we float the header to the left. We’ll also float the individual

list items; floating the container that houses them ensures that they remain contained

once they’re floated, and that the border will display below them.

Next, we create a style rule for the ul element inside the header:

chapter04/tabs.css (excerpt)

#header ul {

 margin: 0;

 padding: 2em 0 0 0;

 list-style: none;

}

This rule removes the bullets and alters the margin and padding on our list—we’ve

added two ems of padding to the top of the ul element. Figure 4.13 shows the results

of our work so far.

Figure 4.13. Displaying the navigation after styling the ul element

Now we need to style the list items:

chapter04/tabs.css (excerpt)

#header li {

 float: left;

 background-image: url("images/tab_left.gif");

 background-repeat: no-repeat;

 margin: 0 1px 0 0;

 padding: 0 0 0 8px;

}

This rule uses the float property to position the list items horizontally while

maintaining the block-level status of each. We then add the first of our sliding door

The CSS Anthology114

images—the thin left-hand side of the tab—as a background image. A single-pixel

right margin on the list item creates a gap between one tab and the next. Figure 4.14

shows that the left-hand tab image now appears for each tab.

Figure 4.14. The navigation tabs reflecting the new styles

Next, we style the links, completing the look of our tabs in their unselected state.

The image that forms the right-hand side of the tab is applied to each link, completing

the tab effect:

chapter04/tabs.css (excerpt)

#header a {

 float: left;

 display: block;

 background-image: url("images/tab_right.gif");

 background-repeat: no-repeat;

 background-position: right top;

 padding: 0.2em 10px 0.2em 0;

 text-decoration: none;

 font-weight: bold;

 color: #333366;

}

The results are shown in Figure 4.15.

Figure 4.15. Styling the navigation links

If you increase the text size in the browser, you can see that the tabs neatly increase

in size too. In fact, they do so without overlapping and without the text protruding

115 Navigation

out of the tab—this is because we have used images that allow plenty of room for

growth.

To complete the tab navigation, we need to highlight the tab that corresponds to

the currently displayed page. You’ll recall that each list item has been assigned a

unique class name. If we assign to the body element an ID that has a value equal to

the value of each list item class, CSS can do the rest of the work:

chapter04/tabs.html (excerpt)

<body id="recipes">

Although it looks like a lot of code, the CSS code that styles the tab matching the

body ID is relatively straightforward. The images I’ve used are exact copies of the

left and right images that we applied to the tabs, but they’re a different color, which

produces the effect of one tab appearing to be highlighted.

Here’s the CSS:

chapter04/tabs.css (excerpt)

#recipes #header li.recipes,

#contact #header li.contact,

#articles #header li.articles,

#buy #header li.buy {

 background-image: url("images/tab_active_left.gif");

}

#recipes #header li.recipes a,

#contact #header li.contact a,

#articles #header li.articles a,

#buy #header li.buy a {

 background-image: url("images/tab_active_right.gif");

 background-color: transparent;

 color: #FFFFFF;

}

With these rules in place, specifying an ID of recipes to our body will cause the

Recipes tab to be highlighted, specifying contact will cause the Contact Us tab to be

highlighted, and so on. The results of this work are shown in Figure 4.16.

The CSS Anthology116

Identifying a Useful Technique

The technique of adding an ID to the body element can be very useful. For example,

you may have various color schemes for different sections of your site to help the

user identify which section they’re using. You can simply add the section name

to the body element and make use of it within the style sheet, as we did in this

example.

Figure 4.16. Highlighting the Contact Us tab by specifying contact as the ID of the body element

How can I visually indicate which links
are external to my site?
When linking to other content it’s a nice touch to visually demonstrate to users

when a link is to another site. We can do this using CSS without needing to add

anything to our markup.

Solution
We can use a CSS3 selector that’s supported in many modern browsers to select the

external links. The first link in the paragraph below is to a page on our own site,

the second to an external web site (Google):

chapter04/external_links.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Chapter 4 - Show external links</title>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <link rel="stylesheet" type="text/css"

href="external_links.css" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

117 Navigation

</head>

 <body>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Aenean porta. Donec eget quam. Morbi

libero.Curabitur ut justo vehicula elit feugiat lacinia. Morbi

 ac quam. Sed venenatis,

lectus quis porta viverra, lectus sapien tempus odio, ac

volutpat mi dolor ac elit.</p>

 </body>

</html>

We can use a CSS3 selector to target the link that starts with http: and add an icon

to it:

chapter04/external_links.css

a[href ^="http:"] {

 padding-left: 20px;

 background-image: url(link_icon_external.gif);

 background-repeat: no-repeat;

}

Figure 4.17. The external link displays with an icon

Any links on our page that start with http: (which should be external as it is unne

cessary to link to pages on our own site like that) will display with the world icon.

Discussion
This CSS3 attribute selector is widely supported in modern browsers, although it

will be ignored in Internet Explorer 6. In browsers that lack support for this selector

the link will just display as normal; so, it’s a nice enhancement for browsers with

support but leaves the experience unchanged for those with older browsers.

The CSS Anthology118

Let’s take a closer look at that selector: a[href ^="http:"].

The attribute that we’re selecting is the href attribute, and we want our selector to

match when it finds the text http: at the beginning of the attribute value. The ^=

operator means “begins with”. You could use a similar selector to match all email

links, for example, a[href ^="mailto:"].

Another useful attribute selector is to select on the file extension of a link. This

means you can add a small icon to show that a document is a PDF or other document

type, depending on the extension. The selector a[href $=".pdf"] will match any

link that has a file extension of .pdf. The $= operator means “ends with”, so this

selector will match when an href attribute value ends with .pdf. The example below

shows all three types in action:

chapter04/external_links.html

<ul class="links">

 Go somewhere else

 Download a PDF

 Email someone

chapter04/external_links.css

a[href ^="http:"] {

 padding-left: 20px;

 background-image: url(link_icon_external.gif);

 background-repeat: no-repeat;

}

a[href ^="mailto:"] {

 padding-left: 20px;

 background-image: url(link_icon_email.gif);

 background-repeat: no-repeat;

}

a[href $=".pdf"] {

 padding-left: 20px;

 background-image: url(link_icon_pdf.gif);

 background-repeat: no-repeat;

}

119 Navigation

Figure 4.18. Links with icons for external and email links, and PDF files2

Attribute selectors are a very useful part of CSS and you can safely use them in this

kind of situation where you’re just adding an enhancement to your design.

How do I change the cursor type?
It’s common for the cursor to change to a hand icon when the cursor’s moved over

a link on any part of the page. Occasionally—perhaps to fit in with a particular

interface—you might want to change the cursor to represent a different action.

Solution
We change the cursor using the CSS cursor property. For example, if we wanted

to change the cursor on anchor elements that link to help documentation we can

specify the style like so:

a.help {

 cursor: help;

}

Table 4.1 identifies the properties that are available in CSS 2.1, and how they appear

in Internet Explorer 8.

2 The icons you can see in Figure 4.18 are from http://www.famfamfam.com/lab/icons/silk/.

http://www.famfamfam.com/lab/icons/silk

The CSS Anthology120

Table 4.1. The CSS 2.1 Standard Cursors in IE8

crosshairdefaultpointer

movehelptext

nw-resizene-resizen-resize

sw-resizese-resizes-resize

waitw-resizee-resize

custom imagebrowser-determined

url("url")autoprogress

Discussion
The cursor property can take a range of values. Changing the cursor display can

be a useful way for web applications with friendly interfaces to provide valuable

user feedback. For example, you might decide to use a question mark cursor for

indicating help text.

121 Navigation

Changing the Cursor Can Cause Confusion!

You should use this effect with care, and keep in mind that people are generally

used to standard browser behavior. For instance, users are familiar with the

cursor representing a pointing hand icon when hovered over a link.

Table 4.1 lists the various properties that are available in the CSS standard; these

are supported by most modern browsers, including Internet Explorer 6 and above,

Safari, Opera, Firefox, and Chrome. Browser support for the complete range of values

varies so make sure to test.

CSS3 increases the range of cursor values available, as shown in Table 4.2, but

browser support for these values varies. They’re well supported by Safari, Firefox,

and Chrome, and IE8 supports most of them; however, Opera, as of the time of

writing, only supports CSS 2.1 cursor values.

Table 4.2. New CSS3 Cursors

Appearance (as in IE8) cursor value

unsupportedcopy

unsupportedalias

unsupportedcell

all-scroll

no-drop

not-allowed

col-resize

row-resize

vertical-text

The CSS Anthology122

How do I create rollover images in my

navigation without using JavaScript?

CSS-based navigation can provide some really interesting effects, but there are still

some effects that require the use of images. Is it possible to enjoy the advantages of

text-based navigation and still use images?

Solution
It is possible to combine images and CSS to create JavaScript-free rollovers. This

solution is based on a technique described at WellStyled.com.3 Here’s the code

you’ll need:

chapter04/images.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Lists as navigation</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="images.css" />

</head>

<body>

<ul id="nav">

 Recipes

 Contact Us

 Articles

 Buy Online

</body>

</html>

chapter04/images.css

ul#nav {

 list-style-type: none;

 padding: 0;

3 http://wellstyled.com/css-nopreload-rollovers.html

http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

123Navigation

margin: 0;

}

#nav a:link, #nav a:visited {

 display: block;

 width: 150px;

 padding: 10px 0 16px 32px;

 font: bold 80% Arial, Helvetica, sans-serif;

 color: #FF9900;

 background: url("peppers.gif") top left no-repeat;

 text-decoration: none;

}

#nav a:hover {

 background-position: 0 -69px;

 color: #B51032;

}

#nav a:active {

 background-position: 0 -138px;

 color: #006E01;

}

The results can be seen in Figure 4.19, but to enjoy the full effect I suggest you try

it for yourself. Remember to click on a link or two!

Figure 4.19. Using images to advantage in the completed menu

The CSS Anthology124

Discussion
This solution offers a means of using images in your

navigation without having to resort to preloading lots

of separate files.

The navigation has three states, but there’s no need to

use three separate images to depict these states. In

stead, we use one large image that contains the

graphics for all three states, as shown in Figure 4.20.

The navigation is marked up as a simple list: Figure 4.20. All three rollover states

chapter04/images.html (excerpt)

<ul id="nav">

 Recipes

 Contact Us

 Articles

 Buy Online

We control the display of the background image within the declaration block for

the navigation links. However, because the image is far bigger than the area required

for this element, we only see the yellow pepper at first:

chapter04/images.css (excerpt)

#nav a:link, #nav a:visited {

 display: block;

 width: 150px;

 padding: 10px 0 16px 32px;

 font: bold 80% Arial, Helvetica, sans-serif;

 color: #FF9900;

 background: url("peppers.gif") top left no-repeat;

 text-decoration: none;

}

When the :hover state is activated, the background image moves up the exact

number of pixels required to reveal the red pepper. In this example, I had to move

it by 69 pixels, but this figure will vary depending on the image that you use. You

125Navigation

could probably work it out mathematically, or you could do as I do and simply in

crement the background position a few pixels at a time, until it appears in the right

location on hover:

chapter04/images.css (excerpt)

#nav a:hover {

 background-position: 0 -69px;

 color: #B51032;

}

When the :active state is activated, the background image shifts again, this time

to display the green pepper when the link is clicked:

chapter04/images.css (excerpt)

#nav a:active {

 background-position: 0 -138px;

 color: #006E01;

}

That’s all there is to it! The effect can fall apart if the user resizes the text in the

browser to a larger font, which allows the edges of the hidden images to display.

You can anticipate this to some degree by leaving quite a large space between each

of the three images—keep this in mind when preparing your images.

Image Flickering in Internet Explorer

This technique sometimes causes the navigation to flicker in Internet Explorer.

In my tests, this only tends to be a problem when the image is larger than the ones

we’ve used here; however, if your navigation items flicker, a well-documented

remedy is available.4

4 http://wellstyled.com/css-nopreload-rollovers.html

http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html

The CSS Anthology126

How should I style a site map?

A site map is a helpful page on your web site that lists all pages in the site. It can

help those who are unable to find what they’re looking for through the navigation—as

well as providing a quick way to see what’s available at a glance and go to it with

one click.

Solution
A site map is really a list of all of the destinations available on your site and so is

ideally marked up as a set of nested lists. The first list is your main navigation, with

the internal navigation nested within each main navigation point. A list works even

if your site structure has many levels and should be easy to generate from your

content management system. Figure 4.21 displays the results of the following code:

chapter04/sitemap.html (excerpt)

<ul id="sitemap">

 About us

 The team

 Our history

 Our products

 Ordering information

 Our shops

 Other stockists

 Online stockists

 Contact us

127Navigation

chapter04/sitemap.css (excerpt)

ul#sitemap {

 margin: 0;

 padding: 0;

 list-style: none;

}

ul#sitemap ul {

 padding-left: 1em;

 list-style: none;

}

ul#sitemap li {

 border-bottom: 2px solid #FFFFFF;

}

ul#sitemap li a:link, ul#sitemap li a:visited{

 background-color: #CCCCCC;

 display: block;

 padding: 0.4em;

 text-decoration: none;

 color: #057FAC;

}

ul#sitemap li a:hover {

 background-color: #999999;

 color: #FFFFFF;

}

ul#sitemap li li a:link, ul#sitemap li li a:visited{

 background-color: #FFFFFF;

 display: block;

 padding: 0.4em;

}

ul#sitemap li li a:hover {

 background-color: #FFFFFF;

 color: #057FAC;

}

The CSS Anthology128

Figure 4.21. The styled sitemap

Discussion
The sitemap starts life as a list for the main navigation elements with the submenus

nested inside—in the same way as the list with subnavigation discussed earlier in

this chapter. The difference with the sitemap is that all menus will display their

subnavigation. If the sitemap becomes deeper (with further levels), you just continue

nesting in the same way, with subpages being a sublist of their parent page.

Take care to nest the list items properly. The submenu needs to go before the closing

 of the parent list. Without CSS the sitemap displays as in Figure 4.22. We

can then style the parent list and sublists. I’m taking the margins and padding off

the main list, but giving nested lists a left padding of 1em to indent them and make

it clear that they’re nested inside their parent list item:

129Navigation

Figure 4.22. The marked up sitemap without CSS

chapter04/sitemap.css (excerpt)

ul#sitemap {

 margin: 0;

 padding: 0;

 list-style: none;

}

ul#sitemap ul {

 padding-left: 1em;

 list-style: none;

}

I then want to give the main list items a strong style to show that they represent the

main sections of my site. As with the navigation, I put most of the styling onto the

a element and set the display property to block, so as to make the full width of

the item clickable, as opposed to just the link text itself:

chapter04/sitemap.css (excerpt)

ul#sitemap li {

 border-bottom: 2px solid #FFFFFF;

}

ul#sitemap li a:link, ul#sitemap li a:visited{

 background-color: #CCCCCC;

 display: block;

 padding: 0.4em;

 text-decoration: none;

The CSS Anthology130

color: #057FAC;

}

ul#sitemap li a:hover {

 background-color: #999999;

 color: #FFFFFF;

}

As we’re selecting elements within the sitemap list, we’ll also select the nested a

elements which should have no gray background color. So to finish off we need to

deal with these elements with a more specific selector:

chapter04/sitemap.css (excerpt)

ul#sitemap li li a:link, ul#sitemap li li a:visited{

 background-color: #FFFFFF;

 display: block;

 padding: 0.4em;

}

ul#sitemap li li a:hover {

 background-color: #FFFFFF;

 color: #057FAC;

}

That’s all there is to styling a sitemap using CSS. Just as with site navigation you

can develop all kinds of creative effects working from this simple idea.

Can I create a drop-down menu
using only CSS?
A previous edition of this book included a CSS-only drop-down menu that I have

removed in this edition.

When this book was originally written, I—like many other web developers—was

really looking forward to a utopia where we would just use CSS for everything,

managing without JavaScript to create effects like drop-down menus. As we’ve

learned more about these technologies and also about the ways in which people

131 Navigation

use the Web, I’ve come to the opinion that in this circumstance, JavaScript is a far

better choice.

It is possible to create a drop-down navigation using only CSS. However, the tech

niques used to do this can actually be less accessible in practice than a well-thought

through JavaScript-driven, drop-down menu would be. It’s possible to make

JavaScript menus navigable with the keyboard, for example, and to ensure that links

are unhidden using display: none;, which renders them hidden for screen readers

as well as those viewing the site on screen. If you really need a drop-down menu

I’d advise taking a look at the excellent UDM4 menu,5 which can be styled using

CSS but provides a good experience for all of your visitors.

How can I use CSS to keep image-based
navigation clean and accessible?
While there are many benefits to using text-based navigation styled with CSS rather

than images, it’s likely that sometimes you’ll need to use images to gain a particular

effect or to use a certain font. When this happens, you can use all you know about

CSS to ensure that the images are used in a way that is as problem-free as possible.

This solution pulls together several different techniques to create a slick image-

based navigation.

Solution
This solution starts with text-based navigation and replaces it, using CSS and a

single image, with image-based navigation. Figure 4.23 shows us the final product,

and here’s the code:

chapter04/image_nav.html (excerpt)

<ul id="nav">

 <li class="recipes">Recipes

 <li class="contact">Contact Us

 <li class="articles">Articles

 <li class="buy">Buy Online

5 http://www.udm4.com/

http://www.udm4.com/
http:http://www.udm4.com

The CSS Anthology132

chapter04/image_nav.css (excerpt)

ul#nav {

 width: 360px;

 height: 30px;

 overflow:hidden;

 margin: 0;

 padding: 0;

 list-style: none;

}

ul#nav li {

 float: left;

}

ul#nav li a span {

 margin-left: -5000px;

}

ul#nav li a {

 background-image: url(reflectonav.gif);

 background-repeat: no-repeat;

 display: block;

 width: 75px;

 overflow:hidden;

}

ul#nav li.recipes a {

 background-position: 0 0;

}

ul#nav li.recipes a:hover {

 background-position: 0 -42px;

}

ul#nav li.contact a {

 background-position: -75px 0;

 width: 105px;

}

ul#nav li.contact a:hover {

 background-position: -75px -42px;

}

133Navigation

ul#nav li.articles a {

 background-position: -180px 0;

 width: 85px;

}

ul#nav li.articles a:hover {

 background-position: -180px -42px;

}

ul#nav li.buy a {

 background-position: -265px 0;

 width: 85px;

}

ul#nav li.buy a:hover {

 background-position: -265px -42px;

}

Figure 4.23. The completed navigation

Discussion
In this solution we want to ensure that any text-only devices such as screen readers

and search engines still understand our navigation, even though we’re using images.

Therefore, we start out as usual by creating an unordered list of navigation items.

The only addition is a span element wrapped around the text inside the element:

chapter04/image_nav.html (excerpt)

<ul id="nav">

 <li class="recipes">Recipes

 <li class="contact">Contact Us

 <li class="articles">Articles

 <li class="buy">Buy Online

The CSS Anthology134

Our navigation is now just a structured list. Next, we need to create our images for

the navigation. As with the rollover navigation image above we’re going to use a

composite image with several image states in it—in this case all of the navigation

images and their rollover states in one image, as shown in Figure 4.24.

Figure 4.24. The background image used in this example

Using one image saves making multiple requests to the server, and the file size for

our one large image will be less that it would be if we had eight images chopped

up. Now that we have our markup and image we can start to style the navigation

using CSS. First, we remove the default browser styling on the ul element and float

our list items left to make a horizontal navigation bar.

We also give the navigation width and height values. As the navigation is made up

of images, we know how tall it will be and specifying the height ensures that there

are no parts of the background showing through:

chapter04/image_nav.css (excerpt)

ul#nav {

width: 360px;

 height: 30px;

 overflow:hidden;

 margin: 0;

 padding: 0;

 list-style: none;

}

ul#nav li {

 float: left;

}

We now want to hide the text from browsers that support images and CSS. We do

this by setting a large negative margin on the span within the list items, throwing

them off the left side of the screen:

135Navigation

chapter04/image_nav.css (excerpt)

ul#nav li a span {

 margin-left: -5000px;

}

We can now replace the text with the background image. Create a rule for the element

in which display is set to block so it takes up the full area of the li, then add the

background image:

chapter04/image_nav.css (excerpt)

ul#nav li a {

 display: block;

 background-image: url(reflectonav.gif);

 background-repeat: no-repeat;

 width: 75px;

 overflow:hidden;

}

If you look at your navigation in a browser after adding the above rules you’ll see

that it shows the “Recipes” item 4 times. This is because you’ve added the back

ground image to each link in the navigation bar and the image displayed is positioned

at the top left of that item, as Figure 4.25 shows.

Figure 4.25. After adding the background image to the element

To correct this situation we need to position the background image differently for

each navigation item. As with the rollover images above, it’s often simplest just to

tweak the position pixel by pixel until it appears in the right place. The following

CSS shows how we position the background for each link, and Figure 4.26 shows

the results:

The CSS Anthology136

chapter04/image_nav.css (excerpt)

ul#nav li.recipes a {

 background-position: 0 0;

}

ul#nav li.contact a {

 background-position: -75px 0;

 width: 105px;

}

ul#nav li.articles a {

 background-position: -180px 0;

 width: 85px;

}

ul#nav li.buy a {

 background-position: -265px 0;

 width: 85px;

}

Figure 4.26. After positioning the background image

The final task we need to do is add our hover state. This is created in much the

same way as the rollover background images in the earlier example. Using CSS, we

can move the background image on hover so that the rollover state comes into view:

137Navigation

chapter04/image_nav.css (excerpt)

ul#nav li.recipes a:hover {

 background-position: 0 -42px;

}

ul#nav li.contact a:hover {

 background-position: -75px -42px;

}

ul#nav li.articles a:hover {

 background-position: -180px -42px;

}

ul#nav li.buy a:hover {

 background-position: -265px -42px;

}

Summary
This chapter has discussed a range of different ways in which we can create navig

ation using structurally sound markup, as well as provided examples that can be

used as starting points for your own experiments.

On existing sites where a full redesign is unfeasible, introducing a CSS-based nav

igation system can be a good way to improve the site’s accessibility and performance

without affecting its look and feel in a big way.

Chapter5
Tabular Data
You've probably heard the mantra “tables are for tabula data, not layout.” Originally

designed to display tabular data correctly in HTML documents, they were soon

misappropriated as a way to lay out web pages. Back then, understanding how to

create complex layouts using nested tables was a part of the standard skill set of

every web designer. However, using tables in this way requires large amounts of

markup, and can cause real problems for users who are trying to access content

using screen readers or other text-only devices. Since then, the Web Standards

movement has pushed for the replacement of tabular layouts with CSS, which is

designed for the job and is, ultimately, far more flexible, as we’ll discover in

Chapter 9.

But, far from being evil, tables can (and should) still be used for their true pur

pose—that of displaying tabular data. This chapter will illustrate some common,

correct uses of tables, incorporating elements and attributes that, though used infre

quently, help to make your tables accessible. We’ll also look at how CSS can make

these tables more attractive and usable for those viewing them in a web browser.

The CSS Anthology140

How do I lay out spreadsheet data
using CSS?
Solution
The quick answer is, you don’t! Spreadsheet data is tabular by nature and, therefore,

should be displayed in an HTML table. However, we can still spruce them up using

CSS, as we’ll see later in this chapter. And we should still be concerned about the

accessibility of our tables, even when we’re using them to display the right kind of

content.

Discussion
Tabular data is information that’s displayed in a table, and which may logically be

arranged into columns and rows.

Your accounts, when stored in spreadsheet format, are a good example of tabular

data. If you needed to mark up the annual accounts of an organization for which

you were building a site, you might be given a spreadsheet that looked like Figure 5.1.

Figure 5.1. Displaying the accounts information as tabular data in Excel

Obviously, this is tabular data. We see column and row headings to which the data

in each cell relates. Ideally, we’d display this data in a table, as shown in Figure 5.2,

complete with table headings to ensure that the data is structured logically.

141 Tabular Data

Figure 5.2. The accounts data formatted as an HTML table

How do I ensure that my tabular data is
accessible as well as attractive?
Solution
The HTML table specification includes elements and attributes that go beyond the

basics required to achieve a certain look for tabular data. These extra parts of the

table can be used to ensure that the content of the table is clear when it’s read out

to visually impaired users who are unable to see the layout for themselves. They’re

also easy to implement, though they're often omitted by web developers. Take a

look at this example:

chapter05/table.html (excerpt)

<table summary="This table shows the yearly income for years 1999

 through 2002">

 <caption>Yearly Income 1999 - 2002</caption>

 <tr>

 <th></th>

 <th scope="col">1999</th>

 <th scope="col">2000</th>

 <th scope="col">2001</th>

 <th scope="col">2002</th>

 </tr>

 <tr>

The CSS Anthology142

<th scope="row">Grants</th>

 <td>11,980</td>

 <td>12,650</td>

 <td>9,700</td>

 <td>10,600</td>

 </tr>

 <tr>

 <th scope="row">Donations</th>

 <td>4,780</td>

 <td>4,989</td>

 <td>6,700</td>

 <td>6,590</td>

 </tr>

 <tr>

 <th scope="row">Investments</th>

 <td>8,000</td>

 <td>8,100</td>

 <td>8,760</td>

 <td>8,490</td>

 </tr>

 <tr>

 <th scope="row">Fundraising</th>

 <td>3,200</td>

 <td>3,120</td>

 <td>3,700</td>

 <td>4,210</td>

 </tr>

 <tr>

 <th scope="row">Sales</th>

 <td>28,400</td>

 <td>27,100</td>

 <td>27,950</td>

 <td>29,050</td>

 </tr>

 <tr>

 <th scope="row">Miscellaneous</th>

 <td>2,100</td>

 <td>1,900</td>

 <td>1,300</td>

 <td>1,760</td>

 </tr>

 <tr>

 <th scope="row">Total</th>

 <td>58,460</td>

143Tabular Data

<td>57,859</td>

 <td>58,110</td>

 <td>60,700</td>

 </tr>

</table>

Discussion
The above markup creates a table that uses elements and attributes to clearly explain

the contents of each cell. Let’s discuss the value that each of these elements and

attributes adds.

The summary Attribute of the table Element

chapter05/table.html (excerpt)

<table summary="This table shows the yearly income for years 1999

 through 2002">

A table’s summary will be unseen by browser users, but will be read out to visitors

with screen readers. We use the summary attribute to make sure that screen reader

users understand the purpose and context of the table—information that, while

apparent to the sighted user with a standard browser, might be less apparent when

the text is being read in a linear manner by the screen reader.

The caption Element

chapter05/table.html (excerpt)

 <caption>Yearly Income 1999 - 2002</caption>

The caption element adds a caption to the table. By default, browsers generally

display the caption above the table; however, you can manually set the position of

the caption in relation to the table using the caption-side CSS property.

table {

 caption-side: bottom;

}

The CSS Anthology144

Why might you want to use a caption, instead of just adding a heading or paragraph

text for display with the table? By using a caption, you can ensure that the text is

tied to the table, and that it’s recognized as the table’s caption—there’s no chance

that the screen reader could interpret it as a separate element. If you want your table

captions to display as paragraph text or level three headings in a graphical browser,

no problem! You can create CSS rules for captions just as you would for any other

element.

The th Element

 <th scope="col">2000</th>

The th element identifies data that’s a row or column heading. The example markup

contains both row and column headings and, to ensure that this is clear, we use the

scope attribute of the <th> tag. The scope attribute shows whether a given heading

is applied to the column (col) or row (row).

Before you begin to style your tables to complement the look and feel of the site,

it’s good practice to ensure the accessibility of those tables to users of devices such

as screen readers. Accessibility is one of those concerns that many developers brush

off, saying, “I’ll check it when I’m finished.” However, if you leave accessibility

checks until the end of development, you may never actually deal with them; if you

do, the problems they identify may well require time-consuming fixes, particularly

in complex applications. Once you make a habit of keeping accessibility in mind

as you design, you’ll find that it becomes second nature and adds very little to a

project’s development time.

CSS attributes make the styling of data tables simple and quick. For instance, when

I begin a new site on which I know I’ll have to use a lot of data tables, I create a

style rule with the class selector .datatable; this contains the basic styles that I

want to affect all data tables, and can easily be applied to the <table> tag of each.

I then create style rules for .datatable th (the heading cells), .datatable td (the

regular cells), and .datatable caption (the table captions).

From that point, adding a new table is easy. All the styles are there—I just need to

apply the datatable class. If I decide to change the styles after I’ve created all the

tables in my site, I simply edit my style sheet.

145Tabular Data

How do I add a border to a table without
using the HTML border attribute?
Solution
The HTML border attribute creates fairly ordinary-looking borders for tables, and

its use is discouraged. You can replace it with a CSS border, which will give you

far more flexibility in terms of design. Here’s how we set a border:

chapter05/table.css (excerpt)

.datatable {

 border: 1px solid #338BA6;

}

This style rule will display a one-pixel, light-blue border around your table, as in

Figure 5.3.

You can also add borders to individual cells:

chapter05/table.css (excerpt)

.datatable td, .datatable th {

 border: 1px solid #73C0D4;

}

This style rule renders a slightly lighter border around td and th table cells that

have a class of datatable, as Figure 5.4 shows.

The CSS Anthology146

Figure 5.3. Applying a CSS border to the table as a whole

Figure 5.4. Applying a CSS border to individual table cells

Discussion
By experimenting with CSS borders on your tables, you can create countless appeal

ing effects—even if the data contained within is dull! You can use differently colored

borders for table headings and table cells, and apply various thicknesses and styles

of border to table cells. You might even try out such tricks as using one shade for

top and left borders, and another for bottom and right borders, to create an indented

effect.

We can apply a range of different values to the CSS border-style property. We’ve

already met solid, which displays a solid line as the border, and this is shown

along with the other available options in Table 5.1.

147Tabular Data

Table 5.1. CSS border-style Values

insetgroovedouble

solidridgeoutset

none, or hiddendottedadashed
a Internet Explorer 6 displays some quirky behavior: a one-pixel dotted border will actually appear

dashed.

How do I stop spaces appearing between
the cells of my table when I’ve added
borders using CSS?
If you’ve ever tried to eliminate the spaces between table cells, you might have used

the table attribute cellspacing="0". This would have left you with a two-pixel

border, though, because borders touch without overlapping. This solution explains

how to create a neat, single-pixel border around all cells.

Solution
You can remove the spaces that appear between cells by setting the CSS

border-collapse property for the table to collapse:

chapter05/table.css

.datatable {

 border: 1px solid #338BA6;

 border-collapse: collapse;

}

.datatable td, .datatable th {

 border: 1px solid #73C0D4;

}

The CSS Anthology148

Figure 5.4 shows a table before the border-collapse property is applied; Figure 5.5

shows the effect of this property on the display.

Figure 5.5. Collapsing the table’s borders

How do I display spreadsheet data in an
attractive and usable way?
Solution
The HTML table is the best way to structure spreadsheet data, even though its default

appearance is unattractive. Luckily, we can style the table using CSS, which keeps

markup to a minimum and allows us to control our data table’s appearance from

the style sheet.

Figure 5.6. Unformatted, unattractive tabular data

149Tabular Data

The data we saw displayed as an HTML table earlier in this chapter is an example

of spreadsheet data. That markup, which is shown unstyled in Figure 5.6, forms

the basis for the following example.

Let’s apply the following style sheet to that table:

chapter05/spreadsheet.css

body {

 font: 0.8em Verdana, Geneva, Arial, Helvetica, sans-serif;

}

.datatable {

 border: 1px solid #D6DDE6;

 border-collapse: collapse;

}

.datatable td, .datatable th {

 border: 1px solid #D6DDE6;

 text-align: right;

 padding: 0.2em;

}

.datatable th {

 border: 1px solid #828282;

 background-color: #BCBCBC;

 font-weight: bold;

 text-align: left;

 padding: 0.2em;

}

.datatable caption {

 font: bold 120% "Times New Roman", Times, serif;

 background-color: #B0C4DE;

 color: #33517A;

 padding: 0.4em 0 0.3em 0;

 border: 1px solid #789AC6;

}

Figure 5.7 shows the result, which is quite attractive, if I do say so myself!

The CSS Anthology150

Figure 5.7. A more attractive table formatted with CSS

Discussion
In this solution, I aimed to display the table in a way that’s similar to the appearance

of a desktop spreadsheet. First, I provided a basic rule for the body—this is the kind

of rule that’s likely to appear in the style sheet of any CSS-styled site:

chapter05/spreadsheet.css (excerpt)

body {

 font: 0.8em Verdana, Geneva, Arial, Helvetica, sans-serif;

}

Next, I styled the table as a whole:

chapter05/spreadsheet.css (excerpt)

.datatable {

 border: 1px solid #D6DDE6;

 border-collapse: collapse;

}

As we’ve already seen, border displays a border around the outside of the table,

while border-collapse removes spaces between the table’s cells.

Next, I turned my attention to the table cells:

151 Tabular Data

chapter05/spreadsheet.css (excerpt)

.datatable td {

 border: 1px solid #D6DDE6;

 text-align: right;

 padding: 0.2em

}

Here, I added a border to the table cells and used text-align to right-align their

contents for that spreadsheety look. If you preview the document at this point, you’ll

see a border around each cell in the table, except the header cells, as shown in

Figure 5.8.

Figure 5.8. Applying the border property to the table and td elements

Next, I added a border to the th (heading) cells. I used a darker color for this border,

because I also added a background color to these cells to highlight that they’re

headings, rather than regular cells:

chapter05/spreadsheet.css (excerpt)

.datatable th {

 border: 1px solid #828282;

 background-color: #BCBCBC;

 font-weight: bold;

 text-align: left;

 padding: 0.2em;

}

To complete the table, I styled the caption to make it look like part of the table:

The CSS Anthology152

chapter05/spreadsheet.css (excerpt)

.datatable caption {

 font: bold 0.9em "Times New Roman", Times, serif;

 background-color: #B0C4DE;

 color: #33517A;

 padding: 0.4em 0 0.3em 0;

 border: 1px solid #789AC6;

}

How do I display table rows in alternating
colors?
Solution
It can be difficult to stay on a particular row as your eyes work across a large table

of data. Displaying table rows in alternating colors is a common way to help users

stay focused on the row they’re on. Whether you’re adding rows by hand, or you’re

displaying the data from a database, you can use CSS classes to create this effect.

