

ii	 The Art & Science of CSS 	 The Art & Science of CSS	 iii

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Dan Rubin Production: BookNZ (www.booknz.co.nz)

Expert Reviewer: Jared Christensen Managing Editor: Simon Mackie

Technical Editor: Andrew Krespanis Technical Director: Kevin Yank

Editor: Hilary Reynolds Index Editor: Max McMaster

Cover Design: Alex Walker

Printing History

First Edition: March 2007

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations cited in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty,

either express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors, will be held liable for any damages to be caused either directly or indirectly

by the instructions contained in this book, or by the software or hardware products

described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses

the names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9758419-7-6

Printed and bound in the United States of America

ii	 The Art & Science of CSS 	 The Art & Science of CSS	 iii

About the Authors
Cameron Adams has been adding to the Internet for over seven years and now runs

his own design and development business. He likes to combine the aesthetic with the

technological on his weblog, http://www.themaninblue.com/, which contains equal parts

of JavaScript, design, and CSS.

Jina Bolton, interactive designer, holds a Bachelor of Fine Arts degree in Computer Arts

and Graphic Design from Memphis College of Art. In addition to being featured in CSS

Professional Style and Web Designing magazine, Jina consults for various agencies and

organizations, including the World Wide Web Consortium. She enjoys traveling, is learning

Italian, and considers herself a sushi enthusiast.

David Johnson is one of those evil .NET developers from Melbourne, Australia. He is

the senior developer at Lemonade, http://www.lemonade.com.au/, and his role includes

C# programming, database design using SQL Server, and front-end development using

XHTML and CSS. He makes up for his evil deeds by being a firm believer in web standards

and accessibility, and forcing .NET to abide by these rules. His favourite candy is Sherbies.

Steve Smith lives with his wife, son, and a few miscellaneous animals in South Bend,

Indiana, USA. As well as maintaining his personal web site, http://orderedlist.com/, Steve

works as an independent web designer, developer, and consultant. He does his best to

convince his clients and friends that web standards should be a way of life.

Jonathan Snook has been involved with the Web since ’95, and is lucky to be able to

call his hobby a career. He worked in web agencies for over six years and has worked

with high-profile clients in government, the private sector, and non-profit organizations.

Jonathan Snook currently runs his own web development business from Ottawa, Canada,

and continues to write about what he loves on his blog, http://snook.ca/.

iv	 The Art & Science of CSS 	 The Art & Science of CSS	 �

About the Expert Reviewers
Dan Rubin is a published author, consultant, and speaker on user interface design,

usability, and web standards development. His portfolio and writings can be found on

http://superfluousbanter.org/ and http://webgraph.com/.

Jared Christensen is a user experience designer and the proprietor of http://jaredigital.com.

He has been drawing and designing since the day he could hold a crayon; he enjoys elegant

code, walks in the park, and a well-made sandwich.

About the Technical Editor
Andrew Krespanis moved to web development after tiring of the instant noodles that

form the diet of the struggling musician. When he’s not diving headfirst into new web

technologies, he’s tending his bonsai, playing jazz guitar, and occasionally posting to his

personal site, http://leftjustified.net/.

About the Technical Director
As Technical Director for SitePoint, Kevin Yank oversees all of its technical publications—

books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint, but is

best known for his book, Build Your Own Database Driven Website Using PHP & MySQL.

Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy theater

and flying light aircraft.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles,

and community forums.

iv	 The Art & Science of CSS 	 The Art & Science of CSS	 �

Table of Contents

Chapter 1  Preface . . viii

Chapter 1  Headings. . 1

Hierarchy. . 2

Identity. . 4

Image Replacement. . 7

Flash Replacement. . 12

Summary. . 21

Chapter 2  Images. . 23

Image Galleries. . 24

Contextual Images. . 47

Further Resources. . 64

Summary. . 65

Chapter 3  Backgrounds. . 66

Background Basics. . 67

Case Study: Deadwood Design. . 69

The Future of Backgrounds. . 83

Summary. . 85

Chapter 4  Navigation . . 86

The Markup. . 87

Basic Vertical Navigation. . 88

Basic Horizontal Navigation. . 95

Tabbed Navigation. . 98

Variable-width Tabs. . 102

Advanced Horizontal Navigation. . 108

Summary. . 116

vi	 The Art & Science of CSS 	 The Art & Science of CSS	 vii

Chapter 5  Forms. . 117

Accessible Form Markup. . 118

Form Layout. . 121

Required Fields and Error Messages. . 147

Summary. . 152

Chapter 6  Rounded Corners. . 154

Flexibility. . 155

Experimenting with these Techniques. . 179

Summary. . 179

Chapter 7  Tables. . 181

The Structure. . 182

The Styling . . 191

Table Elements in Action. . 196

Using JavaScript. . 202

The Future. . 206

Summary. . 208

vi	 The Art & Science of CSS 	 The Art & Science of CSS	 vii

Preface
In the early days of CSS, many web designers associated it with boring, square boxes

and thin borders. “CSS is ugly!” they would cry. It took projects such as CSS Edge� and

CSS Zen Garden� to show the web design world that not only could CSS designs achieve

the same aesthetic qualities of their table-based ancestors, but, furthermore, that new

and interesting design possibilities were available. Not to mention how much more

maintainable the markup is—imagine how very, very happy you’ll be if you never again

have to stare down the barrel of another day’s worth of table hacking!

Each chapter of this book will teach you how to style common web site components

through practical examples. Along the way, you’ll learn many handy techniques for

bringing complex designs to life in all modern browsers without needing to resort to messy

hacks or superfluous presentational markup. Neither accessibility nor markup quality

should be sacrificed to make tricky designs easier to achieve, so the exercises you’ll find

in this book all use examples of best practice XHTML and CSS. Each chapter progressively

builds upon the skills you’ll have acquired in previous exercises, giving you a practical

toolkit of skills with which to express your own creative ideas.

Who Should Read this Book?
This book is ideal for anyone who wants to gain the practical skills involved in using

CSS to make attractive web sites, especially if you’re not the type who likes to learn

by memorizing a formal specification and then trying to work out which browsers

implemented it completely (does anyone enjoy reading specifications?). The only

knowledge you’ll need to have is some familiarity with HTML. This book will give

designers the skills they need to implement their ideas, and provides developers with

creative inspiration through practical examples.

What’s in this Book?
This book contains seven chapters that engage with the fundamental elements of the

web page—headings, images, backgrounds, navigation—as well as applied styles such as

those used in forms, rounded corners for content boxes, and tables. CSS is inherent in the

approaches we’ll use in the exercises presented here. These exercises will encourage you to

address the questions of art and science in all the design choices you make, as a means to

�	 http://meyerweb.com/eric/css/edge/
�	 http://csszengarden.com/

viii	 The Art & Science of CSS 	 The Art & Science of CSS	 ix

create designs that are as beautiful as they are functional. Throughout the book, therefore,

considerations of usability are always paramount—both in terms of users of mainstream

browsers and those employing assistive technology.

	 Chapter 1: Headings

	 Simultaneously conveying the content and the identity of your site, headings are truly

the attention-grabbers of your web page. With only a handful of fonts being available

across all browsers, CSS can help you style headings that stand out from the crowd. In

this chapter, Cameron Adams will show you how to use image and Flash replacement

to gain unlimited creativity in designing headings, while retaining the page’s

accessibility across all browsers.

	 Chapter 2: Images

	 Images are the windows to your web page’s soul. Jina Bolton will teach you stunning

ways to display your images as she walks you through a number of attractive examples.

You’ll learn to create a photo album, as well as to successfully place introductory and

in-content images within your pages. The techniques of applying borders, padding,

typography, and colors to best present your work are covered in detail in this chapter.

You’ll also discover effective ways to style those all-important captions.

	 Chapter 3: Backgrounds

	 You’ve probably already found that CSS has significantly affected the way you use web

page backgrounds. Here, David Johnson will explain the properties you’ll use on a daily

basis to transfer your design visions into light-weight markup and CSS. You’ll then

work through a case study for a fictional project, in which you’ll create a great-looking

design that’s well supported by all modern browsers. Finally, we’ll look to the future to

predict the new background capabilities that CSS 3 will bring!

	 Chapter 4: Navigation

	 Navigation is crucial to your users’ experience of your web site. Steve Smith will

reveal the secrets of successful navigation through a case study involving a fictional

design client. You’ll build both basic and advanced applications of the main

navigation styles in use today, including horizontal, vertical, and tabbed navigation

menus, and discover how you can use CSS styling to make your navigation both

beautiful and usable.

	 Chapter 5: Forms

	 Forms are the quiet achievers of the web page. In this chapter, Cameron Adams will

help you ensure that your forms are available to all users—even those employing

assistive technology. You’ll learn how to create an attractive form that will allow for

viii	 The Art & Science of CSS 	 The Art & Science of CSS	 ix

the correct and effective labeling, grouping, layout, and styling of your form elements.

Forms needn’t be just a tedious necessity—as you’ll learn in this chapter, they can be

presented in a way that enhances your site’s overall impact.

	 Chapter 6: Rounded Corners

	 Those sharp corners on HTML content boxes have been the bane of many a web

designer’s life for years. But CSS has changed all that, as Steve Smith explains.

Flexibility is the key—horizontal, vertical, or even a combination of both forms—

to creating rounded corners for your boxes with some straightforward styling.

The achievement of rounded corners does hold traps for the unwary, including

unsympathetic browsers, but you’ll find that taking the few small precautions detailed

here will help you to avoid them.

	 Chapter 7: Tables

	 Tables have gained a new lease of life in the CSS era—while they’ve finally been freed

from misuse as a layout element, they retain enormous potential as presenters of data.

Jonathan Snook will demonstrate how you can use CSS to create exciting, colorful

tables, which will work successfully across browsers. You’ll also be invited to envision

the future, in which the advent of the wide use of CSS 3 will create even more scope

for creative tables.

This Book’s Web Site
Located at http://www.sitepoint.com/books/cssdesign1/, the web site supporting this book

will give you access to the following facilities.

The Code Archive
The code archive for this book, which can be downloaded from http://www.sitepoint.

com/books/cssdesign1/code.php, contains the source code and images for each and every

example in this book.

Updates and Errata
The Corrections and Typos page on the book’s web site, at http://www.sitepoint.com/

books/cssdesign1/errata.php, will always have the latest information about known

typographical and code errors, and necessary updates for changes to technologies.

�	 The Art & Science of CSS

The SitePoint Forums
While we’ve made every attempt to anticipate any questions you may have, and answer

them in this book, there is no way that any publication could cover everything there is to

know about designing with CSS. If you have a question about anything in this book, the

best place to go for a quick answer is SitePoint’s Forums, at http://www.sitepoint.com/

forums/—SitePoint’s vibrant and knowledgeable community.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters. The SitePoint

Tech Times covers the latest news, product releases, trends, tips, and techniques for all

technical aspects of web development. The long-running SitePoint Tribune is a biweekly

digest of the business and moneymaking aspects of the Web. Whether you’re a freelance

developer looking for tips to score that dream contract, or a marketing major striving to

keep abreast of changes to the major search engines, this is the newsletter for you. The

SitePoint Design View is a monthly compilation of the best in web design. From new

CSS layout methods to subtle Photoshop techniques, SitePoint’s chief designer shares his

years of experience in its pages. Browse the archives or sign up to any of SitePoint’s free

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact us for any other

reason, the best place to write is books@sitepoint.com. SitePoint has a well-manned email

support system set up to track your inquiries, and if the support staff are unable to answer

your question, they send it straight to us. Suggestions for improvement as well as notices of

any mistakes you may find are especially welcome.

�	 The Art & Science of CSS

As your eyes skim over the streams of Arial on the Internet,

it’s the headings that catch your attention, like shiny nickels

lying in the dust.

You may think that headings are tiny in the scheme of

things, but their impact amidst all that body text is profound.

Naturally, they draw attention—that’s their purpose. Either

they give the reader a quick idea of what the slabs of text

underneath them contain, or they describe the structure of

an article, or they impart some more abstract sense of the

content—through shape, size, or color, as well as their actual

content.

However, there’s a lot more to headings than meets the eye,

and so we’ll consider them from all angles in this chapter.

We’ll look at what you need to think about when designing

them for your site, and what function they need to perform.

We’ll learn from some examples that demonstrate how

headings convey the identity of the site in question. And we’ll

see that you can go crazy with your design, by all means.

Before you let your creativity all hang out, though, there are

a few cautionary measures you’ll need to take to make sure

your site’s users see your efforts the way you intend. For the

most part, this chapter is concerned with the careful coding of

headings in order to avoid all sorts of potential problems.

1 Headings

�	 The Art & Science of CSS 	 Headings	 �

Hierarchy
One function of headings is to define the hierarchy of a web page. The semantics behind

HTML document structure naturally include some sense of hierarchy, with headings

ranging from the big and bold h1 to the diminutive h6. However, from a visual perspective,

it’s the task of the designer to indicate this hierarchy so that the site retains a sense of

design and personality.

Khoi Vinh’s web site, Subtraction, which you can see in Figure 1.1, is an excellent example

of using just font size and weight on headings to create an immediate sense of hierarchy on

the page.�

Figure 1.1: Use of font sizing and weight on heading text

The layout grid for this site also helps to create a visual structure, but what if we were to

convert the structure of the page into a linear layout? As shown in Figure 1.2, the headings

themselves still convey a lot of the information required by the user while retaining the

site’s character—insofar as Helvetica can adequately express a site’s character all by itself

nowadays!

�	 http://www.subtraction.com/

�	 The Art & Science of CSS 	 Headings	 �

Figure 1.2: Layout grid removed

As you’ll see in Figure 1.3, the A List Apart web site takes a very different tack from

Subtraction when differentiating its headlines from its content.� Weight and font size

are used again, but these effects are combined with different typefaces, colors, and

capitalization for the article headings and author names.

Figure 1.3: Use of typefaces, font size and colors to differentiate headings

�	 http://www.alistapart.com/

�	 The Art & Science of CSS 	 Headings	 �

At first glance, it could be said that the A List Apart headlines are more differentiated than

those on the Subtraction site, but at the end of the day it’s all about what style ties into

a site’s particular design. Subtraction’s style is more conservative and minimalist, A List

Apart’s more ornate. The designers of both sites have done excellent work in creating a

visual hierarchy within the respective frameworks.

Because of the well-formed semantics underlying this visual hierarchy, CSS is well suited

to manipulating the appearance of each and every heading to produce the visual effects we

require for a clear structure.

However, hierarchy is but one aspect of headings. Let’s look at that other, more elusive,

aspect—identity.

Identity
The key to creating a memorable site is to stamp it with a distinct identity, one that visitors

will remember and associate with your content or services. And in order for your identity

to be memorable, it has to be unique.

With a medium such as the Web, visual design is a strong expression of identity. It’ll come

as no surprise that your company logo has to be unique. Likewise, your site design—colors,

layout, images—must be unique. Your headings are an integral part of that formation of

identity, as a reflection of your site design; they should have some nuance that makes your

site special and different.

To consider headings is to consider typography. The current state of HTML typography

on the Web is improving, but it’s still poor. Only an extremely limited number of fonts

have the widespread distribution necessary to be reliably represented in any browser. If

you examine most surveys of fonts available on users’ computers, all you’ll find is a weary

list of familiar faces (sorry, pun intended): Arial, Times New Roman, Courier, Trebuchet,

Lucida, Georgia, Garamond … and we’re already down to the fonts that only 75% of users

have!�

With such a limited range of fonts, how can you differentiate your site from the next one?

If they’re all using Arial, you can use Trebuchet, but that’s about as far out as you can go. If

you use Trebuchet, what can the next designer who seeks to be different use? Multiply this

situation by a billion sites or so, and we’re looking at quite a homogeneous Web.

Body text can get away with being just a face in the crowd. If your users are to be reading

�	 http://www.visibone.com/font/FontResults.html

�	 The Art & Science of CSS 	 Headings	 �

any amount of text, you don’t want any fancy bells and whistles for it; it just needs to be

readable and easy on the eyes. So we merely have to make a fairly undemanding choice

between serif and sans serif for body text. But when it comes to headings, we’d like some

style. We need some style.

However, you don’t have to be outlandish and in-your-face when designing your headings

in order to stand out from the crowd. Often the key is subtlety; a well-harmonized typeface

can bring about the greatest effect, as is evident on the Rapha site shown in Figure 1.4.�

Figure 1.4: Headings indicated with well-harmonized typeface and highlight color

�	 http://www.rapha.cc/

�	 The Art & Science of CSS 	 Headings	 �

The combination of Rapha’s script-style

logotype with its clean, modern headings

evokes the spirit of classic bicycle racing with a

contemporary edge, which is very effective in

creating an identity unique to its products.

But, if you do want to go crazy, there’s

countless typefaces, treatments, and effects you

can apply to your headings to make them fit

in with your design concept and give your site

that unique touch, as the Altoids homepage has

done so effectively in Figure 1.5.

Figure 1.5: Outlandish headings can work too!

This site has headings with a number of typefaces, each with different effects—bending,

fills, ornamentation, outlines, drop shadows—that powerfully reinforce the vaudeville

theme of Altoids.

So, if we’ve only got a limited number of fonts to use in a browser, but we want to use an

infinite variety of fonts on our web pages, what are the solutions?

NOTE  Method in the Madness

Before you become too excited about the headings
craziness you’re going to inflict upon that upcoming
project, it’s important to note one absolute rule of
designing headings that we’ll be dealing with shortly.
Even though you can achieve an outlandish visual
appearance for them—totally different from a default
HTML styling—the underlying semantics should
remain the same, leaving their content accessible and
understandable by everyone.

NOTE  Method in the Madness

Before you become too excited about the headings
craziness you’re going to inflict upon that upcoming
project, it’s important to note one absolute rule of
designing headings that we’ll be dealing with shortly.
Even though you can achieve an outlandish visual
appearance for them—totally different from a default
HTML styling—the underlying semantics should
remain the same, leaving their content accessible and
understandable by everyone.

�	 The Art & Science of CSS 	 Headings	 �

Image Replacement
There are almost as many techniques for image replacement as there are web developers.

The concept behind all these image replacement tricks is that the text normally displayed

by HTML is hidden and replaced by an image. This means that any user with a CSS-

enabled browser will see the replaced text, but user agents that don’t support CSS will just

see the plain text.

Let’s say we have some HTML like this:

<h1>

  Going to the snow!

</h1>

<p>

…

</p>

Our aim is to hide the text of the level 1 heading—“Going to the snow!”—and replace it

with an image.

There are many different ways of using image replacement. All have their advantages and

disadvantages, but here are the two most useful ones.

Using Text-indent
With text-indent image replacement, a negative text-indent is used on the text inside the

heading element to make it move off the left edge of the screen, effectively placing it out of

view.

CSS is then used to put a background image inside the h1, which means that your heading

can adopt any design you like.

Why is a negative text-indent necessary? We could just declare the properties that display

the background image:

h1 {

  height: 43px;

  background-image: url(images/title_snow.gif);

  background-repeat: no-repeat;

}

But the HTML text of the heading would still be visible, as shown in Figure 1.6.

�	 The Art & Science of CSS 	 Headings	 �

Figure 1.6: Without negative text-indentation—HTML text appears on top of background image

So that’s why we provide some negative text-indentation—to move the text waaaaay to the

left:

text-indent.css (excerpt)

h1 {

  height: 43px;

  background-image: url(images/title_snow.gif);

  background-repeat: no-repeat;

  text-indent: -9999px;
}

The value that we use to indent the text is kind of arbitrary. All we need to do is move it far

enough to the left so that it won’t appear on the screen. As -9999 pixels will cover almost

any page width and text length, it’s a good value to use by default, as well as being easy

to type.

In addition to the text-indent, a height that corresponds to the height of the image has to be

set on the h1. This ensures that the h1 is tall enough to show the entire image, in a situation

where the natural height of the element would

clip it.

Once the text is indented, the title displays

nicely—a feat that would otherwise be

impossible to achieve with HTML. Figure 1.7

shows how the heading looks in the browser.

NOTE  Overflow

You may also want to set overflow: hidden on
the h1, for the case where the natural height of the
h1 may be too big for the image. Although most
standards-based browsers will adhere to the specified
height in this situation, Internet Explorer 6 and below
will expand to fit the content, so your h1 may end up
larger than the image, producing too much whitespace.
Setting overflow: hidden will prevent this problem.

NOTE  Overflow

You may also want to set overflow: hidden on
the h1, for the case where the natural height of the
h1 may be too big for the image. Although most
standards-based browsers will adhere to the specified
height in this situation, Internet Explorer 6 and below
will expand to fit the content, so your h1 may end up
larger than the image, producing too much whitespace.
Setting overflow: hidden will prevent this problem.

�	 The Art & Science of CSS 	 Headings	 �

Figure 1.7: HTML page with image-replaced heading

There is, however, one disadvantage of text-indent image replacement. If the image doesn’t

display, there’ll be a meaningless gap in the page, as shown in Figure 1.8. This means that

users who may have CSS turned on but images turned off—or even users who are just

waiting for the image to download—won’t see any alternative text, so they’ll have no idea

what the heading is.

Figure 1.8: Image replacement with images turned off—no alternative text showing

Our second solution caters specifically for this scenario.

Providing Additional Markup
The way to provide “alternative” text for those users without images enabled is to leave

the HTML text where it is, but physically hide it using an image. So, instead of moving

the text itself, we cover it up with the image we’re using to replace it. The image will

10	 The Art & Science of CSS 	 Headings	 11

appear to those users who have images enabled, while the text will display for those

who don’t.

This technique requires us to use a small amount of additional markup inside the h1:

additional-markup.html (excerpt)

<h1>

  Going to the snow!

</h1>

The extra span inside the h1 gives us an element to which we can apply a background

image to cover up the HTML text.

We do this by positioning the span absolutely:

additional-markup.css (excerpt)

h1 {

  position: relative;

  width: 389px;

  height: 43px;

  overflow: hidden;

}

h1 span {

  position: absolute;

  left: 0;

  top: 0;

  width: 100%;

  height: 100%;

  background-image: url(images/title_snow.gif);

  background-repeat: no-repeat;

}

Positioning the span absolutely moves it from the document flow, so the text of the h1 will

naturally flow underneath it. Once the background-image has been moved onto this span, the

span will cover up the h1’s text.

The h1 is positioned relatively because any absolutely positioned elements nested inside a

relatively positioned element will base their origin coordinates on the relatively positioned

parent. Consequently, when the span’s left position is set to 0 and top position to 0 it will

position itself at the top left of the h1, instead of relative to the entire page.

In addition to changing the h1’s position, we explicitly set its height and width, and set

overflow to hidden. The HTML text remains in its normal position, so if the text grows

beyond the dimensions of the image, it will begin to peek out from behind the image. To

10	 The Art & Science of CSS 	 Headings	 11

prevent this problem we make the h1 exactly the same size as the image, and use overflow:

hidden to cut off any text that exceeds the boundaries of the h1.

Also, the span must be the same size as the image if all of the image is to be displayed; we set

the height and width of the span to 100% so that it will automatically expand to the size of the

h1. We could explicitly set its size in pixels, but, using the technique I’ve shown here, we only

have to enter the exact pixel size on the h1—it’s always nice to save time on maintenance!

This method produces exactly the same result as the text-indent image replacement

technique. The only difference, which you can see in Figure 1.9, is that if the image is

turned off, users will still see relevant text there to tell them what the title’s meant to be.

Figure 1.9: Image replacement with additional markup to provide alternative text when image is not available

This text can be styled normally, as it would if we were using plain HTML headings:

additional-markup.css (excerpt)

h1 {

  position: relative;

  width: 389px;

  height: 43px;

  overflow: hidden;

  font-size: 175%;
  line-height: 43px;
  text-transform: uppercase;
}

The major disadvantage of this method is obvious—the additional markup. We’re

sacrificing semantic purity for accessibility and usability. It’s a sacrifice I normally make

willingly, to create a better experience for most users, but it’s good to know that there is a

“pure” markup solution if you need it. You’ll have to weigh up the options as they apply to

your own situation.

12	 The Art & Science of CSS 	 Headings	 13

Flash Replacement
One major downside of image replacement is that it requires a lot of manual labor.

Every heading that you want to include on a site has to be created in Photoshop, cut up,

saved as an image, and included in your CSS.

If you’re creating content regularly, this work can become very time consuming;

sometimes it’s just impossible. Imagine a site that has a content management system

with multiple authors, none of whom have access to—let alone know how to use—a

graphics program. It’s simply not feasible to have someone there just to create image-

replaced headings.

But what if you had a system that automatically created nice headings, in a typeface of

your choice, without you having to do anything to the HTML? That would be heaven. And

there is such a system: sIFR.

Scalable Inman Flash Replacement is now in its second version (with a third already in

beta) and, after being around for a couple of years, is rock solid. You’ll need to download

some source files from the sIFR homepage in order to get it going.� Don’t worry, I’ll wait

around while you download it.

sIFR works like this: you include a JavaScript file on your pages that scans for headings,

copies the text from inside those headings, and uses that text inside a Flash object that

replaces the HTML text. The Flash object contains the font you want, so the text is

automatically formatted the way you want it, and you don’t have to do any customization

work. sIFR also scales the Flash object appropriately to fill the same amount of space that

the HTML text occupied, so your text replacement will be the same size.

Technically, the HTML text isn’t replaced, it’s just hidden, so the text remains fully

accessible. If Flash isn’t available, the sIFR JavaScript detects that and leaves the page

untouched; if JavaScript isn’t turned on, the page will remain in its normal state. This way

users see nice headings if their browsers allow it, but if their browsers don’t handle these

headings, they degrade to perfectly readable text.

For a beautiful example of sIFR, take a look at the Noodlebox site.� Noodlebox’s

introduction text and other headings all use a custom typeface that reinforces its identity

and also produces a more refined design, as can be seen in Figure 1.10.

�	 http://www.mikeindustries.com/sifr/
�	 http://www.noodlebox.be/

12	 The Art & Science of CSS 	 Headings	 13

Figure 1.10: Use of sIFR for introduction text and major headings

Figure 1.11 shows the result when sIFR

is unavailable, due to the user’s lack of

either Flash or JavaScript. The HTML

text acts as a backup and provides an

approximation of the designer’s real

vision.

It’s a win–win situation! Those users

who have Flash and JavaScript reap

the benefits; those without are none the

wiser.

Figure 1.11: Backup HTML text without sIFRFigure 1.11: Backup HTML text without sIFR

14	 The Art & Science of CSS 	 Headings	 15

Supplying Basic Markup and CSS
It’s more likely with Flash replacement than with image replacement that some of your

users will experience the degraded version, so you should pay careful attention to the

styles that they will see if Flash and JavaScript are turned off.

Let’s imagine that the font we’d really like to use for our h1 headings is Cooper Black, but

we know that not many people have that on their computers. Instead, we’ll have those

users view our headings in Georgia, or some similar serif font:

flash-replacement.css (excerpt)

h1 {

  color: #06C;

  font-size: 250%;

  font-family: Georgia, serif;

  line-height: 1.45em;

}

The basic page looks like Figure 1.12.

Figure 1.12: Basically styled page that users without Flash or JavaScript will see

Time to make it all Coopery!

Supplying the Typeface
The quest to allow web users access to a wider range of fonts on HTML pages has been

regularly thwarted by patchy browser implementations and the legalities of sharing

typefaces. sIFR circumvents these limitations by embedding a particular typeface inside

a Flash file. In order to use a particular font on your site, you have to open up the special

sIFR Flash template and create a new .swf file that copies the font from your computer.

14	 The Art & Science of CSS 	 Headings	 15

NOTE  sIFR and Whitespace

sIFR can be affected by extra whitespace inside your HTML tags. For code readability, I normally write my HTML
like this:

<h1>

  Going to the snow!

</h1>

The actual HTML text is on a new line and indented one more tabstop than the tag itself. However, with sIFR,
that whitespace that appears before the HTML text will produce a one-character space at the beginning of the
Flash replacement—not good! To use this technique, you’ll need to code your HTML as follows:

<h1>Going to the snow!</h1>

No spaces, no worries.

It’s really easy to do this. As shown in Figure 1.13, we just open up sifr.fla, select the text

object on the stage (the one that says “Do not remove this text”), and change its font to

the one we need. Then, when we publish that movie as a .swf, it will contain all the data

needed to reproduce the headings in that font.

Figure 1.13: The one-step process of preparing the sIFR .swf file�

NOTE  �“But I Don’t Have the Flash IDE!”

Don’t have the IDE? Never fear, multiple repositories of precompiled sIFR .swfs are available on the Internet,
giving those users without the Flash IDE a wide range of fonts to choose from. In fact, one of them happens to
be maintained by an author of this book!7

�	 http://www.fontsmack.com/

16	 The Art & Science of CSS 	 Headings	 17

You should generally call your .swf files by the fonts that they include, so that you can

identify them easily later. As we’ve just created a .swf for the Cooper Black font, we could

call the .swf file cooper_black.swf.

Once we have this .swf, it’s ready to be included on the web page.

Customizing the JavaScript
There’s one script file that we need to include on the web page, and that’s sifr.js—you’ll

find it in the package you downloaded from the official sIFR site. To start out, it just needs

to be inserted in the head of your page:

flash-replacement.html (excerpt)

<script type="text/javascript" src="scripts/sifr.js"></script>

You’ll need to take a look inside the JavaScript file to configure the file specifically for the

site. You don’t need to be concerned with most of it—it’s 11KB of tricky Flash detection

and DOM manipulation—but right at the bottom you’ll see these few lines:

If (typeof sIFR == “function" && !sIFR.UA.bIsIEMac)

{

  sIFR.setup();

}

Don’t remove any of that code; you’ll have to insert some of your own code in order to

indicate which headings you want to replace and what you want to replace them with:

scripts/sifr.js (excerpt)

if(typeof sIFR == “function" && !sIFR.UA.bIsIEMac)

{

  sIFR.setup();

  sIFR.replaceElement(named({sSelector: “h1",
   sFlashSrc: “flash/cooper_black.swf", sBgColor: “#FFFFFF",
   sColor: “#0066CC", sWmode: “transparent"}));
}

sIFR.replaceElement specifies a replacement rule that you want sIFR to apply. You can have

as many of these as you like, each effecting a different type of element. The function takes a

number of arguments that effect the display of the Flash replacement.

There are a few of these arguments, but the named ones you’ll use most often are:

16	 The Art & Science of CSS 	 Headings	 17

	 sSelector

	 sSelector is the CSS selector defining element(s) that you wish to replace. It uses a

simplified CSS syntax, allowing you to select elements using the CSS selectors “#”, “>”,

and “.”, as well as the whitespace descendant selector. If you select multiple elements

be sure to separate them with commas: “,”.

	 sFlashSrc

	 sFlashSrc defines the location of the flash movie you want to use to replace the text.

This file determines the font you’ll be using for your Flash replacement.

	 sBGColor

	 sBGColor defines the background color you wish to use for the Flash replacement.

	 sColor

	 sColor defines the color of the text in the Flash replacement.

	 sWmode

	 sWmode defines the Window mode of the Flash replacement object. It allows you to set

the transparency of the movie, and can be specified either as transparent or opaque. In

transparent mode, sBackgroundColor will be ignored and the movie background will be

transparent. In opaque mode the background color will be displayed. Some browsers

have trouble displaying transparency; in such cases sWmode will fall back to the opaque

mode. Just in case, make sure you set a background color even if you choose to use

transparent mode, so that you won’t be caught out in this situation.

You can supply to the function any of a number of other arguments, which will control

everything from text transformation to alignment and padding. If you wish to read about

them, the best place to look

is in the documentation

that comes with the sIFR

package.

Once that replacement rule

has been added to the end

of the sifr.js file, it will

perform that replacement

when the page loads.

Using the rule above,

our page would look like

Figure 1.14.

Figure 1.14: Head of page after customized sifr.js file has been includedFigure 1.14: Head of page after customized sifr.js file has been included

18	 The Art & Science of CSS 	 Headings	 19

You’ll notice that the heading is now shown twice. The upper display is the Flash

replacement, the lower is the HTML text. They’re both displayed simultaneously because

we haven’t yet included any of the special sIFR CSS.

Including the CSS
Inside the sIFR package is a CSS file called sIFR-screen.css, which we should include if we

want the Flash replacement headings to display properly. This CSS hides any HTML text

that has been replaced by Flash, so we don’t see the double display as in Figure 1.14. Once

we include this file, the page should look like Figure 1.15.

Figure 1.15: Page once sIFR-screen.css has been included

Tweaking the CSS
sIFR-screen.css, contains several default rules for h1 to h5 elements that help to determine

the dimensions of the Flash replacements. In order to understand how you should use

these rules, you need to understand how sIFR does its job and how fonts relate to one

another.

You can see in Figure 1.14 that the Flash replacement and the HTML text are different

lengths when displayed side by side. This discrepancy arises as a result of the fact that

the font used in the Flash replacement differs from that used in the HTML, and because

different fonts have different character metrics (including width, spacing, and so on).

This difference in length becomes a particular problem when a line of text starts to wrap

onto the next line. If the HTML text isn’t wrapping but the Flash text is, sIFR will shrink

the size of the Flash text so that it fits onto one line. This means that the size of the Flash

replacement may be inconsistent, depending upon the number of characters in the HTML

text. Conversely, if the HTML text is wrapping when the Flash text isn’t, then the sIFR will

18	 The Art & Science of CSS 	 Headings	 19

make the Flash characters really big in order to fill the space taken by two lines of HTML

text. If the metrics of the Flash text don’t match the metrics of the HTML text, the size

of the Flash text will become variable for different character lengths. Compared with the

previous figures, the Flash text in Figure 1.16 is smaller.

Figure 1.16: sIFR text relative to space occupied by original HTML text

In order to let you pre-empt this potential problem, sIFR applies a class to the HTML

element to let you know when Flash has been detected: sIFR-hasFlash.

You know that once this class has been applied

the HTML text will be replaced by Flash, so

you can tweak the text properties of the HTML

to match the properties of the Flash text,

achieving the same character heights, line-

lengths, and so on.