Here’s the table markup you’ll need:

chapter05/alternate.html (excerpt)

<table summary="List of new students 2003" class="datatable">

 <caption>Student List</caption>

 <tr>

 <th scope="col">Student Name</th>

 <th scope="col">Date of Birth</th>

 <th scope="col">Class</th>

 <th scope="col">ID</th>

 </tr>

 <tr>

 <td>Joe Bloggs</td>

 <td>27/08/1997</td>

 <td>Mrs Jones</td>

 <td>12009</td>

 </tr>

 <tr class="altrow">

 <td>William Smith</td>

 <td>20/07/1997</td>

153Tabular Data

<td>Mrs Jones</td>

 <td>12010</td>

 </tr>

 <tr>

 <td>Jane Toad</td>

 <td>21/07/1997</td>

 <td>Mrs Jones</td>

 <td>12030</td>

 </tr>

 <tr class="altrow">

 <td>Amanda Williams</td>

 <td>19/03/1997</td>

 <td>Mrs Edwards</td>

 <td>12021</td>

 </tr>

 <tr>

 <td>Kylie Jameson</td>

 <td>18/05/1997</td>

 <td>Mrs Jones</td>

 <td>12022</td>

 </tr>

 <tr class="altrow">

 <td>Louise Smith</td>

 <td>17/07/1997</td>

 <td>Mrs Edwards</td>

 <td>12019</td>

 </tr>

 <tr>

 <td>James Jones</td>

 <td>04/04/1997</td>

 <td>Mrs Edwards</td>

 <td>12007</td>

 </tr>

</table>

Here’s the CSS to style it:

body {

 font: 0.8em Arial, Helvetica, sans-serif;

}

.datatable {

 border: 1px solid #D6DDE6;

chapter05/alternate.css (excerpt)

The CSS Anthology154

border-collapse: collapse;

 width: 80%;

}

.datatable td {

 border: 1px solid #D6DDE6;

 padding: 0.3em;

}

.datatable th {

 border: 1px solid #828282;

 background-color: #BCBCBC;

 font-weight: bold;

 text-align: left;

 padding-left: 0.3em;

}

.datatable caption {

 font: bold 110% Arial, Helvetica, sans-serif;

 color: #33517A;

 text-align: left;

 padding: 0.4em 0 0.8em 0;

}

.datatable tr.altrow {

 background-color: #DFE7F2;

 color: #000000;

}

The result can be seen in Figure 5.9.

Figure 5.9. Using alternating row colors to assist people using large tables of data

155Tabular Data

Discussion
I applied the altrow class to every second row of the HTML table above:

chapter05/alternate.html (excerpt)

<tr class="altrow">

In the CSS, I styled the table using properties that will be familiar if you’ve looked

at the previous solutions in this chapter. I also added the following class:

chapter05/alternate.css (excerpt)

.datatable tr.altrow {

 background-color: #DFE7F2;

 color: #000000;

}

This class will be applied to all tr elements with a class of altrow that appear

within a table that has a class of datatable.

If you’re creating your table dynamically—for instance, using ASP, PHP, or a similar

technology to pull data from a database—then, to create the alternating row effect,

you must write this class out for every second row that you display.

The Way of the Future
Adding all of these classes to rows is a nuisance, and you would be right in thinking

that there ought to be a better way to achieve striped rows. After all, the striping is

a presentational effect that would be better achieved purely in the CSS. Using a

CSS3 selector, the :nth-child pseudo-class, we can target all odd or even rows in

our table without needing to add anything to our markup. Once it has full browser

support it’ll make our lives as CSS developers much easier. The :nth-child pseudo-

class is a fairly complicated one to grasp, so if you’d like to know more the SitePoint

CSS Reference has an excellent explanation.1 It allows you to select elements based

on the number of siblings before it.

1 http://reference.sitepoint.com/css/understandingnthchildexpressions/

http://reference.sitepoint.com/css/understandingnthchildexpressions/
http://reference.sitepoint.com/css/understandingnthchildexpressions/
http://reference.sitepoint.com/css/understandingnthchildexpressions

The CSS Anthology156

If we take our original table, before adding the class name to the rows, we can target

the even rows in the table using the following CSS:

.datatable tr:nth-child(2n) {

 background-color: #DFE7F2;

 color: #000000;

}

To target all odd rows use the following:

.datatable tr:nth-child(2n+1) {

 background-color: #DFE7F2;

 color: #000000;

}

The number expressions in the selectors above are a little tricky but, thankfully,

selecting odd- and even-numbered rows is such a common task, the CSS3 specific

ation has an easier syntax. You can substitute the number expressions in the selectors

above with the following to have the same effect:

.datatable tr:nth-child(even) {

⋮

}

.datatable tr:nth-child(odd) {

⋮
}

As at the time of writing, these examples are supported in the latest versions of

Safari and Opera, but until more browsers start to offer support, using this technique

widely is still a little way away.

Use JavaScript to Add Selector Support

The JavaScript library jQuery has support for CSS3 selectors,2 which means that

you can use it to stripe the rows for you. For an effect like this—an enhancement

to the look and feel—you might consider using JavaScript to create this effect and

avoid adding classes to the markup.

2 http://docs.jquery.com/Selectors

http://docs.jquery.com/Selectors
http://docs.jquery.com/Selectors

157Tabular Data

How do I change a row’s background color
when the cursor hovers over it?
Solution
One way to boost the readability of tabular data is to change the color of the rows

as users move the cursor over them, to highlight the row they’re reading. This can

be seen in Figure 5.10.

Figure 5.10. Highlighting a row on mouse over

This can be a very simple solution; all you need to do to create this effect is add the

following rule to your CSS:

chapter05/alternate.css (excerpt)

.datatable tr:hover {

 background-color: #DFE7F2;

 color: #000000;

}

Job done!

Discussion
This solution will work in all modern browsers, including Internet Explorer 7—but

it will fail to work in Internet Explorer 6. However, as long as your tables are clear

The CSS Anthology158

without this highlighting effect in place, the highlight feature could be regarded as

a “nice to have,” rather than a necessary tool without which the site will be unusable.

If you must make this feature work for Internet Explorer 6 users, you can use some

simple JavaScript to implement the effect. To change a row’s background color

when the cursor moves over it in Internet Explorer 6 and earlier, you must first apply

the desired style properties to a CSS class, which I’ve named hilite in this example:

chapter05/hiliterow.css (excerpt)

.datatable tr:hover, .datatable tr.hilite {

 background-color: #DFE7F2;

 color: #000000;

}

Then, add the following JavaScript code to your page after the table:

chapter05/hiliterow.html (excerpt)

<script type="text/javascript">

var rows = document.getElementsByTagName('tr');

for (var i = 0; i < rows.length; i++) {

 rows[i].onmouseover = function() {

 this.className += ' hilite';

 }

 rows[i].onmouseout = function() {

 this.className = this.className.replace('hilite', '');

 }

}

</script>

This code locates all the <tr> tags in the document and assigns a mouseover and

mouseout event handler to each. These event handlers apply the CSS hilite class

to the rows when the cursor moves over them, and removes it when the cursor

moves away. As you can see in Figure 5.11, this combination of CSS and HTML

produces the desired effect.

159Tabular Data

Figure 5.11. Highlighting a row in Internet Explorer 6 with the help of JavaScript

The JavaScript code works by setting a tag’s CSS class dynamically. In this case,

we add the hilite class to a <tr> tag when the mouseover event is triggered, as

captured by the onmouseover property:

chapter05/hiliterow.html (excerpt)

 rows[i].onmouseover = function() {

 this.className += ' hilite';

 }

We then remove the class when the mouseout event is fired:

chapter05/hiliterow.html (excerpt)

 rows[i].onmouseout = function() {

 this.className = this.className.replace('hilite', '');

 }

You can create very attractive, subtle effects by changing the class of elements in

response to user actions using JavaScript. Another way in which you could use this

technique would be to highlight a content area by changing the class applied to a

div when the mouseover event for that element is triggered.

The CSS Anthology160

Unobtrusive JavaScript

You may have noticed that there was no JavaScript added to the table itself; instead,

we did our work within the script element only. This technique is called unob

trusive JavaScript; it aims to keep JavaScript separate from your document in the

same way that we keep the presentation of CSS separate from the markup.

The JavaScript needs to run after the table has loaded, because until that point,

there are no rows for the JavaScript to work on. Another approach would be to

write a function that runs when the page has completed loading—this would mean

that you could keep the JavaScript in a separate file that’s linked to from your

page. You may also consider using conditional comments so that the JavaScript

is only loaded when the page is viewed in IE6, but more about that in the section

called “How can I specify different styles for Internet Explorer 6 and 7?” in

Chapter 7.

As with the previous example, libraries such as jQuery that have support for more

advanced selectors can be a great way to plug the gaps where older browsers lack

support.

How do I display table columns in
alternating colors?
While alternate row colors are quite a common feature of data tables, we see altern

ately colored columns less frequently. However, they can be a helpful way to show

groupings of data.

Solution
If we use the col element to describe our table’s columns, we can employ CSS to

add a background to those columns. You can see the col elements I’ve added—one

for each column—in the table markup below. I’ve also added classes to them in

much the same way that we added a class to the table’s rows in “How do I display

table rows in alternating colors?”:

161 Tabular Data

chapter05/columns.html (excerpt)

<table class="datatable">

 <col class="odd" />

 <col class="even" />

 <col class="odd" />

 <col class="even" />

 <tr>

 <th>Pool A</th>

 <th>Pool B</th>

 <th>Pool C</th>

 <th>Pool D</th>

 </tr>

 <tr>

 <td>England</td>

 <td>Australia</td>

 <td>New Zealand</td>

 <td>France</td>

 </tr>

 <tr class="even">

 <td>South Africa</td>

 <td>Wales</td>

 <td>Scotland</td>

 <td>Ireland</td>

 </tr>

 <tr>

 <td>Samoa</td>

 <td>Fiji</td>

 <td>Italy</td>

 <td>Argentina</td>

 </tr>

 <tr class="even">

 <td>USA</td>

 <td>Canada</td>

 <td>Romania</td>

 <td>Europe 3</td>

 </tr>

 <tr>

 <td>Repechage 2</td>

 <td>Asia</td>

 <td>Repechage 1</td>

The CSS Anthology162

<td>Namibia</td>

 </tr>

</table>

We can add style rules for the classes we applied to our col elements; as shown

here; the result is depicted in Figure 5.12:

chapter05/columns.css (excerpt)

body {

 font: 0.8em Arial, Helvetica, sans-serif;

}

.datatable {

 border: 1px solid #D6DDE6;

 border-collapse: collapse;

 width: 80%;

}

.datatable col.odd {

 background-color: #80C9FF;

 color: #000000;

}

.datatable col.even {

 background-color: #BFE4FF;

 color: #000000;

}

.datatable td {

 border:2px solid #ffffff;

 padding: 0.3em;

}

.datatable th {

 border:2px solid #ffffff;

 background-color: #00487D;

 color: #FFFFFF;

 font-weight: bold;

 text-align: left;

 padding: 0.3em;

}

163Tabular Data

Figure 5.12. Creating alternately striped columns by styling the col element

Discussion

The col element provides us with further flexibility for styling a table’s columns

to ensure that they’re visually distinct, thus making our table attractive and easier

to understand. It’s also possible to nest col elements within a colgroup element,

which allows us to control the appearance of columns by applying style rules to

the parent colgroup element. If a colgroup element is absent, the browser assumes

that your table contains one single colgroup that houses all of your col elements.

Here’s an example of nested col elements:

chapter05/colgroups.html (excerpt)

<table class="datatable">

<colgroup class="odd">

 <col />

 <col />

</colgroup>

<colgroup class="even">

 <col />

 <col />

</colgroup>

…

Here are the style rules that are applied to the colgroup element, rather than to col:

The CSS Anthology164

chapter05/colgroups.css (excerpt)

.datatable colgroup.odd {

 background-color: #80C9FF;

 color: #000000;

}

.datatable colgroup.even {

 background-color: #BFE4FF;

 color: #000000;

}

The result of this change is a table with two columns of one color, and two of another,

as shown in Figure 5.13.

Figure 5.13. Styling columns using colgroup

How do I display a calendar using CSS?
Calendars, such as the example from a desktop application shown in Figure 5.14,

also involve tabular data. The days of the week along the top of the calendar represent

the headings of the columns. Therefore, a calendar’s display constitutes the legitimate

use of a table, but you can keep markup to a minimum by using CSS to control the

look and feel.

165Tabular Data

Figure 5.14. A calendar from a desktop application

Solution
Our solution uses an accessible, simple table that leverages CSS styles to create the

attractive calendar shown in Figure 5.15. Given its simple structure, it’s ideal for

use in a database-driven application in which the table is created via server-side

code:

chapter05/cal.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Calendar</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="cal.css" />

</head>

<body>

<table class="clmonth" summary="Calendar for June 2009">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology166

<caption>June 2009</caption>

 <tr>

 <th scope="col">Monday</th>

 <th scope="col">Tuesday</th>

 <th scope="col">Wednesday</th>

 <th scope="col">Thursday</th>

 <th scope="col">Friday</th>

 <th scope="col">Saturday</th>

 <th scope="col">Sunday</th>

 </tr>

 <tr>

 <td class="previous">31</td>

 <td class="active">1

 New pupils' open day

 Year 8 theater trip

 </td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td class="active">7

 Year 7 English exam

 </td>

 <td>8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 <td>13</td>

 </tr>

 <tr>

 <td>14</td>

 <td>15</td>

 <td>16</td>

 <td class="active">17

 Sports Day

 </td>

 <td class="active">18

167Tabular Data

 Year 7 parents' evening

 Prizegiving

 </td>

 <td>19</td>

 <td>20</td>

 </tr>

 <tr>

 <td>21</td>

 <td>22</td>

 <td>23</td>

 <td class="active">24

 Year 8 parents' evening

 </td>

 <td>25</td>

 <td>26</td>

 <td>27</td>

 </tr>

 <tr>

 <td>28</td>

 <td>29</td>

 <td class="active">30

 First night of school play

 </td>

 <td class="next">1</td>

 <td class="next">2</td>

 <td class="next">3</td>

 <td class="next">4</td>

 </tr>

</table>

</body>

</html>

body {

 background-color: #FFFFFF;

 color: #000000;

 font-size: 90%;

}

.clmonth {

 border-collapse: collapse;

chapter05/cal.css

The CSS Anthology168

width: 780px;

}

.clmonth caption {

 text-align: left;

 font: bold 110% Georgia, "Times New Roman", Times, serif;

padding-bottom: 0.4em;

}

.clmonth th {

 border: 1px solid #AAAAAA;

 border-bottom: none;

 padding: 0.2em 0.6em 0.2em 0.6em;

 background-color: #CCCCCC;

 color: #3F3F3F;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 width: 110px;

}

.clmonth td {

 border: 1px solid #EAEAEA;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding: 0.2em 0.6em 0.2em 0.6em;

 vertical-align: top;

}

.clmonth td.previous, .clmonth td.next {

 background-color: #F6F6F6;

 color: #C6C6C6;

}

.clmonth td.active {

 background-color: #B1CBE1;

 color: #2B5070;

 border: 2px solid #4682B4;

}

.clmonth ul {

 list-style-type: none;

 margin: 0;

 padding-left: 1em;

 padding-right: 0.6em;

}

.clmonth li {

 margin-bottom: 1em;

}

169Tabular Data

Figure 5.15. The completed calendar styled with CSS

Discussion
This example starts out as a very simple table. It has a caption, which is the month

we’re working with, and I’ve marked up the days of the week as table headers using

the <th> tag:

chapter05/cal.html (excerpt)

 <table class="clmonth" summary="Calendar for June 2009">

 <caption>June 2009</caption>

 <tr>

 <th scope="col">Monday</th>

 <th scope="col">Tuesday</th>

 <th scope="col">Wednesday</th>

 <th scope="col">Thursday</th>

 <th scope="col">Friday</th>

 <th scope="col">Saturday</th>

 <th scope="col">Sunday</th>

 </tr>

The table has a class of clmonth. I’ve used a class rather than an ID because, in some

situations, you might want to display more than one month on the page. If you then

found that you needed to give the table an ID—perhaps to allow you to show and

hide the table using JavaScript—you could add an ID as well as the class.

The CSS Anthology170

The days are held within individual table cells, and the events for each day are

marked up as a list within the appropriate table cell.

In the markup below, you can see that I’ve added classes to two of the table cells.

Class previous is applied to cells containing days that fall within the preceding

month (we’ll use next later for days in the following month); class active is applied

to cells that contain event information, so that we may highlight them:

chapter05/cal.html (excerpt)

 <tr>

 <td class="previous">31</td>

 <td class="active">1

 New pupils' open day

 Year 8 theater trip

 </td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

The table, without CSS, displays as shown in Figure 5.16.

Now that we have the structural markup in place, we can style the calendar. I set a

basic style for the body, including a base font size. Then I set a style for the class

clmonth for the borders to collapse, leaving no space between cells and set a width

for the table:

chapter05/cal.css (excerpt)

body {

 background-color: #FFFFFF;

 color: #000000;

 font-size: 90%;

}

.clmonth {

 border-collapse: collapse;

 width: 780px;

}

171 Tabular Data

Figure 5.16. Displaying the calendar without CSS

I styled the caption within the class clmonth, then created styles for the table

headers (th) and table cells (td):

chapter05/cal.css (excerpt)

.clmonth caption {

 text-align: left;

 font: bold 110% Georgia, "Times New Roman", Times, serif;

padding-bottom: 0.4em;

}

.clmonth th {

 border: 1px solid #AAAAAA;

 border-bottom: none;

 padding: 0.2em 0.6em 0.2em 0.6em;

 background-color: #CCCCCC;

 color: #3F3F3F;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 width: 110px;

}

.clmonth td {

 border: 1px solid #EAEAEA;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding: 0.2em 0.6em 0.2em 0.6em;

 vertical-align: top;

}

The CSS Anthology172

As you can see in Figure 5.17, our calendar is beginning to take shape.

Figure 5.17. Styling the caption, th, and td elements to make the calendar more user-friendly

We can now style the lists of events within each table cell, removing the bullet and

adding space between list items:

chapter05/cal.css (excerpt)

.clmonth ul {

 list-style-type: none;

 margin: 0;

 padding-left: 1em;

 padding-right: 0.6em;

}

.clmonth li {

 margin-bottom: 1em;

}

Finally, we add styles for the previous and next classes, which give the effect of

graying out those days that are not part of the current month. We also style the

active class, which highlights those days on which events will take place:

173Tabular Data

chapter05/cal.css (excerpt)

.clmonth td.previous, .clmonth td.next {

 background-color: #F6F6F6;

 color: #C6C6C6;

}

.clmonth td.active {

 background-color: #B1CBE1;

 color: #2B5070;

 border: 2px solid #4682B4;

}

This is just one of many ways to create a calendar. Online calendars are commonly

used on blogs, where they have clickable days where visitors can view entries made

that month. By removing the events from our HTML markup, representing the day

names with single letters—M for Monday, and so on—and making a few simple

changes to our CSS, we can create a simple mini-calendar that’s suitable for this

purpose, like the one shown in Figure 5.18.

Figure 5.18. Creating a mini-calendar

The CSS Anthology174

Here’s the HTML and CSS you’ll need for this version of the calendar:

chapter05/cal_mini.html (excerpt)

<table class="clmonth" summary="Calendar for June 2009">

 <caption>June 2009</caption>

 <tr>

 <th scope="col">M</th>

 <th scope="col">T</th>

 <th scope="col">W</th>

 <th scope="col">T</th>

 <th scope="col">F</th>

 <th scope="col">S</th>

 <th scope="col">S</th>

 </tr>

 <tr>

 <td class="previous">31</td>

 <td class="active">1</td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td class="active">7</td>

 <td>8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 <td>13</td>

 </tr>

 <tr>

 <td>14</td>

 <td>15</td>

 <td>16</td>

 <td class="active">17</td>

 <td class="active">18</td>

 <td>19</td>

 <td>20</td>

 </tr>

 <tr>

 <td>21</td>

175Tabular Data

<td>22</td>

 <td>23</td>

 <td class="active">24</td>

 <td>25</td>

 <td>26</td>

 <td>27</td>

 </tr>

 <tr>

 <td>28</td>

 <td>29</td>

 <td class="active">30</td>

 <td class="next">1</td>

 <td class="next">2</td>

 <td class="next">3</td>

 <td class="next">4</td>

 </tr>

</table>

chapter05/cal_mini.css

body {

 background-color: #FFFFFF;

 color: #000000;

 font-size: 90%;

}

.clmonth {

 border-collapse: collapse;

}

.clmonth caption {

 text-align: left;

 font: bold 110% Georgia, "Times New Roman", Times, serif;

padding-bottom: 0.4em;

}

.clmonth th {

 border: 1px solid #AAAAAA;

 border-bottom: none;

 padding: 0.2em 0.4em 0.2em 0.4em;

 background-color: #CCCCCC;

 color: #3F3F3F;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

}

.clmonth td {

 border: 1px solid #EAEAEA;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

The CSS Anthology176

padding: 0.2em 0.4em 0.2em 0.4em;

 vertical-align: top;

}

.clmonth td.previous, .clmonth td.next {

 background-color: #F6F6F6;

 color: #C6C6C6;

}

.clmonth td.active {

 background-color: #B1CBE1;

 color: #2B5070;

 border: 2px solid #4682B4;

}

Summary
In this chapter, we’ve discovered that tables are alive and well—when used for their

original purpose of displaying tabular data, that is! CSS gives you the ability to turn

data tables into really attractive interface items, without negatively impacting their

accessibility. So, please, embrace tables and use them to display tabular data—that’s

their job!

Chapter6
Forms and User Interfaces
Forms are an inescapable part of web design and development. We use them to

capture personal data from our users, to post information to message boards, to add

items to shopping carts, and to update our blogs—to name just a few!

Despite the necessity of forms on the Web, HTML makes virtually no styling options

available to the designer, so forms have traditionally been rendered in the default

style of the browser. CSS has brought with it many ways to address form elements,

so this chapter will consider what can be styled in a form and why you might want

to do so. That said, this chapter will also cover some of the less-common HTML

form tags and attributes whose application can boost the accessibility and usability

of our forms, as well as providing additional elements to which we can apply CSS.

In the following pages, we’ll consider forms laid out using CSS positioning as well

as their table-based counterparts. Debate rages as to whether it’s appropriate to lay

out a form using a table; my take is that, if a form is tabular in nature—for instance,

like the one in the spreadsheet example we’ll encounter in this chapter—a table is

the most logical way to structure the fields. Otherwise, your form is likely to be

more accessible if it’s laid out using CSS.

The CSS Anthology178

As we work with forms, it’s especially important to consider the usability of the

forms themselves. Forms are designed to accept user input, but they’ll fail in that

task if site visitors are unsure how to use them, regardless of how beautiful they

look. In most cases I would suggest that you avoid styling forms too heavily, as doing

so may confuse visitors. Also be aware that browsers differ in how much control

over form elements you have; you’ll need to accept the differences and be sure to

test your CSS in as many browsers and platforms as possible.

How do I style form elements using CSS?
Unstyled form elements will display according to browser and operating system

defaults. However, you can use CSS to create forms that correspond to your site’s

visual design.

Solution
Styles can be created for form elements just as they can for any other HTML element.

Figure 6.1. The basic appearance of an unstyled form, according to Safari’s default styles

The form shown above in Figure 6.1 is unstyled; it’s displayed according to Safari’s

default styles on Mac OS X, and its appearance will change on different browsers

and operating systems. Here’s a typical form:

179Forms and User Interfaces

chapter06/elements.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

 <title>CSS styled form elements</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="elements.css" />

</head>

<body>

 <form method="post" action="example1.html" id="form1">

 <div><label for="name">What is your name?</label>

 <input type="text" name="name" id="name" /></div>

 <div><label for="color">Select your favorite color:</label>

 <select name="color" id="color">

 <option value="blue">blue</option>

 <option value="red">red</option>

 <option value="green">green</option>

 <option value="yellow">yellow</option>

 </select>

 </div>

 <div><label for="sex">Are you male or female?</label>

 <input type="radio" name="sex" id="male"

 value="male" />Male

 <input type="radio" name="sex" id="female"

value="female" />Female

 </div>

 <div>

 <label for="comments">Comments:</label>

 <textarea name="comments" id="comments" cols="30"

rows="4"></textarea>

 </div>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Submit" />

 </div>

 </form>

</body>

</html>

We can change the look of this form by creating CSS rules for the form, input,

textarea, and select elements:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology180

chapter06/elements.css

form {

 border: 1px dotted #AAAAAA;

 padding: 0.5em;

}

input {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px solid #00008B;

}

select {

 width: 100px;

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px solid #00008B;

}

textarea {

 width: 200px;

 height: 40px;

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px solid #00008B;

}

The new look is depicted in Figure 6.2.

Discussion
As you’d expect, the definition of rules for the HTML elements form, input,

textarea, and select will affect any instances of these elements in a page to which

your style sheet is attached. You can use a variety of CSS properties to change the

appearance of a form’s fields. For example, CSS allows you to change almost every

aspect of an <input type="text"> field:

<input type="text" name="name" id="name" />

input {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px solid #00008B;

 font: 0.9em Arial, Helvetica, sans-serif;

181 Forms and User Interfaces

padding: 0.2em;

 width: 200px;

}

Figure 6.2. The same form displaying differently following the application of CSS

Forms and Background Colors

Some users of your site are unable to easily distinguish colors, while others may

be using a speaking browser. For these reasons you should never rely on colors

for functionality on your site—for instance, instructions like, “The yellow fields

are required” would be a big no-no.

The CSS Anthology182

Let’s break down these styles:

color changes the color of the text that’s typed inside the field

background-color defines the field’s background

border affects the border around the field; any of the other border

styles here can be used

font changes the font size and typeface of the text within the field

padding moves the text typed within a field away from the edges of

the box

width allows the creation of form fields of the appropriate width

for the data you expect users to enter (for example, a short

field for a user’s first initial)

How do I apply different styles to fields in
a single form?
The input element has many different types, and the styles that you need for a text

field are unlikely to be the same as those you want to use for your buttons or

checkboxes. How can you create specific styles for different form fields?

Solution
You can use CSS classes to specify the exact styles that individual fields will use.

The form in the following example has two input elements, one of which displays

a text field, while the other displays a Submit button. Appropriate classes are applied

to each:

chapter06/fields.html (excerpt)

<form method="post" action="fields.html">

<div>

 <label for="name">What is your name?</label>

 <input type="text" name="name" id="name" class="txt" />

</div>

183Forms and User Interfaces

<input type="submit" name="btnSubmit" id="btnSubmit"

 value="Submit" class="btn" />

</form>

chapter06/fields.css

form {

 border: 1px dotted #AAAAAA;

 padding: 3px 6px 3px 6px;

}

input.txt {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px inset #00008B;

 width: 200px;

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

 padding: 2px 4px 2px 4px;

}

Figure 6.3 shows the result.

Figure 6.3. Applying different classes to each of the input fields

Discussion
As we’ve seen, the input element can have several different types, and these types

may require different styles in order to display appropriately. In the example above,

we used classes to differentiate between an input element with a type of text and

an input element with a type of submit. Had we simply created one set of styles

The CSS Anthology184

for input, we might have ended up with the following (having set a width and used

an inset border on the text field):

input {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px inset #00008B;

 width: 200px;

}

Applied to the form above, these styles would have displayed as shown in Figure 6.4.

Figure 6.4. Applying the same styles to both input fields

The Submit button now looks rather like a text field, certainly more so than a button!

Using various classes allows us to style each element exactly as we want it to display.

The forms in any application will likely need to cater for a variety of data types.

Some text fields may only require the user to enter two characters; others may need

to accept a name or other short word; others must take an entire sentence. By creating

CSS classes for small, medium, and large text fields, you can choose the field that’s

appropriate to the data you expect the user to enter. This, in turn, helps users feel

confident that they’re entering the correct information.

Style Early, Style Often

When I begin work on a site that includes a lot of forms, one of my first steps is

to create within the style sheet a number of classes for standard forms. It’s of no

concern if the style needs to change at a later date—that just involves tweaking

the style sheet values. The important point is that classes are applied from the

outset, so that any changes affect all the forms on the site.

185Forms and User Interfaces

Using Attribute Selectors to Identify Different Form Elements

You can also use attribute selectors to identify the different form elements rather

than adding a class. I introduced attribute selectors back in the section called

“How can I visually indicate which links are external to my site?” in Chapter 4.

To target the text field in the above example we could use the selector:

input[type="text”] {

⋮

}

To target the submit button we’d use the following selector:

input[type="submit"] {

⋮

}

It would then be unnecessary to add any additional classes to the markup. However

Internet Explorer 6 lacks support for this type of selector, so you risk having your

forms look strange or be unusable in that browser. If you still need to support IE6

users you’ll have to use classes.

How do I stop my form from creating
additional whitespace and line breaks?
A form is a block-level element and, like a paragraph, will display on a new line

by default. This is usually the behavior you’d want to implement, but on some oc

casions you may wish to add a small form within the flow of a document—for in

stance, placing a small search box alongside other header elements.

Solution
You can use the display property with a value of inline to display a form as an

inline element:

The CSS Anthology186

chapter06/inline.html (excerpt)

Your email address:

<form method="post" action="inline.html">

 <div><input type="text" name="name" id="name" class="txt" />

 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Submit" class="btn" /></div>

</form>

chapter06/inline.css

form {

 display: inline;

}

input.txt {

 color: #00008B;

 background-color: #E3F2F7;

 border: 1px inset #00008B;

 width: 200px;

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

}

As you can see in Figure 6.5, this CSS causes the form to join the document flow

and sit inline with the text that surrounds it.

Figure 6.5. Displaying a form inline

187Forms and User Interfaces

How do I make a Submit button look
like text?
It’s generally a good idea to make buttons look like buttons if you expect people to

click on them. However, on occasion, you might want to have your form’s Submit

button look more like plain text.

Solution
Take a look at this style rule:

chapter06/textbutton.css (excerpt)

.btn {

 background-color: transparent;

 border: 0;

 padding: 0;

}

The text Next » that appears on the second line in Figure 6.6 is actually a button!

Figure 6.6. Making a button look like text

How do I ensure that users with text-only
devices understand how to complete
my form?
It’s good to create an attractive and usable form for visitors who have standard web

browsers, but bear in mind that many users will have a text-only view of your site.

Before you use CSS to style your form, ensure that it’s structured in a way that

makes completing the form easy for text-only users.

The CSS Anthology188

Solution

One of the most important ways to make your form more accessible is to ensure

that all users understand which label belongs with each form field. If a visually

impaired visitor is using a text-only device or screen reader—which reads the form

aloud—it may be difficult for the visitor to determine which details to enter into

each field, unless your form is well planned and created.

The label element ties a label to a specific form field—it’s the ideal solution to this

particular problem. Like other elements on the page, the label element is easily

styled with CSS rules:

chapter06/textonly.html (excerpt)

<form method="post" action="textonly.html">

 <table>

 <tr>

 <td><label for="fullname">Name:</label></td>

 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="email">Email Address:</label></td>

 <td><input type="text" name="email" id="email" class="txt"

 /></td>

 </tr>

 <tr>

 <td><label for="password1">Password:</label></td>

 <td><input type="password" name="password1" id="password1"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="password2">Confirm Password:</label></td>

 <td><input type="password" name="password2" id="password2"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="level">Membership Level:</label></td>

 <td><select name="level">

 <option value="silver">silver</option>

 <option value="gold">gold</option>

 </select></td>

 </tr>

189Forms and User Interfaces

</table>

 <p>

 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Sign Up!" class="btn" />

 </p>

</form>

chapter06/textonly.css

h1 {

 font: 1.2em Arial, Helvetica, sans-serif;

}

input.txt {

 color: #00008B;

 background-color: #E3F2F7;

 border: 1px inset #00008B;

 width: 200px;

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

}

label {

 font : bold 0.9em Arial, Helvetica, sans-serif;

}

The results of these styles can be seen in Figure 6.7—though keep in mind that the

benefits of these styles for visually impaired users are less obvious in a printed

book! That said, as well as improving the form’s usability for text-only browsers

and screen readers, these styles will cause visual browsers to place the cursor in

the corresponding field when the user clicks on one of the labels. When you add a

label, everybody wins!

The CSS Anthology190

Figure 6.7. Displaying the form in the browser

Discussion

The label element makes it possible to indicate clearly what information users

need to enter into a field. As we’ve discussed, forms that may be read out to users

by their screen readers need to make the purpose of each field immediately obvious.

With a layout such as the one provided in this example, which uses a table to display

the label in one cell and the field in another, it’s especially important that we include

a label element. (In the solution that follows, I’ll demonstrate how to achieve the

same form layout without using a table.)

The connection between the label and the relevant form element is created with

the <label> tag’s for attribute; you insert the ID of the field that the label describes:

chapter06/textonly.html (excerpt)

 <tr>

 <td><label for="fullname">Name:</label></td>

 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>

 </tr>

Once you have your label element in place, you’ll have made an important step

towards ensuring that those using screen readers will understand how to complete

your form. Keep in mind that you can also use CSS to style the label element itself:

191 Forms and User Interfaces

chapter06/textonly.css (excerpt)

label {

 font: bold 0.9em Arial, Helvetica, sans-serif;

}

Use of Implicit Labels

An alternative way of using the label element is as an implicit label. This is

where the form element is nested within the label element (thus implying the

connection) without using the for attribute, like so:

<label Name: <input type="text" name="fullname" id="fullname"

class="txt" /></label>

While perfectly valid, this usage is discouraged because some assistive technology

software programs handle implicit labels incorrectly.1 To be safe, always use the

for attribute.

How do I lay out a two-column form using
CSS instead of a table?
Forms can be tricky to lay out without tables, but the task is still possible. Figure 6.8

shows a form layout that looks remarkably table-like, but if you examine the HTML

code that follows, you’ll find there’s no table in sight:

1 http://www.w3.org/TR/WCAG20-GENERAL/H44.html

http://www.w3.org/TR/WCAG20-GENERAL/H44.html
http://www.w3.org/TR/WCAG20-GENERAL/H44.html
http://www.w3.org/TR/WCAG20-GENERAL/H44.html

The CSS Anthology192

Figure 6.8. A two-column form laid out using CSS

chapter06/tablefree.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Table-free form layout</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="tablefree.css" />

</head>

<body>

<h1>User Registration Form</h1>

<form method="post" action="tablefree.html">

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname"

class="txt" />

 </div>

 <div>

 <label for="email">Email Address:</label>

 <input type="text" name="email" id="email" class="txt" />

 </div>

 <div>

 <label for="password1">Password:</label>

 <input type="password" name="password1" id="password1"

class="txt" />

 </div>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

193Forms and User Interfaces

<div>

 <label for="password2">Confirm Password:</label>

 <input type="password" name="password2" id="password2"

 class="txt" />

 </div>

 <div>

 <label for="level">Membership Level:</label>

 <select name="level">

 <option value="silver">silver</option>

 <option value="gold">gold</option>

 </select>

 </div>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Sign Up!" class="btn" />

 </div>

</form>

</body>

</html>

chapter06/tablefree.css

h1 {

 font: 1.2em Arial, Helvetica, sans-serif;

}

input.txt {

 color: #00008B;

 background-color: #E3F2F7;

 border: 1px inset #00008B;

 width: 200px;

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

}

form div {

 clear: left;

 margin: 0;

 padding: 0;

 padding-top: 0.6em;

}

form div label {

 float: left;

The CSS Anthology194

width: 40%;

 font: bold 0.9em Arial, Helvetica, sans-serif;

}

Discussion
The example above creates a common form layout. As we saw earlier in this chapter,

this layout’s often achieved using a two-column table in which the label is placed

in one cell, the field in another:

chapter06/textonly.html (excerpt)

<form method="post" action="textonly.html">

 <table>

 <tr>

 <td><label for="fullname">Name:</label></td>

 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="email">Email Address:</label></td>

 <td><input type="text" name="email" id="email" class="txt"

 /></td>

 </tr>

 <tr>

 <td><label for="password1">Password:</label></td>

 <td><input type="password" name="password1" id="password1"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="password2">Confirm Password:</label></td>

 <td><input type="password" name="password2" id="password2"

 class="txt" /></td>

 </tr>

 <tr>

 <td><label for="level">Membership Level:</label></td>

 <td><select name="level">

 <option value="silver">silver</option>

 <option value="gold">gold</option>

 </select></td>

 </tr>

 </table>

 <p>

195Forms and User Interfaces

<input type="submit" name="btnSubmit" id="btnSubmit"

 value="Sign Up!" class="btn" />

 </p>

</form>

This form has been laid out using a table to ensure that all the fields line up neatly.

Without the table, the fields appear immediately after the labels, as Figure 6.9 shows.

Figure 6.9. A form laid out sans table

In the markup that’s used to create the form shown in Figure 6.9, each form row is

located within a div element, causing the field to appear immediately after the label:

chapter06/tablefree.html (excerpt)

<form method="post" action="tablefree.html">

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname" class="txt"

 />

 </div>

 <div>

 <label for="email">Email Address:</label>

The CSS Anthology196

<input type="text" name="email" id="email" class="txt" />

 </div>

⋮

To recreate the effect of the table-based layout using only CSS, there’s no need to

make any changes to our markup. All we need is some simple CSS:

chapter06/tablefree.css

form div {

 clear: left;

 margin: 0;

 padding: 0;

 padding-top: 0.6em;

}

form div label {

 float: left;

 width: 40%;

 font: bold 0.9em Arial, Helvetica, sans-serif;

}

What we’re doing here is addressing our label element directly in the style sheet.

We float it to the left, give it a width value, and modify its font settings.

As the float property takes an element out of the document flow, we need to give

our divs a clear property with the value left, to ensure that each div starts below

the label in the preceding div. We also give our divs a padding-top value, in order

to space out the rows, and that’s it!

How do I group related fields?
Large web forms can be made much more usable if the visitor can ascertain which

questions are related. We need a way to show the relationships between informa

tion—a way that helps users with standard browsers as well as those using text-only

devices and screen readers.

Solution
We can group related fields using the fieldset and legend elements:

197Forms and User Interfaces

chapter06/fieldset.html (excerpt)

<form method="post" action="fieldset.html">

<fieldset>

 <legend>Personal Information</legend>

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname"

class="txt" />

 </div>

 <div>

 <label for="email">Email Address:</label>

 <input type="text" name="email" id="email" class="txt" />

 </div>

 <div>

 <label for="password1">Password:</label>

 <input type="password" name="password1" id="password1"

class="txt" />

 </div>

 <div>

 <label for="password2">Confirm Password:</label>

 <input type="password" name="password2" id="password2"

class="txt" />

 </div>

</fieldset>

 <fieldset>

 <legend>Address Details</legend>

 <div>

 <label for="address1">Address line one:</label>

 <input type="text" name="address1" id="address1"

class="txt" />

 </div>

 <div>

 <label for="address2">Address line two:</label>

 <input type="text" name="address2" id="address2"

class="txt" />

 </div>

 <div>

 <label for="city">Town / City:</label>

 <input type="text" name="city" id="city" class="txt" />

 </div>

 <div>

 <label for="zip">Zip / Post code:</label>

 <input type="text" name="zip" id="zip" class="txt" />

The CSS Anthology198

</div>

</fieldset>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Sign Up!" class="btn" />

 </div>

</form>

chapter06/fieldset.css

h1 {

 font: 1.2em Arial, Helvetica, sans-serif;

}

input.txt {

 color: #00008B;

 background-color: #E3F2F7;

 border: 1px inset #00008B;

 width: 200px;

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

}

form div {

 clear: left;

 margin: 0;

 padding: 0;

 padding-top: 5px;

}

form div label {

 float: left;

 width: 40%;

 font: bold 0.9em Arial, Helvetica, sans-serif;

}

fieldset {

 border: 1px dotted #61B5CF;

 margin-top: 1.4em;

 padding: 0.6em;

}

legend {

 font: bold 0.8em Arial, Helvetica, sans-serif;

199Forms and User Interfaces

color: #00008B;

 background-color: #FFFFFF;

}

Figure 6.10 shows how the groupings are displayed by the browser.

Figure 6.10. Creating two sections in a form using the <fieldset> tag

Discussion
The <fieldset> and <legend> tags are a great way to group related information in

a form. These tags provide an easy means to group items visually, and are understood

by screen readers and text-only devices, which can perceive that the tagged items

are logically grouped together. The situation would be quite different if you simply

wrapped the related items in a styled div; users of a standard browser would under

stand the relationship, in contrast to those unable to see the results of our CSS.

To group form fields, simply wrap the related fields with a <fieldset> tag and,

immediately after your opening <fieldset> tag, add a <legend> tag that contains

a title for the group:

The CSS Anthology200

chapter06/fieldset.html (excerpt)

 <fieldset>

 <legend>Personal Information</legend>

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname" class="txt"

 />

 </div>

 <div>

 <label for="email">Email Address:</label>

 <input type="text" name="email" id="email" class="txt" />

 </div>

 <div>

 <label for="password1">Password:</label>

 <input type="password" name="password1" id="password1"

 class="txt" />

 </div>

 <div>

 <label for="password2">Confirm Password:</label>

 <input type="password" name="password2" id="password2"

 class="txt" />

 </div>

 </fieldset>

Like other HTML tags, <fieldset> and <legend> are displayed with a default style

by browsers. The default style surrounds the grouped elements with a box, and the

<legend> tag appears in the top-left corner of that box. Figure 6.11 shows the

<fieldset> and <legend> tags as they display by default in Firefox on Mac OS X.

201 Forms and User Interfaces

Figure 6.11. Viewing unstyled <fieldset> and <legend> tags

How do I style accesskey hints?
Access keys allow users to jump quickly to a certain place in a document or follow

a link—all they need to do is press a combination of keys; usually the Alt key (or

equivalent), and another specific key. You have to let users know what that other

key is, of course!

Solution
The convention that’s followed by many computer operating systems is to indicate

which letter of a key word is its access key by underlining that letter. For example,

on a Windows machine, Alt+F opens the File drop-down menu. This functionality

is indicated by the underlining of the letter “F” in File, as shown in Figure 6.12.

The CSS Anthology202

Figure 6.12. The underline beneath the letter “F” in the word File

You can use a similar technique on your site, underlining the appropriate letters to

identify your access keys:

chapter06/accesskeys.html (excerpt)

 <fieldset>

 <legend>Personal

 Information</legend>

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname" class="txt"

accesskey="p" />

 </div>

chapter06/accesskeys.css (excerpt)

.akey {

 text-decoration: underline;

}

As you can see in Figure 6.13, the access key for each field set is underlined.

203Forms and User Interfaces

Figure 6.13. Indicating access keys with lines under the “P” in Personal and “A” in Address

Discussion
Access keys can be very helpful to site users who have mobility problems and are

unable to use a mouse, as well as to users who simply prefer using the keyboard

over the mouse to navigate. You could provide an access key that allowed these

visitors to jump straight to the form by pressing one key, for example, or to go to

the search box by pressing another. The convention of underlining the letter that

corresponds to the access key will be familiar to visitors who use this functionality,

even if other users are unaware what it means.

To add access key functionality to a form field, you simply need to add the attribute

accesskey="x" to that field, where x is the character you’ve chosen for the access

key:

The CSS Anthology204

chapter06/accesskeys.html (excerpt)

 <div>

 <label for="fullname">Name:</label>

 <input type="text" name="fullname" id="fullname" class="txt"

accesskey="p" />

 </div>

In our example, I’ve added an access key to the first form element of each group.

When a user presses the access key, focus will move to that first form field so that

users can begin to complete the form. To highlight the access key, I’ve taken the

first letter of the field set <legend> (for example, the “P” in “Personal Details”) and

wrapped it in a span with a class of akey:

chapter06/accesskeys.html (excerpt)

<legend>Personal Information</legend>

I’ve styled the akey class, setting the text-decoration property to underline:

chapter06/accesskeys.css (excerpt)

.akey {

 text-decoration: underline;

}

Different browsers and operating systems implement access keys in different ways.

For example, Internet Explorer, and Firefox 1.5 on Windows use the Alt key. How

ever, Firefox version 2 and above on Windows uses Alt+Shift (at the time of writing,

however, this only works for alphabetical access keys, as opposed to numeric ones).

Safari uses Ctrl, as does Firefox on Mac OS X (again no numeric shortcuts), and

Opera uses Shift+Esc but allows users to configure their own key combinations.

Access Keys May Be Less Accessible Than They Appear

When creating access keys, take care to avoid overriding default browser or system

keyboard shortcuts!

205Forms and User Interfaces

How do I use different colored highlights
in a select menu?
Earlier, we learned how to color the background of a select menu in a form. But

is it possible to include several colors in the menu to highlight different options?

Solution
You can assign classes to menu options to apply multiple background colors within

the drop-down menu. color and background-color are the only properties you

can set for a menu item.

Safari Has No Stripes

Remember, Safari lacks support for background colors on select options, so this

solution will fail to work in that browser.

Here’s the code you’ll need:

chapter06/select.html (excerpt)

<form method="post" action="example8.html">

 <div>

 <label for="color">Select your favorite color:</label>

 <select name="color" id="color">

 <option value="">Select One</option>

 <option value="blue" class="blue">blue</option>

 <option value="red" class="red">red</option>

 <option value="green" class="green">green</option>

 <option value="yellow" class="yellow">yellow</option>

 </select>

 </div>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Send!" class="btn" />

 </div>

</form>

The CSS Anthology206

chapter06/select.css (excerpt)

option.blue {

 background-color: #ADD8E6;

 color: #000000;

}

option.red {

 background-color: #E20A0A;

 color: #ffffff;

}

option.green {

 background-color: #3CB371;

 color: #ffffff;

}

option.yellow {

 background-color: #FFF280;

 color: #000000;

}

Thanks to this code, the drop-down menu in Figure 6.14 looks very colorful indeed.

Figure 6.14. Classes applied to options displaying within a selectmenu, as seen in the Opera browser

Discussion
We’d normally avoid using such presentational class names in our CSS. For example,

giving a heading a class name of blue would be a poor decision, as you might decide

later to change the color of all headings to green—you’d then either be left with a

bunch of headings that had a class of blue but displayed as green, or you’d have

to change all of your markup. However, in the case of a color selection form, like

in this example, common sense prevails!

207 Forms and User Interfaces

Style with Substance

Use different background colors on sets of related options, or apply alternating

row colors in your select menu.

Alternatively, Use Attribute Selectors

Once again, an alternative to adding class names to your markup would be to use

attribute selectors in your CSS. For example, instead of the selector option.blue,

you could use:

option[value="blue"] {

 background-color: #ADD8E6;

 color: #000000;

}

Of course, once again, you’ll have to take the lack of support from IE6 into consid

eration.

How do I style a form with CSS that allows
users to enter data as if into a spreadsheet?
While laying out forms using CSS is possible—and recommended in most

cases—there are some circumstances in which data is more easily entered into a

form within a table. One obvious example is a spreadsheet-like web application.

Users may already be accustomed to entering data into a spreadsheet using Microsoft

Excel or another package. Keep this in mind as you design your application inter-

face—mimicking familiar interfaces often helps users to feel comfortable with your

application. Making your form look like a spreadsheet by laying it out in a table

and using CSS to format it may be the way to go. Let’s take a look at the code:

chapter06/spreadsheet.html (excerpt)

<form method="post" action="spreadsheet.html">

<table class="formdata" summary="This table contains a form to

 input the yearly income for years 1999 through 2002">

 <caption>Complete the Yearly Income 1999 - 2002</caption>

The CSS Anthology208

<tr>

 <th></th>

 <th scope="col">1999</th>

 <th scope="col">2000</th>

 <th scope="col">2001</th>

 <th scope="col">2002</th>

 </tr>

 <tr>

 <th scope="row">Grants</th>

 <td><input type="text" name="grants1999" id="grants1999" />

 </td>

 <td><input type="text" name="grants2000" id="grants2000" />

 </td>

 <td><input type="text" name="grants2001" id="grants2001" />

 </td>

 <td><input type="text" name="grants2002" id="grants2002" />

 </td>

 </tr>

 <tr>

 <th scope="row">Donations</th>

 <td><input type="text" name="donations1999" id="donations1999"

 /></td>

 <td><input type="text" name="donations2000" id="donations2000"

 /></td>

 <td><input type="text" name="donations2001" id="donations2001"

 /></td>

 <td><input type="text" name="donations2002" id="donations2002"

 /></td>

 </tr>

 <tr>

 <th scope="row">Investments</th>

 <td><input type="text" name="investments1999"

 id="investments1999" /></td>

 <td><input type="text" name="investments2000"

 id="investments2000" /></td>

 <td><input type="text" name="investments2001"

 id="investments2001" /></td>

 <td><input type="text" name="investments2002"

 id="investments2002" /></td>

 </tr>

 <tr>

 <th scope="row">Fundraising</th>

 <td><input type="text" name="fundraising1999"

 id="fundraising1999" /></td>

209Forms and User Interfaces

<td><input type="text" name="fundraising2000"

 id="fundraising2000" /></td>

 <td><input type="text" name="fundraising2001"

 id="fundraising2001" /></td>

 <td><input type="text" name="fundraising2002"

 id="fundraising2002" /></td>

 </tr>

 <tr>

 <th scope="row">Sales</th>

 <td><input type="text" name="sales1999" id="sales1999" /></td>

 <td><input type="text" name="sales2000" id="sales2000" /></td>

 <td><input type="text" name="sales2001" id="sales2001" /></td>

 <td><input type="text" name="sales2002" id="sales2002" /></td>

 </tr>

 <tr>

 <th scope="row">Miscellaneous</th>

 <td><input type="text" name="misc1999" id="misc1999" /></td>

 <td><input type="text" name="misc2000" id="misc2000" /></td>

 <td><input type="text" name="misc2001" id="misc2001" /></td>

 <td><input type="text" name="misc2002" id="misc2002" /></td>

 </tr>

 <tr>

 <th scope="row">Total</th>

 <td><input type="text" name="total1999" id="total1999" /></td>

 <td><input type="text" name="total2000" id="total2000" /></td>

 <td><input type="text" name="total2001" id="total2001" /></td>

 <td><input type="text" name="total2002" id="total2002" /></td>

 </tr>

</table>

<div><input type="submit" name="btnSubmit" id="btnSubmit"

 value="Add Data" /></div>

</form>

chapter06/spreadsheet.css

table.formdata {

 border: 1px solid #5F6F7E;

 border-collapse: collapse;

 margin: 1em 0 2em 0;

}

table.formdata th {

 border: 1px solid #5F6F7E;

 background-color: #E2E2E2;

 color: #000000;

The CSS Anthology210

text-align: left;

 font-weight: normal;

 padding: 0.2em 0.4em 0.2em 0.4em;

 margin: 0;

}

table.formdata td {

 margin: 0;

 padding: 0;

 border: 1px solid #E2E2E2;

}

table.formdata input {

 width: 80px;

 padding: 0.2em 0.4em 0.2em 0.4em;

 margin: 0;

 border: none;

}

The styled form, which looks very spreadsheet-like, is shown in Figure 6.15.

Figure 6.15. A form styled to resemble a spreadsheet

Discussion
The aim here is to create a form that looks similar to a spreadsheet, such as the Excel

spreadsheet shown in Figure 6.16. Recently, I created forms similar to this for a web

application that had many tables of data. The client wanted the table to turn into

211 Forms and User Interfaces

an editable table when it was selected for editing; so while it retained the appearance

of the original data table, the contents could be edited by the user.

Figure 6.16. A spreadsheet displaying in Excel

The first step to achieve this effect is to lay out the form within a structured table,

using table headings (th elements) where appropriate, and adding a caption and

summary for accessibility purposes. The complete code for this form is provided

in the solution above. Before we add any CSS, the form should display as shown

in Figure 6.17.

Figure 6.17. The unstyled form, ready for CSS formatting

The CSS Anthology212

To create the style rules for this form, we must establish for the table a class that

contains all the spreadsheet fields. I’ve given the table a class name of formdata:

chapter06/spreadsheet.html (excerpt)

<table class="formdata" summary="This table contains a form to

 input the yearly income for years 1999 through 2002">

In the style sheet, class formdata has a single-pixel border in a dark, slate gray, and

the border-collapse property is set to collapse:

chapter06/spreadsheet.css (excerpt)

table.formdata {

 border: 1px solid #5F6F7E;

 border-collapse: collapse;

}

Next, we can style the table headings. I’ve used the <th> tag for the top and left-

hand column headings, so to style these, all I need to do is address the <th> tags

within a table of class formdata:

chapter06/spreadsheet.css (excerpt)

table.formdata th {

 border: 1px solid #5F6F7E;

 background-color: #E2E2E2;

 color: #000000;

 text-align: left;

 font-weight: normal;

 padding: 0.2em 0.4em 0.2em 0.4em;

 margin: 0;

}

213 Forms and User Interfaces

Figure 6.18. The form display after the table and th elements are styled

To produce an editable table, we need to hide the borders of the form fields and

add borders to the table cells. As the only input elements within the table are the

text fields that we want to style, we can simply address all input elements in the

table with a class of formdata; this saves us having to add classes to all our fields.

We add a border to the td element, and set the borders on the input element to 0.

We specify a width for the input element, as we know that the type of data that

will be added will only need a small field. We then add some padding so that text

that’s typed into the form field will stop well short of the border:

chapter06/spreadsheet.css (excerpt)

table.formdata td {

 margin: 0;

 padding: 0;

 border: 1px solid #E2E2E2;

}

table.formdata input {

 width: 80px;

 padding: 0.2em 0.4em 0.2em 0.4em;

 margin: 0;

 border-width: 0;

 border-style: none;

}

That’s all there is to it! If you use this technique, make sure that your users under

stand that the table is editable. Removing borders from form fields will only help

users if they can work out how to complete the form—let alone realize that it exists!

The CSS Anthology214

Some Browsers Still Display Input Element Borders

Certain browsers—most notably older versions of Safari on Mac OS X—will display

the input element borders, so while the effect will be less neat, it will still be

completely usable.

How do I highlight the form field that the
user clicks into?
Applications such as Excel highlight the focused form field when the user clicks

on it or tabs to it. Is it possible to create this effect in our web form?

Solution
We can create this effect using pure CSS, thanks to the :focus pseudo-class. While

this solution works in modern browsers, including Internet Explorer 8, it fails to

work in either Internet Explorer 6 or 7:

chapter06/spreadsheet2.css (excerpt)

table.formdata input {

 width: 80px;

 padding: 0.2em 0.4em 0.2em 0.4em;

 margin: 0;

 border: 2px solid #FFFFFF;

}

.formdata input:focus {

 border: 2px solid #000000;

}

Figure 6.19 shows how this code displays.

215 Forms and User Interfaces

Figure 6.19. Highlighting the form field in focus in Firefox

Discussion

This solution for adding a border (or changing the background color) of the form

field when it receives focus is a simple one. In fact, it’s as simple as adding the

pseudo-class selector :focus to your style sheet to display a different style for the

input element when the user clicks into it.

Unfortunately, as I’ve already mentioned, Internet Explorer 6 lacks support for the

:focus pseudo-class, so this effect may fail to display for some of your application’s

users.

There is a way around this problem that, unfortunately, requires a little JavaScript.

Add the following JavaScript after the table in your document:

chapter06/spreadsheet2.html (excerpt)

<script type="text/javascript">

var editcells =

document.getElementById('form1').getElementsByTagName('input');

for (var i = 0; i < editcells.length; i++) {

 editcells[i].onfocus = function() {

 this.className += ' hilite';

 }

 editcells[i].onblur = function() {

The CSS Anthology216

this.className = this.className.replace('hilite', '');

 }

}

</script>

Once you’ve added this code, you’ll need to add the class hilite to your CSS file,

using the same rules we used for the :focus pseudo-class:

chapter06/spreadsheet2.css (excerpt)

.formdata input:focus, .formdata input.hilite {

 border: 2px solid #000000;

}

Your field highlighting will now work in Internet Explorer 6, as well as those

browsers that support the :focus pseudo-class.

Summary
In this chapter, we’ve looked at a variety of ways to style forms using CSS, from

simply changing the look of form elements, to using CSS to lay forms out. We’ve

seen how CSS can greatly enhance the appearance and usability of forms. We’ve

also touched on the accessibility of forms for users of alternative devices, and we’ve

seen how, by being careful when marking forms up, you can make it easier for all

visitors to use your site or web application.

Chapter7
Cross-browser Techniques
This chapter contains solutions for making your sites work well in many browsers.

It’s unlikely that every visitor to your site is using the same browser or even the

most up-to-date version, so you’ll want to ensure that all users enjoy their experience

of your site regardless of which browser they use.

As we’ve seen, you can use CSS to separate the structure and content of your docu

ments from the presentation of your site. If you take this approach, visitors who use

devices that can’t render your design—either because they’re limited from a tech

nical standpoint, such as some PDA or phone browsers, or as a result of their own

functional advantages, such as screen readers that speak your pages’ text for the

benefit of visually impaired users—will still be able to access the content. CSS gives

you the freedom to meet the needs of these users and to create beautiful designs for

the majority of users, whose browsers do support CSS.

In addition to discussing the nuances of different browsers and devices, this chapter

will provide you with techniques to troubleshoot CSS bugs in browsers that support

CSS. Keep in mind that it’s impossible for this chapter to cover every known CSS

bug—even if it tried, as new bugs and new bug fixes appear all the time. What I’ve

The CSS Anthology218

tried to do here is explain some of the main culprits that cause browser-related

problems with CSS. I’ve explained how those problems might be solved, where you

can go to receive up-to-date bug-squashing advice, and how to step through a

problem, isolate its cause, and ask for help in a way that’s likely to be rewarded

with a useful answer.

The good news is that with each edition of this book, I can see how our jobs as front-

end developers are becoming easier. The problems we see today are mainly with

really old browsers such as Internet Explorer 6, but an ever-decreasing number of

people are using these browsers. New releases of browsers tend to comply with

standards very well indeed and these days—when I check my work in the latest

version of Internet Explorer, Safari, Firefox, Opera, and Chrome—the most common

result is that it displays in exactly the same way in all the browsers. This is what

we’ve wanted for a very long time and we really are finally achieving that now.

In which browsers should I test my site?
Once upon a time, web designers only worried about whether or not their sites

looked good in Internet Explorer and Netscape Navigator; those days are now long

gone. While Internet Explorer currently has the largest share of the browser market,

several other important browsers are in use, including screen readers and browsers

for mobile devices.

Solution
The answer is to test your sites in as many browsers as you can. The types of

browsers that you’re able to install will depend on the operating systems to which

you have access. Table 7.1 lists the major browsers that can be installed on Windows,

Mac OS X, and Linux. At the very least, you should test in Internet Explorer 6, 7,

and 8; Firefox, Opera, Safari, and Chrome.

219 Cross-browser Techniques

The Engines That Drive Browsers

You may have come across the term browser rendering engine. If a browser is the

complete software package, including the application interface and features—the

browser rendering engine is the part that interprets the HTML and CSS, and

renders the web pages for you to view. Some engines are separate software products

that are used by more than one browser. For example, the Gecko1 engine developed

by the Mozilla Foundation is used by Firefox, as well as Camino and the last

versions of Netscape Navigator, among others. The WebKit2 engine powers Safari

and Chrome, and is derived from the KHTML3 engine that powers the Konqueror

web browser.

You may be thinking that if two browsers use the same rendering engine, you only

need to test in one. While true to a certain extent there can still be differences,

especially across versions and operating systems. Some browsers, like Internet

Explorer and Opera, use their own internal engines.

Tracking Down Obscure and Obsolete Browsers

If you’re looking for versions of Internet Explorer older than 6, you’ll be able to

find and download them—including many other older and uncommon

browsers—from http://browsers.evolt.org/.

The browsers you’re able to install and test on may be limited by your operating

system. Table 7.1 shows a list of common browsers, the rendering engine they use,

the operating systems they’re available for, and where you can download them.

1 https://developer.mozilla.org/en/Gecko
2 http://webkit.org/
3 http://konqueror.kde.org/features/browser.php

https://developer.mozilla.org/en/Gecko
http://webkit.org/
http://konqueror.kde.org/features/browser.php
http://konqueror.kde.org/features/browser.php
http:http://webkit.org
https://developer.mozilla.org/en/Gecko
http:http://browsers.evolt.org

The CSS Anthology220

Table 7.1. Browsers, Engines, and Operating Systems

Download From LinuxMacWinBrowser (Engine)

http://www.microsoft.com/windows/internet-explorer/ Internet Explorer 6, 7,

and 8

http://www.mozilla.com/ Firefox (Gecko)

http://www.caminobrowser.org/ Camino (Gecko)

http://www.opera.com/ Opera

http://www.apple.com/safari/ Safari (WebKit)

http://www.google.com/chrome/ Chrome (WebKit)a

http://konqueror.kde.org/ Konqueror (KHTML)

a At the time of writing the Mac OS X and Linux versions were in development and yet to be officially

released.

How can I test in many browsers when I
only have access to one operating system?
Unless you have an entire test suite in your office, you’ll probably find that you’re

unable to install certain browsers because they’re operating-system specific.

Solution
There are a variety of ways to run an additional operating system on your computer,

thereby giving you the ability to install and use the browsers developed for that

operating system.

Windows Users
Windows users are in a good position to test on a wide variety of browsers. Internet

Explorer, in its various incarnations, accounts for roughly 60–70% of the general

browsing public, and most of the other major browsers offer Windows versions.

Unfortunately, when it comes to testing on Mac OS X browsers such as Safari, the

options available in Windows are limited.

221 Cross-browser Techniques

Testing Mac Browsers

Mac OS X is the most difficult platform to emulate at present. Having a Mac around

is therefore almost essential for any serious web designer—though it’s unnecessary

for your Mac to be particularly fast or have an enormous amount of memory if all

you use it for is testing sites in Safari.

In mid-2007, Apple surprised the web community by releasing a version of its Safari

browser for Windows. Unfortunately, Safari for Windows is unreliable when it

comes to pages being rendered identically to its older (and more popular) Mac-based

cousin. It can, however, be useful as an indication of where possible rendering

problems may lie.

The same can be said for the Windows version of Google Chrome. Even though it

uses the same rendering engine as Safari (WebKit), you still need to test with the

Mac version of Safari.

Testing Linux Browsers

While there’s currently no way to emulate a Mac on a Windows computer, various

options are available for viewing sites in Linux-specific browsers.

Linux Live CDs

Live CDs are versions of Linux that run completely from a CD, and can be run as a

testing environment on your computer without you needing to actually install Linux

onto your hard disk. One of the most well-known of the Live CDs is Knoppix, which

can be downloaded from the Knoppix web site.4 Knoppix comes with the KDE

desktop environment, which includes Konqueror. Another popular distribution

that comes as a live CD is Ubuntu,5 which has the Gnome desktop as standard. A

comprehensive list of other Live CDs is available at FrozenTech.6

Dual Booting with Linux

Another option, if you want to run another operating system, is to dual boot your

computer. You can install Windows and Linux, then select the platform you want

to boot into when you start up your machine. A good walk-through of the process

4 http://www.knoppix.net/
5 http://www.ubuntu.com/
6 http://www.frozentech.com/content/livecd.php

http://www.knoppix.net/
http://www.ubuntu.com/
http://www.frozentech.com/content/livecd.php
http://www.frozentech.com/content/livecd.php
http:http://www.ubuntu.com
http:http://www.knoppix.net

The CSS Anthology222

you’ll need to use to set up your dual-boot system up can be found at

https://help.ubuntu.com/community/WindowsDualBoot.

Virtualization

The alternative to dual booting is virtualization: running other operating systems

as virtual machines simultaneously inside the currently running operating system.

Parallels Workstation7 and VMWare Workstation8 are commercial applications that

can both run Linux virtual machines from Windows, but may be an expensive option

just for testing Linux browsers. A better solution may be the Windows version of

VirtualBox,9 which is a free, open-source application that can also run Linux virtual

machines.

Mac Users
Mac users who have Intel Macs can feel smug—your environment can easily be

used to test sites in all three operating systems. If you’re a designer who wants to

be able to work on only one machine, Macs are well worth investigating, and I say

that as a Linux desktop user!

Dual Boot with Boot Camp

Mac users wishing to install Windows can use the Boot Camp software, to dual boot

your Mac with Windows.10 Unlike virtual machine software, Boot Camp will require

you to reboot into Windows—it’s unable to run Windows inside a window on your

desktop—but it does offer a handy way to test your work. Boot Camp is included

in Mac OS X from version 10.5 (Leopard).

Virtualization

Since Apple launched its Intel-based machines, customers have been able to run

Windows and Linux virtual machines via third-party applications inside Mac OS

X. You can even run multiple versions of Windows, so you can test Internet Explorer

6, 7, and 8 on the same computer!

7 http://www.parallels.com/products/workstation/
8 http://www.vmware.com/products/ws/
9 http://www.virtualbox.org/
10 http://www.apple.com/macosx/bootcamp/

http://www.parallels.com/products/workstation/
http://www.vmware.com/products/ws/
http://www.virtualbox.org/
http://www.apple.com/macosx/bootcamp/
http://www.apple.com/macosx/bootcamp/
http://www.apple.com/macosx/bootcamp
http:http://www.virtualbox.org
http://www.vmware.com/products/ws
http://www.parallels.com/products/workstation
https://help.ubuntu.com/community/WindowsDualBoot

223Cross-browser Techniques

Parallels Desktop for Mac, pictured in Figure 7.1,11 has traditionally been a popular

solution for Mac OS X. VMWare Workstation has been a favorite virtualization

solution for Windows and in 2007 the company released VMWare Fusion for Mac

OS X.12 If you’re after a free option try the Mac OS X version of the open-source

VirtualBox.13

Figure 7.1. Internet Explorer 8 and Safari on Mac OS X using Parallels

Linux Users
Linux users are in much the same boat as Windows users when it comes to testing

on Mac-only browsers. On the bright side, Virtualization and dual booting offer

convenient ways for Linux users to run various versions of Internet Explorer.

Testing Mac Browsers

Linux is in the same situation as Windows with regards to testing Mac Browsers;

you really need to have a Mac available for testing.

11 http://www.parallels.com/
12 http://www.vmware.com/products/fusion/
13 http://www.virtualbox.org/

http://www.parallels.com/
http://www.vmware.com/products/fusion/
http://www.vmware.com/products/fusion/
http://www.virtualbox.org/
http:http://www.virtualbox.org
http://www.vmware.com/products/fusion
http:http://www.parallels.com

The CSS Anthology224

Safari and Chrome both use the WebKit rendering engine that was based on the

KHTML rendering engine, used by (and originally developed by) the KDE browser,

Konqueror. Konqueror tends to render things in a similar way to Safari, and the

Linux version of Chrome (still under development at the time of writing) should

too. This is certainly no substitute for having a Mac on hand to use for testing, but

it can provide a rough indication of how your pages will render in Safari.

Testing Windows Browsers

As with Windows, the easiest option for Linux users who want to test sites on

Windows browsers is usually to dual boot their machines, but a number of tools

that facilitate side-by-side testing with Windows browsers on Linux are available.

Virtualization

VMWare Workstation and Parallels Workstation are commercial products that will

allow you to run Windows virtual machines on Linux. However, the free, open-

source VirtualBox14 is also an option.

Dual Booting

Linux users also have the option of dual booting their system as a way to install a

version of Windows—as much as it may pain them to do so!

Is there a service that can show me how my
site looks in various browsers?
Being able to test your site in a variety of browsers is the best way to check that it

works well in all of them; however, unless you can set up a test suite in your office,

it’s likely that there’ll be some browsers to which you’ll lack access to.

Solution
There are now many services available for checking how your site displays and

functions in multiple browsers on multiple operating systems that you may have

no access to normally. Generally these take the form of screenshot services: submit

a URL and the service will return a collection of screenshots of the web page open

14 http://www.virtualbox.org/wiki/Linux_Downloads

http://www.virtualbox.org/wiki/Linux_Downloads
http://www.virtualbox.org/wiki/Linux_Downloads

225Cross-browser Techniques

in various browser-operating system combinations, and at different screen resolu

tions.

Some services also offer remote access to a machine where you’re able to test your

site’s functionality on alternative platforms. This kind of service is particularly

helpful if you’ve used JavaScript and need to interact with your page to see how it

looks and functions.

Here’s a list of a few available services:

BrowserCam

BrowserCam (http://www.browsercam.com/) is a screenshot-generating testing

service that also has a remote access option. A free trial is available.

Litmus

Litmus (http://litmusapp.com/) is a professional web page and HTML email

testing service that generates screenshots and has a few other features for HTML

email testing. There is a free account type available as well as paid accounts.