In order to ensure our Cooper Black Flash text

displays at the same length as our Georgia

HTML text, we can modify the letter-spacing,

giving the Georgia font a bit more space

between characters to stretch it out:

.sIFR-hasFlash h1 {

  letter-spacing: 0.142em;

}

TIP  �Headings Side by Side

In order to see your tweaked HTML text alongside the
Flash replacement, comment out the style near the
top of sIFR-screen.css that applies to the sIFR-
alternate class, like so:

/*

span.sIFR-alternate {

…

}

*/

TIP  �Headings Side by Side

In order to see your tweaked HTML text alongside the
Flash replacement, comment out the style near the
top of sIFR-screen.css that applies to the sIFR-
alternate class, like so:

/*

span.sIFR-alternate {

…

}

*/

20	 The Art & Science of CSS 	 Headings	 21

When you examine the comparison in Figure 1.17, you’ll notice the heading lengths are

almost identical:

Figure 1.17: letter-spacing used to equalize metrics between Flash text and HTML text

As you can see in Figure 1.18, with proper metric adjustment of the HTML text, Flash

replacement maintains consistent sizing through varying character lengths and multiple

lines.

Figure 1.18: The letter-spacing tweak maintaining sizing for varying character lengths

20	 The Art & Science of CSS 	 Headings	 21

Once you’ve tweaked the metrics to cause the headings to appear exactly as you want,

remember to add visibility: hidden to the rule, so that the user doesn’t see the HTML text

being distorted while the Flash replacement performs its calculation:

sIFR-screen.css (excerpt)

.sIFR-hasFlash h1 {

  visibility: hidden;
  letter-spacing: 0.142em;

}

After you’ve implemented all these changes for your particular font, you can sit back and

relax. sIFR will now automatically change any h1s on your pages to Cooper Black without

your having to lift a finger.

sIFR is superb for headings that require a unique typeface. However, it lacks the flexibility

of image replacement. You can’t distort the text, apply image masks, or make any other

radical changes to the text beyond what Flash can normally do to text.

The other disadvantage to sIFR is that it can be a little resource-intensive. If you have a

number of Flash-replaced headings on your page, the calculation time can weigh down

page loading and affect the responsiveness of your interface. For that reason it’s a good idea

to use it sparingly and not apply it to large slabs of body text.

sIFR can also replace links, but you do lose some natural link functionality simply by

way of the link being in Flash. Right-clicking the link won’t bring up the normal browser

context menu; mousing over the link won’t indicate where it will lead. So, as with

anything that could impact on usability, use sIFR carefully and with full knowledge of the

consequences.

Summary
In this chapter, we’ve looked at the dual functions served by the seemingly humble

heading: page hierarchy and identity. We’ve learned the various means by which we can

circumvent the limitations placed upon our page design by the few typefaces available

across most browsers, in order to ensure our pages stand out from the endless expanse

of Arial or Times New Roman. We’ve discovered various types of image and Flash

replacement—all techniques that allow unlimited creativity for heading design, but that

require additional precautions by way of markup to display effectively for all users. We

worked together through that markup to achieve the heading design we wanted, one that

would work effectively in any user’s browser.

22	 The Art & Science of CSS

Headings can certainly add that elusive uniqueness to your site that’ll make it shine above

the rest. As any good designer will tell you, beauty is in the detail—not only in the sense of

how your headings strike the eye of the beholder, but how they actually function for all the

different users who encounter your site. Not all browsers can handle your creative flights of

CSS fancy, but there’s ways around all sorts of browser limitations. By using the methods

described in this chapter, you’ll be able to add the most beautiful detail to any of your web

pages, and ensure that they’re accessible to any of your users.

22	 The Art & Science of CSS

We’ve all heard it said that a picture tells a thousand words,

and it’s definitely one cliché that’s endured for a reason.

Images are a fantastic means of presenting information in ways

that text cannot, which is why the marriage of web sites and

images is a match made in heaven. From graphs and charts

to photography and illustration, images are just as much a

functional tool for the web designer as an aesthetic one.

In this chapter, we’ll look at some of the most popular ways

images are used on web sites. We’ll work through the markup

required for different manifestations of image galleries, for

the design of web sites predominantly concerned with image

presentation. We’ll also learn about the issues of presentation

and markup of contextual images, for sites that involve a

combination of text and image.

As we’ll see, there’s more to images than meets the eye!

2 Images

24	 The Art & Science of CSS 	 Images	 25

Image Galleries
Imagine that you have just walked into an art gallery. The pieces of art hang on well-lit

expanses of white wall. There’s ample spacing between the works, so that each has its own

presence without any distraction from those adjacent. The rooms are very spacious and it’s

easy to find your way around the building. As you wander from room to room, you notice

that within each of these rooms the works of art relate to each other. You know that, behind

the scenes, a curator has put a lot of thought into the experience you have in this gallery

while viewing the art.

A gallery web site should be conceptually similar to a real-life gallery such as this.

You want to provide a clean, flexible space for your images to be displayed, with a

corresponding sense of order and cohesion.

Creating an Image Page
The web page that displays your photograph, along with a title and possibly a description,

is the equivalent of the expansive, blank walls in a real-life gallery.

Let’s walk together through a basic example of how to create an image’s page. We’ll

create the markup; add some style for the typography and colors of the images’ titles

and descriptions; style frames, margins, and layout; and provide the placement of the

navigational thumbnails.

Building a Basic Example
As always, our image’s page requires that we use well-structured markup:

photo.html (excerpt)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN"

    “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

    lang="en">

<head>

<title>Photo Gallery</title>

<meta http-equiv="Content-Type" content="text/html;

    charset=utf-8" />

<link type="text/css" href="gallery.css" rel="stylesheet" />

</head>

<body>

<div id="content">

  <h1>Photos » Album:

      Firenze, Italia 2006 »

      Castello Il Palagio Orchard</h1>

24	 The Art & Science of CSS 	 Images	 25

  <p class="photo"><img alt="Photo: Castello Il

      Palagio Orchard" src="images/photo.jpg “ /></p>

  <p class="description">A beautiful day for a wine-tasting and

      tour at Castello Il Palagio in Firenze, Italia.

  </p>

</div>

</body>

</html>

This example is fairly basic:

	 The h1 is acting as a title and a breadcrumb, in an effort to keep things really simple.

	 The set name and image name are emphasized.

	 The image is wrapped in a paragraph—which will make it easier to position and style—

and links to a full-sized version. A class of photo is given to this paragraph for styling

purposes.

	 The description is a paragraph with a class of description.

	 The photo, header, and description is wrapped in a div with an id of content for styling.

	 Each image is no wider than 500px.

	 Outside the content div is an unordered list used for a pagination-style navigation.

For your own implementation, the links’ href values will need to be changed from # to

their proper values. Our resulting page is shown in Figure 2.1.

Figure 2.1: The unstyled page

26	 The Art & Science of CSS 	 Images	 27

Adding Typography and Colors
Let’s add some basic styles to our style sheet for the page’s typography and colors, which

will produce the result shown in Figure 2.2:

gallery.css (excerpt)

body {

  margin: 0;

  padding: 0;

  background-color: #fff;

  font: 62.5%/1.75em “Times New Roman", serif;

  color: #4d4d4d;

}

a:link, a {

  border-bottom: 1px dotted #960;

  text-decoration: none;

  color: #960;

}

a:hover {

  border-bottom: 1px solid #960;

}

Figure 2.2: Page showing basic styles

The colors and typefaces you choose should work well with the style of imagery you’re using.

White is a great color for galleries because it’s the most neutral color to work with,

especially for a large variety of images, or for images that are changed frequently. On the

26	 The Art & Science of CSS 	 Images	 27

downside, this means that you’ll see the use of white everywhere on gallery sites, so you

may want to think outside the square if uniqueness is a priority. I’ve seen some photo

gallery web sites that use black or gray for their pages, and they look wonderful, but do be

careful about crazier colors. Remember that the page colors you choose can really affect the

mood of your images, and that rules of clean design should still apply. It’s best to keep all

design elements minimal: the visual focus of a gallery should be on the images.

I’ve chosen to use Times New Roman as it’s clean and sophisticated without being a

distraction from the images. Although sans serif typefaces are easier to read on-screen, our

gallery uses very little text so the use of serif fonts won’t be a problem.

Next, we style the h1, paragraphs (p) and unordered lists (ul) to display as in Figure 2.3:

gallery.css (excerpt)

h1 {

  margin: 0 6px;

  padding: 0 0 .5em 0;

  font-style: italic;

  font-weight: normal;

  font-size: 1.25em;

  line-height: 2.375em;

  color: #ccc;

}

h1 em {

  color: #4d4d4d;

}

h1 a:link, h1 a, h1 a:hover, h1 a em, h1 a:link em,

    h1 a:hover em {

  border-color: #999;

  color: #999;

}

p, ul {

  margin: 0 6px;

  padding: 0;

}

28	 The Art & Science of CSS 	 Images	 29

Figure 2.3: Page showing styled heading and paragraph

Styling the Images
Now, we’ll style the image and the link that contains that image. For this example, we’ll

mimic a Polaroid-style photograph by using a white frame with a larger lower margin—a

great place to add a date or copyright statement. To do this, we’ll have an inset-style border

around the image, and then an outset-style border around that, as shown in Figure 2.4.

Here’s the code:

gallery.css (excerpt)

img {

  display: block;

  margin: 0 auto 5px auto;

  border: 1px solid #ccc;

  border-bottom-color: #eee;

  border-left-color: #ddd;

  border-top-color: #bbb;

}

p.photo {

  margin: 0 0 10px 0;

  float: left;

  width: 75%;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

}

28	 The Art & Science of CSS 	 Images	 29

p.photo a {

  display: block;

  float: left;

  margin: 0;

  padding: 4px 4px 9px 4px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

  background-color: #fff;

  text-align: center;

}

p.photo a:hover {

  border-color: #ccc;

  background-color: #eee;

}

p.description {

  clear: left;

}

Figure 2.4: Example of an inset and an outset border

The definition of separate colors for each side gives the border on the image the desired

inset look. We could have used the inset border-style that CSS already provides, but the

colors for the light and dark borders differ between browsers.

To create the look we want, we use a 1px, solid border, and specify #ccc as its color.

We use a slightly lighter shade (#ddd) for the right border, and darker shades for the

top (#bbb) and left (#eee) borders. The result fools the eye into seeing a three-

dimensional edge.

The addition of a 5px margin to the lower edge distances the outside border from the image.

It’s aesthetically pleasing to have a larger space on the bottom than around the sides, and it

works well with the Polaroid-style look we’re trying to create.

The link that contains the image has a solid border of 1px, which uses the same colors as

before, although they’re reversed to create an “outset” look (we’ve switched the top and

bottom colors, and the left and right colors). We also add a padding of 4px. This padding,

plus the 1px border we’ve added to the image and the 1px border we’ve applied to the link,

30	 The Art & Science of CSS 	 Images	 31

provides us with the 6px value that we’ve applied for the h1’s and paragraph’s margins, and

helps the edge of the text line up with the image, instead of the outside border.

To ensure that the outside border that’s applied to the link containing the image snaps

snug to that image, we float the paragraph and link to the left, and apply a 75% width to the

paragraph. This width is a workaround that was developed for Internet Explorer to avoid

the outside border filling the entire width of the page in that browser; the page still renders

as expected in other browsers.

Next we’ll add some hover styles: a subtle, light gray background, and one color for the

border for all four sides. The description paragraph is then set to clear: left, to clear the

float from the above-image paragraph. The result is shown in Figure 2.5.

Figure 2.5: Page showing the bordered image

Producing a Quick and Simple Layout
Now, we want to define the spacing and width of the div that contains all the elements

of our page. We’ll also increase the font size for items within this div, to create the effect

shown in Figure 2.6. By adding the code at this point, instead of at the body level, we

ensure that relative padding and margin sizes are affected only within this div:

30	 The Art & Science of CSS 	 Images	 31

gallery.css (excerpt)

#content {

  margin: 0 auto 20px 20px;

  padding: 1em 0 0 0;

  width: 512px;

  background-color:#fff;

  font-size: 1.25em;

  line-height: 1.75em;

}

Because the images we’re using are no wider than 500px, and we want to have room for the

border around each image, we’ll use a width of 512px for #content. You can vary this value

to reflect the maximum width of your images. I recommend setting a maximum of 500px to

ensure that the entire image will fit within most browser viewports. Just make sure that the

width of #content is equal to the total width of the image plus any left or right padding and

border properties.

Figure 2.6: Page showing the styled div

We’re almost done!

32	 The Art & Science of CSS 	 Images	 33

Styling the Pagination Thumbnails
Now that the basic layout of the photo, title, and description has been created, we’ll style

the navigational thumbnails that will appear to the right of the main image on each page.

These images will provide a view of the previous and next images in our gallery.

After the closing div for #content, add the following markup:

photo.html (excerpt)

<ul class="navigation thumbnails">

  <img src="images/thumb1.jpg" alt="Thumb:

      Graffiti" />
« Graffiti

  <img src="images/thumb3.jpg" alt="Thumb: Ponte

      Vecchio" />
Ponte Vecchio »

Again, you’ll need to change the href attributes from # to link to their proper locations.

On some of the pages we’ll be creating, the navigation won’t include images, but it does

on this page. Let’s take advantage of the fact that we’re able to use two classes, and apply a

navigation class to all instances of this pagination-style navigation. We’ll use the thumbnails

class only for unordered lists that contain thumbnail images—we’ll meet thumbnails again

when we create our thumbnail page.

Both the image and the text are wrapped in the same link, because we want the title of the

image to appear underneath the image, but to share the same link, so that the hover effects

will be the same for both elements. The linebreak (br) is not required, but we add this so

that the title will continue to appear beneath the image when the page is viewed unstyled.

NOTE  �Using a Non-breaking Space

We’re using a left-angled quote («) and a right-angled quote (») as design elements to provide “previous page”
and “next page” navigation. In the event that the title wraps, we don’t want these symbols to end up on
separate lines, which is why we used a non-breaking space ().

As you can see in Figure 2.7, the linebreak adds an unsightly amount of space between

the thumbnail and the title. We can take care of that problem simply by setting the br to

display: none. The image is already set to display: block, so the title will display on its

own line beneath the image, as intended.

32	 The Art & Science of CSS 	 Images	 33

Figure 2.7: Page showing thumbnail navigation

gallery.css (excerpt)

br {

  display: none;

}

Next, we’ll make the thumbnails appear in a style that’s similar to the main image, by

making them share some of the same styles. Then we’ll position the thumbnails to the right

of the page:

gallery.css (excerpt)

ul.navigation {

  margin: 0 0 10px 0;

  padding: 0;

  float: left;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

  list-style: none;

  position: absolute;

  top: 58px;

  left: 550px;

}

As you can see, these are very similar to the p.photo styles, but for a few minor differences:

34	 The Art & Science of CSS 	 Images	 35

	 The padding needs to be set to 0.

	 We don’t need to set a width.

	 We turn the bullets off using list-style: none;.

	 The navigation ul is positioned to the right of the main image.

Next, we need to style the list items (li):

gallery.css (excerpt)

ul.navigation li {

  display: inline;

  margin: 0;

  padding: 0;

}

Now, we’ll style the thumbnail images. Since the thumbnails will look exactly like the

main photo, we can just add these new, thumbnail-specific styles to the existing styles we

have for p.photo a and p.photo a:hover, like so:

gallery.css (excerpt)

p.photo a, ul.thumbnails a {

  display: block;

  float: left;

  margin: 0;

  padding: 4px 4px 9px 4px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

  background-color: #fff;

  text-align: center;

}

p.photo a:hover, ul.thumbnails a:hover {

  border-color: #ccc;

  background-color: #eee;

}

Next, we need to add a width and a right margin, which will need to be created as a separate

style rule, since p.photo won’t use it:

gallery.css (excerpt)

ul.thumbnails a {

  width: 80px;

  margin-right: 10px;

  margin-bottom: 10px;

}

34	 The Art & Science of CSS 	 Images	 35

The thumbnail images we used have 75x75px dimensions, so we’re using an 80px width

value here. The result of our efforts is shown in Figure 2.8.

Figure 2.8: Page showing styled thumbnail navigation

NOTE  �Considering the Portrait Photo

When you’re creating a gallery
page, it’s always important to
consider alternate formats;
make sure that your page still
looks nice when a portrait (or
vertical) photograph is used.
Try to avoid chopping off
any portion of your image,
as has occurred in Figure 2.9.
Unfortunately, this scenario is
often unavoidable when using
portrait images; you’ll just
need to weigh up the cropping
of an image against having
your users scroll down to see
it all.

Figure 2.9: Page showing vertical image

You now have a basic image page for your gallery. But how are visitors enticed to view this

image page in the first place? By seeing the associated thumbnails page, of course!

36	 The Art & Science of CSS 	 Images	 37

Creating a Thumbnails Page
We’ll create a typical thumbnails page—a display of small images, each of which links to

its respective image page. Actually, since we’ve already created the look and feel of the

image page, most of the groundwork is completed. The markup for our thumbnails page

looks like this:

thumbnails.html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN"

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

    lang="en">

<head>

  <title>Photo Gallery</title>

  <meta http-equiv="Content-Type" content="text/html;

      charset=utf-8" />

  <link type="text/css" href="gallery.css" rel="stylesheet" />

</head>

<body>

  <div id="content">

    <h1>Photos » Album: Firenze,

        Italia 2006</h1>

    <ul class="thumbnails">

      <img alt="Thumb"

          src="images/thumb1.jpg" />

      <img alt="Thumb"

          src="images/thumb2.jpg" />

      <img alt="Thumb"

          src="images/thumb3.jpg" />

      <img alt="Thumb"

          src="images/thumb4.jpg" />

      <img alt="Thumb"

          src="images/thumb5.jpg" />

      <img alt="Thumb"

          src="images/thumb6.jpg" />

      <img alt="Thumb"

          src="images/thumb7.jpg" />

      <img alt="Thumb"

          src="images/thumb8.jpg" />

      <img alt="Thumb"

          src="images/thumb9.jpg" />

      <img alt="Thumb"

          src="images/thumb10.jpg" />

      <img alt="Thumb"

36	 The Art & Science of CSS 	 Images	 37

          src="images/thumb11.jpg" />

      <img alt="Thumb"

          src="images/thumb12.jpg" />

      <img alt="Thumb"

          src="images/thumb13.jpg" />

      <img alt="Thumb"

          src="images/thumb14.jpg" />

      <img alt="Thumb"

          src="images/thumb15.jpg" />

      <img alt="Thumb"

          src="images/thumb16.jpg" />

      <img alt="Thumb"

          src="images/thumb17.jpg" />

      <img alt="Thumb"

          src="images/thumb18.jpg" />

      <img alt="Thumb"

          src="images/thumb19.jpg" />

      <img alt="Thumb"

          src="images/thumb20.jpg" />

      <img alt="Thumb"

          src="images/thumb21.jpg" />

      <img alt="Thumb"

          src="images/thumb22.jpg" />

      <img alt="Thumb"

          src="images/thumb23.jpg" />

      <img alt="Thumb"

          src="images/thumb24.jpg" />

      <img alt="Thumb"

          src="images/thumb25.jpg" />

   

  </div>

  <ul class="navigation">

    « Previous

    Next »

 

</body>

</html>

You’ll notice that this markup is very similar to the image page’s markup, except the h1 is

different, and the description area has been removed. We’ve created an unordered list to

contain the thumbnails; it utilizes the class of thumbnails that we used previously on the

navigation for the photo page.

The number of thumbnails displayed on this page can be varied to suit your preferences.

I’ve chosen to display 25, as the layout is wide enough to accommodate five thumbnails

per row and per column, which echoes the 1:1 proportions of the thumbnails themselves.

A little aesthetically pleasing balance is never a bad thing!

38	 The Art & Science of CSS 	 Images	 39

The pagination-style navigation is very similar to the navigation on our single image page,

but the class of thumbnails was removed, since these links don’t contain thumbnail images

and don’t need to be styled as such. At the moment, our page appears as in Figure 2.10.

Figure 2.10: The thumbnails page before additional styling

Styling the Thumbnails
To produce the display shown in Figure 2.11, we now need to add the following styles for

thumbnails:

gallery.css (excerpt)

ul.thumbnails {

  margin: 0 0 10px 0;

  padding: 0;

  float: left;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

  list-style: none;

}

These styles are the same as those we used for navigation, except that we’re not positioning

this unordered list. We also want to style the list items in exactly the same way as we did

for the navigation list items. The results of this markup are shown in Figure 2.11:

38	 The Art & Science of CSS 	 Images	 39

gallery.css (excerpt)

ul.thumbnails li, ul.navigation li {

  display: inline;

  margin: 0;

  padding: 0;

}

Figure 2.11: Thumbnails page showing styled thumbnails

Finally, let’s style the navigation. As we’re not using a thumbnail image, we can use a

slightly different style in this case:

gallery.css (excerpt)

ul.navigation a {

  display: block;

  float: left;

  margin: 0 10px 10px 0;

  padding: 4px 4px 6px 4px;

  border: 0;

  background-color: #fff;

  text-align: center;

  width: 80px;

}

ul.navigation a:hover {

  background-color: #eee;

  border: 0;

}

40	 The Art & Science of CSS 	 Images	 41

The navigation styling differs from the thumbnails styles, in that a smaller padding value is

applied to the bottom, and there is no border on the links.

Make sure that this styling comes before the ul.thumbnails styles in your markup so that

the borders and padding display correctly, as they do in Figure 2.12.

Figure 2.12: Completed thumbnails page

Congratulations—you now have a thumbnails page and an image page. All we need to do

now is make an album page.

Creating an Album Page
If you have a lot of images, you probably want to categorize them into albums. And if you

have a lot of albums, it’s best to give the viewer more information than a simple list of the

albums’ titles. With the new page we’ll create in this section, your visitors should be able

to gain a good idea of what each of your albums contains.

Some information that can be included on the album page includes:

	 a brief description of the album

	 the number of photographs in that album

	 a carefully selected thumbnail that represents the album

40	 The Art & Science of CSS 	 Images	 41

Looking at an Example
Once again, the basic groundwork has already been done. Here’s the markup:

albums.html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN"

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

    lang="en">

<head>

  <title>Photo Gallery</title>

  <meta http-equiv="Content-Type" content="text/html;

      charset=utf-8" />

  <link type="text/css" href="gallery.css" rel="stylesheet" />

</head>

<body>

  <div id="content">

    <h1>Photos</h1>

    <h2>Firenze, Italia 2006</h2>

    <p class="thumb"><img alt="Thumbnail: Firenze,

        Italia 2006" src="images/thumb1.jpg" />
259

        Photos</p>

    <p>Living in Firenze, Italia {Florence, Italy} for

        one month. This is the highlight of my life.</p>

    <h2>Boston, Massachusetts 2006</h2>

    <p class="thumb">

     

   
38 Photos</p>

    <p>From my business trip to Boston {May 2006} when Vineet

        & I were working on Mass.gov.</p>

    <h2>Barcelona, España 2006</h2>

    <p class="thumb"><img alt=""

        src="images/thumb27.jpg" />
110 Photos</p>

    <p>My first venture into Europe & a wonderful week of

        great food, art, architecture, & culture.</p>

  </div>

  <ul class="navigation">

    « Previous 3 Sets

    Next 3 Sets »

 

</body>

</html>

Obviously, the number of albums displayed on the page can vary, but I suggest you keep

the number under ten to prevent visual clutter. In the example shown in Figure 2.13, we’ve

used three. We’ve applied a class of thumb to the paragraph holding the thumbnail image.

The total number of photos in each album appears underneath that album’s thumbnail

42	 The Art & Science of CSS 	 Images	 43

image, similar to the display of the pagination thumbnails used on the image page. An h2

has been added to hold the album titles, and a paragraph is used for the descriptions.

Figure 2.13: The album page, without additional styles applied

Styling the Album Page
We’re almost done! We just need to style the h2s and the thumbnails. Here, the h2 is styled to

look and behave similarly to the images, with the same hover effects. We add clear: left; to

the h2 to ensure that each new album clears the floated thumbnail of the album that precedes

it:

h2 {

  margin: 0 0 5px 0;

  font-weight: normal;

  font-size: 1.5em;

  text-align: left;

  clear: left;

}

h2 a:link, h2 a {

  display: block;

  padding: 0 5px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

42	 The Art & Science of CSS 	 Images	 43

}

h2 a:hover {

  border-color: #ccc;

  background-color: #eee;

}

Finally, we’ll style the thumbnails to appear like those in Figure 2.14, which share some

styles with ul.thumbnails.

p.thumb, ul.thumbnails {

  margin: 0 0 10px 0;

  padding: 0;

  float: left;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

  list-style: none;

}

p.photo a, p.thumb a, ul.thumbnails a {

  display: block;

  float: left;

  margin: 0;

  padding: 4px 4px 9px 4px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

  background-color: #fff;

  text-align: center;

}

p.thumb a, ul.thumbnails a {

  width: 80px;

  margin-right: 10px;

  margin-bottom: 10px;

}

p.photo a:hover, p.thumb a:hover, ul.thumbnails a:hover {

  border: 1px solid #ccc;

  background-color: #eee;

}

44	 The Art & Science of CSS 	 Images	 45

Figure 2.14: The album page displaying additional styles

Here’s what the final style sheet should look like; it can be used on all three pages:

gallery.css

body {

  margin: 0;

  padding: 0;

  background-color: #fff;

  font: 62.5%/1.75em “Times New Roman", serif;

  color: #4d4d4d;

}

a:link, a {

  border-bottom:1px dotted #960;

  color: #960;

  text-decoration: none;

}

a:hover {

  border-bottom:1px solid #960;

}

h1 {

  margin: 05 6px;

  padding: 0 0 .5em 0;

  font-style: italic;

  font-weight: normal;

  font-size: 1.25em;

  line-height: 2.375em;

  color: #ccc;

}

44	 The Art & Science of CSS 	 Images	 45

h1 em {

  color: #4d4d4d;

}

h1 a:link, h1 a, h1 a:hover, h1 a em, h1 a:link em,

  h1 a:hover em {

  border-color: #999;

  color: #999;

}

h2 {

  margin: 0 0 5px 0;

  font-weight: normal;

  font-size: 1.5em;

  text-align: left;

  clear: left;

}

h2 a:link, h2 a {

  display: block;

  padding: 0 5px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

}

h2 a:hover {

  border-color: #ccc;

  background-color: #eee;

}

p, ul {

  margin: 0 6px;

  padding: 0;

}

img {

  display: block;

  margin: 0 auto 5px auto;

  border:1px solid #ccc;

  border-bottom-color: #eee;

  border-left-color: #ddd;

  border-top-color: #bbb;

}

br {

  display: none;

}

#content {

  margin: 0 auto 20px 20px;

  padding: 1em 0 0 0;

  width: 512px;

  background-color: #fff;

  font-size: 1.25em;

  line-height: 1.75em;

46	 The Art & Science of CSS 	 Images	 47

p.photo {

  margin: 0 0 10px 0;

  float: left;

  width: 75%;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

}

ul.navigation {

  margin: 0 0 10px 0;

  padding: 0;

  float: left;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

  list-style: none;

  position: absolute;

  top: 76px;

  left: 550px;

}

p.thumb, ul.thumbnails {

  margin: 0 0 10px 0;

  padding: 0;

  float: left;

  text-align: center;

  background-color: #fff;

  line-height: 1em;

  list-style: none;

}

ul.thumbnails li, ul.navigation li {

  display: inline;

  margin: 0;

  padding: 0;

}

ul.navigation a {

  display: block;

  float: left;

  margin: 0 10px 10px 0;

  padding: 4px 4px 6px 4px;

  border: 0;

  background-color: #fff;

  text-align: center;

  width: 80px;

}

46	 The Art & Science of CSS 	 Images	 47

p.photo a, p.thumb a, ul.thumbnails a {

  display: block;

  float: left;

  margin: 0;

  padding: 4px 4px 9px 4px;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

  background-color: #fff;

  text-align: center;

}

p.thumb a, ul.thumbnails a {

  width: 80px;

  margin-right: 10px;

  margin-bottom: 10px;

}

ul.navigation a:hover {

  background-color: #eee;

  border: 0;

}

p.photo a:hover, p.thumb a:hover, ul.thumbnails a:hover {

  border: 1px solid #ccc;

  background-color: #eee;

}

p.description {

  clear: left;

}

We’ve finished marking up and styling our experimental image page, thumbnails, and

album list, and we have a clean, simple image gallery! At the end of this chapter, in Further

Resources, you’ll find a list of some great examples of online image galleries, along with a

couple of gallery and photo album resources.

Contextual Images
Contextual images usually appear in news articles or weblog entries, where they provide

additional visual information or help to illustrate the content. Sometimes they’re used

in a masthead-like manner to introduce the content. Other times, contextual images may

be embedded throughout the content, the text wrapping around them. They may also be

accompanied by a descriptive caption.

This section shows some of the interesting ways in which contextual images can be

displayed, and provides the markup necessary to achieve these effects.

48	 The Art & Science of CSS 	 Images	 49

Placing Introductory Images
Introductory images are most typically seen on designers’ weblogs, as shown in Figure 2.15,

but these images are a fun way for anyone to introduce a post.

As the name suggests, introductory images appear at the beginning of the text. However,

you can give them a lot more impact by playing around with their placement via the

manipulation of their borders and padding values.

Figure 2.15: Introductory image used at Binary Bonsai

Using Borders and Padding
Let’s work through an example, which you can see in Figure 2.16, that uses borders and

padding to extend an image beyond the width of the page content. This approach makes

the layout a little more interesting, and makes the image seem more deliberate—it doesn’t

seem as if it’s just been “placed” there.

48	 The Art & Science of CSS 	 Images	 49

Figure 2.16: Introductory photo using borders and padding

It’s very easy to create this look. We start with the proper markup—simply replace the text

and images used here with the content that you want:

intro-image.html (excerpt)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN"

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

  <meta http-equiv="Content-Type" content="text/html;

      charset=UTF-8" />

  <link type="text/css" href="intro-image.css" rel="stylesheet"

      />

  <title>Introductory Images</title>

</head>

<body>

  <h1>The “Cat Vase” that won’t go away.</h1>

  <p><cite>Published on Saturday, September 23, 2006, at 4:00pm

      by Jina Bolton</cite></p>

  <div id="content">

    <img src="images/intro-photo.jpg" class="intro" alt="The Cat

        Vase" />

50	 The Art & Science of CSS 	 Images	 51

    <p>I remember the day that my grandmother told me what she

        was giving me in her will. She pointed to the vase in

        the corner. This vase always intrigued me, in all its

        elegance and gaudiness. But I certainly did not wish to

        own it.</p>

    <p>It is a big white vase painted with large pink, yellow,

        and purple flowers, butterflies, and ornamentation

        around the top. All the line work was painted in glossy,

        shiny gold. And all around the vase were

        three-dimensional figurines of cats attached on to it,

        so it would look like they were climbing the vase.

        The cats are cute, white, with gold-trimmed ears and

        tails.</p>

    <p>Don’t get me wrong. I love cats. But I was never one

        to collect memorabilia.</p>

    <p>Years went by and I never put another thought to the vase.

        Then the day came that my father showed up to visit.

        He was holding the vase.</p>

    <p>"Grandma told me to give this to you," he said

        with a smirk on his face.</p>

    <p>"She did? But that was part of her will... Why is she

        giving it to me now?"</p>

    <p>"Guess she wanted to get rid of it."</p>

    <p>I reluctantly received the vase. I kept it in the closet

        of my old bedroom I had when I lived with my boyfriend

        at the time. After I moved out into my own apartment,

        I didn’t think much of it again. About a year went by,

        and I was moving once again to a nicer apartment. My

        ex-boyfriend began bringing things that I had left at

        his house. I didn’t realize how much I had left over

        there.</p>

    <p>Then the day came that Michael showed up at the door.

        He was holding the vase, in a much similar style that

        my father had done, with the same smirk.</p>

    <p>I don’t know what to do with it. My grandmother told

        me she paid $200 for it, so I don’t want to just get

        rid of it. It’s definitely not my style, and certainly

        doesn’t match anything in my home. But at the same time,

        it’s almost too funny to get rid of. I mean, how often

        do you see a vase this ornamental and bizarre?</p>

    <p>I’ve considered maybe putting it on eBay but I think I

        might hold on to it just for a little while longer.

        It’s certainly photogenic. </p>

  </div>

</body>

</html>

The content and image are contained within a div with a class of content, and we’ve

applied a class of intro to the image. The result is shown in Figure 2.17.

50	 The Art & Science of CSS 	 Images	 51

Figure 2.17: The unstyled introductory photo

Now, we’ll style the page’s typography, and apply the colors for its background, border, and

font. These styles are merely applied for the sake of the page design, and are not required

by the introductory image itself:

intro-image.css (excerpt)

body {

  margin: 0;

  padding: 0;

  background-color: #fff;

  font: 62.5%/1.75em “Trebuchet MS", Verdana, sans-serif;

  text-align: center;

  color: #4d4d4d;

}

#content {

  margin: 0 auto;

  padding: 1em 0;

  width: 500px;

  background-color:#fff;

  font-size: 1.125em;

  line-height: 1.75em;

  text-align: left;

}

a:link, a {

  border-bottom:1px dotted #960;

  color: #960;

  text-decoration: none;

}

52	 The Art & Science of CSS 	 Images	 53

h1 {

  margin: 0;

  padding: 0;

  border-bottom: 3px solid #eee;

  font: 2.75em/1.75em Georgia, serif;

  text-align: center;

  text-transform: lowercase;

  color: #cc6;

}

p {

  margin: 0;

  padding: 0 0 1em 0;

}

cite {

  display: block;

  margin-top: 2em;

  font-style: normal;

  font-size: 1em;

  line-height: 1em;

  text-align: center;

}

Now, we style the image. We’ll add 4px of padding, and a 3px border with a double style, so

that the image has what appears to be two borders surrounding it:

intro-image.css (excerpt)

img.intro {

  padding: 4px;

  border:3px double #ccc;

  background-color: #fff;

  margin:0 -7px;

}

The container is 500px wide, so the text stays within those boundaries. The image is also

500px wide, but since we’ve applied padding and border properties to it as well, we need

to compensate for them. Due to the 4px padding and 3px border, our intro image needs to

have a negative margin of 7px on the left and right to allow the border properties to extend

beyond the #content div. The padding and border properties can be adjusted to suit your

taste; just make sure that the negative margin is the same as the total of your padding and

border properties.

In Figure 2.18, we see an image that’s 500px wide—the same as the content area.

52	 The Art & Science of CSS 	 Images	 53

Figure 2.18: Styled introductory image

Styling Images and Captions
If you look at a news-related web site, you’ll see that the

images that illustrate the articles are often accompanied by

captions. The caption is most commonly found beneath or

beside the image, as shown in Figure 2.19.