CrossBrowserTesting.com

CrossBrowserTesting.com (http://crossbrowsertesting.com/) is a commercial

testing service that allows you to remotely access machines running various

browser and operating system combinations.

Browser Shots

Browser Shots (http://browsershots.org/) is a free screenshot service with a large

variety of browsers, but is quite slow.

It’s definitely a sign of the times that Adobe and Microsoft have recently released

their own browser testing software.

Adobe BrowserLab

Adobe BrowserLab (https://browserlab.adobe.com/index.html) is a screenshot

generating service that allows you to compare screenshots side by side, as well

as overlay screenshots on top of one another with slight transparency to make

differences easy to spot. It currently only supports Internet Explorer, Firefox,

and Safari. BrowserLab also has an extension for Dreamweaver.

https://browserlab.adobe.com/index.html
http:http://browsershots.org
http:http://crossbrowsertesting.com
http:CrossBrowserTesting.com
http:CrossBrowserTesting.com
http:http://litmusapp.com
http:http://www.browsercam.com

The CSS Anthology226

Microsoft SuperPreview

Microsoft SuperPreview (http://expression.microsoft.com/en-us/dd565874.aspx)

is a Windows application that can provide side-by-side and overlapping previews

of web pages. At the time of writing it only supports IE6,7, and 8, but wider

browser support is planned.

Discussion
Another way to check that your site works in browsers that you lack access to is to

request a site check on a mailing list. Most web design and development mailing

lists and forums, including the SitePoint Forums,15 are quite familiar with having

users ask for people to check their sites, and you can return the favor by viewing

other people’s sites in the browsers that you use.

Can I install multiple versions of Internet
Explorer on Windows?
There are major differences between Internet Explorer versions 6, 7, and 8 in terms

of the ways they render CSS, but Windows normally allows only one version of

Internet Explorer to be installed at a time. How can we test sites in older, but still

used, versions of Internet Explorer?

Solution
Microsoft’s Virtual PC software enables us to test Internet Explorer 6, 7, and 8 on

one Windows computer, and is available as a free download. You’ll need to take a

few steps so that your Windows machine will run Internet Explorer 8 as the main

browser, with virtual machines running Internet Explorer 6 and 7, but this is a great

way to test your work.

1. Upgrade to Internet Explorer 8 if you’ve yet to do so already.

2. Download and install Virtual PC 2007 from Microsoft’s Virtual PC site.16

15 http://www.sitepoint.com/forums/
16 http://www.microsoft.com/windows/virtualpc/default.mspx

http://www.sitepoint.com/forums/
http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.sitepoint.com/forums
http://expression.microsoft.com/en-us/dd565874.aspx

227Cross-browser Techniques

3.	 Download a time-limited Virtual PC virtual machine image for IE6 and IE7 from

Microsoft’s Download Center.17 This image comes with Microsoft Windows

and Internet Explorer pre-installed. The beauty of using this image is that there’s

no need for you to pay for an additional Windows license to run it.

4.	 To use the virtual machine image, extract the archive and start up Virtual PC.

Browse for the image files, and your separate version of Windows will start up

in a window on your desktop.

IE7 mode in IE8

Internet Explorer 8 Developer Tools panel has a feature that allows you to switch

to the IE7 rendering mode. This feature was added to support backwards compat

ibility—a safeguard against web sites that fail to work in IE8. In those cases the

browser can revert to behaving as IE7, possibly fixing the problem. It’s also a quick

way to test your site in IE7, if you’d rather avoid running a Virtual PC machine

image (or perhaps are running a single Windows virtual machine on a Mac).

At the time of writing, Microsoft has no virtual machine images available for earlier

versions of Internet Explorer; however, if you actually need to test in versions

earlier than 6, some stand-alone versions are available to help you spot CSS rendering

issues. You can download an installer of multiple stand-alone versions of Internet

Explorer at Tredosoft,18 but be warned, these browsers can be temperamental and

prone to crashing. They’re also unreliable for testing JavaScript, since they use the

currently installed JScript engine, rather than the older versions of JScript that

would normally be installed with these versions of Internet Explorer. However,

these browsers are reliable enough for CSS developers who want to test their work

in really old versions of Internet Explorer.

17 http://go.microsoft.com/fwlink/?LinkId=70868
18 http://tredosoft.com/Multiple_IE

http://go.microsoft.com/fwlink/?LinkId=70868
http://tredosoft.com/Multiple_IE
http://tredosoft.com/Multiple_IE
http://go.microsoft.com/fwlink/?LinkId=70868

The CSS Anthology228

Stand-alone Versions of IE

There are installers that promise to allow you to run multiple versions of Internet

Explorer on one computer, but I’d advise you to avoid these. Due to the fact that

IE is part of Windows, you can never have completely separate versions of IE

running on the same machine and you’ll find issues such as conditional comments

failing to work correctly. To test in multiple versions of IE you either need more

than one computer, or to use the virtual machines as described above.

How do I decide which browsers should get
the full design experience?
As we’ll discover in this chapter, it’s possible to provide older browsers with differ

ent style sheets and to target different Internet Explorer versions using conditional

comments. The great aspect about creating your layout using CSS is that there’s no

need to lock anyone out of your content, regardless of how old and crumbly the

browser is that they’re using. That said, you should understand that you’re under

no obligation to present the same experience to an IE5 user as you would to users

of IE8 or the latest version of Firefox.

Solution
Your agreement with your client, or your company policy, will of course dictate to

some extent what you can decide to support; however, if you’re in the position to

advise you might like to use the YUI Graded Browser Support chart19 as backing

for a sensible approach to browser support. This chart is essentially what Yahoo

use to decide how they’ll support the different browsers visiting their site, and with

the Yahoo home page being the most trafficked site in the world they have excellent

data to back up their decisions.

I believe that a modern approach to dealing with old browsers is to avoid completely

locking anyone out of your site; as you’ll see below it’s possible to serve really old

browsers plain, HTML text if required and avoid serving a CSS layout at all. For

slightly newer browsers that perhaps stop short of supporting the full CSS 2.1 spe

cification or CSS3 as that becomes commonplace, you can serve a reduced design

19 http://developer.yahoo.com/yui/articles/gbs/

http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs

229Cross-browser Techniques

experience—an approach I think that’s beginning to become possible for IE6. In the

section called “How do I achieve PNG image transparency in Internet Explorer 6?”

we look at two ways to deal with IE6’s lack of transparency support for PNG images.

When coming up against this issue you have two options: try and give IE6 the full

design experience, including transparency, or provide it with a simpler version

using GIF file images. Looking at the recommendations of the YUI Graded Browser

Support chart may well help you decide which to do and give you a way to explain

this to the end client.

How do I display a basic style sheet for
really old browsers?
CSS is now used so extensively on the Web that users of really old browsers, such

as Netscape 4, are destined to have fairly poor online experiences, regardless of

which sites they visit. However, we can still be kind to users of these old browsers

by at least ensuring there are no crashes as a result of our advanced use of CSS, and

that the content remains readable. To do this, we serve a very simple style sheet to

these browsers, and attach our real style sheet using a technique unsupported by

older browsers.

Solution
Netscape 4, Internet Explorer 4, and other old browsers lack support for the @import

method of linking to a style sheet and one of the features of CSS is that it will ignore

a directive it’s unable to understand. We can use this fact to our advantage: serving

one set of styles to these browsers, and leaving newer browsers that understand

@import to read the full style sheet.

In the head of your document, attach a basic style sheet using the link element—this

can be read by all browsers that support CSS. Then, attach your full style sheet (or

style sheets) using the @import method, which will be ignored by the old browsers:

The CSS Anthology230

chapter07/basicstyles.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <title>Serving a basic stylesheet</title>

 <link rel="stylesheet" href="basic_basic.css" type="text/css"

media="screen" />

<style type="text/css" media="screen">

 @import "basic_default.css";

 </style>

 </head>

 <body>

 <div class="content">

 <h1>Serving a basic style sheet to old browsers</h1>

 <p>CSS is now used so extensively on the Web that …</p>

 </div>

 </body>

</html>

The basic style sheet shown below—basic_basic.css—defines some simple styles to

boost the page’s readability. You could make this style sheet slightly more advanced

if you wish, assuming you have a copy of Netscape 4 to test on,20 and can check

that anything you add is safe for that browser. However, at the current time very

few people use these old browsers. Presenting them with a basic document should

be fine—it will at least ensure that the site is readable for them, in contrast to much

of the rest of the Web.

chapter07/basic_basic.css

body {

 background-color: #fff;

 color: #000;

 margin: 0;

 padding: 5%;

20 You can download version 4.8 for Windows from the evolt.org browser archive,

[http://browsers.evolt.org/?navigator/32bit/4.8/] which can still be run in Windows XP or Vista.

http://browsers.evolt.org/?navigator/32bit/4.8/
http://browsers.evolt.org/?navigator/32bit/4.8
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

231 Cross-browser Techniques

}

body, h1, h2, h3, h4, h5, h6, ol, ul, li, p {

 font-family: verdana, arial, helvetica, sans-serif;

 color: #000;

}

Figure 7.2. The page displaying in Netscape 4.8

Keep in mind that the newer browsers will read both the linked and imported style

sheets, so within your site’s main style sheet, you’ll need to override any of the basic

styles that you want to appear differently in newer browsers, as well as applying

the styles you want users of newer browsers to see.

In the code below, I’ve added a few rules to demonstrate the effects of this approach,

which can be seen in Figure 7.2 and Figure 7.3:

chapter07/basic_default.css

h1 {

 color: #cc0022;

 margin: 0;

}

.content {

The CSS Anthology232

background-color: #ececec;

 padding: 0.6em;

}

Figure 7.3. The same page displaying in Google Chrome

Discussion
Browsers that offer very minimal CSS support are problematic because they under

stand just enough CSS to attempt to render your styles, but not enough to be able

to do so properly! The advanced CSS in use on an average site today is likely to

display poorly or even crash a very old browser, so hiding these styles with the help

of @import prevents this. There’s no need to even add a basic style sheet—if you

simply use @import on its own, those old browsers will display the document using

the browser’s internal styles.

However, the use of the basic linked style sheet offers an additional benefit: it lets

us avoid the “Flash of Unstyled Content” phenomenon.21 This annoying bug causes

Internet Explorer users to see the site with the default Internet Explorer styles for

a split-second before the styles from your style sheet load in. Adding a link before

21 http://www.bluerobot.com/web/css/fouc.asp/

http://www.bluerobot.com/web/css/fouc.asp/
http://www.bluerobot.com/web/css/fouc.asp

233Cross-browser Techniques

the import—as we do in this solution—also solves that problem. So we’re able to

be kind to a couple of generations of crumbly browsers with one trick!

What is quirks mode and how do I avoid it?
You’re developing a site using XHTML and CSS, testing in Internet Explorer, and

it all seems to be going well … then you look at the layout with Firefox and Safari

and realize it is displaying very differently to the way it’s rendering in Internet Ex

plorer. What’s going on?

Solution
Internet Explorer bugs aside, the most likely issue is that Internet Explorer is ren

dering your document in quirks mode. Many modern browsers have two rendering

modes. Quirks mode renders documents according to the buggy implementations

of older browsers such as Netscape 4 and Internet Explorer 4 and 5. Standards or

compliance mode renders documents as per the W3C specifications (or as close to

it as they can).

■	 Documents that use older doctypes, are poorly formed, or lack a doctype declar

ation at all, display using quirks mode.
■	 Internet Explorer 6 will render in quirks mode if you include anything at all

above the DOCTYPE statement—including the XML prolog required for an XHTML

doctype.
■	 Documents that are using strict HTML 4 or XHTML doctypes render using

compliance mode.

The way browsers switch between quirks mode and compliance mode rendering

based on the document’s doctype is called doctype switching. The solution is simple;

use a doctype that will trigger compliance mode and make sure there’s nothing before

your doctype declaration to keep IE6 happy. Here is the list of doctypes that will

force the browsers that support doctype switching—browsers from Internet Explorer

6, Internet Explorer 5 Mac, Opera 7, Safari, Firefox, and Chrome—into compliance

mode.22

22 A full list of doctypes and their effects on various browsers is available at

http://gutfeldt.ch/matthias/articles/doctypeswitch/table.html.

http://gutfeldt.ch/matthias/articles/doctypeswitch/table.html

The CSS Anthology234

HTML 4.01 Transitional

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 Frameset

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

 "http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.01 Strict

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

XHTML 1.0 Transitional

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.0 Strict

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

An XHTML document is supposed to have an XML prolog at the top like so:

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/frameset.dtd
http://www.w3.org/TR/html4/loose.dtd

235Cross-browser Techniques

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

⋮
</html>

Unfortunately, this will cause IE6 to choose quirks mode, so you need to remove

it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

⋮
</html>

Discussion
The best known quirks mode behavior is that of Internet Explorer. When in quirks

mode, IE renders the page with the broken CSS Box Model implementation used

by Internet Explorer 5 and 5.5. So, instead of the padding and border being added

to the width of the box (making a 200 pixel width plus 20 pixels either side a real

width of 240 pixels), it renders the box at the set width of 200 pixels and takes the

padding away from that. Figure 7.4 illustrates the difference.

Figure 7.4. The difference between quirks mode and compliance mode in Internet Explorer

If you’re building a new site, I recommend that you aim to meet the requirements

of compliance mode, whichever doctype you’re using. New browsers will be likely

to support the W3C standards and will render pages using those standards whether

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology236

or not they support any doctype switching. There are too many quirky behaviors

to deal with when browsers use quirks mode, so avoid the problem from the start.

How can I specify different styles for
Internet Explorer 6 and 7?
At the time of writing, a big problem for CSS developers is the large number of

people still using Internet Explorer 6—a browser that provides poor, buggy support

for much of the CSS specification. While Microsoft fixed most of the well-known

bugs and added support for more of the CSS 2.1 spec in Internet Explorer 7, it’s still

less able than modern browsers like IE8. So, we’ve been left with a group of users

who are unable to or resist upgrading beyond Internet Explorer 6, and although

trends show IE7 users are slowly upgrading to IE8, IE7 will still be around for some

time yet.

Solution
The best method we can use to target our style rules to specific Internet Explorer

versions is conditional comments. Conditional comments are an Internet Explorer

proprietary feature that enable you to wrap markup in HTML comments and specify

a condition that governs when the browser should read the HTML and when it

should ignore it. You can use conditional comments to reveal a style sheet link

<tag> only to specific IE versions.

First, create the style sheet containing the Internet Explorer-specific CSS

fixes—there’s no need to duplicate your entire style sheet, just override or add the

rules necessary to fix problems in Internet Explorer. Then, include the link to the

style sheet within a conditional comment in the head of your document, like this:

<!--[if IE 6]>

<link rel="stylesheet" type="text/css" href="ie6fixes.css" />

<![endif]-->

The above code will reveal the ie6fixes.css style sheet only to IE6. The following

code will only reveal the style sheet to IE7:

237Cross-browser Techniques

<!--[if IE 7]>

<link rel="stylesheet" type="text/css" href="ie7fixes.css" />

<![endif]-->

This code will reveal a style sheet to all versions of Internet Explorer less than or

equal to version 7:

<!--[if lte IE 7]>

<link rel="stylesheet" type="text/css" href="iefixes.css" />

<![endif]-->

The conditional comments need to go into the head of your document—you must

include them after your main style sheet, otherwise rules in your IE-only style sheet

will be overwritten by rules in your main style sheet.

There are many more options available in the syntax of the condition. If you want

to know more about conditional comments the SitePoint CSS Reference has a useful

page.23 In the solutions that follow, we’ll look at the use of conditional comments

to serve Internet Explorer 6 an additional style sheet, as well as a JavaScript file.

How do I deal with the most common
issues in IE6 and 7
Internet Explorer 6 (and to a lesser extent, 7) are the browsers that you’re most likely

to have problems with today. By using methodical working practices you should

be able to make your sites work well in these browsers, but still be able to push

ahead with complex layouts taking advantage of the excellent CSS support in

modern browsers.

Solution
The following are my suggestions for a CSS working method, along with tips to help

you make IE6 and 7 behave.

23 http://reference.sitepoint.com/css/conditionalcomments/

http://reference.sitepoint.com/css/conditionalcomments/
http://reference.sitepoint.com/css/conditionalcomments/
http://reference.sitepoint.com/css/conditionalcomments

The CSS Anthology238

The Development Process
Here’s how I work to avoid as many IE6 and 7 issues as possible.

Develop Using an Up-to-date Browser

You should initially develop your layout in a browser that complies with the CSS

specification well; for example, the latest versions of Firefox, Opera, and Safari.

Browsers are becoming more standards-compliant, not less, so you want to ensure

that the CSS you write today complies with the specification because it’s more likely

to behave in future browsers. I never look at the layout in Internet Explorer while

building a web site. If I do I might be tempted to start hacking at my markup or

adding in unnecessary elements in my CSS. I want to ensure the site works right in

browsers that are standards-compliant first, before worrying about those that fall

short.

Validate Your Markup and CSS

If you begin with valid markup and CSS you’ll find problems far easier to fix.

Browsers handle markup and CSS errors differently. One browser’s interpretation

of an unclosed <div> tag or missing semi-colon in a style rule may cause frustrating

problems later on in development. So before going any further, visit the W3C CSS

and Markup Validation Service and check your document for errors.24

Check in Other Modern Browsers

Now have a look in other modern browsers: Firefox, Opera, Safari, Chrome, and

Internet Explorer 8. I very rarely need to make changes for these browsers in my

own work. When I do, it tends to be just a small change to how I’ve implemented

a particular layout element, enabling it to work in all modern browsers. Never do

I expect to need to use hacks or alternate style sheets for modern browsers; there’s

always a simpler way to fix the problem.

Check in Internet Explorer 6 and 7

At this point you know your CSS is valid and works in up-to-date browsers, so from

this point on anything that’s a problem in an old browser you can fix using appro

24 http://validator.w3.org/

http://validator.w3.org/
http://validator.w3.org/
http:http://validator.w3.org

239Cross-browser Techniques

priate methods for that old browser. I believe strongly that you should avoid clut

tering your markup or CSS with bug fixes for ancient browsers.

There will probably be some problems in IE6 when you first look at your layout.

These might be small predicaments such as incorrect padding between page elements

or larger issues such as huge sections of your page disappearing or displaying in an

odd place. There’s no need to panic! Most IE6 issues can be easily resolved by

specifying some different style rules for this particular browser.

The same goes for IE7, although I find there are less layout problems to fix in this

browser.

Add Browser-specific Style Sheets Using Conditional Comments

At this point I would suggest that you add an additional style sheet as described in

the previous section using conditional comments, to target IE6, 7, or both. You add

this style sheet to your document head—after the existing style sheets in your

HTML—so that any rules you place in your IE6- and IE7-specific style sheet will

overwrite the same rules in the main style sheet.

Fixing Internet Explorer Problems
You can now work through any problems that you can see in IE6 and 7 in a meth

odical way, applying fixes in your alternate style sheet, safe in the knowledge they’ll

only ever be applied by the browsers that need them. The following tips solve most

of the issues that we see in IE6. For IE7 I usually find that there’s no need for all of

the rules used for IE6, but sometimes some of them are still required. It’s rare that

I find a brand new issue in IE7 that I’d yet to see in IE6 and the fixes are generally

the same.

Check Your DOCTYPE

Make sure that you’re using a correct doctype as the first line in your markup, as

explained above in “What is quirks mode and how do I avoid it?”. An incorrect

doctype can cause your pages to display very strangely indeed. So before doing

anything else make sure the page is rendering in standards mode in all browsers,

including IE6 and 7.

The CSS Anthology240

Fixing the Lack of min-height Support in IE6

Internet Explorer 6 has no support for min-height (the minimum height an element

should take), but it incorrectly interprets height as min-height. So, though height

is used to specify a fixed height in other browsers, Internet Explorer 6 takes it to

mean the minimum height, so a block element will expand taller than its specified

height if need be.

To work around this issue, we simply use the height property in our IE6-specific

style sheet wherever we’ve used min-height in our main style sheet.

Trigger the hasLayout Property

IE6 and 7 have a mysterious scripting property called hasLayout that’s an internal

component of the rendering engine, and the source of many seemingly bizarre ren

dering bugs. When an element is responsible for sizing and arranging its contents

it’s said to have a layout. If an element lacks having layout then it relies on its parent,

or an ancestor element, to take care of its size and position. When an element lacks

a layout it potentially causes weird things to occur—like content disappearing and

the layout behaving erratically. Some elements, like table cells, automatically have

a layout; however, div elements do not. Specifying some CSS properties, like setting

float to left or right, also cause an element to gain a layout. Causing an element

to gain a layout makes most of these problems disappear. The trick is to find a CSS

property that will cause an element to gain a layout without having a detrimental

effect on your layout.

In IE6 I find the simplest way to trigger a layout on an element is to give it a height

value of 1%. As I just mentioned, IE6 treats height as min-height, so a height of

1% actually renders as a minimum height of 1%—so this is perfectly safe to apply

and the box will still be sized to suit its contents. Obviously you need to do this in

your IE6-specific style sheet.

IE7, in contrast, supports the height property correctly, so we’re unable to use it

as we might with IE6. However, setting the min-height property to any value, even

to 0, in IE7 causes the element to gain a layout. This is a safe approach because the

default value for min-height is 0 anyway.

241 Cross-browser Techniques

It isn't always apparent which element is going to need the layout trigger applied,

but if you work methodically you may well find the one that causes everything to

jump into shape. I usually work from the innermost container out, so if I have a div

nested inside two more divs I’d add the height to the inner div and refresh to see

if it made a difference. Otherwise, I’d remove it and try the next div, and so on.

Adding Position: Relative to Elements

If gaining a layout fails to work sometimes setting position to relative on an ele

ment will fix a problem. Keep in mind that setting position to relative on an

element will mean all its child elements will now use that element for a positioning

context. Otherwise this should be safe to do.

If All Else Fails

The above tips should fix the worst problems, but you may still be left with slight

alignment, margin, or padding issues. At this point remind yourself that what you’re

dealing with are old, buggy browsers and you should feel quite at liberty, in your

IE6- and IE7-specific style sheets, to manipulate elements by adjusting the margin,

padding, or positioning until it does work. This will have no effect on any other

browser if you’ve used conditional comments so no harm is done. Hopefully it will

be unnecessary to do too much of this because obviously this will need to be redone

if the layout ever changes; sometimes, with a very complex layout, you do need to

just hammer bits into place!

How do I achieve PNG image transparency
in Internet Explorer 6?
One of the exciting additions to Internet Explorer 7 was support of PNG transparency.

As I showed in Chapter 3, when we discussed background images, PNG image

transparency can give you true transparency: it allows overlaid images to display

across different background colors without showing a pixilated halo, and enables

designers to create effects using opaque background layers. However, if you simply

go ahead and use transparent PNGs, users of Internet Explorer 6 will see solid images

like those shown in Figure 7.5. Is there anything that can be done to make transparent

PNGs to play nicely with Internet Explorer 6?

The CSS Anthology242

Figure 7.5. Internet Explorer 6 displaying the transparent PNG images as solid images

Solution
There is a way to make transparent PNGs appear to work in Internet Explorer 6, but

it involves the use of JavaScript. The solution was originally devised by Aaron

Boodman25 and edited by Drew McLellan in order to support background images.26

First, create a 1x1px transparent GIF, and save it as x.gif.

Now, create a new JavaScript file (which we’ll include only for Internet Explorer

6), and add the following JavaScript:

25 http://webapp.youngpup.net/?request=/snippets/sleight.xml
26 http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie

http://webapp.youngpup.net/?request=/snippets/sleight.xml
http://webapp.youngpup.net/?request=/snippets/sleight.xml
http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie
http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie
http://webapp.youngpup.net/?request=/snippets/sleight.xml

243Cross-browser Techniques

chapter07/bgsleight.js

function addLoadEvent(func) {

 var oldonload = window.onload;

 if (typeof window.onload != 'function') {

 window.onload = func;

 } else {

 window.onload = function() {

 if (oldonload) {

 oldonload();

 }

 func();

 }

 }

}

var bgsleight = function() {

function fnLoadPngs() {

var rslt = navigator.appVersion.match(/MSIE (\d+\.\d+)/, '');

var itsAllGood = (rslt != null && Number(rslt[1]) >= 5.5);

for (var i = document.all.length - 1, obj = null; (obj =

document.all[i]); i--) {

 if (itsAllGood &&

obj.currentStyle.backgroundImage.match(/\.png/i) != null) {

 fnFixPng(obj);

 obj.attachEvent("onpropertychange", fnPropertyChanged);

 }

 if ((obj.tagName=='A' || obj.tagName=='INPUT') &&

obj.style.position == ''){

 obj.style.position = 'relative';

 }

 }

}

function fnPropertyChanged() {

 if (window.event.propertyName == "style.backgroundImage") {

 var el = window.event.srcElement;

 if (!el.currentStyle.backgroundImage.match(/x\.gif/i)) {

 var bg = el.currentStyle.backgroundImage;

 var src = bg.substring(5,bg.length-2);

 el.filters.item(0).src = src;

 el.style.backgroundImage = "url(/img/shim.gif)";

http:chapter07/bgsleight.js

The CSS Anthology244

}

 }

 }

function fnFixPng(obj) {

 var mode = 'scale';

 var bg = obj.currentStyle.backgroundImage;

 var src = bg.substring(5,bg.length-2);

 if (obj.currentStyle.backgroundRepeat == 'no-repeat') mode =

'crop';

 obj.style.filter =

"progid:DXImageTransform.Microsoft.AlphaImageLoader(src='"

+ src + "', sizingMethod='" + mode + "')";

 obj.style.backgroundImage = "url(/img/shim.gif)";

 }

 return {

 init: function() {

 if (navigator.platform == "Win32" && navigator.appName ==

"Microsoft Internet Explorer" && window.attachEvent) {

 addLoadEvent(fnLoadPngs);

 }

 }

}

}();

bgsleight.init();

Use a conditional comment to include the new JavaScript file so that it’s used only

by Internet Explorer:

chapter07/bgsleight.html (excerpt)

<!--[if IE 6]>

<script type="text/javascript" src="bgsleight.js"></script>

<![endif]-->

If you save your page and view it in Internet Explorer at this point, you’ll see that

the background attached to the div element with ID content has disappeared. To

make it display again, we’ll need to give it a height. A height of just 1% will

do—Internet Explorer will treat that as min-height, and will expand the div to

contain all of its contents. As we want only Internet Explorer to see this height

245Cross-browser Techniques

value, we can either put it in a style element in the document’s head, or add it to

a separate Internet Explorer 6-only style sheet that’s linked to from within the con

ditional comments:

chapter07/bgsleight.html (excerpt)

<!--[if IE 6]>

<style type="text/css">

#content {

 height: 1%;

}

</style>

<script type="text/javascript" src="bgsleight.js"></script>

<![endif]-->

Refresh your page in Internet Explorer, and the opaque background will display

over the background color, as shown in Figure 7.6.

Figure 7.6. Internet Explorer 6 displaying the transparent PNG images

The CSS Anthology246

Discussion
This hack can be problematic. You may find that areas of the page appear as if

covered by the background image, making links unclickable and text input fields

unable to accept focus. If that happens, you’ll usually find that adding position:

relative; to the element fixes the problem, but it will also add a layer of complic

ation to your work. That said, this option does enable the design flexibility that

results from the use of proper transparency, and with a bit of care you can make it

work well.

Avoiding the Hack

Another way to deal with the issue would be to create different images for Internet

Explorer 6, and add an Internet Explorer 6 style sheet that used non-transparent

images to override the PNGs used for other browsers. The site would look different

in Internet Explorer 6, but now that IE6 is two versions old and is losing market

share, it’s an acceptable solution. In sites we’re building today we often use a

combination of the two methods: using the hack for places where it would be hard

to do a GIF version, but using GIFs where we’re able to.

How do I ensure my standards-compliant
web site displays correctly in Internet
Explorer 8?
As mentioned previously, Internet Explorer 8 is capable of rendering web sites as

if it were IE7, including all the strange hasLayout discrepancies that have caused

us trouble over the years. How do you make sure that IE8 uses it’s best rendering

mode—rather than reverting to IE7—when displaying your web site?

Solution
IE8 is a very capable browser, so if you’re developing a brand new site you’ll want

IE8 to display your site to the best of its ability. Where CSS is concerned I’ve found

very few day-to-day problems when comparing IE8 to Firefox 3 and Safari 3 or 4.

As usual, by default, IE8 will use doctype switching to determine whether to render

your web page in compliance mode or quirks mode. However, in an attempt to

247Cross-browser Techniques

safeguard backwards compatibility and to “not break the Web”, Microsoft introduced

Compatibility View and the x-ua-compatible header that can instruct the browser

to render sites in its most standards-compliant way or in a way that emulates how

IE7 renders web pages.

Compatibility view is enabled in the browser, while the x-ua-compatible header

is set in the markup, using a <meta/> tag, or via a HTTP header sent by the server.

Compatibility view is enabled if the user clicks the Compatibility View button, or if

the web site appears on the Windows Internet Explorer 8 Compatibility View List,

which is a list of sites that should be rendered in compatibility view mode. This

list is maintained by Microsoft, and the IE8 user can choose to subscribe to the list.27

The x-ua-compatible header is a directive that will override all compatibility view

settings in the browser. Here’s an example of the meta tag:

<meta http-equiv="X-UA-Compatible" content="IE=8" />

The above tag ensures that IE8 displays the page in its most standards-compliant

mode. If you set the content value to IE=EmulateIE7 the browser will render the

document using the IE7 rendering engine. If you set it to IE=Edge Internet Explorer

8 and beyond will always use the most standards-compliant rendering mode no

matter what the version.

My suggestion is that if you’re building a new site you either ignore the x-ua-com

patible header or set it to IE=Edge. If you use a proper doctype and ignore the the

x-ua-compatible header altogether Internet Explorer will render the site as best it

can—hopefully you’re building a standards-compliant site and will have no need

to worry about ending up on that list! Alternatively, setting the value of x-ua-com

patible to IE=Edge is recommended against setting it to IE=IE8 or another value.

This means that when IE9 comes out your site will avoid becoming frozen in IE8

style rendering, for example.

For detailed information see Faruk Ates excellent blog post on the subject: IE8 and

the X-UA-Compatible situation. 28

27 You can download it from the Microsoft web site to see what sites are on the list:

http://www.microsoft.com/downloads/details.aspx?FamilyID=b885e621-91b7-432d-8175-a745b87d2588&displaylang=en
28 http://farukat.es/journal/2009/05/245-ie8-and-the-x-ua-compatible-situation

http://farukat.es/journal/2009/05/245-ie8-and-the-x-ua-compatible-situation
http://farukat.es/journal/2009/05/245-ie8-and-the-x-ua-compatible-situation
http://farukat.es/journal/2009/05/245-ie8-and-the-x-ua-compatible-situation
http://www.microsoft.com/downloads/details.aspx?FamilyID=b885e621-91b7-432d-8175-a745b87d2588&displaylang=en

The CSS Anthology248

What do I do if I think I’ve found a
CSS bug?
We all find ourselves in situations where our CSS just will not work! Though you’ve

tried every solution you can think of, some random bit of text continues to appear

and disappear in Internet Explorer 6, or part of your layout spreads across half the

content in Safari. Before the bug drives you mad, take a deep breath and relax. There

is a solution!

Solution
This is a solution that helps you find the solution!

1. Take a Break

Once we’ve become frustrated over battling a problem, to apply any kind of

rational process for finding a solution is difficult at best. So take a break. Go

for a walk, tidy your desk, or do some housework. If you’re at work with your

boss looking over your shoulder so that you’re unable to make it to the coffee

machine in peace, work on another task—answer some mail, tidy up some

content. Do anything to take your mind off the problem for a while.

2. Validate Your Style Sheet and Document

If you’ve yet to do so, your next step should be to validate the CSS and the

markup. Errors in your CSS or markup may well cause problems and, even if

your bug is actually caused by another issue, they often make it more difficult

to find a solution.

3. Isolate the Problem

Can you make your bug occur in isolation from the rest of your document? CSS

bugs often display only when a certain group of conditions is met, so trying to

find out exactly where the problem occurs may help you work out how it can

be fixed. Try and reproduce the problem in a document different from the rest

of your layout.

249Cross-browser Techniques

4. Search the Web

If what you have is a browser bug, it’s likely that another user has seen it before.

There are plenty of great sites that detail browser bugs and explain how to

overcome them. I always check the following sites when I’m up against a

problem:

■	 CSS Pointers Group, at http://css.nu/pointers/bugs.html
■	 Position is Everything, at http://www.positioniseverything.net/
■	 The Browser Bug Category on the css-d wiki, at

http://css-discuss.incutio.com/?page=CategoryBrowserBug

The SitePoint CSS Reference29 has much useful browser support information

for each CSS property and selector. Also, try searching the css-discuss archives,30

and, of course, Google!

5. Ask for Help

If you’ve yet to find a solution as you’ve moved through the above steps, ask

for help. Even the most experienced developers hit problems that they’re unable

to see past. Sometimes, just talking through the issue with a bunch of people

with fresh eyes can help you resolve the problem, or come up with new ideas

to test—even if no one has an immediate solution.

When you post to a forum or mailing list, remember these rules of thumb:

■	 If the list or forum has archives, search them first, just in case you’re about

to ask one of those questions that’s asked at least once a day.

■	 Make sure that your CSS and HTML validates; otherwise, the answer you’ll

receive is most likely to be, “go and validate your document and see if that

helps.”

■	 Upload an example to a location to which you can link from your forum

post. If you manage to reproduce the problem outside a complex layout, so

29 http://reference.sitepoint.com/css/
30 http://www.css-discuss.org/

http://reference.sitepoint.com/css/
http://www.css-discuss.org/
http:http://www.css-discuss.org
http://reference.sitepoint.com/css
http://css-discuss.incutio.com/?page=CategoryBrowserBug
http:http://www.positioniseverything.net
http://css.nu/pointers/bugs.html

The CSS Anthology250

much the better—this will make it easier for others to work out what’s going

on.

■	 Explain the solutions you’ve tried so far. This saves the recipients of your

message from pursuing those same dead-ends, and shows that you’ve attemp

ted to fix the problem yourself before asking for help.