We’ll start, once again, with a page of semantic markup:

captions-1a.html (excerpt)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN"

    “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

  <meta http-equiv="Content-Type" content="text/html;

      charset=UTF-8" />

  <link type="text/css" rel="stylesheet" href="captions-1a.css" />

  <title>Images & Captions</title>

</head>

<body>

  <div id="page">

    <h1>The “Cat Vase” that won’t go away.</h1>

    <p><cite>Published on Saturday, September 23, 2006, at

        4:00pm by Jina Bolton</cite></p>

    <div id="content">

      <div class="captioned_photo">

       

        <p>The Cat Vase: The cats are

          cute, white, with gold-trimmed ears and tails.

          </p>

      </div>

Figure 2.19: Basic image captioningFigure 2.19: Basic image captioning

54	 The Art & Science of CSS 	 Images	 55

      <p>I remember the day that my grandmother told me what she

          was giving me in her will. She pointed to the vase in

          the corner. This vase always intrigued me, in all its

          gaudiness. But I certainly did not wish to own it.</p>

      <p>It is a big white vase painted with large pink, yellow,

          and purple flowers, butterflies, and ornamentation

          around the top. All the line work was painted in

          glossy, shiny gold. And all around the vase were

          three-dimensional figurines of cats attached on to it,

          so it would look like they were climbing the vase.

          The cats are cute, white, with gold-trimmed ears and

          tails.</p>

      <p>Don’t get me wrong. I love cats. But I was never

          one to collect memorabilia.</p>

      <p>Years went by and I never put another thought to the

          vase. Then the day came that my father showed up to

          visit. He was holding the vase.</p>

      <p>"Grandma told me to give this to you," he

          said with a smirk on his face.</p>

      <p>"She did? But that was part of her will... Why

          is she giving it to me now?"</p>

      <p>"Guess she wanted to get rid of it."</p>

      <p>I reluctantly received the vase. I kept it in the

          closet of my old bedroom I had when I lived with my

          boyfriend at the time. After I moved out into my own

          apartment, I didn’t think much of it again. About a

          year went by, and I was moving once again to a nicer

          apartment. My ex-boyfriend began bringing things that

          I had left at his house. I didn’t realize how much I

          had left over there.</p>

      <p>Then the day came that Michael showed up at the door.

          He was holding the vase, in a much similar style that

          my father had done, with the same smirk.</p>

      <p>I don’t know what to do with it. My grandmother told

          me she paid $200 for it, so I don’t want to just get

          rid of it. It’s definitely not my style, and certainly

          doesn’t match anything in my home. But at the same

          time, it’s almost too funny to get rid of. I mean, how

          often do you see a vase this ornamental and bizarre?</p>

      <p>I’ve considered maybe putting it on eBay but I think I

          might hold on to it just for a little while longer.

          It’s certainly photogenic. </p>

    </div>

  </div>

</body>

</html>

54	 The Art & Science of CSS 	 Images	 55

We’ve wrapped both the image and the caption in a div with a class of captioned_photo,

and have also applied a span, which we’ll use for styling purposes later on. Now, let’s add

some basic page styles:

captions-1a.css (excerpt)

body {

  margin: 0;

  padding: 0;

  background-color: #fff;

  font: 62.5%/1.75em Verdana, sans-serif;

  text-align: center;

  color: #4d4d4d;

}

#page {

  margin: 0 auto;

  width: 75%;

  text-align: left;

}

#content {

  padding: 1em;

  font: 1.25em/1.75em “Times New Roman", serif

}

a:link, a {

  border-bottom:1px dotted #369;

  color: #369;

  text-decoration: none;

}

a:hover {

  border-bottom:1px solid #369;

}

h1 {

  margin: 0;

  padding: 0;

  border-bottom: 3px double #ccc;

  font: 3em/1.75em “Times New Roman", serif;

  font-variant: small-caps;

  letter-spacing:-.05em;

  text-align: center;

  color: #999;

}

56	 The Art & Science of CSS 	 Images	 57

h2 {

  margin: 2em 0 1em 0;

  padding: 0;

  border-top: 1px solid #ccc;

  border-bottom: 3px double #eee;

  font-style: italic;

  font-weight: normal;

  font-size: 1.25em;

  line-height: 1.75em;

}

p {

  margin: 0;

  padding: 0 0 1em 0;

}

cite {

  display: block;

  margin-top: 1.25em;

  font: normal normal 1em/1.75em Verdana, sans-serif;

  text-align: center;

}

The result of this markup is depicted in Figure 2.20.

Figure 2.20: Page displaying without image caption styles

56	 The Art & Science of CSS 	 Images	 57

Let’s now style the photos and their captions:

captions-1a.css (excerpt)

.captioned_photo {

  float: right;

  margin: .5em 0 .5em 2em;

  padding: 0;

  line-height: 1em;

  width: 240px;

}

.captioned_photo p {

  width: 100%;

  margin: 0;

  padding: 1em 0;

  font: .75em/1.75em Verdana, sans-serif;

  color: #666;

}

.captioned_photo img {

  margin: 0;

  padding: 0;

  display: block;

}

This CSS floats the containing div, which has a class of captioned_photo that holds the image

and the caption, so that the page’s body text will wrap around both, as in Figure 2.21.

Figure 2.21: The styled caption appearing below the image

58	 The Art & Science of CSS 	 Images	 59

Another, slightly different way to lay out the page would be to place the caption to the side

of the image. This is what the CSS would look like:

captions-1b.css (excerpt)

.captioned_photo {

  float: right;

  margin: .5em -2em 2em 2em;

  padding: 0;

  line-height: 1em;

  width: 360px;

}

.captioned_photo p {

  width: 25%;

  margin: 80px 0 0 2em;

  padding: 1em 0;

  font: .75em/1.75em Verdana, sans-serif;

  color: #666;

  float: left;

}

.captioned_photo img {

  margin: 0;

  padding: 0;

  display: block;

  float: left;

}

The result of this markup appears in Figure 2.22.

Figure 2.22: The styled caption appearing beside the image

These methods usually serve their purposes well. However, if you’re a designer, you

probably want your page to look a little more interesting, right? Of course you do!

58	 The Art & Science of CSS 	 Images	 59

My favorite way to display captions is to position them on top of the image. Let’s look at

the different ways in which this can be done.

Experimenting with Stacking and Transparencies
The basic page markup will be the same for the all of these

captioning examples, the only difference is that you could change

the _src_ attreibute of _img_ to images/captions-2.jpg. These

next two cases experiment with alpha transparencies, the use of

which I encourage, especially now that Internet Explorer 7 has

transparent PNG support.

Take a look at Figure 2.23, which shows a semi-transparent

caption overlaid on an image.��

NOTE  �Alpha Transparency in Internet Explorer 6 and Earlier

Alpha Transparency works well in most browsers; unfortunately, to have it work in Internet Explorer versions
5, 5.5, and 6, we need to add an additional style and set a filter property, which is proprietary to Internet
Explorer. We can use conditional comments (also a proprietary IE feature) to serve up additional styles to
Internet Explorer versions earlier than 7:

<!--[if lt IE 7]>

<style type="text/css">

.captioned_photo p {

  background: none;

  filter:progid:DXImageTransform.Microsoft.AlphaImageLoader

      (sizingMethod=scale, src=’images/caption-white.png’);

}

</style>

<![endif]-->

The filter used in this CSS example can’t be paired with a background, as that background will be used
instead, without alpha transparency. You can put this rule in a separate, external style sheet, instead of
embedding the styles, if you so choose, though adding another HTTP request for such a small addition is likely
to slow down your site.

More information on PNG transparencies is available in Michael Lovitt’s article “Cross-Browser Variable Opacity
with PNG: A Real Solution,”1 and at Microsoft’s AlphaImageLoader Filter page.2

The caption is positioned at the bottom of the image, and is able to expand to fit the

amount of content placed within it. However, I recommend that the caption remains only

a couple of lines long at most—if it’s any longer, it will cover too much of the image.

�	 http://alistapart.com/stories/pngopacity/
�	 http://msdn2.microsoft.com/en-us/library/ms532969.aspx

Figure 2.23: A semi-transparent captionFigure 2.23: A semi-transparent caption

60	 The Art & Science of CSS 	 Images	 61

The caption is translucent, because it uses a transparent background image. To create

the background image needed for this example, we create a 1x1px graphic consisting of

a single layer filled with white at 75% opacity. We save this graphic as a PNG-24 with

transparency turned on.

Adding Style
As I mentioned, the basic page styles will remain the same for each of these examples—

we’ll just change the CSS for the captioned photo. Here are the changes you’ll need to

make to create the caption shown in Figure 2.24:

captions-2a.css (excerpt)

.captioned_photo {

  position: relative;

  float: right;

  margin: .5em 0 .5em 1.25em;

  padding: 0;

  border: 3px double #4d4d4d;

  line-height: 1em;

}

.captioned_photo p {

  position: absolute;

  bottom: 0;

  left: 0;

  width: 100%;

  margin: 0;

  padding: 0;

  background: url(images/caption-white.png);

  font: .75em/1.25em Verdana, sans-serif;

  letter-spacing:.05em;

  color: #000;

}

.captioned_photo p span {

  display: block;

  padding: .75em;

}

.captioned_photo img {

  margin: 0;

  padding: 0;

  display: block;

}

Let’s walk through this CSS together. We need to set the containing div with a class of

captioned_photo to use relative positioning, since we’re positioning the caption on top

of the image. We choose to float the image to the right. The image will be set so that the

60	 The Art & Science of CSS 	 Images	 61

margins line up with the text at its top and to its right, and so that some additional spacing

is applied on the caption’s bottom and right. The margin sizes for your floated image

container will vary in accordance with the direction in which you want your image to float,

and how you’ve set your paragraph margins, padding, and letter spacing.

In this example, we want to have a 3px border on the containing div. We also need to set

the line height to 1em to make sure that the caption text stays tight. The caption is placed in

a paragraph, so the width set for p.captioned_photo should be set to 100% so that it will fill

the entire width of the image. We can use a span to set the padding so that the use of hacks

won’t be necessary. Applying a span also gives us room for extra styling we may desire.

The caption fonts are relative to those set in the body, so you may want to adjust these to

suit your tastes.

So much can be done with styling image captions. Experiment!

Adding More Style
The example in Figure 2.24 uses two background images, one

of which is translucent. To create the caption background

image needed for this example, we’ll create a 200×1px graphic

consisting of a black, horizontal gradient at 50% opacity,

which allows more of the photo to show through than would

be possible with a solid background image. Darker images are

recommended for this example, since white text is used for

the caption.

The CSS that creates the display shown in Figure 2.24 is as follows:

captions-2b.css (excerpt)

.captioned_photo {

  position: relative;

  float: left;

  display: block;

  margin: .5em 1.25em .5em 0;

  padding: 1em;

  border: 1px solid #ccc;

  border-top-color: #eee;

  border-right-color: #ddd;

  border-bottom-color: #bbb;

  background: url(images/bg.gif) bottom left repeat-x;

  line-height: 1em;

}

Figure 2.24: A variation on the.
semi-transparent caption

Figure 2.24: A variation on the.
semi-transparent caption

62	 The Art & Science of CSS 	 Images	 63

.captioned_photo p {

  position: absolute;

  bottom: 2.25em;

  left: 1.375em;

  display: block;

  width: 240px; /* Needs to match the width of the image */

  margin: 0;

  padding: 0;

  background: url(images/caption-black.png) top left repeat-y;

  font: .75em/1.25em Verdana, sans-serif;

  letter-spacing:.05em;

  color: #fff;

}

.captioned_photo p span {

  display: block;

  padding: 1em;

}

.captioned_photo img {

  margin: 0 0 -.0625em 0;

  padding: 0;

}

A lot of these styles are very similar to those we’ve used in previous examples. However,

in this version, we’re floating the image to the left, so we switch what was previously a left-

side margin to the right. We’ve also added padding of 1em to the captioned_photo declaration

and changed the border to have a width value of 1px.

We want a slightly three-dimensional look, but since the outset border-style can be

unpredictable, I recommend choosing similar colors to help give a feeling of light, as we

saw earlier in Figure 2.4. We also applied the background image shown in Figure 2.25 to

the bottom of the containing div and repeated it along the X axis. The image is a subtle

light gray gradient that moves from light gray at the bottom to white at the top.

Figure 2.25: Gradient background

As we’ve changed the padding, we need to reposition the caption a little. We can move it up

above the bottom of the image, to make the display a little more interesting.

The paragraph’s width needs to change to reflect the size of the image, or the caption will

bleed off the edge on the right as a result of the padding that we added to this element

62	 The Art & Science of CSS 	 Images	 63

earlier. We only want the background image to repeat along the X axis, starting from the

bottom left, since a repeating pattern wouldn’t look good with this gradient.

Finally, the image’s margin is adjusted to make sure that it fits within the “frame” created

by the surrounding div. Once again, to make the display work in Internet Explorer 6 and

earlier, you’ll need to add the transparency filter that was explained in the note called

"Alpha Transparency in Internet Explorer 6 and Earlier" on page 59.

Creating an Offset Caption
For the next example, shown in Figure 2.26, it is important that we avoid relying on

additional imagery. We still want the caption to sit on top of the image, but we want to

offset it slightly from the image, to give it a unique look. This is my favorite example—it’s

a little different from what I’m used to seeing on web sites. So that your design matches the

example, change the src attribute of your img element to “images/captions-3.jpg”.

Adding Style
Here’s the CSS we’ll use for this example:

captions-3.css (excerpt)

.captioned_photo {

  position: relative;

  float: right;

  display: block;

  margin: .5em 0 .5em 1.25em;

  padding: 0;

  border: 3px solid #333;

  line-height: 1em;

}

.captioned_photo p {

  position: absolute;

  bottom: 14px;

  left: 0;

  display: block;

  width: 240px; /* Needs to match the width of the image */

  margin: 0 0 0 1.5em;

  padding: 0;

  border: 1px solid #666;

  border-right-color: #000;

  border-bottom-color: #000;

  background-color: #111;

  font: .75em/1.25em Verdana, sans-serif;

  letter-spacing:.05em;

  color: #fff;

}

64	 The Art & Science of CSS 	 Images	 65

.captioned_photo p span {

  display: block;

  padding: .75em;

}

.captioned_photo img {

  margin: 0;

  padding: 0;

  display: block;

  border: 1px solid #fff;

}

This example is similar to the last, except that the caption floats to the right. The border for

captioned_photo is set to 3px. The caption also uses a padding of 1em, so, again, we need to

set the paragraph’s width to the size of the image. The bottom positioning and left margin of

the paragraph are adjusted so that the caption is located the same distance from the left and

bottom edges of the image. That image, which now has a margin set to 0, can have a border

as well, so we give it a single-pixel white border. The result, Figure 2.26, is really quite

effective.

Figure 2.26: An offset caption

That’s all for our experimentation in this chapter, but a whole world of great examples of

images at work in CSS is available online. Let’s explore just a few of these resources next.

Further Resources
The Internet offers countless examples of photo galleries and contextual image styles that

have been created by very talented designers and developers. This is a shortlist of my

favorites, which I recommend as being great examples of well-designed galleries:

	 Experiments with wide images, by Richard Rutter, at http://clagnut.com/sandbox/

imagetest/

	 CSS: figures & captions, by Bert Bos, at http://w3.org/Style/Examples/007/figures.html

	 Floating an image and caption, by Russ Weakley, at http://css.maxdesign.com.au/

floatutorial/tutorial0211.htm

64	 The Art & Science of CSS 	 Images	 65

	 Hoverbox Image Gallery, by Nathan Smith, at http://host.sonspring.com/hoverbox/

	 Photos, by Douglas Bowman, at http://dbowman.com/photos/

	 CSS Play | Demos – Photo galleries, by Stu Nicholls, at http://cssplay.co.uk/menu/

	 Drop Shadow Gallery, by Brian Williams, at http://alistapart.com/d/onionskin/gallery.

html

	 Lightbox JS v2.0, by Lokesh Dhakar, at http://huddletogether.com/projects/lightbox2/

With the pages you’ve worked on throughout this chapter, and the above links, you have

plenty of examples to refer to!

Summary
Now that you have some examples to follow, I encourage you to experiment and find

interesting ways to display your images!

In this chapter, we’ve seen how we can use the deceptively simple concepts of space

and color to create a level of visual impact that’s similar to that achieved by real-life art

galleries. We’ve worked through a number of different examples, and explored the markup

that achieves each effect. We’ve learned a lot about the presentation of contextual images—

in both introductory and captioned forms—and discussed many different techniques that

you can use to set your web site’s images apart from the rest.

A design instructor once taught me that design is not about what you can add to a

composition, but what you can take away while retaining a strong design. The underlying

theme of this chapter has been that while it’s great to add some visual interest to your

images, it’s vital to remember that the styles you choose should provide an elegant accent

to your images—not a distraction.

	 Backgrounds	 67

For many years, web sites all over the world generously

offered free tiled background patterns to budding young web

designers as a way of “enhancing” their web pages. Derided

by many designers in the field as tacky, these backgrounds

were generally used sparingly, if at all, by professional

designers, especially where download speed was of major

concern—and in those heady days of 14.4kbps modems,

download speed was always of major concern.

How times have changed in the past ten or so years!

With the advent of CSS and the increased proliferation of

broadband, backgrounds have become an integral part of

web design and development. Backgrounds are no longer

simple repeated patterns or, in more abstract cases, extremely

large photographs. Nowadays, they form the basis of many a

well-designed site. From CSS rollovers and “Faux Column”

layouts, to form styling and fluid layouts, backgrounds have

become an integral part of the developer’s toolkit.

In this chapter, we’ll first of all deal with the theory behind

the, um, background, in which we’ll break down the

properties of backgrounds. Armed with this theory, we’ll

proceed to walk through a case study together, in order to see

some of the techniques that are utilized by developers faced

with a challenging and daunting site design. Finally, we’ll

predict the advent of CSS 3, speculating as to what may be in

store for designers in the near future.

3 Backgrounds

	 Backgrounds	 67

Background Basics
Before we begin our case study, we’ll need to be equipped with an understanding of the

basics of creating backgrounds. For the sake of keeping this instruction brief and concise,

let’s just look at the shorthand notation of the background property to start with. It looks

like this:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat

      fixed 10% 50px;

}

That’s your background, right there. But to the uninitiated, this code probably doesn’t

make a whole lot of sense. Let’s break it down into its individual properties—background-

color, background-image, background-repeat, background-attachment, and background-

position.

Setting background-color
Let’s take a look at the specification of the background-color property:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat
      fixed 10% 50px;

}

This property can take as its value a hexadecimal number, an RGB color name value, for

example, rgb(255,0,0) for red, a name value, or a transparent keyword.

Hexadecimal values use the fewest characters, and are the most common method of

defining colors in CSS. So, for simplicity, we’ll use hexadecimal values.�

Setting background-image
The background-image property is also very straightforward:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat
      fixed 10% 50px;

}

This property gives us most of our design flexibility. The location of the image should be

specified relative to your CSS file. For example, if you keep your images in a subdirectory

�	 A detailed list of valid color name values can be found at http://www.w3schools.com/css/css_colornames.asp.

3 Backgrounds

68	 The Art & Science of CSS 	 Backgrounds	 69

of the folder containing your CSS files, and this subdirectory is called images, you’d need to

edit the location of the image like so:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat
      fixed 10% 50px;

}

Simple!

Setting background-repeat
Here’s the background-repeat property:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat
      fixed 10% 50px;

}

The valid values for the background-repeat property are:

	 no-repeat

	 As its name suggests, the no-repeat value causes the background-image to be rendered

once, at the point determined by the background-position property.

	 repeat-x

	 repeat-x forces the background image to repeat horizontally, left-to-right.

	 repeat-y

	 Setting background-repeat to repeat-y results in the image being repeated along the Y

axis, starting at the top of the element.

	 repeat

	 The default value for background-repeat, repeat causes the background-image to be tiled

across the entire area of the element, starting from the top left.

Setting background-attachment
Let’s investigate the background-attachment property:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat

      fixed 10% 50px;
}

The only valid values for this property are:

68	 The Art & Science of CSS 	 Backgrounds	 69

	 fixed

	 scroll, the default value

The background-attachment property defines whether the background-position is calculated

relative to the page content (scroll), or relative to the browser viewport (fixed). The most

notable difference between these values is that background-attachment: fixed; will cause the

background-image to remain stationary if the user scrolls the page.

For the purposes of this chapter, we’ll ignore the background-attachment property, and it’ll

therefore assume the default value. We’ll gloss over the background-attachment property,

due to the lack of support for the fixed value in Internet Explorer 6, which still holds a

large share of the browser market despite the release of IE 7. IE 6 only supports background-

attachment: fixed; on the body element.

Setting background-position
Here’s the background-position property:

body {

  background: #1299AB url(images/myBackground.gif) no-repeat

      fixed 10% 50px;
}

The background-position property defines the starting X and Y coordinates of the

background image. Keywords (left/right/center/top/bottom), relative (percentage) values,

or absolute values (px/em/pt/mm) are valid options for setting the background-position.

The horizontal keywords that determine the X position of the background image are:

	 left, the default

	 center

	 right

The vertical keywords which determine the Y position are:

	 top, the default

	 center

	 bottom

Case Study: Deadwood Design
That was a very quick tour, but you now have all you need to create stunning and

functional backgrounds. So, let’s get into the fun stuff!

70	 The Art & Science of CSS 	 Backgrounds	 71

Let’s imagine that it’s 8.30 on a Monday morning, and you’ve just walked into your office to

find the mockup in Figure 3.1 in your inbox, with love from your inhouse designer. What we

have here is a fictitious company called Deadwood Design, whose web site we have to build.

Figure 3.1: The design mockup

You’re still a little groggy from your big weekend, and at first glance it all seems fairly

straightforward. But let’s look more closely at all the elements that make up this design.

Gradients? Check. Patterns? Check. Images? Check. But, just a second ...

The designer has requested that the design be made fluid, or liquid, meaning that it should

be able to adapt in height and width to the user’s browser, while retaining the desired

proportions. Every feature situated to the left of the tree in Figure 3.1 must therefore

remain in its existing position, no matter what. The tree and the logo, however, must have

the ability to move further to the right as users increase the size of their browsers. That

said, the tree must remain anchored to the bottom of the layout at all times.

“Dude … what?” you think to yourself.

Never fear, Grasshopper, we’re here to help. To succeed in our chosen field of endeavor, we

must first start at the bottom—which is exactly what we’re going to do now. We need to get

rid of those pesky elements on the page, and take a look at how we need to construct the

background image for the body element. This job poses quite the challenge, but we’re up for

it! The first decision we need to make is where to begin our work. The answer, of course, is

with the background.

Take a look at Figure 3.2. As you can see, it’s an average run-of-the-mill gradient that we

can create right now in Photoshop, Fireworks, GIMP, or any graphics application of your

70	 The Art & Science of CSS 	 Backgrounds	 71

choice. If you look closely, you’ll find that the gradation actually ends about three-quarters

of the way down the page, and the lighter gray makes up the rest of the page.

Figure 3.2: The bare-bones background

Let’s crop this image to a height of 550px, to produce the background in Figure 3.3.

Figure 3.3: The cropped gradient

This image doesn’t change at any point along its X axis: the only color changes occur

on the Y axis. What this means is that, rather than trying to use this large image as our

background, we can cut a slice of it, from top to bottom, and repeat that tall, skinny image

across the page. As I’m sure you’ve guessed, this supports our goal of being able to increase

the width of the page automatically, in response to the resizing of user’s browser.

Now we can start our CSS file! Here’s the body declaration we’ll need:

body {

  background: #A4A4A4 url(images/bg_gradient.png) repeat-x;

}

72	 The Art & Science of CSS 	 Backgrounds	 73

As you can see, we’ve set the background-color of the body to gray (#A4A4A4), and repeated

the gradient image along the X axis only.

Now we’ll create the tree image in Figure 3.4, and anchor

that to the lower-right corner of the browser viewport.

The best way to create this image is either to save it as a

transparent PNG, or create a GIF by placing the tree on top

of a gray background (#A4A4A4) and knocking out that gray

when you export the file.

At this point, the body of our HTML document is empty,

so let’s begin to flesh it out by adding a div with an id of

tree—this empty element will be used as the styling hook

we need to add the transparent tree image:

<body>

  <div id="tree"></div>
</body>

Our next task is to style this div. First, we add the background image, but, this time, we

don’t want the tree to repeat on either the X or Y axis:

#tree {

  background: url(images/tree.gif) no-repeat;

}

You’ll notice that we’ve skipped setting a background-color here. The default value of

background-color is transparent, which happens to be exactly the property we’re after—no

color setting is required!

Now we need to anchor the tree div to the lower-right corner of the browser, so we’ll have

to position it absolutely. We’ll set it flush against the bottom, and 40px from the right-hand

side of the page:

#tree {

  background: url(images/tree.gif) no-repeat;

  position: absolute;
  bottom: 0;
  right: 40px;
}

And we’d better not forget to specify a width and height equal to the dimensions of the tree

image:

Figure 3.4: The tree image

72	 The Art & Science of CSS 	 Backgrounds	 73

#tree {

  background: url(images/tree.gif) no-repeat;

  position: absolute;

  bottom: 0;

  right: 40px;

  width: 331px;
  height: 400px;
}

Let’s load that page into a browser—we should see something similar to Figure 3.5.

Figure 3.5: Previewing the page in a browser

Now it’s time to insert our trusty corporate logo. We’ll need to follow much the same

process for this image as we did for the tree, ensuring that the background is still transparent.

We need to add an h1 with an id of logo to the HTML to provide a meaningful title for the

page. The text will be replaced using the text-indent method covered in Chapter 1:

<body>

  <h1 id="logo">Deadwood Design</h1>
  <div id="tree"></div>

</body>

74	 The Art & Science of CSS 	 Backgrounds	 75

We want to position the logo 40px in from the right, just like the tree, but this time we

need to position it relatively from the top of the document. Positioning the image relatively

(using a percentage value) from the top means that the web site will fit reasonably well

onto screens set at lower resolutions, as a reduction in the height of the browser will lessen

the distance between the top of the viewport and the logo. We’ll also use the text-indent

property to negatively position the h1 text off the page:

#logo {

  background: url(images/logo.gif) no-repeat;

  position: absolute;

  top: 15%;

  right: 40px;

  width: 334px;

  height: 36px;

  text-indent: -9999em;

  margin: 0;

}

Now let’s see what we have; your display should reflect Figure 3.6.

Figure 3.6: Previewing the positioned logo

If we resize the browser to an 800×600px resolution, as shown in Figure 3.7, we notice that

the tree appears to be overwritten by the logo, which doesn’t detract from the design too

much. It actually looks quite nice, no?

74	 The Art & Science of CSS 	 Backgrounds	 75

Figure 3.7: Previewing the logo and tree image at an 800×600px resolution

The next task is to create the introductory paragraph. In the mockup we saw in Figure 3.1,

the first D in the paragraph was an image, while the rest of the text appeared to be good ol’

standard HTML text.

We’ll export the D accompanied by green squares as a transparent GIF, and assign it as the

background-image of a div with an id of intro, which should turn out like Figure 3.8:

<body>

  <h1 id="logo">Deadwood Design</h1>

  <div id="intro">
   <p>Deadwood design is Australia’s 47th best web design and
     development agency.</p>
   <p>We specialise in awesomeness.</p>
  </div>
  <div id="tree"></div>

</body>

Figure 3.8: The D

76	 The Art & Science of CSS 	 Backgrounds	 77

Even though the first letter of the sentence—D—is an image, we still need to include that D

in the HTML so that search engines, screen readers, and CSS-incapable browsers can still

make sense of the text. After all, “eadwood design” won’t help anybody, will it?

Let’s insert the D into a span, and position that span off the page so it’s still available to

assistive devices:

<body>

  <h1 id="logo">Deadwood Design</h1>

  <div id="intro">

    <p>Deadwood design is Australia’s 47th best
        web design and development agency.</p>

    <p>We specialise in awesomeness.</p>

  </div>

  <div id="tree"></div>

</body>

Next, we’ll position the intro div 15% from the top and 40px from the left of the

boundaries of the body element. To ensure the text doesn’t run over the top of the intro

div’s background-image, we’ll put 61px of padding on the image’s left-hand side, and 5px on

its top, to create the display shown in Figure 3.8:

#intro {

  position: absolute;

  top: 15%;

  left: 40px;

  background: url(images/d.gif) no-repeat;

  padding: 5px 0 0 61px;

  width: 250px;

}

#intro span {

  position: absolute;

  top: -1000px;

}

#intro p {

  margin: 0 0 12px 0;

  color: #fff;

  font-family: Georgia, sans-serif;

  font-size: 0.8em;

}

76	 The Art & Science of CSS 	 Backgrounds	 77

Figure 3.8: The introductory paragraph

Now it’s on to the portfolio section of the page, which is to be a series of six links to

different pages showcasing Deadwood Design’s portfolio. This is where the job becomes

a bit tricky—the page mockup includes a checkered pattern that extends across the entire

page and sits underneath the tree image. The easiest way to achieve this effect is to place

the portfolio div above the tree div in the page markup:

<body>

  <h1 id="logo">Deadwood Design</h1>

  <div id="intro">

    <p>Deadwood design is Australia’s 47th best

        web design and development agency.</p>

    <p>We specialise in awesomeness.</p>

  </div>

  <div id="portfolio"></div>
  <div id="tree"></div>

</body>

Theoretically, we could put an unordered list inside the portfolio div and assign the light

checkered pattern as the background to the div. Unfortunately, our old friend Internet

Explorer lays waste to our plans with its incorrect implementation of the z-index property.

Because of this, we have to put the ul outside of the div, as shown in the following code:

78	 The Art & Science of CSS 	 Backgrounds	 79

<body>

  <h1 id="logo">Deadwood Design</h1>

  <div id="intro">

    <p>Deadwood design is Australia’s 47th best

        web design and development agency.</p>

    <p>We specialise in awesomeness.</p>

  </div>

   <img src="images/portfolio1.jpg"
        alt="Mountains and Sky"/>
   <img src="images/portfolio2.jpg"
        alt="Lampshade"/>

   <img src="images/portfolio3.jpg"
        alt="Cat"/>
   <img src="images/portfolio4.jpg"
        alt="Bark"/>
   <img src="images/portfolio5.jpg"
        alt="Thumbs Up"/>
   <img src="images/portfolio6.jpg"
        alt="Flowers"/>

<div id="portfolio"></div>  <div id="tree"></div>

</body>

We’ll position the portfolio div and the ul 35% of the way down the page, and assign the

checkered background GIF shown in Figure 3.9 as the background-image of the div.

Figure 3.9: A 4px square background pattern—checkered areas indicate transparent pixels

Having said that, repeating tiny GIF files can cause browsers on less-capable computers to

work quite slowly. It’s a good idea to create a slightly bigger image, so let’s do that now:

78	 The Art & Science of CSS 	 Backgrounds	 79

#portfolio {

  position: absolute;

  top: 35%;

  left: 0;

  width: 100%;

  height: 294px;

  background: url(images/bg_checkered.gif);

}

Figure 3.10 depicts the 40px-square image we’ll be using as the checkered background.

Figure 3.10: Our 40x40px checkered pattern

We also need to style the unordered list, and its list items. We’ve created another checkered

image similar to the one used for the background of our portfolio div; the only difference

is that this image’s dimensions are 8x8px, and it is slightly darker than the one that repeats

across the page:

#portfolio ul {

  list-style: none inside;

  width: 482px;

  margin: 0;

}

80	 The Art & Science of CSS 	 Backgrounds	 81

#portfolio ul li {

  width: 138px;

  height: 138px;

  float: left;

  margin: 0 18px 18px 0;

  background: url(images/bg_checkered_dark.gif);

}

#portfolio ul li a {

  float: left;

  width: 102px;

  height: 102px;

  margin: 18px 0 0 18px;

}

#portfolio ul li a img {

  border: 0;

}

Have a look at Figure 3.11—it’s all starting to come together!

Figure 3.11: Design following the addition of thumbnails

However, if we resize the browser window to 800×600px, as shown in Figure 3.12, we see

what’s commonly referred to as a “whoopsie.”

80	 The Art & Science of CSS 	 Backgrounds	 81

Figure 3.12: Whoopsie! The design breaks at 800×600px

As you can see, my housemate’s cat, Miette, now has a branch through her eye (she’d be so

unimpressed) and our finely crafted logo is obstructed by the top of the tree. Not only that,

but we can’t click on the last two thumbnails because the tree image is obstructing them.

Oh dear, this is clearly unacceptable!

Let’s remain calm, though. We can easily evade this problem by defining a z-index for

the logo and the unordered list containing our portfolio images. Positioned elements

(those that have position: absolute;, position: relative;, or position: fixed;) have an

automatically assigned stack order, or z-index, that defines how any overlaps should be

handled—elements with a higher z-index will overlap those with a lower z-index. To

gain the ability to set the z-index of the unordered list explicitly, we’ll set its position to

relative, which will have no effect on the physical position of the list within our design:

#logo {

  position: absolute;

  top: 15%;

  right: 40px;

  width: 334px;

  height: 36px;

  background: url(images/logo.gif) no-repeat;

  text-indent: -9999em;

  margin: 0;

  z-index: 3;
}

82	 The Art & Science of CSS 	 Backgrounds	 83

…

#portfolio ul {

  position: relative;
  z-index: 4;
  list-style: none inside;

  width: 482px;

  margin: 0;

}

We can see that in Figure 3.13, the tree image is sitting below the thumbnails, and the

hyperlinks are still accessible.

Figure 3.13: Checking the page again—z-index to the rescue!

There we have it! Figure 3.14 shows our completely fluid page, which looks good at any

resolution, and was completed in fewer than 80 lines of CSS! Not as daunting as you

thought, was it?

82	 The Art & Science of CSS 	 Backgrounds	 83

Figure 3.14: Viewing the completed page at 1024x768px

The Future of Backgrounds
With CSS 3 currently under construction and coming our way, it’s a great time to discuss

the future of CSS design in relation to backgrounds. Let’s have a quick look at the nifty

changes that have been proposed, as well as those that have been implemented already and

are available on certain platforms.

The Possibility of Multiple Backgrounds
That’s right, no more tag soup—documents that forego semantic markup in favour of

presentation. We might go out of our way to avoid tag soup right now, but CSS 3 will allow

for the attachment of multiple background images to a single element, like this:

#mydiv {

  background:url(‘top.gif’) top left repeat-x, url(‘right.gif’)

    top right repeat-y, url(‘bottom.gif’) bottom left repeat-x,

    url(‘left.gif’) top left repeat-y;

}

84	 The Art & Science of CSS 	 Backgrounds	 85

With CSS 3, results such as those shown in Figure 3.15 will be very easy to achieve using a

single div element. How cool is that?

Figure 3.15: Multiple background images applied to one element

At the time of writing, only the WebKit rendering engine and Safari 1.3 and later support

multiple backgrounds.

Looking at background-size
One really nice CSS feature is background-size, which allows us to assign an absolute or

relative size to a background image. In theory, no matter what size a client’s browser is,

the background image would always fit perfectly onto the screen, and no part of the image

would be cut off. (Whether it looks good or not is another matter entirely!)

At the time of writing, only Safari and Konqueror support this feature.

Defining background-origin
The starting point for the calculation of the background-position property of an element is

determined by background-origin. We can apply any of three values to this property:

	 border

	 padding

	 content

If we apply the border value, the calculations for the background image’s position will start

from the edge of the border of the element. If you select the padding value, the background-

image starts from the far edge of the padding. If you use the content value, the background-

84	 The Art & Science of CSS 	 Backgrounds	 85

image starts from the edge of the first child element. The differences between these three

values are illustrated in Figure 3.16.

Figure 3.16: The three different values of background-origin, and their effects

At the time of writing, only Mozilla, Safari, and Konqueror supported background-origin.

Summary
As we’ve seen in this chapter, the humble and retiring background has really come a

long way in the past ten or so years. No longer having to be either invisible or garish, the

background can now add enormously to supporting the designer’s vision. Nowadays,

backgrounds are a fundamental aspect of not only proving a designer’s vision, but enabling

them to push the aesthetic envelope.

This chapter has provided an overview of the CSS properties of the background, and our

case study of the page layout for Deadwood Design has demonstrated these properties

in action. We gained a solid understanding of the behavior of the background property as

we used it for this practical application, and in so doing, have learned ways of avoiding

various background problems.

We’ve looked towards the future of CSS, which promises that we’ll be able to implement

intricate and detailed designs while keeping our code as simple as possible. Now we just

have to wait in the hope that browser vendors implement it consistently, so we can all start

to live a hack-free lifestyle!

	 Navigation	 87

The art of navigation dates back over 6,000 years. Vast

civilizations thrived due to the skill, mathematics, and

keen intuition of their navigators. Imagine making a voyage

across the Atlantic Ocean with no real sense of direction!

To your visitors, your web site is like that ocean. As the

cartographer—read developer—it’s your job to provide your

visitors with simple, obvious directions to their destinations.

Although, in this instance, poor navigation may not be a

matter of life and death, it may mean the difference between

a successful visit or a frustrating experience for your web

site’s users.

In this chapter, we’ll work together through a project for a

fictional client—let’s call it Cartography Corner. We’re the

lucky people who get to work on the project behind the

scenes, while a front-end designer liaises with the client.

Let’s imagine that this particular client is a demanding one,

who won’t be happy until we’ve exhausted all options for

presenting his navigation system. It suits our purposes for

this chapter, and after all, in the real world, some clients

really do seem sent to try us!

First, let’s walk through the basic markup that’s essential

to developing any navigation system. Then we’ll meet each

of the major navigation types in turn, looking closely at the

intricacies of vertical, horizontal, and tabbed navigation

systems in all their glorious detail.

4 Navigation

	 Navigation	 87

The Markup
Successful navigation starts with the proper markup. Taking current convention and proper

semantics as our guide, we’ll mark up our navigational links using an unordered list.

This’ll form the beginning of our client’s navigation system:

  Home

  Maps

  Journal

  History

  References

  Contact

The basic elements are all there: the navigation items are in a list, and the links are in

place. But how are we to distinguish this list from any other unordered list on the page?

There should only be one navigation list per page, so a common solution is to place

this list inside a div with an id of nav. This method will work just fine, but unless you

need another block-level element for styling purposes, I suggest that you simply put that

id directly on the list itself. Unordered lists are also block-level elements, just like div

elements—something we’ll take advantage of when we style the navigation using CSS.

Similarly, we often need to be able to isolate one specific navigation item from its

companions when managing the presentation. This is easily achieved—we simply place

a unique id attribute on each item in the unordered list. Let’s see what our markup looks

like now:

vertical.html (excerpt)

<ul id="nav">

  <li id="nav_hom">Home

  <li id="nav_map">Maps

  <li id="nav_jou">Journal

  <li id="nav_his">History

  <li id="nav_ref">References

  <li id="nav_con">Contact

Fantastic! We’ve created the foundation code from which we can develop any of the

currently accepted types of navigation menu. Putting this code in place wasn’t too difficult,

and the following sections, in which we’ll style these foundations to appear vertically,

horizontally, and in tabbed format, won’t be much harder.

4 Navigation

88	 The Art & Science of CSS 	 Navigation	 89

Basic Vertical Navigation
Now that we’ve established our markup, we can begin coding our styles. To start with,

we’ll style our navigation list to look like the mockup shown in Figure 4.1.

Figure 4.1: Designer’s navigation mockup

This mockup came from the front-end designer we’re working with on the Cartography

Corner project, and looking at it, we notice a couple of terrific features right from the

beginning. First, the hover state of the links shows a slightly darker background. Second,

the clickable area seems to extend the whole width of the navigation area and height of the

list item—a big plus for the interface’s usability. We’d better remember to give the designer

a pat on the back for considering our users!�

NOTE  A Word on Accessibility

It’s important to make sure that your navigation is obviously and accessibly styled to meet the needs of the
specific audience that’ll use your site. When you’re designing and styling a site, be sure to stay user-centric to
maximize that site’s overall usability. As you just saw, for instance, it’s helpful to make the clickable area as large
as possible when styling any link. There’s more information on this topic available online.4

Styling the Unordered List
Working from the outside in, let’s start with an example of a page font specification

involving the html and body elements, then style our unordered list element. As the font for

the navigation will most likely match that of the rest of the page, the font-family should be

declared much higher in the cascade:

vertical.css (excerpt)

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

�	 http://www.sitepoint.com/subcat/accessibility/

88	 The Art & Science of CSS 	 Navigation	 89

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;

  width: 180px;

}

If we view our work in a browser, we’ll see something like Figure 4.2.

Figure 4.2: Our progress so far

Now we need to decide which element we need to style to implement the design mockup.

It would be easy for us to apply the white border and padding on the list item, and style

the text color and text decoration on the anchor. But that approach wouldn’t give us the

large clickable area that’s shown in the mockup. In order to make each link into a larger,

clickable block, we need to apply the padding to the anchor itself, and remove the default

margin and padding from the list items.

Let’s put those ideas into code:

vertical.css (excerpt)

#nav li {

  margin: 0;

  padding: 0;

}

#nav a {

  display: block; /* to increase clickable area as a’s default

      to inline */

  color: #FFF;

  text-decoration: none;

  padding: 0 15px;

  line-height: 2.5; border-bottom:1px solid #FFF;

}

Styling the Last Menu Item
One subtle aspect that you might notice here is that the last navigation list item, Contact,

will have a white bottom border. On a white background, that border won’t be visible.

However, it’s a good idea to remove it, as the border will add a pixel to the height of your

90	 The Art & Science of CSS 	 Navigation	 91

navigation. Since you won’t see it, that invisible border may come back to haunt you if you

run into positioning bugs down the road.

We specified id attributes for each list item element, so we can specifically target our last

anchor to remove the unwanted border. Other than that, the only style rule we still need to

add will apply to the hover pseudo-class; adding the rule will be easy now that we’ve given

the anchor element the most real estate. Let’s add those last two style rules now:

vertical.css (excerpt)

#nav #nav_con a {

  border: none;

}

#nav a:hover {

  background: #4F4532;

}

Let’s make sure that our styles work as expected. Load up our navigation in Safari, Firefox,

and Internet Explorer 6. Figure 4.3 shows what we see.

Figure 4.3: First browser check—IE’s the odd one out

Oh no! Internet Explorer’s gone all quirky. This bizarre treatment of list items is known as

the “whitespace bug”—a phenomenon caused by IE’s incorrect rendering of the whitespace

between the list items.

Debugging for Internet Explorer
Fortunately, there’s a quick workaround for the IE whitespace problem—we simply need to

make some short additions to two of our element styles:

90	 The Art & Science of CSS 	 Navigation	 91

vertical.css (excerpt)

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;7

  width: 180px;

  float: left; /* Contain floated list items */
}

#nav li {

  margin: 0;

  padding: 0;

  float: left; /* This corrects the */
  width: 100%; /* IE whitespace bug */
}

By floating the list items, we trick IE into rendering them without any surrounding

whitespace. However, to take this course of action requires us also to float the unordered list

element in order to contain the floated list items, and extend our background color behind

all of them. Because we’ve specified widths for both elements, the float property has no real

side effects. At most, you may need to specify a clear property on an element below the

navigation if you encounter any odd overlapping behavior. Be aware also that there are other

ways to combat the IE whitespace bug, should floating fail to work for your particular page.�

NOTE  Consistency Counts!

If you’re using floats to style your navigation, stick with floats for the rest of your layout. If your layout requires
the use of absolute positioning, it’s easiest to style your navigation using absolute positioning. While there’s
nothing wrong with combining floats and positioning, it’s much more confusing to try to debug code that uses
both techniques. This note is by no means a rule, it’s simply a recommendation.

Let’s see how our browsers render the page with our new style properties applied; the

results are shown in Figure 4.4.

Figure 4.4: Second, improved browser check

�	 Roger Johanson of 456BereaStreet has a fine alternative in his article “Closing the gap between list items in IE,”
October 16, 2006, http://www.456bereastreet.com/archive/200610/closing_the_gap_between_list_items_in_ie/.

92	 The Art & Science of CSS 	 Navigation	 93

Excellent! Our navigation displays consistently, and hover states are working.

NOTE  Whitespace Woes

If you’re still besieged by IE whitespace issues at this point, you can eradicate them by adjusting the markup
slightly to remove the whitespace from between the list items. Here’s an example:

<ul id=”nav”

  ><li id=”nav_hom”>Home<li id=”nav_map”>Maps<li id=”nav_jou”>Journal<li id=”nav_his”>History<li id=”nav_ref”>References<li id=”nav_con”>Contact

You’ll observe that the last > is dropped from each open tag and placed directly before the < of the next open
tag. This trick ensures that the markup for each navigation item remains indented and on its own line, but the
whitespace between the elements is removed. In essence, whitespace between the elements has been removed.
This way, the solution allows us to keep some semblence of formatting. Note, though, that this exercise will only
work if you have complete control over the markup for the navigation.

But let’s think again about what will happen when people actually use the site. It’s helpful to indicate
graphically within the navigation which area of the site the user is browsing. This type of display is often
called You Are Here navigation, in reference to maps in public places that point out your current location.
According to the designer of the Cartography Corner interface, the client wants us to create a You Are Here
state for our navigation elements using a lighter colored background and dark brown, bold text for contrast.
Let’s set this style up.

Adding “You Are Here” Cues
One common way of indicating the navigation item that corresponds to the currently

viewed page is by adding a class to the list item containing the anchor for that page. It

looks like this:

<ul id="nav">

  <li id="nav_hom">Home

  <li id="nav_map">Maps

  <li id="nav_jou">Journal

  <li id="nav_his">History

  <li id="nav_ref" class="current">

      References

  <li id="nav_con">Contact

92	 The Art & Science of CSS 	 Navigation	 93

Here’s the associated CSS:

#nav li.current a {

  background: #BEB06F;

  color: #1A1303;

  font-weight: bold;

}

While this method can be effective, I like to take a more semantic approach. Considering

that we may want to style multiple aspects of our pages—not just the navigation—

differently for each section of the web site, it’s a good idea to put an id attribute on the body

element, to specify the page or section of the site the user is currently viewing:

vertical.html (excerpt)

<body id="body_his">

  <ul id="nav">

    <li id="nav_hom">Home

    <li id="nav_map">Maps

    <li id="nav_jou">Journal

    <li id="nav_his">History

    <li id="nav_ref">References

    <li id="nav_con">Contact

 

</body>

Now we simply need to specify the id property on the body for each section; then we can

style the current navigational element:

vertical.css (excerpt)

#body_hom #nav_hom a,

    #body_map #nav_map a,#body_jou #nav_jou a,

    #body_his #nav_his a,#body_ref #nav_ref a,

    #body_con #nav_con a {

  background: #BEB06F;

  color: #1A1303;

  font-weight: bold;

}

Sure, the style sheet gains a few more lines, but these additions mean that the navigation

markup is always constant, and that can make life much easier for those maintaining the

site. For example, we can now use a single include for the navigation on every page—we

no longer have a need for multiple includes applied on a per-section basis, or for directly

coding the navigation into each page.

Another benefit of this method is that our You Are Here navigation styles are much more

specific than our normal hover-state styles. This means that the current navigation element

94	 The Art & Science of CSS 	 Navigation	 95

for the currently viewed page or section will not change to reflect the hover styles when the

user mouses over it, which makes it stand out even more.

Let’s see our final navigation style sheet:

vertical.css (excerpt)

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;

  width: 180px;

  float: left; /* Contain floated list items */

}

#nav li {

  margin: 0;

  padding: 0;

  float: left; /* This corrects the */

  width: 100%; /* IE whitespace bug */

}

#nav a {

  display: block; /* to increase clickable area as a’s

      default to inline */

  color: #FFF;

  text-decoration: none;

  padding: 0 15px;

  line-height: 2.5;

  border-bottom: 1px solid #FFF;

}

#nav #nav_con a {

  border: none;

}

#nav a:hover {

  background: #4F4532;

}

#body_hom #nav_hom a,

    #body_map #nav_map a,#body_jou #nav_jou a,

    #body_his #nav_his a,#body_ref #nav_ref a,

    #body_con #nav_con a {

  background: #BEB06F;

  color: #1A1303;

  font-weight: bold;

}

94	 The Art & Science of CSS 	 Navigation	 95

You should see something similar to Figure 4.5 when you view your work in a browser.

Figure 4.5: Combined style sheet and markup

Basic Horizontal Navigation
We’ve ensured that our vertical navigation is solid, working properly, and semantically

correct. We’re not out of the woods just yet, though. Our designer friend contacts us,

wringing his hands in dismay and frustration, just as we sit down for a well-earned drink.

Now it turns out that the client wants the navigation to display as a horizontal bar across

the top of the page. The designer gives us a new mockup for the navigation element, which

is pictured in Figure 4.6.

Figure 4.6: Mockup for horizontal navigation

Fortunately, there’s a strong similarity between the new navigation mockup and our

existing styled version. However, let’s note the clear differences in the new version:

	 It’s obviously much wider than the vertical navigation.

	 The text is centered in each list item, and the list item itself is not as wide as before.

	 Most obviously, the items are beside each other, not stacked on top of one another.

There’s not a great deal to be changed in our existing CSS:

	 We need to alter the width of the unordered list element to the new size; the list items

no longer need a width of 100% now that they’re beside one another.

	 The anchor element will incur the most changes. It no longer needs a block display

because the element will be floated.

	 Since we aren’t declaring any margins here, we don’t need to worry about the IE

double-margin bug.

	 As we’re centering the text, the left and right padding can be deleted, and the border will

move to the right, not the bottom.

Let’s see those changes in code:

96	 The Art & Science of CSS 	 Navigation	 97

horizontal.css (excerpt)

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;

  width: 767px;
  float: left; /* Contain floated list items */
}

#nav li {

  margin: 0;

  padding: 0;

  float: left;

}

#nav a {

  float: left;
  width: 127px;
  text-align: center;
  color: #FFF;

  text-decoration: none;

  line-height: 2.5;

  border-right: 1px solid #FFF;

}

Let’s take a look at the page in our various browsers to see how they render the new styles.

The displays are shown in Figure 4.7. Remember, our markup hasn’t changed at all, and

neither has much of our style sheet. The code above only replaces the specific styles that

were declared for our vertical navigation styles. The remainder of the styles are left intact.

Figure 4.7: Checking initial changes across Safari, Firefox, and Internet Explorer

Great! Our hover styles are still working properly, as is the You Are Here navigation. This

is a perfect example of the power of CSS: we make no changes to the markup, six changes

to the style sheet, and our navigation is completely altered! Let’s inspect the completed

style sheet for our horizontal navigation:

96	 The Art & Science of CSS 	 Navigation	 97

horizontal.css (excerpt)

html {

    font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

    font-size: 92%;

}

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;

  width: 767px;

  float: left; /* Contain floated list items */

}

#nav li {

  margin: 0;

  padding: 0;

  float: left;

}

#nav a {

  float: left;

  width: 127px;

  color: #FFF;

  text-decoration: none;

  line-height: 2.5;

  text-align: center;

  border-right: 1px solid #FFF;

}

#nav #nav_con a {

  border: none;

}

#nav a:hover {

  background: #4F4532;

}

#body_hom #nav_hom a, #body_map #nav_map a,

    #body_jou #nav_jou a,#body_his #nav_his a,

    #body_ref #nav_ref a,

    #body_con #nav_con a {

  background: #BEB06F;

  color: #1A1303;

  font-weight: bold;

}

The change from vertical to horizontal navigation has been a complete success—without

causing too much of a headache. It must be time to send our work off to the designer, and

relax with that drink!

98	 The Art & Science of CSS 	 Navigation	 99

Tabbed Navigation
No—sorry. If you thought we were finished, think again! Over the weekend, our client went

shopping online for DVDs at Amazon.com, and noticed those nice tabs that offer horizontal

navigation to x gazillion daily Amazon site visitors. He’s decided that if those tabs are good

enough for Amazon, they’ll be good enough for Cartography Corner, and he wants us to

redesign the navigation again. It seems an irksome chore for the moment, but remain calm:

in most circumstances, tabs are very simple to implement. Only under a few scenarios,

which we’ll discuss later on, do they present more of an issue. But let’s first take a look at

implementing tabs within our existing navigation.

Each list item in our menu is the same width, so turning our existing navigation items into

tabs is quite easy. We’ll just apply a single image to each of our tabs, and keep using the

same hover styles and current behavior—we don’t need any additional markup. As before,

we’ll start with our designer’s mockup, which looks like Figure 4.8.

Figure 4.8: Initial design for tabbed navigation

This looks very similar to the previous navigation design, except that the top corners of

each menu item are now rounded. As there’s no good way to round those corners using

CSS styles alone, we’ll have to rely on images to accomplish this effect. We note that there

are three distinct colors, so it makes sense that we’ll need three different tab images to

create our menu.

If we leave the tabs as separate images, however, the browser will not load the hover tab

graphic when the page is initially loaded in the user’s browser. As the user begins to hover

over the navigation, that image will be loaded in the background. The user will see a

darkened background color, but the image of the rounded corners will drop into place only

after the page has finished loading. This is definitely not the behavior we want to see!

Ideally, the browser would load all three tab states when the page loads, so as to avoid any

undesired display issues arising from the loading behavior. When I think about pre-loading

images, I immediately recall using JavaScript to load hidden image objects, like I used

to do back in 1999. These days, the power of CSS offers us a much cleaner, more elegant

solution.

Applying Tab Images
Instead of creating three separate images for the tab states, let’s try combining all three

states into a single image. That way, all three states will be loaded at the same time, and

98	 The Art & Science of CSS 	 Navigation	 99

we’ll simply select the state we need by moving the background-image around with the CSS

background-position property. As the width of the tab is defined for this menu, we’ll put the

three states side by side into a single image like the one shown in Figure 4.9.

Figure 4.9: Our normal, active, and hover tab states combined into one image

If we look at the styles we created for the previous horizontal menu, a width is specified for

each anchor, so each state of the tab image needs to be the same width. When the image

is placed in the background of the anchor, only that part of the image that fits within the

defined width and height of the element will be rendered—the rest will remain hidden.

Let’s use this fact to our advantage as we make a few modifications to our styles to add the

tab graphic. I’ve saved the image in a directory named images alongside the style sheet, and

named it tab.gif:

fixed-tabs.css (excerpt)

#nav a {

  float: left;

  width: 127px;

  color: #FFF;

  text-decoration: none"

  line-height: 2.5;

  text-align: center;

  border-right: 1px solid #FFF;

  background: url(images/tab.gif) no-repeat;
}

That’s it. One single line, and our image file turns our blocky horizontal menu items into

tabs, as shown in Figure 4.10.

Figure 4.10: Tab image applied to horizontal menu

But look at Figure 4.11—this is what happens when we mouse over the menu items!

Figure 4.11: Tabs disappearing on hover

Our tab image seems to have disappeared; our rounded corners have vanished, to be

replaced by our old sharp ones. This effect is the result of our declaring the background

property on our hover style, which sets the color correctly but overwrites the background-

image part of the background declaration. However, if we specify the background-color, the

background-image will inherit as it should. Here’s what that looks like:

100	 The Art & Science of CSS 	 Navigation	 101

fixed-tabs.css (excerpt)

#nav a:hover {

  background-color: #4F4532;

}

We also need to change the color of the tab image. To do so, we shift the background image

to the left in order to align our hover state image properly inside the element frame:

#nav a:hover {

  background-color: #4F4532;

  background-position: -127px 0;

}

This is where the background-position property comes into play—it’s illustrated in Figure

4.12. We need to shift the background image to the left by the exact width of the anchor

element—127px in our case.

Figure 4.12: Shifting the background image for hover, active, and normal states

NOTE  Background Positioning

When setting the background-position property,
the order of the two values is very important. The first
represents horizontal movement, the second defines
vertical movement. We can use positive or negative
values like 35px or -2em, or text descriptions like top,
bottom, left, or right.

If we test our code now, we’ll see that our hover state is working as it should. Figure 4.13

shows that we’re back on track.

Figure 4.13: Successful background-image shift

100	 The Art & Science of CSS 	 Navigation	 101

Activating the “You Are Here” State
Now all that’s left for us to do is to activate the You Are Here state on the navigation. We

take the same approach to this step as we did to our hover state, only this time we move

the background an additional 127px to the left:

fixed-tabs.css (excerpt)

#body_hom #nav_hom a,#body_map #nav_map a,#body_jou #nav_jou a,

    #body_his #nav_his a,#body_ref #nav_ref a,

    #body_con #nav_con a {

  background-color: #BEB06F;

  background-position: -254px 0;

  color: #1A1303;

  font-weight: bold;

}

Refreshing the browser should now show the completed navigation, as in Figure 4.14.

Figure 4.14: Completed tab navigation, showing hover state and “You Are Here” state

If we view our menu in all browsers, we’ll see that no further adjustments need to be made.

Let’s take a look at the final style sheet:

fixed-tabs.css

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#nav {

  margin: 0;

  padding: 0;

  background: #6F6146;

  list-style-type: none;

  width: 767px;

  float: left;

}

#nav li {

  margin: 0;

  padding: 0;

  float: left;

}

102	 The Art & Science of CSS 	 Navigation	 103

#nav a {

  float: left;

  width: 127px;

  color: #FFF;

  text-decoration: none;

  line-height: 2.5;

  text-align: center;

  border-right: 1px solid #FFF;

  background: url(images/tab.gif) no-repeat;

}

#nav #nav_con a {

  border: none;

}

#nav a:hover {

  background-color: #4F4532;

  background-position: -127px 0;

}

#body_hom #nav_hom a,#body_map #nav_map a,

    #body_jou #nav_jou a,#body_his #nav_his a,

    #body_ref #nav_ref a,#body_con #nav_con a {

  background-color: #BEB06F;

  background-position: -254px 0;

  color: #1A1303;

  font-weight: bold;

}

NOTE  Keeping your Styles Simple

While not navigation-specific, it’s often very helpful to remember that when it comes to markup and styles, it’s
the simple, standard solutions that yield the best and most consistent results. If, in trying to get a feature to
work, you keep adding markup and styles, and trying all sorts of weird hacks and advanced CSS methods, you’re
probably best starting over from scratch. There’s nothing like clearing the canvas to highlight the most obvious
solutions.

Variable-width Tabs
Now, this menu is all well and good, but it does require the anchors to be all the same

width.

But what if you want them to be sized relative to the text they contain? Well, that situation

presents a few other issues, not least of them being that it puts us in a position of having to

choose between implementing a design behavior and using minimal markup.

Let’s explore these variable-width tabs. We’ll start with the markup we developed in the

previous section but, in order to use it, we’ll have to take advantage of the styling hooks

102	 The Art & Science of CSS 	 Navigation	 103

offered by the list items themselves. So far, we’ve simply pushed the styling hooks out of

the way, but now we’ll have to incorporate them as a fully fledged part of our menu.

The basic concept here is to put the background-color and border properties on the list item,

and apply one corner of the tab as a background-image on one side. The contained anchor

will have a transparent background except for the other corner image on the opposite side.

We’ll float the list item and the anchor to make them both shrink their width values to suit

the size of the contained text.

Applying Tab Images
Let’s start by creating our images, which can be conceptualized as being something like

those shown in Figure 4.15. They only need to be as large as the whitespace created by the

corner of the tab. We’ll need one for each corner, and, for now, we’ll only concentrate on

the default state of the navigation items. It’s important to note that the white corners of the

tabs should be completely opaque, so as to cover up the background color of the list items.

Transparency is not needed for this effect, and in reality, it just won’t work with the way

we’re styling the menu.

Figure 4.15: The corner pieces of our variable-width tabs

Let’s start work on the markup. I’ll start with a clean style sheet for ease of explanation:

variable-tabs.css (excerpt)

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#nav {

  margin: 0;

  padding: 0;

  list-style-type: none;

  float: left;

}

104	 The Art & Science of CSS 	 Navigation	 105

#nav li {

  margin: 0;

  padding: 0;

  float: left;

  margin: 0 1px 0 0;

  display: inline;

  background: #6F6146 url(images/tab_left.gif) no-repeat;

}

#nav a {

  float: left;

  padding: 0 15px;

  color: #FFF;

  text-decoration: none;

  line-height: 2.5;

  background: url(images/tab_right.gif) no-repeat top right;

}

NOTE  Default Background Positioning

You may notice that in the #nav li style, I don’t specify any position on the background property, while on
the #nav a, I specify a position of top right. This approach is used simply because when no background-
position is specified, the property defaults to the top left, or 0 0.

The html and body declarations are, once again, simply used to define a font and font-size

for our example. In a real-world project, these values should match your design’s font

specifications. If you look at the #nav properties, you’ll notice that we no longer have a

width defined. This omission is completely optional, although if your navigation needs to

fit into a specific width, I would recommend declaring that value here, just to be sure. Also,

if you plan to have the background on the #nav element stretch past the list items (assuming

they don’t take up the entire width of the background), you’ll have to define a width here.

Other than that, the simple declarations in the code above float the element, strip any

margins and padding, and remove the list styles.

For the menu items, we strip margins and padding and float each li. Floating the elements

causes them to scale horizontally to their contained content, which is the aim of our

variable-width tab. A margin of 1px is applied to the right of the list item to visually

separate the tabs from each other. This margin can be increased or removed to meet your

design specifications. If the margin is anything other than zero, the display property needs

to be set to inline to correct the IE double-margin bug.� Lastly, we apply the default

background-color, and cover up the top-left corner with our tab_left.gif image.

�	 http://www.positioniseverything.net/explorer/doubled-margin.html

104	 The Art & Science of CSS 	 Navigation	 105

We float our anchor element inside the list item. This step automatically turns the link

into an inline-block, so the declaring of properties like padding and background will work

as expected, and it will shrink horizontally to fit the text inside the element.� The left and

right padding of 15px can be modified to your design needs, along with the color, text-

decoration, and line-height properties. Finally, we cover up the top right of the tab with

our top_right.gif image to complete the tab effect. Let’s see what we have so far—take a look

at Figure 4.16.

Figure 4.16: A first look at our variable-width tabs

Applying Hover Styles
Now we can apply our hover styles. In the previous examples, we changed the whole tab

color on hover. But in this example, the background-color isn’t on the anchor element, it’s

on the parent list item. Until Internet Explorer 6 is fully replaced by IE 7, this presents

a major issue in that we can’t access the hover pseudo-class on anything but the anchor

element. IE 7 will support the hover pseudo-class on any element, but IE 6 and earlier do

not. Consequently, we can’t change any of the list item’s properties by hovering over it in IE

6. Also, because we’re using a background on the list item behind the anchor, we can’t put a

background color on the anchor itself, as it will cover up the list item’s background image.

As I mentioned before, this method may require you to choose between using the styling

hooks in a complex design, and your desire for simplified markup. If we really need to

change the whole tab color using this method and have it work in IE 6, then we need to

place inside each anchor an additional element that wraps around the contained text;

usually this element is something like a span:

<li id="nav_hom">Home

While this is possible, it adds non-semantic markup to the page, and requires the list item

styles to be applied to the anchor and span instead of the list item itself. Let’s consider

changing our design requirements so that on hover, we simply change the navigation item’s

text color. Let’s try this—you can see the results in Figure 4.17:

variable-tabs.css (excerpt)

#nav a:hover {

  color: #F90;

}

�	 http://www.w3.org/TR/CSS21/visuren.html#display-prop

106	 The Art & Science of CSS 	 Navigation	 107

Figure 4.17: Changing the text color only for the hover state

Adding the “You Are Here” State
After checking with our designer, we decide that changing the menu item’s text color is

an acceptable way to indicate a link in our navigation, and we can move on to create the

You Are Here states. We’re using the list item to indicate which menu item is currently

being used, so it’s no problem to create an additional set of tab images for the You Are Here

state, and simply activate those as we have the previous You Are Here styles. These current

state tab images will be identical to the default state, except for their colors, as Figure 4.18

shows:

variable-tabs.css (excerpt)

#body_hom #nav_hom,#body_map #nav_map,#body_jou #nav_jou,

    #body_his #nav_his,#body_ref #nav_ref,#body_con #nav_con {

  background: #BEB06F url(images/tab_left_active.gif) no-repeat;

}

#body_hom #nav_hom a,#body_map #nav_map a,

    #body_jou #nav_jou a,#body_his #nav_his a,

    #body_ref #nav_ref a,#body_con #nav_con a {

  background: url(images/tab_right_active.gif) no-repeat top right;

  color: #1A1303;

}

Figure 4.18: Variable-width tabs showing You Are Here state

Now the tabs will adjust to the size of the text they contain; we’ve also activated acceptable

hover and You Are Here states. Let’s see all the styles together:

variable-tabs.css

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}#nav {

  margin: 0;

  padding: 0;

  list-style-type: none;

  float: left;

}

106	 The Art & Science of CSS 	 Navigation	 107

#nav li {

  margin: 0;

  padding: 0;

  float: left;

  margin: 0 1px 0 0;

  display: inline;

  background: #6F6146 url(images/tab_left.gif) no-repeat;

}

#nav a {

  float: left;

  padding: 0 15px;

  color: #FFF;

  text-decoration: none;

  line-height: 2.5;

  background: url(images/tab_right.gif) no-repeat top right;

}

#nav a:hover {

  color: #F90;

}

#body_hom #nav_hom,#body_map #nav_map,#body_jou #nav_jou,

    #body_his #nav_his,#body_ref #nav_ref,#body_con #nav_con {

  background: #BEB06F url(images/tab_left_active.gif) no-repeat;

}

#body_hom #nav_hom a,#body_map #nav_map a,#body_jou #nav_jou a,

    #body_his #nav_his a,#body_ref #nav_ref a,

    #body_con #nav_con a {

  background: url(images/tab_right_active.gif) no-repeat

      top right;

  color: #1A1303;

}

This method of styling tabs works very well for menus that don’t make heavy use of

graphical textures or backgrounds.

Next, we’ll explore an approach to styling a very graphic-intense navigation system.�

�	 An alternate method for menus that make heavy use of backgrounds is presented by Doug Bowman of
StopDesign in his article “Sliding Doors of CSS,” October 20, 2003, http://www.alistapart.com/articles/
slidingdoors/.

108	 The Art & Science of CSS 	 Navigation	 109

Advanced Horizontal Navigation
After our diversion into tabbed navigation, we return to our project only to find that our

client’s thrown us another curve ball. He’s had a perfunctory look at all our hard work,

and, instead of showering us with the praise we deserve, he’s issued yet another request to

change things. Here’s his feedback:

The navigation looks too plain. We have to use the company font—no

substitutions. And there needs to be some sort of graphical background.

And drop shadows. Every good web site uses drop shadows.

A few hours later, after the designer has managed to overcome his pique with plenty

of chamomile tea and breathing exercises, he presents us with a mockup for the new

navigation.

Figure 4.19: New navigation design, using company font and drop shadows

This design has some definite issues that present several challenges:

	 As the designer has chosen a font that we can’t expect the majority of users to have

in their browsers, and included a drop shadow, we’ll have to use image replacement

techniques instead of live text.

	 The list items are no longer all the same width.

	 The hover and You Are Here states have specific background-colors and images.

We’ll use the navigation matrix technique to deal with the challenges posed by image

replacement and multiple states—a method originally posted at Superfluous Banter.� The

navigation matrix uses a single image and a combination of styles to turn an unordered list

into an image-replaced menu. This technique works by shifting the single image around

the various list items using the background-position property. This ensures that the exact

part of the image that represents the item and its state will be displayed.

An added benefit of using a single image in the navigation is that it provides immediate

response on hover; there’s no delay for the user while their browser loads the hover state

images.

Creating Navigation Matrix
Let’s start by creating the image that will form the basis of our matrix. The graphic

provided by the designer is 767px wide, and 30px tall. In order to create our image, we

�	 http://superfluousbanter.org/archives/2004/05/navigation-matrix/

108	 The Art & Science of CSS 	 Navigation	 109

need each item to be rendered separately in each state: normal, hover, and You Are Here.

The width of our main image will stay at 767px, but to accommodate all three states, we’ll

triple the height to 90px and include each state in the graphic. The finished product will

look like Figure 4.20.

Figure 4.20: Our matrix image

We’ll save it as menu.jpg, in a folder named images, in the same parent folder as our style sheet.