■	 Give your message a descriptive subject line. People are more likely to read

a post entitled, “Duplicate boxes appearing in IE5” than one that screams,

“HELP!” Good titles also make the list archives more useful, as people can

see at a glance the titles of posts in a thread.

■	 Be polite and to the point.

■	 Be patient while you wait for answers. If you fail to receive a reply after a

day or so and it’s a busy list, it’s usually acceptable to post again with the

word “REPOST” in the subject line. Posts can be overlooked in particularly

large boards, and this is a polite way to remind users that you’ve yet to re

ceive any assistance with your problem.

■	 When you receive answers, try implementing the poster’s suggestions. Avoid

becoming upset or angry if the recommendations fail to work, or you feel

that the poster is asking you to try very basic things. I’ve seen threads go on

for many posts as different posters weigh in to help a user solve a problem,

and continue the discussion until a solution is found. Give people a chance

to help!

■	 If you find a solution—or you have no success and decide instead to change

your design to avoid the problem—post to the thread to explain what worked

and what failed. This shows good manners towards those who helped you,

but will also aid anyone who searches the archive for information on the

same problem. It’s very frustrating to search an archive and find several

possible solutions to a problem, but to be unsure which (if any) was success

ful!

251 Cross-browser Techniques

Many web design and development mailing lists are used by people who are very

knowledgeable about CSS. In my opinion, the best CSS-specific list is css-discuss.31

It’s a high-traffic list, but the people on it are very accommodating, and you can

pick up a lot just by reading the posts and browsing the archives. SitePoint also has

a great, active CSS forum full of obliging and experienced people.32

What do the error and warning messages
in the W3C Validator mean?
Validating your documents and CSS is an important step in ensuring that your site

renders correctly in standards-complaint browsers. Sometimes, however, the error

and warning messages can be very confusing.

Solution
You can validate your (X)HTML documents online at the W3C Validator;33 CSS

documents can be validated at the W3C CSS Validator.34 Many authoring tools,

such as Dreamweaver, have inbuilt validators, and plugins are available for browsers

such as Firefox to help you validate your pages.35

With both CSS and HTML documents, start validating at the top. Sometimes, you’ll

run a document through the validator and receive a huge list of errors. However,

when you fix the first error that the validator has encountered, many of the sub

sequent errors often disappear. This is especially likely to occur in an (X)HTML

document. If you have forgotten to close a tag correctly, the validator believes that

the tag is still open, and it will give you a whole list of errors to tell you that element

X is not allowed within element Y. Close the offending tag and those errors will

instantly be resolved.

A related problem is found in documents with an HTML (non-XHTML) doctype,

where the developer has closed a tag using XML syntax, like this:

31 http://www.css-discuss.org/
32 http://www.sitepoint.com/launch/cssforum/
33 http://validator.w3.org/
34 http://jigsaw.w3.org/css-validator/
35 http://users.skynet.be/mgueury/mozilla/

http://www.css-discuss.org/
http://www.sitepoint.com/launch/cssforum/
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://users.skynet.be/mgueury/mozilla/
http://users.skynet.be/mgueury/mozilla
http://jigsaw.w3.org/css-validator
http:http://validator.w3.org
http://www.sitepoint.com/launch/cssforum
http:http://www.css-discuss.org

The CSS Anthology252

<link rel="stylesheet" href="stylesheet.css" type="text/css" />

If you’ve done this in a document that lacks an XHTML doctype, you’ll receive errors

indicating that there’s a closing </head> element in the wrong place. To make the

document obey the HTML standard, simply remove the slash from the tag:

<link rel="stylesheet" href="stylesheet.css" type="text/css">

Errors and Warnings
A CSS document is not valid CSS if it contains errors such as invalid syntax, missing

semicolons, and so on. You’ll need to fix these errors to have the document validate,

and to ensure that your style sheet behaves as expected.

If your style sheet is error-free, it will validate. A valid document, however, may

still contain warnings when you run it through the validator. Whether you take

notice of these warnings or not is entirely up to you. The most common warning

states that you’ve failed to specify an acceptable background color for a specific

element. This could indicate a problem with your design—for example, part of the

text on your page may be rendered unreadable—or it could simply indicate an aspect

of your design that has the potential to cause problems, even if you’ve intentionally

designed it that way (for instance, you’re expecting the background of an element

beneath the element in question to show through). Warnings should act as a reminder

to check you’ve covered everything, but remember that a style sheet that validates

with warnings is still perfectly valid!

Summary
This chapter has covered a wide range of solutions to problems that you may have

yet to experience. This will almost certainly be the case if you’ve only designed

sites using tables, rather than CSS, for positioning. It’s at that point that the more

interesting browser bugs start to rear their ugly heads, and testing in a wide range

of browsers, and browser versions, becomes very important indeed.

What I hope to have shown you in this chapter is how I go about testing sites,

finding bugs, and gaining help. I’ve also aimed to broaden your options in terms of

displaying your pages appropriately for different users. If you’re reading through

253Cross-browser Techniques

this book chapter by chapter, you might find that much of this information makes

more sense in light of Chapter 9, which deals with the use of CSS for layout.

Chapter8
Accessibility and Alternative Devices
CSS allows us to separate the structure and content of our documents from the

presentation of the site. This means that visitors using devices that are unable to

render the site’s design—either because they’re limited from a technical standpoint,

such as some mobile device browsers, or as a result of their own functional advant

ages, such as screen readers that speak a page’s text for the benefit of visually im

paired users—will still be able to access the content. However, we’re still free to

create beautiful designs for the majority of users who do have browsers that support

CSS.

While these considerations will improve the experience for users of assistive tech

nology, you still need to take care of visitors who can see the site’s design, but have

particular accessibility-related needs. Making your site accessible to everyone re

quires more than simply using CSS for layout. For example, many people who suffer

some kind of vision loss can only read text that’s clearly laid out and can be enlarged.

This chapter also covers the use of alternative style sheets (also called alternate

style sheets), style sheets for different media (such as print style sheets), and targeted

CSS for mobile devices.

The CSS Anthology256

What should I be aware of in terms of
accessibility when using CSS?
The accessibility of your site involves more than just considering the users of screen

readers. The design choices you make will impact users with a range of issues; for

example, older people with poor eyesight, people with dyslexia, and those who are

unable to use a mouse because of a physical disability. These users will most likely

be viewing your site as designed in a regular web browser, and so your choices

when designing and building the site will impact on their experience.

Solution
This is more a short checklist—rather than a hard and fast solution—with many

points having already been mentioned in previous chapters of this book.

Set Background Colors When Using Background Images
If you’ve used a background image in your design underneath some text—perhaps

giving a background color to a column or box—make sure that you also add a

background color. That way, if the image fails to load, the color will ensure that the

text on top remains at a high enough contrast to be read.

If You Set a Foreground Color, You Need to Set a Background
Color, and Vice Versa
In the interests of readability, color settings should always be considered in tandem:

that is, the foreground and background colors should be chosen together so that

they contrast sufficiently. If you were to only set one color, say the background, and

a user’s default foreground color lacks contrast with your choice of color, it may

leave your text unreadable. For example, if the user has set their background color

to black and foreground to white, and you then set the main text color to black, the

text will seem to disappear! If you want users to be able to make their own choices

as to colors then you should leave all colors unset and very few web designers would

feel able to do that!

257Accessibility and Alternative Devices

Check Color Contrasts
Take care to check the contrast of text against background colors. For users with

any kind of visual impairment a low contrast between the text and the background

can make the text very hard to read. You should also consider those users with

color blindness who may find certain combinations of foreground and background

colors difficult to distinguish. WCAG 2.0 Success Criterion 1.4.31 requires that, in

general, text and images of text should have a contrast ratio of at least 4.5:1. To help

you assess whether your chosen colors will pass this ratio you can use the handy

Luminosity Contrast Ratio Analyser written by Jez Lemon.2

Backgrounds Should Only Be Decorative
It’s so easy to use background images in CSS that we can fall into the trap of using

them everywhere. It’s worth remembering, however, that anyone who is unable to

load images and/or CSS will be unaware the image exists at all if it is set as a

background image. This is acceptable if the image is purely for visual display, but

if it’s important to the content it’s more appropriate to put the image inline with

descriptive alt text; that way, users who are unable to see the image understand

it’s there and what it represents.

Check line-height for Readability
Increasing the line-height used on your site can help readability—but take care

here as very wide gaps between lines can also make it hard to read. A value between

1.2 and 1.6 should work well, and if you leave off the unit (for example, em or %)

the line-height can scale correctly according to the text size.

How do I test my site in a text-only
browser?
Checking your site using a text-only browser is an excellent way to find out how

accessible it really is. If you find it easy to navigate your site using a text-only

browser, it’s likely that visitors using screen readers will too.

1 http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast
2 http://juicystudio.com/services/luminositycontrastratio.php

http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast
http://juicystudio.com/services/luminositycontrastratio.php
http://juicystudio.com/services/luminositycontrastratio.php
http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast

The CSS Anthology258

Solution
You can view pages from your site using Lynx, a text-only browser, through the

online Lynx Viewer.3 While this is a useful test, Lynx is free to download and install,

so you may as well install a copy on your system. This option provides the added

advantage of testing pages before you upload them to the Web.

Linux/Unix Users
You may find that Lynx is already installed on your system; otherwise, you should

be able to obtain a copy easily via your package management system. Alternatively,

you can download the source from the Lynx software distribution site.4

Windows Users
Installing Lynx on Windows used to be a tricky process, but now an installer is

available from csant.info.5 Download and run the installer, which will also make

Lynx available from your Start menu.

Mac OS X Users
Lynx for Mac OS X is available from the Apple web site.6

Discussion
Lynx behaves consistently across all platforms, but you’ll need to learn a few simple

commands in order to use it for web browsing. Figure 8.1 shows a typical site dis

played in Lynx.

To open a web page, hit G and enter the URL. Press Enter, and Lynx will load that

URL. If the site that you’re trying to visit uses any form of cookies, Lynx will ask

you if you wish to accept them. Type Y for yes, N for no, A to accept cookies from

that site always, or V to ensure that you never accept cookies from that site.

3 http://www.delorie.com/web/lynxview.html
4 http://lynx.isc.org/release/
5 http://www.csant.info/lynx.htm
6 http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html

http://www.delorie.com/web/lynxview.html
http://lynx.isc.org/release/
http://www.csant.info/lynx.htm
http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html
http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html
http://www.csant.info/lynx.htm
http://lynx.isc.org/release
http://www.delorie.com/web/lynxview.html

259Accessibility and Alternative Devices

Use the arrow keys to navigate. The up and down arrow keys will let you jump from

link to link. The right arrow key will follow the link that you’re currently on, while

the left arrow key will take you back to the previous page.

Figure 8.1. Viewing a site in Lynx

To complete a form, navigate to each form field using the down arrow key and, once

you’re there, type into the field as normal.

You can use Lynx to view local files, which is useful during development. If you’re

running a local web server, such as Apache or IIS, you can just point Lynx to

localhost URLs. Note, though, that the browser will also read an HTML file directly

if you provide it with the path and filename.

For more information on how to use Lynx, hit H to display the help system, which

you can navigate as you would any site.

The CSS Anthology260

See Accessibility in Action

Spend some time visiting your favorite sites in a text-only browser—you’ll soon

start to appreciate the importance of ensuring you have alt text on images, and

a well-structured document.

How do I test my site in a screen reader?
The best way to understand the experience of visiting your site with a screen reader

is to try it out for yourself; however, the most popular and well-known screen

reader in use today, JAWS, is expensive (though a demonstration version exists that

will run for 40 minutes) and entails a steep learning curve. What other options do

web developers have to test their sites in a screen reader?

Solution
The free Firefox extension, Fire Vox, can give you an excellent impression of the

way a site sounds when it’s read through a screen reader, and is available as a

download for those running Firefox on Windows, Mac OS X, or Linux. Download

Fire Vox from the author, Charles L. Chen’s web site,7 and follow the installation

instructions for your operating system. The brief tutorial offered on the site will

help you start using Fire Vox.

Discussion
While trying out a screen reader is a great way to gain a feel for the experience a

visually impaired user has online, it’s impossible for those of us with good vision

to really understand the experience, or even, with the limited use of screen readers

in site testing, to become as adept with the software as those who rely on it to use

the Web. So unless you have time to learn to use the software properly, testing sites

with a screen reader should be seen as an activity to help you gain insight into these

users’ experiences, rather than as a true test of your site’s screen reader compatibility.

7 http://www.firevox.clcworld.net/downloads.html

http://www.firevox.clcworld.net/downloads.html
http://www.firevox.clcworld.net/downloads.html

261 Accessibility and Alternative Devices

How do I create style sheets for specific
devices?
It’s possible to show different CSS to various browsers, but what about other devices?

Solution
CSS 2.1 includes a specification for media types, which allow web page authors to

restrict a style sheet, or section of a style sheet, to a given medium.

You can tag a style sheet with any of these media types. For example, the following

markup tags the linked style sheet for use by browsers rendering to a computer

screen only:

<link rel="stylesheet" type=text/css" href="screen.css"

media="screen" />

Embedded style sheets can also be tagged this way:

<style type="text/css" media="all">

⋮
</style>

In both these examples, the media attribute has a value of the media type for which

the style sheet has been created. This style sheet will only be used by devices that

support the specified media type.

Discussion
The following list of media types is taken from the CSS 2.1 specification.8

all suitable for all devices

braille intended for tactile feedback devices, such as braille browsers

embossed intended for paged braille printers

8 http://www.w3.org/TR/CSS21/media.html#media-types

http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3.org/TR/CSS21/media.html#media-types

The CSS Anthology262

handheld	 intended for handheld devices (typically small-screen, limited-

bandwidth devices)

print	 intended for paged material and for documents viewed on screen in

Print Preview mode

projection	 intended for projected presentations (this is used by Opera in full-

screen mode)

screen	 intended primarily for color computer screens

speech	 intended for speech synthesizers (note that CSS2 had a similar media

type called aural for this purpose)

tty	 intended for media using a fixed-pitch character grid (such as tele

types, terminals, or portable devices with limited display capabilit

ies); authors should not use pixel units with the tty media type

tv	 intended for television-type devices (low resolution, color, limited

scrollability screens with sound available)

In addition to the media attribute described above, we can address multiple media

types in one style sheet using the @media at-rule.

Here’s an example of this approach in action. The style sheet below dictates that

printed documents will print with a font size of ten points, while on the screen, the

font will display at a size of 12 pixels. Both print and screen devices will display

the text in black:

@media print {

 body {

 font-size: 10pt;

 }

}

@media screen {

 body {

 font-size: 12px;

 }

}

@media screen, print {

 body {

263Accessibility and Alternative Devices

color: #000000;

 }

}

Currently, there are very few devices that fully support the media types you would

expect them to and it’s likely that this method of targeting specific devices will be

superseded by the Media Queries module of CSS3.9 Opera Mobile and Safari for

the iPhone, for example, have dropped support for the handheld media type because

their parent companies believe they’re fully featured browsers, unlike the typically

low-powered browsers you find on handheld devices. Instead, they’ve opted to

support media queries, which offer a far more powerful way of targeting modern

mobile devices that can fully render CSS well, but have limitations due to device

screen size.10

However media types are still very relevant; the one that’s most usefully supported

by modern browsers is the print media type. The next solution discusses how you

can use this media type to create print versions of your pages.

No Need to Start from Scratch

If you’re creating a style sheet for a new media type, the easiest way is to save a

copy of your existing style sheet under a new name. That way, you already have

all your selectors at hand, and can simply change the styles that you’ve created

for each.

How do I create a print style sheet?
Web pages rarely print well, as techniques that are designed to make a page look

good on a screen are usually different from those used to create a document that

prints well. However, it’s possible to use the CSS media types to provide a style

sheet that’s applied when the document is printed.

9 http://reference.sitepoint.com/css/mediaqueries/
10 For example, using CSS media queries you can specify styles for screens that have a maximum width

of 480px. You can read more at the Opera Developer Community site

[http://dev.opera.com/articles/view/opera-mobile-9-5-the-developer-angle/] and the Apple Safari Dev

Center site [http://developer.apple.com/safari/].

http://reference.sitepoint.com/css/mediaqueries/
http://developer.apple.com/safari
http://dev.opera.com/articles/view/opera-mobile-9-5-the-developer-angle
http://reference.sitepoint.com/css/mediaqueries

The CSS Anthology264

Solution
We can create a special print style sheet for our visitors like so:

chapter08/print-stylesheet.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Print Style Sheet</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="main.css"

 title="default" />

<link rel="stylesheet" type="text/css" href="print.css"

 media="print" />

</head>

<body>

<div id="banner"></div>

<div id="content">

 <h1>Chinese-style stuffed peppers</h1>

 <p>These stuffed peppers are lovely as a starter, or as a side

 dish for a Chinese meal. They also go down well as part of a

 buffet and even children seem to like them.</p>

 <h2>Ingredients</h2>

⋮

</div>

<div id="navigation">

 <ul id="mainnav">

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

chapter08/main.css

body, html {

 margin: 0;

 padding: 0;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

265Accessibility and Alternative Devices

}

#navigation {

 width: 200px;

 font: 90% Arial, Helvetica, sans-serif;

 position: absolute;

 top: 41px;

 left: 0;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

 display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 color: #FFFFFF;

 background-color: #b51032;

 text-decoration: none;

}

#navigation li a:hover {

 color: #FFFFFF;

 background-color: #711515;

}

#content {

 margin-left: 260px;

 margin-right: 60px;

}

#banner {

 height: 40px;

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

 margin-top: 0;

}

#banner ul {

The CSS Anthology266

margin: 0;

 padding: 0;

}

#banner li {

 display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

color: #FFFFFF;

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

}

chapter08/print.css

body, html {

 margin: 0;

 padding: 0;

}

#navigation {

 display: none;

}

#content {

 margin-left: 20pt;

 margin-right: 30pt;

}

#banner {

 display: none;

}

#content p, #content li {

 font: 12pt/20pt "Times New Roman", Times, serif;

}

267Accessibility and Alternative Devices

#content p {

 margin-left: 20pt;

}

#content h1, #content h2 {

 font: 16pt Georgia, "Times New Roman", Times, serif;

 color: #4b4b4b;

 background-color: transparent;

}

#content h2 {

 font: 14pt Georgia, "Times New Roman", Times, serif;

 padding-bottom: 2pt;

 border-bottom: 1pt dotted #CCCCCC;

}

Discussion
Creating a print style sheet can be very helpful to your visitors, particularly if your

page has many graphics. Printing from a site featuring multiple graphics can be

costly in terms of printer ink and slow on older printers. And some sites fail to print

well at all because of the color combinations or layouts used. For example, Figure 8.2

shows a page that has a simple two-column CSS layout, with navigation in the

sidebar, and a main content area that contains a recipe.

The CSS Anthology268

Figure 8.2. Displaying a two-column layout in the browser

Figure 8.3 shows this layout in Print Preview.

These figures really give us a clear idea of the practical differences between the on-

screen and print displays. A standard letter or A4 sheet of paper is reasonably nar

row, so by the time the print display has accounted for the menu, only half of the

page width is left for the display of the recipe text. This may mean that long recipes

need to be printed on two pages, rather than one.

269Accessibility and Alternative Devices

Figure 8.3. The layout appears in Print Preview

Traditionally, sites offer print versions of documents that they expect users to print.

However, this approach requires the maintenance of more than one version of the

document—and users have to be savvy enough to find and click the Print button on

the page, rather than simply printing the page using the browser’s Print button. With

the CSS method, the print style sheet will automatically come into play regardless

of which print button they click on.

The CSS Anthology270

Let’s step through the process of developing the print style sheet and linking it to

your pages.

Linking a Print Style Sheet
Open your existing main style sheet and save it as print.css so that it becomes your

print style sheet. Link this style sheet to your document with the print media type,

like so:

<link rel="stylesheet" type="text/css" href="print.css"

media="print" />

Creating the Print Styles
If you’ve saved your existing style sheet as print.css, you can use it to decide what

needs to be changed in order to create the print style sheet. In my layout, the navig

ation is contained within a div; the section in the style sheet for that element looks

like this:

chapter08/main.css (excerpt)

#navigation {

 width: 200px;

 font: 90% Arial, Helvetica, sans-serif;

 position: absolute;

 top: 41px;

 left: 0;

}

The first task we want to do is hide the navigation, as it’s useless in the print version

of the document. To do this, we replace the properties in the above section of the

style sheet with display: none:

chapter08/print.css (excerpt)

#navigation {

 display: none;

}

We can now remove any navigation rules that apply to elements within the

navigation element.

271 Accessibility and Alternative Devices

We can also make the content area wider, so that it takes up all the available space

on the page. Find the section for the content element in your style sheet:

chapter08/main.css (excerpt)

#content {

 margin-left: 260px;

 margin-right: 60px;

}

We can change the left margin to a smaller value, as we no longer need to leave

space for the navigation. It’s also a good idea to switch from pixel measurements (a

screen unit) to points (a print unit), as we discussed in “Should I use pixels, points,

ems, or another unit identifier to set font sizes?” in Chapter 2:

chapter08/print.css (excerpt)

#content {

 margin-left: 20pt;

 margin-right: 30pt;

}

If we check the document in Print Preview, as shown in Figure 8.4, or print it via

the browser, we’ll find that the navigation has disappeared and the content now

fills the space much more effectively.

The CSS Anthology272

Figure 8.4. The page printing more cleanly after we remove the navigation

The line at the top of Figure 8.4 is the banner’s bottom border. We can hide the

banner just as we hid the navigation. First, we must find the section for banner in

the style sheet:

chapter08/main.css (excerpt)

#banner {

 height: 40px;

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

}

Once again, we set the banner to display: none and delete the remaining rules

associated with this ID:

273Accessibility and Alternative Devices

chapter08/print.css (excerpt)

#banner {

 display: none;

}

Finally, we can format the text. For print purposes, I normally make any colored

text grayscale, unless it’s important that the text stays colored. Let’s use print-friendly

points to size the text, so that our print style sheet renders font sizes reliably across

different systems.

Additionally, you might like to consider using a serif font for your printed text, as

serif fonts are generally considered easier to read on paper. Here are those changes:

chapter08/print.css (excerpt)

#content p, #content li {

 font: 12pt/20pt "Times New Roman", Times, serif;

}

#content p {

 margin-left: 20pt;

}

#content h1, #content h2 {

 font: 16pt Georgia, "Times New Roman", Times, serif;

 color: #4b4b4b;

 background-color: transparent;

}

#content h2 {

 font: 14pt Georgia, "Times New Roman", Times, serif;

 padding-bottom: 2pt;

 border-bottom: 1pt dotted #CCCCCC;

}

The much plainer but more readable print layout is shown in its final form in Fig

ure 8.5.

The CSS Anthology274

Figure 8.5. Using Print Preview to view the page affected by the completed style sheet

Print Style Sheets and Table Layouts

Print style sheets are easy to implement on CSS layouts, but you can also create

effective print style sheets for table-based layouts, particularly if you use CSS to

set the widths of table cells. You can then hide cells that contain navigation just

as we hid the navigation div in the above CSS layout.

How do I add alternative style sheets
to my site?
Some modern browsers allow the user to view a list of the style sheets attached to

a document, and select the one they want to use to view the site. This can be a

simple way to add a style sheet with reversed-out colors, for example.

275Accessibility and Alternative Devices

Solution
Link your alternative style sheet with rel="alternative stylesheet" and give it

a descriptive title. The title will display in the browser’s menu, so describing the

style sheet—for example, “high contrast”—is most helpful for users. You should

also give your default style sheet a title to differentiate it from the alternative style

sheet:

chapter08/alternate-stylesheets.html (excerpt)

<link rel="stylesheet" type="text/css" href="main.css"

 title="default" />

<link rel="stylesheet" type="text/css" href="print.css"

 media="print" />

<link rel="alternative stylesheet" type="text/css"

 href="highcontrast.css" title="high contrast" />

chapter08/highcontrast.css

body, html {

 margin: 0;

 padding: 0;

background-color: #000000;

 color: #FFFFFF;

}

#navigation {

 width: 200px;

 font: 90% Arial, Helvetica, sans-serif;

 position: absolute;

 top: 41px;

 left: 0;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

The CSS Anthology276

display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 color: #FFFFFF;

 background-color: #b51032;

 text-decoration: none;

}

#navigation li a:hover {

 color: #FFFFFF;

 background-color: #711515;

}

#content {

 margin-left: 260px;

 margin-right: 60px;

}

#banner {

 height: 40px;

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

 margin-top: 0;

}

#banner ul {

 margin: 0;

 padding: 0;

}

#banner li {

 display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

color: #FFFFFF;

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

277Accessibility and Alternative Devices

color: #FFFFFF;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

border-bottom: 1px dotted #CCCCCC;

}

In Figure 8.6, you can see how the page displays when the user selects the alternative

style sheet from Firefox’s View menu.

Figure 8.6. Switching to the High Contrast style sheet in Firefox

Discussion
Utilizing this browser functionality is easy, and allows you to add valuable features

for users with a minimum of effort. Typically, it takes very little time to create a

style sheet that tweaks the color scheme. Simply save your existing style sheet and

tweak the fonts, colors, and layout as required.

Unfortunately, browser support for this feature is still limited—and absent in Internet

Explorer. However, users who find this functionality beneficial may choose a browser

specifically because it gives them access to these features.

The CSS Anthology278

Look How Thoughtful I Am!

As very few sites utilize this feature at present, it would be a good idea to let your

users know that you offer alternative style sheets. Perhaps include the information

on a separate page that explains how to use the site, which is linked clearly from

the home page.

Zoom Layouts
A step on from simply creating a large-print style sheet is the concept of the zoom

layout. Popularized by Joe Clark, the zoom layout uses CSS to refactor the page into

a single-column layout with high-contrast colors.11 This is most useful for visitors

who use the zoom feature in modern browsers (as it increases the size of the whole

layout rather than just the text), or use software that magnifies the screen to make

reading easier. When a design is magnified in this way, the sidebars often move off

the side of the viewport, resulting in a page that contains only essential content.

Zoom layouts can make it easier for visually impaired users by enlarging the font

size and displaying the text in a light color on a dark background—a combination

that’s easier for many users to read. A style sheet that creates a zoom layout for the

design we’ve been working on throughout this chapter might contain the following

rules, and display in the browser as shown in Figure 8.7:

chapter08/zoom.css

body, html {

 margin: 1em 2em 2em 2em;

 padding: 0;

 font-size: 140%;

 background-color: #333;

 color: #FFFFFF;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

11 http://joeclark.org/access/webaccess/zoom/

http://joeclark.org/access/webaccess/zoom/
http://joeclark.org/access/webaccess/zoom

279Accessibility and Alternative Devices

#navigation li {

 float:left;

 width: 20%;

}

#navigation li a:link, #navigation li a:visited {

 color: #FFFF00;

}

#navigation li a:hover {

 text-decoration:none;

}

#content {

 padding: 1em 0 0 0;

 clear:left;

}

#content p, #content li {

 line-height: 1.6em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

 color: #FFFFFF;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

}

The CSS Anthology280

Figure 8.7. A zoom layout style sheet

Should I add font-size widgets or other
style sheet switchers to my site?
You may come across sites that have added a widget to increase or decrease font

size by switching the style sheet. In this chapter we’ve already covered how to create

alternate style sheets; should we provide these style switcher links?

Solution
Font-size widgets—often seen as a series of the letter “A” in varying sizes—are really

redundant if you have built your site well, using font-sizing methods that allow the

text to be increased in all browsers. It’s seen as more helpful to let your users know

how to increase the font size using browser controls, as this will give them the

ability to increase the text on most sites, rather than just the ones that offer a widget

to do so.

281 Accessibility and Alternative Devices

With zoom layouts or other alternate layouts, the guidance is less clear. Modern

browsers do allow users to zoom rather than just increase text size and, in an ideal

world, all designs would zoom well and there’d be no need to provide alternate

style sheets for users wanting to zoom. However, where fixed-width designs are

concerned, zooming often results in parts of the design disappearing off screen. I

personally think that in this situation, having a different design tailored to the needs

of these users is a good thing. You could simply create an alternate style sheet as

above and, on a page detailing the accessibility of your site, explain to users which

browsers will enable use of alternate style sheets and how to switch to the zoom

version, or you could implement a switcher using JavaScript or server-side code.

You should, however, only include this functionality if you really need to. Take

care to resist the trap of thinking you have to have style switchers, or that they allow

you to disregard accessibility in your default design.

How do I use alternative style sheets
without duplicating code?
In the examples we’ve seen so far in this chapter, we created our alternative style

sheet by changing very few properties within the main style sheet. Do we actually

need to create a whole new version of the style sheet as an alternative, or is it possible

to alter only those styles that need to be changed?

Solution
The answer to this question is to create multiple style sheets: a base style sheet for

the properties that never change, a default style sheet that contains the properties

that will change, and a style sheet that includes the alternative versions of those

properties:

alternate-stylesheets2.html (excerpt)

<link rel="stylesheet" type="text/css" href="main2.css" />

<link rel="stylesheet" type="text/css" href="defaultcolors.css"

 title="Default" />

<link rel="stylesheet" type="text/css" href="print.css"

The CSS Anthology282

media="print" />

<link rel="alternative stylesheet" type="text/css"

 href="highcontrast2.css" title="High Contrast" />

chapter08/main2.css

body, html {

 margin: 0;

 padding: 0;

}

#navigation {

 font: 90% Arial, Helvetica, sans-serif;

 position: absolute;

 left: 0;

 top: 41px;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

 display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 background-color: #B51032;

 color: #FFFFFF;

 text-decoration: none;

}

#navigation li a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

#banner {

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

283Accessibility and Alternative Devices

margin-top: 0;

}

#banner ul {

 margin: 0;

}

#banner li {

 display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

color: #FFFFFF

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

 color: #B51032;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

 border-bottom: 1px dotted #ED9F9F;

}

chapter08/defaultcolors.css

body, html {

 background-color: #FFFFFF;

 color: #000000;

}

#content h1, #content h2 {

 color: #B51032;

 background-color: transparent;

}

The CSS Anthology284

#content h2 {

 border-bottom: 1px dotted #ED9F9F;

}

chapter08/highcontrast2.css

body, html {

 background-color: #000000;

 color: #FFFFFF;

}

#content h1, #content h2 {

 color: #FFFFFF;

 background-color: transparent;

}

#content h2 {

 border-bottom: 1px dotted #CCCCCC;

}

Discussion
To create the highcontrast.css file that I used in “How do I add alternative style sheets

to my site?” I changed very few of the properties that were in the original style sheet.

I changed the base color and background color:

chapter08/main.css (excerpt)

body, html {

 margin: 0;

 padding: 0;

 background-color: #FFFFFF;

 color: #000000;

}

chapter08/highcontrast.css (excerpt)

body, html {

 margin: 0;

 padding: 0;

285Accessibility and Alternative Devices

background-color: #000000;

 color: #FFFFFF;

}

I also adjusted the color of the level 1 and 2 headings:

chapter08/main.css (excerpt)

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

color: #B51032;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

border-bottom: 1px dotted #ED9F9F;

}

chapter08/highcontrast.css (excerpt)

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

color: #FFFFFF;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

border-bottom: 1px dotted #CCCCCC;

}

To avoid making a copy of the entire style sheet in order to create the highcontrast.css

file, we can remove from the main style sheet those properties that we know we’ll

need to swap. We’ll place them in a new style sheet that determines the default

color scheme; our high-contrast style sheet need contain only the altered version

of those properties. This way, you avoid having to maintain several different versions

of what is, essentially, the same style sheet.

The CSS Anthology286

Summary
In this chapter, we’ve covered some of the ways in which the use of style sheets

can make your site more accessible to a wider range of users. By starting out with

an accessible document structure, we’re already assisting those who need to use a

screen reader to read out the content of the site, and by providing alternative style

sheets we can help users with other accessibility needs to customize their experience,

making the site easier to use.

Chapter9
CSS Positioning and Layout
Browser bugs aside, the fundamentals of CSS layout are relatively easy to understand.

Once you know the basics, anything more complex is really just repeating the same

techniques on various sections of your page.

This chapter will introduce the basics of CSS layout, and explore useful tricks and

techniques that you can use to create unique and beautiful sites. These are the es

sential building blocks—commencement points for your creativity. If you work

through the chapter from beginning to end, you’ll start to grasp the fundamentals

necessary to create workable CSS layouts. The chapter then progresses to more de

tailed layout examples—so if you’re already comfortable with the basics, simply

dip into these solutions to find the specific technique you need.

How do I decide when to use a class and
when to use an ID?
At first glance, classes and IDs seem to be used in much the same way: you can assign

CSS properties to both classes and IDs, and apply them to change the way (X)HTML

The CSS Anthology288

elements look. But, in which circumstances are classes best applied? And what

about IDs?

Solution
The most important rule, where classes and IDs are concerned, is that an ID must

be only used once in a document—as it uniquely identifies the element to which

it’s applied. Once you’ve assigned an ID to an element, you cannot use that ID again

within that document.

Classes, on the other hand, may be used as many times as you like within the same

document. Therefore, if there’s a feature on a page that you wish to repeat, a class

is the ideal choice.

You can apply both a class and an ID to any given element. For example, you might

apply a class to all text input fields on a page; if you want to be able to address those

fields using JavaScript, each field will need a separate ID, too. However, no styles

need be assigned to that ID.

I tend to use IDs for the main, structural, positioned elements of the page, so I often

end up with IDs such as header, content, nav, and footer. Here’s an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Absolute positioning</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="position2.css" />

</head>

<body>

 <div id="header"> … </div>

 <div id="content">

⋮ Main page content here …
 </div>

 <div id="nav"> … </div>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

289CSS Positioning and Layout

Can I make an inline element display as if
it were block-level, and vice-versa?
Sometimes, we need to make the browser treat HTML elements differently than it

would treat them by default.

Solution
In Figure 9.1, you can see that we’ve forced a div element to display as an inline

element, and a link to display as a block.

Figure 9.1. Displaying the block-level element inline, while the inline element displays as a block

Here’s the markup that achieves this effect:

chapter09/inline-block.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Inline and block level elements</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 #one {

 background-color: #CFEAFA;

 border: 2px solid #6CB5DF;

 padding: 2px 6px 2px 6px;

 }

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology290

#two {

 background-color: #CFEAFA;

 border: 2px solid #6CB5DF;

 padding: 2px 6px 2px 6px;

display: inline;

 }

 a {

 background-color: #6CB5DF;

 color: #FFFFFF;

 text-decoration: none;

 padding: 1px 2px 1px 2px;

 }

 a.block {

display: block;

 }

 </style>

 </head>

 <body>

 <div id="one">A div is a block level element.</div>

 <p>It is possible to display a div or any other block level

element as an inline element. </p>

 <div id="two">This div is displaying as an inline element.

 </div>

 <p>This paragraph contains a

link that

displays as an inline element.</p>

 <p>This paragraph contains a

link

that displays as a block element.</p>

 </body>

</html>

Discussion
Block-level elements are distinguished from inline elements in that they may contain

inline elements as well as other block-level elements. They’re also formatted differ

ently than inline elements: block-level elements occupy a rectangular area of the

page, spanning the entire width of the page by default, whereas inline elements

flow along lines of text, and wrap to fit inside the blocks that contain them. HTML

elements that are treated as block-level by default include headings (h1, h2, h3, …),

paragraphs (p), lists (ul, ol), and various containers (div, blockquote).

291 CSS Positioning and Layout

In the example above, we see a div that displays as normal. As it’s a block-level

element, it takes up the full width of the parent element, which, in this case, is the

body. If it were contained within another div, or a table cell, it would stretch only

to the width of that element.

If we want the div to behave differently, we can set it to display inline by applying

this CSS property:

display: inline;

We can cause an inline element to display as if it were a block-level element in the

same way. In the above example, note that the a element displays as an inline ele

ment by default. We often want it to display as a block—for example, when we’re

creating a navigation bar using CSS. To achieve this, we set the display property

of the element to block. In the example above, this causes the gray box that contains

the linked text to expand to the full width of the screen.

How do margins and padding work in CSS?
What’s the difference between the margin and padding properties, and how do they

affect elements?

Solution
The margin properties add space to the outside of an element. You can set margins

individually:

margin-top: 1em;

margin-right: 2em;

margin-bottom: 0.5em;

margin-left: 3em;

You can also set margins using a shorthand property:

margin: 1em 2em 0.5em 3em;

If all the margins are to be equal, simply use a rule like this:

The CSS Anthology292

margin: 1em;

This rule applies a 1 em margin to all sides of the element.

Figure 9.2 shows what a block-level element looks like when we add margins to it.

The code for this page is as follows:

chapter09/margin.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Margins</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 p {

 background-color: #CFEAFA;

 border: 2px solid #6CB5DF;

 }

p.margintest {

 margin: 40px;

 }

 </style>

 </head>

 <body>

 <p>This paragraph should be displayed in the default …</p>

 <p>This is another paragraph that has the default …</p>

<p class="margintest">This paragraph has a 40-pixel …</p>

 </body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

293CSS Positioning and Layout

Figure 9.2. Applying margins to an element with CSS

The padding properties add space inside the element—between its borders and its

content. You can set padding individually for the top, right, bottom, and left sides

of an element:

padding-top: 1em;

padding-right: 1.5em;

padding-bottom: 0.5em;

padding-left: 2em;

You can also apply padding using this shorthand property:

padding: 1em 1.5em 0.5em 2em;

As with margins, if the padding is to be equal all the way around an element, you

can simply use a rule like this:

padding: 1em;

Figure 9.3, which results from the following code, shows what a block looks like

with padding applied. Compare it to Figure 9.2 to see the differences between

margins and padding:

The CSS Anthology294

chapter09/padding.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Padding</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 p {

 border: 2px solid #AAAAAA;

 background-color: #EEEEEE;

 }

p.paddingtest {

 padding: 40px;

 }

 </style>

 </head>

 <body>

 <p>This paragraph should be displayed in the default …</p>

 <p>This is another paragraph that has the default …</p>

<p class="paddingtest">This paragraph has 40 pixels …</p>

 </body>

</html>

Discussion
The above solution demonstrates the basics of margins and padding. As we’ve seen,

the margin properties create space between the element to which they’re applied

and the surrounding elements, while padding creates space inside the element to

which it’s applied. Figure 9.4 illustrates this point.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

295CSS Positioning and Layout

Figure 9.3. Applying padding to an element in CSS

Figure 9.4. Applying margins, padding, and borders

If you’re applying margins and padding to a fixed-width element, they’ll be added

to the specified width to produce the total width for that element. So, if your element

has a width of 400 pixels, and you add 40 pixels’ worth of padding on all sides,

you’ll make the element take up 480 pixels of total width (400 pixels wide plus 40

pixels on each side). Add 20 pixels of margins to that, and the element will occupy

a width of 520 pixels (a visible width of 480 pixels with 20 pixels of spacing on

either side). If you have a very precise layout, remember to calculate your element

sizes carefully, including any added margins and padding.

The CSS Anthology296

Quirks Mode May Confuse

In very old versions of Internet Explorer, namely 5 and 5.5, padding (and borders)

are interpreted as being included within the specified width of the element; in

these browsers, the element just described would remain 400 pixels in width with

the padding included and adding margins would reduce the visible width of the

element. One workaround for this peculiarity is to apply padding to a parent ele

ment, rather than adding a margin to the element in question. Ensuring compatib

ility with IE5 is of little concern to most designers these days, so the only time

this might be an issue is if you’ve managed to end up with IE6 in Quirks Mode,

as described in Chapter 7.

How do I wrap text around an image?
With HTML, it’s possible to wrap text around an image using the align attribute.

This attribute was deprecated, but there is a CSS equivalent!

Solution
Use the CSS float property to float an image to the left or right, as shown in Fig

ure 9.5.

Figure 9.5. Floating an image to the left using the float property

297CSS Positioning and Layout

Here’s the code for this page:

chapter09/float.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Float</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 .featureimg {

float: left;

 width: 319px;

 }

 </style>

 </head>

 <body>

 <h1>Chinese-style stuffed peppers</h1>

 <img src="peppers1.jpg" width="319" height="213" alt="peppers"

 class="featureimg" />

 <p>These stuffed peppers are lovely as a starter, or as a …</p>

⋮ More paragraphs

 </body>

</html>

Discussion
The float property takes the element out of the document flow and floats it against

the edge of the block-level element that contains it. Other block-level elements will

then ignore the floated element and render as if it’s absent. Inline elements such as

content, however, will make space for the floated element, which is why we can

use float to cause our text to wrap around an image.

As we can see clearly in Figure 9.5, the text bumps right up against the side of the

image. If we add a border to that image, the text will collide against the side of the

border.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology298

To create space between our image and the text, we need to add a margin to the

image. Since the image is aligned against the left-hand margin, we only need to add

right and bottom margins to move the text away from the image slightly:

chapter09/float2.html (excerpt)

.featureimage {

 float: left;

 width: 319px;

 border: 2px solid #000000;

 margin-right: 20px;

 margin-bottom: 6px;

}

Figure 9.6 shows the resulting display, with extra space around the floated image.

Figure 9.6. Adding right and bottom margins to an image to improve the display

299CSS Positioning and Layout

How do I stop the next element moving up
when I use float?
Floating an image or other element causes it to be ignored by block-level elements,

although the text and inline images contained in those elements will appear to wrap

around the floated element. How can you force elements on your page to display

below the floated element?

Solution
The CSS property clear allows you to make a given element display beneath any

floated elements as if they’d remained unfloated in the first place. In this example,

we apply this property with a value of both to the first paragraph that follows the

list of ingredients:

chapter09/float-clear.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>float and clear</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 .featureimg {

 float: right;

 width: 319px;

 margin-left: 20px;

 margin-bottom: 6px;

 border: 1px solid #000000;

 }

.clear {

 clear: both;

 }

 </style>

 </head>

 <body>

 <h1>Chinese style stuffed peppers</h1>

 <img src="peppers1.jpg" width="319" height="213" alt="peppers"

class="featureimg" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology300

 1 tablespoon of oil

 1 crushed garlic clove

 Peeled and finely chopped fresh ginger root

 250g minced pork, beef or Quorn

 1 chopped spring onion

 1 chopped celery stick

 Grated rind of 1 lemon

 Finely chopped red chilli (optional)

 4 large green peppers

 <p class="clear">These stuffed peppers are lovely as a…</p>

⋮ More paragraphs

 </body>

</html>

As shown in Figure 9.7 where we’ve floated the image to the right of the page, this

markup causes the paragraph to be pushed down so that it begins below the floated

image.

Figure 9.7. The first paragraph displays clear of the floated image

301 CSS Positioning and Layout

Discussion
The float property takes an element out of the flow of the document: the block-

level elements that appear after it will simply ignore the floated element. This effect

can be seen more clearly if we apply a border to the elements in our document, as

illustrated in Figure 9.8, which adds a two-pixel border to the ul and p elements

in the page.

The floated image basically sits on top of the block elements. The text within those

elements wraps around the image, but the elements themselves will ignore the fact

that the floated element is there. This means that, in our example, if the height of

the ingredients list is less than that of the image, the paragraph after the list of in

gredients will wrap around the image, also shown in Figure 9.8.

Figure 9.8. Applying a two-pixel border to the ul and p elements

The CSS Anthology302

Figure 9.9. Using the clear property to clear the paragraph from the float

To make the paragraph begin at a point below that at which the image finishes, we

can use the clear property:

chapter09/float-clear.html (excerpt)

.clear {

 clear: both;

}

We apply this CSS class to the first <p> tag after the ingredients list:

chapter09/float-clear.html (excerpt)

<p class="clear">These stuffed peppers are lovely as a

starter, or as a side dish for a Chinese meal. They also go

down well as part of a buffet and even children seem to like

them.</p>

If we leave the borders in place and reload the document as in Figure 9.9, we can

see that the paragraph begins below the pepper image, as does its border.

The clear property can also take values of left or right, which are useful if you

want to clear an element only from left or right floats, respectively. The value you’re

most likely to use, though, is both. Be aware that both float and clear can trigger

303CSS Positioning and Layout

bugs, particularly in Internet Explorer. You may recall we mentioned the “disap

pearing content” behavior of Internet Explorer 6 in Chapter 7.

How do I align a site’s logo and slogan to
the left and right?
If you’ve ever used tables for layout, you’ll know how easy it is to create the type

of effect shown in Figure 9.10 with a two-column table. This method allows you to

align the contents of the left-hand table cell to the left, and those of the right-hand

cell to the right. Fortunately, the same end result is achievable using CSS.

Figure 9.10. Aligning the logo and slogan left and right, respectively, using CSS

Solution
We can use float to create this type of layout:

chapter09/slogan-align.html (excerpt)

⋮
 <body>
 <div id="header">
 <img src="stage-logo.gif" width="187" height="29"

alt="Stage & Screen" class="logo" />
 theatre and film reviews

 </div>
 </body>

⋮

chapter09/slogan-align.css

body {

 margin: 0;

 padding: 0;

 background-color: #FFFFFF;

 color: #000000;

The CSS Anthology304

font-family: Arial, Helvetica, sans-serif;

 border-top: 2px solid #2A4F6F;

}

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

 height: 3em;

}

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

Discussion
The float property allows us to align the elements in our header with either side

of the viewport. Before adding the float, our elements will display next to each

other, as in Figure 9.11.

The elements appear side by side because the HTML that marks them up dictates

nothing about their positions on the page. Thus, they appear one after the other.

Figure 9.11. The elements displaying at their default positions

Let’s take a look at the markup that controls the slogan’s alignment:

305CSS Positioning and Layout

chapter09/slogan-align.html (excerpt)

<div id="header">

 <img src="stage-logo.gif" width="187" height="29"

 alt="Stage & Screen" class="logo" />

 theatre and film reviews

</div>

By floating the class logo to the left and slogan to the right, we can move the ele

ments to the left and right of the display. I’ve also added a rule to align the text in

our slogan to the right; without this line, the text that comprises our slogan will

still be left-aligned within the span element that we floated to the right! Figure 9.12

shows the result.

Figure 9.12. Applying float to make the elements display as desired

To provide some space around the elements, let’s add a margin to the top and left

of the logo, and the top and right of the slogan:

chapter09/slogan-align.css (excerpt)

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align: right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

The CSS Anthology306

One aspect to be aware of when you’re using this technique is that, once you’ve

floated all the elements within a container, that container will no longer be “held

open” by anything, so it will collapse to zero height, as Figure 9.13 shows.

Figure 9.13. Floating the elements causing the header to collapse

To demonstrate this point, I’ve added a large border to my header in Figure 9.14.

Here, there are no floated elements, so the header surrounds the elements.

Figure 9.14. Showing the size of the header when there are no floated elements

Once I float the elements right and left, the header loses its height, because the

elements have been taken out of the document flow. The thick red line at the top

of Figure 9.13 is actually the header’s border.

To avoid this problem, you can set an explicit height for the block:

chapter09/slogan-align.css (excerpt)

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

height: 3em;

}

The block now occupies the desired area of the page, as Figure 9.15 shows.

Figure 9.15. The page displaying normally after a height is set for the header <div>

307 CSS Positioning and Layout

When you’re setting heights in this kind of situation, keep in mind the potential

impact that user-altered text sizes may have on your layout. Using ems is a handy

way to set heights: they’ll expand relative to the text size, so they can accommodate

larger text sizes without running the risk of having the floated element burst out of

the box.

If you were less sure about the amount of text in this box, you would need to use a

clearing technique as we discussed when we learned about floated and cleared

elements.

How do I set an item’s position on the page
using CSS?
It’s possible to use CSS to specify exactly where on the page an element should

display.

Solution
With CSS, you can place an element on the page by positioning it from the top,

right, bottom, or left using absolute positioning. The two blocks shown in Figure 9.16

have been placed with absolute positioning.

Figure 9.16. Placing boxes using absolute positioning

The CSS Anthology308

The code for this page is as follows:

chapter09/position.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Absolute positioning</title>

 <meta http-equiv="content-type"

content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="position.css" />

 </head>

 <body>

 <div id="box1">This is box one. It is positioned 10 pixels

from the top and 20 pixels from the left of the viewport.

 </div>

 <div id="box2">This is box two. It is positioned 2em from the

 bottom and 2em from the right of the viewport.</div>

 </body>

</html>

chapter09/position.css

#box1 {

 position: absolute;

 top: 10px;

 left: 20px;

 width: 100px;

 background-color: #B0C4DE;

 border: 2px solid #34537D;

}

#box2 {

 position: absolute;

 bottom: 2em;

 right: 2em;

 width: 100px;

 background-color: #FFFAFA;

 border: 2px solid #CD5C5C;

}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

309CSS Positioning and Layout

Discussion
Setting an element’s position property to absolute removes it completely from

the document flow. As an example, if I add several paragraphs of text to the example

document shown above, the two boxes will sit on top of the content, as shown in

Figure 9.17.

Figure 9.17. The main content ignoring the positioned boxes

In the markup that I used to produce this display, the paragraphs follow the abso

lutely positioned divs; however, because the divs have been removed from the

document flow, the paragraphs begin at the top-left corner, just as they would if

there were no boxes.

As we’ll see in “How do I create a liquid, two-column layout with the menu on the

left and the content on the right?”, we can create space for absolutely positioned

areas by placing them within the margins or padding of other elements. What may

be less obvious from this example, though, is that elements need not be positioned

relative to the edges of the document (although this approach is quite common).

Elements can also be positioned within other elements with the same degree of

precision.

The CSS Anthology310

Figure 9.18 depicts a layout that contains two boxes. In this example, box two is

nested inside box one. Because box one is also positioned absolutely, the absolute

positioning of box two sets its position relative to the edges of box one.

Figure 9.18. Positioning box two relative to box one

Here’s the markup that produces the display:

chapter09/position2.html (excerpt)

<div id="box1">This is box one. It is positioned 100 pixels from the

 top and 100 pixels from the left of the viewport.

 <div id="box2">This is box two. It is positioned 2em from the

bottom and 2em from the right of the parent element - box one.

 </div>

</div>

chapter09/position2.css

#box1 {

 position: absolute;

 top: 100px;

 left: 100px;

 width: 400px;

 background-color: #B0C4DE;

 border: 2px solid #34537D;

}

#box2 {

 position: absolute;

 bottom: 2em;

 right: 2em;

 width: 150px;

311 CSS Positioning and Layout

background-color: #FFFAFA;

 border: 2px solid #CD5C5C;

}

To demonstrate this point further, let’s add a height of 300 pixels to the CSS for

box1:

chapter09/position3.css (excerpt)

#box1 {

 position: absolute;

 top: 100px;

 left: 100px;

 width: 400px;

height: 300px;

 background-color: #B0C4DE;

 border: 2px solid #34537D;

}

You’ll now see box two render entirely within box one, as shown in Figure 9.19,

rather than appearing to stick out the top of it. This display results because box two

is positioned with respect to the bottom and right-hand edges of box one.

Figure 9.19. Box two rendering within box one

The CSS Anthology312

Positioning Starts with the Parent

It’s important to note that the parent element (box1) must be positioned using

CSS in order for the child element (box2) to base its position on that parent.

If the parent element’s position property is left unset, then the child’s position

will be based on the edges of the nearest positioned ancestor element—the parent’s

parent, and so on—or else the body element (in other words the edges of the

document). In the above example, if the parent element had remained unpositioned

the child element would have been positioned according to the edges of the doc

ument, since no further ancestor elements exist.

How do I center a block on the page?
One common page layout uses a fixed-width, centered box to contain the page

content, like the one shown in Figure 9.20. How can we center this box on the page

using CSS?

Figure 9.20. Centering a fixed-width box using CSS

Solution
You can use CSS to center a fixed-width box by setting its left and right margins to

auto:

313 CSS Positioning and Layout

chapter09/center.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Centered Box</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="center.css" />

 </head>

 <body>

 <div id="content">

 <p>This box is 630 pixels wide and centered in the document.

 </p>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing …

 </p>

 </div>

 </body>

</html>

chapter09/center.css

body {

 background-color: #CCD3D9;

 color: #000000;

}

#content {

 width: 630px;

margin-left: auto;

 margin-right: auto;

 border: 2px solid #A6B2BC;

 background-color: #FFFFFF;

 color: #000000;

 padding: 0 20px 0 20px;

}

Discussion
This technique allows you to center boxes easily, and is ideal if you need to center

a content block on a page.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology314

When we set both the left and right margins to auto, we’re asking the browser to

calculate equal values for each margin, thereby centering the box. In “How do I

create a liquid, two-column layout with the menu on the left and the content on

the right?”, we’ll see how to create a layout inside a container that has been centered

in this way.

Internet Explorer 5.x

In the past, this technique required additional CSS to work around a bug in Internet

Explorer 5.x because that browser prevented the margins from centering content.

Setting text-align: center; on the body, then setting it to text-align:

left; on the content div was the standard way to circumvent the problem. If

you still have to support this ol’ workhorse of a browser, that’s how you do it.

How do I create boxes with rounded
corners?
There are a number of approaches you can use to create rounded corners on boxes.

Here, we’ll look at three different ways of achieving this effect.

Solution 1: The CSS3 border-radius Property
There’s a property called border-radius that allows you to specify by how much

to round the corners of the border around a block element. This property will be

part of the CSS3 recommendation when it’s finalized.1 Unfortunately, no browser

yet supports the CSS3 border-radius property, but thankfully both Safari and

Firefox have enabled experimental support in the form of vendor-specific exten

sions.2 Even better, because the extensions are actually a part of the browser render

ing engines, any browser that uses either the Gecko engine (like Camino) or the

WebKit engine (like Chrome) will also support these properties. This solution, illus

trated in Figure 9.21, works only in up-to-date versions of Safari, Firefox, Camino,

and Chrome, as opposed to Opera or Internet Explorer. Here’s the markup and CSS:

1 http://www.w3.org/TR/css3-border/#the-border-radius
2 http://reference.sitepoint.com/css/vendorspecific/

http://www.w3.org/TR/css3-border/#the-border-radius
http://reference.sitepoint.com/css/vendorspecific/
http://reference.sitepoint.com/css/vendorspecific/
http://reference.sitepoint.com/css/vendorspecific
http://www.w3.org/TR/css3-border/#the-border-radius

315 CSS Positioning and Layout

chapter09/corners1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Rounded Corners</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="corners1.css" />

 </head>

 <body>

 <div class="curvebox">

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing</p>

 </div>

 </body>

</html>

chapter09/corners1.css

.curvebox {

 width: 250px;

 padding: 1em;

 background-color: #B0C4DE;

 color: #33527B;

 -moz-border-radius: 25px;

 -webkit-border-radius: 25px;

}

Figure 9.21. Rounded corners, CSS3-style

This example creates rounded corners without a single image! The CSS property

that creates those nicely rounded corners on the box borders is:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology316

-moz-border-radius: 25px;

 -webkit-border-radius: 25px;

Remove these lines from the CSS, as I’ve done in Figure 9.22, and you’ll see that

the box displays with the usual square corners (as it does in browsers that are yet

to have support).

Figure 9.22. The box display in non-supporting browsers

Obviously, it’s currently only of use to site visitors who use Gecko-based or WebKit

based browsers, so most web designers will look to a different solution.

Solution 2: Images and Additional Markup
A solution that works in multiple browsers uses additional images and markup to

create the rounded effect. First, create the corner images using a graphics program.

You’ll need a small image for each corner of the box. The easiest way to create these

is to divide a circle into quarters so that you end up with a set, as shown in Fig

ure 9.23.

Figure 9.23. Rounded-corner images

317 CSS Positioning and Layout

The markup for this example is as follows. The top-left and bottom-left images are

included in the document itself, within top and bottom divs:

chapter09/corners2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Rounded corners</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="corners2.css" />

 </head>

 <body>

 <div class="rndbox">

 <div class="rndtop"><img src="topleft.gif" alt="" width="30"

 height="30" /></div>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing</p>

 <div class="rndbottom"><img src="bottomleft.gif" alt=""

 width="30" height="30" /></div>

 </div>

 </body>

</html>

The top-right and bottom-right images are included as background images in the

CSS for the divs, with the classes rndtop and rndbottom:

chapter09/corners2.css (excerpt)

.rndbox {

 background: #C6D9EA;

 width: 300px;

 font: 0.8em Verdana, Arial, Helvetica, sans-serif;

 color: #000033;

}

.rndtop {

 background: url(topright.gif) no-repeat right top;

}

.rndbottom {

 background: url(bottomright.gif) no-repeat right top;

}

.rndbottom img {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology318

display:block;

}

.rndbox p {

 margin: 0 0.4em 0 0.4em;

}

Together, the images, markup, and CSS create a curved box like the one shown in

Figure 9.24.

Figure 9.24. A curved box created by using markup and images

Solution 3: Using JavaScript
Adding markup and images to your code can be an unattractive option, especially

if you have a lot of boxes requiring rounded corners. To deal with this problem,

many people have come up with solutions that use JavaScript to add the rounded

corners to otherwise square boxes. The beauty of this is that even if users have

JavaScript disabled, they see a perfectly usable site—it merely lacks the additional

style of the curved edges.

Various methods have been devised to achieve rounded corners using JavaScript,

but here we’ll look at just one—NiftyCube—as it’s very easy to drop into your code

and make a start. The script is included in the code archive for this book, but if

you’d like the latest version, download NiftyCube from the NiftyCube web site, and

unzip the zip file.3 You’ll find lots of example pages in the zip archive, but all you

need to implement this effect in your own pages is the JavaScript file niftycube.js

and the CSS file niftyCorners.css. Copy these files into your site. Our starting point

is a square-cornered box created by the following markup:

3 http://www.html.it/articoli/niftycube/

http://www.html.it/articoli/niftycube/
http://www.html.it/articoli/niftycube/
http://www.html.it/articoli/niftycube
http:niftycube.js

319 CSS Positioning and Layout

chapter09/corners3-start.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Rounded Corners</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="corners3.css" />

 </head>

 <body>

 <div class="curvebox">

 <p>Lorem ipsum dolor...</p>

 </div>

 </body>

</html>

You have a reasonable amount of freedom in terms of the way you style your box,

with one exception—the padding inside your box must be specified in pixels. If

you use any other unit, such as ems, then your corners will fail to render properly

in Internet Explorer. The result of our work is pictured in Figure 9.25.

chapter09/corners3.css

.curvebox {

 width: 250px;

padding: 20px;

 background-color: #B0C4DE;

 color: #33527B;

}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology320

Figure 9.25. The square box

To add rounded corners to this box using NiftyCube, link the JavaScript file to the

head of your document, then write a simple function to tell the script that you wish

to round the corners of the class curvebox:

chapter09/corners3.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Rounded Corners</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="corners3.css" />

<script type="text/javascript" src="niftycube.js">

 </script>

 <script type="text/javascript">

 window.onload=function(){

 Nifty("div.curvebox");

 }

 </script>

 </head>

 <body>

 <div class="curvebox">

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing…</p>

http:src="niftycube.js
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

321 CSS Positioning and Layout

</div>

 </body>

</html>

This markup produces the display shown in Figure 9.26.

Figure 9.26. Rounded corners without images or extra markup

Discussion
While numerous solutions are available to help you create rounded corners without

JavaScript, they all require you to insert additional markup or ensure that your

markup is structured in a certain way.4 If you only have a few boxes whose corners

you want to round—perhaps a main layout container or a couple of larger boxes—the

additional images and markup will only be a minor imposition. But if your layout

includes many rounded corners, peppering your markup with extra divs and images

may be an extremely undesirable option. The JavaScript method allows cleaner

HTML code, but as with all JavaScript solutions, it only works when the user has

JavaScript enabled.

Personally, I feel that using JavaScript in this way—to plug the holes in CSS sup

port—is legitimate. As long as you’ve checked that your layout remains clear and

easy to use without the rounded corners, those without JavaScript will continue to

use your site. If you do use this JavaScript solution on a project, be sure to check

the whole site with JavaScript turned off, to make sure that the users still have a

positive experience on the site.

4 One attempt at generating rounded corners using semantic markup and no JavaScript is Spanky Corners

[http://tools.sitepoint.com/spanky/], created by SitePoint’s Alex Walker.

http://tools.sitepoint.com/spanky/
http://tools.sitepoint.com/spanky

The CSS Anthology322

How do I create a liquid, two-column layout
with the menu on the left and the
content on the right?
Web page layouts like that shown in Figure 9.27, displaying a menu on the left and

a large content area to the right, are extremely common. Let’s discover how to build

this layout using CSS.

Figure 9.27. Building a liquid two-column layout using CSS

Solution
Here’s the markup and CSS that produces the display shown in Figure 9.27:

323CSS Positioning and Layout

chapter09/2col.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Stage & Screen - theatre and film reviews</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="2col.css" />

 </head>

 <body>

 <div id="header">

 <img src="stage-logo.gif" width="187" height="29"

alt="Stage & Screen" class="logo" />

 theatre and film reviews

 </div>

 <div id="content">

 <h1>Welcome to Stage & Screen</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing …</p>

⋮

 </div>

 <div id="nav">

 Play Reviews

 Film Reviews

 Post a Review

 About this site

 Contact Us

 <h2>Latest Reviews</h2>

 Angels & Demons

 Star Trek

 Up

 Land of the Lost

 </div>

 </body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology324

chapter09/2col.css

body {

 margin: 0;

 padding: 0;

 background-color: #FFFFFF;

 color: #000000;

 font-family: Arial, Helvetica, sans-serif;

 border-top: 2px solid #2A4F6F;

}

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

 height: 3em;

}

#header .strapline {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align: right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

#nav {

 position: absolute;

 top: 5em;

 left: 1em;

 width: 14em;

}

#nav ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

#nav li {

 font-size: 80%;

325CSS Positioning and Layout

border-bottom: 1px dotted #B2BCC6;

 margin-bottom: 0.3em;

}

#nav a:link, #nav a:visited {

 text-decoration: none;

 color: #2A4F6F;

 background-color: transparent;

}

#nav a:hover {

 color: #778899;

}

#nav h2 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 color: #2A4F6F;

 background-color: transparent;

 border-bottom: 1px dotted #CCCCCC;

}

#content {

 margin-left: 16em;

 margin-right: 2em;

}

h1 {

 font: 150% Georgia, "Times New Roman", Times, serif;

}

#content p {

 font-size: 80%;

 line-height: 1.6em;

}

Discussion
Our starting point for this layout is the header that we created in “How do I align

a site’s logo and slogan to the left and right?”. We’ve added to that layout some

content, which resides within a div whose ID is content. The navigation for the

page comprises two unordered lists that are contained in a div with the ID nav. As

you’d expect, without any positioning applied, these blocks will display below the

heading in the order in which they appear in the document (as depicted in Fig

ure 9.28).

The CSS Anthology326

Figure 9.28. The content and navigation displaying without positioning information

At this point, the CSS looks like this:

chapter09/2col.css (excerpt)

body {

 margin: 0;

 padding: 0;

 background-color: #FFFFFF;

 color: #000000;

 font-family: Arial, Helvetica, sans-serif;

 border-top: 2px solid #2A4F6F;

}

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

 height: 3em;

}

327CSS Positioning and Layout

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align: right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

Sizing and Positioning the Menu
Let’s use absolute positioning to position the menu just under the heading bar, and

give it an appropriate width:

chapter09/2col.css (excerpt)

#nav {

 position: absolute;

 top: 5em;

 left: 1em;

 width: 14em;

}

As you can see in Figure 9.29, this code causes the menu to appear over the text

content, as the absolute positioning we’ve applied has removed it from the flow of

the document.

The CSS Anthology328

Figure 9.29. Positioning the menu absolutely

Positioning the Content
As we’re aiming to maintain a liquid layout, it’s undesirable to assign a fixed width

to the content and, in fact, it’s unnecessary anyway. The problem with the content

is that it appears where we want the menu to sit. To solve this problem, we can

simply apply a large left-hand margin to the content area to allow space for the

menu. The results are shown in Figure 9.30:

#content {

 margin-left: 16em;

 margin-right: 2em;

}

329CSS Positioning and Layout

Figure 9.30. Adding margins to the content

Now that all the elements are laid out neatly, we can work on the styling of indi

vidual elements, using CSS to create the layout we saw back in Figure 9.27. The

completed CSS style sheet is given at the start of this solution.

Ems for Positioning Text Layouts

I used ems to position the elements in this layout. The em unit will resize as the

text resizes, which should help us avoid any problems with overlapping text if

users resize fonts in their browsers. For layouts that are predominantly text-based,

the em is an excellent choice for setting the widths of boxes and margins. However,

care should be taken if your design involves many images, as they lack the ability

to resize with text. In this instance you may prefer to use pixels to position ele

ments in cases where you need precise control over the elements’ locations on

the page.

The CSS Anthology330

Can I reverse this layout and put the menu
on the right?
Can the technique presented in “How do I create a liquid, two-column layout with

the menu on the left and the content on the right?” be used to create a layout in

which the menu is positioned on the right?

Solution
Yes, exactly the same technique can be used! You’ll need to position your menu

from the top and right, and give the content area a large right margin so that the

menu has sufficient space in which to display. The result is shown in Figure 9.31.

Figure 9.31. Building a two-column layout so that the menu appears on the right

331 CSS Positioning and Layout

Discussion
Positioning the menu on the right requires no change to the markup of the original

document. All we need to do is change the positioning properties for nav, and the

margins on content:

chapter09/2col-reverse.css

#nav {

 position: absolute;

 top: 5em;

 right: 1em;

 width: 14em;

}

#content {

 margin-left: 2em;

 margin-right: 16em;

}

The advantage of using absolute positioning can be seen clearly here. It’s of no

consequence where our menu appears in the markup: the use of absolute positioning

means it will be removed from the document flow and we can place it wherever

we like on the page. This can be of great benefit for accessibility purposes, as it allows

us to place some of the less-important items (such as lists of links to other sites,

advertising, and so on) right at the end of the document code. This way, those who

employ screen readers to use the site are saved from having to hear these unnecessary

items read aloud each time they access a page. Yet you, as the designer, are still

able to position these items wherever you like for visual effect.

How do I create a fixed-width, centered,
two-column layout?
You can use CSS to create a two-column layout that’s contained within a centered

div on the page.

Solution
Creating a two-column, fixed-width, centered layout is slightly trickier than a fixed-

width, left-aligned, or liquid layout; that’s because there is no absolute reference

The CSS Anthology332

point from the left-hand or right-hand side of the viewport that you can use to pos

ition the elements horizontally. However, there are a couple of different ways in

which we can deal with this complication in order to achieve the kind of layout

shown below.

Whichever layout method you choose, the HTML is the same:

chapter09/2col-fixedwidth.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success | Perfect Pizza</title>

 <link href="2col-fixedwidth.css" rel="stylesheet"

type="text/css" />

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 </head>

 <body>

 <div id="wrapper">

 <div id="header">

 <h1>Perfect Pizza</h1>

 </div>

 <div id="content">

 <h2>Choosing Your Toppings</h2>

 <p>Sed nec erat sed sem molestie congue. Cras lacus …</p>

⋮

 </div>

 <div id="nav">

 Prepare the Dough

 <li class="cur">Choose Your Toppings

 Pizza Ovens

 Side Salads

 </div>

 </div>

 </body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

333CSS Positioning and Layout

The first and simplest option to achieve this layout is to place the content and

navigation elements within the centered block, using absolute and relative position

ing, respectively:

chapter09/2col-fixedwidth.css

body {

 margin: 0;

 padding: 0;

 font-family: Arial, Helvetica, sans-serif;

 background-color: #FFFFFF;

}

#wrapper {

 position: relative;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

 margin-bottom: 1em;

}

#header {

 background-image: url(kitchen.jpg);

 background-repeat: no-repeat;

 height: 200px;

 position: relative;

}

#header h1 {

 margin: 0;

 padding: 0.3em 10px 0.3em 0;

 text-align: right;

 width: 750px;

 font-weight: normal;

 color: #FFFFFF;

 font-size: 190%;

 position: absolute;

 bottom: 0;

 left: 0;

 background-image: url(black80percent.png);

}

#content {

 margin-left: 250px;

 width: 500px;

 padding: 0 10px 0 0;

}

#content h2 {

The CSS Anthology334

font-size: 120%;

 color: #3333FF;

 background-color: transparent;

 margin: 0;

 padding: 1.4em 0 0 0;

}

#content p {

 font-size: 80%;

 line-height: 1.6;

}

#nav {

 position: absolute;

 top: 200px;

 left: 0;

 width: 230px;

}

#nav ul {

 list-style: none;

 margin: 3em 0 0 0;

 padding: 0;

 border: none;

}

#nav li {

 font-size: 85%;

}

#nav a:link, #nav a:visited {

 color: #555555;

 background-color: transparent;

 display: block;

 padding: 1em 0 0 10px;

 text-decoration: none;

 min-height: 40px;

}

#nav a:hover, #nav li.cur a:link, #nav li.cur a:visited {

 color: #FFFFFF;

 background-image: url(arrow.gif);

 background-repeat: no-repeat;

}

As you can see from Figure 9.32, this gives us a very simple layout. Adding more

design features, such as a background image behind the content or a border wrapping

the whole layout, will require a different method.