Our using this image replacement ensures that the menu is a fixed width—it won’t

resize to fit any changes in the length of the list item text, so we’ll always know the exact

dimensions of the navigation as a whole, as well as those of each list item. For this reason,

absolutely positioning the list items will serve us well. As support for absolute positioning

is very well established in modern browsers, absolute positioning will allow easy control

of the positioning of the tabs without problems of browser incompatibility. The positioning

of the list items doesn’t have to be done absolutely, but it does represent the easiest

positioning method for the purposes of this demonstration.

Applying Some Styles
Let’s style the unordered list element as we did in the vertical navigation:

advanced-tabs.css (excerpt)

#nav {

  width: 767px;

  height: 30px;

  position: relative;

  background: url(images/menu.jpg);

  margin: 0;

  padding: 0;

}

The unordered list is positioned relatively so that we have a base with which to position

the anchors. We give the list a background of the menu item to help eliminate an issue

that sometimes arises with Internet Explorer. Occasionally, when a user mouses over a

menu item, IE will briefly drop the background-image while repositioning it. With no image

behind the menu item, some IE users would see a flash of white (or whatever background

was behind the unordered list) when hovering over the menu. By specifying background-

image on the unordered list, we ensure that even if IE does drop the image for a split

110	 The Art & Science of CSS 	 Navigation	 111

second on positioning, the graphic duplicated on the menu behind will show through, thus

eliminating the flash.

We’ll need to use a small amount of arithmetic when styling the anchor elements, in order

to accurately position them and their backgrounds. The exact position of each anchor

needs to be calculated so we know where to place it within the unordered list, and how to

reposition the background-image into its correct location, as illustrated in Figure 4.21.

Figure 4.21: Working out background-position for different states

Let’s take full advantage of the individual list item id attribute in order to style and position

each list item’s anchor element. First, we’ll style the list items to make sure they stay inside

the unordered list. Next, we’ll generically style the anchor elements with every style that

will be shared across them. Finally, we’ll specify the unique styles for each element:

advanced-tabs.css (excerpt)

#nav li {

  float: left;

}

#nav li a {

  position: absolute;

  top: 0;

  margin: 0;

  padding: 0;

  display: block;

  height: 30px;

  background: url(images/menu.jpg) no-repeat;

  text-indent: -9999px;

  overflow: hidden;

  font-size: 1%;

}

li#nav_hom a {

  left: 0;

  width: 112px;

  background-position: 0 0;

}

li#nav_map a {

  left: 112px;

  width: 109px;

  background-position: -112px 0;

}

110	 The Art & Science of CSS 	 Navigation	 111

li#nav_jou a {

  left: 221px;

  width: 129px;

  background-position: -221px 0;

}

li#nav_his a {

  left: 350px;

  width: 131px;

  background-position: -350px 0;

}

li#nav_ref a {

  left: 481px;

  width: 153px;

  background-position: -481px 0;

}

li#nav_con a {

  left: 634px;

  width: 133px;

  background-position: -634px 0;

}

Clearly, we’ve set each anchor with a specific width, a height of 30px, and positioned it

to its exact location using the left property. As all the menu anchor elements share the

same background-image—menu.jpg—we need to move the background-image back to the left to

display the image in the correct position. It makes sense that we move the background-image

the same distance to the left as we moved the anchor to the right.

In a browser (or Figure 4.22), it’s evident that the navigation works in the default state, and

that all the anchors are in their correct locations and have the proper background-position.

Figure 4.22: First look at our new navigation

Activating the Hover States
Now to activate the hover states! You can see from the You Are Here styles that we’re moving

the background image to the left, but are leaving it positioned at the top of its parent list item.

To activate the hovers, all we need to do is move the background-image up by the exact

height of the menu; in this case, 30px:

advanced-tabs.css (excerpt)

li#nav_hom a:hover {

  background-position: 0 -30px;

}

112	 The Art & Science of CSS 	 Navigation	 113

li#nav_map a:hover {

  background-position: -112px -30px;

}

li#nav_jou a:hover {

  background-position: -221px -30px;

}

li#nav_his a:hover {

  background-position: -350px -30px;

}

li#nav_ref a:hover {

  background-position: -481px -30px;

}

li#nav_con a:hover {

  background-position: -634px -30px;

}

With these styles in place, we can test the page in the browser to ensure that the hover

states are activated. Our display looks good in Figure 4.23.

Figure 4.23: Navigation matrix with hover styles

Lastly, we activate the You Are Here state on the navigation items. We manage this by again

utilizing the id attribute on the body element, and associating it with a specific list item id.

We’ll shift the background-image up just as we did with the hover states, except that this

time we’ll move it up another 30px, for a total of 60px:

advanced-tabs.css (excerpt)

#body_hom li#nav_hom a {

  background-position: 0 -60px;

}

#body_map li#nav_map a {

  background-position: -112px -60px;

}

#body_jou li#nav_jou a {

  background-position: -221px -60px;

}

#body_his li#nav_his a {

  background-position: -350px -60px;

}

#body_ref li#nav_ref a {

  background-position: -481px -60px;

}

#body_con li#nav_con a {

  background-position: -634px -60px;

}

112	 The Art & Science of CSS 	 Navigation	 113

Reload the page in the browser, and you’ll see that the added styles correctly activate the

You Are Here state. Figure 4.24 shows how the navigation displays in all the browsers

we’re using.

Figure 4.24: Testing the final menu for cross-browser compatibility

As you can see, this method produces exactly the same look across all browsers. From

a design standpoint, using images to create the entire navigation allows us to most

closely recreate the designer’s mockup. We only use established CSS methods, so we

don’t encounter many browser quirks. We do sacrifice some aspects of the navigation’s

usability, such as the ability to resize text; also, the styles rely on images, so if the

images are disabled in a user’s browser, the user will be confronted with nothing but a

blank white strip where the navigation elements should be. As always, make sure these

limitations are acceptable for your specific project before committing to this style of

navigation.

Let’s put all these styles together to see what our completed navigation style sheet looks

like:

advanced-tabs.css

#nav {

  width: 767px;

  height: 30px;

  position: relative;

  background: url(images/menu.jpg);

  margin: 0;

  padding: 0;

}

#nav li {

  float: left;

}

114	 The Art & Science of CSS 	 Navigation	 115

#nav li a {

  position: absolute;

  top: 0;

  margin: 0;

  padding: 0;

  display: block;

  height: 30px;

  background: url(images/menu.jpg) no-repeat;

  text-indent: -9999px;

  overflow: hidden;

  font-size: 1%;

}

li#nav_hom a {

  left: 0;

  width: 112px;

  background-position: 0 0;

}

li#nav_map a {

  left: 112px;

  width: 109px;

  background-position: -112px 0;

}

li#nav_jou a {

  left: 221px;

  width: 129px;

  background-position: -221px 0;

}

li#nav_his a {

  left: 350px;

  width: 131px;

  background-position: -350px 0;

}

li#nav_ref a {

  left: 481px;

  width: 153px;

  background-position: -481px 0;

}

li#nav_con a {

  left: 634px;

  width: 133px;

  background-position: -634px 0;

}

li#nav_hom a:hover {

  background-position: 0 -30px;

}

li#nav_map a:hover {

  background-position: -112px -30px;

}

114	 The Art & Science of CSS 	 Navigation	 115

li#nav_jou a:hover {

  background-position: -221px -30px;

}

li#nav_his a:hover {

  background-position: -350px -30px;

}

li#nav_ref a:hover {

  background-position: -481px -30px;

}

li#nav_con a:hover {

  background-position: -634px -30px;

}

#body_hom li#nav_hom a {

  background-position: 0 -60px;

}

#body_map li#nav_map a {

  background-position: -112px -60px;

}

#body_jou li#nav_jou a {

  background-position: -221px -60px;

}

#body_his li#nav_his a {

  background-position: -350px -60px;

}

#body_ref li#nav_ref a {

  background-position: -481px -60px;

}

#body_con li#nav_con a {

  background-position: -634px -60px;

}

WARNING  Finalize, then Stylize

If you decide to use a navigation matrix, be very sure that the design and copy for your navigation is
complete before you dive into the CSS. The navigation matrix method is very powerful, and relatively simple
to implement, but it’s a real pain to edit. You basically have to undertake the whole journey again each time
there’s a change—even if it’s only a 1px shift of an anchor—so finalize that design before you begin to apply the
styles.

The client takes one look at our navigation efforts, and a huge grin spreads across his face.

Finally, he’s happy. It’s taken a long time and a lot of changes to please this fussy client,

but we’ve successfully delivered the navigation menu he’s always wanted. All’s well that

ends well!

116	 The Art & Science of CSS

Summary
Navigation is key to the success of a web site, and integral to both its identity and usability.

As you can see from the examples we’ve covered in this chapter, it’s not difficult to achieve

a great-looking navigation menu with CSS, which also gives us plenty of freedom in terms

of how we style navigation elements.

In this chapter, we’ve worked together to create the navigation for a simulated project, from

establishing the basic markup, to creating advanced vertical and horizontal navigation

menus, as well as tabbed and variable-width navigation systems. We’ve encountered some

problems, but resolved them with our careful application of styling. Of course, we’ve only

touched on the most useful few of many possible courses of action in this chapter, and all

of these exercises can be built upon to create new and different navigation menus.

Remember: the raison d’être of navigation is to help users find whatever they’re looking

for quickly and efficiently. Above all, navigation must be obvious and simple. Creativity

and usability must work together to create a functional balance between freedom and

consistency. Styling the elements is just one step in the process—but I hope it’s now an

easier one!

116	 The Art & Science of CSS

Forms. Is there any other word that strikes as much fear into

the hearts of grown web designers?

I think that the reputation of forms as an untamable, ugly

necessity has arisen for two reasons:

	 Form elements are derived from native operating system

widgets, which makes them particularly difficult to style.

	 Forms are often critical to the function of a web

site—they’re most often employed as search boxes,

inquiry forms, or shopping cart checkouts—and need to

function as smoothly as possible in order to meet user

expectations.

However, it’s still possible to incorporate both these points

into designing a form tailored to the style of the rest of

your site. This chapter will explore the ways in which you

can design a great-looking form, and provide you with the

necessary code, which we’ll work work through together.

5 Forms

118	 The Art & Science of CSS 	 Forms	 119

Accessible Form Markup
Before we can begin to look at form layout, we need to craft some really solid markup that

will provide us with a framework to which we can add some style.

Forms represent the one area of your web site where you absolutely must commit time

and energy to ensure user accessibility. Even though forms represent some of the most

complex interactions that can occur on a web page, in many cases these interactions are

only represented visually—via the proximity of a form element to its label, or grouping by

borders and background colors. Users of assistive technology such as screen readers may

not be able to see these visual clues, so it’s vital that you support these users by ensuring

accessibility. The key concept behind providing an accessible form is to have descriptive

labeling of all its sections and input elements.

In particular, this means the proper usage of two elements: label and legend.

There’s also an improperly held belief that the only way you can guarantee that a form

displays properly is by using tables. All of the code reproduced here for forms is standards-

based, semantic markup, so you’ve got no excuse for relying on tables now!

Labeling Form Elements
No matter how you style a form element and its label, it generally conforms to a certain

pattern:

	 the form element itself

	 a text label for the element

	 a connection between the element and its textual description

This connection is made either through visual alignment, visual grouping, or some other

visual indicator. In Figure 5.1, you can see that the form on the left makes a connection

between the field element and its label purely through alignment, whereas the form on the

right indicates a more explicit connection via the use of color.

Figure 5.1: Visual connections in forms

When accommodating users of assistive technology in the creation of your forms, there’s

one main question to consider. How can a user who’s unable to see a web page create the

connection between a form element and its text label, without the visual cues of proximity

or grouping?

118	 The Art & Science of CSS 	 Forms	 119

The answer is the label element. label is a special element applied to a form element to

allow its textual description to be semantically linked to the element itself, so any assistive

technology such as a screenreader can read out that text when it encounters its partner

form element.

In order to use a label, wrap the textual description in a pair of <label> tags, then add a for

attribute to the label. The value of the for attribute should be the id of the form element

with which you want to create a connection:

<label for="firstName">First name</label>

<input id="firstName" name="firstName" type="text" />

Now, when a screenreader encounters the firstName field, it’ll also read out the text “First

name” to the user, so he or she will know what to type into that field. The label doesn’t

have to be near the form element and neither of them have to be in any particular order—

as long as the label’s for attribute contains a valid reference, the relationship will be

understood. However, having the label right before the form element in the source order

generally makes the most semantic sense.

A label should be applied to any form element that doesn’t automatically include

descriptive text, such as:

	 checkboxes

	 radio buttons

	 textareas

	 text fields

	 select boxes

Submit buttons and submit images don’t require label elements, because their descriptions

are contained, respectively, in their value and alt attributes.

Of course, you can easily style the text inside the label using CSS, so you can format the

label text in your forms in the same way as if you were using a span, p, or div, but using a

label has the benefit of being much more accessible than any of those elements.

Grouping Related Elements
legend goes hand in hand with fieldset. In fact, the only element of which a legend can be a

child is a fieldset. A fieldset groups a series of related form elements. For instance, “street

address,” “suburb,” “state,” and “zip code” could all be grouped under “postal address.”

You could create a fieldset that groups all of those elements, and give it an appropriate

legend to describe that group:

120	 The Art & Science of CSS 	 Forms	 121

<form action="example.php">

  <fieldset>

    <legend>Postal Address</legend>

    <label for="street">Street address</label>

    <input id="street" name="street" type="text" />

    <label for=" suburb">Suburb</label>

    <input id="suburb" name="suburb" type="text" />

    <label for="state">State</label>

    <input id="state" name="state" type="text" />

    <label for="postcode">Postcode</label>

    <input id="postcode" name="postcode" type="text" />

  </fieldset>

</form>

Now that legend is associated with all those form elements inside the fieldset, when a

person using a screenreader focuses on one of the form elements, the screenreader will also

read out the legend text: “Postal Address; Suburb.”

The benefit of the screenreader specifying both legend and fieldset becomes apparent when

you have two groups of elements that are very similar, except for their group type:

<form action="example.php">

  <fieldset>

    <legend>Postal Address</legend>

    <label for="street">Street address</label>

    <input id="street" name="street" type="text" />

    <label for=" suburb">Suburb</label>

    <input id="suburb" name="suburb" type="text" />

    <label for="state">State</label>

    <input id="state" name="state" type="text" />

    <label for="postcode">Postcode</label>

    <input id="postcode" name="postcode" type="text" />

  </fieldset>

  <fieldset>

    <legend>Delivery Address</legend>

    <label for="deliveryStreet">Street address</label>

    <input id="deliveryStreet" name="deliveryStreet"

      type="text" />

    <label for="deliverySuburb">Suburb</label>

    <input id="deliverySuburb" name="deliverySuburb"

      type="text" />

    <label for="deliveryState">State</label>

    <input id="deliveryState" name="deliveryState"

      type="text" />

    <label for="deliveryPostcode">Postcode</label>

    <input id="deliveryPostcode" name="deliveryPostcode"

      type="text" />

  </fieldset>

</form>

120	 The Art & Science of CSS 	 Forms	 121

As Figure 5.2 shows, with the fieldset’s legend elements in place it’s quite easy to

determine visually which fields fall under which group, even on an unstyled form.

Figure 5.2: Unstyled form using fieldset and legend elements for grouping

But, you ask, couldn’t the same visual effect be achieved using h1 elements instead of

legend elements?

Yes. However, the point of using legend is that without proper semantic grouping and

labeling, a screenreader user would become confused as to why he or she was required

to enter “Address 1” twice. With the legend included, the user will know that the second

“Address 1” actually belongs to another group—the group for the delivery address.

So, by combining label and legend, we give visually impaired users the ability to navigate and

fill in our forms much more easily. By using this combination as the basic structure for your

forms, you’ll ensure that not only will they look fantastic, but they’ll be accessible as well!

Form Layout
There are several different ways in which you can lay out a form. The method you choose

depends upon how long the form is, its purpose, how often it will be used by each person

who has to fill it out, and, of course, the general aesthetics of the web page.

It’s generally considered most efficient to have one form element per line, with the lines

stacked sequentially one on top of the other, as most Western-language web pages are

designed to scroll vertically rather than horizontally. This allows users to follow the path

to completion easily and focus their attention on entering one piece of data at a time.

For each form element in a left-to-right reading system, it’s logical to position the

corresponding label in one of three ways:

	 directly above the form element

	 in a separate left column, left-aligned

	 in a separate left column, right-aligned

Each of these approaches has its own advantages and its own look, so consider these

options when you’re deciding how to lay out a form for a particular page.

122	 The Art & Science of CSS 	 Forms	 123

Labels that are positioned directly above a form element have been shown to be processed

most quickly by users. The compact grouping between label and element reduces eye

movement by allowing the user to observe both simultaneously.� However, this type of

positioning is rather utilitarian, and isn’t the most aesthetically pleasing layout. It also

has the disadvantage of occupying the most vertical space of the three layouts, which will

make a long form even longer. Generally, top-positioned labels work well for short forms

that are familiar to the user, such as the comment form in Figure 5.3.

Figure 5.3: Labels positioned above form elements�

Labels that are positioned in a column to the left of the elements look much more

organized and neat, but the way in which the text in those labels is aligned also affects the

usability of the form.

Right-aligning the text creates a much stronger grouping between the label and the element.

However, the ragged left edge of the labels can make the form look messy and reduces

the ability of users to scan the labels by themselves.� In a left-aligned column, the labels

instantly become easier to scan, but their grouping with the associated form elements

becomes weaker. Users have to spend a little more time correlating the labels with their

elements, resulting in slower form completion. An example of left-aligned labels can be

seen in Figure 5.4.

�	 http://www.uxmatters.com/MT/archives/000107.php
�	 http://dressfordialogue.com/thoughts/chris-cornell/
�	 http://www.lukew.com/resources/articles/web_forms.html

122	 The Art & Science of CSS 	 Forms	 123

Figure 5.4: Labels positioned in a column and aligned left�

The right-aligned column layout shown in Figure 5.5 allows for quicker association

between label and element, so again it’s more appropriate for forms that will be visited

repeatedly by the user. Both layouts have the advantage of occupying a minimal amount of

vertical space.

Figure 5.5: Labels positioned in a column and aligned right�

�	 http://www.themaninblue.com/contact/
�	 https://www.linkedin.com/register/

124	 The Art & Science of CSS 	 Forms	 125

Using the CSS
To create each of these different types of form layouts, we’ll use identical markup, but with

different CSS rules.

In our example, the HTML looks like this:

<form action="example.php">

  <fieldset>

    <legend>Contact Details</legend>

   

     

        <label for="name">Name:</label>

        <input id="name" name="name" class="text" type="text" />

     

     

        <label for="email">Email address:</label>

        <input id="email" name="email" class="text" type="text" />

     

     

        <label for="phone">Telephone:</label>

        <input id="phone" name="phone" class="text" type="text" />

     

   

  </fieldset>

  <fieldset>

    <legend>Delivery Address</legend>

   

     

        <label for="address1">Address 1:</label>

        <input id="address1" name="address1" class="text"

            type="text" />

     

     

        <label for="address2">Address 2:</label>

        <input id="address2" name="address2" class="text"

            type="text" />

     

     

        <label for="suburb">Suburb/Town:</label>

        <input id="suburb" name="suburb" class="text"

            type="text" />

     

     

        <label for="postcode">Postcode:</label>

        <input id="postcode" name="postcode"

            class="text textSmall" type="text" />

     

124	 The Art & Science of CSS 	 Forms	 125

     

        <label for="country">Country:</label>

        <input id="country" name="country" class="text"

            type="text" />

     

   

  </fieldset>

  <fieldset class="submit">

    <input class="submit" type="submit"

        value="Begin download" />

  </fieldset>

</form>

This HTML uses exactly the same fieldset-legend-label structure that we saw earlier in this

chapter. However, you should see one glaring addition: inside the fieldset elements is an

ordered list whose list items wrap around each of the form element/label pairs that we’re using.

The reason for this addition? We need some extra markup in order to allow for all of the

styling that we’ll do to our forms in this chapter. There are just not enough styling hooks

in the standard fieldset-label structure to allow us to provide robust borders, background

colors, and column alignment.

There are a number of superfluous elements that we could add to the form that would grant

us the extra styling hooks. We could move the form elements inside their label elements and

wrap the label text in a span, or wrap a div around each form element/label pair. However,

none of those choices would really contribute anything to the markup other than its presence.

The beauty of using an ordered list is that it adds an extra level of semantics to the

structure of the form, and also makes the form display quite well in the absence of styles

(say, on legacy browsers such as Netscape 4, or even simple mobile devices).

With no CSS applied and without the ordered lists, the rendered markup would appear as

in Figure 5.6.

Figure 5.6: Unstyled form without any superfluous markup

126	 The Art & Science of CSS 	 Forms	 127

Figure 5.7 shows how the unstyled form looks when we include the ordered lists.

Figure 5.7: Unstyled form that includes an ordered list inside each fieldset

I’m sure you’ll agree that the version of the form that includes ordered lists is much easier

to follow, and hence fill out.

NOTE  Using Lists in Forms

If you’re vehemently opposed to the inclusion of an ordered list inside your form markup, you can easily
substitute it for some other wrapper element; all you need is one extra container around each form element/
label pair in order to style your forms any way you want.

Two other HTML oddities that you might have picked up on:

	 Each form input has a class that replicates its type attribute, for example class=”text”

type=”text”. If you need to style a form element, this is a handy way of accessing

it, given that Internet Explorer 6 and earlier don't support CSS attribute selectors

(although Internet Explorer 7 does, so you mightn’t need to include these extra classes

in the near future).

	 The form submit button is contained inside its own fieldset with class=”submit.” You’ll

frequently have multiple actions at the end of a form, such as “submit” and “cancel.”

In such instances, it’s quite handy to be able to group these actions, and a fieldset does

this perfectly. If any styles are applied to normal fieldset elements, you’ll most often

want to have a different style for the fieldset surrounding these actions, so the class is

necessary to distinguish our actions fieldset. The fieldset and the input inside it both

have the same class name because the term “submit” makes sense for both of them, but

it’s easy to distinguish them in the CSS by preceding the class selector with an element

selector, as we’ll see below.

126	 The Art & Science of CSS 	 Forms	 127

Applying General Form Styling
There are a number of styles which we’ll apply to our forms, irrespective of which layout

we choose. These styles revolve mainly around the inclusion of whitespace to help

separate form elements and fieldset elements:

fieldset {

  margin: 1.5em 0 0 0;

  padding: 0;

}

legend {

  margin-left: 1em;

  color: #000000;

  font-weight: bold;

}

fieldset ol {

  padding: 1em 1em 0 1em;

  list-style: none;

}

fieldset li {

  padding-bottom: 1em;

}

fieldset.submit {

  border-style: none;

}

The margin on the fieldset helps to separate each fieldset group from the others. All internal

padding is removed from the fieldset now, because later on it’ll cause problems when we

begin floating elements and giving them a width. Since padding isn’t included in the width,

it can break the dimensions of your form if you have a width of 100% and some padding.

Removing padding also helps to sort out inconsistencies between browsers as to the default

internal spacing on the fieldset.

To help define a visual hierarchy that clearly shows each label inside the fieldset grouped

under the legend, we give our legend elements a font-weight of bold. We also have to

replace the spacing that was removed from the padding on the fieldset, so we give the

legend a margin-left of 1em.

In order to turn off the natural numbering that would appear for the ordered list, we set

list-style to none on the ol, and thus remove any of the bullet formatting that normally

exists in such a list. Then, to recreate the internal spacing which we removed from the

fieldset, we give the ordered list some padding. No padding is put on the bottom of the list,

because this will be taken up by the padding of the last list item.

To separate each form element/label pair from each other pair, we give the containing list

item a padding-bottom of 1em.

128	 The Art & Science of CSS 	 Forms	 129

Finally, to remove the appearance of the submit button as a form element group, we need

to take the borders off its surrounding fieldset. This step is achieved by targeting it using

the fieldset.submit selector and setting the border-style to none.

After applying all of this markup and adding some general page layout styles, we end up

with Figure 5.8—a form that’s beginning to take shape, but is still a bit messy.

Figure 5.8: Form with general styling applied, but no layout styles

Now we can go ahead and add in some layout styles!

Using Top-positioned Text Labels
Positioning labels at the top of their form elements is probably the easiest layout to

achieve, as we only need to tell the label to take up the entire width of its parent element.

As our form elements/labels are inside ordered list items (which are block elements), each

pair will naturally fall onto a new line, as you can see from Figure 5.9. All we have to do is

get the form elements and labels onto different lines.

This exercise is easily completed by turning the label elements into block elements, so that

they’ll occupy an entire line:

label {

  display: block;

}

It’s a simple change, but one which makes the form much neater, as shown in Figure 5.9.

128	 The Art & Science of CSS 	 Forms	 129

Figure 5.9: Example form with text labels positioned at the top of each form element

Left-aligning Text Labels
When we create a column of text labels to the left of the form elements, we’ll have to do a

little bit more work than just to position them at the top. Once we begin floating elements,

all hell breaks loose!

In order to position the labels next to the form elements, we float the label elements to the

left and give them an explicit width:

label {

  float: left;

  width: 10em;

  margin-right: 1em;

}

We also apply a little bit of margin-right to each label, so that the text of the label can

never push right up next to the form element. We must define an explicit width on the

floated element so that all the form elements will line up in a neat vertical column. The

exact width we apply will depend upon the length of the form labels. If possible, the

longest form label should be accommodated without wrapping, but there shouldn’t be

such a large gap that the smallest label looks like it’s unconnected to its form element. In

130	 The Art & Science of CSS 	 Forms	 131

the latter scenario, it is okay to have a label width that is smaller than the longest label,

because the text will wrap naturally anyway, as you can see in Figure 5.10.

Figure 5.10: Text in floated label wraps automatically

Once we float the label, however, we run into a problem with its containing list item—the

list item will not expand to match the height of the floated element. This problem is highly

visible in Figure 5.11, where we’ve applied a background-color to the list item.

Figure 5.11: li containing floated label does not expand to match label height

One markup-free solution to ensuring a parent contains any of its floated children is to also

float the parent, so that’s what we’ll do:

left-aligned-labels.css (excerpt)

fieldset li {

  float: left;
  clear: left;
  width: 100%;
  padding-bottom: 1em;

}

If the list item is floated, it’ll contain all of its floated children, but its width must then be

set to 100%, because floated elements try to contract to the smallest width possible. Setting

the width of the list item to 100% means that it’ll still behave as if it were an unfloated block

element. We also throw a clear :left property declaration in there to make sure that we

won’t find any unwanted floating of list items around form elements. clear: left means

that the list item will always appear beneath any prior left-floated elements instead of

beside them.

However, once we float the list item, we find the same unwanted behavior on the fieldset—

it won’t expand to encompass the floated list items. So, we have to float the fieldset. This is

130	 The Art & Science of CSS 	 Forms	 131

the main reason that we removed the padding from fieldset earlier—when we set its width to

100%, any padding will throw out our dimensions:

left-aligned-labels.css (excerpt)

fieldset {

  float: left;
  clear: left;
  width: 100%;
  margin: 0 0 1.5em 0;

  padding: 0;

}

Where will this float madness end? Remain calm. It ends right here, with the submit

fieldset. Since it’s the last fieldset in the form, and because it doesn’t need as much special

CSS styling as the other fieldsets, we can turn off that floating behavior for good:

left-aligned-labels.css (excerpt)

fieldset.submit {

  float: none;
  width: auto;
  border: 0 none #FFF;

  padding-left: 12em;
}

By turning off floating and setting the width back to auto, the final submit fieldset becomes

a normal block element that clears all the other floats. This means the form will grow to

encompass all the fieldset elements, and we’re back in the normal flow of the document.

None of the elements in the submit fieldset are floated, but we want the button to line up

with all of the other form elements. To achieve this outcome, we apply padding to the actual

fieldset itself, and this action pushes the submit button across to line up with all the text

fields. It’s best to have the button line up with the form elements, because it forms a direct

linear path that the user’s eye can follow when he or she is completing the form.

After all that floating, we now have Figure 5.12—a form with a column for the form labels

and a column for the form elements.

132	 The Art & Science of CSS 	 Forms	 133

Figure 5.12: Example form with label elements organized in left-aligned column

Right-aligning Text Labels
With all that difficult floating safely out of the way, aligning the input labels to the right is a

breeze; simply set the text alignment on the label elements to achieve a form that looks like

Figure 5.13:

right-aligned-labels.css (excerpt)

label {

  float: left;

  width: 10em;

  margin-right: 1em;

  text-align: right;
}

Figure 5.13: Example form with label elements organized in right-aligned column

132	 The Art & Science of CSS 	 Forms	 133

And we’re done! Now you can take your pick of whichever form layout best fits your pages,

all by changing a little CSS!

Applying fieldset and legend Styles
It’s actually fairly rare to see a fieldset displayed in the default browser style. For some

reason people just don’t like the look of them, and I must admit those borders and legend

elements don’t fit into a lot of page designs. legend elements are one of the trickiest HTML

elements to style, but you can use a number of tricks to tame them, and there are some

great ways to differentiate fieldset elements using CSS.

Providing a background color for your fieldset elements helps to differentiate form content

from normal content and focuses the user’s attention on the form fields themselves.

However, it’s not as simple as just specifying a background-color.

Resolving Internet Explorer's Legends Issues
In a totally unexpected turn of events (yeah, right!) Internet Explorer handles legends

differently from other browsers. From experimentation, it seems that Internet Explorer

treats legend elements as if they’re inside the fieldset, while other browsers treat them

as if they’re outside the fieldset. I’m not saying that any browser’s wrong, but we have to

circumvent these differences somehow, and creating a separate IE style sheet seems to be

the best solution.

If you put a background-color on a fieldset with a legend, as in Figure 5.14, you can see the

problem all too clearly.

Figure 5.14: Browser rendering of fieldset elements with background color

The fieldset on the left shows how most browsers render a legend and fieldset with a

background color. The fieldset on the right shows how Internet Explorer renders it—the

background-color of the fieldset appears to extend beyond its border, stretching to fit the

height of the legend.

The way to avoid this problem is to accomodate Internet Explorer browsers with a separate

style sheet that uses conditional comments:

134	 The Art & Science of CSS 	 Forms	 135

<!--[if lte IE 7]>

  <style type="text/css" media="all">

    @import “css/fieldset-styling-ie.css";

  </style>

<![endif]-->

This statement includes a style sheet for Internet Explorer 7 and earlier, as these are the

versions that currently display this deviant behavior. Any other browsers will ignore it. We

could use a style sheet that applies to any version of Internet Explorer—including those

released in the future—but the legend display difference may be corrected by then, so it’s

safest just to apply it to the versions we know for the present.

Inside that style sheet we use relative positioning on the legend to move it up to align with

the top of the fieldset:

legend {

  position: relative;

  left: -7px;

  top: -0.75em;

}

fieldset ol {

  padding-top: 0.25em;

}

In this case, the value we’ve given the legend’s top—0.75em—just happens to be the right

value to get the legend to align with the fieldset. It may vary depending on other styles we

might apply to the legend (such as margin and padding). This is quite a robust solution—

we’ve used relative units, so if users change the text size in their browsers, the position of

the legend will shift accordingly and still line up.

In addition to moving the top of the legend, we move it 7px to the left by applying a left

value of -7px. This step counters an Internet Explorer quirk—IE always shifts legends to the

right by 7px (regardless of text size), so we need to negate that shift to get the legend and

the label elements lining up neatly.

Because we’re moving the legend up relatively, it will create more space below the legend.

To counteract this space, we reduce the padding at the top of the ordered list by an

equivalent amount, changing it from the original value of 1em to 0.25em.

The last Internet Explorer fix is to relatively position the fieldset itself:

fieldset {

  position: relative;

}

134	 The Art & Science of CSS 	 Forms	 135

Without this rule, Internet Explorer produces some weird visual effects around the legend.

How weird? You can see exactly how weird in Figure 5.15.

Figure 5.15: Visual aberrations in Internet Explorer

We really need to avoid the IE aberrations we’ve seen, but we’re almost there—now we’ll

just set the position of the fieldset to relative to restore everything to normal.

Styling Legends and Fieldsets
In all browsers, legends will have some padding by default. The amount of padding varies

between browsers, so to have the legend lining up nicely with our labels we’ll eliminate

the padding in our main style sheet:

fieldset-background-color.css (excerpt)

legend {

  margin-left: 1em;

  padding: 0;
  color: #000;

  font-weight: bold;

}

The default border for fieldset elements is normally an inset border—which doesn’t match

some sites—so here we’re going to make it a flat, 1px border. In addition, we’ll add in a

background color that will make the fieldset elements stand out from the normal page

background, marking them as special areas:

fieldset-background-color.css (excerpt)

fieldset {

  float: left;

  clear: both;

  width: 100%;

  margin: 0 0 1.5em 0;

  padding: 0;

  border: 1px solid #BFBAB0;
  background-color: #F2EFE9;
}

Generally speaking, we don’t want any borders or background color behind the submit

fieldset, so it’s quite easy to turn those off:

136	 The Art & Science of CSS 	 Forms	 137

fieldset-background-color.css (excerpt)

fieldset.submit {

  float: none;

  width: auto;

  border-style: none;
  padding-left: 12em;

  background-color: transparent;
}

Now we’ve got fieldset elements with a background color and a legend that lines up neatly

with all the other form elements, as in Figure 5.16.

Figure 5.16: fieldset elements with background-color set and adjustments made to legend

The cut-off of color behind the legend can sometimes look a bit abrupt, as you can see in

the magnified view of the legend shown in Figure 5.17.

Figure 5.17: Magnification of legend—cut-off of background color is apparent

This cut-off will become more pronounced if we use a fieldset background color that has

more contrast with the normal page background color. If you want to counteract this effect,

it’s possible to put a gradient background image into the fieldset that smoothly changes the

color from the page background color (white) to your chosen fieldset background color:

136	 The Art & Science of CSS 	 Forms	 137

fieldset-background-image.css (excerpt)

fieldset {

  float: left;

  clear: both;

  width: 100%;

  margin: 0 0 1.5em 0;

  padding: 0;

  border: 1px solid #BFBAB0;

  background-color: #F2EFE9;

  background-image: url(images/fieldset_gradient.jpg);
  background-repeat: repeat-x;
}

That background-image rule will also be applied to our submit fieldset, so to keep a clean,

transparent background, we’ll also have to cancel the background-image on the submit fieldset:

fieldset-background-image.css (excerpt)

fieldset.submit {

  float: none;

  width: auto;

  border-style: none;

  padding-left: 12em;

  background-color: transparent;

  background-image: none;
}

See Figure 5.18—the form looks a lot smoother, no?

Figure 5.18: fieldset elements with background color and gradient images applied

138	 The Art & Science of CSS 	 Forms	 139

Changing the Default Fieldset Layout
Although fieldset and legend elements are the most accessible means of marking up form

groups, in the past a lot of people haven’t used them because they don’t like the default

styling that browsers impose on these elements—the border around the fieldset, the legend

intersecting the edge of the box. But it is possible to change this default layout and make

your forms a little less boxy.

Our first step is to push the fieldset elements together, eliminating the whitespace between

them. To do this, we could make the margin on the bottom of the fieldset elements zero, but

that actually ends up looking like Figure 5.19.

Figure 5.19: legend adding extra height so fieldset elements cannot touch

The legend at the top of the fieldset elements prevents the two fieldset elements from

joining.To circumvent this problem we can use some negative margin on the bottom of each

fieldset. This will “pull” up the lower fieldset so that it overlaps the upper fieldset, making

it look like they’re touching.

To prevent the bottom fieldset from overlapping any form elements, we should also add a

bit of padding to the bottom of the fieldset elements so that they’ve got some space to move

into:

fieldset {

  float: left;

  clear: both;

  width: 100%;

  margin: 0 0 -1em 0;
  padding: 0 0 1em 0;
  border: 1px solid #BFBAB0;

  background-color: #F2EFE9;

}

Moving the fieldsets up by 1em is enough to cover the gap between them, and the bottom-

padding of 1em counteracts the movement, making sure no form elements disappear beneath

fieldset elements.

A couple of visual tweaks are necessary when removing the whitespace. Without contact

138	 The Art & Science of CSS 	 Forms	 139

between the fieldset background color and the normal page background color, we no longer

need the gradient background image, so this has been left out.

The border-style has also been changed—we’re removing all borders, then replacing only

the top border:

fieldset {

  float: left;

  clear: both;

  width: 100%;

  margin: 0 0 -1em 0;

  padding: 0 0 1em 0;

  border-style: none;
  border-top: 1px solid #BFBAB0;
  background-color: #F2EFE9;

}

With all the fieldset elements being joined together, the extra borders on the left and right

make the form look cluttered. With just a top border, we’ve created a much cleaner look, as

shown in Figure 5.20.

Figure 5.20: Joined fieldset elements

The other side effect of joining the fieldset elements together is that the legend now looks

out of place, balancing in between either fieldset. The way to solve this problem is to bring

the legend fully within the boundaries of its fieldset.

140	 The Art & Science of CSS 	 Forms	 141

Instinctively, you might use relative or absolute positioning on the legend to move it down

into the fieldset. However, Firefox resists any attempt to reposition the legend—it just

doesn’t move.

Unfortunately, the only way around this issue is to add a tiny bit more markup to our form.

By inserting a superfluous span into each of our legend elements, Firefox allows us to style

this and move the text down into the fieldset:

fieldset-alternating.html (excerpt)

<legend>

  Contact Details

</legend>

That span can be positioned absolutely and moved down into the fieldset using margin-top.

While we’re at it, let’s also increase the font-size of the legend text, to give it a bit more

prominence:

fieldset-alternating.css (excerpt)

legend span {

  position: absolute;

  margin-top: 0.5em;

  font-size: 135%;

}

There’s actually an esoteric bug in some point releases of Firefox (Firefox 1.5.0.6 on

Windows XP, but not OSX, from what I’ve seen) that makes the absolutely positioned

span elements behave as if they were all positioned at the top of the form element. Giving

the legend elements a position of relative doesn’t seem to affect the span elements, so we

actually need to relatively position each of the fieldset elements and give the span elements

some explicit coordinates to sidestep this bug:

fieldset-alternating.css (excerpt)

fieldset {

  position: relative;
  float: left;

  clear: both;

  width: 100%;

  margin: 0 0 -1em 0;

  padding: 0 0 1em 0;

  border-style: none;
  border-top: 1px solid #BFBAB0;
  background-color: #F2EFE9;

}

140	 The Art & Science of CSS 	 Forms	 141

legend span {

  position: absolute;

  left: 0.74em;
  top: 0;
  margin-top: 0.5em;

  font-size: 135%;

}

The 0.74em value of left actually matches the 1em padding we gave to the ordered list, due

to the fact that the span has a larger font-size.

Because we’re now specifying a left ordinate for the span, we also have to take the margin-

left off its parent legend, so that we don’t get a doubling of the spacing. Simply omit the

margin rule that we used previously:

fieldset-alternating.css (excerpt)

legend {

  padding: 0;

  color: #545351;

  font-weight: bold;

}

That bug’s now squashed!

As we’re moving the legend down into the fieldset, we need to make sure that the legend

won’t overlap any of the form elements, so let’s add a bit more padding to the top of our

ordered list:

fieldset-alternating.css (excerpt)

fieldset ol {

  padding: 3.5em 1em 0 1em;
  list-style: none;

}

Don’t forget to change the matching value inside our Internet Explorer-only style sheet:

fieldset-alternating-ie.css (excerpt)

legend span {

  margin-top: 1.25em;

}

fieldset ol {

  padding-top: 3.25em;

}

142	 The Art & Science of CSS 	 Forms	 143

Internet Explorer has slightly different spacing on the legend element’s span, so let’s tweak

the margin-top value for that as well.

After all these changes, there’s one fieldset that looks a little out-of-place: the submit fieldset.

Because the submit fieldset doesn’t have a legend, the submit button will be moved up too

high, so we need to push it down a bit. This is done most easily by adding some padding to

the top of this fieldset only. Also, because the submit fieldset will overlap the fieldset above

it, we need to provide a solid background-color for the submit fieldset, otherwise the previous

fieldset’s background-color will shrow through. This means changing the background-color

value from transparent to whatever your normal page background-color is:

fieldset-alternating.css (excerpt)

fieldset.submit {

  float: none;

  width: auto;

  padding-top: 1.5em;
  padding-left: 12em;

  background-color: #FFFFFF;
}

Previously, we also removed

borders from the submit fieldset,

but for this adjoining layout

we need the submit fieldset

to retain the top border that’s

applied to all fieldset elements.

We’ll just let that rule cascade

into the submit fieldset without

interference.

Once we’ve implemented all

those changes, the layout of

the form is complete. The form

appears as shown in Figure

5.21, but it requires some slight

aesthetic tweaks.

Because we’ve pushed all the

fieldset elements together, they

tend to run into one another

visually. Better distinction can be
Figure 5.21: All fieldset elements joined and legend elements moved inside boxes

142	 The Art & Science of CSS 	 Forms	 143

created between each fieldset by subtle alternation of the background-color elements in odd

and even fieldset elements. The only cross-browser method for achieving this is to add in a

new class for every second fieldset. This allows us to use a CSS selector to give those

fieldset elements a different background-color. I normally use a class of alt, but you can

use whatever you think is logical:

<fieldset>

…

</fieldset>

<fieldset class="alt">

…

</fieldset>

<fieldset>

…

</fieldset>

<fieldset class="alt">

…

</fieldset>

…

Then all you have to do is think of a different background-color:

fieldset-alternating.css (excerpt)

fieldset.alt {

  background-color: #E6E3DD;

}

And our final form with

alternating fieldset elements

looks like Figure 5.22!

Grouping Radio Buttons
and Checkboxes
There are two types of form

elements that are likely to be part

of their own subgroup. These are

checkboxes and radio buttons,

both of which can be used to

offer users multiple choices when

responding to a given question on

a form.

Figure 5.22: Alternating-color fieldset elements

144	 The Art & Science of CSS 	 Forms	 145

The way in which these form elements are laid out is slightly different to text fields, select

boxes or textareas. As they are part of their own subgroup, they should be included in a

nested fieldset inside the main fieldset. Using our background-image form as a starting point,

we can add some grouped elements inside the fieldset:

element-subgroups.html (excerpt)

<fieldset>

  <legend>Contact Details</legend>

 

   

      <fieldset>

        <legend>Occupation:</legend>

       

         

            <input id="occupation1" name="occupation1"

                class="checkbox" type="checkbox" value="1" />

            <label for="occupation1">Doctor</label>

         

         

            <input id="occupation2" name="occupation2"

                class="checkbox" type="checkbox" value="1" />

            <label for="occupation2">Lawyer</label>

         

         

            <input id="occupation3" name="occupation3"element

                class="checkbox" type="checkbox" value="1" />

            <label for="occupation3">Teacher</label>

         

         

            <input id="occupation4" name="occupation4"

                class="checkbox" type="checkbox" value="1" />

            <label for="occupation4">Web designer</label>

         

       

      </fieldset>

   

 

</fieldset>

The label for the subgroup actually becomes the legend for the nested fieldset, then each of

the checkboxes or radio buttons inside the fieldset receives its own label. The ordered list

structure that was put in place at the top level is replicated on this sub-level as well, more

for consistency than necessity although it can be very handy if you want to style some of

the sub-items.

The nested elements will inherit the styles that we put in place for top-level items, so we’ll

have to set some rules specifically for nested elements before they’ll display correctly:

144	 The Art & Science of CSS 	 Forms	 145

element-subgroups.css (excerpt)

fieldset fieldset {

  margin-bottom: -2.5em;

  border-style: none;

  background-color: transparent;

  background-image: none;

}

fieldset fieldset legend {

  margin-left: 0;

  font-weight: normal;

}

fieldset fieldset ol {

  position: relative;

  top: -1.5em;

  margin: 0 0 0 11em;

  padding: 0;

}

fieldset fieldset label {

  float: none;

  width: auto;

  margin-right: auto;

}

Firstly, all the decoration on the nested fieldset is removed: background-color, background-

image, and border properties. Instead, it’s given a negative margin-bottom for the purposes of

some trickery we’ll see in a moment.

We want to make the legend look exactly like a normal label, so we remove the left margin

and also take off its bold font-weight. It’s important to be careful with the length of text

inside the legend, as most browsers won’t wrap the text in a legend. As a result, any width

you’ve set for the legend/text will be ignored, as the text will just continue on in one line,

possibly running over the rest of the form. We can overcome this limitation by exercising

a maximum character width for the legend text and sizing the form columns in em units, so

that with text-resizing the layout will scale accordingly.

NOTE  Limitations of legend

Along with the inability of legend elements to wrap text, they are also resistant to width settings and text
alignment. This use of legend elements for grouping within fieldset elements is only possible for left-aligned
label elements, not right-aligned label elements.

We use the ordered list to position the nested form elements and label elements. Its left

margin pushes the entire container away from the left edge, equivalent to the amount

of margin given to form elements at the top level. Then, to bring the top of the form

146	 The Art & Science of CSS 	 Forms	 147

elements in line with the top of their respective legend, we need to position the ordered

list relatively and move it up by -1.5em. This will leave a large space at the bottom of the

list (where the list would have been if it wasn’t moved relatively), and this is where the

fieldset’s negative margin comes into play. The negative margin pulls up the content after

the fieldset by the same amount we moved the ordered list, making it look like there is no

empty gap. The padding that’s put on ordered lists at the top level isn’t needed here, so we

just set this property to 0.

The last thing we need to do is to revert our label elements to their native state. This means

we stop them from floating and set their width to auto. Because they’re inline elements,

they’ll now sit nicely next to the actual form elements—checkboxes or radio buttons.

There’s an additional change to make to the Internet Explorer-specific style sheet: to turn

off the negative relative position on nested legends. We don’t have to deal with background

colors on the nested fieldset elements, so the negative relative position isn’t needed here:

element-subgroups-ie.css (excerpt)

fieldset fieldset legend {

  top: 0;

}

Once those new styles have been created, we end up with the form that appears in Figure

5.23—a nested fieldset that lines up perfectly with all the other form elements and gives

the user a nice straightforward choice of options.

Figure 5.23: Nested subgroups of checkboxes and radio buttons

146	 The Art & Science of CSS 	 Forms	 147

Required Fields and Error Messages
There are often little extra bits of information that you want to convey on a form, and they

should be equally as accessible as the text label elements for the form element. In fact, to

ensure that they’re accessible, they should be included in the label itself. There are two

types that we’ll look at here: required fields and error messages.

Indicating Required Fields
The easiest and most accessible way of indicating the required fields on a form is to write

“required” after the form label. This addition is not only read out by screenreaders, but it

also means that an extra symbol key doesn’t need to be provided for visual users, as is the

case should you choose to mark required fields with an asterisk or other symbol.

To emphasize the importance of the information, we can add the text “required” inside an

em element, which also gives us a stylable element to differentiate the “required” text from

the label text:

required-fields.html (excerpt)

<label for="name">

  Name: required

</label>

To give the em its own little place on the form, we can set it to display: block, and change

the appearance of the text:

required-fields.css (excerpt)

label em {

  display: block;

  color: #060;

  font-size: 85%;

  font-style: normal;

  text-transform: uppercase;

}

Our “required” markers now look like this:

Figure 5.24: Form fields marked with textual “required” markers

148	 The Art & Science of CSS 	 Forms	 149

However, the asterisk, or star, has now become a common tool for marking required fields,

possibly due to its brevity. But it doesn’t have much meaning outside the visual context—

most screenreaders will read an asterisk character as “star.” So you end up with a label

being “Email address star”—a little confusing for the user.

For accessibility purposes, instead of including an actual asterisk character next to the form

label, it’s actually better to include an inline image of the asterisk, with alt text saying

“required.” This means that screenreader users will hear the word “required” instead of

just “star,” which is a lot more helpful. If you are using an image, you should include a key

at the top of the form to let visual users know exactly what it means.

We still want to emphasize the fact that the label is required, so we just replace the text

“required” inside the em element with the image of an asterisk:

required-fields-star1.html (excerpt)

<label for="name">

  Name: <img src="images/required_star.gif"

    alt="required" />

</label>

This replacement doesn’t actually need any styling; we can leave the em as an inline

element and the asterisk will appear directly next to the form label:

Figure 5.25: Inline asterisk marking required fields

Or, we can use some CSS to position the image absolutely and have it more closely

associated with the form element itself:

required-fields-star2.css (excerpt)

label {

  position: relative;
  float: left;

  width: 10em;

  margin-right: 1em;

}

148	 The Art & Science of CSS 	 Forms	 149

label em {
  position: absolute;
  left: 10em;
  top: 0;
}

When positioning the em absolutely, it’s important to position its parent (the label)

relatively, so that when we specify some coordinates for the em, they will be relative to the

label’s top-left corner. The star image should be positioned in the gap between the label

and the form element (created by the label’s right margin), so the value for the em’s left will

depend upon what we’ve set there. Setting the top value for the em is just a precaution in

case the image has wrapped onto a new line.

By taking this course of action, we’ll end up with a much more orderly series of “required”

markers, as shown in Figure 5.26.

Figure 5.26: Required fields marked with absolutely positioned image of a star, aligned against form elements

Handling Error Messages
Error messages are handled in almost the same way as required markers. In order to be read

out as a screenreader user places focus on the appropriate form element, they should form

part of the label:

error-fields1.html (excerpt)

<label for="name">

  Email: This must be a valid email address

</label>

The semantic strong element is used to enclose the error message, distinguishing it from a

required marker and giving it a stronger emphasis.

The styling is almost the same as it was for the textual “required” marker, except you might

want to change the color. A good strong red is suitably alarming:

150	 The Art & Science of CSS 	 Forms	 151

error-fields1.css (excerpt)

label strong {

  display: block;

  color: #C00;

  font-size: 85%;

  font-weight: normal;

  text-transform: uppercase;

}

This styling produces a layout such as that shown in Figure 5.27.

Figure 5.27: Error messages included as part of label element, displayed underneath the label text

An alternative placement of the error message does exist, but it depends upon a couple of

prerequisites. The error message can be placed to the right of the form element as long as:

	 The maximum width of any of the form elements is known.

	 The error message is unlikely to wrap.

This placement involves the error message being positioned absolutely, so we must

know in advance how far to move the error. Absolute elements are outside the flow of the

document, so the other content will not adjust to accommodate the error message if it

starts wrapping. If the design can be reconciled with these two problems, then the CSS for

the job is:

error-fields2.css (excerpt)

label {

  position: relative;
  float: left;

  width: 10em;

  margin-right: 1em;

}

150	 The Art & Science of CSS 	 Forms	 151

label strong {
  position: absolute;
  left: 27em;
  top: 0.2em;
  width: 19em;
  color: #C00;
  font-size: 85%;
  font-weight: normal;
  text-transform: uppercase;
}

Again, because the strong element is being positioned absolutely, its parent label must be

positioned relatively to allow us to move the error message relative to the label itself.

The width of the error message is dictated by the space following the form element. The

left is calculated by adding together the width of the form element, plus the width of the

label, plus any extra space we need in order to align the error message properly.

Figure 5.28 shows how it ends up when viewed in the browser.

Figure 5.28: Error messages as part of the label element, displayed using absolute positioning

NOTE  Inaccessible Error Text Solutions

It is possible to position the error text to the right of the text fields by changing the source order of the HTML.
But this either:

	 places the error text outside the label
	� involves nesting the form element inside the label and placing the error text after the form element

Both of these solutions are inaccessible because screenreaders will most likely fail to read out the error message
when the form element is focused.

In conjunction with right-positioning the error messages, we can also include error icons,

to further highlight the problem areas on the form. The error icon is included in the HTML

with an appropriate alt attribute:

152	 The Art & Science of CSS 	 Forms	 153

error-fields3.html (excerpt)

<fieldset>

  <legend>Contact Details</legend>

 

   

      <label for="name">

        Email: <img src="images/error_cross.gif"

            alt="Error" /> This must be a valid email address

           

      </label>

      <input id="name" name="name" class="text" type="text" />

   

We can now move it to the left of the form elements using absolute positioning. Because its

parent (the strong element) is already absolutely positioned, any movement we make will

be relative to that parent, so, effectively, we have to move it in a negative direction in order

to shift it back over to the left:

error-fields3.css (excerpt)

label strong img {

  position: absolute;

  left: -16em;

}

This adjustment equates to the width of the form element, plus a little bit extra for spacing,

so we’ll get a nicely positioned icon, such as you can see in Figure 5.29.

Figure 5.29: Error messages displaying to right of form elements, in combination with error icon on left

Summary
Now that you’ve finished this chapter, you have no excuse for producing inaccessible

forms that use tables for positioning!

We’ve worked through the correct and effective labeling, grouping, layout, and styling

of form elements, anticipating and solving potential problems of compatibility and

152	 The Art & Science of CSS 	 Forms	 153

accessibility along the way. With the code provided here you’ve got quite a few different

options for how you want your forms laid out, but there’s still more you can do by

combining and experimenting with different styles, form elements and layouts.

If there’s an underlying message of this chapter, it’s just to keep in mind that no matter

what you do, your forms have to be usable and accessible above everything else. Forms, at

the end of the day, are really all about your users being able to provide information and tell

you what they want as easily as possible.

	 Rounded Corners	 155

Ever since Tim Berners-Lee prototyped HTML elements as

rectangular boxes of content back in 1992, designers have

been trying to elude those corners. Boxes with rounded

corners are a commonly used design element—one that

should be easily achieved in HTML with the help of CSS.

This is most noticeably true with the CSS 3 background

properties, which grant us the ability to apply multiple

backgrounds to a single element. It’s this capability that

permits us to create the effect of rounded corners on an

element.

However, as of this writing, Safari (more specifically, the

Webkit rendering engine) is the only mainstream browser to

support these advanced properties. To add to this misfortune,

given the extent to which today’s browsers support CSS 2.1,

I’m not counting on seeing the practical benefits of CSS 3

available for quite some time.

6 Rounded Corners

	 Rounded Corners	 155

That means that we designers must work with what we have. Given the right scenario,

adding rounded corners can be a very straightforward process—one that’s really all about

flexibility. There’s one general rule, though: the more flexible the rounded box, the more

complicated the markup and CSS. In order to avoid trouble, the careful designer must ask a

number of pertinent questions when tackling each step of the process:

	 Determine the required amount of flexibility.

	 Does the box need to stretch vertically? Horizontally? Do I have complete control over

the markup? Is the markup going to change?

	 Evaluate the markup.

	 Do I have all the hooks I need? Can I use existing elements? Can I add elements to

provide some semantic value?

	 Create the images.

	 Do I need all four corners separately? Can I combine images to reduce the need for

additional elements?

	 Apply the styles.

	 Do all my background components line up? Is my padding getting in the way? Does my

CSS allow for varying content?

In this chapter, we’ll learn to round the corners of both a definition list and a div

containing a headline and paragraph. Then, we’ll put what we’ve learned into practice to

create a web site layout that offers varying levels of flexibility.

Flexibility
We live in the brave new world of The People’s Internet—a place where wild assumptions

such as “one-size-fits-all” text sizes have been thrown by the wayside, just like that tight

denim jacket that seemed cool in the ’80s. Whether our data is user-generated or stored in

a content management system that anyone can use, we can never be certain of the sizing

requirements for content containers. Thus, flexibility is an essential requirement for any

element of your site that will hold content.

Flexibility can be achieved by allowing such elements to resize automatically to fit the

content they hold. This resizing may be in the form of horizontal flexibility (the width of

the container changes), vertical flexibility (the height alters), or a combination of both.

6 Rounded Corners

156	 The Art & Science of CSS 	 Rounded Corners	 157

Vertical Flexibility
Rounded corners can be accomplished most easily if we only use vertical flexibility,

applying a fixed width to the container we want to style. The rounded box will extend

to fit the content, regardless of whether it’s the volume of content or the text size that

necessitates the container’s increase in height. When the width of our item is set in stone,

we can use one image for the top two corners, and one for the bottom two, attaching each

image to a single element—these requirements are depicted in Figure 6.1.

Figure 6.1: Requirements of adding rounded corners to a container with vertical flexibility

Let’s begin by rounding the corners of a definition list that contains one title and one

definition:

roundabout-feature.html (excerpt)

<dl id="feature">

  <dt>Roundabout</dt>

  <dd>A roundabout or rotary is a type of road junction (or

      traffic calming device) at which traffic streams around

      a central island, after first yielding (giving way) to

      the circulating traffic.</dd>

</dl>

NOTE  Semantic Identification

It would be easy to label this element as “rounded” or “roundbox,” but this would detract from the semantic
nature of our markup. “Rounded” describes presentation, and has no business being in our markup. “Feature”
is a much more semantic identification for this element, even though it may seem less descriptive at first glance.

For this first example, let’s style our definition list to look like the mockup shown in

Figure 6.2.

156	 The Art & Science of CSS 	 Rounded Corners	 157

Figure 6.2: Intended design for our fixed-width example

We’ve set a width of 220px on our definition list. The height property is left undefined

so that it defaults to auto, and can adjust to the content as required. The strategy for any

rounded-corner box is to put a background on the entire box, then cover up the corners with

opaque images, which creates the rounded look. From a style sheet and layout perspective,

our full-color background needs to be on the lowest “layer,” or the block-level element that

contains the rest of our markup. In our example, this is the dl element. Let’s see it in CSS:

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#feature {

  background: #96BF55;

  width: 220px;

}

We’ve added html and body definitions to style fonts, and we’ve removed all default

margins and padding from every element by using the universal selector *.� As we want

our definition term, and definition description, to take up the full width of the dl, we

needn’t assign them a width, as block-level elements will expand to the full width of their

containing elements. Figure 6.3 shows what our feature looks like right now.

Figure 6.3: Our feature box so far

Before we can put the images in place to cover up the corners of this box, we need to create

�	 http://leftjustified.net/journal/2004/10/19/global-ws-reset/

158	 The Art & Science of CSS 	 Rounded Corners	 159

them. The width of the box doesn’t change, so we only need two images—one to cover the

top two corners, and one to cover the bottom two. These images should look like those in

Figure 6.4, and be the exact width of our element.

Figure 6.4: The two background images we’ll need

It’s important to note that the white parts in the corners of the image are not transparent.

They’ll need to be colored to match the background behind your rounded box. We’ll save

these images in a folder called images, which will reside in the same directory as our style

sheet, and name the files top.gif and bottom.gif.

To achieve the display shown in Figure 6.5, we need to attach these images as backgrounds

to our block-level elements. As background images are placed on top of background

colors in CSS, we can put one of these images on the dl element where we assigned our

background-color. We can place the other image on the dt like so:

#feature {

  background: #96BF55 url(images/bottom.gif) no-repeat bottom left;
  width: 220px;

}

#feature dt {

  background: url(images/top.gif) no-repeat;
  margin: 0;

}

Figure 6.5: Rounded corners completed

Our corners are in place! The background-position on the dt didn’t need to be specified,

because we want its background image placed at the top left of the element, which is the

default position assumed by the background style. The only thing left to do is style our content:

#feature {

  background: #96BF55 url(images/bottom.gif) no-repeat bottom

      left;

  width: 220px;

  padding: 0 0 20px;
}

158	 The Art & Science of CSS 	 Rounded Corners	 159

#feature dt {

  background: url(images/top.gif) no-repeat;

  padding: 20px 20px 0;
  font-size:170%;
  color:#FFF;
  line-height:1;
  margin:0;

}

#feature dd {

  padding: 10px 20px 0;
  color:#1B220F;
  line-height:1.3;

  margin:0;

}

NOTE  Unitless Line Height

If you’re following our progress closely, you may have noticed that if you try to validate this CSS (at the time of
writing), the W3C validator says you can’t use unitless integers for line-height values, as we do in #feature
dt. As it turns out, the validator is wrong in this case. If you really need to make your CSS validate with the
W3C validator, feel free to use line-height: 1.0 instead—in the validator’s infinite wisdom, it mistakes a
decimal place for a unit and lets our line-height rule slip through.2

Here, we’re adding some padding to each element, increasing the font-size of the header,

setting the color, and modifying line-height properties. Let’s see our changes in a browser,

or even in Figure 6.6.�

Figure 6.6: The final result

Also, let’s see the final version of our style sheet:

roundabout-feature.html

* {

  margin: 0;

  padding: 0;

}

�	 Check out http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights/ for more on this topic.

160	 The Art & Science of CSS 	 Rounded Corners	 161

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#feature {

  background: #96BF55 url(images/bottom.gif) no-repeat bottom left;

  width: 220px;

  padding: 0 0 20px;

}

#feature dt {

  background: url(images/top.gif) no-repeat;

  padding: 20px 20px 0;

  font-size: 170%;

  color: #FFF;

  line-height: 1;

  margin: 0;

}

#feature dd {

  padding: 10px 20px 0;

  color: #1B220F;

  line-height: 1.3;

  margin: 0;

}

Great! So we’ve successfully rounded the corners on our definition list. But what if you don’t

have a definition list? Perhaps you have a div, with a headline and paragraph, like this:

sushi-feature.html (excerpt)

<div id="feature">

  <h3>Serving Sushi</h3>

  <p>More traditionally, sushi is served on minimalist

      Japanese-style, geometric, wood or lacquer plates which

      are mono- or duo-tone in color, in keeping with the

      aesthetic qualities of this cuisine. Many small sushi

      restaurants actually use no plates — the sushi is eaten

      directly off of the wooden counter, usually with one’s

      hands, despite the historical tradition of eating nigiri

      with chopsticks.</p>

</div>

You’ll see a distinct similarity between the layout of these elements and those in the

previous example: there’s a containing block-level element (div vs dl), an element that

contains the headline (h3 vs dt), and an element that holds our content (p vs dd).

This similarity means that there are literally only two things we have to change in our CSS

file in order to make our previous styles work with the new markup. As we referred to the

160	 The Art & Science of CSS 	 Rounded Corners	 161

dl by its id, not its element name, we don’t even have to make a change to account for this

switch. All we need to do is replace the specific references to the dd and dt elements with

references to p and h3, respectively. Our style sheet should now look like this:

sushi-feature.html

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

}

#feature {

  background: #96BF55 url(images/bottom.gif) no-repeat bottom

      left;

  width: 220px;

  padding: 0 0 20px;

}

#feature h3 {
  background: url(images/top.gif) no-repeat;

  padding: 20px 20px 0;

  font-size: 170%;

  color: #FFF;

  line-height: 1;

  margin: 0;

}

#feature p {
  padding: 10px 20px 0;

  color: #1B220F;

  line-height: 1.3;

  margin: 0;

}

Checking in a browser, which shows us the display in Figure 6.7, we

see that our new markup and modified styles work perfectly.

As you can see, the concepts behind the rounded corners style are very

portable, and, given the right markup conditions, can be applied very

easily.

Thinking Forward
You may have noticed this already, but the styles we created in this

example already support the inclusion of multiple paragraphs under Figure 6.7: Our new markup and.
modified styles

162	 The Art & Science of CSS 	 Rounded Corners	 163

the headline. There’s always a good chance that you might want to have that capability, so

it’s best to design your styles accordingly.

Support for multiple paragraphs is accomplished by assigning padding in the right places.

For example, we always want 20px of padding at the bottom of the box. One method of

creating this space would be to put 20px of padding on the bottom of the paragraph

element in this example, or the definition description (dd) in the previous one. However, if

we assign the padding there, adding another paragraph (or definition description, as

multiples are allowed) would push the elements 20px apart, not

the 10px by which our headline and paragraph are separated. This

issue is easily fixed by assigning the 20px of padding to the bottom

of the #feature selector, instead of to an element contained within.

This way, no matter which elements are contained, we can

guarantee that the appropriate spacing will be applied.

Now, to ensure the spacing between the paragraphs. Multiple

paragraphs need to be separated by 10px of space—the same

distance that appears between our headline and paragraph. We’ve

applied even spacing between all our elements, as you can see in

Figure 6.8.

Rounding a Layout
Not only are these rounding concepts portable to other feature-type boxes, but they can

also be used to round the elements that contain an entire web page layout. Take the

mockup shown in Figure 6.9, for example; we meet again our old client from Chapter 4.

Figure 6.9: Design mockup for our next example

Figure 6.8: Multiple paragraph support.
for the feature box

162	 The Art & Science of CSS 	 Rounded Corners	 163

While we’re not going to cover the styling of any of the content of this document (if you

want to read more about its navigation, see Chapter 4), we will walk through the process of

styling the shell. Let’s see what the markup for this layout looks like:

fixed-width-layout.html (excerpt)

<div id="wrapper">

  <div id="header">

    <h1>Cartography Corner</h1>

  </div>

  <ul id="navigation">

    …

 

  <div id="content">

    …

  </div>

  <div id="footer">

    <p>Copyright 2006 - Cartography Corner - All Rights Reserved</p>

  </div>

</div>

I’ve left out of this listing some of the more detailed markup for the areas with which we’re

not yet concerned. You’ll notice that we have a #wrapper element that wraps around all our

other elements, a header section appropriately identified as #header, an unordered list for

navigation, and content and footer sections, denoted #content and #footer respectively.

For the purposes of this example, we’ll assume that the navigation and content are already

styled.

While we’ll use the same fixed-width, rounded corner principles we used in the last

example, the implementation will be slightly different. Let’s start off by assigning the body

element the main dark background-color. We’ll give the #wrapper div a white background

and a defined width, and align it to the center. In addition, we’ll also assign the #header

and #footerdiv elements their background and font colors. I’ll be including the same

declarations for margin properties, padding, and fonts as in the previous example:

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

164	 The Art & Science of CSS 	 Rounded Corners	 165

body {

  font-size: 92%;

  background: #2D2419;

}

#wrapper {

  background: #FFF;

  width: 550px;

  margin: 0 auto;

}

#header {

  background: #A98D71;

}

#footer {

  background: #100D09;

  color: #999;

}

We now have a layout that looks like Figure 6.10.

Figure 6.10: Our progress so far

For the header, we’ll need an image much like that from the first example, in Figure 6.1.

It’ll have rounded corners, with a corner color that matches the background-color given to

the body element, and will look like Figure 6.11.

Figure 6.11: The image that will provide the rounded corners for our header

We’ll save this image in our images folder, name it header.gif, and attach it to the header:

164	 The Art & Science of CSS 	 Rounded Corners	 165

#header {

  background: #A98D71 url(images/header.gif) no-repeat;
}

Our logo file is shown in Figure 6.11; we’ll save it in the same place as a GIF image with a

transparent background, as logo.gif.

We’ll replace the h1 text with this logo image, using the text-indent method covered in

Chapter 1.

Figure 6.11: Our logo GIF, with binary transparency

It might look a little ugly here, but when placed over the background color, it’ll blend right

in—trust me. So let’s put the CSS in place:

#header {

  background: #A98D71 url(images/header.gif) no-repeat;

}

#header h1 {

  width: 330px;

  height: 56px;

  background: url(images/logo.gif) no-repeat;

  text-indent: -9999px;

  overflow: hidden;

}

Now for the footer: we need an image with rounded corners just like the header, but we’ll

need an inverted version for the bottom of the layout. We’ll use the black footer color,

which you can see in Figure 6.12, rather than the beige we used for the header. We’ll save

this as footer.gif.

Figure 6.12: The image that will provide the rounded corners of our footer

In the CSS, we add the background-image, and apply some appropriate padding.

#footer {

  background:#100D09 url(images/footer.gif) no-repeat bottom left;

  color:#999;

  padding:10px 15px;

}

166	 The Art & Science of CSS 	 Rounded Corners	 167

When we view the page in our browser, we see that our design is complete. The page will

expand and contract vertically according to the height of the content, while keeping our

rounded corners intact, as shown in Figure 6.13.

Figure 6.13: The finished layout

Great! We can see that, given the constraint of a fixed width, rounding the corners of any

element can be simple. All we need are the right hooks on which to hang our background

images. Our final CSS file should look like this:

fixed-width-layout.html (excerpt)

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

  background: #2D2419;

  padding: 20px;

}

#wrapper {

  background: #FFF;

  width: 550px;

  margin: 0 auto;

}

#header {

  background: #A98D71 url(images/header.gif) no-repeat;

}

166	 The Art & Science of CSS 	 Rounded Corners	 167

#header h1 {

  width: 330px;

  height: 56px;

  background: url(images/logo.gif) no-repeat;

  text-indent: -9999px;

  overflow: hidden;

}

#footer {

  background: #100D09 url(images/footer.gif) no-repeat bottom

      left;

  color: #999;

  padding: 10px 15px;

}

Now that we’re able to handle vertical flexibility, what if we need the rounded box to

expand both vertically and horizontally?