335CSS Positioning and Layout

Figure 9.32. The fixed-width, centered layout

An alternative approach is to simply float the navigation and content against the

left and right sides of the centered block, respectively. Floating the elements will

give you more flexibility if you need to add other elements to the layout, such as a

footer, or if you want to add a border around the layout. If you float the left and

right columns, you can add a footer and apply clear: both to place it beneath the

two columns, regardless of their heights. This dynamic placement of the footer

within the document flow is impossible if the columns are absolutely positioned.

We’ve also taken advantage of the floated layout and added a border around the

entire layout:

chapter09/2col-fixedwidth-float.css

body {

 margin: 0;

 padding: 0;

 font-family: Arial, Helvetica, sans-serif;

 background-color: #FFFFFF;

}

#wrapper {

The CSS Anthology336

position: relative;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

 margin-bottom: 1em;

 background-image: url(sidebar.gif);

 background-repeat: repeat-y;

border-right: 1px solid #888888;

 border-bottom: 1px solid #888888;

}

#header {

 background-image: url(kitchen.jpg);

 background-repeat: no-repeat;

 height: 200px;

 position: relative;

}

#header h1 {

 margin: 0;

 padding: 0.3em 10px 0.3em 0;

 text-align: right;

 width: 750px;

 font-weight: normal;

 color: #FFFFFF;

 font-size: 190%;

 position: absolute;

 bottom: 0;

 left: 0;

 background-image: url(black80percent.png);

}

#content {

 float: right;

 width: 500px;

 padding: 0 10px 0 0;

}

#content h2 {

 font-size: 120%;

 color: #3333FF;

 background-color: transparent;

 margin: 0;

 padding: 1.4em 0 0 0;

}

#content p {

 font-size: 80%;

 line-height: 1.6;

337CSS Positioning and Layout

}

#nav {

 float: left;

 width: 230px;

}

#nav ul {

 list-style: none;

 margin: 3em 0 0 0;

 padding: 0;

 border: none;

}

#nav li {

 font-size: 85%;

}

#nav a:link, #nav a:visited {

 color: #555555;

 background-color: transparent;

 display: block;

 padding: 1em 0 0 10px;

 text-decoration: none;

 min-height: 40px;

}

#nav a:hover, #nav li.cur a:link, #nav li.cur a:visited {

 color: #FFFFFF;

 background-image: url(arrow.gif);

 background-repeat: no-repeat;

}

#footer {

 clear: both;

 font-size: 80%;

 padding: 1em 0 1em 0;

 margin-left: 250px;

 color: #999999;

 background-color: transparent;

}

The result is shown in Figure 9.33.

The CSS Anthology338

Figure 9.33. The floated, fixed-width, centered layout with a border

Discussion
For the purposes of this discussion, we’ll ignore purely aesthetic-style properties

such as borders, colors, and fonts, so that we can concentrate on the layout.

Both versions of this layout begin with a centered div, similar to the layouts we

worked with in “How do I center a block on the page?”. This div is given the ID

wrapper:

chapter09/2col-fixedwidth.css or chapter09/2col-fixedwidth-float.css (excerpt)

body {
 margin: 0;
 padding: 0;
⋮

}

#wrapper {

 width: 760px;

 margin-right: auto;

339CSS Positioning and Layout

margin-left: auto;

⋮

}

The result of applying these styles is shown in Figure 9.34.

Figure 9.34. Centering the content on the page

Now, in “How do I create a liquid, two-column layout with the menu on the left

and the content on the right?” we saw that we could use absolute positioning to

control the navigation’s location, and apply enough margin to the content of the

page so that there’d be no overlap between the two blocks. The only difference in

this layout is that we need to position the navigation within the centered wrapper

block, so we’re unable to give it an absolute position on the page.

Instead of using absolute, you can set an element’s position property to relative

which, unlike absolute positioning, keeps the element within the document flow;

instead, it lets you shift the element from the starting point of its default position

on the page. If no coordinates are provided in order to shift the element, it will ac

tually stay exactly where the browser would normally position it. However, unlike

an element that lacks having a position value specified, a relatively positioned

element will provide a new positioning context for any absolutely positioned ele

ments within it.

The CSS Anthology340

In plain English, an element with position: absolute that’s contained within an

element with position: relative will base its position on the edges of that parent

element, instead of the edges of the browser window. This is exactly what we need

to use to position the navigation within the centered block in this example.

The first step is to set the position property of wrapper to relative:

chapter09/2col-fixedwidth.css (excerpt)

#wrapper {

position: relative;

 text-align: left;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

⋮

}

We then use absolute positioning to set the location of the navigation block:

chapter09/2col-fixedwidth.css (excerpt)

#navigation {

position: absolute;

 top: 200px;

 left: 0;

 width: 230px;

}

Finally, we add a margin to the main content of the page to make space for the newly

positioned navigation area:

chapter09/2col-fixedwidth.css (excerpt)

#content {

margin-left: 250px;

 padding: 0 10px 0 0;

}

As long as the content of the page occupies more vertical space than the navigation,

this layout will work just fine. Unfortunately, since the navigation block is abso

lutely positioned, it’s unable to affect the height of the wrapper block, so if the

341 CSS Positioning and Layout

content is shorter than the navigation, the wrapper block will be too short to contain

the navigation. We can see this effect by adding a two-pixel, red border to the

wrapper, and adding text to the sidebar so that it becomes longer than the content.

In Figure 9.35, you can clearly see that the content in the sidebar extends below the

wrapper element.

Figure 9.35. The content in the sidebar extending below the bottom of the wrapper block

The alternative method of using floated blocks to achieve our design goals is more

complex, but it overcomes the limitation I just mentioned, enabling us to position

a footer below the columns regardless of which column is the longest. First, we float

the navigation block left and the content block right:

The CSS Anthology342

chapter09/2col-fixedwidth-float.css (excerpt)

#content {

float: right;

 width: 500px;

 padding: 0 10px 0 0;

}

#navigation {

float: left;

 width: 230px;

}

This should give us the same layout as the positioned example offered. However,

if we now look at the layout with the red border on the wrapper, you’ll find that

the red border only wraps the header area of the page. The wrapper no longer wraps!

Figure 9.36. Floating the navigation left and the content right

343CSS Positioning and Layout

One of the reasons we wanted to use a floated layout, however, is to add a footer. I

will add this to the document below the floated columns:

chapter09/2col-fixedwidth-float.html (excerpt)

<div id="nav">

 Prepare the Dough

 <li class="cur">Choose Your Toppings

 Pizza Ovens

 Side Salads

</div>

<div id="footer">© 2009 Recipe for success</div>

</div>

</body>

</html>

Reload the page, and as you can see in Figure 9.37, the border of the wrapper block

now cuts through the page content. This occurs because we floated most of the

block’s contents, removing them from the document flow. The only element inside

wrapper that’s still within the document flow is the footer block, which can be

seen in the bottom-left corner of the wrapper block, where it has been pushed by

the floated blocks.

If we set the clear property of the footer block to both, the footer will drop down

below both of the floated blocks; this forces the wrapper to accommodate both the

navigation and the content—no matter which is taller. The page now renders as

shown in Figure 9.38:

chapter09/2col-fixedwidth-float.css (excerpt)

#footer {

 clear: both;

⋮

}

The CSS Anthology344

Figure 9.37. After adding the footer

Figure 9.38. The footer set to clear: both

345CSS Positioning and Layout

How do I create a full-height column?

If you’ve tried to add a background to a side column like the one shown in “How

do I create a fixed-width, centered, two-column layout?”, you may have discovered

you’re unable to make the column extend to the full height of the taller column next

to it, forcing your background to look a little strange. For example, applying a

background image to the navigation element will simply display the background

behind the navigation list, rather than stretching it down the column to the end of

the content, as shown in Figure 9.39.

Figure 9.39. The gray background displaying only behind the navigation content

Solution
The solution to this problem is to apply the background image to a page element

that does extend the full height of the longer column, but displays at the same width

as our navigation, making it look as though the background is on the navigation

column. In this case, we can apply the background image to wrapper, as Figure 9.40

illustrates:

The CSS Anthology346

chapter09/2col-fixedwidth-float.css (excerpt)

#wrapper {

 position: relative;

 text-align: left;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

 margin-bottom: 1em;

background-image: url(sidebar.gif);

 background-repeat:repeat-y;

 border-right: 1px solid #888888;

 border-bottom: 1px solid #888888;

}

Figure 9.40. The background appearing to be attached to the navigation column

Discussion
This simple technique can be used to great effect in your layouts. In this example,

I chose to apply the image to the wrapper block, as I want the background to extend

right down to the end of the content; the solid image on my header background

hides the sidebar background image as it extends all the way to the top of the page.

You could also use this technique to have the background stop above the footer, or

347CSS Positioning and Layout

after a certain section of content: simply apply the background to an element that

contains the section of content you want.

Creating Gradient Backgrounds

I’ve used a repeating background image here as my image is the same all the way

down the page. You could also use a tall image with a gradient fading to your

background color and set it to no-repeat.

How do I add a drop shadow to my layout?
Drop shadows are commonly used on layouts—particularly on content boxes

within a layout. Let’s add a drop shadow to a fixed width layout such as the one

we worked with in the section called “How do I create a full-height column?”.

Solution
We can add a drop shadow to the edges of this layout using two images: one for the

background, and one to create the shadow effect at the bottom of the layout. Fig

ure 9.41 shows the effect we’re working to create.

Figure 9.41. A drop shadow

The CSS Anthology348

To create this effect, we need to add some markup that will provide us with hooks

to which we can add the two images.

The first image, which I’ve named shadow-bg.jpg and can be seen in Figure 9.42, is

a background image that we’ll apply to the div with an ID of wrapper. This image

is the left and right drop shadow, and it repeats down the page. The second image,

shadow-bottom.jpg, we’ll apply to the bottom of our layout.

Figure 9.42. The files used to create the drop shadow effect

I’ve increased the width of my wrapper block by 20 pixels because I want the content

area to stay the same width, but I need to allow room for the shadow on either side

of the content. I’ve also added the shadow image as a background image on this

element:

chapter09/2col-fixedwidth-shadow.css (excerpt)

#wrapper {

 position: relative;

 text-align: left;

width: 780px;

 margin-right: auto;

 margin-left: auto;

background-image: url(shadow-bg.jpg);

 background-repeat: repeat-y;

}

349CSS Positioning and Layout

Next, I wrap an additional div—which I’ve named wrapper2—around the content,

navigation, and footer elements, just inside the wrapper block:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success | Perfect Pizza</title>

 <link href="2col-fixedwidth-shadow.css" rel="stylesheet"

type="text/css" />

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 </head>

 <body>

 <div id="wrapper"><div id="wrapper2">

 <div id="header">

 <h1>Perfect Pizza</h1>

 </div>

 <div id="content">

 <h2>Choosing Your Toppings</h2>

 <p>Sed nec erat sed sem molestie congue. Cras lacus …</p>

 <p>Vestibulum dictum massa at odio. In dignissim …</p>

 </div>

 <div id="nav">

 Prepare the Dough

 <li class="cur">Choose Your Toppings

 Pizza Ovens

 Side Salads

 </div>

 <div id="footer">© 2009 Recipe for success</div>

</div></div>

 </body>

</html>

I add to this div the sidebar background image that I’ve moved from the outer

wrapper. I also add some padding to this div to push the page contents away from

the drop shadow:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology350

chapter09/2col-fixedwidth-shadow.css (excerpt)

#wrapper2 {

 background-image: url(sidebar.gif);

 background-repeat:repeat-y;

 margin: 0 10px 0 10px;

}

Finally, I need to add the bottom of the drop shadow. I add another div element

with an id of btm to the code just before the closing </div> of the outer wrapper:

chapter09/2col-fixedwidth-shadow.html (excerpt)

<div id="footer">© 2009 Recipe for success</div>

</div>

<div id="btm"></div></div>

</body>

</html>

Now I simply add the drop shadow bottom image as a background image to this div

and give it a height equal to the size of the background image:

chapter09/2col-fixedwidth-shadow.css (excerpt)

#btm {

 background-image: url(shadow-bottom.jpg);

 background-repeat: no-repeat;

 display: block;

 height: 13px;

}

Voilá—our drop shadow is complete!

How do I create a three-column CSS layout?
Many designs fall into a three-column model. As demonstrated in Figure 9.43, you

might need a column for navigation, one for content, and one for additional items

such as advertising or highlighted content on the site. Let’s see how we can accom

plish this type of layout using CSS.

351 CSS Positioning and Layout

Figure 9.43. A three-column layout developed in CSS

Solution
A three-column, liquid layout is easily created using a simple technique, similar to

the one we used to build the two-column layout in “How do I create a liquid, two-

column layout with the menu on the left and the content on the right?”:

chapter09/3col.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="3col.css" />

 </head>

 <body>

 <div id="content">

 <h1>Recipe for Success</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing …</p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology352

<p>Quisque sodales imperdiet enim. Quisque cursus …</p>

 </div>

 <div id="side1">

 <form method="post" action="" id="searchform">

 <h3><label for="keys">Search the Recipes</label></h3>

 <div>

 <input type="text" name="keys" id="keys" class="txt" />

 <input type="submit" name="Submit" value="Submit" />

 </div>

 </form>

 About Us

 Recipes

 Articles

 Buy Online

 Contact Us

</div>

 <div id="side2">

 <h3>Please Visit our Sponsors</h3>

 <div class="adbox"><p>Lorem ipsum dolor sit amet …</p></div>

 <div class="adbox"><p>Sed mattis, orci eu porta …</p></div>

 <div class="adbox"><p>Quisque mauris nunc, mattis …</p></div>

 </div>

 </body>

</html>

chapter09/3col.css

body {

 margin: 0;

 padding: 0;

 background-image: url(tomato_bg.jpg);

 background-repeat: no-repeat;

 background-color: #FFFFFF;

}

p {

 font: 80%/1.8em Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding-top: 0;

 margin-top: 0;

}

form {

 margin: 0;

353CSS Positioning and Layout

padding: 0;

}

#content {

 margin: 66px 260px 0px 240px;

 padding: 10px;

}

#content h1 {

 text-align: right;

 padding-right: 20px;

 font: 150% Georgia, "Times New Roman", Times, serif;

 color: #901602;

}

#side1 {

 position: absolute;

 width: 200px;

 top: 30px;

 left: 10px;

 padding: 70px 10px 10px 10px;

}

#side2 {

 position: absolute;

 width: 220px;

 top: 30px;

 right: 10px;

 padding: 70px 10px 10px 10px;

 border-left: 1px dotted #CCCCCC;

 background-image: url(sm-tomato.jpg);

 background-position: top right;

 background-repeat: no-repeat;

}

#side2 h3 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 margin: 0;

 padding-bottom: 4px;

}

.adbox {

 padding: 2px 4px 2px 6px;

 margin: 0 0 10px 0;

 border: 1px dotted #B1B1B1;

 background-color: #F4F4F4;

}

#side1 h3 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 color: #621313;

The CSS Anthology354

background-color: transparent;

 margin: 0;

 padding-bottom: 4px;

}

#side1 .txt {

 width: 184px;

 background-color: #FCF5F5;

 border: 1px inset #901602;

}

#side1 ul {

 list-style: none;

 margin-left: 0;

 padding-left: 0;

 width: 184px;

}

#side1 li {

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 margin-bottom: 0.3em;

 border-bottom: 1px solid #E7AFAF;

}

#side1 a:link, #side1 a:visited {

 text-decoration: none;

 color: #901602;

 background-color: transparent;

}

#side1 a:hover {

 color: #621313;

}

Discussion
This layout uses a simple technique. We start with the unstyled document shown

in Figure 9.44, which has three divs: one with ID content, one with ID side1, and

one with ID side2.

355CSS Positioning and Layout

Figure 9.44. The unstyled XHTML document

We create the three columns using the following CSS fragments. We place both the

left-hand and right-hand columns with absolute positioning: side1 is positioned

from the left edge of the page, side2 from the right. We also add some significant

top padding to these columns to make room for background images that will act as

headings:

chapter09/3col.css (excerpt)

#side1 {

 position: absolute;

 width: 200px;

 top: 30px;

 left: 10px;

 padding: 70px 10px 10px 10px;

}

chapter09/3col.css (excerpt)

#side2 {

 position: absolute;

 width: 220px;

 top: 30px;

 right: 10px;

The CSS Anthology356

padding: 70px 10px 10px 10px;

⋮

}

The content block simply sits between the two absolutely positioned columns,

with margins applied to the content to give the columns the room they need:

chapter09/3col.css (excerpt)

#content {

 margin: 66px 260px 0px 240px;

 padding: 10px;

}

Figure 9.45 shows what the page looks like with these initial positioning tasks

complete.

Figure 9.45. Three columns appearing with the initial CSS positioning

With our three columns in place, we can simply style the individual elements as

required for the design in question. I’ve used background images of tomatoes on

the body and on side2, as you can see previously in Figure 9.43.

357CSS Positioning and Layout

How do I add a footer to a liquid layout?

If you’ve experimented at all with absolute positioning, you may have begun to

suspect that an absolutely positioned layout will make it impossible to add a footer

that will always stay beneath all three columns, no matter which is the longest.

Well, you’d be right!

To add a footer to our three-column layout we’ll need to use a floated layout. A

floated, liquid layout presents an additional problem in contrast to the standard

floated, fixed-width layout. When we float an element in our layout, we need to

give it a width. Now, in a fixed-width layout we know what the actual width of

each column is, so we can float each column and give it a width. In a liquid layout

such as the one we saw in “How do I create a three-column CSS layout?”, we have

two columns whose widths we know (the sidebars), and one unknown—the main

content area, which expands to fill the space.

Solution
In order to solve the problem of needing to have a flexible column in a floated layout,

we need to build a slightly more complex layout, using negative margins to create

space for a fixed-width column in a flexible content area. We’ll also need to add

some markup to our layout in order to give us some elements to float:

chapter09/3col-alt.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="3col-alt.css" />

 </head>

 <body>

 <div id="wrapper">

 <div id="content">

 <div id="side1">

 <form method="post" action="" id="searchform">

 <h3><label for="keys">Search the Recipes</label></h3>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology358

<div>

 <input type="text" name="keys" id="keys"

 class="txt" />

 <input type="submit" name="Submit" value="Submit" />

 </div>

 </form>

 About Us

 Recipes

 Articles

 Buy Online

 Contact Us

 </div>

 <div id="main">

 <h1>Recipe for Success</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer …</p>

 <p>Quisque sodales imperdiet enim. Quisque …</p>

 </div>

 </div>

 </div>

 <div id="side2">

 <h3>Please Visit our Sponsors</h3>

 <div class="adbox"><p>Lorem ipsum dolor sit amet …</p></div>

 <div class="adbox"><p>Sed mattis, orci eu porta …</p></div>

 <div class="adbox"><p>Quisque mauris nunc, mattis …</p></div>

 </div>

 <div id="footer">

⋮ footer content…
 </div>

 </body>

</html>

Within our CSS, we give the new wrapper block a width of 100% and a negative

right margin of –230 pixels. This use of negative margins enables us to give the

sidebar a variable width that’s 230 pixels less than the width of the browser window.

359CSS Positioning and Layout

We can then float our sidebars into position, to the left and right of the content:

chapter09/3col-alt.css (excerpt)

body {

 margin: 0;

 padding: 0;

}

#wrapper {

 width:100%;

 float:left;

 margin-right: -230px;

 margin-top: 66px;

}

#content {

 margin-right: 220px;

}

#main {

 margin-left: 220px;

}

#side1 {

 width:200px;

 float:left;

 padding: 0 10px 0 10px;

}

#side2 {

 width: 190px;

 padding: 80px 10px 0 10px;

 float:right;

}

#footer {

 clear:both;

 border-top: 10px solid #CECECE;

}

As you can see in Figure 9.46, this CSS positions the columns where we need them,

and our new footer falls neatly below the three columns. This solution can also be

used for a two-column layout; you can change the order of columns by floating

elements to the right instead of the left. With a little experimentation, you should

be able to make the layout behave as you need it to, even if it seems a little counter-

intuitive at first!

The CSS Anthology360

Figure 9.46. The columns floated into place

How do I create a thumbnail gallery
with CSS?
If you need to display a collection of images—perhaps for a photo album—a table

may seem like the easiest way to go. However, the layout shown in Figure 9.47 was

achieved using CSS; it provides some significant benefits that table versions lack.

Figure 9.47. Building an image gallery of thumbnails using CSS

361 CSS Positioning and Layout

Solution
This solution uses a simple list for the album images, and positions them using

CSS:

chapter09/gallery.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>CSS photo album</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link href="gallery.css" rel="stylesheet" type="text/css" />

 </head>

 <body>

 <ul id="albumlist">

 <img src="thumb1.jpg" alt="Candle" width="240"

height="160" />A light in the darkness

 <img src="thumb2.jpg" alt="Pete Ryder" width="240"

height="160" />Pete Ryder

 <img src="thumb3.jpg" alt="La Grande Bouffe" width="240"

height="160" />La Grande Bouffe

 <img src="thumb4.jpg" alt="sculpture" width="240"

height="160" />Sculpture

 <img src="thumb5.jpg" alt="Duck stretching wings"

width="240" height="160" />Splashing about

 <img src="thumb6.jpg" alt="Duck" width="240"

height="160" />Duck

 <img src="thumb7.jpg" alt="Red leaves" width="240"

height="160" />Red

 <img src="thumb8.jpg" alt="Autumn leaves" width="240"

height="160" />Autumn

 </body>

</html>

chapter09/gallery.css

body {

 background-color: #FFFFFF;

 color: #000000;

 margin: 0;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology362

padding: 0;

}

#albumlist {

 list-style-type: none;

}

#albumlist li {

 float: left;

 width:240px;

 margin-right: 6px;

 margin-bottom: 10px;

 font: bold 0.8em Arial, Helvetica, sans-serif;

 color: #333333;

}

#albumlist img {

 display: block;

 border: 1px solid #333300;

}

Discussion
Our starting point for this layout is the creation of an unordered list—within it,

we’ll store each image in a li element, along with an appropriate image caption.

Without the application of CSS, this list will display as shown in Figure 9.48:

chapter09/gallery.html (excerpt)

 <ul id="albumlist">

 <img src="thumb1.jpg" alt="Candle" width="240"

height="160" />A light in the darkness

 <img src="thumb2.jpg" alt="Pete Ryder" width="240"

height="160" />Pete Ryder

 <img src="thumb3.jpg" alt="La Grande Bouffe" width="240"

height="160" />La Grande Bouffe

 <img src="thumb4.jpg" alt="sculpture" width="240"

height="160" />Sculpture

 <img src="thumb5.jpg" alt="Duck stretching wings"

width="240" height="160" />Splashing about

 <img src="thumb6.jpg" alt="Duck" width="240"

height="160" />Duck

 <img src="thumb7.jpg" alt="Red leaves" width="240"

height="160" />Red

363CSS Positioning and Layout

<img src="thumb8.jpg" alt="Autumn leaves" width="240"

height="160" />Autumn

Note that I’ve applied an ID of albumlist to the list that contains the photos.

Figure 9.48. The unstyled list of images

To create the grid-style layout of the thumbnails, we’re going to position the images

by using the float property on the li elements that contain them. Add these rules

to your style sheet:

#albumlist {

 list-style-type: none;

}

#albumlist li {

 float: left;

 width:240px;

}

#albumlist img {

 display: block;

}

The CSS Anthology364

All we’re aiming to achieve with these rules is to remove the bullet points from the

list items and float the images left, as shown in Figure 9.49. Also, by setting the

images to display as blocks, we force their captions to display below them.

Your pictures should now have moved into position. If you resize the window,

you’ll see that they wrap to fill the available width. If the window becomes too

narrow to contain a given number of images side by side, the last image simply

drops down to start the next line.

Figure 9.49. The page display after the images are floated left

We now have our basic layout—let’s add to it to make it more attractive. For example,

we could insert some rules to create space between the images in the list, and specify

a nice font for the image captions:

chapter09/gallery.css (excerpt)

#albumlist li {

 float: left;

 width:240px;

 margin-right: 6px;

 margin-bottom: 10px;

 font: bold 0.8em Arial, Helvetica, sans-serif;

 color: #333333;

}

365CSS Positioning and Layout

We could also add borders to the images:

chapter09/gallery.css (excerpt)

#albumlist img {

 border: 1px solid #333300;

}

The flexibility of this layout method makes it particularly handy when you’re pulling

your images from a database—it’s unnecessary to calculate the number of images,

for example, so that you can build list items on the fly as you create your page.

All the same, this wrapping effect may sometimes be unwanted. You can stop un

wanted wrapping by setting the width of the list tag, :

#albumlist {

 list-style-type: none;

 width: 600px;

}

This rule forcibly sets the width to which the images may wrap, producing the

display shown in Figure 9.50.

Figure 9.50. The images ceasing to wrap after we set the width of the containing tag

The CSS Anthology366

How do I use CSS Tables for Layout?

In the section called “How do I create a full-height column?” I mentioned that there’s

no method in CSS to create full-height columns. Perhaps I should have said there’s

no method currently supported in all common browsers for creating full height

columns, as I’m about to demonstrate a method of doing just this using CSS tables.

Solution
The term CSS tables refers to the table-related display property values specified

in CSS 2.1; for example table, table-row, and table-cell. Using these display

values you can make any HTML element act like the equivalent table-related element

when displayed.

The minimum browser versions that support CSS tables are Firefox 2, Opera 9.5,

Safari 3, Chrome 1, and Internet Explorer 8. Unfortunately this method fails to work

in Internet Explorer 6 or 7, so you’ll have to decide how useful this technique is to

you.

CSS tables solve problems associated with laying out elements in proper grids, as

well as the issue of being unable to display a full-height background. Specifying

the value table for the display property of an element allows you to display that

element and its descendants as though they were table elements which, crucially,

allows us to define boundaries of a cell element in relation to other elements next

to it.

Let’s return to the two-column, fixed-width layout and create a full-height column

without the pretend background trick. The below markup is our HTML document

made ready for displaying the columns as table cells:

chapter09/2col-fixedwidth-tables.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success | Perfect Pizza</title>

 <link href="2col-fixedwidth-table.css" rel="stylesheet"

type="text/css" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

367CSS Positioning and Layout

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 </head>

 <body>

 <div id="wrapper">

 <div id="header">

 <h1>Perfect Pizza</h1>

 </div>

<div id="main">

 <div id="nav">

 Prepare the Dough

 <li class="cur">Choose Your Toppings

 Pizza Ovens

 Side Salads

 </div>

 <div id="content">

 <h2>Choosing Your Toppings</h2>

 <p>Sed nec erat sed sem molestie congue. Cras lacus …</p>

 <p>Vestibulum dictum massa at odio. In dignissim …</p>

 <div id="footer">© 2009 Recipe for success</div>

 </div>

</div>

 </div>

 </body>

</html>

You can see that I’ve added an additional div element with an id of main that wraps

the content and nav elements. I’ve also had to place the markup for navigation

above the markup for content; one drawback of using CSS tables is that the source

order for your column content must match the order in which you want them to

display. Finally, because I no longer need to specify clear: both; for the footer

element in order to clear the previously floated columns, I can place it inside the

main content div.

I only need to make a few small changes to the CSS. First, I can take the sidebar

background image out of the wrapper element as we’re able to apply this to the

column directly; I set the display property of the new main div to table, and the

content and nav elements are set to table-cell. I can now add my sidebar back

The CSS Anthology368

ground image directly to the nav element and remove the margin-left and clear

properties from the footer element, as it no longer needs to act as a clearing element

as it did for the floated layout. Here are the CSS changes:

chapter09/2col-fixedwidth-tables.css

#wrapper {

 position: relative;

 text-align: left;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

 margin-bottom: 1em;

border-right: 1px solid #888888;

 border-bottom: 1px solid #888888;

}

⋮
#main {

 display: table;

}

#content {

display: table-cell;

 width: 500px;

 padding: 0 10px 0 20px;

}

⋮
#nav {

display: table-cell;

 width: 230px;

background-image: url(sidebar.gif);

 background-repeat:repeat-y;

}

⋮
#footer {

font-size: 80%;

 padding: 1em 0 1em 0;

 color: #999999;

 background-color: transparent;

}

The layout should now look identical to the floated layout described in the section

called “How do I create a full-height column?”, but without having to resort to using

369CSS Positioning and Layout

floated elements and dealing with all the problems that introduces. The CSS table

version is much simpler and more intuitive.

If you recall from the section called “How do I add a footer to a liquid layout?”,

adding a footer to a three-column liquid layout introduced a lot of complexity and

forced us to use counter-intuitive negative margins. If we attempt the same layout

using CSS tables you’ll see the solution is far simpler. Here is the markup for the

CSS table version of our three-column liquid layout:

chapter09/3col-table.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

 <head>

 <title>Recipe for Success</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="3col-table.css" />

 </head>

 <body>

 <div id="wrapper">

 <div id="content">

 <div id="side1">

 <form method="post" action="" id="searchform">

 <h3><label for="keys">Search the Recipes</label></h3>

 <div>

 <input type="text" name="keys" id="keys"

class="txt" />

 <input type="submit" name="Submit" value="Submit" />

 </div>

 </form>

 About Us

 Recipes

 Articles

 Buy Online

 Contact Us

 </div>

 <div id="main">

 <h1>Recipe for Success</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer …</p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

The CSS Anthology370

<p>Quisque sodales imperdiet enim. Quisque …</p>

 </div>

 <div id="side2">

 <h3>Please Visit our Sponsors</h3>

 <div class="adbox"><p>Lorem ipsum dolor sit …</p></div>

 <div class="adbox"><p>Sed mattis, orci eu …</p></div>

 <div class="adbox"><p>Quisque mauris nunc, …</p></div>

 </div>

 </div>

 </div>

 <div id="footer">

⋮ footer content…
 </div>

 </body>

</html>

The first aspect you should notice is that it’s straightforward in comparison to the

floated layout version. Next the CSS:

chapter09/3col-table.css (excerpt)

#wrapper {

 width:100%;

}

#content {

display: table;

 width: 100%;

}

#main {

display: table-cell;

}

#side1 {

display: table-cell;

 width:200px;

 padding: 0 10px 0 10px;

}

#side2 {

display: table-cell;

 width: 190px;

 padding: 80px 10px 0 10px;

}

371 CSS Positioning and Layout

#footer {

 border-top: 10px solid #CECECE;

}

The CSS is equally straightforward: no margins, floating, or clearing required. The

layout displays in the same way as a single-row table with three cells. The footer

sits nicely below the three columns.

Discussion
You may have noticed that there is no element set to display as a table row. In a

simple layout the browser will add in a pretend table row, known as an anonymous

table element, to surround the table cell elements. If your layout is any more complex

though, I’d recommend you add in extra elements to display as the table rows as

well. It’s just the most error-free way to create a CSS table layout.

While certainly attractive to use, the lack of support from IE6 and IE7 is a problem.

If you want the best of both worlds then it’s possible to use conditional comments

to supply IE6 and IE7 with the CSS they require. I think we’ll be seeing a lot more

of CSS tables in the future, especially as IE6 and IE7 usage starts to drop. If you

want to know more about the technique and how to deal with those older browsers,

then please see the book I co-wrote with Kevin Yank, Everything You Know About

CSS is Wrong also published by Sitepoint.5

Summary
This chapter should have given you some starting points and ideas for your own

layouts. By combining other solutions in this book, such as the innovative use of

navigation and images, with your own creativity, you should be able to come up

with myriad designs based on the layouts we’ve explored here. As with tables, most

CSS layouts are really just variations on a theme.