Vertical and Horizontal Flexibility
Now that we’ve become adept at handling vertical flexibility, we know that two images,

and therefore two elements, are required to create all four corners. But what if we need the

rounded box to expand both vertically and horizontally? If horizontal flexibility is added to

the parent element, we’ll need four separate elements to attach to our four corner graphics,

as shown in Figure 6.14.

Figure 6.14: Adding rounded corners to container with vertical and horizontal flexibility

One common solution to providing the styling hooks needed for the four images is to add

multiple div elements around the box to which our background images are attached. But

that’s not always necessary. Consider our first example of vertical flexibility:

168	 The Art & Science of CSS 	 Rounded Corners	 169

<dl id="feature">

  <dt>Roundabout</dt>

  <dd>A roundabout or rotary is a type of road junction (or

      traffic calming device) at which traffic streams around

      a central island, after first yielding (giving way) to

      the circulating traffic.</dd>

</dl>

Here we have three block-level elements to work with. We only need one more. Let’s add

one div around the dl element, and transfer the id attribute to the new div:

flexible-roundabout-feature.html (excerpt)

<div id="feature">

  <dl>

    <dt>Roundabout</dt>

    <dd>A roundabout or rotary is a type of road junction (or

        traffic calming device) at which traffic streams around

        a central island, after first yielding (giving way) to

        the circulating traffic.</dd>

  </dl>

</div>

Let’s make this look just like the first example, but add the capability for horizontal

expansion based on the browser’s font size. We’ll translate our previous two background

images into four separate corners, and save them as bottom_left.gif, bottom_right.gif, etc.,

as depicted in Figure 6.15.

Figure 6.15: Four necessary corner images

Now we need to think about where to place our background images. We start by

determining which elements will touch which corners, so as to cover them all

appropriately. We can determine by looking at the markup that the only element that won’t

touch the bottom two corners is the dt element. The feature div, the dt, and the dd will all

extend to the bottom. But similarly, the dd will not touch the top two corners, so it must

be used on one of the bottom corners. This leaves the div and the dl to be used in any

location.

For this example, we’ll use the div for the bottom-left corner, the dd for the bottom right,

168	 The Art & Science of CSS 	 Rounded Corners	 169

the dl for the top left, and the dt for the top right. As discussed before, we apply the

background color to the lowest layer. That means our div will have both the background

color and the bottom-left corner. Enough of the thinking, let’s put some of this thought into

code:

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

  background: #FFF;

}

#feature {

  background: #96BF55 url(images/bottom_left.gif) no-repeat

      bottom left;

  width: 20em;

}

#feature dl {

  background: url(images/top_left.gif) no-repeat;

}

#feature dt {

  background: url(images/top_right.gif) no-repeat top right;

}

#feature dd {

  background: url(images/bottom_right.gif) no-repeat bottom

      right;

}

As you can see, I’ve again included the basic page-styling elements at the beginning of the

CSS. If we check our code in a browser, we should see something like Figure 6.16.

Figure 6.16: Start of our flexible feature box

That’s a great result. Because we defined the width in ems, our width is defined by the size

of the browser font. Let’s see if our element really stretches with the font size like we

planned. I’ll bump up the font size twice ... and I give you Figure 6.17.

170	 The Art & Science of CSS 	 Rounded Corners	 171

Figure 6.17: The feature box after the browser’s font size is increased

Excellent! Now all that’s left is to put in the text styles and padding. This exercise will be

slightly different from the vertical flexibility example, as we need to be more cautious

about how our padding is applied—after all, we don’t want to push an element away from

the corner it’s supposed to cover:

flexible-roundabout-feature.html (excerpt)

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

  background: #FFF;

}

#feature {

  background: #96BF55 url(images/bottom_left.gif) no-repeat bottom left;

  width: 20em;

}

#feature dl {

  background: url(images/top_left.gif) no-repeat;

}

#feature dt {

  background: url(images/top_right.gif) no-repeat top right;

  padding: 1.17em 1.17em 0;
  font-size: 170%;
  color: #FFF;
  line-height: 1;
}

#feature dd {

  background: url(images/bottom_right.gif) no-repeat bottom right;

  padding: 1em 2em 2em;
  color: #1B220F;
  line-height: 1.3;
}

We’ve assigned padding in ems, so our box looks consistent as it grows. You might notice

the difference in padding size between the dd and the dt elements—this is due to the

170	 The Art & Science of CSS 	 Rounded Corners	 171

ems being units of font-size. The font size of the dd hasn’t changed, so it receives 2em

of padding. As we increase the font-size on the dt by 170%, we need to cut down on the

padding by the same proportion (100/170), or 59% of our 2em. This leaves us with a value of

around 1.17em.

Let’s see a nice before-and-after comparison of our final product in Figure 6.18 and

Figure 6.19.

Figure 6.18: Final product at default browser font size Figure 6.19: … and with the font size increased

Perfect! Although this more flexible way of styling our rounded box definitely provides

some challenges, the basic thought process remains the same. We did, however, have to

add one more element to our markup—one that arguably has no semantic value. This

addition is the trade-off we have to make with the current limitations (or implementation,

if you’re the glass-half-full type) of CSS in modern browsers.

This constraint can be seen even more clearly if we examine our second example, which

comprised the div, headline, and paragraph:

<div id="feature">

  <h3>Serving Sushi</h3>

  <p>More traditionally, sushi is served on minimalist

      Japanese-style, geometric, wood or lacquer plates which

      are mono- or duo-tone in color, in keeping with the

      aesthetic qualities of this cuisine. Many small sushi

      restaurants actually use no plates — the sushi is eaten

      directly off of the wooden counter, usually with one’s

      hands, despite the historical tradition of eating nigiri

      with chopsticks.</p>

</div>

Once again, we have three elements, and we need to add one more to establish the fourth

“hook” for the last corner. But in the previous example, it was easier to justify adding

the additional div element because the outer element was a dl. Now, our outer element

is already a div. We need to take a more careful look at the markup. Are there any other

elements that we could add while keeping our markup semantic? For example, could the

172	 The Art & Science of CSS 	 Rounded Corners	 173

headline be linked to another page? If so, the added anchor tag would give us the extra

hook we need.

But if we can’t add anything, we’ll have to resort to adding an extra div to our existing

markup. We really need to evaluate whether our rounded, flexible box is more important

than the non-semantic markup we’ve added. I’m not going to answer that question in any

for-once-and-for-all way, because the answer is different for each scenario. The main point

to take from this quandary is that it’s good practice to always look inside the markup first

to see if there are any elements you can take advantage of before you begin to add markup.

For this example, I’m going to add the anchor to the headline. Here’s what our markup

should look like:

flexible-sushi-feature.html (excerpt)

<div id="feature">

  <h3>Serving

      Sushi</h3>

  <p>More traditionally, sushi is served on minimalist

      Japanese-style, geometric, wood or lacquer plates which

      are mono- or duo-tone in color, in keeping with the

      aesthetic qualities of this cuisine. Many small sushi

      restaurants actually use no plates — the sushi is eaten

      directly off of the wooden counter, usually with one’s

      hands, despite the historical tradition of eating nigiri

      with chopsticks.</p>

</div>

As we investigate the elements we need to use for each corner, we note that this markup

exhibits two main differences from the previous example. Firstly, both the headline and

the anchor only touch the top corners, so we need to use the div and the paragraph for the

bottom corners. Secondly, anchor elements are, by default, inline elements rather than

block-level elements, so we’ll need to change the value of the display property on the

anchor to block.

To clarify, a block-level element is one that takes up 100% of the available width, much

like a div or a p—it’s styled, by default, to have a clear line-break before and after the

element, and to fill the horizontal space available. Inline elements might include a, span,

and strong. All of these variations wrap with text flow, and inherit their height properties

from their parent elements’ line-heights. Block-level elements respond much more

predictably to margin and padding declarations, which is why we need to change our anchor

into a block-level element using CSS. Let’s see how the CSS departs from that in the

previous example:

172	 The Art & Science of CSS 	 Rounded Corners	 173

flexible-sushi-feature.html (excerpt)

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

  background: #FFF;

}

#feature {

  background: #96BF55 url(images/bottom_left.gif) no-repeat

      bottom left;

  width: 20em;

}

#feature h3 {
  background: url(images/top_left.gif) no-repeat;

}

#feature a {
  background: url(images/top_right.gif) no-repeat top right;

  padding: 1.17em 1.17em 0;

  font-size: 170%;

  color: #FFF;

  line-height: 1;

  display: block;
  text-decoration: none;
}

#feature p {
  background: url(images/bottom_right.gif) no-repeat bottom

      right;

  padding: 1em 2em 2em;

  color: #1B220F;

  line-height: 1.3;

}

You can see that, again, not many changes need to be made as the markup is quite similar

between the two examples, despite the different names given to the elements. The only

addition we needed to make was to apply display and text-decoration properties to the

anchor element, and to swap the dt and dd for h3 and p. Let’s check our browser to see how

our changes turned out; Figure 6.20 shows how the feature box should look.

174	 The Art & Science of CSS 	 Rounded Corners	 175

If we increase the font size, as depicted in Figure 6.21, we see that our box grows, yet our

corners remain intact.

Figure 6.20: Our new flexible version.
of heading and paragraph

Figure 6.21: Flexible feature box,.
with increased browser font size

Our rounded corners now work with a fully flexible box! But there are drawbacks to adding

horizontal flexibility to our feature element. You’ll recall from the first example we saw in

this chapter that we coded the CSS in such a way that we could add to the div paragraphs

that would work properly with paragraph spaces and background images. But, in Figure

6.22, you can see what happens if we create multiple paragraphs using the CSS from this

example:

<div id="feature">

  <h3>Serving

      Sushi</h3>

  <p>More traditionally, sushi is served on minimalist

      Japanese-style, geometric, wood or lacquer plates which

      are mono- or duo-tone in color, in keeping with the

      aesthetic qualities of this cuisine.</p>

  <p>Many small sushi restaurants actually use no plates — the

      sushi is eaten directly off of the wooden counter, usually

      with one’s hands, despite the historical tradition of

      eating nigiri with chopsticks.</p>

</div>

174	 The Art & Science of CSS 	 Rounded Corners	 175

We’ve gained an extra corner!

If adding paragraphs is really necessary, we’ll have to

give the last paragraph some kind of class attribute, and

add the background image to that element specifically.

Alternatively, all the paragraphs could be wrapped in

another div. But either way, you’re complicating your

markup and CSS.

NOTE  CSS 3 to the Rescue—the :last-child Pseudo-class

When the day arrives that the majority of browsers implement CSS 3 selectors—

primarily the :last-child pseudo-class3—we won’t need to choose between the
previously mentioned trade-offs. We’ll be able to add the bottom-right corner image
to the last paragraph using the following CSS:

#feature p {

  padding: 1em 2em;

  color: #1B220F;

  line-height: 1.3;

}

#feature > p:last-child {

  padding-bottom: 2em;

  background: url(images/bottom_right.gif) no-repeat bottom

      right;

}

No superfluous div elements or class attributes there!

Again, I’m not going to tell you that any of these options is right or wrong—it’s up to you

to decide which you’ll use. But the rule stands: the more flexible your box, both visually

and in terms of its content, the more markup and style you’ll have to use to get the desired

effect.�

�	 http://www.w3.org/TR/css3-selectors/#last-child-pseudo

Figure 6.22: Multiple paragraphs.
cause problems

176	 The Art & Science of CSS 	 Rounded Corners	 177

Rounding a Fluid Layout
With the previous examples under our belts, let’s tackle the task of creating a fluid layout

(or, liquid layout): one that expands horizontally based on browser window width. Let’s

revisit the markup:

flexible-width-layout.html (excerpt)

<div id="wrapper">

  <div id="header">

    <h1>Cartography Corner</h1>

  </div>

  <ul id="navigation">

    …

 

  <div id="content">

    …

  </div>

  <div id="footer">

    <p>Copyright 2006 - Cartography Corner - All Rights

        Reserved</p>

  </div>

</div>

If we evaluate element locations to see which elements we can use for placing the corners,

we see that both the header div and the h1 will touch only the top corners. The footer div

and the paragraph it contains will touch only the bottom corners. The wrapper div could

be used as a styling hook for any corner, but it doesn’t look like we’ll need to use it for that

purpose. Instead, we’ll use it for the expanding white background color.

In preparing the images, we’ll need to produce ones that are almost identical to those we

used in the previous example, with one major difference. When we styled the h1 element

the last time we used this markup, we included the logo as a background image. Because

we can’t assign two background images to the same element, let’s combine the logo and the

top-left corner into one graphic. We’ll wind up with a layout that looks like Figure 6.23.

Figure 6.23: Corner images for our liquid layout

176	 The Art & Science of CSS 	 Rounded Corners	 177

To apply these changes in CSS, let’s see what needs to be changed from the previous

example:

flexible-width-layout.html (excerpt)

* {

  margin: 0;

  padding: 0;

}

html {

  font: small/1.4 “Lucida Grande", Tahoma, sans-serif;

}

body {

  font-size: 92%;

  background: #2D2419;

  padding: 20px;

}

#wrapper {

  background: #FFF;

  min-width: 550px;
  width: 80%;
  margin: 0 auto;

}

#header {

  background: #A98D71 url(images/header_right.gif)
    no-repeat top right;
}

#header h1 {

  width: 330px;

  height: 56px;

  background: url(images/logo.gif) no-repeat;

  text-indent: -9999px;

  overflow: hidden;

}

#footer {

  background: #100D09 url(images/footer_right.gif) no-repeat

      bottom right;

  color: #999;

  /* Padding was removed from the footer element… */
}
#footer p {
  padding: 10px 15px; /* … and placed here inside the
    paragraph */
  background: url(images/footer_left.gif) no-repeat bottom
    left;
}

178	 The Art & Science of CSS 	 Rounded Corners	 179

We can see, once again, that the changes required to make the rounded layout flexible in

both directions are really very simple. If you have enough markup to work with, as we do in

this case, the process of attaching background images becomes trivial. The hardest aspect of

making your rounded corners fully flexible is having the markup handy. Once that’s in place,

it’s smooth sailing. How do our changes look in a browser? Let’s check out Figure 6.24.

Figure 6.24: Our fluid layout at its minimum width

If we stretch the browser window, we’ll see in Figure 6.25 that our layout grows right along

with it.

Figure 6.25: Our fluid layout, stretched

178	 The Art & Science of CSS 	 Rounded Corners	 179

Experimenting with these Techniques
While this chapter has focused on adding rounded corners to content boxes, the techniques

we’ve discussed could be used to achieve various decorative effects, like the one

demonstrated in Figure 6.26.

Figure 6.26: Using rounded corner techniques to add a decorative border

The markup, styles, and images I’ve used in this layout are included in the code archive in

case you’d like to take a closer look. As with all elements of design, the possibilities are up

to you!

Summary
The central theme reiterated throughout this chapter is that rounding corners can be a very

simple process. But if certain permises are not met, it can easily become a non-semantic

tag soup. This unhappy scenario can be avoided if you follow a few simple steps that I’ve

outlined in this chapter.

We’ve found that we need to determine whether the flexibility required in a layout or

design is vertical, horizontal, or a combination of both. Our markup must be evaluated to

determine whether we need to compromise its semantic purity, or simply retain what we

already have. When we come to creating the images, careful planning is required to reduce

180	 The Art & Science of CSS

the need to insert additional elements. And in applying the styles, we need to be aware of

usability and flexibility, and of potential problems, such as that exemplified with our use of

padding.

Finally, keep in mind that with great power comes great responsibility. Rounded corners

should be used sparingly, and for a certain effect. When utilized with discretion, rounded

corners lend themselves to the successful production of softer, more usable interfaces. But

when overused, well ... consider the fate of the once-popular but now much-abused drop

shadow. You get the picture!

180	 The Art & Science of CSS

Have you waded knee-deep into web standards and thought

you’d never again encounter a table element? Tables may have

been rejected as “bad” and “evil,” due to their past misuse as a

layout element, but the web standards movement hasn’t quite

eliminated them from the planet. In fact, all the proliferation

of semantic markup has done is send tables back to doing what

they do best: presenting tabular data.

While tabular data (and the spreadsheet horrors of which it

probably reminds you) may not always seem to be the most

exciting material, working with tables gives us plenty of

opportunity to break out some serious CSS skills and create

some fantastic looks—even while adding a dash of usability.

7 Tables

182	 The Art & Science of CSS 	 Tables	 183

In this chapter, we’ll spend some time gaining an understanding of the elements that go

into the construction of a table. After we set this foundation, we’ll look at the various

styles that can be applied to those table elements. Along the way, we’ll deal with the

cross-browser problems that are sure to crop up at this moment in web history. With the

theory out of the way, we’ll reach some practical examples of how our tables can be made

both functional and attractive, and become acquainted with some of the niceties a dash

of JavaScript can offer to the humble table. Finally, we’ll look to the future to predict how

CSS 3 will affect our table-designing efforts.

The Structure
Styling tables can be liberating and confusing at the same time. While the many potential

elements of a table offer plenty of ways to tie in some additional style, cross-browser

inconsistencies and the lack of support for some truly useful CSS selectors can prove to be

frustrating roadblocks.

However, before we tackle the intricacies of styling a table, let’s go over all the different

potential elements of a table. Much of this will probably be familiar ground, but there

might be a couple of new elements that you haven’t encountered before. My apologies if

this groundwork comes across as a little dry, but it’s well worth your attention. Think of

table-styling as a roller-coaster; you’ve gotta spend time on the long, slow ascent before you

get into the wild ride of styling!

I’m sure all the tables you’ve put together up until now utilized at least three basic elements:

table, tr, and td—table, row, and data cell respectively. Likewise, you’ve probably used or

seen the th, the header cell. Your markup may have looked something like this:

table-example-basic.html (excerpt)

<table>

  <tr>

    <th scope="col">Person</th>

    <th scope="col">Web Site</th>

  </tr>

  <tr>

    <td>Bryan Veloso</td>

    <td>Avalonstar</td>

  </tr>

  <tr>

    <td>Dan Rubin</td>

    <td>

        SuperfluousBanter</td>

  </tr>

</table>

182	 The Art & Science of CSS 	 Tables	 183

Those aren’t all the elemental components of a table, though. We also have the thead, tbody,

tfoot, caption, col, and colgroup elements at our disposal. These elements serve a very

semantic purpose, each of which I’ll explain in a little detail so you’ll know which to use

and when. Each of these elements will provide a point where we can hook in some CSS

styling to take our table from being a boring blackspot on our page to being a mini work of

art in its own right.

The table Element
A table isn’t a table without a table element. It all starts from here.

A table has a number of attributes, such as border, cellpadding, and cellspacing, all of

which you’ve used often if you’ve emerged from the tables-for-layout school of web design.

We can ignore border and cellpadding for now, as we can replicate these attributes in CSS.

One presentational attribute we’ll need to keep handy is cellspacing. Internet Explorer

doesn’t support the ability to handle cellspacing via CSS, which means that if we need to

maintain control, we’ll have to do it at the HTML level.

In addition to those attributes, we also have the frame attribute and the rules attribute. The

frame attribute controls the display of the outermost border on the table. Its possible values

are void, above, below, hsides, vsides, lhs, rhs, box, and border. The default value is void:

this will remove the border from around the table.

The border manifests itself differently in each of the four browsers I used to test this

markup:

	 Internet Explorer rendered a three-dimensional border on all sides.

	 Firefox rendered a gray border on the left and top, with black on the right and bottom.

	 Opera rendered a solid black border.

	 Safari rendered no border at all.

When Internet Explorer is given a value other than void, this browser will incorrectly

render a border on the cells inside the table as well. For example, if you specify lhs, the left

side of each cell will be rendered:

<table frame="lhs">

Firefox and Opera render this markup correctly, as shown in Figure 7.1.

184	 The Art & Science of CSS 	 Tables	 185

Figure 7.1: Table with frame=”lhs”, as rendered by Internet Explorer, Firefox, Opera, and Safari

The rules attribute, which controls how the dividing borders of the table should be drawn,

has five valid values: none, groups, rows, cols, and all. If a value of none—the default

value—is specified, no lines will be drawn between the cells.

An interesting point to note here is that if you fail to specify a rules attribute, the border-

style (using CSS) you’ve set for colgroup elements or col elements will be ignored. But if

you specify a value of none, suddenly the border-style comes to life.

A value of groups will apply a border (gray and beveled in Internet Explorer, 1px and black

in Firefox and Opera) around each thead, tfoot, tbody, and colgroup. Setting rules to rows

or cols will apply a border between each respective row or column, while all will apply

a border around every cell. Again, if the frame attribute is omitted and rules is set to any

value but none, IE breaks from the pack and displays a border around the entire table. As

was the case with the frame attribute, Safari doesn’t support the rules attribute. Output

rendered by the current versions of the four most common browsers can be seen in

Figure 7.2.

184	 The Art & Science of CSS 	 Tables	 185

Figure 7.2: Comparing frame=”hsides” and rules=”groups” applied to table

If you wish to use the frame or the rules attribute, it’s best to use them together, as

frustrating rendering bugs can result if they’re used independently.

The caption Element
A caption is intended to display a summary of what the table is about and, by default, it

appears centered above the table as seen in Figure 7.3. A caption doesn’t have any special

attributes, which makes our styling fairly straightforward.

The caption element appears right after the table tag:

<table frame="hsides" rules="groups">

  <caption>Sites that I like to visit</caption>

Figure 7.3: Default display of the caption element in Firefox

186	 The Art & Science of CSS 	 Tables	 187

The thead, tbody, and tfoot Elements
The thead, tbody, and tfoot elements are called row groups. Their function is to group

rows together. A table can have only one thead and one tfoot, but it can have multiple

tbody elements. Here’s an example to demonstrate the intended use of these elements:

table-example.html (excerpt)

<table frame="hsides" rules="groups">

  <caption>Sites that I like to visit</caption>

  <thead>

    <tr>

      <th scope="col">Person</th>

      <th scope="col">URL</th>

    </tr>

  </thead>

  <tfoot>

    <tr>

      <td colspan="2">[1] Enjoys Dance Dance Revolution</td>

    </tr>

  </tfoot>

  <tbody>

    <tr>

      <td>Bryan Veloso [1]</td>

      <td>Avalonstar</td>

    </tr>

    <tr>

      <td>Dan Rubin</td>

      <td>

          SuperfluousBanter</td>

    </tr>

  </tbody>

</table>

As you might notice from this example, the footer actually appears before the body. Take

a look at Figure 7.4 to see how it looks in the browser, though, and you’ll notice that the

footer is positioned at the end of the table, where it belongs. “What gives?” you ask, quite

reasonably. The specification was designed this way to allow a table to be rendered before

the entire body of content was received.

Figure 7.4: tfoot displayed at end of table, despite source order

186	 The Art & Science of CSS 	 Tables	 187

All row groups support the align and valign attributes. The align attribute adjusts the

horizontal alignment whereas valign handles the vertical alignment. Don’t worry too much

about these attributes, as we’ll handle them in CSS using the text-align and vertical-align

properties.

The tr Element
A tr is a table row. Rows are much like row groups, in that they both support align and

valign attributes. Table rows also have the bgcolor attribute that allows a background color

to be set. Again, we’ll handle this step in CSS.

The th and td Elements
The th and td elements are the table cells, and hold the data for the table. Table cells have

a congregation of attributes, many of which are important not only from a style perspective,

but also from an accessibility standpoint.

Like the row and row groups, table cells have align and valign attributes, as well as rowspan

and colspan attributes. The rowspan attribute indicates how many rows high the cell should

be, including the current cell. The colspan is very similar, concerned with—you guessed

it—the width of the columns. Check out Figure 7.5 to see how columns and rows can be

spanned.

Figure 7.5: colspan and rowspan attributes at work

Now here’s the markup that produces Figure 7.5:

colspan-rowspan.html (excerpt)

<table>

  <thead>

    <tr>

      <th scope="col">Header</th>

      <th scope="col">Header</th>

      <th scope="col">Header</th>

      <th scope="col">Header</th>

    </tr>

  </thead>

188	 The Art & Science of CSS 	 Tables	 189

  <tbody>

    <tr>

      <td rowspan="6">You can span down.</td>

    </tr>

    <tr>

      <td colspan="3">You can span across.</td>

    </tr>

    <tr>

      <td colspan="2">It’s like a puzzle.</td>

      <td rowspan="4">Over here.</td>

    </tr>

    <tr>

      <td rowspan="3">This way.</td>

    </tr>

    <tr>

      <td>That way.</td>

    </tr>

    <tr>

      <td>Where am I?</td>

    </tr>

  </tbody>

</table>

The th element may also contain the axis, headers, scope, and abbr attributes, each of which

allows you to create relationships between the various cells. Screenreaders can use some

of these attributes to improve a reader’s ability to navigate the table. It’s difficult to target

specific elements via the presence of these attributes, due to browser support for some CSS

selectors, but I mention them here for the sake of completeness. If you’d like to learn more

about these attributes, check out the W3C specification.�

The col and colgroup Elements
I’ve saved the best for last! col is used to identify a column; colgroup identifies groups of

columns. As far as styling is concerned, the greatest benefit of these two elements is that

they allow us to style entire columns without resorting to the addition of a class to every

cell in the column.

Spanning can be assigned to our colgroup elements and col elements. This assignation

doesn’t actually collapse multiple cells into one, as would the rowspan or colspan attributes

on a cell. It simply provides a shorthand way of specifying attributes to be applied across

multiple columns:

�	 http://www.w3.org/TR/html4/struct/tables.html#h-11.2.6

188	 The Art & Science of CSS 	 Tables	 189

<colgroup>

  <col />

  <col />

</colgroup>

<colgroup>

  <col />

  <col />

  <col />

</colgroup>

This can also be written as follows:

<colgroup span="2" />

<colgroup>

  <col span="2" />

  <col />

</colgroup>

The span attribute on the colgroup indicates that the colgroup spans two columns. The col

elements aren’t used when a span attribute is present on a colgroup. If col elements do exist

in a colgroup, the span attribute on the colgroup is ignored. The span attribute on the col

element also indicates that there are two columns.

The width attribute can be specified using one of the three formats:

	 width=”100”

	 width in pixels

	 width=”20%”

	 width in percentage

	 width=”2*”

	 relative width indicating that the cell should be twice as wide as a regular cell�

Using a percentage or relative width in Internet Explorer expands the overall table to 100%,

whereas Firefox, Safari, and Opera collapse to the smallest area required to fill the cells—

the expected behavior.

Here’s an example that demonstrates a number of the structural attributes we’ve just

covered, including how it is displayed in Firefox (the end result of which you can see in

Figure 7.6):

�	 This relative sizing doesn’t work in Internet Explorer or Opera, so it’s best avoided.

190	 The Art & Science of CSS 	 Tables	 191

growth-chart.html (excerpt)

<table>
  <caption>Growth Chart</caption>
  <col width="60%">
  <col width="20%">
  <col width="20%">
  <thead>
    <tr>
      <th scope="col">Name</th>
      <th scope="col">Age</th>
      <th scope="col">Height</th>
    </tr>
  </thead>
  <tfoot>
    <tr>
      <td colspan="3">[1] Has
          Gigantism</td>
    </tr>
  </tfoot>
  <tbody>
    <tr>
      <th rowspan="3" align="left">Albert</th>
      <td>1</td>
      <td align="center">2 ft. 8 in.</td>
    </tr>
    <tr>
      <td>10</td>
      <td align="center">4 ft. 6 in.</td>
    </tr>
    <tr>
      <td>20</td>
      <td align="center">6 ft. 1 in.</td>
    </tr>
  </tbody>
  <tbody>
    <tr>
      <th rowspan="3" align="left">Betty [1]</th>
      <td>1</td>
      <td align="center">2 ft. 3 in.</td>
    </tr>
    <tr>
      <td>10</td>
      <td align="center">4 ft. 2 in.</td>
    </tr>
    <tr>
      <td>20</td>
      <td align="center">7 ft. 2 in.</td>
    </tr>
  </tbody>
</table>

190	 The Art & Science of CSS 	 Tables	 191

Figure 7.6: Preceding markup as rendered by Firefox

You’ve endured the slow, steep ascent and learned how to create a table; it’s almost time for

that roller-coaster ride I promised at the start of the chapter! We’ll plunge into that styling

right after we have a look at the CSS properties we need.

The Styling
Before we dive into some practical examples, it’s important to understand which CSS

properties we can actually make use of and where we can use them. We’ll look at

styles specific to the table element, columns, and captions. After that, we’ll learn how

backgrounds are handled. From there on in, it’s all fun—we’ll go through some examples to

demonstrate what can be done to bring a little art to the science of tables.

Using the table Element
Several properties are unique to the table element:

	 border-collapse

	 border-spacing

	 empty-cells

The border-collapse property can have a value of either separate or collapse, as

demonstrated in Figure 7.7. The default property is separate, but it creates tables that look

fairly chunky. Using collapse removes the space between the cells, effectively overriding

any cell spacing that may be set in the HTML. This step will make our tables look cleaner,

so it’s a good move to start with.

Figure 7.7: Comparing separate and collapse values of border-collapse property

192	 The Art & Science of CSS 	 Tables	 193

NOTE  Issues with Collapsing Borders

Collapsing the border will create issues if you have borders between two cells where each cell has different
border styles. A border conflict resolution guide that explains how these conflicts should be resolved is available
from the W3C.3

When setting the border-spacing property of a table, you can specify either one or two

length values. If only one is specified, the value affects the spacing on all sides. If two

values are specified, the first specifies the horizontal spacing (left and right of the cell) and

the second specifies the vertical spacing (above and below the cell):�

table {

  border-spacing: 2px 5px;

}

This example adds 2px of vertical space and 5px of horizontal space between each cell.

The color that appears in the space is always that of the table background. Setting the row

or cell background will never change the color between the cells.

Our nemesis Internet Explorer, however, doesn’t support the border-spacing property, even

in IE7. The only course of action this situation leaves us with is to use the cell-spacing

attribute in HTML to achieve the same effect as border-spacing.

The empty-cells property has two values: show and hide, the rendering of which can be seen

in Figure 7.8.

This property determines whether a border will be visible on an empty cell; it can be

applied to almost any element within a table, such as specific rows or cells. Once again,

however, Internet Explorer doesn’t support the empty-cells property.

Figure 7.8: Values for empty-cells property—show on left and hide on right

Setting Column Styles
The column group elements (colgroup) are unique in that cells don’t actually inherit

anything from them. Therefore, there are only four properties that are applicable to

�	 http://www.w3.org/TR/CSS21/tables.html#border-conflict-resolution/

192	 The Art & Science of CSS 	 Tables	 193

colgroup: border, background, width, and visibility. The use of these properties results in

inconsistencies across the browsers, as demonstrated in Figure 7.9, so be prepared!

The border property works well in Firefox and Safari. In Opera, applying border to a col

element with a span attribute set on it doesn’t apply the border to each column as it does in

Firefox or Safari. In Internet Explorer, the border CSS property doesn’t work at all.

Here’s how we go about setting table borders and border-collapse in CSS:

table {

  width: 400px;

  border-collapse: collapse;

}

#test {

  border: 1px solid blue;

}

... and modifying our HTML to disable the border attribute:

<table border="0">

  <caption>Growth Chart</caption>

  <col width="60%">

  <col width="20%" id="test">

  <col width="20%">

…

The border-collapse needs to be set to collapse for the border to show in Firefox and Safari.

Figure 7.9: Comparison of column border rendering in Firefox and Opera

The background property is fairly consistent across browsers, but it still has its little quirks.

A background-image, for example, applied to a column group is set as the background to

each column in Opera, but is incorrectly applied to each separate cell in Safari and Internet

Explorer. There are also layering issues that only Firefox can cope with sufficiently. With

194	 The Art & Science of CSS 	 Tables	 195

any luck, you’ll never run into these layering issues, but I’ll cover these in a little more

detail in the section called "Applying Successful Backgrounds" below.

The width property works well in all browsers tested. Keep in mind that when applied to

a colgroup, the width affects the size of each column contained within that colgroup. For

example, if you set a width of 200px on a column group that contains two columns, then

each column is 200px, reaching a total of 400px for the column group.

Finally, visibility is included just for completeness, but Firefox is the only browser that

currently supports it. visibility can be set to collapse, which prevents the column from

being seen.

Formatting Captions
The caption elements can be formatted like most other block elements, including properties

like text-align and font-weight. There’s an additional CSS property that can come in very

handy, and that’s caption-side. This property can be set to either top or bottom, which will

allow the caption to appear either above or below the table respectively. Firefox takes it a

step further and supports values of left or right. I hate to sound like a broken record, but

good ol’ Internet Explorer doesn’t support caption-side.

Applying Successful Backgrounds
Since we’re talking about backgrounds on columns, let’s delve a little deeper into how

backgrounds on tables should work. Essentially, different elements act as layers. Any

transparency on one level reveals the background of the level below it. Figure 7.10 shows a

W3C diagram that demonstrates the layering of backgrounds on table elements.�

However, as you may have noticed with some of the cross-browser issues I mentioned

before, most browsers don’t handle backgrounds like the specification suggests. Many

actually take any backgrounds specified at the

column or row level and simply apply them at the

cell level. When using patterned backgrounds, this

can prove extremely frustrating—any repeating

patterns fail to line up. Playing with the opacity at

the cell level also reveals how badly Safari, Opera,

and Internet Explorer get it wrong. As an example,

have a look at Figure 7.11, which demonstrates a

background being applied to a table row. Albert

displays correctly in Firefox, but he’s in real trouble

when displayed in Internet Explorer.

�	 http://www.w3.org/TR/REC-CSS2/tables.html#table-layers

Figure 7.10: The W3C’s schema of table layers

194	 The Art & Science of CSS 	 Tables	 195

Figure 7.11: td background comparison between Firefox and Internet Explorer

Unfortunately, table usage just isn’t as popular as it used to be, so we’ll most likely be

waiting a very long time for this problem to be rectified in the rest of the browsers.

Luckily, the application of a background on the table element does work consistently. The

background should tile properly across the entire table and behave exactly as it should.

Let’s give this application a shot, and see whether Albert can avoid being fragmented when

he encounters the rigors of being displayed in Internet Explorer.

If our table and columns were of a fixed width, we could actually get around the cell

background issues by offsetting the background for each column. It’s a tedious task, but it’s

well worth it, so let’s dive in! Here’s an example to demonstrate this approach:

background-position.html (excerpt)

table {

  width: 223px;

}

td {

  background: red url(images/albert.jpg) repeat 0 0;

  height: 200px;

}

td.col1 {

  width: 90px;

}

td.col2 {

  background-position: -90px 0;

  width: 43px;

}

td.col3 {

  background-position: -133px 0;

  width: 90px;

}

196	 The Art & Science of CSS 	 Tables	 197

Each column after the first is simply shifted over by the width

of the previous cells. The first column doesn’t need to be

shifted, whereas the second requires shifting over the width

of the first column. Finally, the third column background has

to be shifted over the total width of the first two columns.

Figure 7.12 shows Albert in Internet Explorer again, but with

the background shifted within each cell—he’s much happier.

Well, that’s all, folks. For the minute, anyway. This under

standing of column, caption, and background styles set us up

well for that roller-coaster ride—now it’s time for us

to look at some practical applications of all the styling

we’ve learned!

Table Elements in Action
With all the details out of the way, let’s take a look at some examples of tables—how spiffy

can we make them with the careful application of the styling we’ve learned?

Adding Style to Tabular Calendars
Calendars love tables. In fact, the two are a match made in heaven, what with calendars

adapting their weeks so well to a series of rows, and their days to columns. Figure 7.13

shows a completely unadorned table.

Figure 7.13: Unstyled calendar

This is an okay and perfectly functional table, except that it’s arguably a bit dull; my need to

promote my birthday has thrown out the balance just a smidgen, too. Let’s take a look at the

markup and think about what it’ll take to give this table a bit more style and je ne sais quoi:

Figure 7.12: Resolved Internet Explorer example

196	 The Art & Science of CSS 	 Tables	 197

calendar.html (excerpt)

<table>

  <caption>June</caption>

  <col class="weekend" />

  <col class="weekday" span="5" />

  <col class="weekend" />

  <thead>

    <tr>

      <th>Sun</th>

      <th>Mon</th>

      <th>Tue</th>

      <th>Wed</th>

      <th>Thu</th>

      <th>Fri</th>

      <th>Sat</th>

    </tr>

  </thead>

  <tbody>

    <tr>

      <td><div class="day">1</div></td>

      <td><div class="day">2</div></td>

      <td><div class="day">3</div></td>

      <td><div class="day">4</div></td>

      <td><div class="day">5</div></td>

      <td class="birthday"><div class="day">6</div>

          <div class="notes">It’s my birthday!</div></td>

      <td><div class="day">7</div></td>

    </tr>

  […]

  </tbody>

</table>

We’ll specifically add a div around each day number. This allows additional items to be

added to a day, and leaves us the flexibility of styling the number itself. More general

styles, such as holidays, are applied to the table cell—let’s apply an appropriately stand-

out style to my birthday!

To make this look more like a calendar, we can set up a number of styles. We’ll style a

larger caption, causing the month to stand out more prominently. Each day is given a

height and width, allowing room to add notes. The weekend columns have been set up to

stand out from weekdays, and we can designate holidays and birthdays as special.

198	 The Art & Science of CSS 	 Tables	 199

Here’s the CSS for our calendar table:

calendar.html (excerpt)

table {

  border: 1px solid #999;

  border-collapse: collapse;

  font-family: Georgia, Times, serif;

}

th {

  border: 1px solid #999;

  font-size: 70%;

  text-transform: uppercase;

}

td {

  border: 1px solid #999;

  height: 5em;

  width:5em;

  padding: 5px;

  vertical-align: top;

}

caption {

  font-size: 300%;

  font-style: italic;

}

.day {

  text-align: right;

}

.notes {

  font-family: Arial, Helvetica, sans-serif;

  font-size: 80%;

  text-align: right;

  padding-left: 20px;

}

.birthday {

  background-color: #ECE;

}

.weekend {

  background-color: #F3F3F3;

}

Once we’ve combined our modified markup and the style sheet, we get Figure 7.14, a much

more aesthetically pleasing calendar.

198	 The Art & Science of CSS 	 Tables	 199

Figure 7.14: Styled calendar

Striping Table Rows
Striping, also known as zebra tables, is useful on large, monotonous sets of data as it helps

improve readability. Too much text without delineation can make it difficult to see where

one column lines up with another within a particular row.

To achieve striping, we simply add a class to every other row (check out Figure 7.20 at the

end of this chapter for an even cooler, although less supported, approach to striping):

…

<tr>

  <td>…</td>

  <td>…</td>

  <td>…</td>

</tr>

<tr class="even">

  <td>…</td>

  <td>…</td>

  <td>…</td>

</tr>

…

Our base styles would be applied to the normal tr and then alternate styles applied to the

tr elements that have a class of even:

striped.html (excerpt)

tr {

  background-color: #FEE;

}

tr.even {

  background-color: #EEF;

}

In this example, the odd rows will be a light red and the even rows will be a light blue, as

shown in Figure 7.15.

200	 The Art & Science of CSS 	 Tables	 201

Figure 7.15: Different background-colors on alternate rows for an easier-to-read table

Another option I often choose when striping my tables is to use a semi-transparent PNG

as a background image for the alternate rows, as I’ve done in Figure 7.16. Taking this route

allows me to change out the background-color (or background-image) on the table without

having to worry about sizing or color-matching issues:

striped-png.html (excerpt)

tbody tr.odd td {

  background: transparent url(images/tr_bg.png) repeat

      top left;

}

Figure 7.16: Striping alternate rows using a semi-transparent PNG

PNG, pronounced “ping,” is an image-format type just like GIF or JPG, but it also supports

a graduated transparency. In other words, the background can be made partially visible

through parts of the image, like looking through a foggy glass window. Conversely, GIF

only supports index transparency where there are no levels of opaqueness—it’s either on

or it’s off. JPG doesn’t support transparency at all. Most graphics software, such as Adobe

Fireworks, The GIMP, or Adobe Photoshop, will happily export PNGs, so it’s a very useful

image format to have up your sleeve.

I normally export a PNG that is just white and is set to a transparency of about 15% to

25%, as this provides a semi-transparent overlay that’ll work in the context of almost any

color scheme.

200	 The Art & Science of CSS 	 Tables	 201

As discussed in Chapter 2, Internet Explorer didn’t support PNG background images prior

to version 7. Once again, we’ll work around the problem by using Internet Explorer’s

proprietary conditional comments:

striped-ong.html (excerpt)

<!--[if lt IE 7]>

  <style type="text/css" media="screen">

    tr.even {

      background: none;

      filter: progid:DXImageTransform.Microsoft.AlphaImageLoader

          (src=’images/tr_bg.png’, sizingMethod=’scale’);

    }

  </style>

<![endif]-->

“But, hang on a second,” you ask. “Why use a PNG instead of the opacity CSS property?”

Well, setting opacity in CSS might seem like the obvious choice for achieving this effect;

the trouble is, it applies the opacity to all elements contained within. Therefore, all text and

images would also be see-through. Setting opacity on an element requires some additional

trickery to make it compatible with Internet Explorer, as well as causing your CSS to be

invalid—unless the proprietary filter property is set via IE conditional comments:

td {

  opacity: 0.2;

  filter: alpha(opacity=20);

}

The opacity property is supported in Safari, Firefox, and Opera, and is part of the CSS

3 specification.� To accomplish the same result in Internet Explorer, you have to use the

proprietary filter property, which lets you specify an alpha filter.

You’ve stuck with me this far into the chapter, so it’s time I let you in on a little secret of

mine. One trick I’ve often used is to have an image applied to the table background that

eventually fades off to a solid color:

table {

  width: 450px;

  color: #FFF;

  background: #333 url(images/table_bg.png) no-repeat top left;

  border-collapse: collapse;

  border: 8px solid #9C0;

}

�	 http://www.w3.org/TR/css3-color/#opacity/

202	 The Art & Science of CSS 	 Tables	 203

This small exercise can give your table some crazy flair while still being an extremely solid

cross-browser solution. Using this effect, in combination with the alpha PNGs, can allow

you to create some very sexy tables!

The background-image is set on the table, which, as we covered in Chapter 3, is reliable

across all browsers. The image is specifically designed to fade out at the bottom to a solid

color, which you can see in Figure 7.17, where the example fades to a solid gray.

Figure 7.17: Combining alpha-PNG row striping with gradient background

So, there it is—I’m sure you’ll agree that a bit of CSS, judiciously applied, can make the

most boring calendar bounce into a layout worthy of a wallplanner, with styling that allows

latitude for creativity. Likewise, striping is a simple enough application, but produces a

great effect that can be widely used in many table applications to give the most pedestrian

content a colorful edge. It doesn’t end there, though.

Using JavaScript
As you’ve seen so far, CSS is fantastic for giving our tables some sexy sizzle. What can

really send our tables over the edge is some nice JavaScript!

If you’ve been developing with web standards for some time, you’ve most likely come

across this mantra: separate your presentation from your content. There’s a third spoke

to this web-standards wheel, and that is behavior. Behavior is best handled through

unobtrusive JavaScript. Unobtrusive JavaScript is having your scripts reside in an external

file (just like a style sheet) that hooks itself into your HTML document.

Using unobtrusive JavaScript keeps your HTML clean and easily accessible, even for

those users who don’t have JavaScript or have it turned off. The content itself will still

be available and accessible for these users, who are, after all, in the minority; meanwhile,

those users who have JavaScript turned on will be able to take advantage of the additional

features you’ve enabled.

So, what can JavaScript do to pretty up our tables?

202	 The Art & Science of CSS 	 Tables	 203

Row and Column Highlighting
A common feature is to add row highlighting support for Internet Explorer 6 (and earlier).

We can also take it to the next level and add column highlighting for all browsers.

If JavaScript isn’t your thing and the code in this example doesn’t make much sense, that’s

okay. If you’re interested in learning JavaScript, I recommend that you grab a copy of the

SitePoint book The JavaScript Anthology: 101 Essential Tips, Tricks, & Hacks, which is an

essential text in this area.�

Let’s define a function that will run when the page loads. Thinking about our logic,

we want this function to run any time a user moves the mouse over the table. More

specifically, when the mouse is over a specific cell, it should change the background for that

row and that column.

The first thing we need to do is to grab the table element and pass it into our highlight

function.

scripts/highlight.js (excerpt)

window.onload = function()

{

  var tbl = document.getElementById(‘mytable’);

  setHighlight(tbl);

}

I’ve used window.onload, which is a really quick way to say that this block of code should

run when the window has finished loading. Now, let’s see what the setHighlight function

looks like.

scripts/highlight.js (excerpt)

function setHighlight(table)

{

  if (!table) return;

  var TDs = table.getElementsByTagName(“td");

  for(var i = 0; i<TDs.length; i++) {

    TDs[i].onmouseover = rowColHighlight;

    TDs[i].onmouseout = rowColDelight;

  }

}

Our highlight function will return to its origin if an element isn’t passed through to

the function. If we have an element, it’ll attract all table cells within our table. It loops

�	 James Edwards and Cameron Adams, The JavaScript Anthology: 101 Essential Tips, Tricks, & Hacks,
SitePoint, 2006. http://www.sitepoint.com/books/jsant1/

204	 The Art & Science of CSS 	 Tables	 205

through them and attaches two events to each one. The rowColHighlight will be responsible

for highlighting rows and columns when the user moves a mouse over a cell, and

rowColDelight will be responsible for removing the highlight when the user moves the

mouse out of a cell.

scripts/highlight.js (excerpt)

function rowColHighlight()

{

  highlighter(this, ‘#EEE’);

}

function rowColDelight()

{

  highlighter(this, ‘’);

}

Our two functions just call another function but pass in two variables. The first is the

element to be highlighted. The this keyword refers to the element that triggered the

event—in our case, it’s the cell. The second variable is the color that we want for the

highlighter.

The highlighter function is our meat and potatoes:

scripts/highlight.js (excerpt)

function highlighter(cell, color)

{

  cell.parentNode.style.backgroundColor = color;

  var table = getTable(cell);

  var col = table.getElementsByTagName(“col");

  col[cell.cellIndex].style.backgroundColor = color;

}

First, from the cell, we tell it to get the parentNode (the row element surrounding my cells)

and change the background-color to the color that was passed in. Then, we tell it to get the

table that surrounds the cell. Retrieving the table element can be a little trickier depending

on how the HTML is set up, so we’ve created another function to handle this. I’ll touch on

this again shortly.

Once we have our table element, we grab all the col elements in the table and then grab

the one that matches the column in which the cell resides. The cellIndex property is the

number of columns up to and including the current cell. Once we have the right column,

we assign it a style. This styling should work as long as no background is specified on the

other cells, rows, or row groups.

204	 The Art & Science of CSS 	 Tables	 205

Back to the getTable function that I skipped before:

scripts/highlight.js (excerpt)

function getTable(obj)

{

  while (obj && obj.tagName.toLowerCase() != ‘table’)

  {

    obj = getTable(obj.parentNode);

  }

  return obj;

}

This function takes the current element and checks to see whether it’s the table element. If

it isn’t, then the function grabs the parent element and checks that. This checking process

will continue until the function finds the table element or no element at all. Once the table

is found, that table object is returned.

Figure 7.18 depicts our highlighting function in action.

Figure 7.18: Row and column highlighting compatible with most browsers

I should point out that the script makes a number of huge assumptions. To make your code

more reliable, you should provide checking mechanisms to account for different scenarios.

For example, one of the assumptions we’ve made here is that there would be the same

number of col elements as there are cells in a row. This may not be the case if you used

colgroup elements or the span attribute on other col elements. If any of those assumptions

were incorrect, you’d be bound to see JavaScript errors.

Other Ideas
One of the other common responsibilities often relegated to JavaScript is table sorting.

Table sorting is a very handy tool for your users, allowing them to manipulate the table

view without requiring slow and repetitive page refreshes from the server. A quick search

on Google for “table sorting” will yield a number of scripts; I’ve used Stuart Langridge’s

“sorttable script” with much success.�

�	 http://kryogenix.org/code/browser/sorttable/

206	 The Art & Science of CSS 	 Tables	 207

With the onslaught of Ajax—the ability to connect to and send and receive data from the

server via JavaScript—you can even offer spreadsheet-like functionality including live

editing. For a great example, check out Active Widgets Grid component.� Speaking of things

new and cutting-edge, by the way, what about CSS 3? Let’s indulge in some speculation

about how this upcoming standard will revolutionize the way we style our tables.

The Future
Styling our table was easy enough, but you might have found some of the steps redundant,

such as applying a class to every second row to create a striped table. Luckily, within the

drafts of the new CSS 3 specification lie a number of useful selectors that will simplify our

lives considerably.

NOTE  Browser Support Conundrum

Some browser developers like those behind Firefox and Opera have been pushing ahead and trying to include
early support for many of the useful things within the CSS 3 specification. Internet Explorer, however, is behind,
surprise, surprise. Unfortunately, this fact means that with IE still being the browser of choice for the majority
of web users, widespread adoption of CSS 3 support features is likely to be limited.

Probably the most exciting and most useful selector when it comes to styling tables are the

child pseudo-selectors, of which there are several.

The :nth-child(an+b) selector allows you to select every nth element. Essentially, a divides

the set of elements and b is the offset. Remember our striped tables? Here’s how you’ll be

able to style every second row with a different color:

tbody:nth-child(2n) { … } /* even rows */

tbody:nth-child(2n+1) { … } /* odd rows */

Alternatively, you could use the :nth-of-type(an+b) selector to accomplish the same thing:

tr:nth-of-type(2n) { … }

tr:nth-of-type(2n+1) { … }

Likewise, if you needed to style every second column with a different color, you could

apply the style on every second td element:

tr:nth-child(2n) { … }

td:nth-of-type(2n) { … }

�	 http://www.activewidgets.com/grid/

206	 The Art & Science of CSS 	 Tables	 207

By providing a value of 0 for a, the offset allows you to select the nth element. For example,

if you wanted to style just the fifth column:

tr:nth-child(0n+5) { … }

td:nth-of-type(0n+5) { … }

Both nth-child and nth-of-type are very similar but will give you fantastic control when it

comes to styling your tables.

There’s also a glimmer of light at the end of the IE tunnel. Internet Explorer 7, recently

released, has support for a number of new selectors, including :first-child and sibling

selectors that allow us to mimic nth-child. The sibling selector uses the plus sign (+) to

target elements. Therefore, if you wanted to style the second column from the left, as

shown in Figure 7.19, you’d use the following:

td:first-child + td {

  background-color:#036;

}

Figure 7.19: Using td:first-child+td to alter background-color

The td:first-child will target the first cell within a row and then the sibling selector (the +

sign) targets the element right beside it. If you wanted to target the fourth column you’d use

the following:

td:first-child + td + td + td {

  background-color:#036;

}

Imagine a table, with a number of values, where you want the last column to be bolded to

indicate that the data is a sum. Using the :last-child selector will do the trick:

td:last-child { … }

Taking advantage of :first-child and :last-child, you could expand on the striped table

that we saw earlier to add rounded corners to the first and last cells of both the header

208	 The Art & Science of CSS 	 Index	 209

and the footer. The border is an image set as the background-image of the first and last cells

within each row.

Figure 7.20: Using CSS 3 selectors to add rounded corners to table

There are plenty more selectors that you can expect to see in the not-too-distant future.

Although we’re probably a few years away from being able to use some of these features in

all popular browsers, it never hurts to dream. For more information on the CSS 3 selectors,

check out the relevant section of the W3C CSS 3 specification.�

Summary
I hope you’ve finished this chapter with a newfound respect for tables. With any luck, I’ve

shown you a few table elements you weren’t aware of before.

We’ve discovered how to create a perfectly semantic data table that provides lots of hooks

for our CSS. We’ve set up a well-structured table and learned to style it effectively. We’ve

learned that giving a table some style actually makes our table more useful, making it easier

to read and understand the data contained within.

We’ve seen how JavaScript can inject a little personality and some additional usability

without making things difficult for those users who don’t have JavaScript. Hopefully,

you’ve gained some valuable ideas on how to implement JavaScript on tables in new and

useful ways.

We’ve envisaged the future, and it’s bright! We’ve anticipated how the new features of CSS

3 will offer us easy ways to make our tables look good, and now we have the knowledge to

use them as they become available.

Congratulations, your CSS training is complete! Whatever challenges you may face—

problems with headings, images, backgrounds, navigation, forms, content containers, or

even tables—you have the skills to overcome them. With this expertise, and a little creative

flair, you can make your mark creating attractive, usable designs.

�	 http://www.w3.org/TR/css3-selectors

208	 The Art & Science of CSS 	 Index	 209

A
A List Apart web site, 3–4
absolute positioning, 10

absolutely positioned parent,
152

choice between floats and, 91
image replacement and, 109
relatively positioned parent,

149, 151
span element, 140
tolerance of window resizing, 72

accessibility
error messages, 149, 151
forms, 118–121, 148
headings, 6, 12
navigation, 88
text as images and, 76, 148

addresses, billing and delivery,
120–121

Ajax, 206
album pages, 40–47
alpha transparency, 59–60
alternative text, 9–12, 151
Altoids homepage, 6
anchor elements, 110, 172
assistive technology. See screen

readers
asterisk symbol, 148, 157
attribute selectors, CSS, 126

B
background-attachment property,

68–69
background-color property, 67

alternating background colors,
143

fieldset elements, 133, 135–137,
143–145

JavaScript highlighter function,
204

transparency as default color, 72
variable-width tabs, 103

background colors, 16-17, 26, 192
background-image property,

67–68, 78
browser rendering on column

groups, 193
IE mouseover loss, 109

inheritance, 99
matrix navigation example, 111
page layout with rounded

corners, 164–165, 208
semi-transparent PNGs, 200
variable-width tabs, 103

background images
applying to tables, 194–196, 201
for body elements, 70–71
CSS 3 proposals, 83–85
fading to solid color, 201
with gradients, 61–62, 70–71,

136–137
resizable, 71
transparent, 59

background-origin property, CSS
3, 84–85

background-position property,
99–100, 104, 108

background properties
default position, 158
limited browser support, 154,

193
shorthand notation, 67

background-repeat property, 68, 71
background-size property, 84
behavior, 202
Binary Bonsai web site, 48
block-level elements, 172

styling hooks, 168, 171–172
unordered lists as, 87
width, 157

body text typefaces, 4–5
border-collapse property, 191–193
border conflict resolution guide,

192
border properties

browser rendering, in tables,
193

double borders, 52–53
extending images beyond

content, 48–53
fieldset elements, 135
image captions, 62, 64
inset- and outset-style borders,

28–29
removing unwanted borders,

89–90
variable-width tabs, 103

border-spacing property, 192

border-style property
browser rendering, 29
outset border-style, 62
overriding default fieldset

layouts, 139
rules attribute and, 184

border value, background-origin
property, 84–85

borders, table, browser rendering,
183–184

br tag, 32
breadcrumbs, 25
browser windows

sizing images to fit, 31
resizing, 70–72, 80–82, 74–75,

178
browsers.

See also Internet Explorer
background property support,

154, 194
border-style rendering, 29
colgroup element properties

and, 193
CSS-incapable, 76
fieldset element inconsistencies,

126
with Flash or JavaScript turned

off, 12–15
with images turned off, 9, 11,

112
with JavaScript turned off, 202
legend repositioning and, 140
support for background-origin

property, 84–85
support for background-size

property, 84
support for multiple

backgrounds, 84
table border rendering, 183
transparency support, 17, 59–60
width attribute rendering, 189

bullets, 34

C
calendars, tabular, 196–199
caption element, 185, 194, 197
caption-side property, 194
captions, 53–59, 63–64
Cartography Corner case study, 86

Index

210	 The Art & Science of CSS 	 Index	 211

horizontal navigation, 95–116
logos, 165, 176
rounded page layout, 163
vertical navigation, 88–95

case studies. See Cartography
Corner; Deadwood Design

cellindex property, 204
cellspacing attribute, table

element, 183, 192
character metrics, 18–21
checkbox grouping, 143–146
child pseudo-classes, CSS 3, 206
classes

alternating background colors,
143, 199

replicating type attributes, 126
clear property, 30, 42, 130
col element, 188–191
colgroup element, 188–193
color, 5, 67 See also background

color
colspan element, 187
commenting out, 19
conditional comments, IE, 59, 133,

201
content value, background-origin,

84–85
contextual images, 47–64
Cooper Black typeface, 14
CSS 3 proposals

background images, 83–85
browser support, 84
:last-child pseudo-class, 175
table styling, 206–208

D
Deadwood Design case study,

69–83
browser window resizing, 80–81
design mockup, 70
introductory paragraph, 75–76
logo, 73–75
portfolio section, 77–82

definition lists, 156–167
degradation to usable text, 12, 14
display property, 104, 172–173
div elements, 55, 160, 168, 171
dl elements, 156–157
double borders, 52–53
download times, 9, 21, 78
drop shadows, 108, 180

E
elements See also wrapper

elements
replacing with sIFR.

replaceElement, 16–17
styling rounded corners, 168,

176

table structure, 182–191
em elements, 147, 169–170
empty-cells property, 192
error messages, 149–152
example web sites.

See also online resources
Altoids, 6
Binary Bonsai, 48
LinkedIn, 123
A List Apart, 3–4
Noodlebox, 12–13
NYTimes, 123
Rapha, 5–6
Subtraction, 2

F
feature boxes, 162, 174
fieldset element, 119–121

browser inconsistencies, 126
changing the default layout,

138–143
nested fieldsets, 144
styling, 133, 135–137
submit buttons, 126, 128
turning off floating, 131

filter property, IE, 59, 201
fixed-width table layouts, 195–196
Flash IDE alternative, 15
Flash replacement techniques,

12–21
flexibility

horizontal flexibility, 175–178
rounded corner solutions, 155
vertical and horizontal

flexibility, 167–175
float property

choice between absolute
positioning and, 91

IE whitespace bug workaround,
91

images, 30
label elements, 129
list items, 104–105
parent elements, 130

fluid layouts, 70, 176-178
fonts

See also typefaces
character metrics, 19–22
in navigation, 88
sIFR.replaceElement and, 16
sizing and weights for headings,

2–3
footers, tfoot element, 186
for attribute, label element and,

119
forms, 117–153

basic markup, 124–125
error messages, 149–152
general styling, 127–128
grouping form elements, 119–

121, 143–146
layout alternatives, 121–146
required fields, 147–149
types of form element, 119
visual connections within,

118–119
frame attribute, table element,

183–185

G
GIF files, 72, 78, 165, 200
gradient backgrounds, 61–62,

70–71, 136–137, 202
graphics applications, 70–71

H
headings, 1–22

accessibility advantages of
legend, 121

Deadwood Designs logo, 73–75
Flash replacement techniques,

12–21
hierarchies and, 1–4
identity and, 4–6
image replacement techniques,

7–11, 73–75
height property, 8–9, 157
hexadecimal colors, 67
hierarchies, 1–4, 127
highlight color, 5, 203–206
hooks. See styling hooks
horizontal flexibility, 175–178
horizontal navigation

advanced version, 108–116
basic version, 95–107
final style sheet, 97

:hover pseudo class, 105
hover styles

image page, 30
matrix navigation example,

111–112
tabbed navigation, 99–100,

105–106
vertical navigation, 90

HTML. See markup

I
icons, 151
id attribute

for attribute, label element and,
119

unordered list items, 87, 110,
112

id property, 93
identity, 4–6
image display page, 25–36
image galleries, 25–47

album pages, 40–47

210	 The Art & Science of CSS 	 Index	 211

final style sheet, 44–47
online resources, 64–65
thumbnail pages, 36–40

image replacement techniques,
7–12

advanced horizontal navigation,
108–109

compared to Flash replacement,
21

logo in rounded corner layout,
165

text-indent image replacement,
7–9, 73–75, 165

images, 24–65
accessibility of, 148
captions for, 53–64
contextual images, 47–64
extending beyond page content,

48–53
as GIFs or PNGs, 72
image galleries, 25–47
as links, obscuring, 81–82
page download times, 9
portrait format, 35
preloading, 98
sizing, 31, 72
tabbed navigation, 98–99
text as, 75-76

inheritance, 99, 144, 172
inline-blocks, 105
inset-style borders, 28–29
Internet Explorer

background-attachment support,
59–60

background-image loss on
mouseover, 109

border properties rendering, in
tables, 193

border-spacing property, 192
border width workaround, 30
caption-side property, 194
CSS attribute selectors and

IE 6, 126
CSS cellspacing, 183
CSS 3 selectors and IE 7, 207
double margin bug, 104
empty-cells property, 192
frame attribute misinterpreted,

183
h1 expansion behavior, 8
:hover pseudo class access, 105
legend element rendering,

133–134
opacity property support, 201
separate style sheets for, 133,

141, 146
transparency support, 59–60,

201
whitespace bug, 90
width attribute rendering, 189
z-index property bug, 77

introductory images, 47–52
introductory paragraphs, 75–76

J
JavaScript, 12, 16–18, 202–208

L
label element, 118–119

auto width setting, 146
error messages within, 150–151
left-aligned labels, 122–123, 145
nested fieldsets, 144
positioning alternatives, 121
right-aligned labels, 123, 132–

133, 145
top-positioned labels, 122, 128

:last-child pseudo-class, CSS 3,
175, 207

layering
background-images and, 157–

158, 194
layout grids, 2
left-aligned labels, 122–123, 145
legend element, 119–121

changing the default layout,
138–143

styling, 133–135
letter-spacing property, 18–21
line-height property, 61, 159, 172
linear layouts, 2–3
linebreak element, 32
LinkedIn web site, 123
links, 21, 89
liquid layouts, 70, 175–178
list items, 90, 91, 103

See also ordered lists;
unordered lists

list-style property, 34, 127
logos, 73–75, 165, 176

M
margin property

changing for list items, 89
fieldset elements, 126, 142
floated images and captions, 61,

63, 104
images and thumbnails, 34
inset- and outset-style borders,

28–29
negative margins, 52, 138,

145–146
variable-width tabs, 104

margin-right property, 129
markup

adjusting character metrics,
18–21

importance of simplicity, 102
users with images disabled, 9

mouseover effects, 203–206
multiple backgrounds in CSS 3, 83

N
navigation, 86–116

graphic intensive version,
108–114

horizontal navigation, 95–116
pagination style navigation, 25,

32–36, 38
single include, 93
tabbed navigation, 98–107
thumbnail page, 39
vertical navigation, 88–95
You Are Here navigation, 92–95,

101–102, 106–107, 112–113
navigation matrix technique,

108–115
negative left value, IE legends, 134
negative margins, 52, 138, 145–146
negative text-indents, 7–9, 74
nested fieldsets, 144
nesting positioned elements, 10
non-semantic markup, 11, 83, 105,

171–172
Noodlebox web site, 12–13

O
offset captions, 63–64
online resources

forms layout, 122
image galleries, 64–65
precompiled sIFR, 15
spreadsheet-like functionality,

206
opacity property, 201
ordered lists

radio buttons and checkboxes,
144

turning off numbering, 127
wrapping form elements and

labels, 125–126, 145
outset borders, 62, 28–29
overflow property, 8, 11

P
p tags round images, 25
padding property

changing for list items, 89
extending images beyond

content, 48–53
fieldset elements, 126, 131, 134,

138
form element list styling, 127,

141
image captions, 61–62, 64
inset- and outset-style borders,

28–29

212	 The Art & Science of CSS 	 Index	 213

legend elements, 135
between paragraphs, 162
round-edged boxes, 159, 162,

170
styling thumbnail navigation, 40
text and background images, 76
variable-width tabs, 104

padding value, background-origin,
84–85

page download times, 9, 21, 78
pagination style navigation, 25,

32–36, 38
paragraphs with rounded corners,

161, 174
parent elements

absolutely positioned, 152
floating, 130
relatively positioned, 149, 151

photographs. See images
PNG images, 59–60, 72, 200
portfolio section, Deadwood

Design, 77–82
portrait format images, 35
position property

See also absolute positioning;
relative positioning

stack order, 81-2
positioning backgrounds, 69
positioning captions, 58–59
positioning form labels, 121
properties useful in tables, 191–

192
pseudo-classes, CSS 3, 206

R
radio button grouping, 143–146
Rapha web site, 5–6
readability, 23, 122, 199
reading direction and layout, 121
relative positioning, 10

browser window resizing and,
74

captions on top of images, 60
fieldsets within spans, 140
legend element, 134
ordered list in grouped form

elements, 146
unordered list in matrix

navigation, 109
z-order and, 81

required form fields, 147–149
resizing

background images, 71
browser windows, 70–72, 74–

75, 80–82, 178
text, 134, 145, 169, 174

RGB colors, 67
right-aligned labels, 123, 132–133,

145

rounded corners, 154–180
CSS 3 potential, 207
definition lists, 156–167
liquid layouts, 175–178
tabbed navigation, 98–100
whole page layouts, 162–167

row group element, 186
rowspan element, 187
rules attribute, table element,

184–185

S
screen readers, 120–121, 188

See also accessibility
script tags, including the sifr.js

file, 16
scrolling, 6, 121
search engines and text as images,

76
selectors, CSS, 17, 206
semi-transparent captions, 59
sIFR (scalable Inman Flash

Replacement), 12–21
spaces. See whitespace
span element

See also wrapper elements
captioned images, 55, 61
hiding markup, 10
hiding text, 76
legend workaround for Firefox,

140
size setting, 11
tables, col and colgroup, 188–

191, 205
stack order, 81–82
strong element, 149, 151
style sheet simplicity, 102
styling hooks

div elements as, 168, 171–172,
176

forms layout, 125, 147
rounded corner designs, 155,

166–167
unordered list items as, 87

submit buttons, 126, 128, 135–137
Subtraction web site, 2
Superfluous Banter web site, 108

T
tabbed navigation, 98–107

final style sheet, 101–102
variable-width tabs, 102–107

table element, 182–185, 191
tables, 182–208

applying backgrounds, 194–196
cell backgrounds, 194–195
cell spacing, 192
CSS 3 potential, 206–208

example applications, 196–202
row and column highlighting,

203–206
sorting, 205
spreadsheet functionality, 206
striping alternate rows, 199–

202, 206
styling, 191–196
using JavaScript, 202–208

‘tag soup,’ 83, 179
See also non-semantic markup

tbody element, 186, 200
td element, 182, 187–188
text

See also alternative text;
resizing

hiding, 7–9, 76
as images, 75-76

text-decoration property, 173
text-indent image replacement,

7–9, 11, 73–75, 165
text wrapping

captioned images and, 57
contextual images and, 47
Flash replacement techniques,

18–21
label elements and, 130
legend elements, 145

tfoot element, 186
th element, 182, 187–188
thead element, 186
thumbnail images

album pages, 41–44
obscuring, 81
styling navigation thumbnails,

32–36
thumbnail pages, 36–40

tiling, background-repeat, 68
top-positioned labels, 122, 129
tr element, 182, 187
transparency

GIF support, 200
semi-transparent captions, 59
setting for Flash movies, 17
submit button backgrounds, 136
transparent pixels, 78
transparent PNG support, 59–

60, 72, 200
typefaces

See also fonts
Cooper Black, 14
FONTSMACK web site resource,

16
headings, 3–4
limited distribution of, 4, 14
serifs and readability, 23
sIFR embedding of, 14
varied effects, 6
whitespace and, 15

212	 The Art & Science of CSS 	 Index	 213

U
unitless line-heights, 159
universal selectors, 157
unordered lists

as block-level elements, 87
Cartography Corner navigation,

87
navigation matrix technique,

109
pagination style navigation, 25,

32
portfolio displays, 77, 79

usability, 12, 22, 88, 113, 122

V
validation, unitless line-heights,

159
vertical and horizontal flexibility,

167–175

vertical flexibility, 156–167
vertical navigation, 88–95
visibility property, 21
visually impaired users. See

screen readers

W
W3C specification, 188
white, usefulness of, 26, 61
whitespace, 15, 90, 127–128
width attribute, colgroup element,

189
width property

image captions, 61–62, 64
images and thumbnails, 31,

34–35
width settings, 145, 169
window mode, 18
wrapper elements, 105

See also div element; span

element
rounded corner layouts, 163,

176
as styling hooks, 125

Y
You Are Here navigation, 92–96,

101–102, 106–107, 112–113

Z
z-index property, 77, 81–82
zebra tables, 199–202

	The Art & Science Of CSS
	About the Authors
	Table of Contents
	Preface
	Chapter 1. Headings
	Chapter 2. Images
	Chapter 3. Backgrounds
	Chapter 4. Navigation
	Chapter 5. Forms
	Chapter 6. Rounded Corners
	Chapter 7. Tables
	Index