Once you have a grasp of the basics, and you’ve learned the rules, you’ll find that

you really are limited only by your imagination. For inspiration, and to see what

other designers are doing with CSS layouts, have a look at the CSS Zen Garden.6

5 http://www.sitepoint.com/books/csswrong1/
6 http://www.csszengarden.com/

http://www.sitepoint.com/books/csswrong1/
http://www.sitepoint.com/books/csswrong1/
http://www.csszengarden.com/
http:http://www.csszengarden.com
http://www.sitepoint.com/books/csswrong1

Index

Symbols
!important keyword, 15

ID prefix, 10

A
<a> elements (see links)

absolute keyword font sizes, 27

absolute positioning, 307, 309

advantages, 331

three-column liquid layouts, 351, 355

two-column fixed-width layouts, 333,

339

two-column liquid layouts, 327

within other elements, 309, 339

access keys, 201–204

accessibility

(see also text-only devices)

absolute positioning and, 331

access keys, use of, 203

advantages of CSS, 217

<blockquote> elements and, 49

designing in, 144

<fieldset> and <legend> elements, 199

image text and, 81

image-based navigation, 131

pixel sizing and, 23

problems with implicit labels, 191

problems with tabular layouts, 139

reliance on color and, 181

tabular data, 141

testing in text-only browsers, 257

what to be aware of, 256

accesskey attribute, 203

accounts data spreadsheet, 140

:active pseudo-class, 13, 32, 33, 125

adjacent selectors, 12

Adobe BrowserLab, 225

align attribute alternatives, 296

alignment

of form fields, 191, 195, 196

of site logo and slogan in headers, 303

of tabular data, 151

of text, 45, 46, 49

in two-column liquid layouts, 322,

330

alt text, 260

alternating column colors, 160

alternating row colors, 152, 155, 207

alternative style sheets, 274

alerting users, 278

avoiding code duplication, 281

print style sheets, 263

anchor elements (see links)

anonymous table elements, 371

applying styles

determining which, 15

arrow key navigation, 259

@media at-rule, 262

attribute selectors, 117, 207

identifying input types with, 185

attributes, HTML

(see also class attributes; ID attributes)

deprecated attributes, 296

for tabular data, 143

aural media type, 262

author’s web site, 258

auto setting, margin properties, 312, 314

374

B
background colors

(see also highlighting)

accessibility and, 256

changing, after user interaction, 157,

215

headings, 38

link styling and, 34

background images

accessibility and, 256

movement, rollover effects, 124

multiple image effect, 82

placing text onto, 80

positioning, 71

setting for document elements, 76

setting for web pages, 66

static, under scrolling content, 74

three-column liquid layouts, 355, 356

transparency in IE6, 241

use in navigation, 134

background properties

shorthand declarations, 75

background-attachment property, 74

background-color property

alternating column colors, 162

alternating row colors, 153

highlighting using, 44, 151

mouseover color change, 157

navigation rollover effects, 94

Safari support, 205

<select> elements, 205

validator warnings about, 252

background-image property, 67, 345

background-position property, 71, 74

banners, alternative style sheets, 272

beveled effects, 107

block-level elements

centering, 312

displaying links as, 94

distinguished from inline, 290

effect of adding margins, 292

effect of adding padding, 293

float property and, 113

forcing inline display, 289

forms as, 185

response to floated elements, 297, 301

specifying heights, 306

<blockquote> elements, 48

blogs, 173

<body> elements

assigning IDs to, 115, 116

multiple background image effects, 82

Boodman, Aaron, 242

Boot Camp software, 222

border attribute, avoiding, 145

border properties and navigation buttons,

105, 107, 108

border property

applying to tables and cells, 145, 150

image gallery application, 365

indented appearance using, 146

inset borders, 184

removing borders, 66

border-bottom property, underlining, 40

border-collapse property

calendar application, 170

collapsing table cells, 147, 150

editable table form, 212

border-radius property, 314

borders

adding to images, 63, 297

375

changing, on receiving focus, 215

editable table form, 213

IE 5.x interpretation of, 296

illustrating container collapse, 306

illustrating float property effects, 297,

301

list-based navigation menu, 94

border-style property, 146

boxes, centering, 312

boxes, rounded corners, 314–321

braille media type, 261

browser defaults

display of <fieldset> and <legend>,

200

sans-serif fonts, 21

styling, 92, 178, 232

browser support

access keys, 204

adjacent selector, 13

alternative style sheets, 274, 277

attribute selectors, 117

border-radius property, 314

child selector, 12

coloring horizontal rules, 47

CSS support, 232, 255

CSS tables, 366

cursor property, 121

cursor property values, 121

doctype switching, 233

first-child selector, 15

font sizes, 26

graded support levels, 228

:hover pseudo-class, 14, 96, 157

@import method, 229

<input> element borders, 214

list-style-type values, 53

text styling, 19

zoom layouts, 278

browser testing

importance, 218

Linux users, 223

Mac users, 222

Netscape 4, 230

online services, 225

screen reader testing, 260

software for, 225

testing in multiple browsers, 224

text-only browsers, 257

using mailing lists, 226

Windows users, 220

browser window resizing, 364, 365

browsers, 218

(see also Camino; Chrome; Firefox;

Internet Explorer; Konqueror;

Opera; Safari; text-only devices)

border underlining effects, 40

bugs in, web sites listing, 249

coloring horizontal rules, 47

directing different styles to, 236

display of absolute keyword sizes, 27

downloading obscure browsers, 219

keyboard shortcuts, 204

Konqueror, 221, 224

legacy, basic style sheet, 229

Linux-specific browsers, 221

Lynx browser, 258

options for printing pages, 269

print functionality, 269

print preview, 262

rendering engines, 219

rendering modes, 233

text size preferences, 24

376

validation using plugins, 251

browser-specific extensions, 314

bugs

systematic approach to fixing, 217,

248

web sites listing, 249

bulleted lists

per-item bullets, 54

removing bullets, 93, 104, 172, 364

styling, 52, 54

buttons

displaying as plain text, 187

styling a Submit button, 182, 184

styling links to resemble, 105

C
calendar example, 164–174

Camino browser, 219

capitalization, 50, 51

<caption> elements, 143, 151

calendar example, 169, 171

captioning (see images)

caption-side property, 143

cascade, 15

understanding the concept, 15

cascading process, 10

cells, table (see table cells)

cellspacing attribute, HTML, 147

centering

background-position default, 73

blocks of content, 312

text, 49

two-column layouts, 331

child element positioning, 312

child selectors, 11

Chrome browser, 218

Clark, Joe, 278

class attribute, 8

class attributes

adding borders selectively, 65

choice between IDs and, 169, 287

distinguishing different form fields,

182

dynamically applied classes, 158

editable table form, 212

linking IDs to, 115, 116

naming, 206

setting multiple link styles, 35

styling tables, 144, 155, 160, 170

tabbed navigation list items, 111

use of elements, 43

class selectors, 8

clear property

(see also float property)

footers and, 335, 343

positioning text below floated ele

ments, 299, 302

possible values, 302

code duplication, 281

<col> elements, 160, 163

<colgroup> elements, 163

collapsing containers, 306

color constrast

accessibility and, 257

colors

(see also background colors; contrast)

accessibility problems, 181

alternating column colors, 160

alternating row colors, 152, 207

horizontal rules, 47

print styles and, 267, 273

377

section IDs within <body> elements,

116

simulating button depression, 108

zoom layouts and, 278

columns

alternating colors, 160

creating full-height, 345

comments, 60

conditional comments, 236, 244

compatibility view in IE8, 246

compliance mode rendering, 233, 235

conditional comments, 236, 244

containers

collapsing when contents are floated,

306

indenting rule, 48

setting borders within, 65

styling, for navigation menus, 92

treated as block-level elements, 290

content areas

centering, 312

drop shadow effect, 347

mouseover highlighting, 159

in two-column liquid layouts, 328

width adjustment for printing, 271

contrast, 275, 278

csant.info site, 258

CSS 2.1 media types, 261

.css file extension, 4

CSS Pointers Group site, 249

CSS tables

creating layouts with, 366

CSS Test Suite for list-style-type, 53

CSS tutorial, 1–17

CSS3

border-radius property, 314

media queries, 263

CSS3 selectors, 116

:nth-child selector, 155

attribute selector, 117

CSS-Discuss site, 249, 251

csszengarden.com site, 83, 371

cursor positioning, 204

(see also mouseover effects)

in form fields, 189

cursor property, 119

D
<!DOCTYPE> tag, 234

database-driven applications, 165, 365

default padding and margins, 58

deprecated attributes, 296

depressed effect, button navigation, 108

descendant selectors, 10

device types, styling for, 261

display property

displaying links as blocks, 94

hiding page sections, 270, 272

inline display of form elements, 185

 elements, 56, 102, 104

overriding defaults, 291

table-related values, 367

<div> elements

absolute positioning example, 309

class selectors, 35

drop shadow layout, 349

<fieldset> and <legend> compared to,

199

forcing inline display, 289, 291

form field layouts and, 195, 196

list-based navigation menu, 92

positioning of nested, 310

http:csszengarden.com

378

two-column centered layout using,

338

doctype switching, 233

doctypes, 233

compliance mode enforcing, 233

rendering modes and, 233

document flow

absolute positioning and, 309, 327

float property and, 196, 297, 301, 306,

343

inserting form elements, 186

relative positioning and, 339

double border effect, 86

Dreamweaver, Adobe, 225, 251

drop shadow effect, 347

drop-down menus

alternating row colors, 207

varying background colors, 205

dual booting, 221–224

dynamic pseudo-class selectors, 14

dynamic web pages

alternating row colors, 155

database-driven calendar, 165

image gallery application, 365

E
edgeofmyseat.com site, 258

editable table form, 207, 210, 211, 213

empty element validation, 251

ems, font sizing in, 23, 307, 329

errors, validator, 251, 252

event markup, calendar application, 170,

172

evolt.org website, 219

exes, font sizing in, 26

F
fields (see form fields)

<fieldset> elements, 196, 199, 200

file extension .css, 4

Fire Vox extension, 260

Firefox browser, 200, 219, 277

first letters, styling, 51

first lines, styling, 49

first-child selectors, 14

fixed-width elements

centering, 312

effect of adding margins, 295

in flexible content areas, 357

fixed-width layouts, 331

fixing CSS problems

systematic approach for IE6 and 7, 237

flickering, Internet Explorer, 125

float property

alignment of logo and slogan, 303, 304

container collapse and, 306

label elements, 196

liquid layout footers, 357

preventing following elements from

closing up, 299

tabbed navigation example, 113

thumbnail gallery application, 363

two-column centered layouts, 335, 341

use with negative margins, 359

wrapping text around images, 296

focus

access key response, 204

highlighting form fields with, 214

placing cursors in form fields, 189

:focus pseudo-class, 214

 element replacement, 43

http:evolt.org
http:edgeofmyseat.com

379

font size

large text style sheets, 275, 277

zoom layouts and, 278

font sizing, 27, 29

(see also units, font size)

font-family property, 20

fonts

browsers’ default fonts, 20

choice for printed text, 273

setting default, with type selectors, 7

specifying a font-family, 20

font-size property, 45

footers

correcting display of floated columns,

343

dynamic placement, 335

three-column layouts and, 357

two-column layouts and, 341, 343

for attribute, <label> element, 190

<form> element styling, 179

form fields

aligning, 191, 195, 196

applying different styles, 182

cursor positioning, 189, 204

sizes of text fields, 184

formatting

(see also text styling)

inline and block-level elements, 290

tabular data, 149

forms

access key use, 201

accessibility, 187

avoiding unwanted whitespace, 185

completing in Lynx, 259

editable table form, 207, 210

grouping related fields, 196

highlighting effects, 214, 215

inline display, 185

styling early, 184

two-column forms, 191, 194

forums (see mailing lists; SitePoint for

ums)

full-height columns

with CSS tables, 366

G
Gecko rendering engine, 219

generic font families, 20

GIF images, 84

GIFs, single pixel, 242

global whitespace reset, 59

gradient images, 69, 76

graphics (see images)

graying out, 172

grayscale text, 273

grid layouts, 363

CSS tables, 366

grouping form fields, 196

grouping menu options, 207

H
<h1> elements (see heading elements)

“halo effect” workaround, 241

handheld media type, 262

hash symbol ID prefix, 10

hasLayout, 240

<head> elements, 3, 237, 252

headers

aligning logos and slogans, 303

container collapse after floating ele

ments, 306

380

heading elements

(see also table headings)

adding backgrounds, 38, 78

closing up after text, 41

underlining, 39

height property

avoiding container collapse, 306

IE6 interpretation, 240, 244

positioning nested elements, 311

text resizing and units, 307

hiding elements for print style sheets,

270, 272

high contrast style sheets, 275

highlighting

(see also alternating colors)

annotated days in calendar, 170, 172

menus with different backgrounds,

205

mouseover and focus effects, 94, 157,

159, 214

tabbed navigation example, 115, 116

text, using elements, 43

horizontal menus

button-like navigation, 107

horizontal navigation, 56, 101

tabbed navigation, 109

horizontal rules, 47

:hover pseudo-class, 13, 32, 33

background image effects, 79, 124

browser support, 96, 157

rollover navigation effects, 94

row color changes, 157

<hr /> elements, 47

HTML

(see also attributes)

accessibility features, 141

compliance mode doctypes, 234

elements usually treated as block-

level, 290

linking to a CSS style sheet, 5

styling form elements, 179

elements for tabular data, 143

XHTML syntax problems, 251

<html> elements and multiple back

grounds, 82

hyperlinks (see links)

I

icons (see cursors)

ID attributes

choice between classes and, 169, 287

hiding navigation, 270

ID selectors and, 10

linking to classes, 115, 116

multi-image containers, 65

setting multiple link styles, 35

use with <label> elements, 190

IE6 and 7 issues, 237

IE6 support

adjacent selector, 13

attribute selectors, 117

child selector, 12

emulate :hover pseudo-class with

JavaScript, 159

:focus pseudo-class, 215

first-child selector, 15

:hover pseudo-class, 14, 96

min-height property, 240

PNG transparency, 85

IE7 emulation in IE8, 227, 246

image-based navigation, 131

image-heavy sites, 267, 329

381

images, 63–88

(see also background images)

adding borders, 63

alt text, 260

displaying a thumbnail gallery, 360

forcing block-level display, 364

as list item bullets, 54

placing text onto, 80

rollover effects using, 124

rounded corners using, 316

wrapping text around, 296–303

implicit labels, 191

import directive, 229

important (see !important keyword)

indented borders, 146

indenting subnavigation, 100

indenting text, 48–49

(see also margins)

inheritance, 29

inline display of lists, 56, 101

inline elements

distinguished from block-level, 290

forcing block-level display, 289, 364

response to floated elements, 297

inline form elements, 185

<input> elements

editable table form, 213

styling examples, 179, 180, 182

type attribute, 183

input fields (see form fields)

inset borders, 184

interface design, 207

(see also forms)

Internet Explorer, 219

alternative style sheets and, 277

box model bug in IE 5.x, 296

content centering bug in IE5.x, 314

CSS rendering differences, 226

directing different styles to IE6, 236

disappearing content bug, IE6, 303

enhanced CSS support in IE 7 and 8,

236

“Flash of Unstyled Content”, 232

flickering, 125

:focus pseudo-class and IE6, 214, 215

installing multiple versions, 226

quirks mode rendering, 233

Internet Explorer 4, 229

Internet Explorer rendering modes, 227

iPhone, 263

J
JavaScript

highlight effects using, 159, 215

IE6 transparent PNGs using, 242

mouseover effects and, 122, 158

navigation relying on, 89

rounded box corners using, 318

unobtrusive JavaScript, 160

unreliability of IE VM testing, 227

JAWS screen reader, 260

“jiggling” after pseudo-class styling, 34

jQuery, 156

JScript, 227

(see also JavaScript)

justified text, 45

K
KDE browsers, 221, 224

keyboard shortcuts, 201, 204

keyboard-only navigation, 203

keyword-based font sizing, 27

382

keyword-based image positioning, 72

KHTML rendering engine, 219

Knoppix web site, 221

Konqueror browser, 219, 221, 224

L
:link pseudo-class, 13

<label> elements, 188, 190

cursor positioning advantage, 189

table-free form layout, 196

large text style sheets, 275, 277

layout problems

IE6 and 7, 240

layouts

(see also table-based layouts)

absolute positioning, 307

allowing for margins and padding, 295

CSS table-based, 366

drop shadow effect, 347

grid layouts, 363

inline and block-level elements, 290

positioning items on the page, 307

print style sheets and, 267

redesign with unchanged markup, 331

three-column, 350

two-column, 322, 331

leading (see line-height property)

<legend> elements, 196, 199, 200, 204

 elements (see list items)

line breaks, unwanted, 185

line-height property, 44, 45

improving accessibility with, 257

<link> elements, 5

import method and, 229

media attribute, 261, 270

rel attribute, 275

link icons, 119

links

applying background images, 78

forcing block-level display, 94, 289,

291

mouseover color change, 32

multiple styles for, 9, 34

pseudo-class formatting, 13

removing underlining from, 30

styling with CSS, 116

styling, in navigation menus, 93

Linux users, 221, 223, 258

liquid layouts

image placement and, 73

positioning using percentages and, 73

text resizing and units, 329

three-column, 350, 357

two-column, 322

with CSS tables, 369

list items

display property and, 56, 102

events as, calendar example, 172

left indenting adjustment, 55, 56

nesting sub-lists, 99

styling bullets, 52, 54

styling differently, 36

styling, in navigation menus, 93

list-based navigation, 90

nested lists, 126

lists

basis of navigation menus, 325

removing bullets, 172

subnavigation using nested lists, 97,

99

thumbnail gallery application, 361,

362

383

list-style property, 93

list-style-image property, 54

list-style-type property, 52, 55, 56, 363

Live CDs, 221

logos in headers, 303

Lynx browser, 258

M
Mac OS X

browser testing, 222

Firefox default form styling on, 200

Lynx browser for, 258

Safari default form styling on, 178

mailing lists, 226, 249

margin properties, 291–293

auto setting, 312, 314

floated header elements, 305

negative margins, 357

margin property, 291, 356

margin-bottom property, 172

margin-left property, 55, 100, 340

margins

absolute positioning within, 309, 330

content positioning in liquid layouts,

328

distinguished from padding, 294

in horizontal navigation lists, 105

justification, 45

print style sheets, 271

removing left indenting, 55, 93, 104

use with floated images, 298

markup (see HTML; XHTML)

McLellan, Drew, 242

@media at-rule, 262

media attribute, <link> elements, 261,

270

media attribute, <style> element, 261

media queries

targeting handheld devices with, 263

media types specification, 261

<meta> tag, 247

meyerweb.com site, 53

Microsoft Corporation

Excel spreadsheets, 207, 210

Virtual PC, 226

Microsoft SuperPreview, 226

min-height property on IE6, 244

mini-calendar, 173

mobile devices

styling for, 261

mouse alternatives, 203

mouseover effects

(see also :hover pseudo-class)

cursor appearance, 119

link color changes, 32

rollover navigation, 94, 122

row color changes, 157

Mozilla Foundation, 219

N
:nth-child pseudo-class, 155

navigation, 89–137

block-level links in, 291

button-like navigation, 105

cursor appearance, 119

full height columns, 345

horizontal menus, 101

Lynx browser, 259

printing difficulties and, 268, 270

rollover effects, 94, 122

subnavigation, 96

http:meyerweb.com

384

two-column fixed-width layouts, 339,

340

two-column liquid layouts, 322, 325,

327, 330

negative margins, 43, 357

hiding text with, 134

nested elements

absolute positioning and, 310

<col> elements, 163

<div> elements, 310

multiple background image effect, 82

subnavigation with nested lists, 97,

99

Netscape 4, 229, 230

NiftyCube web site, 318

numeric data alignment, 151

O
older browsers

support for, 228

Opera browser, 218

full-screen mode, 262

operating systems (see Linux; Mac OS X;

Windows)

overlining, 31

overriding style definitions, 13, 231

P
padding

absolute positioning within, 309

in horizontal navigation lists, 105

IE 5.x interpretation of, 296

margins distinguished from, 294

padding properties, 293

padding property, 39, 40, 213, 291

padding-left property, 48, 55

padding-top property, 196

paragraph styling, 302 (see text)

Parallels Desktop for Mac, 223

Parallels Workstation, 222, 224

parent element positioning, 312

percentage units, 26, 73

periods, preceding class names, 9

photo album application, 360

photographs, 86

pica font sizing, 22

pixel font sizing, 23, 262

placement (see positioning)

plugins for validation, 251

PNG images, 84

PNG transparency support, 241, 246

point font sizing, 22, 271, 273

Position is Everything site, 249

position property (see absolute position

ing; relative positioning)

positioning backgrounds, 71, 73

positioning context, 339

Print buttons on page and browser, 269

print media type, 263, 264, 270

Print Preview function, 269, 271, 274

print style sheets, 23, 263–274

properties, CSS

form field applicability, 180

separating changing properties, 281,

284, 285

pseudo-class selectors, 13

pseudo-classes, 32, 34

(see also :active; :focus; :hover)

Q
quirks mode rendering, 233

385

R
readability

alternating row colors, 152

alternative style sheets, 229, 273, 277

keyword font sizing and, 27

mouseover highlighting, 157

rel attribute, <link> elements, 275

relative font sizing, 27, 29

relative positioning

two-column layouts using, 333, 339

use with IE6 transparency hack, 246

using position: absolute, 310

removing link outline, 66

removing margins, 41, 57

removing whitespace (see global

whitespace reset)

rendering modes, browsers, 233

repeating background images, 68

resizing and placing images, 73

resizing text

font sizing units and, 23, 24, 26

rollover effect problems, 125

user resizing in liquid layouts, 329

user resizing of floated elements, 307

rollover navigation, 94, 122

rounded corners, 314–321

rows (see table rows)

S
Safari browser, 178

browser testing, 218

for Windows, 221

<input> element borders, 214

limited background-color support, 205

sans-serif fonts, 21

scope attribute, <th> element, 144

screen readers, 255

(see also text-only devices)

absolute positioning and, 331

accessibility advantages of CSS, 217

<blockquote> elements and, 49

fieldsets and legends, 199

forms suitable for, 188, 190

image-based navigation and, 89

site testing with, 260

styling for, 261

summary attribute usefulness, 143

<script> elements

(see also JavaScript)

unobtrusive JavaScript, 160

within conditional comments, 244

scrolling content, 74

search engines and text as images, 81, 89

<select> elements, 179, 205

selectors, 7–15

self-closing tags, 251

serif fonts and printed text, 273

shorthand property declarations, 75,

291, 293

sidebars, 9

sitemaps

styling with CSS, 126

SitePoint CSS Reference, 16, 155, 237,

249

SitePoint Forums, 226, 251

Sliding Doors of CSS method, 111

slogans, aligning, 303

source order, 17

when using CSS tables, 367

spaces

inserting, 105, 364

386

removing unwanted, 147, 185

 elements

access key use, 202, 204

aligning logos and slogans, 305

highlighting, 43

line-height units and, 45

Spanky Corners technique, 321

specificity, 16

speech media type, 262

spreadsheets

alternating column colors, 160

alternating row colors, 152

color change on mouseover, 157

editable table form, 207, 211, 213

tabular data example, 140–159

strict doctype, 233

striping (see alternating colors)

style definitions, application order, 9,

13, 34

<style> elements, 3, 4, 261

style sheet origin, 16

style sheets (see alternative style sheets;

print style sheets)

styling external links, 116

styling list items, 36

styling lists, 52

styling tabular data, 149, 151

(see also text styling)

Submit buttons, 182, 184, 187

subnavigation, 96–101

(see also drop-down menus)

summary attribute, <table> element, 143

syntax, invalid, 252

T
table cells

adding borders to, 145

collapsing borders, 147, 150

controlling spacing between, 147

table columns, 160

table headings, 140, 144

(see also <th> elements)

table rows, 152, 157

<table> elements, summary attribute, 143

table-based layouts

accessibility problems, 139, 190

alternative for aligning header content,

303

alternative for image galleries, 360

print style sheets, 274

spreadsheet-type data, 140, 207

two-column forms, 191, 194

use for forms, 177

value of the <label> element, 190

table-related display values, 366

tables

borders for, 145, 150

calendar example, 164–174

editable table form, 207

identifying headings, 144

setting widths, 170

spreadsheet example, 140–159

tansparent images, 84

<td> elements

calendar example, 171

styling with borders, 145

television-type devices, 262

text

(see also fonts)

387

buttons displaying as, 187

differentiation with class selectors, 8

flowing around forms, 186

grayscale for print styles, 273

in relation to images, 80, 296, 299, 364

right aligning, 305

text files, style sheets as, 4

text sizing, 24, 307

(see also resizing text)

text styling, 19–61

(see also paragraphs)

adding background colors, 38

altering line-heights, 44

case changes, 50, 51

centering, 49

closing up headings, 41

formatting bulleted lists, 52, 54

highlighting, 43

horizontal rules, 47

indenting, 48, 49

justification, 45

list item styling, 56

modifying links, 30–36

underlining headings, 39

text-align property, 45, 46, 49, 151, 314

<textarea> elements, 179

text-decoration property, 30–32, 39, 202–

204

text-indent property, 49

text-only devices

(see also screen readers)

forms suitable for, 187

grouping form fields, 196, 199

Lynx browser testing, 257

styling for, 261

text-transform property, 50–51

<th> elements, 144

calendar example, 169, 171

editable table form, 211, 212

styling, 151

styling with borders, 145

three-column layouts, 350, 356

with CSS tables, 369

thumbnail galleries, 360–365

tiling, background-images, 67

<tr> elements, 155, 158, 159

transparency and IE6, 241, 246

transparent images, 241, 246

Tredosoft site, 227

troubleshooting CSS, 248

tty media type, 262

two-column layouts, 322, 331, 335, 341

type attribute, <input> element, 183

type attribute, <style> element, 4

type selectors, 7

typefaces (see fonts)

U
Ubuntu Live CD, 221

UDM4 menu, 131

underlining, 30, 32, 39, 40, 201

units, font size

background-position property, 71, 74

line-height property and, 45

for printing, 271

user resizing, 307, 329

unobtrusive JavaScript, 160

unordered lists (see lists)

uppercase text, 50, 51

usability, 152, 178

user interaction effects, JavaScript, 159

388

user interfaces (see forms)

user selection of style sheets, 274

V

:visited pseudo-class, 13, 34

validation, 238, 248, 249, 251

Virtual PC, 226

VirtualBox VM software, 222

virtualization software, 222, 224

:visited pseudo-class, 13, 34

visually impaired users, 255, 278

(see also screen readers)

VMWare Fusion, 223

VMWare Workstation, 222, 224

W
W3C (World Wide Web Consortium), 251

Walker, Alex, 321

warnings, validator, 251, 252

WebKit-based browsers, 219, 224

weight, 15

WellStyled.com rollover technique, 122

whitespace, unwanted, 185

width property

left navigation menu, 327

suppressing wrapping, 365

Windows users, 220, 221, 258

wrapper <div> element, 338

wrapping effect, thumbnail gallery, 364,

365

X

XHTML, 233, 234, 251

(see also HTML)

x-ua-compatible, 246

Y
YUI Graded Browser Support chart, 228

Z
zoom layouts, 278

http:WellStyled.com

	The CSS Anthology
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Conventions Used in This Book
	Markup Samples
	Tips, Notes, and Warnings

	Making a Start with CSS
	How do I define styles with CSS?
	Solution
	lnline Styles
	Embedded Styles
	External Style Sheets
	CSS Syntax

	What are CSS Selectors and how do I use them effectively?
	Solution
	Type Selectors
	Class Selectors
	ID Selectors
	Descendant Selectors
	Child Selectors
	Adjacent Selectors
	Pseudo-class Selectors for Links
	First Child Pseudo-class Selector

	How does the browser know which styles to apply?
	Solution

	Summary

	Text Styling and Other Basics
	How do I set my text to display in a certain font?
	Solution
	Discussion

	Should I use pixels, points, ems, or another unit identifier to set font sizes?
	Solution
	Sizing Fonts Using Units of Measurement
	Points and Picas
	Pixels
	Ems
	Exes
	Percentages

	Sizing Fonts Using Keywords
	Absolute Keywords
	Relative Keywords

	Discussion
	Relative Sizing and Inheritance

	How do I remove underlines from my links?
	Solution
	Discussion

	How do I create a link that changes color when the cursor moves over it?
	Solution

	How do I display two different styles of link on one page?
	Solution

	How do I style the first item in a list differently from the others?
	Solution
	Using first-child
	Using a Class Selector

	How do I add a background color to a heading?
	Solution

	How do I style headings with underlines?
	Solution

	How do I remove the large gap between an h1 element and the following paragraph?
	Solution
	Using an Adjacent Selector

	How do I highlight text on the page?
	Solution

	How do I alter the line height (leading) on my text?
	Solution

	How do I justify text?
	Solution
	Discussion

	How do I style a horizontal rule?
	Solution

	How do I indent text?
	Solution
	Discussion

	How do I center text?
	Solution

	How do I change text to all capitals using CSS?
	Solution
	Discussion

	How do I change or remove the bullets on list items?
	Solution
	Discussion

	How do I use an image for a list-item bullet?
	Solution

	How do I remove the indented left-hand margin from a list?
	Solution
	Discussion

	How do I display a list horizontally?
	Solution

	How do I remove page margins?
	Solution

	How can I remove browsers’ default padding and margins from all elements?
	Solution
	Discussion

	How do I add comments to my CSS file?
	Solution

	Summary

	CSS and Images
	How do I add borders to images?
	Solution

	How do I use CSS to remove the blue border around my navigation images?
	Solution

	How do I set a background image for my page using CSS?
	Solution
	Discussion

	How do I control how my background image repeats?
	Solution

	How do I position my background image?
	Solution
	Discussion
	Keywords
	Percentage Values
	Unit Values

	How do I fix my background image in place when the page is scrolled?
	Solution
	Discussion

	Can I set a background image on any element?
	Solution
	Discussion

	How do I place text on top of an image?
	Solution
	Discussion

	How do I add more than one background image to my document?
	Solution
	Discussion

	How can I use transparency in my pages?
	Solution
	Discussion

	Can I create more complex image borders, such as a double border?
	Solution
	Discussion

	Summary

	Navigation
	How do I style a structural list as a navigation menu?
	Solution
	Discussion

	How do I use CSS to create rollover navigation without images or JavaScript?
	Solution
	Discussion

	Can I use CSS and lists to create a navigation system with subnavigation?
	Solution
	Discussion

	How do I make a horizontal menu using CSS and lists?
	Solution
	Discussion

	How do I create button-like navigation using CSS?
	Solution
	Discussion

	How do I create tabbed navigation with CSS?
	Solution
	Discussion

	How can I visually indicate which links are external to my site?
	Solution
	Discussion

	How do I change the cursor type?
	Solution
	Discussion

	How do I create rollover images in my navigation without using JavaScript?
	Solution
	Discussion

	How should I style a site map?
	Solution
	Discussion

	Can I create a drop-down menu using only CSS?
	How can I use CSS to keep image-based navigation clean and accessible?
	Solution
	Discussion

	Summary

	Tabular Data
	How do I lay out spreadsheet data using CSS?
	Solution
	Discussion

	How do I ensure that my tabular data is accessible as well as attractive?
	Solution
	Discussion
	The summary Attribute of the table Element
	The caption Element
	The th Element

	How do I add a border to a table without using the HTML border attribute?
	Solution
	Discussion

	How do I stop spaces appearing between the cells of my table when I’ve added borders using CSS?
	Solution

	How do I display spreadsheet data in an attractive and usable way?
	Solution
	Discussion

	How do I display table rows in alternating colors?
	Solution
	Discussion
	The Way of the Future

	How do I change a row’s background color when the cursor hovers over it?
	Solution
	Discussion

	How do I display table columns in alternating colors?
	Solution
	Discussion

	How do I display a calendar using CSS?
	Solution
	Discussion

	Summary

	Forms and User Interfaces
	How do I style form elements using CSS?
	Solution
	Discussion

	How do I apply different styles to fields in a single form?
	Solution
	Discussion

	How do I stop my form from creating additional whitespace and line breaks?
	Solution

	How do I make a Submit button look like text?
	Solution

	How do I ensure that users with text-only devices understand how to complete my form?
	Solution
	Discussion

	How do I lay out a two-column form using CSS instead of a table?
	Discussion

	How do I group related fields?
	Solution
	Discussion

	How do I style accesskey hints?
	Solution
	Discussion

	How do I use different colored highlights in a select menu?
	Solution
	Discussion

	How do I style a form with CSS that allows users to enter data as if into a spreadsheet?
	Discussion

	How do I highlight the form field that the user clicks into?
	Solution
	Discussion

	Summary

	Cross-browser Techniques
	In which browsers should I test my site?
	Solution

	How can I test in many browsers when I only have access to one operating system?
	Solution
	Windows Users
	Testing Mac Browsers
	Testing Linux Browsers
	Linux Live CDs
	Dual Booting with Linux
	Virtualization

	Mac Users
	Dual Boot with Boot Camp
	Virtualization

	Linux Users
	Testing Mac Browsers
	Testing Windows Browsers
	Virtualization
	Dual Booting

	Is there a service that can show me how my site looks in various browsers?
	Solution
	Discussion

	Can I install multiple versions of Internet Explorer on Windows?
	Solution

	How do I decide which browsers should get the full design experience?
	Solution

	How do I display a basic style sheet for really old browsers?
	Solution
	Discussion

	What is quirks mode and how do I avoid it?
	Solution
	Discussion

	How can I specify different styles for Internet Explorer 6 and 7?
	Solution

	How do I deal with the most common issues in IE6 and 7
	Solution
	The Development Process
	Fixing Internet Explorer Problems

	How do I achieve PNG image transparency in Internet Explorer 6?
	Solution
	Discussion

	How do I ensure my standards-compliant web site displays correctly in Internet Explorer 8?
	Solution

	What do I do if I think I’ve found a CSS bug?
	Solution

	What do the error and warning messages in the W3C Validator mean?
	Solution
	Errors and Warnings

	Summary

	Accessibility and Alternative Devices
	What should I be aware of in terms of accessibility when using CSS?
	Solution
	Set Background Colors When Using Background Images
	If You Set a Foreground Color, You Need to Set a Background Color, and Vice Versa
	Check Color Contrasts
	Backgrounds Should Only Be Decorative
	Check line-height for Readability

	How do I test my site in a text-only browser?
	Solution
	Linux/Unix Users
	Windows Users
	Mac OS X Users

	Discussion

	How do I test my site in a screen reader?
	Solution
	Discussion

	How do I create style sheets for specific devices?
	Solution
	Discussion

	How do I create a print style sheet?
	Solution
	Discussion
	Linking a Print Style Sheet
	Creating the Print Styles

	How do I add alternative style sheets to my site?
	Solution
	Discussion
	Zoom Layouts

	Should I add font-size widgets or other style sheet switchers to my site?
	Solution

	How do I use alternative style sheets without duplicating code?
	Solution
	Discussion

	Summary

	CSS Positioning and Layout
	How do I decide when to use a class and when to use an ID?
	Solution

	Can I make an inline element display as if it were block-level, and vice-versa?
	Solution
	Discussion

	How do margins and padding work in CSS?
	Solution
	Discussion

	How do I wrap text around an image?
	Solution
	Discussion

	How do I stop the next element moving up when I use float?
	Solution
	Discussion

	How do I align a site’s logo and slogan to the left and right?
	Solution
	Discussion

	How do I set an item’s position on the page using CSS?
	Solution
	Discussion

	How do I center a block on the page?
	Solution
	Discussion

	How do I create boxes with rounded corners?
	Solution 1: The CSS3 border-radius Property
	Solution 2: Images and Additional Markup
	Solution 3: Using JavaScript
	Discussion

	How do I create a liquid, two-column layout with the menu on the left and the content on the right?
	Solution
	Discussion
	Sizing and Positioning the Menu
	Positioning the Content

	Can I reverse this layout and put the menu on the right?
	Solution
	Discussion

	How do I create a fixed-width, centered, two-column layout?
	Solution
	Discussion

	How do I create a full-height column?
	Solution
	Discussion

	How do I add a drop shadow to my layout?
	Solution

	How do I create a three-column CSS layout?
	Solution
	Discussion

	How do I add a footer to a liquid layout?
	Solution

	How do I create a thumbnail gallery with CSS?
	Solution
	Discussion

	How do I use CSS Tables for Layout?
	Solution
	Discussion

	Summary

	Index

